

An end-to-end data transformation process for increasing the
information yield of system traces
Citation for published version (APA):
Kevrekidis, K. (2013). An end-to-end data transformation process for increasing the information yield of system
traces. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences].
Technische Universiteit Eindhoven. https://doi.org/10.6100/IR754355

DOI:
10.6100/IR754355

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR754355
https://doi.org/10.6100/IR754355
https://research.tue.nl/en/publications/7b8791ea-f7ec-4732-b80a-589efc0da06d

An end-to-end data transformation process for

increasing the information yield of system traces

An end-to-end data transformation process for
increasing the information yield of system traces

 PROEFSCHRIFT

 ter verkrijging van de graad van doctor aan de
 Technische Universiteit Eindhoven, op gezag van de
 rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
 commissie aangewezen door het College voor
 Promoties in het openbaar te verdedigen
 op maandag 3 juni 2013 om 16.00 uur

 door

 Kostas Kevrekidis

 geboren te Kavala, Griekenland

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. M.J.Newby
en
prof.dr.ir. A.C. Brombacher

This thesis is number D169 of the thesis series of the Beta Research School for
Operations Management and Logistics

A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-9000-1

Printed by University Printing Office, Eindhoven

i

Acknowledgements

Here I would like to take the opportunity to express my appreciation to the people
who supported my work on this thesis.

I would like to thank my first promoter prof. Martin Newby for the many discussions
we had on research problems of technical nature.

I would like to thank my second promoter prof. Aarnout Brombacher for the
discussions we had on the story line and the readability of the thesis.

I would like to express my gratitude to the members of the PhD committee, prof.
Frank Coolen, prof. Rob Kusters and prof. Geert-Jan van Houtum for their
constructive feedback. In particular I would like to thank prof. Frank Coolen for
providing me with detailed comments, which helped me to improve some technical
aspects of the thesis. I would like to thank dr. Lu Yuan for joining the committee and
prof. Will Bertrant for chairing the committee.

I would also like to thank the people who have facilitated this research. Firstly I want
to thank dr. Guillaume Stollman from Philips Healthcare, for giving me access to data
and facilities. Without his help the exploratory part of my research would not have
been possible. I want to thank dr. Peter Sonnemans for his support and guidance at
the beginning of my research and prof. Ton de Kok for allowing me to access the
University’s resources for an extended period of time. I am thankful for all the
administrative help I received by Hanneke Driessen and the administration of the
research group OPAC.

I heartily thank all my friends and colleagues who helped me with our small or long
discussions on various research topics. I thank Kurtulus, Arvind, Aylin, Maurits,
Christelle, Ilse, Joël and Jeroen. Kurt, I thank you for the great (intense) time we had
writing that business proposal that was based on this research. We gave it a good shot.
I also want to thank you for our discussions on some of my research problems.

Dad, Mom, Maria, thank you for supporting me non-stop on my entire journey.

Last but certainly not least, Karin, I have told you many times already, and I will keep
on telling you, without your support this thesis would have been an equation with no
solution. Thank you.

ii

iii

Summary

Computer-based products are capable of recording and sharing information on the
state of a product and its components, while the product is in operation. That
information is acquired in the form of traces. Traces are a valuable source of
information for identifying the causes of failures in computer-based products.
Professional systems are such products, characterized by their large size and high
complexity. There is a strong requirement for these systems to remain functional for
long periods of time. These products are being developed and maintained with certain
availability targets in mind. Information on the failures that these systems experience
in the field can help to manage the resources effectively and meet the availability
targets.

The traces generated by professional systems that are operating in the field, here
referred to as system traces, have the potential of becoming an important source of
information to support effective availability management. On operational level, traces
can guide corrective maintenance activities by providing information on the root
cause of failures. On planning level, traces can help to identify the main causes of
system unavailability, which can lead to improvements in the system design or the
preventive maintenance plan. In order to use system traces for this purpose, it is
necessary to identify which of the many records in a long sequence of traces represent
a distinctive physical event of interest, e.g. system failure.

However, because of the multiplicity of the components in these systems, as well as
the long operating times, the amount of traces that is produced is beyond the capacity
of human processing. In this thesis, a system trace transformation methodology is
proposed that enables the systematic reduction of the data size of system traces
without losing the relevant information that is useful for effective availability
management. The data size reduction is achieved in two steps:

1- Clustering of raw traces into representations of single physical event instances;
2- Clustering of the latter representations into new representations of instances of

physical event types.

The proposed methodology is generic and does not make use of system type specific
information to drive the data size reduction. The methodology relies on unsupervised
data mining techniques that operate on the features of the data structures found in
system traces. The performance of the methodology is measured by the compression
ratio, i.e. the ratio of the number of data points needed to convey the information after
compression over the number of data points needed to convey the same information
before the compression.

The research is organized in three main sections. In the first section the features of the
data structures in system traces are explored. Three different approaches, namely
domain experts, experimentation and graphical analysis, are used to increase the
knowledge on the feature characteristics of the data structures found in system traces.
The second section is utilizing the knowledge on the feature characteristics and
proposes a set of methods and tools to systematically reduce the data size by
organizing the data structures in the traces appropriately. The proposed methods have
been developed to tolerate variation in the feature characteristics of data structures

iv

when applied in the field. The third section is a case study. The proposed
methodology is applied to a sample of system traces collected by X-ray scanners that
are operating in the field. The case study is used to demonstrate the data compression
that is achieved by applying the methodology on raw system traces and to assess the
methodology’s reliability. In the case study it is shown that the data compression ratio
can exceed the order of 0.01, i.e. 100 times fewer data points are needed to convey the
same amount of information as in the original sequence.

v

Table of Contents
Acknowledgements ... i
Summary ...iii
Table of Contents ... v
List of Abbreviations ... vii

1 Introduction .. 1

1.1 Motivation .. 3
1.2 The System ... 3
1.3 Availability: key performance indicator for professional systems 4
1.4 Designing for availability .. 6
1.5 Monitoring the state of components with the help of traces 8
1.6 The role of traces in system availability related research 9
1.7 Overview of objectives .. 14

1.8 Outline of the thesis ... 15

2 Knowledge discovery framework for traces .. 17

2.1 Traces ... 17
2.2 Event based data sequences ... 19
2.3 Variation in subsequences .. 21
2.4 A sequential process for making sense of large amounts of data 22
2.5 Data set used in case study ... 31

3 Exploration and preparation of system traces .. 33

3.1 Uncertainty in expert interpretation of semantics .. 34
3.2 Exploring the structure of subsequences with fault injection 41
3.3 Effective visual representation of traces for fast exploration 49
3.4 Detection of partially periodic subsequences .. 60

4 Detection of subsequences in sequences .. 73

4.1 Related work .. 73
4.2 Unsupervised segmentation of a long sequence of traces 74
4.3 Discussion and Conclusions .. 95

5 Tagging of subsequences and tag matching ... 97

5.1 Tagging Subsequences ... 98
5.2 Matching tags ... 100
5.3 Discussion and Conclusions .. 116

6 Utilizing traces from multiple systems .. 119

6.1 Characteristic subsequence structure of a system group 120

6.2 Discussion and conclusion ... 124

7 Case Study ... 127

7.1 The sample data set .. 127
7.2 Transformation methodology applied on a single sequence 129

7.3 Data reduction on sample sequence ... 139
7.4 Test for uniformity ... 142
7.5 Performance of cost function ... 145

7.6 Discussion and conclusions ... 146

vi

8 Knowledge discovery using transformed traces .. 149

8.1 From parameterization to application .. 149
8.2 Availability management with traces ... 150
8.3 Availability management & decision making: past, present and future 155

9 Conclusions and recommendations for future research 161

9.1 Research Objectives ... 161
9.2 Research validity and reliability .. 165
9.3 Contribution of thesis ... 167
9.4 Reflection on work ... 169
9.5 Recommendations for future research ... 169

References .. 171

 The product life cycle ... 179 Appendix A
 The measure of merit

LM for the resampling method [Lev01] 181 Appendix B

 Definition of matrices P , CT and the test statistic ˆ 184 Appendix C
 Agglomerative clustering algorithm ... 185 Appendix D

Curriculum Vitae ... 187

vii

List of Abbreviations

AFP Average number of False Positives

ASR Average Success Rate

B2B Business to Business

CP Collision Probability

CSM Cluster Separation Measure

DBST Distance Between Successive Traces

DSR Distortion to Signal Ratio

hCSM Hybrid Cluster Separation Measure

ic Identification Code (for traces)

KDD Knowledge Discovery in Databases

LCC Life Cycle Costs

LED Levensthein Edit Distance

maxDBST Maximum Distance Between Successive Traces

mDBST Mean Distance Between Successive Traces

NED Normalized Edit Distance

OEM Original Equipment Manufacturer

PLC Product Life Cycle

PPS Partially Periodic Sequence

TCO Total Cost of Ownership

viii

 1

Chapter 1

1 Introduction
Advanced professional systems are products that are used in the core processes of
businesses. Examples of such products are medical systems, manufacturing or
assembly machinery, baggage handling systems in airports, professional printers, etc.
These systems are capital producing, they play an integral role in the productivity of
businesses by affecting the yield of consumer goods or services. The interruption of
normal operation of these systems, planned or unplanned, can have serious
consequences not only for the health of the businesses but also for wider parts of
society.

Recently an unexpected shutdown of a Canadian nuclear reactor (Chalk River,
Ontario) that coincided with the scheduled maintenance of the Petten nuclear reactor
in the Netherlands caused a worldwide shortage of medical isotopes [Reu10]. In a
different example, system fault of the baggage system of a new terminal in Heathrow
airport caused thousands of bags being stranded and flights being cancelled and
delayed [Air08] [Tel08].

Costs accompanying such interruptions derive mainly from the loss of productivity,
penalties imposed by breaking contracted deliverables and the cost of repair and spare
parts. Original equipment manufacturers (OEMs) that produce these systems are
aware of how important it is for their products to deliver their functionality
uninterrupted. Therefore availability is perceived as a key performance indicator of
these products. To provide products with high availability two attributes of the
product's performance are considered:

 The frequency of system failures
 The period of time the system is unavailable as a result of a failure

To increase availability, one or both of these attributes has to be reduced. Reduction
of system failures is achieved during design by using highly reliable components and
by redundancy of critical components. Both tactics are considered during the design
phase of the system. However, even when both design tactics are considered, 100%
system reliability is practically impossible to achieve. Failures occurring during
operation cannot be entirely avoided. These failures have to be handled by
maintenance operations taking place in the field.

In the event of unexpected failure corrective maintenance is required. Corrective
maintenance can be a time consuming activity because it involves failure diagnosis,
spare part availability and logistics. To overcome the effects of unexpected
downtimes, OEMs and businesses have turned to preventive maintenance policies.
Under these policies, systems and their components are maintained on a regular basis
before any failure occurs. This proactive approach has the advantage that the
maintenance activity can be planned and prepared to reduce downtime to the
minimum required.

 2

In both cases, corrective or preventive maintenance activities are a result of the
awareness about the system's state. Awareness of the system's state is created with the
help of some form of signaling function. For corrective maintenance, that awareness
can come for example from an audio alarm going off if the system malfunctions, or
simply from the operator who detects the malfunction. For preventive maintenance,
the awareness is made possible with the use of system monitoring techniques. These
techniques allow the monitoring of the state of the system and its components. For
example, information on the state of a component combined with engineering
knowledge can help anticipate the component's failure. This technique is known as
condition based maintenance. If a failure is anticipated, the component is replaced or
repaired before that failure occurs and thereby system failure is avoided. For both
types of maintenance, the signaling of the components or system's state is used to
decide what action to take to reduce system unavailability.

For professional systems it is beneficial to avoid downtime due to system failure or
maintenance altogether. In systems where much of the functionality is provided by
software, engineers have implemented a protective tactic against failures, known as
system resilience. System resilience describes the system's ability to either mitigate
the effects of errors and confine the failure to retain as much as possible of the critical
functionality, or to enable the system to recover from a failure as soon as possible
back to its normal operating state as it was before the failure occurred. Whether the
mechanism is error mitigation or failure recovery, engineers need to employ this
solution where the system needs it most. Information on system failures can help
engineers identify the functional areas of the system that need to become resilient.

Whether it is to guide maintenance activities, to improve the components reliability,
or to design resilience into the system, information on the failures of the system is
valuable. Such information can be obtained directly from the system. Computer-
based systems are capable of recording and sharing information on the state of the
system and its components, while the system is in operation. That information is
acquired in the form of traces. Traces are a human readable, text based data form that
contains semantic information on component level. Traces can contain information
about the operational status of components or processes. Traces also contain the time
when the recording took place. They are produced during operating time and their
digital format allows them to be shared via network connection in almost real time.

Traces can also contain information about component failures and the recoveries that
took place. For engineers this is a valuable source of information for understanding
the system's behavior in relation to failures and recoveries. However, the extraction of
such information from traces is not a trivial task. Due to the multiplicity of
components and the running system processes, traces can contain a vast amount of
data (thousands of entries) for a few hours of operating time. To manually inspect raw
traces and identify instances of failures or recoveries is a time consuming exercise
even when it is done for one system only. Sometimes it is necessary to inspect the
traces from a fleet of systems to obtain a clear picture of a problem.

To make the amount of data manageable, the volume of raw traces has to be reduced
to the point where only the most relevant data is retained. Moreover, the remaining
data should be provided in a format that allows the direct application of some of the
analytical techniques that are used in availability management. The whole process has

 3

to be automated and made as generic as possible, free from product specific
dependencies.

1.1 Motivation

This thesis is entitled “An end-to-end data transformation process for increasing the
information yield of system traces”. The methods presented here seek to
systematically reduce the size of traces using pattern recognition techniques, without
losing any of the essential original semantic information and to transform them into a
data format suitable for analytical post processing. The analytical methods and tools
that are used for post processing are out of the scope of this thesis. Nevertheless,
certain categories of such methods, namely stochastic modeling and sequential data
mining, are considered and used as a reference for setting the requirements for the
format of the data that should derive from the transformation of raw traces.

Since professional systems are in many cases managed in large numbers known as
fleets, the combination of information from traces of multiple systems is being
examined in the research.

The models and techniques are developed with the help of traces sampled from
systems that are operating in the field. These sample set is used as a learning ground.
Abstract data characteristics derived from the learning set are used for the
development of a model that can represent basic characteristics of system traces. This
data abstraction assures that our methods are not product specific but are based on
system trace generic patterns. The developed models and methods are demonstrated
and assessed using a case study.

The remainder of this chapter is organized as follows: first the concept of a system
will be described. Then the importance of availability for professional systems is
underlined in 1.3. In 1.4, the system engineering approach that is used to develop
professional systems is described. The discussion includes how system availability is
addressed during system design, and how fault resilience, and monitoring techniques
are incorporated into that design. Also, in the same section, the role of the system
environment in supporting the availability of the system is addressed and it is briefly
described, how component state monitoring techniques are used to support the
maintenance activities as well as the allocation of resilience. In section 1.6 current
works on the area on the use of traces for system availability are discussed. Finally, in
1.6.2 we present the objectives of this research regarding the transformation of traces.
More specifics about the objectives of the transformation process will be given in
Chapter 2.

The research was carried out in cooperation with Philips Healthcare.

1.2 The System

The digital revolution brought by computer and information technology in the last
thirty years had its impact on the design of capital goods. Most professional systems
are now computer based, with data processing and storage capabilities. Software
applications are to a great extent responsible for providing the system's functionality.
Embedded software is controlling the operation of hardware components, and other
software components are establishing the communication between hardware and
software applications. Components are communicating with each other by passing on

 4

digital information and signals. They provide the functionality efficiently by
cooperating in a synchronized manner.

The system is modeled as a collection of physical components (electrical, mechanical,
mechatronic, software) which are controlled and coordinated by software to achieve
the system function. A module or a subsystem is a collection of components put
together to provide a certain type of service. A basic assumption of this thesis is that
complex systems follow a modular design, with strong coherence of components
within modules and week coupling between modules. This assumption is generally
true for complex systems. These systems are designed in a modular fashion to allow
reduction of complexity during development and allow easier maintenance in the
field. This assumption has to hold for the methodology in chapter 5 to be applicable.
In this thesis the software and hardware are treated on an equal basis. Later in the
thesis, it will be shown how the fault injection experiment (chapter 3) induces faults in
software and hardware components to determine how they affect the system as a
whole and how they affect the traces that the system is producing. Additionally, in
this thesis the system availability is directly linked to component and process
availability. The failure and unavailability of the latter directly implies failure and
unavailability of the former. The recovery of the component directly implies recovery
of the system. This assumption applies particularly to core functionalities, where the
failure of a component makes the system unable to provide its service as required and
therefore be considered unavailable.

1.3 Availability: key performance indicator for professional
systems

Availability is one of the most important performance aspects of professional systems
because their operation is directly affecting business costs, throughput and quality.
Availability is defined as the proportion of time that the system is operational. This
section aims in underlying the importance of availability management of professional
systems. The drawback of current data sources and the advantages of traces for
supporting the decision making in the areas described in this section will be described
in chapter 8.

1.3.1 Life Cycle cost and Total cost of ownership

The life cycle of the system is roughly divided into four phases in the following order:
design & development, production, exploitation and disposal. Each phase has various
types of costs associated with it. The cost of research and development are affecting
the first phase and manufacturing costs the second. Utilization and maintenance costs
are affecting the third and the costs of disposing the system come at the end of the life
cycle. The cost throughout all phases is known as life cycle cost (LCC). More detail
on the costs associated with each phase can be found in Blanchard et al. [Bla06].

The LCC that is paid by the owner of the system throughout its life cycle is known as
total cost of ownership (TCO). Traditionally the customer is bearing the entire LCC.
Design, development and manufacturing cost are included into the price of acquisition
that constitutes part of TCO. Utilization, maintenance and disposal are a part of TCO
too.

 5

Studies have shown that 70% of TCO are due to downtime and maintenance costs,
whereas downtime alone can account for 50% of TCO [Öne10] [Asi98]. Customers
are becoming more and more aware of what effect system unavailability has on TCO,
and are motivated to perform TCO analysis before they decide which system to
purchase [Fer02].

1.3.2 From product acquisition to product leasing

The provision of service as a way of making business is becoming an increasingly
interesting prospect for manufacturers. This model proposes customers paying for the
functionality of the product and manufacturers being responsible for the continuous
availability of that functionality [Mar05]. The model holds benefits for both customer
and manufacturers:

 Manufacturers can create substantial revenue from managing their installed
base. Services have greater margins than products and services provide a more
stable source of revenue as they are resistant to the economic cycles that drive
investment and equipment purchases [Oli03].

 Services are more difficult to imitate, they provide opportunities for
differentiation and competitive advantage for manufacturers [Van88].

 Customers prefer acquiring the functionality than the physical product because
this way they can reduce the TCO and their head count, and they can focus the
attention on their core business. They also get access to technical system
expertise and therefore can acquire improved service delivery and quality
[Mar05].

Availability directly suggests functionality. For the above mentioned reasons OEMs
are becoming very interested in providing to their customers systems with high
availability.

1.3.3 High availability is perceived as good quality

The economic success of a product depends heavily on its quality. Eventually buyers
will seek the brand with higher product quality [Mud02]. This is equally true for
professional systems. Some of the aspects of customer perceived superiority of
industrial products, which leads to product success is quality, reliability and
availability [Coo79]. Moreover, product quality is a key element in winning customer
loyalty. Product quality, perceived mainly as reliability and performance, is the main
brand-equity-generating variable in the business to business (B2B) market [Ben04].
Product quality, reliability and of course availability are therefore major competitive
attributes of the product.

Although availability is one of the main quality characteristics of professional
systems, failures that relate to safety are for manufacturers more critical problems. In
many cases manufacturers are legally bound to consider all possible safety issues that
relate to the functionality of their systems. Solving a safety related problem would
most certainly have a higher priority that improving availability. In this thesis the
discussion is set on an availability centered basis; i.e. component failures that cause
high system unavailability are ranked high in the list of problems to solve. Although
in reality safety critical issues would top a list of availability related issues, in this
thesis we treat safety critical issues as lack of availability.

 6

1.4 Designing for availability

Professional systems pose an engineering and economic challenge for OEMs. They
need to fulfill customer needs by incorporating systematically, diverse technological
knowledge into one economically sustainable and durable product solution.

1.4.1 The System Engineering approach

To engineer a professional system that fulfills customer requirements in a financially
competitive manner, OEMs follow a system engineering approach [Bla06]. The
approach takes requirements from all product life cycle (PLC) phases of the system
into account and incorporates them in the design and development of the product
(More detail about the PLC can be found in appendix A). Next to the system specific
requirements, the system engineering approach also looks into the system support
environment to identify components e.g. maintenance engineers, spare parts
inventories, logistics, etc. on which the system's performance will depend. During the
design and development phase the requirements of the system are considered together
with the requirements of the support environment. The intention is to provide a
system that can provide its functionality successfully during utilization, a support
environment that can help sustain it, but also a system environment interaction that
allows the best utilization of resources.

1.4.2 Availability requirements addressed by the system
engineering approach

To fulfill system availability requirements, decisions regarding the frequency of
system failures are addressed during the early stages of design and development. The
reliability of components and the level of redundancy play a key role in the frequency
of system failures. Critical components are designed with high reliability and two or
more are put in parallel configuration to ensure the availability of the delivered
function. The level of reliability designed into the components and the amount of
redundancy in the system is based on the tradeoff between the cost of reliability and
the required level of system reliability. Although these design tactics have been
proved to be effective in improving system reliability, it is not unlikely that once a
system has been introduced into the field, it is discovered that some components do
not meet their reliability requirements and are the cause of frequent system failures.
Such a discovery is backed by component failure information collected from fielded
systems.

1.4.3 System resilience against failures

Recently, another design tactic has been added to the set of techniques for enhancing
system availability, namely system resilience. The principle of resilience is that in the
event of a failure the mechanism put in place will either confine the effects of a
component's failure or restore the system to its prior to the failure state as soon as
possible.

Resilience can be defined as "...the intrinsic ability of a system to maintain or regain a

dynamically stable state, which allows it to continue operations after a major mishap

and/or in the presence of continuous stress" [Hol06]. The concept emerged from the
necessity and ability of organizations to anticipate exceptional events that can lead to
accidents and mitigate their effect by taking appropriate action. This ability is
particularly relevant for systems used in safety critical operations such as medical

 7

intervention procedures on patients or air traffic control systems regulating the path of
airplanes approaching and leaving the airport.

The key element of resilience engineering is the early detection of exceptional events,
such as signs of imminent failure, in order to make necessary adjustments to the
system as early as possible. The earlier the adjustment takes place the smaller the
adjustments need to be.

Many professional systems have started to incorporate resilience engineering concepts
into their design. When loss or degradation of the functionality is detected by an
internal monitoring mechanism, the system initiates a “graceful degradation” process
that limits the loss of its functionality. This way the system can continue to provide its
core functionality without interruption of its operation, until the problem is addressed.
Alternatively, if the failure cannot be contained and the system fails, internal recovery
mechanisms can bring the system back to its functional state, by resuming the state of
system prior to the failure. In software engineering the term is known as
recoverability [ISO01]

For engineers it is important to know where in the system to implement resilience and
how effective these mechanisms are in dealing with failures. Resilience engineering is
benefiting from digital technology, which provides the means to monitor these
mechanisms and assess their effectiveness.

1.4.4 System support environment preventive maintenance

The system support environment's role in system availability is decisive. In the event
of system failure (and where no recovery is possible) corrective maintenance is
required. The duration of system downtime depends on several factors such as the
responsiveness of the maintenance engineer, the ability to recognize, diagnose and
isolate the failure quickly, the availability and delivery time of spare parts etc. No
different than the product quality, service quality in the B2B market has similar
impact on customer satisfaction and affects repurchasing decisions [Pat09]. Service
quality can depend on pre agreed deliverables. One of the dimensions of service
quality is the ability of the service supplier to respond quickly to a customer's problem
and to do things right the first time [Lap00]. Manufacturers of professional systems
make decisions on how to configure the support environment to provide efficient
levels of service. To reduce the chances of unexpected failure and to avoid the
drawbacks of corrective maintenance's, preventive maintenance policies are adopted.
During preventive maintenance components are replaced proactively to reduce the
probability of failure or the degradation of their functionality. Although for hardware
preventive maintenance comes in the form of replacement or repair, for software
based components preventive maintenance can be perceived as correcting a newly
discovered fault in the code and then uploading that fixed code version to all fielded
systems before the failure actually occurs in any of those systems. The support
environment is in many cases responsible for deciding which preventive maintenance
policies can yield the required levels of availability.

 8

1.5 Monitoring the state of components with the help of
traces

To support the system design decisions and maintenance activities it is important to
have information about the system operation on component level. Knowing where an
error occurred, which components were affected, whether the system was able to
recover or not, and how long the system was unavailable can guide the decision
making on when, where and how to act. Corrective maintenance can be triggered by
the signal of a failing component. The diagnosis that the field engineer has to perform
can be guided by the semantic information that is collected by the monitoring
mechanism. For preventive maintenance, information taken out from frequencies of
component failures or condition monitoring techniques is paramount. An eminent
failure can be anticipated by using the knowledge on how the component's state
changes over time.

To gain such information engineers rely on monitoring techniques. Next to direct
visual inspection, engineering methods to monitor the level of vibrations, the pressure,
the noise or temperature, or the chemical analysis of fluids, can help to gain insight in
a component's state. For computer based systems these traditional condition based
monitoring techniques are not applicable. The state of digital components and
software cannot be monitored by external observation. Instead, the software of the
system is capable of reporting events occurring in the components. These events are
recorded in an event log, known as traces. Traces contain semantic information on
component states, e.g. errors or recoveries. This information is recorded together with
a timestamp containing the time of occurrence of the event.

The monitoring and recording mechanism is embedded into the system's design.
During design, “checkers” or “hooks” are put in place in the product’s software.
Numerous checkers in the code target the behavior of a predetermined set of
components. These sensing points are producing traces that contain information on
the state of the components during operation. Traces are stored in the system and can
be shared via a remote network connection. Sensing points can be added if that is
deemed necessary to increase the capability to monitor a wider area of the system.
However wider coverage comes with the cost of increasing the amount of data
recorded. The information that is recorded in the traces can be used by engineers for
post analysis to determine the background of certain events e.g. system failures or to
help them understand the overall system performance.

The analysis of traces by humans is labor intensive. The ability of the system to
record traces rapidly, the large number of components in the system and the numerous
hooks in the software result to long sequences of traces that can contain thousands of
entries for few hours of operation. For humans to use traces to monitor the operation
of systems, these sequences have to be reduced to a manageable size that contains
only the information of interest.

1.5.1 Analytical methods for assessing system availability

The aim of this thesis is to prepare raw traces for analysis that seeks to improve the
availability of the system. Firstly traces are used for failure diagnosis after a system
failure. This use of traces is fundamental. The ability to use the information in the
traces for failure diagnosis has to be retained after their transformation. Beyond this

 9

use, in this thesis two types of analytical methods are considered. Engineers can use
these methods to determine if and where the system requires attention in order to meet
its availability targets.

The first of these methods is stochastic availability modeling. In stochastic availability
modeling, densities of failure and repair/recovery times are modeled and used to
analyze design, performance or maintenance scenarios. The result of the analysis can
help to decide on which design is superior or which maintenance policy will yield
higher availability for lower cost. For this type of analysis traces can provide the
empirical input for determining the type of probabilistic failure models that are
suitable for system modeling and for the parameterization of these models. Traces can
be also used to compare actual against expected performance.

The second technique is known as discovery of association rules and is a type of
sequential data mining. Association rule discovery can give answers to questions such
as “which recovery processes are associated with which types of failures”. This
information can help engineers assess whether the system resources are allocated
effectively to deal with errors and prevent system failures.

The application of these techniques in conjunction with the use of system traces are
described in more detail in Chapter 8.

To support the two techniques, failure and recovery events have to be provided in the
form of point representations. In raw traces, the instances of the physical events,
failures or recoveries, can be represented by multiple traces. The collection of one or
more traces resulting from the occurrence of a failure or recovery is knows as
subsequence (the term will be defined in Chapter 2). Subsequences can have nonzero
duration. Given a physical event, there length of time between the moment the first
relevant trace is recorded till the last trace related to the same event is recorded can be
greater the zero. To meet the requirements of the above mentioned analytical post
processing techniques, subsequences have to be represented by points with a single
temporal location and of zero duration.

1.6 The role of traces in system availability related research

Availability analysis of complex systems using traces has been a topic of interest for
researchers from the field of computer system engineering and network management
[Sim05][Mar05][Mor90][Kal99][Tal99]. The challenge in extracting the relevant
information from long sequences of traces is to identify, without manual inspection
which traces form the subsequences that represent the physical events of interest, i.e.
error and recoveries.

Different techniques have been used for identifying instances of physical failures in
long sequences of traces. In some occasions physical failures are represented by a
single trace. In [Sim05] measurements of product availability are retrieved from long
sequences of traces by using the time of occurrence of single traces, which in turn can
represent the occurrence of a physical error and a crash. A mapping of the semantics
onto failure types was conducted in advance, which allows the identification of the
relevant single traces in long sequences. A similar approach is being followed by
[Mor90]. However, there the system recoveries are not recorded. The availability is
estimated assuming a fixed duration of downtime for each occurrence of a failure. In

 10

[Kal99], availability is estimated using traces, with emphasis on the recovery
recordings. In this study too, categorization of trace precedes the quantitative analysis.
In the above studies physical failure events or crashes are identified in long sequences
of traces because the semantics of the traces of interest have been either linked to
failure types in advance or other product specific knowledge has been added in the
analysis. The availability of a software system is assessed in [Mur95] by using the
time between system crashes using traces. However, traces that contain information
on the cause of the crashes i.e. failures are not taken into account in the analysis

In another line of studies, the semantics of subsequences that represent errors have not
been linked to external knowledge on failure or recovery types. However, other
information about the traces is known. Cinque et al [Cin05] are simulating user
profiles and produce traces on occurrences of failures. Multiple traces are clustered
into one group to represent one physical failure. The clustering is performed based on
the knowledge about the starting and ending point of the subsequence of traces. In
[Ham03], single error traces are classified into categories of failure types by searching
for key words in the content of the error message. Then the types are correlated to
system states. A similar approach is used to analyze outages in a university network
by [Cho07] and to analyze the availability of processors [Qua00]. Clustering methods
for traces without the use of any prior knowledge on the content of subsequences are
described by Tsao [Tsa83] and the extensions made by Hansen [Han88]. The
clustering is based on the temporal distances between successive traces found in long
sequences. This approach is used as basis for the methodology that is proposed in
Chapter 4.

Beyond availability measurement or analysis, traces have been used in other areas,
such as root cause analysis and fault diagnosis [And95] [Laz92], failure detection and
prediction [Lim08][Tha96][Tie00], analysis of system and network of systems
behavior by correlating events representing alarms [Bel] [Yam05], and model
validation [Wei90]. These latter studies try to correlate a single trace to a physical
error. They are depending heavily on prior knowledge on the description of failure
symptoms.

1.6.1 Current methods

The manual extraction of information from traces is labor intensive, making the
processing of traces from large scale applications virtually impossible. Even for the
processing of traces from a single system an engineer would have to search through
thousands of log entries to find the most relevant and decide how to organize them in
a meaningful for the purpose manner. Such a manual operation is meaningful if
information from traces is needed to help the diagnosis of a single system failure
event, where a short strip of the traces has to be analyzed. However when the
required information is about the occurrence of multiple failure events, the process of
manually analyzing traces even for one single system goes beyond the capabilities of
humans.

For this reason automated methods are developed to process traces and extract the
required information. The methodologies proposed in literature are mostly ad hoc
solutions to specific problems (exception is [Tsa83]). They depend on case specific
knowledge to decode the information in traces, i.e. a priori mapping of trace onto
failure types, key words in the description field, start and stop marks etc. Such

 11

knowledge can be collected with the help of exploratory exercises. For example,
extensive fault injections under specific operating scenarios can provide a collection
of error and recovery traces. These can be used for identifying the same fault in the
trace recorded in the field. But such an approach can produce only a finite set of fault
traces. Covering all possible faults scenarios under different operational conditions is
practically infeasible due to the high number of components and their complex
interdependencies. The second way of obtaining additional knowledge is when the
system is operating in the field. Engineers can perform root-cause analysis to relate
traces to the physical fault events. Root cause analysis requires dedicated resources to
investigate traces.

The above techniques are putting heavy requirements on resources especially because
the investigation of traces is not directed to the most prominent failures, but follows a
gunshot approach i.e. investigate traces as they occur without prioritization given the
criticality of the event. A more efficient approach is to focus the investigation on a
narrow group of traces that seem to be most relevant to system unavailability. For that
the failure events with high frequency of occurrence or/and the events that cause long
down times can be singled out using the temporal information in traces. Then, the
semantic information can be used to guide root cause analysis.

Many studies that are using traces are focusing on either error or recovery traces. The
association between the two types of traces is not examined. However, for supporting
design and maintenance decision making, both types of traces are relevant. The
information retrieved from traces can guide engineers to choose between changing the
design, i.e. component reliability, resilience or enhance the maintenance of the system
i.e. guide corrective or preventive maintenance. Therefore both types of traces should
be included in the transformation methodology.

1.6.2 Proposed approach

The objective is to develop a methodology for reducing the size of raw traces through
a series of transformation steps so that human interpretation of the data is enhanced.
Other than the requirements that are described in the sections above, the methodology
will have to take into account some other considerations:

1.6.2.1 Black box approach
A black box approach is followed in the methodology of this thesis. System specific
information is not used as an input for developing the methodology. In the literature
the black box approach is referred to as measurement based (see below), whereas the
approach that is using design details is known as model based.

Model based approaches rely on analytic or simulated models of the system or its
behavior. This approach requires design information that describes components and
their interactions. Once defined, a model based approach is useful in exploring the
system behavior under different scenarios. However, the accuracy of the results
depends on how realistically the model represents the system and its behavior. Given
the increasing complexity of systems, accurate modeling has become a difficult task
[Mar05][Tri08]. Moreover, model based approaches still depend on measurements
for estimating their parameters and for validation.

 12

A measurement based approach relies on observations made directly on the traces. It
has the advantage that knowledge can be acquired from the data collected from the
field without having to know the system in great detail. The approach relies more on
the understanding of the data, their structure and the information they carry. Such an
approach can provide accurate results and is particularly useful when it is applied to
operational systems [Iye00]. In this thesis observations and measurements are made
on two basic characteristics of traces:

1. The temporal distance between successive traces (1.6.2.1.1)

2. The association between pairs of traces (1.6.2.1.2)

To establish our understanding on these two characteristics, an extensive exploratory
study is conducted using traces collected from systems operating in the field (chapter
3).

1.6.2.1.1 The temporal distance between successive traces

Traces contain the timestamp of the occurrence of the event or state they represent.
Multiple traces form an ordered sequence of events. Their temporal order and the
temporal distance between traces define the temporal structure of the sequence. A
sequence can consist of traces that are put densely next to each other, e.g. a few
seconds between two successive records, or can have long intervals between two
successive records, e.g. several seconds between two successive records. Typically
when the system is active the distance between successive traces is short i.e. traces are
recorded rapidly, whereas when the system is idle the distance between successive
traces tends to be long. The temporal characteristics of the formations found in long
sequences of traces are one of the main features that can help develop a generic,
system independent methodology for identifying failure and recovery events. The
temporal structure of traces is explored in chapter 3 and used to develop the
segmentation method presented in chapter 4. The method is enhanced to deal with the
variation in temporal structures found in real life applications.

1.6.2.1.2 Association between pair of traces

Professional systems can be highly complex. The complexity of the system derives
from the number of components, the diversity of technological fields from which
these components originate and the interactions between these components. To
manage design complexity, professional systems use modular system architecture.
The modularity allows the management of system complexity by organizing
components into modules with inherent strong functional dependency. The modular
system design is characterized by the principle of strong coherence among
components that are part of the module and weak coupling between components of
different modules. The strong coherence/weak coupling principle has a direct effect
on the formation of subsequences of traces. Failure and recovery events usually
involve components of the same module, due to the effect of failure propagation or
recovery protocols. Therefore, the traces produced by failure and recovery events can
represent these functional dependencies. Subsequences are formations of traces that
can be attributed to one event. The subsequences of traces that are produced by failure
and recovery events are manifestations of the strong coherence/weak coupling system
design principle. Given that the system design remains fundamentally unchanged over
its lifecycle, the strong coherence/weak coupling principle can be considered as a

 13

constant reference for the formation of subsequences. This reference has model like
properties; i.e. given a system design and assuming the same initial system state,
every occurrence of the same failure or recovery event would produce the same
subsequence of traces. The proposed methodology uses the generally applicable
strong coherence/weak coupling principle in system design to develop an approach
for processing long sequences of traces. This principle is explored in chapter 3 and
applied in the methodology of chapter 5.

1.6.2.2 Variations in temporal structure and associations
Professional systems do not operate in isolation. Professional systems interact with
their environment: operators, other systems and external devices. The interaction with
the environment together with system specific conditions can make the structure of
subsequences vary for different instances of the same physical event. Similar variation
can be seen in the associations between traces. This observation is made in chapter 3
and is taken into account for developing the processing methods discussed in chapters
4 and 5.

