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Chapter 1

Introduction

For years, the student level of algebraic proficiency has had the in-
terest of teachers, educational researchers, and politicians. The dis-
cussion of this issue in the Netherlands led to a debate. This debate
served as the background for the research described in this thesis. In
the current chapter, we give an overview of the debate and discuss
the aims of the research described in this thesis.

1.1 The Dutch discussion of mathematics educa-
tion

In the Netherlands, the discussion of arithmetic and algebra proficiency took
place against the background of curriculum changes in lower and higher sec-
ondary education. In 1992, an educational change took place in lower secondary
education, called Basic Education (in Dutch: Basisvorming). This change in-
volved the introduction of a broad curriculum with 15 subjects for students of
ages 12–14.

Drijvers (2006b, p. 57) points to a number of features that stand out in this
change. We may summarize these as follows. Much attention is paid to meaning-
ful contexts and to modeling. Students have to translate problems into algebra,
or make calculations with the model given. The results of the algebraic manipu-
lation have to be translated back into the context. In this way, students have to
switch between the world of concrete problems and the world of algebra. Central
in the curriculum of lower secondary education are relations and functions that
require students to switch between representations such as graphs, formulas, and
tables. Furthermore, students are stimulated to develop their own situational,
informal and preformal strategies. Little attention is being paid to developing
procedural routines. Furthermore, students are used to working independently a
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2 CHAPTER 1. INTRODUCTION

great deal in both the classroom and at home. In this tradition, textbook series
are tailored to avoid cognitive conflicts. By means of many subquestions in the
exercises, students are guided to the intended procedures and insights.

In higher secondary education, ages 15–18, the curriculum changed in 1998
with the introduction of the so-called Second Phase (in Dutch: Tweede Fase)
in higher secondary education. This change aimed at a better balance between
knowledge, insight, and skills; and a broader curriculum for all students con-
sisting of four profiles that do justice to students’ different capabilities and in-
terests (Tweede Fase Adviespunt, 2005b). These four profiles, Culture & Soci-
ety, Economy & Society, Nature & Health, Nature & Science, all have different
mathematical programs, tailored to the specific needs of the profile and con-
tinuing higher education. Beside Algebra, mathematics programs also included
mathematical analysis, geometry, and statistics. Soon after the introduction of
these programs, secondary school teachers were dissatisfied because of the dis-
appointing level of student algebraic proficiency and because of the students’
disappointing performance on the final exam (Boon et al., 2002; Zwaneveld,
2004). Educators in higher education complained about the algebraic skill level
of first-year students (Van Gastel et al., 2007).

University teachers indicated that students in higher science, technical, and
economics courses were not able to do simple mathematical calculations(e.g.
Tweede Fase Adviespunt, 2005a). The heated discussion that followed concerned
the whole curriculum from primary education to higher education. The polariza-
tion of the debate in newspapers and specialist journals resulted in two opposing
camps: those who advocate reform mathematics, in the Netherlands influenced
by “Realistic Mathematics Education” (RME), and those who advocate a more
traditional approach to teaching mathematics. The empirical data used in the
debate came from large scale assessments, both nationally (Janssen et al., 2005)
and internationally, such as PISA (OECD, 2007) and TIMSS (Olson et al., 2008).
One camps used these studies to claim that Dutch students perform relatively
well, and the other, to claim that the student level of proficiency decreased. This
discussion was one of the reasons for the Dutch government to adapt the Second
Phase in 2007. This adoption involved, among other things, a more prominent
place for algebraic skills in the curriculum. The research project of thesis started
during this change and in the middle of the discussion of the student level of
algebraic proficiency.

1.2 The Dutch educational system

Education in the Netherlands is compulsory for students from age 5 onwards.
Depending on their basic qualification, students may quit school at ages varying
from 16 to 18. However, most students start to go to school just after their
fourth birthday and begin grade 1 of primary education. After eight years,
students leave primary education. Secondary education is divided into three dif-
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Figure 1.1: The Dutch educational system.

ferent streams: pre-vocational education, general education, and pre-university
education, see Figure 1.1. About 55%–60% of the students that leave primary
education go to pre-vocational education (VMBO) (Ministerie van Onderwijs,
Cultuur en Wetenschap, 2010), which prepares them for vocational education.
About 25% of the students that leave primary education go to general education
(HAVO), which prepares them for higher vocational education. About 15%–20%
of the students go to pre-university education (VWO) which prepares for uni-
versity. In this thesis, we focus on the development of algebraic proficiency of
students in pre-university education, the gray rectangle in Figure 1.1. Alongside
primary and secondary education, there is special education (SO) for students
with special needs because of learning disabilities or behavioral problems.

Upper secondary education (from grade 10) in HAVO and VWO is called
Second Phase. This Second Phase follows on the partly common curriculum
in grades 7, 8 and 9 in lower secondary education. As we mentioned already,
students in the Second Phase are divided into four streams: Culture & Society,
Economy & Society, Nature & Health, and Nature & Science. These so-called
profiles have different mathematics programs. For example, unlike the students
in the Nature & Science stream, students in the Culture & Science stream do
not learn calculus. In 2007, the Dutch government decided to renew the Second
Phase. One of the adaptations concerned the mathematics programs. In the
so-called Renewed Second Phase, more attention is paid to algebra.



4 CHAPTER 1. INTRODUCTION

1.3 Research aims

Dutch universities played a central role in the discussion of algebraic proficiency
in the Netherlands. They saw themselves confronted with students whose level of
algebraic proficiency was considered as insufficient. In reaction, they organized
remedial courses to repair the deficiencies. Although part of the problems in the
universities could be ascribed to the fact that the universities were not prepared
to adapt to the new mathematics programs of the Second Phase, there also
seemed to be problems with the student level of algebraic proficiency (Sterk &
Perrenet, 2005; Tempelaar, 2007; Vos, 2007).

In the discussion in the Netherlands, different causes were put forward for stu-
dents’ disappointing level of algebraic proficiency. For example, that the students
had to take responsibility for their own learning process. Another cause that was
mentioned is that the algebraic skills taught in lower secondary education were
not maintained in higher secondary education. In addition, the introduction of
the graphing calculator in upper secondary education was mentioned as a cause
for the students’ disappointing level. Using the graphing calculator was supposed
to reduce students’ ready knowledge.

This discussion served as input for this study. The point of departure is the
students’ debated level of algebraic proficiency in the transition from secondary
to higher education. This study aims to obtain insight in the actual level of
student algebraic proficiency in pre-university education. And, if this level is
disappointing, to obtain insight into the deeper causes of the problems students
experience in the preparation for pre-university education to higher education.

1.4 Research strategy

In order to obtain more insight into the actual level of student algebraic pro-
ficiency, we constructed four tests. The theoretical foundation of these tests
was the relation between procedural fluency and conceptual aspects of algebraic
proficiency, which also played a role in the discussion in the Netherlands about
algebraic proficiency. Another aspect that played a role in this discussion was
the relation between arithmetic and algebra. As we mentioned before, the dis-
cussion was triggered by problems in the transition from secondary to higher
education, but eventually concerned the whole curriculum from primary educa-
tion up to higher education. Therefore, this relation served as input into the
construction of the tests. In our view, it is hard to draw a line between arith-
metic and algebra. For example, calculating 7 × 17 by means of 7 × 10 + 7 × 7
reinforces the distributive law, and 7× 237 + 3× 237 gives meaning to algebraic
simplifications such as 7a+3a = 10a (French, 2002). In addition, in Dutch lower
secondary education, students learn to simplify expressions with square roots,
such as 2

√
5 + 4

√
5 = 6

√
5. In a certain sense, this type of calculation is arith-

metic as well as algebra: it is algebra because this kind of topic is not taught in
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arithmetic in primary education; and it is arithmetic because this expression does
not have a letter in it. In our view, the ability to deal with square roots, negative
numbers, and fractions is part of algebraic proficiency. Therefore, we decided to
add these topics into the tests. In Chapter 2 we further elaborate on the relation
between arithmetic and algebra and on the relation between procedural fluency
and conceptual aspects.

Based on these two aspects, we constructed four sequential paper and pencil
tests in a partly cross-sectional and partly longitudinal design. A thousand-
odd students in grades 8–12 (ages joined at least one of the sessions of the
assessments, which were used to investigate how student algebraic proficiency
developed. We used the Rasch model to analyze the data (Rasch, 1980; Bond &
Fox, 2007; Linacre, 2009). This one parameter item response model has proven
to provide good scales for mathematics proficiency in large assessments such as
TIMSS (Olson et al., 2008) and PISA (OECD, 2003). With this model we were
able to compare the results of the students of the four assessments even though
the tasks of these four assessments were different.

The results of these assessments gave rise to further research on higher-order
thinking skills. Based on the findings of this study, we decided to perform an
analysis of the two most-used textbook series in the Netherlands.

1.5 Outline of the thesis

In Chapter 2, we describe the construction of the assessments and the Rasch
analysis. We investigate the development of students algebraic proficiency, both
cross-sectionally and longitudinally. In addition, we discuss results on individual
tasks. The results of the tests created the need to get a better handle on the
difficulties students experienced. Therefore, in Chapters 3 and 4, we focus the
analysis to conceptual aspects of algebraic proficiency. In Chapter 3, we focus
the analysis of the assessments on the ability to deal with the mathematical
structure of algebraic expressions. In Chapter 4, we find an explanation for the
difficulties students experience in the nature of mathematics.

In Chapter 5, we address methodological issues concerning a measure from
the cognitive load theory that we used in the assessments. This measure was
supposed to provide a more detailed view on student level of algebraic profi-
ciency than just performance scores. However, using the measure revealed some
methodological issues.

In Chapter 6, we describe the analysis of two Dutch textbook series. In this
analysis, we focus on the role of contexts and models, and how these contribute
to the learning process. We conclude this dissertation with a summary of our
main findings, reflections on these findings, and practical recommendations in
Chapter 7.

We aimed at writing chapters in such a way that they can be read indepen-
dently. As a consequence, there are some overlaps.





Chapter 2

The development of
students’ algebraic
proficiency in Dutch
pre-university education

In this partly cross-sectional, partly longitudinal study, we investi-
gate the development of algebraic proficiency in Dutch secondary
education. As a theoretical background we use the relation between
procedural and conceptual knowledge and the transition from arith-
metic to algebra. Rasch analysis shows that students make progress,
both cross-sectionally and longitudinally, but this progress is small.
Furthermore, the development is not in the area of the conceptual
aspects of algebraic proficiency. Finally, there is no significant dif-
ference in performance between students in the social stream and
students in the science stream.

2.1 Introduction

Discussions of students’ level of algebraic proficiency are taking place worldwide.
International comparative studies such as the Trends in International Mathemat-
ics and Science Study (TIMSS) and the Programme for International Student
Assessment (PISA) induced studies on how to improve students’ algebraic pro-
ficiency (e.g., National Mathematics Advisory Panel, 2008). In the Netherlands,
the discussion focused on the level of basic algebraic skills in the transition from
secondary education to higher education (Tweede Fase Adviespunt, 2005a; Van

7
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Gastel et al., 2010). Complaints were heard that students were not proficient in
basic algebraic algorithms and that they could not apply them correctly when
entering higher education. As a result, educators and politicians called for a
stronger emphasis on procedural skills (Van Gastel et al., 2007). However, from
the mathematics education perspective, there is an urge to teach a deeper under-
standing that transcends the algebraic procedures. This deeper understanding
appears to be of great importance in higher education. The following examples
of McCallum (2010) may illustrate that the demands in higher education exceed
the level of superficial procedural fluency:

• recognizing that P · (1 + r
12

)12n is linear in P (finance);

• identifying n(n+1)(2n+1)
6 as being a cubic polynomial with leading coefficient

1
3 (calculus);

• observing that L0

√
1− ( v

c )2 vanishes when v = c (physics);

• understanding that σ√
n

halves when n is multiplied by 4 (statistics).

Our starting point is that the reasons for an unsatisfactory level of skills have
to be sought in the preceding learning process. We focus on the algebraic skills
taught in the lower secondary school, because the complaints by students as well
as educators concern algebraic skills taught at the lower secondary level (Van
Gastel et al., 2007, 2010). In order to better understand why students experience
difficulties with these skills in higher secondary education, we chart students’
algebraic proficiency in grades 8 through 12. The underlying rationale is that
weaknesses or flaws will become manifest in the way the students’ proficiency
develops.

2.2 Different aspects of algebraic proficiency

This study aims at investigating students’ development in algebraic proficiency.
In order to investigate this development, we constructed tests based on two as-
pects of algebraic proficiency. The first aspect concerns the relation between
basic skills and the deeper understanding that also plays a role in the aforemen-
tioned discussion. The second aspect concerns the transition from arithmetic
to algebra. This transition is a central theme in lower secondary school algebra
and is considered crucial for the development of algebraic proficiency. Below we
elaborate on these two aspects.

2.2.1 The relation between procedural fluency and concep-
tual understanding

The distinction between fluency and understanding is central in discussions of
algebraic proficiency and has been widely discussed in the past forty years (e.g.
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Algebraic expertise

Basic skills

Procedural work

Local focus

Algebraic calculation

Symbol sense

Strategic work

Global focus

Algebraic reasoning

Figure 2.1: Algebraic expertise as one dimension (Drijvers, 2006b, 2010).

Skemp, 1976; Hiebert & Lefevre, 1986; Kilpatrick et al., 2001). To Hiebert &
Lefevre (1986), procedural knowledge has two parts: the formal language (in-
cluding the symbols), and the algorithms and other rules. Conceptual knowl-
edge is a connected web that is rich in relationships. In their view, conceptual
knowledge develops by constructing relationships between pieces of information.
Skemp (1976) distinguished between knowing how to apply the rules and algo-
rithms correctly (instrumental understanding) and knowing both what to do and
why (relational understanding). Kilpatrick et al. (2001) integrated research on
procedural fluency and conceptual understanding as two of five strands of math-
ematical proficiency, along with strategic competence, adaptive reasoning, and
productive disposition.

Meanwhile, it is widely accepted that procedural fluency and conceptual un-
derstanding have to go hand in hand. Arcavi (1994) made an important con-
tribution to thinking on fluency and understanding by introducing the notion
of “symbol sense”. He illustrates this notion by describing behaviors related to
skills that exceed basic manipulations, such as seeing the communicability and
the power of symbols. Other behaviors relate to the ability to manipulate or to
read through symbolic expressions depending on the problem at hand, and to
flexible manipulation skills, such as the ability to cleverly select and use a sym-
bolic representation. These flexible skills also include a “Gestalt view” which
refers to the ability to see symbols as arranged in a special form, not only as a
series of letters. An example is the equation of Wenger (1987) who asked stu-
dents to solve the equation v

√
u = 1 + 2v

√
1 + u for v. Students experienced

great difficulty recognizing that the equation is of the form vA = 1 + 2vB and
so is linear in v. Wenger (1987) noted that students sometimes perform the ma-
nipulations correctly, but the manipulations do not yield a solution. Rather, the
expression grows in length and becomes more and more complicated because of,
for example, squaring both sides of the equation. He argues that students may
avoid procedural errors yet carry out the wrong manipulations, “poor choices of
what to do next” Wenger (1987, p.219). Gravemeijer (1990) pointed out that
the ability to solve this equation depends on the ability of the student to see its
linear structure. In line with the work of Arcavi, Drijvers (2006a) sees algebraic
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expertise as one single dimension ranging from basic skills to symbol sense. Basic
skills involve procedural work for which a local focus and algebraic calculations
suffice. Symbol sense involves strategic work which requires a global focus and
algebraic reasoning, see Figure 2.1. In this chapter we follow Drijvers (2006a)
in viewing algebraic proficiency as a sliding scale ranging from basic skills to
symbol sense.

2.2.2 Transition from arithmetic to algebra

This study focuses on students’ development in algebraic topics taught in lower
secondary pre-university education. We decided to include topics such as cal-
culating with negative numbers, fractions, and square roots that are related to
the transition from arithmetic to algebra. Knowledge about this transition is
important for teachers who want to prepare students for algebra (Herscovics &
Linchevski, 1994). This transition has been studied extensively (e.g. Filloy & Ro-
jano, 1989; Linchevski & Herscovics, 1996). The literature has identified several
difficulties in the transition from arithmetic to algebra such as the lack of clo-
sure obstacle (Tall & Thomas, 1991), and the process-product dilemma (Sfard &
Linchevski, 1994b). These difficulties also play a role in calculating with negative
numbers and square roots. The lack of closure obstacle refers to the difficulty
students experience when they have to handle an algebraic expression which rep-
resents a process that cannot be carried out. For example, the expansion of the
brackets of 2(3x − 5) leads to the expression 6x − 10 which has to be accepted
as an answer instead of as a subtraction that has still to be carried out. An
example of the process–product dilemma is handling square roots in expressions
such as

√
20 +

√
5 = 3

√
5 which represents both a process of extracting the root

and the product of that process.

2.2.3 Research questions

The two aspects of algebraic proficiency discussed above play an important role
in the development of the algebraic skills taught in lower secondary education.
They form the basis for the construction of tests that aim at answering the
following research questions.

1. How does students’ algebraic proficiency develop from a cross-sectional
perspective?

2. How does students’ algebraic proficiency develop from a longitudinal per-
spective?

3. How does students’ algebraic proficiency develop in terms of basic skills
and symbol sense?
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2.3 Methods

Our project aims at investigating the development of the algebraic proficiency of
students in pre-university education. To monitor this development, the students
are assessed four times, spread out over a calendar year in a partly cross-sectional
and partly longitudinal design. In the Netherlands, students in upper secondary
education follow one of four different programs. For convenience of comparison,
we divided these four programs into two streams: a society stream and a science
stream. Students in these streams follow partly the same and partly different
mathematical programs. To complicate matters, a curriculum reform took place
during the data collection. The new curriculum pays more attention to algebraic
skills. So, in the analysis, this curriculum change has to be taken into account.
Because of the different programs in upper secondary education, we focused
on the common topics of these programs. A textbook analysis combined with
an analysis of formal documents of the government showed that the following
topics are taught in all programs: algebraic tasks concerning expanding brackets,
simplifying expressions, and solving equations; and arithmetical tasks concerning
negative numbers, fractions, and square roots.

2.3.1 Test design

The tests are based on the attainment targets formulated by the Dutch Ministry
of Education, Culture and Science combined with the theoretical considerations
discussed in Section 2.2. Because the attainment targets of the science stream
include those of the social stream, we have based the tests on the attainment
targets of the social stream (CEVO, 2006).

Numerical items are included that are related to the transition of arithmetic
to algebra. These items are related to minus signs (for example, calculate −7−
(4− 3) · (−8)− 2), calculating with fractions (for example, simplify 8

21 − 2
7 + 1

14 ),
and square roots (for example, simplify 2

√
5 + 4

√
5).

Algebraic items are included ranging from basic skills to symbol sense. These
items are taken from the textbook series (e.g. Reichard et al., 2005) and teaching
material of SLO (2008), as well as from the literature, for instance Arcavi (1994);
Harper (1987); Wenger (1987); Matz (1982). The complete list of tasks can be
found in the Appendix A.

For ease of following the individual students, we have used similar items in
different assessments, put differently, we used an anchor design. We have chosen
our tests to consist of open questions, to be worked out with paper and pencil.
In this way, we avoid students’ guessing answers. During the tests, students were
not allowed to use calculators or notes. The tests consisted of 12 to 16 items and
were designed to be completed in half an hour, in order not to overburden the
students and teachers.
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Grade March May October February Part. Part.
2008 2008 2008 2009 4× ≥ 1

8/9 164 227 173 171 94 266
9/10 163 160 129 114 56 217
10/11 Total 243* 185 163 144 90 268*

Social 95 60 49 51 27 103
Science 144 125 114 93 63 161

11/12 Total 244* 204 188 72 37 269*
Social 117 103 90 26 17 132
Science 125 101 98 46 20 134

Total 814 776 653 501 277 1020

* The total is larger than the sum of the social and science stream because some
students did not report their stream.

Table 2.1: Number of students in the cross-sectional and longitudinal data col-
lection.

2.3.2 Data collection

We assessed students in March 2008, May 2008, October 2008, and February
2009. Students of grades 8, 9, 10 and 11 (ages 13–16) participated in the first
and second assessments. After the summer vacation, these students were in
grades 9 up to 12 in October 2008 and February 2009. Table 2.1 provides an
overview of the numbers of students that participated. Four schools participated,
two schools using textbooks of Getal & Ruimte, and two schools using textbooks
of Moderne Wiskunde, see for example (Reichard et al., 2006) and (De Bruijn
et al., 2007). These textbooks together have an estimated market share of 90%
(cTWO, 2009), and so can be seen as representative. Three schools are situated
in the south of the Netherlands and one school is situated in the middle of the
Netherlands. All four schools are situated in urbanized parts of the Netherlands
mainly with children of Dutch origin. From each school, two classes of each
grade participated. In total, 1020 students of four schools participated at least
once. Figure 2.1 shows the numbers of students per grade that participated.
In grades 8 and 9 from each school, two classes of each grade participated. In
grades 10, 11 and 12, students of the social stream and of the science stream
participated. The written answers were coded 1 for correct and 0 for incorrect.
Doubtful cases were discussed with colleagues.
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Figure 2.2: Probability of success as a function of ability relative to item diffi-
culty.

2.3.3 Creating Rasch scales for algebraic proficiency

For the analysis of our data, we used the Rasch model, a one parameter item
response model (Rasch, 1980; Bond & Fox, 2007; Linacre, 2009). With a Rasch
analysis, one linear scale is created on which both persons are situated according
to their ‘ability’ and items according to their ‘difficulty’. On this scale, not
only the order but also the distances between the items and the students have
meaning. Rasch theory supposes that the probability of a person’s giving a
correct answer on an item is a logistic function of the difference between person’s
ability and the difficulty of the item, see Figure 2.2. To put it more precisely,
the probability Pni of person n with ability Bn to correctly answer item i with
difficulty Di is given by

Pni =
eBn−Di

1 + eBn−Di
.

Both the ability of the persons and the difficulty of the items are measured in
so-called units of log odds ratios, or logits. The local origin of the Rasch scale is
usually situated in the center of the range of item difficulties. As a consequence,
if the ability equals the item difficulty, that is, if Bn = Di, then

Pni =
eBn−Di

1 + eBn−Di
=

e0

1 + e0
=

1
2
.

We consider this model appropriate for three reasons. First, we expect the
Rasch model to provide a more detailed view of students’ algebraic proficiency
level than p-values, because the Rasch model takes the difficulties of the items
into account. The second reason is that we conjecture that algebraic proficiency



14 CHAPTER 2. DEVELOPMENT OF ALGEBRAIC PROFICIENCY

satisfies the assumption of the Rasch model of possessing one unidimensional
construct as discussed in Section 2.2. Furthermore, Rasch models are also used
in international mathematics education surveys such as TIMSS (Olson et al.,
2008) and PISA (OECD, 2003). The third reason to use the Rasch model is that
it provides the opportunity to anchor the scales of the four assessments. This
makes it possible to compare the results of the students of our four assessments
even though the items of these four assessments are different.

For each assessment, we created its corresponding Rasch scale. However, the
purpose of the project is also to follow individual students in time. Therefore,
we connected the four Rasch scales by using anchor items. Although all four
assessments consisted of different items and none of the items occurred in more
than one assessment, some of the items in different assessments are quite similar.
Consider for instance the four items in which students are asked to expand the
brackets, namely −4(3a+b), −5(2p+q), −3(4p+q), and −4(5p+q). Whether or
not these items are suitable to use as anchor items is determined by a Differential
Test Functioning (DIF) (Linacre, 2009). DIF indicates that after adjusting for
the overall scores of the respondents, one group of respondents scores better on
a specific item than another group of respondents.

The results of the dif-analysis suggest that five items of each assessment are
suitable for serving as anchor items to connect the Rasch scales. Based on the
item measures of these five items, we connected the four Rasch scales of the four
assessments. As a consequence, items of all four assessments are placed on one
scale. Also, students of different assessments have a Rasch measure on one scale.

In our analysis, we want to determine which items students master. Therefore
it is necessary to determine what we view as mastery. We can arguably consider
a probability of 80% of answering an item correctly as an expression of mastering
that item. From the Rasch model it follows that a probability of 0.8 of person n
answering item i correctly corresponds to an ability Bn which is 1.39 logit higher
than the difficulty Di of item i because if Bn −Di = 1.39, then

Pni1 =
eBn−Di

1 + eBn−Di
=

e1.39

1 + e1.39
≈ 0.8.

As a consequence, we consider that students with a measure at least 1.39 higher
than the measure of the item master that particular item.

2.3.4 Fit

From the assumptions of the Rasch model, it follows that students and items
with extreme scores are not directly estimable. In our case, none of the items
in our tests had an extreme score. That is, no item was answered correctly by
all students and no item was answered incorrectly by all students. There were,
however, individual students with extreme scores: in the first assessment, 23 out
of 814 students answered all items correctly; one students answered all items
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incorrectly. In the second assessment 40 out of 776 students had extreme scores;
in the third assessment, 5 out of 653 students and in the fourth assessment, 6
out of 501 students had extreme scores. In the analysis, students with extreme
scores are left out. These students are imputed a Rasch measure based on those
of the other students. As a consequence, Rasch measures at the tail end have to
be treated with care.

To evaluate the fit of the Rasch model on our data, we checked item polarity,
infit and outfit, reliability, and multidimensionality. At first, we verified the
point-measure correlations related to item polarity. These correlations reflect the
extent to which items are aligned in the same direction on the latent variable.
If these correlations are positive, students with a high ability perform better
on these items than students with low ability. In our case, all correlations are
positive.

From the 1020 participating students, 163 students show an outfit greater
than 2 in at least one of the four assessments. Mostly, these high outfit scores
are due to incorrect solutions to items with low measure, for example, “expand
−5(2p+ q).” We couldn’t find a specific pattern for the group of students with a
high outfit that failed some low measure item, therefore we decided not to exclude
these students from the analysis. Furthermore, we conclude that the high outfit
is due to the small number of items in our assessments. Consequently, we must
draw conclusions carefully.

With respect to the reliability, we found values of .70, .70, .66 and .68 for
assessments 1, 2, 3 and 4, respectively. These reliability scores can be compared
to Cronbach’s alpha.

With respect to multidimensionality, for each assessment the Rasch analysis
yielded that the raw unexplained variance of the model almost equals the raw
unexplained variance of the empirical data. Furthermore, the contrasts of the
principal component analysis yielded no other significant factors.

Based on the considerations above, we conclude that the items in our assess-
ments reflect one and the same underlying latent variable.

2.4 Cross-sectional and longitudinal results

The analysis is performed from different perspectives. First, we investigate the
development of algebraic proficiency cross-sectionally and longitudinally. Next,
we analyze student ability from a more theoretical point of view, related to the
aspects of algebraic proficiency we described in Section 2.2.

2.4.1 Cross-sectional results

First, we perform a cross-sectional comparison of grades 8 through 12. Figure 2.3
shows the percentiles of Rasch measures in logits of four groups of students
who were assessed on March 2008, May 2008, October 2008 and February 2009
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Figure 2.3: Cross-sectional percentiles of all grades in all assessments.

respectively. As we explained above, the number of participating students varied
over the assessments. As a consequence, the bars between the dashed lines in
Figure 2.3 partly represent the same students. From the percentiles of the Rasch
measures, we conclude that generally, the averages of the different assessments
increase with the grades. If we focus on the little lines that represent 50% of the
students, we see that there is a difference of approximately two logits between the
lowest average (grade 8, May 2008) and the highest average (grade 12, February
2009). A more detailed view of Figure 2.3 reveals that grade 9/10 performs better
than grade 8/9 and grade 10/11 performs better than grade 9/10. The difference
in ability between grade 10/11 and grade 11/12 is less obvious. Here we note that
the curriculum of students in grade 11/12 differs from the curriculum of students
of the other grades. Recall that the difference between these curricula concerns
algebraic skills. As a consequence, it is hard to draw a conclusion from the lack of
difference between grades 10/11 and grades 11/12. The only tentative conclusion
we propose is that the new curriculum may lead to a higher proficiency, if the
growth in ability from grade 8/9 to grade 9/10 to grade 10/11 continues.

