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Abstract

We study an M/G/1 processor sharing queue with multiple vacations. The server only takes
a vacation when the system has become empty. If he finds the system still empty upon return,
he takes another vacation, and so on. Successive vacations are identically distributed, with a
general distribution. When the service requirements are exponentially distributed we determine
the sojourn time distribution of an arbitrary customer. We also show how the same approach can
be used to determine the sojourn time distribution in an M/M/1-PS queue of a polling model,
under the following constraints: the service discipline at that queue is exhaustive service, the
service discipline at each of the other queues satisfies a so-called branching property, and the
arrival processes at the various queues are independent Poisson processes. For a general service
requirement distribution we investigate both the vacation queue and the polling model, restricting
ourselves to the mean sojourn time.

1 Introduction

This study is devoted to the M/G/1-PS (Processor Sharing) system. In the egalitarian processor
sharing discipline, when there are k customers present, they all are served simultaneously, receiving
an equal share 1/k of the service capacity. Processor sharing was introduced by Kleinrock in the early
sixties, as an idealised model of a time-sharing computer processor. In the last fifteen years it has
gained renewed interest, partly because of its ability to represent ‘fair’ bandwidth sharing mechanisms
like the Transmission Control Protocol (TCP) of the Internet.

The special feature of our study is that either (i) the server goes on a vacation after having emptied
the M/G/1-PS system, or (ii) the M/G/1-PS system under consideration is just one out of several
queues in a polling system, a single server visiting each of the queues in cyclic fashion. When ser-
vice requirements are exponentially distributed, for both cases (i) and (ii), we determine the sojourn
time distribution of customers from the M/M/1-PS system. For general service requirements we
derive an integro-differential equation, the solution of which would immediately yield the mean condi-
tional delay in the M/G/1-PS system with multiple vacations. Interestingly, that integro-differential
equation is seen to coincide with an integro-differential equation that arises in a particular M/G/1
batch processor sharing queue [1]. For particular choices of the service requirement distribution, that
integro-differential equation can be solved.

Motivation. Our motivation is twofold. On the one hand, it is theoretical: we wish to obtain a
better insight into the effect of the PS service discipline on sojourn times, and we wish to develop

∗The research of U. Ayesta and I.M. Verloop was partially supported by grant MTM2010-17405 (Ministerio de
Ciencia e Innovación, Spain) and grant PI2010-2 (Department of Education and Research, Basque Government). The
research of O.J. Boxma was conducted within the framework of the European Network of Excellence Euro-NF.
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probabilistic tools to accomplish this. On the other hand, we are motivated by the fact that vaca-
tion and polling systems arise very naturally in a host of application areas (in production systems,
computer- and communication networks, traffic lights, maintenance, etc.). The literature on vacation
and polling systems heavily concentrates on FCFS service per queue; however, in several of the above-
mentioned application areas, scheduling customer service in a non-FCFS manner could be beneficial.
E.g., polling models with non-FCFS service per queue arise in the IEEE 802-11 [19] and Bluetooth
[20] communication protocols, in scheduling policies at routers and at I/O systems in web servers.

Well-known polling visit disciplines are the exhaustive discipline (the server serves the queue until
it has become empty), the gated discipline (when the server arrives at a queue to find K customers,
it serves exactly those K customers, and no more), and the 1-limited discipline (the server serves just
one customer, assuming at least one is present). In Winands et al. [35] the mean delay in polling
systems was already obtained under gated or exhaustive service and for various non-FCFS service dis-
ciplines per queue, but in the exhaustive case the PS discipline seemed to pose too hard mathematical
problems. In [8] the LST (Laplace-Stieltjes Transform) of the sojourn time distribution was obtained
for various service disciplines per queue like Last-Come-First-Served, Random Order of Service, Pro-
cessor Sharing and Shortest Job First, under the gated visit discipline. Again, PS for the exhaustive
discipline remained elusive. The present study aims to fill that gap.

Related work on the processor sharing queue. In the classicalM/G/1-PS model, the steady-state queue
length distribution is geometrically distributed with parameter ρ, the load of the system (arrival rate
times mean service requirement). Next to this insensitivity property (the distribution of the actual
service requirement B plays no role, only the mean), M/G/1-PS has another interesting property: the
mean sojourn time of a customer, given its service requirement is τ , is linear in τ : E(T |B = τ) = τ

1−ρ .
While these are quite simple results, the sojourn time distribution has turned out to be much more dif-
ficult to obtain. In 1970, Coffman, Muntz and Trotter [10] managed to derive the LST of the sojourn
time distribution in the M/M/1-PS system. Sengupta and Jagerman [30] have obtained an expression
for the same LST, conditioned on the number of customers seen upon arrival. Morrison [21] studied
the sojourn time distribution itself (i.e., without LST). Almost simultaneously, Yashkov [37], Ott [27]
and Schassberger [29] derived the LST of the sojourn time distribution in an M/G/1-PS; see [5] for
an alternative derivation via an M/M/1-FCFS queue with feedback. Núñez-Queija [22] has derived
the LST of the sojourn time distribution in an M/M/1-PS queue with service interruptions; notice
that such interruptions occur randomly, whereas in our case vacations occur only when the system
has become empty. In [18] Kleinrock et al. developed an integro-differential equation that character-
izes the mean conditional sojourn time in a processor sharing queue with batch Poisson arrivals, and
solved it when the service requirement distribution belongs to a particular class of distributions that
includes the exponential distribution. More recently in [1, 4, 15, 26] this approach has been used to
investigate general service requirement distributions.

Contributions. One of the main contributions of the present study is a derivation of the LST of the
sojourn time distribution in the M/M/1-PS system with multiple vacations. If the system has become
empty, the server takes a vacation. If, upon his return, the system is still empty, he takes another
vacation, with the same distribution as the previous one; and so on. If, returning from a vacation, the
system is not empty, then the server serves customers until the system has become empty once more.
In our study of the sojourn time LST, we make use of an interesting intermediate result of [10]: an
expression for the sojourn time LST in M/M/1-PS, conditional on his service requirement and on the
number of customers found by a tagged customer upon arrival. In addition, we derive an expression
for the sojourn time LST in an asymptotic regime when the length of the vacations grows large. This
will be of particular interest in the context of polling systems.

Another main contribution pertains with the development of an integro-differential equation that
characterizes the mean conditional delay in the M/G/1-PS system with multiple vacations. Using this
approach we show that, as the service requirement τ grows to infinity, the mean conditional sojourn
time has an asymptote of slope τ/(1− ρ) and we explicitly calculate the bias term.

The third main contribution of the paper concerns the application of the previous results to polling
systems. We study the sojourn time in one queue Q1 of an N -queue polling system. That queue re-
ceives exhaustive service and its service discipline is PS. In particular, for exponentially distributed
service requirements we derive the LST of the sojourn time distribution. For the class of polling
systems with so-called branching service disciplines at all queues (see, e.g., Resing [28]; exhaustive
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and gated service are prominent examples), it is possible to derive the intervisit time distribution of
Q1 [8]. By first conditioning on the number of customers at Q1 found by an arrival at Q1, averaging
the sojourn time LST over arrivals at Q1 that take place while the server is at Q1 and that take place
during its intervisit time, we finally arrive at the unconditional sojourn time LST. In addition, we
present results for two asymptotic regimes: a polling system having large switch-over times, and a
polling system in a heavy-traffic regime.