1.6.2.3 Sequential processing
Among the methods used in applications that operate on traces, two distinctions can
be made: the online and the offline set up. Online methods apply to incoming traces,
in close to real time manner. Off-line approaches work with a snapshot of the traces
over a period of time taken from databases. The decision to use an online or offline
method depends on the latency requirements for system state awareness and the rate
with which the system state can change. In the context of availability management, a
real time approach addresses the needs of maintenance operations where the
awareness on the system state can help corrective maintenance in fault diagnosis.
When management control and long term planning are the dominant objectives the
time horizons are longer and therefore information can be delivered in longer time
intervals [Kee78]. Because the methodology should provide support for both design
(long term) and maintenance, and it has to satisfy the stricter requirements of the latter
and therefore be able to process data in close to real time manner.

The proposed methodology applies in the following manner: parameter estimation and
algorithm calibration is performed off-line using snapshots of system traces.
Application of the methodology on operating systems is online and close to real-time.
The two modes are discussed in more detail in chapter 8. The latter objective requires
the processing methods for traces to follow a sequential model; i.e. data are processed
as they arrive into the data repository. The sequential nature of the process is shown in
chapter 4.

1.6.2.4 Combining traces from distributed systems
The proposed methodology is most likely to be applied to fleets of professional
systems. That means that data from traces of multiple systems can be combined. For
example, the training of the algorithms can be based on data collected from various
systems. Combining data would allow the faster training of the mining algorithms,
because more observations would become available in shorter time.

For that purpose, it is important that the data from various systems do not contradict
each other but rather work complementary. However, environmental factors can have
an effect on the formation of subsequences. Even though the system design is a

 14

constant parameter across the distributed systems, the effect of the environment can
compromise the suitability of a combinatory approach.

In this thesis a method to assess the consistency in the structure of subsequences
obtained from distributed systems is proposed. This is method is presented in chapter
6.

1.7 Overview of objectives

An overview of the objectives for the methodology is given below:

1. The methodology seeks to reduce the size of the data via a series of
transformation steps making it easier for human interpretation (chapters 3, 4,
5).

2. During the transformation all relevant information has to be retained. In the
context of availability management that means that temporal locations of
events have to be known after the transformation. Also the original semantics
that relate to an event need to be available after the transformation so that they
can be used for further investigation. The transformed data should represent
the physical events as accurately as possible (chapters 3, 4).

3. The transformed data should be in a format that is suitable for post-processing

by analytical methods. When the method is applied is should rely little on
manual work. These objectives have to be reached under a set of conditions
(chapter 4):

4. The methodology has to be generic, applicable to traces of any large systems

(that have modular design) without the need to incorporate system specific
information (follow a black box approach regarding the system). The
methodology should rely only on generic characteristics of traces (chapter 4)
together with generic system design principles (chapter 5).

5. The methodology has to be able to deal with variations found in the structure

of the subsequences of traces. Time dependent factors such as the system load
or type of operation can result to different trace manifestations of the same
physical event in different instances.

6. The methodology has to be able to be applicable for close-to real time

processing of traces (chapters 4 and 5). In the context of availability
management, the most demanding requirement regarding the latency of
information comes from the need to react quickly in the case of corrective
maintenance. The transformed traces need to be available quickly to support
this type of maintenance.

7. The methodology needs to exploit the fact that traces are collected from

multiple systems of the same type operating in the field but are geographically
distributed (chapter 6). The information that is collected from the traces of
multiple systems can help to speed up the process of parameterizing the
algorithms that are used for the transformation of traces.

 15

1.8 Outline of the thesis

The thesis is outlined as follows: in chapter 2 traces are introduced formally. Their
origin, their temporal and semantic structure is described. In the same chapter the
knowledge discovery framework is introduced. The framework describes a high level
process of how to make sense of large volumes of data, a problem that applies here
too. This framework puts the basis for developing the particular methods and tools
that will allow information extraction from traces. The methodology that derives from
the framework consists of three steps: exploration of traces, sequence segmentation
and subsequence matching. Chapters 3, 4, 5 are dealing with each one of these steps
respectively. In chapter 6 the option of using traces from multiple systems as a
method to increase the efficiency of the parameterization of the algorithms is
considered. The option relies on whether the structures of subsequences across
distributed systems have consistent characteristics. Chapter 7 contains a case study
where the methods that are presented in chapters 4, 5 and 6 are applied to traces that
have been collected from systems operating in the field. The case study serves also as
a form of validation as it allows the evaluation of the results of the transformation and
the performance of the methodology. Chapter 8 describes in more detail how the
transformed traces can be used for post processing analysis. The transformed traces
can help to create an entire decision support system for availability management. Such
a system is described in chapter 8. Finally chapter 9 concludes the thesis with the
findings of this research and a discussion on the proposed methodology.

 16

 17

Chapter 2

2 Knowledge discovery framework for traces
To achieve the objectives stated in 1.7 a step by step process is defined that will
perform the end to end transformation of raw traces. The sequence of the steps is
designed around a framework that is borrowed from the domain of knowledge

discovery in large databases (KDD).

This chapter is organized as follows: First, the basic terms used to describe traces,
examples of traces and a brief description of the mechanism behind traces are
presented in 2.1. In section 2.2 traces are generalized and described as event based

data sequences. This view highlights the importance of the “evolving character of
records” in traces, an informative aspect that is relevant for this research. The concept
of variation found in traces is described in 2.3. In section 2.4 the framework to
process the traces is presented. First in 2.4.1 the generic KDD framework for
processing large data sets is presented. This generic framework puts the ground for
defining a series of steps for transforming traces into a data format suitable for
analysis. In section 2.4.3 the end–to-end transformation process for traces is defined.
Finally the chapter closes with section 2.5 where the sample set of traces that is used
in this research is described.

2.1 Traces

A single trace contains information about the state of a component in the system at a
certain point in time. This information is in the form of human readable text format
(see example of trace in Table 2-1). Such a message describes briefly the state of the
component, for example "processing data" or "data processing completed". The
message can contain static and/or dynamic information. Static information consists of
a predefined description that remains the same in different instances of the trace. For
example "processing data" is a description that appears in that form in all instances
whenever this trace appears. Dynamic information in the description can take the
value of a variable, for the level of usage of a resource. For example, "memory usage
at 90%" is a description that contains the variable of the percentage of usage. This
value may differ in different instances of the message. In this research the dynamic
information i.e. the variables are ignored and in relation to traces the term
“description” is a synonymous to the term "message".

Traces have a distinctive identification code known as trace identification code or ic.
The trace ic is uniquely linked to the description. For static information that means
that the ic represents also the description field of the trace. The ic is also uniquely
linked to each component. The trace ic helps to quickly identify the qualitative
information of a trace without having to read the message. Trace ic are used
extensively in this research as they allow fast machine processing.

An important element of the trace is its timestamp. The timestamp provides the
information about the date and the time the trace was logged. Logging mechanisms
can record traces with timestamps with a granularity of millisecond. This allows the
rapid logging of traces and reduces the chance of having traces recorded with the
exact same timestamp. However having traces with the exact same time stamp is
common.

 18

timestamp ic message/description class
02-10-2007 9:27:31 730000001

InfraToolsSaveDevData
startup completed

Information

02-10-2007 9:27:36 760000200
Archiving:Communication
Lost

Error

Table 2-1 Form of single trace

Another element of interest is the field class. Class describes whether the trace
represents an informative state of the component, i.e. a normal operation state of
component, or an erroneous state, i.e. abnormal operation. Additional fields can
describe the mode of the system, e.g. normal operation, start-up etc., the source code
that produced the message and other. These fields are used for the initial filtering of
the traces of interest e.g. the field class is used to separate the “Error” and “Recovery”
traces from the rest. The field mode allows the exclusion of specific system modes
such as start-up and shut-down, to retain only traces produced during normal
operation.

Traces are recorded when hooks in the software are triggered. Triggering occurs when
components enter certain states that have been predefined. The "sensing" of states is
done either with the use of electronic, mechanical sensors or programming sensors
[Tie00]. The latter are found in the firmware (embedded software) of components of
professional systems [Len02] or the application layer.

When a sensor is triggered, the message that relates to the sensed component state,
together with the values of the other fields and the trace ic, are sent to the logging unit
that stores the information together with a timestamp. Several "sensors" are
distributed throughout the system. As the system is operating, this network of sensors
produces a chronologically ordered long sequence of traces (example of sequence in
Table 2-2). Traces are also known as system event logs, and the process of sensing,
reporting and recording is known as system event logging or simply logging. In this
thesis the entire mechanism for logging is referred to as the logging mechanism.

timestamp ic message class

19-06-2008 14:58:44 570000020 Initialize job queue Information

19-06-2008 14:58:45 540019921 Command: SelectRevExam Information

19-06-2008 14:58:46 650028673 Monitor: Starting Application completed Information

19-06-2008 14:59:05 73200000 ISB_FRONTAL Information

19-06-2008 15:03:50 73700000 Frontal Channel Information

19-06-2008 15:03:53 73600000 Frontal Channel Information

19-06-2008 15:05:04 510020389 Cumulative dose values Information

19-06-2008 15:05:04 510021391 System not ready Information

19-06-2008 15:05:05 510021393 System ready Information

19-06-2008 15:05:06 540019921 Command: CloseExam Information

19-06-2008 15:05:07 510028691 Applied tube protection Information

19-06-2008 15:05:08 510028691 Applied tube protection Information

19-06-2008 15:05:09 510019388 Fluo flavour selection completed Information

19-06-2008 15:05:10 510999921 Command: XTraVisionReadyStatus Information

19-06-2008 15:05:11 510999920 User msg: Total free space 203410 (51316) images Information

19-06-2008 15:05:12 510021393 System ready for fluoroscopy x-ray acquisition Information

19-06-2008 15:05:13 510021390 System ready for exposure x-ray acquisition Information

Table 2-2 Sequence of traces

 19

The connection between traces and physical events is not explicit. Traces do not
contain information that relates them to distinctive physical events. This relation has
to be established with diagnosis. In this thesis it is assumed that such connection
exists i.e. physical events cause the logging mechanism to produce traces. When one
or more traces are the result of one distinct physical event, they are considered to be
forming a subsequence. A general example of a physical event is the archiving of a

file, a system crash, or the restarting of the system after the crash. These are events
that are technically interesting and that engineers use to describe the operation of the
system. In Table 2-3 a subsequence is shown that contains traces describing the event
of archiving a file. The physical event can have duration as it is the case in the
example. The timestamps of the subsequence provide the information about the time
of occurrence of the event e.g. the event started at 5:03:09. The semantics of the
subsequence allow the understanding of the nature of the event. From the semantics of
the subsequence in this example the connection between the subsequence and the
physical event is clear. This is not always the case. Particularly error subsequences
require further diagnosis into the problem before this relation is clear.

timestamp ic message class
02-10-2009 5:03:09 670000001 Open database connection Information

02-10-2009 5:03:10 570000021 Execution of job started. Information

02-10-2009 5:03:11 570000015 Archiving Job Completed. Information

Table 2-3 Subsequence containing representing the archiving event

The information in the traces is categorized into the semantics that refers to qualitative
information such as the trace ic and the description, the class etc. and the temporal
that refers to the date/time information found in the timestamps. The same terms are
used to refer to derivatives of the above. For example “time between successive
traces” is also temporal information.

2.2 Event based data sequences

Traces are a type of data form known as event based data sequences. The value of
event based data sequences lies on the fact that they "enable the understanding of the
evolving character of records in a data set" [Vro10]. The records, the traces, consist of
the semantics (ic, or description) and the temporal information (timestamps). The
semantic information provides the qualitative aspect of the event (what happened and
where) and the temporal information provides the temporal aspect of the event (when
did it happen). Put in a sequence, the semantic and temporal information of traces
form the evolving character of the records. In the context of system operation, the
evolving character of records represents the evolving states of the components in the
system. Such records can be revealing and concealing the same time. They can be
revealing by allowing a view into the states of components that can report on their
state. Traces can be concealing, because components that cannot report on their state
are not found in the records and they can be easily omitted.

To illustrate this, an example is provided. Figure 2-1 shows the evolution of the states
of a system in 7 consecutive points in time. The system is represented by the blue
panels. Each panel represents a point in time of the system state.

 20

Figure 2-1Evolving states of components

The points in time are marked by the notation

it located in the center of each panel,
where 1,2,3,4,5,6,7i . The system contains four components A, B, C and PM.
Components A, B, C together provide the functionality of the system. Component PM
is the process manager of the system, responsible for resource allocation and the
synchronization between the components. Some of the components can report on their
state and they can send this information to the logging unit. This operation is indicated
by the red arrows that connect a component to the logging unit. The components with
the logging ability are A, B, and PM.

At time 1t component A is encountering an error and fails. Because of functional
dependency, components B and C follow and fail at times 2t and 3t respectively. At
time 4t the PM detects that the system service is down, and orders components A, B
and C to restart in order to restore the service. Components A, B and C, following a
recovery protocol, restart progressively at times 5t , 6t and 7t respectively.

The traces that are produced by the logging unit are of the form (the format is

):

1

2

4

6

7

,

,

,

,

,

Error A t

Error B t

Start Service PM t

Starting A t

Starting B t

The traces reveal the progression of states. The semantic information reveals which
components were involved in the incident and what their states were (what happened
and where). The temporal information in the traces reports on the latency of the events
(when it happened). Overall it is understood that the system experienced a failure at

 21

time 1t and the system recovered at time 7t . From the above the evolving states of the
system can be understood.

However, the sequence in the example does not contain any trace of component C.
Component C cannot log traces and therefore its states remain unrecorded. If this
component would be the cause of the system failure, the traces would not be able to
help the diagnosis of the problem. It is a challenge to find the right balance between
covering all interesting component states by increasing the instrumentation of the
system with sensors and software hooks, and the same time keep the effort of
instrumenting low and the amount of data manageable. The amount of data that are
recorded depends on the logging mechanism that is responsible for the sensing,
reporting and recording of component states. The more instrumentation the system
contains, the more data there is to analyze and bigger need to automate their analysis.
Usually systems have numerous of software hooks and the sequences that are
recorded by one system can contain a great amount of traces. An hour long sequence
of traces from one system can contain tens of thousands of entries.

Event based data sequences differ from another well-known computer based
information source, the core dump. The core dump is a file that contains information
on the state of the memory and/or the program at specific point in time e.g. a system
crash. The core dump is produced only when such an event occurs. Traces on the
other hand are incessant representations of the system's components during operation.

2.3 Variation in subsequences

The structure of subsequences i.e. the number of traces, the type of semantics the time
between successive traces, is subject to variation. This variation results from the fact
that under operational conditions the system can react, to a certain extent, in different
ways to the same physical events. For example variation can occur due to the path an
error propagates through the system. If the same fault occurs twice in the same
component in two points in time, a different number of components might be affected
in the two instances due variation in the error propagation. This difference can be
motivated by the difference in the operational state the system at different instances.
Similarly, in different instances of the same fault, the same number of components
can experience errors in different sequence or with different time elapses between the
component errors.

Additional variation can derive from the dynamics in the logging mechanism itself.
As errors are sensed and the messages are sent to the logging unit, the logging can
introduce variation in the sequence of logged traces or in the time of logging.
Variation is found in the traces obtained from the same system and in traces of
different systems. Variation in subsequences is taken into account when developing
the transformation methodology. The variation in subsequences is explored in chapter
3 using experimentation. In chapter 4 and 5 it is discussed how the variation in
subsequences can affect the results of the transformation. The proposed methodology
incorporates features that enable it to account for the variation found in subsequences.

 22

2.4 A sequential process for making sense of large amounts
of data

"Drinking from the fire hose of knowledge" and "data asphyxiation" are phrases often
used in literature to signify the wealth of information stored in databases and the
difficulty of extracting useful information from it. Knowledge discovery in databases
(KDD) is the field of research devoted to methods and tools that enable the efficient
sense making from large amounts of data [Fay96]. Knowledge is discovered in the
form of patterns in the data that can describe a phenomenon. An example is the
consumer behavior patterns found in supermarket data and the consumer’s tendency
to buy certain products together. In event based sequences in particular, patterns are
found in the timing or ordering of events. The discovery of such patterns is
information that is directly usable, like the consumer behavior example, or it can lead
to the discovery of usable information [Fra92]. The focus of KDD to discover patterns
in large data sets is the attractive aspect of this framework that makes it suitable for
the objectives of this research.

KDD has a discovery process that is made up from a series of steps that can lead from
raw data sets to knowledge discovery. This thesis makes use of the KDD framework
to develop a step by step transformation process for system traces. In the following
section 2.4.1 the general KDD process is presented briefly, focusing on its most
relevant aspects. In section 2.4.2 some elements of the KDD are discussed in detail.
These elements were used strongly in this research. In the last section 2.4.3 the
discovery process is described as defined for needs of this thesis.

2.4.1 The KDD discovery process

The knowledge discovery process consists of a series of steps that start from the raw
data and end in the creation of knowledge. In Figure 2.2-2 the steps of a KDD are
represented schematically. The raw data can be recordings of various types e.g. events
(purchases, orders etc.), entities (income, professional skills etc.) that are stored in
large amounts in databases or repositories. The data are structured in the sense that
they have a specific format e.g. events are recorded in a particular calendar time
format and there can be relationships between the records e.g. professional skills are
linked to income. In each step of the KDD the data undergo a transformation.

 23

Figure 2.2-2 KDD Process steps (source [Fay96])

Step 1: Selection
The discovery process is applied on a sample from the entire volume of raw data.
The sample does not suggest representation of the entire database. It is merely a
stratum that allows the efficient implementation of the KDD methods. The
selection of the sample is based on characteristics of particular interest of the data,
for example a period of time where it is known that events of interest have taken
place, or records with certain attribute values. In the context of traces for
availability management, a sample can be a particular group of systems, a period
of time when high failure rates where experienced or a design change was
introduced.

Step 2: Preprocessing
The sample contains raw data, i.e. the data are in their original form as they have
been recorded. Raw data usually contain uninteresting or unwanted entries,
missing entries etc. Preprocessing is an important step in the knowledge discovery
process. Preprocessing prepares the data set for the more information generating
steps of the process that will follow. By removing unnecessary or unwanted
entries and enhancing the structure of the data of interest the raw data are put into
a form that will allow next steps to be more effective. During preprocessing,
fundamental data structures such as distances, orders, dimensions etc. remain
unchanged.

Step 3: Transformation
The data transformation step is perhaps the most important step of the whole KDD
process. This step of the transformation process is the most relevant step for this
thesis. The goal of the transformation is to increase the informativeness (reducing
the data size) of the data i.e. the number of data points required to convey the
same amount of information. The increase of informativeness in the data set is

Raw Data

Sample

Preprocessing

Selection

Data Mining

Transorfmatio
n

Knowledge

Patterns

Transformed
data

Preprocessed
data

Interpretation

 24

achieved by reducing the dimensionality of the data and by retaining the most
interesting features by which the data can be represented [Fay96]. The
transformation step of the KDD framework has similarities with signal processing
in the sense that the desired information in a signal is extracted by enhancing the
interesting features and weakening the irrelevant or noisy features [Ben80].

Reduction of the dimensionality is the operation where several data points can be
replaced by objects that represent more interesting concepts. Meaningful concepts
can arise from raw data with the help of abstraction i.e. the representation of one
or more data instances by familiar abstract concepts. Conceptualization increases
the effectiveness of the knowledge discovery process by allowing the latter to
operate with objects that are meaningful in the domain. The same time
conceptualization should ensure that the objects retain their connection to the data
set. Last but not least conceptualization should be done in respect to the data
analytic method that will be used later for knowledge discovery.

The above is in line with the objectives of this research, namely to find and
replace subsequence with point representations without losing relevant
information.

Step 4: Data Mining
Data mining is the process step that enables the discovery of knowledge by
searching for patterns, associations etc. Discovered patterns are often represented
by models. Choosing the right model representation is as important as discovering
patterns because it allows the fidelious modeling of the data [Fay96]. This step of
the KDD relates to the analytical tools that can be used for availability
management such as the discovery of association rules.

Step 5: Interpretation
In the last stage of the discovery process the knowledge that is discovered is being
interpreted and used either directly in an application or as an input to promote
further new discoveries.

2.4.2 Elements of KDD

Next to the framework there are a number of methods and tools that play a key role in
the knowledge discovery process. Some, like data visualization techniques, help gain
better understanding of the problem in hand by allowing intuitive exploration. Others,
like domain knowledge, play a supportive role by setting the premises for the
formulation of hypotheses. Different forms of reasoning help promote knowledge
discovery by extending existing knowledge to the new data, testing discovered
patterns against known facts and redirecting the search. These elements are discussed
in detail below:

2.4.2.1 Data visualization
The inquisitive role of the user in the discovery process is essential. Visualization of
data or patterns is a strong tool in integrating the user in the discovery process. It
allows the user to comprehend data quickly and to detect structures that can be
exploited. The choice of the right mining tools depends very much on the effective
visualization of data. Data visualization can also help extend our knowledge in the
problem area and can help to form new hypotheses based on observations. For

 25

example, data visualization may reveal unexpected patterns in the data that require
new hypotheses to explain the phenomenon that created these data entries.

2.4.2.2 Domain knowledge
Knowledge on a domain can be acquired during previously completed knowledge
discovery processes. Knowledge can also be based on long established facts of the
domain or even come from other domains that relate to the domain of interest.
Domain knowledge is used to increase the efficiency of the process by allowing the
analyst to emphasize his attention on the most interesting aspects of the data, to use
tools that are specialized for the task and to evaluate discoveries from a better
informed position [Mat93]. Domain knowledge can however become restrictive by
setting tight boundaries in the discovery process. This can occur when domain
knowledge is drawn from very specific cases. To avoid the restrictive effect of
domain knowledge on the discovery process and to make it also applicable to a wider
range of problems, domain knowledge has to remain as generic as possible [Djo95].
Domain knowledge should not act as a prejudice that can lead to the exclusion of
interesting findings in the data set.

2.4.2.3 Reasoning methods in KDD: Inductive, deductive and abductive
Any process that aims on knowledge discovery has to make use of one or more of the
reasoning methods: induction, deduction and abduction. In KDD deductive and
inductive methods have been integrated in several frameworks [She94] [Sim96]
[Gre01].

Deduction, also known as the top-down approach in KDD, allows the refinement of
concepts already known to the user. Concepts can be expressed as relations between
data attributes in the form of "If A then B". Such relations can describe a causal
relation between traces, structural information of the data sequence or simply
associations between traces. Domain knowledge is a contributor of deductive
reasoning in KDD.

Inductive methods or bottom-up, are purely empirical knowledge discovery
mechanisms. In KDD they are used to discover rules that characterize a database.
Induced rules can then be evaluated for their parsimony, generality and statistical
significance [Sim96].

Abductive reasoning is less common in KDD approaches, but nevertheless a powerful
way of reasoning that can lead to the discovery of new knowledge [Pei34/60]. This
power derives from the ability to suggest a plausible hypothesis for an observation.
Abductive reasoning can be used to express new hypotheses when an unexpected
event is observed [Ho94]:

The unexpected phenomenon B is observed

If A were true, B would be a matter of course
Hence there is reason to suspect that A might be true.

Although at first abduction might seem to allow the formulation of arbitrary
hypotheses in order to explain a surprising event, its ability to come up with new
explanations should be in accordance with other background information and not just
the event per se. Pavola [Pav04] discussed the role of strategies in abductive

 26

reasoning and states: "...my explanation must explain or at least be consistent with,

most other clues and information that I have available concerning the subject in

matter".

The ability to discover new knowledge relies on the combinatory use of the above
reasoning methods.

2.4.2.4 Machine Processing
The processing of large amount of data in any of the KDD steps requires the use of
machine processing. Machine processing can exploit the format of the data and
perform operations of large amounts of data in close to real time manner.

2.4.2.5 Unsupervised learning
In KDD the aim is to discover unknown patterns in the data that have informative
value. Because the patterns are at the start of the process unknown, it is not possible to
use methods that require previously training. In contrast to supervised learning where
the algorithms are trained on predefined data structures KDD relies on the use of
unsupervised learning methods that try to detect "sensible" structures in the data.
When interesting formations are discovered they are compared to each other to reveal
similarities and differences. Based on these comparisons, conclusions can derive that
will lead to the definition of patterns [The06]. Because these patterns are unknown a
priori they have to be validated for their plausibility. This can be done with the use of
internal validation criteria [The06].

2.4.3 Adjusted KDD to be used for traces

The framework that is defined for the transformation of traces follows the general
model of KDD (2.4.1). The KDD framework is adjusted to the particular
characteristics of traces as data form and the objectives of the research. In order to
distinguish between the steps that are within the interest of this research and the steps
that are beyond the scope, the general framework is divided into two phases:

1. KDD phase one (Figure 2-3a), which is the main focus of this thesis, is
responsible for the selection, the preprocessing, and the transformation of the
raw data. During this phase the size of the traces is reduced without the loss of
essential information. This phase is covered by chapters 3,4,5,6 and 7.

2. KDD phase two (Figure 2-3b) is the knowledge discovery phase. Knowledge

discovery in the context of availability management in this thesis is perceived
as the identification of unavailability bottlenecks, the relationships between
failure and recovery events and so on. Although this phase is out of the scope
of the research, examples are provided in Chapter 8 to illustrate how the
transformed data obtained from phase one can be used for availability
management.

 27

Figure 2-3 End-to-end transformation process

Phase one consists of two stages. The first stage is the Preparation. Preparation is
made out of two steps: Selection and Preprocessing. The second stage is the
Transformation. This phase consists of the steps Segmentation, Tagging and Tag

matching.

2.4.4 First stage, Preparation

Selection
Raw traces are collected from the systems operating in the field. Traces recorded by
the system over many hours of operating time are stored into a file. The file is
remotely downloaded from the system via remote connection and stored in a database.
This process is repeated over time in regular intervals so that multiple files of the
same system are stored. The database contains files from several systems.

The selection of the stratum of interest is based on several factors. First is the system
type. Traces of systems that use the same software version are easier to combine in
analysis as the semantics of the traces are identical. Another factor is the connectivity
level of the system to the network. The connectivity level of a system affects the
completeness of the data set. Systems with high connectivity provide completer data
because high connectivity levels provide longer periods of uninterrupted data
recordings.

KDD phase one KDD phase two

Modelling and
mining

Inference

Segmentation

Preprocessing

Selection

Tagging and
tag matching

a b

Knowledge
Discoery

Tr
an

sf
or

m
at

io
n

Pr
ep

ar
at

io
n

 28

Preprocessing Raw traces contain a variety of information relating to the operation of
multiple components in the system. This methodology of this thesis focuses on error
and recovery traces. Before applying any type of clustering algorithms onto the traces,
all irrelevant traces are removed using simple filtering methods. Preprocessing also
includes the formation of one long sequence of traces out of multiple shorter
sequences obtained by the log files of a single system. The concatenation of multiple
sequences to form a single sequence is done with the help of the timestamps.

One of the most important aspects of preprocessing is exploration. The exploration of
the traces helps to increase the knowledge about the structures that are found in the
traces. Unknown characteristics of the traces can be discovered. These discoveries can
then help to guide the development of methods for the transformation stage. In this
thesis three different methods are used to explore traces:

1. Expert Knowledge:
Expert knowledge can be used to place the semantics of single traces into the
context of system availability i.e. try to link the description found in a trace to the
particular error that caused it and to the state of the system given that error. If such
linking is possible, the perceived informativeness of traces can increase
considerably. With such a linking in place, a sequence of traces can be interpreted
in terms of system states and root causes that can be used directly to guide
decision making. Engineers who have deep knowledge of the system's design and
operation are asked to provide this link out of the context of system operation.
However, interpreting of semantics using the information found in single trace and
out of the context of system's operation is not an easy task. The knowledge that is
obtained from this exercise can be uncertain. A method is defined that allows the
direct assessment of the level of uncertainty involved in the categorization of
traces, by a single expert. The method is used on a sample data set and the results
are presented. The method and case study are discussed in chapter 3 in section 3.1.

2. Experimentation
Experimental settings can help understand the causal relationship between types
of faults and the generation of error traces. Repetitive injections of the same fault
types generate sets of subsequences that can be examined for their characteristics.
Characteristics of interest are semantics e.g. which ids appear in the subsequences
and quantitative e.g. the number of traces that form the subsequences, the duration
of the subsequence or the time lapse between consecutive traces in the same
subsequence. The information retrieved from the experimentation can help
understand how the structure of subsequences depends on the type of faults. The
experimentation also looks into subsequences that result from system recoveries.
The knowledge obtained from the experimentation becomes part of the domain
knowledge that assists the development of methods and tools in the transformation
stage. The experiment and the findings are presented in chapter 3 section 3.2.

3. Graphical representation:
The graphical representation of the sequence can facilitate the exploration process
by enabling the visual inspection of sequences. If visualized, complex
relationships in the data such as the temporal proximities of traces in the sequence
can be explored and intuitively understood. Visual inspection can lead to the
discovery of unknown data structures in the sequence. Discovery of "unwanted"

 29

structures serves the preprocessing. The removal of unwanted structures can
increase the efficiency of the discovery process. Exploration of traces should be
quick and effortless to allow fast iterations. A method for visualizing traces
quickly and effectively is presented in chapter 3, section 3.3.

Last but not least, part of preprocessing is the removal of unwanted data structures.
Unwanted structures in sequences of traces are known as partially periodic
subsequences (pps). Because these structures are formed by traces of the class
attribute "Error" or "Recovery" they can slip through the first naive filtering that is
done during the selection step. The specifics of pps and a method for detecting pps
efficiently in sequences of traces are presented in chapter 3, section 3.4.

2.4.5 Stage two, Transformation

As described before the aim of the transformation process is to reduce the size of the
data and increase the informativeness of the data set by retaining only the most
relevant features and help them to stand out with appropriate representation.

Segmentation: A sequence can contain numerous subsequences, each representing a
physical failure or recovery event. In a raw data sequence, it is not explicit how traces
belong to the same subsequence. Traces need to be assigned to subsequences on the
basis of criteria that justify that assignment. The process of assigning traces to
subsequences is called segmentation. As the raw data sequence can contain hundreds
or thousands of traces, an automated method is needed that can assign traces to
subsequences. The decision whether one or more traces belong to the same
subsequence, is made on the basis of the temporal distance that separates any two
consecutive traces. An unsupervised clustering method is presented that segments a
sequence into subsequences. The segmentation is guided by a measure that rates the
segmentation result based on the compactness of the subsequences. The segmentation
method is extended to account for variation in the temporal location of traces. This
method is described in chapter 4.

Tagging: The transformation of the data continues with the definition of point
representations for the discovered subsequences. The step of the transformation
process responsible for creating point representations out of subsequences is the
tagging. The tags are constructs that contain all relevant semantic information of the
original subsequence and but only a single temporal location. With the tagging the
sequence is transformed to a series of ordered tags. The tagging step is described in
chapter 5, section 5.1.

Tag matching: A sequence can contain several tags, each tag representing the
instance of a physical event. Some of the tags in the sequence can represent instances
of the same type of physical event. To reduce the size of the data and to increase the
informativeness of the sequence even further it is useful to group the tags into tag

types, where each tag type can represent a physical event type. This operation is called
tag matching. With the tag matching, the sequence consists of representations of
instances of physical event types rather than representations of event instances.

Variation of subsequences can affect the tag matching operation. In some cases tags
are identical and they can be easily grouped into the same tag type with simple string
matching techniques. In other cases, differences in the semantics of the tag make the

 30

comparison and categorization less straightforward. Evaluating which tags are similar
enough to be categorized to the same tag type is done using an unsupervised learning
method that is based on appropriately defined similarity criteria and the semantic
information found in the tags. The unsupervised learning method tolerates variation in
the type of semantics and the number of semantics found in tags. The clustering of
tags into tag types is guided by a measure that rates again the compactness of the
produced clusters. This method is described in Chapter 5 section 5.2.

2.4.6 KDD phase two

In phase two, analytical tools are applied to generate knowledge from the discovered
patterns. In this thesis there are two objectives in that fall are part of this phase. The
first objective which is also within the scope of the thesis is to make the
transformation process more efficient by using the data and the discovered patterns
from multiple identical systems. The second objective, which is out of the scope of
this thesis, is to use the patterns found in the traces to support availability
management using analytical tools such as availability modeling and association rules.

Characteristics of subsequences from multiple distributed systems
The Segmentation and the tag matching of the transformation stage are both based on
unsupervised clustering methods. These methods require parameterization which is
performed on sampled sequences from the systems. The parameterized algorithms are
then used to perform the transformation in real time manner on the same systems as
they are operating in field. This means that for every newly installed system a period
has to be awaited for a sequence to adequate length to sampled, before any application
can begin. However given that these systems share the same design and are used in
the same type of applications, it can be possible to define for each type of system a set
of generic parameters that can be used for the algorithms. In chapter 6 a method is
proposed that examines whether a generic parameter values can be defined for a group
of similar systems (chapter 6).

Availability management using traces
At the end of the transformation the sequences consists of tag types. Tag types are
handled as representations of failure and recovery event types. Availability modeling
can be used to determine which failure types contribute most to system unavailability.
The relationship between failures and recovery event types can give insight in how the
system is capable in managing different failures types. The information obtained from
the analysis is used to support decision making. An example of how knowledge
discovery based on the transformation of traces can take place is given in chapter 8.

2.4.7 Data Compression

One of the main objectives of the methodology is to reduce the amount of data
representations in the sequence without the loss of relevant information. The
compression ratio is defined as:

number of data representations after transformation
compression ratio

number of data representations before transformation

The compression ratio is given separately for the two steps of the transformation
process:

 31

1. Compression achieved by segmentation
In the preprocessed sequence each single trace represents potentially one physical
event. With the segmentation, all traces are organized into subsequences. The
information regarding the occurrence of physical events is now conveyed by the
subsequences. An equal or lower amount of subsequences compared to single traces
is used to convey this information. The segmentation can therefore achieve data
compression. The compression ratio is measured as:

in
sS

number of subsequences the sequence
cr

number of trace in the sequence

2. Compression achieved by tag matching
After the segmentation each subsequence represents an instance of a physical event.
With the matching operation tags are grouped into tag types according to their
similarities and each tag type represents an instance of a type of physical event. The
matching operation makes the transition from a sequence of instances of unique
physical events to a sequence of instances of unique physical event types. The tag
matching can therefore achieve data reduction that is defined as:

in

M

number of tag types the sequence
cr

number of tags in the sequence

2.5 Data set used in case study

To study the traces a data set collected from operational professional systems (X-ray
scanner) is used. Traces are obtained from of 137 systems. The systems, of which
traces are used, are selected based on a set of criteria (selection step). The sample
criteria are:

1. System type: All systems in the sample are of the same type. All sampled units
have the same hardware and the same software version installed on them.

2. System usage: All systems in the sample are used in the same medical field.
Therefore they have comparable operational profiles.

3. System connectivity: To ensure that the traces in the sample set are
representing a continuous period of time of system operation, systems with a
connectivity rate above 90% were selected.

As part of the preparation phase for each system multiple log files, are concatenated to
form one long sequence of traces. To concatenate multiple sequences, the temporal
information of the traces is used. This single sequence should represent a continuous
period of system operating time. To achieve this, two operations are performed:

1. Start-up and shut-down periods are removed from the sequence using an
appropriate attribute (mode) field in the trace as filtering criterion. The reason
why these periods are removed is that during system start-up and shut-down,
error traces can be logged because sensors detect communication errors as
some components try to communicate with others that have not started up yet.
The same happens during shut down.

 32

2. Field servicing periods are removed from the sequence. Servicing periods
contain a high number of error and recovery traces due the activities of the
service engineer. These periods can be removed by filtering out segments of
the sequence where traces have the value 'service" in the attribute field mode.
Also short periods of normal operation mode found between periods of service
mode are removed because there is high change that the service engineer was
testing the system.

The above operations produced 137 long temporal data sequences each for every
system in the sample. The length of these data sequence varies between 200 and 4000
operating hours with an average of 800 hours of operating time per system. The
sample data are used to apply and assess the methodology. The case study is presented
in chapter 7.

 33

Chapter 3

3 Exploration and preparation of system traces
To understand how the system traces relate to and represent the physical events, it is
interesting to explore the nature and the origin of traces. For the exploration, different
types of methods are used to help increase gradually our understanding over error and
recovery traces, subsequences and sequences. This chapter presents a series of
methods that raise the level of understanding on the information found in the
semantics of traces, the formation of subsequences and other data structures found in
sequences.

The chapter consists of four sections:

3.1 Uncertainty in expert interpretation of semantics
3.2 Exploring the structure of subsequences with fault injection
3.3 Exploring long sequences of traces using data visualization
3.4 Data preprocessing: removal of partially periodic subsequences

Each section is self-contained i.e. it has its own problem definition, methodology a
case study and a discussion. The findings from each section are used as input for the
following chapters. All exploratory studies conducted in this thesis provide some new
insight into traces that is helpful for the transformation stage.