When we look at the dispersion of the percentile scores displayed by the bars
in Figure 2.3, we see that in each bar, 50% of the students (the white area) is
within two logits of each other. Thus, the dispersion within the twelve or sixteen
different assignments is rather small with regard to the difference between the
worst and the best scoring student (the length of the whole bar). If we focus on
80% of the students (i.e., leaving out the best and worst 10%), we see that they
are within a range of at most 3.8 logits of each other.

With respect to the different streams the students followed starting from
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Figure 2.4: Rasch measures of
grade 8/9 students in the first and
fourth assessments (N = 104).
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Figure 2.5: Rasch measures of
grade 9/10 students in the first and
fourth assessments (N = 90).

grade 10, students of the science stream outperform those of the society stream.
This difference is not significant. The Rasch model provides standard errors
which provide a 95% confidence interval around the measures. A rule of thumb
considers differences greater than 1.5 times the sum of the standard errors as
significant (Linacre, 2009). In this case, the averages differ by less than 1.5 logit
with standard errors around 0.75 logit, which is not significant. Note, however,
that because of the relatively small number of items, differences would have to
be quite large before they become significant.

To sum up, the cross-sectional analysis showed that there is progress and
there is only little dispersion among the middle 50% of the students. There
seems to be a growth in ability between the generation of grade 10/11 and that
of grade 11/12, which might be a positive effect of the curriculum changes. In
grades 10, 11 and 12, students of the science stream outperformed students of
the social stream. However, this difference is not significant.

2.4.2 Longitudinal results

The cross-sectional analysis in subsection 2.4.1 showed progress in subsequent
grades. For a more detailed view of the development of algebraic proficiency, we
analyze the development of individual students over the four assessments.

Figure 2.4 shows the Rasch measurements in logits of individual students in
the first assessment in March 2008 (horizontally) compared to the Rasch measure-
ments of these students in the fourth assessment in February 2009 (vertically).
Each dot represents one student.
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Figure 2.6: Rasch measures of
grade 10/11 students in the first and
fourth assessments (N = 131).
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Figure 2.7: Rasch measures of of
grade 11/12 students in the first and
fourth assessments (N = 65).

Students above the dashed line score better in the fourth assessment than in
the first assessment. Hence these students have shown progress. Students below
the dashed line show lower ability in the fourth assessment than in the first
assessment. Hence these students retrogressed. The standard error of the Rasch
measures provides a 95% confidence interval to determine whether or not the
changes are significant. Figures 2.4, 2.5, 2.6 and 2.7 show the ability of students
of subsequent grades in the first assessment compared to the ability in the fourth
assessment. The majority of the students did not make significant progress: 96
students out of 104 students in grade 8/9; 81 of 90 students of grade 9/10; 122
out of 131 students in grade 11/12; and 59 out of 65 students in grade 11/12 did
not make significant progress. In subsequent grades, 8 out of 104; 9 out of 90; 7
out of 131; and 6 out of 65 students made positive progress. In grade 10/11, 2
students out of 131 retrogressed. With respect to the social and science streams
of students in grade 10, 11 and 12, we found no difference between students in
different streams. Both streams possess some students who progress and some
who retrogress. The two retrogressing students in grade 10/11 are both in the
science stream.

Summarizing, the longitudinal analysis showed that students in grade 8/9,
9/10, 10/11 and 11/12 make progress during a calendar year. Only few stu-
dents made significant progress. In the following section, we relate the students’
abilities to the difficulties of the items.
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2.5 Results on individual items

As discussed in Section 2.3, Rasch analysis yielded one scale on which the stu-
dents as well as the tasks of all four assessments have a measure. This construc-
tion provides the opportunity to relate students’ abilities to all tasks used in the
tests. We did not try to separate items that test basic skills from those that test
symbol sense for several reasons. The main reason is that from the evaluation
of the written answers of the students, it became clear that the degree to which
an item appealed to symbol sense is a property of that item as well as of the
strategy used by the students to solve the problem. Another reason is that an
item that appeals to symbol sense for a student in grade 8 might be basic for a
student in grade 12.

Tasks are divided into two main categories: algebra and numbers. These
two categories are both divided into three subdivisions: the category algebra
is divided into the subdivisions expanding brackets, simplifying, and solving
equations; the category numbers is divided into negative numbers, fractions, and
square roots. Figure 2.8 shows the percentiles of Rasch measurements of the
students of the fourth assessment in relation to the Rasch measures of the tasks.
The Rasch scale with unit logits is in the center of the figure. Above the axis, the
percentiles of students in the fourth assessment are presented. Below the axis,
the measures of all tasks are presented, added with 1.39. In this way, students
with the same measure as a task have a probability of 0.80 of answering that
task correctly (see also Section 2.3). The vertical dashed line in the center of the
figure at −0.49 logit indicates the ability of 75% of the participating students in
grade 12. Tasks on the left-hand side of the dashed line are mastered by more
than 75% of the students in grade 12; tasks on the right-hand side of the dashed
line are mastered by less than 75% of the students in grade 12. Below, we discuss
two categories of tasks: algebraic tasks and arithmetical tasks.

2.5.1 Algebra

In Table 2.2, we listed the difficulties of a selection of tasks. These difficulties
correspond to a probability of 0.80 of answering that task correctly. The full list
of tasks can be found in the Appendix.

Expanding brackets

In the easiest task, students are asked to expand the brackets in −4(3a + b). Al-
most all students master this task in grade 12. The other two tasks are mastered
by less than 75% of the students. A common error in expanding the brackets
in −2(4x − y) + 3(−2y − 4) is the oversimplification to 2x + y + 3 by dividing
−8x − 4y − 12 by −4. This step would be appropriate in case the expression
was followed by = 0. Another type of error is caused by minus signs. This kind
of error might occur because of an increase of cognitive load due to a clutter of
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Figure 2.8: Percentiles of student ability in the fourth assessment in relation to
the difficulty of mastering the items, on the Rasch-scale.

minus signs, rather than because of misunderstanding (Ayres, 2001). We con-
clude that students are able to expand brackets, but only up to a certain degree
of difficulty.

Simplifying

Simplifying the expression 5x2+10−2(2x2+4)
x2+2 leads to the expression x2+2

x2+2 . Rec-

ognizing that this expression can be reduced to x2+2
x2+2 = 1 requires students to

identify x2 + 2 as one entity and realize that x2 + 2 6= 0 for all x ∈ R.
The substitution of a = −2 and b = −1 in −(a2b)3 − 2(ab2)2 is mastered by

less than 10% of the students. Substituting a = −2 and b = −1 in the expression
yields a clutter of minus signs which is apparently difficult for students to handle.
A possible strategy is to first calculate a2 = 4 and b2 = 1 and substitute these
expressions separately to reduce the amount of minus signs. Almost all students
in grade 8 to grade 12 lack the flexibility to manage this large amount of minus
signs. This flexibility, however, is part of symbol sense, so we conclude that
students lack this part of symbol sense.

Solving equations

All tasks related to solving equations are mastered by less than 50% of the
students of grade 12. The equations 21

6+ 5
1+x

= 3 and (x − 5)(x + 2)(x − 3) = 0
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Task Measure

Expand the brackets: −4(3a + b) = -2.07
Simplify: −2(4x− y) + 3(−2y − 4) = -0.08
Simplify: (3a2 + 2a + 7)(a + 8). Show your working. 0.54

Simplify: 5x2+10−2(2x2+4)
x2+2 = 1.17

Substitute a = −2 and b = −1 in −(a2b)3 − 2(ab2)2. 2.30

Solve: 21
6+ 5

1+x

= 3. 1.40

Solve: (x− 5)(x + 2)(x− 3) = 0. 2.07
Is there any x for which 2x+3

4x+6 = 2? If so, calculate x; if not,
please explain why such an x doesn’t exist.

2.76

Solve: 2(3x + 2) = 3(2x− 1) + 7. 3.40
Solve: a

√
2 = 1 + 2a

√
3. 5.33

If a
√

b = 1 + 2a
√

1 + b, then a = 7.52

Table 2.2: Algebraic tasks with corresponding difficulty (probability of success
0.80).

both require that students identify a part of the expression as a whole.
In the first equation, whether students use the cover-up method and replace

the equation for example with 21
¤ = 3, or multiply both sides of the equation by

1+x or 6+ 5
1+x , these strategies all have in common that a part of the expression

has to be treated as a whole, as an object. Similarly, in the second equation,
(x−5), (x+2) and (x−3) have to be treated as wholes. The work of the students
showed that students tend to expand the brackets, after which they can neither
find the factorization, nor suddenly realize the equation is simple, see Figure 2.9.

Almost no students were able to conclude that the equation 2x+3
4x+6 = 2 has

no solutions because 2x+3
4x+6 = 1

2 for all x 6= −1 1
2 . Arcavi (1994) argues that the

ability to withstand the invitation to solve this equation directly and instead
perform an a priori inspection and conclude that the quotient equals 1

2 except
for x = −11

2 is an expression of symbol sense. Solving this equation directly
as well as performing an a priori inspection is beyond the ability of almost all
students.

Expanding the brackets in the equation 2(3x + 2) = 3(2x − 1) + 7 yields
6x + 4 = 6x + 4. A few students were able to conclude that every x ∈ R is a
solution of this equation. The equation a

√
2 = 1 + 2a

√
3 is an adapted version

of Wenger’s equation that is mastered by only a few students. The most difficult
task is Wenger’s equation: exactly 2 out of the 650 participating secondary school
students in the assignment of March 2008 were able to solve this equation.

The equations discussed above call for taking a broad view of solving equa-
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Figure 2.9: Typical student work on the task: solve (x− 1)(x + 3)(x− 4) = 0.

tions. This broad view, which is seen as a part of symbol sense, includes the
acceptance of more than one possible solution and having a Gestalt view. From
the students’ performance on solving equations, we conclude that the majority
of the students did not have such a broad view of equations.

2.5.2 Arithmetic

In Table 2.3, we listed the difficulties of a selection of tasks, the full list of tasks
can be found in the Appendix. We discuss students’ performance on these tasks
below.

Negative numbers

Tasks related to negative numbers are grouped around −0.50 logit, except for
one that is at 1.54 logit. The group of tasks around −0.50 logit is mastered by
almost 75% of the students. The task around 1.50 logit involves calculating the
expression −7− (4− 3) · (−8)− 2. This task is perceived as much more difficult
than the other tasks in the subcategory of negative numbers. In our view, the
difficulty of this task can be related to the ability to see parts of an expression as
entities. For example, if students recognize the structure of the expression and
know the priority rules for arithmetic, (4 − 3) as 1, the expression immediately
transforms into −7− 1 · (−8)− 2, which is more manageable.

Summarizing, we conclude that the students mastered simple expressions
with negative numbers, but more complicated expressions rapidly grew beyond
their capabilities.
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Task Measure

Calculate: 18−5
7−20 + 4 = -0.53

Calculate: 3 · (−2) · 5− 2 · 5 = -0.44
Calculate: −7− (4− 3) · (−8)− 2 = 1.54

Simplify: 7
15 − 2

5 + 1
10 = 0.70

Jantine claims that 2 1
2 ×3 1

3 = 6 1
6 . Explain why this is incorrect. 0.79

Simplify: 8
21 − 2

7 + 1
14 1.81

Simplify: 2
√

5 + 4
√

5 = -1.03
Simplify:

√
12√
3

= 2.58
Martijn claims that

√
12 +

√
3 = 3

√
3. Explain why you do or

do not agree with Martijn.
2.94

Table 2.3: Arithmetical tasks with corresponding difficulty (probability of success
0.80).

Fractions

In Figure 2.8, tasks related to fractions are split into two groups. One group of
tasks involves the multiplication of mixed numbers; the second group of tasks
refers to the addition of unlike items. In the first type of task, students were
asked to explain why 2 1

2 × 3 1
3 does not equal 6 1

6 . Students did not necessarily
have to calculate 2 1

2×31
3 , because a reasoning such as that 2×3 1

3 already exceeds
61

6 is a correct answer. Less than half of the students of grade 12 mastered this
task.

In the second group of items, students were asked to add unlike fractions.
Similar tasks, with the same mathematical structure, were included in all four
assessments. In the first and the third assessment, the denominators were mul-
tiples of 7; in the second and the fourth assessment, the denominators were
multiples of 5. Although the mathematical structure of these four tasks is the
same, the results show a large difference in difficulty. The tasks with denomi-
nator multiples of 7 are more than one logit more difficult than the tasks with
denominator 5. This suggests that the underlying mathematical structure is less
important to students than the familiarity with the numbers 5, 10 and 15.

From these results we conclude that calculating with fractions, although
taught in primary education, remained difficult for the students in secondary
education.
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Square roots

The addition 2
√

5 + 4
√

5 is the easiest task of the number tasks and is mastered
by the majority of the students in grade 12. Tasks in which a square root
has to be manipulated by extracting the square are much more difficult. In
our view, rewriting

√
12 to 2

√
3 does not only require applying the distributive

rule
√

ab =
√

a
√

b. Instead, several steps have to be taken which all together
form a sequence of steps which is difficult for students. These steps involve
the recognition that 12 is a number that contains a square (12 = 4 · 3), the
application of the distributive rule (

√
4 · 3 =

√
4 · √3), and taking the square

root of 4 (
√

4 ·√3 = 2
√

3). We conclude that students master simple addition of
square roots. Manipulating square roots, however, is beyond the ability of the
majority of the students.

Summarizing, the results on numbers show that calculating with negative num-
bers, fractions and square roots was difficult for the majority of the students.
The ability to flexibly deal with minus signs, fractions and square roots is seen
as a prerequisite for developing algebraic proficiency. Further research focused
on arithmetic is necessary to place these findings in the ongoing curriculum from
primary education to secondary education.

2.5.3 Comparing students of the social and science streams

As we mentioned in subsection 2.4.1, students in the science stream perform
better than students in the social stream. This difference turned out not to be
significant. The difference between the performance of students in the social
and science streams is presented in Figure 2.10. In this figure, percentiles of
Rasch measures of grade 11 and grade 12 students in February 2009 are shown
from the total group of students, and of students split up into social and science
streams. In total, 144 grade 11 students participated, of which 51 students were
in the social stream and 93 were in the science stream. In grade 12, 72 students
participated, of which 26 students were in the social stream and 46 were in the
science stream. These numbers of students are really too small to calculate
percentiles. Nevertheless, from Figure 2.10 it becomes clear that the difference
between the performance of social and science students is small.

Furthermore, in Figure 2.8 we related the measures of the students to the
measures of the items by drawing the 75% line. Students on the right side of this
line master items on the left side of this line. The 75% line of the total group
is at −0.49 logit, whereas the 75% line of the science stream is at 0.37 logit.
As a consequence, the science students only master a few items more than the
students of the total group. So, for the science students as well, the majority of
the items are not mastered.

Summarizing, science students outperform the social students, but the dif-
ference in the number of items that is mastered is small. In our view, this is
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Figure 2.10: Percentiles of social and science students on the Rasch scale in
February 2009.

an indication that the Dutch educational system concentrates on students with
average ability. As such, the educational system misses serving the more talented
students.

2.6 Conclusions and discussion

2.6.1 Main findings

This study reports on the development of algebraic proficiency in Dutch pre-
university education and aims at answering the following research questions.

1. How does students’ algebraic proficiency develop from a cross-sectional
perspective?

2. How does students’ algebraic proficiency develop from a longitudinal per-
spective?

3. How does students’ algebraic proficiency develop in terms of basic skills
and symbol sense?

The answer to the first question is that students made progress. The difference
between grade 10/11 and grade 11/12 is small. This might be due to a curriculum
change. Students in grade 8/9, grade 9/10 and grade 10/11 followed a curriculum
program that includes more algebra than the program of students of grade 11/12.
This curriculum change might have had a positive effect on students’ algebraic
proficiency if the growth in ability from grade 8/9 to grade 9/10 to grade 10/11
continues. Furthermore, there is little dispersion among the middle 50% of the
students.

The answer to the second question is that the longitudinal analysis yields
that the majority of the students made progress between the first and the fourth
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assessments that was administered over a period of one year. However, for the
majority of the students, this progress was not significant. Furthermore, students
of the science stream performed better than students of the social stream. These
differences are not significant either.

The answer to the third question is that there are only few tasks that were
mastered by the majority of the students. In general we conclude that students
mastered simple tasks, but tasks become too complicated rather quickly, for
example due to a clutter of minus signs or brackets. The addition and multipli-
cation of fractions and the multiplication of square roots was too difficult for the
majority of the students. Furthermore, the majority of the students did not show
important aspects of symbol sense. For example, students lacked the flexibility to
manage minus signs in the substitution of a = −2 and b = −1 in the expression
−(a2b)3−2(ab2)2. Another example is the ability to see a part of an expressions
as an object in its own right, e.g., in 21

6+ 5
1+x

= 3 and (x − 5)(x + 2)(x − 3) = 0.
In the latter, students tend to expand the brackets and then try to find the fac-
torization, instead of recognizing the mathematical structure A · B · C = 0 that
implies A = 0 or B = 0 or C = 0. These flexible skills are important aspects
of symbol sense. However, the range in which the development of the majority
of the students takes place does not affect the range of tasks related to these
aspects.

With respect to social and science students we found that science students
outperformed social students. This difference however is not significant. For the
science students as well it holds that the development is not in the area where
most of the items are. The small difference between social and science students
gives rise to the worry that education is missing opportunities for serving the
more talented students.

2.6.2 Discussion

The results of this study show that although students showed progress both
cross-sectionally and longitudinally, this progress did not lie in the range of the
difficulties of the majority of the items. In other words, the majority of the items
were too difficult for students of grade 8, and were still too difficult for students
of grade 12.

The results must however be seen in the context of the limitations of this
study. Firstly, because we did not want to place too heavy a load on the teachers
and the students, we chose to keep the number of items relatively low. As a
consequence, differences would have had to have been quite large to be significant.
Secondly, a curriculum change took place during the data collection. The new
curriculum pays more attention to algebra. We took this change into account by
concluding that the curriculum change might have a positive effect if the growth
continues. Thirdly, the number of students in the social and science stream is low,
which affect the generalization of the findings to all social and all science students.
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Finally, due to the explorative character of this study, the assessments contained
many different tasks covering different underlying concepts. As a consequence,
it is not completely clear which concepts students did not master.

We consider the results disappointing for two reasons. First, students’ de-
velopment does not lie in the range of the majority of the tasks. This is disap-
pointing because these tasks fit in the regular curriculum. Secondary education
teachers considered these specific tasks as being appropriate and as lying within
the abilities of the students (Schutte, 2010). We are aware that only a small
part of the students who participated will choose technical studies in the future.
Nevertheless, in our view, students who will choose a study in social science or
economics also need algebraic proficiency. Secondly, the small difference between
the performance of students in the social and the science streams makes it likely
that the present Dutch curriculum does not provide enough opportunities to
students in the science stream.

These findings are in line with international research (e.g. Stacey et al., 2004)
and with recent research in the field of fractions among Dutch students about the
same age (Bruin-Muurling, 2010). In our view, the disappointing performance
of the students is not only due to a lack of symbol sense. More importantly, we
see the lack of symbol sense as a symptom of a lack of mastering a formal level
of reasoning at which the mathematical structure and ambiguous nature of the
mathematics is central.

Different researchers have argued that reaching this higher level is inherently
difficult and involves a shift of thinking. For example, Freudenthal (1971) stated
that “The student applies certain new rules unconsciously until at a certain
moment he becomes conscious about them.” To Sfard (1991), reaching this
higher level is so difficult, that it remains practically out of reach for certain
students. However, as the examples of McCallum (2010) in the Introduction
show, reaching a more formal level of mastering algebraic expressions is especially
important to students in higher education.

How to reach this higher level is a core concern of the mathematics education
research community. In our view, the call from educators and politicians for more
attention to routine and procedural skills will not solve students’ problems. This
study has shown that these problems come not so much from a lack of procedural
skills, but more from a lack of conceptual understanding.

Teaching tasks that require symbol sense carries the risk of a focus on spe-
cific advanced strategies, where the procedure is not grounded in understanding.
Furthermore, a focus on symbol sense carries the risk that number and situation
dependent strategies are seen as an expression of symbol sense, whereas symbol
sense concerns a feeling for the mathematical structure and the ability to flexibly
deal with ambiguity of mathematical concepts (e.g. Byers, 2007).





Chapter 3

Structure sense as an aspect
of algebraic proficiency

In this chapter, we investigate the development of algebraic profi-
ciency in Dutch secondary education using structure sense as a the-
oretical lens. The results indicate that students’ development on
the Rasch scale does not coincide with the range of tasks concern-
ing structure sense. In addition we find that the relation between
structure sense and students’ level of proficiency is not always clear.

3.1 Introduction

In Chapter 2, we investigated the development of students’ algebraic proficiency
in Dutch pre-university education. The results indicated that the students made
progress, both cross-sectionally and longitudinally, but this progress is small.
Further, students’ development was not in the area of the conceptual aspects of
algebraic proficiency.

In this chapter, we focus on one underlying conceptual aspect, namely struc-
ture sense. In this way, we aim at obtaining a more detailed view of students’
level of algebraic proficiency. Structure sense can be described as the ability to
deal with the mathematical structure of algebraic expressions. Many researchers
have argued that flexible manipulation skills are an important aspect of algebraic
proficiency (Tall & Thomas, 1991; Sfard & Linchevski, 1994b; Kilpatrick et al.,
2001; Stacey et al., 2004). These flexible skills include the ability to see the alge-
braic structure of an expression. In the analysis, we focus on tasks that appeal to
structure sense. These tasks include algebraic tasks as well as numerical tasks.

The outline of this chapter is as follows. First, we discuss structure sense
and how this theoretical lens suits the theoretical background underlying the

29
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assessments of Chapter 2. Next, we analyze in depth student performance in
relation to structure sense.

3.2 Structure sense

One of the conclusions of Chapter 2 was that the students’ development did not
lie in the area of the conceptual aspects of algebraic proficiency. In this chapter,
we focus on one underlying conceptual aspect, namely structure sense. In this
way, we aim at obtaining a more detailed view on the students’ level of algebraic
proficiency.

The term structure sense is introduced by Linchevski & Livneh (1999) to
describe the ability “to use equivalent structures of an expression flexibly and
creatively.” Their research concerned students in the transition from arithmetic
to algebra, and the structure they examined concerned the order of arithmetical
operations such as 50−10+10+10, which is viewed as 50−(10+10+10) by half of
the grade 6 and grade 7 students. In high school algebra, structure sense is seen as
a collection of abilities, such as: recognize a structure, see a part of an expression
as a unit; divide an expression into meaningful sub-expressions; recognize which
manipulation is possible and useful to perform; and choose appropriate manip-
ulations that make the best use of the structure (Hoch & Dreyfus, 2004, 2006;
Novotnà & Hoch, 2008). More precisely, Novotnà & Hoch (2008) define that stu-
dents display structure sense if they can 1. recognize a familiar structure in its
simplest form; 2. deal with a compound term as a single entity and through an
appropriate substitution recognize a familiar structure in a more complex form;
3. choose appropriate manipulations to make best use of a structure.

In contrast with Novotnà & Hoch (2008) who see structure sense as an exten-
sion of symbol sense, we see structure sense as a part of symbol sense. Symbol
sense is a complex feel for symbols that include a positive attitude towards sym-
bols and a global view of expressions (Arcavi, 1994, 2005). Parts of this global
view are the ability to read through symbols and flexible manipulation skills that
can be related to seeing the algebraic structure in an expression. As an exam-
ple of the ability to read through symbols, Arcavi (1994) discusses the equation
(2x + 3)/(4x + 6) = 2. Reading through the symbols reveals that the left-hand
side of the equation equals 1

2 for all x 6= −11
2 , because the numerator equals half

the denominator. Inspecting the equation before starting to solve it with the pur-
pose of gaining a feeling for the meaning of the problem is seen as an instance of
symbol sense. Flexible skills include the ability to sense symbols not only as a
concatenation of letters, but as arranged in a special pattern. As an example, Ar-
cavi (1994) discusses Wenger’s Equation, v

√
u = 1+2v

√
1 + u, which is required

to be solved for v (Wenger, 1987). The difficulty of this equation is to recognize
this equation as linear in v and overcome the visual salience of the square roots
in the equation (Kirshner & Awtry, 2004). This requires identifying parts of the
expression as units, an ability that is referred to as the Generalized Substitution
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Principle (Wenger, 1987). Recognizing the special pattern in expressions is part
of structure sense.

The flexible approach is also mentioned by Sfard & Linchevski (1994b), who
argue that flexible manipulation skills can be seen as a function of the versatility
of available interpretations, and the adaptability of the perspective. In their
view, these abilities are part of a structural mode of thinking. In Chapter 4 we
will further elaborate this issue.

The notion of structure sense fits into the framework used to construct the
assessments in Chapter 2. This framework used two perspectives on algebraic
proficiency: the relation between basic skills and symbol sense, and the transition
from arithmetic to algebra. As we have argued above, structure sense plays a
role in both perspectives. Therefore, we use structure sense as a theoretical lens
to investigate algebraic proficiency.

3.3 Student performance in structure sense

The background of this chapter is a study of the development of algebraic pro-
ficiency in Dutch pre-university education. To monitor this development, we
constructed tests based on two perspectives of algebraic proficiency: the relation
between basic skills and symbol sense, and the transition between arithmetic and
algebra, see Chapter 2. The analysis showed that students make progress, both
cross sectionally and longitudinally, but this progress is small. The Rasch anal-
ysis indicated that the growth of student development in algebraic proficiency
did not lie in the area of the majority of the tasks. Part of these tasks have
as a common difficulty that a keen eye for the mathematical structure of the
expression is required. Therefore, we decided to analyze these tasks in greater
depth.

We used the data of the research discussed in Chapter 2, in which we assessed
students four times: the first assessment took place in March 2008; the second
in May 2008; the third in October 2008; and the fourth in February 2009. The
assessments consisted of paper and pencil tests. During the tests, students were
not allowed to use calculators or notes. In total, 1020 students participated
in at least one assessment. In order to monitor the development of individual
students, we used an anchor design. To evaluate the students’ results, a Rasch
analysis was performed (Rasch, 1980; Bond & Fox, 2007). The Rasch model
is a one parameter item response model. The Rasch model assumes that the
probability Pni of person n’s answering item i correctly is a logistic function of
the difference between that persons’ ability Bn and the difficulty of the item
Di: Pni = eBn−Di

1+eBn−Di
. Rasch provides a common scale for items and persons.

However, each assessment created one Rasch scale for the items and persons of
that particular assessment. Now the resulting four Rasch scales are connected by
anchor items, so that as a result, students and items are located on one and the
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same Rasch scale. The unit of Rasch scale is the logit. We consider a probability
of 0.80 of answering an item correctly as an expression of mastering that item
(see Chapter 2). This corresponds to a difference between Bn and Di of 1.39
logit, as 1.39 is the solution of Bn−Di in the expression Pni = eBn−Di

1+eBn−Di
= 0.80.

The focus of this chapter is to investigate student development in relation to the
notion of structure sense. Therefore, we analyze in greater detail student ability
based on the tasks of the four assessments in relation to the Rasch measures
of the tasks that appeal to structure sense. Drawing on the above discussion
of structure sense, we selected 16 tasks from the four assessments that appeal
to recognizing the algebraic structure of an expression or seeing a part of an
expression as a unit. Ten of these tasks concern algebraic tasks and six concern
numerical tasks (for an overview, see Appendix B).

An example of an algebraic task in which the recognition of the mathematical
structure plays a role is the calculation of −6− (5− 4) · (−8)− 3. In this task,
the algebraic structure −6 − [(5− 4) · (−8)] − 3 is covered by the brackets and
the minus signs. This hinders the recognition of the structure. A non-example
is the task of rewriting −4(3a + b). Although an answer on this task such as
−4(3a + b) = −12a + b can be seen a lack of structure sense, we argue that this
task primary appeals to applying just the distributive rule, whereas the former
task requires recognizing the structure and then applying the rules.

As we discussed above, the four assessments have served as input for the
construction of one Rasch scale on which students and tasks have a measure.
Figure 3.1 provides an overview of student measures of the fourth assessment
in February 2009, and the task difficulties of selected tasks corresponding to a
probability of 0.80 to answer the task correctly. For clarity’s sake, in case of
similar tasks, we included only one task in the Figure. Seven tasks were left out
in this way, resulting in nine tasks in the Figure.