Organization of the paper. Section 2 presents a model description of the M/G/1-PS queue with
vacations, as well as results from [10] for the ordinary M/M/1-PS queue without vacations. The
sojourn time LST in the M/M/1-PS queue with vacations is derived in Section 3. Section 4 considers
the mean sojourn time in the case of theM/G/1-PS queue with vacations. We pay particular attention
to the mean conditional sojourn time given the service requirement is τ , for τ → ∞. Finally, Section 5
is devoted to an M/G/1-PS queue in a polling system.

2 Model and preliminaries

We study a Processor Sharing (PS) queue with vacations. We assume that customers arrive accord-
ing to a Poisson process with rate λ and have i.i.d. (independent, identically distributed) generally
distributed service requirements; B denotes a generic service requirement, with mean E(B) = 1/µ
and distribution function F (·). We define ρ = λ/µ. The scheduling policy applied in the queue is
processor sharing. Once the queue empties, the server goes on vacation. Successive vacations are
identically distributed; V denotes a generic vacation time. We let Ṽ (s) be its LST, FV (·) and fV (·)
the distribution function and density function of V , respectively. We denote by RV (PV ) the length

of a residual (past) vacation, hence E(RV ) = E(PV ) =
E(V 2)
2E(V ) . We consider the system with multiple

vacations, i.e., when the server returns from vacation but finds no customers in the system, it starts
a new vacation. Throughout the paper we assume the system is stable, i.e., ρ < 1.

In the paper we will be interested in the sojourn time, denoted by T , as experienced by a customer.
We further define W as the delay experienced by a customer, i.e., the sojourn time minus service

requirement. Hence, T
d
= W +B.

2.1 Preliminaries: ordinary M/M/1-PS queue

In Section 3 we make use of existing results for the sojourn time in the ordinary PS queue without
vacations and exponentially distributed service requirements. These results are presented in what
follows.

Let Wn be the delay (sojourn time minus service requirement) of the tagged customer in the
M/M/1-PS queue without vacations, when he meets n customers at arrival. From [10] we have for
wn(τ, s) := E(e−sWn |B = τ),

wn(τ, s) =
(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r
β(τ, s)n, τ ≥ 0, (1)

where

β(τ, s) =
r(1− ρr) + (1− r)e−µτ(1−ρr2)/r

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r
,

and r is the root (the one with minus the square-root) of λz2 − (λ + µ + s)z + µ. Note that r(s)
represents the LST of the length of a busy period in a standard M/M/1 queue [6].

We notice that

∞∑
n=0

an

n!
wn(τ, s) =

(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r
eaβ(τ,s)

= G(τ, s)eaβ(τ,s), (2)

with G(τ, s) := (1−ρr2)e−λτ(1−r)

1−ρr+ρr(1−r)e−µτ(1−ρr2)/r
.

Lemma 1 gives properties for the functions G(τ, s) and β(τ, s), which will be used later on. The
proof of this Lemma is included in Appendix 1.
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Lemma 1 We have

∂G(τ, s)

∂s
|s=0 = − 1

µ(1− ρ)

(
λτ − ρ

1− ρ
(1− e−µτ(1−ρ))

)
,

∂β(τ, s)

∂s
|s=0 = − 1

µ(1− ρ)

(
1− e−µτ(1−ρ)

)
.

3 M/M/1 processor sharing queue with multiple vacations

In this section we assume that customers have an exponentially distributed service requirement. In
that case, we are able to obtain the LST of the delay of a customer with service requirement τ , see the
Proposition below. In what follows we focus on one tagged customer (denoted as K in the ensuing),
studying its delay W .

Proposition 1 In an M/M/1-PS queue with multiple vacations,

E(e−sW |B = τ) = ρG(τ, s)
β(τ, s)(1− ρ)

1− ρβ(τ, s)

1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )

+(1− ρ)G(τ, s)
Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

sE[V ]
, (3)

with G(τ, s) and β(τ, s) as defined in Section 2.1.
In particular, the first moment is given by

E(W |B = τ) =
ρτ

1− ρ
+

ρ(2− ρ)E(RV )

1− ρ
(1− e−µτ(1−ρ)) + (1− ρ)E(RV ). (4)

Remark 1 (Unconditional delay) The delay for an arbitrary customer can be obtained by un-
conditioning on the service requirement, i.e., E(e−sW ) =

∫∞
0

E(e−sW |B = τ)µe−µτdτ and E(W ) =∫∞
0

E(W |B = τ)µe−µτdτ . The mean unconditional delay is readily seen to equal E(W ) = ρ/µ
1−ρ+E(RV ).

This is in agreement with a well-known result [32] for the mean delay in an M/M/1-FCFS queue with
exhaustive service and multiple vacations. That is no surprise; indeed, in the case of exponential
service requirements, the queue length distributions for PS and FCFS are the same, hence the mean
queue lengths are the same, and hence by Little’s formula also the mean delays are the same.

Remark 2 (M/M/1-PS without vacations) For an M/M/1-PS queue without vacations, we have
E(RV ) = 0, and we retrieve the known formula E(W |B = τ) = ρτ/(1− ρ).

Proof of Proposition 1: We have

E(e−sW |B = τ) =
∞∑

n=1

pnwn(τ, s)

+(1− ρ)

∫ ∞

u=0

∫ ∞

v=0

e−sv
∞∑

n=0

e−λ(u+v) (λ(u+ v))n

n!
wn(τ, s)dP(PV < u,RV < v),

with pn = P(K arrives in a busy period and sees n customers upon arrival). The first term in the
above equation corresponds to the case that the tagged customer arrives in a busy period and finds
n customers upon arrival. The system behaves like an ordinary M/M/1-PS without vacations as far
as his delay is concerned, hence the LST of the conditional delay of K is wn(τ, s). The second term
corresponds to the case that the tagged customer arrives during a vacation period. Given the length
of the elapsed period of vacation u and the length of the residual vacation v, the probability of n
customers arriving to the system during the vacation of length u+ v (excluding the tagged customer
K) is given by e−λ(u+v)(λ(u + v))n/n!. Since the policy is PS, after vacation, the tagged customer
sees its delay as if it arrives at a PS queue where it meets n customers, i.e., wn(τ, s).

From (2) we obtain

E(e−sW |B = τ) =
∞∑

n=1

pnwn(τ, s)+(1−ρ)G(τ, s)

∫ ∞

u=0

∫ ∞

v=0

e−sve−λ(1−β(τ,s))(u+v)dP(PV < u,RV < v).

(5)
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For general vacations we have (see [11, p. 113]; see also Remark 3 below)∫ ∞

u=0

∫ ∞

v=0

e−sve−λ(1−β(τ,s))(u+v)dP(PV < u,RV < v) =
E(e−λ(1−β(τ,s))V )− E(e−(λ(1−β(τ,s))+s)V )

sE(V )
.

This follows from∫ ∞

u=0

∫ ∞

v=0

e−aue−bvdP(PV < u,RV < v) =
1

E(V )

∫ ∞

u=0

∫ ∞

v=0

e−au−bvfV (u+ v)dvdu

=
1

E(V )

∫ ∞

z=0

∫ z

v=0

e−a(z−v)−bvfV (z)dvdz =
1

E(V )

∫ ∞

z=0

e−az 1− e−(b−a)z

b− a
fV (z)dz

=
1

(b− a)E(V )
(E(e−aV )− E(e−bV )), (6)

where in the first step we used that P(PV > u,RV > v) = 1
E(V )

∫∞
u+v

(1−FV (w))dw, see for example [3,

p. 24].
We now consider pn, which can be written as pn = ρP(K sees n|K arrives in a busy period) =

ρP(Nbusy = n), with Nbusy the steady-state number of customers in a busy period. We have

E(zN ) = (1− ρ)E(zNvac) + ρE(zNbusy ), (7)

with N the steady-state number of customers, and Nvac the steady-state number of customers in
the period of (subsequent multiple) vacations. Since the service requirements are exponentially dis-
tributed, the queue lengths are stochastically the same as the queue lengths in the M/M/1-FCFS
queue with multiple vacations. From [7, Lemma 2.2.1] we get

E(zNvac) =
1− E(zNend)

(1− z)E(Nend)
, (8)

with Nend the steady-state number of customers present in the system at the end of a vacation period,
and (because of multiple vacations)

E(zNend) =
Ṽ (λ(1− z))− Ṽ (λ)

1− Ṽ (λ)
, (9)

(follows since E(zNend) = E(zNs |Ns > 0) = E(zNs ;Ns>0)
P(Ns>0) = E(zNs )−P(Ns=0)

1−P(Ns=0) , with Ns the steady-state

number of customers for a system with single vacations, so E(zNs) = Ṽ (λ(1− z))). Hence,

E(zNvac) =
1− E(zNend)

(1− z)E(Nend)
=

1− Ṽ (λ(1− z))

λ(1− z)E(V )
. (10)

Indeed, the last term is the PGF of the number of arrivals in PV . Let NM/M/1 be the number of
customers present in steady state in a standard M/M/1 queue. Fuhrmann & Cooper [14] state that

N
d
= NM/M/1 +Nvac,

the latter two being independent. We thus have

E(zN ) =
1− ρ

1− ρz
E(zNvac). (11)

Combining (7), (10) and (11) we obtain

E(zNbusy ) =
1

ρ

(
1− ρ

1− ρz
E(zNvac)− (1− ρ)E(zNvac)

)
= z

1− ρ

1− ρz

1− Ṽ (λ(1− z))

λ(1− z)E(V )
,

which implies

Nbusy
d
= 1 +NM/M/1 +Nvac.

It then follows that P(Nbusy = n) = P(NM/M/1 +Nvac = n− 1).
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Since pn = ρP(Nbusy = n), we have

∞∑
n=1

pnwn(τ, s) =
∞∑

n=1

(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r
β(τ, s)nρP(NM/M/1 +Nvac = n− 1)

= β(τ, s)ρ
(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r

∞∑
n=0

β(τ, s)nP(NM/M/1 +Nvac = n)

= β(τ, s)ρ
(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r
E(β(τ, s)NM/M/1+Nvac)

= β(τ, s)ρ
(1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r

1− ρ

1− ρβ(τ, s)

1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )
.

The latter is equal to β(τ, s)ρG(τ, s) 1−ρ
1−ρβ(τ,s)

1−Ṽ (λ(1−β(τ,s)))
λ(1−β(τ,s))E(V ) , which concludes the proof.

The derivation of the expression for the conditional mean delay as stated in Equation (4) can be
found in Appendix 2. 2

Remark 3 The three key ingredients of our approach were knowledge of (i) the steady-state queue
length distribution during busy periods and during vacations, (ii) the conditional sojourn time LST
wn(τ, s) in an M/M/1 PS system, and (iii) knowledge of the joint LST of past and residual vacation
time, as given in (6). When the tagged customer arrives during a busy period, it will be served during
that same busy period, and we can immediately use wn(τ, s) from [10]. When the tagged customer
arrives during a vacation, it will be served in the subsequent busy period. Because service is exhaustive,
the system was empty at the beginning of the vacation. Hence we only need to know the number of
other arrivals in the same vacation, before and after that of the tagged customer. So we only need to
know the joint distribution of the past and residual length of one arbitrary vacation. Formula (6), a
familiar result from renewal theory (hence with i.i.d. vacations) will still remain valid when successive
vacations are dependent on each other and/or on previous busy periods. As mentioned in [8], this can
be seen through the use of Palm theory, which can be employed to capture the biases that are mentioned
above. The Palm framework allows one to work with the fact that, under the Palm measure induced by
the point process consisting of the times at which a cycle begins, the sequence of cycle lengths formed
in the stationary version of this polling system forms a stationary sequence, but does not form an i.i.d.
sequence. For the use of Palm theory in queueing we refer to [3] and [31]; see also [33].

3.1 Scaled vacations

In this subsection we are interested in the behavior of the system as the vacations grow to infinity.
Scaling the length of the vacations will be of practical interest in the context of polling systems, as
will be considered in Section 5.

We assume that the length of the vacation is a function of m, Vm, and grows with 1/g(m) as m →
∞, where g(m) ↓ 0. More precisely, we assume that the scaled vacation period g(m)Vm converges in
distribution to V Sc, where V Sc is non-defective. We denote the LST by Ṽ Sc(s) := limm→∞ Ṽ (g(m)s).
In addition, we allow the traffic load to depend on m, having a limit ρ̂ as m → ∞, with ρ̂ < 1.

When the length of the vacation period grows to infinity, the delay a customer experiences will
grow as well. It turns out that g(m) is the appropriate scaling for the delay. The following proposition
is a direct consequence of Proposition 1 and gives the LST of limm→∞ g(m)W .

Proposition 2 Assume g(m)Vm converges in distribution to V Sc, where V Sc is non-defective. We
have

lim
m→∞

E(e−sg(m)W |B = τ) = ρ̂
1− Ṽ Sc(sω(τ))

sω(τ)E(V Sc)
+ (1− ρ̂)

Ṽ Sc(sω(τ))− Ṽ Sc(s(ω(τ) + 1))

sE(V Sc)
, (12)

with ω(τ) := ρ̂
1−ρ̂ (1− e−µτ(1−ρ̂)).

Note that Equation (12) can be rewritten as

lim
m→∞

E(e−sg(m)W |B = τ) = ρ̂E(e−sRω(τ)V Sc ) + (1− ρ̂)E(e−s(ω(τ)PV Sc+(ω(τ)+1)RV Sc ))

= ρ̂E(e−sRω(τ)V Sc ) + (1− ρ̂)E(e−s(RV Sc+ω(τ)V Sc)),

6



where we used that E(e−(aPV Sc+bRV Sc )) = 1
(b−a)E(V Sc)

(Ṽ Sc(a)− Ṽ Sc(b)), see Equation (6), with PV Sc

and RV Sc the past and residual length of V Sc, respectively.

Proof of Proposition 2: We have that limm→∞ G(τ, g(m)s) = 1 and limm→∞ β(τ, g(m)s) = 1.
Using Taylor expansion we obtain β(τ, g(m)s) = 1 + g(m)s ∂

∂sβ(τ, s)|s=0 + O(g(m)2) as m → ∞.
Hence, from Lemma 1 we obtain

lim
m→∞

λ(1− β(τ, g(m)s))

g(m)
= s

ρ̂

1− ρ̂
(1− e−µτ(1−ρ̂)) = sω(τ)

From Proposition 1 we directly have

lim
m→∞

E(e−sg(m)W |B = τ)

= ρ̂
1− Ṽ Sc(λ(1−β(τ,g(m)s))

g(m) )

λ(1−β(τ,g(m)s))
g(m) E(V Sc)

+ (1− ρ̂)
Ṽ Sc(λ(1−β(τ,g(m)s))

g(m) )− Ṽ Sc(λ(1−β(τ,g(m)s))
g(m) + s)

sE(V Sc)

= ρ̂
1− Ṽ Sc(sω(τ))

sω(τ)E(V Sc)
+ (1− ρ̂)

Ṽ Sc(sω(τ))− Ṽ Sc(s(ω(τ) + 1))

sE(V Sc)
,

which concludes the proof. 2

4 M/G/1 processor sharing queue with multiple vacations

In this section we consider an M/G/1 processor sharing queue with multiple vacations. We will
obtain an expression for the mean conditional delay of a tagged customer of size τ . This in contrast
to Section 3 where we obtained the full distribution of the conditional delay, however, restricted to
service requirements that are exponentially distributed.

The sojourn time T of the tagged customer of size τ is made up of two components, the queueing
time Q (time between arrival and the beginning of service) and the time between the beginning of
service and service completion, denoted by D. Since the scheduling discipline is PS, the queueing time
of a customer is positive only if it arrives during a vacation period. The probability that the tagged
customer finds the server on vacation is 1− ρ. Conditioning on when the tagged customer arrives at
the queue we obtain that E(Q) = 0 · ρ+ (1− ρ)E(RV ). Introducing D(τ) := E(D|B = τ) we have:

E(W |B = τ) = E(Q) +D(τ)− τ = (1− ρ)E(RV ) +D(τ)− τ. (13)

In the following Proposition we will develop an integro-differential equation that d
dτD(τ) must satisfy.

Proposition 3 The mean conditional delay in an M/G/1-PS queue with multiple vacations is given
by (13), where d

dτD(τ) is the unique solution z(τ) of

z(τ) = 1 + (1− ρ)2λE(RV )F (τ) + λ

∫ ∞

0

z(y)F (τ + y)dy + λ

∫ τ

0

z(y)F (τ − y)dy. (14)

The proof approach we follow was initiated by Kleinrock et al. [18] (see also [16]) who studied a
processor sharing queue with batch Poisson arrivals. In [23] the author derived the conditional sojourn
time for the foreground-background queue (also known as least-attained-service queue) using the
tagged-customer approach. The same approach was used in the seminal paper [12] which studied the
conditional delay in a discriminatory processor-sharing queue. More recently this approach has been
used in [1, 4, 26].

Interestingly we observe that Equation (14) is related to the equation that characterizes the mean
sojourn time in a processor sharing queue with batch arrivals (see Equation (1) in [1]). In fact, the
integro-differential equation (14) coincides with that of a batch processor sharing queue where the
batch arrival rate is λ, and the first and second moment of the batch size distribution are given by
1 and (1 − ρ)2λE(RV ) + 1, respectively. (This in particular means that batches of size 0 occur with
strictly positive probability.) This integro-differential equation has been solved in [16, Section 4.7], [18]
for exponential service requirements, see also Remark 4. The integro-differential equation has been
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solved in [26] for hyper-exponential service requirements and in [4] for distributions having rational
LST. In [1] the integro-differential equation has been studied for general service requirements, and
properties of the solution have been obtained; see Appendix 3 for more details.

Proof of Proposition 3: Since the employed policy is PS, D(τ) can be interpreted as the average
time needed for a customer in order to get τ units of service. Since at each moment in time all
customers equally share the total amount of capacity available, for sufficiently small ∆ we have

D(τ +∆) = D(τ) + ∆+∆E(L(τ)) + o(∆),

where L(τ) is the number of customers in the system when the tagged customer is receiving service
and has attained τ units of service. Here we used that when the tagged customer obtains ∆ units of
service, any other customer in the system also receives ∆ units of service.

Taking the limit ∆ → 0, it is readily seen that the derivative of the expected conditional sojourn
time exists and is given by

D′(τ) = 1 + E(L(τ)). (15)

We now develop an expression for L(τ). Let us write L(τ) = L1(τ) + L2(τ), where:

• L1(τ) is the number of customers that were in the system when the tagged customer started
service, and are still present when the tagged customer has received τ units of service.

• L2(τ) is the number of customers that arrive during the service of the tagged customer, and are
still present when the tagged customer has received τ units of service.

Let us consider E(L1(τ)). With probability 1− ρ the tagged customer finds the server idle. Hence we
have

E(L1(τ)) = (1− ρ)E(L1(τ)|K arrived in vacation period)

+ρE(L1(τ)|K arrived in busy period). (16)

At the start of the busy period there are on average 2λE(RV )F (τ) customers present with service
requirement larger than or equal to τ (the factor 2 comes from the fact that the expected remaining
vacation is equal to the expected elapsed time of the vacation period). Hence,

E(L1(τ)|K arrived in vacation period) = 2λE(RV )F (τ). (17)

We will express E(L1(τ)|K arrived in busy period) as a function of N(y), the number of customers
in steady-state that have attained at most y units of service. Using Little-type arguments, it was shown
in [24] (previously obtained by Kleinrock and Coffman in [17]) that in an arbitrary ergodic system
and for an arbitrary scheduling discipline,

dE(N(y)) = λD′(y)F (y)dy, y > 0. (18)

To explain (18) we interpret dE(N(y)) = E(N(y + dy)) − E(N(y)) + o(dy) as the mean number of
customers that have attained service in [y, y+dy) and apply Little’s theorem to the black box formed
by customers that have attained service in [y, y + dy). The arrival rate of such customers is λF (y)
and the mean amount of time that a customer spends in the black box, i.e., the expected amount of
time a customer spends in the system in order for its attained service to pass from y to y + dy, is

D′(y)dy (follows since D′(y) = D(y+dy)−D(y)
dy + o(1)), and Equation (18) follows.

Using the PASTA property, N(y) can be interpreted as the number of customers upon arrival of
the tagged customer that have attained service less than or equal to y. Conditioning on the moment
that the tagged customer arrives, we obtain

dE(N(y)) = (1− ρ) · 0 + ρdE(N(y)|K arrived in busy period). (19)

Using that a customer that has received y units of service when the tagged customer has arrived,

is with probability F (τ+y)

F (y)
present in the system when the tagged customer has received τ units of
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service, together with the fact that N(y) is the number of customers with attained service less than
or equal to y that the tagged customer finds upon arrival, we obtain that

E(L1(τ)|K arrived in busy period)

=

∫ ∞

0

F (τ + y)

F (y)
dE(N(y)|K arrived in busy period)

=

∫ ∞

0

1

ρ

F (τ + y)

F (y)
dE(N(y)) = λ

∫ ∞

0

D′(y)

ρ
F (τ + y)dy, (20)

where the last steps follow from (18) and (19). Substituting (17) and (20) in (16) we get

E(L1(τ)) = (1− ρ)λ2E(RV )F (τ) + λ

∫ ∞

0

D′(y)F (τ + y)dy. (21)

We now focus on E(L2(τ)). The tagged customer needs D′(y)dy units of time in order for its
attained service to pass from y to y + dy. The mean number of arrivals during this time is thus
λD′(y)dy. A customer that arrives at the system when the tagged customer has received y units of
service is with probability F (τ − y) present in the system when the tagged customer has received τ
units of service. Now integrating the attained service of the tagged customer, y, from 0 to τ , we get

E(L2(τ)) = λ

∫ τ

0

D′(y)F (τ − y)dy. (22)

Combining (15), (21) and (22) we obtain

D′(τ) = 1 + (1− ρ)λ2E(RV )F (τ) + λ

∫ ∞

0

D′(y)F (τ + y)dy + λ

∫ τ

0

D′(y)F (τ − y)dy,

completing the proof of the proposition.
The existence and uniqueness of the solution of Equation (14) is proved in Theorem 1 and Lemma 3

of [1], respectively, see Appendix 3 for more details. 2

Remark 4 (M/M/1-PS with multiple vacations) In the case of exponentially distributed service
requirements, Equation (14) can be solved analytically and we can thus verify that Equation (13) gives
the same result as the conditional expectation obtained in Proposition 1.

We thus need to solve Equation (14) under the assumption of exponential service requirements.
For simplicity of notation let k = (1− ρ)2λE(RV ). Taking the derivative of (14) we get

z′(τ) = −kµe−µτ − µλ

∫ ∞

0

z(y)e−µ(τ+y)dy + λz(τ)− µλ

∫ τ

0

z(y)e−µ(τ−y)dy

= −µz(τ) + µ+ λz(τ) = z(τ)(λ− µ) + µ.

The solution to this differential equation is

z(τ) = Re(λ−µ)τ − µ

λ− µ
, (23)

where R is some arbitrary constant.
Taking τ = 0 in Equations (14) and (23) we get R− µ

λ−µ = 1 + k − λ µ
(λ−µ)µ + λR

∫∞
0

e(λ−2µ)ydy

and solving for R we get

R =
k

1− λ
2µ−λ

=
k(2− ρ)

2(1− ρ)
.

Recall that z(τ) represents d
dτ E(D|B = τ), hence from (23) we obtain E(D|B = τ) =

∫ τ

0
d
dyE(D|B =

y)dy = − k(2−ρ)
2µ(1−ρ)2 e

−µ(1−ρ)τ + τ
1−ρ + C, for some constant C. Since the discipline is PS, we have

E(D|B = 0) = 0, which implies C = k(2−ρ)
2µ(1−ρ)2 . Hence,

E(D|B = τ) =
k(2− ρ)

2µ(1− ρ)2

(
1− e−µ(1−ρ)τ

)
+

τ

1− ρ
=

ρ(2− ρ)E(RV )

(1− ρ)

(
1− e−µ(1−ρ)τ

)
+

τ

1− ρ
.

We conclude that the expression in Equation (13) indeed coincides with the mean delay as obtained in
Proposition 1.
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Remark 5 (M/G/1-PS) For the ordinary M/G/1-PS queue, the mean conditional delay is known
to be ρτ

1−ρ , in agreement with Equation (13) when setting E(RV ) = 0. That expression for the mean

delay follows, since the unique solution of (14) is z(τ) = 1
1−ρ in the case E(RV ) = 0. To check this

let us substitute an arbitrary constant z(τ) = Z in (14). This gives

Z = 1 + λZ

(∫ ∞

0

F (τ + y)dy +

∫ τ

0

F (τ − y)dy

)
= 1 + λZ

∫ ∞

0

F (y)dy = 1 + Zρ.

Hence, z(τ) = Z = 1
1−ρ is the unique solution so that D(τ) = τ

1−ρ and from (13) it follows that

E(W |B = τ) = ρτ
1−ρ .

4.1 Asymptotic behavior

For general service requirements, we were not able to solve (14) analytically. However, as τ → ∞,
the limiting behavior can be characterized in closed form. We will show that E(T |B = τ) has an
asymptote with slope τ/(1 − ρ) of which the bias term can be explicitly calculated. The analysis is
similar to that in [1].

Before stating the result, we present an auxiliary result for the workload in the system. Sample-
path wise, the workload is independent of the work-conserving scheduling discipline being deployed.
(We say that a scheduling discipline is work-conserving if the capacity is fully used whenever it is
available and there are customers in the system.) We have the following result for the mean workload
in the system for any work-conserving discipline.

Lemma 2 Consider a single server queue (and any work-conserving scheduling discipline) with mul-
tiple vacations. The mean workload in the system is

λE(B2)

2(1− ρ)
+ ρE(RV ), (24)

and for any work-conserving scheduling discipline π the following conservation law holds:

λ

∫ ∞

0

E(Tπ|B = x)F (x)dx =
λE(B2)

2(1− ρ)
+ ρE(RV ), (25)

where Tπ represents the sojourn time under discipline π, i.e., Tπ = B +Wπ.

Proof: The mean sojourn time in a FCFS queue with multiple vacations is, cf. [34, equation (2.2.5)],

E(TFCFS |B = x) = x+
λE(B2)

2(1− ρ)
+ E(RV ). (26)

In [2] it was shown that for any work-conserving discipline π, the mean workload in the system is
equal to

λ

∫ ∞

0

E(Tπ|B = x)F (x)dx. (27)

This expression follows from the generalized Little’s law known as H = λG [9] (note that the integral
equals the expected contribution of a customer to the workload).

FCFS is a work-conserving discipline, hence substituting (26) in (27), we obtain that the mean
workload in the system under any work-conserving discipline is given by (24), and Equation (25)
follows directly. 2

We note that in the presence of vacations, the mean delay in the FCFS queue (waiting time), i.e.,

E(WFCFS) = λE(B2)
2(1−ρ) + E(RV ), see (26), does not coincide with the mean workload (Equation (24)).

The difference is in the factor ρ in the term corresponding to the vacations.
We now present the asymptotic behavior of the mean conditional sojourn time.

Proposition 4 The mean conditional sojourn time E(TPS |B = τ) has an asymptote of slope τ
1−ρ

and bias term

lim
τ→∞

(
E(TPS |B = τ)− τ

1− ρ

)
=

E(RV )

1− ρ
. (28)
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Proof: For ease of notation we again use the function D(τ) := E(TPS |B = τ). From Appendix 3 we
see that D(τ)− τ

1−ρ is increasing with respect to τ and upper bounded, hence, the bias term δD(τ) :=

D(τ) − τ
1−ρ has a proper limit as τ → ∞. We can write limτ→∞

(
D(τ)− τ

1−ρ

)
=

∫∞
0

δD′(x)dx.

Using the relation D′(τ) = δD′(τ) + 1
1−ρ , we obtain from (14) that

δD′(x) = (1− ρ)2λE(RV )F (x) + λ

∫ ∞

0

δD′(y)F (x+ y)dy + λ

∫ x

0

δD′(y)F (x− y)dy. (29)

The first integral can be written as

λ

∫ ∞

0

δD′(y)F (x+ y)dy = λ
(
δD(y)F (x+ y)

)
|y=∞
y=0 +λ

∫ ∞

0

δD(y)dF (x+ y)

= λ

∫ ∞

0

δD(y)dF (x+ y). (30)

The last step follows from the following two facts: (i) there exists an L < ∞ such that δD(x) ≤ Lx
for all x ≥ 0 (see [1, Lemma 4] for details), (ii) since

∫∞
0

xdF (x) =
∫∞
0

F (x)dx+ limx→∞ xF (x), and

E(B) < ∞, we obtain limx→∞ xF (x) = 0.
Using (29) and (30), we obtain that the bias term satisfies:

lim
τ→∞

(
D(τ)− τ

1− ρ

)
=

∫ ∞

0

δD′(x)dx

= λ

∫ ∞

0

∫ ∞

0

δD′(y)F (x+ y)dydx+ λ

∫ ∞

0

∫ x

0

δD′(y)F (x− y)dydx+ (1− ρ)2λE(RV )

∫ ∞

0

F (x)dx

= λ

∫ ∞

x=0

∫ ∞

y=0

δD(y)dF (x+ y)dx+ λ

∫ ∞

0

δD′(y)

∫ ∞

y

F (x− y)dxdy + (1− ρ)2λE(RV )E(B)

= λ

∫ ∞

y=0

δD(y)

∫ ∞

x=0

dF (x+ y)dy + λ

∫ ∞

0

δD′(y)

∫ ∞

0

F (h)dhdy + (1− ρ)2λE(RV )E(B)

= λ

∫ ∞

0

δD(y)F (y)dy + ρ

∫ ∞

0

δD′(y)dy + (1− ρ)2λE(RV )E(B)

= E(RV )ρ
2 + ρ

∫ ∞

0

δD′(y)dy + (1− ρ)2λE(RV )E(B), (31)

where in the last step we used that λ
∫∞
0

δD(x)F (x)dx = E(RV )ρ− (1−ρ)ρE(RV ) = E(RV )ρ
2, which

follows from substituting E(TPS |B = τ) = (1 − ρ)E(RV ) + D(τ) = (1 − ρ)E(RV ) + δD(τ) + τ
1−ρ

(see (13)) into (25).
Solving Equation (31) for

∫∞
0

δD′(x)dx we obtain

lim
τ→∞

(
D(τ)− τ

1− ρ

)
=

∫ ∞

0

δD′(x)dx = E(RV )
ρ(2− ρ)

1− ρ
,

and from (13) we obtain Equation (28). 2

5 Processor Sharing in Polling Systems

In this section we consider a polling system consisting of N queues Q1, . . . , QN , cyclically visited by a
single server. Customers arrive according to independent Poisson processes with arrival rate λi to Qi.
Customers in Qi have generally distributed service requirements Bi. We define ρi = λiE(Bi) and we

denote by ρ∗ =
∑N

i=1 ρi the total load. The random switch-over time of the server from Qi to Qi+1 is

denoted by Si, and S =
∑N

i=1 Si. All inter-arrival times, service requirements and switch-over times
are assumed to be independent. Let Ii (RIi) denote the (residual) length of an intervisit time for Qi

in the polling system. The LST of I1 is denoted by Ĩ1(·).
When the server arrives at Qi it serves a number of customers according to a certain visit discipline.

We assume that Q1 uses the exhaustive visit discipline (the server serves the queue until it has become
empty), and any other queue Qi uses any visit discipline that has the branching property as defined
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in [13, 28] (this includes the exhaustive and gated disciplines). We assume
∑N

i=1 ρ
∗ < 1 throughout

the section in order to guarantee stability of the system, see [28]. The queue Q1 uses PS as scheduling
policy, and Qi, i ̸= 1, employs a work-conserving scheduling policy.

Let W1 be the delay (sojourn time minus service requirement) of a tagged customer in Q1 with size
B1. The conditional sojourn time in Q1 can be studied using the theory developed in Section 3. This
can be seen as follows. From the point of view of customers arriving at Q1, the server is a PS queue
where, once Q1 empties, the server is unavailable during an intervisit time. When the server returns
from vacation but finds no customers in Q1, the server is again unavailable during an intervisit time,
etc. Hence, Q1 can be modeled as an M/G/1-PS queue with traffic load ρ1 and multiple vacations,
where an arbitrary vacation length is distributed as I1.

Remark 6 Notice that lengths of successive intervisit times will be dependent, and that the length
of an intervisit time will depend on the length of the preceding visit time. However, as observed in
Remark 3, it was not required in Section 3 that successive vacations are independent of each other and
of previous visit periods). Hence, in the next subsection, we shall be able to use the same reasoning
as was used in Section 3 for an M/M/1 PS system with exhaustive service and vacations to obtain
the sojourn time LST in Q1 of a polling system – provided Q1 receives exhaustive service and has
exponential service requirements.

5.1 Exponential service requirements in Q1

In this section we assume that a customer in Q1 has an exponentially distributed service requirement
denoted by B1 with E(B1) = 1/µ1. The proof of the following Proposition proceeds just like the proof
of Proposition 1 and yields the LST of the conditional delay for a customer in Q1.

Proposition 5 Assume customers in Q1 have exponentially distributed service requirements. Then,

E(e−sW1 |B1 = τ) = ρ1G1(τ, s)
β1(τ, s)(1− ρ1)

1− ρ1β1(τ, s)

1− Ĩ1(λ1(1− β1(τ, s)))

λ1(1− β1(τ, s))E(I1)

+(1− ρ1)G1(τ, s)
Ĩ1(λ(1− β(τ, s)))− Ĩ1(λ(1− β(τ, s)) + s)

sE(I1)
,

with G1(τ, s) and β1(τ, s) replacing G(τ, s) and β(τ, s) as defined in Section 2 when replacing λ, µ and
ρ by λ1, µ1 and ρ1. In particular, the mean conditional delay is given by

E(W1|B1 = τ) =
ρ1τ

1− ρ1
+

ρ1(2− ρ1)E(RI1)

1− ρ1
(1− e−µ1τ(1−ρ1)) + (1− ρ1)E(RI1).

The LST of the sojourn time depends on the LST of the intervisit times I1. The latter is given by

Ĩ1(s) = L̃(1− s

λ1
, 1, . . . , 1),

where L̃(z1, . . . , zN ) denotes the probability generating function (PGF) of the joint queue length
distribution at the beginning of a visit to Q1, see [28]. We denote by Ci the cycle length of queue i

and E(Ci) = E(S)
1−ρ∗ , i = 1, . . . , N . The expected length of a visit to Qi is E(Ci)ρi, hence E(Ii) =

(1− ρi)E(Ci). The residual intervisit time is given in [35].
Closed-form expressions for the distribution of the intervisit time I1 have been obtained for asymp-

totic regimes, which allows to further simplify Proposition 5. This will be done in Subsection 5.1.1 and
Subsection 5.1.2 for the polling systems with large switch-over times and in heavy traffic, respectively.

5.1.1 Large switch-over times

In this subsection we assume the switch-over times are deterministic and we consider the polling
system as they grow large, i.e., we let E(S) → ∞. Under the assumption that the exhaustive visit
discipline is applied in all queues, it was shown in [36, Section 4] that I1

E(S) converges in probability

to Î1 := 1−ρ1

1−ρ∗ . Hence, from Proposition 2 we obtain that the scaled delay W1

E(S) of a customer with

service requirement τ satisfies the following:
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Corollary 1 Assume customers in Q1 have exponentially distributed service requirements and the
switch-over times are deterministic. As E(S) → ∞, the LST of the scaled conditional delay for a
customer in Q1 is given by

lim
E(S)→∞

E(e−sW1/E(S)|B1 = τ) = ρ1Ũ[0,ω(τ)Î1]
(s) + (1− ρ1)Ũ[ω(τ)Î1,(ω(τ)+1)Î1]

(s),

with ω(τ) := ρ1

1−ρ1
(1− e−µ1τ(1−ρ1)) and Ũ[a,b](s) the LST of a uniform random variable on [a, b].

We note that the scaled conditional delay can be described as follows: With probability 1 − ρ1,
the tagged customer arrives in a visit to Q1 and its scaled delay is distributed as a uniform random
variable on [0, ω(τ)Î1]. With probability 1 − ρ1 the tagged customer arrives in an intervisit period
and needs to wait a uniform distributed amount of time on [0, Î1], i.e., the scaled residual intervisit
time, plus ω(τ)Î1.

5.1.2 Heavy-traffic regime

In this subsection we consider the polling system in heavy traffic, i.e., we let ρi ↑ ρ̂i such that
ρ∗ ↑ 1. Under the assumption that the exhaustive visit discipline is applied in Q1 and only gated
and exhaustive visit disciplines are allowed in all the other queues, it was shown in [25, Theorem 5]
that (1 − ρ∗)I1 converges in distribution to a Gamma distributed random variable with parameters

κ = E(S)
E(B)δ and θ = δ

π̂1(1−ρ̂1)
1

E(B) , where δ is as defined in [25, Lemma 1]. Hence, from Proposition 2

we obtain that the scaled delay (1 − ρ∗)W1 of a customer with service requirement τ satisfies the
following:

Corollary 2 Assume customers in Q1 have exponentially distributed service requirements. The LST
of the scaled conditional delay for a customer in Q1 in a heavy-traffic setting is given by

lim
ρ∗↑1

E(e−s(1−ρ∗)W1 |B1 = τ) = ρ̂1
1− G̃κ,θ(sω(τ))

sω(τ)κ/θ
+ (1− ρ̂1)

G̃κ,θ(sω(τ))− G̃κ,θ(s(ω(τ) + 1))

sκ/θ
,

with ω(τ) := ρ̂1

1−ρ̂1
(1− e−µ1τ(1−ρ̂1)) and G̃κ,θ(s) :=

(
θ

θ+s

)κ

the LST of the Gamma distribution.

5.2 General service requirements in Q1

In this section we allow customers in Q1 to have generally distributed service requirements with
distribution function F1(·). The expected conditional sojourn time for customers in Q1 satisfies the
integro-differential equation in the following Corollary which is a direct consequence of Proposition 3
and Proposition 4.

Corollary 3 Assume customers in Q1 have generally distributed service requirements. The mean
conditional delay for a customer in Q1 is given by

E(W1|B1 = τ) = (1− ρ1)E(RI1) +D1(τ)− τ,

where d
dτD1(τ) =

d
dτ E(D1|B1 = τ) is the unique solution z(τ) of

z(τ) = 1 + (1− ρ1)2λ1E(RI1)F 1(τ) + λ1

∫ ∞

0

z(y)F 1(τ + y)dy + λ1

∫ τ

0

z(y)F 1(τ − y)dy. (32)

In addition, the mean conditional sojourn time E(T1|B1 = τ) has an asymptote of slope τ
1−ρ1

and
bias term

lim
τ→∞

(
E(T1|B1 = τ)− τ

1− ρ1

)
=

E(RI1)

1− ρ1
.

Remark 7 (Gated visit discipline) In the case that Q1 employs the gated visit discipline instead of
the exhaustive visit discipline, the expected sojourn time under various scheduling disciplines (including
PS) is derived in [35]. In this remark we show that, in the case of PS, the same result can be obtained
using the integro-differential analysis.
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For a customer in Q1 (with a gated visit discipline) the conditional mean sojourn time is given by

E(T1|B = τ) = E(RC1) + E(D1|B1 = τ) = E(RC1) +

∫ τ

0

D′
1(y)dy, (33)

where D′
1(y) := d

dyE(D1|B1 = y) and E(RC1) is the mean residual cycle length and E(D1|B1 =

τ) denotes the expected sojourn time to get τ units of service starting from the moment the server
visits Q1. In particular we have that E(D1|B1 = 0) = 0. The value of D′

1(y) can be derived as follows.
We have that E(D1|B1 = τ + ∆) − E(D1|B1 = τ) ≈ ∆ + ∆b1F 1(τ), with b1 the expected number of
customers present in Q1 in addition to the tagged customer when the server starts serving customers
in Q1. Hence, D′

1(y) = 1 + b1F 1(y). By Little’s law it follows that b1 = 2λ1E(RC1), thus we obtain
from (33) that

E(T1|B = τ) = τ + E(RC1)

(
1 + 2λ1

∫ τ

0

F 1(s)ds

)
,

which is equivalent to [35, Equation (7)]. We note that in [35, Section 3.2] the authors present a
method, based on Mean Value Analysis, to derive the value of E(RC1).
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[3] F. Baccelli and P. Brémaud. Elements of Queuing Theory: Palm Martingale Calculus and Stochas-
tic Recurrences. Springer, 2003.

[4] N. Bansal. Analysis of theM/G/1 processor sharing queue with bulk arrivals. Operations Research
Letters, 31(5):401–405, 2003.

[5] J.L. van den Berg and O.J. Boxma. The M/G/1 queue with processor sharing and its relation
to a feedback queue. Queueing Systems, 9:365–401, 1991.

[6] U.N. Bhat. An Introduction to Queueing Theory: Modeling and Analysis in Applications.
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Appendix 1: Proof of Lemma 1

Note that r(s) represents the LST of the length of a busy period in a standard M/M/1 queue [6].

Hence, r(0) = 1 and −dr(s)
ds |s=0 equals the mean length of the busy period, i.e., 1/(µ(1− ρ)).

Recall G(τ, s) := (1−ρr2)e−λτ(1−r)

1−ρr+ρr(1−r)e−µτ(1−ρr2)/r
, so G(τ, 0) = 1 and the derivative is

∂G(τ, s)

∂s
=

−2ρr dr(s)
ds e−λτ(1−r) + λτ dr(s)

ds (1− ρr2)e−λτ(1−r)

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r

−
(1− ρr2)e−λτ(1−r)(−ρdr(s)

ds + ρdr(s)
ds (1− r)e−µτ(1−ρr2)/r − ρr dr(s)

ds e−µτ(1−ρr2)/r)

(1− ρr + ρr(1− r)e−µτ(1−ρr2)/r)2

−
(1− ρr2)e−λτ(1−r)λτr(1− r)(ρ+ 1/r2)dr(s)ds e−µτ(1−ρr2)/r

(1− ρr + ρr(1− r)e−µτ(1−ρr2)/r)2
.

Hence, setting s = 0 we get

∂G(τ, s)

∂s
|s=0

=
−2ρdr(s)

ds |s=0 + λτ dr(s)
ds |s=0(1− ρ)

1− ρ
+

(1− ρ)ρdr(s)
ds |s=0 + (1− ρ)ρe−µτ(1−ρ) dr(s)

ds |s=0

(1− ρ)2

=
dr(s)

ds
|s=0

(
λτ − ρ

1− ρ
(1− e−µτ(1−ρ)

)
= − 1

µ(1− ρ)

(
λτ − ρ

1− ρ
(1− e−µτ(1−ρ)

)
.

Consider β(τ, s) = r(1−ρr)+(1−r)e−µτ(1−ρr2)/r

1−ρr+ρr(1−r)e−µτ(1−ρr2)/r
. Its derivative is

∂β(τ, s)

∂s
=

dr(s)
ds (1− ρr)− rρdr(s)

ds − dr(s)
ds e−µτ(1−ρr2)/r + (1− r)e−µτ(1−ρr2)/rµτ(ρ+ 1/r2)dr(s)ds

1− ρr + ρr(1− r)e−µτ(1−ρr2)/r

−
(r(1− ρr) + (1− r)e−µτ(1−ρr2)/r)(−ρdr(s)

ds + ρdr(s)
ds (1− r)e−µτ(1−ρr2)/r)

(1− ρr + ρr(1− r)e−µτ(1−ρr2)/r)2

−
(r(1− ρr) + (1− r)e−µτ(1−ρr2)/r)(−ρr dr(s)

ds e−µτ(1−ρr2)/r + (1− r)rλτ(ρ+ 1/r2)dr(s)ds e−µτ(1−ρr2)/r)

(1− ρr + ρr(1− r)e−µτ(1−ρr2)/r)2
.

Setting s = 0 we get

∂β(τ, s)

∂s
|s=0

=
dr(s)
ds |s=0(1− ρ)− ρdr(s)

ds |s=0 − dr(s)
ds |s=0e

−µτ(1−ρ)

1− ρ
+

ρdr(s)
ds |s=0 + ρe−µτ(1−ρ) dr(s)

ds |s=0

1− ρ

=
dr(s)

ds
|s=0(1− e−µτ(1−ρ)) = − 1

µ(1− ρ)
(1− e−µτ(1−ρ)).

This concludes the proof. 2

Appendix 2: Proof of Equation (4)

Recall that

E(e−sW |B = τ) = ρG(τ, s)
β(τ, s)(1− ρ)

1− ρβ(τ, s)

1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )

+(1− ρ)G(τ, s)
Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

sE(V )
.

We note that

Ṽ (y) = Ṽ (0) + yṼ ′(0) +
y2

2
Ṽ ′′(0) +O(y3) = 1− yE(V ) +

y2

2
E(V 2) +O(y3), as y → 0. (34)
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We define d1(s) = G(τ, s)β(τ,s)(1−ρ)
1−ρβ(τ,s)

1−Ṽ (λ(1−β(τ,s)))
λ(1−β(τ,s))E(V ) . Then

dd1(s)

ds
=

∂G(τ, s)

∂s

β(τ, s)(1− ρ)

1− ρβ(τ, s)

1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )

+G(τ, s)
(1− ρβ(τ, s))((1− ρ)∂β(τ,s)∂s )− β(τ, s)(1− ρ)(−ρ∂β(τ,s)

∂s )

(1− ρβ(τ, s))2
1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )

+G(τ, s)
β(τ, s)(1− ρ)

1− ρβ(τ, s)

d

ds

1− Ṽ (λ(1− β(τ, s)))

λ(1− β(τ, s))E(V )
.

Since β(τ, 0) = 1, from (34) we get directly that 1−Ṽ (λ(1−β(τ,s)))
λ(1−β(τ,s))E(V ) |s=0 = 1 and d

ds
1−Ṽ (λ(1−β(τ,s)))
λ(1−β(τ,s))E(V ) |s=0 =

λ∂β(τ,s)
∂s |s=0E(RV ), hence

dd1(s)

ds
|s=0 =

∂G(τ, s)

∂s
|s=0 +

∂β(τ, s)

∂s
|s=0

1

1− ρ
+ λE(RV )

∂β(τ, s)

∂s
|s=0,

where we used that β(τ, s)|s=0 = 1 and G(τ, 0) = 1.
Now we define

d2(s) = G(τ, s)
Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

s
.

Hence, the derivative is equal to

dd2(s)

ds
=

∂G(τ, s)

∂s

Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

s

+G(τ, s)
d

ds

Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

s
.

Using (34), we obtain that

Ṽ (λ(1− β(τ, s)))− Ṽ (λ(1− β(τ, s)) + s)

s
= E(V )− sE(V 2)

2
− λ(1− β(τ, s))E(V 2) +O(s2). (35)

Together with (35) and since G(τ, 0) = 1, we obtain that

dd2(s)

ds
|s=0 =

∂G(τ, s)

∂s
|s=0E(V )− E(V 2)

2
+ λ

∂β(τ, s)

∂s
|s=0E(V 2).

The mean delay is given by

E(W |B = τ) = − ∂

∂s
E(e−sW |B = τ)|s=0 = −ρ

dd1(s)

ds
|s=0 −

(1− ρ)

E(V )

dd2(s)

ds
|s=0

= −∂G(τ, s)

∂s
|s=0 −

ρ

1− ρ

∂β(τ, s)

∂s
|s=0 − (2− ρ)λE(RV )

∂β(τ, s)

∂s
|s=0 + (1− ρ)E(RV ).

Hence,

E(W |B = τ) =
ρτ

1− ρ
+

ρ(2− ρ)E(RV )

1− ρ
(1− e−µτ(1−ρ)) + (1− ρ)E(RV ), (36)

where in the last step we used Lemma 1. 2

Appendix 3: Properties of the solution of (14).

In [1] a PS queue with batch arrivals was studied. In particular, an integro-differential equation (see
[1, Equation (1)]) was obtained that models the sojourn time. Comparing the integro-differential
equation of [1] with the integro-differential equation (14), we observe that (14) coincides with the
integro-differential equation of a batch processor sharing queue where the batch arrival rate is λ, and
the first and second moment of the batch size distribution are given by 1 and (1 − ρ)2λE(RV ) + 1,
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respectively. This observation allows us to directly obtain several interesting properties for the solution
of Equation (14). We obtain that (i) if ρ < 1, then the solution of (14) exists ([1, Theorem 1]) and is
unique, ([1, Lemma 3]), (ii) D(x)− x

1−ρ is increasing with respect to x, and (iii) D(x)− x
1−ρ is upper

bounded ([1, Lemma 4]).
We do not reproduce the proofs of [1], but it is interesting to highlight the main idea used in [1]

to show uniqueness, which consists in showing that the operator on the right hand side of (14) is a
contraction mapping. In order to do so consider the fixed point iterations

D′
k+1(x) = 1 + (1− ρ)2λE(RV )F (x) + λ

∫ ∞

0

D′
k(y)F (x+ y)dy + λ

∫ x

0

D′
k(y)F (x− y)dy (37)

on the complete functional space of continuous bounded non-negative functions C[0,∞) with the
supremum metric. Let

∥∥D′
∥∥ = supx{D′(x)} < ∞. Define the linear integral operator A[β(x)] as

follows:

A(β(x)) = 1 + (1− ρ)2λE(RV )F (x) + λ

∫ ∞

0

β(y)F (x+ y)dy + λ

∫ x

0

β(y)F (x− y)dy. (38)

Clearly the operator A(β(x)) maps the space C[0,∞) into itself.
If we show that the linear integral operator A(β(x)) is a contraction, then the integral equation (14)

has a unique solution in C[0,∞). Let d denote the distance in the metric space C[0,∞), that is,
d(β1, β2) = supx |β1(x) − β2(x)|. In [1] the authors show that d(A(β1),A(β2)) ≤ ρd(β1, β2) which
proves that the operator is a contraction mapping since ρ < 1. The key to show this result consists
in noting that, after taking the supremum in both integrals, the term supx |β1 − β2| comes out of the
integral and λ

(∫∞
0

F (x+ y)dy +
∫ x

0
F (x− y)dy

)
= λ

∫∞
0

F (y)dy = ρ.
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