
 

Workforce scheduling and planning : a combinatorial
approach
Citation for published version (APA):
Firat, M. (2012). Workforce scheduling and planning : a combinatorial approach. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR731238

DOI:
10.6100/IR731238

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR731238
https://doi.org/10.6100/IR731238
https://research.tue.nl/en/publications/2ff81cd3-164a-4dc2-8469-98a288bebbbb


Workforce Scheduling and Planning:

A Combinatorial Approach

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 24 april 2012 om 16.00 uur

door

Murat Fırat

geboren te Istanbul, Turkije



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ing. G.J. Woeginger

Copromotor:
dr.ir. C.A.J. Hurkens

A catalogue record is available from the
Eindhoven University of Technology Library

ISBN: 978-90-386-3126-4



Acknowledgements

The history of this work goes back to 2007. It was a sunny day of June in Istanbul. I
saw an open position at the Eindhoven University of Technology and I contacted Cor
Hurkens, since I wanted to work on scheduling and the project title was “scheduling
tasks with skill requirements”. I would like to thank Cor Hurkens for accepting my
application for this position and for letting me join to the Combinatorial Optimization
group at the TU Eindhoven. During my Ph.D. study, Cor was always like a friend
with me rather than a supervisor. Sometimes we enjoyed solving our problems and
sometimes we had long and non-converging discussions. They all will stay as nice
memories in my mind. Moreover, all our travels for conferences and workshops were
amazing. Thanks to Cor Hurkens for everything.

My special thanks go to Gerhard Woeginger. Besides his broad academic knowl-
edge, he has a great personality. I always enjoyed getting a piece of advice in each
of our conversations. I will remember all of them throughout my life. I also enjoyed
very much talking about diverse subjects during the lunch breaks with Gerhard. He
helped me a lot in building up my vision on academic life.

It was a pleasure for me to assist Jan Karel Lenstra in one of his courses. My
special thanks go to him for participating my graduation committee. I would like
to thank Rudi Pendavingh and Judith Keijsper for proofreading of my papers and
thesis. They are very good colleagues and it was nice to hear their helpful ideas
and comments after my talks. I thank Johann Hurink, my graduation committee
member, for carefully reading my manuscript and I appreciate his suggestions for the
improvement of this thesis.

Someone to whom I owe many thanks: Alexandre Laugier. His guidance and
his patience made my working environment more productive. I had the opportu-
nity to attend France Telecom seminars several times. These seminars took place in
“Alexandre’s village” where we all enjoyed the nature and the history of more than
one thousand years. I always had fun during our conversations and I learned a lot
from Alexandre. I also thank Anne Marie Bustos for being hospitable during my visits
to France.

Bana her an ve her yerde sevgi ve desteklerini esirgemenyen ve benim ilk
öğretmenlerim olan babam Sadettin Fırat’a, annem Bes.ire Fırat’a, dünyada en
c.ok güvendiğim doktor olan ablam Nil Fırat’a, her zaman yanımda olan ve beni
destekleyen güzeller güzeli biricik es.im Pınar Çelebi Fırat’a tes.ekkür ediyorum.

I would like thank my parents Sadettin Fırat and Bes.ire Fırat for being my first
teachers in my life and for supporting me always, my sister Nil Fırat who is the most
dependable doctor in the world for me, my wife Pınar Çelebi Fırat for supporting me

iii



iv

against all difficulties of life and for being always with me.
I had great colleagues in Eindhoven: John van den Broek, Nikhil Bansal, Leen

Stougie, Jan Draisma, Christian Eggermont, Stefan van Zwam, Maciej Modelski,
Hein van der Holst, Peter Korteweg, Rene Sitters, and many others. Special thanks
to Kora Lemmens and Harma Koops for their precious helps. I had enjoyable coffee
breaks with John van den Broek and he was a very good roommate. I really enjoyed
our conversations with Christian almost on everything.

I would like to thank Yorgo Istefanopulos for encouraging me in starting my master
program and Ümit Bilge for supervising my master thesis and for her support during
my assistance in the BUFAIM Laboratory.

Murat Fırat,
Eindhoven
April 2012



Contents

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Computational complexity theory . . . . . . . . . . . . . . . . . 2
1.1.3 Graphs and networks . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Algorithmic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Greedy algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Machine scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 The resource-constrained project scheduling . . . . . . . . . . . 10
1.3.3 Workforce scheduling . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 The stable assignment problem . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 The stable marriage problem . . . . . . . . . . . . . . . . . . . . 11
1.4.2 The university admissions problem . . . . . . . . . . . . . . . . 12
1.4.3 The stable allocation problem . . . . . . . . . . . . . . . . . . . 13

1.5 Planning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 The dial-a-ride problem . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 The vehicle refueling problem . . . . . . . . . . . . . . . . . . . 14

1.6 Results and overview of the thesis . . . . . . . . . . . . . . . . . . . . 15
1.6.1 Multi-skill workforce scheduling . . . . . . . . . . . . . . . . . . 15
1.6.2 Stabile multi-skill workforce assignments . . . . . . . . . . . . . 17
1.6.3 The dial-a-ride problem . . . . . . . . . . . . . . . . . . . . . . 18
1.6.4 The vehicle refueling problem . . . . . . . . . . . . . . . . . . . 19

2 A MIP-based approach to a multi-skill workforce scheduling prob-
lem 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Problem description and notation . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Technicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



vi Contents

2.4.1 The resource-constrained project scheduling (RCPSP) . . . . . . 29
2.4.2 Solution approaches in the ROADEF Challenge 2007 . . . . . . 31

2.5 Scheduling with flexible matching model . . . . . . . . . . . . . . . . . 31
2.5.1 An overview of the combinatorial algorithm . . . . . . . . . . . 31
2.5.2 Calculating key properties of tasks . . . . . . . . . . . . . . . . 34
2.5.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.4 Constructing alternative schedules . . . . . . . . . . . . . . . . . 38

2.6 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.1 On the rare expertise . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.2 On the performances of heuristics . . . . . . . . . . . . . . . . . 51

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Stable multi-skill workforce assignments 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Problem description and notation . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Technicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.4 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.5 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Gale-Shapley stability . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Multi-skill workforce scheduling . . . . . . . . . . . . . . . . . . 62

3.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Stable technician-job assignment problem . . . . . . . . . . . . . 62
3.4.2 Special case: STJAP(n, 1, n) . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Special case: STJAP(1, n,=2) . . . . . . . . . . . . . . . . . . . 67

3.5 Stable assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.1 The set of stable assignments . . . . . . . . . . . . . . . . . . . 70
3.5.2 Optimality in stable workforce assignments . . . . . . . . . . . . 71

3.6 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Analysis of a dial-a-ride problem 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Problem description and notation . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Preprocessing of time windows . . . . . . . . . . . . . . . . . . . 78
4.3 Linear equations and inequalities . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 An equivalent linear inequality system . . . . . . . . . . . . . . 79
4.4 Difference constraint systems . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Feasibility test via finding negative-weight cycles . . . . . . . . . 81
4.5 A linear time feasibility test . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Feasibility test via shortest paths . . . . . . . . . . . . . . . . . 83
4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Contents vii

5 Analysis of a vehicle refueling problem 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Network representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 The greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Definitions and observation . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Correctness proof using duality . . . . . . . . . . . . . . . . . . 96
5.4.3 Correctness proof using network flow . . . . . . . . . . . . . . . 100
5.4.4 Correctness proof using convexity . . . . . . . . . . . . . . . . . 102

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Perspectives 105

Bibliography 106

Index 112

Summary 115

Curriculum Vitae 117



viii Contents



Chapter 1

Introduction

This thesis investigates solution methodologies for concrete combinatorial problems in
scheduling and planning. In all considered problems, it is assumed that the available
information does not change over time; hence these problems have a deterministic
structure.

The problems studied in this thesis are divided into two groups; “workforce
scheduling” and “planning”. In workforce scheduling, the center problem is to build a
schedule of tasks and technicians. It is assumed that the time line is split into work-
days. In every workday, tasks must be grouped as sequences, each being performed
by a team of technicians. Skill requirements of every task in a sequence must be met
by the assigned team. This scheduling problem with some other aspects is difficult to
solve quickly and efficiently.

A workday schedule of the aforementioned problem includes many-to-one type
workforce assignments. As the second problem in workforce scheduling, stability of
these workforce assignments is investigated. The stability definition of Gale-Shapley
on the marriage model is extended to the setting of multi-skill workforce assignments.

Generally, the scheduling problems and the assignment problems are highly in-
volved in the area of project management. For example, in a telecommunication com-
pany there may be thousands of activities and thousands of technicians to schedule.
In this scheduling task, the problem may be so complicated that maintaining efficiency
in these schedules is almost impossible without dividing it into subproblems. Then
combinatorial optimization comes into the game and provides useful tools to maintain
the control of quality in such a project management and to achieve improvements.

In the second problem group, two problems related to vehicle planning are studied;
the “dial a ride problem” and the “vehicle refueling problem”. In the former, the goal
is to check whether a list of pick-up and delivery tasks can be achieved under several
timing constraints. In the latter, the goal is to make refueling decisions to reach a
destination such that the cost of the travel is minimized.

1.1 Preliminaries

This section explains some basic topics in combinatorial optimization such as algo-
rithms, computational complexity, graphs, and networks.

1



2 Chapter 1. Introduction

Combinatorial Optimization. Combinatorial optimization is a branch of mathe-
matics that analyses countable discrete structures and finds the ones meeting some
criteria. In combinatorial optimization, a problem asks for “an optimum object in a
finite collection of objects”1 . Every problem in combinatorial optimization has a set
of instances. Every instance of a problem has a set of feasible solutions, each having
an objective value. The goal or the objective of a problem is to find a solution that
is feasible and has either maximum or minimum objective value. Such solutions are
called optimum solutions. Maximization (minimization) problems look for feasible
solutions with maximum (minimum) objective values.

1.1.1 Algorithms

Algorithms. An algorithm is a sequence of well-defined computational steps. It takes
an input and transforms it into a desired output. An algorithm is said to solve a given
combinatorial optimization problem if, for each instance of the problem, it will output
an optimal solution or report that no solution exists in finitely many steps. The time
complexity of an algorithm is the number of steps needed to solve the problem instance
as a function of the instance size.

Computational complexity. In computer science, problem instances are represented
as strings over an alphabet. For example, the set {0, 1} is a binary alphabet and the
problems are encoded by using this basic binary alphabet. The input size of an
instance is generally denoted by n. An algorithm may perform different number of
operations for different instances of a problem. The running time of an algorithm is
the maximum number of operations to find a solution over the whole set of instances.
This is called the worst-case performance and algorithms are classified by their worst
case performances.

Asymptotic notation is used to express the running time of algorithms. It is useful
for two reasons. First, it simplifies the expression of running times. Second, it is
useful to show how an algorithm responds to changes in the input size. Below, two
function sets of the asymptotic notation are defined.

O(g(n)) = {f(n) : ∃c > 0, n0 > 0 such that 0 ≤ f(n) ≤ cg(n),∀n ≥ n0}

Ω(g(n)) = {f(n) : ∃c > 0, n0 > 0 such that 0 ≤ cg(n) ≤ f(n),∀n ≥ n0}

Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

If f(n) ∈ O(g(n)), it is written f(n) = O(g(n)). An algorithm is said to be efficient
or polynomial-time, if it solves a problem with a running time that is bounded by a
polynomial function.

1.1.2 Computational complexity theory

Although the researchers have made a huge effort for many decades, no efficient al-
gorithm could be found for many computational problems. Several researchers like

1This is the first sentence of Alexander Schrijver in his book “Combinatorial Optimization”.



1.1. Preliminaries 3

Edmonds (1962) studied how to relate these hard problems in terms of their difficulty.
Following these attempts, “computational complexity theory” was built up by Cook
(1971) and Karp (1972).

In computational complexity theory, every optimization problem has a correspond-
ing decision problem whose answer is either YES or NO. A decision problem points
a particular solution or a particular set of solutions and asks whether this particular
solution (set) exists or not. In fact, a decision problem is merely a rephrasing of
the corresponding optimization problem. A formal definition of a decision problem
includes two parts. Firstly, the sets, parameters, and related information is given.
Secondly, the existence of the particular solutions is asked. Below, a specific problem
in single-machine scheduling as an example.

Problem: Weighted sequencing on single-machine (WSSM)

Instance: Given a number k and a set J of jobs. Processing a job j ∈ J
takes pj ∈ R+ time units on a single machine, and it has a weight wj ∈ R+.

Question: Does there exist a permutation π of the jobs in J such that∑
j wjCj is no more than k where Cj =

∑
πj′≤πj

pj′?

Every decision problem that is a rephrasing of an optimization problem has a
numerical bound, and in the above example, this is k. A decision version of an
optimization problem with maximization (minimization) objective asks whether a
solution value exists with “at least” (“no more than”) the numerical bound. In the
above example, the objective of the corresponding optimization problem is minimizing∑

j wjCj. If a decision problem is solved by a polynomial-time algorithm, so is the
corresponding optimization problem: A binary search would be enough to find the
optimal solution with the answers of the decision problem.

Decision problems that can be solved by efficient (polynomial-time) algorithms
form the complexity class P. For example, the WSSM is in P, since the algorithm called
Smith’s rule proposed by Smith (1956), solves it in polynomial time to optimality.

In complexity theory, a certificate of a decision problem refers to any information
that enables us to construct a solution. The fundamental complexity class NP includes
those decision problems whose YES instances and NO instances can be distinguished
with a given certificate in polynomial time. Instances of decision problems in P can be
identified, as YES or NO instance, by solving them with polynomial-time algorithms.
Therefore, we do not even need a certificate for these problems. By this argument, it
is easy to see that P is a subset of NP.

The class NP also includes many problems for which no polynomial-time algo-
rithms are known. This point raises the well-known open question ”Is P equal to
NP?”. There is a common belief among the researchers that it is unlikely that the
answer to this question is yes.

A major breakthrough in complexity theory is achieved by Stephen A. Cook. Cook
(1971) proved that every problem in NP can be reduced to one particular problem
called the satisfiability problem, shortly the SAT problem. It is defined as

Problem: Satisfiability (SAT)



4 Chapter 1. Introduction

Instance: Given a set U of boolean variables and a collection C of clauses
over U . A literal is either a boolean variable or a negation of a boolean
variable and a clause is a disjunction of literals.

Question: Is there a satisfying truth assignment for C?

A decision problem is NP-complete if and only if it is in NP and it is as difficult
as any problem in NP. Cook’s result enabled researchers to prove NP-completeness
of many problems by reducing the SAT to these problems instead of showing that
each of them is as difficult as any problem in NP. In the last decades, many problems
have been shown to be NP-complete, hence proving NP-completeness of a problem
has turned out to find a particular NP-complete problem with a similar structure and
reducing the latter to the former. A comprehensive analysis of NP-complete problems
is given by Garey and Johnson (1979). NP-hardness generalizes NP-completeness in
the sense that if an NP-complete problem can be reduced to a problem, that problem
is said to be NP-hard without the requirement that it is in NP.

For example, let problem A and problem B be two problems in NP. A reduction
from A to B maps all instances of A to some instances of B in “polynomial time”
such that any YES instance of A corresponds to a YES instance of B and any NO
instance of A corresponds to a NO instance of B. Then we say that “A is reduced (or
transforms) to B”, and we write “A ∝ B”. If A ∝ B, then B is at least as difficult as A.
This leads to the following cases; (1) if B is in P, so is A, and (2) if A is NP-complete,
so is B.

Next, we define a specific scheduling problem as follows:

Problem: Sequencing on single-machine (SSM)

Instance: Given a number k and a set J of jobs. Processing a job j ∈ J
takes pj ∈ R+ time on a single machine.

Question: Does there exist a permutation π of the jobs in J such that∑
j Cj is no more than k where Cj =

∑
πj′≤πj

pj′?

Note that we can transform any SSM instance to a WSSM instance by defining
wj = 1 for every j ∈ J in polynomial time. Hence, SMM ∝ WSSM and SSM is in P
as well.

Algorithms revisited. The algorithms that guarantee optimality of solutions are
called exact algorithms. Exact algorithms for NP-complete problems do not run in
polynomial time, otherwise it would result in P=NP. The survey of Woeginger (2001)
summarizes basic techniques used in exact algorithms for NP-complete problems.
Approximation algorithms that do not ensure optimality but in general they find
near optimal solutions for NP-complete problems. Approximation algorithms have
provable solution quality that tells us a priori how the solutions may deviate at most
relative to the optimal solution.

Algorithms based on educated techniques like intuition, experience, and rule of
thumb are called heuristics . They have conceptual simplicity. However, heuristic
algorithms cannot guarantee solution quality in general. Some easy problems in P



1.1. Preliminaries 5

can be solved by priority rule-based heuristics to optimality. As the difficulty of
problems increases, heuristics may even fail to find any feasible solution if the only
solutions are in the states they chose not to try.

1.1.3 Graphs and networks

A graph is a mathematical abstraction that is determined by a set of points and a set
of edges, each joining a pair of points. Many real world problems can be described
by means of graphs. For example, the points (also called vertices) may represent
warehouses and customers, and a line joining a warehouse-customer pair may represent
a transportation with a certain capacity. The graph G = (V,E) has two sets; the set
V of vertices and the set E of edges. An edge {u, v} ∈ E has the endpoints, vertices,
u and v. We say that vertex u, also v, is incident on edge {u, v} and the edge {u, v}
incident on its endpoints, u and v. The vertices are adjacent to each other, if they
are joined by edge, and two edges are adjacent if they have a common endpoint. Two
edges with no common endpoint are said to be disjoint. In a complete graph every
vertex pair is joined by an edge.

In graph theory context, a matching is a set of edges, each pair in which is disjoint.
The problem of finding a maximum-size matching in general graphs can be solved
by the well-known blossom algorithm of Edmonds (1965) in polynomial time, hence
maximum matching problem is in P. A graph G = (V,E) is a bipartite graph if its
vertices can be divided into two disjoint sets so-called partitions. So the graph G with
partitions X ⊂ V and Y ⊂ V is denoted by G = (X, Y,E). The bipartiteness of a
graph can be tested by the breadth first search (BFS) algorithm in polynomial time
and the augmenting path algorithm finds a matching with minimum size on a bipartite
graph. Many real-world problems can be solved by creating a convenient bipartite
graph and finding a matching with minimum size on it. The marriage problem and
the assignment problem are two of these problems.

A graph is simple if and only if, any vertex is not joined by an edge to itself and
any vertex pair is joined by at most one edge. A path is an alternating sequence of
vertices and edges in which no edge and no vertex is repeated. Usually, every edge
has a weight in path problems and the “shortest path problem” asks for a path with
minimum weight from one vertex to another. It is formally defined as

Problem: Single pair shortest path problem (SPSP)

Instance: Given a number k and a graph G = (V,E) with a length
function w : E → R. We distinguish two vertices v0, vk ∈ V in order to
find a path from the former to the latter.

Question: Does there exist a path p = {v0, . . . , vk} such that
∑

e∈pw(e)
is no more than k?

Bellman-Ford algorithm solves the SPSP in polynomial time. Moreover, if all edges
have nonnegative weights, Dijkstra’s algorithm also solves the SPSP in polynomial
time (see Chapter 24 of Cormen et al. (2009)).



6 Chapter 1. Introduction

In interval graphs, every vertex corresponds to an interval on the real line and
any two vertices are joined by an edge if the corresponding intervals intersect and vice
versa.

Graphs in which the edges are ordered pairs of vertices are called digraphs. The
edges in digraphs are directed and they are called arcs. The tail of an arcs is its
starting vertex, and the head is its ending vertex. A digraph is usually denoted by
D = (V,A) and an arc a ∈ A is expressed by [u, v] where u and v are the tail and the
head. A digraph with weighted edges and/or vertices in the context of graph theory
is called a network. The weights may represent capacity, cost, and so on.

Transportation networks are used to model the flow of commodity, information,
or traffic from a special vertices called sources to a special vertices called sinks. A
sink is a vertex at which there is some demand, and demands of sinks in the network
are satisfied by the sources. The vertices between the sources and the sinks are called
intermediate vertices. At an intermediate vertex, the flow is said to be conserved if
and only if the outgoing flow is equal to the incoming flow. The flow through an
arc is usually limited by a capacity and it may have a cost. We say that a flow is
feasible if and only if it is conserved at intermediate vertices, it respect the capacities
on arcs, and the total demand is satisfied. In flow problems, the objective is usually
maximizing the flow amount and/or minimizing the flow cost. The book of Ahuja et
al. (1993) gives an extensive analysis of network flow problems.

1.2 Algorithmic approaches

1.2.1 Greedy algorithms

Greedy algorithms are heuristic methods. Although it is not true in general, some
problems can be solved optimally by greedy algorithms. These problems exhibit the
following property.

Greedy choice property. A solution is built up by a greedy algorithm step by step.
In each step, a locally optimal choice is made with the hope of finding a globally
optimal solution. The current choice is the best one at the moment and it depends on
the previous choices but not on any future choice. Once a choice is made, it is never
reconsidered later. The problem is reduced to a smaller one by iteratively making
greedy choices.

If it can be shown that a greedy algorithm gives the optimal solution of a given
problem, it is usually preferred due to shorter running time compared to other solution
methods. For example, the shortest path problem and the minimum spanning tree
problem can be solved in polynomial time by greedy approach. Cormen et al. (2009)
provide an extensive list of problems solved by greedy algorithms and a comprehensive
analysis.

Caro et al. (1996) study the recognition of greedy structures of certain combina-
torial problems. These are mainly graph related problems. The authors describe a
special case of the SAT problem that can be solved greedily.



1.2. Algorithmic approaches 7

1.2.2 Linear programming

An optimization problem is called a Linear Programming (LP) if the objective and
the constraints are expressed with linear functions. In an LP model, strict inequalities
are not allowed in the formulation. An example of a linear program in standard form
is given by

maximize cTx (1.1)

subject to Ax ≤ b (1.2)

x ≥ 0 (1.3)

where the vector x ∈ Rn represents the variables. The objective in (1.1) is max-
imization and the vector c ∈ Rn is the coefficient vector. The linear constraints are
expressed in (1.2) and (1.3). The constraints in (1.2) are the so-called main con-
straints. The matrix A ∈ Rm×n specifies the coefficients and the vector b ∈ Rm is
called the right-hand side that represents the bound for restrictions. The special con-
straints in (1.3) are called nonnegativity constraints. Linear programs can be solved
in polynomial time (Khachiyan (1979)), and hence belong to the complexity class P.

Due to their discrete nature, many combinatorial optimization problems can only
be formulated with integrally valued decision variables. A formulation with linear
objective as in (1.1), linear constraints as in (1.2), and integrally valued variables,
x ∈ Zn, is called an integer programming (IP). If a formulation consists of both
continuous and integral variables, it is called a mixed integer programming (MIP).

Theorem 1.2.1. Integer programming is NP-hard.

Proof. We give a polynomial time reduction from the SAT in conjunctive normal form
to 0-1 Integer Programming that is a special case of Integer Programming. Given a
SAT instance, for every variable in set U , we create a binary variable. For every
clause in set C, we define a constraint in the following way: Let c ∈ C be a clause
with a set Lc of literals and let the set L′c ⊆ Lc be the literals that are negations
of boolean variables. The constraint that corresponds to the clause c turns to be∑

i∈Lc\L′c
xi +

∑
i∈L′c

(1 − xi) ≥ 1. Note that a negated literal a boolean variable
corresponds to the complement of the corresponding binary variable.

We see that a solution of the SAT problem satisfies every clause which implies
that there is at least one true literal in every clause, hence every constraint in binary
program is satisfied. This leads to a solution of the corresponding binary program.
Conversely, by construction, any binary program solution gives a solution to the SAT
problem as well. Consequently, Integer Programming is NP-hard, since finding its
solution is as difficult as finding a SAT solution.

The details of the proof showing that the integer programming is in NP can be
found in the book of Papadimitriou and Steiglitz (1982).

Corollary 1.2.2. Mixed integer programming is NP-hard.

Proof. Integer Programming is a special case of Mixed Integer Programming.



8 Chapter 1. Introduction

Duality. Every LP problem is associated with a particular LP problem that is
called its dual. Then the original LP is called the primal. An LP and its dual can be
thought of as the complements of each other for two reasons. First, they have opposite
objectives (maximizing vs. minimizing or vice versa). Second, objective values of
all dual solutions are either greater than equal to (in case primal has maximization
objective) or less than or equal to (in case primal has minimization objective) the
objective values of all primal solutions. This is called weak duality. Optimal solutions
of both problems have the same objective values and this is called strong duality. We
refer to the Chapter 4 of Bertsimas and Tsitsiklis (1997) for more information about
the duality theory for LP models, and to the Chapter 5 of Bertsekas (2003) for the
duality theory in convex programming.

The dual of the LP problem in (1.1)-(1.3) is given by

minimize bT y (1.4)

subject to AT y ≥ c (1.5)

y ≥ 0 (1.6)

In fact, the dual problem may be helpful in solving and analyzing the primal prob-
lem and vice versa. For example, verifying that the solutions found by an algorithm
are indeed optimal, can be done by showing that for any solution found by that al-
gorithm there is a dual solution with the same objective value. The dual problem
may also be used to develop algorithms. Depending on the nature of the problem
under consideration, decisions while solving the primal problem can be guided by
dual objective and/or dual feasibility. The primal-dual algorithms use the guidance
of dual objective while taking care of primal objective to reach optimality. Primal-
dual approach is also useful in developing approximation algorithms (see Chapter 1
of Williamson and Shmoys (2011)).

Complementary slackness. As mentioned before, the objective values of the pri-
mal solutions and the dual solutions are equal only at optimality. Complementary
slackness condition states two relations between primal and dual: (1) if a constraint is
tightly satisfied in an optimal solution of the primal problem, the corresponding dual
variable can take positive value in the optimal solution of the dual problem, and (2)
if a constraint is “not” tightly satisfied in an optimal solution of the primal problem,
the corresponding dual variable must be zero in the optimal solution of dual problem.

Let aij be the entry of matrix A in ith row and in jth column, and let Υ ⊆ Rn×Rm

such that for every 〈x∗, y∗〉 ∈ Υ we have

x∗ = Argmin{cTx : Ax ≤ b, x ≥ 0}, y∗ = Argmax{bTy : ATy ≥ c, y ≥ 0} (1.7)

Then the complementary slackness condition is formally stated, without proof, by
the following theorem

Theorem 1.2.3. Let x ∈ Rn and y ∈ Rm be feasible primal and dual solutions
respectively. One has 〈x, y〉 ∈ Υ, if and only if the following conditions are satisfied:



1.3. Scheduling 9

(bi −
n∑
j=1

aijxj)yi = 0, i = 1, . . . ,m. (1.8)

(
m∑
i=1

aijyi − cj)xj = 0, j = 1, . . . , n. (1.9)

We note that the proof of the above theorem can be found in many optimization
books; see for example Bertsimas and Tsitsiklis (1997).

1.3 Scheduling

The process of making decisions about how to perform certain tasks while respecting
given constraints is called scheduling. In the scheduling context, a sequence denotes
an ordering of tasks. Solutions of many scheduling problems involve tasks sequences.
Tasks may be production processes of machines in manufacturing, take-offs and land-
ings at airports, operations in construction projects, and executions of processing
units in computer environments. The constraints to be respected may be precedence
relations, duration bounds, earliest possible start times, due dates, and skill require-
ments. Scheduling is rooted in the work of Henry Gantt which goes back to the 1910s.
He developed the well-know Gantt charts that are still used by modern scheduling
softwares.

In scheduling, we see that first studies in the literature belong to Smith (1956),
Johnson (1954) and Jackson (1955). After the development of computational com-
plexity theory, many researchers worked on exploring the complexity hierarchy of
scheduling problems. For example, Lawler (1978), Lenstra and Rinnooy Kan (1978),
and Lenstra and Rinnooy Kan (1980) studied the complexity of basic deterministic
scheduling problems. A comprehensive complexity hierarchy of scheduling problems
is given by Brucker and Knust (2009).

It has been shown that many scheduling problems are NP-Hard. This directed
researchers, like Hochbaum and Shmoys (1988), Lenstra et al. (1990), and Schuurman
and Woeginger (2002), to develop approximation algorithms. For some scheduling
problems, not only optimality, but also certain solution quality cannot be guaranteed
a priori with polynomial time algorithms. This property is called inapproximability.
Kellerer et al. (1996), Hoogeveen et al. (2001), and Woeginger (2004) are some of the
researchers who studied inapproximability of scheduling problems.

1.3.1 Machine scheduling

In machine scheduling, jobs are processed by using available resources or so-called
machines. In single machine scheduling problems, there is one resource with a capacity
of performing one job at a time. These problems are important in the sense that they
appear as sub-problems in complex scheduling problems. For example, the WSSM in
Section 1.5.1 is a single machine scheduling problem. Many single machine scheduling



10 Chapter 1. Introduction

problems can be solved in polynomial time. As additional constraints are considered,
they become NP-complete.

In parallel machine scheduling, there are several machines, each may have different
processing speeds. Jobs consist of several parts so-called operations in many schedul-
ing problems. Flow shop scheduling problems consist of several types of machines such
that each job has exactly one operation for every machine and all jobs go through all
the machines in the same order.

If every job has a fixed order of operations and if this order may vary from one
job to another, the scheduling model is called a job shop. In job shops, the jobs may
visit the machines more than once and the number of operations may vary from one
job to another. In an open shop, the jobs do not have a fixed order for operations.

Graham et al. (1979) introduced the notation α|β|γ for the classification of models
in machine scheduling. In this notation, the fields α, β, and γ represent the machine
environment, the job characteristics, and the criterion to optimize respectively. For
example, the WSSM and the SSM are denoted by 1||

∑
wjCj and 1||

∑
Cj in this nota-

tion. Brucker (2007) provides an extensive collection of numerous machine scheduling
problems. The theory and practice of machine scheduling is covered by Pinedo (2008).

1.3.2 The resource-constrained project scheduling

In the resource-constrained project scheduling, shortly the RCPSP, a set of activities
is involved in a project. There are several types of resources and in order to finish
the project, available resources must be allocated to activities in required amounts.
The RCPSP generalizes machine scheduling models in the sense that the resources
can be used partially to perform activities. The resources are renewable which means
that they are available for every time unit in constant amount. The makespan refers
to the latest completion time of all activities in the project and usually the objective
is minimizing the makespan. The RCPSP has become a central problem in project
scheduling literature and many real-world complex scheduling problems are defined
using RCPSP’s setting. Brucker et al. (1999) and Hartmann and Briskorn (2010) give
extensive literature surveys on the RCPSP.

1.3.3 Workforce scheduling

Multi-skill technician-task scheduling (MTTSP). Similar to the RCPSP, a set of tasks
is given in the MTTSP. As a generalization of resource constraints, there are two types
of resources; renewable resources and non-renewable resources. Renewable resources
are technicians and they have skills in several specialization fields. The degree of
expertise in a specialization field is expressed by hierarchical levels. There is a project
budget that can be used to hire external companies for outsourcing some tasks. This
budget may be considered as non-renewable resource. Performing a task requires the
availability of a certain skill combination and usually this requirement is met by a
team of technicians. In the problem, capacities of renewable resources vary with time,
since the availability of technicians is considered.



1.4. The stable assignment problem 11

Both the RCPSP and the MTTSP in the most general form are NP-hard. In the
literature, many heuristic algorithms are proposed for these problems and the growth
of computational power in the latest years made it possible to obtain good quality
solutions.

Scheduling problem of France Telecom. One of the topics studied in this thesis is
a MTTSP with some restrictions. In order to make this scheduling problem known
among researchers, France Telecom introduced it as the subject of the challenge orga-
nized by the French Operational Research and Decision Support Society (ROADEF)
in 2007 (Dutot et al. (2006)).

In the problem, tasks are grouped into priority classes, each representing an ur-
gency level. It is assumed that the time line is split into periods as workdays. If the
processing of a task starts in a workday, it must be completed in the same workday.
The technicians working in a team must stay together throughout the workday; hence
a team can perform a number of tasks as long as (1) the total length does not exceed a
workday, and (2) skills in the team meet the requirements of each task. The objective
is minimizing the weighted sum of the latest completion times of the priority classes.

Outsourcing some tasks is possible by using a fixed budget. Since the budget
amount does not appear in the objective of the problem, it does not concern us that
any amount of money is saved from this budget. Therefore, in all solutions of the
problem, this budget is used as much as possible. Here the challenge is to figure out
which subset of the tasks should be outsourced such that the remaining tasks can be
performed in shortest time by the available technician group.

1.4 The stable assignment problem

1.4.1 The stable marriage problem

The concept of stability was introduced by David Gale in the beginning of the 1960s.
Gale and Shapley (1962) defined stability in the setting of the marriage problem. In
this setting, there are two sets of players with equal sizes; men and women. Each
player orders strictly all players in opposite sex in a so-called complete preference list.
A marriage is stable if and only if it does not contain such a man-woman pair that
they are not partners and prefer each other to their current partners. It is said that
such a pair blocks the marriage and makes it unstable.

If we consider a complete bipartite graph whose partitions are the player sets,
then the marriage problem is equivalent to the perfect matching problem subject to
the stability condition. In marriage problems, it is common to use an objective of
maximizing the satisfaction of one particular player set. In a man-optimal stable
marriage, every man is as happy as in any stable marriage. Woman-optimal is defined
similarly. Man-optimal and woman-optimal stable marriages can be constructed in
polynomial time by the proposal-disposal algorithm of Gale and Shapley (1962).

In the following theorem, we give one of the fundamental results of Gale and
Shapley (1962).



12 Chapter 1. Introduction

Theorem 1.4.1. (Gale and Shapley (1962)) There always exists a stable set of mar-
riages.

Theorem 1.4.1 tells us that for any preference of players, stable marriages can be
constructed.

1.4.2 The university admissions problem

Our stability analysis in Chapter 3 includes a reduction of a workforce assignment
problem to the university admissions problem. In the University Admissions problem,
players, that are universities and students, have usually incomplete preference lists
over the opposite player set. A university can admit a number of students at most its
quota. A stable admission does not contain a university-student pair such that the
following cases are satisfied simultaneously:

• they are not assigned to each other,

• the student is not admitted or he/she prefers that university to his/her current
university,

• the university has not filled its quota and it can immediately admit the student,
or its quota is filled and there exists a student who is admitted but is preferred
less than that student.

A fundamental result in the university admissions problem is obtained by Gale
and Sotomayor (1985) and it is given in the following theorem.

Theorem 1.4.2. (Gale and Sotomayor (1985)) In all stable admissions; the same
subset of students is admitted, and every university admits the same number of stu-
dents.

Gale and Sotomayor (1985) also showed that stable admissions, if one exists, can
be constructed in polynomial time. Bäıou and Balinski (2000a) provide us an iterative
approach in which a particular case causing instability is detected and prevented in
every iteration. The contribution of the authors is important in the sense that this
approach provides an implicit description of stable admissions by pointing out what
to avoid to satisfy the stability.

Marriage problem revisited. It does not remain true that stable marriages always
exist, if the preference lists are incomplete. If the players like some players in the
opposite set equally or they have ties in their preference lists, stable marriages can be
constructed in polynomial time (Irving (1994)). However, Iwama et al. (1999) proved
that the stable marriage problem is NP-complete if the preference lists are incomplete
and the preferences have ties. Then Iwama et al. (2004) and Iwama et al. (2008)
developed approximation algorithms for the marriage problem with incomplete lists
and ties.



1.5. Planning problems 13

1.4.3 The stable allocation problem

In stability terminology, marriages are one-to-one type assignments and admissions
are many-to-one type assignments. Bäıou and Balinski (2000b) developed a graph-
theoretic approach in which the properties of many-to-many type assignments, or
allocations, are analyzed. The authors proved the following result

Theorem 1.4.3. (Bäıou and Balinski (2000b)) There always exist many-to-many
type stable assignments.

Bäıou and Balinski (2002) extended many-to-many type stable assignment prob-
lems to an allocation problem in which players in one set offer some amount of work
and players in the opposite set seek a certain amount of work. The authors proved
that stable allocations can be constructed in polynomial time. This generalization is
indeed important for practical cases such as finding allocations for agents who can
flexibly work for those companies that can outsource a certain amount of work to
these agents.

Stability concepts are used in many real-world assignment applications. Some of
these applications are assigning medical students to hospitals in the U.S.A., Canada,
Scotland, and Japan; assigning the students to universities in Turkey, and assigning
academicians to universities in France.

1.5 Planning problems

We can define planning as a process of setting certain goals, systematically making
decisions on how to allocate the resources, and determining the tasks or actions to
pursue the stated goals. The range of a plan depends on the involved actions and it
may be long, intermediate, or short. Then the decisions to be made are operational,
tactical, and strategic respectively. Proper planning is important, if it is expected
to minimize the timing and the use of resources. We can give diverse examples for
planning like finding the routes for car navigation, deciding which train must stay
on which track of the shunting yard during the night, and rescheduling the flights
of airplanes and passengers in commercial aviation when disruptions occur. In the
following sections we explain two planning problems that are studied in this thesis.

1.5.1 The dial-a-ride problem

Hunsaker and Savelsbergh (2002) discussed feasibility testing for a dial-a-ride problem
under maximum wait time and maximum ride time constraints. Dial-a-ride problems
concern the dispatching of a vehicle to satisfy requests where an item (or a person) has
to be picked up from a specific location and has to be delivered to some other specific
location. In this pick up and delivery service, items are carried at the same time as long
as the vehicle capacity allows. Dial-a-ride problems arise in many practical application
areas, as for instance shared taxi services, courier services, and transportation of
elderly and disabled persons. Next, we give a formal definition of the problem.



14 Chapter 1. Introduction

Problem: Dial-a-ride problem

Instance: A sequence of 2n + 1 events has to be served in the given
order by a single vehicle. The first event is the dispatch of the vehicle
from a central facility. The remaining 2n events are grouped into a set
P of pairs 〈i, j〉 with i < j where i and j are not necessarily consecutive.
In every pair 〈i, j〉, the earlier event i is the pickup and the later event
j is the delivery of some fixed item. The vehicle can wait at most ωi at
the location where event i occurs. Event i must occur between αi and βi.
Travel time between location i and i + 1 is γi,i+1, and for pair 〈i, j〉, the
riding time between events i and j can be at most δij.

Question: Do there exist 2n + 1 time points for these 2n + 1 events
satisfying the aforementioned constraints?

1.5.2 The vehicle refueling problem

The vehicle refueling problem involves refueling decisions during a travel on a route
with a fixed order of cities. In the travel, fuel prices vary from one city to another and
the available fuel amount is limited in every city. The maximum fuel amount that
the vehicle can carry while departing from a city depends on the city of departure.
Therefore, tank capacity of the vehicle is not fixed throughout the travel. The distance
between two consecutive cities is specified as the necessary fuel amount to travel it.

Refueling decisions should be made in a way that the vehicle should have enough
fuel in every city to reach the next one and finally the destination. The goal is to reach
the destination with minimum refueling cost. Vehicle refueling problem is encountered
in several applications like in planning inventory of a single item and refueling the
airplanes once their flight schedules are fixed. Below we give a formal definition of
the problem.

Problem: Vehicle refueling problem

Instance: Given a constant k, the set S = {1, . . . , n} of cities, the set
T of tank capacities, the set P of fuel prices, set D of distances, and set
U of available fuel amounts. The city n is the destination. For any city
w ∈ S , total refueling amount must be enough to reach city w, refueling
amount in city w cannot be more than Uw, and the total fuel amount in
tank, after refueling is done, cannot be more than Tw. xw is the refueling
amount in city w and it costs pwxw where pw is the fuel price in city w.

Question: Does there exist a refueling policy such that
∑

w∈S pwxw is no
more than k?

Theorem 1.5.1. (Lin et al. (2007)) A special case of the vehicle refueling problem
with Tw = T and Uw ≡ ∞ for all w ∈ S can be solved in linear time.

The authors propose an algorithm in which refueling decisions are made in a
complicated way. Every city distinguishes two cities among the successive ones: the
first cheaper city and the last reachable city with full tank. In a city, if the first



1.6. Results and overview of the thesis 15

cheaper city is later than the last reachable city, the tank is filled to the full capacity
and the vehicle goes to next city, otherwise the refueling is done, if necessary, in an
amount to reach the first cheaper city and the vehicle directly goes to the first cheaper
city.

An equivalent lot sizing problem. The vehicle refueling problem is equivalent to a
specific single-item lot sizing problem. The equivalence can be easily seen if the fuel
is considered as the item to produce and/or to keep in the inventory such that every
city corresponds to a time interval and the distance to travel from a certain city to
the next one becomes the demand in the corresponding time interval. Then every
refueling can be seen as a production with zero setup cost and with the linear cost
function. Both production and inventory are capacitated and the capacities vary over
time intervals.

The equivalent lot sizing problem has been studied by Sedeo-Noda et al. (2003)
and the authors propose an O(n log n) time greedy algorithm. For an overview of lot
sizing problems in general we refer to Jans and Degraeve (2008).

Vehicle refueling via network flow. The vehicle refueling problem can expressed
as a flow problem on a specific network that is given by Sedeo-Noda et al. (2003). In
general, network flow problems are solvable in polynomial time. Ahuja and Hochbaum
(2008) developed an O(n log n) time algorithm to solve the flow problem on the specific
network for the vehicle refueling problem.

1.6 Results and overview of the thesis

This section summarizes the main results obtained on the problems that are studied
in this thesis.

1.6.1 Multi-skill workforce scheduling

In Chapter 2, we worked on the multi-skill workforce scheduling problem of France
Telecom. In this section, we give an overview of the objectives, the contributions, and
the results. The work in this chapter is published by Firat and Hurkens (2011a) in a
refereed journal.

Objectives. The goal in the scheduling problem of France Telecom (defined in
Section 1.3.3) is to build time-efficient schedules. Here, the challenge is to determine
task sequences such that the following points should be considered simultaneously:
(1) hard tasks should be packed efficiently into sequences in order not to waste the
working time of experts, (2) technicians should be chosen for teams for the efficient use
of skills. These two points are closely related to each other and both should be taken
care of simultaneously during schedule construction. Moreover, any method with a
global view of the problem is time consuming due to high complexity. Therefore,
we aimed to have some flexibility in our solution methodology in order to repair the
damage of choices that are locally advantageous but not globally.

Contributions. Our contributions in the multi-skill workforce scheduling problem



16 Chapter 1. Introduction

of France Telecom are listed below.

• We formulated several key properties of tasks (Section 2.5.2).

• We designed a MIP model to calculate lower bounds for the objective of the
problem (Section 2.5.3).

• We developed a MIP model, called the Flexible Matching Model (FMM), to
construct day schedules by extending the workloads of teams iteratively. In
fact, the FMM is a MIP formulation of a many-to-one assignment problem on
a bipartite graph with some additional constraints. It builds teams in a flexible
way by taking care of efficient packing of hard tasks as well as maximizing the
utilization of experts (Section 2.5.4).

Our solution methodology. In the schedules of the France Telecom problem, work-
days are independent from each other, since no overflow of task processing is allowed
and teams are formed again and again in every workday. Therefore, a schedule is
formed by consecutive day schedules. The main idea of our solution methodology
is to start constructing a day schedule with teams, each performing a single task.
Then we extend workloads of the teams by adding more tasks and at the same time
we reallocate the technicians. A day schedule is completed whenever no task can be
inserted anymore.

Once a task is inserted into the day schedule, it is never removed later. Moreover, a
day schedule is not changed once it is completed. Considering the mentioned points,
our solution methodology can be classified as a constructive heuristic with greedy
property.

Problem instances. In the 2007 ROADEF Challenge, 30 problem instances are
provided by the France Telecom as a test bed. The instances are grouped into three
sets with same size; A, B, and X. The instance set A includes small-size instances and
the skill distribution in the technician groups can be considered as homogenous. In
this thesis, rare expertise refers to heterogenous skill distribution within the technician
group. The instance sets B and X include relatively large-size instances with rare
expertise.

Performances in the ROADEF Challenge 2007. We consider three best solution
approaches of the ROADEF Challenge 2007: Hurkens (2009), Cordeau et al. (2010),
and Estellon et al. (2009). The percentage distance between a solution value and
the lower bound value is used for comparisons. We see that in small-size instances
(i.e. instances of set A) all approaches have high quality solutions. However, as the
instance size grows and rare expertise is introduced, the solution qualities of Cordeau
et al. (2010) and Estellon et al. (2009) decrease.

Our results. We believe that the instance sets B and X are better representatives
for the real life. Therefore, the conclusions are drawn on our computational results
for these instances (see Table 2.7 for more details). We use the percentage distance
between a solution value and the lower bound value for comparisons.

• In all instances of X, our solutions values are better (here lower) than all other
solution approaches.



1.6. Results and overview of the thesis 17

• In instance sets B and X, our solution values are around 5% than the solution
values of the winner, Hurkens (2009), and around 10% lower than the solution
values of Cordeau et al. (2010), and Estellon et al. (2009) on the average.

• We have best solution values in 17 instances out of 20 instances of sets B and
X and in the remaining 3 instances we are not the worst. Therefore, we have a
stable solution quality.

1.6.2 Stabile multi-skill workforce assignments

In Chapter 3, we worked on stable multi-skill workforce assignments. This section
gives a summary of this study. The work in this chapter is submitted by Firat et al.
(2011c) and revised for publication in a refereed journal.

Motivation. Every workday schedule in the solutions of the France Telecom
problem is a workforce assignment between technicians and sequences of tasks. In
this chapter, we perceive a job as a sequence of tasks. Then a workday schedule turns
out to be a many-to-one type assignment between technicians and jobs under skill
requirement constraints. Since the solution value of the schedule remains the same
for every feasible workforce assignment in a workday, we can consider preferences of
technicians and jobs. From the technicians’ point of view, some jobs may be more
preferred due to several reasons such as skill match, job location, job provider and
so on. On the other hand, from the job providers’ point of view, there are several
criteria to distinguish technicians from each other like experience, age, adaptability
for teamwork and so on.

Now the following question comes to mind: “Which of the feasible assignments
are better if the preferences of technicians and jobs are considered?”.

Objectives. The above question addresses Gale-Shapley stability. To the best
of our knowledge, Gale-Shapley stability has not been considered within the multi-
skill workforce scheduling in the literature. In our analysis, we extend the notion of
blocking pairs to multi-skill workforce assignment, we express the stability condition
with linear inequalities of binary variables, and finally we propose MIP-models to find
optimal workforce assignments.

Players. In this workforce assignment problem, players are technicians and jobs.
The skill requirements of a job is a combined requirement covering all skill require-
ments of tasks in the corresponding sequence. We assume that preferences are com-
plete and without ties.

Blocking case. In our assignment game, feasibility must be taken into account.
Given an assignment, we say that job j likes a technician t if and only if t is not in
the team of j and there exists a technician t′ in the team of j such that j prefers t to
t′ and t can replace t′ by preserving the team feasibility if j. Technician t likes job j
if and only if t is not in the team of j and t prefers j to his current job. Note that
technicians like jobs based only on preferences, whereas this is not the case for jobs.

Definition 1.6.1. (Stability of a workforce assignment)
A workforce assignment is “stable” if and only if it does not contain such a technician-
job pair that they like each other.



18 Chapter 1. Introduction

Next, we give a formal definition of stable workforce assignment problem.

Problem: Stable technician-job assignment problem

Instance: Given the set S of specialization fields, the set L of hierar-
chical skill levels , the set T of technicians, and the set J of jobs. For a
technician t ∈ T , the matrix St ∈ {0, 1}L×S specifies skills and Pt specifies
the preferences. For a job j ∈ J , the matrix RQj ∈ ZL×S specifies the skill
requirements and Pj specifies the preferences.

Question: Does there exist a technician-job assignment such that skill
requirements of every job is satisfied and it is stable as in the Definition
1.6.1?

The above problem is denoted by STJAP (n, n, n) where the three n’s stand for
|L|, |S|, and the upper bound on the size of teams in feasible assignments respectively.
The following theorems summarize our results.

Theorem 1.6.1. (Section 3.4.2) STJAP(n,1,n) is in P.

In the proof of the above theorem, we reduce STJAP(n,1,n) to a version of the
university admission problem.

Theorem 1.6.2. (Section 3.4.3) STJAP(n,n,n) is NP-complete.

We note that the proof of the above theorem is by reduction from “three dimen-
sional matching problem” (3-DM).

Theorem 1.6.3. (Section 3.5) The set of stable technician-job assignments can be
characterized by a set of linear inequalities of binary variables.

Computational results. Our computational results show that stable assignments of
the instances fewer than 20 technicians, around 10 jobs with at most 5 skill domains
and 5 skill levels can be found in less than one second by solving our MIP model (see
Section 3.5.2).

1.6.3 The dial-a-ride problem

In Chapter 4, we focus on the feasibility testing of a dial-a-ride problem, that is
introduced by Hunsaker and Savelsbergh (2002). The work in this chapter is published
by Firat and Woeginger (2011b) in a refereed journal.

Our main result in this chapter shows that this feasibility testing can be done in
linear time by expressing it as a shortest path problem in vertex-weighted interval
graphs. This result is obtained in several steps given below.

System of linear inequalities. We formulate the dial-a-ride feasibility test of Hun-
saker and Savelsbergh (2002) as a system of linear inequalities (Section 4.3).

Difference constraint system. The obtained system of linear inequalities is rewrit-
ten by standard methods into a system of difference constraints. At this step, we
create a directed graph in which every variable is represented by a vertex and every
difference constraint is represented by an arc. The underlying difference constraint



1.6. Results and overview of the thesis 19

system has a feasible solution if and only if the corresponding directed graph does not
contain any negative-weight cycles (see Theorem 24.9 in Cormen et al. (2009),).

Shortest path problem. A careful examination of forward and backward arcs in the
directed graph results in realizing that the graph has a negative weight cycle if and
only if the there exists a shortest path between two specific vertices. This brings us to
the shortest path problem in directed graphs which can be solved in O(n log n) time
by the algorithm of Fredman and Tarjan (1987). We note that every forward arc on
this directed graph can be perceived as a time interval (Section 4.5.1).

Vertex-weighted interval graph. Our last step in getting a linear time algorithm is
realizing that two arcs on a shortest path have intersecting time intervals. Then we
define a vertex-weighted interval graph in which every arc of the directed graph in
our previous stage is represented by an interval with the same weight as of the arc.
Finally, we conclude that the feasibility test for the dial-a-ride problem of Hunsaker
and Savelsbergh (2002) can be done in linear time (Section 4.5.1).

1.6.4 The vehicle refueling problem

In Chapter 5, we worked on a vehicle refueling problem. We present a greedy algorithm
for the problem in Section 5.4. We give three proofs for the correctness of the greedy
algorithm. In the literature, equivalent problems are studied under lot sizing and
network flows. For those problems, researchers proposed greedy algorithms that are
the same as the one we give in Section 5.4.

Analysis of solutions. In the solutions of the greedy algorithm, we distinguish two
cases; (1) an empty-tank event occurs in a city, if the vehicle departs from that city
with a fuel amount in tank just enough to reach the next city, and (2) a full-tank
event occurs in a city, if the vehicle departs with a fuel tank. The fuel type refers to
the city index of the fuel amount. The most expensive fuel type in the tank, when
an event occurs, is said to be dominant and a dominant fuel type is associated with
a number of consecutive cities that form its region. The price of the dominant fuel
type is called regional price of its region.

Regional prices. Empty-tank event results in a regional price decrease. Full-tank
event results in a regional price increase.

Dual variables. There are three types of dual variables. The first type dual variable
corresponds to the regional price increase and it takes positive value in a city if and
only if the regional price increases. The second type dual variable corresponds to the
regional price decrease and it takes positive value in a city if and only if the regional
price decreases. The third type dual variable corresponds to the difference between
the regional price in a city and the fuel price in that city. It takes positive value if
this difference is positive.

In Section 5.4.3, we prove the correctness of the greedy algorithm using network
flow. On a specific network, we express solutions of the greedy algorithm by a flow.
Then we show that there is no negative cost directed cycle in the residual network of
this flow, hence the flow is optimal or has minimum cost (see Chapter 9 of Ahuja et
al. (1993)).

In Section 5.4.4, we prove the correctness of the greedy algorithm using convexity.



20 Chapter 1. Introduction

We explore the neighborhood of a solution of the greedy algorithm and we show that
all neighbor solutions have higher cost than the solution of our greedy algorithm.
This implies that solutions of our greedy algorithm have locally minimum cost. By
considering that the problem has a linear, hence convex, objective function, they have
globally minimum cost.



Chapter 2

A MIP-based approach to a
multi-skill workforce scheduling
problem

This chapter deals with scheduling complex tasks with an inhomogeneous set of re-
sources. The problem is to assign technicians to tasks with multi-level skill require-
ments. Here, the requirements are merely the presence of a set of technicians that
possess the necessary capabilities. An additional complication is that a set of com-
bined technicians stays together for the duration of a work day. This typically applies
to scheduling of maintenance and installation operations. We build schedules by re-
peated application of a flexible matching model that selects tasks to be processed and
forms groups of technicians assigned to combinations of tasks. The underlying mixed
integer programming (MIP) model is capable of revising technician-task allocations
and performs very well, especially in the case of rare skills.

2.1 Introduction

As specialization in production and maintenance increases, the importance of skill
management in employee scheduling grows significantly. Especially when activities
require skills from several specialization fields at different levels, skill management
becomes more challenging. Multi-skilled employee scheduling can be encountered, for
example in companies having operations like maintenance, construction and installa-
tion in which the work is carried out at different physical locations. Then it makes
sense to keep a combined group of workers together for a workday.

The scheduling problem under consideration is the ROADEF Challenge 2007 prob-
lem. It falls in the class of “resource-constrained project scheduling problem” (the
RCPSP) and has some additional aspects that increase the complexity and make it
impossible to use known approaches for the RCPSP in the literature. We develop an
approach to this problem based on a hybrid combination of MIP models and apply
it on maintenance instances provided by France Telecom in the ROADEF Challenge
2007. Since the problem instances of France Telecom have been used as a test bed

21



22 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

for a computational challenge held in 2007, we can compare the performance of our
method to other approaches tackling the same problem.

In the problem, we are given a set of tasks and a set of technicians. The capabilities
or skills required by tasks are described in domains (specialization fields), at several
levels of expertise so-called hierarchical levels . A task can be processed by a group of
technicians in a fixed time provided that the collective capabilities of this group are
above a certain threshold that is called its skill requirements. Among tasks, there are
precedence relations requiring that a task must be completed before another task can
be processed. Then the former is said to a predecessor of the latter. The set of tasks
is partitioned into several priority classes depending on their urgency levels, customer
properties, and so on. The latest completion time of tasks under a priority class is
called the priority span.

The time line is split into equal-size periods of hours that are called the workdays.
Start time and completion time of a task must be within the same workday. In each
workday, teams of technicians are supposed to perform a number of tasks without
overlapping, one at a time, without interruption. In deciding which tasks are to be
processed by which teams, an important constraint is that tasks should be sequenced
properly not to violate any precedence relation. Any travel or setup time between
tasks in a sequence is not taken into account. A team formed on a certain workday
to carry out a task must stay together for the duration of that workday.

Outsourcing some tasks is possible by using a fixed budget. Every task has a
fixed outsourcing cost and since the transportation times and the lead times are not
known, we use the convention of “outsourcing the successors of outsourced tasks”
which means if a task is outsourced, so are all its successors. Clearly, completion
times of the outsourced tasks are not taken into account.

The availability of technicians is considered in the problem. Completion times of
hard tasks are highly effected if some experts are not available on some workdays.
Therefore, it is important to outsource the right combination of tasks when there
is a heterogenous skill distribution within the technician group. We call this rare
expertise. Moreover, efficient packing of the expert-requiring tasks on the days when
experts are available is also crucial.

The objective of the problem is minimizing the weighted sum of priority spans.
Therefore, it is clear that the outsourcing budget is to be used as much as possible to
achieve short completion times.

Results of this chapter. We propose a MIP-based combinatorial approach to the
workforce scheduling problem of France Telecom. In our approach, we formulate
several key task properties and calculate lower bounds for the problem. Our approach
constructs good quality solutions compared to the other known approaches.

The proposed combinatorial approach is composed of two phases: preprocessing
and schedule construction. In the preprocessing phase, we calculate several key prop-
erties of tasks and calculate lower bounds. In order to calculate the lower bounds,
we solve a simplified problem in which skill requirements and precedence relations of
tasks are relaxed, preemption is allowed, unavailability of technicians is taken into
account, and the option of outsourcing tasks is preserved. The problem is formulated
as a MIP model which assumes that priority classes are completed in a pre-determined



2.2. Problem description and notation 23

order. This order is given by the specified permutation of priority classes (for brevity:
“priority permutation”).

In the schedule construction phase, a number of alternative schedules are built
by varying several parameters and strategies. One important parameter for a sched-
ule is the priority permutation, since priority classes are handled sequentially while
constructing a schedule. It is assumed that priority permutations with smaller lower
bound values promise low-cost schedules. Therefore, firstly, the priority permutation
with smallest lower bound value is used.

From our point of view, a schedule is composed of workday schedules due to the
following aspects of the problem: a task cannot be performed in more than one work-
day, and teams of technicians are formed daily. Therefore, our algorithm finds a
packing of tasks (workloads of teams) greedily in the form of sequences, each being
not longer than a workday. The task sequences are initialized by single tasks and
their lengths are increased by adding more tasks iteratively. In every iteration, the
algorithm simultaneously finds enough skilled technicians for every sequence. Con-
structing a day schedule in this way was firstly introduced by Hurkens (2009) in the
ROADEF Challenge 2007 and this approach was ranked first in the final stage among
11 qualified participants.

In this study, our main contribution is introducing the flexibility in extending the
task sequences. The flexibility is maintained by three aspects of our approach (1) the
sequences are allowed to get merged if necessary (2) the technicians can be exchanged
easily among the groups (3) ordering of tasks in a sequence is determined dynamically
by considering their precedence relations. The goal of this flexibility is being able to
schedule more tasks within a workday, especially the ones requiring experts. If the
expertise in the technician group is rare, as it is usually the case in the companies, then
the schedule cost is sensitive to the utilization of the experts. Hence, it is expected,
and also supported by our computational results, that the flexibility of our approach
leads to better packing of hard tasks and lower schedule costs.

The extension of task sequences is carried out by finding simultaneous technician-
tasks assignments that correspond to many-to-one type matchings on the constructed
bipartite graph. Matchings are restricted by skill requirements, precedence relations
and total durations. The problem of finding matchings is formulated as a MIP model
with small number of variables.

The chapter is organized as follows. In Section 2, we give the problem description.
Problem complexity is analyzed in Section 3 and a literature review is presented in
Section 4. Our solution approach is explained in Section 5. The computational results
of our algorithm are comparatively reported in Section 6 and finally we discuss the
applicability of our solution methodology to other multi-skill workforce scheduling
problems in Section 7.

2.2 Problem description and notation

The problem we consider in this chapter was described by Dutot et al. (2006) as
the contest problem in the ROADEF Challenge 2007. In the following sections we



24 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

describe the problem and introduce the necessary notation.

2.2.1 Skills

The tasks in our scheduling problem require specializations in several fields. We use
the term skill domain for a specialization field and skill level to interpret the degree
of expertise hierarchically. The set of skill domains (levels) is denoted by S (L). A
skill at level l ∈ L in domain s ∈ S is denoted by 〈l, s〉 ∈ L × S. Skill requirements
of tasks are specified by matrices in ZL×S. Technician skills can be expressed as skill
vectors in {0, 1, . . . |L|}S, however using the skill matrices in {0, 1}L×S makes it easier
to formulate the problem.

Expertise in the literature of multi-skill workforce project scheduling

To the best of our knowledge, only Bellenguez and Neron (2004)consider hierarchical
skill levels other than the participants of the ROADEF Challenge 2007. The majority
of studies treat human resources as skilled or unskilled in domains (for example Cai
and Li (2000), Bellenguez and Neron (2007), Li and Womer (2009), Valls et al. (2009)
and Avramidis et al. (2010)). Gutjahr et al. (2008), Yoshimura et al. (2006), and
Heimerl and Kolisch (2010) use competence score as an interpretation of skill level.
The drawback of scoring employee expertise rather than leveling has the difficulty in
expressing skill requirements of tasks clearly. If a task requires expertise, then its skill
requirement is merely a high value in a corresponding domain. This high demand may
be satisfied either by assigning an expert or by collecting many non-expert employees.
In case of skill leveling, the second case is not an option. Gutjahr et al. (2008) limit
the number of employees that can be assigned to a task and define special variables
for experts to handle this issue in their nonlinear MIP model. Yoshimura et al. (2006)
use a specific parameter for experts or so-called “project leaders” in order to select
an expert for each project.

Use of skills : We assume that technicians contribute simultaneously in all possible
domains while processing a task and this is called simultaneous skill use. In the
literature of multi-skill workforce project scheduling, Valls et al. (2009), Heimerl and
Kolisch (2010), Drezet and Billaut (2008) and Ballou and Tayi (1996) also make the
assumption of simultaneous skill use.

2.2.2 Technicians

We are given a set T of technicians to perform the tasks. The unavailability periods
of technicians are considered within a finite scheduling horizon. A(t, h) denotes the
unavailability of technician t. It is equal to 1 if t is available on day h and zero
otherwise.

Skills of a technician, say t ∈ T , are expressed by a matrix St ∈ {0, 1}L×S.
Although a more compact way of expressing the skills of technicians is using skill
vectors in {1, . . . , |L|}S, skill matrices are convenient to formulate the problem and
to develop the necessary notation. If technician t is proficient in skill 〈l, s〉, then



2.2. Problem description and notation 25

S
〈l,s〉
t = 1. Clearly, if a technician is qualified in a skill, then he is also qualified

at lower levels in the domain of this skill. Hence S
〈l,s〉
t = 1 ⇒ S

〈l′,s〉
t = 1,∀l′ ≤ l.

Once we are given St, the proficiency of technician t in skill domain s is found by
max{{0}, {l ∈ L|S〈l,s〉t = 1}}.

A skill matrix example of a technician t ∈ T , in a problem instance with |L| = 3,
|S| = 4 may be

St =

 1 0 1 0
1 0 1 0
1 0 0 0


We see that technician t is expert with proficiency of level 3 in domain 1. He

qualifies to skill level 2 in domain 3, but he has no skill in domains 2 and 4. In the
above example, the skill vector of technician t is SVt = (3, 0, 2, 0).

Skills of teams : Let τ ⊂ T denote a team of technicians. We note that the skill
matrix of a team may not have binary entries anymore. We find skills of the team τ
by summing up the skills of technicians in τ , so we have Sτ =

∑
t∈τ St.

2.2.3 Tasks

In our scheduling problem, a set J of tasks is given. In this section we explain the
aspects of our scheduling problem related to tasks.

Skill requirements : Tasks require skill qualifications. The skill requirements of a
task j ∈ J are expressed by a matrix RQj ∈ ZL×S which provides the information of
the desired skill quantity (number of technicians) and skill quality (expertise). The
requirements in RQj are cumulative in the sense that any requirement at a level is
carried to lower ones in the same domain. Therefore, for a task j and a skill 〈l, s〉 we

have RQ
〈l′,s〉
j ≥ RQ

〈l,s〉
j for all l′ ≤ l.

An example of skill requirement matrix for task j in an instance for which |L| = 3
and |S| = 4 may be given by

RQj =

 1 2 0 0
1 1 0 0
1 0 0 0


According to the given skill requirement example, in a team processing task j,

there must be at least two technicians qualified in domain 2, one being proficient at
least at level 2 and one at least at level 1. Let T (j) ⊂ T be such a team. Consequently,

the team T (j) must satisfy S
〈l,s〉
T (j) ≥ RQ

〈l,s〉
j for all 〈l, s〉 ∈ L× S.

Durations : The time needed to perform task j is called its duration and denoted
by dj. The duration of each task is fixed and does not vary with the number and
expertise of technicians assigned. Processing of tasks cannot be interrupted, and if
a team started performing a task, that team must finish the task within the same
workday. This also implies that dj ∈ {1, 2, . . . , H} where H is the workday length.

Precedence relations : Precedence relations of task j enforce that all tasks in
Pred(j) must be completed before the task j starts. A task k ∈ Pred(j) is said



26 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

to be a predecessor of task j and their relation is denoted by k → j. Moreover, task
j is also said to be a successor of task k. Let CTj be the completion time of task
j in a schedule and it is the sum of the hours in previous workdays and the portion
of the workday in which task j is completed. Precedence relations of task j enforce
CTk ≤ CTj − dj, for all k ∈ Pred(j).

Outsourcing : External companies may be hired to outsource a task by paying
its outsourcing cost cj. Outsourced tasks are discarded and need not be scheduled.
The total cost of outsourced tasks must not exceed the outsourcing budget B. In
the problem definition, no related information to outsourcing of tasks is given like
delivery times and transportation times, so we have the convention of outsourcing
the successors of outsourced tasks. Let Ω ⊆ J denote the set of outsourced tasks.
The convention of outsourcing the successors results in the following property of Ω:
{k ∈ J | Ω ∩ Pred(k) 6= ∅} ⊆ Ω.

Priority classes : Tasks are partitioned into several priority classes. We denote the
set of priority classes by P and P (j) ∈ P is the priority class of task j. The latest
completion time of tasks under a priority class is called the priority span. It is denoted
by Cp for a priority class p ∈ P and found by Cp = max{CTj | P (j) = p, j 6∈ Ω}. The
overall make span is the length of a schedule and denoted by C0 = max{CTj | j ∈
J \ Ω}. Note that outsourced tasks do not contribute to the schedule cost. Priority
class 0 is an artificial priority class that is used to include the overall makespan in the
quality evaluation of schedules and of course every task belongs to priority class 0.

2.2.4 Schedules

In this section we explain some more notation about schedules and we state the
feasibility conditions. Finally, the objective of the scheduling problem is discussed.

Workday Concept : The time axis is partitioned into intervals of length H. These
successive intervals represent workdays. Within a certain time interval (workday),
the technicians performing a certain task must work together during this interval and
they form a team. Another important restriction is that the processing of each task
must stay within a time interval. The set D is assumed to have enough number of
workdays to complete the processing of all tasks.

Teams : In each workday of schedules, teams of technicians are formed to process
the assigned tasks. Let Ξ be the set of teams specified by a schedule and τ ∈ Ξ be a
team in that schedule. T (τ) ⊆ T denotes its technicians, J(τ) ⊆ J denotes the tasks
in the workload of τ , and δ(τ) ∈ {1, 2, . . . , |D|} denotes the workday in which τ is
formed. If tasks j′ and j are in J(τ), then j′ <τ j denotes that j′ is processed before
j. In the schedules constructed by our combinatorial algorithm, we assume that there
is no idle time between the tasks in the workloads of teams. Therefore the completion
time of task j is determined as below:

CTj = (δ(τ)− 1)H +
∑

j′:j′<τ j

dj′ + dj (2.1)

Note that the team information consisting of sequences of tasks and groups of
technicians is enough to define a solution. Workday schedules constructed by our



2.2. Problem description and notation 27

combinatorial algorithm together with the corresponding outsourcing decision form a
well-defined solution. Therefore we do not have decision variables for start time of
tasks in our matching models.

Feasibility of schedules

A schedule is feasible if and only if the following constraints are satisfied:

• Outsourcing:

∑
j∈Ω

cj ≤ B (2.2)

The total cost of outsourced tasks must not exceed the outsourcing budget.

{k ∈ J | Ω ∩ Pred(k) 6= ∅} ⊆ Ω (2.3)

The successors of the outsourced tasks are outsourced as well.

• Task and technician assignments:

| {τ ∈ Ξ|j ∈ J(τ)} |= 1, ∀j ∈ J \ Ω (2.4)

Each non-outsourced task is processed by exactly one team.

| {τ ∈ Ξ|t ∈ T (τ), δ(τ) = h} |≤ A(t, h), ∀h,∀t ∈ T (2.5)

Technicians can be in at most one team on the days they are available.

• Completion times

CTk ≤ CTj − dj, ∀j ∈ J \ Ω,∀k ∈ Pred(j), (2.6)

A successor must not start before the completion of all of its predecessors.

max {(δ(τ)− 1)H,max{CTj′ |j′ <τ j}} ≤ CTj − dj, ∀τ ∈ Ξ, j ∈ J(τ) (2.7)

Processing of tasks in the team workload must not overlap. Note that we do not
allow “idle times” between tasks in a team workload. Therefore, the inequality sign
can be replaced by an equality sign for the solutions of our combinatorial algorithm.

CTj ≤ δ(τ)H, ∀τ ∈ Ξ,∀j ∈ J(τ) (2.8)

Workloads of teams must not exceed the workday length.



28 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

Cp = max{CTj | P (j) = p, j 6∈ Ω} (2.9)

Priority span is the latest completion time of the tasks belonging to that priority.

• Skill requirements:

RQ
〈l,s〉
j ≤ S

〈l,s〉
T (τ), ∀τ ∈ Ξ,∀j ∈ J(τ),∀〈l, s〉 ∈ L× S (2.10)

The technicians in every team must be enough skilled to process the assigned tasks
in the workload.

Objective

The objective value of a solution in our scheduling problem is calculated by
∑

pw(p)Cp
where Cp denotes the priority span as expressed in (2.9). In the benchmark instances of
France Telecom, the weights were given as {1, 28, 14, 4, 0} for priorities {0, 1, 2, 3, 4}
respectively. The objective is to minimizing this weighted sum of priority spans.
Note that the outsourcing cost is not included in the objective, therefore, in the
combinatorial algorithm, we aim to use the outsourcing budget as much as possible
to decrease the total work load in the schedule.

A MIP model of the problem is given by Cordeau et al. (2010). The authors report
that after 24-hour run of the MIP solver, an optimal schedule of even small instances
with 7 technicians and 20 tasks could not be found.

2.3 Problem complexity

Let us call the decision version of our scheduling problem the “Scheduling Problem of
France Telecom” (SPFT). Firstly, we give a formal definition of the SPFT and then
we prove that it is NP-complete.

Problem: Scheduling Problem of France Telecom (SPFT)

Instance: Given a numerical bound k, integers H,B, denoting workday
length, outsourcing budget of the project respectively. The set T of techni-
cians, the set J of tasks, the set P of priority classes, the set L×S of skills,
and the set D of workdays. For every t ∈ T ; there are skills St ∈ {0, 1}L×S
and availability A(t, h) ∈ {0, 1}, for all h ∈ D. For every j ∈ J ; there
are skill requirements RQj ∈ ZL×S, duration dj ∈ {1, . . . .H}, outsourcing
cost cj ≥ 0, predecessors Pred(j) ⊆ J , and priority class P (j) ∈ P . The
last completion of tasks in priority class p ∈ P is denoted by Cp and w(p)
denotes the weight of the priority class p.

Question: Does there exist a schedule satisfying the feasibility conditions
mentioned in Section 2.2.4 with cost

∑
p∈P w(p)Cp no more than k?

Theorem 2.3.1. SPFT is NP-complete.



2.4. Literature review 29

Proof. First of all, SPFT is in NP, since in polynomial time we can compute the cost
of a given schedule and we can check whether it is feasible. We give a reduction
from the subset sum problem to the SPFT; see Garey and Johnson (1979) for the
NP-completeness of the subset sum problem.

Problem: Subset Sum

Instance: An integer Σ and a set A = {a1, . . . , an} in which each element
ai has size s(ai) and Π =

∑
ai∈A s(ai) .

Question: Does there exist a subset A′ ⊆ A, such that the total size of
elements in A′ is equal to Σ?

Let us construct a special case of the SPFT from an instance of the subset sum
problem as follows:

• H = Π− Σ, B = Σ, |D| = 1.

• L = {1}, S = {1}, and P = {1} with w(1) = 1.

• T = {1} with S1 = {1}, A(1, 1) = 1.

• for every item ai ∈ A we create a task j(ai) with dj(ai) = cj(ai) = s(ai), Rj(ai) =
{1}, and Pred(j(ai)) = ∅.

Question: Does there exist a schedule with objective value H ?
Note that the minimum value of the schedule cost is attained when outsourcing

budget is completely used:
∑

j(ai)∈Ω cj(ai) = B = Σ making the schedules length as
well as the schedule cost Π − Σ = H. So a YES instance of the special case of the
SPFT corresponds to a YES instance of the subset sum problem. It is also clear
that a NO instance of the special case of the SPFT corresponds to a NO instance of
the subset sum problem. This shows that the subset sum problem is reduced to the
SPFT, hence the SPFT is NP-complete.

2.4 Literature review

2.4.1 The resource-constrained project scheduling (RCPSP)

The problem considered in this chapter is a generalization of the RCPSP that is
extensively reviewed by Brucker et al. (1999) and Hartmann and Briskorn (2010).

“Multi-mode resource-constrained project scheduling problem” (MM-RCPSP) is
a generalization of the RCPSP in which activities may require renewable, non-
renewable, and doubly constrained resources. (see for example De Reyck and Herroe-
len (1999)). In the “multi-skill project scheduling problem” (MSPSP) the resources
are renewable human resources or staff members. Every staff member can have sev-
eral skills among the needed ones by the activities. As Bellenguez and Neron (2007),
and Li and Womer (2009) mentioned, the MM-RCPSP formulation can be used to
describe MSPSP, however the number of combinations becomes very large even for



30 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

the moderate size of employee groups, thus making it impossible to use the exact
methods proposed for the MM-RCPSP to solve the MSPSP.

In the literature of project scheduling with multi-skilled human resources, several
objectives are considered. For example, Avramidis et al. (2010), and Li and Womer
(2009) consider minimizing staffing cost; Bellenguez and Neron (2004), Bellenguez
(2006) consider minimizing the makespan, and Wu and Sun (2006) consider minimiz-
ing the outsourcing cost. Gutjahr et al. (2008) use a hybrid objective of maximizing
economic gains and personal improvement, Heimerl and Kolisch (2010) minimize both
makespan and outsourcing cost.

We encounter different solution methodologies in the literature of project schedul-
ing with multi-skilled human resources. Heimerl and Kolisch (2010) formulates an
elegant MIP model to solve project staffing and project scheduling simultaneously.
Li and Womer (2009) proposes a hybrid algorithm based on MIP modeling and con-
straint programming. The authors argue that Bellenguez and Neron (2004) do not
consider personnel capacity that seems to be a result of unavailability, expertise, and
other personal attributes. In another recent study, Gutjahr et al. (2008) proposes a
greedy heuristic as well as a hybrid solution methodology using priority-based rules,
ant colony optimization and genetic algorithm to solve the so-called “project selection,
scheduling and staffing with learning problem”.

The project scheduling problem considered by Bellenguez and Neron (2004) shows
significant similarity to our problem. In their scheduling problem, skills are expressed
in domains by hierarchical levels in the same way as our problem. Skills of workers
and skill requirements of jobs are specified by the same matrices as in Section 2.2.2
and in Section 2.2.3. The authors assume that technicians can only work in one skill
domain while performing a task contrary to our assumption ‘‘simultaneous skill use”.
This assumption seems more reasonable in cases if tasks take short time and require
skills in many domains. On the other hand, if the tasks in a project require skills in
several but not many domains, assigning one person to each piece of work may lead
to underutilization. In the authors’ problem, activities can be processed continuously
after each other, so there is no workday concept. Outsourcing of tasks is not an option
in the problem and the objective is minimizing the makespan whereas we minimize a
weighted sum of priority spans. Consequently both problems fall in the class of the
RCPSP, but differ from each other in the mentioned points.

Bellenguez and Neron (2004) worked on finding lower bounds for the makespan.
Firstly, the authors use the precedence graph to find a lower bound value that is the
length of the longest path (critical path). For every activity, a time window with an
earliest start time and a deadline is determined. Then the authors improve the lower
bounds value using two methods: compatibility graph and energetic reasoning. In the
compatibility graph, a node represents an activity with a weight that is equal to its
duration and two activities are joined by an edge if their time windows intersect and if
both can be processed by workers at the same time. In this graph a maximum-weight
independent set is found by using a heuristic algorithm and by solving a MIP model
with CPLEX. The weight of the independent set provides an improved lower bound
value. In energetic reasoning, certain time windows are calculated and in each of them
it is checked if the mandatory parts of the activities can be processed by workers. In



2.5. Scheduling with flexible matching model 31

a negative result, the current lower bound is increased by one time unit.

2.4.2 Solution approaches in the ROADEF Challenge 2007

In the ROADEF Challenge 2007, the solution approach of Hurkens (2009) was ranked
first. Cordeau et al. (2010) and Estellon et al. (2009) tied for second place. Cordeau
et al. (2010) describes a MIP model for our scheduling problem and the authors
mention that it can not be solved for large instances optimally in a reasonable time.
They develop a meta-heuristic method that consists of a construction heuristic and an
adaptive large neighborhood search with several destroy and repair methods. The so-
lution strategy is viewed as a standard simulated annealing algorithm with a complex
neighborhood search due to the acceptance criterion of the solutions.

Estellon et al. (2009) designed a local search scheme in which a greedy algorithm is
employed to obtain a feasible solution and this solution is improved by a local search
strategy. The authors use a methodology including three key points, search strategy,
moves and evaluation of moves. They also point out that a careful implementation
increases the convergence speed of local-search heuristics and stochastic elements are
useful to improve the diversification.

As mentioned in the introduction, Hurkens (2009) considers the same problem
and proposes a two-phase MIP-based solution methodology. In the first phase, a MIP
model computes lower bound values and determines the tasks to be outsourced. Our
MIP model is based on the author’s one, but it is a slightly improved version in a way
that tighter lower bound values for instances with heterogeneous skill distribution are
found. In the second phase, two matching models are used to find technician-task
assignments having limited flexibility compared to our matching models.

2.5 Scheduling with flexible matching model

2.5.1 An overview of the combinatorial algorithm

The scheduling problem under consideration is a complex problem. The main goal of
the problem turns out to determine the workloads of teams, such that not only the
number of processed tasks on each workday should be maximized, but also the tasks
in a workload of a team should have similar skill requirements. Especially, when the
skill quality or the expertise, within the technician group is limited, finding a match
between workloads and the team skills becomes harder due to the heterogeneity in
skill distribution. In such cases, the main goal turns out to be maximizing the number
as well as the hardness of selected tasks in the workloads, since the priority spans are
sensitive to the utilization of experts.

Hurkens (2009) introduced the idea of greedily constructing the workloads, while
satisfying skill requirements. The author developed a solution methodology using
matching models which find technician-task assignments simultaneously. In this the-
sis, we improved Hurkens’ solution approach by obtaining tighter lower bound values
and by adding flexibility to the matching models to have a better packing of hard
tasks in schedules.



32 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

�
�

�
�START

?
Read instance data�� ��

Preprocessing ?
Calculate:

- Hardness, Coverage, Min-Tech etc.
- Lower bounds for each priority permutation

?
Pick a priority perm. with next smallest lower bound

?

���
���

���

XXXXXXXXX

XXX
XXX

XXX

���������

YES

NO

Cost of incumbent schedule ≤
next smallest lower bound ?

�

-

?

���
���

���

XXXXXXXXX

XXX
XXX

XXX

���������

YES

NO?

All parameters and strategies
used?

-

�

Schedule
Construction

START SCHEDULE CONSTRUCTION
- Set parameters and strategies
- Outsource tasks

?Workday
Schedule Select technicians and tasks for the IMM

Solve the IMM

Initialize teams

?
Iterating over tasks:

Solve the FMM for subsets of teams

Update skills and loads

?

���
���

XXXXXX

XXX
XXX

������

-

�

YES
Schedule extended?

NO?

���
���

XXXXXX

XXX
XXX

������
NO

YES�

-

All tasks scheduled?

?
Start scheduling the next workday

�

Termination
Check ��

���
XXXXX

XX
XXX
�����

Lowest cost?

?YES

NO

�

Update incumbent schedule
?

���
��

XXXXX
XXX

XX
�����

20-min.
time limit exceeded?

NO

YES
?

-

�� ��
?

Output the incumbent schedule�
�

�
�STOP

Figure 2.1: Flowchart of the Combinatorial Algorithm



2.5. Scheduling with flexible matching model 33

Figure 2.1 shows the flowchart of our algorithm. The algorithm consists of two
main phases; preprocessing and schedule construction. The preprocessing phase in-
cludes calculation of necessary parameters for tasks and computation of lower bounds.
Computing lower bounds is merely solving a simplified problem in which skill require-
ments and precedence relations are relaxed, pre-emption is allowed, and only tech-
nician availabilities are taken into account. The simplified problem boils down into
finding minimum time needed to satisfy the cumulative man-hour demand of tasks
with the option of outsourcing tasks. It is assumed that the priority classes are pro-
cessed sequentially and lower bounds are computed for all priority permutations in
practice, since depending on the number of tasks, any priority sequence may result in
lower schedule cost than the others.

In the schedule construction phase, alternative schedules are constructed by se-
quentially assigning priority classes. Hence, for every schedule, a certain priority
permutation is fixed in advance. Priority permutations are considered according to
their lower bound values: the one with smallest lower bound value is considered first,
and next the second smallest and so on. Moreover, we construct more than one sched-
ule for the same priority permutation by using several parameters and strategies for
some decisions.

Having constructed a complete schedule, its cost is compared to the cost of incum-
bent schedule. If the cost is smaller, then the incumbent schedule is updated with
the latest constructed one. Whenever the cost of the incumbent schedule is smaller
than or equal to the lower bound value of the next considered priority permutation,
then this priority permutation is neglected. In such a case, it is clear that no schedule
under that priority permutation can improve the schedule cost ever found. Time limit
was specified as 20 minutes in the ROADEF Challenge 2007, so the algorithm stops
constructing schedules unless it is terminated before.

The combinatorial algorithm builds workday schedules successively. Constructing
a workday schedule starts with the “initial matching”. Initial matching is performed
by solving a MIP model called the ‘initial matching model” (IMM). The model finds
a many-to-one type matching on a bipartite graph in which one partition includes
technicians and one partition includes tasks. Initial matching results in a partially
constructed day schedule in which teams have a single task in their workloads. Next,
the number of scheduled tasks in the initialized workday schedule is increased by
adding more tasks greedily. We call the process of increasing the number of sched-
uled tasks “extending workday schedule” and this process is performed by solving a
MIP model called the “flexible matching model” (FMM). Tasks can be inserted into
a partial workday schedule as long as there are some teams with workload length less
than a workday, skills requirements are met, and sequencing of tasks is possible re-
specting the precedence relations. The algorithm starts scheduling the next workday,
if no more tasks can be inserted into the current workday schedule. Constructing of
workday schedules continues until all non-outsourced tasks are scheduled.

Cordeau et al. (2010) and Estellon et al. (2009) argue that the combinatorial
algorithm proposed by Hurkens (2009) is an application of local search with large
neighborhood exploration. However both our algorithm and Hurkens’ algorithm, are
constructive heuristics. Alternative schedules are constructed and once a complete



34 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

schedule is constructed, then it is not modified. The strategy of both algorithms is
to obtain good quality solutions with the simultaneous technician-task assignments.
Therefore they cannot be classified as local search algorithms.

2.5.2 Calculating key properties of tasks

In the preprocessing phase, several key properties of tasks are calculated by aggre-
gating their multi-dimensional properties. They are min-tech, hardness, coverage,
and matching weight. In this section, all properties of the tasks are calculated by
considering the skills that are possessed by the technician group.

Min-tech

Min-tech, denoted by MT j, of a task j is the minimum number of technicians who can
process it. This simple concept is important for two reasons: (1) man-hour demand
of task j is calculated by MH j = MT jdj and this is used in lower bound calculations
(2) in the FMM where the efficiency of an assignment is controlled by punishing the
(positive) deviation from MT j.

A simple integer programming (IP) model in (2.11) is used to calculate Min-Tech
for each task at a time and this IP model is solved by CPLEX. The binary decision
variable xt indicates that technician t is assigned to task j. The constraints of the
model enforce that skill requirements of task j are met and the objective minimizes
the size of the selected team. Note that the index j is not used, since we run the
following IP model for each task at a time.

MT j = min

{∑
t∈T

xt :
∑
t∈T

S
〈l,s〉
t xt ≥ RQ

〈l,s〉
j ,∀〈l, s〉 ∈ L× S; xt ∈ {0, 1}

}
(2.11)

Hardness

A task is said to be hard if it requires skills that are not common among technicians.
Hence hardness of a task is a relative concept depending on the skill distribution
of a technician group. For example, a task requiring moderate skill levels may be
“relatively” hard for a technician group, if there are few technicians specialized in
the demanded fields. Before defining the hardness, we define the “value” of a skill,
denoted by υ(l, s) for skill 〈l, s〉. The value of a skill is the ratio of the number of
tasks that demand it to the number of technicians who possess it. It is calculated by

υ(l, s) =
|{j ∈ J |RQ〈l,s〉j > 0}|

S
〈l,s〉
T

, S
〈l,s〉
T =

∑
t∈T

S
〈l,s〉
t . (2.12)

Note that the value of a skill is high if the skill is rare among the technicians and
also if there is some demand from tasks. Having introduced skill value, we can define
“hardness”, denoted by hj for task j, by



2.5. Scheduling with flexible matching model 35

hj =
∑

〈l,s〉∈L×S

υ(l, s)RQ
〈l,s〉
j (2.13)

If the skill requirement of task j is tightly satisfied by the whole technician group,
then the processing of that task is impossible when some of the necessary technicians
are unavailable. It may also be very difficult to build a team for such task on a certain
day, if necessary technicians have already been allocated to several teams.

The tightness of skill satisfaction of a task can be expressed by

χj = max
〈l,s〉∈L×S

{
RQ

〈l,s〉
j

S
〈l,s〉
T

}
(2.14)

Definition 2.5.1. (Special task)
A task j with χj = 1 is called “special”.

Note that 0 ≤ χj ≤ 1 for feasible problem instances. The ratio RQ
〈l,s〉
j /S

〈l,s〉
T has a

small value for common skill levels among technicians. The value of χj gives a sign for
the relative expertise requirement and the extreme case is a special task with χj = 1.

Coverage

Task j is said to likely cover task k if the skills that are required by task k, but not by
task j, are common within the technician group. Then there is a high possibility that
the team performing task j can also perform task k. We define α

〈l,s〉
jk as the pairwise

comparison of skill requirements of tasks j and k for skill level 〈l, s〉. Two tasks with
total duration not longer than a workday can be compared for coverage, otherwise
they cannot be in the workload of the same team. If RO

〈l,s〉
j is positive and not less

than RO
〈l,s〉
k , a team processing task j can process task k as well, so α

〈l,s〉
jk = 1. If

RO
〈l,s〉
j is strictly less than RO

〈l,s〉
k , then α

〈l,s〉
jk is found by calculating how common the

skill 〈l, s〉 among technicians. Pairwise comparison for each skill level between task j
and k is given as follows:

α
〈l,s〉
jk :=


0 if RQ

〈l,s〉
j = RQ

〈l,s〉
k = 0

1 if RQ
〈l,s〉
j ≥ RQ

〈l,s〉
k and RQ

〈l,s〉
j 6= 0

S
〈l,s〉
T

(ST )max
if RQ

〈l,s〉
j < RQ

〈l,s〉
k

where (ST )max = max〈l,s〉∈L×S

{
S
〈l,s〉
T

}
. The coverage of task j over task k is deter-

mined according to the expression below:

γjk :=

 1 if
∑

(l,s) α
〈l,s〉
jk∑

〈l,s〉 sign(α
〈l,s〉
jk )

> ς

0 otherwise



36 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

After some experimentation, we decided to use the tuned value ς = 0.9. The
coverage value of task j is given below:

covj =

∑
k∈J ′

γjk

max{|J ′|, 1}
, J ′ = {j′ ∈ J |j′ 6= j, dj′ + dj ≤ H}. (2.15)

Matching weight

For the definition of matching weights to be used in the IMM and in the FMM, we
consider the domination properties of tasks within the workload. For example, if a
task has long duration and large min-tech, then it can be counted as a dominant
task. We call this “quantitative” dominance. Moreover, if a task requires expertise
such that other tasks in the workload can also be processed by this expertise, then
this is “qualitative” dominance. Quantitative dominance is expressed by MT jdj and
qualitative dominance by hjcovj. Our combinatorial algorithm treats tasks in non-
increasing order of their weights. The matching weight of a task j is a combined
measure of the following criteria: hardness hj, coverage covj, min-tech MT j, duration
dj, precedence relations, quantitative and qualitative dominance. The weight function
in a general form we use is as follows

wj = %1(hj + covj + MT j + dj) + %2MT j dj + %3

∑
k:j→k

w(P (k))MT k dk + %4hjcovj

(2.16)

where “−” is used to interpret that all criteria are normalized. The values of
coefficients %i, i = 1, .., 4, are determined in such a way that contributions of all
expressions have the same order of magnitude. In the combinatorial algorithm, a task
of high weight is selected with high probability.

2.5.3 Lower bounds

The second part of the preprocessing phase consists of computing lower bounds. We
find lower bounds of our problem by solving a simplified problem which is formulated
as a MIP model called the “lower bound model” (LBM). This method was first pro-
posed by Hurkens (2009) and we slightly improve it to obtain tighter lower bounds
values for instances with heterogeneous skill distribution. In the literature, several
methodologies are encountered to find lower bounds for the RCPSP. Some of them
are: linear programming based lower bounds (Mingozzi et al. (1998)), destructive ap-
proach (Heilmann and Schwindt (1997)), Lagrangian relaxation of the corresponding
integer programming formulation (Möhring et al. (2003)) and destructive approach
combined with constraint programming techniques (Brucker and Knust (2000)). Un-
fortunately, these techniques are not directly applicable to our problem because of its
different aspects.

In the simplified problem of lower bound computing phase, precedence relations
are relaxed, preemption is allowed, and outsourcing option of tasks is preserved. Skill



2.5. Scheduling with flexible matching model 37

requirements are relaxed by Hurkens (2009), however in the LBM we consider skill
requirements of tasks. This results in much tighter lower bounds in rare expertise
instances. The relaxed problem amounts to finding the minimum time needed to
meet the cumulative man-hour demand of tasks in every skill by considering technician
availabilities. Table 2.1 shows the sets, the indices, the parameters, and the decision
variables of the LBM.

Table 2.1: Sets, indices, parameters and variables of the LBM
Sets
J Set of tasks,
D Set of days,
P Set of priority classes,
J(p) Subset of tasks in priority class p, J(p) ∈ J, ∀p ∈ P ,

Indices
p, p′ Priority class index, p, p′ ∈ P
ν Day index, ν ∈ D
j,m Task indices, j,m ∈ J

Parameters
w(p) Weight of priority class p, w(p) ≥ 0,∀p ∈ P
H Length of one workday,

Cmd
〈l,s〉
ν Cumulative man-hour availability in skill 〈l, s〉 until day ν,

Amd
〈l,s〉
ν Man-hour availability in skill 〈l, s〉 on day ν

Aj Outsourcing cost of task j
dj Duration of task j
πp Place of priority class p in priority permutation π,
B Outsourcing budget

Variables
Cp Priority span of priority class p, Cp ∈ Z+,
xj Binary variable indicating whether task j is outsourced
zpν Binary variable indicating whether Cp occurs on day ν
µpν Portion of day ν before Cp occurs

The LBM is used to compute the minimum aggregated times by selecting the
best choice of tasks to outsource. Note that outsourcing decreases man-hour demand
of tasks. The model assumes that priority classes are completed in a pre-specified
order. The priority weights {28, 14, 4, 0} suggest the ordering {1, 2, 3, 4}, however,
we consider all priority permutations in practice: {1, 2, 3, 4}, {1, 3, 2, 4}, {2, 1, 3, 4},
{2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}.

The last completion time in a priority class is called “priority span” and it is
denoted by Cp for priority class p. Priority spans are assumed to be in the order
specified by the priority permutation. Let πp denote the place of the priority class p
in the permutation. So in the LBM, it is assumed that Cp ≤ Cp′ for all 〈p, p′〉 such
that πp < π′p. The objective of the LBM is the same as our scheduling problem. In
the LBM, the time of the day when priority span of priority class p occurs is captured
by two decision variables: a binary variable that indicates the day of the priority span
and a continuous variable whose value tells us the portion of the span day that stays
within the priority span.



38 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

minimize
∑
p∈P

w(p)Cp

subject to:

Cp ≤ Cp′ ,∀〈p, p′〉 ∈ P : πp + 1 = πp′

(2.17)

zpν ≥ µpν ,∀p ∈ P, ∀ν ∈ D (2.18)∑
ν∈D

zpν = 1 ,∀p ∈ P (2.19)∑
ν∈D

{Hνzpν +Hµpν} ≤ Cp ,∀p ∈ P (2.20)∑
ν∈D

{Cmd〈l,s〉ν zpν + Amd〈l,s〉ν µpν} ≥
∑
j∈J(p)

RQ
〈l,s〉
j dj(1− xj), ∀〈l, s〉 ∈ L× S,∀p ∈ P

(2.21)

xm ≤ xj ,∀m→ j,∀j ∈ J (2.22)∑
j∈J

Ajxj ≤ B (2.23)

xj, zpν ∈ {0, 1}, µpν ≥ 0, Cp ∈ Z+ ,∀p ∈ P, ∀ν ∈ D (2.24)

The priority span ordering of successive priority classes in priority permutation
is ensured by constraint (2.17). The relations of the priority span day variables are
given in constraints (2.18) and (2.19). In constraint (2.20), it is ensured that the
priority spans cover the time that is pointed by two dedicated decision variables. By
constraint (2.21), the time pointed for priority span is enough to meet the manhour
requirements of tasks. Our convention of “outsourcing the successors of outsourced
tasks” is embedded into the LBM by constraint (2.22). Finally, the outsourcing budget
constraint is given by (2.23).

Due to the fact that any of them may turn out to include the optimum schedule
depending on the number of tasks in each priority class, lower bound values of all
priority permutations are computed. In schedule construction, priority classes are
handled sequentially. The tasks are considered in the order specified by the priority
permutation. Priority permutation with smallest lower bound value is used first to
construct schedules, and then the one with second smallest lower bound value and so
on. Priority permutations with lower bound values greater than or equal to the lowest
cost of constructed schedules are neglected.

2.5.4 Constructing alternative schedules

First of all we give the following definition:

Definition 2.5.2. (Candidate task)
If immediately scheduling of a task does not violate the schedule feasibility, that task
is called a “candidate task”.



2.5. Scheduling with flexible matching model 39

Initial matching

In the initial matching, we create a complete bipartite graph GIMM = (T ′, J ′, E)
where T ′ ⊆ T , J ′ ⊆ J . An illustration of the IMM model is shown in Figure (2.2).
On the bipartite graph GIMM = (T ′, J ′, E), we want to find a many-to-one type
assignment and here the term “matching” refers to this assignment. We denote this
matching by M ⊆ E. Then the feasibility of technician allocation in the matching M
is expressed by

|{{t, j} ∈M |j ∈ J ′}| ≤ 1, ∀t ∈ T ′ (2.25)

and the skill requirements of the candidate tasks by

RQj ≤
∑

t∈T ′:{t,j}∈M

St, ∀j ∈ J ′ (2.26)

In fact, the matchingM is an initialization of the workday schedule. The initialized
teams are determined by

T (τj) = {t ∈ T ′|{t, j} ∈M}, ∀j ∈ J ′ (2.27)

where T (τj) denotes the team of technicians performing task j.

The MIP model formulation. The problem of finding a matching, as explained
above, is a hard problem, due to the skill requirements. Therefore, we formulate
the problem of finding the aforementioned matching on the bipartite graph GIMM =
(T ′, J ′, E) as a MIP model, the IMM. In the IMM, the binary decision variables xtj
for every 〈t, j〉 ∈ T ′ × J ′ indicate whether the edge {t, j} is in the matching or not.
The binary decision variables yj for every j ∈ J ′ indicates whether an incident edge
to job j is the matching. Every candidate task has a weight that is calculated as in
(2.16). The objective of the IMM is maximizing the weighted team initializations.

Solutions of the IMM. In our scheduling context, the solution value xtj = 1 corre-
sponds to the case that t is assigned to job j, and yj = 1 means that j initializes a
team.

Handling large instances: In principle we aim to find the optimal initial matching
on the complete set of available technicians and candidate tasks. This corresponds to
T ′ = T and J ′ = J . However, in large instances, one run of the IMM takes longer than
the desired time if the number of the candidate tasks is high. Therefore, we settle for
a heuristic solution by repeatedly applying the IMM to a subset of candidate tasks at
a time.

Table 2.2 shows the notation, the parameters and the decision variables of the
IMM. The mathematical formulation of the IMM follows Table 2.2.



40 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

Table 2.2: Sets, indices, parameters, and variables of the IMM
Sets
J ′ Set of tasks, J ′ ⊆ J
T ′ Set of technicians, T ′ ⊆ T
Indices
j Task index, j ∈ J ′
t Technician index, t ∈ T ′
Parameters
wj Matching weight of task j

S
〈l,s〉
t Equal to 1 if technician t is skills in domain s at level l, otherwise 0

RQ
〈l,s〉
j Number of skilled technicians required by task j in domain s at level l

Variables
xtj Binary variable indicating whether technician t is assigned to task j
yj Binary variable indicating whether task j initializes a team

maximize
∑
j∈J ′

wjyj

subject to:

∑
j∈J ′

xtj ≤ 1 ∀t ∈ T ′ (2.28)∑
t∈T ′

S
〈l,s〉
t xtj ≥ RQ

〈l,s〉
j yj ∀j ∈ J ′,∀〈l, s〉 ∈ L× S (2.29)

yj, xtj ∈ {0, 1} ∀j ∈ J ′,∀t ∈ T ′ (2.30)

Constraints (2.28) enforce that a technician can be matched to at most one task.
If a task initializes a team, then constraint (2.29) ensures that its skill requirements
are met. Note that a task with a relatively high weight may get more technicians
than necessary. Although it might seem as an inefficiency, in the schedule extension
phase, the FMM dynamically reallocates the technicians to obtain an efficient packing
of tasks. When no technician is left for assigning to tasks or all candidate tasks are
assigned to technicians, the initial matching is completed. In the initialized workday
schedule, all teams have one task in their workloads.

We solve the IMM models during schedule construction by using the solver CPLEX
12.0.

Figure 2.2 illustrates team initializations with an example of five technicians and
three tasks. In the illustrated solution of the IMM, it turns out that two teams
are initialized by j1 and j3. In the partial schedule, team τj1 (τj2) has a load with
duration d1 (d3). The initialized teams have the following technicians T (τj1) = {t4, t2}
and T (τj2) = {t1}.

Next, we extend the workday schedule by adding more candidate tasks into it.
Assigning technicians to candidate tasks via a matching has a more global view of all
assignments than finding technicians for one task at a time. This advantage is more
remarkable in the instances with heterogeneous skill distribution.



2.5. Scheduling with flexible matching model 41

d��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CC

Technicians Tasks Initialized Teams
(Skills) (Loads)

p
p
p

p
p
p
p
p

�
��

�
��

��

��
�
��

�
��

��
��

�
��
�

H
HH

H
HH

HH

HH
H

HH
H
HH

�
�

�
�
�

�
��

�
�

�
�
�

�
��

@
@
@
@
@
@
@@
























�
�
�
�
�
�
��
























�
�
�
�
�
�
�
�
�
�
�
�
�
�� 1

2

3

1

2

3

4

5

x11

x53

y1

y2

y3



y1 = 1
x21 = x41 = 1'

&

$

%
d��
��CC�� CC

2

d��
��CC�� CC

4

1

y3 = 1
x13 = 1'

&

$

%
d��
��CC�� CC

1
3

Figure 2.2: Initializations of teams in the IMM

Extending the partial day schedule

Once the teams are initialized in the initial matching, the partial workday schedule
is extended by inserting more tasks. Adding more tasks to the schedule is not trivial,
since some tasks may require slightly or even completely different skills than the
ones already scheduled. Therefore, as technicians can be exchanged easily among the
teams, the excess skills in teams that have filled their workloads can be taken out
and given to the teams that have some space in their workloads to schedule more
candidate tasks. The FMM exchanges technicians among the teams by making them
conditionally available.

The need for flexibility in the FMM. The initial matching is of course a local
decision if all candidate tasks are considered. Therefore, its solutions may have some
drawbacks due to the local decisions. Below we give two cases:

• If two similar hard tasks initialize two different teams, but it seems better to
have them in one team’s workload. Merging these hard tasks as one workload
of a team will lead the plenty technicians to contribute to other teams.

• If somehow an expert is assigned to a task, but he may use his skills more
efficiently by processing another task. This accidently assigned technician can
be taken out from his current team.

Unifying the concepts: from “technicians and tasks” to “skills and loads”. In
a partial workday schedule, a team has two features, its technicians and its workload.
First, a team can be perceived as a combination of skills if technicians are considered.
Second, a team can also be perceived as a load if its workload is considered. Therefore



42 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

from the first (second) point of view a team represents a skill (load). Moreover
unassigned individual technicians (candidate tasks) can be perceived as skills (loads).
These observations lead us to consider every item of the incomplete workday schedule
either as “skill” or as “load”. As a result of this unification of concepts, we have skills
and loads in the FMM instead of technicians and tasks. The types of skills and loads
depend on what they originate from, and their definition are given as

Definition 2.5.3. (Active skill)
The total skill of a team is called an “active skill” and T denotes the set active skills.

Definition 2.5.4. (Active load)
The workload of a team is called an “active load” and W denotes the set active loads.

Note that the active skill of team τ is given by Sτ =
∑

t∈T (τ) St and the active

load of τ is found by RQ
〈l,s〉
J(τ) = maxj∈J(τ) RQ

〈l,s〉
j .

Definition 2.5.5. (Latent skill)
The skill of a technician t ∈ T (τ) such that RQJ(τ) ∈W is called “latent skill”.

Definition 2.5.6. (Passive skill)
The skill of a technician t such that {τ ∈ Ξ|t ∈ T (τ)} = ∅ is called “passive skill”.

Definition 2.5.7. (Passive load)
The load of a candidate task is called a “passive load”.

The underlying bipartite graph of the FMM. In a flexible matching, we firstly
choose a subset of teams Ξ′ ⊆ Ξ from the initialized workday schedule. Here, we
use the set Ξ to denote the teams of the initialized workday schedule, not of the
completed workday schedule. Moreover, we choose again a subset of teams Ξ′′ ⊆ Ξ′

whose loads will be active in the FMM. Lastly, we chose a set J ′ of candidate tasks.
To sum up, in the FMM the teams in Ξ′ have active skills, the teams in Ξ′′ have active
loads and latent skills besides their active skills, and the candidate tasks in J ′ have
passive loads. Then, we create a complete bipartite graph GFMM = (∆,Λ, E) where
the partition ∆ includes the skills and the partition Λ includes the loads. Table 2.3
specifies the content of the partitions of GFMM and it also lists the edges in E that
are not included in the FMM model. Note that we have |Ξ′′| = |W| ≤ |Ξ′| = |T|.

On the bipartite graph GFMM = (∆,Λ, E), we want to find a many-to-one type
assignment that we call a matching M ⊆ E. We note that having different types of
edges in E in a solution results in different type of extensions in the partial workday
schedule. These extensions are summarized as follows:

• Edges of type {Sτ , RQJ(τ ′)}: The workloads of teams τ and τ ′ are merged. In
this merging, tasks sequences are intertwined in such a way that the orders in
previous sequences are preserved and precedence relations are respected. The
combined workload is processed by the team T (τ). Such an extension is called
merging.



2.5. Scheduling with flexible matching model 43

Table 2.3: The properties of the bipartite graph GFMM

Skills in partition ∆

Active skills (T) {Sτ |τ ∈ Ξ′}
Passive skills {St|t ∈ T \ ∪τ∈Ξ′T (τ)}
Latent skills {St|t ∈ ∪τ∈Ξ′′T (τ)}
Loads in partition Λ

Active loads (W) {RQJ(τ)|τ ∈ Ξ′′}
Passive loads {RQj |j ∈ J ′}
Edges in E that are forbidden in the FMM

Edges of the same teams {{Sτ , RQJ(τ ′)} ∈ ∆× Λ|τ = τ ′}}
Edges with total load greater than H {{Sτ , RQJ(τ ′)} ∈ ∆× Λ|

∑
j∈J(τ)∪J(τ ′)

dj > H}

{{Sτ , RQj} ∈ ∆× Λ|
∑

j′∈J(τ)

dj′ + dj > H}

Edges that result: Violation of precedence relations

• Edges of type {Sτ , RQj}: The workload of team τ is extended by adding candi-
date task j. The priority class and precedence relations of task j determine its
place in the tasks sequence of the extended team τ . Such an extension is called
extending teamload.

• Edges of type {St, RQJ(τ ′)}: The assigned skills form a new team to process the
workload of team τ ′. Clearly, the new skills meet the skill requirements RQJ(τ ′).
Such an extension is called recombining technicians.

• Edges of type {St, RQj}: If the passive load of candidate task j is matched with
some passive and/or latent skills, a new team is formed that has the passive
load j in its workload. Such an extension is called initializing a team.

Handling large instances: We construct alternative schedules by varying the size
of active teams such that |Ξ′′| = |W| ∈ {3, 4, 5, 6, 7, 8}. In our computational results,
for small-size and medium-size instances, corresponding to instances roughly with
|T | ≤ 50 and |J | ≤ 500, we used all possible size of active teams. However, as the
instance size grows, we can construct schedules only with |W| = 3.

In a matching, if the active load of a team is matched with a new combination
of skills, then team’s latent skills, not included in the new skill combination, become
free to be assigned to other loads. Thus latent skills are conditionally available for
matchings and they play an important role in scheduling candidate tasks (passive
loads) by determining skill combinations of teamloads flexibly.

Sequencing decisions
Case merging : Merging is the most complicated extension for sequencing decisions.

Once an edge of type {Sτ , RQJ(τ ′)} is selected in a solution, the tasks of teams τ and
τ ′ are interwind in a way that the precedence relations of all tasks remain satisfied and



44 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

the tasks in higher priority classes are completed as early as possible. The merging of
workloads of teams τ and τ ′ starts with inserting of the first task in J(τ ′) into J(τ).
Then second task of J(τ ′) is inserted and so on. In fact, the workload of τ is extended
by inserting one task at a time during merging. Therefore sequencing in “merging”
J(τ ′) and J(τ) uses the subroutine of “extending teamload” |J(τ ′)| times. The steps
of sequencing decision in merging are given in Table 2.4.

Table 2.4: Sequencing decision in merging

Input: Tasks J(τ) and J(τ ′) with orderings π and π′

1: Initialize i=1;
2: while i ≤ |J(τ ′)| do
3: Select j ∈ J(τ ′) with π′j = i;
4: Insert(j, J(τ));
5: i← i+ 1;
6: end

Insert(j, J(τ))

Initialize k = |J(τ)|, ι = k;
I1: if Pred(j) = ∅ and {j◦ ∈ J |j ∈ Pred(j◦)} = ∅ then
I2: k ← k − 1;
I3: end
I4: while ι = k do
I5: Select j∗ ∈ J(τ) with πj∗ = k
I6: if maxj◦∈Pred(j){CTj◦} > CTj∗ − dj∗ then
I7: k ← k − 1;
I8: else if minj◦∈{j′′∈J |j∗∈Pred(j′′)}{CTj◦ − dj◦} < CTj∗ + dj then
I9: k ← k − 1;
I10: else if P (j) > P (j∗) then
I11: k ← k − 1;
I12: else
I13: k ← k − 1 and ι← k;
I14: end
I15: end
I16: k ← |J(τ)|;
I17: for k ≥ ι do
I18: Select j∗ ∈ J(τ) with πj∗ = k;
I19: πj∗ ← k + 1;
I20: end
I21: πj ← ι;

The steps 1− 6 include the procedure selecting one task from J(τ ′) and inserting
it into J(τ). In the Insert function, we decide where the task under consideration
should be inserted in the workload of team τ . Let task j is to be inserted into J(τ).



2.5. Scheduling with flexible matching model 45

If j has no precedence relations, then we make it the last task in J(τ). Otherwise, we
make some comparisons of every task in J(τ), starts from the last one and proceeds
to the first one, unless a decision is made. Let task j∗ be the task being questioned
for a late start time. In step I6, we check whether task j has a predecessor with start
time greater than the start time of j∗. If this is the case, we place task j after task j∗.
Then we check whether task j∗ has a successor with start time earlier than CTj∗ + dj
(Step I8). This implies that precedence relations of task j∗ will be violated, if it starts
after task j, so we place task j after task j∗. Finally, if letting task j start before
task j∗ will not violate any precedence relations, in step I10 we check urgency of both
tasks. We let the task that is more urgent than the other one start earlier.

On the solutions of the FMM. In the FMM, a candidate task can be matched with
“any” combination of skills provided that every teamload in the model either keeps its
skills or finds a new skill combination to stay being processed. This is the key aspect
of our matching model resulting in high flexibility. Each technician, no matter in a
team or not, becomes a potential skill for candidate tasks. Candidate tasks may be
added to the partial schedule by joining a teamload or by initializing a team. While
joining to a teamload, a candidate task may bring some additional technicians to the
team, if necessary.

Latent skills can contribute to other matchings if and only if active loads of their
teams are matched with new skill combinations and remain processed. In other words,
matching an active load with a new skill combination creates the opportunity of using
some of its technicians, latent skills, in other matchings. The only reason why such
new assignments are found is simply the desire to match as many as passive loads
of candidate tasks in order to extend the partial workday schedule. The objective of
the FMM is weighted sum of passive loads matchings, therefore a passive load with a
high matching weight has the power to force the current partial schedule to make the
needed latent skills available. In light of this fact we have the following observation:

Observation 2.5.1. A candidate task with sufficiently high weight may force teams to
merge or recombine their technicians, thereby making an expert technician available.

Mathematical formulation of the FMM

The many-to-one type skill-load assignment problem is formulated as a MIP model,
the FMM. In the FMM, we use binary decision variables xσλ to indicate that the
corresponding edge is chosen in the assignment. The index σ belongs to the set ∆ of
skills and the index λ belongs to the set Λ of loads. The sets, indices, parameters and
variables in the formulation of the FMM are listed in Table 2.5.

Edges causing inefficiency: As mentioned before, a subset of teams (Ξ′ ⊆ Ξ) in
the partial day schedule is included in the FMM. An edge that may seem profitable
on the bipartite graph for a specific FMM model, may not be so for the whole partial
day schedule. An example is an edge between an active skill and a passive load such
that the number technicians of the team of the active skill has more technicians than
needed for the passive load. The FMM uses inefficiency decision variables to detect
and prevent selecting such edges for assignments.



46 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

Table 2.5: Sets, indices, parameters and variables of the FMM

Sets
∆ Set of skills
Λ Set of loads
T Set of active skills, T ⊂ ∆
W Set of team loads, W ⊂ Λ
F Forbidden edges, F ⊆ ∆× Λ
M Set of edges joining active skill and load of a team, M = {{Sτ , RQJ(τ ′)}|τ = τ ′}

Indices
σ, σ′ Skill indices, σ, σ′ ∈ ∆
λ, λ′ Load indices, λ, λ′ ∈ Λ

Parameters
L(σ) Set of latent skills of active skill σ, σ ∈ ∆
wλ Weight associated to load λ, λ ∈ Λ

(Note: If λ 6∈W, then wλ = wj where j is candidate task, otherwise wλ = 0)
mtλ Number of technicians used for performing all tasks in load λ, λ ∈ Λ

S
〈l,s〉
σ Skill value of σ in domain s at level l

RQ
〈l,s〉
λ Skill requirement of λ in domain s at level l

Variables
xσλ Binary variable indicating whether σ is assigned to λ, 〈σ, λ〉 ∈M
yλ Binary variable indicating whether λ is assigned to a skill combination, λ ∈ Λ
ζλ Inefficiency penalty of λ, λ ∈ Λ

maximize
∑
λ

wλyλ − ζλ

subject to:

∑
λ

xσλ ≤ 1, ∀σ ∈ ∆ (2.31)∑
σ∈T

xσλ ≤ 1, ∀λ ∈ Λ (2.32)

xσλ = 0, ∀〈σ, λ〉 ∈ F (2.33)∑
λ′

xσλ′ + yλ ≤ 1, ∀〈σ, λ〉 ∈M (2.34)∑
σ′∈L(σ)

∑
λ′

xσ′λ′ ≤ |L(σ)|yλ, ∀〈σ, λ〉 ∈M (2.35)

∑
σ

S〈l,s〉σ xσλ ≥ RQ
〈l,s〉
λ yλ, ∀〈l, s〉 ∈ L× S,∀λ ∈ Λ (2.36)∑

σ∈T

|L(σ)|xσλ +
∑
σ∈∆\T

xσλ −mtλ ≤ ζλ, ∀λ ∈ Λ (2.37)

xσλ, yλ ∈ {0, 1}, ζλ ≥ 0, ∀〈σ, λ〉 ∈M,∀λ ∈ Λ (2.38)



2.5. Scheduling with flexible matching model 47

A skill can be assigned to at most one load (constraints (2.31)). A load may
be matched to at most one active skill according to constraints (2.32). It can be
matched to any number and any combination of passive and latent skills though.
Having constructed the set F in advance, edges in F are forbidden by constraints
(2.33).

In the FMM, a team has three contributions: an active skill σ ∈ T, latent skills
L(σ) ∈ ∆, and a teamload λ ∈ W. According to constraints (2.34), a team can
contribute to extending the day schedule in one of the following ways: either its
active skill is matched to a load or its active load is matched to skills. In the former
case, the matched load is added to team’s workload and technicians of the team stay
together. Some additional technicians may join to team as well, if some other latent or
passive skills are also assigned to matched load. In the latter case, a skill combination
is assigned to active load (constraints (2.36)) and latent skills of the team may be used
in other matchings (constraints (2.35)). Inefficiency variables zλ are used to prevent
assigning an unnecessarily high number of technicians to a skill (constraints (2.37)).
Here mtλ = MT j for a passive load λ with candidate task j and mtλ = |T (σ)| for an
active load λ currently assigned to σ. For instance, if a load of a candidate task with
MT = 2 is assigned to a team skill of 5 technicians, then this assignment is penalized
by constraints (2.37) on the value of ζλ. Note that inefficiency is not forbidden in the
FMM, but discouraged by penalizing.

The objective function is the sum of the weights of selected loads and the inef-
ficiency drop. The candidate tasks contribute to the objective by their weights and
influence the allocation of skills among teams. Note that a task with sufficiently high
weight can even cause some inefficiency to get scheduled. Both the IMM and the
FMM are implemented in Java and they are solved by using CPLEX 12.0.

Illustrative examples. Figure 2.3 and Figure 2.4 illustrate examples of extending
the partial schedule of the example in Figure 2.2. In order to show all possible cases,
we illustrated two different scenarios corresponding to two different solutions obtained
with different parameter settings.

In Figure 2.3, and also in Figure 2.4, the FMM includes 2 teams (τ1, τ2) with
technicians T (τ1) = {t4, t2} and T (τ2) = {t1}, 2 unassigned technicians (t3, t5) and
one candidate task (j2). In both figures, latent skills of the same team are encircled
and connected to their current teams. The first two vertices of (left) right partition
are active (skills) loads. There is no edge drawn between an active skill and an active
load of the same team, since this matching does not make any sense and it is forbidden
in the model.

In scenario 1 (Figure 2.3), the active load of τ2 is matched to a new skill com-
bination including the active skill of τ1 and passive skill of t5. This matching is an
example of merging and the combined load is performed by the newly matched skill
combination. Matching the active load of τ2 allowed t1 to be in the initialized team
of j2 together with technician t3.

In scenario 2 (Figure 2.4), τ1 recombined its technicians by being matched to
passive skills of unassigned technicians t3, t5 and latent skill of technician t2 who was
in the previous combination as well. The number of technicians of τ1 seems increased
by one and this increase can be explained as an adjustment to have technician t4 in



48 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

Skills Loads New Teams�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�

�
�
�
��

�
�
��

�
�
�

d��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CC

d��
��CC�� CC

42

1

3

5

2

4

1

-

-

p
p
p

p
p
p
p
p
p
p

��
��

�
��
�

��
��

��
��

��
��

�
��
�

H
HH

H
HH

HH

HH
H

HH
H

HH

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

@
@
@
@
@
@
@
@


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

3

2

x12

x73

y1

y2

y3

1

2

3

1

2

3

4

5

6

7



selected load: 2 (y2 = 1 )
skill combination: 1 (x12 = 1)

4 (x42 = 1)'

&

$

%

d��
��CC�� CC

2
d��
��CC�� CC

4
d��
��CC�� CC

5

1 3

Case: merging

selected load: 3 (y3 = 1 )
skill combination: 3 (x33 = 1)

7 (x73 = 1)'

&

$

%

d��
��CC�� CC

1
d��
��CC�� CC

3

2

Case: initializing a team

Figure 2.3: Extending partial schedule with the FMM (Scenario 1)

the extended team τ2 as we now have j2 in one load.

Due to its mentioned flexibility aspects, we call the bipartite matching model
the flexible matching model , or the FMM. The main contribution of this study is the
introduction of this model. Hurkens (2009) extends the partial day schedule using two
different matching models iteratively, where the first one is used to assign multiple
tasks simultaneously, and the second one is used to find efficient recombination of
technicians. The FMM carries out these two steps simultaneously.

Parameters and strategies to construct different schedules

In this section we explain the strategies applied to find different schedules. We have
observed in experiments that each of those strategies may lead to a best solution.

Efficiency in Initial Matching: When the formulation of the FMM is carefully
examined, it is not difficult to see that if T = ∅, the FMM boils down to the IMM plus
efficiency constraints. So one of our strategies is adding efficiency constraints to the
Initial Matching. This strategy is especially beneficial in instances where the average
duration of tasks is close to workday length.

Fully loaded teams: While extending the partial day schedule some teams may
reach a workload with total duration of a workday. As a strategy, we include a few of
those fully loaded teams in the FMM with the hope to lower their skills excess by mak-
ing some of their technicians conditionally available for candidate tasks. Fully loaded
teams can contribute to extending partial schedule by recombining their technicians.



2.6. Computational results 49

Skills Loads New Teams�
�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�

�
�
�
��

�
�
��

�
�
�

d��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CCd��
��CC�� CC

d��
��CC�� CC

42

1

3

5

2

4

1

-

-

p
p
p

p
p
p
p
p
p
p

��
��

�
��
�

��
��

��
��

��
��

�
��
�

H
HH

H
HH

HH

HH
H

HH
H

HH

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

@
@
@
@
@
@
@
@


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


























�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

3

2

x12

x73

y1

y2

y3

1

2

3

1

2

3

4

5

6

7



selected load: 1 (y1 = 1 )
skill combination: 3 (x31 = 1)

4 (x41 = 1)
5 (x51 = 1)

'

&

$

%

d��
��CC�� CC

2
d��
��CC�� CC

3
d��
��CC�� CC

5

1

Case: recombining technicians

selected load: 3 (y3 = 1 )
skill combination: 2 (x23 = 1)

6 (x63 = 1)'

&

$

%

d��
��CC�� CC

1
d��
��CC�� CC

4

23

Case: extending teamload

Figure 2.4: Extending partial schedule with the FMM (Scenario 2)

Number of teams in the FMM: In order to obtain the optimal solution of the
FMM in a reasonably short time, a fixed number of teams is included. So we have
|T| = |W| ∈ {3, 4, 5, 6, 7, 8}. As long as the time limit allows, we construct schedules
for each fixed number. In large instances, solving the FMM models takes longer time,
therefore a few numbers in {3, 4, 5, 6, 7, 8} can be used to construct different schedules.

Selection of candidate tasks: Candidate tasks are included in the FMM in se-
quential order according to their priority classes. As a strategy we allow some of the
special tasks in succeeding priority classes to be in the FMM. This way we aim to
avoid the delays of the priority makespan due to rare expertise.

2.6 Computational results

2.6.1 On the rare expertise

Three sets of problem instances were provided by France Telecom in the ROADEF
Challenge 2007. The descriptive statistics of the instances can be seen in Table 2.6.
In the instance sets, the number of skill domains (levels) varies from 3 to 40 (2 to 7).
Data set A was released in the first stage of the challenge for participants to start
implementing their solution approaches. Data set B was released for fine tuning and
the data set X was used for the final evaluation. Instances in the set A are smaller
than the instances of B and X. There is no significant difference between data set B
and X in terms of number of technicians and number of tasks. However the number of



50 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

special tasks is the point where they differ. ( See section 2.5.1 for definition of special
task.)

The costs of schedules constructed by the FMM and other heuristics are given
in Table 2.7. We used the time limit of 20 minutes, as specified in the ROADEF
Challenge 2007 and all results are obtained on a laptop with Intel Core 2 Duo 1.6
GHz Processor, 4GB RAM. The MIP models, the IMM and the FMM, are solved
using the solver CPLEX 12.1.0. Table 2.8 shows the number of schedules constructed
for each problem instance and the time needed to construct these schedules. The first
column in Table 2.7 shows the problem instances and the next four columns report
the results found by the FMM, Hurkens (2009), Cordeau et al. (2010) and Estellon
et al. (2009). In each of these columns, the first entries are schedule costs and second
entries are the relative difference in percentage that is defined as the difference of a
schedule cost to the best schedule cost ever found (best schedule costs are listed in the
column with title “BEST”). In the column “BEST”, we report the lowest schedule
costs by considering the results of the ROADEF Challenge 2007 as well. The last
column, labeled “LB”, lists lower bound values of instances.

It is seen in the last column of Table 2.6 that data set X includes instances with a
higher number of special tasks. The average number of special tasks of the instance
groups A, B and X are 1.3, 2.4 and 7.2 respectively. This hints that data set X
instances have a heterogeneous skill distribution among technicians and therefore rare
expertise is observed. The challenge in the instances of rare expertise can be realized
by checking the gap between the best found schedules and lower bounds. In Table 2.7
we see that the gap between best schedules and lower bounds is smaller in data sets
A and B compared to data set X. This may show either the weakness of lower bounds
or the case that the approaches are not successful in handling rare expertise or both.

In the final evaluation of ROADEF Challenge 2007, 7 best schedule costs (out
of 10 instances in set X) were due to Hurkens (2009). This shows that the solution
approach of Hurkens (2009) was promising for cases of rare expertise. If the column
BEST is examined in Table 2.7, it is seen that the FMM found 8 best schedules in data
set X. In our opinion, this is the result of the flexibility in exchanging the technicians
among teams and in diverse extension options while constructing day schedules. This
flexibility leads to more efficient packing of special tasks and higher utilization of
experts in instances with heterogenous skill distribution. In the instances X9 and
X10, the gap between best schedule and lower bound has been decreased remarkably.
As an improved version, the FMM found better schedules in all X instances compared
to Hurkens’ results.

If all data sets are considered, it seems reasonable to conclude that data sets B
and X are better representatives of the real case instances due to the high number
of technicians, tasks and skill domains. Moreover rare expertise is also a situation
companies encounter in their operations. In instances with a small number of techni-
cians, tasks and skill domains, schedule costs are sensitive to individual assignments,
whereas in large instances the number of feasible schedules are high and the schedules
are not sensitive to individual assignments. Therefore in our opinion, large instances
are better to test the reliability of the algorithms.



2.7. Concluding remarks 51

Table 2.6: Problem instances A, B and X
Data set A Data set B Data set X

Instance |T | |J | |S| |L| |SP | |T | |J | |S| |L| |SP | |T | |J | |S| |L| |SP |
1 5 5 3 2 0 20 200 4 4 0 60 600 15 4 27
2 5 5 3 2 0 30 300 5 3 0 100 800 6 6 0
3 7 20 3 2 1 40 400 4 4 0 50 300 20 3 0
4 7 20 4 3 0 30 400 40 3 15 70 800 15 7 0
5 10 50 3 2 1 50 500 7 4 9 60 600 15 4 13
6 10 50 5 4 5 30 500 8 3 0 20 200 6 6 3
7 20 100 5 4 1 100 500 10 5 0 50 300 20 3 0
8 20 100 5 4 0 150 800 10 4 0 30 100 15 7 5
9 20 100 5 4 3 60 120 5 5 0 50 500 15 4 10
10 15 100 5 4 2 40 120 5 5 0 40 500 15 4 14

SP: Special Tasks, SP ⊆ J

2.6.2 On the performances of heuristics

It is remarkable that the FMM has an average difference with the best available
solution of 0.9% in data set X whereas it is 7.1%, 13.7% and 15.8% for Hurkens
(2009), Cordeau et al. (2010) and Estellon et al. (2009) respectively. The results of
Cordeau et al. (2010) are the best ones in data set A, however their average distance
increases from A to B and from B to X. Hurkens (2009) has an increase from A to
B and stays almost at the same level from B to X. The FMM starts with a high
average distance in data set A and draws a slight increase from A to B. In sets B
and X, it performs remarkably well. The superior performance in set X shows that in
case of rare expertise, the FMM can find compact schedules and experiences less skill
excess in assignments. Particularly, the instances X1, X5, X9 and X10 are sensitive to
expert availabilities due to the high number of special tasks. Estellon et al. (2009) also
underline those instances and emphasize the gap between the combinatorial approach
by Hurkens (2009) and the other solution approaches.

2.7 Concluding remarks

In this chapter, we proposed a solution methodology that uses a flexible matching
model as a core engine for a special multi-skill workforce scheduling problem. The
scheduling problem was defined by France Telecom in the ROADEF Challenge 2007.
The opportunity of outsourcing some tasks is one aspect of our problem that distin-
guishes it from the similar ones defined in the literature. Technicians must work in
teams for a workday and it is assumed that they can simultaneously use their skills
in all domains while performing tasks.

The main contribution of this study is introducing flexibility in the matching
model that was firstly proposed by Hurkens (2009). Moreover we propose several
key measurements for tasks. The flexibility of our matching model resulted in better
packing of the expert-requiring tasks especially in instances where skill distribution
among technicians is heterogenous. Besides rare expertise, our results are remarkably
superior in large instances.



52 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem

Table 2.7: Results of problem instances A, B and X
Instance FMM (%) Hurkens (%) Cordeau (%) EsGaNo (%) BEST∗ LB
A1 2340 0.0 2340 0.0 2340 0.0 2340 0.0 2340 2310
A2 4755 0.0 4755 0.0 4755 0.0 4755 0.0 4755 2100
A3 11880 0.0 11880 0.0 11880 0.0 11880 0.0 11880 11340
A4 13452 0.0 13620 1.2 13452 0.0 14040 4.4 13452 10680
A5 29355 1.8 29355 1.8 29355 1.8 29400 1.9 28845 26940
A6 20055 6.7 20280 7.9 18795 0.0 18795 0.0 18795 17640
A7 30960 1.4 32520 6.5 30540 0.0 30540 0.0 30540 28672
A8 17355 2.6 18960 12.1 17700 4.6 20100 18.8 16920 16216
A9 28280 3.4 28320 3.6 27692 1.3 27440 0.3 27348 25558
A10 39300 2.6 40650 6.1 38636 0.9 38460 0.4 38296 36992
Average 1.8 3.9 0.9 2.6
B1 34575 2.0 35460 4.6 37200 9.7 33900 0.0 33900 31875
B2 16755 5.6 18300 15.3 17070 7.6 16260 2.5 15870 14280
B3 16275 1.7 16965 6.0 18015 12.6 16005 0.0 16005 13965
B4 23925 0.6 27015 13.6 23775 0.0 24330 2.3 23775 16800
B5 88920 0.3 94200 6.2 117540 32.5 88680 0.0 88680 79530
B6 28785 5.1 30510 11.4 27390 0.0 27675 1.0 26955 24180
B7 31620 0.0 33060 4.6 33900 7.2 36900 16.7 31620 25290
B8 35520 10.4 32160 0.0 33240 3.4 36840 14.6 32160 31890
B9 28080 0.0 28080 0.0 29760 6.0 32700 16.5 28080 25680
B10 35040 1.0 35040 1.0 35640 1.7 41280 19.0 34680 32370
Average 2.7 6.2 8.1 7.3
X1 146220 0.0 151980 3.9 159300 8.9 180240 23.3 146220 136680
X2 7740 6.6 9090 25.2 8280 14.0 8370 15.3 7260 5700
X3 48720 0.0 50400 3.4 50400 3.4 50760 4.2 48720 36060
X4 64600 0.0 65640 1.6 66780 3.4 68960 6.7 64600 58230
X5 144750 0.0 147000 1.6 157800 9.0 178560 23.4 144750 130995
X6 9690 2.2 10440 10.1 9900 4.4 10440 10.1 9480 6150
X7 32040 0.0 33120 3.4 47760 49.1 38400 19.9 32040 25410
X8 23220 0.0 23580 1.6 24060 3.6 23800 2.5 23220 17600
X9 122700 0.0 136020 10.9 152400 24.2 154920 26.3 122700 98805
X10 120300 0.0 131700 9.5 140520 16.8 152280 26.6 120300 87210
Average 0.9 7.1 13.7 15.8

Overall 1.8 5.8 7.6 8.6
* Results of the ROADEF Challenge 2007 are also considered.

Table 2.8: Running Times and Number of Constructed Schedules
Data set A Data set B Data set X

Instance Time(sec.) #Schedules T ime(sec.) #Schedules T ime(sec.) #Schedule
1 9 745 1086 125 1110 9
2 10 830 1090 105 1084 168
3 1085 9108 1087 28 1091 136
4 1079 7563 1106 35 1096 9
5 1081 2209 1089 130 1173 8
6 1081 2617 1086 54 1081 560
7 1082 838 1109 45 1086 164
8 1085 693 1142 3 1087 157
9 1083 793 1090 328 1173 14
10 1085 910 1081 325 1110 14



2.7. Concluding remarks 53

Flexible matching models. As a topic of further research, it will be useful to adapt
our matching model to other multi-skill workforce scheduling problems with necessary
modifications. This way, a global view in the approach may be obtained.

Lower bound model. The LBM is designed to guide the schedule construction
phase by finding out which priority permutations are promising for shorter project
completion times. This model is convenient to use in tactical-level decision making
with some modifications. As its constraints are considered, the shadow prices provide
us some information about which skills should be trained for less outsourcing costs.
If a longer time horizon is taken into account, it is possible to make a skill training
plan in order to prevent future outsourcing costs.

Sequencing decisions. In our combinatorial algorithm, we make sequencing deci-
sions by using some priority rules. These decision may also be made by solving a MIP
model, if the number of tasks in the workload of a team is not high.



54 Chapter 2. A MIP-based approach to a multi-skill workforce scheduling problem



Chapter 3

Stable multi-skill workforce
assignments

This chapter analyzes stability in multi-skill workforce assignments of technicians and
jobs. In our stability analysis, we extend the notion of blocking pairs as stated in
the marriage model of Gale-Shapley. It is shown that finding stable assignments is
NP-hard. In some special cases stable assignments can be constructed in polynomial
time. For the general case, we give a set of linear inequalities of binary variables
characterizing the set of stable assignments. Then we address how to find optimal
stable assignments for different objectives. In our computational results, we report
the solution times to find stable assignments. Open questions and further directions
are discussed in the conclusion section.

3.1 Introduction

Stable assignment problem is a well-studied problem in the literature. It was first
introduced for the marriage problem by David Gale in the beginning of 1960’s (Gale
and Shapley (1962)). In the marriage problem, there are two sets of players with equal
sizes: men and women. Each player in these sets has a complete preference ordering,
without ties, over the players in the opposite set. In a marriage, every man or woman
finds a partner from the opposite set and a marriage is said to be stable, if there is
no man-woman pair such that they are not partners but they prefer each other to
their current partners. Such pairs are called blocking pairs. Gale and Shapley (1962)
showed that stable marriages always exist and described an algorithm to find stable
marriages.

In real life, several assignment problems are solved by using stable marriage algo-
rithms. For example, assigning medical students to hospitals in several countries such
as the U.S.A., Canada, Scotland, and Japan (Iwama et al. (2008)). Other examples
are assigning students to the universities in Turkey, and assigning academicians to
departments of the universities in France (Bäıou and Balinski (2000b)).

In this study, we are interested in an assignment problem with players technicians
and jobs. In Chapter 2, we present a MIP-based solution approach for a multi-skill

55



56 Chapter 3. Stable multi-skill workforce assignments

workforce scheduling problem. In the problem, technicians are grouped to perform a
sequence of tasks and every team performing a job must have a collective capability
above a certain threshold. Technicians in a team work together during a work day and
every task in the sequence assigned to a team must be performed without interruption,
without overlapping, and start and completion must be on the same day. Therefore,
the whole technician-task schedule is formed by successive day schedules. Once we
define a job as the sequence of tasks, a day schedule turns out to be an assignment of
technicians and jobs. In this study, we are interested in the stability of the assignments
in day schedules. Note that a schedule constructed by the combinatorial algorithm
in Chapter 2 provides us feasible instances, or assignments, of our problem as many
days as it lasts.

We assume that every player, a technician or a job, has a strict preference order
over the opposite set. For technicians, this is easily understood. However, for jobs it is
not obvious to see how a technician is preferred to another one, since jobs are processed
by teams of technicians in our problem. Hence we introduce a new terminology and
we say that a job “likes” a technician, say t, if and only if (1) in the current team of
the job there is a technician, say t′, to whom t is preferred, and (2) the replacement of
t′ by t results in another feasible team for the job. Note that a job likes a technician
based on an assignment. A job likes a technician as long as the feasibility of its
team is preserved after the less preferred technician is replaced by the more preferred
technician. This feasibility condition makes our assignment problem hard to solve.
Therefore, the results of Gale and Sotomayor (1985) for stable assignments do not
immediately apply to our case, since the number of technicians performing a job may
vary in different assignments.

Results of this chapter. In this chapter, stability in multi-skill workforce assign-
ments is analyzed. To do this, the necessary terminology is introduced. Complexity
of two special cases has been studied. Our results show that the general problem is
NP-complete whereas some special cases can be solved in polynomial time. Moreover,
the set of stable assignments is described with a set of linear inequalities of binary
decision variables. Additionally, we present the formulations to find optimal stable
assignments.

This chapter is organized as follows. In section 3.2 we give the basic definitions in
the multi-skill assignments between technicians and jobs. Section 3.3 is a literature
review of Gale-Shapley stability and multi-skill workforce scheduling. Section 3.4
includes our results on special cases of our assignment problem. In section 3.5, the
set of stable assignments is described with a set of linear inequalities including binary
variables. Our computational results are presented in Section 3.6. Conclusions and
future research directions are discussed in Section 3.7.

3.2 Problem description and notation

3.2.1 Skills

The skills of technicians and the skill requirements of jobs are defined in the same
way as explained in Section 2.2.1.



3.2. Problem description and notation 57

3.2.2 Technicians

We are given a set T of technicians and all technicians are assumed to have skills as
explained in Section 2.2.2. In this chapter, we keep the assumption of simultaneous
skill use.

Skills of Teams : Let T ′ ⊂ T denote a team of technicians. Skills of team T ′ is
defined in the same way as in Section 2.2.2 and they are found by ST ′ =

∑
t∈T ′ St.

3.2.3 Jobs

In our problem, a set J of jobs is given and every job requires skills. The skill
requirements of a job j ∈ J are described by a matrix RQj ∈ ZL×S which provides
the information of the desired skill quantity (number of technicians) and skill quality
(expertise). By definition, the requirements in RQj are cumulative in the sense that
any requirement at a level is carried to lower ones in the same domain. Therefore, for

a job j and a skill 〈l, s〉 we have RQ
〈l′,s〉
j ≥ RQ

〈l,s〉
j for all l′ ≤ l.

In the description of the set of stable assignments, in Section 3.5, we need to
use non-cumulative or explicit skill requirements. Let RQj be the (cumulative) skill
requirements of job j. The explicit skill requirements, denoted by RQ∗j ∈ ZL×S are
obtained as follows:

RQ
∗〈l,s〉
j =

{
RQ

〈l,s〉
j if l = |L|,

RQ
〈l,s〉
j −RQ〈l+1,s〉

j if 0 < l < |L|.
⇔ RQ

〈l,s〉
j =

|L|∑
`=l

RQ
∗〈`,s〉
j (3.1)

For example, let |S| = 4, |L| = 3, T (j) be a team assigned to job j, and let the
requirement matrix for job j be as follows:

RQj =

 1 2 0 0
1 1 0 0
1 0 0 0

 =⇒ RQ∗j =

 0 1 0 0
0 1 0 0
1 0 0 0


In the above example, RQ

〈1,2〉
j = 2 tells us that there must be at least two techni-

cians contributing to the team skill at level 1 in domain 2, hence S
〈1,2〉
T (j) ≥ 2. One of

them must be qualified at least at level 2, due to RQ
〈2,2〉
j = 1, so one needs at least

level 1 implying RQ
∗〈1,2〉
j = 1.

In our stability analysis, distinguishing certain skills will play crucial role. Hence
we give the corresponding definition below. Note that, the relations defined below are
assignment-independent.

Definition 3.2.1. (Missing skills)

The set M(j, t) = {〈l, s〉 ∈ L× S|RQ∗〈l,s〉j > 0, S
〈l,s〉
t = 0} is called the set of “missing

skills” of technician t ∈ T for job j ∈ J .

Definition 3.2.2. (Contributing skills)

The set N(j, t) = {〈l, s〉 ∈ L×S|RQ∗〈l,s〉j > 0}\M(j, t) is called the set of “contributing
skills” of technician t ∈ T for job j ∈ J .



58 Chapter 3. Stable multi-skill workforce assignments

3.2.4 Preferences

In real life, a technician may have several criteria for preferring a job to another
such as skill match, job location, job provider and so on. In this study, we do not
distinguish between these criteria, but we simply assume that every technician in the
technician group T has a complete and strict preference ordering over the jobs. Let
t ∈ T be a technician and j, j′ ∈ J be two jobs in the problem. In our notation j′ <t j
denotes that technician t prefers job j to job j′. The complete preference ordering of
t over the jobs is denoted by Pt.

From the job provider’s point of view, there may be several criteria to distinguish
technicians from each other like experience, age, capability of working in teams and so
on. We assume that every job in J has a complete and strict preference ordering over
the technicians. Let j ∈ J be a job and t, t′ ∈ T be two technicians in the problem.
In our notation t′ <j t denotes that job j prefers technician t to technician t′. The
complete preference ordering of j over the technicians is denoted by Pj.

Definition 3.2.3. (Rank function)
Let r : (T × J)∪ (J × T ) 7→ Z+ denote the rank function. For a given pair of players,
r returns the place of the “second” player in the preference list of the “first” player.

Note that the preference j′ <t j can alternatively be denoted by r(t, j′) > r(t, j)
using the rank function. In order to keep the common notation with Gale-Shapley
literature, we will use the former for interpreting preferences unless the numerical
values of preferences are needed.

3.2.5 Assignments

As we will show in Section 3.4, feasibility makes our problem hard to solve in times
bounded by a polynomial in the size of the input. Moreover, the varying team sizes
between different solutions makes it impossible to attain stability by directly applying
the algorithms that are proposed in the literature.

Throughout our analysis, µ denotes a feasible technician-job assignment, Jµ(t)
denotes the job to which the technician t ∈ T is assigned under µ, and if technician t
is not assigned to any job, then Jµ(t) = null.

Feasibility : An assignment is a many-to-one matching between technicians and jobs.
Every job in set J must be processed by a team of technicians possessing at least the
required skills. In a feasible assignment, teams are formed for every job, hence every
team performs exactly one job. Let µ be a technician-job assignment and let Tµ(j)
denote the team of technicians assigned to job j under µ. The feasibility condition
concerning skill requirements is formally described as

Tµ(j) is a feasible team for j ∈ J ⇔ RQ
(l,s)
j ≤ S

〈l,s〉
Tµ(j),∀〈l, s〉 ∈ L× S (3.2)

Clearly, in a feasible assignment, every technician can be assigned to at most one
job:



3.2. Problem description and notation 59

| {j ∈ J |t ∈ Tµ(j)} |≤ 1, ∀t ∈ T (3.3)

The skill requirements of jobs that are tightly met by the assigned team of tech-
nicians under an assignment play an important role in deciding which technicians in
a team can be replaced by alternative technicians outside the team. So let us first
define

Definition 3.2.4. (Critical skills)
Under an assignment, the skills that are tightly satisfied by eligible technicians in the
team of a job are called critical skills of that job.

The set of critical skills of job j under assignment µ is denoted by C(µ, j), and it
is given by

C(µ, j) = {〈l, s〉 ∈ L× S|S〈l,s〉Tµ(j) = RQ
〈l,s〉
j > 0} (3.4)

Definition 3.2.5. (Idle technician)
Under an assignment, a technician is called “idle” in the team of a job if and only if
the job prefers him least among those not contributing to any of its critical skills.

For an idle technician t∗ in the team of job j under µ, we have

r(t∗, j) = max
t∈Tµ(j)

{r(t, j)|C(µ, j) ∩N(t, j) = ∅} (3.5)

where C(µ, j) and N(t, j) denote the set of critical skills of job j, and the set
of contributing skills of technician t for job j respectively. Note that a team stays
feasible after removing an idle technician.

3.2.6 Stability

In assignment µ, let t be not assigned to job j. We say that technician t likes job j ,
if and only if t prefers j to his current job. Technicians prefer being assigned to being
unassigned, hence an unassigned technician likes every job in J . Moreover, job j likes
technician t , if and only if in its team there is a technician t′ to whom j prefers t and
replacing t with t′ results in another feasible team for job j. Consequently, t likes j
on the condition that

Jµ(t) 6= j and Jµ(t) <t j (3.6)

Job j likes technician t if and only if

∃t 6∈ Tµ(j) and ∃t′ ∈ Tµ(j) : (Tµ(j) \ {t′}) ∪ {t} is feasible (3.7)

Note that we use the word like instead of prefer. A player prefers one player
to another according to the given preference ordering. However, in our terminology,
players like each other under a given assignment.



60 Chapter 3. Stable multi-skill workforce assignments

Definition 3.2.6. (Stability)
A feasible assignment is stable if and only if it does not contain a technician-job pair
such that the technician is not assigned to the job and they “like” each other.

Such pairs in the above definition are called blocking pairs. For a blocking pair
〈t, j〉 under µ, we have
1- Technician t prefers job j to the job he is currently assigned to,
2- There exists t′ in the team of j such that

(a) job j prefers t to t′,
(b) j can be performed if t and t′ are replaced.

Note that the cases (1) and (2-a) depend only on the preferences and the case (2-b)
depends on the skills of team performing job j under µ. Now let us examine the case
(2-b). The following remark states the condition of the replacement of a technician
by another one.

Remark 3.2.1. Under a feasible assignment, let t′ be in the team of job j but not t.
Then t can replace t′ if and only if t is qualified in those critical skills of j to which t′

contributes.

According to the remark above, t can replace t′ if and only if

N(j, t′) ∩ C(µ, j) ⊆ N(j, t) (3.8)

Stability condition. We say that the assignment µ is stable if and only if there
is no technician pair 〈t, t′〉 such that t′ ∈ Tµ(j), t 6∈ Tµ(j), and the following relations
hold

t′ <j t, Jµ(t) <t j, N(j, t′) ∩ C(µ, j) ⊆ N(j, t) (3.9)

Above we expressed the condition that leads to instability. The expression in-
cludes player preferences, contributing skills, and critical skills. In Section 3.5, the
above stability condition is formulated as linear inequalities in which binary decision
variables are used to detect critical skills in an assignment. Next, we describe how to
eliminate idle technicians from an assignment which will be needed in our complexity
analysis.

Elimination of idle technicians. Let technician t be idle in the team of job j
under µ. Note that Tµ(j) \ {t} is feasible for job j, since

• RQ〈l,s〉j = S
〈l,s〉
Tµ(j) = S

〈l,s〉
Tµ(j) − S

〈l,s〉
{t} = S

〈l,s〉
Tµ(j)\{t}, ∀〈l, s〉 ∈ C(t, j).

• RQ〈l,s〉j ≤ S
〈l,s〉
Tµ(j) − 1 ≤ S

〈l,s〉
Tµ(j) − S

〈l,s〉
{t} = S

〈l,s〉
Tµ(j)\{t},∀〈l, s〉 ∈ L× S \ C(µ, j).

The first of the above relations is due to (3.5), and the second one is true by
definition of skill matrices. Now let r(t, j′) = r(t, j) + 1. Then we add technician t to
the team of job j′, resulting in assignment µ′. We observe the following case

RQ
〈l,s〉
j′ + 1 ≤ S

〈l,s〉
Tµ(j′) + S

〈l,s〉
t = S

〈l,s〉
Tµ′ (j

′), ∀〈l, s〉 ∈ N(t, j′). (3.10)



3.3. Literature review 61

Note that (3.10) implies N(t, j′) ∩ C(µ′, j′) = ∅ and adding one technician to the
team Tµ(j′) results in C(µ′, j′) ⊆ C(µ, j′). If there exists a technician t◦ in Tµ(j′)
such that t◦ <j′ t and C(µ′, j′) ∩ N(t◦, j′) = ∅, technician t is not idle under µ′,
but technician t◦. So in any case job j′ has an idle technician under µ′. Next, we
let that idle technician to join to the team of the job with one lower ranking than
j′ in his preference list. If j′ is least preferred by that idle technician, then we leave
that idle technician unassigned. This process progressively continues until teams have
no idle technicians. Throughout the elimination no blocking pair is created and our
procedure is monotonic in

∑
t∈T r(t, Jµ(t)), hence will stop in polynomial time.

3.3 Literature review

Although Gale-Shapley stability and multi-skill workforce scheduling are well-known
problems in the literature, Gale-Shapley stability in multi-skill workforce schedules
has not been studied to the best of our knowledge.

3.3.1 Gale-Shapley stability

Having introduced the concept of stability in marriages, Gale and Shapley (1962)
stated the following theorem

Theorem 3.3.1. (Gale and Shapley (1962)) There always exists a set of stable mar-
riages.

The authors proposed a polynomial time algorithm so-called proposal-disposal al-
gorithm to construct stable marriages. In fact, the proposal-disposal algorithm con-
structs man-optimal and woman-optimal stable marriages where a man-optimal sta-
ble marriage is the one in which every man is as happy as in any stable marriage.
Woman-optimal stable marriage is defined similarly. Vande Vate (1989) showed that
the relaxation of the integer programming (IP) model of the marriage problem has
integral solutions. Hence a stable marriage can also be constructed by solving the
corresponding LP model.

Gale and Sotomayor (1985) study a generalization of the marriage problem called
“university admissions problem” in which the players are universities and applicants,
and players may order a subset (not necessarily all) of the players in the opposite
set in their preference lists. Such preference lists are said to be incomplete. Every
university has a quota which is an upper bound for the number of applicants to be
admitted. One of the authors’ results is given in the following theorem.

Theorem 3.3.2. (Gale and Sotomayor (1985)) If an applicant is admitted in a sta-
ble admission, then she/he is admitted in all stable assignments. Moreover, every
university admits the same number of applicants in all stable admissions.

Gale and Sotomayor (1985) show how to interpret a university admissions prob-
lem as a marriage problem. Moreover, Bäıou and Balinski (2000a) give a separation
algorithm to find stable admissions that uses a graph-theoretic approach to stabil-
ity and runs in polynomial time. In fact, every admission is called a many-to-one



62 Chapter 3. Stable multi-skill workforce assignments

matching in graph theory and the authors showed that the results for one-to-one
matchings (marriages) and many-to-one matchings (admissions) have equivalents in
general many-to-many matchings (Bäıou and Balinski (2000b)).

The version of the marriage problem in which incomplete preferences include ties
is NP-hard (Iwama et al. (1999)), so is the university admissions problem. Several ap-
proximation algorithms have been proposed for this version of the marriage problem
(Iwama et al. (2004), Iwama et al. (2008)). Recently, Gelain et al. (2010) propose a
local search approach to the marriage problem with incomplete lists and ties. More-
over, Fleiner et al. (2007) study a generalization of classical stable marriage problem
with partially ordered preference lists and forbidden pairs and show that the problem
is NP-hard.

Bäıou and Balinski (2000b) considered many-to-many assignments in a general
manner where an applicant is not assigned to institutions. Instead he/she has a
certain amount of time to work and an allocation of that time among institutions is
found. So the time amount of applicants is allocated to institutions in real numbers.
This generalization is indeed important for practical cases such as finding a schedule
for employees who can flexibly work in several companies.

3.3.2 Multi-skill workforce scheduling

In this study, Gale-Shapley stability is analyzed in the multi-skill workforce scheduling
context that is studied in Chapter 2. The multi-skill workforce schedules in Chapter
2 are composed of day schedules. In a day schedule, every team is assigned to a task
sequence. Tasks in a sequence are processed without interruption, without overlapping
within the same day. Every day schedule is an instance of our assignment problem.
Jobs correspond to the task sequences and technicians correspond to the members of
teams. Moreover, we assume that every job is day-long so that one team can perform
only one job. For a detailed literature review of multi-skill workforce scheduling, we
refer to Section 2.4.

3.4 Complexity analysis

3.4.1 Stable technician-job assignment problem

In this section we give a formal definition of our assignment problem and we denote
it by STJAP(a, b, c) where a, b, and c stand for |L|, |S|, and the upper bound on
the size of teams in assignments respectively. For example, STJAP(n, 1, n) denotes
the special case of instances in which there is one skill domain, no restriction in
the number of skill levels and no restriction on the size of teams performing jobs.
Moreover, if the equality sign “=” is used in front of any term, that term is fixed to
the corresponding parameter. For example, STJAP(1, n,=2) denotes the special case
in which assignments have teams of size two. In the following section, we analyze the
complexity of solving the special cases STJAP(n, 1, n) and STJAP(1, n,=2). Now,
we give a formal definition of the general problem.



3.4. Complexity analysis 63

Stable Technician-Job Assignment Problem STJAP(n, n, n)

Instance: The sets S, L, T , J denoting skill domains, skill levels, tech-
nicians, and jobs respectively. Skills St ∈ {0, 1}L×S for every t in T and
skill requirements RQj ∈ ZL×S for every j in J .

Preferences Pt for every t in T and Pj for every j in J .

Question: Does there exist a feasible assignment (satisfying (3.2) and
(3.3)) that is stable according to the Definition 3.2.6?

3.4.2 Special case: STJAP(n, 1, n)

The special case STJAP(n, 1, n) includes problem instances in which there is one skill
domain, any number of skill levels, and teams may have any number of technicians.
We drop the parameter “s” in the notation of skills and skill requirements due to
unique skill domain. In an assignment of STJAP(n, 1, n), technicians of a team,
without idle technician, can be allocated using the “technician allocation rule” that
is given in the proof of Theorem 3.4.3. Moreover, it is not difficult to see that this
allocation is a partition of technicians, each subset of which is assigned to the part
of the workload requiring skills at a specific level. So we distinguish parts of a job in
the following definition.

Definition 3.4.1. (Sub-job)
In STJAP(n, 1, n), the part of skill requirement of job j at level l ∈ L is called the

sub-jobof job j at level l and denoted by SJ (j, l).

Note that the number of eligible technicians required by sub-job SJ (j, l) is equal

to RQ
∗(l)
j which is the explicit skill requirement at level l. Let µ be a feasi-

ble assignment of special case STJAP(n, 1, n); satisfying (3.2) and (3.3). Clearly,

RQ
(1)
j =

∑
l∈LRQ

∗(l)
j (due to (3.1)), and S

(1)
Tµ(j) = |Tµ(j)|. Then rewriting (3.2) gives

RQ
(1)
j ≤ S

(1)
Tµ(j) ⇒

∑
l∈L

RQ
∗(l)
j ≤ |Tµ(j)|, ∀j ∈ J. (3.11)

If team Tµ(j) satisfies (3.11) strictly, then Tµ(j) has an idle technician. Therefore,
the assignments without idle technicians satisfy (3.11) with equality which implies
that every sub-job is assigned to a number of technicians that is exactly equal to
the corresponding (explicit) skill requirement. Moreover idle technicians from an
assignment can be taken out by “idle technician elimination” procedure, explained in
Section 3.2.6, without forming a blocking pair.

As discussed above, efficient assignments of STJAP(n, 1, n) include sub-jobs as-
signed to a number of technicians exactly as many as required. From this point
of view, such assignments resemble the university-applicant admissions in which all
universities admit a number of applicants as many as their quotas. This analogy
leads us to a complexity relation such that STJAP(n, 1, n) reduces to a version of the
university admissions problem. Next we give the formal definition of this problem.



64 Chapter 3. Stable multi-skill workforce assignments

University Admissions Problem with Filled Quotas (UAFQ )

Instance: The sets of players, U and A denoting the universities and the
applicants respectively. A quota qu ∈ Z+ for every u in U that is an upper
bound on the number of applicants who may be admitted. Complete and
strict preferences Pu for every u in U over applicants. Incomplete and
strict preferences Pa for every a in A over universities.

Question: Does there exist a stable admission ν with filled quotas? In
this context, ν is called stable if it satisfies (3.12) and it has filled quotas
if it satisfies (3.13).

{〈a, u〉 ∈ A×U |ν(a) 6= u, ν(a) <a u, and ∃a′ ∈ A : ν(a′) = u, a′ <u a} = ∅
(3.12)

|{a ∈ A|ν(a) = u}| = qu, ∀u ∈ U (3.13)

Now we give one of the results obtained by Gale and Sotomayor (1985). We show
that UAFQ is in P by using the authors’ results in the following theorem and in the
Theorem 3.3.2.

Theorem 3.4.1. (Gale and Sotomayor (1985)) University admissions problem is
solvable in polynomial time.

Corollary 3.4.2. UAFQ ∝ University admissions problem.

Proof. By Theorem 3.4.1, a stable admission can be constructed in polynomial time
and by Theorem 3.3.2 constructing one stable admission is enough to see if all stable
admissions of the given instance are with filled quotas or not.

Theorem 3.4.3. STJAP(n, 1, n) ∝ UAFQ .

Proof. Firstly, we will give a polynomial time transformation from STJAP(n, 1, n) to
UAFQ as follows

• Create an applicant a(t) for every element t ∈ T .

• Create a university u(SJ (j, l)) with qu(SJ (j,l)) = RQ
∗(l)
j for every sub-job SJ (j, l).

• Preferences:

Compatibility and feasibility : In the context of university admissions, an applicant-
university pair is said to be compatible if and only if both have each other in their
preference lists. In our transformation, the pair (a(t), u(SJ(j, l))) is compatible if

and only if S
(l)
t = 1. The following preferences are defined for compatible applicant-

university pairs.



3.4. Complexity analysis 65

u(SJ (j, l)) <a(t) u(SJ (j′, l′)) if j <t j
′, ∀j, j′ ∈ J, l, l′ ∈ L, . (3.14)

u(SJ (j, l)) <a(t) u(SJ (j, l′)), ∀l′ ∈ L : l < l′. (3.15)

a(t′) <u(SJ (j,l)) a(t) if t′ <j t, ∀j ∈ J. (3.16)

Now, we show that a YES instance of the UAFQ corresponds to a YES instance of
the STJAP(n, 1, n). Let ν be a stable admission with filled quotas of a YES instance
of the UAFQ . We will show that the corresponding STJAP(n, 1, n) instance is a YES
instance.

Next, we show how to obtain a technician-job assignment µ from the admission
ν. Let Tµ(j)(l) denote the applicants assigned to university u(SJ(j, l)) under ν which
is given by Tµ(j)(l) = {t ∈ T |ν(a(t)) = u(SJ(j, l))}. Then the team of a job j is
determined by

Tµ(j) =
⋃
l∈L

Tµ(j)(l) (3.17)

where we have |Tµ(j)(l)| = qu(SJ(j,l)) = RQ
∗(l)
j due to filled quotas in ν. Then, we

show that teams under µ meet skill requirements at for every l in L as follows

S
(l)
Tµ(j) =

∑
t∈Tµ(j)

S
(l)
t ≥

∑
l′≥l

∑
t∈Tµ(j)(l

′)

S
(l)
t =

∑
l′≥l

|Tµ(j)(l′)| =
∑
l′≥l

RQ
∗(l′)
j = RQ

(l)
j (3.18)

Now, in order to show the stability of µ we suppose, to the contrary, that µ
is blocked by pair 〈t◦, j◦〉. So there must be a technician t′ ∈ Tµ(j◦) such that
ν(a(t′)) = u(SJ(j◦, l′)), and the following relations hold.

Jµ(t◦) <t◦ j
◦, t′ <j◦ t

◦, and RQj◦ ≤ S(Tµ(j◦)\{t′})∪{t◦}, (3.19)

Note that there exists a level l◦ ≤ l′ such that S
(l◦)
t◦ = 1 and RQ

∗(l◦)
j◦ > 0. To see

this, let us suppose that S
(`)
t◦ = 0, ∀` ∈ L which results in RQ

(`)
j◦ ≤ S

(`)
Tµ(j◦) − S

(`)
t′ due

to (3.19), thus making Tµ(j◦) \ {t′} feasible for job j◦. Then rewriting (3.11) gives us
a contradiction as below.

RQ
(1)
j◦ ≤ |Tµ(j◦) \ {t′}| =

∑
l∈L

|Tµ(j◦)(l)| − 1 =
∑
l∈L

|RQ∗(l)j◦ | − 1 = RQ
(1)
j◦ − 1 (3.20)

Next, we state a claim which will help in detecting a blocking pair in ν, hence to
a contradiction.

Claim: For any l ≤ l′ with S
(l)
t◦ = 0, we have the following relation.

If ∃t ∈ Tµ(j◦)(l), then ∃(t∗, l∗) s.t. l∗ < l, t∗ ∈ Tµ(j◦)(l∗), S
(l)
t∗ = 1, and t∗ <j◦ t.

(3.21)



66 Chapter 3. Stable multi-skill workforce assignments

To prove the claim, let us plug the values S
(l)
t′ = 1 and S

(l)
t◦ = 0 into the rightmost

inequality in (3.19). We get RQ
(l)
j◦ + 1 ≤ S

(l)
Tµ(j◦) where S

(l)
Tµ(j◦) is

S
(l)
Tµ(j◦) =

∑
`≥l

S
(l)

Tµ(j◦)(`)
+
∑
`<l

S
(l)

Tµ(j◦)(`)
=
∑
`≥l

RQ
∗(`)
j◦ +

∑
`<l

S
(l)

Tµ(j◦)(`)
= RQ

(l)
j◦+

∑
`<l

S
(l)

Tµ(j◦)(`)

(3.22)

So RQ
(l)
j◦ + 1 ≤ RQ

(l)
j◦ +

∑
`<l S

(l)

Tµ(j◦)(`)
becomes 1 ≤

∑
`<l S

(l)

Tµ(j◦)(`)
which implies

∃〈t∗, l∗〉 : l∗ < l, t∗ ∈ Tµ(j◦)(l∗), and S
(l)
t∗ = 1. (3.23)

To show that t∗ <j◦ t, we suppose t <j◦ t
∗ is true. Then 〈u(SJ(j◦, l)), a(t∗)〈 would

block ν due to fact that both a(t∗) and a(t) prefer u(SJ(j◦, l)) to u(SJ(j◦, l∗)). This
completes our proof of the Claim.

Remembering that there exists a level l◦ ≤ l′ with S
(l◦)
t◦ = 1 and RQ

∗(l◦)
j◦ > 0 , and

applying the above Claim repeatedly, we find a set of pairs {〈t0, l0〉, 〈t1, l1〉, . . . , 〈tk, lk〉}
such that 〈t0, l0〉 = 〈t′, l′〉, that lk ≤ l◦, and that

S
(li−1)
ti = 1, ti <j◦ ti−1, i = 1, . . . , k. (3.24)

We see that the pair 〈u(SJ(j◦, lk)), a(t◦)〉 blocks ν due to the preferences in (3.19)
and (3.24). This contradicts the stability ν, hence, the stable assignment µ implies
we have a YES STJAP(n, 1, n) instance.

Next, we show that a YES STJAP(n, 1, n) instance corresponds to a YES UAFQ
instance. Let µ be a “stable” assignment of the YES STJAP(n, 1, n) instance. An
admission ν from µ can be obtained in two steps: eliminating idle technicians, and
allocating (or assigning) technicians to sub-jobs. Elimination of idle technicians can
be done in polynomial time as mentioned in Section 3.2.6.

Technician allocation rule: Pick the sub-job that requires the highest skill-level
among the ones to which no technician is allocated yet. Choose the technicians who
are most preferred by the job among the eligible ones.

Note that technician allocation will always end up with an admission in which
all quotas are filled. Plugging the equation RQ

(l)
j = RQ

∗(l)
j +

∑
l<`RQ

∗(`)
j into the

feasibility of skill requirements condition in (3.2) gives us

RQ
∗(l)
j ≤ S

(l)
Tµ(j) −

∑
l<`

RQ
∗(`)
j , ∀j ∈ J, 0 < l ≤ |L| (3.25)

As seen above, for every sub-job there is enough number of technicians left after
some technicians are allocated to the sub-jobs requiring higher skill levels. Therefore,
the obtained admission ν has filled quotas. Next, to show that ν is stable, suppose
that, to the contrary, 〈u(SJ(j◦, l◦)), a(t◦)〉 is a blocking pair. Firstly, we assume that
Jµ(t◦) 6= null and let ν(a(t◦)) = u(SJ(Jµ(t◦), l∗)). So there must be an applicant a(t′)
such that ν(a(t′)) = u(SJ (j◦, l◦)) and we have the following preference.

a(t′) <u(SJ (j◦,l◦)) a(t◦)⇒ t′ <j◦ t
◦ (3.26)



3.4. Complexity analysis 67

Let us consider the case Jµ(t◦) = j◦. Note that l∗ < l◦, since a(t◦) prefers

u(SJ (j◦, l◦)) to u(SJ (j◦, l∗)). Technician t◦ with S
(l◦)
t◦ = 1 is not assigned to SJ(j◦, l◦),

but to SJ(j◦, l∗), although t′ <j◦ t
◦ which contradicts the technician allocation rule.

Next, consider the case Jµ(t◦) 6= j◦. Then we have the following cases.

Jµ(t◦) <t◦ j
◦, t′ <j◦ t

◦, and Tµ(j◦) \ {t′} ∪ {t◦} is feasible for j◦. (3.27)

Above, we see that 〈t◦, j◦〉 blocks µ which is a contradiction. Consequently, we
showed that a YES STJAP(n, 1, n) instance corresponds to a YES UAFQ instance.

3.4.3 Special case: STJAP(1, n,=2)

In the instances of the special case STJAP(1, n,= 2) every job is processed by two
technicians, and technicians are either skilled or unskilled in a specialization field. We
drop the parameter “l” in the notation of skills and skill requirements due to one skill
level. There may be any number of specialization fields though. We note that the proof
of Theorem 3.4.4 concerns the feasibility of skill requirements in STJAP(1, n,=2).

Theorem 3.4.4. STJAP(1, n,=2) is NP-complete.

Proof. Note that in polynomial time the feasibility and the stability of a given assign-
ment can be checked. Now, we give a reduction from the “three-dimensional matching
problem” (3-DM). Below we define the following variant of the NP-complete 3-DM
problem (See Garey and Johnson (1979)).

Problem: Three-Dimensional Matching (3-DM)

Instance: An integer n.

Three pairwise disjoint sets A = {a1, . . . , an}, B = {b1, . . . , bn}, and C =
{c1, . . . , cn}.
Set of triples X ⊆ A×B × C.

Question: Does there exist a subset X ′ ⊆ X of n triples, such that every
element in A ∪B ∪ C occurs in exactly one triple in X ′?

Let us consider an arbitrary instance of the 3-DM problem and translate it into a
corresponding instance of our scheduling problem.

• For every element ai ∈ A, create a corresponding job j(ai).

• For every element bj ∈ B, create a corresponding technician t(bj).

• For every element ck ∈ C, create a corresponding technician t(ck).

• Skill domains D = {d(i, k)|i = 1, . . . , n, k = 1, . . . , n}∪{β, γ}, skill levels |L| = 1.



68 Chapter 3. Stable multi-skill workforce assignments

Skills and skill requirements are defined as follows:

RQ
(d)
j(ai)

=

{
1 for d ∈ {d(i, 1), . . . , d(i, n), β, γ}
0 otherwise

(3.28)

S
(d)
t(bj)

=

{
1 for d ∈ {d(i, k)|(ai, bj, ck) ∈ X} ∪ {β}
0 otherwise

(3.29)

S
(d)
t(ck) =

{
0 for d ∈ {d(1, k), . . . , d(n, k), β}
1 otherwise

(3.30)

We now show that a YES answer to our assignment problem corresponds with a
YES answer to the 3-DM problem and vice-versa. Assume that we are given a feasible
assignment µ with teams |Tµ(j(ai))| = 2, for all i. Considering the requirements in
(3.28), we have:

1 = RQ
(β)
j(ai)
≤ S

(β)
Tµ(j(ai))

⇒ 1 ≤ |Tµ(j(ai)) ∩ {t(b1), . . . , t(bn)}|, ∀i (3.31)

1 = RQ
(γ)
j(ai)
≤ S

(γ)
Tµ(j(ai))

⇒ 1 ≤ |Tµ(j(ai)) ∩ {t(c1), . . . , t(cn)}|, ∀i (3.32)

Therefore we see that the team assigned to job j(ai) has one technician from set B,
by (3.31), and one technician from set C, by (3.32), hence Tµ(j(ai)) = {t(bj), t(ck)}.
Moreover, by (3.30) we see that S

(d(i,k))
t(ck) = 0, but team feasibility enforces S

(d(i,k)))
Tµ(j(ai))

= 1,

by (3.28), implying that S
(d(i,k))
t(bj)

= 1. Therefore, by (3.29), (ai, bj, ck) ∈ X. Feasibility

of the assignment µ implies that every technician is in exactly one team and every job
is performed, hence this coincides with a YES answer in the 3-DM problem. Then
the desired subset is found by

X ′ = {(ai, bj, ck) ∈ X| Tµ(j(ai)) = {t(bj), t(ck)}, and ∀ai ∈ A}. (3.33)

Let us consider the other direction. If a subset of the set X is given with the
desired property in the 3-DM problem, then the triples in the subset can be directly
translated to teams and a feasible assignment is obtained. This simple argument shows
that a YES answer to the 3-DM problem leads to a YES answer to the assignment
problem.

Corollary 3.4.5. STJAP(n, n, n) is NP-complete.

3.5 Stable assignments

In this section we present linear inequalities of binary variables and we will show
that the solution set of these linear inequalities corresponds to the set of the stable
assignments. In the following sections, we will address how to find the optimal stable
assignments if the importance of assignments can be expressed with given weights of
technicians and/or jobs.



3.5. Stable assignments 69

Table 3.1: Indices,sets, parameter and variables in the linear inequalities
Indices

t, t′ Technician index, t, t′ ∈ T
j, j′ Job index, j, j′ ∈ J
l Skill level index, l ∈ L
s Skill domain index, s ∈ S

Sets
M(j, t) Missing skills of technician t for job j, M(j, t) ⊂ L× S

Parameter
δj,〈t,t′〉 Equal to 1 if j does not prefer t to t′, 0 otherwise

Variables
xtj Equal to 1, if t is assigned to j; otherwise 0
ytj Equal to 1, if t likes j; otherwise 0
βj,〈l,s〉 Equal to 1, if 〈l, s〉 is not critical for j; otherwise 0

τj,〈t,t′〉 Equal to 1, if t cannot replace t′ in team of j; otherwise 0∑
j∈J

xtj ≤ 1, ∀t ∈ T (3.34)∑
t∈T

Stxtj ≥ RQj, ∀j ∈ J (3.35)∑
j′:j′<tj

xtj′ ≤ ytj, ∀t ∈ T ,∀j ∈ J (3.36)∑
j′:j<tj′

xtj′ + ytj ≤ 1, ∀t ∈ T ,∀j ∈ J (3.37)

βj,〈l,s〉 ≤
∑
t∈T

S
〈l,s〉
t xtj −RQ〈l,s〉j , ∀j ∈ J,∀〈l, s〉 ∈ L× S,

(3.38)∑
t∈T

S
〈l,s〉
t xtj −RQ〈l,s〉j ≤ |T |βj,〈l,s〉, ∀j ∈ J,∀〈l, s〉 ∈ L× S,

(3.39)

τj,〈t,t′〉 ≤
∑

〈l,s〉∈M(j,t)

S
〈l,s〉
t′ (1− βj,〈l,s〉), ∀j ∈ J,∀〈t, t′〉 ∈ T × T

(3.40)∑
〈l,s〉∈M(j,t)

S
〈l,s〉
t′ (1− βj,〈l,s〉) ≤ |L× S|τj〈t,t′〉, ∀j ∈ J,∀〈t, t′〉 ∈ T × T

(3.41)

xt′j ≤ (1− ytj) + τj,〈t,t′〉 + δj,〈t,t′〉, ∀j ∈ J,∀〈t, t′〉 ∈ T × T
(3.42)

xt′j, ytj, τj,〈t,t′〉, βj,〈l,s〉 ∈ {0, 1} ∀j ∈ J,∀〈t, t′〉 ∈ T × T ,∀〈l, s〉 ∈ L× S (3.43)



70 Chapter 3. Stable multi-skill workforce assignments

3.5.1 The set of stable assignments

The main idea underlying the linear inequalities is to ensure that the stability condition
is satisfied as given in Section 3.2.6. In this linear equalities, we guarantee that
a technician t is assigned to a job j if and only if there is no technician t′ such
that t′ is not assigned to job j, that job j prefers technician t′ to technician t, and
that technician t′ can perform those critical skills to which technician t contributes.
Therefore, forming a blocking pair is prevented. The notation used in the linear
inequalities is given in Table 3.1.

Feasibility: Inequalities (3.34) and (3.35) ensure that feasibility conditions (3.2)
and (3.3), explained in Section 3.2.5, are satisfied.

Recognition: By inequalities (3.36), a technician likes a job if he is assigned to
another one that is less preferred by that technician. Inequalities (3.38) and (3.39)
are used to figure out that a positive skill requirement is tightly satisfied in a team.
In this case, the corresponding binary variable becomes zero. Similarly, inequalities
(3.40) and (3.41) detect that a technician cannot replace another one in a team if the
former one misses a skill that is critical in the team and the latter contributes at that
skill.

Stability: The following lemma shows that all assignments constructed by solving
the inequalities (3.34)-(3.43) are stable, i.e. no blocking pairs are formed by satisfying
(3.42).

Lemma 3.5.1. An assignment µ, with corresponding values of binary variables x, y, β,
and τ , satisfying constraints (3.34)-(3.43) is stable.

Proof. Suppose, to the contrary, that assignment µ is unstable, i.e. there is a
technician-job pair 〈t, j〉 such that t is not in the team of j and they like each other.
Since t likes j, we have ytj = 1. Moreover, since j likes t, so there is a technician t′

is in the team of j, so xt′j = 1, such that t′ <j t, hence δj,〈t,t′〉 = 0. To satisfy the
inequality (3.42), we must have τj,〈t,t′〉 = 1. The value τj,〈t,t′〉 = 1 in the inequalities
(3.40)-(3.41) tells us that there exists a missing skill of t in which t′ is qualified. Then
by inequalities (3.38)-(3.39), we see that this skill is critical. Finally, if t replaces t′ in
the team of j, the new team would not satisfy the requirement of the aforementioned
critical skill, since t misses it. This contradicts the assumption that j likes t (or t can
replace t′).

Definition 3.5.1. Let Π = {µ|µ satisfies (3.34)− (3.43)} and Σ = {µ|µ is stable }.

Note that Lemma 3.5.1 implies Π ⊆ Σ.

Lemma 3.5.2. One has Σ ⊆ Π implying that every stable assignment satisfies (3.34)-
(3.43).

Proof. Let µ be a stable assignment for which the values of x, y, β, nd τ are determined
by checking teams, technicians skills, and skill requirements of jobs. By feasibility
conditions in (3.2) and (3.3), inequalities (3.34) and (3.35) are satisfied and critical
skills as in the Definition 3.2.4 satisfy inequalities (3.38).

Let us consider the inequality (3.42) whose satisfaction may not be seen immedi-
ately. Under µ, there are two possible cases for a technician-job pair (t′, j). Firstly; for



3.5. Stable assignments 71

the case xt′j = 0, inequality (3.42) becomes redundant and the values τj,(t,t′) for any
pair (t, t′) do not mean anything for us. Secondly; in the case xt′j = 1, let us assume
that, in the right side of inequality (3.42) ytj = 1 and δj,(t,t′) = 0 for a technician t not
in the team of j. The value ytj = 1 implies that t prefers j to the job he is assigned
under µ and the value δj,(t,t′) = 0 implies that j prefers t to t′. Let us consider the
only critical case τj,(t,t′) = 0 that would lead to the violation of inequality (3.42). In
this case, by inequalities (3.40)-(3.41) we see that all critical skills possessed by t′ are
also possessed by t which means that t can replace t′ in team of j, hence (t, j) would
be a blocking pair. This contradicts the stability of µ.

Theorem 3.5.3. The constraints (3.34)-(3.43) characterize the set of stable assign-
ments.

Proof. By Lemmas 3.5.1 and 3.5.2, we see Σ = Π.

3.5.2 Optimality in stable workforce assignments

An optimal stable workforce assignment can be constructed by solving an integer
programming (IP) model which involves the inequalities (3.34)-(3.43). The objective
of this IP model may concern either the satisfaction of technicians and/or jobs or
the cost of constructing the assignment. In the former, the goal is to maximize the
weighted satisfaction of players, and in the latter the cost is minimized. In this section,
we define the satisfaction of a player, technician or job, and we address how to find
optimal stable assignments.

In some applications, a weight for every technician-job pair is specified, similar to
the weights of applicant-university pairs used by Bäıou and Balinski (2000a). Let wtj
denote the profit of assigning technician t to job j. Then an optimal stable assignment
is found by “maximizing

∑
(t,j)∈T×J wtjxtj subject to the constraints (3.34)-(3.43)”.

Furthermore, if the number of available technicians is much more than the required
number, the concern becomes minimizing the cost of constructing the assignment, i.e.
minimizing the skill waste. Then wtj denotes the cost of assigning technician t to job
j and an optimal stable assignment is constructed by “minimizing

∑
(t,j)∈T×J wtjxtj

subject to the constraints (3.34)-(3.43)”.

Optimal assignments based on satisfaction of players

In some cases, it may be desired to find optimal assignments in which the satisfaction
of a set of players is maximized. For example, a company may look for maximizing
the satisfaction of its technicians. First of all, below we define the satisfaction of a
technician and the satisfaction of a job is defined similarly.

Definition 3.5.2. (Technician satisfaction)
The satisfaction of technician t when he is assigned to job j is denoted by γtj. It is
given by

γtj =
|J | − r(t, j)
|J |

(3.44)



72 Chapter 3. Stable multi-skill workforce assignments

In the STJAP(n, n, n), the set of stable assignments does not qualify to form a
lattice due to the skill requirement aspect of the problem. In some instances there may
be several stable assignments, each could be preferred by disjoint subsets of technicians
to any other stable assignments. This shows that the set of stable assignments may
contain incomparable stable assignments, hence there may not be unique technician-
optimal assignment in which every technician is at least as happy as in any other
stable assignment. In this section, we aim to find one of these assignments in which
the weighted satisfaction of technicians is maximized.

Let wt denote the weight of technician t. Then an optimal stable assignment based
on technicians’ satisfaction can be found by “maximizing

∑
t∈T wt

∑
j∈J γtjxtj subject

to the constraints (3.34)-(3.43)”. If the instance includes a technician-optimal stable
assignment, then the optimal stable assignment that is constructed by our procedure
corresponds to that technician optimal assignment.

Satisfaction of jobs. Let wj denote the weight of job j. We find an optimal sta-
ble assignment based on the satisfaction of jobs by “maximizing

∑
j∈J wj

∑
t∈T γjtxtj

subject to the constraints (3.34)-(3.43)” where satisfaction of job j is found by
γjt = (|T | − r(j, t))/|T |.

3.6 Computational results

All results are obtained on a laptop with Intel Core 2 Duo 1.6 GHz Processor, 4 GB
RAM. The MIP models are solved using the solver CPLEX 12.1.0.

Instance generation. The multi-skill workforce schedules that are constructed
by the combinatorial algorithm in Chapter 2 include day schedules, each being a
technician-job assignment. We generated our instances from these schedules. After
some experimentation, we decided to generate instances in which number of jobs is in
{5, 10, 15}, number of technicians varies from 5 to 45, number of domains from 5 to
15, and number of levels from 2 to 7. Skill requirements of jobs and skill distribution
among technicians depend on the specific day of schedule, so we did not have any
control on them.

Preferences. Preferences are determined with randomized scores between techni-
cians and jobs. The score between a technician and a job is calculated by finding the
overlap between offered and required skills, and a randomized noise is added to allow
some diversity.

Table 3.2 shows both the instance properties and the solution times. It has three
parts; small-size instances with repeated runs, instances without stable assignments
with repeated runs, and single moderate-size instances with stable assignment solu-
tions. The first column of the table shows the source schedules that are constructed
with the multi-skill workforce problem instances provided by France Telecom for 2007
ROADEF Challenge. An instance of our assignment problem corresponds to a work-
day schedule of the mentioned schedules. The following four columns labeled with
|S|, |L|,|T |, and |J | show respectively number of domains, number of levels, number
of technicians, and number of jobs of instances. Following three columns, labeled
with “Avg.Time(sec.)”, “#Instances”, and “Empty (%)” show respectively average



3.6. Computational results 73

Table 3.2: Computational results
Schedule∗ |S| |L| |T | |J | Avg.Time(sec.) #Instances Empty (%)
A8 5 4 5-14 5 0.06 2757 78
X6 6 6 5-18 5 0.09 1710 96
A9 5 4 5-19 5 0.07 3799 74
A8 5 4 15-17 5 0.14 676 93
B1 4 4 9-20 5 0.24 1772 92
B2 5 3 5-22 5 0.26 462 97
B5 7 4 8-16 5 0.36 39 72
B6 8 3 10-22 5 0.37 596 96
A8 5 4 14-19 10 0.27 720 96
A9 5 4 10-19 10 0.21 826 88
A9 5 4 17 15 0.35 12 75
B7 10 5 12-23 5 - 22 100
B2 5 3 15-30 10 - 247 100
B2 5 3 22-30 15 - 22 100
X8 15 7 17-28 5 - 946 100
B5 7 4 27 10 4.65 1 0
X8 15 7 29 5 4.06 1 0
B5 7 4 36 15 35.51 1 0
B5 7 4 44 15 98.95 1 0
B2 5 3 23 5 4.66 1 0
B2 5 3 28 5 55.87 1 0
B6 8 3 23 5 1.51 1 0
B6 8 3 25 5 31.44 1 0
B6 8 3 26 5 25.24 1 0
B6 8 3 25 10 1.82 1 0
B6 8 3 28 10 6.29 1 0
B6 8 3 28 10 7.63 1 0
B7 10 5 29 5 91.43 1 0
B9 5 5 60 15 >3600 1 0

*source schedule of the 2007 ROADEF Challenge problem



74 Chapter 3. Stable multi-skill workforce assignments

time for finding the solution for instances with stable sets, number of total instances
generated, and the ratio of the instances with empty stable assignment set. We did
not record the times needed by CPLEX to figure out that stable assignment set of
the current instance is empty. Therefore the average times in Table 3.2 indicate how
long did it take to find stable assignments.

On the solution times. If all results are considered, we see that the ratio of instances
having no stable assignment is quite high, more than 85% in general. According to
the average running times in Table 3.2, it takes less than one second, to find stable
assignments for instances with |T | up to 20. In problem instances with high number
of technicians, roughly more than 25, it takes longer time to find stable assignments.
The solution times in the third part of Table 3.2 vary from one second to 100 seconds.
This high variance may be due to the differences in other instance properties that are
not shown in Table 3.2 like skill distribution, skill requirements, and preferences. An
important result to mention is that if the number of technicians increases up to 60,
CPLEX could not find a solution after one hour.

3.7 Concluding remarks

In this study we analyse the Gale-Shapley stability in multi-skill workforce scheduling
framework. Our stability definition is based on excluding the blocking cases, as in the
definition by Gale-Shapley. A polynomial-time algorithm for a special case is devel-
oped and NP-hardness of the general problem is proved. Moreover, we define the set
of all stable assignments by a set of linear inequalities. In order to construct optimal
stable assignments based on specified weights, we formulated three MIP models that
include the aforementioned set of linear inequalities in their constraint set.

Our experimentation shows that stable assignments, if any exist, of the instances
with less than 20 technicians, around 10 jobs with at most 5 skill domains and 5 skill
levels can be found in short time, less than one second, by solving the MIP that is
explained in Section 3.5.2.

In our workforce assignment problem, the set of stable assignments may be empty.
In such cases, the instability in a given assignment can be repaired by decreasing the
number of blocking pairs. This can be done with a local search method that could be
implemented in the following way:

Consider a sequence of jobs, say {j1, j2, . . . , jm} and assume that under the current
assignment, the technicians {t1, t2, . . . , tm} work in the teams such that ti ∈ T (ji).
Note that the chain of replacements in which ti replaces ti+1 for i = 1, . . . ,m−1 and tm
replaces t1 results in another feasible assignment. Moreover, if 〈ti, ji+1〉 is a blocking
pair for some i in the initially given assignment and if the replacements do not create
any new blocking pairs, then the replacements lead to a decrease in the number of
blocking pairs. A chain of such replacements can be called a “cycle”. Figuring out
the cycles in a given assignment those of not increasing the number of blocking pairs
is a possible direction to investigate further. Here, another point to mention is that a
cycle results possibly in new critical skills of jobs in the next assignment.

Besides the attempts to decrease the number of blocking pairs, some more actions



3.7. Concluding remarks 75

may be taken to obtain some stable assignments like rejecting some jobs, or preparing
the plan for increasing the skills of technicians by training them as much as needed.
If all these modifications to the schedule are specified as profits and costs, developing
optimal strategies may be a topic of further researches under the multi-skill workforce
scheduling framework.

The definition of idle technicians, in Section 3.2.5, provides a proper way for jobs
to reject the technicians. Using this basic idea, the Gale-Shapley algorithm may be
adapted to the multi-skill workforce assignment problem. It may be possible that the
existence of technician-optimal stable assignments can be checked in a faster way than
we suggest in Section 3.5.2.

Incompleteness in preferences is a direction for further studies. It will be useful
to investigate which preference structures and preferences sizes make the assignment
problem easy to solve or result in an empty stable set of assignments. This direction
of research may also lead us to find a certificate to check if the stable assignments set
is empty.



76 Chapter 3. Stable multi-skill workforce assignments



Chapter 4

Analysis of a dial-a-ride problem

Hunsaker and Savelsbergh (2002) discussed feasibility testing for a dial-a-ride problem
under maximum wait time and maximum ride time constraints. In this chapter, we
show that this feasibility test can be expressed as a shortest path problem in vertex-
weighted interval graphs, which leads to a simple linear time algorithm.

4.1 Introduction

Dial-a-ride problems concern the dispatching of a vehicle to satisfy requests where an
item (or a person) has to be picked up from a specific location and has to be delivered
to some other specific location. Dial-a-ride problems arise in many practical applica-
tion areas, as for instance shared taxi services, courier services, and transportation of
elderly and disabled persons.

4.2 Problem description and notation

Hunsaker and Savelsbergh (2002) analyzed the following feasibility question for a dial-
a-ride problem arising in a taxi company: An instance specifies a sequence of 2n+ 1
events that have to be served (one after the other and in the given order) by a single
vehicle. The first event is the dispatch of the vehicle from a central facility. The
remaining 2n events are grouped into a set P of pairs 〈i, j〉 with i < j. In every pair
〈i, j〉 the earlier event i is the pickup and the later event j is the delivery of some
fixed item. Here, two events in such a pair are not necessarily consecutive in the event
sequence. The goal of the problem is to decide whether there exist 2n+ 1 time points
for these 2n+ 1 events subject to the following three groups of constraints.

Time windows: The ith event (1 ≤ i ≤ 2n+1) must occur during a pre-specified time
window between time points αi and βi with αi ≤ βi.

Riding times: The riding time from the ith to the (i + 1)th event (1 ≤ i ≤ 2n) is
γi,i+1. For every pickup and delivery pair 〈i, j〉 ∈ P , the time from pickup to
delivery can be at most δi,j > 0 time units.

77



78 Chapter 4. Analysis of a dial-a-ride problem

Waiting times: At the ith pickup or delivery location (2 ≤ i ≤ 2n + 1), the vehicle
can wait for at most ωi times units before departing.

Hunsaker and Savelsbergh (2002) design a sophisticated linear time algorithm
that tests for the existence of a schedule that satisfies the three constraint families
listed above. Tang et al. (2010) identify a crucial gap in the algorithm of Hunsaker
and Savelsbergh (2002), and they also provide a concrete counter-example where the
algorithm declares a feasible instance to be infeasible. As a partial repair Tang et al.
(2010) provides another algorithm for the problem with a weaker quadratic running
time O(n2). We note that such a quadratic running time is too slow for practical
applications: The feasibility test shows up as a subproblem in improvement-based
algorithms, and has to be performed many times.

We note that there are three points in which our problem description deviates from
the one by Hunsaker and Savelsbergh (2002). First, our riding time bounds δi,j can
be arbitrary numbers, whereas the riding time bounds in Hunsaker and Savelsbergh
(2002) are proportional to the distances between pickup location and delivery location.
In this respect, our model is slightly more general and contains the model in Hunsaker
and Savelsbergh (2002) as a special case. Secondly, our waiting time bounds ωi
depend on the event, whereas the waiting time bounds in Hunsaker and Savelsbergh
(2002) all are identical. Again this is a slight extension of the model in Hunsaker
and Savelsbergh (2002), which also is mentioned in the discussion section of Hunsaker
and Savelsbergh (2002). Thirdly, the problem in Hunsaker and Savelsbergh (2002)
also incorporates item sizes and a capacity bound for the vehicle. These capacity
constraints are independent of the timing and riding constraints, and they can be
checked separately in O(n) overall time. This independent subproblem has been
discussed and settled in Hunsaker and Savelsbergh (2002), and there is no reason for
discussing it here again.

Results in this chapter. We formulate the dial-a-ride feasibility test of Hunsaker
and Savelsbergh (2002) as a system of linear inequalities (Sections 4.3 and 4.3.1),
which by standard methods can be rewritten into a system of difference constraints
(Section 4.4). By carefully analyzing the structure of these difference constraints
(Section 4.5), we then transform the problem into a shortest path problem in a vertex-
weighted interval graph. All in all, this yields the desired linear time O(n) algorithm
for the feasibility test.

4.2.1 Preprocessing of time windows

Suppose that αi+1 < αi for some i with 1 ≤ i ≤ 2n. Since the vehicle cannot serve
the ith event before time αi, it cannot arrive at the (i+ 1)th location before time αi.
Hence we may update the data as αi+1 := αi. All updates (for all values of i) can be
performed by a single O(n) time pass over the locations in increasing order of i. A
symmetric argument shows that whenever βi+1 < βi holds for some i with 1 ≤ i ≤ 2n,
then we may update βi := βi+1. Furthermore, all such updates can be done during a
single O(n) time pass over the locations in decreasing order of i.

Therefore we assume throughout that the left and right endpoints of the time



4.3. Linear equations and inequalities 79

intervals form two non-decreasing sequences α1 ≤ α2 ≤ · · · ≤ α2n+1 and β1 ≤ β2 ≤
· · · ≤ β2n+1.

4.3 Linear equations and inequalities

We formulate the dial-a-ride problem as a system of linear equations and inequalities.
The ith event (1 ≤ i ≤ 2n+1) is described by three real variables: The arrival time Ai
and the departure time Di of the vehicle at the location of the ith event, and the time
point Ei at which the actual pickup/delivery occurs. For the first event, we identify
the variables E1 and D1 so that they coincide with the dispatch time of the vehicle
from the central facility.

A1 = α1 and E1 = D1 (4.1)

Clearly the ith event must fit between the arrival and the departure time of the vehicle.

Ai ≤ Ei ≤ Di i = 2, . . . , 2n+ 1. (4.2)

Now let us express the constraints of the problem. The ith event must occur during
its time window [αi, βi].

αi ≤ Ei ≤ βi i = 1, . . . , 2n+ 1. (4.3)

The riding time γi,i+1 from the ith to the (i+ 1)th event yields

Ai+1 = Di + γi,i+1 i = 1, . . . , 2n. (4.4)

For every pickup and delivery pair 〈i, j〉 ∈ P , the time from pickup to delivery is
constrained by

Ej ≤ Ei + δi,j ∀ 〈i, j〉 ∈ P . (4.5)

Finally, the waiting time constraints yield

Di ≤ Ai + ωi i = 2, . . . , 2n+ 1. (4.6)

The dial-a-ride instance has a feasible solution, if and only if the linear system (4.1)–
(4.6) with O(n) constraints has a feasible solution over the real numbers.

4.3.1 An equivalent linear inequality system

Our next step is to rewrite the system (4.1)–(4.6) into an equivalent but simpler
system centered around a new set of variables: For i = 1, . . . , 2n+ 1 we introduce the
non-negative variable xi to measure the total waiting time between time point α1 and
time point Di (that is, the total time that the vehicle did not spent on driving before
departing from the ith location). Furthermore, for 1 ≤ i ≤ j ≤ 2n+1 we introduce the
constant Γi to denote the overall riding time to move through the locations 1, 2, . . . , i.

Γi =
i−1∑
k=1

γk,k+1.



80 Chapter 4. Analysis of a dial-a-ride problem

Then the arrival times A2, . . . , A2n+1 and the departure times D1, . . . , D2n+1 can be
rewritten as

Ai = xi−1 + Γi and Di = xi + Γi. (4.7)

Each of the events E2, . . . , E2n+1 is either a pickup or a delivery that is constrained
by (4.2), (4.3), and (4.5). Combining (4.2), (4.3) results in

max{Ai, αi} ≤ Ei ≤ min{Di, βi}, i = 1, . . . , 2n+ 1. (4.8)

The above interval is non-empty or Ei is feasible, if and only if Ai ≤ Di and Ai ≤ βi
and αi ≤ Di hold. So we can eliminate events Ei using Fourier-Motzkin elimination
by considering these inequalities and rewriting the arrival and the departure times as
in (4.7). This elimination preserves the feasibility of events Ei for i = 2, . . . , 2n + 1
and gives us the following constraints

xi−1 ≤ xi and xi−1 ≤ βi − Γi and αi − Γi ≤ xi. (4.9)

If the ith event is a pickup, then we may delay it as much as possible by setting
Ei := min{Di, βi}. If the jth event is a delivery, then we may schedule it as early as
possible and set Ej := max{Aj, αj}. Then (4.5) becomes

max{Aj, αj} = Ej ≤ Ei + δi,j = min{Di, βi}+ δi,j, ∀〈i, j〉 ∈ P . (4.10)

The above inequalities mean that for all 〈i, j〉 ∈ P the following conditions are
satisfied: Aj ≤ Di+δi,j, Aj ≤ βi+δi,j, αj ≤ Di+δi,j, and αj ≤ βi+δi,j. Note that the
last condition does not depend on any variable (and if it is violated, then the system
is trivially infeasible). The other three conditions yield the following constraints.

xj−1 ≤ xi + δi,j + Γi − Γj ∀ 〈i, j〉 ∈ P (4.11)

xj−1 ≤ βi + δi,j − Γj ∀ 〈i, j〉 ∈ P (4.12)

αj − δi,j − Γi ≤ xi ∀ 〈i, j〉 ∈ P (4.13)

The remaining constraints (4.1), (4.4), (4.6) are handled as follows. Constraints (4.1)
and (4.3) yield

0 ≤ x1 ≤ β1 − α1. (4.14)

Constraint (4.4) is satisfied because of (4.7), and becomes vacuous. Finally the waiting
time constraints (4.6) translate into

xi ≤ xi−1 + ωi i = 2, . . . , 2n+ 1. (4.15)

Consequently, the dial-a-ride instance has a feasible solution, if and only if the linear
system (4.9),(4.11)–(4.15) with O(n) constraints has a feasible solution over the real
numbers.



4.4. Difference constraint systems 81

4.4 Difference constraint systems

Every inequality in (4.9),(4.11)–(4.15) is either an upper bound constraint xi ≤ Ui,
or a lower bound constraint Li ≤ xi, or a difference constraint xj − xi ≤ Di,j. By
applying a standard technique, we will now transform all upper and lower bound
constraints into difference constraints.

For this purpose, we introduce two new variables x0 and x2n+2. Variable x0 rep-
resents the value 0, and hence is a lower bound on all other variables. Variable x2n+2

represents the value K := β2n+1 − α1, and hence is an upper bound for all other
variables. We create the two new constraints

x2n+2 − x0 ≤ K and x0 − x2n+2 ≤ −K, (4.16)

which together enforce x2n+2 − x0 = K. Every upper bound constraint xi ≤ Ui in
(4.9),(4.11)–(4.15) is replaced by a corresponding constraint

xi − x0 ≤ Ui. (4.17)

Every lower bound constraint Li ≤ xi in (4.9),(4.11)–(4.15) is replaced by a corre-
sponding constraint

x2n+2 − xi ≤ K − Li. (4.18)

We will refer to the following constraints short as the difference constraint system
DCS:

• the constraints (4.16),

• the new difference constraints (4.17) and (4.18),

• the old difference constraints in (4.9), (4.11)-(4.15).

Lemma 4.4.1. The following four statements are pairwise equivalent.

(i) The original dial-a-ride instance has a feasible solution.

(ii) The system (4.9),(4.11)–(4.15) has a feasible solution over the real numbers.

(iii) DCS has a feasible solution with x0 = 0 and x2n+2 = K.

(iv) DCS has a feasible solution.

4.4.1 Feasibility test via finding negative-weight cycles

There is a close connection between difference constraint systems and negative-weight
cycles in directed graphs; as explained in Section 24.4 of Cormen et al. (2009).

We create for every variable xi (0 ≤ i ≤ 2n + 2) a corresponding vertex i. We
create for every difference constraint xj − xi ≤ Di,j an arc from vertex i to vertex j
with weight Di,j. The relation between negative-weight cycle and feasible of difference
constraint systems is given by the following theorem.



82 Chapter 4. Analysis of a dial-a-ride problem

Theorem 4.4.2. (Chapter 24, Cormen et al. (2009)) Given a system of difference
constraints, let G = (V,A) be the corresponding constraint graph. If G contains no
negative-weight cycles, then

x = (SP (v0, v1), SP (v0, v2), . . . , SP (v0, vn)) (4.19)

is a feasible solution for the system where SP (v0, vi) denotes the length of the
shortest path from v0 to vi. If G contains a negative-weight cycle, then there is no
feasible solution for the system.

In our case, for the directed graph G we have O(|V |) = O(|A|) = n. Hence a
straightforward application of the Bellman-Ford algorithm or of the Goldberg-Radzik
algorithm would yield an O(n2) time feasibility test.

4.5 A linear time feasibility test

To get a linear time algorithm, we look a little bit deeper into the structure of DCS
and the corresponding directed graph G. A difference constraint xj − xi ≤ Di,j is a
forward constraint (and the corresponding arc (i, j) is a forward arc), if i < j holds.
Otherwise we are dealing with a backward constraint (and a corresponding backward
arc). Now let us go through all constraints in DCS.

• The difference constraints in (4.9) are of the form xi−1 − xi ≤ 0. They are
backward constraints, and their arc weights are always zero.

• The constraints in (4.11) are forward constraints. If δi,j < Γj − Γi then the
system is infeasible. Hence we may assume that all corresponding arc weights
are non-negative.

• The constraints (4.15) are forward constraints, and the corresponding arc
weights ωi are non-negative.

• In (4.16) we have one forward constraint with positive arc weight, and one
backward constraint with negative arc weight.

• The difference constraints in (4.17) arise from upper bounds, and are forward
constraints. We may assume that all corresponding arc weights are non-negative
(since otherwise the system would be infeasible).

• The difference constraints in (4.18) arise from lower bounds, and are forward con-
straints. Again, we assume that all corresponding arc weights are non-negative
(as otherwise the system would be infeasible).

Next, we summarize our above observations.



4.5. A linear time feasibility test 83

Constraint Arc type Weight
xi−1 − xi ≤ 0, i = 2, . . . , 2n+ 1 backward zero
xj−1 − xi ≤ δi,j + Γi − Γj, ∀〈i, j〉 ∈ P forward non-negative
xi − xi−1 ≤ ωi, i = 2, . . . , 2n+ 1 forward non-negative

x2n+2 − x0 ≤ K, unique forward positive
x0 − x2n+2 ≤ −K, unique backward negative
xi−1 − x0 ≤ βi − Γi, i = 2, . . . , 2n+ 1 forward non-negative
xj−1 − x0 ≤ βi + δi,j − Γj, ∀〈i, j〉 ∈ P forward non-negative
x1 − x0 ≤ β1 + α1, unique forward non-negative

x2n+2 − xi ≤ K − αi + Γi, i = 1, . . . , 2n+ 1 forward non-negative
x2n+2 − xi ≤ K + Γi + δi,j − αi, ∀〈i, j〉 ∈ P forward non-negative

4.5.1 Feasibility test via shortest paths

Summarizing, all forward arcs have non-negative weights, and with a single exception
all backward arcs have weight zero and are of the form (i, i − 1). The only arc with
negative weight is the backward arc from vertex 2n+ 2 to vertex 0 in (4.16).

Hence every cycle of negative weight must consist of this arc plus some directed
path from vertex 0 to vertex 2n+ 2. Recall that the DCS is infeasible, if and only if
graph G contains a negative-weight cycle, which is true if and only if the shortest path
from vertex 0 to vertex 2n+2 along arcs with non-negative weights has length strictly
smaller than K. This observation in combination with fast shortest path algorithms in
directed graphs of Fredman and Tarjan (1987) yields a time complexity of O(n log n).

Our next goal is to establish a connection to interval graphs, which will yield a
linear time complexity. With every forward arc (i, j) we associate the closed interval
[i, j].

Lemma 4.5.1. Among all shortest paths from vertex 0 to vertex 2n+2 (that only use
arcs with non-negative weights) let P ∗ be a path with the smallest number of forward
arcs. For k ≥ 1, let (ik, jk) denote the kth forward arc traversed by P ∗. Then for any
pair of consecutive forward arcs (ik, jk) and (ik+1, jk+1), the two associated intervals
[ik, jk] and [ik+1, jk+1] have non-empty intersection.

Proof. At vertex jk, P
∗ moves either directly forward by using a forward arc or first

backward by using some zero-cost backward arcs and then forward at a vertex smaller
than jk. In the former, we have jk = ik+1 and clearly intervals [ik, jk] and [ik+1, jk+1]
intersect at one point. In the latter, intervals [ik, jk] and [ik+1, jk+1] will have an
empty intersection if and only if P ∗ uses a number of zero-cost backward arcs such
that ik+1 < jk+1 < ik. In such a case, there is no point of using the forward arc
(ik, jk) , since P ∗ could move directly from ik to ik+1 by skipping the arc (ik, jk). This
would yield another shortest path with a smaller number of traversed forward arcs
and results in a contradiction.

Lemma 4.5.2. Consider a sequence of forward arcs (ik, jk) (k = 1, . . . , p) with overall
weight W , such that the first arc starts in i1 = 0 and the last arc ends in jp = 2n+ 2,
and such that for any two consecutive arcs in the sequence the associated intervals



84 Chapter 4. Analysis of a dial-a-ride problem

have non-empty intersection. Then the directed graph contains a path from vertex 0
to vertex 2n+ 2 of weight W .

Proof. We show that it is possible to find a path using the sequence of forward arcs
(ik, jk) (k = 1, . . . , p). As showed in by Lemma 4.5.1, intervals [ik, jk] and [ik+1, jk+1]
intersect, we see that jk ≥ ik+1. Since moving backward has zero length, it is possible
to move from vertex jk to vertex ik+1 by a sequence of backward arcs without a cost
of length. Therefore such a path has a length of W .

Proposition 4.5.3. In the constraint graph G, the shortest path problem, from vertex
0 to vertex 2n + 2, reduces to the minimum-weight sequence of intersecting intervals
problem in which every sequence starts with an interval whose first vertex 0, and ends
with an interval whose last vertex is 2n+ 2.

Proof. The proposition directly follows the Lemmas 4.5.1 and 4.5.2.

We note that the path lengths in graph G are measured in arc weights.

Vertex-weighted interval graph. In light of Proposition 4.5.3, we construct a vertex-
weighted interval graph G∗. For every forward arc (i, j) with weight w, the interval
graph G∗ contains the associated interval [i, j], with weight w. The requirement for
sequences “starting with an interval whose first vertex 0, and ending with an interval
whose last vertex is 2n+ 2” is adapted by defining the degenerate intervals [0, 0] and
[2n + 2, 2n + 2] both of weight 0. The problem turns out to be the shortest path
problem is interval graph G∗ from interval [0, 0] to interval [2n+ 2, 2n+ 2]. Note that
the length of paths is measured in interval/vertex weights.

Atallah et al. (1995) show that the length of the shortest path in a vertex-weighted
interval graph can be computed in linear time:

Theorem 4.5.4. (Atallah et al. (1995))Given a set of intervals with weights, an
ordering of these intervals according to their left endpoints, and an ordering of these
intervals according to their right endpoints, the single-source shortest path problem
can be solved in linear time.

The single-source shortest path problem consists in computing the shortest paths
from a given source-interval to all other intervals, where the length of a path is the
sum of all interval weights along the path.

Since the endpoints of all intervals are intervals in the range 0 to 2n + 2, it is
easy to sort these intervals according to their left or right endpoints in linear time
O(n); this can for instance be done by counting sort or by some variant of bucket sort
(see Section 8 of Cormen et al. (2009)). Altogether this yields the main result of this
chapter.

Theorem 4.5.5. The feasibility test for the dial-a-ride problem of Hunsaker and
Savelsbergh under time window constraints, riding time constraints, and waiting time
constraints can be performed in O(n) time.



4.6. Concluding remarks 85

4.6 Concluding remarks

In the previous sections, we showed that the feasibility testing of the dial a ride prob-
lem can be done in linear time by solving the corresponding shortest path problem in
a vertex-weighted interval graph. The vertex weights in the interval graph correspond
to the waiting time bounds in the dial a ride problem, hence the length of a shortest
path in the interval graph is simply the total waiting time from the first vertex to the
last. Considering this, it is possible to construct a schedule for a dial a ride instance by
adding degenerate zero-length intervals [i, i] for i = 1, . . . , 2n+ 1. Then the length of
the shortest path from interval [0, 0] to interval [i, i] will give us the value of the vari-
able xi in the difference constraint system DCS. The algorithm of Atallah et al. (1995)
finds the shortest paths from interval [0, 0] to all intervals [i, i] for i = 1, . . . , 2n + 1
in linear time. Once we know the total waiting time for every location i, by some
straightforward backwards calculations we can determine the corresponding feasible
solutions for the inequality systems in Sections 4.3 and 4.3.1. Consequently, besides
the feasibility test, a feasible schedule can be constructed in linear time for a dial a
ride problem instance.



86 Chapter 4. Analysis of a dial-a-ride problem



Chapter 5

Analysis of a vehicle refueling
problem

This chapter deals with a vehicle refueling problem that involves refueling decisions
while traveling on a route with a fixed order of cities with varying fuel prices. Tank
capacity of the vehicle depends on the city where the departure occurs. Additionally,
it is assumed that in every city there is an upper bound on the available fuel amount.
The goal is to reach the destination with minimum fuel cost.

We present an O(n log n) time greedy algorithm for this problem. Our interpre-
tation of the greedy algorithm is very intuitive and easy to implement. This greedy
algorithm solves the special case that is studied by Lin et al. (2007) in O(n) time.

5.1 Introduction

In this chapter, we study a vehicle refueling problem in which the vehicle travels on
the fixed route of cities. A problem instance specifies the set of cities in which every
city is indexed according to their place in a fixed route. The distance from one city
to the next is given as the necessary fuel amount between these cities. A solution
specifying non-negative refueling amounts for every city is feasible if and only if the
following constraints are respected:

Availability: The refueling amount in a city cannot be more than the upper bound
of the fuel amount in that city.

Reachability: Previous refueling amounts before a city must be enough to reach
that city.

Capacity: In the departure from a city, the fuel amount in tank should not exceed
the tank capacity that is allowed for the travel to next city.

Refueling of airplanes with pre-determined flight routes nice fits our problem set-
ting, especially the varying fuel prices and varying tank capacities. Airplanes visit
airports of different countries and it is natural to assume that fuel prices may vary
among these airports. Moreover, the maximum refueling amount at an airport de-
pends on the number of passengers in the flight.

Our problem definition generalizes the vehicle refueling problem studied by Lin et

87



88 Chapter 5. Analysis of a vehicle refueling problem

al. (2007) in several aspects. First of all, we allow tank capacities to vary, whereas
they are all identical in the definition of Lin et al. (2007). Moreover, we consider
upper bounds on the fuel amounts in cities, whereas the fuel amounts are assumed to
be unlimited by Lin et al. (2007).

Results of this chapter. We represent a greedy algorithm for the vehicle refueling
problem. Although in the literature we encounter algorithms that are technically the
same as the one we present, our interpretation is very intuitive and easy to implement.
We prove the correctness of the greedy algorithm in three ways; using duality, network
flows, and convexity. Moreover we analyse solutions of the greedy algorithm and we
provide a dual interpretation of the problem.

This chapter is organized as follows. Section 5.2 describes the main ingredients
of the vehicle refueling problem and the LP formulation of the problem is given. In
Section 5.3, we showed that the vehicle refueling problem is reduced to a minimum
cost flow problem on a specific network. Our greedy algorithm is presented in Section
5.4. Correctness proof by duality is given in Section 5.4.2, by network flow in Section
5.4.3 and by convexity in Section 5.4.4. Conclusions are discussed in Section 5.5.

5.2 Problem description

A vehicle travels along a fixed-route of cities S = {1, . . . , n} in the given order.
The travel from city w to w + 1 requires dw units of fuel amount. In city w, the
available fuel amount is Uw units, the price of one unit fuel amount is pw ≥ 0. Tank
capacity between cities w and w+ 1 is Tw units of fuel amount. It is assumed that all
aforementioned parameters are integers.

Objective. A solution to our problem specifies xw for every city w ∈ S that denotes
the purchased fuel amounts bought in cities. The objective is minimizing the travel
cost:

∑
w∈S pwxw. Below, we give the LP formulation of the vehicle refueling problem.

minimize
∑
w∈S

pwxw

subject to:

w∑
t=1

xt ≥
w∑
t=1

dt, ∀w ∈ S (5.1)

w∑
t=1

xt ≤
w−1∑
t=1

dt + Tw, ∀w ∈ S (5.2)

xw ≤ Uw, ∀w ∈ S (5.3)

xw ≥ 0, ∀w ∈ S (5.4)

Constraints (5.1) ensure that every city on the route is visited. Constraints (5.2)
force that the fuel amounts in the tank do not exceed the allowed tank capacities
during departures. Finally, constraints (5.3) do not allow the refueling amounts to be
more than the upper bounds of fuel amounts in cities.



5.3. Network representation 89

Lin et al. (2007) consider a special case of our vehicle refueling problem and propose
a greedy algorithm for this special case.

Theorem 5.2.1. (Lin et al. (2007)) A special case of the vehicle refueling problem
with Tw = T and Uw ≡ ∞ for all w ∈ S can be solved in linear time.

The authors propose an algorithm in which refueling decisions are made in a
complicated way. Every city distinguishes two cities among the successive ones: the
first cheaper city and the last reachable city with full tank. In a city, if the first
cheaper city is later than the last reachable city, the tank is filled to the full capacity
and the vehicle goes to next city, otherwise the refueling is done, if necessary, in an
amount to reach the first cheaper city and the vehicle directly goes to the first cheaper
city.

The vehicle refueling problem is equivalent to a specific single-item lot sizing prob-
lem. The equivalence can be easily seen if the fuel is considered as the item to produce
and/or to keep in the inventory such that every city corresponds to a time interval
and the distance to travel from a certain city to the next one becomes the demand
in the corresponding time interval. Then every refueling can be seen as a production
with zero setup cost and with the linear cost function. Both production and inventory
are capacitated and the capacities vary over time intervals.

The equivalent lot sizing problem has been studied by Sedeo-Noda et al. (2003)
and the authors propose an O(n log n) time greedy algorithm that is technically the
same as the one we present in this chapter.

The vehicle refueling problem can expressed as a flow problem on a specific network
that is given by Sedeo-Noda et al. (2003). If the general algorithms are used, the
minimum cost flow problem on this network can be solved in O(n2 log2 n) time. Ahuja
and Hochbaum (2008) give a minimum cost flow algorithm that is specially designed
for the specific network for the vehicle refueling problem. The algorithm uses red-
black tree data structure (for details see Cormen et al. (2009)) and runs in O(n log n)
time.

5.3 Network representation

In this section we show that the vehicle refueling problem is equivalent to minimum
cost flow problem on the network in Figure 5.1. The network in Figure 5.1 is trans-
portation network with a source node s, a sink node t, and transshipment nodes
between s and t. Every city in the vehicle refueling problem is represented by two
nodes. For city w, firstly the refueling is done at node vw and the fuel to reach w+ 1
is dropped at node vw,w+1. The arc capacities are defined accordingly.

Ahuja and Hochbaum (2008) developed an O(n log n) time algorithm to solve the
minimum cost flow on the network in Figure 5.1.

Next, we give the decision versions of the vehicle refueling problem and the mini-
mum cost flow problem before reducing the former to the latter.

Problem: Vehicle refueling problem



90 Chapter 5. Analysis of a vehicle refueling problem

s
s
��

��
�
��

�
��

�
��

��*
s
v0

?

���
���

���
���

���:
s
v1

- s
v1,2
XXXXXXXXXXXXXXXzXXXXXXXXXXXXXXXz s

vn−2

- s
vn−2,n−1

���
���

���
���

���:

�
���

����

H
HHH

HHH
HHH

HHH
HHj s

vn−1

- s
vn−1,n

�
��

�
��

�
��

�
��

�
��*

(0, U0)

c(s,r0) = p0

c(s,rn−1) = pn−1

(0, U1)

(0, Un−2)

(0, Un−1)

(0, T1)

(0, Tn−2)

(0, Tn−1)

(d1, d1)

(dn−2, dn−2)

(dn−1, dn−1)

s
t

Figure 5.1: Network representation of the vehicle refueling problem

Instance: Given a numerical bound k, the set S = {1, . . . , n} of
cities such that the indices give tell us the fixed route to travel, the set
T = {T1, . . . , Tn} of tank capacities, the set P = {p1, . . . , pn} of non-
negative fuel prices, the set D = {d1, . . . , dn} of distances, and the set
U = {U1, . . . , Un} of available fuel amounts in cities. The vehicle refuels
0 ≤ xw units of fuel in city w, for all w ∈ S.

Question: Does there exists a refueling policy, satisfying the constraints
(5.1)-(5.4), such that

∑
w∈S pwxw is no more than k?

Problem: Minimum cost flow problem (MCF )

Instance: Given a numerical bound k, the set N = {s, . . . , t} of nodes,
and the set A of arcs. For an arc (v, w) in A, it costs c(v,w) to send one unit
flow, the lower bound of any flow is l(v,w) and an upper bound is u(v,w).

Question: Does there exists a flow f that satisfies conservation con-
straints

∑
(v,w)∈A f(v,w) =

∑
(w,y)∈A f(w,y) for all w ∈ S \ {s, t} and respects

bounds on every arc, such that
∑

(v,w)∈A c(v,w)f(v,w) is no more than k?

Theorem 5.3.1. Vehicle refueling problem ∝MCF on the network in Figure 5.1.

Proof. First of all we explain how to construct the network in Figure 5.1 from a
vehicle refueling problem instance. Next we will show that YES instance of the vehicle
refueling problem corresponds to YES instance of the MCF and vice versa.



5.3. Network representation 91

• Create the nodes {s, v0, t}.

• For every city w ∈ S \ {n}, create transshipment nodes vw, vw,w+1.

• For every city w ∈ S \ {n, n− 1}, create the arc (vw,w+1, vw+1).

• For every city w ∈ S\{n}, create the arc (s, vw) with cost c(s,vw) = pw and upper
bound u(s,vw) = Uw, the arc (vw, vw,w+1) with upper bound u(vw,vw,w+1) = Tw, and
the arc (vw,w+1, t) with lower and upper bounds l(vw,w+1,t) = u(vw,w+1,t) = dw.

• Costs, lower bounds, and upper bounds of the arcs, not mentioned above, are
zero.

Let a flow f be given for a YES instance of the MCF . We know f satisfies the
conservation at transshipment nodes and respects the are capacities. We convert the
flow f to a vehicle refueling solution by xw = f(s,vw) for every city w ∈ S \ {n}.

Availability constraints. Due to the upper bounds of arcs (s, vw) for all w ∈ S\{n},
since we have xw = f(s,vw) ≤ u(s,vw) = Uw.

Capacity constraints. Let us consider the conservation at nodes v(w,w+1) and v(w+1),
so we have

f(vw+1,vw+1,w+2) − f(vw,vw,w+1) = f(s,vw+1) − f(vw,w+1,t) = xw+1 − dw (5.5)

The above equation shows us a recursion by substituting the term f(vw,vw,w+1) using
the same type equation, and we obtain

f(vw+1,vw+1,w+2) =
w+1∑
t=1

xt −
w∑
t=1

dt (5.6)

The upper bound constraint of arc (vw+1, vw+1,w+2) provides us the same inequality
as the capacity constraint in (5.2).

Reachability constraints. Now we consider the flow conservation at nodes vw,w+1

and vw. If we combine both conservation equations, we obtain

f(vw,w+1,vw+1) − f(vw−1,w,vw) = f(s,vw) − f(vw,w+1,t) = xw − dw (5.7)

.
The above equation shows us a recursion by substituting the term f(vw−1,w,vw) using

the same type equation, and we obtain

f(vw,w+1,vw+1) =
w∑
t=1

xt −
w∑
t=1

dt (5.8)

.
The lower bound constraint (vw,w+1, vw+1) implies 0 ≤ f(vw,w+1,vw+1) and (5.8) imply

the reachability constraints in (5.1).



92 Chapter 5. Analysis of a vehicle refueling problem

Refueling cost. We have
∑

w∈S\{n} pwxw =
∑

w∈S\{n} f(s,vw).

Consequently, we showed that a YES instance of the MCF corresponds to a YES
instance of the vehicle refueling problem.

Next let us show that YES instance of the vehicle refueling problem corresponds
to a YES instance of the MCF . In a solution of the YES instance, we have refueling
values xw for every city in S \ {n}. We define a flow on the network in Figure 5.1
with the following values

f(s,vw) = xw, f(vw,w+1,t) = dw, ∀w ∈ S \ {n} (5.9)

f(vw,vw,w+1) =
w∑
t=1

xt −
w−1∑
t=1

dt, f(vw,w+1,vw+1) =
w∑
t=1

xt −
w∑
t=1

dt,∀w ∈ S \ {n} (5.10)

.
Arc capacities. Lower bounds of arcs (vw, vw,w+1) and (vw,w+1, vw+1) are satisfied

by the reachability constraints in (5.1). Upper bound constraints of the arcs (s, vw)
are satisfied by availability constraints in (5.3) and the upper bounds constraints of
the arcs (vw, vw,w+1) are satisfied by capacity constraints in (5.2).

Flow conservation. Let us check the conservation at nodes vw and vw,w+1.

f(s,vw) +f(vw−1,w,vw)−f(vw,vw,w+1) = xw+(
w−1∑
t=1

xt−
w−1∑
t=1

dt)−(
w∑
t=1

xt−
w−1∑
t=1

dt) = 0 (5.11)

f(vw,vw,w+1) − f(vw,w+1,t) − f(vw,w+1,vw+1) = (
w∑
t=1

xt −
w−1∑
t=1

dt)− dw − (
w∑
t=1

xt −
w∑
t=1

dt) = 0

(5.12)
In the above equations, we substitute the flow amounts defined in (5.9) and in

(5.10). Consequently, we showed that a YES instance of the vehicle refueling problem
corresponds to a YES instance of the MCF .

5.4 The greedy algorithm

In this section we explain a greedy algorithm for the vehicle refueling problem.
Fuel amounts separately kept in tank. In the greedy algorithm, the fuel amounts

from different cities are assumed to be kept without being mixed each other in the
tank. These amounts can be decreased partially whenever needed. The strategy of
the algorithm is to keep the maximum amount of the fuel in tank tentatively. We note
that keeping a fuel amount in tank does not imply that it will certainly be bought
later.

Removals and purchases. Upon an arrival at a city, if the fuel amount in the
tank plus the available fuel amount in that city is higher than the tank capacity, the



5.4. The greedy algorithm 93

excess is removed. In this removal process, the most expensive fuel amount in the
tank is firstly removed. Removals continue until the total fuel amount drops exactly
to the tank capacity. Next, the fuel amount that is needed to travel to next city is
purchased. The purchase process starts with the cheapest fuel in tank. If the cheapest
fuel amount is not enough to reach the next city, the next cheapest fuel is purchased.
The purchases continue until the total amount of purchased fuel is exactly enough
to reach the next city. Removal process occur whenever necessary, but purchase
processes occur in every city on the route. Finally, in the last city, all fuel in the tank
is removed.

Table 5.1: Sets, indices, parameters, and variables

Set
S Set of cities, S = {1, 2, . . . , n}
Indices
v, w, z City indices,
List
L List of pairs 〈v, yv〉, where 〈v, yv〉 ∈ S × Z+

Parameters
pw Fuel price in city w, w ∈ S
Uw Upper bound on the fuel amount in city w, where Uw ∈ Z+

Tw Tank capacity from city w to city w + 1, where Tw ∈ Z+

dw Fuel amount needed to travel from w to w + 1, dw ∈ Z+

Algorithm 1.

Input: See Table 1.
1: w ← 1, L← ∅; // initialization
2: for w < n do
3: L← L ∪ {〈w,Uw〉};
4: RemoveExcess(L, Tw); // removals
5: Purchase(L, dw); // purchases
6: w ← w + 1;
7: end
8: RemoveExcess(L, 0); // removals in destination

RemoveExcess(L,T) Purchase(L,d)

R1: while
∑
〈v,yv〉∈L yv > T do P1: while d > 0 do

R2: t← Argmax{pv|〈v, yv〉 ∈ L, yv > 0}; P2: t← Argmin{pv|〈v, yv〉 ∈ L, yv > 0};
R3: if yt >

∑
〈v,yv〉∈L yv − T do P3: if yt > d do

R4: yt ← yt − (
∑
〈v,yv〉∈L yv − T ); P4: d ← 0, yt ← yt − d;

R5: else P5: else
R6: yt ← 0; P6: yt ← 0, d← d− yt;
R7: end P7: end
R8: end P8: end



94 Chapter 5. Analysis of a vehicle refueling problem

The greedy algorithm is described by Algorithm 1. The input of Algorithm 1 is
listed in Table 5.1. In step 3, we see that all available fuel amount in the city is
inserted into the list L upon arrival and the removal process starts in step 4. In step
R1, it is checked if the total fuel amount exceeds the allowed tank capacity. If tank
capacity is exceeded, the most expensive fuel in tank is determined in step R2. This
fuel is removed partially in step R4, if the excess is less than the amount of that
fuel. Otherwise, all amount of the most expensive fuel is removed in step R6 and the
removal process continues by finding next most expensive fuel in step R2. Purchasing
process follows removal process in step 5. The cheapest fuel is determined in step
P2 and it is bought partially in step P4, if the required fuel amount is less than the
amount of cheapest fuel in tank. Otherwise the cheapest fuel is bought completely in
step P6 and the algorithm proceeds to the next cheapest fuel in step P2. In the last
city of the route all fuel is removed as in step 8.

Running time. If the list of fuel amounts L is implemented as binary heaps, then
inserting or deleting a pair preserving the heap structure can be done in O(log n)
time. The running time of the algorithm is O(n log n), since each fuel is inserted and
deleted once.

5.4.1 Definitions and observation

In this section, we give definitions of several concepts that will be used in the cor-
rectness proof of our greedy algorithm. All definitions in this section are based on
two variables χwt and πwt that are the units of fuel amount from city t removed and
purchased in city w respectively. Table 5.2 gives the functions “RemoveExcess2 ” and
“Purchase2 ” that enables us to find the values of the decision variables χwt and πwt for
t, w ∈ S. We note that the greedy algorithm with these function has O(n2) running
time, but this version is only for our analysis. In the rest of this chapter, “fuel type”
refers to the index of the city where the fuel comes from.

Definition 5.4.1. (Refueling amount)
The refueling amount in city w is given by xw =

∑
z≥w πzw.

Definition 5.4.2. (Fuel pass and fuel flow)
In city w, the “fuel pass” is the set of fuel types that are brought from earlier cities
and purchased in later cities. Fuel flow is the total amount of in the fuel pass. Fuel
pass and fuel flow are denoted by Φw and φw respectively.

We have Φw = {t ∈ S|t ≤ w,
∑

z≥w πzt > 0}, and φw =
∑

z≥w
∑

t∈Φw
πzt.

Definition 5.4.3. (Fuel miss and fuel drop)
In city w, the “fuel miss” is the set of fuel types that are brought from earlier cities
and removed in later cities. Fuel drop is the total amount of in the fuel miss. Fuel
miss and fuel drop are denoted by Θw and θw respectively.

We have Θw = {t ∈ S|t ≤ w,
∑

z>w χzt > 0}, and θw =
∑

z>w

∑
t∈Θw

χzt.

Definition 5.4.4. (Removal set)
In city w, the removed fuel types are given by Λw = {t ∈ S|χwt > 0}.



5.4. The greedy algorithm 95

Table 5.2: Additional variables
Variables
χwt Fuel amount from city t removed in city w, χwt ≥ 0
πwt Fuel amount from city t purchased in city w, πwt ≥ 0

RemoveExcess2 (L,T,w) Purchase2 (L,d,w)

S1: while
∑
〈v,yv〉∈L yv > T do T1: while d > 0 do

S2: t← Argmax{pv|〈v, yv〉 ∈ L, yv > 0}; T2: t← Argmin{pv|〈v, yv〉 ∈ L, yv > 0};
S3: if yt >

∑
〈v,yv〉∈L yv − T do T3: if yt > d do

S4: χwt ←
∑
〈v,yv〉∈L yv − T ; T4: πwt ← d;

S5: else T5: else
S6: χwt ← yt; T6: πwt ← yt;
S7: end T7: end
S8: yt ← yt − χwt; T8: yt ← yt − πwt, d← d− πwt;
S9: end T9: end

Definition 5.4.5. (Empty-tank and full-tank)
In city w, empty-tank (full-tank) event occurs if and only if φw = dw (φw = Tw).

The sets F = {w ∈ S|φw = Tw}, E = {w ∈ S|φw = dw} denote the cities where
full-tank and empty-tank events occur respectively.

Definition 5.4.6. (Highest-consumed and lowest-removed)
In a city, the most expensive (cheapest) fuel type in the fuel pass (fuel miss) is called
“highest-consumed” (“lowest-removed”).

The highest-consumed function h : S 7→ S is given by h(w) = Argmaxt∈Φw{pt},
and the lowest-removed function l : S 7→ S is given by l(w) = Argmint∈Θw∪{h(w)}{pt}.

Definition 5.4.7. (Dominant fuel type)
The highest-consumed fuel type in city w ∈ E ∪ F is said to be dominant.

The set D = {w ∈ S|∃y ∈ E ∪ F such that h(y) = w} contains dominant fuel
types. The event function e : D 7→ E ∪ F returns the city of event and it is given by
e(w) = {t ∈ E ∪ F |h(t) = w}.

Definition 5.4.8. (Region)
A region is defined by Rw = {t ∈ S|max{0, e(maxv∈D{v < w}) + 1} ≤ t ≤ e(w)} for

dominant fuel type w ∈ D.

Note that Rw ∩ (E ∪ F ) = {e(w)} and D ∩Rw = {w} for all w ∈ D.

Definition 5.4.9. (Regional price)
The function r : S 7→ Z+ returns the regional price and we have r(v) = pw for
v ∈ Rw.

Definition 5.4.10. (Regional price decrease, regional price increase)
The function r−(w) = max{0, r(w) − r(w + 1)} (r+(w) = max{0, r(w + 1) − r(w)})
is called regional price decrease (increase) function.



96 Chapter 5. Analysis of a vehicle refueling problem

Observation 5.4.1. Λw 6= ∅ ⇒ φw + θw = Tw

Observation 5.4.2. Λw 6= ∅ and Θw = ∅ ⇒ w ∈ F .

Observation 5.4.3. pv ≤ pt ≤ pz, ∀(v, t, z) ∈ Φw ×Θw × Λw.

Observation 5.4.4. pl(w) ≤ pt, ∀t ∈ Θw ∪ Λw ∪ {h(w)}.

Observation 5.4.5. dw < φw ⇒ h(w) ∈ Φw+1.

5.4.2 Correctness proof using duality

In this section, let s, t, v, w, z ∈ S and we make the following two assumptions to
avoid the degeneracy.

Assumption 5.4.6. E ∩ F = ∅.

Assumption 5.4.7. xw < Uw for all w ∈ D.

Lemma 5.4.8. Let v, v + 1 ∈ Rw \ e(w). If Θv 6= ∅, then pl(v+1) ≤ pl(v).

Proof. First of all, we claim that Θv+1 6= ∅, otherwise we would have Θv ⊆ Λv+1 and by
Observation 5.4.2 we get a contradiction: v+1 ∈ F . We know that Θv ⊆ Θv+1∪Λv+1

and by Observation 5.4.4 we have pl(v+1) ≤ pt for all t ∈ Θv+1 ∪ Λv+1.

Corollary 5.4.9. Let v ∈ Rw \ e(w) such that Θv 6= ∅. One has

pw ≤ pl(e(w)−1) ≤ · · · ≤ pl(v+1) ≤ pl(v) (5.13)

Proof. Applying Lemma 5.4.8 repeatedly for v, v + 1, . . . , e(w)− 1 shows the correct-
ness of inequalities except the left-most one. To see the correctness of the left-most
inequality, we observe that Θe(w)−1 ⊆ Θe(w) ∪ Λe(w), l(e(w) − 1) ∈ Θe(w) ∪ Λe(w), and
finally pw = ph(e(w)) ≤ pl(e(w)−1).

Lemma 5.4.10. Let v, v + 1 ∈ Rw. One has ph(v) ≤ ph(v+1).

Proof. Note that v < e(w), hence v 6∈ E which implies dv < θv. By Observation 5.4.5,
we have h(v) ∈ Φv+1.

Corollary 5.4.11. Let w ∈ D and let s be the first city of Rw. One has

ph(s) ≤ ph(s+1) ≤ · · · ≤ ph(e(w)) = pw (5.14)

Lemma 5.4.12. Let v 6= w ∈ Rw. One has

xv =

{
0 if pw < pv
Uv if pv < pw

(5.15)

Proof. We distinguish the following cases
Case pw < pv: Suppose that 0 < xv, so v ∈ Φv. By Corollary 5.4.11, we get the

contradiction: pv ≤ ph(v) ≤ pw.
Case pv < pw: Suppose that xv < Uv, so v ∈ Θv. By Corollary 5.4.9, we get the

contradiction: pw ≤ pl(v).



5.4. The greedy algorithm 97

Proposition 5.4.13. Empty-tank event results in regional price decrease.

Proof. Let w ∈ E and w + 1 ∈ Rz, so r(w) = ph(w) and r(w + 1) = pz. Considering
h(w) ∈ Θh(w) and Corollary 5.4.9, we see h(w) = l(w) = l(w − 1). Since h(w) =
l(w− 1) ∈ Λw ∪Θw, we have Θw 6= ∅, otherwise we would have w ∈ F by Observation
5.4.2. Then it must be true that h(w) ∈ Θw, since (Λw ∪ Θw) ∩ Φw = {h(w)}. Since
h(w) ∈ Θw, we have h(w) ∈ Λw+1 ∪Θw+1 which implies pl(w+1) ≤ ph(w). By Corollary
5.4.9, we get pz ≤ pl(w+1) ≤ ph(w). So ph(w) = r(w) > r(w + 1) = pz.

Proposition 5.4.14. Full-tank event results in regional price increase.

Proof. Let w ∈ F and let w + 1 ∈ Rz, so the regional prices are r(w) = ph(w)

and r(w + 1) = pz. By Assumption 5.4.6, dw < φw, hence h(w) ∈ Φw+1 which
implies ph(w) ≤ pw+1. By Corollary 5.4.11, we see that pw+1 ≤ pz. Finally, we obtain
ph(w) = r(w) < r(w + 1) = pz.

Fuel flow equation

Now let t, w ∈ D such that w = minz∈D{t < z}. Let us rewrite fuel flow relation
between cities e(t) and e(w) considering Lemma 5.4.12 as follows

φe(w) = φe(t) +
∑
v∈Rw

xv −
e(w)−1∑
z=e(t)

dz = φe(t) +
∑

v∈Rw:pv<pw

Uv + xw −
e(w)−1∑
z=e(t)

dz (5.16)

Note that in the above equation e(w), e(t) ∈ E∪F , so φe(w) and φe(t) are constants,
being equal either to the distance or to the tank capacity. The only variable in the
equation is xw that is the refueling amount of the dominant fuel type w.

Dual of the LP formulation

In the dual of the LP model, the variables αw, βw, and γw correspond constraints
(5.1), (5.2) and (5.3) respectively. The dual problem is as below.

maximize
∑
w∈S

(
w∑
t=1

dtαw −

(
w−1∑
t=1

dt + Tw

)
βw − Uwγw

)
(5.17)

subject to

n−1∑
t=w

(αt − βt)− γw ≤ pw, ∀w ∈ S (5.18)

αw, βw, γw ≥ 0, ∀w ∈ S (5.19)



98 Chapter 5. Analysis of a vehicle refueling problem

Complementary slackness

Let x∗w, α
∗
w, β

∗
w, and γ∗w for all w ∈ S be the optimal solution values of primal and dual

problems. (
w∑
t=1

x∗t −
w∑
t=1

dt

)
α∗w = 0, ∀w ∈ S (5.20)(

w∑
t=1

x∗t −
w−1∑
t=1

dt − Tw

)
β∗w = 0, ∀w ∈ S (5.21)

(x∗w − Uw) γ∗w = 0, ∀w ∈ S (5.22)

x∗w

(
n−1∑
t=w

(α∗t − β∗t )− γ∗w − pw

)
= 0, ∀w ∈ S (5.23)

According to the complementary slackness condition, in optimal solutions, the
dual variable values α∗w > 0, β∗w′ > 0, and δ∗z > 0 correspond to w ∈ E, w′ ∈ F , and
city z such that pz < r(z) by Lemma 5.4.12.

In mathematical programming, dual variables are interpreted as derivatives of the
optimal value of the objective function with respect to the elements of the right-hand-
side. In the following Lemmas, we will prove that the regional price change functions
correspond to dual variables and vice versa.

Lemma 5.4.15. One has α∗w := r−(w).

Proof. By complementary slackness condition, α∗w > 0 for city w ∈ E and otherwise
α∗w = 0. In Proposition 5.4.13 we showed that in city w ∈ E regional price decreases,
so r−(w) > 0. If city w 6∈ E ∪ F or w ∈ Rz \ e(z) for any z ∈ D, then there is no
change in regional price, hence r−(w) = 0. In city w ∈ F , regional price increases and
r−(w) = 0. Having showed that they are positive only in empty-tank events, let us
show that they have the same value. We will show this by using the fuel flow equation
in (5.16). Let us consider an infinitesimal change 0 < ε in the right hand side of the
constraint 5.1. Note that ε is strictly smaller than any value in the solution. Let the
empty-tank event occur in city w such that α∗w = ∂Cost

∂Distance
where Cost =

∑
t∈S ptxt

and Distance =
∑w

t=1 dt. Let fuel type v = maxt∈D{t < h(w)} be the previous
dominant fuel type in the solution and without loss of let e(v) ∈ F . Then the fuel
flow equation becomes

w∑
t=e(v)

dt = Tv +
∑

t∈Rh(w):pt<ph(w)

Ut + xh(w) (5.24)

Now we change the distance dw to dw + ε such that ∂Distance = ε and other
parameters stay the same. The change ε is so small such that all fuel passes, fuel
misses, removal sets stay the same as well. Therefore fuel types that are not used are
again not use and the ones used completely are again used completely. If we examine
the flow equation in (5.24), wee see that the refueling amount of dominant fuel type
h(w) is the only variable in the equation. By the fuel flow equation, the ε distance



5.4. The greedy algorithm 99

change in the left side causes ε change of refueling amount of dominant fuel type h(w)
in the right side, so it becomes xh(w) + ε.

Note that the distances to other cities must stay the same to have the same
right hand sides of other constraints. Therefore, dw+1 must become dw+1 − ε. Let
z = maxt∈D{h(w) < t} and without loss of generality let e(z) ∈ E. The corresponding
fuel flow equation is given below

e(z)∑
t=w

dt = dw +
∑

t∈Rz :pt<pz

Ut + xz (5.25)

We see that the change from dw+1 to dw+1 − ε causes a change in the refueling
amount of fuel type z from xz to xz − ε. Consequently, the change in the refueling

cost is ∂Cost = ε(ph(w) − pz), hence we have α∗w =
ε(ph(w)−pz)

ε
= ph(w) − pz which is

equal to r(w)− r(w + 1). By Proposition 5.4.13, this amount is positive, so r−(w) =
ph(w) − pz = α∗w.

Lemma 5.4.16. One has β∗w := r+(w).

Proof. By complementary slackness condition, β∗w > 0 for city y ∈ F and otherwise
β∗w = 0. In Proposition 5.4.14 we showed that in city w ∈ F the regional price
increases, so r+(w) > 0. If city w 6∈ E ∪ F or w ∈ Rz \ e(z) for any z ∈ D, then
there is no change in regional price, hence r+(w) = 0. In city w ∈ E, regional price
decreases and r+(w) = 0. Having showed that they are positive only in full-tank
events, let us show as in previous proof that they have the same value.

The fuel flow equation is used again. Now the change will be in the tank capacity
Tw by ε where w ∈ F . In the fuel flow equation, the change in tank capacity causes
an increase in refueling amount of fuel type h(w) by ε and it becomes xh(w) + ε.
The change in tank capacity from Tw to Tw + ε results in a decrease of the successive

dominant fuel z, being xz−ε. Finally, we obtain β∗w = − ∂Cost
∂TankCapacity

= − ε(ph(w)−pz)

ε
=

pz−ph(w). By Proposition 5.4.14, this amount is positive, so r+(w) = pz−ph(w) = β∗w.

Lemma 5.4.17. One has γ∗z := max{0, r(z)− pz}.

Proof. By complementary slackness condition, γ∗z > 0 for city z such that xz = Uz.
In Lemma 5.4.12, we showed that this only happens if pz < r(z). Then max{0, r(z)−
pz} = r(z)− pz and for all other cities max{0, r(z)− pz} = 0, so is γ∗z .

Let us show that the value of γ∗z is equal to the value of max{0, r(z)−pz} whenever
both are positive. To do this, we change Uz to Uz + ε such that ε is smaller than
any value in the solution. The dual variable γ∗z is given by − ∂Cost

∂AvailableFuel
. Without

loss of generality, we assume that z ∈ Rw and e(w) ∈ E and v = maxt∈D{t < w} wit
e(v) ∈ F . So the fuel flow equation becomes as follows

e(w)∑
t=e(v)

dt = Tv +
∑

t∈Rz :pt<pw

Ut + xw (5.26)



100 Chapter 5. Analysis of a vehicle refueling problem

We see that the change from Uz to Uz + ε causes a change in the refueling amount
of fuel type w from xw to xw − ε and a change in refueling amount of fuel z from
Uz to Uz + ε. Consequently, the change in the refueling cost is ∂Cost = ε(pz − pw),

hence we have γ∗z = − ε(pz−pw)
ε

= pw − pz which is equal to r(z)− pz. This amount is
positive, so max{0, r(z)− pz} = r(z)− pz = γ∗z .

Dual interpretation

In the dual problem, the route is partitioned into regions. A region starts and ends
with an event that is either an empty-tank or a full-tank event. Every region has a
regional price that is the price of the dominant fuel type. As a convention, we define a
special region that includes only the city n and has regional price 0. This convention
applies to all solutions. The empty-tank event in city n − 1 in all optimal solutions
makes this convention meaningful.

In this study, we provide closed form interpretations of the variables in the dual
of LP model (5.1)-(5.4). Below we summarize these interpretations

α∗w = r−(w), β∗w = r+(w), γ∗w = max{0, r(w)− pw}, ∀w ∈ S (5.27)

By aforementioned convention, r(n) = 0 and the regional price in city w is found
by backtracking the changes as below

r(w) = r(n)−
n−1∑
t=w

(r+(t)− r−(t)) =
n−1∑
t=w

(α∗t − β∗t ), ∀w ∈ S (5.28)

Theorem 5.4.18. Algorithm 1 solves the vehicle refueling problem optimally in
O(n log n) time.

Proof. We provide the argument that the running time of the greedy algorithm is
O(n log n) in Section 5.4. Next, let us show that it constructs optimal solutions. Note
that for any w ∈ S we have γ∗w ≥ r(w) − pw by the interpretation in (5.27). We
substitute the right side of equation (5.28), the inequality becomes γ∗w ≥

∑n−1
t=w(α∗t −

β∗t )− pw which is the dual constraint (5.18), hence the dual solution is dual feasible.
The correctness of the values of dual variables α∗w and β∗w, and γ∗w for all w in S is
shown in Lemmas 5.4.15, 5.4.16, and 5.4.17 by using the complementary slackness
condition.

Remark 5.4.19. Algorithm 1 solves the vehicle refueling problem studied by Lin et
al. (2007) in O(n) time using doubly linked list.

5.4.3 Correctness proof using network flow

In this section we prove that the greedy algorithm produces optimal solutions by
showing that there is no negative cost directed cycle on the network in Figure 5.1 if
the refueling solution is converted into a flow on it. To do this, let us first explain



5.4. The greedy algorithm 101

how removals and purchases of the greedy algorithm turn to a feasible flow on the
network.

Removal and purchase decisions are made on the nodes vw and vw,w+1 respectively
for all w ∈ S \ {w}. In fact, the removals are done for satisfying the upper bound
constraints on the arcs (vw, vw,w+1), since they are equal to tank capacities. Purchases
are done to satisfy lower and upper bounds of arcs (vw,w+1, t), since they are equal to
the distances to next cities. So the greedy algorithm starts from nodes v1 and v12 and
constructs a feasible flow gradually. Let us define the flow values on the arcs after the
greedy algorithm finishes removals and purchases in cities. They are given by

f(s,vw) =
∑
w≤y

πwy = xw, f(vw,w+1,t) =
∑
t≤w

πwt = dw, ∀w ∈ S \ {n} (5.29)

f(vw,vw,w+1) =
∑
y≥w

∑
t∈φw

πyt = φw, ∀w ∈ S \ {n} (5.30)

where Φw is the fuel pass in city w (see Definition 5.4.2). For all w ∈ S \ n,
f(vw−1,w,vw) = φw−1 − dw−1 and these flow values depend on the defined flow values
above. It is easy to see that the purchase πwt is an augmenting flow between trough
on the directed path {s, vt, vt,t+1, . . . , vw, vw,w+1, t}.

Now we define the residual network. There are two arcs originating from arc (i, j)
in the residual network: (i, j) and (j, i). The residual capacity on arc (i, j) is given
by r(i,j) = u(i,j)− f(i,j) with cost c(i,j). The capacity of arc (j, i) is the flow on arc f(i,j)

and the cost on it is −c(i,j). A directed cycle on a network is a set of arcs in which
every node is entered and left equal times. For example, the set {(i, j), (j, k), (k, i)} is
directed path of three arcs. In network flow theory, one interpretation of optimality
condition for a flow to have minimum cost states that there is no negative cost directed
cycle in the residual network.

Theorem 5.4.20. (Chapter 9, Ahuja et al. (1993)) A feasible flow f is an optimal
solution of the minimum cost flow problem if and only if it satisfies the negative
cost cycle optimality conditions: namely, the residual network contains no negative
(directed) cycle.

Let us now consider the residual network of the flow that is found by the greedy
algorithm. Note that we have f(vw,w+1,t) = dw, hence the residual capacity of arcs
(vw,w+1, t) are zero for all w ∈ S \ {n}. This implies that the sink t cannot be
in any direct cycle, since there is no residual arc capacity to reach it. This fact
fortunately reduces the number of cases to consider, and the only cycles in the
residual network in Figure 5.1 for the flow found by greedy algorithm is given by
{(s, vw), (vw, vw,w+1), (vw,w+1, vw+1), . . . , (vy, s)} between cities w and y. Having fig-
ured out the potential cycle type in the residual network, we state the following
Lemma.

Lemma 5.4.21. There is no negative cost cycle in the residual network of the flow
defined in (5.29) and in (5.30).



102 Chapter 5. Analysis of a vehicle refueling problem

Proof. The proof is by contradiction. Suppose that there is a negative cost cycle
{(s, vw), (vw, vw,w+1), (vw,w+1, vw+1), . . . , (vy, s)} in the residual network such that w <
y. This negative cost cycle tells us directly xw < Uw and 0 < xy due to the arc
capacities in the residual network and pw < py due to the negativity of the cycle cost.
Moreover, the feasibility of the cycle requires that the arcs (vt, vt,t+1), (vt,t+1, vt+1)
have some residual capacity where w ≤ t < y, hence, by equation (5.30), we see that
φt < Tt for w ≤ t < y. Moreover, we must have 0 < f(vt,t+1,vt+1) for all w ≤ t < y.

By Lemma 5.4.12, we see that fuel type w is dominant (see Definition 5.4.7). Here
we distinguish two cases:

Case y ∈ Rw: Firstly, we see that 0 < xy implies that py ≤ ph(y). By Corollary
5.4.11, we have ph(y) ≤ pw in the region Rw. Combining these two inequalities results
in py ≤ pw which contradicts the non-negativity of the directed cycle.

Case y 6∈ Rw: In this case we have w ≤ e(w) < y where e(w) is either empty-tank
or full-tank event of the dominant fuel type w (see Definition 5.4.5). If a full-tank

event occurs in city e(w) such that e(w) ∈ F , this implies that
∑e(w)

t=1 xt−
∑e(w)−1

t=1 dt =
φe(w) = Te(w). The fuel amount on arc (ve(w), ve(w),e(w)+1) is equal to Te(w) by (5.30), and
it is also equal to the upper bound u(ve(w),ve(w),e(w)+1). This contradicts the feasibility of
the negative cost cycle. If an empty-tank event occurs in city e(w) such that e(w) ∈ E,

we have
∑e(w)

t=1 xt −
∑e(w)

t=1 dt = 0 = f(ve(w),e(w)+1,ve(w)+1). This contradicts the feasibility
of the negative cost cycle that is mentioned above.

Having showed that there is no negative cost cycle in the residual network of the
flow found by the greedy algorithm, we state the final result as

Theorem 5.4.22. Algorithm 1 solves the vehicle refueling problem optimally in
O(n log n) time.

Proof. We provide the argument that the running time of the greedy algorithm is
O(n log n) in Section 5.4. The optimality of the solutions of our greedy algorithm
follows Lemma 5.4.21 and Theorem 5.4.20.

5.4.4 Correctness proof using convexity

In this section we show that a solution found by our greedy algorithm has the minimum
cost in its neighborhood. The cost function of the problem is linear, hence convex,
and we know already that if a point is a local minimum in a convex set, then it
is also global minimum. The optimality of the solutions found by greedy algorithm
will follow this argument. Now, we explain how a neighborhood of a solution can be
obtained.

On the solutions of the greedy algorithm. By Lemma 5.4.12, in any non-degenerate
solution of the greedy algorithm, we have three different groups of fuel types: those
non-purchased, those all-purchased, and those partially-purchased. The first group
includes the fuel types with price higher than the regional price. The second group
includes the fuel types with price less than the regional price, and the third group is
merely the set of dominant fuel types.



5.4. The greedy algorithm 103

Neighborhood of a solution. We will define the neighborhood of a solution x ∈ Rn

by considering a sufficiently small change in the refueling amount of a fuel type. We
denote a sufficiently small increase in an amount by ε ↑, and decrease by ε ↓. A
change in a refueling amount must be compensated by changing another fuel type to
have the same total refueling amount (due to fixed route length

∑n−1
t=1 dt). We define

the neighborhood of the solution x as below.

N1(x) =

x◦ ∈ Rn|∃w, y ∈ S :
x◦w = xw − ε
x◦y = xy + ε
x◦t = xt, ∀t ∈ S \ {w, y}

 (5.31)

N2(x) =

x◦ ∈ Rn|∃w, y ∈ S :
x◦w = xw + ε
x◦y = xy − ε
x◦t = xt, ∀t ∈ S \ {w, y}

 (5.32)

The neighborhood of the solution x is merely N(x) = N1(x) ∪ N2(x). Here, the
important point is to see how other fuel types are effected, if a particular fuel type is
either increased or decreased in sufficiently small amount. We use the flow equation
to figure out this point.

Now we distinguish the following fuel types: s, y ∈ D with s = maxv∈D{v < y},
v, w ∈ S with xv = 0, xw = Uw, and v, w ∈ Ry as non-purchased, all-purchased, and
partially-purchased fuel types. Having distinguished fuel types, we rewrite the flow
equation

φe(s) − φe(y) =

e(y)−1∑
t=e(s)

dt +
∑

t∈Ry :t6=w,pt<py

Ut + Uw + xy (5.33)

Note that in above equation φe(s) is equal to either ds or Ts, and similarly, φe(y) is
equal to dy or Ty. So both are constants. In the proofs of the following Lemmas, we
will use fuel types s, v, w, and y without loss of generality.

Lemma 5.4.23. ε ↑ of a “non-purchased” fuel leads to ε ↓ of a “dominant” fuel.

Proof. The refueling amount xv + ε (an increase in non-purchased) leads to either
xw − ε (a decrease in all-purchased fuel) or xy − ε (a decrease in dominant fuel) by
the flow equation in (5.4.23). Note that the former would cause a higher cost drop
than the latter due to pw < py. Therefore, a decrease in dominant fuel occurs.

Lemma 5.4.24. ε ↓ of a “all-purchased” fuel leads to ε ↑ of a “dominant” fuel.

Lemma 5.4.24 can be proven by using symmetric arguments in the proof of Lemma
5.4.23, and we do not give its proof for the sake of brevity.

Lemma 5.4.25. ε ↓ of a “dominant” fuel with empty-tank event leads to ε ↑ of a fuel
with higher price.



104 Chapter 5. Analysis of a vehicle refueling problem

Proof. We have e(y) ∈ E in solution x. In order to reach city e(y) + 1, we must have
xt + ε where t 6= y and t ≤ e(y). Now, suppose that pt < py. Then it is clear that
t ≤ e(s), since all cheaper fuel types than py are all-purchased in Ry. Now, we have
two cases: e(s) ∈ F or e(s) ∈ E. The former is impossible due to the tank capacity
constraint in e(s). In the latter, we have ps > py and all non-purchased fuel types
have also higher price than ps. Consequently, we must have pt > py.

Lemma 5.4.26. ε ↑ of a “dominant” fuel with empty-tank event leads to ε ↓ of a fuel
with lower price.

Proof. We again have e(y) ∈ E in solution x. Now we must have a refueling amount
xt − ε for t 6= y. Suppose that pt > py. We distinguish two following cases: either
t > e(y) or t < e(y). The former is impossible, since all purchased fuel types in the
next region have lower prices by Proposition 5.4.13. In the latter, we must have t ∈ Ry

and all such fuel types must have lower price than py, so we get the contradiction.

Lemma 5.4.27. ε ↓ (ε ↑) of a “dominant” fuel with full-tank event leads to ε ↑ (ε ↓)
of a fuel with higher (lower) price.

Lemma 5.4.27 can be proven by using similar arguments in the proofs of Lemma
5.4.25 and Lemma 5.4.26, hence we do not give its proof for the sake of brevity.

Proposition 5.4.28. One has f(x) ≤ f(x◦) for all x◦ ∈ N(x).

Proof. It is easy to see that for all cases in Lemmas 5.4.23-5.4.27 the cost of the
solution x◦ is higher.

Theorem 5.4.29. Algorithm 1 solves the vehicle refueling problem optimally in
O(n log n) time.

Proof. We provide the argument that the running time of the greedy algorithm is
O(n log n) in Section 5.4. The optimality of the solutions of our greedy algorithm
follows Proposition 5.4.28, since a local minimum implies global minimum in case of
convexity.

5.5 Concluding remarks

In this chapter, we present an intuitive greedy algorithm for a vehicle refueling prob-
lem. The problem under consideration is a slightly generalized version of the ones
studied in the literature. We see that the equivalent problems to the vehicle refueling
problem in lot sizing and in network flow are also solved in O(n log n) time. The ques-
tion coming to mind is that “Is O(n log n) the shortest possible time for this problem?
Can this problem be solved in linear time by any other approach?”.



Perspectives

Multi-skill workforce scheduling is a highly complex problem in combinatorial opti-
mization. Solving this problem to optimality is usually not an option to consider.
In the literature, we encounter a number of complicated local search techniques to
tackle complex scheduling problems. We observe that these techniques are success-
ful in finding good-quality solutions to some extent, whereas their convergence speed
seems to be sensitive to implementation and they are in general not robust to vary-
ing instance types. This point has also been observed for the particular multi-skill
workforce scheduling problem of France Telecom in the 2007 ROADEF Challenge.

In this thesis, we designed a flexible matching model to tackle the scheduling
problem of France Telecom. This model is basically a formulation of the matching
problem on bipartite graphs. Firstly, this approach enabled us to have a global way of
assigning technicians to tasks. Secondly, any well-thought improvement (to increase
the solution quality whenever different instance types are encountered) ended up with
higher solution quality in all instances. In our opinion, this thesis may inspire devel-
opments of combinatorial approaches to tackle other complex scheduling problems.
For example, other problems in multi-skill workforce scheduling may be tackled by
using our models with slight modifications.

In Chapter 2, the relaxation of the lower bound model (LBM) may provide us
important information for the skill management. This MIP model determines the
completion time of every priority class and makes the outsourcing decisions. If there
is “rare expertise” within the technician group, usually hard tasks are outsourced.
For this reason, rare expertise makes the project completion times dependent on the
external companies and it leads to high outsourcing expenses. Skill training seems
promising in preventing these undesired cases. If it is possible to train the techni-
cians with a cost that is covered by near-future outsourcing costs, the dependency to
external companies will decrease without using an extra budget. The LBM may be
modified in order to design a tactical-level decision tool to manage skills with hier-
archical levels. Moreover, the decisions made at tactical level should be revised by
using the feedback from operation level.

In stable workforce assignment problem, we considered two different sets of players;
technicians and jobs, and we defined the blocking case in an assignment based on the
Marriage problem. It is also natural that technicians may rank each other, since they
work in teams. This point reminds us the stable roommates problem, which is slightly
different than the Marriage problem. Actually, if both technician-job preferences and
technician-technician preferences are considered, the stable assignment problem turns

105



106 Chapter 5. Analysis of a vehicle refueling problem

to a more complicated problem then each of the Marriage problem and the Roommate
problem. If all these preferences are considered, defining the problem and developing
an approach may be further directions in this topic. In this problem, the graph-
theoretic approaches seem more promising than the MIP-based approaches.

Equivalent problems to the vehicle refueling problem in Chapter 5 is also ap-
proached by other researchers. The best running time achieved so far is O(n log n).
The question coming into mind is that “Is O(n log n) the shortest possible running
time for this problem?”. This question can be answered in two ways; (1) by reducing
a problem with a running time O(n log n) to the vehicle refueling problem for which
O(n log n) is shown the shortest possible running time, or (2) by developing another
approach with the hope of obtaining a shorter running time.



Bibliography

Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993). Network flows: Theory, algorithms
and applications . New Jersey: Prentice-Hall, Englewood Cliffs.

Ahuja, R.K., Hochbaum, D.S. (2008). Solving linear cost dynamic lot-Sizing problems
in O(n log n) time. Operations Research 56 , 255-261.

Atallah, D.Z. Chen, Lee, D.T. (1995). An optimal algorithm for shortest paths on
weighted interval and circular-arc graphs, with applications. Algorithmica 14 , 429-
441.

Avramidis, N.A., Chan, W., Gendreau, M., L’Ecuyer, P., Pisacane, O. (2010). Op-
timizing daily agent scheduling in a multi-skill call center. European Journal of
Operational Research 200 , 822-832.

Bäıou, M., Balinski, M. (2000a). The stable admissions polytope. Mathematical
Programming 87 , 427-439.

Bäıou, M., Balinski, M. (2000b). Many-to-many matching: stable polyandrous
polygamy (or polygamous polyandry). Discrete Applied Mathematics 101 , 1-12.

Bäıou, M., Balinski, M. (2002). The stable allocation (or ordinal transportation)
problem. Mathematics of Operations Research 27 , 485-503.

Ballou, D., Tayi, G. (1996). A decision aid for the selection and scheduling of software
maintenance projects. IEEE Transactions on Systems Man and Cybernetics Part
A Systems and Humans 26 , 203-212.

Baker, K.R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons.

Bellenguez, M.O. (2006). Methods to solve multi-skill project scheduling problem.
Ph.D. Thesis, Francois Rabelais University, Tours, France.

Bellenguez, M.O., Neron. E. (2004). Lower Bounds for the multi-skill project schedul-
ing problem with hierarchical levels of skills. Lecture Notes in Computer Science:
Practice and Theory of Automated Timetabling V, Springer Berlin / Heidelberg,
229–243.

Bellenguez, M.O., Neron. E. (2007). A Branch-and-bound method for solving multi-
skill project scheduling problem. RAIRO Operations Research 41 , 155-170.

107



108 Bibliography

Bertsekas, D.P. (2003). Nonlinear Programming (2nd edition). Athena Scientific,
Belmont, Massachusetts.

Bertsimas, D., Tsitsiklis, J.N. (1997). Introduction to Linear Optimization. Athena
Scientific, Belmont, Massachusetts.

Brucker, P., Drexl, A., Möhring R., Neumann K., Pesch E. (1999). Resource-
constrained project scheduling: notation, classification, models, and methods. Eu-
ropean Journal of Operational Research 22 , 3-41.

Brucker, P., Knust, S. (2000). A linear programming and constraint propagation-
based lower bound for the RCPSP. European Journal of Operational Research 127 ,
355-362.

Brucker, P. (2007). Scheduling algorithms (5th edition). Berlin: Springer-Verlag.

Brucker, P., Knust, S. (2009). Complexity results for scheduling problems.
http://www.informatik.uni-osnabrueck.de/knust/class/.

Cai, X., and Li, K.N. (2000). A genetic algorithm for scheduling staff of mixed skills
under multi-criteria. European Journal of Operational Research 125 , 359-369.

Caro, Y., Sebő, A., Tarsi, M. (1996). Recognizing greedy structures. Journal of
Algorithms 20 , 137-156.

Cook, S. (1971). The complexity of theorem proving procedures. Proceedings Third
Annual ACM Symposium on Theory of Computing , 151-158.

Cordeau, J.F., Laporte, G., Pasin F., Ropke, S. (2010). Scheduling technicians and
tasks in a telecommunication company. Journal of Scheduling 13 , 393-409.

Cormen,T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to algo-
rithms (3rd edition). The MIT Press.

De Reyck, B., and Herroelen, W.S. (1999). The multi-mode resource-constrained
project scheduling problem with generalized precedence relations. European Journal
of Operational Research 119 , 538-556.

Drezet, L.E., and Billaut, J.C. (2008). A project scheduling problem with labour
constraints and time-dependent activities requirements. International Journal of
Production Economics 112 , 217-225.

Dutot, P., Laugier, A., Bustos, A. (2006). Technicians and interventions scheduling
for telecommunications. France Telecom R &D.

Edmonds, J. (1962). Covers and packings in a family of sets. Bulletin of the American
Mathematical Society 68 , 494-499.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics 17 ,
449-467.



Bibliography 109

Estellon, B., Gardi, F., Nouioua, K. (2009). High-Performance local search for
task scheduling with human resource allocation. Lecture Notes In Computer Sci-
ence. 5752 , 1-15.

Firat, M., Hurkens, C.A.J. (2011a). An improved MIP-based approach for a multi-skill
workforce scheduling problem. Journal of Scheduling. , DOI: 10.1007/s10951-011-
0245-x.

Firat, M., Woeginger, G.J. (2011b). Analysis of the dial-a-ride problem of Hunsaker
and Savelsbergh. Operations Research Letters 39 , 32–35.

Firat, M., Hurkens, C.A.J., Laugier, A. (2011c). Stable multi-skill workforce assign-
ments. Annals of OR. , revised submission.

Fleiner, T., Irving, R.W., Manlove, D.F. (2007). Efficient algorithms for generalized
stable marriage and roommates problems. Theoretical Computer Science 381 ,
162-176.

Fredman, M.L. and Tarjan, R.E. (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM 34 , 596-615.

Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage.
The American Mathematical Monthly 69 , 9-15.

Gale, D. and Sotomayor, M. (1985). Some remarks on the stable matching problem.
Discrete Applied Mathematics 11 , 223-232.

Gantt, Henry L. (1903). A graphical daily balance in manufacture. Transactions of
the American Society of Mechanical Engineers 24 , 1322-1336.

Garey, M.R., Johnson, D.S. (1979). Computers and intractability - a guide to NP-
completeness. San Fransisco: W.H. Freeman and Company.

Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T. (2010). Local search for
stable marriage problem. Proceedings of COMSOC 2010 , Düsseldorf, Germany.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinooy Kan, A.H.G. (1979). Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics 5, 287–326.

Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M. (2008).
Competence-driven project portfolio selection, scheduling and staff assignment.
Central European Journal of Operations Research 16 , 281–306.

Hartmann, S., Briskorn, D. (2010). A survey of variants and extensions of the resource-
constrained project scheduling problem. Central European Journal of Operations
Research 207 , 1–14.

Heilmann, R., Schwindt, C. (1997). Lower bounds for RCPSP. Technical report
WIOR-511, Universitaet Karlsruhe, Germany.



110 Bibliography

Heimerl, C., Kolisch, R. (2010). Scheduling and staffing multiple projects with a
multi-skilled workforce. OR Spectrum 32 , 343–368.

Hochbaum, D.S., Shmoys, D.B. (1988). A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach. SIAM
Journal of Computing 17 , 539-551.

Hoogeveen, J.A., Schuurman, P., Woeginger, G.J. (2001). Non-approximability re-
sults for scheduling problems with minsum criteria. INFORMS Journal on Com-
puting 13 , 157–168.

Hunsaker, B., Savelsbergh, M. (2002). Efficient feasibility testing for dial-a-ride prob-
lems. Operations Research Letters 30 , 169–173.

Hurkens, C.A.J. (2009). Incorporating the strength of MIP modeling in schedule
construction. RAIRO Operations Research 43 , 409–420.

Irving, R.W. (1994). Stable marriage and indifference. Discrete Applied Mathemat-
ics 48 , 261–272.

Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y. (1999). Stable marriage with
incomplete lists and ties. Lecture Notes in Computer Science, Springer, Berlin
1644 , 443–452.

Iwama, K., Miyazaki, S., Okamoto, K. (2004). A (2 − c(logN/N))-approximation
algorithm for the stable mmarriage problem. Lecture Notes in Computer Science,
Springer, Berlin 3111 , 349–361.

Iwama, K., Miyazaki, S., Yamauchi, N. (2008). A (2 − c(1/
√
N))-approximation

algorithm for the stable marriage problem. Algorithmica 51 , 902–914.

Jackson, J.R. (1955). Scheduling a production line to minimize maximum tardiness.
Management Science Research Project 43. University of California, Los Angeles.

Jans, R., Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.
International Journal of Production Research 46 , 1619-1643.

Johnson, S.M. (1954). Optimal two- and three-stage production with setup times
included. Naval Research Logistics Quarterly 1 , 61–68.

Khachiyan, L.G. (1979). A polynomial algorithm in linear programming. Soviet
Mathematics Doklady 20, 191–194.

Karp, R.M. (1972). Reducibility among combinatorial problems. Complexity of Com-
puter Computations: Proceedings of a Symposium on the Complexity of Computer
Computations , 185-103.

Kellerer, H., Tautenhahn, T., Woeginger, G.J. (1996). Approximability and nonap-
proximability results for minimizing total flow time on a single machine. SIAM
Journal of Computing 28, 191–194.



Bibliography 111

De Klerk, E., Roos, C., Terlaky, T. (2005). Lecture Notes: Continouous Optimization.
Delft: Delft University of Technology, the Netherlands.

Lawler, E.L. (1978). Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Annals of Discrete Mathematics 2 , 75–90.

Lenstra, J.K., Rinnooy Kan, A.H.G. (1978). Complexity of scheduling under prece-
dence constraints. Operations Research 26 , 22–35.

Lenstra, J.K., Rinnooy Kan, A.H.G. (1980). Complexity results for scheduling chains
on a single machine. European Journal of Operational Research 4 , 270–275.

Lenstra, J.K., Shmoys, D.B., Tardos, E. (1990). Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming 46 , 259–271.

Li, H., Womer K. (2009). Scheduling projects with multi-skilled personnel by a hybrid
MILP/CP benders decomposition algorithm. Journal of Scheduling 12 , 281–298.

Lin, S.H., Gertsch, R., Russell, J.R. (2007). A linear-time algorithm for finding
optimal vehicle refueling policies. Operations Research Letters 35 , 290–296.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L. (1998). An exact algorithm
for the multiple resource-constrained project scheduling problem based on a new
mathematical formulation. Management Science 44 , 714–729.

Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M. (2003). Solving project scheduling
problems by minimum cut computations. Management Science 49 , 330–350.

Papadimitriou, C.H., Steiglitz, K. (1982). Combinatorial Optimization: Algorithms
and Complexity (2nd edition) . New Jersey: Prentice-Hall, Englewood Cliffs.

Pinedo, M. (2008). Scheduling: Theory, Algorithms, and Systems (3rd edition) . New
York: Prentice Hall.

Sedeo-Noda, A., J. Gutirrez, B. Abdul-Jalbar, Sicilia, J. (2004). An O(T log T)
algorithm for the dynamic lot size problem with limited storage and linear costs.
Computational Optimization and Applications 28 , 311–323.

Schuurman, P., Woeginger, G.J. (2002). A PTAS for single machine scheduling with
controllable processing times. Acta Cybernetica 15 , 369-378.

Smith, W.E. (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly 3 , 59–66.

Tang, J., Kong, Y., Lau, H., Ip, A.W.H. (2010). A note on “Efficient feasibility testing
for dial-a-ride problems”. Operations Research Letters 38 , 405–407.

Vande Vate, J.H. (1989). Linear programming brings marital bliss. Operations Re-
search Letters 8 , 147–153.



112 Bibliography

Valls, V., Perez, A., Quintanilla, S. (2009). Skill workforce scheduling in service
centers. European Journal of Operational Research 193 , 791–804.

Van den Heuvel, W. (2006). The economic lot-sizing problem: new results and exten-
sions. PhD thesis, Erasmus University, Rotterdam, the Netherlands.

Williamson, D.P., Shmoys, D.B. (2011). The design of approximation algorithms.
Cambridge University Press.

Woeginger, G.J. (2003). Exact algorithms for NP-hard problems: A Survey. Combi-
natorial Optimization, 185–208.

Woeginger, G.J. (2004). Inapproximability results for no-wait job shop scheduling.
Operations Research Letters 32 , 320–325.

Wu, M.C., Sun, S.H. (2006). A project scheduling and staff assignment model consid-
ering learning effect. The International Journal of Advanced Manufacturing Tech-
nology 28 , 1190–1195.

Yoshimura, M., Fujimi, Y., Izui, K., Nishiwaki, S. (2006). Decision-making support
system for human resource allocation in product development projects. Interna-
tional Journal of Production Research 44 , 831–848.



Index

3-D Matching, 18, 67

active load, 42
active skill, 42
admission, 12, 61
approximation algorithm, 4
asymptotic complexity, 2

bipartite graph, 5, 42
blocking pair, 55, 60

candidate task, 38
compatible, 64
complementary slackness, 8, 98
complexity theory, 3
constraint graph, 84
contributing skills, 57
convex, 102
critical skills, 59

decision problem, 3
dial-a-ride problem, 13, 77
difference constraints, 81
directed path, 83
dominant fuel, 95
duality, 8

empty-tank event, 95

flow conservation, 91
flow equation, 97
flow problem, 89
full-tank event, 95

Gale-Shapley stability, 61
greedy, 6, 19, 92

hardness, 34
heuristics, 4
hierarchical levels, 22

idle technician, 59
incomplete preference, 63
integer programming, 7
interval graph, 6, 19, 83

latent skill, 42
lot sizing problem, 89
lower bound, 36

marriage, 11, 61
matching model, 48
merging, 42
missing skills, 57

negative cost direct cycle, 101
neighborhood, 103

outsourcing, 11, 26

passive load, 42
passive skill, 42
precedence relation, 25
priority class, 26
priority span, 22

rank function, 58
rare expertise, 16, 22
RCPSP, 10, 29
reduction, 18
region, 95
regional price, 19, 95
residual network, 101

SAT problem, 3
satisfaction, 72
scheduling, 9
sequencing, 43
shortest path, 5, 83
skill domain, 24
skill level, 24

113



114 Index

skill matrix, 24
skill requirements, 28
special task, 35
stability, 11, 17, 59
sub-job, 63
subset sum, 29

university quota, 63

vehicle refueling, 14

workforce scheduling, 15



Summary

Workforce Scheduling and Planning:
A Combinatorial Approach

This thesis investigates solution methodologies for concrete combinatorial prob-
lems in scheduling and planning. In all considered problems, it is assumed that the
available information does not change over time; hence these problems have a deter-
ministic structure.

The problems studied in this thesis are divided into two groups; “workforce
scheduling” and “planning”. In workforce scheduling, the center problem is to build a
schedule of tasks and technicians. It is assumed that the time line is split into work-
days. In every workday, tasks must be grouped as sequences, each being performed
by a team of technicians. Skill requirements of every task in a sequence must be met
by the assigned team. This scheduling problem with some other aspects is difficult
to solve quickly and efficiently. We developed a Mixed Integer Programming (MIP)
based heuristic approach to tackle this complex scheduling problem. Our MIP model
is basically a formulation of the matching problem on bipartite graphs and it enabled
us to have a global way of assigning technicians to tasks. It is capable of revising
technician-task allocations and performs very well, especially in the case of rare skills.

A workday schedule of the aforementioned problem includes many-to-one type
workforce assignments. As the second problem in workforce scheduling, stability of
these workforce assignments is investigated. The stability definition of Gale-Shapley
on the Marriage model is extended to the setting of multi-skill workforce assignments.
It is shown that finding stable assignments is NP-hard. In some special cases stable
assignments can be constructed in polynomial time. For the general case, we give
linear inequalities of binary variables that describe the set of stable assignments. We
propose a MIP model including these linear inequalities. To the best of our knowledge,
the Gale-Shapley stability is not studied under the multi-skill workforce scheduling
framework so far in the literature. The closed form description of stable assignments
is also the first embedding of the Gale-Shapley stability concept into an NP-complete
problem.

In the second problem group, two vehicle related problems are studied; the “dial
a ride problem” and the “vehicle refueling problem”. In the former, the goal is to
check whether a list of pick-up and delivery tasks can be achieved under several timing
constraints. It is shown this feasibility testing can be done in linear time using interval
graphs. In the vehicle refueling problem, the goal is to make refueling decisions to

115



116 Index

reach a destination such that the cost of the travel is minimized. A greedy algorithm
is presented to find optimal refueling decisions. Moreover, it is shown that the vehicle
refueling problem is equivalent to a flow problem on a special network.



Curriculum vitae

Murat Fırat was born in Istanbul, Turkey on October 3, 1978. In 1996, he completed
his high school education at the Üsküdar Anadolu Gymnasium in Istanbul. In the
same year, he enrolled at Boğaziçi University to study Mechanical Engineering and
obtained his bachelor degree in 2001.

During his master program, he was as a research and teaching assistant of Systems
and Control Engineering and he worked in the Boğaziçi University Flexible Automa-
tion and Intelligent Manufacturing (BUFAIM) Laboratory of Industrial Engineering.
He was in the organizing committee of “Mathematics for Industry” (MathInd) project
and worked with Yorgo Istefanopulos in 2001 and 2002. He obtained his Master’s
degree under the supervision of Ümit Bilge at the same university with the thesis
entitled: A fuzzy logic approach to dynamic routing problem under varying levels of
routing flexibility.

From August 2003 until February 2006, he worked for Otokar, a vehicle manu-
facturer, as management trainee and project engineer; for General System Design, a
valve producer, as project coordinator.

In 2006, he decided to continue in the academia and he started working again in
the BUFAIM Laboratory as a research and teaching assistant.

September 2007 Murat started as a Ph.D. student in the Combinatorial Opti-
mization group at Eindhoven University of Technology under the supervision of Cor
Hurkens and Gerhard Woeginger. His Ph.D. position was funded by the France Tele-
com/TU Eindhoven collaboration. As a Ph.D. student he was a member of BETA
(Research School for Operations Management and Logistics) and the LNMB (Dutch
Network of the Mathematics of Operations Research). For both he successfully com-
pleted all the required Ph.D. level courses. He also successfully completed the courses
“Combinatorial Optimization at Work” (TU Berlin) and “Topics in Combinatorics”
(Technical University of Denmark). As a member of the team with Cor Hurkens,
Christian Eggermont, and Maciej Modelski, he won the 1st prize in the junior cate-
gory of the ROADEF Challenge 2009.

Starting from April 2012 he will be working as a postdoctoral researcher in the
field of combinatorial optimization with Alexandre Laugier at France Telecom.


	Acknowledgements
	Contents
	1.
Introduction
	2. A MIP-based approach to a multi-skill workforce scheduling problem
	3. Stable multi-skill workforce assignments
	4.
Analysis of a dial-a-ride problem
	5. Analysis of a vehicle refueling problem
	Perspectives
	Bibliography
	Index
	Summary
	Curriculum vitae