Central in this Figure is the horizontal axis with logits as units. The gray
scaled bars above the axis represent student ability in percentiles in the fourth
assessment in February 2009. The bars below the horizontal axis represent the
difficulty of the tasks on the Rasch scale. The left-hand side of a bar corresponds
to a probability of 0.50 of answering the corresponding task correctly, this is
usually referred to as the Rasch measure of the task; the right-hand side of the
bar corresponds to a probability of 0.80 of answering that task correctly. In
Chapter 2 we argued that in our view, a probability of 0.80 of answering a task
correctly indicates that this task has been mastered.

Tasks for which the corresponding bars lie on the left-hand side of the dashed
line are mastered by at least 50% of the grade 12 students. From Figure 3.1 it
follows that the task “calculate 3 ·(−2) ·5−2 ·5” is the only task that is mastered
by more than 50% of the grade 12 students. The other eight tasks in the Figure
are mastered by less than 25% of the grade 12 students.

Below we discuss student performance on the tasks presented in Figure 3.1.
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Figure 3.1: Student percentiles of February 2009 and structure sense tasks on
the Rasch scale.
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3.3.1 Algebraic tasks

One of the algebraic tasks presented in Figure 3.1 involves simplification of an
expression, the other six algebraic tasks concern solving equations. Below, we
discuss the student performance on each task.

Fraction in equation

In the first assessment (March 2008), students were asked to report the first clue
they would provide a classmate to help solve the equation 15

4+ 6
1+x

= 3. The Rasch

measure of this task, A1, is −0.31 logit (probability of success 0.50). The way
the task was formulated left room for answers such as “I would call the teacher
for help.” This kind of answer revealed problems in the dichotomous coding of
student answers. To avoid this kind of answer, a formal version, A2, was included
in the third assessment. The Rasch measure of the formal version is 0.01 logit,
so the tasks did not differ much.

To solve these equations, different strategies can be used. For example, stu-
dents could use the cover-up method and cover the denominator. In this way, the
equation becomes 15

¤ = 3, which is easily solved. Following this line of thought,
the next step would be 4 +4 = 5 which implies 6

1+x = 1. This equation in turn
could be solved by covering the denominator, thus yielding 6

¦ = 1, which implies
1 + x = 6. An example of a more formal strategy is to multiply the numerator
and the denominator both with 1+x, or multiply both sides of the equation with
the denominator 4+ 6

1+x . These strategies have in common that students have to
identify a part of the equation (the denominator, or a part of the denominator)
as an object, which is seen as an expression of structure sense.

Simplification

In the second assessment (May 2008), we asked students to simplify the expres-
sion

5x2 + 10− 2(2x2 + 4)
x2 + 2

.

The Rasch measure of this task, A3, is −0.22 logit (probability of success 0.50).
A similar task, A4, with Rasch measure −0.50, was included in the fourth as-
sessment (February 2009). This formula has the structure 5¤−4¤

¤ which leads
to x2+2

x2+2 . But simply expanding the brackets and taking similar terms together
yields the same. In both cases the next step is to recognize that this fraction
consists of two similar expressions that are divided, so the fraction yields one.

An example of the difficulties students experienced is presented in Figure 3.2.
This student rewrote the numerator 5x2 +10− 2(2x2 +4) as 5x2 +8(2x2 +4) by
erroneously taking 10 and −2 together. To this student, the algebraic structure
of the numerator was not clear. Another type of error is presented in Figure 3.3.
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Translation:
Vereenvoudig zo ver mogelijk: Simplify

Figure 3.2: Work of a grade 8 stu-
dent.

Figure 3.3: Work of a grade 10 student.

This grade 10 student correctly simplified the expression to x2+2
x2+2 . Then he

concluded that x2+2
x2+2 equals zero instead of one. This error might stem from an

inability to see the algebraic structure of the expression, but other explanations
such as a deep misunderstanding of fractions or the student being used to the
form “expression = 0,” seem just as reasonable.

Factorization

In the second assessment, students were asked to solve the equation

(x− 5)(x + 2)(x− 3) = 0.

This requires students to identify the underlying algebraic structure, which in-
volves three factors on the left side of the equation, and the product of these
three factors equals zero. The structure is A ·B ·C = 0, which implies A = 0 or
B = 0 or C = 0. The Rasch measure of this task, A5, is 0.68 logit (probability
of success 0.50). A similar task, A6, was included in the fourth assessment. This
task was perceived as less difficult, with a Rasch measure of −0.60 logit, prob-
ably due to a test–retest bias. The difficulty of these tasks can be explained by
the students’ tendency to expand the brackets, after which they could not find
the factorization. Some of the students came to see the error and recovered by
giving the correct answer. Figure 3.4 shows such a work of a grade 12 student
who started to solve the equation by expanding the brackets. In the second line
of this work, he correctly wrote that

x3 − 4x2 + 3x2 − 12x− x2 + 4x− 3x + 12 = 0.
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Translation:

Los op: Solve

Figure 3.4: Work of grade 12 student.

Going to the next line, he forgot the factor −12x, so erroneously concluded that
x3 − 2x2 + x + 12 = 0. In the next line, this is scratched, he started to factor
out x. Apparently, then he realized that the solutions can be found more easily
and wrote the correct solutions down.

The students’ tendency to expand the brackets indicates the visual salience
of the brackets. The underlying structure of A ·B · C = 0 is overlooked.

Arcavi’s Equation

As we have argued in Section 3.2, in our view, structure sense can be seen as a
part of symbol sense. The ability to read through symbols described by Arcavi
(1994) as an aspect of symbol sense, lies close to the ability to recognize the
algebraic structure of a formula. Arcavi (1994) argues that resisting the impulse
to immediately solve the equation (2x + 3)/(4x + 6) = 2, and instead to try
to read meaning into the symbols, is an expression of symbol sense. In this
example, the ability to read through the symbols requires that students recognize
the expression (2x + 3)/(4x + 6) as an expression of the form A

2A . Therefore,
it is necessary for students to see 2x + 3 as a unit. However, realizing that
(2x+3)/(4x+6) equals 1

2 is not necessary for the solving process. Just solving the
equation and finding the solution x = −1 1

2 and realizing that the denominator
equals zero, is a correct procedure for solving this equation. So, reading through
the equation and seeing the structure is practical, but not necessary.

The ability to see A
2A is a manifestation of more symbol sense than finding

the solution for which the denominator equals zero and then concluding that the
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equation does not have a solution. This raises questions about the relation be-
tween symbol sense, operationalized by the strategy used, and a student’s level of
algebraic proficiency, operationalized by the measures on the Rasch scale. Since
more symbol sense is supposed to be an expression of a higher level of algebraic
proficiency, we expect students with more symbol sense to have a higher Rasch
measure, and thus we expect students who see A

2A to have a higher Rasch mea-
sure than students who found the solution for which the denominator equals zero.
To investigate the relation between these strategies and students’ proficiency, we
performed a qualitative analysis of the written answers of the students. This
analysis is performed on the written answers to the task presented in the fourth
assessment, because in contrast to the similar task in the first assessment, this
task was presented to students of all grades.

Because we were interested in the strategies used to solve this equation, we re-
stricted the analysis to the correct answers. The analysis yielded three categories
of students. First, students that argued that the quotient equals 1

2 . These stu-
dents recognized the structure A

2A in the equation. The second category contains
students who found the solution for which the denominator equals zero. These
students correctly argued that this solution is no solution. The third category
contains students who gave another argument. For example, these students only
wrote “no.” Another example is a student who argued that (2x + 1)/(4x + 2)
equals a fraction between 0 and 1. From the 501 participating students in the
fourth assessment, 105 gave a correct solution. Half of these students used the
strategy of the first category. The other students were nearly evenly distributed
between the other categories. The relation between strategy and ability is pre-
sented in Figure 3.5. Again, in the center of the Figure is the Rasch scale of
proficiency. The gray scaled bars below the axis represents percentiles of stu-
dents’ Rasch measures in the fourth assessment in February 2009. The dots above
the axis represent students in a particular grade with a particular strategy.

From the figure we see that, although more students solve the task correctly
using the strategy “quotient equals 1

2” than using the strategy “denominator
zero,” the Rasch measure of the students using the former strategy is not higher
than those using the latter. In other words, the strategy that is supposed to be
a manifestation of more symbol sense does not imply a higher Rasch measure.
In our view, this means that either the relation between strategy and symbol
sense is not as strict as the literature suggests, or the relation between symbol
sense and the underlying latent variable of the Rasch scale is troublesome. In the
former case, the strategy students use might depend on the strategy they think
they are expected to use. From this point of view, the more broadly applicable
strategy “denominator zero” might be viewed as more valuable, because this
strategy could also be used in case the equation had been (2x+1)/(3x+2) = 1

2 .
However, since the number of students in this group and the differences between
the categories are small, this single case cannot justify radical conclusions, but
further research on the relation between strategies, symbol sense and algebraic
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grade 12
grade 11
grade 10
grade 9

percentiles

0% 10% 25% 50% 75% 90% 100%

1 student 2 students 3 students 4 students

logit−4 −3 −2 −1 0 1 2 3 4

Quotient equals 1
2

Denominator zero

Other argument

Figure 3.5: Students’ ability combined with the strategy used.

proficiency seems appropriate.

Wenger’s Equation

The two tasks with the highest difficulty, A9 and A10, are adapted versions of
Wenger’s Equation. These two tasks were far above the ability of all students,
see Figure 3.1. In the first assessment, we included Wenger’s Equation in which
we replaced the letters u and v for readability with the letters a and b. We did
not ask students to solve a

√
b = 1 + 2a

√
1 + b for a, because Dutch students are

not familiar with this kind of question. Instead, we asked students to rewrite
a
√

b = 1 + 2a
√

1 + b as an expression of the form a = . . .. In the analysis we
found that this way of asking is ambiguous to students. For example, students
divided both sides of the equation by

√
b, which yields to a = 1+2a

√
1+b√

b
. This

is not the kind of answer we intended to see, but somehow meets the purport of
the question.

As we argued in Section 3.2, recognizing the linear structure of this equation
is crucial for solving it. The ability to see the linear structure requires students
to sense the symbols as arranged in a special pattern, which is an expression of
structure sense. Exactly two students out of the 650 of grades 9, 10 and 11 were
able to solve this equation. These two students recognized the linear form of the
equation and gave the correct answer, a = 1√

b−2
√

1+b
.

In the third assessment, an adapted version of the equation was included. In
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this version, we substituted b = 2, so the equation that had to be solved became
a
√

2 = 1 + 2a
√

3. Exactly 19 out of the 653 participating students in the third
assessment were able to solve this task.

The difficulty of Wenger’s Equations is explained by students’ inability to
recognize the linear form of the equation. Wenger (1987) found that students are
able to perform manipulations correctly, but these manipulations do not lead to
a solution. Rather, students go round in circles, create more complex expressions
and then reduce these terms. The square roots that serve as coefficients in this
equation invite students to square both sides of the equation. The unfamiliarity
of students with square roots as coefficients can enhance the visual salience of
square roots (Kirshner & Awtry, 2004).

We agree that recognizing the linear form is crucial for solving the equation.
However, in our view, there are other hurdles. First, the unconventional sequence
of symbols in a

√
2 = 1 + 2a

√
3. In this equation, the variable is followed by the

numerical coefficient in the left-hand side of the equation. In the right-hand
side, the variable is in the middle of the numerical coefficient. This is an unusual
sequence of symbols for Dutch students, because usually, the numerical coefficient
precedes the variable. In this way, the equation would have been

√
2a = 1+2

√
3a.

We realize that this is only a slight difference for an expert. But we believe that
to students, this change of order perhaps makes the difference between being
able or not being able to solve the equation.

The second hurdle concerns the different roles of the variables a and b in
the equation. The a in the equation serves as unknown, whereas the b serves
as a variable. The versatility of the use of variables is a well known difficulty
in mathematics and has been studied by many researchers (e.g. Matz, 1982;
Janvier, 1996; Rosnick, 1981; Wagner, 1983; Trigueros & Ursini, 1999; Drijvers,
2003; Ursini & Trigueros, 2001; Schoenfeld & Arcavi, 1988). The skill of flexibly
dealing with the different roles of variables can be seen as part of a broad view
on equations. The results for these tasks suggest that students do not have such
a broad view. We elaborate on this in Chapter 6.

Summarizing, we argue that Wenger’s Equation presents students with sev-
eral difficulties. These difficulties all concern the ability to recognize the linear
structure of the equation which can be seen as a part of structure sense. The
students’ performance on the two linear equations does not allow us to conclude
which of these difficulties is paramount, but in our view, these equations all
require structure sense.

3.3.2 Numerical tasks

In the analysis we have included two types of numerical tasks (see also Fig-
ure 3.1). Below we elaborate on both types.
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Translation:
Bereken: Calculate

Figure 3.6: Work of a grade 10 stu-
dent.

Figure 3.7: Work of a grade 10 stu-
dent.

Product minus product

In the first and fourth assessment, we included the tasks N1: 3 · (−2) · 5 − 2 · 5
and N2: 2 · (−3) · 5 − 2 · 5, with Rasch measures −1.83 and −1.59 respectively
(probability of success 0.50). These two tasks differ only slightly and are mastered
by almost 75% of the grade 12 students, see Figure 3.1. A conceivable error in this
task would be to calculate first 5−2, leading to the expression 3·(−2)·3·5 = −90.
The majority of students avoided this error and thus recognized the structure of
the formula as “a product minus another product.”

Brackets and minus

The other four tasks have the structure −6 − (5 − 4) · (−8) − 3, with different
numbers, see Appendix B for the full list. These four tasks have functioned
as anchor items in the Rasch analysis. As a consequence, these tasks all have
equal Rasch measures of 0.15 logit. From Figure 3.1 it follows that this task is
mastered by 10% of the grade 12 students. So these tasks are perceived as more
difficult than the two tasks above.

The difficulty with these tasks can be explained by the student’s inability to
see the algebraic structure of the expression. Seeing the structure is hindered by
the dot in the middle. Students tend to see the structure A ·B, as is illustrated in
the work of a grade 10 student in Figure 3.6. This student calculated −6−(5−4)
and (−8)−3 separately, yielding −7 and −11, and then multiplied both numbers.
An alternative explanation could be that this student did not know the right-
of-way rule for operations. Perhaps she thought that subtracting comes before
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multiplying, but we deem this explanation less likely in view of the results of
students for the other numerical task above.

A variant of this error is made by the student in Figure 3.7. She also simplified
the left-hand side of the dot to −7. Then she multiplied by −8 and subtracts 3,
yielding 53. Both students were distracted by the visual salience of the dot.

3.4 Conclusions and discussion

In the previous sections, we reported the results of students in Dutch secondary
education. In Chapter 2 we concluded that the development of the majority of
the students is not in the area of the conceptual aspects of algebraic proficiency.
One of these aspects is structure sense (Linchevski & Livneh, 1999). Structure
sense in high school algebra consists of several abilities including the ability to see
the algebraic structure of a formula and the ability to see a part of an expression
as a unit (Hoch & Dreyfus, 2004, 2006; Novotnà & Hoch, 2008). We argued
that structure sense can be seen as a part of symbol sense (Arcavi, 1994). The
results indicate that the range which the majority of the students mastered did
not include tasks related to structure sense. In general we may conclude that
the majority of the students were not able to deal flexibly with the mathematical
structure of expressions. This is the case with both the numerical tasks and the
algebraic tasks.

Having structure sense is seen as a sine qua non for having algebraic profi-
ciency. Novotnà & Hoch (2008) argue that attention to algebraic structure in
secondary education is important because teaching mathematics as a set of pro-
cedures and algorithms can lead to a lack of understanding of the conceptual
structure, thus resulting in an inability to solve real mathematical problems.
Arcavi (1994) argues that symbol sense is at the heart of what it means to be
competent in algebra. In his view, instruction that supports the development of
symbol sense should support and encourage taking the time to talk about issues
regarding symbol sense instead of focusing on finding the answer.

Structure sense also includes the ability to choose appropriate manipulations
that make the best use of the structure (Novotnà & Hoch, 2008). This ability
is also mentioned by Arcavi (1994) as an expression of symbol sense. Our anal-
ysis did not yield a direct relation between success on items that express more
structure sense and the latent variable of the Rasch scale. This indicates a more
severe problem: the amount of structure sense can not be judged on one strategy
used for just one task alone. Structure sense is described as a set of abilities and
must be judged as such. Therefore structure sense is not easy to teach: it is
not just a matter of exhibiting one particular strategy, but more so a matter
of exhibiting a whole range of abilities. This range of abilities includes a broad
and flexible view on equations, in which square roots can serve as coefficients,
in which a fraction can be inside another fraction, in which equations may have
multiple solutions, or none at all. The results of this chapter have shown that
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most students did not have such a broad view on equations. In Chapter 4 and
Chapter 6 we elaborate on this point.



Chapter 4

Operational–structural
transitions as indicators of
difficulty in secondary
school algebra tasks

In this chapter we use Sfard’s notion of operational and structural
conceptions as a theoretical lens, in order to explain the results of
a study on the development of algebraic proficiency. This leads to
the hypothesis that transitions between operational and structural
conceptions can be seen as a complexity factor in solving algebraic
problems. This hypothesis was operationalized in a test that was
presented to 92 students. The results corroborated the hypothesis.

4.1 Introduction

Discussions of the level of algebraic proficiency of secondary school students
nowadays take place worldwide. In the Netherlands, this discussion induced a
study on the development of algebraic proficiency in secondary education (see
Chapter 2). The results of this study revealed that student development did
not cover the conceptual aspects of algebraic proficiency such as recognizing
mathematical structures in formulas or in seeing a part of an expression as an
object; such tasks were beyond the capabilities of the majority of the students.

This chapter seeks to explain these results by concretizing and operational-
izing Sfard’s theory of reification. In this theory, the ambiguous nature of math-
ematical concepts plays a central role (Sfard, 1991; Sfard & Linchevski, 1994b;

43
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Sfard, 1995). Their nature is seen as ambiguous because for example one and
the same mathematical expression refers to different entities (Tall & Thomas,
1991; Byers, 2007). For example, on the one hand the expression 2x + 3 can be
seen as an addition in which 2x and 3 have to be added. On the other hand, the
expression 2x + 3 can be seen as the result of the addition. In this case, 2x + 3
is an entity, an object. Whether 2x + 3 has to be perceived as a process or as an
object depends on the specific situation in the process of problem solving. It is
important that students are able to switch between different modes of thinking.

Sfard & Linchevski (1994b) identified two transitions in which this ambigu-
ity plays a role: the process–product duality, and the algebra of a fixed value
or as variable. Operationalization of these transitions leads to the hypothesis
that transitions between operational and structural conceptions might serve as a
complexity factor in solving algebraic problems. This hypothesis is tested among
92 students of grade 11.

The outline of this chapter is as follows. Below, we first elaborate on the
research context that lead to the results we want to explain. Next, we elaborate
on Sfards’ theory of reification and discuss operational and structural conceptions
related to the transitions between these two. Finally, we discuss the results of
the role of these transitions as a factor of complexity by testing this hypothesis
in a small setting.

4.2 Research context

The tasks we mentioned above are part of a study on the development of algebraic
proficiency in Dutch pre-university education. To monitor this development,
we constructed tests, based on two perspectives of algebraic proficiency: the
relation of procedural fluency and conceptual understanding and the relation of
arithmetic and algebra, see Chapter 2.

We assessed students four times, spread out over one calendar year. The as-
sessments consisted of paper and pencil tests. During the tests, students were not
allowed to use calculators or bring on notes. In total, 1020 students participated
at least in one assessment. In order to monitor the development of individual
students, we used an anchor design. To evaluate the results, a Rasch analysis
was performed (Rasch, 1980; Bond & Fox, 2007). The Rasch model supposes
that the probability Pn of a person n’s answering an item i correctly is a logistic
function of the difference between the student’s ability Bn and the difficulty of
the item Di:

Pni =
eBn−Di

1 + eBn−Di
.

Rasch provides a common scale for items and persons. Each assessment created
one Rasch scale. The four Rasch scales are connected with anchor items. As a
result, the students and the items are located on one and the same Rasch scale
with the unit being the logit, see Figure 4.1.
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Grade
Grade
Grade
Grade

12
11
10
9

(N = 72)
(N = 144)
(N = 114)
(N = 171)

Percentiles

0% 10% 25% 50% 75% 90% 100%

logit
−4 −3 −2 −1 0 1 2 3 4

Process-object duality

Simplify 2
√

3 + 5
√

3 =

Martijn claims that
√

12 +
√

3 = 3
√

3.

Explain why you do or do not agree with Martijn.

Fixed value or variable

Solve 2(3x + 2) = 3(2x − 1) + 7

Figure 4.1: Percentiles of students and tasks on Rasch scale.

We consider a probability of 0.80 of answering an item correctly as an expres-
sion of mastering that item, see also Chapter 2. This corresponds to a difference
between Bn and Di of 1.39 logit because 1.39 is the value of Bn − Di which
satisfies the equation Pni = eBn−Di

1+eBn−Di
= 0.80. In Figure 4.1, students with the

same measure as a task have a probability of 0.80 to answer that task correctly.
The analysis showed that the students made progress, both cross sectionally
and longitudinally, but this progress is small. Further, only a few items were
mastered by the majority of the students. More specifically, the analysis re-
vealed a remarkable difference in performance on tasks concerning calculating
with square roots. The task “simplify 2

√
5 + 4

√
5” is mastered by almost 90%

of the students, whereas the task of answering the question “do you or do you
not agree that

√
12 +

√
3 = 3

√
3” is mastered by less than 10% of the students

of grade 12. Further, the task in which students had to solve the linear equation
2(3x+2) = 3(2x−1)+7 was mastered correctly by less than 10% of the grade 12
students, see Figure 4.1. In our view, these tasks require the transitions identi-
fied by Sfard & Linchevski (1994b) concerning the process–product duality and
the value–variable duality.

4.3 Sfard’s Theory of Reification

Central in the theory of reification is that in mathematics, abstract concepts
can be conceived in two fundamentally different ways: structurally as objects
and operationally as processes. Sfard’s theory of reification provides a com-
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bined ontological-psychological theoretical framework for advanced mathemati-
cal thinking.

The evidence for the ontological dimension of this theory lies in the histor-
ical development of mathematics. As an example, Sfard (1991) illustrates the
development of the concept of number. The origins of this concept lie in the
process of counting. For years, the concept of number was closely related to this
process. An important step in the development of the concept of number was the
discovery of the incommensurability of square roots such as

√
2. Disconnecting

numbers from measurability provides mathematicians with the opportunity to
broaden the concept of numbers to even complex numbers such as

√−1. The
development of the concept of number illustrates the formation of mathematical
knowledge. According to Sfard (1995), the historical development of algebra can
be characterized as a long sequence of transitions from operational to structural
conceptions. Again and again, processes performed on certain abstract objects
at one level turn into new objects that in turn serve as the objects of new higher
level processes.

The psychological foundation of the theory of reification can be found in the
framework of genetic epistemology of Piaget (1970). The role of processes and
objects in mathematical thinking can also be found in theoretical extensions of
Piaget’s reflective abstraction (e.g., Dubinsky, 1991).

Based on these foundations, Sfard argues that in mathematics, one can dis-
tinguish two kinds of entities: abstract objects and computational processes. For
example a mathematical function can be seen as a method of computing values
by performing some computational process. In this view, a function is a kind
of recipe to get the output of a given input like “multiply the input by 3 and
then add 2.” On the other hand, a function is a set of ordered pairs with certain
characteristics such that, given the first element, the second element of the pair is
unique. In the example above, a more formal approach could be f from R −→ R
with f : x 7→ 3x + 2 as an object with characteristics such as continuity and dif-
ferentiability. Although abstract objects and computational processes look very
different, in fact, they are “different sides of the same coin” (Sfard, 1991, p. 1).
This means that the abstract objects are an alternative way of referring to com-
putational processes. For instance any number may be conceived operationally,
as a process, or structurally, as an object.

In the process of concept formation, three stages are distinguished: interior-
ization, condensation, and reification. These stages correspond to three degrees
of structuralization based on a theoretical analysis of the relation between pro-
cesses and objects. In the first stage, interiorization, the learner gets acquainted
with a process, for instance a function as a recipe. A process is interiorized if
this process does not necessarily have to be carried out in order to be analyzed.
In the second phase, condensation, a person becomes more capable of thinking
about a process as a whole. There is a growing easiness in which mathemati-
cal entities are seen as different representations of the same concept. The third



4.4. OPERATIONAL AND STRUCTURAL CONCEPTIONS 47

phase, reification, is defined by Sfard as an ontological shift. Whereas interior-
ization and condensation are gradual processes, the phase of reification is not
gradual, but “a sudden ability to see something familiar in a totally new light”
Sfard (1991, p.19). Reification is the point where the object turns into input for
interiorization on a higher level.

By definition, these three phases are hierarchical. One can not reach the next
stage without having taken the former steps. This is built on the conjecture that
the operational conceptions precede the structural conceptions. This conjecture
is based on theoretical as well as empirical considerations on the historical de-
velopment of mathematics and algebra in particular.

According to Sfard, there are two reasons why it is difficult to reach the stage
of reification. The first reason is the so called vicious circle of reification. For
example, 3− 5 must be treated as an object before one is able to conclude that
3− 5 is a legitimate mathematical object which obeys rules similar to the rules
of natural numbers. The second reason is that people have to free themselves
from certain deeply rooted convictions before the new abstract object can be
accepted (Sfard, 1995). An example is the conviction that all numbers signify
amounts.

4.4 Operational and structural conceptions

The most important observation in the theory of reification is that the same
mathematical concept may sometimes be interpreted operationally, as a process,
and sometimes structurally, as an object. The duality of mathematical entities
and the crucial role of this duality in the process of concept formation is also
addressed by Gray & Tall (1992). They introduced the term procept to refer to
“a combined mental object consisting of a process, a concept produced by that
process, and a symbol which may be used to denote either or both.”

In Sfard’s theory of reification, abstract objects such as different kinds of
numbers or functions mediate between the operational and the structural con-
ceptions. These abstract objects emerge as lower level processes become subject
to manipulations on a higher level. In the stage of reification, abstract objects
serve as links between the operational and structural conceptions. With re-
spect to a given concept, processes on the lower level are referred to as primary
processes, whereas processes on the higher level are referred to as secondary
processes.

For example, in the concept formation of numbers, the process of the division
of an integer by another integer is a primary process. Calculating with fractions
is a secondary process linked to the lower level process of dividing an integer by
an integer. In the chain of transitions from operational to structural conceptions,
secondary processes on one level might act as primary processes on the next level.
Structural conceptions are a result of the reification of the underlying primary
process.
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process A

object A process B

object B process C

object C

Figure 4.2: Development of mathematical concepts as transitions from opera-
tional to structural conceptions (Sfard and Linchevski, 1995).

In order to perform secondary processes, students have to be able to link
the secondary process to the primary processes because secondary processes are
grounded in primary processes. Sfard & Linchevski (1994b) argue that with-
out the link to the primary processes, secondary processes seem arbitrary and
become easily forgotten. The core in the fluency of algebra is seen as the ca-
pacity to make transitions from one level to another, the capacity to quickly
alternate between operational conceptions and structural conceptions. To Sfard
& Linchevski (1994a), an important component of algebraic proficiency is the
flexible approach in which a student is able to switch between an operational
approach in the focus is on the processes, and a structural approach in which
the focus is on the objects. These switches play a role in the process–product
duality and the value–variable duality. In the next section, we elaborate on these
transitions.

4.5 Operational–structural transitions as indica-
tors of complexity

According to Sfard & Linchevski (1994a), the power of algebra lies in the possi-
bility of performing processes on the secondary level, without constantly making
the link to the underlying primary process. The ability to perform processes in
an unthinking mode is what algebra makes a powerful tool, as Whitehead (1924,
p. 61) put it:

“It is a profoundly erroneous truism, repeated by all copy-books and
by eminent people when they are making speeches, that we should
cultivate the habit of thinking of what we are doing. The precise op-
posite is the case. Civilization advances by extending the number of
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important operations which we can perform without thinking about
them. Operations of thought are like cavalry charges in a battle—
they are strictly limited in number, they require fresh horses, and
must only be made at decisive moments.”

However, performing processes on the secondary level in a meaningful way re-
quires the constant ability to return to the underlying primary process. The
ability to make transitions from the primary to the secondary level and the re-
verse is seen as the core of algebraic fluency. For example, Arcavi (2005) argued
that algebraic proficiency requires students to flexibly switch between meaning-
less actions (automatic application of rules and procedures) to sense making in
the way of “symbol sense.” In other words, students have to be able to post-
pone meaning in order to apply procedures quickly. And also, to “unclog an
automatism” as Freudenthal (1983, p. 469) put it, to reconsider, to reflect, or to
question, if necessary.

As we have mentioned before, Sfard & Linchevski (1994b) identified two cru-
cial transitions: the transition from a pure operational to a dual process–product
approach, and the transition from the algebra of a fixed value to the algebra of a
variable. Related to these two transitions, we argue that for students who have
not reached the stage of reification, each transition from the primary processes in
an operational mode of thinking to the secondary processes in a structural mode
of thinking and the reverse is a difficult step in the solution process of a specific
problem. For this purpose, we discuss student performance on tasks related to
the first and second kinds of transition. This leads to the hypothesis that each
transition can be interpreted as a contribution to the complexity of a task.

4.5.1 Transition related to the process–product duality

In section 4.1, we discussed two tasks concerning square roots that showed a
huge difference in student performance. The first task was to simplify the ex-
pression 2

√
3 + 5

√
3. The second task was to decide whether or not they agree

with “
√

12 +
√

3 = 3
√

3.” The first task was mastered by the majority of the
students; the second task was mastered by less than 10% of the students, see
Figure 4.1. Without going into detail, we can state that there is a huge differ-
ence in performance on those two tasks. Searching for an explanation of this
difference, we analyzed both tasks in greater depth in the light of the theory of
reification.

In simplifying 2
√

3 + 5
√

3, it is important that students treat
√

3 as a single
entity or object. Students have to realize that estimating

√
3 is not appropriate.

Rather,
√

3 has to be seen as an object itself of which there are two (2
√

3) and
then again 5 (5

√
3) which makes 7 of these objects, in total, 7

√
3. The main

aspect of solving this problem is that students recognize and treat
√

3 as an
object. Once students do so, the further calculation is simple.
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In the second task, the situation is different because here, it is not appropriate
to see

√
12 as a static object. In this case, students have to recognize that

√
12

has to be manipulated. Next, students have to realize that
√

12 =
√

4 · 3 =
√

4 ·
√

3 = 2
√

3.

After this step, it is important that students perceive
√

3 as an object of which
there are two (2

√
3) plus one (

√
3), so that makes, in total, 3

√
3.

In our view, in the example above, the addition of 2
√

3 and
√

3 is an addition
of objects, whereas the rewriting of

√
12 as 2

√
3 requires the process of extracting

a root. It is a transition from an object to a process. Hence, the transition from
the expression

√
12+

√
3 in which

√
12 is an object to the calculating and treating

of
√

12 as a process is a transition in the process–product duality. This transition
has to be made in the reverse order as students have to see

√
3 as an object in

calculating 2
√

3 +
√

3.

4.5.2 Transition related to the fixed-value–variable duality

The second transition is related to the role of letters in algebra. Multiple inter-
pretations of variables can be found by Ursini & Trigueros (2001) who made a
decomposition of ‘variable’ related to its main uses in elementary algebra: specific
unknown, general number, and relationship between variables. Drijvers (2003)
distinguishes five different roles related to different approaches in algebra: the
variable as placeholder for numerical values; as changing quantity in functional
algebra; as generalized number in the algebra of pattern and structure; as an
unknown in problem-solving; and as a symbol in algebraic language. Because of
the different meanings letters can have, one of the main difficulties of the con-
cept of variable is to deal with this versatility of meanings in a flexible way. This
flexibility is important because the meaning of variables can differ while solving
the problem (e.g. Arcavi, 1994). In the theory of reification, Sfard & Linchevski
(1994b) make a distinction between the algebra of fixed values and functional
algebra where letters are seen as variables.

Related to this distinction, we discuss a task in which students have to solve
the equation 2(3x + 2) = 3(2x− 1) + 7. Expanding the brackets in this equation
leads to the tautological expression 6x + 4 = 6x + 4 or, equivalently, 0 = 0. This
tautology is true for every value of x, so the correct answer is that the equation
holds for every x ∈ R. Less than 10% of the students mastered this task, see
Figure 4.1.

The rewriting of the expression 2(3x + 2) = 3(2x − 1) + 7 as the expression
6x + 4 = 6x + 4 is a secondary process. In the view of the theory of reification,
algebraic manipulations at the secondary level are inherited from the underlying
numerical calculation. The legitimacy of the manipulation is grounded in the
fact that whatever number is substituted for x,

2(3x + 2) = 3(2x− 1) + 7 ⇐⇒ 6x + 4 = 6x + 4.
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So, for the manipulation of the equation, treating x as an unknown but fixed
value, suffices. Mostly, the manipulations in the standard procedure of solving
equations on the secondary level lead to an expression of the form “x = number”
for the students. The exact meaning of this final formula is not an issue, what
is important is that the formula “x = number” indicates the end of the solving
procedure. However, reaching the tautology 6x + 4 = 6x + 4 or 0 = 0 does not
fit into the algebra of fixed values. At this point, a transition is needed to the
algebra of variables in which x can have different values in order to be able to
conclude that 2(3x + 2) = 3(2x− 1) + 7 holds for every x ∈ R.

4.5.3 Operational–structural transitions as indicators of dif-
ficulty

Above, we used the theory of reification to explain the difficulty of manipulating
square roots and linear equations. This difficulty is explained by the necessity
for students to make a transition in the process–product duality and the value–
variable duality. The flexibility involved in being able to deal with this duality
is an important aspect of algebraic proficiency. However, this stage is inherently
difficult and out of reach for many students. In our view, to students who have
not reached the stage of reification, each transition between the operational and
structural approach is difficult. Each time the solving of a specific problem
requires a switch from process to object or the reverse, or from the algebra of
fixed values to the algebra of variables or the reverse, a difficulty is created.
Based on these considerations and the results discussed in the previous section,
we formulate the following hypothesis.

Hypothesis:
The more transitions are needed for solving an algebraic problem,
the more difficult this problem is.

With this hypothesis we are able to explain the results of students on the square
root tasks and the linear equation. However, we want to use this hypothesis as a
predictor for the difficulties students experience while solving algebraic problems.
Therefore, we decided to test the hypothesis in a small setting.

4.6 Testing the hypothesis

In order to test the hypothesis formulated above, we constructed a test. These
tasks lie close to the tasks we discussed in the previous section and are related
to the process–product duality and the value–variable duality.
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4.6.1 Test construction and data collection

Regarding square roots, we constructed two tasks that narrow the gap between
the two tasks we discussed in the previous section (task R1 and task R4 in the
list below). In the second task, the square in the root has been made visible.
This might bring students to recognize

√
9 · 2 as the square root that needs to be

manipulated. In the third task, the roots are split up already, so students only
have to extract

√
4.

R1 Harry claims that
√

12 +
√

3 = 3
√

3.
Explain why you do or do not agree with Harry.

R2 Sophie claims that
√

9 · 2 +
√

2 = 4
√

2.
Explain why you do or do not agree with Sophie.

R3 Thomas claims that
√

4 · √7 +
√

7 = 3
√

7.
Explain why you do or do not agree with Thomas.

R4 Simplify: 2
√

5 + 4
√

5 =

Students that are able to answer the first task correctly might be in the reification
phase. Therefore, we expected that students would perform better on higher
numbered tasks than on lower numbered tasks. Further, we hypothesized that
a correct answer to a lower numbered task implies a correct answer to a higher
numbered one.

As regards the value–variable duality, we asked students to solve three linear
equations. The first equation in the list below is exactly the same as the one we
discussed in Section 4.5 and holds for all x ∈ R. The second equation transforms
to 6x + 4 = 6x + 2, which has no solutions; and the third equation has exactly
one solution: x = 1.

E1 Solve: 2(3x + 2) = 3(2x− 1) + 7. Show your work.

E2 Solve: 2(3x + 2) = 3(2x− 1) + 5. Show your work.

E3 Solve: 2(3x + 2) = 2(2x− 1) + 8. Show your work.

In our view, a correct answer to the first task indicates the ability to deal with
the value–variable duality. Therefore we hypothesized that students would per-
form better on higher numbered equations than on the lower numbered ones.
Further, we hypothesized that a correct answer to a lower numbered equation
implies a correct answer to a higher numbered equation. Finally we hypothesized
that incorrect answers to the first and second equation are not due to faulty sim-
plifications of the expressions (secondary processes). Rather, incorrect answers
are due to the inability to draw the correct conclusion from expressions such as
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Stream N R1 R2 R3 R4 E1 E2 E3

Social 28 0.11 0.14 0.21 0.50 0.00 0.14 0.68
Science 64 0.59 0.70 0.78 0.92 0.16 0.38 0.81

Total 92 0.45 0.53 0.61 0.79 0.11 0.30 0.77

Table 4.1: p-values of social and science students on square root (R1–R4) and
equation (E1–E3) tasks.

6x + 4 = 6x + 4 (first equation) and 4 = 6 (second equation), the inability to
relate the secondary process to the underlying primary process.

We chose to present the seven tasks discussed above as open questions that
had to be worked out with paper and pencil to grade 11 students. We wanted
to present the tasks to experienced students because we are interested whether
the hypothesis holds for students who have almost finished secondary school.
To avoid overloading the students in the highest grade, we chose grade 11. In
order to keep the sample representative for secondary education, we decided to
include students of both the social stream and the science stream (see Chapter 2).
In total, 92 students of two schools situated in the south of the Netherlands
participated. Students were asked to motivate their answers. Further, students
were not allowed to use calculators or bring on notes.

4.6.2 Results

First, we performed a coarse-grained analysis on the written answers. Correct
answers were coded with 1, incorrect answers were coded with 0. The average
performance of the students is presented in Table 4.1. In line with the hypoth-
esis, the p-values of both series of tasks (square roots and linear equations) are
increasing. Below, we elaborate on the performance scores of both series of tasks.
In addition, we performed a qualitative analysis on both series in order to find
out whether the incorrect answers can be connected with the dualities discussed
above.

Results on the process–product transition

We hypothesized that the square root tasks are of decreasing difficulty. The
quantitative analysis on the raw performance scores corroborated this hypoth-
esis. The next step in the analysis involved checking the hypothesis that the
performance patterns of students are increasing, i.e., students that answered
task R1 correctly also gave a correct answer to tasks R2, R3 and R4; students
who gave a correct answer to task R2 also gave a correct answer to tasks R3 and
R4, and so on. In the square root tasks, performance scores of 81 of 92 students
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Type of answer R1 R2 R3 R4

Correct 41 49 56 73
Incorrect, lacks connection 42 27 27 12
Incorrect, other 9 17 9 7

Total 92 92 92 92

Table 4.2: Number of students per category of answers.

showed an increasing pattern. We consider this result as a corroboration of our
hypothesis. Next, a qualitative analysis was performed on the written answers
to investigate whether incorrect answers are due to the inability to deal with the
process–product duality. Therefore, written answers on the square root tasks
were categorized into three types: correct; incorrect with a clue that the con-
nection between the process and the product of square root is absent; incorrect,
other.

A typical example of a second category answer to task R1 is “
√

12 = 3 so
3 +

√
3 does not equal 3

√
3 so no.” In this answer, the process of extracting the

root of 12 is not performed correctly, this gives rise to the question whether the
process of extracting roots is clear to this student.

Students in the third category did not give any explanation at all, or gave
an answer that does not directly indicate that the connection to the underlying
process is absent. For example, a student answered

√
12 =

√
4× 3 = 2 +

√
3. In

this case, the problem does not seem to be the connection with the process of
extracting the root, because the first step in this calculation is correct. Rather,
this student mixed up multiplication and addition.

Table 4.2 shows the number of students for each category. Incorrect answers
are mostly due to the lack of a connection to the underlying process. Therefore,
we conclude that the transition between a square root as a process and as a
product or vice versa is a factor of complexity.

The focus of the hypothesis is on students’ difficulties with the process–object
duality. However, these difficulties might not be the only kind which they ex-
perience. The following dialogue between student Arvin and the interviewer
illustrates that difficulties might go beyond the process–object duality . The in-
terviewer asked Arvin to reflect on his answer to task R2 in which students were
asked whether or not they agree with Sophie who claims that

√
9 · 2+

√
2 = 4

√
2.

The answer of Arvin to this task is “no,
√

9 · 2 =
√

18 = 18
1
2 = 9 so it has to be

9
√

2.”

A: Hmm... So I did 9 times 2, equals 18 and 18 to the power 1
2 yields 9.

I: And how does 18 to the power 1
2 yield 9?
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A: I just divided 18 by 2, equals 9.

I: OK.

A: Yes, next times plus 2.

I: Plus
√

2.

A: So that actually should have been 9 plus
√

2.

I: That should be 9 plus
√

2?

A: Yes, yes, finished?

This student correctly makes the connection between a fraction power and a
square root. However, in the evaluation of 18

1
2 Arvin mix up raising to the

power 1
2 and multiplying by 1

2 . In addition, he confuses plus
√

2 with times√
2. This student does not know the meaning of raising to a power. Even when

he elucidates his reasoning during the interview, he does not take a different
view. To Arvin, the process of extracting a root is not clear. Treating

√
5 as an

object however in the task 2
√

5 + 4
√

5 was no problem for Arvin. So to Arvin,
manipulating with

√
2 as an object is not the difficulty, rather it is the connection

to the underlying process of extracting roots or raising to the power one-half. In
this case,

√
2 as an object is not the result of a process that is reified.

Arvin’s problem with fractional powers does not directly relate to the process–
object duality. This indicates that the difficulties students experience in manip-
ulating square roots might be more than the process–object duality only.

Results on the value–variable transition

The quantitative analysis of the raw performance scores corroborated the hy-
pothesis that the first equation is the most difficult and the third equation is
the easiest. We also hypothesized that students that are able to answer the
first question correctly are also able to answer the second and third questions
correctly. Analogously, we expected that students that are able to answer the
second question correctly are able to answer the third question correctly. Of the
92 participating students, 88 showed an increasing pattern, which we consider as
a corroboration of the hypothesis.

Next, we performed a qualitative analysis on the written answers to inves-
tigate whether the incorrect answers are due to difficulties in manipulating the
expressions or due to an inability to draw the correct conclusion. Therefore,
the answers are categorized into three groups: correct; correct manipulation and
incorrect conclusion; incorrect manipulation. Table 4.3 shows the percentages of
students in each category. The analysis shows that the majority of students are
able to manipulate the equations correctly and that the difficulty lies in drawing
the correct conclusion out of expressions such as 0 = 0 and 0 = 2.
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Type of answer E1 E2 E3

Correct 10 27 71
Correct manipulation; incorrect conclusion 74 53 0
Incorrect no explanation 8 12 21

Total 92 92 92

Table 4.3: Number of students per category of answers.

The following dialogue between student Catherine and the interviewer illus-
trates this problem. Catherine solved Equation E1: 2(3x + 2) = 3(2x − 1) + 7
by expanding the brackets, which leads to the equation 6x + 4 = 6x − 3 + 7.
Next, she erroneously concluded that x = 0. The interviewer asked Catherine to
reflect on the thoughts she had while solving this equation.

C: Well, first expand the brackets, thus you do this so to say with the half
parrot’s bill1 as I learned that

I: Yes

C: Which yields [points to 6x + 4 = 6x− 3 + 7 on her work]

I: Yes

C: And 6x cancels out

I: Yes

C: Next −3 plus 4 because that becomes + so you get +7

I: Yes

C: But this one is 7 move to the other side becomes −7 so you get 0

I: So you get 0?

C: So x = 0

I: And where does this x comes from?

C: [Silence, then with astonishment] But you actually want to know how much
x is?

I: Yes

C: But I canceled that out
1A half parrot’s bill refers to the arcs in 2(3x + 2) = 6x + 4.
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I: Yes

C: O yes, I conjure that up or something, actually I don’t know. I should have
divided! No, I don’t know, I did not think about it, I just thought I have
to find x, so in the end there is x = and my solution was 0. I did not think
about deleting x.

To Catherine, the expectation to find an expression, in the sense of a row of
symbols of the form x = number, was very strong, as is beautifully expressed by
Catherine’s exclamation “but you actually want to know how much x is.” To
Catherine, the string of symbols x = number just seemed to indicate the end
of the procedure of solving the problem. At this point, she did not seem to be
aware of the meaning of the row of symbols (namely the solution). The string of
symbols only indicated the end of the procedure.

Sfard & Linchevski (1994b) already noticed that the inability to draw the
correct conclusion out of 0 = 0 might be due to the tacit assumption that x
equals only one value. As an alternative they suggest that manipulations might
be done in a routine way without any thought on the meaning of the letters.
This routine way always ends with the line x = number. Solving the equation is
identified with reduction of the equation to the expression x = number.

4.7 Conclusion and discussion

In this Chapter, we used Sfard’s theory of reification to explain the results of
Chapter 2. These results fit into two transitions described by Sfard & Linchevski
(1994b), in which ambiguity plays a role: the process–object duality and the dual-
ity of the algebra of a fixed number and the algebra of variables. We hypothesized
that these transitions can be seen as factors of the complexity of a task. Testing
this hypothesis among 92 grade 11 students corroborated this hypothesis. In the
case of square roots, the majority of the incorrect answers seemed to be due to
a lack of a realization of the connection between the process of extracting the
square root and the root as an object. As for the linear equations, the majority
of students were able to perform the secondary process of expanding the brackets
correctly. Here, the difficulty is in returning to the primary process to draw the
correct conclusion.

In the view of the theory of reification, the stage of reification is crucial in
the development of mathematical concepts. Reification means a switch from
a detailed and diffuse operational mode of thinking to a general and concise
structural mode of thinking. This switch is inherently difficult and the majority
of students do not reach the stage of reification during secondary education, see
also Chapter 2.

Gray & Tall (1994) argued that a possible way out could be to start with
processes rather than with ready-made algebraic objects. Curricula often assume
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a structural approach even though the process–object duality is not grasped by
the student (Sfard & Linchevski, 1994b). For example, a letter is introduced as
a variable and not just as an unknown, even though from a historical perspec-
tive, the latter precedes the former, which is more advanced. In this way, the
curriculum reverses the order of concept formation.

The results of this study are in line with other studies concerning the process–
concept duality (Dubinsky, 1991; Gray & Tall, 1994) and the process–object
duality in algebra (Sfard & Linchevski, 1994b). Central in these studies is that
flexibility with the duality of mathematical entities is at the core of algebraic
proficiency and that this flexibility is hard to achieve for many students. The
way we brought into practice these transitions between operational and structural
conceptions might be helpful for educators in identifying and classifying students’
difficulties with algebra.



Chapter 5

Instructional efficiency as a
measure for evaluating
learning outcomes: some
limitations

Cognitive load theory (CLT) plays an important role in the educa-
tional research literature. Meanwhile, CLT has been the subject of
both conceptual and methodological criticism. This article addresses
methodological limitations related to the measure “instructional effi-
ciency” introduced by Paas and Van Merriënboer in 1993. Although
originally introduced to compare different instructional designs, Van
Gog and Paas (2008) suggest that this measure also might be suitable
to evaluate learners’ levels of expertise. However, using instructional
efficiency in a study of algebraic proficiency at secondary level re-
vealed three methodological limitations related to the construction
of instructional efficiency, the interpretation of mental effort, and the
validity of mental effort.

5.1 Introduction

This chapter reports on the use of a measurement of the cognitive load theory
(CLT) in a study of mathematics education. Cognitive load theory (Sweller,
1988; Sweller et al., 1998) is an influential theory in the field of cognition and
instruction. In the past 20 years, the theory has developed substantially. A main
concern of cognitive load theory (CLT) is that well designed instruction should

59
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take into account the constraints on the learner’s cognitive system. Instructional
techniques should avoid overloading the learner’s working memory, which is seen
as the central bottleneck for learning.

The context of this study is a research project on the development of algebraic
proficiency in Dutch pre-university education. In algebraic proficiency, both
fluency and mastery are seen as important aspects. These aspects are reflected
in CLT, where expertise is seen as a combination of performance and mental
effort. Especially the latter triggered our interest, as the inclusion of mental
effort seemed to offer a means of getting a handle on fluency.

CLT has been proven to provide valuable insights in mathematics educa-
tion (e.g., Ayres, 1993, 2001; Cooper & Sweller, 1987; Owen & Sweller, 1989;
Sweller, 1989; Sweller & Low, 1992). From a CLT perspective, it is not only
important whether a solution is correct or incorrect: the invested mental effort
should also be taken into account in order to obtain a more detailed view of the
learner’s level of expertise (e.g., Van Merriënboer & Sweller, 2005). The com-
bination of performance and mental effort scores is expected to provide a more
fine-grained view of learners’ levels of expertise than performance scores alone.

Although the combination of performance and mental effort originally was
used to compare different instructional designs, Van Gog & Paas (2008) suggest
that this combination can also be useful to evaluate learners’ relative levels of
expertise. This chapter explores this suggestion, and aims at investigating the
potential of the combination of performance and mental effort as a method to
evaluate learners’ relative levels of expertise by using data from a recent study
on the development of algebraic proficiency in secondary education.

5.2 Main tenets of CLT

The central tenet of cognitive load theory (Sweller, 1988; Sweller et al., 1998;
Van Merriënboer & Sweller, 2005) is that instruction should be designed in line
with learners’ cognitive architecture. Human cognitive architecture is assumed
to consist of a limited working memory and a practically unlimited long-term
memory. Miller (1956) revealed that working memory is only able to hold about
seven items of information at a time. While processing information, working
memory might even be able to deal with only four, plus or minus one (Van Gog
& Paas, 2008). New information has to pass through working memory before it
can be stored in long-term memory.

In this view, the limited capacity of one’s working memory is a bottleneck for
learning. Learning, in cognitive load theory, is seen as the construction, elabo-
ration and automation of schemas (Sweller, 1988; Sweller et al., 1998). Schemas
are constructed by combining single elements into increasingly complicated struc-
tures. These schemas can be elaborated by adding new information to already
existing schemas. Once a schema has been constructed, interacting elements in-
corporated in the schema can be treated as single elements in working memory.
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Also, such a schema can be incorporated in higher order schemas. According to
CLT, learning material differs in the extent to which it imposes working memory
load. The working memory load in its turn depends on the number of elements
that must be processed in working memory simultaneously. This number de-
pends on the element interactivity, where an element is “anything that has to be
learned, most frequently a schema” (Sweller et al., 1998, p. 259).

Paas et al. (2003b) define cognitive load as a multidimensional construct that
represents the load that performing a particular task imposes on the learner’s
cognitive system. Measuring the multidimensional construct of cognitive load
has proven to be difficult (Paas et al., 2003b). However, from the model of Paas
& Van Merriënboer (1994), it follows that cognitive load can be assessed by
measuring mental load, mental effort and performance. Because mental load is
supposed to be equal for all participants, the measure of performance and mental
effort suffices to measure students’ levels of expertise.

CLT distinguishes three types of cognitive load (Sweller et al., 1998). In-
trinsic cognitive load is determined by the number of interacting elements of the
learning material. High element interactivity imposes high intrinsic load because
all elements have to be processed simultaneously in working memory. Extrane-
ous cognitive load is the ineffective load due to the design of the instructional
materials. It is unnecessary, does not contribute to learning and may even ham-
per learning. Intrinsic load and extraneous load are additive (Paas et al., 2003a;
Sweller et al., 1998): so if the intrinsic load is low, the level of extraneous load
might not exceed working memory. Lowering the extraneous load is especially
important if the intrinsic load is high (Paas et al., 2003a). Finally, germane cog-
nitive load, introduced by Sweller et al. (1998), refers to the additional cognitive
load imposed by the design of the material that does contribute to learning.

According to CLT, appropriate instruction should avoid both overload and
underload because under these conditions learning deteriorates. As a conse-
quence, appropriate instruction should reduce the extraneous load imposed by
processes that hamper learning and increase the germane load that fosters learn-
ing (Sweller et al., 1998; Van Gog & Paas, 2008). CLT has distinguished several
effects that reduce extraneous load (Van Merriënboer & Sweller, 2005). For ex-
ample, the goal-free effect is imposed by the replacement of conventional prob-
lems with goal-free problems, i.e., problems with a non-specific goal. This effect
reduces the extraneous load because the learner does not have to relate the cur-
rent problem state with the goal state while working on the task (Ayres, 1993).
Other effects that reduce the extraneous load are the worked example effect, the
completion problem effect, the split attention effect, the modality effect, and the
redundancy effect (Van Merriënboer & Sweller, 2005).

In the past decades, CLT has developed into an influential theory with many
valuable contributions to the field of cognition and instruction. Recently, CLT
has been the subject of criticism, both conceptual (Schnotz & Kürschner, 2007)
and methodological (Hoffman & Schraw, 2010; De Jong, 2010; Gerjets et al.,
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2009). The conceptual criticism relates to the distinction between different kinds
of cognitive load. The methodological criticism refers to its measurement. The
focus of this chapter is to investigate the idea of using instructional efficiency as
a measure for evaluating the learner’s level of expertise.

5.3 Instructional efficiency

In 1993, Paas & Van Merriënboer (1993) introduce a measure for efficiency as
a combination of performance and mental effort. This measure is introduced
as a means to compare the effects of different instructional approaches and has
become known as “instructional efficiency.” It is based on performance scores
and mental effort scores. In Paas & Van Merriënboer (1993), performance scores
are determined by the percentage of correct answers. Mental effort scores are the
measures for the perceived amount of mental effort, reported by the students on
a nine-point symmetrical category scale. The values and categories of this scale
range from (1) very, very low mental effort to (9) very, very high mental effort.

The performance and mental effort scores are standardized. These standard-
ized performance z-scores and mental effort z-scores are presented in a coor-
dinate plane—performance vertically, mental effort horizontally—in which each
unit of (standardized) invested mental effort equals one unit of performance.
For a particular instructional approach with certain standardized scores, the ef-
ficiency is defined as the distance of this point to a baseline condition E = 0,
combined with a sign indicating at which side of the baseline the condition is
located. Figure 5.1 shows that efficiency increases as performance increases and
mental effort decreases. From the standardization, it follows that efficiency is
a relative measure. The performance and mental effort scores of a subgroup of
persons and/or items are related to the performance and mental effort of the
whole group of persons and/or items. Subgroups are for example persons with
particular instructional design or students of a particular grade. In the case of
using efficiency to evaluate learners’ levels of expertise, a subgroup consists of
one particular student.

Since the introduction of this measurement, many researchers have used in-
structional efficiency either in its original form or in an adapted form (Kester
et al., 2006; Paas et al., 2007; Paas & Van Merriënboer, 1994; Tuovinen & Sweller,
1999; Van Gog et al., 2008). Although originally developed to compare differ-
ent instructional designs, Van Gog & Paas (2008) emphasize that instructional
efficiency also can be viewed as an expression of a learner’s level of expertise.
In their view, instructional efficiency can be used to evaluate a learner’s level
of expertise. This chapter explores this suggestion. Therefore, we now go more
deeply into instructional efficiency. We use the notations and abbreviations as
introduced by Paas & Van Merriënboer (1993):
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Figure 5.1: Standardized performance and mental effort represented graphically.

P : average performance score of a particular subgroup of one or more persons
and/or items,

R: average mental effort score of a particular subgroup of one or more persons
and/or items,

PM : the grand mean of performance scores of the whole group of persons and/or
items,

PS : the standard deviation of performance scores of the whole group of persons
and/or items,

RM : the grand mean of mental effort scores of the whole group of persons and/or
items,

RS : the standard deviation of mental effort scores of the whole group of persons
and/or items,

Pz: the standardized performance score, Pz = P−PM

PS
,

Rz: the standardized mental effort score, Rz = R−RM

RS
.

Here we note that a subgroup of persons can refer to just one student as well as
to all students of a class or school. Analogously, a subgroup of items can refer
to one single item as well as to a cluster of items. Let us further analyze the
relationship between those variables in order to obtain a deeper understanding
of the behavior of the measure instructional efficiency. By definition Pz = P−PM

PS
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and Rz = R−RM

RS
. With these two variables, instructional efficiency of P and R

scores of a particular subgroup of persons and/or items can be calculated.
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)
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Note that PM , PS , RM and RS are constants, independent of which particular
subgroup of persons and/or items is being considered. Therefore, the measure
instructional efficiency is a linear transformation of the variables P and R.

Criticism of the construction of instructional efficiency addresses its relativ-
ity (De Jong, 2010; Hoffman & Schraw, 2010) and reliability (Hoffman & Schraw,
2010). Apart from this criticism, with which we agree, we experienced three
specific limitations within the context of the use of instructional efficiency in
research on the development of algebraic proficiency. In the following sections,
we elaborate on these limitations.

5.4 Research context

As we have mentioned before, this study is part of a research project that aims at
investigating the development of algebraic proficiency in pre-university students,
see Chapter 2. In order to monitor this development, we assessed students of
grades 8–11 at four different moments in time, spread out more or less evenly
over the course of a calendar year. Each assessment consisted of approximately
12 open items. After each item students were asked to report their invested men-
tal effort on the nine-point symmetrical category scale, corresponding literally
to Paas (2007). Each item was allocated a performance score (0 for incorrect; 1
for correct) and a mental effort score (1 for very, very low mental effort, 2 for
very low mental effort, and so on until 9 for very, very high mental effort).

For the data analysis, we planned to combine the performance and mental ef-
fort scores in the measure, instructional efficiency. We expected this combination
to provide a more fine-grained analysis than performance scores alone. However,
during the analysis, three methodological limitations emerged related to instruc-
tional efficiency, namely the interchangeability of performance and mental effort,
the undetermined meaning of mental effort in case of an incorrect answer, and
the validity of the mental effort scores.
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5.5 First limitation: Interchangeability of per-
formance and mental effort

Central to the construction of instructional efficiency is the assumption that
points on lines parallel to the line E = 0 represent the same efficiency (see
Figure 5.1). De Jong (2010) already mentioned that this assumption can lead to
unclear experimental situations. When we try to apply instructional efficiency
as a measure to evaluate a learner’s level of expertise, this assumption becomes
even more problematic. We elaborate this limitation with an example.

Consider two students, student 1 and student 2, with average performance
and mental effort scores as illustrated in Figure 5.2. That is, suppose that student
1 has an average performance score less than the average performance score of
the whole group, and an average mental effort score less than the average mental
effort score of the whole group. Further, suppose that student 2 has an average
performance score higher than the average performance score of the whole group
and an average mental effort score higher than the average score of the whole
group. The distances to the line E = 0 are equal for both student 1 and student
2. So by definition, these two students have the same instructional efficiency.
Following the reasoning of Van Gog & Paas (2008), the conclusion should be
that student 1 and student 2 have the same level of expertise.

In our view, this phenomenon is an expression of a fundamental problem of
the measure, instructional efficiency. In the construction of this measure, mental
effort counterbalances performance. This means that a higher performance is
annihilated by a lower mental effort, and the other way around, due to the
assumption that assigns the same instructional efficiency to all lines parallel to
the line E = 0. This assumption is based on the idea that performance and
mental effort are interchangeable. However, from an educational point of view,
this is questionable, because higher performance is much more valuable than
lower invested mental effort. In our view, performance and mental effort do not
counterbalance. As a consequence, the assumption of linearity expressed by Paas
& Van Merriënboer (1993), that assumes that lines that are parallel to the line
E = 0 in Figure 5.1 represent the same instructional efficiency, does not hold.

5.6 Second limitation: Undetermined meaning
of mental effort in the case of an incorrect
answer

The second limitation of instructional efficiency as a measure to evaluate learn-
ers’ levels of expertise is the meaning and hierarchy of mental effort scores. In
Section 5.3 we argued that instructional efficiency is a linear combination of
performance and mental effort.
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Figure 5.2: Two students with the same efficiency.

In the data from all students and all items in our project, the grand mean
of performance PM is 0.51 and the standard deviation of the performance PS is
0.50. Note that these data are dichotomous and thus not normally distributed.
The grand mean of mental effort RM is 3.76, and the standard deviation of
the mental effort RS is 2.47. With these four variables, it is easy to calculate
instructional efficiency according to the method of Paas & Van Merriënboer
(1993). Based on these values, Figure 5.3 shows the instructional efficiency of
different combinations of average performance and average mental effort scores
of subgroups of persons and/or items as linear scales. The averages of subgroups
can take many different values in between 0 and 1. In order to illustrate the
shifts of the linear scales, we chose to depict, besides 0.00 and 1.00 (the extreme
values for averages of subgroups), also performance scores of 0.25, 0.50 and 0.75.
Analogously, for the mental effort scale we chose the values 1, 2, . . . , 9 as possible
averages of subgroups.

The combination of an average performance score of P = 0 and an average
mental effort score of R = 9 yields the lowest efficiency (E = −2.22); the com-
bination of an average performance score of P = 1 and an average mental effort
score of R = 1 yields the highest efficiency (E = 1.48). From the construction of
instructional efficiency, it follows that for a certain average performance score,
there is a strict hierarchy in possible average mental effort scores. In the case
of a correct answer, the meaning and hierarchy of the mental effort scores are
clear: a correct answer combined with low invested mental effort is of higher
instructional efficiency and thus represents a higher level of expertise than a cor-
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Figure 5.3: Instructional efficiency as linear scales for different values of P .

rect answer combined with high invested mental effort. However, in case of an
incorrect answer, the meaning and hierarchy of the mental effort scores are not
clear. We elaborate on this in the remainder of this section.

Consider the situation of low performance in combination with low mental
effort. This situation is problematic for two reasons.

First, the meaning of this combination is not clear. Very low invested mental
effort combined with a low performance score might on the one hand express the
quick decision to not even try to solve the problem at all, because the student
recognizes the problem as being beyond his or her ability. On the other hand, this
combination might express only tiny errors in almost perfect computations. Both
situations have the same instructional efficiency, so they should both express the
same level of expertise. However, in our view, these two situations are quite
different. In the first situation the student is just at the beginning of the road
to mastering the problem, whereas in the second situation only a small learning
effort is needed for the student to master the problem. Thus, the meaning of the
mental effort scores in case of low performance is ambiguous.

Secondly, compare this situation of low performance and low mental effort to
the combination of low performance and very high mental effort. This second
situation can be an expression of a tiny error in an almost perfect computa-
tion that is only just within the student’s capability. Compared to the situation
of low mental effort and low performance, this is clearly a situation of a much
higher level of expertise. Now from the linear construction of instructional ef-
ficiency, it follows that higher mental effort means lower instructional efficiency
(see Figure 5.3). As a consequence, the instructional efficiency of the first situ-
ation is higher than the instructional efficiency of the second situation, exactly
the opposite to what it should be.

Thus, the same combination of performance and mental effort can have multi-



68 CHAPTER 5. INSTRUCTIONAL EFFICIENCY

ple interpretations, but lead to the same instructional efficiency. These multiple
interpretations pose a problem in the transition from instructional efficiency to
level of expertise. Furthermore, the inherent hierarchy of instructional efficiency
is shown to be the wrong way around in certain situations. We conclude that
in the case of our study the meaning and chosen fixed hierarchy of mental effort
scores are not clear.

5.7 Third limitation: Validity of mental effort
scores

The undetermined meaning of mental effort score as discussed in the previous
section produces doubts as to the validity of mental effort as a measure to mea-
sure students’ levels of expertise. In this section, we discuss three more reasons
to question the validity of mental effort.

The first reason to doubt the validity of mental effort is the interpretation
of mental effort by the student. In our study, students were asked to report on
their invested mental effort after each item. Figure 5.4 shows the work of a grade
8 student. Initially, this student started to solve the equation

(x− 5)(x + 2)(x− 3) = 0

by expanding the brackets and reported very high mental effort. Then the stu-
dent discovered the correct procedure, gave the (correct) solutions x = 5, x = −2
and x = 3 and reported low mental effort. In our view, the reported switch in
the perceived mental effort does not reflect the real invested mental effort. The
working out in this example clearly illustrates that the student has invested high
mental effort in order to arrive at the correct answer. However, the switch in
reported mental effort on second thought, inspired by a switch of perceived diffi-
culty, points to a validity problem. The example in Figure 5.4 suggests that for
students it is hard to distinguish between perceived mental effort and perceived
difficulty.

The second reason to doubt the validity of mental effort is that the question
how much effort the student needed to invest to solve a problem allows for
multiple interpretations. One possible interpretation of this question is: how
much effort did solving this problem cost me in relation to other students in
my class. In this case, while reporting mental effort, the student uses the class
as frame of reference. Another possible interpretation is: how much effort did
solving this problem cost in relation to other problems in the present test. In this
case, the student uses the other items in the test as frame of reference. These
different interpretations of how to report mental effort may influence the validity
of the measurement of mental effort in our test.

Finally, in search of an alternative use for the mental effort scores, we related
the mental effort scores with the ability of students that we found in the Rasch
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Translation:

los op: solve

Het oplossen van het probleem hierboven kostte mij:

solving the problem above required

zeer, zeer weinig moeite: very, very low mental effort

zeer, zeer veel moeite: very, very high mental effort

toen ik = 0 zag: when I saw = 0.

Figure 5.4: Different interpretations of mental effort in the work of a student of
grade 8.
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analysis of the performance scores. The Rasch model is a one parameter item
response model (Bond & Fox, 2007; Rasch, 1980). With this model, a linear scale
has been created on which both students and items are arranged, the students in
order of their ability, and the items in order of their difficulty. A key characteristic
of the Rasch model is that in the computation of the ability of the students, the
difficulty of the items is taken into account. Based on the Rasch measurements,
we calculated for each student and each item the probability of that student’s
answering that item correctly. We expected students who possessed a probability
of almost 1 to report very, very low mental effort, and students who possessed a
probability of almost 0 to report very, very high mental effort. So, we expected a
high positive correlation between the probabilities and the reported mental effort.
However, the Pearson correlation coefficients between the probabilities and the
reported mental effort had an average of −0.29. This clearly indicates that the
relation between students’ abilities and mental effort is unclear. Because of the
troublesome relation between students’ ability and mental effort, we argue that
the use of mental effort in addition to performance to provide a more fine-grained
analysis is not feasible.

The situations we described above all relate to the validity of mental effort.
Literature about the validity of mental effort (Paas, 1992) refers to studies in
which rating scales are used for measuring task difficulty (e.g., Bratfisch et al.,
1972). In our view, the relation between the validity of rating scales in measuring
task difficulty and rating scales for invested mental effort is not clear. A more
detailed validity study of mental effort rating scales is needed to obtain a good
measurement of the invested mental effort.

5.8 Conclusion

In addition to problems with instructional efficiency, such as problems with re-
liability and group reference already identified by others (e.g. De Jong, 2010;
Hoffman & Schraw, 2010), this chapter identified three methodological limita-
tions that emerged when using instructional efficiency as a measure to evaluate
students’ levels of expertise in the context of a study on secondary level algebraic
proficiency. The first limitation is related to the assumption that higher mental
effort can be counterbalanced by higher performance and the other way around.
From an educational point of view, this assumption is problematic because higher
performance is considered more valuable than lower mental effort. However, this
assumption of the interchangeability of performance and mental effort is crucial
in the construction of instructional efficiency.

The second limitation lies in the multiple interpretations of mental effort in
situations of low performance and low mental effort. In this situation, on the
one hand, the combination might express a high level of expertise with some
tiny mistakes. On the other hand, this combination might express a low level of
expertise where the student did not even try to solve the problem.
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Finally, the third limitation addresses the validity of mental effort as such.
We argue that there is reason to question the validity of mental effort measured
on the nine-point symmetrical category scale due to the mix of mental effort and
perceived difficulty.

Based on these observed limitations, we conclude that, in the context of our
study on the development of students’ algebraic proficiency, instructional effi-
ciency is not an appropriate measure for evaluating learners’ levels of expertise.
The suggestion by Van Gog & Paas (2008) to use instructional efficiency in this
way was prompted by the fact that percentages of correct answers do not always
reflect the level of learners’ expertise in an appropriate manner. The limitations
we experienced with the measures instructional efficiency and mental effort how-
ever are too fundamental to use these scores for a more fine-grained analysis,
replacing the percentage of correct answers.

As an alternative, Hoffman & Schraw (2010) suggest using the ratio of per-
formance and mental effort as a measure for efficiency. Because of the doubts on
the validity of the mental effort scores, we decided not to use this alternative. In
fact, we decided to keep the mental effort scores out of the analysis on students’
algebraic proficiency.
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Chapter 6

Contexts and models in
Dutch textbook series: the
case of linear relations and
linear equations

In this chapter we explore what kind of support Dutch textbooks
offer to help students develop conceptual algebraic proficiency, using
emergent modeling (Gravemeijer, 1999) as a theoretical lens. The
analysis shows that Dutch textbook series pay much attention to ac-
tivities concerning exploring contexts and little attention to activities
such as structuring, abstracting, formalizing, generalizing. Moreover,
we find two disjunct didactical tracks: a reform mathematics track
and a track of ready-made mathematics.

6.1 Introduction

In the previous chapters, we found that Dutch pre-university students did not
develop proficiency in conceptual aspects (Chapter 2), that students had difficul-
ties with structure sense (Chapter 3), and that operational–structural transitions
could be seen as indicators of complexity (Chapter 4). Together, these chapters
suggest that the majority of Dutch students do not reach a level of higher-order
skills. In this chapter we focus on the question of to what extent Dutch textbooks
support reaching this higher level. But first, we need to describe more precisely
what me mean by this higher level.

In this chapter, we use the term conceptual proficiency to refer to this higher

73
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level of mastering algebra. Conceptual proficiency is an umbrella term for skills
that transcend superficial skills. The nature of these higher-order skills has been
described in many different ways by many different researchers. For example,
relational understanding (Skemp, 1976), conceptual understanding (Kilpatrick
et al., 2001), flexible manipulation skills and the ability to read through sym-
bols as elements of symbol sense (Arcavi, 1994, 2005), proceptual view (Tall &
Thomas, 1991), reification (Sfard, 1991), and relations between relations (Van
Hiele, 1986). We use the term conceptual proficiency to denote a mixture of these
higher-order skills in which three aspects are essential: the ability to recognize
and make flexible use of the algebraic structure, to deal with the ambiguous
nature of mathematical concepts, and see the coherence between mathematical
concepts.

In the previous chapters we argued that the majority of students do not
show conceptual proficiency. Since textbooks play an important role in Dutch
mathematics education (Hiebert et al., 2003), we decided to perform an analysis
of some textbooks. For pragmatic reasons, we decided not to take into account
factors such as school, class, or teacher.

In this analysis of textbooks, we investigated what kind of support Dutch
textbook series offer students to help develop conceptual proficiency. We choose
to focus this analysis on the topics linear relationships and linear equations. A
linear relationship between two variables is a relation in which any given change
in one variable will always produce a corresponding change in the other variable.
The graph of a linear relationship is a straight line. By linear equation, we
refer to a polynomial equation in one variable in the first degree, for example
3x− 7 = 11 or 5x + 2 = −2x + 7.

The first reason to choose these topics is that the focus of this study is on the
development of algebraic skills taught in lower secondary education. Central in
the curriculum of lower secondary education is the introduction of linear relations
and linear equations. The second reason is that from the results discussed in
Chapter 2, it follows that linear equations are among the most difficult tasks.
We split the analysis into linear relations and linear equations.

Dutch textbook series are strongly influenced by the theory of Realistic Math-
ematics Education. As a consequence, linear relations and linear equations are
introduced by means of contexts and models. This chapter aims at investigating
the role contexts and models play in concept formation. Moreover, we aim at
investigating what kind of support these contexts and models offer to develop
conceptual proficiency. The role of models within RME is described in the theory
of emergent modeling (Gravemeijer, 1999). Below we elaborate on this theory.
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6.2 Frame of reference

6.2.1 Emergent modeling

Emergent modeling (Gravemeijer, 1999) is rooted in the description of instruc-
tional design heuristics within the theory of Realistic Mathematics Education
(e.g., Freudenthal, 1983). Realistic Mathematics Education (RME) is a domain-
specific instruction theory that has its origins in the early 1970s, and is based on
Freudenthal’s view on mathematics (e.g., Freudenthal, 1968; Freudenthal, 1973).
He argues that

“what humans have to learn is not mathematics as a closed system,
but rather as an activity, the process of mathematizing reality and
if possible even that of mathematizing mathematics” (Freudenthal,
1968, p.7).

To Freudenthal, students should not be confronted with ready-made mathemat-
ics. Rather, they should be enabled to learn mathematics by mathematizing both
reality and their own mathematical activities. In RME, the focus is on teaching
the activity of mathematizing instead of teaching the results of the mathema-
tizing activities of others. The latter would lead to an “anti-didactic inversion”
of the way the mathematics was invented. In the RME view, students should
be enabled to construct mathematics from their own experiences and reality. In
a process of progressive mathematizing, students reinvent mathematics, guided
by teachers and the instructional design. In this way, students are enabled to
experience mathematics as a process similar to the way mathematicians invent
mathematics. It is the learning process that is seen as essential, rather than the
products of the learning process (Freudenthal, 1991).

Modeling activities play an important role in mathematics. By translating a
contextual problem into a mathematical problem, the problem solver makes the
problem amenable to mathematical procedures. From an RME perspective, stu-
dents should not be confronted with ready-made models. Rather, these models
should emerge from their own mathematizing activities (Gravemeijer, 1994).

The idea of emergent modeling is that students start with modeling expe-
rientially real problem situations. Then, in the following learning process, the
model gradually develops from a model of their own mathematical activity to a
model for formal mathematical reasoning. The use of models in the latter form
lies close to the intended use of didactical models. These models are meant to
make formal mathematics more accessible to students. From a constructivist
perspective, the problem with these kind of didactic models is that in order to
interpret the model correctly, students should already have the mathematical
knowledge at their disposal that is intended by the model (Cobb et al., 1992).
As an alternative, emergent modeling concentrates on rooting the development
of the model in the experiential reality of the students.
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Figure 6.1: Levels of activity (Gravemeijer, 1999).

In this way, models can support mathematical growth. While working with
the models, students start to come to grips with the mathematical relations
involved. In this way, the model starts to function as a model for mathemat-
ical reasoning. The transition from model of to model for concerns a shift in
students’ thinking. This shift concerns thinking about the modeled contextual
situation to thinking about mathematical relations. Gravemeijer (1999) discerns
four levels of different activities: task setting, referential, general, and formal.
Task setting activities concern reasoning about interpretations and solutions in
a specific setting. At the referential level, the phrase “models of” refers to activi-
ties described in the task setting. General activities emerge as the students start
to reason about the mathematical relations that are involved, thus constructing
new knowledge. Activities at the level of formal mathematical reasoning are no
longer dependent on models. Although there is a hierarchy in these levels, stu-
dent activities do not take place in a strict order. Discussions about activities
at a general level for instance may fold back to the referential or task setting
level. In the transition from referential to general activities, models are reified,
thus becoming entities on their own. At this point, Gravemeijer (1999) makes a
connection to the reification of processes (Sfard, 1991), see also Chapter 4. Fol-
lowing this line of thought, Gravemeijer (1999) argues that it is not the model
but the process of acting and reasoning with the model that is being reified.

Since we are investigating what kind of support the textbooks offer to develop
conceptual proficiency, we are especially interested in activities that support the
transition from the referential level to the general level.

6.2.2 Linear relations and linear equations from an emer-
gent modeling perspective

From an RME perspective, and in particular from an emergent modeling perspec-
tive, students eventually construct formal mathematical knowledge in a process
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of progressive mathematization of both reality and the students’ mathematical
activities. Following the line of thought of RME and emergent modeling, we
sketch the ideal instructional sequence for linear relations and linear equations.

In our view, from an RME perspective, the introduction of linear relations
should start with contextual situations of linear relations. Activities at this task
setting level should invite students to reason and calculate within these contexts.
Examples of such activities are discovering patterns in contextual situations and
informal reasoning and calculating. In this way, the contexts can serve as mod-
els of linear relations. Next, the activities should shift to their mathematical
characteristics and the mathematical relations involved. Gradually, the activi-
ties become detached from the contextual situations and the students’ reasoning
loses its dependency on situation-specific features. In this manner, a linear rela-
tion becomes an object. This object does not necessarily need its context, but
instead has meaning in and of itself. This object is incorporated in a network
of relations. At this general level, linear (word) formulas start to function as
models for linear relations.

From the same perspective, in our view, the ideal introduction of linear equa-
tions starts with informal strategies at the task setting level, such as the cover-up
method and the balance method, that emerge from contextual situations. Next,
at the referential level, these informal strategies serve as a background for solving
equations and in interpreting and giving meaning to the solution. Gradually, the
balance model becomes less detached from the specific situation and emerges as
model for reasoning about linear equations. At the general level, equations have
become reified into objects and are part of a network of mathematical relations
that justify how to operate on these objects. For example, adding and subtract-
ing numbers and variables to both sides of the equation and multiplying both
sides of the equation by the same number.

To get a handle on the way the textbooks support the students in developing
conceptual proficiency in the domain of linear relations and linear equations we
carried out an exploratory analysis. As a framework of reference we used the
idea of emergent modeling, which offered a basis for identifying categories of in-
structional activities that would support the process of vertical mathematization
that is aimed for in RME theory. By quantifying the number of activities in
the respective categories, we would be able to create an image of in how far the
textbook approach corresponds with a more or less ideal realistic instructional
approach.

As we mentioned before, we focus on the topics linear relations (Section 6.3.1)
and linear equations (Section 6.4).
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Grade Textbook Chapter/Section Edition

7 GR 4.4, 4.5, 4.6 Reichard et al. (2006)
7 MW 7, 8 De Bruijn et al. (2007)
8 GR 5.1, 5.2 5.3 Reichard et al. (2005)
8 MW 1 De Bruijn et al. (2008a)
9 GR 1.1 Reichard et al. (2010)
9 MW 1.1, 9.1 De Bruijn et al. (2009a,b)

10 GR 2 Reichard et al. (2007)
10 MW Blok 2 Bos et al. (2007)

Table 6.1: Textbooks and chapters concerning linear relations of Getal & Ruimte
(GR) and Moderne Wiskunde (MW).

6.3 Linear relations

6.3.1 Method

The data set is constructed from two textbook series, Moderne Wiskunde (MW)
and Getal & Ruimte (GR), which together have an estimated market share of over
90% (cTWO, 2009). From these textbook series, chapters, and within chapters,
sections, have been selected that concern linear relations. Theory on these topics
is presented in the textbooks for grades 7, 8, 9, and 10. In grades 10, 11, and 12,
the student population is split into a social stream and a science stream. In this
chapter we focus on students in the science stream because especially for these
students it is important to develop conceptual proficiency. Table 6.1 provides an
overview for both textbook series of the chapters and sections for each grade in
which the subject of linear relations is treated.

As units of analysis, we chose tasks that are denoted with a separate number
and fragments of texts on theory that belong to the main sections of the chap-
ters. Besides these main sections, chapters of both textbook series also contain
sections concerning pre-requisite knowledge, information technology, diagnostic
tests, summaries, etc. We decided not to take these extra sections into account,
because they do not directly contribute to the introduction of new concepts.
For both textbook series, grade 10 is the last grade in which the topic of linear
relations is explicitly paid attention to.

Drawing on the theory of emergent modeling, and on the description of the
“ideal curriculum” as we view it, we categorized tasks and fragments of theory in
the framework of emergent modeling. We discuss this analysis of linear relations
and linear equations in subsections 6.3.1 and 6.4 respectively.

In subsection 6.2.2, we briefly described what we see as the ideal instructional
sequence of linear relations from an emergent modeling perspective. In our view,
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the investigation of contextual situations can be seen as an activity at the task
setting level. The shift to the referential level occurs when (word) formulas are
introduced and the focus of the activities shifts to the meaning of the formulas,
while maintaining a strong relation to the context. Ideally, the instructional
sequence then gradually shifts to the general level when the students have devel-
oped a sense of the properties of linear relations and the ways of operating with
them. Activities that contribute to this shift should focus on these properties
and ways of operating and less on what the models signify.

In this analysis of these textbooks, we chose not to make a strict connection
between the four levels of activity described in the theory of emergent modeling
and activities in the textbooks for two reasons. The first reason is that the levels
describe the students’ mental activity, not the tasks or the models per se. The
second reason is that in the theory of emergent modeling, the shifts between
levels is seen as important. This aspect would not be done justice to if we had
classified activities at the four levels. Rather, the way this theory described the
construction of formal mathematical knowledge gave rise to distinguishing three
categories of activities for linear relations as well as linear equations.

The first category consists of activities that ask students to reason and cal-
culate within contexts. Activities at this level concern for instance: searching
for patterns in given contextual situations, constructing word formulas, infor-
mal reasoning about the context, drawing a graph from a context, and drawing
conclusions about the context from a graph. In activities at this category, the
constant and proportional factor in the word formula derive their meaning di-
rectly from the context.

The second category consists of activities in which the focus shifts from the
context itself to the mathematical properties and characteristics involved. Ex-
amples of such activities are: searching for patterns in the relation, reasoning
and calculating with formulas, comparing properties of relations, e.g., which one
is steeper, and investigating the rise. In activities at this level, it becomes clear
that the same rule holds for different inputs and that this rule involves something
constant plus something that is proportional to the input.

The third category consists of activities that help students to develop concep-
tual proficiency. These activities offer support to seeing and treating the linear
relationship as an object that does not necessarily derive its meaning from the
context, but has a meaning by itself and by its relation to other mathematical
objects. Seeing linear relations this way requires formalization and generalization
to algebraic contexts. For example, a shift from the discrete to the continuous,
a shift from only the first quadrant to all four quadrants, and a clear meaning
for x = 0. The algebraic context concerns the connection between the formula
and the intercept and the slope of linear formulas.



80 CHAPTER 6. LINEAR RELATIONS IN DUTCH TEXTBOOK SERIES

Translation:

4 A café owner has rectangular tables. On the side, you can see how he places them.

a How many people can be seated at four tables? And how many at five?

b How many chairs are there per table, the ends excluded?

c How many chairs do the ends of the row have?

d Write the following line down for the calculation of the number of chairs: “The number

of tables times . . . plus . . . equals the number of chairs.”

e Calculate how many chairs are needed in this setting with seven tables.

Figure 6.2: Example of a task setting activity in the first category of a grade 7
textbook. Reprinted from De Bruijn et al. (2007, p. 11) with permission of the
publisher.

6.3.2 Analysis

In the previous subsection, we described three categories of activities that fit into
the ideal curriculum sketched in subsection 6.2.2. In this subsection, we describe
these categories in greater detail by providing examples of activities from both
textbook series.

First category

Activities in the first category concern the investigation of contextual situations.
Figure 6.2 represents an example of such an activity of a grade 7 textbook (De
Bruijn et al., 2007). In this task, students have to reason about the number
of chairs depending on the number of tables. Each table provides four chairs,
excluding the ends. The relationship between the number of tables and the
number of chairs is linear, but the term ‘linear’ is not introduced in this grade 7
textbook. In this stage, the focus is on capturing the relation in a word formula
and using this word formula to calculate the number of chairs when the number
of tables is given, see part d and e of the task in Figure 6.2. In this example,
students do not have to search for patterns or characteristics of the context. All
calculations are straightforward and stay within the context.
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Translation:

Two candles are lit at the same time. The length of candle I in cm can be calculated with

the formula lengte = 15− 3u. The u represents the number of hours it has been burning.

a Draw the graph of the length of candle I.

The length of candle II is 12 cm. If this candle is burning, it shortens by 2 cm an hour.

b Fill in. The formula length = . . . belongs to candle II.

c Draw the graph of the length of candle II in the figure of subquestion a.

d After how many hours are the lengths of the candles equal?

e Which candle burns longer?

Figure 6.3: Example of a first category activity of a grade 7 textbook. Reprinted
from Reichard et al. (2006, p. 156) with permission of the publisher.

Another example of activities in the first category are tasks in which students
have to reason and calculate with a given formula, see the example in Figure 6.3.
In this example, the length of a candle (length) depends on the number of hours
(u) the candle has been burning via the formula length = 15−3u. Students have
to graph this relation and compare the length with another candle. We classified
this task as being of the first category because the focus of this task is within
the context, and not on the linear structure of the relation or on properties of
the linear relation.

Second category

The second category consists of activities in which the focus shifts from the
context itself, to properties and characteristics of the context. A representative
example of an activity at this level is presented in Figure 6.4. In this example,
the graph is given of the linear relation between the costs of a courier service
and the number of kilometers traveled. Based on this graph, students are asked
to construct the corresponding formula. Next, students have to explain the
meaning of the numbers in the formula. At this point, students have to make
the connection between characteristics of the context (the fixed costs and the
variable costs) and the numbers in the formula. In this way, the focus shifts
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Translation:

Courier service eulink guarantees to deliver packages in one day to any address in the

Netherlands. The cost B in euros depends on the number of kilometers k that sc eulink

has to drive. See Figure 5.19.

a Construct the formula for B. What information do the two numbers in the formula

provide?

b Eulink raises the fixed costs by e10. What is the new formula?

c After a year, eulink raises the costs per kilometer by 10 cents. What is the new

formula?

Figure 6.4: Representative example of a second category activity of a grade 8
textbook. Reprinted from Reichard et al. (2005, p. 179) with permission of the
publisher.

from the context itself to its properties.

Third category

In the third category, we included activities that help students to develop higher-
order thinking, which we defined in Section 6.1 as conceptual proficiency. Activ-
ities at this level require students to see and treat the linear relationship as an
object that does not necessarily derive its meaning from the context. In activities
in this category, the linear relation has become an independent entity, an object,
that has meaning on its own. Figure 6.5 provides a representative example of
such an activity, taken from a grade 8 textbook (Reichard et al., 2005). In this
example, three formulas of linear relations are given, y = 0.5x − 4, y = 2x + 2,
and y = 0.5x + 2. The question is which of these formulas intersect the y-axis
in the same point, and how you can see this from the formulas. In this way,
the linear relations are seen as objects with certain properties. These properties,
such as the intersection with the y-axis, are the subject of investigation.

Additional fourth category

During the analysis we found that the activities in Dutch textbook series do not
fit nicely into the above categories. This is due to the fact that, in both textbook



6.3. LINEAR RELATIONS 83

Translation:

Given the formulas y = 0.5x− 4, y = 2x + 2, y = 0.5x + 2.

a From which formulas do the graphs intersect the y-axis in the same point? How can

you see this from the formulas? b For which formulas are their graphs parallel? How can

you see this from the formulas?

Figure 6.5: Representative example of a third category activity of a grade 8
textbook. Reprinted from Reichard et al. (2005, p. 173) with permission of the
publisher.

series, the introduction of the general formula for a straight line is not related
to the contextual situations discussed in the preceding chapters. Instead, the
definition of a ‘linear formula’ (GR) is given by means of examples of formulas,
and that of ‘linear relation’ (MW), by means of equal growth of variables. In
both textbook series, the introduction of the general formula for a straight line
y = ax + b seems just a new track of activities. From an emergent modeling
perspective, since there is no link in the textbooks between the contexts and the
general formula, the chain of the development of contexts as models of linear
relations to contexts as models for linear relations is broken.

Because of the missing link between the contextual situations of linear rela-
tions and the introduction of the general formula of a linear relation, activities
in which students get acquainted with this formula do not fit in the emergent
modeling approach. These activities are not part of a process of progressive math-
ematization. Rather, these activities seem to be a new track of activities, not
grounded in contextual activities in the first and second categories. Therefore,
we introduce a residual category of activities concerning the ‘bare introduction’
of the linear formula y = ax + b.

An example of an activity in this residual category is presented in Figure 6.6.
In this fragment of text, a definition of linear relation is given, based on the equal
growth of variables. In preceding tasks, students have had to calculate the equal
growth from tables. So superficially, there seems to be a good connection between
this fragment of theory and preceding tasks. However, a more profound analysis
showed that in this fragment, no connection is made between this equal growth
of the variables and the structure of the linear formula. The latter is presented
in the example on the left-hand side by means of examples and non-examples.
In these examples, no connection is made to the text about the equal growth.
In the example on the right, the equal growth is demonstrated. However, the
formula b = 4n+3 is not given. Also, the relation between the equal growth and
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Translation:

If the upper row of a table contains subsequent integers and in the bottom row, the increase

is constant, then there is a linear relation. The increase in the bottom row of numbers

can be positive or negative. The corresponding graph is a straight line. Such a graph is

called a linear graph. A formula whose graph is a straight line, is called a linear formula.

Example

Examples of linear formulas are 7x− 90 = y and B = 34 + 75t. Examples of non-linear

formulas are h = t2 − 6, g = 3a2 + 7a, and m−m2 = d.

Example

In the upper row of the adjoining table are subsequent integers. In the bottom row of the

table, the increase is constant. Between n and b there exists a linear relation.

Figure 6.6: Representative example of a fourth category activity of a grade 8
textbook. Reprinted from De Bruijn et al. (2008a, p. 15) with permission of the
publisher.
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Getal & Ruimte Moderne Wiskunde
Grade C1 C2 C3 C4 Total C1 C2 C3 C4 Total

7 26 5 – – 31 63 1 – 9 73
8 1 8 2 27 38 3 12 6 27 48
9 2 4 – 33 39 2 1 – 10 13

10 – – – 15 15 – – – 6 6
Total 29 17 2 75 123 68 14 6 52 140

Table 6.2: Numbers of units of analysis in each category in the Dutch textbook
series Getal & Ruimte and Moderne Wiskunde.

the formula is not discussed. In our view, the lack of these connections make
this definition of a linear relation one that dangles in the air.

Because this text is not related to contextual situations, it does not fit into
the first and second category of activities. Also, this text does not contribute
to the development of conceptual proficiency due to the lacking connections.
Therefore, we consider this text as an example of the fourth category.

Summarizing, in the analysis we distinguished four categories of activities.
The first category consists of activities in the context; the second category con-
sists of activities in which the focus shifts from the context itself to properties
and characteristics of the context; and the third category consists of tasks that
help students to develop conceptual proficiency.

6.3.3 Findings

Using the categories we defined above, we classified units of analysis in GR and
MW. Table 6.2 provides an overview of the numbers of units of analysis in GR
and MW in each category for grades 7, 8, 9, and 10. We recall that we took as
units of analysis tasks that are denoted with a separate number and fragments of
texts. The selected chapters and sections consisted of 123 (GR) and 140 (MW)
units of analysis. From these units, 29 of GR and 68 of MW concerned activities
from the first category; 17 of these units of GR and 14 of these units of MW
concerned activities from the second category; 2 of these units of GR and 6
of these units of MW concern activities from the third category. These results
show that both textbook series include a considerable amount of activities of
the first and second category with an emphasis on the first category. So, both
textbook series pay attention to the development of contexts to models of linear
relations. However, both textbook series have only a small number of activities
in the third category. This means that neither series provides many activities
that offer students support in reifying linear relations.

However, in our view, the most important finding is the need for a fourth
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category that emerged during the analysis. We argued that the instructional
sequence of linear relations can be seen as two different tracks: one track started
with activities in contextual situations and gradually, in a process of progres-
sive mathematization, more formal mathematical knowledge is constructed. The
other track introduced mathematical concepts by means of giving the formal def-
inition, without linking this definition explicitly to the theory discussed in earlier
chapters of the textbooks. In both textbook series, these two tracks of activities
can be distinguished.

In addition, the number of activities in both textbook series in the third
category was low, see Table 6.2. This means that the number of activities that
help students to develop conceptual proficiency with linear relations was low.
As a consequence, the growth from specific contextual situations into paradigms
for linear relations is not adequately supported by the textbooks. Consequently,
the contexts do not serve as a basis for developing paradigms of linear relations
in the sense of Freudenthal (1991). Moreover, the low number of activities that
support building on what is learned in the contexts illustrates the gap between
the contextual track and the formal track.

The main differences between both textbook series are that MW had rela-
tively more activities in the first category (68 of 140 in MW against 29 of 123 in
GR), and GR had relatively more activities in the fourth category (75 of 123 in
GR against 52 of 140 in MW).

6.4 Linear equations

6.4.1 Method

Analogously to Section 6.3.1, the data set is constructed from Moderne Wiskunde
(MW) and Getal & Ruimte (GR). From these textbook series we selected chap-
ters and sections concerning linear equations. Table 6.3 provides an overview of
the selected chapters and sections for each grade.

Analogously to the categories of activities concerning linear relations, we
initially distinguished three categories of activities, based on our sketch of the
ideal instructional sequence described in subsection 6.2.2.

The first category consists of activities concerning the investigation of con-
textual situations. Examples of such activities are the development of informal
strategies such as the cover-up method, and the use of the balance model to solve
linear equations. Numbers in the linear equations represent different weights on
the balance: standardized units and weights with a fixed, but unknown, weight.

For activities in the second category, informal strategies serve as the back-
ground. Strategies at this level involve adding and subtracting an equal number
to the left-hand side and the right-hand side of the equation, and multiplying
the equation by the same number.
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Grade Textbook Chapter/Section Edition

7 GR – –
7 MW 11 De Bruijn et al. (2007)
8 GR 5.4, 5.5, 5.6 Reichard et al. (2005)
8 MW 9 De Bruijn et al. (2008a)
9 GR 1.1 Reichard et al. (2010)
9 MW 9.1 De Bruijn et al. (2009b)

10 GR 2.1 Reichard et al. (2007)
10 MW Blok 2 Bos et al. (2007)

Table 6.3: Textbooks and chapters concerning linear equations of Getal & Ruimte
(GR) and Moderne Wiskunde (MW).

The third category consists of activities that no longer depend on the balance
model. In this way, the balance model has become a model for reasoning about
linear equations. Adding and subtracting the same multiple of the independent
variable to the left-hand side and to the right-hand side of the equation is seen
as a toggle of the sign. Activities in this category involve a broad view of linear
equations. In this view, linear equations do not necessarily reduce to ‘x = num-
ber’; equations can also reduce to 6x + 4 = 6x + 4 and 6x + 4 = 6x + 2 (see also
Chapter 4). Equations and solutions can be interpreted in terms of lines and
their intersections.

We took these three categories as the point of departure in the analysis of
the Dutch textbook series.

6.4.2 Analysis

Based on the description of categories we described above, we divided the units
of analysis into these categories. Below, we elaborate on the description of these
categories by providing examples of activities in each category.

First category

Activities in the first category focus on the investigation of contextual situations.
An example of such an activity is presented in Figure 6.7. In this task, students
have to solve a contextual problem about bags with marbles. Four bags with an
unknown, but equal, number of marbles, and eleven loose marbles equal six bags
and three loose marbles. Students are invited to reason about this contextual
problem in three subquestions. In our view, this activity is a first category activ-
ity because it is the context that is investigated by exploring informal strategies
as a way to mathematize the problem.
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Translation:

Daan has a number of bags: each bag has the same number of marbles. He gives Erik

four bags of marbles and eleven loose marbles. He himself takes six bags and three loose

marbles. Daan says to Erik: “We both have the same number of marbles. Do you know

how many marbles there are in one bag?” On the side, you see the drawing Erik made

from this problem.

a Erik says: “In that case, two bags and three loose marbles equals eleven loose marbles.”

Explain why Erik is right.

b How many marbles do two bags contain?

c How many marbles does Daan have in one bag?

Figure 6.7: Representative example of a first category activity of a grade 8
textbook. Reprinted from De Bruijn et al. (2008b, p. 74) with permission of the
publisher.
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Balans ´! x kg ´! 1 kg Zo schrijf je

het op.

Haal van beide schalen 1kg af.

3x 1! 7

�1 �1

Zorg dat je op beide schalen het derde 

deel overhoudt, dus deel door 3.

3x ! 6

� 3 � 3

Dus x = 2.

x ! 2

Translation:

You write it up in this way. Remove 1 kg from both scales. Make sure you keep one third

in both pans, so divide by 3. So x = 2.

Figure 6.8: Representative example of a second category activity of a grade 8
textbook. Reprinted from Reichard et al. (2005, p. 183) with permission of the
publisher.

Second category

In the second category, we included activities in which informal strategies such
as the balance model gradually shift to the background. An example of such
an activity is presented in Figure 6.8. The equation presented in the right-hand
side of the Figure, 3x + 1 = 7, is solved. The balance model at the left-hand
side supports the manipulations of the equation in the right-hand side. In this
example, the balance model legitimates the different steps in the procedure of
solving the equation.

Third category

The third category consists of activities that contribute to obtaining a broad view
of equations. Linear equations in these activities become objects that are part
of a network of knowledge about how to operate on these objects. An example
of such an activity is given in Figure 6.9. In this task, students have to solve the
equations 3x + 1 = 3(x + 2) − 5 and 3(x + 4) + 2(x − 1) = 5x + 8. Expanding
the brackets in the first equation yields 3x + 1 = 3x + 1, which holds for every
x ∈ R. Expanding the brackets in the second equation yields 5x + 10 = 5x + 8,
which does not hold for every x ∈ R. According to the textbook GR, the medal
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Translation:

Special linear equations

Floris has to solve the equation 3x + 1 = 3(x + 2) − 5. According to his father, every

number is a solution to this equation, so the equation has infinitely many solutions. a

Check that Floris’s father is right. b What do you know about the number of solutions of

the following equations? Given is 3(x + 1) + 2x = 5x + p.

If you choose p = 6 then you get the equation 3(x + 1) + 2x = 5x + 6. If you choose

p = −4 then you get the equation 3(x + 1) + 2x = 5x− 4. What number do you have to

choose for p to get an c equation with infinitely many solutions? d equation that has no

solutions?

Figure 6.9: Representative example of a third category activity of a grade 9
textbook. Reprinted from Reichard et al. (2010, p. 14) with permission of the
publisher.

below the number of the task indicates that this is a challenging task, which goes
beyond the demands of the textbooks. In our view, this task provides students
the opportunity to broaden the scope of linear equations, thus contributing to
the development of conceptual proficiency.

Additional fourth category

Similar to the analysis of activities concerning linear relations, during the analysis
we found that both textbook series contain activities that do not fit nicely in
the categories described above. We elaborate on this by a fragment of theory
presented in Figure 6.10. In this fragment from the grade 9 GR textbook, the
rule “change sides, change signs” is presented. By carrying the terms, something
“striking” happens: minus signs disappear from one side of the equation and
appear as plus signs on the other side of the equation. However, this rule is not
related to preceding theory such as, for example, the balance model. Due to this
missing link, we consider this activity as from a different category, because it
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Translation:

It is handy if from now on you go at once from 10x− 4 = 7x + 20 to 10x− 7x = 20 + 4.

We say that the terms −4 and 7x have been carried over to the other side.

With the carrying over of terms something striking happens.

• −4 has disappeared from the left-hand side and has appeared as +4 on the right-hand

side.

• 7x has disappeared from the right-hand side and has appeared as −7x on the left-hand

side.

In an equation it is allowed to carry terms over from one side to the other, but then you

have to replace − by + and replace + by −.

Figure 6.10: Example of a third category activity of a grade 9 textbook.
Reprinted from (Reichard et al., 2010, p. 10) with permission of the publisher.

does not fit into the approach of progressive mathematization. Instead, the rule
“change sides, change signs” is brought in as a mere fact.

6.4.3 Findings

We classified the units of analysis into the categories we described above. As we
have mentioned before, the units of analysis are tasks that are denoted with a
separate number. In case subquestions are classified at different activity levels,
the whole task was given the highest level. Table 6.4 provides an overview of
the numbers of activities in each category per grade for both textbook series.
The selected Chapters and Sections consisted of 86 (GR) and 98 (MW) units
of analysis. The topic of linear equations in GR is introduced in grade 8. As
a consequence, the number of units of analysis is zero in grade 7. In grade 9
of MW, there is only one section in one chapter concerning linear relations and
linear equations.

In GR, nine units of analysis consisted of activities in the first category; 40
in the second category; one in the third category; and 36 in the fourth category.
In MW, 24 units of analysis consisted of activities of the first category; 51% of
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Getal & Ruimte Moderne Wiskunde
Grade C1 C2 C3 C4 Total C1 C2 C3 C4 Total

7 – – – – 0 16 23 – – 39
8 9 40 – – 49 8 26 4 8 46
9 – – 1 15 16 – – 3 – 3

10 – – – 21 21 – – 4 6 10
Total 9 17 1 36 86 24 49 11 14 98

Table 6.4: Numbers of units of analysis in each category in Dutch textbook series
Getal & Ruimte and Moderne Wiskunde.

the second category; 13% of the third category; and 11% of the fourth category.
In both textbook series, the largest part of the activities concern the second
category. In both textbook series, manipulations of equations are illustrated
with adding and removing marbles (MW) or blocks (GR) to the pans of the
balance. In this way, the balance model is used to legitimate manipulations such
as adding 4 to both sides of the equation. However, in our view, this a narrow
interpretation of the balance model. For example, the balance in both textbook
series is always steady, thus suggesting that equations have at least one solution.
Instead, the balance model could be used for equations such as 6x + 4 = 6x + 2
to illustrate that whatever x is, 6x + 4 does not equal 6x + 2, so the equation
does not have a solution.

From an emergent modeling perspective, the balance model initially emerges
from activities in contextual situations to a model of linear equations. Then,
ideally, by a process of progressive mathematization, the balance model gradu-
ally develops into a model for reasoning about linear equations. In the analysis,
in both textbook series, we found a small number of activities in the third cat-
egory that offer students support in developing conceptual proficiency in linear
equations. Activities in the third category are important to obtain a broad view
of equations. Part of this broad view is the connection between linear equations
and linear relations with representations such as graphs and tables. This con-
nection is not obvious. For example, Chapter 5 of GR (Reichard et al., 2005)
concerns linear relations and linear equations. The sections concerning linear re-
lations contain graphs. However, sections in the same chapter concerning linear
equations do not contain any graph. In our view, the connection between linear
relations and linear equations is not supported by the textbook in this way.

Another part of a broad view of linear equations is the notion of parameters
in equations, and what role these parameters play in determining the relation.
Obtaining such a broad view is sometimes even hindered. In MW, students are
confronted with the equation 3a+7 = −5a+p, a linear equation in two variables
(Figure 6.11). The first question is “why can’t you solve this equation?” So, in
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Translation:

Given is the equation 3a + 7 = −5a + p. a Why can’t you solve this equation? b Take

for p the value 8. What does the equation look like then? Solve this equation. c Solve the

equation for p = −5. d Which value has p if a = 22? And if a = − 1
2
?

Figure 6.11: Example of a grade 8 task concerning unknown and variable,
reprinted from De Bruijn et al. (2008b, p. 77) with permission of the publisher.

this task, the student is explicitly taught that it is not possible to solve equations
with two variables, instead of being asked to solve the equation for a and then
for p.

Analogously to linear relations, the instructional sequence of linear equations
can be seen as consisting of two tracks, the first track starting with informal
strategies that gradually become more formal, and the second track introducing
theory without making the connection to the theory discussed in earlier chap-
ters. For example, in the first chapter of GR in grade 9 the rule “change sides,
change signs” is presented without any support for why these signs change, see
Figure 6.10. Here, the obvious link to the balance model is not made. Instead,
a new track, with the new rule “change sides, change signs” is presented.

Another example of activities in the second track is the introduction of sys-
tems of linear equations. Both textbook series introduce linear systems such
as

{
4x− 2y = −2
3x + 5y = 31

in grade 10 (Reichard et al., 2007; Bos et al., 2007). In GR, these systems
are solved by multiplying, subtracting, and adding equations to eliminate one
of the variables. In MW, in one equation, one variable is isolated and then
substituted into the other equation. Neither textbook series underpins these
manipulations by, for example, referring to the way linear equations are solved in
preceding chapters. In addition, they do not make a connection between solving
these systems of linear equations and determining the intersection points of lines
presented in the grade 8 and grade 9 textbooks. In this way, these activities
belong to the second track.
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6.5 Conclusion and discussion

In this chapter, we investigated what kind of support Dutch textbook series offer
to students to develop conceptual proficiency. Using emergent modeling (Grave-
meijer, 1999) as the theoretical background, we classified activities of two Dutch
textbook series into four categories. The analysis showed that both textbook
series include activities in the first and second category. However, in the third
category, for activities that offer students support in developing conceptual pro-
ficiency, both series have only a very small number of activities.

We do realize that the quantitative data obtained in this manner have their
limitations. Other researchers might make other categories and arrive at different
results. We maintain, however, that the data do point to both an imbalance in
the instructional set up and two disjoint instructional tracks. Moreover, this
observation is corroborated by a more qualitative inspection, which also revealed
additional instances of the lack of attention for a conscious generalization and
formalization of the more contextualized knowledge and understanding that the
students may have gained from the informal explorations. In relation to this we
mentioned the lack of connection between tables and graphs, the lack of attention
for parameters, the ad hoc introduction of the rule, “changing sides, changing
signs”, and the fact that multiplying, adding equations is not grounded in the
earlier work on contextual problems.

From an emergent modeling perspective, the lack of attention for the devel-
opment of mathematical relations and mathematical objects is problematic. The
most important step in the development of a concept is the shift from activities
at the referential level to activities at the general level. Models are supposed to
support this switch by gradually developing from models of to models for. We
conclude that the small number of activities at the general level is an impediment
to the development of models in the case of linear relations and equations.

As regards linear relations, we argued that the switch from the referential
to the general level involves a switch from contexts as models of linear relations
to contexts as models for linear relations. At the general level, contexts serve
as paradigms. From an RME perspective, paradigms are seen as important for
learning universals as linear relationships (Freudenthal, 1991).

As regards linear equations, we found that both textbook series have a narrow
interpretation of the balance model. Therefore we argued that the balance model
does not contribute its full potential to a broad view of linear equations. The
balance model functioned as a model of linear equations and did not grow to be
a model for. Once it would have become a model for, situations with negative
numbers would no longer be problematic, because at this level, the model no
longer derives its meaning from the context. The need for the model to grow
is also discussed by Vlassis (2002), who showed that the balance model can
be helpful in giving meaning to the equal sign in equations with the unknown
on both sides of the equation, but failed at being meaningful in more general
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situations. Once equations become more complex and involve substraction and
negative numbers, and the balance model no longer applies, it may then become
an impediment (De Lima & Tall, 2008). In our view, this impediment only occurs
in case the balance model is still seen as a model of a linear equation.

Summarizing, both textbook series pay extensive attention to phenomeno-
logical exploration, with a considerable amount of activities that focus on he
explanation of contextual problems. However, the most crucial step in the for-
mation of concepts, in which students have to construct mathematical relations
and mathematical objects, is hardly supported. Both textbook series seem to
be torn between two ideas on how to teach mathematics. On the one hand an
approach influenced by RME, starting with contexts. On the other hand a more
classical approach of teaching mathematics by providing definitions and exam-
ples. In our view, balancing between these two different views on how to teach
mathematics is unfortunate, because in this way, the instructional sequence be-
comes incoherent and many links are never made. In this way, the development
of higher order skills, such as structure sense (see Chapter 3), and flexible skills
as discussed in Chapter 4, are not supported by the textbook series.





Chapter 7

Conclusions

The studies described in this thesis aim to get a more detailed view of
the student level of algebraic proficiency, an to get more insight into
what causes the problems students experience in mastering algebra.
In this final chapter, we first discuss the results of the studies de-
scribed in this thesis. Next, we reflect upon the findings, and provide
some recommendations.

7.1 Main findings

Based on the discussion in the Netherlands of the student level of algebraic
proficiency, this thesis aimed at the following. We wanted to obtain more insight
into the actual level of student algebraic proficiency. In addition, we aimed at
obtaining insight into the possible determinants why this level is as it is.

7.1.1 The development of algebraic proficiency

In the discussion on the student level of algebraic proficiency, several considera-
tions played a role. The problems indicated by educators of secondary and higher
education concerned the skills taught in lower secondary education. Part of the
concerns in higher education emerged from the fact that students were perceived
as being unable to solve simple mathematical problems and unable to do simple
mathematical calculations. Examples of topics that were put forward concerned
students difficulties were solving linear equations, expanding brackets, calculat-
ing with square roots, and calculating with fractions. In part, these topics even
concerned subjects that should already have been mastered in primary educa-
tion. Furthermore, a call was heard from higher education for skills exceeding
procedural skills. The subsequent discussion on the student level of algebraic
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proficiency readily shifted to a debate concerning the proposed solutions and the
classic dichotomy procedural fluency–conceptual understanding.

These considerations served as input for a study of the development of al-
gebraic proficiency (Chapter 2). In order to obtain a more detailed view of the
student level of algebraic proficiency, we constructed four tests for students of
grades 8–12. As our theoretical background, we used two aspects of algebraic
proficiency. The first aspect concerned the relation between basic skills and the
deeper understanding that also plays a role in the aforementioned discussion.
There is general agreement that basic skills have to go hand in hand with more
conceptual aspects of algebraic proficiency (e.g. Kilpatrick et al., 2001), although
different researchers provide different views of the nature of these more concep-
tual aspects. Arcavi (1994) introduced symbol sense, that he describes in terms
of the behaviors related to skills that transcend basic manipulations, such as
seeing the communicativity and power of symbols. Other behaviors relate to
the ability to manipulate or to read through symbolic expressions depending on
the problem at hand, and to flexible manipulation skills, such as the ability to
cleverly select and use a particular symbolic representation. In the construction
of the tests, we followed Drijvers (2006a, 2010) in viewing algebraic proficiency
as a sliding scale ranging from basic skills to symbol sense. In the tests we aimed
at including items that cover the full range from basic skills to symbol sense.
An example of an item that we see as basic is: expand the brackets, −4(3a + b),
which yields −12a − 4b. An example of a symbol sense item is: is there any x
for which 2x+3

4x+6 = 2? If so, calculate x; if not, explain why such an x does not
exist. Arcavi (1994) argues that the ability to withstand the invitation to solve
this equation directly, and instead perform an a priori inspection and conclude
that the quotient equals 1

2 except for x = −11
2 , is an expression of symbol sense.

The second aspect concerned the transition from arithmetic to algebra, which
is seen as crucial for the development of algebraic proficiency (e.g. Linchevski &
Herscovics, 1996). We decided to include topics such as calculating with negative
numbers, fractions, and square roots, that are related to the transition from
arithmetic to algebra. Examples of items we included in the tests are: simplify
2
√

5+4
√

5 (with correct answer 6
√

5); and, Jantine claims that 2 1
2 × 3 1

3 = 6 1
6—

explain why this is incorrect. An example of a correct answer to this item would
be 2 1

2 × 3 equals 7 1
2 which is already greater than 6 1

6 . For the complete list of
items, refer to Appendix A.

Based on these two aspects, we constructed four sequential paper and pencil
tests in a partly cross-sectional and partly longitudinal design. A thousand-
odd students joined at least one of the sessions of the assessments, which were
used to investigate how student algebraic proficiency developed from both a
cross-sectional and a longitudinal perspective, and in terms of basic skills and
symbol sense. For the analysis of our data, we used the Rasch model, a one
parameter item response model (Rasch, 1980; Bond & Fox, 2007). With a Rasch
analysis, one linear scale is created on which both persons are situated according



7.1. MAIN FINDINGS 99

to their ‘ability’ and items according to their ‘difficulty.’ For each assessment,
we created its corresponding Rasch scale, resulting in four Rasch scales. These
four scales were connected via anchor items, resulting in one Rasch scale for all
four assessments. As a consequence, items of all four assessments were placed on
one scale. Also, students of different assessments have a Rasch measure on this
very scale.

We found that students made progress, both cross-sectionally and longitudi-
nally. In the cross-sectional development of students, the positive effect might
in part be attributed to a curriculum change, whereas the new curriculum paid
considerably more attention to algebraic skills in the lower grades. The longi-
tudinal analysis showed that for the majority of students, the level of algebraic
proficiency increased after one year. However, for the majority of students, this
progression was not significant. With respect to different streams, we found that
students from the science stream performed better than students from the social
stream, but again the difference was not significant.

Relating student development to the individual tasks in the assessment, we
found that students mastered simple tasks, but tasks became too complicated for
them rather quickly. For example, the task “simplify: 2

√
5 + 4

√
5” is mastered

by the majority of the students, whereas the task “simplify:
√

12√
3

” is mastered
by less than 10% of the students. In addition, the task “expand the brackets:
−4(3a + b)” is mastered by almost all students, whereas the task “simplify:
(3a2 + 2a + 7)(a + 8)” is mastered by less than half of the students.

As a result, few tasks were mastered by the majority of students. This
indicates that there is a severe problem in Dutch secondary education with the
mastering of procedural skills. Furthermore, we saw that the range in which the
development of the majority of students took place did not incorporate the tasks
related to important conceptual aspects.

To get a better understanding of what the difficulties were and where they
came from, we used various lenses. We used the notion of structure sense (Hoch
& Dreyfus, 2004, 2006; Novotnà & Hoch, 2008) and Sfard’s theory of reifica-
tion (Sfard, 1991) to come to grips with the conceptual aspect. In addition, we
used Van Gog & Paas’s construct of instructional efficiency to get a handle on
fluency. Below, we elaborate on these analyses.

Structure sense

In Chapter 3 we used the notion of structure sense (Linchevski & Livneh, 1999)
to get a better handle on the conceptual aspects that seem to be problematic.
Structure sense in high school algebra consists of several abilities including the
ability to see the algebraic structure of a formula and the ability to see a part of
an expression as a unit (Hoch & Dreyfus, 2004, 2006; Novotnà & Hoch, 2008).
More precisely, Novotnà & Hoch (2008) define that students display structure
sense if they can 1. recognize a familiar structure in its simplest form; 2. deal
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with a compound term as a single entity and through an appropriate substitu-
tion recognize a familiar structure in a more complex form; 3. choose appropriate
manipulations to make best use of a structure. We argued that structure sense
can be seen as a part of symbol sense, which is a complex feel for symbols that
includes a positive attitude towards symbols and a global view of expressions (Ar-
cavi, 1994, 2005). From the assessments described above, we selected tasks that
appeal to structure sense and focused the analysis on these tasks. We concluded
that the majority of the students did not master tasks that require structure
sense in order to be solved.

In addition we saw that the relations between the students’ strategies, their
symbol sense, and their positions on the Rasch scale, were not as clear as we
expected based on the literature. In our view, this means that either the relation
between strategy and symbol sense is not as strong as the literature suggests,
or the relation between symbol sense and the underlying latent variable of the
Rasch scale is troublesome. Too much attention to clever procedures may lead
to a procedural approach towards very conceptual notions. Further research on
the relations between strategies, symbol sense, and algebraic proficiency seems
appropriate. In our view this touches a more fundamental problem with the
notion of structure sense: it is both difficult to acquire and hard to measure.

Many researchers argued that flexibility, that can be seen as part of structure
sense, are an important aspect of algebraic proficiency (Tall & Thomas, 1991;
Sfard & Linchevski, 1994b; Kilpatrick et al., 2001; Stacey et al., 2004). This
flexibility is especially of importance for students in higher education, for math-
ematics as well as for associated disciplines such as science and economics. In
Chapter 3, we argued that one of the problems with Dutch mathematics educa-
tion is that students do not develop structure sense. Arcavi (2005) argues that
flexible skills include the ability to switch between applying rules and carrying
out procedures on one hand, and reflecting upon these activities, and analyz-
ing them on the other hand. An example in which this ability is useful is the
simplification of 5x2+10−2(2x2+4)

x2+2 . In this example, it helps to see that there is a
relation between the numerator and the denominator. Also, it helps to see that
the numerator equals 5 times x2 + 2 minus 4 times x2 + 2. In our view, seeing
this structure reduces the chance of errors. Novotnà & Hoch (2008) argue that
teaching mathematics only as a set of algorithms to be learned by rote might lead
to a lack of understanding of the mathematical structures of the subjects. From
this point of view, the notion of structure sense provides explanations for possi-
ble causes of students’ difficulties with algebra. The results of the assessments
suggest that Dutch mathematics education does not pay sufficient attention to
this kind of skill. Therefore we call for more attention to structure sense in Dutch
mathematics lessons.
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Sfard’s theory of reification

Whereas Arcavi (2005) and Novotnà & Hoch (2008) stress the strategies students
use to solve problems, Sfard (1991) focuses on the conceptual barriers behind the
difficulties which students experience.

In her theory of reification, Sfard (1991) presents a theoretical framework for
advanced mathematical thinking based on what she calls the dual nature of math-
ematics. She argues that in mathematics, abstract concepts can be conceived of
in two fundamentally different ways: structurally as objects, and operationally
as processes. She bases this observation on an analysis of the historical develop-
ment of algebra, which can be characterized as a long sequence of transitions from
operational to structural conceptions. Again and again, processes performed on
abstract objects at one level turn into new objects that in turn serve as objects
of new higher level processes.

For example, a mathematical function can be seen as a method of computing
values by performing some computational process. In this view, a function is
a kind of recipe to get the output of a given input like “multiply the input by
3 and then add 2.” On the other hand, a function is an object with certain
characteristics such as continuity and differentiability. Sfard (1991) argues that
although abstract objects and computational processes look very different, in
fact, they are “different sides of the same coin”.

In the process of concept formation, three stages are distinguished: interior-
ization, condensation, and reification. In the stage of interiorization, the learner
gets acquainted with a process, for instance a function as a recipe. A process is
interiorized if this process does not necessarily have to be carried out in order to
be analyzed. In the second phase, condensation, a person becomes more capable
of thinking about a process as a whole. Whereas interiorization and condensa-
tion are gradual processes, reaching the phase of reification is not gradual, but
“a sudden ability to see something familiar in a totally new light” Sfard (1991, p.
19). Reification is the point where the object turns into input for interiorization
on a higher level.

Sfard & Linchevski (1994b) identified two crucial transitions: the transition
from the purely operational algebra to the structural algebra, and the transition
from algebra of an unknown to the functional algebra of a variable. To Sfard &
Linchevski (1994a), an important component of algebraic proficiency is a flexible
approach in which a student is able to switch between an operational approach
in which the focus is on the processes, and a structural approach in which the
focus is on objects. These switches play a role in the process–product duality
and the fixed-value–variable duality. We used these transitions to try to explain
the student performance on the assessments described in Chapter 2. Scrutinizing
the test items from Sfard’s perspective showed a remarkable difference in per-
formance of tasks concerning calculating with square roots. The task “simplify
2
√

5 + 4
√

5” (with the correct answer 6
√

5) is mastered by almost 90% of the
students, whereas the task “do you or do you not agree that

√
12 +

√
3 = 3

√
3?”
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is mastered by less than 10% of the students of grade 12. Further, the task in
which students had to solve the linear equation 2(3x + 2) = 3(2x − 1) + 7 was
mastered correctly by less than 10% of the grade 12 students. Based on the
student performance on these tasks, we hypothesized that the problems grow in
complexity according to the number of transitions that have to be made between
an operational and a structural approach (or the reverse).

Testing this hypothesis among 92 grade 11 students yielded a confirmation of
this hypothesis. In the case of square roots, the majority of the incorrect answers
seemed to be due to a lack of the connection between the process of extracting
the square root and a root as an object. As for the linear equations, the majority
of students were able to expand the brackets correctly. Here, the problem was
in drawing the correct conclusion.

The confirmation of the hypothesis led us to conclude that the majority of
Dutch students do not have the ability to deal with the operational–structural
duality in a flexible way. From the results discussed in Chapter 4 we conclude
that the process–object duality is inherently difficult for Dutch students and
that Dutch mathematics education apparently does not pay enough attention to
fostering the process of reification.

Instructional efficiency

Part of the discussion in The Netherlands on student algebraic proficiency con-
cerned student fluency in solving algebraic tasks. In order to obtain a more
detailed view of the student level of fluency in algebra, we decided to measure
mental effort. Based on the principles of the cognitive load theory, students were
asked to report their invested mental effort on a nine point symmetrical rating
scale. We expected the measure instructional efficiency, which combines mental
effort and performance, to provide a more detailed view of the student level of
algebraic proficiency than performance alone. Although this measure was orig-
inally developed to compare instructional designs, we followed the suggestion
of Van Gog & Paas (2008) to use this measure to evaluate the student level of
expertise in algebraic proficiency. Trying to use the measure in this way, however,
we found that this measure brings with it three methodological limitations.

The first limitation concerns the assumption in the construction of instruc-
tional efficiency that higher mental effort is counterbalanced by a fixed unit of
higher performance and vice versa. The second limitation concerns ambiguous
meanings of mental effort scores in situations of low performance and low mental
effort. The third limitation concerns the validity of mental effort scores. Our
data gave rise to questioning the validity of ‘mental effort’ since students seemed
to mix mental effort and perceived difficulty.

Based on these limitations, we concluded that instructional efficiency is not
an appropriate measure for investigating the student level of algebraic expertise.
Due to our concern with the validity of the mental effort scores, we eventually
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decided not to use the mental effort scores to determine the student level of
expertise. We conclude that instructional efficiency did not help in obtaining a
view of the student level of algebraic proficiency.

7.1.2 Analysis of Dutch textbook series

Because so many students do not reach the area of important conceptual as-
pects, and because textbooks play an important role in Dutch mathematics ed-
ucation Hiebert et al. (2003), we performed an analysis of two most used Dutch
textbook series in Chapter 6. This analysis aimed at investigating which means
of support Dutch textbooks offer to foster conceptual understanding. Dutch text-
books are influenced by the theory of Realistic Mathematics Education (RME).
In line with RME, we used the theory of emergent modeling (Gravemeijer, 1999)
as a framework to analyze the two most used textbook series: Getal & Ruimte
and Moderne Wiskunde.

From an RME perspective, students should not be confronted with ready-
made mathematics, because this would lead to an anti-didactical inversion in
comparison to the way mathematics has been invented (Freudenthal, 1983).
Rather, students should mathematize reality, and, if possible, mathematics (Freu-
denthal, 1968). Modeling activities play an important role in this process. By
translating a contextual problem into a mathematical problem, the problem
solver makes the problem amenable to mathematical procedures. From an RME
perspective, students should not be confronted with ready-made models either.
Rather, these models should emerge from their own mathematizing activities
(Gravemeijer, 1994), thus supporting mathematical growth. In this way, the
model emerges as a model for mathematical reasoning. The transition from
model of to model for concerns a shift in student thinking. This shift passes
from thinking about the modeled contextual situation to thinking about mathe-
matical relations. Related to the development of the models, Gravemeijer (1999)
discerns four levels of different activities: task setting, referential, general, and
formal.

Task setting activities concern reasoning about interpretations and solutions
in a specific setting. At the referential level, models derive their meaning from
the activities in the task setting they refer to. At the general level the models
start to derive their meaning from the mathematical relations that the students
develop while reflecting on their activities with the models. Activities at the level
of formal mathematical reasoning are no longer dependent on models. Although
there is a hierarchy in these levels, a student’s activities do not take place in a
strict order. Discussions about activities at the general level for instance may
fold back to the referential or task setting level. In the transition from refer-
ential to general activities, models are reified, thus becoming entities on their
own. At this point, Gravemeijer (1999) makes a connection to the reification
of processes (Sfard, 1991). Following this line of thought, Gravemeijer (1999)
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argues that it is the activity that is being reified.
We focused the analysis on two topics introduced in lower secondary educa-

tion, linear relationships and linear equations, because in Chapter 2 we found
that these topics were among the most difficult tasks. A linear relationship be-
tween two variables is a relation in which any given change in one variable will
always produce a proportional change in the other variable. The graph of a
linear relationship is a straight line. By linear equation, we refer to a polyno-
mial equation in one variable in the first degree, for example 4x − 2 = 19 or
8x− 14 = −5x + 12.

Using emergent modeling as our theoretical background, we sketched the ideal
instructional sequence of linear relations and linear equations from this point of
view. As for linear relations, the introduction should start with contextual situa-
tions of linear relations that invite students to reason and calculate within these
contexts. Next, the activities should shift to their mathematical characteristics
and the mathematical relations. As the attention shifts to the mathematical
relations involved, the model becomes detached from the contextual situations,
and the students’ reasoning loses its dependence on situation-specific features.
In this way, a linear relation becomes an object. This object does not necessarily
need its context, but instead has meaning in and of itself. This object is incor-
porated in a network of relations. At this general level, linear (word) formulas
start to function as ‘models for’ reasoning about linear relations.

From the same perspective, we argued that the ideal introduction of linear
equations starts with informal strategies at the task setting level, such as the
cover-up method and the balance method, that fit contextual situations. Next, at
the referential level, these informal strategies serve as the background for solving
equations and for interpreting and giving meaning to the solution. Gradually, the
balance model becomes more detached from its specific situation and emerges as
a model for reasoning about linear equations. At the general level, equations have
become reified to objects and are part of a network of mathematical relations that
justify how to operate on these objects. For example, adding and subtracting
numbers and variables on both sides of the equation and multiplying both sides
of the equation by the same number.

In the analysis, we chose not to make a strict connection between the four
levels of activity described in the theory of emergent modeling and activities in
the textbooks for two reasons. The first reason is that the levels describe the
students’ mental activity, not the tasks or the models per se. The second reason
is that in the theory of emergent modeling, the shifts between levels is seen as
important. This aspect would not be done justice to if we had classified activities
at the four levels. Rather, the way this theory described the construction of
formal mathematical knowledge gave rise to distinguishing three categories of
activities for linear relations as well as linear equations.

In the first categories, we included activities that ask students to reason
and calculate within contexts. Examples of such activities are searching for
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patterns in given contextual situations and constructing word formulas (linear
relations), and developing informal strategies such as the cover-up method, and
using the balance model (linear equations). The second categories consisted
of activities in which the focus shifts from the context itself to its properties
and characteristics. Examples of such activities are searching for patterns in
the relation, reasoning and calculating with formulas, and comparing properties
of relations (linear relations). As regards linear relations, the second category
consisted of activities in which informal strategies serve as background. Activities
in the third category offer support to seeing and treating linear relationships as
objects that do not necessarily derive their meaning from the context, but have
meaning by themselves and by their relations to other mathematical objects.
As for linear equations, we included activities that help students in obtaining
a broad and flexible view of equations. In this view, linear equations do not
necessarily reduce to ‘x =number’; equations can also reduce to 6x + 4 = 6x + 4
and 6x + 4 = 6x + 2 (see also Chapter 4).

The data set is constructed from two textbook series, Moderne Wiskunde
(MW) and Getal & Ruimte (GR), that together have an estimated market share
of over 90% (cTWO, 2009). From these textbook series, chapters, and within
chapters, sections, were selected that concern linear relations. Theory on these
topics is presented in the textbooks for grades 7, 8, 9, and 10. In grades 10,
11, and 12, the student population is split into a social stream and a science
stream. We focused on students in the science stream because especially for
these students it is important to develop conceptual proficiency.

The analysis indicated that Dutch textbook series pay relatively much atten-
tion to activities in the first and the second category. In addition, both textbook
series hardly contain activities that guide students from the context to more
formal mathematics. Moreover, we found two disjunct didactical tracks: one
track that follows the RME approach, and one track with a more traditional ap-
proach, in which new concepts are introduced as ready-made mathematics. The
RME track mainly contains activities at the task setting and referential levels.
We found only a few activities that support the switch from contexts to formal
mathematics. The other track does not build on the contexts and models, thus
missing the link to the student’s prior knowledge. Because of these two disjunct
tracks, we concluded that these two Dutch textbook series do not offer a consis-
tent instructional sequence and therefore hamper the development of conceptual
proficiency.

The consequence of this is that students are not supported in reaching the
stage of reification, in the words of Sfard (1991), which is a prerequisite for a
flexible approach in which the student is able to switch between an operational
perspective in which the focus is on the processes, and a structural perspective
in which the focus is on objects (Sfard & Linchevski, 1994b). This higher level
is known and described by many researchers, using just as many names, such
as procept (Gray & Tall, 1994); encapsulation (Dubinsky, 1991); generalized
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substitution principle (Wenger, 1987); processes at the lower level become objects
at a higher level (Freudenthal, 1991); network of relations between relations (Van
Hiele, 1973); and construction of some new mathematical reality via emergent
modeling (Gravemeijer, 1999).

Gray & Tall (1994) argued that an alternative approach could be to start with
processes rather than with ready-made algebraic objects. Curricula often assume
a structural approach even though the process–object duality is not grasped by
the students (Sfard & Linchevski, 1994b). For example, a letter is introduced as
a variable and not just as an unknown, even though from a historical perspec-
tive, the latter precedes the former, which is more advanced. In this way, the
curriculum reverses the order of concept formation.

7.1.3 Overall findings

This thesis aimed at obtaining more insight into the actual level of Dutch student
algebraic proficiency, and at obtaining insight into possible causes of this level.
From the results we described above, we may argue that in general, the student
level of algebraic proficiency is disappointing. We found that students made
progress, both cross-sectionally and longitudinally, but this progress is small.
Furthermore, we saw that students master simple tasks, but tasks become too
complicated for them rather quickly, and we saw that the range in which the
development of the majority of students took place did not incorporate the tasks
involving important conceptual aspects.

A more detailed view of the student level of algebraic proficiency was obtained
by using the notion of structure sense (Linchevski & Livneh, 1999; Novotnà &
Hoch, 2008) and Sfard’s theory of reification (Sfard, 1991). Using structure sense
as a theoretical lens provided insight into the kind of ability Dutch students lack.
These abilities include the ability to see the algebraic structure of a formula, and
the ability to see a part of an expression as a unit. We argued that one of the
problems with Dutch mathematics education is that students do not develop
structure sense. Using the theory of reification (Sfard, 1991) provided insight
into the conceptual deficiencies that explain why students experience difficulties
while solving mathematical problems. We found that flexibility with the process–
object duality of mathematical entities is at the core of algebraic proficiency and
that this flexibility is hard to achieve for many students.

From these results, we concluded that the majority of students did not de-
velop conceptual proficiency, which we defined as a mixture of higher-order skills
in which three aspects are essential: the ability to recognize the algebraic struc-
ture and use it flexibly, the ability to deal with the ambiguous nature of mathe-
matical concepts, and the ability to recognize coherence between mathematical
concepts. Because the majority of Dutch students do not develop conceptual
proficiency and because textbooks play an important role in Dutch mathematics
education, we decided to perform an analysis of two Dutch textbook series in
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order to investigate what kind of support the textbooks offer for developing con-
ceptual proficiency. The analysis, with emergent modeling (Gravemeijer, 1999)
as our theoretical background, showed that textbooks hardly provide this kind
of support. Moreover, we found two disjunct tracks of teaching mathematics:
one track that follows the RME approach, and one track with a more traditional
approach, in which new concepts are introduced as ready-made mathematics.
The analysis showed that there are hardly any activities that help students to
bridge the gap between these two tracks. We concluded that Dutch textbook
series do not have a consistent instructional sequence at their disposal, and thus
do not support students in the development of conceptual proficiency.

The theoretical frames we used in this thesis have served as the underpinning
of our findings. At the same time, this thesis in turn contributes to the theory
of mathematics education. In Chapter 3, we brought the notion of structure
sense (Linchevski & Livneh, 1999; Novotnà & Hoch, 2008) into practice and
discussed the relation of structure sense to algebraic proficiency. Chapter 4
builds on Sfard’s theory of reification (Sfard, 1991). We brought this theory into
practice and defined some indicators of complexity in relation with this theory.
The theory of emergent modeling (Gravemeijer, 1999) served as a theoretical lens
in the analysis of some textbooks in Chapter 6. In Chapter 5, we argued that
in the context of our study on the development of student algebraic proficiency,
instructional efficiency is not an appropriate measure for evaluating a learner’s
level of expertise.

7.2 Discussion

7.2.1 Limitations

The studies described in this thesis aim at obtaining insight into the actual level
of student algebraic proficiency in pre-university education. And, if this level is
disappointing, to obtain insight into the deeper causes of the problems students
experience in the transition from pre-university education to higher education.

These difficulties have a complicated nature because many factors play a
role. The studies reported in this thesis all have their limitations because we
simply cannot take into account all factors. The most natural limitations con-
cern the number of schools and students that participated in the assessments.
Four schools participated, together with more than 1000 students. In the fourth
and final assessment, one school withdrew, so the fourth assessment concerned
students of the three remaining schools. After two assessments, the summer
started, after which students were situated one grade higher, sometimes in dif-
ferent classes. As a consequence, it was difficult to find students because they
were mixed with students of other classes, or had even left school. As a result,
only 277 of the more than 1000 students completed all four assessments. This
reduced the number of students in the longitudinal analysis.
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Although we do have to be careful with generalizing the results we found, we
consider the findings described in this thesis representative because they are in
line with the findings of similar research among students of the same age (Bruin-
Muurling, 2010) and among university students (Kraker & Sauren, 2004; Caspers,
2007).

The assessments described in Chapter 2 are constructed to cover several dif-
ferent topics within algebra (expanding brackets, simplifying, and solving equa-
tions) and arithmetic (negative numbers, square roots, and fractions). The ex-
plorative character of this research is demonstrated by the choice of assessing dif-
ferent mathematical processes. An advantage of this approach is that we search
for possible causes of problems in a larger part of the curriculum. A disadvan-
tage is the small number of items per theme, which has as a consequence that
the relation to the underlying theoretical concepts is less clear. We have over-
come this by focusing the analysis on a single theoretical concept in Chapters 3
(structure sense) and 4 (theory of reification). It is left for future research to
construct more extensive tasks more directly related to the underlying concepts,
although we would like to note that the relation between tasks and concepts is
complicated.

The purpose of Chapter 2 was to obtain a view of the student level of algebraic
proficiency. To obtain this view, more than 1000 students participated at least
once in this research project. The written answers of the students served as
input in the analysis. In this way, we draw conclusions on student thinking
from their written answers. However, the written answers do not always reflect
what students have been thinking. In order to better get to grips with their
thinking, we asked students to reflect on their written answers in an interview,
see Chapter 4.

The difficulties Dutch students have with algebra in secondary education can
not be fully interpreted without taking into account the role of the teachers and
what actually happens in the classroom. Therefore, future research should focus
on our findings in combination with a more participationist approach (Sfard,
1998) in which, for example, the social norms and the discourse in the classroom
are taken into account.

Below, we reflect on the above findings and place them in a broader perspec-
tive.

7.2.2 Reflection

This thesis provides insight into student development of algebraic proficiency.
We have seen that the number of tasks that is mastered by 75% of the students
is low. Examples of tasks that are mastered by the majority of the students are

• Expand the brackets: −4(3a + b) =

• Simplify: 3
√

7 + 2
√

7 =
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• Calculate: 18−5
7−20 + 4 =

Examples of tasks that are mastered by less than 25% of the students are

• Simplify: 8
21 − 2

7 + 1
14

• Simplify:
√

12√
3

=

• Solve: 2(3x + 2) = 3(2x− 1) + 7

• Solve: (x− 5)(x + 2)(x− 3) = 0.

We consider this to be problematic; students should be more proficient in pro-
cedural skills. However, we think that the problem is also on conceptual aspects
of algebraic proficiency. In the longitudinal analysis we found that the major-
ity of students do not make significant progress during one year mathematics
education. These problems and difficulties concern students of all grades, and
in upper-secondary education, they concern students of both social and science
streams. Therefore in our view Dutch mathematics education does not suffi-
ciently address and develop students’ algebraic proficiency. At the same time,
the impression emerges that mathematics education makes suboptimal use of
students’ talents, as it is hard to believe that understanding why 21

2 × 31
3 does

not equal 6 1
6 is too difficult for more than half of the grade 12 students in pre-

university education.
In addition we argue that there is inadequate to almost no student devel-

opment in the area of the conceptual aspects of algebraic proficiency such as
structure sense and the process–object duality. These conceptual aspects in-
clude flexible skills which are important in different sectors of higher education.
The following examples (McCallum, 2010) illustrate that the demands in higher
education exceed the level of superficial procedural fluency:

• recognizing that P · (1 + r
12

)12n is linear in P (finance);

• identifying n(n+1)(2n+1)
6 as being a cubic polynomial with leading coefficient

1
3 (calculus);

• observing that L0

√
1− ( v

c )2 vanishes when v = c (physics);

• understanding that σ√
n

halves when n is multiplied by 4 (statistics).

The skills needed for these demands require flexibility and feeling for the math-
ematical structure of formulas and expressions. However, we have argued that
students hardly develop structure sense and symbol sense. Attention to structure
is seen as an important part of mathematics and of the learning of algebra in par-
ticular (Novotnà & Hoch, 2008). In our view, mathematics teachers should pay
more attention to the structure and the coherence of mathematics. This could
be arranged by stimulating classroom dialogues on the structure of formulas and
on generalizations.
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For example, when treating quadratic equations, students learn that the equa-
tion (x − 1)(x + 3) = 0 implies x − 1 = 0 or x + 3 = 0, which is an application
of the mathematical rule

A ·B = 0 ⇒ A = 0 ∨B = 0.

In our view, at this point, students should come to see that a generalization can
be made to products of more than two factors, enabling them to solve more com-
plex problems such as (x−1)(x+3)(x−4) = 0. Since we have seen in Chapter 2
that less than 10% of the grade 12 students masters this equation, it is clear that
students are not aware of the generalization. Discussing mathematical struc-
tures and generalizations could contribute to establishing connections between
different approaches. Here we may note that we do not argue in favor of a trans-
formation of the current curriculum with tasks that focus only on symbol sense,
because in our view, tasks themselves do not embody symbol sense. Rather, it
is the activity of solving the problem and the discussion on the problem that
determines whether the problem supports the construction of symbol sense.

Another conceptual aspect is the ambiguous nature of mathematics. Sfard
(1991) argues that flexibility with the process–object duality of mathematical
entities is at the core of algebraic proficiency and that this flexibility is hard to
achieve for many students. In addition she argues that reaching the stage of
reification is necessary in order to flexibly switch between an operational and a
structural approach. In Chapter 4 we found that dealing with the process–object
duality and the fixed-value–variable duality is indeed difficult for students. In
our view, teachers should pay attention to the ambiguous nature of mathematics
by, for example, discussing the different roles of letters as fixed-values or as vari-
ables. Another example is the ambiguous nature of fractions and square roots
that can be seen as processes as well as objects. Discussing these dualities might
help students to accept

√
2 as an answer instead of searching for an appropri-

ate approximation because they consider
√

2 as a process. In addition, teachers
should stimulate students to search for reification. For example, teachers can
stimulate students not to be satisfied with performing tasks only, but instead to
ask themselves to find the bigger picture of which the task is part of. In this
way, the focus is not on performing tasks, but on searching for the mathemat-
ical concepts that are supposed to be expressed in the task, and the coherence
between tasks and concepts.

From the analysis of two Dutch textbook series we found that contexts in
these textbook series often concern oversimplified situations. Although we agree
that situations have to be simplified because problems otherwise become too com-
plicated, in our view, teachers should discuss these oversimplifications because
students know very well that these kinds of contexts do not relate to problems
they might experience in their daily life. In addition, students have to develop a
sense for which details of the context are seen as relevant and which are seen as
irrelevant. For example, Moderne Wiskunde (De Bruijn et al., 2008b) introduces
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linear equations with pictures of a balance with bags and marbles (see also Chap-
ter 6). Each bag is filled with a fixed, but unknown, number of marbles. Four
bags with 11 loose marbles are in equilibrium with six bags and 3 loose mar-
bles. The question is how many marbles there are in each bag. In this example,
the weight of the bags is ignored without discussing whether this is reasonable.
This means that there is an implicit understanding among the authors of the
textbooks about which issues can be ignored and which cannot. However, it is
unclear how students are supposed to know this (Gravemeijer, 2004).

Dutch textbook series are influenced by the theory of Realistic Mathemat-
ics Education. From this perspective, students are supposed to use their own
situated informal knowledge to construct more formal mathematical knowledge
in a process of guided reinvention and progressive mathematization. Analysis in
Chapter 6 of the two most-used textbook series indicates that Dutch textbook
series hardly contain activities that guide students from the context to more for-
mal mathematics. Moreover, we found a double disjunct track: one track RME
and one track more formal traditional mathematics in which new concepts are
introduced by definitions. This means that formal strategies are not built on
in context-rooted, semi-formal strategies. Ideally, contexts serve as the starting
point and enable students to start a process of progressive mathematization of
both the context and their own informal mathematical knowledge. In this view,
students construct their mathematical knowledge. In the current situation, how-
ever, Dutch students are supposed to discover and construct formal mathematical
knowledge with little support from the textbooks. In Dutch mathematics edu-
cation, students are used to working independently on the tasks presented in
the textbooks. Also the introduction of new content is often accomplished by
students working with textbooks (Hiebert et al., 2003). From this point of view,
the role of Dutch textbook series is relatively large, which increases their impact.

We have argued that Dutch textbooks pay relatively too much attention
to exploring activities within contexts, whereas in our view, these activities do
not require the most attention. It is not the contextual situation itself that is
difficult to get to grips on, it is the underlying mathematical structure of the
situation. Given the present textbook series, teachers could help students to use
the contexts and models to construct formal mathematics. For example, teachers
could discuss the limitations of contexts and how these limitations might be
overcome in more general situations. Furthermore, teachers could help students
to bridge the gap between the two disjunct didactical tracks by offering activities
that help to make the shift towards formal mathematics.

Publishers should reconsider the way contexts and models are used in the
present textbooks. More specifically, they should reconsider the way students
can build more formal mathematical knowledge based on context-rooted, semi-
formal strategies. In addition, they should include activities that help students
to develop conceptual proficiency, which we defined as a mixture of higher-order
thinking skills in which three aspects are essential: the ability to recognize and
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make flexible use of the algebraic structure, to deal with the ambiguous nature of
mathematical concepts, and see the coherence between mathematical concepts.

We have argued that more attention should be paid to procedural fluency, math-
ematical structure, coherence, and ambiguity. Arcavi (2005) argued that alge-
braic proficiency requires students to flexibly switch between meaningless actions
(automatic application of rules and procedures) to sense making in the way of
“symbol sense.” In other words, students have to be able to postpone mean-
ing in order to apply procedures quickly. And also, to “unclog an automatism”
as Freudenthal (1983, p. 469) put it, to reconsider, to reflect, or to question, if
necessary.

As a caveat we want to stress that structure sense has to be paired to, and
depends on, procedural fluency. Algebraic proficiency asks for both fluency and
conceptual understanding, as also is expressed in Arcavi’s notion of symbol sense
and Sfard’s theory of reification.

In addition we have argued that teachers could help students to bridge the
gap between the two didactical tracks in the textbook series. We are well aware
that these changes require a different view on what is important in mathematics
and in mathematics education. In relation to this, Yackel & Cobb (1996) speak of
sociomathematical norms. These norms concern “normative understandings of
what counts as mathematically different, mathematically sophisticated, mathe-
matically efficient, and mathematically elegant in a classroom” (Yackel & Cobb,
1996, p. 461). Changing these norms requires a renegotiation of the didac-
tical contract (Brousseau, 1990), which is described by Gravemeijer (1997) as
“the set of reciprocal expectations and obligations between the teacher and the
students that has evolved in their ongoing interaction.” In this new didactical
contract, the focus should come to lie on the mathematics behind the tasks in-
stead of on performing tasks. In this way, mathematics is no longer a collection
of disconnected facts and procedures; rather, it is about searching for underlying
structures, searching for abstractions and relations. This requires a shift in a
student’s thinking as described by Yackel & Cobb (1996, p. 471):

“This shift in students’ thinking is analogous to the shift between
process and object that Sfard (1991) describes for mathematical con-
ceptions. In the same way that being able to see a mathematical
entity as an object as well as a process indicates a deeper under-
standing of the mathematical entity, taking an explanation as an ob-
ject of reflection indicates a deeper understanding of what constitutes
explanation.”

We believe that in this way, the strength and power of mathematics becomes
more visible for students. This will make mathematics more challenging for
the students, and mathematics as a discipline more interesting. In addition,
the attitude that simply performing the tasks is not sufficient mathematical
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preparation, is an attitude that is fitting for students who are to eventually enter
higher education.
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(Eds.), Proceedings 30th Conference of the International Group for the Psy-
chology of Mathematics Education, Prague, Vol. 3 (pp. 305–312).



BIBLIOGRAPHY 119

Hoffman, B. & Schraw, G. (2010). Conceptions of efficiency: Applications in
learning and problem solving. Educational Psychologist, 45(1), 1–14.

Janssen, J., Van der Schoot, F., & Hemker, B. (2005). PPON, Balans [32] van het
reken-wiskundeonderwijs aan het einde van de basisschool 4. Uitkomsten van de
vierde peiling in 2004. Uitgave Stichting Cito Instituut voor Toetsontwikkeling.

Janvier, C. (1996). Modeling and the initiation into algebra. In N. Bednarz et
al. (Ed.), Approaches to Algebra (pp. 225–236). Dordrecht: Kluwer Academic
Publishers.

Kester, L., Kirschner, P., & Van Merriënboer, J. (2006). Just-in-time informa-
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Van Merriënboer, J. & Sweller, J. (2005). Cognitive load theory and complex
learning: Recent developments and future directions. Educational Psychology
Review, 17(2), 147–177.



124 BIBLIOGRAPHY

Vlassis, J. (2002). The balance model: hindrance or support for the solving
of linear equations with one unknown. Educational Studies in Mathematics,
49(3), 341–359.

Vos, P. (2007). Algebra-prestaties van tweedeklassers. Zijn ze voor- of achteruit
gegaan? Euclides, 82(4), 129–132.

Wagner, S. (1983). What are these things called variables? Mathematics Teacher,
76, 474–479.

Wenger, R. (1987). Cognitive science and algebra learning. In A. Schoenfeld
(Ed.), Cognitive science and mathematics education (pp. 217–251). Hillsdale:
Lawrence Erlbaum.

Whitehead, A. (1924). An introduction to mathemamtics. London: Williams
and Norgate.

Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation, and
autonomy in mathematics. Journal for Research in Mathematics Education,
27(4), 458–477.

Zwaneveld, B. (2004). Algebra: verloren zaak of uitdaging? Euclides, 80(2),
42–47.



Appendix A: Test items

Tasks with an A in the measure are tasks that have served as anchor items in the
Rasch analysis. Tasks are arranged by increasing measure. The Rasch measure
of a task correspond to a probability of 0.50 to answer that task correctly.

Measure Task Assessment
(logits)

-3.46 A Expand the brackets: −4(3a + b) = March 2008
-3.46 A Expand the brackets: −5(2p + q) = May 2008
-3.46 A Expand the brackets: −3(4p + q) = October 2008
-3.46 A Expand the brackets: −4(5p + q) = February 2009
-2.42 A Simplify: 2

√
5 + 4

√
5 = March 2008

-2.42 A Simplify: 3
√

7 + 2
√

7 = May 2008
-2.42 A Simplify: 4

√
11 + 3

√
11 = October 2008

-2.42 A Simplify: 2
√

3 + 5
√

3 = February 2009
-1.92 Calculate: 18−5

7−20 + 4 = May 2008
-1.83 Calculate: 3 · (−2) · 5− 2 · 5 = March 2008
-1.59 Calculate: 2 · (−3) · 5− 2 · 5 = February 2009
-1.47 A Simplify: −2(3x− y) + 3(−4y − 2) = March 2008
-1.47 A Simplify: −3(2a− b) + 4(−2b− 3) = May 2008
-1.47 A Simplify: −4(2x− y) + 2(−3y − 4) = October 2008
-1.47 A Simplify: −2(4x− y) + 3(−2y − 4) = February 2009
-1.24 You know the operations plus, minus, multiplica-

tion and division. We introduce a new operation,
diamond, and a♦b is defined as follows. For two
numbers a and b, we say a♦b = a2 − a · b. Does
a♦b = b♦a hold for all numbers a and b?

October 2008

-1.13 Calculate (4 1
2 )2. Show your working. May 2008

-0.88 Simplify: 4
15 − 2

5 + 3
10 = February 2009

-0.85 A Simplify (3a2+2a+7)(a+8). Show your working. March 2008
-0.85 A Simplify (2x2+3x+4)(x+6). Show your working. May 2008
-0.85 A Simplify (2a2+4a+3)(a+5). Show your working. October 2008
-0.85 A Simplify (3a2+4a+5)(a+7). Show your working. February 2009
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Measure Task Assessment
(logits)

-0.69 Simplify: 7
15 − 2

5 + 1
10 = May 2008

-0.68 By which number do you have to divide 4 to ob-
tain 12?

March 2008

-0.62 Fleur claims that 3 1
3×21

2 = 6 1
6 . Explain why this

is incorrect.
February 2009

-0.60 Jantine claims that 2 1
2 × 31

3 = 6 1
6 . Explain why

this is incorrect.
March 2008

-0.60 Solve: (x− 1)(x + 3)(x− 4) = 0. February 2009
-0.58 Willem claims that 2 1

2 · 4 1
4 = 8 1

8 . Explain why
this is incorrect.

October 2008

-0.50 Simplify: 7x2+7−3(2x2+2)
x2+1 = February 2009

-0.48 Solve: (x− 5)(x− 7) = 3. March 2008
-0.31 A classmate asks for your help in solving 15

4+ 6
1+x

=
3. He does not know how to start. Describe what
you would do to help your classmate.

March 2008

-0.22 Simplify: 5x2+10−2(2x2+4)
x2+2 = May 2008

-0.04 The sum of two numbers is 93 and their difference
is 21. Show how you can calculate these numbers.

October 2008

0.01 Solve: 21
6+ 5

1+x

= 3. October 2008

0.07 Martijn claims that Q =
√

P − 2 implies P =
Q2 +2. Explain why you do or do not agree with
Martijn.

May 2008

0.15 A Calculate: −7− (4− 3) · (−8)− 2 = March 2008
0.15 A Calculate: −6− (5− 4) · (−8)− 3 = May 2008
0.15 A Calculate: −5− (3− 2) · (−8)− 4 = October 2008
0.15 A Calculate: −7− (5− 4) · (−8)− 4 = February 2009
0.33 Solve: x2 − 5x + 6 1

4 = 0 March 2008
0.33 Simplify: 1

14 + 4
7 − 10

21 = October 2008
0.37 Simplify:

√
28√
7

= March 2008
0.38 Willem claims that P = 1

Q +5 implies Q = 1
P −5.

Explain why you do or do not agree with Willem.
February 2009

0.42 Simplify: 8
21 − 2

7 + 1
14 March 2008

0.68 Solve: (x− 5)(x + 2)(x− 3) = 0. May 2008
0.72 Substitute a = −1 and b = −2 in −(ab2)3 −

2(a2b)2.
October 2008

0.91 Substitute a = −2 and b = −1 in −(a2b)3 −
2(ab2)2.

March 2008
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Measure Task Assessment
(logits)

1.00 Martijn claims that
√

a2 = a holds for all num-
bers a. Explain why you do or do not agree with
Martijn.

March 2008

1.19 Simplify:
√

12√
3

= February 2009
1.34 Is there any x for which 2x+1

4x+2 = 2? If so, calculate
x; if not, explain why such an x does not exist.

February 2009

1.37 Is there any x for which 2x+3
4x+6 = 2? If so, calculate

x; if not, explain why such an x does not exist.
March 2008

1.43 Rewrite the formula P = 1
Q + 5 as a formula of

the form Q = . . . something withP . . .
March 2008

1.55 Martijn claims that
√

12 +
√

3 = 3
√

3. Explain
why you do or do not agree with Martijn?

May 2008

2.01 Solve: 2(3x + 2) = 3(2x− 1) + 7. October 2008
3.94 Solve: a

√
2 = 1 + 2a

√
3. The square roots may

remain.
October 2008

6.13 If a
√

b = 1 + 2a
√

1 + b, then a = March 2008





Appendix B: Structure
sense test items

Tasks with an A behind the Rasch measure have served as anchor items. The
Rasch measure of a task correspond to a probability of 0.50 to answer that task
correctly.

Measure Task Assessment
(logits)

-0.31 A1 A classmate asks for your help in solving
15

4+ 6
1+x

= 3. He does not know how to start.
Describe what you would do to help your class-
mate.

March 2008

0.01 A2 Solve: 21
6+ 5

1+x

= 3. October 2008

-0.22 A3 Simplify: 5x2+10−2(2x2+4)
x2+2 = May 2008

-0.50 A4 Simplify: 7x2+7−3(2x2+2)
x2+1 = February 2009

0.68 A5 Solve: (x− 5)(x + 2)(x− 3) = 0. May 2008
-0.60 A6 Solve: (x− 1)(x + 3)(x− 4) = 0. February 2009
1.37 A7 Is there any x for which 2x+3

4x+6 = 2? If so,
calculate x; if not, explain why such an x does
not exist.

March 2008

1.34 A8 Is there any x for which 2x+1
4x+2 = 2? If so,

calculate x; if not, explain why such an x does
not exist.

February 2009

3.94 A9 Solve: a
√

2 = 1+2a
√

3. The square roots may
remain.

October 2008

6.13 A10 If a
√

b = 1 + 2a
√

1 + b, then a = March 2008

129



130 APPENDIX B

Measure Task Assessment
(logits)

-1.83 N1 Calculate: 3 · (−2) · 5− 2 · 5 = March 2008
-1.59 N2 Calculate: 2 · (−3) · 5− 2 · 5 = February 2009
0.15 A N3 Calculate: −7− (4− 3) · (−8)− 2 = March 2008
0.15 A N4 Calculate: −6− (5− 4) · (−8)− 3 = May 2008
0.15 A N5 Calculate: −5− (3− 2) · (−8)− 4 = October 2008
0.15 A N6 Calculate: −7− (5− 4) · (−8)− 4 = February 2009



Summary

The development of algebraic proficiency

Discussions of students’ level of algebraic proficiency are taking place worldwide.
In the Netherlands, the discussion has focused on the level of basic algebraic skills
in the transition from secondary education to higher education. This discussion
has served as input for the study described in this thesis. This study has aimed
at obtaining insight in the actual level of student algebraic proficiency in pre-
university education. A second aim is to obtain insight into the deeper causes
of the problems students experience in pre-university education in case the level
turned out to be disappointing.

In the discussion on the student level of algebraic proficiency, several consid-
erations played a role. The problems indicated by educators of secondary and
higher education concerned the skills taught in lower secondary education and
even primary education. Furthermore, a call has been heard from higher edu-
cation for skills exceeding procedural skills. The subsequent discussion on the
student level of algebraic proficiency readily has shifted to a debate concerning
the proposed solutions and the classic dichotomy procedural fluency–conceptual
understanding. These two aspects served as input in a study of the development
of algebraic proficiency described in Chapter 2. In order to obtain a detailed
view of the student level of algebraic proficiency, we constructed four tests for
students of grades 8–12. As theoretical background, we used two aspects of
algebraic proficiency.

The first aspect concerned the relation between basic skills and the deeper
understanding that also played a role in the aforementioned discussion. There
is general agreement that basic skills have to go hand in hand with conceptual
aspects of algebraic proficiency, although different researchers provide different
views of the nature of these conceptual aspects. We used symbol sense (Arcavi,
1994) which is described as a complex feel for symbols that transcend basic
manipulations. It includes the ability to manipulate or to read through symbolic
expressions depending on the problem at hand, and flexible manipulation skills,
such as the ability to cleverly select and use a particular symbolic representation.
In the construction of the tests, we followed Drijvers (2006a, 2010) in viewing
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algebraic proficiency as a sliding scale ranging from basic skills to symbol sense.
In the tests we aimed at including items that cover this full range. The second
aspect concerned the transition from arithmetic to algebra, which is seen as
crucial for the development of algebraic proficiency. We decided to include topics
such as calculating with negative numbers, fractions, and square roots, which are
related to the transition from arithmetic to algebra.

Based on these two aspects, we constructed four sequential paper and pencil
tests in a partly cross-sectional and partly longitudinal design. Around one
thousand students joined at least one of the sessions of the assessments; 277
students participated in all four assessment. The written answers were used
to investigate how student algebraic proficiency developed from both a cross-
sectional and a longitudinal perspective, and in terms of basic skills and symbol
sense. For the analysis of our data, we used the Rasch model (Rasch, 1980; Bond
& Fox, 2007).

The results of the analysis showed that the students made progress, both
cross-sectionally and longitudinally. In the cross-sectional development of the
students, the positive effect might in part be attributed to a curriculum change,
as the new curriculum pays considerably more attention to algebraic skills in
the lower grades. The longitudinal analysis showed that for the majority of the
students, the level of algebraic proficiency increased after one year. However, for
the majority of the students, this progression was not statistically significant.
With respect to different streams, we found that the students from the science
stream performed better than the students from the social stream, but again the
difference was not statistically significant.

Relating the student development to the individual tasks in the assessment,
we found that the students mastered simple tasks, but tasks became too com-
plicated for them rather quickly. For example, the task “simplify: 2

√
5 + 4

√
5”

is mastered by the majority of the students, whereas the task “simplify:
√

12√
3

”
is mastered by less than 10% of the students. In addition, the task “expand
the brackets: −4(3a + b)” is mastered by almost all students, whereas the task
“simplify: (3a2 +2a+7)(a+8)” is mastered by less than half of the students. As
a result, few tasks were mastered by the majority of the students. This indicates
problems in Dutch secondary education with the mastery of procedural skills.
Furthermore, we saw that the range of tasks which the majority of the students
mastered did not incorporate the tasks related to important conceptual aspects.

In Chapter 3 we used the notion of structure sense (Linchevski & Livneh,
1999; Novotnà & Hoch, 2008) to get a better handle on the conceptual aspects
that seem to be problematic. Structure sense in high school algebra is seen as
consisting of several abilities including the ability to see the algebraic structure
of a formula and the ability to see a part of an expression as a unit. We argued
that structure sense can be seen as a part of symbol sense. From the assessments
described above, we selected tasks that appeal to structure sense and focused
the analysis on these tasks. We concluded that the majority of the students did



133

not master tasks that require structure sense.
In addition we saw that the relations between the students’ strategies, their

success on tasks that appeal to structure sense, and their positions on the Rasch
scale, were not as clear as we expected on the basis of the literature. In our view,
this means that either the relation between strategy and structure sense is not
as strong as one would expect, or the relation between structure sense and the
underlying latent variable of the Rasch scale is not straightforward. Too much
attention to success on tasks may lead to a procedural approach towards con-
ceptual notions. Further research on the relations between strategies, structure
sense, and algebraic proficiency seems appropriate. In our view this touches on
the complexity of the notion of structure sense: it is both difficult to acquire and
not easy to measure.

Many researchers argue that flexible manipulation skills, which include struc-
ture sense, are an important aspect of algebraic proficiency. This flexibility is
especially of importance for students in higher education, for mathematics as
well as for associated disciplines such as science and economics. The results of
the assessments suggest that Dutch mathematics education does not pay suffi-
cient attention to these kinds of skills. We therefore call for more attention to
structure sense in Dutch mathematics education.

In Chapter 4, we focused on the conceptual barriers that cause the difficul-
ties which students experience by using Sfard’s theory of reification (Sfard, 1991).
In that theory, it is argued that abstract concepts can be conceived of in two
fundamentally different ways: structurally as objects, and operationally as pro-
cesses. Sfard bases this observation on an analysis of the historical development
of algebra, which can be characterized as a long sequence of transitions from
operational to structural conceptions. Again and again, processes performed
on abstract objects at one level turn into new objects that serve as objects of
new higher level processes. In the process of concept formation, three stages are
distinguished: interiorization, condensation, and reification. Whereas interior-
ization and condensation are gradual processes, reaching the phase of reification
is not gradual, but “a sudden ability to see something familiar in a totally new
light” Sfard (1991, p. 19). Reification is the point where the object turns into
input for interiorization on a higher level.

Sfard & Linchevski (1994b) identified two crucial transitions: the transition
from the purely operational algebra to the structural algebra, and the transition
from algebra of an unknown to the functional algebra of a variable. To Sfard &
Linchevski (1994a), an important component of algebraic proficiency is a flexible
approach in which a student is able to switch between an operational approach,
in which the focus is on the processes, and a structural approach in which the
focus is on objects. These switches play a role in the process–object duality and
the fixed-value–variable duality. We used these transitions to try to explain the
student performance on the assessments described in Chapter 2. Scrutinizing
the test items from Sfard’s perspective showed a remarkable difference in per-
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formance of tasks concerning calculating with square roots. The task “simplify
2
√

5 + 4
√

5” (with the correct answer 6
√

5) is mastered by almost 90% of the
students, whereas the task “do you or do you not agree that

√
12 +

√
3 = 3

√
3?”

is mastered by less than 10% of the students of grade 12. Further, the task in
which students had to solve the linear equation 2(3x+2) = 3(2x− 1)+7 (which
actually is an identity) was mastered by less than 10% of the grade 12 students.
Based on the student performance on these tasks, we hypothesized that the prob-
lems grow in complexity according to the number of transitions that have to be
made between an operational and a structural approach (or the reverse).

Testing this hypothesis among 92 grade 11 students yielded a confirmation.
In the case of square roots, the majority of the incorrect answers seemed to be
due to a lack of the connection between the process of extracting the square root
and a root as an object. As for the linear equations, the majority of students
was able to expand the brackets correctly. Here, the problem was in drawing
the correct conclusion. The confirmation of the hypothesis led us to conclude
that the majority of Dutch students were not able to deal with the operational–
structural duality in a flexible way. We argued that the process–object duality
is inherently difficult for Dutch students and that Dutch mathematics education
apparently does not pay enough attention to fostering the process of reification.

In Chapter 5, we discussed methodological issues concerning the measure ‘in-
structional efficiency’, used in the cognitive load theory. Because part of the
discussion in the Netherlands on student algebraic proficiency concerned student
fluency in solving algebraic tasks, we decided to measure the invested mental ef-
fort. Based on the principles of the cognitive load theory, students were asked to
report their invested mental effort on a nine point symmetrical rating scale. We
expected the measure of instructional efficiency, which combines mental effort
and performance, to provide a more detailed view of the student level of alge-
braic proficiency than performance alone. Although this measure was originally
developed to compare instructional designs, we followed the suggestion of Van
Gog & Paas (2008) to use this measure to evaluate the student level of expertise
in algebraic proficiency. Trying to use the measure in this way, however, we
found that it brought with it three methodological limitations.

The first limitation concerned the assumption in the construction of instruc-
tional efficiency that higher mental effort is counterbalanced proportionally by
higher performance and vice versa. The second limitation concerned ambiguous
meanings of mental effort scores in situations of low performance and low mental
effort. The third limitation concerned the validity of mental effort scores. Our
data gave rise to questioning the validity of ‘mental effort’ since students seemed
to mix mental effort and perceived difficulty. Based on these limitations, we
concluded that instructional efficiency is not an appropriate measure for inves-
tigating the student level of algebraic expertise. Due to our concern with the
validity of the mental effort scores, we eventually decided not to use these scores
to determine the student level of expertise.
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Because so a large number of students do not reach the area of important
conceptual aspects, and because textbooks play an important role in Dutch math-
ematics education (Hiebert et al., 2003), we performed an analysis of two most
widely used Dutch textbook series in Chapter 6. This analysis aimed at in-
vestigating which means of support Dutch textbooks offer to foster conceptual
understanding. Dutch textbooks are influenced by the theory of Realistic Math-
ematics Education (RME). In line with RME, we used the theory of emergent
modeling (Gravemeijer, 1999) as a framework to analyze the most used text-
book series. From an RME perspective, students should not be confronted with
ready-made models. Rather, these models should emerge from their own mathe-
matizing activities (Gravemeijer, 1994), while supporting mathematical growth.
In this way, the models emerge as models for mathematical reasoning. The tran-
sition from model of to model for concerns a shift in student thinking. This shift
passes from thinking about the modeled contextual situation to thinking about
mathematical relations.

Based on the theory of emergent modeling, we classified activities in four
categories varying from activities in the context to formal mathematical reason-
ing. The data set was constructed from two Dutch textbook series, Moderne
Wiskunde (MW) and Getal & Ruimte (GR) from which entire chapters and
sections within chapters concerning linear relations and linear equations were
selected. The analysis indicated that the textbooks pay relatively great atten-
tion to activities such as searching for patterns in given contextual situations,
constructing word formulas (linear relations), and developing informal strategies
such as the cover-up method and using the balance model (linear equations). In
addition, we found that both textbook series hardly contain activities that guide
students from the contexts and semi-formal mathematics to formal mathemat-
ics. Moreover, we found that the textbooks start with an RME approach, but
later on shift to a track with a more traditional approach, in which new concepts
are introduced as ready-made mathematics. The RME track mainly contains
activities at the task setting and referential levels. We found few activities that
support the switch towards formal mathematics. The other track does not build
on the semi-formal mathematical understanding grounded in the contexts and
models, thus missing the link to the student’s prior knowledge. Because of these
two disjunct tracks, we concluded that these two Dutch textbook series do not
offer a consistent instructional sequence and therefore hamper the development
of conceptual proficiency.

In Chapter 7 we summarized and reflected upon our findings. We argued
that Dutch students appear to make little progress in algebraic proficiency dur-
ing pre-university secondary education. We stressed that this is not just a matter
of too little fluency with basic algebraic skills; it also reflects the fact that the
students in our research hardly developed conceptual proficiency in areas such
as symbol sense, structure sense, and the process–object duality. These con-
ceptual aspects include flexible skills which are important in different sectors of
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higher education. In our view, mathematics teachers should pay more attention
to the structure and the coherence of mathematics. This could be arranged by
stimulating classroom dialogues on the structure of formulas and on generaliza-
tions. Discussing mathematical structures and generalizations could contribute
to establishing connections between different approaches.

We recommend teachers to pay attention to the ambiguous nature of mathe-
matics by discussing different perspectives on mathematical entities. In addition,
we advise teachers to foster reification by, for example, stimulating their students
not to be satisfied with performing tasks only. Instead, students must be stim-
ulated to look for the bigger picture of which the tasks and solution procedures
are part. In this way, the focus is not on performing tasks, but on searching for
the mathematical concepts that are supposed to be expressed in the tasks, and
on the coherence between solution procedures and concepts.

We have argued that Dutch textbooks pay relatively too much attention to
exploring activities within contexts, whereas in our view, these activities do not
require the most attention. It is not the contextual situation itself that is difficult
to grasp; it is the underlying mathematical structure of the situation. Given
the present textbook series, teachers could help students to use the contexts
and models in a process that eventually leads to the construction of formal
mathematics. For example, by discussing contexts and models, and the role
they play in the learning trajectory, teachers could help students to generalize
and formalize. In this way, teachers help students to bridge the gap between the
two now disjunct didactical tracks.

Textbook authors are advised to reconsider the way contexts and models
are used in the present textbooks. More specifically, they are advised to recon-
sider the way students can build more formal mathematical knowledge based on
context-rooted, semi-formal strategies. In addition, they should include activi-
ties that help students to develop conceptual proficiency, which we defined as a
mixture of higher-order thinking skills in which three aspects are essential: the
ability to recognize and make flexible use of the algebraic structure, the ability
to deal with the ambiguous nature of mathematical concepts, and the ability to
see the coherence between mathematical concepts.



List of publications

Conference proceedings

Van Stiphout, I.M., Perrenet, J., Gravemeijer, K. (2009). Algebra at risk in
Dutch education: a pilot study. Short oral communication presented at PME
33. In Tzekaki, M., Kaldirmidou, M. & Sakonidis, H. (Eds.). Proceedings of the
33rd Conference of the International Group for the Psychology of Mathematics
Education, Vol. 1, p 483. Thessaloniki, Greece: PME.

Van Stiphout, I.M. (2009). Structural conceptions and the cognitive load theory.
Paper presented at Joint Researcher Training: Berlin Summer School.

Van Stiphout, I.M., Perrenet, J.C., Gravemeijer, K. & Jochems, W. (2009). Cog-
nitive load theory and the development of algebraic skills. Poster presented at
3rd International Cognitive Load Theory Conference.

Van Stiphout, I.M. (2008). Cognitive load theory and the development of alge-
braic skills. Poster presented at joint researcher training Velbert Langenberg,
Essen.

Van Stiphout, I.M., & G. Bruin-Muurling. (2008). Dimensies in opvattingen
over wiskundeonderwijs. Group discussion organized at the Onderwijs Research
Dagen, Eindhoven.

Van Stiphout, I.M., Perrenet, J.C., Gravemeijer, K. & Jochems, W. (2008).
Cognitive load theory and the development of algebraic skills. Paper presented
at ICO-toogdag.

Journal articles

Van Stiphout, I.M., & G. Bruin-Muurling. (2009). Verslag van de Onderwijs
Research Dagen. Nieuwe Wiskrant 28 (3), 39-40.

137



138 LIST OF PUBLICATIONS

Oral presentations (without proceedings)

Van Stiphout, I.M. & Bruin, G. (2010). Doorlopende leerlijnen in het onderwijs:
het wiskundeonderwijs als een paradigmatisch voorbeeld. Praktijkonderzoeksdag
Fontys Lerarenopleiding Tilburg.

Bruin, G. & Van Stiphout, I.M. (2010). Wat & Hoe. Voordracht op afscheids-
symposium.
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