 34

3.1 Uncertainty in expert interpretation of semantics

One of the main objectives is to reduce the data size and make long sequences of
traces easy to be interpreted by engineers. Such an objective can be met if the abstract
descriptions of traces in the sequence can be replaced by other representations that
contain some degree of interpretation in them. For example the subsequence in Table
2-3 can be replaced by another representation with the description “Archiving job”.
The new representation contains some interpretation of the traces in it, since the
information in the three traces has been combined to conclude that a file has been
archived. Similarly error or recovery races can be replaced by meaningful
representations. A meaningful representation is defined by the informative value the
representation has within a certain business or engineering context.

The interest to replace traces by more meaningful representations was motivated by
other studies [Sim05] [Mor90] [Kal99] where single traces are linked to specific fault
types with help of domain experts, making their interpretation easier. In these studies
various types of faults of components can be singled out with a quick inspection of the
traces because the interpretation of single traces has been done in advance. For this
thesis the context is availability management and for the purpose of this study a
meaningful representation of an error trace would have to describe the root cause i.e.
the physical event that triggered the trace, and the system state i.e. the effect of the
physical event on the system. Such a priori interpretation of single traces in those
two lines can be seen as effort to enrich the sequence with context specific
information. A sequence of traces that can be replaced with such representations can
be used for example to assess directly system performance with measures such as
mean time between system failures, or to detect the most frequently occurring error
causes.

To enable such a representation single traces need to be interpreted by domain
experts. In the above mentioned studies the systems are of relatively low complexity
e.g. a server that has 4 to 5 main modules. For such systems the certainty of the
domain expert e.g. the computer engineer, in interpreting single traces is high,
because a one-to-one mapping of traces to fault types is guided by a simple mental
model of the system's architecture. Also, a relatively small scale failure mode and
effects analysis could support such an effort. As the number of modules and the
complexity of the system increases, cause and effect relationships become less
straightforward and the linking of traces to fault types and system states becomes less
accurate, hence the interpretation of a single trace becomes more ambiguous. As the
ambiguity of the interpretation increases the added value of trying to enrich the
sequences with domain knowledge is decreasing.

In this thesis the process of interpreting traces to representation of root causes and
system states is referred to as conceptualization. For the conceptualization of traces a
classification scheme is used where fault types and system states are represented by
categories. The linking is performed by experts who classify each trace into the
categories they believe are most relevant for that trace. Each trace can be assigned to
multiple categories of fault types and system states. The count of category
membership (single vs. multiple) measures the amount of uncertainty the expert is
introducing when classifying a single trace. To capture the expert's uncertainty a
confusion measure is defined. The confusion measure is capturing the uncertainty of a

 35

single engineer conceptualizing a single trace. The proposed method can be extended
to combine measure from multiple experts, but this possibility is not examined here.

First the conceptualization process is described in 3.1.1. In 3.1.2 the confusion
measure is described. Finally a case study is presented in 3.1.3 where the
conceptualization is applied on a collection of semantics of traces. The results of the
case study are provided in 3.1.4 and a discussion on the findings and the conclusions
are given in 3.1.5.

3.1.1 Conceptualization of traces

Concepts are abstractions that derive from existing knowledge models, which describe
adequately the domain they represent [Gai93]. According to the prototype view
[Ham93], a concept can be defined by a set of attributes that describe the concept
adequately. In the context of availability management the concept error can be
defined by the attributes root cause and severity. Root cause describes the trigger that
causes the error and severity the effect the error has on the system.

To conceptualize an error trace, the engineer has to use the semantics in the trace, to
indicate the root cause and the severity that the trace can represent. A classification
scheme is used to facilitate the conceptualization. The attributes (root cause and
severity) are represented by the classes

iC of the classification scheme and the
attribute values are a set of non-overlapping subclasses 1 2{ , ,... }i nC c c c . Engineers
assign traces to sub classes. The assignment of a trace x to a subclass

ic is indicated by
the weight (,)iw x c [Haw81].

Concepts can be described in various levels of abstraction. The level of abstraction is
defined by the values that are given to the attributes. For example for the concept root

cause the attributes can be defined on a level such as database connection timeout,
database connection or just database. The first level has more information in
describing the root cause than then other two levels. The abstraction level of the
concepts that is used in the interpretation defines the balance between the uncertainty
and the informativeness of the interpretation. More detailed concepts can have a
higher informative value but can come with higher levels of uncertainly in the
interpretation.

When a trace is assigned to a single sub class the weight for the assigned subclass

ic ,
becomes (,) 1iw x c and for the unassigned subclasses , (,) 0jw x c . Assignment
to multiple sub classes is permitted. A trace x can be assigned to multiple sub classes
of a class if the following conditions are met:

and
1

(,) 1
n

i

i

w x c (3-1)

The assignment of a trace to multiple subclasses of an attribute marks the uncertainty
of the expert for that assignment. The value of the weight (,)iw x c can be given by the
expert based on the confidence of his assignment (less weight suggests less
confidence). In the absence of weight specifications, the weight can be distributed
uniformly among all subclasses in which case the weight per subclass is equal to the
reciprocal of the number of subclasses assigned.

 36

3.1.2 Confusion measure for the classification of error messages

The confusion measure captures the uncertainty associated with the linking of a single
trace to an error attribute. The uncertainty measure is based directly on
Shannon's formula for measuring the entropy of random variable [Jay79] and is
defined as:

() (,) log (,)
n

i i i

i

H w w x c w x c (3-2),

Intuitively the confusion measure resembles Shannon’s entropy of information in the
sense that, as the increase of the number of likely outcomes of a message increases
Shannon’s entropy, so the increase of the likely ways to interpret a trace increases the
confusion measure. The confusion measure describes the uncertainty of a single
engineer when he interprets the semantic information of a trace by using a finite set of
concept attributes. The distribution of the confusion measure describes the uncertainty
in the interpretation of the entire set of traces. Given the distribution of the confusion
measure for a set of traces, it is possible to see if the interpretation of traces by a
single expert is with confidence about the meaning of the traces or not.

The measure is takes it lowest value () 0H w (no uncertainty) when the trace is
assigned to a single sub class ((,) 1iw x c) and it takes the highest value when the
trace is assigned to all sub classes and only if 1 2(,) (,) ... (,)nw x c w x c w x c and

1(,)
| |iw x c
C

, where | |C is the size of the class i.e. number of sub classes. Classes

with a higher number of subclasses assume higher values for maximum confusion.

To illustrate the use of the confusion measure an example is provided:
30 traces are conceptualized. Each trace can be assigned to four different subclasses
of an attribute by one classifier (expert). Because the classifier has four options, the
confusion measure trace that is assigned, can take four values i.e.

() {0, 0.6931, 1.0986, 1.3863}H w depending whether the trace is assigned to one,
two, three or four subclasses respectively. In the case where the expert classifies all
traces with full confidence, the distribution of the confusion measure for this set of
traces has the form as seen in Figure 3-1. The confusion measure for each trace is
zero, since each trace was assigned to one single subclass.

 37

Figure 3-1 Distribution of confusion measure for no uncertainty in the classification

In a different scenario (e.g. other expert), each trace is assigned by the classifier to all
four available subclasses, the confusion measure for each trace takes the maximum
value, which for this case is equal to 1.3863 (Figure 3-2).

Figure 3-2 Distribution of confusion measure for maximum ambiguity

For both scenarios the situation, regarding the amount of uncertainty found in the
interpretation of traces, becomes immediately clear by the two distributions of the
confusion measure. Any amount of uncertainty lying between these two extreme
scenarios can be represented by the distribution of the confusion measure. This
representation is effective in conveying directly the information to the analyst

-0,2 0 0,6931 1,0986 1,3863
0

5

10

15

20

25

30

35

Confusion measure

Fr
eq

ue
nc

y

Distribution of confusion measure for absolut clarity in the classification

-0.2 0 0.6931 1.0986 1.3863
0

5

10

15

20

25

30

35

Confusion measure

Fr
eq

ue
nc

y

Distribution of confusion measure for max. ambiguity in the classification

 38

regarding the amount of uncertainty induced during the interpretation of a set of
traces.

There are two advantages of using Shannon's entropy theorem as a basis of the
confusion measure:
1) The measure can be generalized to use the broader framework of belief measures

and plausibility measures [Kli87], which, under certain conditions, might be a
more appealing method to use in expert knowledge elicitation, since these
measures can account for ignorance from the expert's side.

2) The measure allows the use of Dempster and Shafer's (D-S) rule of combination
[Dub99] [Sha76] to update the measurement with new evidence. The D-S rule
allows as well the combination of evidence provided by several experts.

3.1.3 Case study: Interpreting error messages with the help of
experts

A set of 416 unique error traces is collected. This is the complete set of traces that can
be logged by the system of the sample data. Experts were asked to conceptualize these
traces. The concept "fault type" is defined by two classes: root cause and severity.

Due to the multiplicity of the components and the complexity of the system's
architecture, it was decided to abstract for both classes. The sub classes for class root

cause are:
1) Software i.e. the trace represents an error for which the root cause is found in the
system's software
2) Hardware i.e. the trace represents an error for which the root cause is found in the
system's hardware

For the class severity three subclasses were provided:

 Critical: This type of error may cause a mission failure, unacceptable
downtime, or loss of data. The effect of this error is disruption of the workflow
by system unavailability that cannot be overcome without expert support.

 Moderate: This type of error may cause undesirable downtime or partial loss
of function, but it may be temporarily circumvented. Error leads to temporary
disruption in the workflow that can be overcome by the user by restarting the
system. This error may lead to loss of metadata or limited performance like for
example longer reaction times, or lower image quality. .

 Negligible: This type of error has little effect on the functionality of the system
except that it may be a nuisance to the user. Error leads to prolongation of
execution time by recalling the command. It may never be fixed and still have
a negligible effect on the overall system.

The 416 traces were divided into groups according to the modules they originate
from. One module expert was asked to classify the set of traces of every module.
Dividing the traces based on relevant modules and asking the corresponding expert
should increase the chance of classifying the trace with high confidence i.e. fewer
selected subclasses.

 39

The weights were distributed uniformly among the number of assigned subclasses of
each attribute. For example, for the attribute severity if the trace assigned to three
subclasses, each value would have a weight of 0.33.

3.1.4 Results of case study

The overall results of the classification process of the 416 traces, for the attribute
severity can be seen in Figure 3-3 and for the attribute root cause in Figure 3-4.

Figure 3-3 Distribution of confusion measure for severity

Figure 3-4 Distribution of confusion measure for root cause

Both figures convey the information on the overall uncertainty of the linking for all
traces in the set. The confusion measure with value zero (no uncertainty) is the highest
in both graphs. However, the linking of traces to the attribute severity involved more
uncertainty than making the linking to root cause subclasses. This is obvious by the
higher bar of the confusion measure with value 0,6931 for the former. Nevertheless
the amount of uncertainty measured for the assignment of traces to root cause is
worrying, considering that the experts had to choose between only two subclasses
each representing highly abstract attribute values (hardware vs. software). For certain

-0.2 0 0.6931 1.0986 1.3863
0

50

100

150

200

250

300

350

Confusion measure

Fr
eq

ue
nc

y

Distribution of confusion measure for attribute Severity

0 0.6931
0

50

100

150

200

250

300

350

400

Confusion measure

Fr
eq

ue
nc

y

Distribution of confusion measure for attribute Root Cause

 40

modules almost half of the traces were assigned to both subclasses of the attribute
root cause (Figure 3-5).

Figure 3-5 Distribution of confusion measure for attribute root cause for the set of error messages

corresponding to sub-system A

3.1.5 Discussion and conclusion

Though the classification of the traces in this case study showed that overall the
uncertainly about the linking of traces the error attributes was low, considering the
level of abstraction, especially for the attribute root cause, the conceptualization has
little practical value. To increase the practical relevance of the conceptualization the
attributes have to be defined in higher granularity. If the attributes are defined with
higher granularity e.g. specific components for root cause, the distribution of the
confusion measure has to be redefined, depending on the number of subclasses for
each error attribute.

This case study supports the view that the transformation of traces from single
semantics to meaningful representations is difficult when done out of context. The
interpretation of the trace may depend on the conditions in which the trace was
logged, for example the type of mode the system was in, start-up mode vs. normal
operation mode, or the type of operation it was performing when the error occurred.
Instead of interpreting the semantics of traces upfront without any knowledge of the
context, it is likely more effective to perform the interpretation of traces after the
traces are prioritized based on their relation to system unavailability. Fewer number of
traces that are highly relevant for system unavailability can be examined in depth
taking in to account more information about the system state at the time the error trace
was logged and by using full root cause and system effect analysis.

0 0.6931
0

1

2

3

4

5

6

7

8

Confusion measure

Fr
eq

ue
nc

y
Distribution of confusion measure for traces of Component A when classifying for the attribute Root Cause

 41

3.2 Exploring the structure of subsequences with fault
injection

Subsequences are the end product of a process that begins with an error occurring in a
single component and ends with the logging of one or more traces in the trace
sequence. A fault causes a component to experience an error. The error might
propagate to other components due to the functional dependencies, causing them also
to produce errors. The errors are picked up by the "sensors" in the system. The
logging mechanism reports the erroneous states in the form of traces. The collection
of traces resulting from a single physical error event, form an error subsequence
(Figure 3-6). A similar process produces the subsequences that describe a system
recovery.

Figure 3-6 Process from error to subsequence

As the process repeats itself over time it results to the formation a long sequence that
contains several subsequences.

To transform a long sequence of traces into a sequence of point representations for
physical events, the subsequences have to be identified first. To device methods that
can identify the subsequences in long sequences of traces, a better understanding of
the relationship between physical events (the triggers) and subsequences is needed. To
understand this relationship an exploratory study is conducted. The exploratory study
is performed with the help of fault injection experimentation. The experiment consists
of three phases:
1. A certain fault is injected into the system multiple times under the same conditions
2. The subsequences resulting from the multiple injections of the same fault are

collected and compared.
3. The experiment is repeated for different types of faults that are selected to cover a

wide area of the system's architecture.

The exploratory study intends to address the following questions:

 Verify the causal relationship between faults and traces as it was suggested by
the conceptualization in 3.1. The root cause that was indicated by the expert as
the most likely trigger of a trace is now injected into the system and the
resulting subsequence is searched for the trace in question. The state of the
system after fault injection is also compared to the system state suggested by
the expert.

 Given that the structure of a subsequence is defined by its temporal and

semantic characteristics, how do these characteristics manifest in a
subsequence for different types of faults?

Error of
component

Logging

mechanism

Error propagation
due to System

architecture and
component
interactions

Error

subsequence

 42

 Do subsequences that result from the same error under the same conditions
show variation in their structure or is the process deterministic? Information
on the structure of subsequences e.g. the number, type, order of traces, the
length of a subsequence, the temporal distance between consecutive traces
within the subsequence are compared.

 Does the system recover after the failure as expected and is that recovery

visible in the traces? This steps it to verify the presence of recovery traces and
their association to system failures.

This section is organized as following: firstly, fault injection techniques used in other
studies are discussed briefly in 3.2.1. Then the experimental setup and its execution
are described in 3.2.2. A set of observation areas are defined that can help draw
conclusions from the experimentation results. These observation areas are described
in 3.2.3 and the results of the experiment are presented 3.2.4. Finally the experiment
results are discussed in relation to the objectives of the study and conclusions are
presented in 3.2.5.

3.2.1 Related work

Experimentation gives the opportunity to explore unknown mechanisms by carefully
controlling the inputs and the surrounding conditions. It also allows problems that are
too complex for analytical modeling to be studied in parts and learn about the
dynamics that govern them. Fault injection is an experimental technique that is used
to assess the behavior of operating components or systems when subjected to faults.
The dependability of processors and processor architectures and the detectability of
faults and errors has been the focus of several fault injection experiments [Mar02]
[Arl90] [Con99] [Car98] [Gu03] [Cho90]. To facilitate such experiments, techniques
for fault injection on hardware and on software have been developed [Kan92]
[Hsu97]. These techniques inject the faults either directly into the processor's pins
using an erroneous input or into the software by manipulation of the code. Most of the
techniques require the use of special hardware or software to inject the faults at the
right moment and at the right location during system operation. Sophisticated methods
like these are required in order to test resilience of components during operation.
Some of these studies examine the ability of the logging mechanism to detect errors;
however none of them examine the effect of the logging mechanism itself on the
traces.

In this study the focus is exploring the relationship between the physical error events
and the structure of subsequences. The techniques used in this research are simpler
and do not require the destruction of components. The choice for the techniques used
was based on the feasibility of injection and the reproducibility of the injected faults.

3.2.2 Experimental set up

The system in the study is a medical imaging system. The hardware and software
configuration is such, to match that of the sample of systems used in the reset of the
research (see 2.5). The system was installed at the site of the manufacturer and was in
full operational condition.

The inputs for the fault injection experiment are taken from the results of the
conceptualization process (see 3.1.5). The link between trace, root cause (fault) and

 43

system state is used. For a given trace the indicated root cause is injected into the
system with the intention to receive the same trace back (Figure 3-7). If necessary a
function of the system is initiated to trigger the error e.g. fluoroscopy is triggered.
Once the fault is injected the resulting error subsequence is collected, the system state
is monitored and if available the resulting recovery subsequence is collected (Figure
3-7.b). Once the cycle is complete, the system is brought back to normal state either
by automatic or manual recovery. For a given trace the process of fault injection is
repeated multiple times.

Figure 3-7 Fault injection experiment

A set of fault types is prepared for injection. The faults to be injected are selected
based on the following criteria:

a. Technical ability to inject the fault: fault injection has to be nondestructive for
the component and easy to execute. For example, to achieve communication
interruption the cable connecting a component to its control board is
disconnected at an appropriate point in time

b. Coverage of the system's architecture: The injected faults should cover a wide
area of the system's architecture. This design allows examining whether the
location of the fault has an effect on the formation of the subsequence.

c. Severity of the error: The injected faults should represent all severity
subclasses as defined by the classification scheme of the conceptualization
process

d. Root cause of the error: The injected faults should cover both, hardware and
software components

Single trace

Suggested root cause
by expert

Suggested
system state by

expert

Inject fault
(HW or SW)

Collect
subsequence

Observe
System State

Fault injection

a)

b)

Conceptualization

 44

A restriction on the selected number of faults for injection was put on the time that
was available for fault injection (the system was available for two days). 21 faults
were selected to be injected into the system. The set of selected faults fulfill the above
criteria.

The distribution of the injected faults over the system’s architecture is shown in
Figure 3-8. Subsystems are indicated by the areas with the red contour. Each
subsystem consists of numerous modules represented by boxes. A module contains
one or more components. faults are injected into the components. The system has four
architectural layers (layers are separated with blue horizontal lines):

1. User interface
2. Application layer
3. Application library layer
4. Technical layer

Usually in multilayered systems the components located in the highest layers e.g.
layer 1, have dependencies on the components on lower layers. Errors tend to
propagate from components in deeper layer to components in higher layers. An error
that occurs in layer 4 is more likely to cause other components in higher layer to
experience errors.

In Figure 3-8 the distribution of the locations in the system to be subjected to fault
injection are shown. The squares represent modules. Modules that form sub-systems
are grouped by the red outlines. The modules that contain components capable of

detecting errors and recording traces are represented by the colored squares. Out of
these components, the modules that contain components that are chosen to be injected
with a fault are colored in black .The distribution of the black squares shows how the
injected faults cover a wide area of the systems architecture targeting different
subsystems of all four layers.

Figure 3-8 Targeted components (colored squares) in system's architecture

Layer 1

Layer 2

Layer 3

 45

The 21 selected faults to be injected are distributed over hardware and software
components and are of severity subclasses Critical (B), Moderate (C) and Negligible
(D) (Figure 3-9, label format (severity, count)).

Figure 3-9 Distribution of hardware, software faults across severities

Methods on how to inject the faults were obtained by domain experts. These are
grouped into six general categories, each relating either to hardware or to software
faults (Table 3-1).

Fault injection method Hardware Software

Disconnect cable/ remove component 10

Terminate process 5

Corrupt file or registry 4

Incompatible procedure 1

Software incompatibility 1

Table 3-1 Methods of fault injection

3.2.3 Experimentation focus areas

The experimentation focus areas are aspects of the experimentation that can help
answer the predefined questions. These focus areas are described here under the
corresponding experimentation objective:

 Causal relationship between the fault and the trace: A specific trace is expected to

be observed for a specific injected fault (Figure 3-7b). When the expectation is
met, the existence of a causal relationship between the fault and the trace is
verified. However, if the expectation is not met, it does not necessarily suggest the
lack of such relationship. Failing to trigger the expected trace may be due to
missing conditions during the fault injection.

 Structure of subsequences: The subsequences that result from the fault injections

are collected and examined. The information collected can help understand the

B, 6

C, 2
D, 3

B, 2

C, 5 D, 3 C
o

u
n

t

Severity

Distribution of HW ans SW realted faults over Severities

Hardware Software

 46

structural characteristics of the subsequences for different types of faults and the
variation in the structures of subsequences resulting for the same type of fault.

The structure of a subsequence is described by the recording of the following
characteristics:

a. The number of traces in the subsequence
b. The number of different types of traces in the subsequence.
c. The temporal distance (in seconds) between traces in the subsequence
d. The length of the subsequence
e. The order of the traces in the subsequence

The observation of the characteristics aims in comparing the subsequences that are
obtained from multiple injections of the same type of fault.

1. System Recovery: Recovery related subsequences are the result of the recovery

processes that restore the system to normal state after a failure. This experiment
aims in verifying the existence of recovery subsequences and examine their
latency in relation to the error subsequences.

3.2.4 Results of experimentation

The experiment was conducted over a period of two days. Out of the 21 selected fault
injections 20 were executed. One fault type was left out because it was not be
successfully injected. The complete cycle of fault injection, data collection, system
recovery and system restart, proved to be more time consuming than expected
(approx. 25 minutes). Because of that only limited repetitions of each experiment
were conducted. Observations were made on all areas of interest. The observations are
presented below:

Causal relationship: For 14 out of the 20 injected faults, the expected trace was
observed (Table 3-2). For the rest of the injected faults, error messages that are
semantically close to the expected messages were observed. The intended error
messages were not observed for 4 faults injections that involved a cable or component
disconnection and 2 that involved a registry corruption.

 Intended trace present?

Fault Simulation No Yes

Disconnect cable/ remove component 4 6

Kill process 4

Corrupt file or registry 2 2

Incompatible procedure 1

Software incompatibility 1

Table 3-2 Observation on the causal relationship between faults and error messages

Structure of subsequences: The number of traces found in the subsequences for
injected faults varied from 1 to 151. There was no correlation between the number of
traces found in the subsequences and the depth of the architectural layer in which the
fault was injected. The length of the subsequences for injected faults varied from few
milliseconds to 200 seconds. The length of the subsequence was found to be
positively correlated to the architectural layers of the system i.e. faults injected in
deeper layers produced subsequences of longer duration. The number of different

 47

traces in a subsequence varied from 1 to 16. There was no sign of association between
the number of traces and the number of different types of traces in a subsequence.
There was also no sign of association between the number of different types or traces
in a subsequence and the depth of architectural layers in which the fault was injected.
The distance between consecutive traces within a subsequence varied from few
milliseconds to 180 seconds.

Variation in the structure of subsequences of the same fault type: For this observation
the fault injection was repeated several times and different instances of subsequences
were obtained. Because of the duration of the fault injection procedure only two faults
were selected: Fault A was repeated 8 times and Fault B 4 times

a. Fault A: The subsequences resulting from the injection of Fault A used a pool of

23 traces. In the 8 subsequences obtained it was observed that each subsequence
contains from 11 to 17 (43% to 73 %) of the traces in the pool. Moreover the order
of the traces in these subsequences can differ significantly. The total length of the
subsequences varied from 71 to 159 seconds. The distance between successive
traces in the subsequences varied as well from few milliseconds up to 60 seconds.

b. Fault B: The instances produced by Fault B showed greater consistency. The pool

of traces is formed by only 5 traces. Each of the 4 subsequences obtained
contained 2 to 4 (40% to 80%) of the traces in the pool. The order of the traces in
the subsequences of this fault had partly a pattern. Two of the traces that appeared
in all instances, appeared in the same order in all subsequences. The other traces
of the pool were either absent or ordered randomly. The total length of the
different instance varied between few milliseconds to 26 seconds. Similarly the
distance between consecutive traces varied across the subsequences but will
smaller fluctuations.

System Recovery: Fault A provided a good example for system recovery observation.
The injection of the fault required the termination of a specific process. On the
occurrence of the error the system initiates the recovery by restarting the terminated
process. In all 8 injections of Fault A the recovery of the terminated process was
found in the temporal data sequences following within few seconds. For Fault B no
automated recovery was observed.

3.2.5 Discussion and Conclusions

The causal relationship between failures and the resulting traces was verified for most
of the cases of injected faults. For 6 out of the 20 injected faults the expected trace
was not observed. All traces that were selected for the fault injection experiment had
no uncertainly in their interpretation (see 3.1). The result is another indication that the
linking of traces to concepts with the help of experts does not provide reliable results.

The observations made on the structure of subsequences had some interesting
findings. For the subsequences that were obtained from all injected faults,
considerable variations were fund in the duration of the subsequence, the number of
traces and the type of traces. Given that these subsequences were obtained from
different injected faults, the result is not surprising. Similarly there was variation also
in the distance between successive traces is the subsequences. However these
distances were for most of the cases only few seconds. The largest distance between

 48

two consecutive traces that was observed was 180 seconds. The distance between the
successive traces in a subsequence that was observed in the experiment is very short
considering that successive subsequences can be separated by many hours of
operating time. This finding suggests that subsequences are dense data structures in
the sequence can span over hundreds of hour of operating time.

Another interesting observation was made on the subsequences obtained from the
multiple injections of the same fault. In both cases (Fault A and Fault B) the
subsequences produced by the same fault, varied in the number of traces, the number
of different types of traces and their order of appearance. It is clear that the concept
of fault signature, a subsequence that is used as an identifier of a specific fault,
applies loosely here because patterns do not appear in a deterministic way.
Subsequences that are produced due to the same fault are found to have variation in
their structure. Variation can be found in the temporal and the semantic aspect of their
structure.

The experiment provided also the first evidence on the association between error and
recovery subsequences. The latter were observed after a relatively fixed period of time
that was defined by the duration of the system recovery process.

 49

3.3 Effective visual representation of traces for fast
exploration

So far the information collected on traces is obtained from field studies, first the
conceptualization processes with the help of system engineers and then the fault
injection experiment in a controlled environment. In both cases the knowledge that is
gained over the traces is based on the assumption that the system operates in generic
or constant conditions. The experts interpret traces given a limited number of generic
scenarios of system operation. The experimentation on the other hand provides a view
on subsequences under controlled and constant conditions. Systems that are operating
in the field experience a wide spectrum of conditions. Given that, sequences that are
collected from systems that are operating in the field are likely to contain a bigger
variety of data structures.

To utilize these sequences in order to increase the knowledge on subsequences of
traces, a method is needed that will allow fast exploration of sequences obtained from
system operating in the field. Such an exploration can be performed with the help of
visual representation techniques. Traces can be represented visually to effectively
reveal both, the semantic and the temporal characteristics of the subsequences. Visual
representation as an exploratory technique has its advantages. The visual
representation allows the human to intuitively explore the data. In cases where little is
known about the problem in hand, visual representation can help with its fast learning
iterations to adjust the objectives of the data analysis [Kei01].

To facilitate the semantic and temporal information, traces can be plotted on a plane
where one dimension (vertical) represents the semantics and the other (horizontal)
represents time. A sequence can contain multiple semantics. Their arrangement on the
vertical axis can be done either randomly or controlled. Generally in visualizations,
randomly positioned dimensions yield less information than ordered dimensions
[Ma99]. The ordering of the data has to be done accordingly to enhance certain
features of interest. To achieve effective visualization of traces it is preferred to order
the arrangement of semantics of the vertical axis of the graph according to their
pairwise associations.

In this thesis the item to item similarities are assumed to be defined by the underlying
functional dependencies of the components of the system. When an error occurs in a
component multiple types of traces can be logged closely to each other to form
subsequences. The multiple traces are logged as the error propagates to other
components of the system that are functionally coupled with the first erroneous
component. The stronger the coupling between the components the more consistent
the co-occurrence of the traces is. This co-occurrence of traces, referred to as
association, is a manifestation of the functional coupling of components. An
appropriate measure is used to capture the association of traces and use it to enhance
the readability of visualization of traces.

Various techniques, such as multidimensional scaling, factor analysis, principal
component analysis, are available for enhancing exploratory data visualization
[Fer03]. Among them, multidimensional scaling is often used in data visualizations to
enhance functional dependencies [Kei96]. Metric multidimensional scaling uses a
matrix of item to item similarities to optimize their positioning on a low dimensional
space, so that the distances between the item to item positions agree with the item to

 50

item similarities. Defining an item to item similarity measure that can be used in fast
visual exploration of traces is the main interest of this section. The optimization
method itself is out of the scope of this thesis.

This section is organized as follows: Section 3.3.1 describes the problem of non-
ordered visualization and sets the basic requirements for effective visualization. In
section 3.3.2 a framework borrowed from the domain of multidimensional scaling is
described with which dimensions in a graph can be ordered to enhance the features of
the data. For traces the feature of interest is their association in the sequence. In
section 3.3.3 a measure of association is described that is appropriate for traces. The
method for measuring association of traces and the resulting artifacts needed for the
scaling operation are described in 3.3.4. In 3.3.5 the scaling operation is described
briefly and the effect on the visualization is discussed. A case study is presented in
3.3.6, where the effective visualization is used to explore traces collected from
systems operating in the field, with the intention to increase the understanding on the
structure of subsequences. Section 3.3.7 contains the discussion and conclusion on the
effective visualization and the finding of the exploration.

3.3.1 Visualization of traces

To create a graph of traces that can convey the temporal and semantic information
found in the sequence, a two dimensional space is needed. Time is represented on the
horizontal axis and the types of semantics represented on the vertical axis. In Figure
3-10 an example is shown of a sequence plotted on such a two dimensional graph. In
the sequence there are 32 different types of semantics. These are positioned on the y-
axis in a lexicographic order since no other ordering is suggested at this point. For the
plot of the graph each trace (represented by a red cross) is positioned using the
coordinates trace ic (ic represents uniquely the semantics) and time stamp.

500 1000 1500 2000 2500 3000 3500 4000 10000000 10000006 10000016 20027274 40000202 60000011 63000000 63000238 63000291 80010051 80010055 80019900 80019901 103262105 103266143 103268255 510610011 510610100 510710102 540000072 650020481 660000012 660009900 660009901 660009912 730020000 730999900 730999901 730999902 730999903 730999912 750000002

Time (hours)

Figure 3-10 y-x plot semantics vs. time

The length of the sequence is over 4000 hours of operating time. The traces in
subsequence are separated by few seconds. The distance between successive traces in
the subsequence is very small compared to the length of the sequence. This makes the

 51

traces that are close to each other appear on the graph as if they are arranged on top of
each other. These vertical arrangements help to identify quickly the subsequences in
the sequence. By first inspection of the graph some subsequences become
immediately visible. For example the vertical arrangement of crosses in the upper left
corner (delineated by the solid blue line) suggests that a number of traces are very
close to each. Detecting other structures in the graph is however not as straight
forward as the first example. In the lower part of the graph (delineated by the blue
dashed line) subsequences are less clearly visible. There is a "cloudy display" of data
points that does not allow easy identification of subsequences. The cloudy display is
the effect of the arbitrary ordering of the semantics on the vertical axis. An arbitrary
or random ordering will set the semantics of traces that tend to appear together far
apart from each other, making the visualization less effective.

The problem in hand relates to the ordering of the positions of semantics on the
vertical axis. The temporal aspect of the graph is well served with the current setting
because the relative temporal proximity of traces is clearly visible (vertical alignment
of traces that close to each other). To enhance the informativeness of the graphical
representation of traces, the positioning of the semantics on the vertical axis of the
graphs has to be ordered. The ordering of the semantics on the graph has to allow
semantics that are usually members of the same subsequence to be positioned close to
each other on the vertical axis. Since the membership of the traces in subsequences is
not known in advance the ordering can only happen by using the observations as these
are made in the sequence.

3.3.2 Optimizing the ordering of dimensions for effective
visualization

The interest in this thesis is to control the ordering of the semantics on a single axis
(vertical axis), the optimization problem reduces to a single dimension, hence a
unidimensional scaling problem.

The scaling problem consists of two parts:
 The distance matrix, which contains the item to item (dis)similarities. The distance

matrix has to meet the metric properties [Gow86] so that the item to item relative
dissimilarities can be retained after the scaling.

 A cost function that has to be minimized by an optimization algorithm in order to
find the best positions for the semantics

The focus here is on the definition of a dissimilarity matrix that fits the information
found in sequences of traces. For the cost function the least-squares criterion is used
[Hub06]. To perform the optimization process, unidimensional scaling is used with
the least square criterion 2L . The method is explained in short in 3.3.5.1. For further
reading the reader is referred to [Hub06].

3.3.3 Association between traces

To measure the strength of the association between two traces an appropriate
association measure is needed. Several association coefficients are found in the
literature across different research domains [War08] [Che69]. The coefficients base
their measurements on the observations that are made on how events occur in relation
to each other, either in the time of in the space domain. To illustrate how observations

 52

on events are made, an example is given. There are two types of events A and B .The
occurrence of the events is monitored on a daily basis (time domain). Four event
counters are used to measure the phenomenon:

 (3-3)

At the start all counters are set to zero. Depending on what observations are made at
the end of each day the corresponding counter is increased by one. To evaluate the
association coefficient the counters are combined appropriately to convey the
indented measure of association. Among the several coefficients that are found in the
literature for this thesis the Jaccard is chosen. The Jaccard coefficient measures the
ratio of common occurrences over the sum of all occurrences of the two events. The
coefficient is chosen because it shifts the weight of measuring the association on the
co-occurrences of events rather the common absences. The Jaccard coefficient ignores
in its calculation the number of occasions where both events are absent i.e. AB

x
making the measure of association independent from the occurrence of other events.
In the context of traces, the observation of two traces being both absent in a
subsequence does not have an added value because it is not a statement on the
functional coupling between two components. The Jaccard coefficient has all
properties of a metric [Gow86]. The coefficient is defined as follows:

 (3-4)

3.3.4 Dissimilarity matrix for traces

The association of traces in a sequence is measured by their co-occurrence in
subsequences. At this point however subsequences are not known. The sequence
consists of ordered traces. To measure the association between any two traces in a
sequence, the sequence is partitioned into a finite number of time frames. If a pair of
traces falls within the same time frame, this is counted as a co-occurrence. This
method provides an approximation of the association of traces since it is based on the
occurrence of traces in these frames and not in the subsequences. The method is
defined formally here.

A sequence of traces of lengthT is partitioned into n non-overlapping time frames tf of
width l , where , so that

, (3-5)
where r , is the remainder of the sequence. The total number of time frames
after partition is ' 1n n for 0r , and 'n n for 0r . For every jtf , where

1,2,3,..., 'j n the number of occurrences ijc are counted for each
iic that is found in

the sequence, where {1,2,..., }i m . Since the interest lies in the co-occurrence of
traces and not in the number of occurrences, the count of the number of occurrences
for a type of semantic

iic is transformed into a state element ijb obtained via a binary
function:

 53

1 0 ()
0 0 ()

ij

ij

ij

for c presence
b

for c absence
 (3-6)

The event counters (3.3-1) are updated for all pairs ,i kic ic , where

, {1,2,3,... }i k m . Based on these the Jaccard coefficient iks is evaluated for all pairs
,i kic ic of semantics. The association coefficients of all pairs form a similarity

matrix Sdt of size m m that describes the pairwise associations of traces in the
sequence. The dissimilarity matrix Pdt that is required for the cost function of the
optimization operation is acquired by 1Pdt Sdt .

3.3.5 Optimization of the ordering using temporal associations

3.3.5.1 Optimization Method
The method that is used in this thesis is known as random restarts unidimensional

scaling [Hub06] and will be described briefly here. Given an initial (random) ordering
of positions, the optimization of the criterion 2L (defined below) is approached
through simple pair-wise interchange/rearrangement heurists. Such local interchanges
continue until no further improvement in the criterion can be made. The minimum
reached by this tactic is a local minimum and therefore not the optimal solution. To
obtain a near to optimal solution, several local minima are obtained and the best out
the set is chosen. To ensure a good approximation of the optimal solution, the set of
local minima has to cover as much as possible of the input space. To achieve that, the
process is initiated numerous times using random orderings 0Y of the initial positions

of traces as the input. The result is a set of local optima 2minL over the input space.
The lowest value 2minmin{ }L obtained from the set of local minima gives the
approximated optimal solution for that run.

The least square criterion is defined as

2
2 (| |)ik k i

i k

L p y y ,

where the element
ikp in Pdt is defined as 1ik ikp s and ,i ky y the set of

coordinates (positions) of data type
iic and

kic respectively .

3.3.5.2 Effective ordering of positions of traces on the graph
To set the width l , domain knowledge is used. According to domain experts and the
observations that were made during the fault injection experiments (3.2), the duration
of a subsequence is not expected to exceed 300 seconds. The dissimilarity matrix Pdt
of the data types found in the data sequence is computed using the method described
in 3.3.4. The random restarts unidimensional scaling method is used with the
computed Pdt as the input. The 2minmin{ }L found suggests the optimal ordering minY .

When the ordering minY that is obtained from the optimization method is used to plot
the semantics on the vertical axis, the result is an improved visualization. This can be

 54

seen in Figure 3-11. The sequence in Figure 3-11 is the same sequence as in Figure
3-10.

Figure 3-11: Optimally reordered dimensions (data types) in y-x plot

Subsequences become clearly visible when the ordering of the positions on the
vertical axis is done based on the pairwise associations of traces. Visual exploration
of the data sequences is made easier.

3.3.6 Case study: Visual exploration of temporal data sequences
obtained from professional system operating in the field

This case study shows how the visual exploration of the sequence of traces, using the
effective visualization technique described here, can help increase the knowledge over
the formation of subsequences. In the context of this research, visual representation
can help enhance or weaken the following beliefs:

1. Subsequences are dense formations i.e. traces located relatively close to each
other compared.

2. Subsequences with similar structure (temporal and semantic) can be found in
long temporal data sequences. The operating conditions in the field can have
an effect on the structure of subsequences. Does this effect allow the formation
of subsequences that show similarities the same way as the results from the
fault injection experimentation?

3. Recovery subsequences follow error subsequences. The association between
error and recovery subsequences is interesting because it is a data
manifestation that is in line with the motivation of this thesis. The motivation
of this thesis is to use information on the co-occurrences of error and recovery
events to improve the availability of the system. The association between
recovery and error subsequences was observed under the controlled conditions
of the experimentation. How does the phenomenon occur in operational
conditions?

500 1000 1500 2000 2500 3000 3500 4000 80010051 730999903 660000012 660009900 650020481 80019900 750000002 80019901 730999901 660009901 730999912 660009912 730999900 730999902 510610100 510610011 10000006 40000202 103262105 103266143 103268255 63000238 63000291 510710102 10000000 10000016 60000011 730020000 63000000 540000072 80010055 20027274
E

v
e
n
t
T

y
p

e
s

Time (hours)

 55

4. Search for new unknown data structures. The data structures that are known
are the subsequences. These are dense formations with a relatively short
duration. Are there other data structures in the sequence that do not follow the
same pattern?

Each of the 137 sequence in the sample set is represented visually and observations
that are relevant to the three beliefs are recorded. The findings are presented in the
following sections. Findings in relation of belief 1 and 2 are described in section
3.3.6.1 , about belief 3 in section 3.3.6.2 and about belief 4 in section 3.3.6.3.

3.3.6.1 Temporal structure and semantic content of subsequences
Using the visualization technique described here and by producing the graphical
representations of all sequences in the data sample, it is observed that:

 Subsequences, error or recovery, are indeed found in the form of bursts. Example

of this can be seen in (Figure 3-12 and Figure 3-13) where vertically aligned data
points, i.e. subsequences, are formations of closely located traces and subsequent
subsequences are separated by relatively long intervals. This observation enhances
the confidence regarding belief 1 and develops into conjecture 1 on the temporal

structure of subsequences:

Traces of the same subsequence are found in close temporal proximity. Traces of

different subsequences are separated by relatively long intervals of time.

 Subsequences can re-occur consisting of the exact same traces (subsequences
outlined with dotted line in Figure 3-12 and Figure 3-13). Also, subsequences can
re-occur consisting partly of the same traces and partly of traces that are unique to
each subsequence (subsequences outlined with dashed line in Figure 3-12, the
traces shared among all four subsequences are colored in blue). This observation
enhances belief 2 and develops into conjecture 2 on the semantic content of
subsequences:

Semantics can reoccur together with a varying level of consistency to form

subsequences.

 56

500 1000 1500 2000 2500 3000 3500 4000 80010051
730999903
750000002
730999901

80019901
660000012
650020481
730999912

80019900
660009900
660009912
660009901
730999900
730999902
510610100
510610011

10000006
103262105

40000202
103268255
103266143

63000291
63000238

510710102
10000000
10000016
60000011

730020000
80010055
20027274
63000000

540000072
Error related traces

Time (hours)

Figure 3-12 Error subsequences

500 1000 1500 2000 2500 3000 3500 730080001
760060004
50001027
60000002
50001024

100010006
40000100
70030010

730100001
80000000

660000015
660000002
650028673

Recovery related traces

Time (hours)

Figure 3-13 Recovery subsequences

3.3.6.2 Association between subsequences representing faults and recoveries
The association between error and recovery subsequences was first observed during
the fault injection experiments where system failures where succeeded by automatic
recoveries. The experiments were conducted in a controlled environment with specific
operating conditions. Traces obtained from systems operating in the field can provide
a new insight into this aspect because the information they contain represents
operational conditions.

The visual exploration of the sampled data set provided strong evidence that such
associations exist. Examples of such association can be seen in Figure 3-14 (Error

 57

traces, are represented with red crosses, recovery traces are represented by blue
circles).

Figure 3-14 Associations between error and recovery subsequences

Associations between error subsequences and recovery subsequences can be seen
where vertical alignments of crosses and circles exist. In the sample data, it was
observed that recovery subsequences are preceded by error subsequences, which is
enhancing the initial belief 3 and leading to conjecture 3 that:

Subsequences representing recoveries follow subsequences representing failures.

3.3.6.3 Discovery of unknown formations in long sequences of traces
Visual exploration helps to identify aspects of the data sequence that were previously
unknown. Plots of sequences from the same sample set revealed the presence data
structures that were previously not known. These structures seem to cover the entire
length of the sequence with frequent entries that appear to be equally spaced. The
structures are found in error and recovery traces (in Figure 3-15 and Figure 3-16) as
data points that form horizontal lines.

500 1000 1500 2000 2500 3000 3500 4000
730999902
730999903
650028673
730999900
660000002
650020481
660009912
750000002
80019900

660009901
730999901
660000012
660000015
660009900
80019901

730999912
80000000

730080001
100010006
50001024
70030010
10000000
60000002

730100001
50001027
40000100
10000016
60000011

730020000
760060004
510710102
510610100
510610011
10000006
40000202

103262105
103266143
103268255
63000291
63000238

540000072
63000000
20027274
80010051
80010055

E
v
e
n
t
T

y
p
e
s

Time (hours)

Associations betw een Error and Recovery related event types

 58

Figure 3-15 Error traces forming dense horizontal structure

Figure 3-16 Recovery traces forming dense horizontal structures

This evidence supports belief 4 and leads to the conjecture 4:

Data structures that differ from the conventional structure of subsequences are

present in the sequences of traces

These data structures are identified as partially periodic subsequences (pps). Pps do
not represent physical events that in similar manner as subsequences do. Pps are
artifacts of the logging mechanism. Pps will be discussed in detail in section 3.4. As it
will be shown in 3.4, pps are obstructing the transformation process and therefore

 59

need to be removed to allow further processing of the sequences. In section 3.4, a
technique for fast detection of pps in long sequences is presented.

3.3.7 Discussion and conclusions

Visual representation is a powerful tool in the exploration of data sets when little
information is known about how the data is structured. Improving the graphical
representation by optimizing the position of trace on the vertical axis can increase the
power of visual exploration. The proposed method is an inexpensive ordering
technique that can improve the effectiveness of the visual representation of traces. Its
inexpensiveness lies in the fact that without deep prior knowledge on the formation of
subsequences, the association of semantics can be measured quickly and effectively,
by using a simple partitioning technique of the sequence with the combination of the
appropriate measure of association i.e. the Jaccard coefficient. This measure, together
with the use of a simple optimization algorithm can improve considerably the
graphical representation of traces.

Exploring the sequences for structures without the effective representation would be
virtually impossible. The exploration of sequences of the sample helped to increase
the understanding on the structure of subsequences by getting a visual feel of the data
structures that are present. Unknown aspects of the traces were discovered. The
presence of pps is problematic for the implementation of data mining tools and need
to be removed. Although pps can be removed by simply filtering out the traces that
form them, their automated detection is not straight forward.

 60

3.4 Detection of partially periodic subsequences

An important part of the preprocessing of traces is to remove any unwanted data
structures that can hinder the transformation process. The visual examination of the
graphical representations of the traces revealed such structures in the data sequences.
By closer examination it is found that that some traces form “horizontal” structures.
Within these structures instances of the same trace ic are spread over long intervals.
The instances are spaced apart in almost constant distances. This spacing continues
for a period of time, intermits for some other period of time, only to resume at some
point later following a similar pattern.

Figure 3-17 Partially periodic subsequence in the audit trail

Such data structures are known as partially periodic patterns or partially periodic

subsequences (pps) [Ma01]. The term periodic refers to the constant interval between
successive traces and the term partially to the fact the periodic structure is
intermitting.

Pps are not the result of randomly occurring failures as the traces that appear in
vertical structures, but are the product a semi-deterministic processes. They are likely
to be the result of periodic monitoring mechanisms. These patterns occur for example
when, due to an erroneous component, a periodic monitoring and recording
mechanism is initiated. The purpose of such loggings is to give an alert to operators
and make the problem visible to them when traces are visually inspected. Once the
problem is solved the monitoring mechanism stops the recording of the data and the
data structure terminates.

 61

The presence of pps is problematic because as a data structure it masks the failure and
recovery “vertical” subsequences to the discovery algorithms. Subsequences in the
long sequence (encircled in blue in Figure 3-17) can be identified because of the
compact arrangement of traces within the subsequences and the relatively long
distances between subsequences. This arrangement is used by data mining techniques
(chapter 4) for detecting subsequences in long sequences. The pps extends over long
lengths in the sequence and masks subsequences by "bridging" the distances between
consecutive bursts. As a result, subsequences of interest that otherwise would be
clearly separated by relatively long periods of time, in the presence of pps become
virtually invisible to data processing algorithms.

Because pps do not represent random physical failure events and its presence obstruct
the further transformation of traces they are unwanted structures and should be either
removed entirely from the sequence or replaced by another representation. Detecting
the traces that exhibit pps structure is a large set of sequences, is a rigorous manual
task. An automated method is needed that can search and find traces that follow pps
patterns. The method has to examine recursively all types of traces in each sequence
and detect these that exhibit pps structure. One of the challenges in detecting such
patterns is that the period i.e. the length of the constant interval between subsequent
traces in an on-segment, is not known in advance. Another problem is that, though
the interval of the period is mostly constant it is not in an absolute manner. Small
variations within the patter can exist.

A method is presented for detecting efficiently the type of traces that exhibit pps
structure in a sequence. In section 3.4.1 the pps is described and defined formally.
Section 3.4.2 presents current methods found in literature for detecting pps and
discusses their shortcomings. In 3.4.3 am efficient method is presented for detecting
pps in sequences of traces. Section 3.4.4 described a comparative study between the
proposed method and the state of the art method found in literature. In section 3.3.5 a
cases study is presented where the proposed method is applied on the sample
sequences and the findings are discussed. Section 3.4.5 is concludes the discussion on
pps.

3.4.1 Partially periodic subsequences

In contrast to a continuous periodic pattern where events reoccur continuously in
regular intervals, pps periodic occurrence of events is present for a period in time, the
on-segment, and ceases to exist for a following period phase in time, the off-segment.
In Figure 3-18 two on-segments are shown where events are taking place at times

it .
In the pps purest form, successive events in on-segments are separated by intervals of
constant length, known as the period p. The on- or off-segments can be of various
lengths. In the example of Figure 3-18 the pps has a period of p=3 e.g. time units.

 62

Figure 3-18 Partially periodic subsequence (pps)

In the context of the logging mechanism, the on-segment intervals correspond to the
phases in time when a sensing mechanism is activated due to an error, in contrast to
the off-segment intervals where the mechanism is inactive. If it is decided to replace
the pps instead of removing it entirely, an option can be to replace each on-segment of
the pps with a single trace of the same type. The single replacement trace should be
located at the point in time where on-segment starts.

To detect a pps it has to be determined that a certain type of follows a pps pattern. The
pps can appear with some degree of distortion in its structure. The distortion can be
found in the form of additional traces of the same type placed randomly within the on-
segment and adjacent to the traces that form the pure pps. Similarly additional traces
can be placed in the off-segment closely to the border traces of the on-segments. In
Figure 3-19 a pps with distortion is shown. The pps has two on-segments. The period
is p=3 time units. The events that follow the period are indicated by the black vertical
lines. Additional traces located randomly and adjacent to the segments of the pps are
indicated by the red vertical lines.

Figure 3-19 Distortion in partially periodic subsequence

Given that the period of a pps in not known in advance the presence of distortion can
make the determination of the period p of the pps difficult because it blurs out the
deterministic structure of the on-segments. The discovery of pps in the presence of
such distortion is a challenge that requires specifically designed methods. Researchers
have been working on the problem of pps detection.

3.4.2 Related work

The problem of discovering pps in data sets has been dealt by using different
approaches. Ma et al. [Ma01], use association rules to discover pps in temporal data
sequences. A different approach is used by Yang et al [Yan00]: a subsequence
consists out of segments where the data type exhibits periodicity; the longest valid
subsequence with periodicity is characterized as pps. A third approach is presented by
Cao et al. [Cao07], where a symbol matching scheme is used in combination to
shifting and comparing the sequence with itself to discover the pps.

On-segment

Off-segment

On-segment

 63

Regardless of the approach, the biggest challenge for discovering which type of trace
exhibits a pps structure in a sequence where multiple traces occur in different point in
time, is that the period p of the pps is not known beforehand. Some methods propose
an exhaustive search of all possible lengths for period p, which is clearly not an
efficient method if the amount of traces in the sequence is high. There is a need to
narrow down the possible lengths for period p in order to improve the efficiency of
these algorithms. Such a method is proposed by Ma et al [Ma01], where binomial
hypothesis testing is used. The test is designed to detect which interval length between
successive events appears in greater than expected frequencies, under the assumption
that all interval lengths are equally likely to occur. To perform the test, the difference
between consecutive data points in the sequence is computed. The count of each
interval length is compared against the 95% confidence level of the expected count for
that interval length, under the assumption of equally likely occurrences. If the count
exceeds that level, the interval becomes a candidate period i.e. an interval length that
could potentially be the period of the pps. Once the set of candidate periods is defined,
it is used to search for pps with one of the methods described above. In essence the
objective of detecting candidate periods is to narrow down the number of trials for
detecting the pps.

In a data sequence S that consists of N data points (events of the same type),

it
represents the time of occurrence of a data point, where 1,2,...,i N and for

. The thn order difference is given by:

n i i ndiff t t , for and (3-7)

and the 1st order difference is the difference between consecutive data points in S and
is given by 1 1i idiff t t .

Identifying candidate period by using the 1st order difference comes with limitations.
In the presence of distortion the 1st differences may not be the appropriate measure to
detect the period of the pps. In Figure 3-20, an example of pps with distortion (in red)
is shown.

Figure 3-20 Effect of distortion on period detection

The intervals that indicate the period are represented by bidirectional arrows with
solid lines and the 1st order differences by bidirectional arrows with dashed lines. In
the example it can be seen how in the presence of distortion the 1st order difference
misses to measure the correct number of intervals lengths that are equal to the length
of the period. In the on-segment on the right, the first difference returns only one
interval length that is equal to length of the actual period. This shortcoming was
recognized by Ma et al [Ma01], and in their paper they suggest that for highly
distorted data sequences, additional, higher order differences (e.g. the second, third
etc.) can be used to perform the test. This is however not an efficient method since the

period

1st diff.

 64

test has to be repeated several times, one for every order of difference. Also, the level
of distortion is not known in advance and therefore it is not possible to foresee
whether the second or third or other order of differences should be used.

Here a test is proposed that can detect correctly the presence of periods in a data
sequence with high rates of success even with high levels of distortion, using a single
round of computation. The test is built on the same principle of the binomial
hypothesis test of Ma et al [Ma01], but instead of taking only a single order of
differences at a time to make the comparison between counted and expected interval
lengths, all orders of differences between the traces are taken at the same time.

3.4.3 Mixed Erlang test for detecting candidate periods in temporal
data sequences

3.4.3.1 Mixed Erlang Distribution
For a data sequence S that consists of N data points, the differences between data
points of all orders can be computed using 3.4-1. The result of the computations is
represented in Table 3-3. The head row indicates the order of difference. For example
the column of "1st diff" indicates all differences

n i i ndiff t t of the order 1n , the
column "2nd diff" of the order 2n and so on. Each column contains the number of
differences

nD obtained when performing 3.4-1 on all data points in S for a specific
order n. For example the first column contains 1 1D N differences between all
successive points in S . The number of differences reduces as the order n increases.

 1st diff 2nd diff. 3rd diff. thn diff (1)thN

diff
 2 1t t
 3 2t t 3 1t t

 1i it t 2i it t 3i it t 1it t

 1N Nt t 2N Nt t 3N Nt t

N N nt t 1Nt t
number of 1N 2N 3N N n 1
differences

Table 3-3 All Differences of all orders between all data points in S

The number of differences obtained from S for the thn order is

nD N n , whereas
the total number of differences obtained from the 1st until the thn order is given by:

1

1

1() (1)
2

N

n

K N n N N (3-8)

Assuming that is R a random data sequence, the data points

it for 1,2,...,i N follow a
Poisson process with parameter . By the properties of the Poisson process, the set of
differences

ndiff of the thn order is a sample from an Erlang (,)E n distribution with

 65

density [Cox62]. Let X be a continuous random variable that represents the set of
differences

ndiff of thn order with density:
1e()

(1)

n n xx
f x

n
 (3-9)

If the samples of the differences of all orders n, where {1,2,3,..., 1}n N are put
together the distribution becomes a mixed Erlang, where each (,)E n has a mixing
proportions .N nq

N n

N n
q

K
 (3-10)

The mixed density is thus
1 11 1

1 1

e 2() e()
(1) (1) (1)

n n x n n xN N

N n

n n

x N n x
f x q

n N N n
 (3-11)

 with first moment
1

1

1 N

N N n

n

nq (3-12)

3.4.3.2 Binomial hypothesis test for nth order differences
To detect candidate periods

cp a binomial hypothesis test is constructed. Given a
sequence S, the test compares the observations

il
O (counts) made of an interval length

il , where {1,2,3,4,...}i computed from the differences of all orders n(
{1,2,3,..., 1}n N), with the expected number of intervals

il
E assuming a random

sequence. In specific the null hypothesis is formulated as follows:

H0: The count of intervals of length

il is obtained from the differences of all orders
from a random data sequence.

And the alternative hypothesis states:

H1: The count of intervals of length

il is obtained from the differences of all orders
from a non-random data sequence.

Non-random in the context of traces can be either a pps or an entirely periodic data
structure (on-segment only).

To test the hypothesis the observations

il
O made for each interval length

il is
compared against the expected number

il
E . The expected number follows a binomial

distribution (,)
il

B K P , where K is the total number of intervals of any length and
il

P the
probability of an interval of length

il occurring.

To test the hypothesis the standardized deviation from the expectation

il
E is used:

 66

2
2 ()

(1)
i i

i i

l l

i

l l

O E
Y

E P
 (3-13)

The statistic derives from the sampling distribution of the variance [Lan69]:

2
2 2

1 1
~

z r z r
i

i r

z z

X
Y (3-14)

in particular:
2 2

1~iY (3-15)

and is used on the basis of the central limit theorem that states that for sufficiently
large samples (30) the sampling distribution of the variance of a variable

iX
obtained from a non-normal distribution approaches a chi-squared distribution (
Xi approaches the standard normal).

The statistic 2
iY uses the true mean

i iE K P , where
il

E the expected number of
intervals of length

il , K is the total number of intervals (3.4-2) and
iP the probability

of an interval of length
il and the true variance 2 (1)

i il lE P .

The probability
il

P is computed by condensing the probabilities of the cumulative
mixed Erlang distribution:

 (3-16)

where d is an arbitrary real number.

When 2

iY exceeds the value of 2 3.84 (for a 95% confidence level), the null
hypothesis can be rejected, the observations

il
O for interval length

il cannot originate
from a random data sequence and the interval length

il becomes part of the set of
candidate periods

cndp .

3.4.3.3 Reducing the number of candidate intervals
The hypothesis test can return a set of candidate periods

cndp containing more than
one interval length. Within this set of candidates it is likely that there are interval
lengths that are multiples of other lengths. That happens because a higher order
difference can produce interval lengths that are multiples of intervals from a lower
order difference.

For example an interval of length

cl is computed taking the 1st order difference
between traces. If

cl is a candidate interval i.e. its counts exceed the expectation
according to the mixed Erlang, the 2nd order difference will produce intervals of
length ' 2c cl l . Also the count of 'cl is likely to exceed the expectation and therefore
become a candidate period. The count of 'cl is an artifact of the computation method.
Only the interval

cl should become a candidate period. To prevent such artifacts,

 67

interval lengths in set of candidate periods that are multiples of other interval lengths
are excluded. The candidate periods are examined in ascending order of interval
length. The shortest intervals lengths are kept whereas intervals that are multiples of
those are excluded.

3.4.4 Assessing the effectiveness of proposed detection method

The effectiveness of proposed method for detecting candidate intervals in the presence
of distortion is assessed with an experiment. A pps is produced with period 5p and
total length 500T time units. The pps has three on-segments and two off-segments
of various lengths. The method described in this section is used to find candidate
periods. If the period p=5 is within the set of candidate periods the tests is successful,
otherwise it that tests results to failure.

To simulate distortion, additional data points are added randomly to the pps. The level
of distortion is increased gradually and the search for candidate period is repeated. To
measure the level of distortion for each run, the distortion-to-signal ratio (DSR) is
used. The ratio indicates the number of additional random data points added to the pps
over the number of pps data points. The experiment starts with the DSR set to zero
and gradually increased to 4.

The model proposed here based on the mixed Erlang (model A) is compared to the
performance of the model suggested by Ma et al [Ma01] (model B). For each DSR
level 100 runs are conducted. Each run can result to a success or a failure, depending
whether the correct period (5p) is detected or not. The average success rate (ASR)
for all runs is indicating the performance of each model in the test. In addition, the
number of false positives is counted on each distortion level i.e. intervals of lengths
other than 5 are added to the set of candidate periods. The average number of false
positives is computed for the 100 runs as well.

In Figure 3-21 the results of the analysis can be seen. The solid line represents the
results of model A whereas the dashed line model B. Model A outperforms model B
undoubtedly.

For the first runs of the test the results of model B agree with those reported by Ma et
al. [Ma01]. The average success rate of model B remains high until the DSR reaches
the value of one, where the number of distorted traces is equal to the number of signal
traces. Then the ASR drops rapidly and becomes equal to zero when the DSR is equal
to two. For model A the ASR keeps perfect score even when the DSR exceeds the
value of 2. At this point there are on average 2 additional randomly positioned data
point for each data point in the pps.

 68

Figure 3-21 Average success rate vs. DSR

Another observation made is that the performance of model A seems to increase again
once the DSR takes values 3 . This can be explained in the following way:

The pps of the experiment has a period of 5p . Once the DSR approaches the value
of 3, there will be on average 3 additional randomly positioned data points every two
pps data points. This means that the interval of length 1 1l becomes the shortest
dominant interval and is recognized as a candidate period. Because the interval of
length 5 5l is a multiple of 1l , it is recognized again as a candidate period.
Consequently the curve of ASR reverses from decreasing to increasing and reaches
perfect score again when DSR becomes equal to 4. At this point there are some many
randomly positioned data points that they are present at every time unit. The pps has
been transformed from having p=5 to having p=1. In a real situation a data sequence
similar to that of the experiment at the point where 3DSR will be correctly
recognized as a pps with period 1p .

The number of false positives provides additional information to the performance of
the two methods. False positives reduce the efficiency of the mining algorithms by
falsely increasing the number of candidate periods. In Figure 3-22 the average number
of false positives (AFP) against DSR is shown. The solid line represents the AFP
for model A and the dashed line represents the AFP for model B. In Figure 3-23
the difference of the numbers of false positives produced by the two models is shown
(() ()ABComp False positives of ModelA DSR False positives of ModelB DSR).
It can be seen how the two models perform identically (

ABComp in Figure 3-23) as
long as the DSR level remains below 1. From the DSR level of 1 until the value of 2,
model A produces increasingly more false positives, but still in low numbers. At this
point there are 470 interval lengths that are put to test and the AFP is 20. Moreover at
this point model B cannot identify the correct interval as candidate period. From this

 69

point on the AFP of model A continues to increase with the same rate until the DSR
takes values 3 where the period switches from 5p to 1p .

Figure 3-22 Average number of false positives vs. NSR

Figure 3-23 Difference between numbers of false positives for two models

3.4.5 Case study: pps in sequences of traces

Sequences from 137 systems operating in the field are prepared for the
transformation. At this phase of the data preparation the objective is to identify the
trace types that are pps end remove them from the temporal data sequence.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120
NSR vs False positives

N
u
m

b
e
r

o
f

fa
ls

e
 p

o
s
it
iv

e
s

NSR

0 0.5 1 1.5 2 2.5 3 3.5 4
-20

0

20

40

60

80

100

120
Difference between false positives of two models

NSR

F
p
M

o
d
e
lA

-F
p
M

o
d
e
lB

 70

3.4.5.1 Identifying candidate intervals in system event loggings: analysis
The first step in identifying a pps is to detect any candidate intervals using the mixed
Erlang test that was discussed in this section. For every sequence in the sample data
set, each trace type is tested whether it has candidate intervals.

A sequence of traces S contains N entries. For each type of trace jci (represented by
its id), where {1,2,3,..., }j k , the test needs to be applied separately to determine
whether it is a pps. To do that, for each type of trace jci , data sequence '

jS is
produced from S that contains only traces of a that trace type, by filtering out any
instance of all other 1k and keeping the temporal information (timestamps) intact.
The resulting subsequence '

jS is of length and contains '
jN traces, where

.

In Figure 3-24 an example of a data sequence is shown containing error traces only. In
this data sequence 20 different types of traces can be identified (vertical axis). For this
example the test has to be performed 20 times, once for every type of trace.

Figure 3-24 20 different types of traces in a sequence

The mixed Erlang distribution is used to establish the null hypothesis under the
assumption of random temporal locations of traces in 'S . The null hypothesis allows
to test whether the counts of interval lengths computed for 'S are higher than what is
expected under the assumption of randomness. To achieve that the counts in

il
O are

 71

compared to the expectation
il

E for a mixed Erlang distribution ()Xf x , with

parameters 'N and
'
'j

j

ci

j

N

T
.

Given that pps are the result of build-in monitoring mechanisms, traces that are found
to be pps in one system could be pps also in another. This assumption can be extended
to the period that defines the pps and consequently to the candidate intervals that were
detected.

The procedure is executed with Matlab. Results are presented in the following
subsection

3.4.5.2 Identifying candidate intervals in system event loggings: results
In all data sequences examined from 137 different systems, 202 different trace types
were found. Out of these trace types, 8 were found to be a pps in the sequences of all
systems in the sample. One type of trace has period of 1p sec and the other seven
have 898p sec. The results are consistent across all sequences in the sample i.e. if a
trace type is found to form a pps in a sequence it is can be found only as pps in other
sequences with the same period. All instances of trace types that are pps are removed
leaving sequences with only burst like subsequences (Figure 3-25).

Figure 3-25 Sequence cleared from pps

Removing the pps allows for further processing of the data sequences. In the next
chapter a method for identifying subsequences in a data sequence will be presented.
To achieve that, an unsupervised learning method is used.

500 1000 1500 2000 2500 3000
63000324

80010055

80010051

60000011

10000000

10000016

20028787

20027272

730999902

730999900

730999901

730020000

510710102

E
v
e
n
t
T

y
p
e
s

Time (hours)

Data types-Error, pps removed, System:23734

 72

3.4.6 Discussion and conclusions

In this section a method was presented that allows the identification of candidate
intervals for detecting pps. A binomial hypothesis test is proposed to identify the
candidate intervals. The test is based on comparing the occurring frequencies of
interval lengths with the expected frequencies under the assumption of randomness in
the locations of data points. The mixed Erlang distribution is used to estimate the
expectations.

In the experiment the performance of the proposed model is high for increasingly high
DSR levels outperforming an alternative method proposed by Ma et al [Ma01].

 73

Chapter 4

4 Detection of subsequences in sequences
Long sequences of traces can extend over periods of many operating hours and can
contain thousands of entries. The traces that originate from single error or recovery
events form subsequences. Subsequences are data structures that are characterized by
the relatively close temporal proximity of its traces. Identifying the subsequences in a
long sequence of traces is the first step of the transformation process and it is the step
that defines the locations for the representations of physical events. Because the
amount of traces in a sequence can be very high, the subsequence discovery process
has to be performed automatically.

The method for subsequence discovery in sequences has to be system generic, capable
of performing independently of the type of system or its use, using solely the
information that can be found in the sequence. In this chapter a method for detecting
subsequences in long sequences of traces is presented that is based on the structural
characteristics of the subsequences i.e. the relatively close temporal proximity of
traces within the same subsequence compared to the distant temporal proximity of
traces between different subsequences (conjecture 1, section 3.3.6.1). The knowledge
that allows the formulation of this structural characteristic of subsequences has been
obtained by the exploratory analysis discussed in Chapter 3.

The process of detecting subsequences in a long sequence of traces is referred to as
segmentation. An unsupervised clustering algorithm is used for the detection of
subsequences in long sequences of traces. The term "unsupervised" suggests that there
is no external validation data that can be used to train the algorithm. To guide the
segmentation operation, a measure of cluster separation is used. The measure is used
to choose the segmentation of the sequence that satisfies best conjecture 1.

This chapter is organized as follows: previous works found in literature, on the topic
of segmentation of temporal data sequences are presented in 4.1. In 4.2 the proposed
framework for segmenting long sequences of traces is presented. In subsections 4.2.1-
4.2.5 each step of the framework is described in detail. The emphasis is put on the
robustification of the segmentation method against variation in the subsequences,
which is described in subsection 4.2.3. The chapter closes with the discussion and the
conclusions on this stage of the transformation process in section 4.3. The
segmentation method described in this chapter is applied in the case study of chapter
7.

4.1 Related work

Different methods for detecting subsequences in long sequences are found in the
literature. In their most dependent form these methods require a priori knowledge on
the specific form of subsequences. The specifics of the form can be the number and
the type of traces that define a subsequence, or even the order of occurrence of the
traces. Based on this knowledge string matching techniques are used to search for the
subsequences in the sequence that best match the already known forms
[Ant01][Che98]. To obtain such information on the form of subsequences requires
extensive failure injection to create a knowledge base of cause and symptom
relationship. Fault injection is an expensive exercise, especially for complex

 74

professional systems where the number of different forms can be high. Moreover such
a process can never be exhaustive to cover all possible types of errors that can occur
in a system operating in the field.

Sequential clustering techniques have been used for segmenting data sequences, by
identify patterns using the semantic information of subsequences
[Cao05][Man97][Das73]. When an adequate number of matching subsequences is
found (defined by the user how many), the subsequence is regarded as a pattern. This
approach is appropriate when subsequences come in great numbers. Enough evidence
has to be collected in relatively short period of time to support the existence of
patterns. The time required to collect enough support in order to define patterns
depends on the failure rate and the variety of types of failures. Professional systems
are in general reliable products and failure events are relatively rare.

The detection of subsequences in long sequences of traces can be based solely on the
temporal structure of subsequences. Such an approach is proposed by Tsao [Tsa83].
The proposed method uses the distance between two successive traces as the cutoff

parameter to decide whether consecutive traces belong to the same subsequence.
However Tsao defines the value of the cutoff parameter arbitrarily. Though this
method is suitable for segmenting a sequences based solely on the structure of
subsequences, the arbitrary setting of the cutoff parameter is not satisfactory, since it
does not allow the segmentation operation to adjust to the characteristics of different
sequences e.g. differences in the compactness of subsequences. In this thesis Tsao's
method is used as the basis to guide segmentation, but it is developed further to
include a criterion that can help to decide on the best value for the cutoff parameter.
The segmentation of a sequence comes also with some risks of erroneously assigning
traces to certain subsequences. These risks are particularly relevant when the value of
the cutoff criterion is decided based on the information collected from a sampled
sequence, but the same value has to serve the uses of field applications where new
subsequences will arise. Finally an unsupervised clustering method required some
form of validation. These considerations are discussed in the following section. A
framework is proposed that is addressing these considerations.

4.2 Unsupervised segmentation of a long sequence of traces

The closeness of the temporal proximities of traces in the sequence indicates whether
they are "members" of the same subsequence or not. Based on this observation Tsao
[Tsa83] defines subsequences by using the cutoff parameter i.e. a threshold distance
between consecutive traces, to decide whether these belong to the same subsequence
or not. The clustering operation is performed by a sequential clustering algorithm.
Tsao sets the value of the cutoff parameter arbitrarily. Setting arbitrarily the value of
the cutoff parameter can result to errors in the segmentation of subsequences. What is
an adequate cutoff value for one subsequence can be too short for another, which will
result to mistakenly splitting traces when they should belong together. The problem
can occur also in the other direction where a cutoff value that is set too high results
into merging together traces that actually belong to different subsequences. The above
problems are known in the literature of temporal data sequences [Han92] as:

1. The risk of truncation: the risk of assigning traces to different subsequences
that should belong to the same subsequence.

 75

2. This risk of collision: the risk of grouping together traces into one
subsequence that actually belong to two or more different subsequences.

Between the two types of risks the risk of truncation is the most relevant risk in the
segmentation of sequences coming from professional systems.

It was shown in chapter 3 that subsequences can vary in their temporal structure i.e.
the distance between consecutive traces in a subsequence. Although subsequences
tend to consist of traces that are placed densely next to each other (compact structure),
other subsequences can extend over longer periods with longer intervals between
successive traces (loose structure). Variation can be also found in the structure of
subsequences that result from different instances of the same type of physical event
e.g. same type of failure. Different instances can have more compact or less compact
structures1. Such differences can be attributed to the operation of the logging
mechanism. The mechanism can fail to produce traces, or record multiple traces
instead of one. Delays in logging can result to recordings of messages in later point in
time than the exact time of error [Han92]. It has been also shown that the level and the
type of the system workload have an effect on the way failures are represented by
traces [Iye82]. The variation in subsequences can result to truncation during the
segmentation of a new sequence if the cutoff criterion is set to a low value based on
the observations made in sampled sequences with compact subsequences.

Professional systems tend to be reliable products. Their failure rates are low. The
creation rate of subsequences follows that failure rate of the system. It is expected that
sequences of professional systems are well separated. To avoid speculating on a
representative failure rate of professional systems, it is adequate to say that the
interval between consecutive subsequences is typically measured in hours of
operating time. On the other hand it was shown in chapter 3 using the fault injection
that the length of subsequences can extend over approximately 300 seconds. More
importantly the distance between successive traces in a subsequence is of lengths of
few seconds. This structure enables the identification of subsequences using the
information on the relative temporal location of traces in the sequence.

Instead of setting the value of the cutoff parameter arbitrarily, an appropriate criterion
is needed that will take into account the compactness of all subsequences in a
sequence. In the literature of data mining and particularly under the area a data
clustering, many criteria exist for different types of needs [The09]. For the sequence
segmentation, the aim is to find compact clusters. A criterion that favors the discovery
of compact clusters is the cluster separation measure (CSM).

The value of the cutoff parameter is set with the help of the CSM and a sample
sequence. This value fits the overall characteristics of the sample sequence and returns
the most compact clusters for that sample sequence. However when the algorithm is
put in use, it operates on newly formed sequences that can vary from the
subsequences found in the sample. This variation in the structure of subsequences can
lead particularly to higher risks of truncation. To reduce the risk of truncation in
applications, the value of the cutoff parameter needs to be increased to an adequate

1 Even though the variation in the structure of subsequences can be found in both aspects of the
structure: temporal and semantics, in this step of the transformation process the interest lies in the
temporal structure.

 76

level that can tolerate variation in the subsequences. Given that there is only one
sampled sequence available, variation in the subsequences has to be simulated. The
variation is simulated using a random data sampling method that can produce variants
of the original data sequence [Lev01]. The random sampling method is referred to as
the resampling method. The value of the cutoff parameter has to perform equally well
on the original as on the variant sequences. To measure this performance a new
criterion is defined, the hybrid cluster separation measure hCSM. The process of
selecting a value for the cutoff parameter that performs well according to the hCSM is
referred to as robustification. The hCSM is the primary criterion to decide which
value of the cutoff parameter to use in field applications for the segmentation of a
sequence.

The risk of collision is perceived as a low risk here. Nevertheless it is advised to
choose a value of the cutoff criterion that reduces the risk of collision. The risk of
collision is quantified by the collision probability (CP), which is estimated using a
method proposed by Hensen [Han92]. For the segmentation process the CP is used as
a secondary criterion.

Given that no external data are available to validate the segmentation results, an
internal validation method is used to assess whether the segmentation is the result of
the inherent data structure found in the sequence or whether the segmentation that is
obtained is likely to be the result of a random data structure.

According to the above, the framework for the segmentation consists of five elements:

1. A sequential clustering algorithm to segment the sequence. For each value of the
cutoff parameter the clustering algorithm produces a segmentation of the sequence
(4.2.1)

2. The CSM to decide which value of the cutoff parameter return the most compact
clusters. (4.2.2)

3. Robustification of the value of the cutoff criterion to account for structural
variation of subsequences using the resampling method and the hCSM (4.2.3)

4. Chose a robustified value of the cutoff criterion that also reduces the risk of
collision during the application (4.2.4)

5. An internal validation criterion to verify that the segmentation of the sampled
sequence using the selected value of the cutoff parameter is not the result of
randomly positioned data points being grouped together (4.2.5)

In the following sections each one of the elements of the segmentation framework is
discussed in detail.

4.2.1 Segmentation of temporal event sequence using a sequential
clustering method

Each trace in the sequence is represented by a data point
it (data points represent

traces of all types), where
it is the time of occurrence. The sequence is represented as

an ordered set of N data points (traces) 1 2(),(),...,()NS t t t , where 1 2 ... Nt t t . A
sequential clustering algorithm is used to segment the sequence. The clustering
operation starts with the first data point in the data sequence 1t . The operation
continues sequentially for every data point in the data sequence until all points have

 77

been processed. Throughout the chapter the Euclidean distance is used as a measure
of distance.

The clustering with the sequential algorithm operates as follows:
The first cluster 1C is formed by the first data point 1()t found in the data sequence S.
For the next data point 2()t in the sequence S, a decision is made, whether to assign
the data point 2()t to the existing cluster 1C or to form a new cluster 2C . The decision
is made by comparing the distance 2 1(,)d t C , between the first cluster 1C and the data
point 2()t , against the value of the cutoff parameter , where and

10 Nt t . If 2 1(,)d t C is true, the data point 2()t is added to the current cluster

1C . If 2 1(,)d t C , a new cluster 2C is formed that contains at this stage only the
data point 2()t . The next data point 3()t is examined in similar manner, by comparing
its distance from the last formed cluster i.e. 3 2(,)d t C . The last formed cluster is
referred to as the current cluster. The algorithm continues this operations until all N
data points in S are processed.

The distance (,)i md t C between a data point ()it and the current cluster

1 2{(),(),..., ()}m i i i lC t t t is (,)i m i md t C t t , where 1 2 1max{ , ,..., }m i i i l it t t t t ,
therefore 1(,)i m i id t C t t
(Figure 4-1 vertical lines represent data points in the sequence, the blue ellipse
represents cluster

mC).

Figure 4-1: Sequential clustering algorithm

The pseudo code for this algorithm is given

 m=1

 1 1{ }C t
 for i=2:N

o if ,()i md t C then

 m=m+1

 { }m iC t
o else

 { }m m iC C t
o end if

 end for

 78

For a data sequence containing N data points a clustering result RC can contain k

clusters, where 1 k N depending on the value of . For 0 , N clusters are
returned, one for each data point.

4.2.2 Cluster Separation Measure

The segmentation of the sequence is repeated for different cutoff values p of the
threshold parameter , where p ℕ. The values p for the cutoff parameter are

defined as a range pa b . For each value p a clustering result R

pC is returned. For

each clustering result R

pC the value of pCSM is computed separately.

The CSM is a measure of the intra-cluster compactness and inter-cluster separation of
a clustering result RC [Dav79]. Compact and well separated clusters return low values
ofCSM . The CSM helps to identify which values p return from the data sequence
clustering results with the most compact and well separated clusters.

The CSM derives from two primary measures:

1) The intra cluster dispersion measure
mD , which measures the compactness of

clusters. The dispersion measure
mD is calculated for every cluster

mC ,
1,2,...m k in the clustering result R

pC .
2) An inter cluster distance measure ijM or inter cluster separation measure. The

inter cluster distance ijM is computed for any two pairs of clusters
iC and jC in

the clustering result R

pC .

Given a clustering result 1 2{ , ,..., }R

p kC C C C :

 The intra cluster dispersion measure is the mean distance of the data
points-members of a cluster

mC around the cluster mean
m

 ,

1

1 | |
mN

m j m

jm

D t
N

 (4-1)

, | |m mN C is the size of the cluster (number of data points in a cluster) and

1

1 mN

m j

jm

t
N

 (4-2)

is the cluster mean for cluster
mC , where 1,2,...,m k .

mZ is also the point
representation of each cluster

mC that is used for computing the distance between
two clusters. The dispersion measure for single-member clusters is equal to zero,
as

m
and jt are identical (Figure 4-2).

 79

Figure 4-2: Cluster Separation Measure

 The inter cluster distance measure ijM is defined as the Euclidean distance

between the point representatives
i
 and j of any pair of clusters

iC and jC

in R

pC (Figure 4-2).

 | |ij i jM , 1,2,...i k and 1,2,...j k (4-3)

For a clustering result R

pC that contains k clusters, a k k symmetric matrix M
is produced that contains the pairwise inter cluster distances ijM for a given
clustering result (all elements on the diagonal of M are all equal to zero).

Given the above, the intermediate measure ijR for any pair of clusters

iC and jC in
R

pC is given by:

 i j

ij

ij

D D
R

M
 (4-4)

For each cluster
iC the separation measure equals to the highest value among the

separation measurements between the cluster
iC and any other cluster jC in the

clustering result R

pC .

 ' max{ , 1,2,.. , }, 1,2,...i ijR R j k j i i k (4-5)

The above measures are calculated only for the upper triangular of the M matrix.

For a clustering result R

pC , the cluster separation measure CSM is given by the
average of the intermediate measure :

 '

1

1 k

p i

i

CSM R
k

 (4-6)

It is clear from function i j

ij

ij

D D
R

M
 (4-4 that the more compact the

clusters are the smaller the values
iD and jD will be, which will reduce ijR . Also, the

more separated the clusters
iC and jC are, the larger the distance ijM will be, which

again will reduce ijR . Therefore, low values of CSM indicate compact clusters that are

 80

well separated from each other. This in turn suggests that the corresponding cutoff
value p returns desirable segmentations.

4.2.2.1 Benefits of using CSM over other alternatives

The cutoff parameter that returns the lowest CSM among all other values in the
range is selected. For making a choice it is important to have clear indication on
which value of the cutoff parameter performs best.

An alternative method to the CSM is to plot the number of clusters formed for each
value of the cutoff parameter in the range of [Tsa83]. The plot of number of
clusters indicates the best value for by the "knee" (see Figure 4-3a). In this graph
the vertical drop of cluster count versus changes into an almost horizontal curve.
This is the “knee” of the plot and an indication that this location is a good value for
. The knee in the plot suggests that the data points have been allocated to the "right"
amount of clusters as the clustering result remains unchanged for a long range of
values of . However, the criterion of cluster count does not perform always that
well. In a different example seen in Figure 4-3b, the curve does not provide any clear
indication as to where a good value for the cutoff criterion is. In the second example
the cluster count continues to decrease as the values for increases, without any
"knee" becoming visible in plot.

Figure 4-3 Cluster count plots (a left, b right)

Obviously the cutting point in the second figure is subject to the analyst's decision.
Compared to the cluster count the CSM provides clear indications. In Figure 4-4 the
CSM is plotted for the same sequence and over the same range of values for as for
the cluster count criterion in Figure 4-3b. The lowest values for CSM can be clearly
identified. A CSM value is computed for every clustering result given a value of .
For 0 the CSM is equal to zero as for this cutoff value each cluster contains only
one data point and therefore the intra dispersion measure is null. When 0 the
CSM clearly indicates that the best result is that for 4 (area of red rectangle in
Figure 4-4). A magnification of the red rectangle is shown in Figure 4-5.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200
Cluster Count

N
u

m
b

e
r

o
f
C

lu
s
te

rs

Theta

0 200 400 600 800 1000
200

220

240

260

280

300

320

340

360

380

400
Cluster Count

N
u

m
b

e
r

o
f
C

lu
s
te

rs

Theta

 81

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06
Cluster Separation Measure System:31232

CSM

Theta
Figure 4-4 Cluster separation measure vs. Theta

-20 0 20 40 60 80 100

4

6

8

10

12

14

16
x 10

-3 Cluster Separation Measure System:31232

CSM

Theta
Figure 4-5 Minimum CSM value magnified from Figure 6

The CSM is not an absolute measure of good segmentation. The CSM indicates the
best clustering results among the set of clustering results R

pC that have been obtained
by segmenting the data sequence S within a given range of . Using the CSM values
to compare the segmentation results for sequences is not informative.

4.2.3 Robustification the cutoff parameter

To reduce the risk of truncation when the algorithm is applied in the field, the value of
the cutoff parameter is adjusted to tolerate variation in the structure of subsequences.
In the fault injection experiment it was shown that distances between successive
traces can vary although the overall length of the subsequence can remain

 82

approximately the same. For different instances of the same type of subsequence (type
defined by the injected fault) the average distance between the traces can remain
approximately the same; however the configuration of the points within the
subsequence’s length can vary. The configuration of traces is specific for every
instance of the subsequence, and since the sample sequence consists of such instances
the cutoff value as it is set with the help of the CSM value, is subject to the particular
trace configurations of the sampled sequence. The risk of truncation is caused if the
sampled sequence leads to a “tight” fit of the cutoff parameter. To reduce this risk
more instances of the sampled sequence can be simulated where the configuration of
the traces is different. The simulated instances of the original sequence are called
variants. In variants the subsequences are manifested in such a way that the average
distance between traces remains the same but the different configurations of traces in
the subsequence allow the distance between successive traces to take extreme values.
The cutoff value is then assessed how well it can perform on the variants.

The variation in the sequence is simulated using the resampling method (RM) of
Levine [Lev01]. The original idea behind Levine's method [Lev01] is to assist the
clustering operation in the presence of noise (random data entries). Here it is used to
produce variants 'S of the original sample data sequence S . The variants 'S are then
segmented using the same clustering algorithm and the clustering results are used to
assess how robust p is to variation in the structure of subsequences. The resampling
method is described in 4.2.3.1. The parameterization of the resampling method is
described in 4.2.3.2. The hCSM and the robustification of the cutoff value are
described in 4.2.3.3.

4.2.3.1 Resampling method
Variants 'S are produced out of the original sequence S by randomly selecting data
points out of S with a thinning probability f .For every data point in the original data
sequence S , there is a probability f that it will be selected during resampling. The
variant 'S is therefore a "thinned" or "diluted" version of the original data sequence S .

In Figure 4-6 an illustration of the resampling method is shown. The original
sequence S contains three subsequences. Each subsequence consists of a number of
traces (vertical lines). The red lines indicate the traces that are selected in a sampling
instance with a thinning probability of 0,5f . With this thinning probability, half of
the original data points will be selected on average to form the variant 'S . The higher
the thinning probability f is, the more data points of the original sequence S will be
present in the variant 'S .

 83

Figure 4-6 Resampling data sequence S

Once a variant has been produced both S and 'S are segmented. First the original
data sequence is segmented for the cutoff value p , producing a clustering result R

pC .

Then the resampled data sequence 'S is processed using as cutoff value ' p

p
f

 and a

clustering result 'R

pC for the variant is produced. The two clustering results are the
compared to find out which data points that are members of the same cluster in the
clustering result R

pC of the original data sequence S , also remain members of the

same cluster in the clustering result 'R

pC of the resampled data sequence 'S . The
agreement between the membership of data points for the results of the original
sequence and its variant is reflected by the measure of merit

LM . If all data points that
are members of a cluster in S are also members of the same cluster in 'S , there is a
total agreement between the two clustering results. This agreement results to a
measure of merit 1LM . If the measure of merit is lower than 1, it suggests that there
was not absolute agreement between the membership of data points in clusters in the
original clustering result and the result of the variant sequence. This in turn suggests
that the value for the cutoff criterion is not less to variation. The lower the measure of

merit
LM is, the lower the robustness of cutoff value p .

The process is repeated k times, by producing k variants of S using the same thinning
probability. Each variant is segmented and the clustering result is compared again the
original clustering result to compute the measure of merit. Averaging

LM over all k
gives a representative measure of agreement for the clustering results produced by p .

The resampling method is applied on the data sequence over the selected range of
values for p . An example of how

LM varies over the range of p is shown in Figure
4-7. The higher the value of

LM is (max is 1), the more robust p is to the variation in
the structure of subsequences.

subsequence

resampling of

 84

Figure 4-7 Robustness measure

LM vs. Theta

The above described resampling method allows the creation of random variants of
subsequences every time the original sequence is sampled. The figure of merit then
indicates how robust p is to the induced level of variation. To select the value p that
returns a good segmentation result and is also robust to variation the two measures
CSM and

LM are combined to produce the hybrid CSM (hCSM).

4.2.3.2 Choosing the thinning probability
At this point it is required to decide which value of f serves best the robustification of
the cutoff parameter. Since the main target of the robustification is to reduce the risk
of truncation, it is of interest to produce at least one variant that contains a distance
between successive traces (DBST) that exceeds the maximum distance between
successive traces that is found in the original subsequence. Variants that contain at
least one such DBST will lead for a given cutoff value to the truncation during the
clustering of variant sequence, which in turn will reduce the figure of merit

LM for
that cutoff value.

The variants of the original subsequences are produced in such a way that they retain
their relative structure. This structure is defined as the subsequence’s density i.e. the
mean distance between successive traces (mDBST). This restriction assures that the
variants are effectively variations of the original subsequence where the traces are
rearranged within the same interval length as the original subsequence.

Given the above the aim is in choosing a value of the thinning probability, for which
the variants:

a) Retain the density of the original subsequence.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

ML vs theta, System 32944

M
L

Theta

 85

b) Produce DBST that exceed the DBST in the original sequence. This criterion
represents the effectiveness of the thinning probability in the robustification.

c) Have a high chance of producing DBST that exceed the DBST in the original
sequence. This criterion represents the efficiency of the thinning probability in
producing DBSTs that will exceed the maximum DBST of the original
subsequence.

To find out which value of the thinning probability f can achieve best the above
criteria, an empirical analysis is conducted. Original subsequences are produced for
different density levels mDBSTo = [3,5,8,10,16,20,40,50,65,95,180,345]. For each
level of variants of the original subsequence are produced using the
resampling method. The resampling uses a range of values of the thinning probability
starting from =0.05 and increasing by a step of 0.05 up to =0,95. For every new
variant that is produced by resampling the distances between points in the
subsequence are rescaled with the thinning probability . This resembles the effect of
adjusting the cutoff value as in the resampling method.

For each level of 100 subsequences are produced. For each level of the
thinning probability the original subsequence is resampled 5000 times. For each level
of the following measures are averaged over the 100 samples:

a) The mean distance between traces in the original subsequence
b) The largest distance between successive traces in the original subsequence

For each level of the thinning probability the following measures are averaged over
the 5000 samples:

a) The mean distance between traces of the variants
b) The largest distance between successive traces, in the variants
c) The number of DBST in the variants that are greater than .

To examine how the thinning probability performs for each one of the stated criteria,
the following measures are computed for each level of and for each value of
the thinning probability :

a) The ratio

b) The ratio

c) The ratio

4.2.3.2.1 Retain the density of the original subsequence

Since the of the original subsequence has multiple levels, the criterion is
tested using the ratio . The criterion is met when the ratio is 1, which
suggests that the mDBSTv of the variants is approximately equal to the mDBSTo of
the original subsequence. In Figure 4-8 the ratio is graphed using a contour plot. The
vertical axis represents the levels of average and the horizontal axis the
values of the thinning probability. The coloring of the lines in the plot indicates how
close the ratio is to 1. The color coding is explained in the color scale on the right side
of the figure. Dark brown and red lines indicate the areas where the ratio is equal to or
very close to 1.

 86

Figure 4-8 Ratio of average mDBSTo over average mDBSTv for all f

It can be seen that for dense subsequences (levels of [3,5,8,10,16,20]) the
thinning probability performs well (the ratio is close to 1). As the increases
>20 the performance of the low values of the thinning probability begin to drop, but
the performance remains on good levels for higher values of the thinning probability.
The area where the performance of the criterion is satisfactory is on the right side of
the red contour line that starts at the bottom left corner and ends at the right of the
middle of the top of the figure. Within this area the thinning probability performs well
and is meeting the first criterion for all levels of mDBSTo.

4.2.3.2.2 Produce DBST that exceed the DBST in the original sequence

Figure 4-9 shows the three dimensional plot of the ratio over all
levels of and all values of the thinning probabability . For every level of
the average , the performance of the ratio is assessed over the range of
values of the thinning probabilities. Large values of the ratio are preferred as they
indicate large DBST in the variants that exceed . For a given level of
average mDBSTo, the location where the ratio is the highest, is the best choice of the
thinnning probability. The blue curve in Figure 4-9 indicates for each level of average

the location in the range of thinning probabilities where the ratio takes its
highest value. The red curve in Figure 4-9 is the projection of the blue curve on the -
mDBST plane. The red curve makes the reading of the best locations of the thinning
proabbaility easier.

Thinning probabaility f

A
v
e

ra
g

e
 m

D
B

S
T

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

150

200

250

300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 87

Figure 4-9 Ratio of average maxDBSTv over maxDBSTo for all f

The red curve shows that the most effective (maximum) values of the thinning
probability for dense subsequences are between 0.3 and 0.5. As the density of the
original subsequence reduces, mDBSTo>50, the most effective values of the thinning
probability are found in the high end of the range.

The red curve of Figure 4-9 is shown Figure X on the -mDBST plane. For dense
subsequences the average can be larger than average by a
factor of two. The ratio drops just below the factor of 2 for lower density levels but
still performs keeping in mind that this is an average value and a single such large
value is enough to cause the truncation of the variant subsequence.

Figure 4-10 Best values of ratio over average mDBSTo

0 50 100 150 200 250 300 350
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Average mDBSTo

R
a

ti
o

 o
f
a

v
e

ra
g

e
 m

D
B

S
T

v
 o

v
e

r
a

v
e

ra
g

e
 m

D
B

S
T

o

 88

4.2.3.2.3 High chance of producing DBSTs that exceed the maxDBST in the
original sequence

The third aspect of this experiment is the efficiency with which the thinning
probability in producing such variants that contain DBSTs that exceed the

 of the original subsequence. In Figure 4-11the results of the analysis are
shown. The figure shows the ratio of the average number of DBSTv that are greater
than the over the total number of DBSTv in the variant. The blue curve
indicates the peaks of the ratio i.e. the locations where the ratio is the highest. The red
curve is the projection of the blue curve on the - mDBST plane.

Figure 4-11 Ratio of number of DBSTv that exceed maxDBSTo over total number of DBSTv in

variants

The efficiency of the resampling method is highest for values of the thinning
probability other than the values that score best for effectiveness. However the ability
to produce a that exceeds the is more important than the
efficiency with which these large distances are being produced. Moreover when if the
thinning probability is chosen based on effectiveness, the efficiency of those values is
only marginally lower than if the thinning probability is chosen based on best
efficiency. In Figure 4-12 the black curve indicates the values of the ratio where it
peaks in the ranges of the thinning probability and the red curve indicates the values
of the ratio where the thinning probability is most effective.

 89

Figure 4-12 Efficiency of the thinning probability in producing large DBSTv

4.2.3.2.4 Proposed thinning probabilities

Based on these results the value for the thinning probability is selected in accordance
to the density of the subsequences, as they are produced for a given value of the cutoff
criterion. The table below shows these values:

mDBST Value of
thinning
probability

3 0.3
5 0.3
8 0.4
10 0.4
16 0.4
20 0.4
40 0.4
50 0.5
65 0.6
95 0.6
180 0.7
345 0.9

Figure 4-13 Proposed values for the thinning probability for different levels of mDBSTo

4.2.3.3 Hybrid-CSM, a criterion for choosing robust p

To combine the information obtained from the resampling method together with the
CSM, a new measure is defined, the hybrid cluster separation measure:

L

CSM
hCSM

M
 (4-7)

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Average mDBSTo

R
a

ti
o

 o
f
n

u
m

b
e

r
o

f
D

B
S

T
v
>

m
a

x
D

B
S

T
o

 o
v
e

r
to

ta
l
n

u
m

b
e

r
o

f
D

B
S

T
v

maximimum value over f

alternative value over f

 90

The hCSM is applied on the range of values of p that have been indicated by the
CSM to return the most compact clusters. This measure has the property of penalizing
CSM for the areas of p that do not score well in robustness. Areas that score
perfectly well in robustness (1LM) retain their original CSM value. For the hCSM
the selection of the best clustering result is done in the same way as for the CSM i.e.
the lowest value indicates the best clustering result.

To illustrate how

LM transforms CSM to hCSM, a data sequence is processed and both
measures are obtained. In Figure 4-7 the entire range of p is shown. The black line
represents the CSM and the red line the hCSM. Areas of p that did not perform well
during the resampling method, are penalized by the low value of

LM

0 100 200 300 400 500 600 700 800 900 1000 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Original CSM and hybrid-CSM vs Theta

Theta

CSM
hCSM

Figure 4-14 Original CSM and hybrid-CSM vs. Theta

The best segmentation results are found at the low end of the range (red rectangle). In
Figure 4-15 a magnification of the area in the red rectangle of Figure 4-7 is shown.
The original CSM (black line) suggests that the best values for p is the narrow range
between the values[2,16] . The hCSM however suggests that the best range is [8,16] .
The hCSM suggests obviously a region with higher cutoff values, because larger value
of the cutoff criterion can perform better after the thinning of the original sequence.
The cutoff values in the range [2,7]did not score well in robustness. The value

LM

was low, leading to an increase of hCSM.

 91

Figure 4-15 Original and hybrid-CSM magnified at area of interest

With the above robustification of the cutoff value the risk of truncation is reduced.

4.2.4 Collision probability (CP)

The problem of collision was discussed by Hansen [Han92] who described an
empirical approach in estimating the probability of collision (CP) given a clustering
result. The collision probability is most relevant of the application of the algorithm in
the field. Taking CP into account when defining the cutoff parameter will reduce the
probability of merging together subsequences that are created by random failure
events that occur closely after each other.

Given that X is a random variable for the inter arrival time of the error process and L a
random variable for the length of the subsequence resulting from an error, a collision
will take place if the interval Z=X-L, that is the time between the end of one
subsequence and the beginning of the next subsequence, is smaller than the cutoff
value p .The probability of collision can then be estimated by [Han92]:

*

1
Pr() 1 F p F i

n
l

p i

i

X L e p e (4-8)

Where *

ip the probability for length
il occurring. The values for *

ip are empirically
estimated from the collection of clusters in the clustering result 1 2{ , ,..., }R

p kC C C C .

Every cluster iC in R

pC has a cluster length
il , defined by the two most distant

members within that cluster max minil t t ,where 0il (max min0il if t t . i.e. a
singleton cluster).

The failure intensity

F
 of the physical process is assumed to be exponentially

distributed. Because it cannot be measured directly it is estimated based on the
clustering result. The method is described in detail in [Han92]:

-40 -20 0 20 40 60 80

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Original CSM and hybrid-CSM vs Theta

Theta

CSM

hCSM

 92

The smaller the value p of the cutoff criterion, the lower the CP is.

To illustrate how CP affects the choice of p , an example is provided. For simplicity
reasons in the example CSM is used instead of hCSM. The CP applies on both
measures in the same manner.

The objective is to reduce CP given a range of p that was indicated by CSM as
returning the best segmentation of the sequence. CP tends to favor the left end of the
proposed range. This is because the smaller the value of the cutoff criterion is, the
lower CP is. In Figure 4-16 the CSM values from the segmentation of sequence is
shown. The best region for p is lies between the two vertical lines as shown in the
graph. The CP criterion suggests the lowest value of the range, where the CP is the
lowest.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Cluster Separation Measure System:32215

CSM

Theta
Figure 4-16 Effect of CP on the selection of the value of the cutoff criterion

4.2.5 Internal Criteria Validation

The sections so far discussed the process of selecting an appropriate cutoff value
using hCSM as the primary and the CP as the secondary criterion. The result of that
process is a cutoff value

u
for which the clustering result satisfies best three

requirements:

1. Best possible segmentation result of the sample sequence
2. Robustness to variation of subsequences (reduced risk of truncation)
3. Low collision probability

 93

This section discusses the last step of the segmentation process, which is the
validation of the cluster result R

uC .

4.2.5.1 Random position hypothesis testing
The aim of the hypothesis test is to examine whether the clusters obtained from the
segmentation of the sequence S are due to the non-random arrangement of traces in
the sequence. The test examines the likelihood of obtaining similar clusters from a
sequence with the same number of traces, but where the traces a randomly arranged
over the length of the sequence. If such likelihood is small, then the clustering result
obtained by the segmentation, is a sensible result, and combined with the use of CSM
it is the best sensible result.

The random positioning hypothesis assumes that "All arrangements on K vectors in a

specific region of the l-dimensional space are equally likely to occur"[The06][Jai88].
In the case of traces this assumption can reformulated as: "All N traces found in the

sequence S, are positioned randomly". If the sequence has a random structure, i.e. the
traces are arranged randomly over the length of S then the clustering result that is
obtained by the segmentation of S is coincidental. If so, a similar result can be
obtained by other randomly structured sequences. The hypothesis test examines how
likely it is to obtain from randomly generated sequences similar results, as the results
obtained from sequence S. The null hypothesis is formulated as following:

H0: The clustering result R

uC that is obtained by the segmentation of S , which

contains N data points ,and by using the cutoff value
u
, is equally likely to be

obtained from a data sequence
RS of the same length as S , where N data points are

positioned randomly.

the alternative hypothesis states:

H1: The clustering result R

uC that is obtained by the segmentation of S , which

contains N data points, and by using the cutoff value
u
, is unlikely to be obtained

from a data sequence
RS of the same length as S , that contains N data points that are

positioned randomly.

The test consists of the steps:

1. Generate a sequence
RS of the same length as the sequence S, and which

contains N points uniformly distributed over its length.
2. Use an appropriate test statistic to compare the clustering result obtained by

segmenting S against the clustering result obtained by segmenting
RS

3. Perform the hypothesis test using the empirical distribution of the test statistic.

4.2.5.2 Test statistic
To test the hypothesis the normalized ˆ statistic is used. The normalized ˆ statistic is
a normalized version of Hubert's statistic [The06]. The ˆ statistic measures the

 94

correlation between two matrices. Large absolute values of ˆ are an indication of
good agreement between the elements of the matrices.

For a given cutoff value, the statistic is computed for the sequence and clustering
result and is compared against the distribution of the statistic of the random position
sequences and their clustering results.

The sequence is represented by a proximity matrix. The proximity matrix contains the
information on the distances of a data point to all other data points in the sequence.
The proximity matrix is a symmetric matrix where the values of the diagonal are
equal to zero (distance of a data point to itself). The clustering result R

uC is
represented by the dis-connectivity matrix CT . The dis-connectivity matrix CT is a
cluster membership representation of the data points in the sequence. The pairs of data
points that are not members of the same cluster are indicated by the value of 1.

The normalized ˆ statistic measures the agreement between the proximity matrix and
the dis-connectivity matrix CT . Large values of ˆ suggest that the clustering result

R

uC agrees with the inherent structure (relative distances of data points) of the
sequence.

The matrices P and CT as well the test statistic ˆ are described in more detail in
Appendix C.

4.2.5.3 Null hypothesis testing
The hypothesis testing is based on the comparison of the ˆ

u statistic obtained from the

sequence against the empirical distribution of the statistic ˆ
r obtained by the random

positioning sequences.

Random positioning sequences are produced k times, by distributing uniformly N data
points over an interval of length equal to the sampled sequence S. For every random
positioning sequence

iRS , 1,2,...,i k , the corresponding proximity matrix
RiP is

produced. Also, the sequential algorithm is applied on every
iRS with the same value

u
of the cutoff criterion. Given the clustering result the dis-connectivity matrix CRiT is

produced for each sequence and the statistic ˆ
r is computed. The set of

1 2
ˆ ˆ ˆ ˆ{ , ,..., }r k provides the empirical distribution of the test static under the null

hypothesis of random positioning ˆ(|)r oP H

At a significance level , the null hypothesis is rejected (accepted) if ˆ

u is greater

(smaller) than (1)k of the ˆ
r values.

 95

4.3 Discussion and Conclusions

In this chapter the first step of the transformation process was described. The
segmentation step operates on the sequence and defines the subsequences. The
subsequences are representations of physical events. The parameterization of the
segmentation algorithm is done using a sampled sequence from a single system. The
parameterization is based on the definition of the most compact subsequences possible
in the sampled sequence. This is based solely on the temporal information in the
sequence.

The hCSM that is proposed in this chapter allows the selection of values for the cutoff
parameter that perform can reduce the risk of truncation due to variation in the
subsequences, when the algorithm is applied in the field. Additionally the value of the
cutoff parameter is adjusted to reduce the risk of collision using the collision
probability criterion.

The clustering result is validated whether it is likely to be obtained from a sequence
with no particular data structure. The segmentation method used in this research falls
under the category of unsupervised clustering. The random positioning hypothesis
aims to validate that the detected subsequences are sensible clusters based on the
arrangement of traces in the sequence.

The proposed method meets the requirement of detecting subsequences by using only
the information found in the sequence. It also prepares the method for real life
applications with the robustification. The segmentation method described in this
chapter is demonstrated in chapter 7.

 96

 97

Chapter 5

5 Tagging of subsequences and tag matching
In this chapter the second step of the transformation phase is described. This step
involves Tagging and Tag matching. The reduction of the size of data, without the
loss of any relevant information, is one of the main goals of this research. This
objective will be addressed with this step.

With the segmentation of the sequence, the subsequences are identified and
consequently so are the points in time where physical error and recovery events are
believed to have occurred. One form of data reduction comes with the appropriate
point representation of subsequences. With the point representation, a subsequence
that can consist out of multiple traces each having its own temporal location, is
represented by a single point in time. This way the temporal representation of the
physical event is simplified.

Besides the time of occurrence of a system failure or a system recovery, there is also
the semantic aspect of the physical event. The semantics of traces can provide
information about the nature (what and where) of the events that have occurred. The
semantics within a subsequence can indicate the location and the cause of the error by
the qualitative information of the attribute fields of traces such as description, logging

unit, system state etc. In this chapter the focus shifts from the temporal to the semantic
information found in subsequences. The methodology presented aims in reducing the
amount of representations needed to convey the same information on error and
recovery events.

Firstly the semantics within the subsequences are reduced to the minimum necessary
and they are ordered. A subsequence can contain multiple traces of the same type i.e.
same ic. Replicates of a type of trace contain the exact same semantic and have
therefore no additional informative value. Replicates are redundant and can be
removed. The order of traces in the subsequence is the result of variation induced by
the error propagation and the logging mechanism. It is therefore possible to reorder
the traces in the subsequence in a preferred manner without losing relevant
information. The point representation, the elimination of replicates and the ordering of
semantics, are defined by one method, the tagging of the subsequence. The tagging
transforms a subsequence to a tag.

Each tag in the sequence contains a string of semantics that represents an instance of
an unknown physical event. Identical tags are assumed to represent instances of the
same type of physical event. On the basis of known relation between the semantics in
a tag and the occurrence of a physical event (fault injection experiment), the more
similar the tags are, the more likely it is that they represent the same physical event.
Based on this assumption, a methodology is introduced that can help simplify the
representation of physical events in the sequence by grouping tags into tag types
according to the similarities between tags. The comparison and grouping of tag into
tag types is referred to as tag matching. The basis of the inter tag similarity measure is
a cost function that roots in the engineering design principle of strong coherence
within and weak coupling between modules. This engineering principle sets the rules
on which traces can occur in the same subsequence and which cannot. Components of

 98

the same module can fail together thus the traces of those components can occur
together and. The more often trace occur together the stronger the similarity between
these traces is and vice versa.

The chapter is organized as follows: The tagging operation is described in 5.1. The tag
matching is described in 5.2. The chapter closes with discussion and conclusions in
5.3.

5.1 Tagging Subsequences

For the representation of the semantics the identification code ic of each trace is used.
An ic is a unique alphanumerical identifier that represents all static semantic
information of a trace

The tagging operates on the semantic information found in the traces in the
subsequence. To facilitate the description of the operation the notation for traces used
in Chapter 4 is extended to include the semantic information: a trace is represented by
the tuple (,)A t , where A is the semantic information of the trace and t is the time of
occurrence. The semantic A can take takes values from a finite set of identification
codes 1 2{ , ,..., }qIC ic ic ic .

The tagging eliminates the replicated of a semantic

iic in the subsequence and
arranges semantics in lexicographical order. The tagging also transforms the
subsequence to a point representation. First background information regarding the
variation found in the semantics is provided in 5.1.1. Then the tagging operation is
described in 5.1.2.

5.1.1 Variation in order and frequencies of traces in subsequences

The results of the fault injection experiment showed that the ordering and the
frequencies of the traces found in subsequences resulting from the same fault can
vary. In the example of Figure 5-1 three instances of error subsequences result from
the same fault being injected into the system. For this example the semantic A takes
values from the low case Latin alphabetical characters ().

Figure 5-1 Fault injection and result signature instances

Although all three instances contain the semantics a, b and c, these semantics appear
in different order and in different counts in each subsequence. The 1st instance
contains three counts of a , one of b and two of c . The second instance contains three

Same
fault
type

injected

1st Instance

2nd Instance

3rd Instance

 99

counts of a, one of b and three of c. The third instance contains 2 counts of a, two of b
and two of c. Although the three instances of subsequences differ in the order and the
count of semantics, they carry the same information, namely the occurrence of a, b
and c. The replication of semantics does not bring additional informative value
because the information in replicate is identical. In the fault injection experiment it
was shown that the order of semantics in the subsequences can vary significantly for
the same type fault. In this methodology the order is ignored and is considered to be
an artifact cause by the dynamics between the components and the logging
mechanism. To reduce this source of variation in the semantics of subsequences, the
semantics are ordered in an appropriate manner to increase the readability of the
subsequence and make the comparison of subsequences easier.

5.1.2 From subsequences to tags

Given a collection of subsequences 1 2{ , ,..., }R

MC C C C obtained from the same
sequence, the tagging transforms each subsequence

mC , {1,2,3,.., }m M , into a tag

,()m mL t , where
mL the semantic information and

mt the temporal information of the
tag.

The process is taking place in two actions and is unidirectional i.e. it is not possible to
retrieve the original form of the subsequence after tagging. The first step transforms
the temporal information and the second the semantic information of

mC . With the
tagging operation complete, the set of subsequences RC becomes a set of tags RC .

5.1.2.1 Tagging the temporal information
The transformation maintains only one temporal location for each subsequence

mC .
For error subsequences the most representative temporal location is the first trace of
the subsequence because it indicates the first moment in time the physical error was
detected. For recovery subsequences the most representative location is the last trace
of the subsequence, as it is the closest point in time when the recovery of the system is
completed. In this chapter the operation is described assuming error subsequences.

For a subsequence 1(,), (,),..., (,)m i i i nC A t A t A t , where {1,2,3,... }i N and
the temporal location of ,()m mL t is 1min{ , ,..., }m i i i n it t t t t . The definition of the tag
can be extended to include other temporal information of the subsequence if that is
required, as for example the duration of the subsequence

m i n id t t , can be included
to form a 3-tuple of the form ,(,)m m mL t d .

5.1.2.2 Tagging the semantic information
For the transformation of semantic information a function F is defined that is
transforming the subsequence

mC into the tag
mL . The function F is composed out of

two sub-functions
O SF f f , an order function

Of and set function
Sf . The two sub

functions are applied in the following order:

1. The order function

Of produces a pre-tag
mpL by ordering the semantics A found

in
mC , in a total lexicographic order (d). For example a subsequence

 100

(), (), (), (), (), ()mC c b a a c a (times are omitted) is transformed into the pre-tag is

of the form (), (), (), (), (), ()mpL a a a b c c .

2. The set function

Sf operates on the semantics of the pre-tag
mpL by eliminating

the replicates and producing the tag
mL , where each type of semantic that appears

in the subsequence appears only once in the produced tag. Continuing the previous
example, for the pre-tag (), (), (), (), (), ()mpL a a a b c c the set function produces

, ,mL a b c .

With both operations completed a subsequence of the form

1 2 3 4 5 6(,), (,), (,), (,), (,), (,)mC c t b t a t a t c t a t results to a tag of the form 1(, , ,)a b c t

(see Figure 5-2 for an example of an error tag).

Figure 5-2: From subsequence

mC to tag (,)m mL t

Once the tagging operation is complete, the collection of subsequences RC becomes a
collection of tags 1 1 2 2 3 3{(,), (,), (,),..., (,)}R

M MC L t L t L t L t . Tags provide a better basis
for the matching operation because much of the variation that is found in the
subsequences has been reduced. For the remainder of this chapter the term tag we will
be referring to the semantic information

mL only.

5.2 Matching tags

5.2.1 Tag similarity based on the system's design

Professionals systems are large complex machines capable of performing a wide
range of operations. To manage their complexity systems are built out of subsystems.
Each subsystem is designed to provide certain functionality. Subsystems consist of
components, which work together to provide that functionality. Components are
interacting with each other passing signals or information in order to execute their
operation in a coordinated manner. Sub-systems interact with each other via
interfaces to deliver the overall system functionality. A good system engineering
principle requires strong coherence between components of the same subsystem and

weak cohesion between sub-systems. That means that components that belong to the
same sub system are closely interconnected and dependent on each other when
operating to provide a certain set of functionality. Components of different sub

, where

 101

systems have no direct connection to each other. They communicate via interfaces on
sub-system level. This engineering configuration is known as modular system design.
It allows sub systems to be developed more independently from each other but also
enables them to sustain a level of resilience during operation against errors that occur
in other sub systems. When an error occurs in a component it will very likely
propagate to other components of the same subsystem because of the strong
dependencies between the components. However other subsystem can withstand this
error because their functionality is self-contained and there are mechanisms in place
that monitor the interfaces and can handle "external" unexpected behavior.

The traces resulting from failures and recoveries reflect these design characteristic.
This was verified by the fault injection experiment, where faults injected into a sub
system produced subsequences that contained traces created by components that
belong to that sub system. On the other hand, faults that are injected into different sub
systems produce subsequences which rarely contain shared types of traces. These
findings support the belief that there is a relation between the semantic content of
subsequences and the modular design of the system. This relationship is also
supported by the use of trace based fault signatures for fault diagnosis [Iye86]. Fault
signatures are manifestations of the symptoms that the components show when the
same errors occur. Fault signatures are possible because given the same error, most
likely the same components will exhibit the same symptoms, a behavior that is based
on the functional dependencies between these components.

The manifestation of symptoms is not happening in deterministic manner for each
occurrence of the same error. The fault injection experiments (see 3.2) showed that
even under controlled conditions, subsequences resulting from the same injected
faults can vary in their semantic content. Variation can be found in the number of
traces as well as the number of different types of traces (see 3.2.4). Moreover, given
that the structure of subsequences can be affected by environmental factors acting on
the logging mechanism, it is natural to expect that under operational conditions,
variation in the traces of subsequences will be present. It is more realistic to expect
that multiple occurrences of a particular type of physical error are represented by
similar instances of subsequences rather than identical subsequences.

Which subsequences are similar enough to be perceived as originating from the same
physical error is a matter of the definition of the similarity measure. In this thesis, it is
assumed that systems are designed in a modular way. Therefore, when traces are
frequently appearing together it is an indication that they originate from components
that are functionally dependent. The stronger the functional dependency the more
frequent the co-occurrence of traces is and the more similar these traces are perceived
to be. If, for example, two components are directly dependent to each other, when one
experiences an error the other will experience an error. If both components can log
error traces, these traces will always appear together.

A similarity measure is required that can reflect the modular design of the system. The
similarity between subsequences can then be evaluated on the basis of the
manifestation of the strong coherence /weak coupling principle of modular system

design in traces. The benefit of such a similarity measure is that the similarity can be
evaluated directly from the sequence without using any system specific information.

 102

The following subsections are organized as follow: In 5.2.2 an end to end matching
process for traces is described. In 5.2.3 the cost function is defined, which is the main
contribution of this chapter. An example of how the tag matching performs is given
in 5.2.4.

5.2.2 Matching operation

The objective of the matching process is to group a given collection of tags obtained
from a single system, into tag types according to their similarity. A tag type can
contain multiple instances of tags. Though the discussion on comparing tags was
based on the use of term “similarity”, the grouping of tags into tag type is using as a
measure the dissimilarity or distance between them.

Dissimilarity between two tags is measured with the help of the edit distance. The edit
distance is defined by the cost of the edit operations that are performed on the
semantics of one tag to transform it into the tag that to which it is compared with
[The09]. The cost of each edit operation is defined by the cost function. In this section
a cost function is defined that reflects the (dis)similarities between traces.

The tag matching operation is essentially a clustering operation. To perform the
clustering the following elements are needed:

a. The clustering algorithm
b. The cost function which sets the cost of each edit operation. The cost

function is nested in the edit-distance function.

c. An edit-distance function, computes the dissimilarity between two tags

d. A stopping rule, which helps to find the best clustering result given a
collection of tags and the edit distance between them

In the following sections these four elements will be presented. First the context of the
tag matching operation will be set by presenting the clustering algorithm, the stopping
rule and the edit function in the sections 5.2.2.1-5.2.2.3. The first three sections also
outline some of the requirements that are put on the cost function. Then in section
5.2.3.3 the cost function will be presented.

5.2.2.1 Clustering algorithm
Clustering tags into tag types is done on the basis of tag similarity. Tags that are very
similar should be clustered into the same tag type. This type of clustering results to
compact clusters. The agglomerative complete link algorithm is most suitable
clustering algorithm for retrieving compact clusters from a data set [The06]. The
agglomerative complete link clustering algorithm performs the clustering process
bottom-up. It does that by iterating as many times as the number of tags in the initial
collection of tags 1LC . At the starting position the agglomerative algorithm treats each
object as a singleton cluster (a cluster containing one tag) then successively merges
pairs of clusters until all clusters are merged into one cluster. Figure 5-3 shows an
example of how the gradual clustering progresses from multiple clusters at the bottom
(x-axis) to one final cluster containing all tags at the top of the dendrogram. The y-
axis shows the distances where the clustering is taking place. In the first iteration the
algorithm begins with as many clusters as tags (singleton clusters). As the algorithm
iterates, one or more clusters are merged (branches in dendrogram merging) to form

 103

single clusters until the final iteration where the last two remaining clusters are
merged.

Figure 5-3 Complete link clustering algorithm dendrogram

The similarity between two clusters is computed based on their most dissimilar
(distant) members. This computation rule serves the creation of tag types where the
evidence on inter cluster similarity is strong to support their grouping.

To perform this operation, the algorithm requires as input the edit distances between
the tags in the collection 1LC . The edit distances are provided in the form of a distance
matrix 1H that contains the pairwise dissimilarities between the tags in 1LC . At the

start the distance matrix 1H is a M M matrix containing the edit distances between
all pairs of tags in 1LC , where 1

RLC C and 1 2{ , ,..., }R

MC L L L . At every iteration
of the algorithm, a new clustering result qLC is produced and the distance matrix qH ,
where , is recomputed.

More details on how the complete link clustering algorithm operates can be found in
9.5.3Appendix D

5.2.2.2 Stopping rule
For every iteration of the clustering algorithm a cluster result qLC , ,

is produced. To choose a clustering solution S

qLC that returns compact clusters of tags,
a stopping or cutting rule is used. Literature is providing an abundance of stopping
rules [Mil85] [Moj75] out of which the measure of silhouettes [Rou87] is chosen
because it fits to ratio scale measures of dissimilarity and it favors compact and well
separated clusters (tag types with very similar tags as members). The silhouette value
measures how similar the tag is to tags of the same cluster compared to tags in other
clusters, and it ranges from -1 to +1.

The silhouette value for the mth tag is defined:

() ()()
max{ (), ()}

m m
m

m m

b L a L
s L

a L b L
 (5-1)

 9 11 12 15 5 25 22 8 17 1 7 16 27 29 14 23 2 3 24 10 4 13 26 28 6 21 30 18 20 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dissimilarity dendrogram

D
is

s
im

ila
ri
ty

 s
c
a
le

 104

where) is the average distance from the mth tag to the other tags of the same
cluster as m, and is the minimum average distance from the mth tag to tag in a
different cluster, minimized over clusters.

The average silhouette measure for the qth clustering result qLC is defined as

1
()

M

m

q

s L

Sil
M

 (5-2),

where . The average silhouette measure can take values between
1 1qSil . The higher the value of qSil , the more compact the clusters are in the

clustering result.

5.2.2.3 Edit-Distance function - metric properties
To initiate the clustering process the dissimilarity matrix 1H is provided. The
dissimilarity matrix 1H contains the distance between any pair of singleton clusters in
the tag collection 1LC . The distance between two singleton clusters is provided by the
edit distance function. The distance functions needs to meet certain conditions that
cascade to the edit distance function. Any distance function F has to satisfy three
conditions:

1. (,) 0i jF L L , that of positivity, with equality only if i jL L
2. (,) (,)i j j iF L L F L L , that of symmetry
3. (,) (,) (,)i j i k k jF L L F L L F L L ,that of triangle inequality

Among the three, the triangle inequality is the most difficult to satisfy. Triangle
inequality assures that when comparing objects, the distance between any two objects

(,)F B C is always the shortest way to go from A to B and no other way e.g.
(,) (,)F B A F A C can be shorter (Figure 5-4).

Figure 5-4 Triangle inequality

If the triangle inequality is not satisfied by a distance function at all times, a
comparison of the distances between three objects can fail, compromising the
performance of the clustering operation. The triangle inequality criterion is a criterion
of good performance for the distance function but it is a necessary condition for the
cost function as will be shown in 5.2.3.

The performance of a distance function can be measured with the inequality

looseness test. The test measures the proportion of tag triplets 1 2 3(, ,)L L L that belong

A

B C

 105

in a collection of tags 1
RLC C which violate the triangle inequality criterion

[Vid88].

(, ,) (,) (,) (,) 0F A B C F A B F B C F A C (5-3)
When the failure rate of the inequality looseness test is zero the triangular inequality
requirement is not violated. The greater the failure rate is the more the validity of the
comparison is compromised. Low failure rates do not compromise the validity of the
comparison [Yuj07] [Mar93] [Vid88][Ars00].

5.2.2.4 Edit distance function
A tag is a set of lexicographically ordered semantics

iic , obtained from a finite pool
of semantics 1 2{ , ,..., }wIC ic ic ic . The finite pool of semantics IC is similar to the
letters of the alphabet and tags are like words that are formed by these letters. Given
that, the distance functions that are appropriate for measuring the distance between
tags are based on edit operations of string matching applications [Coh03].

The Levenshtein edit distance (LED) is a method that has been widely used in string
matching applications and is known for its effectiveness and simplicity. The LED is
estimating the dissimilarity between two tags and , by performing the
transformation from [Lev66]. This transformation can be completed by a
sequence of edit operations. There are three types of edit operations:

 Replacement ()e a b : a semantic a in is replaced by another semantic b
 Deletion ()e a : a semantic a in is deleted
 Insertion ()e b : a semantic b in is inserted

There is cost associated with each edit operation of replacement, deletion and
insertion respectively denoted by (), (), ()a b a a respectively.

There are multiple combinations of edit operations that can transform a tag into .
Any sequence of operations that completes the transformation is an editing path

1 2(,)eP L L . The editing path for the transformation has a length of ()eLen P ,
where , which is defined as the number of elementary
edit operations described by 1 2(,)eP L L [Mar93]. The total cost of an editing path is
given by the sum of the cost of each edit operation in the path.

1 1

()

1 2 1... 1...
1

((,)) ()
e

k k k k

Len P

e i i j j

k

D P L L L L (5-4),

For (5.2-1) to hold the elementary cost function has to be a metric [Mar93]

The edit distance (,)L i jD L L between two tags
iL and jL , is given by the minimum cost

of transforming tag
iL into jL :

(,) min(((,)) | (,))L i j i j i j i jD L L D P L L P L L is anedit path from L to L (5-5)

The distance between any pair of tags
iL and jL can be computed in this way. LED

does not take into account the length of the tags.

 106

One typical characteristic of tags is that their length can vary. Differences in the
length of the tags can be found even if the tags represent the same type of physical
event. Tags may differ in length by one or more semantics ic . The variation in the
length of tags poses a problem for LED. It is more likely to find differences when
comparing long tags than when comparing short tags. Consequently long tags have a
disadvantage in finding matches compared to short tags when using LED. The
comparison of tags has to be performed taking into account their lengths. Differences
found in longer tags should be less important than difference in short tags. To
compensate for that, the distance function has to take into account the length of the
tag when computing the edit distance.

The shortcomings of LED regarding the consideration of tag lengths are overcome
with the use of the Normalized Edit Distance (NED). The normalized edit distance is
appropriate for tags of different lengths because it normalizes the cost of an edit
transformation by the number of edit operations. In the literature there are two main
definitions for a normalized edit distance.

The first normalized edit distance (NED1) is described by Marzal and Vidal [Mar93],
where normalization is taking place on the minimum found for each edit length

()eLen P . The normalized edit distance 1 2(,)AnD L L between two labels 1L and 2L is
the minimum of the normalized distances of all edit lengths:

 (5-6)

In [Mar93] it is argued that when the global minimized edit distance (,)L i jD L L is
found first and then it is normalized by the length of its edit path ()eLen P this gives
wrong results.

Another definition of a normalized edit distance (NED2) is given by Yujian [Yuj07],
which given the distance by LED between two labels, 1 2(,)LD L L and the length of
those labels 1| |L and 2| |L the normalized edit distance is given by:

 (5-7),

 if and γ is a metric.

Method NED1 does not always meet the triangular inequality criterion of a metric
depending on the data set [Mar93]. The failure rates for meeting the criterion, given a
data set, can be computed using the inequality looseness test [Yuj07]. Method NED2
is always a metric if the conditions for γ are met [Yuj07]..

5.2.3 Cost function for traces

The cost for elementary edit operations is defined by the cost function . There are
two basic requirements that the cost function needs to meet:

1. Represent the functional association of components
Tags are grouped into tag types based on the assumption that there is an
underlying functional association of the components that produced them. Coupled

 107

occurrences of semantics in tags represent such associations. Therefore the cost
function has to reflect the associations between semantics.

2. Meet all metric properties

5.2.3.1 Association between semantics
To meet the first requirement the cost function needs to be capable of reflecting the
association of traces as found in the sequence. The Jaccard coefficient that was used
in section 3.3.3 can provide that measure because it shifts the weight for measuring
the association on the co-occurrences of events and it ignores completely the number
of occasions where both events are absent. By ignoring the occurrence of other events,
this definition of association provides an independent association measure between
the two events of interest:

11

11 12 21
AB

x

x x x
 (5-8)

As a reminder to the reader:

11x : attributes A and B are both present

12x : attribute A is present but B is absent

21x : attribute B is present but A is absent

The coefficient takes values 0 1, where 0 indicates independence (no
similarity) between A and B , and 1when A and B are absolutely dependent to
each other (identical). The coefficient is symmetric, i.e. ij ji .

However the coefficient is used here differently than in 3.3.3. Instead of measuring
the occurrence of traces in arbitrary segments of the sequence, here the measurement
is done on the occurrence of semantics within the tags. The degree of association
between ics is measured as they are found in the tags of the collection 1

RLC C . The
association coefficient is computed for all pairs of ics in 1 2{ , ,..., }wIC ic ic ic that are
found in 1LC .

5.2.3.2 Computation of based on observations in labels sets

Given RC , the collection of tags produced by the tagging process, the input set for the
clustering is 1

RLC C . The set 1LC contains M tags. Every tag contains a collection
of semantics ics. The association coefficient ij is computed for all the semantics
| |IC w that are found in the tags of 1LC and it expresses the association between
semantic

iic and jic . The values of ij are arranged in a w wmatrix where the

rows and columns are ordered lexicographically 1 2 3,...,d d d

wic ic ic ic (see Table
5-1).

 108

1ic 2ic ...

wic

1ic 11 12 ...
1w

2ic 12 22 ...
2w

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

wic 1w
 2w

 ...
ww

Table 5-1 w wMatrix of pair wise association coefficients between semantics

To test whether the association between

iic and jic is significantly different than that
of a random association, at least 20 observations are required [Gri67]. A test statistic

2 is used to perform the test. The test statistic 2 is defined as:
2

2 11 22 21 12

11 22 11 21 21 22 12 22

()
()()()()

x x x x n

x x x x x x x x
 (5-9),

22x : attribute B and A are both absent
The test statistic 2 follows then approximately a 2 distribution with 1 degree of
freedom [Gri67].

5.2.3.3 Cost of edit operations
The cost function is described by a (1) (1)w w matrix. The w w elements of
the body of the matrix contain the cost for the pairwise replacement operations

i jic ic , the bottom row (1)w contains the cost of the insertion operations
iic

and the right most column (1)w contains the cost of the deletion operations
iic

.

 1ic 2ic ... wic

1ic 1 2()ic ic 1 2()ic ic ... 1()wic ic 1()ic

2ic 2 1()ic ic 2 2()ic ic ... 2()wic ic 2()ic

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

wic 1()wic ic 2()wic ic ... ()w wic ic ()wic

 1()ic 2()ic ... ()wic ()

Table 5-2 Cost function

 109

5.2.3.4 Cost of replacement operations
Given the association matrix for a set 1LC , the cost of the replacement operations
is defined as:

() 1i j ijic ic (5-10)

The measure takes values in 0 () 1i jic ic (5-11)

Intuitively the cost function suggests that strongly associated ics (high values of ij)
are economical to replace (low values of ()i jic ic) because their strong
association suggests strong similarity. The opposite applies for weakly associated ics.

Given the above definition the weights of replacement satisfy all conditions of a
metric:
Positivity: 0 () 1i jic ic , derives directly from the definition of the coefficient
and (5.2-5)
Symmetry: () ()i j j iic ic ic ic , ij ji
Triangular inequality: for triplet (, ,)i j kic ic ic ,

() () ()i k i j j kic ic ic ic ic ic (the proof is lengthy and is therefore not
included here, further reading in [Gow86], Theorem 10, page 15)

5.2.3.5 Cost function for deletion and insertion operations
For the edit operations of insertion and deletion, the coefficient of association measure
does not satisfy conceptually as it does for the replacement operation. If an ic needs to
be inserted or deleted the cost of the operation has to have a global interpretation
rather than its association with another ic. Here a different approach is followed. The
edit operations of insertion and deletion of ics have a weigh that depends on the
abundance or rarity of an ic in the preprocessed sequence i.e. after the removal of ppt.
The cost of deletion and insertion are defined as follows:

The relative frequency of

iic in the sequence is given by

1

i
i w

k

k

f
rf

f

, where
if is the frequency of

iic and
1

w

k

k

f the sum of frequencies of all ics

The measure takes values 0 1irf (5-12)

and the sum of all relative frequencies is
1

1
w

i

k

rf (5-13)

The weight of insertion and deletion of
iic is defined as:

() () 1i i iic ic rf (5-14)

Intuitively the above definition suggests that rare ics are more expensive to insert or to
delete than frequent ones. The weights for insertion and deletion as defined here,
satisfy all conditions of a metric:
Positivity: 0 () 1jic
Symmetry: () ()i iic ic

 110

Triangular inequality: () () ()i k i kic ic ic ic does always hold
since: () () 1 1 2 () 1i k i k i kic ic rf rf rf rf
The cost function as defined satisfies the criteria of a metric. This allows the use of
the normalized edit distances NED. However for NED2 the conditions for γ are not
met since .

5.2.4 Tag matching example

An example is given to demonstrate the performance of the normalized edit distance
versus Levenshtein edit distance. Also the performance of the cost function is
examined. In the example ics are represented by lower case letters of the alphabet.
The set of tags to be matched into tag types are shown in Table 5-3 Collection of tags.

Index Tag
1 <a,b,c>
2 <a,b>
3 <a,c>
4 <a,b,c,d>
5 <k,l,m,n>
6 <k>
7 <k,l>
8 <m,n>
9 <m,n,d>
10 <y,z>
Table 5-3 Collection of tags

The tags 1, 2, 3 and 4 originate from the same module. The most extended form of the
tag is <a,b,c> but because of the variation in the logging mechanism the tag appears
also as <a,b> or <b,c> . The tag <a,b,c,d> results from the addition of the ic “d” to
the tag <a,b,c>. The ic “d” however is not specific to this module. It is a common
error trace that occurs frequently with different types of error events. The tags 5, 6, 7,
8, and 9 originate from the same module (second module). The tag <k,l,m,n> is the
extended tag form of this error. Due to variation the tag rarely appears as <k,l> ,
<m,n> or <m,n,d>. The 10th tag <y,z> is originating from another module (third
module) not related to any of the above.

The above tags would be represented correctly by 3 tag types according to their
origin. First tag type contains tags 1,2,3,4, second tag type contains tags 6,7,8,9, and
the third contains tag 10.

To perform the matching operation the cost function needs to be defined. The cost
function is defined by the associations between ics for the replacements operation and
their relative frequencies in the sequence for the deletion and insertion operations.

The associations between ics can be seen in Table 5-4

 111

 a b c d k l m n y z
a 1 0.6 0.6 0.3 0 0 0 0 0 0
b 0.6 1 0.6 0.3 0 0 0 0 0 0

c 0.6 0.6 1 0.3 0 0 0 0 0 0
d 0.3 0.3 0.3 1 0.3 0.3 0.3 0.3 0.3 0.3
k 0 0 0 0.3 1 1 0.9 0.9 0 0
l 0 0 0 0.3 1 1 0.9 0.9 0 0
m 0 0 0 0.3 0.9 0.9 1 1 0 0
n 0 0 0 0.3 0.9 0.9 1 1 0 0

y 0 0 0 0.3 0 0 0 0 1 1
z 0 0 0 0.3 0 0 0 0 1 1

Table 5-4 Associations between ics

The associations between ics are in line with their origin. The ics always occur
together is one e.g. . The ics that often occur together have high association
e.g. . The associations between ics that never occur
together are zero e.g. .

The ic “d” is the most frequent trace in the preprocessed sequence occurring 50% of
the time. The remaining 50% of occurrence is equally spread across the other ics. The
relative frequencies of the ics as measured before the tagging operation are:

a b c d k l m n y z
0.055 0.055 0.055 0.5 0.055 0.055 0.055 0.055 0.055 0.055

Table 5-5 Relative frequencies of ics

From the associations and the relative frequencies the cost function is defined as
follows:
 a b C d k l m n y z
a 0 0.4 0.4 0.7 1 1 1 1 1 1 0.945
b 0.4 0 0.4 0.7 1 1 1 1 1 1 0.945
c 0.4 0.4 0 0.7 1 1 1 1 1 1 0.945
d 0.7 0.7 0.7 0 0.7 0.7 0.7 0.7 0.7 0.7 0.5

k 1 1 1 0.7 0 0 0.1 0.1 1 1 0.945
l 1 1 1 0.7 0 0 0.1 0.1 1 1 0.945
m 1 1 1 0.7 0.1 0.1 0 0 1 1 0.945
n 1 1 1 0.7 0.1 0.1 0 0 1 1 0.945
y 1 1 1 0.7 1 1 1 1 0 0 0.945
z 1 1 1 0.7 1 1 1 1 0 0 0.945

 0.945 0.945 0.945 0.5 0.945 0.945 0.945 0.945 0.945 0.945 Inf
Table 5-6 Cost function for edit operations

From the cost function it can be seen that when ics are strongly associated their cost
of replacement is low and vice versa. When an ic is abundant in the sequence it is also
cheaper to delete or insert than a rarely occurring ic. With the cost function defined
the distance between the tags can be calculated. These distances are used the
clustering of the tags into tag types using the complete link clustering algorithm.

 112

5.2.4.1 Matching tags
To demonstrate the benefits of the normalized edit distance over the non-normalized,
bot algorithms are used and the results are compared.

5.2.4.1.1 Levenshtein edit distance (non-normalized)

The edit distances computed by the Levenshtein algorithm are shown in Table 5-7.
 1 2 3 4 5 6 7 8 9 10
1 0 0.945 0.945 0.5 3.945 2.89 2.945 2.945 2.7 2.945
2 0.945 0 0.4 1.445 3.89 1.945 2 2 2.5 2
3 0.945 0.4 0 1.445 3.89 1.945 2 2 2.5 2
4 0.5 1.445 1.445 0 3.7 3.39 3.445 3.445 2.945 3.445
5 3.945 3.89 3.89 3.7 0 2.835 1.89 1.89 1.745 3.89
6 2.89 1.945 1.945 3.39 2.835 0 0.945 1.045 1.545 1.945
7 2.945 2 2 3.445 1.89 0.945 0 0.2 0.7 2
8 2.945 2 2 3.445 1.89 1.045 0.2 0 0.5 2
9 2.7 2.5 2.5 2.945 1.745 1.545 0.7 0.5 0 2.5
10 2.945 2 2 3.445 3.89 1.945 2 2 2.5 0

Table 5-7 Edit distances as computed with the Levenshtein edit distance algorithm

Using the edit distance in Table 5-7, the tags are clustered into tag types using the
agglomerative algorithm. The clustering of tag is an iterative process. The sequence
with which the tags are clustered is represented by the dendrogram of Figure 5-5. The
dendrogram is read bottom-up. The clustering process begins with singleton clusters
i.e. each cluster contains one member. The dendrogram shows which clusters (x -axis)
are clustered together and at what distance (y-axis). At each clustering iteration the
clustering of tags is represented by the merging of their branches. A clustering result
is obtained where the dendrogram is cut horizontally.

Figure 5-5 Dendrogram of clustering results using non-normalized edit distances

The horizontal dotted line in Figure 5-5 shows when the clustering algorithm has
clustered the tags into 3 tag types. The result is not the expected outcome because tag
10 has been clustered together with tag 6,7,8,9. The distance of tag 10 from tags 6, 7,
8and 9 is short because of the tags short length. On the other and tag 5 is not grouped
together with 6, 7, 8 and 9. Indeed tag 5 is added to the cluster only in the last
iteration of the clustering process and after tag 1,2,3,4 are clustered together with 6, 7,

 7 8 9 6 10 1 4 2 3 5

0.5

1

1.5

2

2.5

3

3.5

4

Tags

N
o
n
 n

o
rm

a
lis

e
d
 d

is
ta

n
c
e

Clustering results - dendrogram

 113

8, 9, and 10. Tag 5 is the furthest away from any other tag in the set because it is a
lengthy tag.

5.2.4.1.2 Normalized edit distance

In the table below the normalized edit distances between the tags in the set can be
seen.
 1 2 3 4 5 6 7 8 9 10
1 0 0.315 0.315 0.125 0.945 0.945 0.945 0.945 0.8613 0.945

2 0.315 0 0.2 0.3613 0.945 0.945 0.945 0.945 0.8333 0.945

3 0.315 0.2 0 0.3613 0.945 0.945 0.945 0.945 0.8333 0.945

4 0.125 0.3613 0.3613 0 0.889 0.8475 0.8613 0.8613 0.7363 0.8613

5 0.945 0.945 0.945 0.889 0 0.7088 0.4725 0.4725 0.4363 0.945

6 0.945 0.945 0.945 0.8475 0.7088 0 0.4725 0.5225 0.515 0.945

7 0.945 0.945 0.945 0.8613 0.4725 0.4725 0 0.1 0.2333 0.945

8 0.945 0.945 0.945 0.8613 0.4725 0.5225 0.1 0 0.1667 0.945

9 0.8613 0.8333 0.8333 0.7363 0.4363 0.515 0.2333 0.1667 0 0.8333

10 0.945 0.945 0.945 0.8613 0.945 0.945 0.945 0.945 0.8333 0

Table 5-8 Edit distance computed with the normalized edit distance

In the Table 5-8 it can be seen how the distances between tags are on a scale from 0 to
1. The dendrogram of the tag clustering process using the normalized edit distances is
shown in Figure 5-6.

Figure 5-6 Dendrogram of clustering results using the normalized edit distances

When the clustering is terminated at 3tag types, the tags are clustered as expected.
One tag type contains tags 1, 2, 3, 4, another contains 5, 6, 7, 8, 9 and a third tag type
contains tag 10. Because of the normalization of the edit distance, tag 5 though it is
lengthy, it is still similar to tags 7, 8, 9, and 6. Also, tag 10 though short in length is
now distant from all the nonrelated tags.

 7 8 9 5 6 10 1 4 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tags

N
o
rm

a
liz

e
d
 e

d
it
 d

is
ta

n
c
e

Clustering results - dendrogram

 114

5.2.4.1.3 The cost function and edit path defines the normalized edit
distance

The example is continued with the normalized edit distance only. Few cases are
picked out of the tag matching process to demonstrate better how the cost function
and the edit paths define the edit distances.

Case 1: Given the same length of edit path and cost of edit operations the edit
distance between tags is the same. The distance between tags 1 and 2 is equal to the
distance between tags 1 and 3.

Case 2: The distance between tag 5 and 9 is shorter than the distance between tag 5
and 7 (or 8) even though there are more different ics between tags 5 and 9 than there
are between tag 5 and 7. This is due to the ability of the algorithm to utilize all
similarities of the ics even if the ics are not perfectly aligned. It also is due the low
cost of deleting “d”.

Case 3: The cost of deletion and/or insertion can burden considerably the distance
between two seemingly similar tags. The distance between tag 8 and tag 6 is larger
than the distance between tag 8 and tag 7 even though tags 8 and 6 have one common
ic and tags 8 and 7 have none.

 115

5.2.4.1.4 Silhouette value as the clustering stopping rule

To control the clustering process result, the silhouette value is used as a stopping rule.
The objective is to obtain as fewer tag types as possible to achieve maximum data
compression by defining tags types that are compact i.e. tags within the tag types are
more similar to the other tags of the same tag type than the tag of other tag types. The
average silhouette value for the clustering process using the normalized edit distance
is shown in Figure 5-7. The clustering process returns 3 tag types at an average
silhouette value , suggesting that the tags are arranged in compact
clusters. If the clustering process is stopped one step later the algorithm returns 1 tag
types for all tags. This is because tag 10 has the same maximum distance from the
tags 1,2,3,4 and 5,6,7,8,9 . The silhouette for a single tag type drops at .
If the clustering process is stopped one step earlier at 4 tag types, the average
silhouette value is again lower at . The drop of the average silhouette
value is due to the removal of tag 6 from the tag type that contains tag 5, 7, 8 and 9.
By removing tag 6 the silhouette value for tag 6 increases to 1 as it becomes a
singleton cluster (see Table 5-9), but this results to the drop of the silhouette values
for tags 5, 7, 8, and 9 leading to a drop in the average silhouette value for the entire
result. If the clustering process is stopped at an earlier stage e.g. at 5 tag type, the
average silhouette value is higher but the gain in data compression is reduced as more
singleton clusters are being returned.

In general it is expected that the clustering process will be stopped at average
silhouette values that are lower than the optimal value of 1. This is the case because
the tags are not identical and the string matching operation is calculating distances
between tags are different than 1 and 0.

Figure 5-7 Average silhouette value for clustering results

1 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1.2

Clustering results - number of clusters

X: 2
Y: 0.6396

A
v
e
ra

g
e
 s

ilh
o
u
e
tt

e
 v

a
lu

e
s

Average silhouette values over clustering results

X: 1
Y: 0.3497

X: 3
Y: 0.6386

X: 4
Y: 0.7473

 116

 Clustering results – number of clusters
 1 3 4 5 6 7 8 9

Tag 1 0.2754 0.7003 0.699 0.6967 0.4237 0.4237 0.4237 1
Tag 2 0.2713 0.6784 0.6765 0.6733 0.4212 1 1 1
Tag 3 0.2713 0.6784 0.6765 0.6733 0.4212 1 1 1
Tag 4 0.2569 0.6365 0.6357 0.6284 0.4884 0.4884 0.4884 1
Tag 5 0.2291 0.4373 0.3466 1 1 1 1 1
Tag 6 0.2178 0.3967 1 1 1 1 1 1
Tag 7 0.3388 0.6497 0.4186 0.6279 0.6279 0.6279 0.5627 0.5627
Tag 8 0.3379 0.6475 0.5036 0.6751 0.6751 0.6751 0.4668 0.4668
Tag 9 0.2987 0.5713 0.4292 0.498 0.498 0.498 1 1
Tag 10 1 1 1 1 1 1 1 1

Table 5-9 Silhouette values of each tag at each clustering result

5.2.4.1.5 Inequality Looseness test

To test whether the all metric properties of the normalized edit distance are met, the
inequality looseness test is performed on the values of normalized edit distance of
Table 5-8. For the 10 tags in the example there are 120 triplets. The results of the test
can be seen in Figure 5-8. There is no triplet that fails the test i.e. there is no outcome
with a negative value. The normalized edit distance using the cost function of this
example meets all metric properties.

Figure 5-8 Histogram of outcome of the inequality looseness test

5.3 Discussion and Conclusions

This chapter presented the last two steps of the transformation process. First step is
the transformation of subsequences into tags. Tags are semantically simplified
versions and point representations of the subsequences. With the tagging the data size
is already reduced. The next step is the tag matching operation. This operation is
technically more challenging. Tags are examined for their similarities and grouped
into tag types. To perform comparison, a tag matching operation is defined that
consists of several elements. Among those elements the newly defined cost function is
specifically designed for being applied on traces and used by edit distance functions.
The definition of the cost function remains true to the requirement not to relay on
external or system specific information. It utilizes the semantic information found in
traces and allows comparing tags for their similarities.

-0.5 0 0.5 1
0

5

10

15

20

25

30

Outcome of the test

C
o
u
n
t

 117

From the example in 5.2.4 it can be seen that clustering of tag into tag types depends
greatly on the cost of deletion and insertion. This is the case because tags can vary in
their length (the number of ics in the tag). With the current definition of the cost
function the deletion or insertion of an ic depends strictly on relative frequency of the
ics as this is measured before the tagging of the sequences. Another version of the
cost function can be defined to take into account associations when deleting and
inserting ics so that when tags differ in length but do so with ics that are associated an
additional discount on the cost can be applied to reduce their distance between these
tags.

The proposed cost function meets all metric properties and reflects the engineering
relevance between semantics. The matching operation contributes further to the
reduction of the data size of the sequence by grouping tag into tag types. Once
complete a sequence is represented by a set of event type representatives rather than
event instance representatives. This stage of the transformation will be presented in
the case study of chapter 7.

 118

 119

Chapter 6

6 Utilizing traces from multiple systems
In real life applications, multiple identical systems that are geographically distributed
form a single observation group. Depending on the observed performance of these
systems, decisions are made to act on each system individually e.g. corrective
maintenance, or to all system collectively e.g. preventive maintenance. The
transformation process described in chapters 4 and 5 is applied to each system
individually. This allows the fitting of parameters for the segmentation (cutoff
parameter) and the tag matching (cost function) suitable to the sequence generated by
each system. This custom fitting approach requires however a "burn in" period for
each system, where a sequence that will contain traces of error and recovery events
has to be collected to be used for fitting the transformation tools, before the
application can begin. Considering that professional systems are generally reliable
products and failures occur rarely, this "burn in" period can be lengthy. Consequently
the transformed format of the sequence for a newly installed system will not be
available until the "burn in" period has elapsed.

These systems are identical and the structures of error and recovery subsequences of
distributed systems should show similar forms. The similarity of subsequences across
different systems can be described using the temporal and semantic structure of
subsequences. The temporal structure of subsequences is capture by the cutoff
parameter and the semantic structure is captured by the cost function. If the parameter
values of several systems are similar, a representative value for each type of
parameter can be used to characterize the group. The group characteristic parameter
values can be used for the initialization of the transformation process of newly
installed identical systems. For a newly installed system, the system group values can
be used until enough traces are collected to make a custom fit of the transformation
algorithms.

To follow such an approach, a degree of confidence is needed that the temporal and
semantic structures of subsequences of multiple systems are coherent. This is
particularly important since the algorithms are based on unsupervised learning
techniques. The lack of coherent data structures among different systems poses a
difficulty for the large scale applications of unsupervised machine learning
tools[Pro00][Han00]. Incoherence of data structures can prohibit the applicability of a
data mining methods from one type of system to another. Given that these groups
consist of identical systems, which share identical design and logging mechanisms,
coherence of the characteristics of subsequences is expected. However, even in the
case of identical system it has been shown that the level and the type of the system
workload have an effect on the manifestation of errors in the data sequences [Iye82].
In this thesis it is assumed that identical systems show similar patterns in the temporal
and semantic structure of their subsequences unless there is proof of the opposite. In
his chapter a method is presented to test the temporal and semantic characteristics of
subsequences obtained from multiple systems, for evidence of non-coherence.

 120

6.1 Characteristic subsequence structure of a system group

Given a group of systems where the parameterization of the segmentation algorithm
and the cost function has been completed, the group characterizations can be made
based on:

 For each system the segmentation cutoff parameter value represents the
distance between successive traces that assigns traces in the sequence to the
most compact clusters. Do identical systems have a characteristic value for the
cutoff parameter?

 For each system the association between any two semantics represents the
association between the components. Do identical systems have a
characteristic value for the pairwise associations?

To accept that the group of systems produces subsequences of coherent structure
characteristics, temporal and semantic, the values of the respective parameters have to
demonstrate clear signs of localization in their distribution. Plotted as a histogram,
such localization is manifested as a unimodal distribution.

Although tests for unimodality do exist [Har85] [Fis94] they tend to be quite elaborate
requiring extensive simulations to estimate parameter values. In this thesis a simpler
approach is followed. To determine whether the values of a characteristic have a
unimodal empirical distribution the evidence is collected in two simple steps:

1. Visual inspection of the data that will identify whether the histogram is
unimodal

2. A formal hypothesis test to support the belief that what appears to be a
unimodal distribution is not a uniform distribution.

6.1.1 Visual Inspection

A visual inspection of the histogram of the values of the characteristic of interest i.e.
cutoff values and pair wise associations between semantics can reveal directly
whether a single mode exists. The location of the single mode of the empirical
distribution is not very restrictive although there are some preferences depending on
the parameter type. For the cutoff parameter for example the empirical distribution
should ideally have a mode at the low end of range because this indicates compact
subsequences through the group (short distance between successive traces). For pair
wise associations the mode ideally should demonstrate either strong (high end of
range) or weak (low end of range) associations. In Figure 6-1 two examples of
unimodal histograms are shown.

 121

Figure 6-1 Unimodal distributions

Histograms that are clearly multimodal or uniform do not qualify for characterizing
the system group.

6.1.2 Testing for uniformity

Though a visual inspection can identify the histogram has one or more modes,
unimodality should be verified formally. A formal verification is needed because the
shape of the distribution can be deceiving and a distribution that can be identified as
unimodal can be in fact uniform. In the Figure 6-2 all histograms depict random
number from a uniform distribution. All distributions of these examples can be
perceived as being unimodal.

Figure 6-2 Histograms of uniformly random numbers

To ensure that such an error is unlikely to occur, a chi-square hypothesis test is used.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25
0

5

10

15

20

25

30

0 20 40 60 80 100 120
0

5

10

15

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

0 20 40 60 80 100 120
0

5

10

15

0 20 40 60 80 100 120
0

5

10

15

20

25

30

 122

The Null hypothesis of the test is formulated as following:
0 :H "The empirical distribution is uniform"

Whereas the alternative states:
1 :H "The empirical distribution is non-uniform".

The test is performed with the Pearson's goodness of fit test for uniformity. The
goodness of fit test helps establish whether or not an empirical distribution differs
significantly from a theoretical uniform distribution. The N observations of the sample
data are divided into n cells. Each cell contains the observed frequencies

iO . The
theoretical frequency for any cell under the null hypothesis is:

i

N
E

n
, where 1,2,...,i n .

Condition for determining the number of cells is that 5iE .The test statistic is
evaluated:

2
2

1

()n
i i

i i

O E
X

E
 (6-1)

The Chi square statistic is used to evaluate the p-value of the test statistic 2X , with
1n degrees of freedom, and for a significance level .

6.1.3 Type I and II Errors and associated risks

The errors of incorrectly rejecting a true null hypothesis (Type I) or incorrectly not
rejecting a false null hypothesis (Type II), come with different types of costs. These
costs are assessed here in the context of this application.

Type I error leads to incorrectly applying a system group characteristic to newly
installed systems. This results to erroneous processing of traces. For the segmentation
process, this most likely would lead to the truncation of subsequences (generally this
is a higher risk compared to collision as the latter depends greatly on the system
failure rate). The truncation of subsequences would inevitably affect the association
coefficient and consequently the cost function, which would mislead the tag matching
process. Type I error has an impact on the consistency of the information obtained
after transformation. .

Type II error on the other hand, would reject a group wide parameter value that would
result to newly installed systems to be parameterized independently, which has a
delay on the utilization of the transformation process.

The transformation process emphasizes the benefits gained from the utilization of
traces. For effective utilization, data consistency is vital. In this work, no method is
proposed that will allow the timely identification of wrongful transformation of traces
of newly installed systems if a group value is applied wrongly. To be able to detect
mistakes in the transformation, there has to be enough data (adequate number of
subsequences) to allow the parameterization of the system following the proposed
methodology. This will happen after the burn in period is over. Consequently a Type I
error would lead to costs of misinformation plus the costs of Type II error. Based on
that, the lower cost is identified with Type II error. To reduce the risk of Type I Error

 123

the level of significance for the Goodness of fit test is set to 0,001a . Though the
significance level is set arbitrarily, it is certainly a very low probability for Type I
error to occur.

In section 6.1.4 the test for uniformity is described as it applies for the cutoff
parameter. In section 6.1.5 the test is described as it applies for the association
coefficients.

6.1.4 Goodness of fit for the cut off parameter values

The segmentation process returns one value for the cutoff parameter for every
sequence that has been segmented. Every sequence represents one system. For a
group of N systems there will be equal number of cutoff values forming the sample
set. The range that these values will cover is not known in advance. To perform the
hypothesis test this range has to be defined, as it will be the range where the
theoretical uniform distribution will be expected.

To set the range we look into the sample dataset of the cutoff values. For a set of
values of the cutoff parameter, the range is defined by min max[,] , where

min min() and max max() . This range is divided into n cells so that the
condition 5iE is satisfied. Given the above the test can be performed.

6.1.5 Goodness of fit test for association coefficients

As in the case with the cutoff parameter values, the association coefficients are tested
too. However there are two main differences between the two cases.

The first difference is that there might be some pairs of semantics for which no
observations are made in some systems. This is not the case for the cutoff value that is
obtained given a sequence with error or recovery subsequences. For semantics to be
available, the events that trigger them need to have occurred.

The second difference is that the range in which the theoretical uniform distribution is
expected is known in advance i.e. [0,1] .

To be able to perform the test on the association coefficients from all systems in the
group, the pair wise coefficients need to be arranged appropriately. To explain this
arrangement, the notation of Chapter 5 is used.

Since the pool of semantics is knows in advance (the set of semantics a system can
produce is a known design feature), the association matrix is formed by the
orthogonal arrangement of all semantics | |IC w (here IC represents the pool of
semantics). This ensures that the matrices of all systems are of the same size and that
the semantics are ordered in the same way (lexicographically) across all systems. For
the group of N systems, equal number of association matrices are arranged in tandem
to form a three dimensional matrix C of size w w N , containing the associations

ij for the kth system in the two dimensional setting w w of
k
, where 1 k N

(Figure 6-3). The associations ij are tested across the third dimension of C (e.g. the
grey cells in Figure 6-3 represent the association 1w

between 1ic and
wic across all

k

 124

). As mentioned before not every ij has a value depending whether some ics are found
in the collection of tags

0kLC or not. Therefore the set of pair-wise associations
1 2 3{ , , ,..., }N

ij ij ij ijS , where k

ij k across N systems, can have a size of
0 | |ijS N counts.

Figure 6-3 Collective association matrix C

The association measure ij as defined in chapter 5, is a continuous measure that takes
values in 0 1ij . The null hypothesis is based on the discrete uniform distribution
over n values. To fit to that requirement, the interval [0,1]oI is divided into n non-
overlapping subintervals

iI of equal width
iw . The probability of an association ij

falling in any of the subintervals
iI under the null hypothesis is

| |ij

i

S
E

n
. Given the

matrix C the test is performed for the pairs of semantics where the size of the set
| |ijS allows 5iE . The observed frequency

iO is computed by counting the

association coefficients k

ij that fall within each subinterval
iI .

6.2 Discussion and conclusion

Though the search for unimodality in the histogram of the empirical distribution and
the formal test that follows ensure that the parameter values show coherence the level
of coherence is not tested formally.

 125

Ideally the congruence of the parameter values would manifest itself as a compact
empirical distribution, with most values clustered around a central point (low spread).
For the cutoff parameter this would suggest that the distributed systems, though
operating under different conditions, form subsequences with very similar temporal
structure i.e. distance between traces of the same subsequence. If the point of
congruence, the mode, is a low value e.g. 1-3 sec, this would suggest that the
subsequences are also very compact. Similarly for the association coefficient,
congruence of the coefficient values to the left or to the right of the range would be a
clear sign of weak or strong association respectively.

Such observations would not only allow the characterization of group with parameter
values, it would also be strong evidence of the soundness of the transformation
process, because it would demonstrate that consistent results are obtained throughout
independent samples of sequences.

The interpretation of the observed congruence of the parameter values in the system
group is also bound to the size of the sample. The restriction put by the goodness of fit
test 5iE , results to wider cells for smaller sample size in order to meet the criterion.
Consequently, the statements about the observed congruence have to be given in
respect to the width of the cells. This methodology is applied in the case study of
chapter 7.

 126

 127

Chapter 7

7 Case Study
The methodology that was presented in chapters 4, 5 and 6 is applied on a sample set
of traces obtained from systems operating in the field. This chapter contains the
results of the application of the proposed methodology on the sampled data set. The
chapter’s aim is to:

1. Demonstrate the application of the transformation process on a single
sequence

2. Demonstrate the data reduction that is achieved by the transformation process
on the sample set of sequences

3. Perform the test for coherence (test of uniformity) for the cutoff parameter and
the associations between semantics for the sequences in the sample

4. Assess the performance of cost function in respect to the triangle looseness
criterion

First an overview of the sample data set is given in 7.1. In section 7.2 the
transformation methodology is applied on a single sequence. In section 7.3 the data
reduction that is achieved on the sample set with the proposed methodology is
presented. In section 7.4 the test of coherence is applied on the parameter values
obtained from the sample set. In section 7.5 the performance of the cost function is
discussed. The chapter closes with section 7.6 where the results are discussed.

7.1 The sample data set

The sample sequences are taken from 137 systems. The systems are of the same type
with the same software and hardware components installed. These systems are
geographically distributed. The systems are used in the same area of clinical
application but their actual operating conditions are not known. The sequences are
cleared from all irrelevant types of traces (see preprocessing 2.5). The only types of
traces that remained in the sequence are those of type error and recovery. Partially
periodic subsequences are removed too using the procedure described in 3.4.

The sequences are of various lengths and contain various amounts of traces. This
allows testing the transformation process under different combinations of sequence
length and number of traces. In any case the segmentation, which is the most
influential phase of the transformation process, should return the most compact
subsequences possible given the arrangement of traces in the sequence. In Figure 7-1
the lengths of the sequences are shown in an increasing order. Their durations vary
from less than 500 hours of operating time up to almost 10000 hours.

 128

Figure 7-1 Operating time per system

The sequences contain a variety of number of trace. In Figure 7-2 the number of error
traces is plotted against the length of the sequence. There is a weak positive
correlation between the number of error traces and the length of the sequence.

Figure 7-2 Data points (errors) in a data sequence

Similarly for recovery events the scatter plot of the recovery traces versus the
operating time is seen in Figure 7-3. Again there is a weak correlation between the
number of recovery traces logged and the length of the sequence.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Set of systems

O
p

e
ra

ti
n

g
 h

o
u

rs

System

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Data points (Errors) vs Operating hours

N
u

m
b

e
r

o
f
d

a
ta

 p
o

in
t

Operating hours

 129

Figure 7-3 Data points (recovery) in a data sequence

The absence of strong correlation between the number of traces found in a sequence
and the length of the sequence is an indication of how the location and system specific
factors, such as the type of events, the workload, the operating conditions, system
configuration etc. can contribute to the amount of traces logged. This is a reminder of
how subsequences can vary from one system to another in the number of traces and
type of semantics they can contain. The observation made here is in line with the
observations made in the fault injection experiment (3.2).

7.2 Transformation methodology applied on a single
sequence

In this example the untransformed sequence has a length of over 2200 hours of
operating time. The example follows the framework of 2.4.3. Selection has taken
place with choosing the sample set. The steps that follow are preprocessing,
segmentation, tagging and tag matching.

7.2.1 Preprocessing

First all traces that are of type other than “Error” are removed. This is done
automatically using a script that filters out unwanted events.

After removal of all unwanted events, the sequence contains 21970 error traces. A
graphical representation of the sequence is shown in Figure 7-4.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

500
Data points (Recovery) vs Operating hours

N
u

m
b

e
r

o
f
d

a
ta

 p
o

in
t

Operating hours

 130

Figure 7-4 Graphical representation of error sequence before pps are removed

As part of the preprocessing step, all ics of error traces are tested if they are pps. The
result of the tests shows that three ics are pps, namely 73400000, 7320000 and
570000013. The pps are removed from the sequence. After the removal of pps the
sequence contains 489 error traces. The preprocessed sequence is show in Figure 7-5

Figure 7-5 Error sequence after preprocessing is completed

 The sequence is shown in Figure 7-5 using the visualization method described in 3.3.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
510710102
90002002

100020002
650000050
540000072
70010003

570000013
73200000
73400000

510999901
510999900
730999900
730999902
640029912
590009909
670009909
640019909
660020012
570000002
540019909
610039912
650409900
660009900
730999912
660009901
520019900
520019901
520010000
520010103
660040012
63000188
63000189
80010055
63000238

730020000
103266143
103268255
103262105
40000202

103366188
103368255
103366143
103362105
10000006

510610011
510610100
510610015

Error related event types

E
v
e
n
t
T

y
p
e
s

Time (hours)

200 400 600 800 1000 1200 1400 1600 1800 2000
510999900
510999901
730999902
730999900
640029912
640019909
670009909
590009909
540019909
660020012
570000002
610039912
650409900
730999912
660009901
660009900
660040012
520019900
520010000
520010103
520019901
80010055
63000188
63000189
63000238

730020000
103266143
103268255
40000202

103262105
103362105
103366143
103368255
103366188
10000006

510610011
510610100
510610015
510710102
100020002
90002002

540000072
650000050
70010003

Error related event types

E
ve

nt
 T

yp
es

Time (hours)

 131

7.2.2 Segmentation step

The segmentation process consists of five elements:

1. Use a sequential clustering algorithm to segment the sequence and obtain
multiple segmentation results for a range of values for the cutoff criterion. (see
method in 4.2.1)

2. Find which values of the cutoff criterion give the best segmentation result
using a cluster separation measure (see method in 4.2.2).

3. Robustify the value of the cutoff criterion to account for structural variation
using the resampling method and the hCSM (see method in 4.2.3).

4. Chose the adjusted value of the cutoff criterion that reduces the risk of
collision for application (see method in 4.2.4).

5. Perform internal validation to verify that the segmentation of the sampled
sequence using the selected cutoff value is not the result of data points being
grouped randomly (see method in 4.2.5).

7.2.2.1 Segmentation (elements 1 and 2)
The sequence is segmented using the sequential clustering algorithm. The range of
values for the cutoff parameter is Θ=[0,1000]. A CSM value is obtained for the cluster
result of each value of Θ (theta). The plot of the CSM values over the range of Θ is
shown in Figure 7-6.

Figure 7-6 Values of CSM over the range of theta

The lowest CSM value(s) indicate which segmentation result returns the most
compact clusters. The lowest value of the CSM is found in the range
cutoff_low_CSM = [60, 128], where CSM=0.0169. Within this range the number of
the identified subsequences is 68. At this point the compression ratio achieved with
the segmentation is

7.2.2.2 Robustification (element 3)
The resampling method is applied on the range of best segmentation results as
indicated by the cutoff parameter, cutoff_low_CSM = [60, 128]. The mean distance
between successive traces of the subsequences is mDBST=2.8519, therefore the

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Cutoff parameter

C
S

M

 132

preferred thinning probability is (see 4.2.3.2). The sequence is resampled
1000 times and the average figure of merit obtained from the procedure. The
results of the resampling method can bees in Figure 7-7 (blue curve).

Figure 7-7 Figure of merit ML over the best range of cutoff parameter values

For the entire range of the cutoff parameter the figure of merit is high (>0.965),
which suggests robustness to variation. However, in the low end of the range the
clustering of the resampled sequences resulted to more truncations than in the high
end. The risk of truncation is lowest for the values of the cutoff parameter that are at
the high end of the range.

Using the CSM and the figure of merit the hCSM is calculated. The hCSM is shown
in Figure 7-8.

Figure 7-8 hCSM values over the best range of the cutoff parameter values

The lowest values of the hCSM are found for two values of the cutoff parameter,
 and .

50 60 70 80 90 100 110 120 130
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

F
ig

u
re

 o
f

m
e
ri
t

M
L

Cutoff parameter

50 60 70 80 90 100 110 120 130
0.0169

0.017

0.0171

0.0172

0.0173

0.0174

0.0175

0.0176

Cutoff parameter

h
C

S
M

 133

7.2.2.3 Collision probability (element 4)
To estimate the collision probability when the algorithm is applied in the field, the
empirical distribution of the length of the subsequences is needed. The lengths of
subsequences are taken directly from the segmentation result. The empirical
distribution of the lengths of subsequences for the sequence in the example is shown
in Figure 7-9.

Figure 7-9 Empirical distribution of lengths of subsequences

Using the method described in 4.2.4, the collision probability is estimated for the
chosen range of values of the cutoff parameter. The collision probability for this range
is shown in Figure 7-10 Collision probability for selected range of cutoff parameter
values. The collision probability is overall very low, but as expected it is increasing as
the value of the cutoff parameter is increasing. The effect of the collision probability
is naturally working in favor of the lowest value of the cutoff parameter.
The value is the one that should be used when the sequence of traces for
this system is segmented in field application.

Figure 7-10 Collision probability for selected range of cutoff parameter values

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Subsequence length

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y

50 60 70 80 90 100 110 120 130
5

6

7

8

9

10

11

12

13
x 10

-4

C
o
lli

s
io

n
 p

ro
b
a
b
ili

ty

Cutoff parameter

 134

7.2.2.4 Random position hypothesis test (element 5)
The test is performed by first calculating the ˆ statistic. For the sequence in the
example the statistic is . The empirical distribution of ˆ

r is computed
from 5000 random positioning sequences, where 486 data points are randomly
generated in an interval equal to the length of the original sequence in the sample. The
empirical distribution can be seen in Figure 7-11 (blue histogram). The statistic ˆ for
the sequence in the example is larger than all ˆ

r (red line indicates the value of ˆ),
therefore the null hypothesis can be rejected. It is very unlikely that the clustering
result obtained by the segmentation of the original sequence can be obtained by a
sequence with randomly positioned traces. The clustering result is a sensible result
based on the non-random arrangement of traces in the sequence.

Figure 7-11 Empirical distribution of gamma statistic under the null hypothesis

7.2.3 Tagging

The tagging operation eliminates the replicates of semantics in the subsequences, it is
ordering the semantics lexicographically and it is assigning point representations to
the subsequences. An example of a tagging of a subsequence is shown below. The
subsequence after the segmentation (A) contains 12 traces of 5 different types (ics):

A. Subsequence after the segmentation
10000006 10000006 40000202 103262105 103366143 103366188 103366143

103368255 103366143 103366143 40000202 103262105

B. After the tagging of the semantics (eliminate replicates and ordering):

103262105 103362105 103366143 103366188 103368255

After the tagging of the semantics the subsequence contains only 5 types of traces,
which are ordered. The temporal information is tagged by assigning to eat
subsequence the time of occurrence of the first trace in the subsequence.

With the tagging of the semantic and temporal information, the sequence contains
only tags. The result of the tagging of subsequences can be seen in Table 7-1. The

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

200

400

600

800

1000

1200

1400

1600

Gamma statistic for random poitioning sequences

F
re

q
u

e
n

c
y

 135

table contains all tag in the sequence. The tags are presented in order of occurrence.
The time of occurrence is given in the third column of the table labeled as "Times".
The fourth column shows the time between tags (TBT). The TBT shows that most
tags are separated from each other by relatively long intervals.

Index Tags Times

(sec)
TBT
(sec)

1
<520010000, 520010103, 520019900, 520019901, 650409900, 660009900,
660009901, 660040012, 730999912>

0

2 <510999900, 510999901, 650409900, 730999900, 730999902> 1579 1579
3 <510610015, 510610100> 17975 16396
4 <730999900, 730999902> 30895 12920

5

<540019909, 570000002, 590009909, 610039912, 640019909, 640029912,
650409900, 660009900, 660009901, 660020012, 670009909, 730999900,
730999902, 730999912>

37544 6649

6 <640029912> 38603 1059
7 <63000189, 63000238> 42990 4387
8 <70010003> 167658 124668
9 <70010003> 871503 703845
10 <510710102> 1098922 227419
11 <70010003> 1337862 238940
12 <90002002> 1478041 140179
13 <70010003> 2073731 595690
14 <650000050> 2581353 507622
15 <650000050> 2653180 71827
16 <10000006> 2706767 53587
17 <540000072> 2812450 105683
18 <540000072> 2812646 196
19 <540000072> 2812982 336
20 <70010003> 3083172 270190
21 <70010003> 3491866 408694
22 <70010003> 3492001 135
23 <540000072> 3702845 210844
24 <10000006> 3729326 26481
25 <10000006> 3730245 919
26 <730999900, 730999902> 3924446 194201
27 <80010055> 3947995 23549
28 <650000050> 3948141 146
29 <80010055> 3955251 7110
30 <730999900, 730999902> 4131265 176014
31 <730999900, 730999902> 4206195 74930
32 <80010055> 4248512 42317
33 <70010003> 4386967 138455
34 <730999900, 730999902> 4500504 113537
35 <70010003> 4540707 40203
36 <540000072> 4692482 151775

37
<10000006, 40000202, 103262105, 103362105, 103366143, 103366188,
103368255>

4777343 84861

38 <730999900, 730999902> 4781481 4138
39 <70010003> 4785630 4149
40 <100020002> 4847227 61597
41 <100020002> 4848112 885
42 <10000006, 510610011, 510610100> 4871819 23707
43 <730999900, 730999902> 5746691 874872
44 <70010003> 5785741 39050
45 <730999900, 730999902> 5934973 149232
46 <70010003> 5975885 40912
47 <730999900, 730999902> 6167294 191409
48 <730999900, 730999902> 6186146 18852
49 <70010003> 6240492 54346
50 <540000072> 6596103 355611
51 <730999900, 730999902> 6841564 245461

 136

52 <10000006> 6998704 157140
53 <63000188, 63000238> 7348973 350269
54 <63000238> 7349132 159
55 <63000238> 7349360 228
56 <63000238> 7356978 7618
57 <730020000> 7357244 266
58 <730020000> 7357442 198
59 <80010055> 7358275 833
60 <40000202, 63000238, 103262105, 103266143, 103268255, 730020000> 7358811 536
61 <63000238> 7359325 514
62 <80010055> 7359531 206
63 <730020000> 7359856 325
64 <730020000> 7360481 625
65 <730020000> 7362617 2136
66 <730020000> 7363918 1301
67 <730020000> 7364133 215
68 <10000006, 510610011, 510610100> 7700983 336850

Table 7-1 Tags in the sequence

7.2.4 Tag matching

The tag matching operates on the tags seen in Table 7-1. The clustering algorithm for
the matching operation is terminated for a silhouette value of 0.9716 (Figure 7-12)
where a satisfactory clustering result was obtained. The clustering result is
satisfactory because the number of tag types that are produced is low (high data
reduction) and the clustering cutoff criterion value is high. The tag types are shown in
Table 7-2 (horizontal axis represents the number of tag types, vertical axis represents
the silhouette value).

Figure 7-12 Silhouette clustering stopping criterion

Given the distances between the tags the tag matching operation returns 19 tag types.
These are shown in Table 7-2, achieving another compression of .

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1
X: 19

Y: 0.9716

Number of tag types

S
ilh

o
u

e
tt
e

 137

Tag
Type

Tag type members

1 <510999900, 510999901, 650409900, 730999900, 730999902>
2 <520010000, 520010103, 520019900, 520019901, 650409900, 660009900, 660009901, 660040012,

730999912>
3 <730999900, 730999902>
4 <540019909, 570000002, 590009909, 610039912, 640019909, 640029912, 650409900, 660009900,

660009901, 660020012, 670009909, 730999900, 730999902, 730999912>
5 <640029912>
6 <80010055>
7 <63000188, 63000238>
 <63000189, 63000238>
 <63000238>
8 <730020000>
9 <40000202, 63000238, 103262105, 103266143, 103268255, 730020000>
10 <10000006, 40000202, 103262105, 103362105, 103366143, 103366188, 103368255>

11 <10000006, 510610011, 510610100>
12 <10000006>
13 <510610015, 510610100>
14 <510710102>

15 <100020002>
16 <90002002>
17 <540000072>
18 <650000050>
19 <70010003>

Table 7-2 Tags grouped into tag types

In the clustering result of this example the tag types that are produced can be
categorized in three cases. First is the case were the content of the tag type is a single
tag that has occurred only once. Such tag types are 1, 2, 4, 9 and 10. These tags
contain few common traces but mostly contain traces that are unique for that tag.
There is not enough information on similarities for these traces to help cluster the tags
together. This case does not contribute to data reduction as a single tag instance
defines the tag type. The second case is tag types that contain a single tag that has
occurred multiple times. Such tag types are 3, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18,
and 19. The tag types resulted from the fact that their edit distance is equal to zero as
they are exact matches. In this example these tag types are mostly responsible for the
data reduction as they have taken multiple instances of identical tags and grouped
them. The third case is the tag types where different tags are grouped in the same tag
type because of their similarity based on the edit distance. The tag type 7 is falls case.
Tag type 7 contains three different tags. Though the common occurrence of the trace
63000188 with 63000238 as well as the common occurrence of 63000189 with
63000238 results to a similarity between the traces of the pairs that is greater than
zero, in this case the strongest factor for the clustering of the tags into the same tag
type is that these tags are short and share the same trace namely 63000238. The edit
transformation from the tag <63000188, 63000238> to the tag <63000238> for
example is achieved most efficiently by deleting and replacing 63000238
with itself.

 138

At this point the transformation process is complete. The sequence is represented by
only 19 tag types and 68 points in time as sown in Figure 7-14. The visual
representation of the sequence in Figure 7-5 can be compared against the
representation of the sequence of tags. The correspondence between Figure 7-13 and
Figure 7-14 is made with the help of Table 7-2. The vertical formations of traces in
Figure 7-13 are represented by the instances of tag types Table 7-2.

Figure 7-13 Error sequence after preprocessing

Figure 7-14 Transformation complete: sequence of tag types

200 400 600 800 1000 1200 1400 1600 1800 2000
510999900
510999901
730999902
730999900
640029912
640019909
670009909
590009909
540019909
660020012
570000002
610039912
650409900
730999912
660009901
660009900
660040012
520019900
520010000
520010103
520019901
80010055
63000188
63000189
63000238

730020000
103266143
103268255
40000202

103262105
103362105
103366143
103368255
103366188
10000006

510610011
510610100
510610015
510710102
100020002
90002002

540000072
650000050
70010003

Error related event types

E
ve

nt
 T

yp
es

Time (hours)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

 2

 1

13

 3

 4

 5

 7

19 19

14

19

16

19

1818

12

171717

19 1919

17

1212

 3

 6

18

 6

 3 3

 6

19

 3

19

17

10

 3

19

1515

11

 3

19

 3

19

 3 3

19

17

 3

12

 7 7 7 7

 8 8

 6

 9

 7

 6

 8 8 8 8 8

11

Time (hours)

T
a

g
 t
y
p

e
s

 139

7.3 Data reduction on sample sequence

Since the main objective of this methodology is to reduce the size of data, the data
compression that is achieved by applying the methodology to the entire sample set is
presented. The results are organized according to the type of traces.

7.3.1 Error Traces

Out of the 137 sequences, 9 did not contain any traces after preprocessing. From the
128 sequences that were left, three sequences returned singleton clusters i.e.
subsequences containing a single trace. These data sequences are not included in the
analysis as they pose no interest for the transformation process.

1. Compression achieved by segmentation
In Figure 7-15 it can be seen that the majority of the sequences are compressed to a
rate lower than 0.05, which equals to a reduction of a sequence that originally would
contain 100 traces to a sequence that contains 5 subsequences.

Figure 7-15 Compression ratios after segmentation

2. Compression achieved with tag matching
The tag sets obtained from the sequences after the segmentation are examined for
matching tags. Tag sets that contain less than 20 observations are not considered
because for none of the associations of the semantics there can be any statistical
significance. This reduces the number of tag sets from 128 to 53. The matching
process is performed as described in Section 5.2.2. The matching process is applied
on each of the 53 tag sets. The clustering operation is stopped for high values of the
silhouettes stopping rule (at least >0.9). The distribution of the compression ratio after
tag matching for sample set is shown in Figure 7-16.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

Compression rate

F
re

q
u
e
n
c
y

 140

Figure 7-16 Distribution of compression ratios after tag matching

For the majority of tag sets a compression of ratio of 0,2 was achieved. That
amounts to a considerable compression in the tag set. For example a sequence that
initially consisted of 100 tags can now be described by only 20 tag types, without any
loss of semantic of temporal information.

7.3.2 Recovery traces

The procedure is repeated for the sample sequences, but this time the sequences
contain recovery traces only (error traces are filtered out). Out the 137 sequences, 24
were found not to contain any traces once the partially periodic events were removed.
For 16 sequences singleton clusters were returned. These sequences are not examined
further.
1. Compression achieved by segmentation
The compression ratios achieved after segmentation is shown Figure 7-17.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8
Distribution of compression ratios

F
re

q
u
e
n
c
y

Compression ratio

 141

Figure 7-17 Compression ratios after segmentation

2. Compression achieved with tag matching
The matching process is applied on the tags of recovery traces. The Silhouette
stopping criterion is used to recover the resulting class labels. Given the requirement
of at least 20 subsequences in the set, only 5 systems are examined. For the rest of the
sequences, the observed subsequences were fewer than 20. The compression ratio for
the recovery related label set can be seen in Figure 7-18.

Figure 7-18 Distribution of compression ratios for recovery related label sets

The inequality looseness test produced also positive result for the performance of the
distance function. Only for 3 out of the 8 labels sets there were a percentage of failed
triplets. Within this set of 3 the highest percentage of failed triplets being 0,0203%,
which is extremely low. The violation of the triangular inequality criterion is minimal.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

Compression rate

F
re

q
u
e
n
c
y

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Distribution of compression ratios

F
re

q
u
e
n
c
ie

s

Compression ratios

 142

7.4 Test for uniformity

All sequences of the sample set have been segmented and the cost function for each
tag set has been computed. At this point the values of all parameters for testing the
coherence of the characteristics of the subsequences across the systems are available.
The tests are performed separately for sequences of error and recovery traces.

7.4.1 Test for temporal characteristic of the group

For the temporal characteristic of systems in the sample the test for uniformity is
performed using the empirical distribution of the values of the cutoff parameter across
systems that were obtained with the segmentation. The test is performed using the
methodology in 6.1.4

1. Error traces
The histogram of the cutoff values the sequences of error traces is seen in Figure 7-19.
By visual inspection the empirical distribution is clearly unimodal. The set of 126
values

u
 spans over a range from min() 1u

 to max() 784u
.

Figure 7-19 Histogram of

u
for 128 systems

To meet the criterion of more than 5 expected observations per cell, the set of cutoff
values is grouped in 25 non overlapping cells with width 32 seconds. Given this
grouping of the cutoff values, the test statistic is calculated to be 627,6. The null
hypothesis of uniformity is rejected with a p-value of -1187.4551x10 .

2. Recovery traces
The histogram of the cutoff values the sequences of error traces is seen in Figure 7-20.
By visual inspection the histogram is unimodal. The set of 95 values

u
 spans over a

range from min() 3u
 to max() 780u

-100 0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

Theta

F
re

q
u
e
n
c
y

Distribution of cutoff for Error traces

 143

Figure 7-20 Histogram of

u
for 95 systems

To meet the criterion of more than 5 expected observations per cell, the set of cutoff
values was grouped in 19 non overlapping cells of width 43,667 seconds. Given this
grouping of the cutoff values, the test statistic for this set is 1106,3. The null
hypothesis of uniformity is rejected with a p-value of -2241.5088x10 .

7.4.2 Test for the association of semantics across the group

As in the case with the cutoff parameters, here the coefficients are handled separately
for error and recovery semantics. To make the results easier to present an additional
step is introduced. If the uniformity test is rejected the association between two
semantics is classified as either weak (the distribution is unimodal and positive
skewed) or strong (the distribution is unimodal and negative skewed). A strong
association is represented by a solid line connecting the two ics (ics are represented by
single digits to mask the real ic numbers).

A weak association is represented by dotted line connecting the two ics.

1. Error traces
For the test, labels sets that contain 20 or more labels are chosen. This requirement is
set for the significance of the association coefficient. This requirement reduces the

-100 0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

Theta

F
re

q
u
e
n
c
y

Distribution of cutoff for Recovery traces

1 2

1 2

 144

number of tag sets from 137 to 53. For the remaining labels sets, the associations are
inserted into the global association matrix F

k as described in 6.1.5.

To meet the requirement that the expected number of observations in each cell is
greater than 5, the range 0 to 1 is divided into 10 cells. At significance level 0.05a

and 1 9df m , the chi square distribution returns the value 2
0.95,9 16.9190 .

From the 53 tag sets, 524 association coefficients are computed. Not all of them are
found in every system. Out of the 524 coefficients, only 68 are large enough (found in
more than 50 systems) to perform the test.

For 10 out of the 68 pairs the null hypothesis for uniformity can be rejected. The
associations of ICs that are consistent across systems are shown in Figure 7-21.

Figure 7-21 Consistent associations of error ICs across distributed systems

In the graph of Figure 7-21 it can be seen how the semantics are associated with each
other in a consistent manner across the systems of the sample. There are four
associations (1, 78), (1, 74), (1, 95), (36, 74) that are consistently weak. This suggests
that these semantics are never or rarely found in the same tag. There are six strong
associations found in the results. Two of them, (145, 150) and (165,166), appear as 2-
tuples. There is one 3-tuple (74, 78, 26) that is consistently strong across all systems.
The associations between semantics 26, 78 and 81 are found to be strong for (26, 78)
and (78, 81) but no consistent result is found the pair (26, 81). The strong associations
between error semantics are verified by using the “Software Architecture
Specification” document [Phi06] of the system. The semantics with coherent strong
association across systems, trace back to components that belong to the same module.

2. Recovery Traces
Out of the 137 tag sets, only 9 consist of more than 20 tags. These 9 tag sets form a
set of 94 associations ijS . Out of these none contains more than 50 observations. The
uniformity test could not be performed because of the small sample size (this applies
for the grouping of data into 10 cells).

145

150

165 95 36

1 74

78 26

81

166

 145

7.5 Performance of cost function

For the clustering of tags into tag types the performance of the normalized edit
function (,)i jnD L L in respect to the triangle inequality criterion is interesting because
inform whether the comparison is reliable. The performance of the edit function is
measured by the triangle inequality looseness. The triangle inequality looseness is
computed for each triplet of labels (, ,)i j kL L L in label set 0LC :

(, ,) (,) (,) (,)i j k i j j k i kF L L L nD L L nD L L nD L L
The performance of the edit function is defined by the percentage of triples that do not
satisfy the inequality looseness among all triples in a label set.

During the tag matching of the tag sets, all triplets were tested for the inequality
looseness. The number of triplets that failed to meet the triangle inequality over the
entire number of triplets tested can be seen in the Figure 7-22. The triples that pass the
test are on the right hand side (black bars) of the zero point and the triplets that failed
the test on the left hand side (red bar).

Figure 7-22 Fraction of failed triplets

The test was performed for all tag sets (all systems in the sample set). For each tag set
the percentage of failed triplets over the entire set of triplets was measured. The result
can be seen in
Figure 7-23. For the majority of tag sets the triangle inequality was not violated. For a
small fraction of the tag sets the triangle inequality was violated to a small extend.

-2 -1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
x 10

6 Fraction of failed triplets

 146

Figure 7-23 Distribution of percentages of failed triplets

Overall this performance is satisfactory. It indicates that the cost function that was
defined here based on the associations of the semantics in the tags for the edit
operation performs well when used in combination with the normalized edit distance.

7.6 Discussion and conclusions

The test for the consistency of the characteristics of subsequences across the systems
showed that the cutoff values for error and recovery sequences are not inconsistent.
The visual inspection of the histograms (Figure 7-19 and Figure 7-20) and the
uniformity tests, indicate that for both types of sequences, the subsequences tend to be
coherent (right skewed histograms). These results encourage the collective use
sequences from distributed systems for the parameterization of the segmentation
algorithm foe newly installed systems. However this decision should be made
considering that the test for uniformity was done based on the grouping of the cutoff
values into cells, where the width of each cell is 32.625 and 43,667, for error and
recovery sequence respectively. The width of the cell of the histogram defines the
granularity at which differences in cutoff values are ignored. Rejecting the null
hypothesis of uniformly distributed cutoff values, with small cell width is a stronger
statement of consistency than with wide cell width because the differences in the
cutoff values that are ignored are smaller.

Regarding the consistency of the association coefficients across distributed systems,
the results show that only a small fraction 2.9% of associations of error semantics is
consistently strong across the systems of the sample. This result might discourage the
use of association coefficients obtained from other systems, in the matching operation
of newly installed systems.

A striking observation is that even with a long observation period (sum of operating
times of sample systems), there is shortage of data for statistical inference. For the
error related semantics only 38.9% of the tag sets had adequate amount of

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30
Distribution of percentage of failed triplet

F
re

q
u
e
n
c
y

Percentage of failed triplets

 147

observations to perform the uniformity test. From these tag sets, 524 association sets
were found, but only 7.4% had again an adequate number of observations to be tested.

It is clear that the uniformity test requires a large number of observations. Perhaps this
demand can be mitigated with the use of "external" design data to complement the
measure of associations between semantics. Such information can be retrieved from
system design documentation that is describing the functional relation between
components.

 148

 149

Chapter 8

8 Knowledge discovery using transformed traces
So far the first phase of the transformation process, which is also the scope of the
thesis, was presented. In this chapter the second phase of the process is described
shortly. The aim of this chapter is to illustrate how analytical tools can be applied to
the transformed sequences, which in turn can lead to knowledge discovery.
Knowledge discovery is considered in the context of effective availability
management. First the differences between using the methodology for
parameterization on sample data and the filed application are described in 8.1. In
section 8.2 knowledge discovery is demonstrated assuming the input is a transformed
sequence. The chapter concludes in 8.3 with a comparative analysis between
traditional failure data collection methods and the use of traces.

8.1 From parameterization to application

The approach for applying the methodology consists of two main stages: a)
Parameterization and b) Real time implementation. For each stage the steps of the
transformation process are either relevant or not (Table 8-1):
1. Parameterization
At this stage the cutoff parameter for the segmentation algorithm is defined. The
parameter is defined either for each system specifically or for groups of systems,
depending on the result of the test for consistency of characteristics of subsequences.

2. Real time implementation
The methodology is applied in real time. Traces are processed as they are produced by
the system. Once a subsequence is defined it is tagged, the cost function is updated
and the tags (new and existing) are matched again.

Operations is different stages of the application
 Parameterization Field implementation
Data input Sample sequence Continuous data flow
Preprocessing Yes Yes
Segmentation hCSM is estimated

using the resampling
method and adjusted to
reduce the collision
probability

hCSM is applied

Test for group
characteristic cutoff value

Yes No

Tagging Yes Yes
Tag matching Yes Yes
Test for group
characteristic associations
of semantic

Yes No

Post Analysis (knowledge
discovery)

No Yes

Table 8-1 Overview of steps for two stages of application

 150

8.2 Availability management with traces

In this hypothetical scenario the focus is availability management using information
from traces. The information is collected from transformed traces, now referred to as
tag type sequences (TTS). Here, an example of TTS is shown to demonstrate how it
can be used for effective availability management. The methods are grouped under
two tiers of knowledge generation.

1. The first tier uses directly the information from TTS. Direct measurements
taken from TTS can provide information on the availability of individual systems and
on the types of failures that cause the longest downtimes. The first tier supports also
corrective maintenance.

2. The second tier uses the information from traces to support decision making in
system design and system support. This tier is using the information from traces to
feed modeling techniques that in turn can help improve the system design or the setup
of the support system.

First the TTS is described in 8.2.1 then the tier 1 described in 8.2.2 and tier 2 in
8.2.3.28.3.3.

8.2.1 Tag type sequences

In the context of system resilience it is assumed that every system failure is followed
by a system recovery. However, in a real case scenario the system may not recover by
itself after each failure. For some failures a field engineer is needed to repair the
system. In this example repairs are also considered to be recovery events.

The preprocessing and transformation of traces produces a TTS. The TTS consists of
error tag types E succeeded by recovery tag types R . The tag types E and R contain
the semantic information describing the type of event. Each tag in the sequence is
represented by the tuple , where , denotes the ith error tag type
occurring at time where , and N is the number of all events, and
each recovery tag is represented by the tuple , where denotes the
jth recovery tag type occurring at time . The observations start at the time

of the first error tag and 0 0t (synchronous).

Figure 8-1 Tag type sequence

 151

In Figure 8-1, two error tag types can be seen. Each is followed by a different
recovery tag type. During the times of 0 1t t and 2 3t t the system is unavailable.

8.2.2 Tier 1: Measurement and corrective maintenance

To measure the system operational availability the information from the tag type
sequence is used directly to calculate the system down time:

and the total operating time of the system from time to the current point in time

Then the operating availability is:

For the purposes of corrective maintenance the TTS can be used as following: at the
occurrence of a new error event, the error tag is either categorized into a known tag
type or it defines a new tag type. In the first case corrective maintenance can proceed
(assuming system does not recover by itself) based on the knowledge that is already
available for the existing tag type. In the second case diagnostics have to be
performed before maintenance can begin. Once maintenance is completed and the
correction has been verified, the information regarding the error is added to the newly
defined error tag type.

8.2.3 Tier 2: availability modeling and association rules

8.2.3.1 Availability modeling: identifying bottlenecks
Stochastic modeling is used for availability analysis. Availability analysis provides
computations of point availability, i.e. the probability that the system will be in up-
state at a time t, and steady state availability or limiting availability i.e. the
availability of the system in the long run. Measurements taken from traces can be used
as input for availability models.

To illustrate this, an example is provided: the failure process of a complex system is
modeled as a composite of the failure processes of single failure types. Each failure
type together with its associated recoveries is modeled by a single failure type

process. When all single failure type processes are superimposed they compose the
system failure process (Figure 8-2). It is assumed that failures are occurring
independently from each other, that they don't occur at the same time and that after
every recovery the system is as good as new.

 152

Figure 8-2 Composing system failure process by superimposing single failure type processes

The system failure process describes essentially a system made out of multiple
components put in series (Figure 8-3). This configuration is based on the principle
that when one component fails the system fails. Here each block in Figure 8-3
represents one failure type rather than a physical component. The analogy remains:
when any type of failure occurs the system is down.

Figure 8-3 Reliability diagram of a multi component series configuration

8.2.3.1.1 Simple failure type process defined

A simple failure type process according to the above description is defined
analytically as follows:

When a failure event of failure type

iE occurs at time
kt the system becomes

unavailable for a period of time , until it recovers by the recovery
event 1,j kR t . After recovery, a period follows where the
system is operational. The process continues with the same alternation. The
alternation of the intervals and form an alternating renewal process
[Ave98].

The length of intervals and are modeled as random variables, with
distributions F and G respectively. Mean Time to Failure

F
 and Mean Time to

Recovery
G

are the means of these distributions.

E1 E2 E3 Em

 153

Given a series of operational and recovery intervals 1 1 2 2, , , ,...A U A U the following two
variables are introduced [Ave98]:

Time to the nth failure:
1

1 1
1
(), ,

n

n k k

k

S A U A n N (8-1)

and the time to the completion of the nth recovery:
1
(),

n
o

n k k

k

S A U n N (8-2)

The sequence given by o

nS forms an ordinary renewal process 0N with distribution
function ()o nH , where () ()o n nH F G , and (n) denotes the n-fold convolution ()
of the distribution 0H process [Ave98]. The renewal function 0M of o

nS is:

0 0()

1
() ()n

n

M t H t (8-3)

Given the above, the point estimate for the availability iAv (t) of the system in
relation to failure type

iE is:

Av () () ()o

i ii it F t F M t (8-4),

 where 1i iF F

and the point estimate of unavailability iAv (t) because of failure type

iE is:

Av 1 Av () () ()o
ii i i it F t F M t (8-5)

The limiting availability Ai is defined as:

Av lim Av () i F

i i
t

i F iG

t (8-6)

and the limiting unavailability caused by failure type
iE : Av 1 Avi i (8-7)

8.2.3.1.2 System failure process defined

Having modeled the simple failure processes, the composite system failure process
can be obtained by superimposing the l sequences o

lnS of the failure types
iE .

The point availability of the system at time t is given by:

System
1

Av () Av ()
m

i

i

t t , for 1,2,3...i m (8-8)

and the limiting availability for the system

System
1

lim Av () i

m
F

t
i i F iG

t (8-9)

From the above formulas, the system limiting availability provides the information
whether the system performs as good as expected. If the system availability is below
the desired level, the availability bottlenecks can be identified by the ordering of the
point estimates or the limiting unavailability of failure types.

 154

8.2.3.1.3 Measurements from the TTS are used for parameter estimation of
availability modeling

The distributions F andG are obtained from the TTS by measuring the time of
occurrence of failure types

iE and their associated recoveries jR . Parameters for these
distributions are estimated based on these measurements.

For a failure type

iE the first time to failure is the interval 1 0 0i iA t t , where 0 0t is
the start of the observation and 0 0it (if first failure is

iE , then 0 0 0it t). For
failure type

iE the first time to recovery is 1 1 0i i iU t t where 1it is the time of the
subsequent recovery event

iR . For the kth time to failure we

1ik ik ikA t t (8-10)

and for kth time recovery:
1ik ik ikU t t (8-11)

The above measurements are taken for all occurrences of each error tag type and their
associated recovery tag types found in the label sequence.

Using this measurement the limiting unavailability for each error tag type can be
estimated. By ranking the tag types in descending order of limiting unavailability, a
list of availability bottlenecks is obtained, prioritized from the most severe to the least
severe. Improvement actions can be taken after analyzing the list top down.

8.2.3.2 Association rules
The information from availability analysis focuses on the availability bottlenecks.
Since the modeling approach is failure centric i.e. one failure process defined for a
failure type, the information collected by now is pointing out to the most damaging
failure types.

To improve availability system designers want to examine two options:

1. reduce the frequency of failures
2. enhance system resilience

To support the above decision, semantic information on the types of failures and
recoveries is obtained from the label sequence with the discovery of association rules.

Association rules in temporal data sequences describe the relationship between two or
more events. In the case of failure and recovery events in traces the association rules
describe causal relationships between the two events [Rod02]. Using sequential or
temporal data mining tools it is possible to detect and measure the relationship
between an error tag type 1E and its associated recovery tag types jR .

Association rules on error and recovery sag types can help complement the
information regarding the bottlenecks of availability. Association rules provide
qualitative information on the availability performance. For the tag type 1E , mining
the TTS for association rules can reveal the recovery tag types that are mostly related
to it e.g. 1 1 4{ } { , }E R R .

 155

With the information about the association rules the engineering analysis can be
directed to the semantics information of the tag types. A root cause analysis can
provide more details on the nature of the error and the recovery event. The gain here
is that the root cause analysis, which is expensive and time consuming, is performed
on already prioritized problems.

8.3 Availability management & decision making: past,
present and future

The computerization of systems did not only come with new challenges it came also
with new abilities in information sharing. In contrast to traditional systems with
strong mechanical and electrical designs, these systems can record, collect, store and
share data about the status of their components and the overall state. The easiness with
which this information can be recorded and shared has a strong potential in
transforming many aspects of availability and reliability management of professional
systems.

Both availability and reliability management depend on information. Information is
required about the operational status of systems in the field, for diagnostics and
maintenance planning and for spare part inventory management. Availability and
reliability analysis techniques that have been developed for a range of problems such
as, design decisions, maintenance policies, spare parts inventories, rely on data input
collected from the field. Without it, even the most sophisticated analytical method
will become just academic exercises. In this section the limitations of traditional data
collection techniques (8.3.1) and their effect on the effectiveness of availability
management (8.3.2) will be presented. To illustrate that effect, four decision making
areas that relate to availability management are examined:

 Corrective maintenance: Restore operation to the system after failure
 Preventive maintenance: Reduce the frequency of system failures by

replacing critical components based on information about their reliability
 Resource management: Management of spare parts inventories, logistics and

maintenance staff Product creation
 Design and build high availability into systems
 Performance indicators: Measurements of availability system performance

Then in 8.3.3 it will be shown how traces provide advantages for data recording and
collection, and how these advantages affect the same areas of decision making (8.3.4).

8.3.1 Conventional methods for failure data detection and
reporting

In this section we will show how widely used current practices, used by
manufacturers for capturing and reporting field failure data miss to provide the
information required for effective availability management.

8.3.1.1 Data via help desk
It is not unusual that a system failure experienced at the customer's site is reported to
the help desk of the service provider. This practice has several drawbacks:

 The response for corrective maintenance is delayed by the handling of the call.
 The information that is collected this way contains as little as the time of the

call, name of the customer, and a vague description of the problem [Pet03].

 156

 For the purposes of analysis this data collection introduces left truncated data,
as the exact moment of failure is most likely unknown [Bha03].

8.3.1.2 Data from field reports
The help desk will try to solve the problem remotely, given that its severity is low by
giving instructions to the customer to overcome the problem. If this is not successful a
field service engineer (FSE) is sent to the site. More information on the failure will
become available only when the FSE is on site and after the diagnosis on the system is
complete. It may be the case that under time pressure to restore the system, the FSE
will choose to replace parts in trial and error fashion, to bring the system back in
operational state as quickly as possible.

The information on the completion of the corrective maintenance is added to the
failure report, containing for example repair activity description, parts used, hours
spent for the completion of the maintenance. This data reporting method has severe
impact on the accuracy and availability of failure information and can obstruct or
mislead further use [Pet03] [Bla98].Often the time scale used is calendar time, which
puts limitations on the use of the data and values of covariates are entirely missing
[Law92]. Reports of this type may be filled by staff of different skills, in different
language, in different locations. This suggests that extracting information from them
can be an elaborate, time consuming process.

Warranty data are often a source of failure information for manufacturers. They
usually are produced by the FSE. They have however some limitations that relate to
the length of the warranty period. Because the data are of interest for the period of
time the product is under warranty, data beyond that point are not recorded. The result
is that organizations are left with truncated and right-censored data sets [Bha03].
Another issue with warranty data is the time for the data to become available. From
the moment of the warranty claim until the data is available time will pass due to
administrative and processing issues [Law92].

8.3.1.3 Data from surveys/cross sectional samples
Surveys and cross sectional sampling are performed by external parties or the
manufacturers themselves to collects system failure information. They are often
carried out as a response to perceived problems in the field. Some issues with the data
that have been collected this way is that the data on the surveyed products are
response related, and they may be heavily censored and truncated [Law92].

8.3.2 Consequences of conventional methods on availability
management

Conventional practices in failure reporting involve extensive manual labor and human
interference, causing inconsistencies in the data. They are lengthy and time
consuming practices. They also fail to provide a complete overview on the product’s
performance in the field due to their strong dependency on activities such as
corrective maintenance. Conventional failure reporting practices fail to support
availability management in:

1. Corrective maintenance
The data collected via customer calls has little informative value. It has no technical
information, since the customer is not capable of commenting more on the failure than

 157

the observations that can be made on the product's state. The result is that the FSE has
to perform full diagnosis, detection and isolation of the fault on arrival on the site. For
the complete diagnosis of the product, testing tools may be required that are not often
available at the first visit. In this case, a second visit is required to complete diagnosis.
Only when the diagnosis is complete and the fault has been located, the repair or
replacement can begin. The tools and/or parts needed for the repair/replacement have
to be ordered and shipped to the site. The above prolong the duration of system down
time.

2. Maintenance Policies
Poor data input results in limited options for maintenance policies. Many companies
would like to make use of more effective maintenance methods but are hindered by
the lack of appropriate information input [End01] [Bla98].

3. Resource management
Lack of or inaccurate information on demand of parts can increase inventory levels
and subsequently cost of stocks. Inaccurate demand information can result to delays in
the delivery of parts due to bad transportation planning or facility misallocation and
staff unavailability, which would lead to service delays [Cho04].

4. Product Creation Process
Censoring of data (right and left) is one of the main issues that come with current
failure data recording practices. Dealing with censored data in reliability analysis
requires the use of appropriate methods [Ans89], but it is doubtful whether estimates
deriving from such data can be accurate [Coi86]. The analysis of life data requires
knowledge on failure as well as on survival data (product without failures) otherwise
reliability estimates will be pessimistic [Coi86]. Current methods however, do not
keep track of systems without failures.

Due to absence of failure data, engineers often make too simplistic assumptions on the
failure rates of electronic components when predicting product reliability in the
development process. Moreover, the use of standard sources of failure rate as the
MIL-HDBK 217 handbook can lead to great inaccuracies in reliability prediction
because they neglect the effect of environmental factors [Bla98] [Woo94]. Possibly
one of the biggest shortcomings in the current practices of recording failure data is the
absence of information on covariates, environmental or use conditions. Mixing data
from various sources does increase the level of uncertainty on parameter estimation of
probabilistic models.

Many current failure recording methods are not capable of keeping track of software
failures since these cannot be handled by FSE or the help desk. The delay in making
field failure data available for analysis, is an obstacle in their use for detecting failure
trends quickly and take actions on time to remedy design flaws of existing products.

5. Performance indicators
Organizations miss to provide their customers with estimates of LCC and TCO, a
factor that becomes increasingly important in purchasing decisions. They also miss to
provide their customers with feedback about their products’ performance in
availability. Such reports would prove their commitment for continuous product
evaluation and improvement.

 158

8.3.3 System failure information from traces

Managing system availability throughout the product life cycle requires the
appropriate data to be captured and transformed to information and passed on to the
right parties at the right time and in the right format. To achieve an effective end-to-
end solution, automation needs to be incorporated at all stages of the information

system, i.e. data capture, collection, storage, processing and distribution.

Traces have great potential for availability management of professional systems
because:

 Its implementation is designed into the product and assures data availability
and effective coverage of all critical components

 Being in digital form, these data can easily be sent via remote connectivity to
any location allowing remote, close to real-time, monitoring capabilities

 No human intervention assures such high levels of data consistency
 The digital form of the data allows their integration with IT and machine

processing applications, making data analysis and information available and
fast

 Its relatively inexpensive implementation allows the monitoring of fleets of
products in the field

8.3.4 Advantages of traces for availability management

The advantages that come with traces can be found in all areas relevant to availability
management:

1. Corrective maintenance
Traces can provide diagnostic support to FSEs. Semantic information in traces can
indicate the location of the fault, This information is available immediately after
system failure and can reduce corrective maintenance down time, by guiding the FSE
in locating and isolating the fault and by making sure that the right tools and testing
equipment are on site the same time as the FSE at the first visit. In combination with
parts tracking technologies, the needed spare parts will be requested at the time of
failure which can reduce further delays due to logistics.

2. Preventive Maintenance
Failure data components are collected accurately and timely, which can help in the
planning of preventive and predictive maintenance activities. Moreover, digital
components can now be included in preventive maintenance planning. For software
components for which failure intensity is measured high, bug fixes can be provided
remotely.

3. Resource Management
Real time data availability can provide accurate and timely forecasting information for
spare part inventory management and manufacturing. It can also provide similar input
for logistics and maintenance staff planning.

4. Product Creation Process
Field data on product performance from the moment of installation until
decommissioning will provide a valuable input for product evaluation. Continuous

 159

monitoring of failures in the field can detect timely availability trends that might
suggest the need for design modifications. Additional information on product use can
help in the improvement of the design, by adding redundancy or increasing resilience
to overcome design shortcomings.

5. Performance indicators
Warranty estimates will be based on actual field performance and usage. LCC and
TCO estimation can be done on the basis of accurate and complete use of spare parts,
maintenance activities, down times etc.

8.3.4.1 Improving the logging mechanism
As the observations on systems are made based on the analysis of traces, new
requirements for the logging mechanism arise. New areas of interest need to be
covered to gain more insight in the role of components on the system's availability.
The quality of traces needs to be improved, by trying to record traces in more compact
(close temporal proximity) manner to increase the effectiveness of the mining
algorithms. The improvement on the logging mechanism goes hand in hand with the
need for more information to provide new/better insight into the system's behavior.

 160

 161

Chapter 9

9 Conclusions and recommendations for future
research

This chapter concludes the thesis with the discussion on the objectives of the research,
the validity, the scientific and practical contribution and the recommendations for
future research. First the objectives of the research are discussed in 9.1. Then in 9.2
the validity and reliability of the proposed methodology is discussed. In 9.3 the
scientific and practical contributions are presented and in 9.4 some reflection on the
work around this research are laid out. Finally section 9.5 provides some
recommendations for future research.

9.1 Research Objectives

In this section the objectives that were set in 1.6.2 are presented and discussed
separately.

The main objective of the research is the reduction of the size of traces without the
loss of any information regarding the events that are relevant for the availability
management of systems i.e. failures and recoveries. The data reduction should also
lead to a new data representation that is suitable for specific analytical tools used for
system availability analysis. The objective is discussed in its parts:

Reduction of the size of traces without the loss of relevant information
Data reduction is performed throughout the preprocessing and the transformation
stage. During preprocessing the pps found in the sequence of traces is removed. A
pps can consist of thousands of entries over a period of hundreds of hours of
operating time. With the removal of the pps the sequence can be processed
effectively.

The transformation stage is where the data size reduction is achieved formally. The
basis for the reduction of the size of data is to reduce the amount of distinctive data
points required to convey the same information. Before the transformation the
"raw" sequence consists of multiple instances of traces representing the occurrence
of one or more physical events. Each trace, being a data point, carries a piece of the
information about the physical event it represents. After the transformation stage
the tag types are the new data representations of physical events and the sequence
is referred to as tag type sequence. The tag type sequence conveys the same
amount of information as the original sequence with fewer representations. In the
case study it is shown that the data compression ratio can exceed the order of 0,01
i.e. 100 times fewer data points are needed to convey the same amount of
information as the original sequence (see case study chapter 6). With the data size
reduced, not only is it possible to use the tag type sequence in analytical methods,
but it becomes easier for engineers to use the information in traces for diagnostic
purposes. Throughout the transformation the temporal and the semantic
information is not lost. The temporal location of the physical event and the
semantics are inserted into the tag.

 162

The above two objectives are met under the conditions:

Point representation of physical events
The tag type sequence consists of point representations of physical event instances.
Through the transformation stage, with the segmentation the traces are clustered
into subsequences, each representing an instance of a physical event and with the
tagging the subsequence becomes point representations. This method of
representation is not only suitable to specific analytical methods (see chapter 8), it
also allows effective manual inspection of the data because of its reduced size and
its organization into event types.

The methodology is generic and does not require system specific information
The methodology for the transformation of traces does not depend on system
specific information, such as design documentation. Also complementary
information such as expert domain knowledge was not used. As it was shown in
3.1, domain expert can introduce uncertainty in their interpretation of traces, and
are therefore not a dependable source of information. To avoid external data
dependencies the methodology is using generic domain knowledge and the
appropriate interpretation of the data structures found in the sequence. The generic
domain knowledge comes from the system engineering domain and suggests that
complex system have modular design. Based on that, the temporal proximities of
traces and the association between semantics in the sequence are used to develop
the methodology. Such information is inherent in long sequences of traces of any
system that has been designed according to the modular principle. The information
that is needed for the transformation of the raw traces of a system is taken from a
sequence of that system. Specifically the sampled sequence is used to set the
values of the cutoff parameter for the segmentation (chapter 4) and the values of
the cost function for the tag matching operation (chapter 5). This approach allows
the methodology to be applied on any type of professional system that has a
modular design.

 163

The methodology can deal with variation inherent in the traces that might
affect the transformation results
Variation is present in traces. As it was shown in the fault injection
experimentation (3.2) and the visual representation technique (3.3), multiple
instances of the same type of physical can result to several variant subsequences.
The variation is twofold. Firstly it is found in the temporal distance between
consecutive traces in each variant subsequence. Secondly the semantics can vary in
the type and number of occurrences in each variant subsequence. Nevertheless the
variant subsequences seem to contain semantics from a single pool. To handle
these two types of variation three methods where used:
a. The cutoff parameter used for segmentation process is robustified during the

segmentation of the sample sequence, by using the resampling technique
(4.2.3). The resampling technique simulates the presence of variation in the
temporal distance between consecutive traces in the subsequence. The amount
of simulated variation can be controlled.

b. Redundant occurrences of semantics in a subsequence are eliminated with the
tagging (5.1). The tagging also reduces variation by ordering the semantics
lexicographically. Both operations do not have a negative impact on the
information. As it was shown in the fault injection experimentation, multiple
occurrences of the same semantic and the order of the semantics is an artifact
of the logging mechanism.

c. The tag matching operation is capable of dealing with variation found in the
lengths of tags (5.2). In order to find matches between tags, the semantics of
these tags are compared. However tags are not necessarily of the same length.
To avoid penalizing differences between the lengths of tags a normalized
dissimilarity measure is used. To use this measure effectively a cost function is
defined that allows the distance measure to meet the metric properties. The
proposed cost function also allows the comparison of tags for their
(dis)similarities, according to the underlying engineering dependencies
between components incorporating that way the system design information in
the tag matching process.

The methodology has to be applicable for close to real-time data processing
The methodology in this thesis is designed to process data in sequential manner. In
field applications traces can potentially be transformed as they are produced by the
logging mechanism in a close-to real time manner. The segmentation algorithm
can process traces as they are produced and define subsequences. The
subsequences are transformed then into tags. The relative frequencies and the
association coefficients can be updated also a close to real time manner. The cost
function is updated and the tags are being matched into tag types (see section 8.1).

 164

The methodology has to exploit the number of available systems to increase its
efficiency
The methodology can benefit from the use of traces from multiple identical
systems that are geographically distributed. The efficiency of the methodology can
increase if the learning from a group of systems of the same type can be
generalized for that system type, and applied to any newly installed system. Such a
generalization can decrease the period of time that is needed to until the traces of
the newly installed system can be utilized because it allows the use of the same
parameter values for the same system types. To enable such generalizations, the
methodology proposes formal tests for investigating whether the subsequences
collected from distributed systems show consistency in their structural
characteristics (chapter 6).

 165

9.2 Research validity and reliability

In this section the validity, internal and external, and the reliability of the research are
discussed.

9.2.1 Internal validity

Internal validity is the extent to which systemic error has been minimized in defining
and formulating the causal relationship between physical events such as system errors
and recoveries and the subsequences that represent them. The understanding of this
relationship affects the methods that are developed in the transformation
methodology.

The information was collected from various sources and using different methods. The
proposed methodology is based on an extended literature review of the domain and on
a rigorous exploratory phase, which led to the good understanding of the mechanics
behind the formation of data structures found in long sequences of traces. During the
exploratory phase the observations were made on the structure of sequences of traces
from three different perspectives, the input of domain experts, experimental setup, and
graphical analysis. There has been maturation in familiarity with traces during these
three phases that spanned over a period of 12 months.

A large data sample was selected for observation and analysis. The graphical analysis
and the case study are making use of a data sample that was selected for the
completeness of the trace sequences and the homogeneity of the systems that
produced that. The identical systems share the same system design i.e. system
architecture and the same logging mechanism i.e. same semantics. This similarity
allows comparisons of the observations on the data structures across the sequences.
However, even though the systems where operating in the same application field, they
were from different geographical locations and of different lengths of operating times.
These differences introduce the variation in the sequences that allow observations to
vary enough to provide a wide view on the spectrum of what is possible in the
formation of subsequences.

To avoid the bias towards specific forms of data structure, the experiment of fault
injection, faults where injected in software and hardware components, and in different
layers of the architecture. This design allowed a wide coverage of the system’s
architecture and provided wide range of observations on the structure of subsequences
in relation to the location of the root cause.

9.2.2 External Validity

External validity refers to the extent to which findings and methods can be
generalized. The objective of this thesis is to provide a generic methodology for the
reduction of the data size in traces. A threat to external validity is the sample specific
features that affect strongly the finding and limit generalization.

To avoid adopting features that are specific to the sample used in the research, all
findings of the exploratory phase are abstracted to a level where the relation with the
specifics of the sample is weak but the general features of interest remain strong.
Though the observations are made on data produced by a specific type of professional
system, the key information that describes the features of interest refers to generic

 166

characteristics, such as close or distant temporal proximity, or strong or weak
associations.

In the end of the exploratory study (chapter 3), 4 conjectures are stated on which the
methodology is based. All 4 conjectures are statements on abstract features of the data
structures found in traces and they apply on a wide range of professional systems.
These conjectures are set under assumptions of known and well established
engineering principles i.e. modular system design.

The method of data collection also helps the generalization of findings. The
experimental setup and the graphical analysis of the sample set, provided a two
dimensional perspective onto the data structures of traces. In the latter case an in
depth view into the interaction of the system’s design and the formation of
subsequences was gained and in the former case a wide view across multiple systems
allowed the comparison of structures and the identification of commonalities and
differences. Moreover the sequences in the sample set originate from an X-ray
scanner that is considered to be complex system. Data from a complex system are
more likely to contain a big variety of data structures to make observations on.

Overall the proposed methodology was developed with generalization in mind. It
includes methods to help characterize the data set of a new application before
implementation. The methodology proposes to use the entire framework, from
preprocessing and exploration, to tag matching in any new situation. Also the methods
that reply on parameterization require the fitting of parameter values on the new data
set.

9.2.3 Reliability

Reliability in this research is understood as the dependability on the proposed
methodology to return credible results when applied. The reliability of the proposed
methodology can be credited to two aspects of this research. The first aspect is the
ability to understand and describe the difficulties that need to be overcome to meet the
objective i.e. data reduction. The second aspect of the research is the effectiveness of
the methods that can be used to overcome these difficulties.

The first aspect was addressed by the discussion over internal validity. Avoiding the
bias in the description of the problem is part of a reliable problem description. From
the description of the procedure followed in the fault injection experiment and in the
graphical analysis, care has been taken so that observations are credible. In the
experiment, the system type that was chosen is identical to the type of the systems
used in the sample data set. Between fault injections the system is reset to assure
independency of the experiments. In the graphical analysis, observations made in on
sequence are compared with others. The features that are observed are considered
credible, for example the presence of pps across different systems or the close
temporal proximity of traces of the same subsequence.

The reliability of the proposed methodology is derived from different levels. On high
level the methodology is designed around few clear guidelines for overcoming the
identified difficulties. In both segmentation and tag matching the methodology strives
for compact clusters. Having simple and clear rules helps to choose methods that can
best the requirements.

 167

At a lower level, where distinctive methods are proposed, proofs or evidence are
provided where necessary for the methods:

1. The discovery of pps in long sequences of traces (3.4). A computational
analysis is provided that proves that the proposed method for detecting pps is
more effective than current state of the art.

2. Choosing the value of the thinning probability (chapter 2). A computation
analysis is provided to help chose the value of the thinning probability that
will yield the best results in terms of robustification of the cutoff parameter.

3. The normalized edit distance is more suitable for use with traces than non-
normalized (chapter 5). An example is provided that shows how the
normalized edit distance performs better than the Levenshtein edit distance in
grouping together similar tags.

4. Cost function meets all metric criteria (chapter 5). An analytical proof is given
that shows that all criteria of a metric are met by the proposed cost function.

Decision making aides and tests are provided where necessary to guide the
implementation of the method and assess results. Unsupervised data mining methods
are used in the transformation process for the steps of segmentation and matching. For
unsupervised methods there are no external data to either train the algorithms or
validate the findings. For this reason the methods are fitted with rules that can guide
the implementation. For the segmentation of the sequence the implementation is
guided by the hCSM and the tag matching is guided by the silhouette stopping rule. In
addition an “internal validation criterion” i.e. a hypothesis test, is used to assess the
plausibility of the segmentation and for the tag matching operation the performance of
the cost function is assessed by the “looseness equality test”.

The reliability of the methodology also derives from the detailed description used
throughout the thesis allowing the reader to critically assess it. A case study is used
where the implementation of the proposed methodology is demonstrated.

Particularly useful for the reliability of the methodology is test for unimodality for the
characteristics of subsequences across systems. This test does not only provide the
means to make the implementation of the methodology on a group of systems more
efficient but is a way to verify that when the methodology is applied on different
systems the results have a degree of agreement that can be tested formally. The
agreement of the results is proof of the methodology has repeatability when applied
on different data sets.

9.3 Contribution of thesis

The contribution of this thesis is twofold, scientific and practical. The scientific
contribution is found in the new methods that are presented in the research and that
been developed to address specific problems found in the data structures of traces.
The practical contribution is found in the entirety of the methodology that is the first
end to end process that describes the utilization of traces for the availability
management of systems.

9.3.1 Scientific contribution

The scientific contributions are the new and some improved methods proposed
thought the thesis, for processing event based data sequences. In chapter 3 in Section

 168

3.1 the multi class membership classification scheme together with the use Shannon’s
entropy theorem, constitute a novel method for assessing the uncertainty of our
knowledge on relationships between events or objects and concepts. The method is
particularly interesting because it allows updating of the uncertainly measure with
new information to obtain a new measurement of the level of our understanding.

In section 3.3 an efficient visualization method was presented that is suitable for fast
visual exploration of event based data. The method does not require rigorous data
mining algorithms to detect associations. It uses a simple mapping of associations
between data types in the form of a bitmap. The method is not precise because it is
uses arbitrarily defined intervals to segment the sequence but it is easy to adjust and to
deploy for fast data exploration. Nevertheless the method can be improved to use data
mining segmentation methods.

In the same chapter in section 3.4 the pps problem gave the opportunity to develop a
more efficient detection method of pps in a data sequence that requires only one pass
through the data sequence, as opposed to several in previously proposed method, to
make the detection of pps possible. This was achieved with the definition of a
hypothesis test that is based on a mixed Erlang distribution.

In chapter 4 the hybrid cluster separation measure is an improvement of the existing
separation measure, because it prevents the over fitting on the data. The hybrid
separation measure was defined using an existing separation measure and a
resampling method. The result was a method that accounts for variation in the event
based data sequence.

In chapter 5 a novel cost function was defined based on the measure of association
between semantics. The cost function fulfills all criteria of a metric and makes it
suitable for measuring the similarities between ordered subsequences of traces. In the
context of system generated traces it is the first cost function for comparing
semantics.

In chapters 6 the concept of characteristics of the structures of subsequences is
defined. The definition uses the temporal and the semantic aspect of the subsequences
to specify the structural characteristics. The definition allows the comparison of
subsequences obtained from distributed systems to be compared for similarities in
their structure.

9.3.2 Practical contribution

The practical contribution of the thesis has been elaborated extensively in chapter 8.
The proposed methodology is the first end-to–end process that enables the
transformation of raw traces to sequences of point representation of physical failure
and recoveries. The transformed sequence enables the use of analytical tools, such as
availability modeling and data mining techniques to discover interesting system and
component performance characteristics. The methodology is designed with
application in mind. The data are processed in sequential manner. This widens the
spectrum of applications allowing not only retrospective analysis but close to real
time application to support operational activities of an organization. Finally the
methodology allows the use of numerous distributed sources of traces to increase the
efficiency of the application.

 169

9.4 Reflection on work

Even though measures were taken to increase the reliability of the methodology for
producing valid results, there are some methods that were not used, which can
contribute to this objective:

9.4.1 Feedback loops

The use of unsupervised data mining methods in the methodology might leave some
doubt on the correctness of the results. Since there are no external data to validate the
results, the correctness relies on the use of the guidance aides (hCSM, silhouette
value), and the tests (internal validation criterion, looseness equality test) to provide
confidence. Another valuable element in this methodology would be the use of
feedback loops particularly when the methodology is used in operational conditions in
the field. In their simplest form these feedback loops would require expert engineers
to assess the results of the methods and recommend corrections where necessary. For
example one feedback loop can inform how the cutoff value performs in respect to the
risks of truncation and collision and make adjustments if necessary. Another feedback
loop can inform on the correctness of clustering tags into tag type. In this case an
engineer can inspect the clustering results and make adjustments to the cost function
to either force separation or groupings of tags. Such feedback loops were not
described in this thesis, but undoubtedly they will be valuable assets for increasing
reliability of the methodology.

9.4.2 Use simulated data to verify the methodology.

Since the clustering operations used in the methodology fall under the category of
unsupervised learning, it is hard to validate the results without having an exact
description of the expected outcome. This shortcoming of unsupervised machine
learning, cold have been mitigated, if the methodology would have been validated
using also simulated sequences with known number of subsequences and known
structure of these subsequences.

9.4.3 Assess the performance of real time applications

The proposed methodology is designed with real-time applications in mind. However
the main focus in thesis is the parameterization of the algorithms before these are put
to use in the field. In the case study too, the methodology is applied on the sample
data on off-line mode. To have a full assessment of the methodology, this should be
tested in an on-line setting. Such a test would give information on how well the
parameterized algorithms perform on real time data in terms of correctness and
efficiency. The learning from this test can be used for recommendations to improve
the proposed methodology.

9.5 Recommendations for future research

The problem of reducing the size of traces and transform them into sequences of point
representations allowed the identification of some new interesting aspects of the
domain that can be explored. Here some of the interesting topics are listed.

9.5.1 Designing the logging mechanism

The relationship between the logging mechanism and traces is important. The amount
of sensing points that the mechanism has is decisive for the traces. Anything that is
not covered by the sensing network remains invisible for later analysis. In addition to

 170

that the logging mechanism has a strong effect on the formation of the subsequences.
An interesting research subject is to provide a framework for designing an effective
logging mechanism with a dedicated logging format and performance that can cover
all critical components and can provide data sequences that can be processed easily.
Such a framework can make use of system Failure Mode and Effects Analysis
methods as input for designing an effective sensing network. Data recording protocols
could provide data sequences with compacts subsequences and reduced number of
redundant entries.

9.5.2 Integration with information systems for real time
applications

An implementation of the methodology proposed here would be part of an integrated
information system that would cover the entire area from the front-end system data
recording and collection methods to the back-end of information provision for
supporting decision making for system availability management. The design of such a
system is challenging. It would make use of state of the art information system
technology and business requirements to provide an end-to-end solution. The
proposed methodology would be one of the core engines in such a system.

9.5.3 Define and refine the range analytical methods that can be
applied on information from traces.

The focus for analysis using information from traces was put in this thesis on
availability modeling and discovery of association rules. These two methods where
used as examples to illustrate the use of traces in decision making on availability
management. A review on the area of availability management problems can reveal a
wide range of analytical problems that can benefit from traces.

 171

References
[Air08] Airport International, July 2008, Heathrow T5 Losing 900 Bags a Day,
Airport News

[Ana95] Anand S.S., Bell. D.A., Hughes J.G., 1995, The role of domain
knowledge in data mining, 4th Int’l. ACM Conf. on Information and Knowledge
Management, pp. 37-43

[And95] Anderson R., 1995, Software system for automatic parameter logging
on Philips SL20 linear accelerator, Medical and Biological Engineering and
Computing, vol. 33, pp. 220-222

[Ans89] Ansell J.I., Phillips M.J., 1989, Practical problems in the statistical
analysis of reliability data, Applied Statistics, vol. 38, no. 2, pp. 205-247

[Ant01] Antunes C.M., 2001, Temporal data mining: An overview, presented at
the Workshop on Temporal Data Mining With the Int. Conf. Knowledge Discovery
and Data Mining,

[Arl90] Arlat J., Aguera M., Amat L., Crouzet Y., Fabre JC., Laprie JC.,
Martins E., Powell D., 1990, Fault Injection for Dependability Validation: a
Methodology and Some Applications. IEEE Trans. Software Engineering, vol. 2, pp.
166-182

[Ars00] Arslan A., Egecioglu Ö., Efficient algorithms for normalized edit
distance, Journal of discrete algorithms, vol. 0, no. 0, pp. 1-18

[Asi98] Asiedu Y., Gu P., 1998, Product life cycle cost analysis: state of the art
review, International journal of production research, vol. 36, no. 4, pp. 883-908

[Ave98] Aven T., Jensen U., 1998, Stochastic models in reliability, Springer
Verlag, New York

[Bav09] Bavaud F., 2009, Information theory, relative entropy and statistics,
chapter in book: Formal Theories of information, