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C h a p t e r l 

INTRODUCTION 

The subject and title of this thesis is 'Monte Carlo simulation of 

electron transport in AlGaAs/GaAs heterostructures'. In this 

introductory chapter a short account of the importance and the range 

of applications of AlGaAs/GaAs heterostructures will be given. 

Furthermore, the necessity of simulation in general, and simulation 

making use of the Monte Carlo method in particular, is explained. 

The basic Boltzmann transport equation, describing electron 

transport in a metal or semiconductor under influence of external 

forces, will be introduced. In connection with this equation the 

electron dynamics will be defined. 

Finally an outline of the thesis is given. 

1.1 Heterostructures 

A heterostructure is a semiconductor crystal which consists of 

different semiconducting materials. At present, the most widely used 

heterostructures involve the binary 111-V compound GaAs in 

combination with the ternary alloy Al Ga As, 
x 1-x 

where x is a 

compositional parameter between 0 and 1. The ternary alloy will be 

briefly denoted as AlGaAs. A great advantage is that both materials 

are lattice-matched. This minimizes the number of broken bonds at 

the interface and prevents undesirable electronic effects. 
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Associated with the abrupt change of semiconductor material is an 

abrupt change in energy band. As the energy band of AlGaAs is 

influenced by the compositional parameter, the difference in energy 

band is controllable and can be considered as a design parameter. 

The AlGaAs/GaAs heterostructures have attracted a lot of 

interest, both for fundamental physical reasons as for their 

practical applications. An example of the former aspect is the 1985 

Nobel prize in physics, which was awarded to Klaus von Klitzing for 

his accurate measurements of the Quantum Hall effect. This effect 

was first discovered in 1980 in the so-called two-dimensional 

electron gas at the Si0
2
/Si interface of a MOSFET, at liquid helium 

temperatures. A couple of months later the same effect was found to 

occur at the AlGaAs/GaAs interface. 

AlGaAs double heterostructure lasers have found a wide 

application in Compact Disc players. Heterojunction bipolar 

transistors (HBT), e.g. with an N-AlGaAs/p-GaAs/n-GaAs structure, 

are promising devices for ultra-high-speed integrated circuits. A 

very important device is the High Electron Mobility Transistor 

(HEMT), which might become a key device in future VLSI applications. 

Compared with its predecessor, the Ga.As MESFET, it has low noise 

figures and combines high switching speeds with a low power 

dissipation. 

Excellent reviews concerning heterojunctions have been given by 

Casey and Panish (1978), Kroemer (1985) and Milnes (1986). 
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1.2 Simulation 

The application of a new material or the development of a new device 

is a matter of high cost and takes a lot of time. Therefore, for 

economical reasons, one is interested in a simulation tool for the 

prediction of the performance of the material or device to be 

developed. This tool may serve on the one hand in optimizing various 

parameters, like doping, the compositional parameters (when ternary 

or quaternary alloys are involved), or gate length, which affect the 

characteristics of the semiconductor (device). On the other hand it 

may help studying and understanding of physical properties. 

The (Ensemble) Monte Carlo method is especially suited for the 

microscopic modelling of electron transport. With this method 

electron transport properties can be determined from first 

principles. Neither short time scales, in the order of the free 

flight time of an electron nor short distances, in the order of the 

mean free path of an electron, pose a principal problem. 

In this thesis, the Ensemble Monte Carlo method is applied to the 

study of transport properties of AlGaAs/GaAs heterostructures. In 

this respect, the following problems are addressed: 

- which physical mechanisms play a role in determining the electron 

transport in these structures, 

- how can these mechanisms be modelled, and 

- what is their actual effect on the device properties? 

1.2 .1 The Boltzmann transport equation 

As may be clear from the above, for transistor applications the most 

interesting physical phenomenon in a semiconductor is the charge 
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carrier transport under influence of an external electric field. 

Conduction electrons (being in a state of equilibrium} will be 

accelerated when an external field is applied, and the extra energy 

thus acquired will be passed on to the lattice by excitation of 

lattice vibrations, i.e. the electron system emits phonons (the 

quanta of energy of the lattice vibrations). Inversely, the electron 

system may absorb phonons, and after some time a situation of steady 

state will be reached. 

The distribution function f <t 1. t), being the occupation 
n 

~ probability of a state characterized by a wave vector 1C at location 

1 at time t, gives a complete description of the electron system in 

a band with index n. The above distribution function is a solution 

of the well-known Boltzmann transport equation (BTE) (Madelung 1978) 

at 
a~ ~ 7 --·~-+f (11: r t) at k n • • 

(1.1) 
Bf(~},t) 

n 

s c. 

The first term on the right-hand side accounts for the influence of 

external fO'rces, the second one is the diffusion term and the third, 

the scatter term, refers to scatter processes (possibly) involving 

the exchange of phonons between the electron system and the crystal 

lattice. Instead of 'scatter term' this term is also referred to as 

'collision term'. 

7 7 The nW11ber of electrons in a volume element (r,dt"-+) of r-space 
r 

~ ~ 
and (lC,dt"k} of lC-space at time t is given by the product of the 

distribution function and the volume element dr; drk. Actually, an 

electron is represented by a wave packet formed out of one-electron 

states. The wave packet is constructed with Bloch functions ~ -+(t) -
nit 

~ ~ 7 
unk(r)exp(ilt·r), being plane wave solutions of Schrodinger' s 
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equation. The electron thus described is in fact a quasi-particle 

and is called a 'crystal electron'. It faces only external forces 

and the •forces' of lattice vibrations, to which it responds 

differently from a free electron in an empty lattice (Ma.delung 

1978). The interactions with the fixed lattice are implicitly taken 

care of by means of the relation between energy and wave vector. 

The packet extends in real (t-) as well as in reciprocal (~-) 

space, and the extents, respectively At and A~, are related to each 

-+ ~ other by Heisenberg's uncertainty relation Ar·AR ~ 2~. This should 

be realized when considering an electron at location t with wave 

vector i. 
at Taking this into account, the velocity at in the diffusion term 

of eq.(1.1} can be replaced by the group velocity of the wave packet 

(1.2) 

where W(~) is the kinetic energy of an electron with wave vector i. 

Furthermore, the external forces can be accounted for by 

cl + ~ x B>. (1.3} 

The electron dynamics herewith defined is often referred to as 

'quasi-classical' (Ziman 1972), with the role of the momentum 

represented by hR. h~ is often referred to as the 'crystal momentum' 

or 'pseudomomentum', because the expectation value of the momentum 

is not equal to hR (Madelung 1978). 

Analogous to the BTE for the electron system a BTE can be set up 

for the phonon system as well, and one is left with two coupled sets 

of differential equations describing the electron system and the 

phonon system, respectively. 
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In order to simplify the solution of the BTE, it is assumed that 

the phonon system sets up an equilibrium state so quickly that 

disturbances in the phonon system can be ignored (Bloch assumption). 

Then the scatter term at the right hand side of the BTE for 

electrons can be written as (with the index n and t, 1 and t left 

out wherever possible) 

afl v 
- - --

3
JJJdk' {s(t' , t) [ 1-f(k) J f(l' )-sett. k' > [1-f(t' > Jf(k)). 

ot ac. (2ir) 
(1.4) 

where S(k,k') is the transition rate for an electron in state k to a 

state k' , while a change of energy band is permitted. 

Using this transformation the BTE has become an 

integro-differential equation, which is only solvable for very 

simple cases. 

1.2.2 Short survey of the Honte Carlo method 

In general, the name Monte Carlo method is used for any method of 

solution where random numbers are involved. The first description of 

a mathematical experiment with a random character seems to have been 

the determination of ir by throwing darts (Hall 1873). The systematic 

development and the name (thought of by E. Fermi) of the Monte Carlo 

method dates from 1944 from the work on the atomic bomb. Two of the 

most important pioneers have been S. M. Ulam and J. von Neumann 

(1947). Nowadays extensive use of these methods is made in such 

fields as nuclear physics, operations research, chemistry, biology 

and theoretical physics. 

Its use in determining electrical transport has been initiated by 

Kurosawa (1966). Kurosawa as well as his early successors, the most 

important of which are Fawcett, Boardman and Swain (1970) at first 

6 



instance considered one electron during a long time and arrived at 

the steady state applying the theorem of ergodicity. Lebwohl and 

Price (1971) were the first to introduce what has become known as 

the Ensemble Monte Carlo method, in 'simultaneously' following 

several thousands of electrons (the 'ensemble'). Important 

contributions have further been made by Littlejohn, Hauser and 

Glisson (1977) and Kaszynski (1979). Excellent reviews of (Ensemble) 

Monte Carlo methods in electron transport calculations have been 

given by Price (1979) and Jacoboni and Reggiani (1983). 

The Ensemble Monte Carlo method has not found application in bulk 

material only, but is also applicable to the simulation of 

semiconductor devices. A review of numerous methods that can be used 

for the modelling of submicron devices has been given by Castagna 

(1985), and a review concentrating on Monte Carlo techniques by 

Lugli and Jacoboni (1987). An extensive account of how to combine 

Monte Carlo methods and two-dimensional Poisson routines into a 

numerically stable scheme has been given by Hockney and Eastwood 

(1981). 

The history of two-dimensional modelling using Monte Carlo 

methods for devices based on GaAs starts with the simulation of the 

MESFET, especially with the work of Hockney, Warriner and Reiser 

(1974}, where for the first time two-dimensional particle models 

were applied. This has been followed by numerous others among which 

Warriner (1977a), Williams (1982) and Williams et al. (1985), 

Moglestue (1983, 1984, 1985, 1986) and Awano et al. (1983, 1984). 

Later on attempts have been made to model (all) aspects of the 

High Electron Mobility Transistor (HEMT), which transistor is the 

successor of the GaAs MESFET and makes use of an AlGaAs/GaAs 
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heterojunction in its structure. Ensemble Monte Carlo calculations 

without taking into account subband scattering have been performed 

by Wang and Hess (1985), Houis et al. (1986), Fauqemberge et al. 

(1987, 1988) and Thobel (1988), and calculations including subband 

scattering by Ravaioli and Ferry (1986) and Tomizawa et al. (1985). 

Other calculations on the HEMT, based on the Boltzmann moment 

equations, where an increasing number of moments is used, depending 

on the sophistication of the method, have been done by Widiger et 

al. (1984, 1985), Yuh Fong Tang (1985) and Buot (1987). 

In this thesis Ensemble Monte Carlo calculations have been 

carried out to study the effects of degeneracy and various scatter 

mechanisms on the electron transport in GaAs (chapter 4), real space 

transfer between AlGaAs and GaAs (chapter 5) and various aspects of 

an HEMT (chapter 6). Since a more detailed discussion of the 

Ensemble Monte Carlo method and the scatter mechanisms is essential 

for this study, these two subjects are discussed in chapters 2 and 

3. 

1.3 Outline of this thesis 

In chapter 2 the Ensemble Monte Carlo method is outlined. In this 

method a solution for the Boltzmann transport equation is obtained 

from the knowledge of the electric field strength and the scatter 

rates. The field strength can either be imposed or calculated 

self-consistently by solving Poisson's equation. 

In chapter 3 the three-valley model for the band structure of 

GaAs (and AlGaAs) is introduced. From the general expressions 
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following from first-order perturbation theory the calculation of 

the scatter rates for the various processes in GaAs and AlGaAs is 

discussed. 

Since high electron concentrations may occur near the interface 

of an AlGaAs/GaAs heterojunction (typically in the order of 1018 

-3 
cm ), degeneracy effects (Pauli exclusion principle) and 

electron-electron scattering can play a role. The purpose of chapter 

4 is to study these two mechanisms in n-doped bulk GaAs, where the 

electrons are considered to be homogeneously distributed. An 

existing model to introduce the degeneracy effects in low-field 

Ensemble Monte Carlo calculations is adapted and made suitable for 

high field purposes. With this extended model for the first time 

velocity-field curves have been obtained taking into account 

degeneracy effects. In addition, the combined effect of 

electron-electron scattering and degeneracy effects have been 

considered together in one model for the first time. 

At the heterointerface band-bending occurs, consequently 

electrons experience an electric field which pushes them towards the 

interface. The effect of this transverse field on the electron 

transport, parallel to the interface under influence of a 

longitudinal field, is studied in chapter 5. The fact that electrons 

may cross the potential barrier between GaAs and AlGaAs, which is 

called the real space transfer effect, is taken into account. The 

results indicate that the velocity of the electrons in GaAs parallel 

to the interface is increased in comparison with the velocity in 

undoped bulk GaAs. This effect is only due to classical effects, as 

energy discretization has not been included. The separate effects of 

the transverse field and real space transfer will be clearly 
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demonstrated. 

An Ensemble Monte Carlo model, in which Poisson's equation is 

solved in two dimensions, has been developed to investigate the 

properties of an HEMT (chapter 6). Special emphasis has been given 

to the study of existing criteria which ensure the stability of the 

calculations. It is clearly demonstrated which time integration 

scheme should be used to obtain a numerically stable scheme; For an 

HEMT with a gate length of 0.3 µ.m 1-V characteristics and 

small-signal parameters have been determined. A detailed study has 

been carried out to determine which electrons (in r-,L- or X-valley) 

contribute to the real space transfer occurring in the device. The 

influence of gate length and interelectrode spacings on the 

small-signal parameters has been investigated. 

Especially at low temperatures, energy quantization occurs in the 

quantum well at the interface, owing to the quantization of the wave 

vector transverse to the interface. This effect has been neglected 

in all cases mentioned above. For Monte Carlo purposes a description 

of the transition between situations with a discrete and a 

continuous energy spectrum has been developed (chapter 7). This new 

transition process is called 'quantum well transfer'. 

All calculations reported in the present work have been performed 

on an Alliant FX8 computer, with the possibility of four processors 

concurrently working on the same problem. 
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C h a p t e r 2 

ENSEMBLE H 0 NT E CARLO METHOD 

2.1 Outline of the method 

Compared with various analytical and iterative methods of solving 

the Boltzmann transport equation (1.1), the Monte Carlo method has 

the advantage that no a priori (simplifying) assumptions concerning 

the form of the distribution function are made, the evolution in 

time of the distribution function may be studied, and complicated 

energy band structures may be inserted (Vinter 1973, Jacoboni and 

Reggiani 1983). 

Also, in device simulations, complicated geometrical structures 

are not difficult to handle. Note that in this method the Boltzmann 

transport equation is not solved explicitly, but a numerical 

description of the electron system in the six-dimensional phase 

space is obtained only from the knowledge of the scatter rates and 

the external fields. 

In the Monte Carlo method used for transport calculations the 

motion of an electron is modelled as a sequence of free flights 

interrupted by scatter processes. In the Ensemble Monte Carlo 

version of this procedure, which will be applied throughout this 

thesis, an ensemble of electrons is followed 'simultaneously'. The 

ensemble averages over physical quantities of interest are collecte.d 

at prescribed observation times with equidistant intervals and thus 

the evolution in time of the electron system under investigation is 
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obtained. The length of the free flight, the scatter process and the 

change of the state of the electron as a consequence of the 

scattering are chosen out of different alternatives with known 

probability distributions, with the help of uniformly distributed 

random numbers. 

In general, the random selection of a variable x with a certain 

normalized distribution f (x) is done by mapping the uniform 

-distribution of the random number r onto f(x): 

(2.1) 

Then 

r F(x), (2.2) 

where F(x) is the cumulative distribution function, or 

-r P(x s x), (2.3) 

-where P(x s x) is the probability that x s x. The required x is 

obtained by inversion, 

- -1 -
x - F (r). (2.4) 

See fig. 2.1 for an illustration of the inversion technique. 

2.1.l Selection of the free flight time 

At the heart of the Monte Carlo scheme is the calculation of the 

free flight time of an electron. The free flight time, also called 

'scatter time', is related to the scatter probability. For each 

process i described by a transition rate S <i,i') a scatter rate is 
i 

calculated according to 

\ (i) - (
2
:) 3JJJ di' S1 ((i,), (2.5) 
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' f 

i 
x -Fig. 2.1 The principle of the inversion technique. A variable x is 

selected from a distribution f (x) with the help of a random number 

r. (After Press et al., 1986.) 

or, in spherical coordinates 

v J"° r IZ11' A
1
(k) -

3 
dk' d6 &p k' 2sin6 S (~.~'). 

(2tr) 0 0 0 i 
(2.6) 

The total scatter rate is A(k) - E A
1
(k). Therefore A[k(t)]dt is the 

probability that an electron experiences a scatter process in a time 

dt. Hence, the probability p
0
(t,t

0
) that an electron scattered at 

t - t
0 

has not yet undergone another process after time t is 

(Jacoboni and Reggiani 1983) 

t 

p
0
(t,t

0
) - exp{ -J dt' A[k(t')] ). 

t 

(2.7) 

0 

Thus, the probability p
1
(t,t

0
) that an electron will scatter at a 

time between t and t+dt after its previous scattering is given by 

t 

p
1
(t,t

0
)dt - A[k(t)J exp{ -J dt' A[k(t')] } dt. 

t 
0 

(2.8) 

As will be clear from eqs.(2.1-2.4) the free flight time is chosen 

as 
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(2.9) 

:+ As K changes constantly in time under influence of external forces, 

~ :+ see eq.(1.3), and A[K(t)] is not an analytical function of K, the 

expression in eq.(2.9) cannot easily be evaluated, only at high 

computational cost. 

A solution for this problem has been proposed by Rees (1968, 

1969). He introduced a 'dummy' scatter process, called 

•self-scattering', which in no way affects the state of the 

electron. The rate of this process is such that during the period of 

interest the total scatter rate is a constant, denoted by r. The 

rate for this process is r - A[~(t)], which of course should be 

greater than or equal to zero. Thus, during the period of interest 

r ~ A[~(t)), (2.10) 

where ~ the range of K covers all the values occupied by the 

electrons. r may be a constant, or depending upon R or t, but not 

upon the random number r. The inclusion of this fictitious process 

does not affect the rate of occurrence of 'real' processes, as 

proven by Fawcett et al. (1970). 

Now, from eq.(2.8) 

(2.11) 

and, with eq.(2.9) 

ln(l - r) 
t - - (2.12) 

r 

or, since r has a uniform distribution on [0,1) 

ln r 
t (2.13) 

r 
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In this way t may become infinitely long, which should be avoided 

as one wishes to observe the ensemble at equidistant time points 

(the observation points). This is circumvented using an algorithm 

proposed by Widdershoven (1984a). The probability for an electron to 

scatter at least once in a time At, where At is the time interval 

between the most recent scattering event and the next observation 

point, reads 

p(At} - 1 - exp(-r·At). (2.14) 

Now a random number r is drawn to decide whether this will happen or 

not. If r s p(At) at least one scattering event will occur and the 

same number is used to calculate the free flight, after which a 

scatter process is selected. If r > p(At), the resulting flight 

would be longer than At, so the free flight is assigned a length At, 

followed by a self-scattering. 

2.1.2 Selection and performance of the scatter process 

A 'real' scatter process j out of N for an electron in a state ~ is 

selected by choosing the first process j for which 

j - \' ~ r·r s l \Cl<). (2.15) 

u r·r > 
N d> L A

1
(K) then self-scattering is chosen. A scatter process 

1•1 

takes place instantaneously, absorbing no 'electron time' at all. At 

the observation points the physical quantities of interest (e.g., 

velocity, kinetic energy) are collected, just before the scatter 

process occurs. In practice, the difference in the value for the 

estimators taken just before or just after the scattering will be 

small, because at that particular moment almost always 
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self-scattering will take place. 

After a certain scattering process has been selected the new 

state ~' has to be determined. The modulus k' is easily calculated 

from the new kinetic energy W' , which is equal to the original 

kinetic energy plus or minus the energy of the phonon involved. The 

normalized cumulative distributions P6(6') and P;(;') for the angles 

6 and ; (see fig. 2.2) needed to determine the spatial orientation 

of~' are derived from eq.(2.5) and given by, respectively, 

and 

(2.17) 

The angles are selected with the help of two uniformly distributed 

random numbers r6 and r; in [0,1), by 

(2.18) 

and 

(2.19) 

By choosing a new coordinate system, with the z-axis along i, the 

distribution of ; becomes uniform, so 

(2.20) 

The 6 is determined in the new system and the ~, thus obtained must 

be transformed back to the original system (Boardman 1980). 
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Fig. 2.2 The scatter angles fJ and ¢1 necessary to determine the 

spatial orientation of I- with respect to k. 

2.1.3 Random number generation 

In (Ensemble) Monte Carlo calculations a very important role is 

played by the random number generator. As a true random sequence 

will be very difficult to realize in practice, pseudo-random 

sequences have to be produced with the computer. An advantage of 

sequences produced this way is that experiments become reproducible, 

which may e.g. be very useful for debugging purposes . A numerical 

scheme for a pseudo-random number generator, generating a uniform 

distribution on [0,m /m ) with a theoretical period m
1 

is the 
l 2 

so-called mixed congruential scheme (Hammersley and Handscomb 1964, 

Knuth 1969, Graybeal and Pooch 1980) 

x 
n+l 

(ax + c) mod m 
n l 

mz 

where x
0 

- the seed (any positive real number), 

a - the multiplier (a positive integer), 

c - the increment (a positive integer), 

m
1 

the period (a positive integer), 

m
2 

the scale factor (a positive integer). 

(2.21) 

The criteria for obtaining an optimal generator with period m
1 
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have been enumerated by Hammersley and Handscomb (1964), Shreider 

(1966), Knuth (1969) and Graybeal and Pooch (1980). Widdershoven 

(1984b) suggested to use a binary multiplication instead of the 

modulus operation, which yields a faster generator (a factor of 7 

faster on an Alliant FX8 computer). 

In short, values of m - 2k - 1, where k equals the word size of 
1 

the computer, and a - 216 + 3 are recommended. The reader is 

referred to the above-mentioned literature for more details on the 

choice of c. It is sufficient to know that in the present work c -

907633385 has been chosen (Widdershoven 1984b). 

Both schemes ('modulus' and 'binary') have been tested for 

different values of x
0

, a 65539, c - 907633385, m
1 

- 2147483647 

and m
2 

- m
1 

+ 1. To begin with, these parameters obey the criteria 

referred to above. Furthermore, numerous tests have been performed 

on various aspects of the random generator. Both schemes satisfy the 

frequency test (Hammersley and Handscomb 1964, Shreider 1966), the 

serial test (Hammersley and Hands comb 1964). and the 

Kolmogorov-Smirnov test (Graybeal and Pooch 1980, Shreider 1966), 

which measure the uniformity, the degree of randomness and the 

degree of randomness, respectively (Graybeal and Pooch 1980). The 

period of the 'binary' number generator is found to be lm , whereas 
2 2 

for the 'modulus' generator the (theoretical) period is equal to m
1

• 

It is concluded that for all practical purposes both generators 

perform satisfactorily. In the present work the 'binary' generator 

has been used. 
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C h a p t e r 3 

SCATTER P R 0 C E S S E S 

In this chapter the calculation of the scatter rates will be 

discussed. First the model used for the band structure of GaAs is 

outlined. After a short introduction of the adiabatic principle (the 

effective decoupling of ion and electron motion), which allows for a 

first-order perturbation treatment of the problem, the general 

expressions needed to calculate the scatter rates will be given. 

Subsequently, the specific processes are reviewed and the necessary 

scatter angle selection discussed. 

The relevant material parameters for GaAs and AlAs are given in a 

table in section 3. 5, together with the interpolation formulas 

necessary to obtain the material parameters for AlxGa
1
_xAs. 

3.1 Band structure of GaAs 

The conduction band of GaAs, see fig. 3.1, is commonly divided into 

three separate 'valleys' with a Kane-type non·parabolicity (Kane 

1957), denoted by r-, L· and X·valley, after the locations of their 

minima at the (000), (111) and (100) symmetry points in the (first) 

Brillouin zone, see fig. 3.2. There are three equivalent X·valleys 

and four equivalent L·valleys. 

The dispersion relation for each valley, describing the relation 

between kinetic energy W and wave vector ~. both taken relative to 
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Fig. 3.1 The energy band Eor Ga.As at room temperature. The 

conduction band is indicated by the arrow, and the minima serving as 

valleys are encircled. (Taken from Blakemore, 1982.) 
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3.2 The first Brillouin zone Eor Ga.As, with the 

crystallographic names for the various symmetry points. (Taken from 

Blakemore, 1982.) 

the minimum of the valley, is according to Kane (1957) for III-V 

compound semiconductors given by 

W(l + a:W) (3.1) 
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* where a is the non-parabolicity parameter, and m is the effective 

mass. 

In the r-valley ar is given by 

a -r (3.2) 

where W is the direct energy gap between conduction band and 
g 

valence band, m;. the effective mass of the electron in the r-valley, 

and m the free-electron rest mass. 
0 

In the L- and X-valleys aL and ax are chosen such as to fit as 

closely as possible to the real band structure. 

Each electron is in either of the valleys and may transfer from 

one valley to another under exchange of a phonon, while potential 

energy is gained or lost as kinetic energy. 

The velocity of an electron is found from eq. (1.2) and in the 

band model described by eq.(3.1) equals 

~ v------
* m (1 + 2aW) 

(3.3) 

3.2 Adiabatic principle 

Electron-phonon interaction and interaction of electrons with 

crystal defects or impurities is easily described in first-order 

perturbation theory (the Born approximation) owing to the so-called 

'adiabatic principle' developed by Born and Oppenheimer (Ziman 1960, 

Madelung 1978). The quintessence of this approach is the fact that 

the motions of the fixed ions in the lattice around their 

equilibrium positions (which motions are characterized by phonon 

wave vectors with a Bose-Einstein distribution, see eq. 3.5) and the 
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motions of the 'free' conduction electrons are decoupled. 

The Hamiltonian for this problem can be divided essentially into 

two parts, each separately contributing to the energy of the system 

as a whole. One part describes the movement of electrons in a fixed 

ion lattice and the other takes care of the movement of the ions in 

an electron space charge. A residual term, including both electronic 

and lattice states, accounts for the interaction between electrons 

and the lattice. The fact that this term, in general, has a low 

energy eigenvalue compared to the total energy of the system 

validates the adiabatic principle. This allows for the first-order 

perturbation theory to be applied, with the perturbing potential 

being the change in electrostatic potential as faced by the 

electrons, caused by the lattice vibration, the defect or the 

impurity. (For a detailed discussion, see Ziman 1960.) 

3.3 Transition rate 

;; 
In general, a free electron in a state li:. is described by the wave 

function 

~(i,t) - u+(f) exp(i~·f), 
k 

(3.4) 

where •(i,t) is called the Bloch function, and u:(t) is periodic on 

the lattice. For simplicity, here and in the following the band 

index n is dropped. 

-+ Lattice vibrations are described by wave functions •n+(q), which 
q 

are Hermite polynomials, representing a lattice vibration of vector 

~ in the n+ t.h state of excitation, where n+ is the Bose-Einstein 
q q 
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distribution 

[ (h"' .. ) ]-1 
n: - exp k3 -1 (3.5) 

The combined wave function of electron and phonons is then (Nag 

1980) 

x <~.i) - w(~.t) ~ (~) n.. n n .. q . 
q .. q 

q 

(3.6) 

The matrix element M(it,n .. ;~' ,n .. ,) for the transition from a state 
q q 

~ ~ described by K,n .. to a state K' ,n .. , is defined as 
q q 

-III (3.7) 

where 'H' is the energy operator for the perturbing potential. 

Now, in first-order perturbation theory, the rate of transition 

from one state to another is given by 

S(it,n .. ;R' ,n .. ,) - 2h~ 
q q 

M(~,n .. ;~' ,n .. ,) 1
2 6(W' - W ± 8W), 

q. q 
(3.8) 

under the condition that the free time between scatter events is 

large. The Dirac 6-function takes care of the conservation of 

energy. This equation is well known as Fermi's Golden Rule. 

When an electron is scattered by an impurity the state of the 

lattice is unaltered, so the wavefunction of interest is just the 

free-electron Bloch function. In that case the perturbing potential 

may be expanded in a Fourier series (Nag 1980) 
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'Jt' = L A(tj) exp(i~·t), 
-7 
q 

(3.9) 

-7 where A(q) are Fourier coefficients. The matrix element then becomes 

:7 :7 rfJJ -+ • :7 -+ :7 -+ -+ -+ -+ :7 -+ :7 7 M(K,K')-4.1, dr u (K' ,r) exp(·iK' ·r) A(q) exp(iq·r) u(K,r) exp(iK·r) .. 
q 

- LA(~) 6+ + +, JJJ dt u*cit· ,t) u(it,t) 
+ q,lt·lt 

q 

(3.10) 

where I (it, it• ) - dr u ('It' ,r) I -+ *:7-+ :7 -7 u(K,r) is referred to as the overlap 

integral. The -+ ~ condition q - K :7 · K' is analogous to the condition.of 

-7 the conservation of momentum, and q plays a role equivalent to that 

of a phonon wave vector. 

For Kane-type conduction bands the square of the overlap integral 

is called the overlap function G(it,it•) and is equal to (Nag 1980) 

(3.11) 

:7 :7 where 6 is the angle between K and K' and 

( 
l+aw )

112 

ak - 1 + 2aW • (3.12) 

( aw ) 
1

'
2 

ck - 1 + 2aW • (3.13) 

In case of lattice scattering, the perturbing potential may be 

expanded as (Ziman 1960, Nag 1980) 

H.' •LA(~) [a+ exp(i~·t) +al exp(·i~·t)], 
.. q q 

(3.14) 

q 
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where A(tj) is related to the amplitude of the mode of vibration with 

wave vector tj and other various material parameters, depending on 

the kind of vibration, a .. and at represent the annihilation and 
q q 

creation operators, respectively. 

Substitution leads to 

[a .. exp(itj·f) +at exp(-itj·f)) u(~.t) exp (i~·t) n ;n .. ,(tj) } 
q q .. q 

q 

(3.15) 

Analogous to the former case JIJ dt exp[ i(-l' + tj + l)] - 6.. .. .. 
lt' ,lt+q 

and JIJ df exp[i(-~' - tj + k}) - 6 .. , .... , with 6 being the Kronecker 
lt ,k-q 

delta. Also, see e.g. Ziman (1960) 

< ; ctj> I a .. 1; «b > - ;-;_:: • 
n .. -1 q n.. q 

(3.16) 
q q 

describing a transition from n .. ton .. - 1, i.e., annihilation of a 
q q 

phonon, and 

(3.17) 

describing the creation of a phonon. 

Hence, the first term of the integral only has a non-zero value 

~ ~ ~ if K' - K + q, representing the annihilation (or: absorption) of a 

phonon with wave vector tj, and the second term leads to the creation 

(or: emission) of a phonon with wave vector tj and ~, - k - tj. 

In short, the matrix element is written as 

M(i,~,) - A(tj) (n .. + ! ± !) 112 I(i,~,). 
q 2 2 

(3.18) 

where the plus sign represents emission, and the minus sign the 

absorption of a phonon. 
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The scatter rate for an electron in state it to state it, is 

calculated with 

.X(it) - ~ III di' S(it,R'). 
(21r)3 

(3.19) 

where S(l,it') is determined by eq.(3.8) and either eqs.(3.10)-(3.13) 

or eqs.(3.11)-(3.13), (3.18). This formula is only valid for 

non-degenerate materials. Otherwise a factor [l - f(i')] (now equal 

~ to 1) would have to be included for the probability of 1<' being 

empty, as will be clear from the scatter term (eq. 1.4) in the 

Boltzmann transport equation (eq. 1.1). The factor V/(21r) 3 accounts 

for the density of states in i-space. Since the spin is not altered 

as a consequence of a scatter process it is not necessary to include 

an extra factor of 2. 

Usually, eq.(3.19) is evaluated in a spherical coordinate system. 

A transformation to spherical coordinates yields 

~, • k' 2 sin6 d6 di/I dk', (3.20) 

after which, because of the conservation of energy present in 

S(i,i'), it is practical to change to W' as an integration variable, 

i.e. 

where 

or 
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-2 2 '1 dW' ' 

fl 

-y(W) - W(l + aW), 

k' dk' - _!!{_ d-y' 
h2 dW' 

(3.21) 

(3.22) 

(3.23) 



3.4 Scatter processes 

In III-V cubic semiconductors the phonon lattice vibration 

dispersion curve essentially consists of two groups, each consisting 

of one longitudinal and one or two transversal modes, as depicted in 

fig. 3. 3. The low-frequency group represents a kind of lattice 

vibration where all the pairs of III-V atoms vibrate in phase, and 

the corresponding phonons are called 'acoustic' phonons because of 

the similarity with the wave propagation of acoustic waves. The 

other group represents pairs of III-V atoms vibrating in opposite 

phase and the phonons involved are referred to as 'polar optical' 

phonons. Polar, because in GaAs, unlike in silicon, the Ga-As pair 

carries a dipole moment which is modulated by the optical lattice 

wave. 

Electron-phonon interaction only takes place with longitudinal 

phonons (Ziman 1960). 

q 

Fig. 3.3 Schematic representation of the dispersion curve for 

lattice vibrations, with L(ongitudinal) and T(ransversal) O(ptical) 

and A(coustic) modes. (After Nag, 1980.) 
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3.4.l Acoustic mode scattering 

Acoustic mode scattering is distinguished into two different parts, 

namely piezo-electric and deformation potential acoustic scattering. 

Piezo-electric scattering 

The process known as piezo-electric scattering is caused by acoustic 

phonons of long wavelength. The perturbing potential is proportional 

to the gradient of the strain caused by the vibrating lattice. As 

the energy associated with the acoustic phonon is low the process 

is taken to be elastic, i.e. no phonons are exchanged. 

In this approximation, at sufficiently high temperatures, it 

follows from eq.(3.5) 

n .. !II n• + 
q q 

11w.. 1t, - t1 
1 !II __ q_ - -------

kB T 
(3.24) 

Note that another approximation is applied in eq.(3.24). This 

concerns the group velocity of the wave packet for the acoustic 

phonon. The energies concerned are situated in the lower part of the 

dispersion curve, where the curve may be approximated by a straight 

line. The group velocity then becomes 

~ -1 ~ ,... 
v - h V+hw .. !II w .. /q - v , 

q q q .. 
(3.25) 

where v
8 

is the velocity of sound in the material. 

The transition rate is now given by (Rode 1978, Nag 1980) 

s(it,~,) - 2 211' ( _e_P_z ) 
2
_k_11_T _____ 1 __ _ 

h €o€s 2Vpv: I~ - l' I + k: 
&(TJ - W'), (3.26) 

In determining S(t,~') from the matrix element M(t,i'), with 
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eq.(3.18), the overlap integral I(k,k') is taken equal to 1. 

Absorption and emission are taken together accounting for the first 

factor of 2. k is the inverse Debye length associated with 
d 

screening, 

2 
__ e_n_. __ ) 112 

E E k T 
0 a B 

Hence, from eqs.(3.19) and (3.26) 

l(W) - l 
8h2 ( 

ePz)2 k 8 T 
E E 2 o a pv 

• 
( 

2m*) 1/2(1 + 2a'W) ln(l 
w 1/2 

'Y 

(3.27) 

(3.28) 

where -y is given by eq.(3.22). Pz is related to the piezo-electric 

stress tensor and the elastic constants. 

With the general formulas (2.16) and (2.18) one finds 

costl - 1 + (3.29) 

while~ is randomly distributed over (0,2w), and lk' I - IRI. 
This scatter process is of a relatively low importance in GaAs at 

the temperatures considered in this thesis. 

Deformation potential scattering 

In the deformation potential interaction of electrons with 

long-wavelength acoustic modes the perturbing potential is 

proportional to the strain produced by these vibrations. 

Analogous to the former case the process is taken to be elastic 

with the energy of the associated phonon low enough to ensure the 

validity of eq.(3.24) again. The transition rate is (Rode 1978) 
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and 

S(it'J,) - 2 2w 
h 

D2 k T 
a B G(i,it'') 6(W - W'), 

2Vpv2 

• 

(2m*) 312 D2 k T (1 + aW) 2 + ! a 2W2 

>.(W) - _____ a_B_ [W(l + aW) ]112[ 3 ] 

2wh4pv2 (1 + 2aW) . 
• 

Here Ii' I - Iii,~ - 2wr and 

{ 

[(l + 2aW) 3(1 - r) + r] 113 
- 1 

cos1'·- aW 

(3.30) 

(3.31) 

(3.32) 

This process is of a relatively low importance in GaAs at the 

temperatures considered in this thesis. 

3.4.2 Optical mode scattering 

Optical mode scattering consists of two different parts, a polar and 

a non-polar one. 

Polar mode scattering 

The dominant scatter mechanism in III-V compound semiconductors near 

room temperature is associated with the electric polarization caused 

by the optical mode vibration. It is an inelastic process, as the 

energy associated with the optical phonon cannot be neglected 

compared with kBT, like with acoustic mode scattering. 

The transition rate is (Rode 1978) 

1 ) G(it,i,) 
- -;--

8 

--'--'---'-- (n• + ! ± !)6(W' - W ±ht.> ) , 
. Ii - i· 12 q 2 z 0 

(3.33) 
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where the plus sign denotes the emission of and the minus sign the 

absorption of a phonon with wave vector it · ~, and energy hw . The 
0 

longitudinal optical phonon energy is assumed a constant, since the 

~ 
optical branch of the frequency spectrum has a zero gradient at q -

0 and only phonons having small ~ can interact with electrons in 

semiconductors (Ehrenreich 1957). The value of w at the centre of 

the first Brillouin zone is taken to be the constant w . n-t is again 
0 q 

the Bose-Einstein distribution (eq. 3.5), with w-t - w. 
q 0 

The scatter rate now is given by 

where W' - W ± hw , and 
0 

1) F(W W') 1 
• -E- (1 + 2aW') ' <n-t + 2 ± i>. 

s ...,112 q 

F(W,W') - A ln 7 + 7 + B [ I 1/2 , 1/2 I l 
..,112 - .,, 1/2 . • 

A - [2(1 + aW)(l + aW') + a(7 + "1')]
2

, 

B - ·2a(Tt' ) 112 
[ 4(1 + aW) (1 + aW') + a('Y + l')], 

C - 4(1 + aW)(l + aW')(l + 2aW)(l + 2aW'). 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

The scatter angle 6 is not easily evaluated since from eqs.(2.16) 

and (2 .18) an expression is obtained which is not analytically 

solvable. Widdershoven (1984a) has developed a method to obtain 6 

from this expression with the help of random numbers. Again ip is 

randomly distributed over [0,2w). 

This process is very important at the temperatures considered in 

this thesis (77 K and 300 K), and the rate of occurrence is 

practically independent of energy (except for a threshold for the 

emission of phonons). It is not a very efficient process, in that it 
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favours small scatter angles. This means that, on the average, 

velocity is not dramatically changed as a consequence of this 

process. 

Non-polar mode scattering 

In the L-valley not only scattering by polar optical phonons occurs 

but also by non-polar optical phonons. This scatter process is 

caused by a deformation potential, and the transition rate is given 

by (Fawcett et al. 1970, Rode 1978) 

S(~.~') 
hD2 

2ir --0
- G(it,it,) (n-+ + ! ± !) &(W' - W ± hw ) , 

q 2 2 no 
(3.39) 

h 2Vpw 
no 

where the plus sign denotes emission and the minus sign the 

~ ~ absorption of a phonon with wave vector K - K' and energy hwno D 
0 

is the optical deformation potential. 

The resulting scatter rate is 

(2m*)3/2 D2 
.\ (W) - _____ o_ 

4irh2
phw 

(W' (1 + a'W'' ) ) 112 x 

[ 

no 

(1 + a'W')(l + a'W'') +; a2ww' ]· 

1 + 2a'W' 

As there is no dependency on~. the angle ~ - 2irr,and 

with 

and 
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cos1' - ( [ (b + c) 3 
- 2c(3b2 + c2)r] 113 

- b } / c, 

b - ( 
1 + a'W' ) 1/2 ( 

1 + 2a'W' 
1 + a'W'' ) 1/2 

1+2a'W'', 

(3.40) 

(3.41) 

(3.42) 

(3.43) 



This process is of a relatively low importance in GaAs at the 

temperatures considered in this thesis. 

3.4.3 Intervalley scattering 

Associated with the three-valley model of the conduction band 

structure are the possibilities of equivalent and non-equivalent 

intervalley scattering. In the first process an electron scatters 

between different L- or X-valleys and remains in the same type of 

valley. As a result of the second process an electron transfers from 

a valley of any type to another valley of different type. These are 

again processes caused by a deformation potential. 

The transition rate for an electron transferring from valley i to 

valley j is given by (Fawcett et al. 1970) 

S{tit•) - (Zj - •5t_
1

) G (it,it•)(n -+ + ! ± !) x 
8ir2

p1A> 
ij ij. q 2 2 

ij 

.S(W' + /!,. - w - /!,. ± hw ij) I j j i i 
(3.44) 

where 

G1/i~_it·) - ( 
1 + aw 

) ( 
1 +a W' 

) . i i j j 

1 + 2a W' 
j j 

(3.45) 

and n-> is the Rose-Einstein: distribution: (eq. 3.5) with w-+ - IA> • 
q q ij 

Z denotes the nUlllber of equivalent valleys j, being equal to 1 for 
ij 

the r-valley, 4 for the L-valley and 3 for the X-valley. The plus 

sign stands for emission, the minus sign for absorption of a 

intervalley phonon. The wave vectors ~ and ~, , and the energies W 

and W' are taken relative to the bottom of the valley concerned, 

whereas A and A denote the energy level of the bottom of the 
i j 

valley concerned relative to the bottom of the r-valley. 

This yields for the total scatter rate 
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(Z - 6 )(2m") 312 D2 

).('IJ) - -j=----1-=-j----=J __ --=-ij ..,, 112 (1 + 2a 'IJ') G (it °it' )X 
2 1 j j i. • 

2idl phw " 
ij 

(n .. + .! ± l). 
ij,q 2 2 

W' -W +l\ -l\ +hw. 
i i j ij 

(3.46) 

(3.47) 

As there is no explicit dependence on tJ in S(°it,it') tJ is easily 

evaluated as 

tJ - arccos(l - 2r). (3.48) 

and I/I - 211'r. 

This process is of great importance at fields higher than ± 2 

kV/cm, especially at out-of-equilibrium conditions, just after (in 

the order of picoseconds) an electric field change has occurred. It 

has a randomizing effect on the velocity, which can be understood 

from eq. (3.48). 

3.4.4 Random potential alloy scattering 

A scatter process which can only be present in ternary and 

quaternary alloys is the one arising from the random arrangement of 

the atoms in the alloy on the lattice sites. In the following only 

the case for ternary alloys is treated. 

A ternary alloy AxB
1
_xC can be imagined to be constructed of the 

two binary compounds AC and BC. The B-atoms substituting the A-atoms 

in the AC lattice, or alternatively the A-atoms substituting the 

B-atoms in the BC lattice, cause a local disturbance in the lattice 

potential. This disturbance is used as the scatter potential in 

evaluating the matrix element in a first-order perturbation 
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treatment. 

For an alloy with non-parabolic energy bands the transition rate 

is given by (Harrison and Hauser 1976, Littlejohn et al. 1978) 

(3.49) 

where 0 is the volume of the primitive cell of the alloy, being a3/4 

where a is the lattice constant, and AU is the scatter potential. S
0 

is a parameter describing the degree of disorder: if S
0 

- 0 the 

order is perfect (a superlattice) and if S 
0 

- 1 the atoms are 

randomly distributed and the disorder is at its maximum. 

Hence, the scatter rate is 

(3.50) 

where It' I - 1t1, and 6 is selected with eq.(3.48) and~ - 2~r. 

The value of the scatter potential AU is still subject to debate. 

Harrison and Hauser (1976) give three possible candidates, among 

which the energy bandgap difference and the electron affinity 

difference of the binary compounds AC and BC. For AlGaAs, values of 

0.49 eV or 1. 51 eV , respectively , result. These two values yield 

substantially different scatter rates! For fundamental reasons 

Harrsion and Hauser have chosen the difference in electron 

affinities as the scatter potential. 

Recently, measurements by Saxena (1985) indicate an x-dependence 

of AU, with e.g. values of 1.6 eV and 1.2 eV for x-0.2 and x=0.3, 

respectively. However, these values yield mobilities in Ensemble 

Monte Carlo calculations which are not in accordance with 

measurements, as shown by Thobel (1988). Therefore, in this work the 
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approach as suggested by Harrison and Hauser is followed. 

In InGaAs and InGaAsP there is a considerable influence on 

mobility as a result of this process. However, in the AlGaAs ternary 

compound the importance of this process is limited. 

3.4.5 Ionized impurity scattering 

Usually the approach followed for scattering by ionized impurities 

is the one by Brooks-Herring (Chattopadhyay and Queisser 1981). 

Herein a screened Coulomb potential (or: Yukawa potential) is used 

in connection with first-order perturbation theory to arrive at the 

scatter rate. The potential energy of an electron in the field of an 

ionized impurity with charge e at distance r is 

2 e 
V(r) - 4we er exp(-kdr), 

0 • 
(3.51) 

where kd, the inverse Debye length, is given by eq.(3.27). As 

depicted in section 3. 3 no lattice states are involved, so the 

matrix element is the Fourier transform of the potential energy, and 

(3.52) 

The scatter rate is obtained by integrating over the final states ~, 

and subsequently summing over all impurities, Le. multiplication 

with N
1
V, where N

1 
is the impurity concentration and V the volume of 

~~ the crystal. Neglecting non-parabolicity and putting G(K,K') equal 

to 1 (Kaszynski 1979) it follows that 

e4m*N 
~(k) - _______ 1 _____ _ 

4w(f f )2ti3k2k[l + (2k/kd)-2
] 

0 • d 

(3.53) 

In the following an alternative approach is outlined, as developed 
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by Ridley (1977) and subsequently adapted for Monte Carlo purposes 

by Van de Roer and Widdershoven (1986). 

Classically the scatter rate is calculated from (Seeger 1973) 

~(~) - Nu v(~) 
i c 

(3.54) 

where u is the crosssection and b the maximum impact parameter. 
c m 

The cross-section is calculated from the differential cross-section 

u(1') by 

:If 

"c - 271" J d1' u(1') sin1' , 
0 

(3.55) 

where 1' is the angle of deflection of the particle from its original 

direction of motion. 

In the Brooks-Herring model the range of the scatter potential is 

limited to l/kd (screening length), by introducing the exponential 

factor to the Coulomb potential, and the interaction is considered 

to take place between two bodies, viz. the impurity and the 

electron. However, if the average distance between the scatter 

centres is smaller than the screening length more centres can play a 

role and the Brooks-Herring approach is in error because it simply 

adds the effects of all these centres. 

In the Conwell-Weisskopf model (Conwell and Weisskopf 1950, 

Chattopadhyay and Queisser 1981) this problem has been circumvented 

by cutting off the Coulomb field at a distance equal to half the 

average distance of the impurities. 

The two models have in common that they both define a range for 

the scatter potential in which only one centre is active. Ridley 

(1977) proposed to refine these models by introducing the 
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probability that indeed no second scatter centre is present in a 

cylinder with radius b (the impact parameter), 

7r 

b - 2ir J d6'u(6') sin6', 
6 

-1/3 and length a - N
1 

• this probability being 

p(b) - exp (-irb2N a). 
i 

(3.56) 

(3.57) 

If a second scatter centre would be present it would be closer to 

the electron and the first centre would become ineffective in this 

model. It is asssumed that at any time an electron can be scattered 

only by the ion nearest to it. Thus 

(3.58) 

Now the scatter rate is found by (eqs. 3.54, 3.55) 

7r 

).(W) - N 2irv J d6 u (6) sin6. 
i O R 

(3.59) 

After integration this yields 

(3.60) 

which is equal to 

) ] . (3.61) 

Now, the angle selection has to be performed. 

First, from eqs.(2.16) and (2.18), the angle 6R may be found by 
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with 

and 

ir 
N 2?rV J d6' u (6' )sin6' 

i R 
0 

ir 
1 - exp(-N

213 J d/J 2ni~ u (fj) 
i 

6 
BB 

R 

2 
1 - exp(-N airr) 

i 

1 - exp(-N airr2
) 

i m 

ir 
.A (it) - N 2irv(it) J d6' uBB(6') sin:8' 

BB i O 

- N virr
2

, 
i m 

It follows from eq.(3.62) that 

r2 
-- - -

(3.62) 

(3.63) 

(3.64) 

(3.65) 

Having found r
2
/r:. by drawing a random number u, t'}a is found by 

solving eq. (3.64). which eventually results in (Van de Roer and 

Widdershoven 1986) 

2 2 ( cos1' ( r /r ) - 1 -
R m 

2(1 - r 2/r2
) 

1 + 4 r2tc2/(:2k2))· 
m d 

(3.66) 

At ionized impurity densities higher than 1016 cm-3 at 77 K and 
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5·1017 cm-3 at 300 K this process comes into play. It is a very 

important factor in limiting the velocity, especially at fields up 

to 7 kV/cm. See chapter 4 for results. 

3.4.6 Electron-electron scattering 

At electron densities in the order of 1016 cm-3 and higher the 

Coulomb repulsion between electrons comes into play. An electron in 

state i is scattered into state i• by an electron in state i
2 

which 
1 l 

~ itself is scattered into state K;. Following the approach of Ziman 

(1960), a screened Coulomb potential analogous to eq.(3.51) 

2 e 
V(r) - - 4'1fE E r exp( -kdr) 

0 • 

(3.67) 

is used as the energy operator H' in combination with first-order 

perturbation theory. The matrix element then becomes 

2 
<it i IH' 1t• i·> - __ e_ 

1' 2 1' 2 Vi!. e (3.68) 
0 • 

The scatter rate is obtained from Takenaka et al. (1979) 

f (~ )[ 1 - f (~' ) ]( 1 • f (l' ) ] 6 (V + V • V'
1 

- v:) . 
2 1 2 1 2 .. 

(3.69) 

~ ~ ~ Under the assumption that the probabilities f(lt') and f(k') for It' 
l 2 1 

~ and IC:; being occupied are practically equal to zero, the scatter 

rate becomes 
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(3.70) 

where n
9 

denotes the electron density. 

This expression has been derived for the case of parabolic bands, 

~ ~ 
where both wave vector and energy are conserved, i.e. K

1 
+ K

2 
-

it1 + it, and iJ + iJ - iJ' + W' . It has proved useful to work with g 
1 2 l 2 1 2 

~ ~ :;') ~ ~ ~ :;') ~ 
and g', where g - K

2 
- K

1 
and g' - K; - K;. The angle~ between g 

and g' is given by Matulionis et al. (1975) 

cos~ - 1 -
1 + g2

(1 - r)/k 2 

d 

(3.71) 

where g - lt
1
1 - lt

2
1. The azimuthal angle~ is randomly distributed 

over [0,2w) and 

it, - it - <l' - l>/2. 
l l 

(3.72) 

For the selection of the electron-electron scattering process a 

rejection scheme is used owing to Brunetti et al. (1985). When in 

the Ensemble Monte Carlo calculations this process is selected for 

the electron under consideration, the other electron necessary is 

randomly selected from the ones left. 

This process has a thermalizing effect and has an increasing 

effect on the velocity, see chapter 4 for further details. 

3.5 Material parameters 

In the following table the material parameters for GaAs and AlAs are 

collected, together with the interpolation formulas necessary to 

obtain the parameters for Al Ga As. 
x 1-x 
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Table 3 .1 Material parameters for Ga.As, AlAs and Al Ga As, 
x y 

where y - 1 - x. 

GaAs 

& - 5.642 
G 

d - 5360 
G 

h"1 
LO,G 

.03536 

AlAs 

lattice constant (A) 

& - 5.661 
A 

3 density (kg/m) 

d - 3598 
A 

Al Ga As 
x y 

longitudinal polar optical phonon energy (eV) 

h"1 - • 05 
LO,A 

h a ,AG GO,A h2 2 + GO,G h2 2 
[ 

I! ( I! I! )] 1/2 "' - --x-- f.I) y-- f.I) 

v - 5240 
G 
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LO,AG I! I! LO,A £ LO,G 
«>,AG a,A a.G 

acoustic wave velocity (m/s) 

v - 5820 
A 

A - ( :: r CHA 
D - BAHG + B 

VN - x2
AH + xyD + y2cH 

A G 

VD - xHA + yHG 

v -a /Yi 
AG AG VD 



Table 3.1 continued 

E - 12.9 a,G 

Ii . 1 
F - s,G 
G Ii + 2 1,G 

D - 7.0 r,G 
D - 9.2 L,G 
D 9.27 X,G 

* 
~,G .063m

0 

* II L,G .222m
0 

* II X,G . 58m
0 

ar - .61 ,G 

a L,G .461 

a 
X,G 

.204 

static dielectric constant 

Ii a,A 

F -A 

10.9 

Ii 
a,AG 

1 + 2F AG 
1 • F AG 

acoustic deformation potential energy (eV) 

Dr - 12.2 ,A 
D 12.5 L,A 
D 9.5 X,A 

effective mass (kg) 

* m_ - .14m
0 1',A 

* mL,A .24m0 

• m .3711 X,A 0 

for each valley: 

DAG - xDA + yDG 

for each valley: 
m 11 

m AG 
G A ----m 

xmG + ymA 0 

non·parabolicity parameter (eV-1
) 

(1 * 2 
- ~.AG/mo) 

ar - .251 ar.m w ,A g,r.AG 

a L,A - .57 for the L· and X-valley: 

a - .251 a - yaG + xa X,A AG A 
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Table 3.1 continued 

D - 10
11 

rL,G 
Drx,G - 1011 

D • 10
11 

LL,G 
D - 5· 10

10 

LX,G 
D - 7·10

10 

XX,G 

hw -fi,G 

hw -rx,G 

.0278 

.0299 

hw - .029 
LL,G 

hw - .0293 
LX,G 

hw .0299 
XX,G 

w - 1.439 s.r.e 
w 1. 769 

g,L,G 

w - 1.961 
g.X.G 
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intervalley coupling constant (eV/m) 

D - 5· 1010 

rL,A 
D - 10

11 

rx,A 
D - 5· 1010 

for each coupling constant: 

LL,A 
D - 5·10

10 

LX,A 
D - 10

11 

XX,A 

intervalley phonon energy (eV) 

hw -fi,A 
hw -rx,A 

.0413 

.0473 

hw - .044 
LL,A 

hw - .0473 
LX,A 

hw - .0473 
XX,A 

for each energy: 

flwAG - xfu.lA + yhwG 

forbidden gap (eV) 

w r - 2.964 
g, .A 

w r - 1.439 + 1.087x + 0.438x2 
,, ,NJ . 

w - 2.464 g,L,A 
w - 2.221 

g,X,A 

W - 1.769 + 0.695x 
wa.L,ID - 1.961 + O.lx + 0.16x2 

g,X,ID 



Table 3.1 continued 

high-frequency dielectric constant 

E - 10.92 E - 8.5 co,G co,A 

( E - 1) ( E - 1) 
F 

co,G 
F = 

co,A 
F - xFA + yF

6 - (E + 2) (E + 2) G A AG co,G co,A 

(1 + 2FAG) 
E (1 - FAG) CO,AG 

electron affinity (eV) 

x - 4.07 e,G x - 3.58 e,A x.,AG - xx.,A + yxe,G 

piezoelectric constant (C/m2
) 

p - 0.16 p - 0.1 p 
xP E a2 + yP E a2 

z,A a,A A z,G s,G G 
z,G z,A z,AG 

optical deformation potential (eV/m) 

D o,r,G - 0 D o,r,A - 0 for each valley: 

D 3·1010 D - 3· 10
10 D - xD + yD o,L,G o,L,A o,AG o,A o,G 

D 0 D - 0 o,X,G o,X,A 

optical phonon energy (eV) 

hw - 0.0343 o,G hw - 0.0475 o,A hw - xhw + yhw 
o,AG o,A o,G 
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The values and formulas have been compiled by Williams and 

Glisson (1985). A review with values for material parameters for 

GaAs has been published by Blakemore (1982) and a review with 

interpolation formulas for Al.~,Ga1_xAs has been written by Adachi 

(1985). 

3.6 Additional remarks 

It should be remarked that in the treatment of the scatter processes 

in this chapter only static screening is taken into account. The 

term accounting for static screening is found from the highly 

-+ complex dielectric function E(q,w), by setting w-0. For a complete 

description of the dielectric function, also called the Lindhard 

function, see e.g. Madelung (1978). 

-+ The Fourier transform of the screened scatter potential, UF(q), 

is found from the Fourier tranform of the unscreened potential, 

-+ VF(q), through 

v ( ... ) 
-~ 

'7 E(q,w) 

In the case of static screening, when w-0, 

(3.73) 

(3.74) 

where ~D is the Debye wavelength, and screening is easily introduced 

with eqs;(3.73) and (3.74). This approach has (implicitly) been 

followed in the calculation of the scatter rates for piezo-electric 

scattering, ionized impurity scattering and electron-electron 

scattering. 

Dynamic screening (w ~ 0) corresponding to inelastic scattering 
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processes, requires a more complex description of the dielectric 

function. The inclusion of a frequency-dependent dielectric 

function, and thereby of dynamic screening, in the calculation of 

the scatter rates lies outside the scope of this thesis. 

Another problem, associated with the dielectric function, is the 

treatment of electron-plasmon scattering (Lugli and Ferry 1985). In 

this process, an electron is scattered by collective excitations of 

the electron gas. These excitations are known as the plasma 

oscillations and the energy quantum of these movements is called 

'plasmon'. 

To describe this process, the Coulomb part of the Hamiltonian for 

the electron gas is split into two parts by the introduction of a 

cut-off wave vector q
0

• For wavelengths above the 

collective-mode scattering dominates (electron-plasmon scattering), 

below l/q
0 

the 'binary' electron-electron scattering term as 

described in section 3.4.6 prevails. 

The value of q
0 

is obtained from an analysis of the singularities 

of the dielectric function, and equals roughly l/(2lD). 

The importance of electron-plasmon scattering in bulk Ga.As 

relative to the electron-electron scattering from section 3. 4. 6 is 

not clear from the published work by Lugli and Ferry. Both processes 

taken together yield a minor influence on the steady·state velocity, 

although on short time scales and in the form of the distribution 

function a considerable influence appears. Actually, the same 

conclusions approximately apply to electron-electron scattering 

alone (see chapter 4). 

For this reason and the fact that it only comes into play at 

wavelengths higher than twice the Debye wavelength, it seems 

reasonable to neglect electron-plasmon scattering at first instance. 
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C h a p t e r 4 

ELECTRON 

I 'N H I G H L Y 

T R A 'N S P 0 R T 

D 0 PED Ga As 

In this chapter results are presented of Ensemble Monte Carlo 

calculations of electron transport in bulk GaAs at temperatures of 

77 K and 300 K. First results will be shown for the case in which 

the semiconductor is undoped and the conduction electrons only arise 

from thermal generation. These results are used to check the Monte 

Carlo program. As the electron density increases with increasing 

doping densities, the Pauli exclusion principle becomes more 

important as well as interelectronic collisions (electron-electron 

scattering). The main purpose of the present chapter is to study the 

influence of the two latter mechanisms on transport properties. This 

has been done in detail by alternatingly turning them on or off, 

while the scattering by ionized impurities is taken into account in 

all cases. 

The results are presented in plots of the velocity, the energy, 

and the valley occupancy as a function of the electric field. In all 

simulations the following scatter processes (see chapter 3) have 

been taken into account in the physical model: 

elastic acoustic phonon scattering (ACe), 

piezoelectric scattering (PE), 

polar and non-polar optical phonon scattering (resp. POPA, POPE 

and NPOPA, NPOPE), 

equivalent and non-equivalent intervalley scattering (resp. L-lA, 
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L-LE, X-XA, X-XE, and g-IA, g~LE, g-XA, g-XE, L·XA, L·XE). 

The abbreviations between brackets are employed in tables to be 

presented. The 'A' denotes a process where absorption and 'E' a 

process where emission of a phonon takes place. The processes 

mentioned here are referred to in the following as the basic scatter 

processes. 

4.1 Results for non-doped GaAs 

In figs. 4.1--4.3 the velocity, kinetic energy and relative valley 

occupancy are presented as functions of electric field. These 

results have been obtained by Ensemble Monte Carlo simulations of 

GaAs at 77 K, where only the basic scatter processes are taken into 

account. This represents the situation of bulk GaAs with a 

negligible doping. The same quantities for the same material at 300 

K are shown in figs. 4.4--4.6. In each figure the overall values of 

each quantity are shown together with those in the separate valleys. 

The carrier density is taken equal to the intrinsic carrier 

6 -3 density, which equals 2.25·10 cm at 300 K. In reality, GaAs will 

always be unintentionally doped, giving rise to carrier density 

higher than the intrinsic value. For the purpose of the simulations 

presented in this subsection the electron density is irrelevant. 

As the material parameters of Williams and Glisson (see chapter 

3) have been used, the results of the present work have been 

compared with those obtained by these authors, at electric fields 

strengths of 4, 7 and 20 kV/cm (Williams 1982, Glisson et al. 1982). 
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Fig. 4.1 The average steady-state kinetic energy against electric 

field for bulk GaAs at 77 K, for all electrons (+), and electrons in 

the r-valley (*), the L-valley (o), and the X-valley (x). 
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Fig. 4.2 The average drift velocity against electric field for bulk 

GaAs at 77 K. The symbols have the same meaning as in fig. 4.1. 
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Fig. 4. 3 The average relative valley occupancy against electric 

field for bulk GaAs at 77 K, for electrons in the r-valley (+), the 

L-valley (*), and the X-valley (o). 
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Fig. 4.4 The average st:eady-stat:e kinetic energy against electric 

field for bulk Ge.As at: 300 K, for all electrons (+), and electrons 

in the r-valley (*), t:he L-valley (o), and the X-valley (x). 
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Fig. 4.5 The average drift velocity against electric field for bulk 

Ge.As at: 300 K. The symbols have the same meaning as Ln fig. 4.4. 
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relative valley occupancy against electric 

field for bulk Ge.As at: 300 K, for electrons in the r-valley (+), the 

L-valley (*), and the X-valley (o). 
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The present results have been obtained with a three-valley (r-L-X) 

model, the results of Williams and Glisson with a two-valley (r-L) 

model. However, this will cause a (small) difference only at 20 

kV/cm, as the X-valley becomes populated only at field strengths 

above 10 kV/cm. 

The following respective values have been obtained at the fields 

mentioned above: velocity 204, 154 and 102 km/s (Williams and 

Glisson: 203, 156 and 94 km/s), energy .106, .134 and .128 eV (.105, 

.137 and .132 eV) and r-valley occupancy 86. 6, 58. l and 25. 4 % 

(87 .8, 61.2 and 29.6 %) • Regarding the fact that the deviations 

always remain smaller than 5 % (with the exception of the velocity 

and valley occupancy at 10 kV/cm) it may be concluded that the 

computer program developed performs correctly. 

A comparison has also been made with experiments carried out at 

room temperature (Braslau and Hauge 1970, Houston and Evans 1977). 

The measured and calculated velocity-field curves, shown in fig. 

4.7, match satisfactorily. 
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Fig. 4. 7 The drift velocity for electrons in undoped bulk GaAs at 

300 K, obtained by EHC calculations (+), compared with measured 

values (*). 

53 



In tables 4.1 and 4.2 the occurrence of the scatter processes at 

fields of l, 5, and 10 kV/cm are shown for temperatures of 77 K and 

3001<, respectively. These tables give a good impression of the 

relative importance of each scatter process under different 

circumstances and will serve as a starting point to study the 

influence of the scatter processes coming into play at high doping 

densities. 

It is clear 

scattering is 

from 

the 

th~se tables that 

dominant process. 

polar 

In 

optical phonon 

addition, the 

temperature-dependence of the Bose-Einstein distribution (eq. 3.5) 

can be recognised in the less frequent occurrence of both this 

scatter process and intervalley scattering at 77 K compared with 300 

K. As less optical and intervalley phonons are available at lower 

temperature, scattering by such phonons becomes less likely. 

The higher velocities at 77 Kare mainly caused by these effects. 

Firstly, because of the decreased importance of intervalley 

scattering more electrons reside in the high-mobility r-valley. 

Secondly, as a consequence of the decrease in the occurrence of 

polar optical phonon scattering, electrons in any valley have a 

higher velocity. 
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Table 4.1 The average occurrence, per electron, per valley, of the 

basic scatter processes in GaAs at 77 K, for electric field 

strengths of l, 5 and 10 kV/cm. Steady-state conditions are 

considered, and the results apply to a time interval of 0.1 ps. 

1 kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

# electrons 5000 3405 1595 1830 3130 

Ace > 0 0.01 0.03 0.01 0.04 

PE 0.02 0.01 0.05 0 0.04 

POPA 0.0 > 0 0.01 > 0 0.01 

POPE 0.07 0.42 0.12 0.50 0.27 

g·lA 0.0 0.0 > 0 0.01 > 0 

g·LE 0.0 0.04 0.09 0.15 0.09 

g-XA 0.0 0.0 > 0 

g·XE 0.0 0.0 0.01 

L·lA 0.01 0.01 

L·LE 0.08 0.18 

L-XA 0.0 0.0 
I 

L-XE 0.0 > 0 

NPOPA 0.0 0.0 0.0 0.0 0.0 I 

NPOPE 0.0 0.0 0.0 0.0 > 0 
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Table 4.2 The average occurrence, per electron, per valley, of the 

basic scatter processes in GaAs at 300 K, for electric field 

strengths of l, 5 and 10 kV/cm. Steady-state conditions are 

considered, and the results apply to a time interval of 0.1 ps. 

1 kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

~electrons 4997 3 3755 1240 2180 ~ 
Ace 0.01 0.03 0.16 0.04 0.17 

PE 0.08 0.05 0.15 0.04 0.15 

POPA 0.23 0.21 0.41 0.20 0.42 

POPE 0.25 0.53 0.46 0.64 0.55 

g-IA 0.0 0.04 0.05 0.12 0.05 

I 
g-LE 0.0 0.03 0.14 0.12 0.14 

g-XA 0.0 > 0 > 0 

g-XE 0 > 0 

L-IA 0.29 0. 

L-LE 0.32 0.39 

L-XA >0 >0 

L-XE >0 > 0 

NPOPA 0.0 0.0 0.01 0.0 0.01 

NPOPE 0.0 0.0 0.01 0.0 0.01 
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4.2 Effect of ionized impurity scattering 

Usually, n-doped GaAs is obtained by doping with Si or Ge. The donor 

level for both materials is located about 6 meV below the conduction 

band. In order to obtain an ionized impurity density of 5·1017 cm-3 

18 -3 at 77 K or an ionized impurity density of l · 10 cm at 300 K it 

can be calculated (Smith 1978) that one needs a doping density of 

approximately 1.4·1019 cm-3
, or 5.4·1018 cm-3 respectively. 

In figs. 4.8-4.10 the results of Ensemble Monte Carlo 

calculations at 77 K are shown with ionized impurity and electron 

densities of 1015
, 1016

, 1017 and 5·1017 cm-3
, respectively. For 

comparison, the values for the zero-doping case are included. 

Contrary to the presentation in the previous section no distinction 

is made between separate valleys. No essential new information would 

be provided, since qualitatively for each case the same curves 

result. 

In figs. 4. 11-4. 13 the same approach is taken for the results 

obtained at room temperature, for ionized impurity and electron 

densities of 1016
, 1017

, 5·1017 and 1018 cm- 3
• The same general 

conclusions can be drawn for both temperatures: the higher the 

doping density, the lower the drift velocity, the lower the energy 

and the higher the r-valley occupancy. These effects are most 

prominent at fields up to 3 kV/cm, since the impurities have the 

largest influence on low-energy electrons. 

The above results have been compared with magnetoresistance 

measurements by Evanno (1983) and Monte Carlo calculations by Perri 

(1986), for an ionized impurity and electron density of 1017 cm-3 at 

300 K. From table 4.3 one can conclude that neither the results by 
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Fig. 4.8 Average steady-state kinetic energy against electric field 

in GaAs at 77 K. The ionized impurity densities are 0 (+), 

1015 cm- 3 (*), 1016 cm-3 (o), 10 17 cm-3 (x), and 5·1017 cm-3 
(A). 
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Fig. 4.9 Average drift velocity against electric field in GaAs at 

77 K. The symbols have the same meaning as in fig. 4.8. 
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Fig. 4.10 Average relative r-valley occupancy against electric field 

in GaAs at 77 K. The symbols have the same meaning as in fig. 4.8. 
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Fig. 4.11 Average steady-state kinetic energy against electric field 

in GaAs at 300 K. The ionized impurity densities are 0 (+), 

1016 cm- 3 (*), 1011 cm-3 (o), 5·1017 cm-3 (x), and 1018 
cm-

3 
(J::.). 

250 

,,..... 
200 (I) 

'-. 
E 
.Y. 150 

>-
I-

100 0 
0 
...J 
w 50. 
> 

FIELD (kV/cm) 

Fig. 4.12 Average drift velocity against electric field in GaAs at 

300 K. The symbols have the same meaning as in fig. 4.11. 
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in GaAs at 300 K. The symbols have the same meaning as in 

fig. 4.11. 
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Perri nor the results obtained in this work exactly match the 

measurements. However, in a qualitative manner, both match the 

measurements equally well. 

In table 4.4 the rate of occurrence in steady state of all 

scatter processes is shown for an ionized impurity density of 1018 

cm-3 at 300 K. Comparison of table 4.4 with table 4.2 shows that for 

18 -3 
an ionized impurity and electron density of 10 cm (at 300 K), 

ionized impurity scattering is the most important scatter process at 

low fields. However with increasing fields this process becomes less 

important. 

Table 4. 3 Steady-state velocities in n-doped GaAs as obtained from 

this work (KN), Honte Carlo calculations by Perri (FP) and 

magnetoresistance measurements by Evanno (MHE). Ionized impurity and 

electron density is 1017 
cm-

3 and the temperature equals 300 K. 

Electric field velocity (KN) velocity (FP) velocity (MHE) 

(kV/cm) (km/s) (km/s) (km/s) 

1 53 52 35 

3 156 155 108 

5 179 156 170 

10 123 110 105 

20 101 97 - I 
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Table 4.4 The average occurrence, per electron, per valley, of the 

scatter processes in n-doped GaAs at 300 K, for electric field 

strengths of l, 5 and 10 kV/cm. The ionized impurity and electron 

density equal 1018 cm-3
• Steady-state conditions are considered, and 

the results apply to a time interval of 0 .1 ps. Scattering by the 

impurities is denoted by the abbreviation Ile. 

1 kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

# electrons 5000 4125 870 2305 2665 

Ace 0.01 0.02 0.15 0.04 0.17 

PE > 0 > 0 0.01 0.0 0.01 

POPA 0.23 0.21 0.42 0.20 0.41 

POPE 0.24 0.45 0.46 0.63 0.53 

g-IA 0.0 0.023 0.049 0.11 0.05 

g-LE 0.0 0.017 0.136 0. 0.14 

g-XA 0.0 0.0 0.0 

g-XE 0.0 0.0 o.o 

L-IA 0.29 0.30 

L-LE 0.32 0.37 

L-XA 0.0 > 0 

L-XE ~ >0 

Ile 0.95 0.77 1.30 0.61 1.31 

NPOPA 0.0 o.o 0.01 0.0 0.01 

NPOPE 0.0 0.0 0.01 0.0 0.01 
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4.3 Effect of degeneracy 

4.3.l Discussion of degeneracy 

The Pauli exclusion principle becomes more important under 

degenerate conditions. In that case the Fermi-Dirac distribution 

f (W) - ---
1
----

FD exp[(W-r)/k T] + 1 
B 

(4.1) 

where r is the chemical potential (or Fermi level), can no longer be 

approximated by the Maxwell-Boltzmann distribution 

f (W) - exp[ <r-W)/k T]. 
MB B 

(4. 2) 

In the usual Monte Carlo approach, for the calculation of the 

scatter rate in eq.(2.5) the transition rate S(~.~') is used, 

~ neglecting the factor 1 - f(IC') formally to be taken into account 

according to eq. (1.4). This factor represents the probability that 

the new state ~· is not occupied. This corresponds to fMB (W') or 

~ fMB(lC') equal 0. This approximation serves well under non-degenerate 

conditions, where Maxwell-Boltzmann statistics apply. 

The chemical potential is found from (Ziman 1972) 

- w -F 
(4.3) 

Here a is the non-parabolicity parameter for the r-valley as given 

by eq.(3.2). The chemical potential at T - 0 K is called the Fermi 

energy W
1

, and is equal to 
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-1 +I 1 + 4c, 
w --------

F 
(4.4) 

2a 

where 

(4.5) 

and n is the electron concentration. The density of states in the 
• 

conduction band, g(W), is given by, using the Kane approximation, 

1/2. * 3/2. • 
g(W) - 2 (m ) / W(l + aW) (1 + 2a). 

.2fi3 
(4.6) 

All energies are taken with respect to the bottom of the conduction 

band. Only the r-valley is taken into account here. As electrons in 

thermodynamical equilibrium are considered, this approximation will 

not lead to serious errors. 

As the limit for the validity of the Maxwell-Boltzmann approach 

the electron concentration at which r rises above the bottom of the 

conduction band is taken. Only at concentrations higher than this 

limiting value n degeneracy effects will be 
a, limit. 

account. 

Taking a equal to zero leads to 

n 
e,limit 

taken into 

(4.7) 

where for GaAs N: is a few percents smaller than the effective 

density of states in the conduction band, N (Blakemore 1982). 
c 

Usually, the limit is taken as (Smith 1978) 

n 
•,limit. 

0.4 N 
c 

(4.8) 

Hence, approximation eq.(4.7) will serve well. The values for 

n . at 77 K and 300 K resulting from eq. (4. 7) are 
•,,limit. 
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and 

respectively. 

n (77) - 2.58·1017 cm-3 

e,limit 

n (300) - 3.35·1016 

e,limit 

-3 
cm , 

(4.9) 

(4.10) 

4.3.2 Inclusion of degeneracy in Ensemble Monte Carlo calculations 

The method followed to introduce the degeneracy effects into the 

Ensemble Monte Carlo scheme is based upon the ideas of Bosi and 

Jacoboni (1976), originally developed for the one-electron Monte 

Carlo method. Lugli and Ferry (1985c) further developed these ideas 

which will be presented below, with some minor changes. 

The quintessence of the solution lies in the factor 1 - f(~' ) 

'officially' modifying the transition rate S(~.~') (see chapter 2). 

As outlined in the former subsection, f(~') is set to zero assuming 

Maxwell-Boltzmann statistics. All final states ~, are available in 

this scheme. In Ensemble Monte Carlo methods f(~') is exactly known 

at equidistant time steps and could be used to update the scatter 

rates at regular time intervals (Williams et al. 1986), which is a 

very time consuming process. Therefore a different approach, also 

based upon the knowledge of f(~') in the Ensemble Monte Carlo 

scheme, is followed. 

In first instance the usual procedure for the selection of a 

scatter process and the final state is applied (see chapter 2). Once 

the final state~, has been chosen, the normalized f(~') has become 

exactly known and a rejection technique is used to decide whether 

the transition from ~ to ~, actually will take place. 

Note that in f(~' ) the ~, for the electron under treatment is 
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contained at the end of its free flight, together with the states of 

the other electrons at the beginning of the free flight. A suitable 

choice of time step between the observation points, i.e. comparable 

to the scatter time (~ 0.1 ps), minimizes the error. 

'I'he normalization of f(°it') consists of determining how many 

~ electrons are allowed to occupy a cell of given volume in ].(:-space 

with respect to the electron density. When M simulation electrons 

are used to simulate a density n
9

, the effective volume V of real 

space that is occupied equals V - M/n
9

• 'I'he density of allowed wave 

vectors is equal to 2V/(211') 3 (Kittel 1986), where the factor 2 

accounts for the two possible spin orientations of an electron. Now, 

a grid can be set up in ~-space, with cells of volume 

(4.11) 

'I'he number of electrons Mc that are allowed to occupy a cell with 

volume 0
0 

is the density of states times the volume, so 

20V 20M M __ c ___ c_ 

c 811'3 
(4.12) 

The normalized distribution f is determined for each cell and is 
c 

equal to the number of electrons occupying a cell, divided by M
0

• 

This f and a random number r in (0,1) are used to decide whether 
c 

an electron is allowed to enter that particular cell: if r ~ f the 
c 

transition is forbidden and a self-scattering takes place instead, 

and if r > f it is allowed and carried out. 
c 

With this algorithlll actually the Pauli exclusion principle will 

be taken into account. 

In the approach outlined above two minor changes compared to the 

one proposed by Lugli and Ferry (1985c) have been introduced. 
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These authors considered a constant cubic volume a - ll.k ll.k ll.k 
c x y ll 

in (-space instead of a variable 'spherical' volume, as presented in 

this work. The reason of this change is the following. Drawing 

electrons in initial states determined by the Fermi-Dirac 

distribution, followed by the restriction imposed by the Pauli 

exclusion principle, does not yield a satisfactory distribution 

(i.e., a Fermi-Dirac distribution) when using a constant cubic 

volume, whereas using a spherical volume it does. As Zimmermann 

(1987) suggested, the method presented here more closely reflects 

the symmetry of the problem. 

Another change will be introduced in the following. Lugli and 

Ferry report an application of their algorithm only to low-field 

problems (90 V/cm and 900 V/cm), in which all electrons reside in 

the r-valley. A complete extension to the three-valley model for 

higher fields would be rather complicated, though feasible. In this 

work it is suggested to circumvent this problem at first instance. 

Considering the fact that in the L· and X-valleys much more states 

are available than in the r-valley, it is reasonable to suppose that 

the Pauli exclusion principle will not come into play for states in 

these valleys. So, the rejection scheme will only be considered when 

the final state is in the r-valley. 

This approximation is expected to yield, as a first order 

approach, at the electron concentrations considered in the 

following, a good qualitative impression of what will happen at 

higher fields, where also electrons in the other valleys are 

present. 
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4.3.3 Results 

The results of Ensemble Monte Carlo calculations for GaAs, taking 

the Pauli exclusion principle into account, are shown in figs. 

4.14-4.16. The ionized impurity and electron densities are 1018 cm-3 

and the temperature 300 K. For comparison, also the results obtained 

neglecting degeneracy (section 4.2) are shown in these figures. 

As can be seen in fig. 4.14 the influence on energy is the most 

prominent at fields up to 10 kV/cm. This corresponds to what is 

~ expected. At low fields the electrons are densely packed in K- (and 

energy) space according to the Fermi-Dirac distribution. Only higher 

wave vector values (higher energies) are available as final states. 

At fields below 5 kV/cm velocity has increased. This is caused by 

the fact that the exclusion principle at these fields mainly 

operates at the expense of ionized impurity scattering (which 

process has its maximum probability at low energies in the order of 

0.03 eV), as can be concluded from comparison of tables 4.4 and 4.5. 

At fields above 5 kV/cm this effect no longer dominates, but the 

fact that more electrons reside in the low-mobility L-valley (see 

fig. 4.12), and the velocity drops below the values calculated 

without the exclusion principle. 

Between 10 and 20 kV/cm the effect eventually disappears, as the 

electrons have been spread out sufficiently in ~-space, and 

sufficient states have become available. 

The influence on the energy distributions of electrons in the 

r-valley is demonstrated for fields of l and 5 kV/cm, respectively, 

in figs. 4.17 and 4.18. The influence of the exclusion principle at 

5 kV/cm is less pronounced than at 1 kV/cm, but still present. 

Comparison of the present results at a field of 900 V/cm with 
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those obtained by Lugli and Ferry shows the same behaviour for the 

energy distribution. However, the influence on velocity does not 

correspond. This may be caused by· the fact that in the work of Lugli 

and Ferry Thomas~Fermi screening is used, instead of Debye 

screening. In Thomas-Fermi screening the screening length as defined 

by eq.(3.27) is used, with the 'electron temperature' instead of the 

lattice temperature. The electron temperature, a measure for the 

kinetic energy of the electrons, is not a constant, and is usually 

larger than the . lattice temperature. As a consequence of a higher 

temperature the screening length increases, .and therefore the 

influence of ionized impurity scattering, yielding lower velocities. 

Comparison however with comparable calculations of Williams et 

al. (1986), which were obtained by regularly updating the scatter 

rates, shows the same ·influence of degeneracy on low field 

behaviour. 
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Fig. 4.14 Average steady-state kinetic against electric field for 

GaAs at 300 K. The ionized impurity density is 1018 cm-3
• The case 

(*) where degeneracy is taken into account, and (+) where it is not. 
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Fig. 4.15 Average drift velocity against electric field for GaAs at 

300 K. The ionized impurity density is 1018 cm-3
• The symbols have 

the same meaning as in fig. 4.14. 
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at 300 K. The ionized impurity density is 1018 cm-3
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Fig. 4.18 Energy distribution of r-valley electrons in steady state, 

without (-) and with (- -) degeneracy being taken into account. 

Ionized impurity density is 1018 
cm-

3
, the temperature is 300 K and 

the electric field strength is 5 kV/cm. 
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Table 4.5 The average occurrence, per electron, per valley, of the 

scatter processes in n-doped GaAs at 300 K, for electric fields of 

1, 5 and 10 kV/cm. The ionized impurity and electron density equal 

1018 cm- 3
• Steady-state conditions are considered, and the results 

apply to a time interval of 0.1 ps. Scattering by impurities is 

denoted by Ile. Degeneracy (PEP) has been taken into account. 

1 kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

# electrons 4495 5 4000 995 2285 2685 

Ace 0.01 0.02 0.16 0.03 0.17 

PE > 0 > 0 0.01 > 0 0.01 

POPA 0.20 0.19 0.43 0.19 0.42 

POPE 0.21 0.43 0.48 0.57 0.55 

g-LA > 0 0.03 0.06 0.10 0.05 

g-LE > 0 0.02 0.14 0.12 0.14 

g-XA 0.0 > 0 > 0 

g-XE 0.0 0.0 > 0 

L-LA 0.30 0.32 

L-LE 0.33 0.40 

L-XA > 0 0.01 

L-XE > 0 > 0 

IIe 0.60 0.63 1.35 0.55 1.33 

PEP 0.61 0.17 > 0 0.03 > 0 

NPOPA 0.0 0.0 0.01 0.0 0.01 

NPOPE 0.0 0.0 0.01 0.0 0.01 
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4.4 Effect of electron-electron scattering 

The results of Ensemble Monte Carlo calculations for GaAs, including 

the electron-electron scattering process (chapter 3) are shown in 

figs. 4.19-4.21. The ionized impurity density and the electron 

18 -3 density both are equal to 10 cm and the temperature is 300 IC 

For comparison the results obtained for the same densities without 

taking this process into account (section 4.2) are also shown. 

From fig. 4.19 it is seen that the average energy is hardly 

affected by this process. However, both velocity and r-valley 

occupancy have been significantly raised, for electric fields in the 

range 5 to 20 kV/cm. 

In table 4.6 the rates of occurrence of the scatter processes are 

shown. Comparison with table 4.4 shows that at 1 kV/cm the 

occurrence of neither of the processes, except of course for the one 

added, is changed. Therefore it is clear that velocity has not been 

changed either (fig. 4.20). 

At 5 kV/cm the reduction of intervalley scattering, even in 

steady state conditions is clear, as well as at 10 kV/cm. This 

suppression of intervalley scattering results in a higher velocity, 

since more electrons reside in the high-mobility r-valley. 

The energy distributions of electrons in the r-valley at 1, 5 and 

10 kV/cm, rsepectively, are shown in figs. 4.22-4.24. These figures 

clearly show the thermalizing influence of electron-electron 

scattering. The influence on the occurrence of intervalley 

scattering arises from the 'shrinking' of the energy distribution at 

the high-energy tail, as the probability of intervalley scattering 

increases with increasing energy. 
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One-electron Monte Carlo results obtained by Inoue and Frey 

(1980) under the same conditions yield results, which are 

qualitatively comparable to the present results. At 4 kV/cm the 

following values have been found: average velocity with and without 

electron-electron scattering 148 and 138 km/s, respectively (Inoue 

and Frey: 170 and 170 km/s), relative r-valley occupancy 94.6 and 

92.6 % (88 and 86 %), and kinetic energy .084 and .082 eV (.087 and 

.075 eV). At 10 kV/cm these values have become resp. 136 and 117 

km/s (130 and 120 km/s), 49.6 and 46.1 % (37 and 32 %) and .13 and 

.13 eV (.21 and .18 eV). 

The fact that the values do not correspond must be caused by 

different material parameters. The energies are difficult to 

compare, as Inoue and Frey only give electron temperatures T
8

, which 

have been converted according to !kT + .!m:.v2 
- W . 
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Fig. 4.19 Average steady-state kinetic energy against electric field 

for GaAs at 300 K. The ionized impurity density is 1018 
cm-

3
• The 

case (*) where electron-electron scattering is taken into account, 

and (+) where it is not. 
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Fig. 4.22 Energy distribution of r-valley electrons in steady state, 

without (~) and with (- -) electron-electron scattering being taken 

into account. Ionized impurity density is 1018 
cm-3

, the temperature 

is 300 K and the electric field strength is 1 kV/cm. 
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Fig. 4.24 The same as in fig. 4.22, with an electric field of 

10 kV/cm. 
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Table 4.6 The average occurrence, per electron, per valley, of the 

scatter processes in n-doped GaAs at 300 JC, for electric field 

strengths of 1, 5 and 10 kV/cm. The ionized impurity and electron 

density equal 1018 
cm-

3 Steady-state conditions are considered, and 

the results apply to a time interval of 0 .1 ps. Scattering by the 

impurities is denoted by the abbreviation Ile. Electron-electron 

scattering (E-E) has been taken into account. 

l kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

# electrons 5000 4260 735 2480 2480 

Ace 0.01 0.02 0.16 0.03 0.18 

PE > 0 >O 'n n 01 

POPA 0.23 0.21 0.19 0.42 

POPE 0.24 0.47 0.58 0.58 

g-IA 0.0 0.018 0.054 0.09 0.05 

g·LE 0.0 0.015 0.137 0.11 0.14 

g·XA 0.0 > 0 > 0 

g·XE 0.0 0.0 >O 

L·IA 0.30 0.32 

L·LE 0.33 0.42 

L-XA > 0 0.01 

L·XE >0 > 0 

Ile 0.95 

~ 
1.33 0.59 1.33 

NPOPA 0.0 0.01 0.0 0.01 

NPOPE 0.0 0.0 0.01 0.0 0.01 

E-E 0.68 0.33 0.66 0.32 0.85 
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4. 5 Effect of electron-electron scattering in combination with 

degeneracy 

Finally, Ensemble Monte Carlo calculations on GaAs have been 

performed, where electron-electron scattering and the Pauli 

exclusion principle both are taken into account. This is achieved by 

the introduction of the factors 1 - f(~;) and 1 - f(~;). present in 

eq.(3.69), in the same way as described in section 4.3. An 

electron-electron scatter process will be rejected if one of the two 

final states ~, and ~, cannot be occupied. 
l 2. 

In figs. 4.25--4.27 the results are shown, for an ionized impurity 

and electron density of 1018 cm-3 and a temperature of 300 K. The 

results obtained in section 4.2 are again shown for comparison. 

The results indicate an addition of the two mechanisms: at fields 

below 4 kV/cm the exclusion principle dominates, resulting in an 

increased energy and a slight increase of the velocity. The tendency 

towards higher r-valley occupancy caused by electron-electron 

scattering is at these fields neutralized by the opposite tendency 

of the exclusion principle. 

At fields beyond 4 kV/cm the influence of electron-electron 

scattering dominates that of the Pauli exclusion principle. Then, 

practically the same curves as in section 4.4 appear. 

The energy distributions given in figs. 4.28 and 4.29 demonstrate 

the interaction of both mechanisms, at 1 kV/cm. Figure 4.28 shows a 

comparison of the case with only electron-electron scattering and 

the case with electron-electron scattering combined with the 

exclusion principle. Analogous to section 4. 3 the distribution is 

shifted towards higher energies as a consequence of the inclusion of 
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the latter. 

Figure 4. 29 compares the case of only the exclusion principle 

with the case of exclusion principle and electron-electron 

scattering. Again, as in section 4.4, the thermalizing influence 

shows: the distribution function in the latter case has become less 

broadened than in the former case. 
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Fig. 4.25 Average steady-state kinetic energy against electric field 

for GaAs at 300 K. The ionized impurity density is 1018 cm-3
, where 

electron-electron scattering and degeneracy are taken into account 

(*), and where they are not (+). 
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Fig. 4.26 Average drift velocity against electric field for GaAs at 

300 K. The ionized impurity density is 1018 

symbols have the same meaning as in fig. 4.25. 
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Fig. 4.27 Average relative r-valley occupancy against electric field 

for GaAs at 300 K. The ionized impurity density is 1018 cm-3
• The 

symbols have the same meaning as in fig. 4.25. 
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Fig. 4.28 Energy distribution of r-valley electrons in steady state, 

with electron-electron scattering and degeneracy (~) and with only 

electron-electron scattering (- -) taken into account. Ionized 

impurity density is 1018 cm-3
, the temperature is 300 K and the 

electric field strength is 1 kV/cm. 
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Fig. 4.29 Energy distribution of r-valley electrons in steady state, 

with electron-electron scattering and degeneracy (~) and with only 

degeneracy (- -) taken int:o account:. Ionized impurity density is 

1018 
cm"

3
, t:he temperat:ure is 300 K and the elect:ric field st:rengt:h 

is 1 kV/cm. 

4.6 Concluding remarks 

Concerning the effects of degeneracy and electron-electron 

scattering on the transport properties of GaAs, with an ionized 

impurity and electron density of 1018 cm"3 at 300 K, the following 

conclusions can be drawn. 

Electron-electron scattering causes an increase in velocity in 

the order of 10 % at fields between 5 and 30 kV/cm. While the 

average energy is hardly affected, the high- and low-energy tails of 

the energy distribution increase relatively towards the peak value 

of the distribution. This causes a reduction of intervalley 

scattering. 

As a result of the inclusion of degeneracy velocity is slightly 

changed; an increase at fields until 10 kV/cm, a decrease at higher 
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fields. The energy distribution as a whole is shifted towards higher 

energy, especially at low fields. Consequently, at low fields 

average energy is significantly increased. 

When both mechanisms are combined their effects are superposed. 

In a way both mechanisms counteract, especially at the high-energy 

tail of the distribution. There, degeneracy pushes the distribution 

towards higher, and electron-electron scattering towards lower 

energies. 

This observation appears to be in contrast with a statement by 

Lugli and Ferry (1985c). They stated that degeneracy forces the 

electrons into high-energy regions, which is correct, after which 

they conclude that degeneracy has (in a way) exactly the same 

influence on energy distribution as electron-electron scattering. 

From the work presented here it follows that the latter only applies 

to electrons in the low-energy tail! 

In general, at the density considered, the effect on transport 

properties is not dramatic. Electron-electron scattering is the more 

prominent one of the two mechanisms studied. 

At higher densities degeneracy is expected to have a larger 

influence than at the density considered, which has been confirmed 

for an electron and ionized impurity density of 1019 cm"3
• However, 

at this density, already at near-equilibrium conditions electrons 

tend to populate the L-valley, and the validity of the model 

presented here becomes questionable. In this case full account of 

the occupation of the states in the whole Brillouin zone should be 

taken. From the view point of algorithm design and physical concept 

this is not an easy task to fulfil. 

81 



82 



c h a p t e r 5 

ELECTRON TRANSPORT IN AN 

AlGaAs/GaAs HETEROJUNCTION 

In this chapter results are presented of Ensemble Monte Carlo 

calculations of electron transport along the interface of an 

AlGaAs/GaAs heterojunction. Parallel to the interface a constant 

electric field is applied. A rectangular region is considered with 

very simple boundary conditions. In order to obtain the electric 

field perpendicular to the interface, Poisson's equation is solved 

in one dimension only. This one-dimensional approach is justified 

because the longitudinal dimension is take sufficiently high for the 

electron density to be independent of the longitudinal coordinate. 

On the one hand the model developed serves as a first step in 

accomplishing a more complex one, i.e. a model of the HEMT (chapter 

6). On the other hand it makes it possible to consider into detail 

the influence of real space transfer and the electric field 

perpendicular to the interface. 

5.1 Introduction 

In modulation doped N-AlGaAs/GaAs heterojunctions, conduction 

electrons in the GaAs side of the heterojunction, under influence of 

a field parallel to the interface, reach higher steady-state 

velocities than in n-doped GaAs with an equivalent electron density 
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(Dingle et al. 1978). This occurs at moderate field strengths and 

becomes more prominent when the temperature is lower. The speed 

enhancement is caused by the spatial separation of the conduction 

electrons in GaAs from the donors in the AlGaAs layer. These 

electrons originate from AlGaAs, and have been diffused into GaAs. 

There they have become trapped in a potential well because of the 

difference in conduction band levels of GaAs and AlGaAs. In 

addition, as a result of the space charge present, band bending 

occurs. See fig. 5.1. 

In this way, a high electron density has been obtained while the 

negative effect of ionized impurities on mobility has been 

circ\.UJIVented. This is one advantage of the heterojunction based HEMT 

(chapter 6) over the conventional GaAs MESFET. 

In the potential well at the interface a two-dimensional electron 

gas may be formed. In a two-dimensional electron gas, electron 

transport perpendicular to the interface is prohibited. The wave 

vector component in this direction is quantized and discrete energy 

subbands are formed. As a result, the scatter rates as presented in 

chapter 3 are modified (Price 1981). However, in the results 

presented in this chapter, the influence of this energy 

discretization has been neglected. 

Another physical mechanism associated with heterostructures is 

real space transfer. The concept of real space transfer has been 

introduced by Hess et al. (1979) as a means of obtaining a negative 

differential resistance in layered AlGaAs/GaAs heterostructures. 

Monte Carlo calculations on these structures have been performed, 

without and with taking into account the influence of the transverse 

electric field, respectively by Glisson et al. (1980) and Littlejohn 
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et al. (1983). 

In the calculations on multiple AlGaAs/GaAs layers by Littlejohn 

et al. (1983) it has been suggested that in the presence of a 

transverse field steady-state velocities in GaAs are increased. In 

the results to be presented in the following the influence of the 

transverse field will be further investigated, however, in a single 

heterostructure. 

WC 

~ WO 
WC 

WY 

WY 

AIGaAs Ga As 

A 

AIGaAs Ga As 

B 

Fig. 5.1 The energy band diagrams of AlGaAs and GaAs. The diffusion 

of conduction electrons from the AlGaAs Ls depicted (A), which 

electrons become trapped in the potential well at the 

hetero!nterface (B). 
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5.2 Description of the model for electron transport 

The area studied is rectangular and consists of a layer of N-doped 

AlGaAs on top of a layer of undoped GaAs, see fig. 5. 2. Starting 

from a situation of thermal equilibrium with all electrons in GaAs, 

the electron transport under influence of an electric field parallel 

to the interface (corresponding to the x-direction in fig. 5.2) is 

studied. This field will be denoted by 'longitudinal' field. 

In order to obtain the electric field perpendicular to the 

interface, Poisson's equation is solved in this direction (the 

y-direction). The resulting field is called the 'transverse' field. 

N-AIGaAs 

Ga As 

x 
Fig. 5.2 The heterojunction modelled consists of a layer of N-AlGaAs 

on top of undoped GaAs. The arrows denote the boundary conditions 

for the electrons, which will be introduced in section 5.2.3. 

5.2.1 Ensemble Monte Carlo method 

The Ensemble Monte Carlo method as described in chapter 2 is 

applied. The longitudinal field is fixed, and the transverse field 

is determined from the solution of Poisson's equation 

86 

8 2 1/> __ _ P_ 
E E 

0 s 
(5.1) 



Here ~ denotes the potential and p the charge density. The 

transverse electric field E is given by 
y 

(5.2) 

In this approach the variation of electron density in the 

x-direction is neglected. This is justified, the longitudinal field 

being constant, if the length of the interface is long enough for 

electrons to reach the steady-state velocity when they proceed along 

the interface. This condition is surely fulfilled with an interface 

length over 2 µm. 

The conduction bands of GaAs and AlGaAs are both described by the 

three-valley model given in chapter 3. The material parameters for 

both materials are taken from table 3.1. 

Scatter processes taken into account are acoustic phonon, 

piezoelectric, polar and non-polar optical phonon, equivalent and 

non-equivalent intervalley scattering, and in the AlGaAs also 

ionized impurity and random potential alloy scattering. Note that 

energy discretization in the potential well at the interface is not 

taken into account. This means that the scatter rates given in 

chapter 3 apply. 

5.2.2 Boundary conditions for Poisson's equation 

The total simulation time is divided into equidistant time 

intervals, the so-called field-adjusting time steps. At the end of 

each time step the one-dimensional Poisson equation (5.1) is solved, 

from which the transverse electric field distribution valid in the 

next step is determined. 

The direction for which eq. (5.1) is solved is divided into a 
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uniform one-dimensional 'mesh' . As all electrons are considered to 

originate from the AlGaAs layer, the charge density dp associated 

with one simulation particle is given by 

et N+ 

dp - -
AG D (5.3) 

+ 
Here tAG means the thickness of the AlGaAs layer, N

0 
the ionized 

impurity density in this layer, and M the number of simulation 

particles. This charge density is attributed to the mesh point 

nearest to the electron considered. 

The following boundary conditions for the electric field are 

applied for the solution of eq. (5 .1). The electric field at the 

extreme boundaries equals zero, and the normal component of the 

dielectric displacement is continuous, i.e. at the heterointerface 

(5.4) 

The indices G and AG denote GaAs and AlGaAs, respectively. 

The boundary conditions for the potential are depicted in fig. 

5.3, where the energy band diagrams of AlGaAs and GaAs in 

equilibrium are shown. At the top of the AlGaAs layer, by analogy 

with a gate, the internal potential equals the applied potential 

diminished by the Schottky barrier potential (see also chapter 6). 

The potential difference in fig. 5.3 associated with the term 

rAG - rG - AWC is the so-called built-in potential (Casey and Panish 

1978), where r is the chemical potential (Fermi level) and AW the 
c 

difference in the conduction band energy levels of the two 

materials. Under non-degenerate conditions r with respect to the 

conduction band is given by (Smith 1978) 

r - k T ln(n /N ) , 
B e c 

(5.5) 
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metal Al Ga As Ga As ... 
y 

Fig. 5. 3 The AlGaAs/GaAs energy band diagram for the conduction 

band, with the boundary conditions for the potential. 

where the effective density of states in the conduction band N
0 

is 

approximated by (Casey and Panish 1978) 

~) a12 ( mL) a12 ( wrL ) 
iii + 4 iii exp - k T 

0 0 B 

( 
m)a12 ( wr ]] 

+ 3 m: exp - kB; . (5.6) 

Here, Wn. and Wrx are the differences in energy between the r- and 

the L-, respectively, the X-valley. 

The chemical potential for the N-doped AlGaAs has been calculated 

with eqs.(5.5) and (5.6). For the undoped GaAs the expression valid 

for intrinsic semiconductors (Smith 1978) is used, giving r with 

respect to the conduction band 

t' - _! /:J.W + ! k T ln(mh/m
8
). 

2 g 4 B 
(5.7) 

For the effective hole mass mh - 0. 50m
0 

is taken (Blakemore 1982) 
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and for the effective electron mass m
8 

- 0. 063m
0

• This yields for 

GaAs at 300 K a value of r - ·0.68 eV , i.e. slightly higher than 

midway between conduction and valence band. The ratio of the 

difference in conduction band ~W and the difference in band gap ~W 
c g 

for AlGaAs and GaAs has been the subject of intensive debate. Values 

in the range between 0.59 and 0.85 have been reported. A review has 

been given by Kroemer (1986), and he recommended to accept the value 

determined by Watanabe et al. (1985). This suggestion is followed 

here, and a value 

~w - o.62 ~w. (5.8) 
c g 

is used. 

5.2.3 Boundary conditions for electron transport 

An electron reaching one of the extreme vertical boundaries (see 

fig. 5.2) is absorbed and randomly re-injected at the other side in 

GaAs with a hemi-Maxwellian distribution, An electron reaching the 

top boundary in AlGaAs (the 'gate') is absorbed and in the same way 

re-injected at the left (the 'source'). At the bottom boundary in 

GaAs specular reflection will take place. 

At the heterointerface two possibilities exist. An electron may 

either cross the potential barrier, changing material, or reflect 

specularly against the interface. 

The former is called 'real space transfer' and occurs under the 

condition of conservation of energy and wave vector parallel to the 

interface (Wang and Hess 1985). The above condition reads for an 

electron initially in the GaAs 
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W - t;.W -
G c 

h2k2 
____ II "'-,G ___ > O. 

2m* (1 +a W ) 
AG AG AG 

(5.9) 

Here W and W denote the kinetic energies in GaAs and AlGaAs, k .. 
G ~ ,~ 

the wave vector parallel to the interface in GaAs, 

* 

a the 
G 

non-parabolicity factor in GaAs and m~ the effective mass in 

AlGaAs. 

It applies equally to electrons in either valley, where energies 

and wave vectors are taken with respect to the bottom of the valley 

concerned. Furthermore, an electron experiencing real space 

transfer is assumed to stay in the same valley. 

The boundary conditions mentioned in this subsection are 

.represented symbolically by the arrows in fig. 5.2. 

5.3 Results 

Typically the range of the Al-content x of Al Ga As/GaAs systems 
" 1-x 

studied is 0.3-0.35. In this work an Al-content of x-0.35 has been 

chosen. As a consequence the energy barriers for the r-, L- and 

X-valleys are 0.269, 0.09 and -0.11 eV, respectively (see also fig. 

5.4). The higher the Al-content the higher the energy barrier 

between GaAs and AlGaAs; for x - 0.3 the respective barriers are 

0.227, 0.07 and -0.095 eV. The real space transfer effects which are 

reported in the following depend on the height of the barrier. 

However, the differences in the energy barriers for x-0.3 and x-0.35 

are not very high and general conclusions can be drawn only from 

studying the present system. 
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Fig. 5.4 Schematic energy band diagram of the Al Ga As/Ga.As 
0.35 0.65 

heterojimction. Furthermore, the energy levels for the different 

valleys are shown. 

chosen in order to be able to study the effects of the interface 

only, with a minimal influence of injection and absorption of 

electrons. 

Each simulation starts with all electrons in the r-valley of 

GaAs, randomly positioned near the interface, halfway between 

'source' and 'drain'. The state of the electron is selected from a 

Maxwell-Boltzmann distribution at the lattice temperature. The 

number of simulation particles is equal to 5000 in each case, and 

the field-adjusting time step has a value of 0.025 ps. 

From this initial condition the electrons are left with no 

external field applied during 5 ps. In this way bend bending becomes 

established self-consistently. The state thus obtained serves as the 

thermodynamical equilibrium condition of the heterojunction. 

Then a longitudinal field is switched on and the electron system 

is studied during 15 ps. This period is sufficient to ensure a 
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steady-state condition at the end. 

In figs. 5.5-5.7 the steady-state characteristics of kinetic 

energy, longitudinal velocity and r-valley occupancy as a function 

of the longitudinal field are shown for the GaAs electrons in the 

heterojunction and for bulk GaAs (see chapter 4), at a temperature 

of 300 K. In the heterojunction case, results are shown for an 

ionized impurity density in AlGaAs of 1015 and 10
17 

cm-3
• The GaAs 

is assumed to be undoped. The gate voltage equals 0.5 V. 

The width of the 'potential well' formed at the interface is in 

the order of 0. 5 µm for N+ 
D 

1015 cm-3 and 0. 2 µm for N+ - 1017 

D 

cm-3
. These values have been determined at the position where the 

electron density at the interface has reached half of its peak 

+ 15 -3 
value. For ND - 10 cm the values of the electron concentration 

at this position equal 7. 5·1015 cm-3
, respectively 1. 5·1015 cm-3 at 

electric fields of 5 kV/cm and 10 

values have become, respectively, 

kV/cm. When N+ - 1017 cm-3 

D 

10 · 10
18 

cm-
3 

and 1. 5 · 10
18 

these 

-3 
cm . 

The width of the 'potential well' in these cases is much larger than 

the limit for energy quantization to occur (which limit is in the 

order of 400 A) • 

At all fields in excess of 2 kV/cm, the velocity in the 

heterojunction has a significantly higher value than in the bulk 

material. At the same time, the energy is lower and the r-valley 

occupancy is higher. Especially the r-valley energy and velocity are 

affected. This is in particular shown in figs. 5.8 and 5.9. In these 

figures the average steady-state kinetic energy and velocity, 

respectively, both in the r-valley, are shown. One can see that the 

r-valley 

than for 

energies for N+ • 1017 cm-3 are more below the bulk value 
D 

+ 15 -3 
ND - 10 cm . At the same time, the r-valley velocities 
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Fig. 5.5 Average steady-state kinetic energy in GaAs versus electric 

field, at 300 K, + - bulk GaAs, * - GaAs side of the heterojunction, 

N+- 1015 cm-3
, o - GaAs side of the heterojunction, N+ - 1017 cm-
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Fig. 5.6 Average steady-state velocity in GaAs versus electric 

field, at 300 K. The symbols have the same meaning as in fig. 5.5. 
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Fig. 5. 7 Average steady-state r-valley occupancy versus electric 

field in GaAs, at 300 K. The symbols have the same meaning as in 

fig. 5.5. 
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Fig. 5.9 Average steady-state velocity in the r-valley in GaAs 

versus electric field, at 300 K. The meaning of the symbols is the 

same as in fig. 5.8. 

1017 cm-3 have increased more above the bulk values than 

Both the higher r-valley occupancy and the higher r-valley 

velocity contribute to the higher overall velocity. This effect 

becomes more pronounced at higher AlGaAs doping densities, and it 

also occurs at 77 K (Nederveen and Van de Roer 1988). 

In carrying out measurements the distinction between electrons in 

GaAs or AlGaAs cannot be made. Therefore, in figs. 5.10 and 5.11 in 
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addition to velocity values for electrons in bulk GaAs and electrons 

in GaAs in the heterojunction, the total velocity parallel to the 

heterointerface, averaged over GaAs and AlGaAs is shown. As can be 

seen in these figures, the total velocity is lower than the velocity 

in GaAs only. This is what is expected, since the AlGaAs is a 

low-mobility material. However, this total velocity is still 

considerably higher than in the bulk. 
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FIELD (kV/cm) 

Fig. 5.10 Average st:eady-stat:e velocity at 300 K, N; - 1015 
cm"

3
• 

+ - bulk GaAs, * - GaAs side of the heterojunction, 

0 - averaged over both sides of the heterojunction. 
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Fig. 5.11 Average steady-state velocity at 300 K, N; - 1017 
cm-

3
• 

+ - bulk GaAs, * - GaAs side of the heterojunction, 

o - averaged over bot:h sides of the het:erojunct:ion. 
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In table 5.1 the rates of occurrence for the scatter processes in 

GaAs are shown, for an AlGaAs doping density of 1017 -3 cm . A 

comparision with table 4.2 learns that polar optical phonon emission 

and r to L intervalley scattering have been reduced. Both reductions 

can be explained as a result of the lower energy. 

Especially the latter process bas a large influence on velocity. 

It is a velocity randomizing process. So, when there are less 

electrons in the L-valley, in steady-state less electrons transfer 

from L to r and contribute to velocity randomization. Hence, 

velocity is higher. 

Two mechanisms cause the above reduction in energy. 

To begin with the transverse ·electric field, caused by bend 

bending and gate voltage. It has been found that the wave vector 

component transverse to the interface is consistently smaller than 

its corresponding values in the bulk. This is caused by the 

transverse field, which keeps, in combination with the potential 

barrier, the electrons from reaching values as high as in bulk. As a 

result total kinetic energy is lowered. 

Secondly, real space transfer has an influence on the average 

energy. For Al Ga As the value of AW is about 0. 22 eV, which 
0.35 0.65 c 

is much lower than the r-L energy separation of 0.33 eV. Hence, real 

space transfer competes with intervalley scattering. Higher energy 

electrons disappear from the r-valley, thereby lowering the average 

energy in the r-valley, and therefore they will not contribute to 

velocity randomization as described above. 
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Table 5.1 The average occurrence, per electron, per valley, of the 

basic scatter processes in GaAs in the het:erojunction, at 300 K. The 

AlGa.As doping density is 1017 
cm-

3
• Electric field strengths are l, 

5 and 10 kV/cm. Steady-state conditions are considered, and the 

results apply to a time interval of 0.1 ps. 

1 kV/cm 5 kV/cm 10 kV/cm 

r L r L r L 

!# electrons 5000 4456 398 2456 1607 

Ace 0.01 0.02 0.15 0.03 0.17 

PE 0.01 0.01 0.02 0.01 0.02 

POPA 0.24 0.22 0.42 0.20 0.43 

POPE 0.17 0.42 0.42 0.55 0.53 

g-IA 0.0 0.01 o. 0.07 0.05 

g-LE 0.0 0.01 0.13 0.08 0.14 

g·XA 0.0 0.0 

g-XE 0.0 0.0 

L·IA 0.29 0.31 

L·LE 0.27 0.38 

L·XA 0.0 > 0 

L-XE 0.0 >0 

NPOPA 0.0 0.0 0.01 0.0 0.01 

NPOPE 0.0 0.0 0.01 0.0 0.01 
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Thal;·. botl;i mecpanisms have ;an effect can be._ .verifi,ed by .. 

succe11sively varying the gate. voltage., conditions. for real. space 

transfer and the doping density in the AlGaAs. In table 5. 2 results 

for gate volt<iges of'0.3 and 0.5 v··are compared foJ: different doping , ·. ,·· .. ' / ; 

densities, whe'!='e real space transfer.is alternatingly turne~ on. and 

off (in the latter case no real space transfer at all is allowed). 

Table 5. 2 Steady-"State velocities in bulk GaAs (N+ - 0) and in the 
. D 

heterojunction for two values of N+. In the· heterojunction also two 
. D 

values of VG have been applied, and real space transfer has been 

turned on (+) and off (-.). All simula.l::ions have been done for three 

different values of electric field E. 

N+ (cm-3 ) 0 1015 1017 
D 

real space transfer + + - - + + - .. 

gate voltage (V)' .3 .5 .3 .5 r3 .5 .3 .5 

E (kV/cm) velocity (km/s) 

1 84 83 87 83 .. 84 89 89 89 90 

5 192 213 242 203 229 270 281 263 271 

10 124 142 167 129 145 206 232 190 207 

As can be concluded from this table, the velocity enhancement 

increases with increasing transverse field. The increase of 

transverse field is caused either by an increased gate voltage, or 

by an increased band bending as a result of higher AlGaAs doping. On 

the other hand, ·turning off real space transfer, decreases the 

velocity enhancement. 

In table 5.3 results are shown which further verify the fact that 

real space transfer affects the velocity in the heterojunction. Bulk 
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and heterojunction simulations have been performed with the F-L 

separation temporarily set to 0.15 eV, in order to force electrons 

to prefer intervalley scattering above real space transfer. This 

lowering of the F-L gap is preferred above an increase of the 

barrier height, because this would affect the transverse field. 

+ Table 5.3 Steady-state velocities in bulk Ga.As (N
0 

• 0) and in the 

heterojunctJ.on for two values of N;. In the heterojunction also two 

values of V
6 

have been applied, and real space transfer has been 

turned on (+) and 0££ ( ·). All simulations have been done £or two 

different values 0£ electric field E. The r--L separation has been 

set to 0.15 eV, in this case. 

0 1015 1017 

real space transfer + + + + 

gate voltage (V) .3 .5 .3 .5 .3 .5 .3 .5 

E (kV/cm) velocity '(km/s) 

5 108 116 133 115 133 113 173 114 172 

10 88 91 100 91 100 90 131 90 131 

As expected, the influence of real space transfer on the velocity 

has been practically disappeared, and only the transverse field 

effect remains. 

5.4 Conclusion 

In this chapter the occurrence of higher steady-state velocities in 

the GaAs part of an AlGaAs/GaAs heterojunction, compared to undoped 

bulk GaAs, has been discussed. This is caused by a reduction in 
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intervalley transfe,f due to both the transverse field and real space 

transfer. 

Similar effects in Monte Carlo simulations on AlGaAs/GaAs layered 

heterostructures have been reported earlier (Littlejohn et al. 

1983), but the conclusions then were tentative. In this work those 

results have been confirmed and an extended explanation has been 

given. 

In practical circumstances these effects could be obscured by 

other mechanisms, such as degeneracy, electron-electron scattering 

or energy quantization, but they would still be present. 

As regards the influence of degeneracy, as concluded in chapter 4 

degeneracy would push the electron energy distribution towards 

higher energies, so the reduction of intervalley scattering would be 

(partly) neutralized. Electron-electron scattering, on the other 

hand, would counteract the influence of degeneracy as regards the 

occurrence of intervalley scattering. 

However, as the electron distribution is not homogeneous in the 

heterojunction, it is very difficult to take these two mechanisms 

into account. 

The results reported here seem to be in contrast with 

measurements on AlGaAs/GaAs heterostructures by Masselink et al. 

(1988). Masselink et al. (1988) found lower, instead of higher, 

velocities in a two-dimensional electron gas compared to bulk GaAs. 

One reason for the discrepancy between the results of the present 

work and theirs could be the above-mentioned simplifications in the 

physical model (neglect of degeneracy, electron-electron scattering 

and energy quantization). Another factor which may have an influence 

may be the fact that the measurements by Masselink et al. are 
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microwave measurements, which tend to yield lower velocity values 

than the steady-state ones. 
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c h a p t e r 6 

HIGH ELECTRON MOBILITY TRANSISTOR 

6.1 A description of the HEMT 

The potential of modulation doped AlGaAs/GaAs heterostructures, 

grown by Molecular Beam Epitaxy (MBE) (Panish and Cho 1980), has 

been clear since Dingle and co-workers (Dingle et al. 1978) 

discovered an increased electron mobility in the two-dimensional 

electron gas formed in undoped GaAs at the AlGaAs heterointerface. 

Since then, based upon these structures, several laboratories have 

been developing field-effect transistors (FETs), which have Qec9me 

known under such names as: 'modulation doped FET' (MODFET), 

'selectively doped heterojunction transistor' (SDHT), 

'two-dimensional electron gas FET' (TEGFET), 'heterostructure FET' 

(HFET) or 'high electron mobility transistor' (HEMT). Since the 

first one reported was referred to as HEMT (Kimura et al. 1980), 

solely this acronym will be used in the following. 

HEMT technology is still improving (Morko~ 1984, Kimura et al. 

1986, Eastman 1988), but already, compared with the conventional 

GaAs metal-electrode semiconductor FET (MESFET) with the same 

dimensions the noise figures are lower and the gain at microwave 

frequencies higher. Switching speeds in the order of 10 ps have 

already been obtained, consuming about 10-15 J of energy. The 

potential areas of application are in high-speed digital systems 

(mainframes or supercomputers) operating at 77 K, or as analog 
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low-noise transistors at microwave frequencies (higher than 100 

GHz). 

The basic geometry is schematically shown in fig. 6.1. The device 

is grown on a semi-insulating GaAs substrate and consists of, 

successively, an unintentionally doped GaAs layer, a so-called 

spacer and a heavily doped N-AlGaAs layer. The spacer, consisting of 

undoped AlGaAs, enlarges the mobility of the electrons in the GaAs 

conduction channel by increasing the distance of the electrons from 

the ionized impurities in the AlGaAs. 

For optimum device performance and reliable operation, the source 

and drain contacts should be low-resistance ohmic contacts. A widely 

used method nowadays is the alloy regrowth ·technique (Robinson 

1985), using the Au-Ge-Ni system which has the lowest specific 

resistance and the highest reliability. During the heat-treatment 

+ process the Ge diffuses into the semiconductor forming an n region 

which overlaps the two-dimensional electron gas at the 

heterointerface. The gate contact is a Schottky barrier junction, 

realized by depositing a metal film of e.g. Ti-Pt-Au on top of the 

AlGaAs surface. 

s G D 

undoped Al GaAs 
--------------

2deg 

Ga As 

s.i.GaAs 

Fig. 6.1 Cross-section of the High Electron nobility Transistor. 
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Recently other methods for the ohmic contacts have been proposed 

which rely on a heavily doped n-type GaAs layer deposited on top of 

the AlGaAs. The metal contact should be alloyed lightly and should 

not reach through the heterojunction, since. this would increase the 

contact resistance (Fritzsche 1988). Of course in this case the GaAs 

has to be etched away in the gate region. 

6.2 Modified Timestep Cycle 

The main difference between one- and two-dimensional modelling is, 

of course, the fact that Poisson's equation in the latter case has 

to be solved in two dimensions. In combination with the basic Monte 

Carlo scheme as described in chapter 2 one arrives at the so-called 

Modified Timestep Cycle (Hockney and, Eastwood 1981). The cycle 

describes the various tasks to be performed in one so-called 

field-adjusting time step. It reads 

1. Assign charge to the mesh 

2. Solve Poisson's equation and calculate the electric field 

3. Move all electrons subsequently in reciprocal space as well as 

in real space during the field-adjusting time step by means of 

the Ensemble Monte Carlo method 

4. Go to 1. 

In the following the first two steps of the cycle are explained, 

in this order. The third step has been treated in chapter 2. 
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6.2.l Charge assignment 

For the purpose of the two-dimensional solution of Poisson's 

equation the area under investigation will be divided in a uniform 

rectangular mesh, see fig. 6.2, with the mesh increments in x- and 

y-direction denoted by HX and HY, respectively. The indices (i,j) of 

the mesh points in fig. 6.2 range from 0 to NX in the x-, and from 0 

to NY in the y-direction, where NX and NY should both be a power of 

2. The latter requirement stems from the fact that in the program 

used for the two-dimensional solution of Poisson's equation the 

Discrete Fourier Transform is applied. 

Each mesh point is the centre of a rectangular cell with 

dimensions HX, HY. In the 'cloud-in-cell' (CIC) charge assignment 

scheme the charge of one electron is spread out over the four 

nearest mesh points, with for each mesh point a weight factor 

determined by the overlap of an imaginary cell (HX, HY) with the 

electron in the middle (the hatched area in fig. 6.3) and the four 

cells related to the mesh points. 

HX 

: • • • • 

NY 
HY 

1 • • • • 

1 2 _...,.. NX 
I 

x 

Fig. 6.2 The area under investigation is divided into a mesh of 

(NX + 1) ·(NY + 1) points. The mesh cell increments in x- and 

y-direction are, respectively, HX and HY. 
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HX 

• HY 

• 

E) Electron 

x • Mesh Point 

Fig. 6.3 Principle of the cloud-in-cell charge assignment scheme. 

The charge of an electron is divided over the four nearest mesh 

points. As is easily understood from the figure, an alternative name 

is 'area weighing' scheme. 

It is easy to verify that the contribution dp(x,y) of one 

electron (being at a point (xP,yP)) to the charge density (per m2
) 

in a mesh point (x,y) is given by 

with 

dp(x,y) - -HX-~-~- v( _x_HX_·_x'""P-) v( 

V(z) - { l-~zl lzl :!S l 

lzl > 1 

y - yp ) 

HY • 

In addition, the charge Q
0 

of a carrier is given by 

e N 
Q - - __ f_, 

c M 

(6.1) 

(6.2) 

(6.3) 

where N denotes the real number of carriers meant to be represented 
f 

by M simulation particles. 

For the assignment of the charges of fixed ionized impurities 
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with density N+ the charge N+·HX·HY that is to be divided over four 
D D 

mesh points, is considered to be fixed in the middle between the 

four mesh points. Suppose, for instance, that the area in fig. 6.2 

+ as a whole bas an impurity density of N
0

. Then, with the impurities 

homogeneously spread out over the area, the contribution to the 

inner mesh points equals N
0
+, to the corner mesh points ~+ and the 

4 D 

1 + 
other outer edge mesh points iNn. 

6.2.2 Poisson's equation 

In order to solve the two-dimensional Poisson equation 

824' 824' -p -+----
8x2 8y2 foEa 

(6.4) 

in the rectangular mesh as described in the previous paragraph, the 

five-point finite difference form of this equation is used: 

(6.5) 

where and denote, respectively, the electrostatic 

potential and the charge density on the mesh point (iHX,iHY). 

In this work the program POT4A by Beard and Hockney (1985) has 

been used for solving this equation. It is a so-called Rapid 

Elliptic Solver, designed to solve eq.(6.5) in a rectangular region 

using Hockney's Fourier Analysis Cyclic Reduction (FACR) scheme, 

with one level of odd-even reduction. The effect of electrodes and 

changes in dielectric constant are taken into account using a 

numerical capacity matrix technique (Hockney and Eastwood 1981). 

With regard to speed of solution, the FACR scheme is especially 
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suited to the kind of problems encountered in device modelling. 

6 . 3 Stability 

In all calculations conrtected to a 2D mesh, quantities are 

discretized in space as well as in time. In this paragraph, .in 

combination with the inevitable roundin~ errors, the effect of the 

discretization errors on the stability of the calculations is 

considered. Regarding instability four major sources are 

distinguished, i.e., 

1) the kind of the so-called time integration scheme 

2) the time discretization 

3) the space discretization 

4) the charge assignment. 

Furthermore, the sources affect each other. For some of them 

theoretical stability criteria can be formulated, for the others one 

has to rely on empirical criteria. In the following the four error 

sources will be treated in the same order as above, where sources 2 

to 4 are related in such a high degree that they are treated 

together in one paragraph. 

6.3.l Effect of time integration 

The particles considered in any simulation move in general in space 

and time according to Newton's laws of motion. 

~ -t. 
dt - v, (6.6) 

and 
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~ 
m dt - r. (6.7) 

For the purpose of stability analysis and neglecting 

non-parabolicity effects, these equations will be written as, 

(6.8) 

and 

h~ -::} 
dt - -er; ' (6.9) 

respectively. In the present work eqs.(6.8) and (6.9) have been 

discretized in the following way 

x - x hk 
n+l n n+l 

DT .. (6.10) 
m 

and 

h(k - k) 
n+l n -eE , DT n 

(6.11) 

where DT is the discretization timestep. (In fact, DT is the 

free-flight time of the electron and its maximum value is equal to 

the field-adjusting timestep defined in section 6. 2.) This scheme, 

called the time integration scheme, may be evaluated considering 

consistency, accuracy, stability and efficiency (Hockney and 

Eastwood 1981). 

In the following the main topic will be the stability of this 

time integration scheme. Stability is concerned with the propagation 

of errors, due to truncation and roundoff. 

Writing eq.(6.11) in terms of position only, one obtains 
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h(kn+l - k) 

DT 
(6.12) 

Defining the exact solution of this equation by Xn (n-0, ... ,N) and 

the resulting approximate solution by 

given by 

E -x -X. 
n n n 

x, 
n 

the roundoff error, is 

(6.13) 

Substitution of eq.(6.13) in eq.(6.12) yields, after subtraction of 

the exact solution, 

* 
m (e - 2e + e ) - F(X +e ) - F(X) 

DT2 n+l n n-1 n n n 
BF I 

- £n Bx x-X ' 
n 

(6.14) 

where the roundoff error en is assumed to be sufficiently small to 

justify the Taylor expansion in the right hand side of eq.(6.14). 

Equation (6.14) is difficult to solve, unless BFI 
8x x-X 

n 

is a 

constant. Because one looks for the worst case only (the question of 

interest is whether or not 

BFI it is) -
8 

is replaced 
X x-X 

n 

the scheme is unstable, not how unstable 

by its maximum negative value -I :!I max' 

the minus-sign arising from the assumption that the solution be 

oscillatory. Thus, eq.(6.14) becomes 

Taking as a trial solution e - 'An - exp(iwnDT), the following 
n 

characteristic equation is obtained 

(6.16) 
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having solutions l+ and l_. The general solution will be of the form 

€ - aln + bln. Now, if either ll+I or ll_I were greater than unity 
n + -

the error would propagate and grow exponentially. Hence, one can 

conclude that for the time integration scheme to be stable, the 

characteristic solutions l and l should be located inside or on the 
+ -

unit circle. This condition is fulfilled if ODT < 2, where 0 is the 

highest frequency of interest in the simulated medium. In a 

semiconductor this is the plasma frequency (Hockney and Eastwood 

1981). 

It is interesting to take a closer look at two other possible 

time integration schemes. 

The first one to be considered is the one proposed by Hockney and 

Eastwood (1981), being 

x - x h n+l n 
(k + k)' DT 2m* n+l n (6.17) 

h(k - k) 
n+l n F(x ). DT n (6.18) 

In exactly the same way as described above, this leads through 

x - 2x +x n+l n n-1 
(6.19) 

to the error propagation formula 

e - 2e + e 
n+l n n-1 

(6.20) 

resulting in the following characteristic equation 

,2 - 2' + 1 - - DT202 "' "' -2- (l + 1). (6.21) 
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Defining A - nT2o2/2, the solution is 

>.± - 1 - ~ ± ¥ 1 - 8/A (6.22) 

With A in (0,8] the solutions >.+ and >. are complex conjugated 

>.± - 1 - ~ ± i~/ 8/A - 1 (6.23) 

and l>.I - ,;-:;;;;. > 1. Hence the time integration scheme is unstable 

in this range. For A > 8 the solutions are real and I>. I 

The minimum value of l>-1 occurs for A - 8, being 

l>-1 - 3. At no positive value of A (- DT202/2) will l>-1 be smaller 

than unity, from which it follows that this scheme is 

unconditionally unstable. 

Another scheme one may be inclined to apply is given by 

x - x 
_n_+_l __ n _ __!!__ k 

DT * n m 

and 

h(k - k ) 
n+l n 

DT 
• F(x). 

n 

Analogous to the previous case 

This leads to 

and 

• 
_!!_(x - 2x + x ) - F(x ) • 

DT2 n+2 n+l n n 

( 
n+Z 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 
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Taking A - DT202
, the solution is 

(6.29) 

All solutions (for real A) are complex conjugated and 

P.l -ll+DT
2
0

20
>l. (6.30) 

Hence, this scheme is unconditionally unstable as well. 

6.3.2 Space and time discretization combined with charge assignment 

Between scatter events the ensemble of electrons in the computer 

model may be regarded as a collisionless plasma. The Monte Carlo 

scheme may be looked upon as if the physical scatter processes are 

superimposed on the collisionless plasma model. The characteristic 

times of the latter associated with the rounding errors should be 

such that the former is not influenced. For collisionless plasmas 

the influence of the inherent differences between the 'real' plasma 

and the computer model has been investigated (Hockney and Eastwood 

1981). 

A •computer plasma• differs from a real plasma in the particle 

density (n) and the finite discretization of space (HX and HY) and 

time (DT). The relation between the real and the approximated 

quantities is represented by means of a couple of dimensionless 

quantities of which the first is N , 
c 

HX·HY} 
+--

2 ' ). 
(6.31) 

D 

( 
e e k T ) 

112 

where l - the Debye wavelength - 0 8 
B 

D 2 en 

HX - mesh cell size in x-direction 
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HY - mesh cell size in y-direction 

n - K/A - the number of simulation particles divided by the 

area in which the simulation electrons represent a known 

charge density, i.e. the density of simulation electrons. 

As can be concluded from the empirical correlations summarized 

below, N is strongly dependent on the charge assignment scheme 
c 

used. 

The other dimensionless quantities are associated with the space 

discretization, being HX:/\ and HY/\, and with the time 

discretization, being w DT. Here w denotes the plasma frequency. 
pe pe 

The plasma frequency is related to ~D by "'p• • vr'\• where vT 

/ k T/m* • is the thermal velocity. 
B 

It has been found that two empirical relaxation times describe 

the behaviour of the computer model, denoted by ,,. 
c 

and 

respectively. The first one, called the •collision time' , is a 

measure for the time it takes for a particle in a collisionless 

l t h 1 Of 90° for th de i i p asma o reac a va ue e root-mean-square v at on 

from its trajectory. The second one, called the 'heating time', is a 

measure for the increase in kinetic energy of a particle in a plasma 

model. During the heating time the mean energy of the plasma is 

increased by .!.k T. 
2 B 

The above collision time, N and plasma frequency are found to be 
c 

related through 

f' - N,,. ' c c pe 
(6.32) 

where f' - 21ftw • 
pe P• 

The relation between ,,.h and N
0 

is made irrelevant by considering 

f'/f'. With eq.(6.32) it is always possible to obtain f' from,,-;,,.. 
h c h h c 

The behaviour of ,,. /f' as a function of the dimensionless quantities 
h c 
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H/\. where H may be either HX or HY, and "'peDT results in a very 

complicated picture. 

However, taking into account the condition "' DT < 2 pe and 

introducing vTDT/H < 1, the range of possible values for DT and H is 

strongly restricted. The latter condition introduces the constraint 

that an electron with thermal velocity should not cover a distance 

of more than one mesh cell in time DT. 

These conditions define an optimum path in (H,DT)-space, being 

( DT) • (1 H l) w - min - - , . pe opt. 2 l
0 

(6.33) 

Note that this optimum path is safely chosen halfway the limits 

posed by the two restrictions mentioned above. 

On this path one finds (Hockney and Eastwood 1981) 

K 
fl 

(H/l ) 2 

D 
HX·HY/l~ 

(6.34) 

For the five-point finite difference form of Poisson's equation 

combined with the CIC scheme for the charge assignment the constant 

KB equals 40. 

The consequences for a practical simulation are the following. 

First one should take care that wpeDT < 2 and vTD/H < 1. This 

being the case, one should check that H, DT and M are chosen such 

that the collision rate l/T 
0 

does not interfere with the physical 

scatter mechanism, i.e., l/T
0 

< \un' Subsequently, one calculates 

the heating time, from which the rate of energy conservation per 

scatter event may be determined. The restriction posed by· the 

heating time is not very severe, considering the values of the 

heating time in the usual simulations. One should take care that r 
h 

>> l/\in' from which follows r/Tc >> l, which usually is the case. 
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Numerical values will be given in section 6.5, when simulations are 

presented. 

6.4 Boundary conditions 

For a correct device simulation boundary conditions have to be 

provided for the electrodes, the heterointerface and all other 

(outer) boundaries. 

6.4.l Electrodes 

The source and drain potentials are ohmic contacts, as a consequence 

the contact potentials seen internally in the device are equal to 

the potentials applied externally. According to Shaw (1981) an ideal 

ohmic contact is a majority carrier injecting contact, meaning that 

it is able to supply all the majority carriers demanded by the bulk 

for any applied electric field. An injecting contact thus acts as a 

reservoir of carriers at the metal-semiconductor interface that 

continuously keeps adjusting itself to meet the current levels 

demanded by the bulk. From this description it is reasonable to 

impose charge neutrality as a boundary condition in the region 

adjacent to an electrode, i.e, the electron density there equals the 

ionized impurity density. This is achieved in the following manner: 

an ohmic contact is treated as perfectly absorbing, i.e., each 

simulation electron reaching the contact is absorbed. At the end of 

each field-adjusting timestep the electrons required to fulfil the 

condition of charge neutrality in the regions adjacent to the 

electrodes are injected with velocities drawn from a hemi-Maxwellian 
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distribution. 

Each simulation starts with all electrons randomly distributed in 

the AlGaAs layer such that the electron density equals the ionized 

impurity density. Since during the first timesteps the depletion 

layer below the gate still has to be formed, the number of 

simulation electrons generally will decrease. However, the charge 

attributed to each electron (eq. 6.3) remains the same throughout 

the simulation, and is calculated once in the initial state. 

The gate electrode is a Schottky barrier contact. An electron 

which reaches this contact will be absorbed. Furthermore, no 

injection will take place at this contact. 

The most important parameter describing a Schottky barrier is the 

barrier energy ~B (see fig. 5. 3), describing the discontinuity in 

the energy band diagram at the metal-semiconductor interface. 

Experimentally it has been found (Robinson 1985) that for GaAs the 

value of the Schottky barrier height is almost independent of the 

metal used to form the contact. It is assumed that at the 

metal-semiconductor interface the Fermi-level is pinned at a certain 

value due to surface states. Surface states are electronic states 

localized at the surface of the semiconductor crystal. Several 

distinctly different physical and chemical models have been proposed 

to explain Fermi-level pinning. Defect formation, chemical reaction 

and interdiffusion can all play a role. Therefore it has been very 

difficult to obtain a simple, self-consistent, comprehensive model 

for the formation of Schottky barriers on real semiconductors 

(Robinson 1985). However, recently, Mllnch (1988) has presented a 

very promising model accounting for several distinct mechanisms at 

the same time. 
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From measurements on Al,pa
1
_xAs by Okamoto et al. (1981) the 

following interpolation formula for l{i
8 

in eV has been derived by 

Balemans (1988) 

0.669 + l.036x, for x s 0.36 
(6.35) 

1.189 - 0.4lx , for x > 0.36 

Then, the boundary condition for the gate electrode is 

VG • VG - l{i8/e. (6.36) 
int ext 

6.4.2 Heterointer£ace 

The boundary conditions for electron transport at the AlGaAs/GaAs 

heterointerface have already been described in chapter 5. For the 

solution of Poisson's equation the continuity of the normal 

component of the dielectric displacement has to be assured. This is 

taken care of by the program for the 2D solution of this equation, 

POT4A. 

6.4.3 Outer boundaries 

At all other (outer) boundaries the perpendicular component of the 

electric field is set to zero. Electrons reaching these boundaries 

reflect specularly, thus representing a zero perpendicular component 

of the current density. 
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6.S l.esulta 

6.5.1 Introduction 

An Ensemble Monte Carlo device simulator has been developed capable 

of simulating a High Electron Mobility Transistor (HEMT) with 

arbitrary rectangular dimensions and with the possibility to define 

the contact areas in a very flexible manner. 

The gate electrode ls put on top of the device. The source and 

drain electrodes both have an adjustable length and depth. Adjacent 

to each of these electrodes an n+ region, with minimum length and 

height of respectively HX and HY, is positioned. 

Two possible contact layouts are shown in figs. 6.4 and 6.5. 

In fig. 6.4 the area created by the non-zero depth of the 

electrode represents a metallic region which has been formed by 

alloying Au-Ge-Ni, and the adjacent area represents the n-doped 

region caused by the diffusion of Ge. The potentials applied 

externally are set at the inner boundaries of the metallic regions. 

In fig. 6.5 the equivalent of a uniform ion-implanted n+ region 

is obtained by setting the depth of the electrode to zero. The 

voltage applied externally is now set on the top electrodes. 

In the following three subsections the parameters will be 

presented which have been used in the Monte Carlo calculations of 

the HEMT. These parameters can be distinguished in those concerning 

the geometry of the device under study, the physics of the 

semiconductors involved and the Monte Carlo model parameters. 
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metallic region 

interface 

n+ ·region 

(8) Cb) 

Fig. 6.4 Contacts formed by alloying are represented by a metal 

region with an adjacent n+ region, below the metal electrode.(a) The 

metal region does not reach the GaAs layer, (b) it does reach the 

GaAs layer. 

interface 

(8) lb) 

Fig. 6.5 Contacts formed by ion implantation, consisting of an n+ 

region below the metal electrode. (a) The n+ region does not reach 

the GaAs layer, (b) it does reach the GaAs layer. 

Geometrical data 

The dimensions of the HEMT under consideration are depicted in fig. 

6.6. These dimensions have been taken from Thobel (1988), in order 

to be able to compare results. The device has a length of 0.96 µ.m 

and a total height of 0.32 µ.m. The GaAs layer is 0.28 µ.m high. Thus, 

as there is no spacer layer involved, the height of the AlGaAs layer 
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s 

~ 0.33 µ* 0.3 µ * 0.33 µ~ 

G 

N-AIGaAs 

Ga As 

0.86 µ 

D 0.04 µ I 0.06 µ 

0.28 µ 

Fig. 6.6 The dimensions of the simulated HEMT. The length of the 

source and drain contacts is 0.015 µm. 

equals 0.04 µm. The gate length is equal to 0.3 µm. The length of 

source and drain being equal to 0.015 µm, the interelectrode spacing 

becomes 0.315 µm. The depth, 0.06 µm, is such that the contacts 

reach through the heterojunction. The n+ regions extend 0.015 µm 

(HX) in the x-, and 0.0025 µm (HY) in they-direction. 

Furthermore, using this geometry as a starting point, similar 

devices will be investigated by varying the gate length. 

Physical data 

The device has been studied at a temperature of 300 K. The Al mol 

fraction of the AlGaAs is 0.3. The ionized impurity density of 

Al Ga As is equal to 1018 

0.3 o. 7 

-3 
cm , whereas the GaAs is supposed to 

be undoped. These values have been taken from Thobel (1988), in 

order to be able to compare results. 

The conduction bands of GaAs and AlGaAs both are described by a 

three-valley (r-L-X) model, with Kane-type non-parabolicity as 

treated in chapter 3. The values for the valley separations in both 
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materials are depicted in fig. 6.7. These values have been 

calculated using the interpolation formulas of table 3.1. This 

yields for the differences in energy level of the valleys in AlGaAs 

and GaAs the following values for the r., L· and X·valley: 0. 227, 

0.07 and ·0.095 eV respectively. Thus, e.g., the bottom of the 

X-valley in GaAs lies above that in AlGaAs. 

The scatter processes which have been take into account are: 

acoustic, polar optical phonon and intervalley scattering, in GaAs 

as well as in AlGaAs. Furthermore, in AlGaAs also ionized impurity 

and random potential alloy scattering have been included. The degree 

of randomness in the latter case has been set to its maximum value 

by putting 8
0 

- 1 (see eq. 3.49). 

X L L X 

o.2·····q;~:t~:::::::···1 

We fo.522 
oy1f Tl We 

1.805 1.439 
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heterojunction. Furthermore 

valleys are shown. 
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Monte Carlo model parameters 

The nUD1ber of simulation particles present in the model at the 

beginning of each simulation is 5000. This nUD1ber may have changed 

at the end of the simulation due to the build-up of a depletion 

region below the gate. The numbers of mesh points in the x-, 

y-direction are 64 and 128 respectively, yielding a mesh cell with a 

length of 0.015 µm and a height of 0.0025 µm. 

The field-adjusting timestep DT is taken as 0.005 ps. The number 

of steps is 10000, yielding a total simulation time of 50 ps. 

Summation per mesh point of physical quantities of interest, for 

instance energy and velocity, starts at 30 ps. This is done for 

averaging purposes. 

As regards stability, with the mesh cell and timestep chosen the 

following values for the stability criteria result (the required 

limits are shown between brackets): 

w DT 
pe 

- 0.3129 ( < 2 ) 

l/f'c 1400 GHz ( <A. ) 
min 

1' 2.4 ps ( > DT ) h 

vthDT/HX - 0.09 < 1 

vthDT/HY - 0.54 ( < 1 ) 

The minimum total scatter rate, A.min' occurs in the r-valley in 

GaAs at energies up to the threshold for polar optical phonon 

emission (0.03536 eV). For those energies the total scatter rate is 

about 2500 GHz, which still is well above 1/1' . Thus, all 
c 

requirements are fulfilled. 
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6.5.2 DC results for a gate length of 0.3 µm 

In fig. 6.8 the I
08

-V
05 

characteristics are presented, for 

successive gate voltages of -0.2, 0.2 and 0.6 V. As usually with 

transistor I-V characteristics, a linear, an intermediate and a 

saturation region can be distinguished. One feature is striking, 

namely the fact that the saturation voltage is almost a constant. 

This indicates an early velocity saturation. Furthermore, the 

flatness of the curve in saturation is unique for such a 

short-channel device. 

In the following, results for the case of v
0 

0.2 V will be 

presented subsequently showing more detail. With those results 

serving as an example, in this way the operation of the device will 

be explained. 

-----·-----·-----·-·-·--·-·-·.-.-·-

----------------
0.5 1.0 1.5 2.0 2.5 3.0 

Vds (V) 

Fig. 6.8 IDS versus V
08 

characteristic for gate voltages of 

·0.2 V (· -), 0.2 V (~) and 0.6 V (-·-). 
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Potential and electric field 

In fig. 6. 9 equipotential curves are drawn for VG - 0. 2 and VDS 

being equal to 0.1, 0.5, 1 and 2 V, respectively. In fig. 6.10 the 

electric field at the AlGaAs/GaAs interface is shown for V
08 

0.5 

and 2 V. It can be seen from these plots (both fig. 6.9 and 6.10) 

that the influence of an increased drain voltage becomes apparent 

only at the drain end of the gate. There the field strength in the 

x-direction reaches its maximum value (70 kV/cm for VDS - 2 V). Note 

that the peak builds up over such a small distance (in the order of 

0.1 pm) that the electrons may not be in equilibrium with the 

lattice during the transit of the high-field region. For instance, 

the drift velocity relaxation time is in the order of 1 ps when the 

field is changed from 0 to 10 kV/cm (Warriner 1977b), and decreases 

with increasing field. An electron with a velocity of 200 km/s 

undergoing such a field change has to proceed 0.2 pm before having 

adjusted itself completely to the field. 

As mentioned above the potential in the region between source and 

gate is practically independent of drain voltage. Note that just 

behind the gate the potential is already 0.4 V for VDS ~ 0.5 V, see 

fig. 6.9. This point represents the pinch-off point, as for higher 

drain voltages the voltage at this point hardly changes. As a 

consequence the number of carriers arriving from the source hardly 

changes anymore. The pinch-off voltage can also be deduced from fig. 

6.8. 

The electric field in the y-direction is seen to have its maximum 

negative value at the drain end of the gate. At this point there is 

an accumulation of carriers caused by a decrease of the velocity 

(see fig. 6.14). The increase of space charge causes an increase in 
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respectively at V
08 

- 2 V. 

the perpendicular component of the electric field, directed such 

that electrons near the heterointerface in GaAs are pushed towards 

the interface. 

In fig. 6.11 the same information as in the equipotential curves 

is presented in a 3D plot for V
08 

- 0.5 and 2 V. Note that instead 

of potential now the conduction band energy level is shown, which 

implies that the sign has been reversed. Also the conduction band 

discontinuity at the interface has been added. These pictures 

provide an instructive insight in the path the electrons are forced 
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to follow. One could imagine the electrons moving like marbles, 

subject to the law of gravitation, in an area shaped by the profile 

of the conduction band. 

G 

A 

G 

x 

B 

Fig. 6.11 Conduction band ss a function of the x,y position for 

V
6 

- 0.2 V. (A) V
08 

- 0.5 V, (B) V
08 

- 2 V. 
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Swarm plots 

The latter idea is visualised in fig. 6.12 by the swarm plots of the 

electrons in the various valleys, for V
08 

- O. 5 V. It is seen that 

at this drain voltage most of the electrons reside in the r-valley. 

Furthermore, about 60 % of the simulation electrons reside in the 

AlGaAs. However, below the gate practically all electrons are in the 

GaAs channel. Also, the depletion layer below the gate is clearly 

visible. Although probably not clear from this picture, most 

electrons in GaAs are near the interface. Note that these positions 

are momentary positions after 50 ps. 

In the swarm plot for V
08 

2 V (fig. 6.13) the situation has 

changed considerably. Between source and gate, no change is seen, as 

is expected from the equipotential curves. However compared to the 

previous case, behind the gate, the L- and X-valleys have become 

populated as a consequence of the higher electric field. There, most 

electrons in GaAs are in the L-valley, and in AlGaAs the L- and 

X-valleys have become approximately equally populated, whereas the 

r-valley in AlGaAs is practically empty. 

In fig. 6.13A, for instance, the boundary condition for the 

electron density at the contacts can be recognised very clearly from 

the high concentration of points at especially the drain contact. 

Average velocity and electron concentration 

In fig. 6 .14 the average velocity in GaAs is shown for V - 0 .1, 
DS 

. 25, . 5 and 2 V. Especially at the two latter voltages a dynamic 

overshoot phenomenon is observed, with the half-width of field 

strength peak being less than 0.05 µm. At 0.5 V the average velocity 

at the end of the gate is almost the same as at 2 V. The main 
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difference is that at 2 V more electrons have been transferred to 

upper valleys behind the gate, which is the main cause of the 

decrease in velocity. On the contrary, however, at 0. 5 V the 

velocity decreases because the field in the x-direction practically 

falls off to zero (see fig. 6.lOA). 

Note the slight asymmetry in fig. 6.14D. The peak for the 

r-velocity lies at the same position as the peak of the field 

strength, whereas the maximum of the total velocity is located prior 

to the field strength peak, as the transfer to upper valleys already 

sets in before this peak. 

The average electron concentration (total and per valley) as a 

function of position is shown in fig. 6.15 for drain voltages of 0.5 

and 2 V. Note that the peak in L-valley occupancy lies just behind 

the peak of the field strength. This represents the time it takes 

for the electrons to adjust to the field. 

In fig. 6.15B clearly the increased occupancy of the upper 

valleys is seen for V DS 2 V, compared to fig. 6.15A (VDS - 0.5 V). 
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Fig. 6.14 Average velocity in GaAs (--) for V

6 
- 0.2 V with 

(A) VDS - 0.1 V, (B) VDS - 0.25 V, (C) VDS = 0.5 V and (D) V
03 

- 2 

V. In the figures the velocity for various valleys is indicated. 

(Continued on next page.) 

134 



Fig. 6.14 Average velocity in GaAs (~) for V
6 

- 0.2 V with 

(A) Vos - 0.1 v. (B) Vos - 0.25 v, (C) Vos - 0.5 v and (D) Vos - 2 

V. In the figures the velocity for various valleys is indicated. 

(Continuation of previous page.) 
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Fig. 6.15 Average electron concentration in GaAs (~) for V
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-0.2 V, 

with (A) VDS - 0.5 V, and (B) VDs - 2 V. In the figures the 

concentration for various valleys is indicated. 

Average energy 

The average electron energy is shown in fig. 6.16 for drain voltages 

of 0.25, 0.5 and 2 V. In fig. 6.16C it can be clearly observed how 

the average energy of the electrons in the r-valley increases with 

the increasing field (fig. 6. lOC) until an energy slightly higher 

than the r-L intervalley difference of 0. 33 eV is reached. The 

subsequent decrease is caused by intervalley transfer and by the 

decrease of the field. 
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The large difference between total energy and r-valley energy in 

fig. 6.16C, behind the gate, is caused by the fact that at that 

point the main contribution to the average energy comes from the 

L-valley electrons. As the effective mass of an L-valley electron is 

much greater than that of a r-valley electron (0. 222 ·m
0 

against 

0.063·m
0

) the kinetic energies that can be reached are much lower. 

Real space transfer and boundary conditions at the contacts 

With increasing energy the possibility of the occurrence of real 

space transfer becomes higher. As mentioned before the barriers for 

the r-, L· and X-valley are 0.227, 0.07 and -0.095 eV, respectively. 

The question whether and where real space transfer occurs, and in 

which valleys, is an important one. Strongly correlated with this 

question is the matter of how exactly the current propagates, as 

will be clear from the following. 

In fig. 6 .17 the net currents (directed in the y-direction, 

perpendicular to the interface) caused by real space transfer are 

shown as a function of position for VDS being equal to 0.25, 0.5, l 

and 2 V. Furthermore, in figs. 6.18-6.20 the net currents split up 

per valley are shown, for the three latter cases. Note that a 

positive current means that electrons transfer from GaAs to AlGaAs. 

Real space transfer occurs in the first place, in a measure 

independent of drain voltage, between source and gate. There, a net 

transfer of electrons from AlGaAs to GaAs takes place (fig. 6.17). 

The first part of the current path propagates to a high degree 

through the AlGaAs, before the electrons become transferred to the 

GaAs. Note however, that the AlGaAs electrons not necessarily have 

to reach the vicinity of the gate first before they become 
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Fig. 6.17 Real space transfer current as a function of position, for 

VG - 0.2 V, with V
0
s being equal to 0.25 , 0.5, l and 2 V. 

transferred, as the real space transfer current between source and 

gate is more or less independent of position. 

Only at V
00 

- 0.25 V a net transfer of electrons from AlGaAs to 

GaAs takes place behind the gate (fig. 6.17). This is a consequence 

of the boundary conditions at the drain, in combination with the low 

electric fields between gate and drain which do not prevent part of 

the electrons injected at the drain to travel quite a distance 

towards the gate. Near the gate, part of these electrons are pushed 

into the GaAs where they may travel towards the drain and get 

absorbed in the GaAs part of the drain. Naturally, the net 

contribution to the current is zero. 

However, removal of the boundary condition for the electron 

concentration at the drain has yielded physically unrealistic 

results. As an alternative, simulations have been performed where 

absorption at one contact was followed by injection at the opposite 

one. With this boundary condition, sometimes unrealistic 

accumulations of electrons at the contacts were observed. 
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Furthermore, in this case there is no physical criterion to decide 

upon the position at which an electron should be injected. For these 

reasons, it is concluded that the present boundary condition for the 

electron concentration is physically the most realistic. 

At the drain voltages above 0.25 V distinct peaks in the real 

space transfer current are seen at the drain edge of the gate {fig. 

6 .17), representing a net transfer from electrons from GaAs to 

AlGaAs. The values of these peaks increase with increasing drain 

voltage. As the drain voltage increases the electric field strength 

at the drain side of the gate increases and therewith the 

possibility of electrons obtaining sufficient energy to cross the 

energy barrier between GaAs and AlGaAs. 

Figures 6 .18-6. 20 show the increasing importance of the 

contributions of the L- and X-valley electrons to the GaAs-to-AlGaAs 

transfer occurring behind the gate. In fact, but for a small area at 

the drain edge of the gate, the contribution of r-valley electrons 

remains negative (i.e from A1GaAs to GaAs). Note that the fact that 

the net contribution is negative does not mean that the process does 

not occur! 

One should realize that this is not a severe phenomenon. For 

instance, after an electron has transferred from AlGaAs to GaAs it 

is very likely that intervalley transfer to the L-valley will occur, 

as the electron has recently acquired an extra energy of 0.227 eV. 

Being in the L-valley the possibility of transferring to AlGaAs 

again is higher than in the r-valley. 

Furthermore, r-electrons in AlGaAs are more mobile and have a 

higher probability of reaching the interface than the electrons in 

the upper valleys. Once they reach the interface, real space 
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transfer has a probability of 100 % (note that for X-electrons in 

AlGaAs in fact a potential barrier exists towards the GaAs). 

As the mobility in the AlGaAs is lower than in GaAs the transfer 

from electrons from GaAs to AlGaAs has a decreasing effect on the 

performance of the device. However, as the transfer mainly occurs 

for electrons from the low-mobility valleys in GaAs to the 

low-mobility valleys in AlGaAs, the net effect is not that dramatic. 

Thus, the current saturation at high drain voltages is rather caused 

by velocity saturation in the GaAs than by real space transfer. A 

similar conclusion has been reached by Mouis et al. (1986). 

Sheet densities at different gate voltages 

With the gate voltage the charge in the channel can be controlled. 

In fig. 6.21 the sheet densities at different gate voltages and a 

fixed drain voltage of 2 V are shown. The sheet densities have been 

determined with Gauss's law. 

Especially from fig. 6. 21A it can be concluded that the control 

of the charge below the gate is rather weak, as the decline in 

charge is not very not very sharp. This will result in a low 

threshold voltage, as can be seen in the I
0
-V

6 
characteristic of 

fig. 6.22. 
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6.5.3 Small-signal parameters 

For the high-frequency behaviour of the device, the values of 

small-signal parameters are of interest. In the following the 

transconductance and cutoff frequency have been determined for an 

HEMT with the same geometry as used in the preceding sections. Later 

on, the gate length will be changed in order to investigate its 

effect on the small-signal parameters. 

The transconductance the cutoff frequency f, and the 

source-to-gate capacitance CGS are defined according to (Sze 1981) 

8I
0 

g -
Iii av 

G 

-aQ I c ---
GS av v 

G DS 

(6.37) 

(6.38) 

(6.39) 

In order to determine CGs the change of the charge -aQ is taken 

as the change in charge on the gate, which is determined using 

Gauss's law. 

Results for a gate length of 0.3 µm 

In order to determine the quantities mentioned above, simulations 

have been done at V
08 

- 2 V. The gate voltage has been varied 

between -0. 6 and 0. 8 V (with steps of 0 .1 V). In fig. 6. 22 the 

resulting curve of I as a function of V is shown. The derivative 
DS G 

yields the transconductance. Note that. the geometry of the HEMT is 

the one shown in fig. 6.6. 

In figs. 6.23-6.25 the resulting small-signal parameters are 
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shown. Both the transconductance and the cutoff frequency reach 

their maximum values around gate voltage 0 V. At higher gate 

voltages the contribution of the current through the AlGaAs in the 

area between gate and drain becomes considerable and gm decreases. 

The decreasing transconductance together with the increasing 

capacitance cause the decrease in the cutoff frequency. 
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Fig. 6. 22 I0 versus VG characteristic in the saturation regime (V DS 

- 2 V), for gate lengths of (-) 0.3 µm, (· ·) 0.11 µm (case I) , 

and (···) 0.105 µm (case II). 
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Fig. 6.23 Transconductance gm as a function of gate voltage VG, for 
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Results for a gate length of 0.1 µm 

The influence of the gate length and interelectrode spacings on the 

high-frequency performance of the HEMT will now be investigated. 

Therefore, two slightly different dimensions will be chosen. 

Given the restrictions posed by the mesh it is tried to obtain 

two devices with gate lengths as close to 0.1 µm as possible. The 

first device will be chosen to have interelectrode spacings as close 
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as possible to those of the device treated above. The second device 

should have the same total length as the HEMT treated above. The 

resulting device dimensions are mentioned in the following. 

First, an HEMT with a gate length of 0.11 µm and interelectrode 

spacings of 0.286 µm is simulated. The interelectrode spacings have 

been chosen such as to be as much as possible in accordance with the 

ones in the previous case (0. 315 µm), given the mesh sizes. The 

length of the mesh cell now is 0.011 µm. This case will be referred 

to as case I. 

Next, an HEMT with a gate length of 0.105 µm and interelectrode 

spacings such that the total length of the device is again 0.96 µm. 

This results in a source-to-gate distance of 0.405 µm and a 

gate-to-drain distance of 0.42 µm, with the mesh cell length again 

being 0.015 µm. This case will be denoted as case II. 

All other geometrical, physical and model parameters remain 

unchanged in both cases. At the same time, all requirements 

concerning stability are fulfilled again. 

The results are shown in fig. 6.22, and the resulting 

small-signal in figs. 6.23-6.25. 

The highest frequencies are reached in the second case (fig. 

6.25). This is especially caused by higher transconductance values 

(fig. 6.23), as the capacitances in case I and II do not differ very 

much (fig. 6.24). The latter has to be expected, as the capacitance 

mainly depends on the gate length. The fact that the frequencies are 

higher than with gate length 0.3 µm is mainly caused by the fact 

that at smaller gate lengths the capacitances are lower. The 

transconductance on the average has not been changed very much, 

except the high peaks around 0 V have been disappeared (fig. 6.23). 
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This indicates a less effective control of gate on the charge in the 

channel. 

A striking feature is that the gate threshold voltage seems to be 

much smaller (fig. 6. 22) for a gate length of 0 .1 µm than for 0. 3 

µm. Again, as a consequence of the decrease of the gate length, in 

the devices studied in cases I and II, a reduced charge control 

shows. This can also be observed in fig. 6.26, which shows the sheet 

density for gate voltages of -0.4, -0.2 and 0.2 V. 

Kizilyalli et al. (1986) have predicted from a two-dimensional 

analytical model of the HEMT based on a three moments solution of 

the Boltzmann equation, that at gate lengths smaller than 0.15 µm 

the transconductance would not increase anymore with decreasing 

device dimensions. The results obtained in case I and II seem to 

confirm this prediction. 

Another way of determining the cutoff frequency would be to 

determine it from the transit time which is defined as 

(Lindmayer and Wrigley 1965) 

(6.40) 

The cutoff frequency is then calculated as (Lindmayer and Wrigley 

1965) 

f 
T 

1 

2wt 
T 

(6.41) 

The difficulty here is the choice of the integration path, which 

has been found to have great influence on the final result. When 

only the channel, in GaAs below the gate, is considered values 

comparable to those found earlier are obtained only for the lowest 
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gate voltages. This indicates that the current propagating through 

the AlGaAs should be taken into account in some way. 
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An attempt to determine the cutoff frequency in this manner has 

been made on the results obtained in case I. 

A different path has been selected for each gate voltage. This 

path is selected 'by hand', judging the sheet density in GaAs. The 

path begins where the sheet density starts decreasing, which point 

will be in the vicinity of the beginning of the gate. The path ends 

behind the gate, at the point where the sheet density has passed its 

peak value and more or less has reached its end value. A <v(x)> is 

determined as the average over the y-coordinate, as 

<v(x)> - J v(x,y)dy / J dy, (6.42) 

where the integration over y is taken over the complete height of 

the device (i.e. both the GaAs and AlGaAs layer). Only in this way 

it appears that the results for f
7 

are at least qualitatively 

resembling those obtained with eq.(6.38). See fig. 6.27. 

An alternative for eq.(6.41) has been suggested by Van de Roer 

(1989) as 

0.35 

t 
T 

(6.43) 

This formula is frequently used in microwave calculations (Javid and 

Brenner 1963). Transit frequencies obtained with this formula are 

also shown in fig. 6.27. Using eq.(6.43), the results are 

quantitatively in much better accordance. However, the choice of a 

suitable integration ~ath remains a problem. 
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6.6 Conclusions 

The HEMT with a gate length 0.3 µm which has been discussed in the 

previous section has the same dimensions as the one simulated with 

the Ensemble Monte Carlo method by Thobel (1988). The results found 

in this work are qualitatively in accordance with those by Thobel. 

However, the currents obtained here are higher. As a consequence the 

transconductances are higher, as well as the maximum cutoff 

frequency (± 190 GHz against 110 GHz). Such a difference cannot 

easily be understood. 

Experimental results on HEMTs with a gate lenght of 0.25 µm 

(which is close to 0.3 µm) yield a maximum cutoff frequency of about 

80 GHz (Chao et al. 1985). For an HEMT with gate length of 0.1 µma. 

maxilllUlll cutoff frequency of 113 GHz has been obtained (Lepore et al. 

1988). The difference with the values found in this work is quite 

large, and therefore the results obtained here cannot be regarded as 
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final. 

It has been pointed out that at high drain voltages the most 

important contribution to real space transfer from GaAs to AlGaAs 

behind the gate comes from electrons in the L- and X-valleys. 

Therefore, it can be concluded that the current saturation is 

especially caused by intervalley transfer in GaAs. 

A decrease of the gate length to about 0.1 µm causes an increase 

in the maximum cutoff frequency, which is mainly caused by a 

decrease in source-to-gate capacitance. The interelectrode spacings 

here have been found of minor influence, although the cutoff 

frequencies are somewhat higher with the higher electrode spacings. 

An alternative method to determine the cutoff frequency from the 

transit time poses a problem, since an integration path has to be 

determined which accounts for the current path. For each case this 

path has to be determined again, whereas it is not clearly defined. 

Furthermore, the exact choice of the path has a large influence on 

the final result. 
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c h a p t e r 7 

QUANTUM WELL T R A N S F E lt 

1 In this chapter a mechanism is presented, called quantum well 

transfer, intended for use in Monte Carlo transport calculations in 

which 2D as well as 3D electronic states are present. This transfer 

process provides a means for a phonon-assisted coupling between 

confined two-dimensional states in a GaAs/AlGaAs heterojunction 

quantum well and the 3D Bloch states existing in the bulk material. 

The case of polar-optical phonon-assisted 'quantum well escape' is 

elaborated. 

7.1 Introduction 

With the advent of modulation doping in MBE, it has become possible 

to grow accurately doped and sharply defined GaAs/AlGaAs single or 

multiple heterolayers. In the High Electron Mobility Transistor 

(HEMT), see chapter 6, using a GaAs/AlGaAs heterojunction conducting 

channel, higher mobilities are achieved than in bulk GaAs (Dingle et 

al. 1978), owing to the fact that the conduction electrons in GaAs 

are spatially separated from their parent donors in AlGaAs. 

In chapters 5 and 6, where the transport properties of an 

1 
Work performed at the llniver111te dea Sciences et Techniques de 

Lille-Flandres-Artois while en leave of abaence frcm the Uni varsity 

of Technology Eindhoven. The material in this chapter haa been 
published by Nederveen and Zimmermann (1989). 
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AlGaAs/GaAs heterojunction, respectively, the HEMT have been 

studied, the special nature of the electrons in the 

quasi-two-dimensional electron gas (Q2DEG} at the GaAs/AlGaAs 

heterointerface has been neglected and the 'classical' 3D scatter 

rates have been used (chapter 3). In reality, the carriers at the 

interface may be confined in a quantum well, their motion in the 

direction perpendicular to the interface being forbidden because of 

quantization. Consequently, the electrons are distributed in energy 

subbands, a situation which resembles much that encountered in 

silicon inversion layers (Ando et al. 1982). 

The scatter rates for the electrons in subbands are different 

from the ones given in chapter 3, because the form of the wave 

function has been changed. Furthermore, additional effects such as 

inter- and intrasubband scattering should be taken into account. 

If one decides to take subbands into account, the necessity of 

which is depending upon the physical circumstances under which the 

device is to be studied, one needs a mechanism to account for the 

transfer of electrons from a confined 2D state to a 3D state, and 

vice versa. For the description of any electron escape (capture) 

mechanism from (in) the well, a mechanism has to be formulated that 

must be accompanied by one of the usual scatter processes (acoustic 

or polar optical phonon scattering, piezoelectric, intervalley or 

ionized impurity scattering). 

The purpose of this chapter is to arrive at general formulas 

analogous to those obtained for electron-phonon interaction in a 

quantum well (Price 1981). In order to show the applicability to 

Monte Carlo simulations the case of polar-optical phonon-assisted 

quantum well escape (QWE) will be elaborated. It should be stressed 
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that, to the best of the knowledge of the author of this work, no 

earlier attempt has been reported to analyse this problem in detail. 

Ravaioli (1986) has derived scatter rates only for 2D to 3D 

transitions, with the constraint that at the same time real space 

transfer occurs, using the variational wave functions of Fang and 

Howard (Ando et al. 1982). Yokoyama and Hess (1986) seem to have 

treated the problem only numerically, and Zimmermann and Wu Yen 

(1987) have adopted a pragmatic approach, where 2D-3D transitions 

only take place via intervalley scattering and the rates are a 

modification of the 3D rates for intervalley scattering. 

Nevertheless, the interest is clear, because once in a 3D state 

an electron may exhibit real space transfer from GaAs to AlGaAs, or 

intervalley transfer. This will make the formalism to be described 

in the following especially useful for Monte Carlo purposes. 

7.2 Electron-phonon interaction in a quantum well 

The electron state fK,n> in a quantum well is characterized by a 

subband index n and a 2D wave vector K parallel to the 

heterointerface. Its wave function and energy are, respectively, 

~ .. cR.z) - A-
112

; (z) exp(iK·R), 
K,n n 

(7 .1) 

and 

~ h2K2 
W (K) - W + -, 

n n 2m'* 
(7.2) 

where </> n (z) denotes the quantized normalized wave function in the 

direction z perpendicular to the interface, R is the vector along 

" the interface, m the electron effective mass, h Planck's constant 
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divided by 2w, and A the heterointerface surface. 

The matrix element M
20 

(Q) used for the calculation, in 

first-order perturbation theory, of the transition rate S(K,n;K' ,m) 

for an electron in state IK,n> to IK' ,m> is linked to the matrix 

element for the three-dimensional case M (Q,q ) via (Price 1981) 
3D z 

(7. 3) 

where Q ls the parallel and q
8 

the transverse wave vector component 

of the phonon involved, V is the effective volwne of the well, and 

I (q ) - J dz 4> (z)f, (z) exp(iq z). 
mo z m n z 

(7.4) 

The transition rate is given by Fermi's Golden Rule 

(7. 5) 

where Ml,2) ls a delta-function taking care of conservation of 

energy. The scatter rate A(R) now is arrived at by integrating over 

all possible final states it-

A(K) -
4
: 2 JJdK' S(K,n;K' ,m). (7.6) 

7.3 Quantum well transfer 

In this section expressions for the probability of an electron 

transferring from a 2D to a 3D state (vice versa) under exchange of 

a phonon, will be derived. In general, this process will be denoted 

by 'quantwn well transfer', .and will be distinguished into quantwn 

well escape (QWE) and quantum well capture (QWC). It is to be 

understood that QWE should be added to the scatter processes in the 
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Q2DEG for which the calculation of the rates has been treated in 

section 7.2. Likewise, QWC is a process additional to the processes 

for 3D electrons which have been discussed in chapter 3. 

As in the derivation of eq. (7 .3), the same interaction 

Hamiltonian, H' , will be assumed to be valid for the quantum well as 

well as for the bulk phonons. In deriving the following expressions 

it has been assumed that 1f' may be expanded into a sum over phonon 

states ~ - Q + <j , as in eq. (3.14) 
:& 

1f' - l A(<i)[a+exp(i<i·t) + a1exp(-i<i·t)], 
+ q q 

(7.7) 

q 

where A(<i) is related to the amplitude of the lattice vibration 

represented by phonon wave vector <i, and a+ 
q 

and a1 
q 

are 

annihilation and creation operators, respectively (Nag 1980). 

7.3.l Quantum well escape 

the 

The matrix element M
23

(Q,qa) for a 2D to a 3D state transition, 

where the number of phonon states changes from n+ to n+ ± 1 (upper 
q q 

sign denotes emission and lower sign absorption of a phonon by the 

electron, throughout this section) may be written as 

M (Q,q) - &, ,n+ ± 111<' ln .. ,n,b. 
23 :& q q 

(7.8) 

where IK,n> is characterized by the wave function eq.(7.1), and I~'> 
7 -112 ~ 7 by the wave function i'k, (r) - V exp(ilt' ·r) with the 3D wave 

vector ~, - (K' ,k') at position f - (it,z). The derivation is 
:& 

straightforward, see e.g. eqs.(3.15)-(3.18), and leads to a point 

where 
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-E A(q) / n .. + .!: ± ! 
.. q 2 2 Jdz t/i (z)exp(-ik'z)exp(iq z) s .. .. ,.,. .. K 

n z z Q,K ..-

q 

(7.9) 

with 

-1/2 I I (q ,k') - L dz; (z)exp(-ik'z)exp(iq z). 
23 z s T n z z 

(7.10) 

One should realize here that just 'above' the quantum well the 

representation of the 3D electron state by means of a plane wave 

will not be really very accurate. For reasons of simplicity this 

representation has been adopted, with the constraint that the plane 

wave normalization volume v should 
T 

contain that space in which 

(most of) the 2D electrons reside, i.e. V-AL. L will be taken 
T T T 

as the width of the well at the energy level WT, with w being 
T 

described below. 

The energy level WT serves as a threshold. Two-dimensional 

electrons having total energy beyond this level may become 

three-dimensional. Inversely, three-dimensional electrons with 

energy below this level have the possibility to become 

two-dimensional. 

Suppose one looks for the minimum energy level for a QWE process 

under absorption of a phonon hw
0

• The total energy of a 

two-dimensional electron, being equal to Wm + w11 , should be greater 

than WT - hw
0 

for this Q'WE process to be possible. Inversely, if the 

total energy of a three-dimensional electron is smaller than 

WT + hw
0

, QWC accompanied by emission of a phonon is possible. 

For the determination of the value of W two criteria are 
T 

possible. To begin with, it could be defined as the level where the 

subband energy levels have become that close to each other that the 
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energy spectrum could be regarded a continuum. Another possiblitity 

could be to choose that energy level at which the width of the well 

is an order of magnitude larger than the average DeBroglie 

wavelength of the electrons at that level. The two criteria are 

expected to yield simliar values of Wr. Depending on the problem 

under consideration the one or the other should be chosen. See also 

fig. 7.1. 

Drawing a simple vector diagram, (see fig. 7.2,) one is inclined 

to conclude that k: should equal qz. However, this assumption 

ignores the (principally unknown) value of the wave vector component 

kz in the quantum well. As an equivalent to the square well one may 

h k -±(2m*w) 112
"' argue t at z m 1 .. = ±a. 

now in fact has become a function of k , so I (q ,k') - I (k), 
z 23zz 23z 

and 

I (k ) - L° 112Jdz ~ (z) exp(-ik
21
z) . 

23 z r m 
(7 .11) 

Note here that I I (k ) 12 is independent of the sign of k , so u z z 
2 2 

11
23

(+a)I - 11
23

(-a)I. 

Fig. 7.1 The conduction band near the heterointerface with 

(schematically denoted) a set of approaching subbands, the threshold 

energy level WT (the upper energy level in the well) and the 

normalization width L . 
T 
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k' z 

+a 

-- ........ -........ ............ 

"'--' -...... , ...... ......, ....... 

kx ' I -........ I 
', I ':::,.,J 

'..i...-----
Fig. 7.2 Vector diagram for the transition from a 2D-electron state 

(with wave vector K) to a 3D state (wave vector 11 
). The uncertainty 

for kz is represented by a. 

In order to proceed from IM (~ q ) 12 to IM (~) 12 one merely 
23 4 • z 23 4 

sums over the two possible q values, 
z 

which in essence is a 

summation over the probabilities IM
23

(Q,q
1
,)1 2 weighted with 

2 I I
23 

(a) I . This is analogous to the the calcual tion for the squared 

matrix element of eq.(7.3), see Vinter (1985). The squared matrix 

element for the QWE becomes 

(7 .12) 

so that the scatter rate may be written as 

.\23(K) - 2h" II23(a)l2 r III <lit, IM (Q,q )l2A(l,2). 
Sir a q foe ±a za ,. 

(7.13) 

z z 

7.3.2 Quantum well capture 

In a way analogous to the former subsection the matrix element 

M
23

(Q,qz) for the QWC from state I~ to IK' ,n> becomes 
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(7 .14) 

with 

-1/2J I (q ,k) = L dz <f> (z)exp(ik z)exp(iq z). 
32 z z T n z z 

(7.15) 

The same line of reasoning as before will be followed, with kz + qz 

- k: and k: - ±a yielding qz - ±a - kz, which leads to a scatter 

rate 

~ (~)- 2
w ~ II (a) 1

2 r JI aK' IM (Q,q) 1
2
.t..(l,2). 

32 h 47r2 32 l . 32 z 
q •±a-k 

(7.16) 

z z 

7.4 Application to Monte Carlo simulations 

The application to Monte Carlo simulations of quantum well transfer 

is reasonably straightforward. One should be aware of the fact that 

it will be conceptually wrong to use a sinusoidal wave-function 

<f>m(z) stemming from a rectangular well with infinitely high 

barriers, because the existence of electron states outside the well 

is denied by this assumption. The variational wave-functions of Fang 

and Howard (Ando et al. 1982) are better in this respect, although 

they are zero at the interface z - 0, thus forbidding the electrons 

to penetrate the AlGaAs layer. Of course, one just calculates the 

rates one requires with any </> (z) 
m 

available, while the delta 

function t..(1,2) provides the transfer conditions. 

Quantum well capture is only likely to occur for an electron 

residing 'above' the well, a criterion which of course depends 

heavily upon the form of the well. In order to show the problems to 
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be encountered the case of polar-optical phonon-assisted QWE will be 

elaborated a little further, because polar-optical phonon scattering 

is the most important process limiting the electron mobility in the 

quantum well. 

Under the neglect of the overlap function G('it, ~, ) the squared 

three-dimensional matrix element for polar-optical phonon scattering 

is, from eq.(3.33) 

e 2hw 
0 ----

2Ve q
2 

0 

(_!_ - _!_)en~+!±!> 
e e q z 2' 
"" . (7.17) 

where e
00 

and e
8 

are the high and low frequency relative 

permittivities, respectively, hw
0 

is the longitudinal optical phonon 

energy, n~ is the phonon occupation number (with the minus sign for 

absorption and the plus sign for emission of a phonon). 

All that is needed now to be able to evaluate A (K) is the 
23 

deltafunction 8(1,2), describing 

parabolic energy bands this leads to 

conservation 
h2k,2 
-- -w + 

2m* m 

of energy. For 
h2K2 
--. ± hw 

0
, which 

2m 

first of all should be greater than or equal to the WT as defined 

above. 8(1,2) becomes 

(7 .18) 

with 

8W - W ± hw 
m 0 

(7.19) 

and 

(7.20) 

where W' is the kinetic energy after scattering, and w11 the kinetic 

energy parallel to the interface before scattering, and where the 

plus sign now denotes absorption and the minus sign emission of a 
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phonon. 

In order to take into account the symmetry of the problem the 

integration in eq. (7 .13) is taken in cylindrical coordinates, and 

~ the integration variable is changed from K' to W' . Then one obtains 

III 
dW0 dWJ_ dl'1 

"za(Wll) - C r ll.(l, 2), 
l (Qz + z)W' 112 

q.. l. 

(7.21) 

where 6 is the angle between K and K' and 

(7.22) 

The integral is first taken over w0 and then over 6, which yields 

(7.23) 

This results in 

(7.24) 

with 

(7.25) 

and 
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b - 4,8(2W11 + AW + r/') 

m*1/21I (a)l2e2hw 
G _ ~~~~2_3~~~~-o 

4v2h2
e 

0 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

After the process has been selected the new state must be 

determined. First of all the scatter angle 6 between K and K' bas to 

be determined. Either Wi or w0 is to be selected with the help of a 

random number, from which the moduli K' and k' are calculated. The 
z 

orientation of k~ (up or down) is randomly determined. 

It should be pointed out out here that in principle it is 

possible to use a 'double' rejection technique, i.e. in evaluating 

).
23 

(W
11 

) one first evaluates the integral over one of the energy 

components, say w0, leaving a function H(W~,6). The strategy then is 

to draw a pair of random numbers (W~,6) in the ranges {O,W11 + t.W) 

and {0,2~), respectively, then calculate H(W~,6), draw a new random 

number H between 0 and Hmax and retain the values w~ and 6 if H s 

H(W~,6), otherwise restart the procedure. Of course, this method may 

lead to serious computational effort. 

Alternatively, although the algebra required to arrive at a 

formula giving the relation between a random number and W~ is rather 

tedious, the value of W~ may be drawn with the direct method as in 

eqs.(2.16) or (2.17). For this purpose formula (7.23) is used, 

normalized with the total scatter rate and integrated from 0 to the 

energy value randomly to be selected, analogous to eq.(2.16). 
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An expression for the angle iJ as a function of a random number is 

arrived at by changing the integration order, starting with WU, 

yielding 

2 iJ'f +t:.w 
A <w > - Ch r J 11 

dtJdW' 
23 II 

2 
• L 1-

m o o 

(7.31) 

The part of the integrand with the cosiJ term in the numerator makes 

the integral over WJ_ non-solvable, However, if one approximates (W11 

+ t:.W - W~) 112 by a three term Taylor expansion the integration over 

WJ_ can be performed . This approximation is not expected to lead to 

serious errors; a first-order calculation shows that the maximum 

error to be expected is 10% in the less prominent part of the 

scatter angle distribution function. 

The resultant integral over iJ cannot be solved. Hence iJ has to be 

determined with the rejection technique. 

7.5 Conclusion 

It has been shown that it is possible to introduce into a Monte Carlo 

model, describing out-of-equilibrium transport in a heterojunction 

quantum well, a mechanism which takes into account the coupling 

between confined 2D states in the well and 3D Bloch states in the 

bulk, using Fermi's Golden Rule. 

Here a so-called Quantum Well Escape process involving 
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polar-optical phonons is elaborated. However, in the described 

formalism, in principle every known, elastic as well as inelastic, 

scatter process may be involved. The developed Quantum Well Transfer 

mechanism is straightforward and could easily be implemented. 
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S U M M A R. Y 

This thesis deals with the modelling of various aspects of electron 

transport in AlGaAs/GaAs heterostructures. For this purpose the 

Ensemble Monte Carlo method is applied. In this method the Boltzmann 

transport equation is solved with statistical techniques, from the 

knowledge of the electric field and the rates of different possible 

interactions of an electron with the semiconductor lattice (the 

scatter rates). 

In chapter 2 the principles of the Monte Carlo technique are 

outlined, in chapter 3 followed by a discussion of the scatter 

processes which are taken into account in the semiconductors 

considered here. 

In chapter 4 first the working of the computer program developed 

is tested by simulations of bulk GaAs, with and without taking into 

account ionized impurity scattering. The results agree with other 

Monte Carlo calculations and scarcely available measurements. 

Furthermore, as in heterojunctions high electron concentrations can 

arise at the GaAs side of the AlGaAs/GaAs interface, the influence 

of degeneracy and electron-electron scattering is investigated in 

bulk GaAs. An existing model for taking into account the degeneracy 

effects at low electric fields is extended and made suitable for 

high fields. Velocity-field curves are obtained for an ionized 

18 -3 impurity and electron density of 10 cm . As a result of the 

inclusion of degeneracy velocity is slightly changed; an increase at 

fields until 10 kV/cm, a decrease at higher fields. The energy 

distribution as a whole is shifted towards higher energy, especially 

at low fields. Electron-electron scattering causes an increase in 
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velocity in the order of 10 % at fields between 5 and 30 kV/cm. 

Although the average energy is hardly affected the high- and 

low-energy tails of the energy distribution both get pushed towards 

the centre of the distribution. This causes a reduction of 

intervalley scattering. 

When both mechanisms are combined their effects are superposed. 

In a way both mechanisms counteract, especially their effect on the 

high-energy tail of the energy distribution. In general, at the 

densities considered, the influence on the transport properties is 

not dramatical. Electron-electron scattering is the most prominent 

of the two. 

In chapter 5 the electron transport along the AlGaAs/GaAs 

interface under influence of a constant longitudinal field (parallel 

to the interface) is studied. Poisson's equation is solved in one 

dimension, providing the transverse electric field in a 

selfconsistent manner. The scatter rates which are used are the same 

as in the bulk case, which implies that energy discretization 

effects are not accounted for. It is found that the average 

steady-state velocities, of the electrons in GaAs, parallel to the 

interface are higher than in bulk Ga.As under the same electric 

field. It is demonstrated that both real space transfer and the 

transverse electric field are responsible for this increase in 

velocity. Both reduce the number of electrons which transfer between 

the r- and L-valley in steady state. As a result the average 

velocity in the r-valley is higher, and therewith the total average 

velocity. 

In chapter 6 an Ensemble Monte Carlo model is presented for the 

High Electron Mobility Transistor (HEMT), in which Poisson's 

equation is solved in two dimensions. First the criteria to obtain a 
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numerically stable calculation are summarized. From these criteria a 

stable so-called time integration scheme is derived. 

The I -V characteristics for an HEMT with a gate length of 0. 3 
D DS 

µm are calculated. Furthermore the small-signal parameters, like the 

transconductance, the source-to-gate capacitance and the cutoff 

frequency are determined. The results found here are qualitatively 

in accordance with those from others. However, the currents obtained 

here are higher, and as a consequence the maximum cutoff frequency 

is also higher (±190 GHz against 110 GHz). 

It is pointed out that at high drain voltages the most important 

contribution to real space transfer from GaAs to AlGaAs behind the 

gate comes from electrons in the L- and X-valleys. Therefore, it can 

be concluded that the current saturation is especially caused by 

intervalley transfer in GaAs. 

A decrease of the gate length to about 0.1 µm causes an increase 

of the maximum cutoff frequency, which is mainly caused by a 

decrease in source-to-gate capacitance. The interelectrode spacings 

here are found to have a minor influence, although the cutoff 

frequencies are somewhat higher with the higher interelectrode 

spacings. 

In chapter 7 it is described how, using Fermi's Golden Rule, the 

coupling between confined 2D states in the well and 3D Bloch states 

in the bulk can be introduced into a Monte Carlo model which 

describes out-of-equilibrium electron transport in a heterojunction 

quantum well. This new transition process is called Quantum Well 

Transfer. 

Here a so-called Quantum Well Escape process involving 

polar-optical phonons is elaborated. However, in the described 

formalism, in principle every known, elastic as well as inelastic, 
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scatter process may be involved. The developed Quantum Well Transfer 

mechanism is straightforward and could easily be implemented. 
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SAHENVATTING 

Dit proefschrift behandelt het modelleren van diverse aspekten van 

het elektronentransport in AlGaAs/GaAs heterostrukturen. Hierbij is 

gebruik gemaakt van de Ensemble Monte Carlo methode. Bij deze 

methode wordt de Boltzmann transport vergelijking opgelost met 

statistische technieken, uitgaande van de waarde van bet elektrisch 

veld en de frekwenties van de mogelijke interakties van een elektron 

met het halfgeleiderrooster (de verstrooiingsfrekwenties). 

In hoofdstuk 2 wordt het principe van de Monte Carlo techniek 

geschetst, in hoofdstuk 3 gevolgd door een behandeling van de 

verstrooiingsprocessen die mee zijn genomen voor de in dit 

proefschrift beschouwde halfgeleiders. 

In hoofdstuk 4 wordt eerst de werking van bet ontwikkelde 

computerprogramma getest aan de hand van simulaties aan bulk GaAs, 

waarbij afwisselend de verstrooiing aan geionizeerde 

verontreinigingen wel en niet meegenomen wordt. De resultaten komen 

zowel met de resultaten van andere Monte Carlo berekeningen overeen 

als met metingen, voor zover beschikbaar. 

Aangezien in heterojunkties hoge elektronenkoncentraties kunnen 

voorkomen aan de GaAs kant van bet AlGaAs/GaAs grensvlak, is in bulk 

GaAs de invloed van degeneratie en elektron-elektron verstrooiing 

onderzocht. Een bestaand model voor bet meenemen van 

degeneratie-effekten bij lage elektrische velden is uitgebreid en 

geschikt gemaakt voor hogere velden. Snelheids-veld relaties zijn 

verkregen in bet geval dat de dichtheid van de geionizeerde 

verontreinigingen en van de elektronen 1018 -3 cm bedraagt. Als 

gevolg van het meenemen van degeneratie treedt een geringe 
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verandering in de snelheid op; een verboging bij velden tot 10 

kV/cm, een verlaging bij hogere velden. De energieverdeling 

verschuift in zijn geheel naar hogere energiewaarden, vooral bij 

lage velden. Elektron-elektron verstrooiing veroorzaakt een 

vergroting van de snelheid in de orde van 101 voor velden van 5 tot 

30 kV/cm. Hoewel de gemiddelde energie nauwelijks verandert worden 

de staarten van de energieverdeling, zowel bij lage als hoge 

energie, naar bet centrum van de verdeling gedrukt. Als gevolg 

hiervan neemt intervallei verstrooiing in frekwentie af. 

Als beide mecbanismen tegelijkertijd meegenomen worden, worden 

hun effekten gesuperponeerd. In zekere zin werken ze elkaar tegen, 

vooral wat betreft hun invloed op de staart van de energieverdeling 

bij hoge energie. In bet algemeen kan gesteld worden dat bet effekt 

op de transport eigenschappen gering is. 

verstrooiing is de meest dominante van de twee. 

Elektron-elektron 

In hoofdstuk 5 wordt bet elektronentransport langs bet 

AlGaAs/GaAs grensvlak onder invloed van een konstant longitudinaal 

veld (parallel aan het grensvlak) bestudeerd. Door de Poisson 

vergelijking eendimensionaal op te lossen wordt bet transversale 

veld op een zelfkonsistente manier verkregen. Effekten van 

energie-diskretizatie worden verwaarloosd, zodat dezelfde 

verstrooiingsfrekwenties als in de berekeningen aan bulk GaAs worden 

gebruikt. De gemiddelde stationaire snelheden parallel aan bet 

grensvlak van de elektronen in het GaAs blijken hoger te zijn dan in 

bulk GaAs onder invloed van een vergelijkbaar elektriscb veld. Er 

wordt aangetoond dat zowel real space transfer als het transversale 

veld verantwoordelijk zijn voor deze toename in snelheid. Beide 

verminderen ze het aantal elektronen dat in stations.ire toestand 

tusen de r- en L-vallei been en weer beweegt. Als gevolg hiervan is 
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de gemiddelde snelheid in de r-vallei hoger, en daarmee de totale 

snelheid. 

In hoofdstuk 6 wordt een Ensemble Monte Carlo model gepresenteerd 

voor de High Electron Mobility Transistor (HEMT), waarbij da Poisson 

vergelijking twee-dimensionaal opgelost wordt. Om te beginnen worden 

de kriteria opgesomd om tot een numeriek stabiel schema te komen. 

Hiervan uitgaand wordt een numeriek stabiel tijd-integratie schema 

afgeleid. 

In de eerste plaats zijn de ID
8
-VDS karakteristieken voor een 

HEMT met gate lengte van 0.3 µm berekend. Verder zijn de 

klein-signaal parameters, zoals de steilheid, de source-gate 

kapaciteit en de afsnijfrekwentie bepaald. De hierbij verkregen 

resultaten zijn kwalitatief in overeenstemming met werk van anderen. 

Echter zijn de stromen bier hoger, waardoor ook de maximale 

afsnijfrekwentrie hoger is (±190 GHz tegen 110 GHz). 

Het blijkt dat bij hoge drain spanningen de grootste bijdrage aan 

real space transfer van GaAs naar AlGaAs. aan bet eind van de gate 

afkomstig is van elektronen die zich in de L- en X-valleien 

bevinden. Hieruit valt af te leiden dat de verzadiging van de stroom 

vooral veroorzaakt wordt door intervallei verstrooiing in GaAs. 

Een verkleining van de gate lengte naar ongeveer 0.1 µm 

veroorzaakt een verhoging van de maximale afsnij frekwentie, die 

vooral veroorzaakt wordt door een vermindering van de source-gate 

kapaciteit. Hoewel bij grotere interelektrode afstanden de 

afsnijfrekwenties wat hoger zijn, hebben deze afstanden hierbij 

weinig invloed. 

In hoofdstuk 7 wordt beschreven hoe in een Monte Carlo model voor 

niet-stationair elektronentransport in een heterojunktie kwantumput, 

een mechanisme geintroduceerd kan worden om de koppeling tot stand 
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te brengen tussen de opgesloten 2D toestanden in de put en de 3D 

toestanden in de bulk, met behulp van Fermi's Gulden Regel. Dit 

nieuwe overgangsproces wordt aangeduid met Quantum Well Transfer. 

Het geval van een zogenaamd Quantum Well Escape proces waarbij 

polair-optische fononen betrokken zijn wordt verder uitgewerkt. In 

principe kan echter ieder proces, elastisch of inelastisch, met 

behulp van dit formalisme meegenomen worden. Het Quantum Well 

Transfer mechanisme kan eenvoudig geimplementeerd worden. 
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Stellingen behorende bij het proefschrift: 

Ensemble Monte Carlo simulation 
of 

electron transport in AlGaAs/GaAs heterojunctions 

door 

Karel Nederveen 

1. De bewering van Lugli en Ferry dat het Pauli principe hetzelfde effekt heeft op de 
energieverdeling van elektronen als elektron-elektron interaktie is op zijn minst verwarrend, 
aangezien deze bewering alleen juist is voor elektronen die zich in de lage-energie staart van de 
verdeling bevinden. 
Dit proefschrift, Hoofdstuk 4; 
P. Lugli and DK. Ferry, 1985, IEEE Trans. El. Dev. 32, 2431-2437. 

2. De manier waarop Hockney en Eastwood met de Monte Carlo methode de verplaatsing van bet 
elektron berekenen levert een tijd-integratie schema op dat volgens de door henzelf gehanteerde 
kriteria instabiel is. 
Dit proefschrift, Hoof dstuk 6; 
R.W. Hockney and J.W. Eastwood, 1981, Computer simulation using particles, McGraw-Hill, 
New York. 

3. De door Hockney en Eastwood gehanteerde manier om, in Monte Carlo berekeningen, de vrije
vluchttijd van een elektron te selekteren met behulp van getabelleerde self-scatter konstantes is 
principieel onjuist 
R.W. Hockney and J.W. Eastwood, 1981, Computer simulation using particles, McGraw-Hill, 
New York. 

4. Met behulp van een multi-wafer CVD reaktor kan dezelfde uniformiteit in laagdikte op een 
halfgeleiderplak bereikt word.en als met een single-wafer reaktor. 
K. Nederveen, AMI'C Activity Report, May-June 1989. 

5. Het door K. Y. Toh voorgestelde "engineering model" is te onnauwkeurig voor de berekeningen 
van de eigenschappen van CMOS schakelingen. 

K.Y. Toh, 1988, IEEE/SSC 23, 950. 



6. De cocitatie-clusteranalyse methode is veeleer een sociologisch instrument om vriendengroepen 
op te sporen dan een betrouwbaar hulpmiddel om de kwaliteit van wetenschappelijk onderzoek te 
meten. 
J. van Deen, 1987, Ned.er/ands Tijdschrift voor Natuurkunde B53, 105-107. 

7. Een dicht gepakte groep mensen gedraagt zich niet als een vloeistof, maar als een vaste stof met 
een kleine elasticiteitsmodulus en Poissonkonttaktie. 

8. Om te komen tot een konsekwente spelling van bet Nederlands zijn er slechts twee 
mogelijkheden: de "ouderwetse" spelling handhaven die zoveel mogelijk recbt doet aan de 
oorsprong van woorden, of een "moderne" spelling invoeren die zoveel mogelijk de Duitse 
spellingsprincipes overneemt. 

9. Het wettelijk verplicbt stellen van "positieve diskriminatie" van nauwkeurig omscbreven 
groepen mensen uit de samenleving werkt stigmatiserend en is niet bevorderlijk voor het gevoel 
van eigenwaarde van de leden van betreffende groepen. 

10. Meer nog dan over de vraag of de gewenste doelen wel bereikt worden dienen wetgevers zich, 
bij het ontwerpen van nieuwe wetten, te buigen over de vraag of niet-gewenste doelen juist niet 
bereikt worden. 

11. Bij niet-kunstliefhebbers leeft het idee dat "kunst" en "mooi" synoniem zouden moeten zijn. Dit 
is een misverstand: "mooi" is een van de mogelijke kwalifikaties van iets waarvan objektief is vast 
te stellen dat bet "kunst" betreft. 

12. Het gebruik van bet woord "gebeuren" als zelfstandig naamwoord wijst op een gebrek aan 
taalkundig vermogen bij de spreker om duidelijk te maken wat er nu eigenlijk gebeurt. 


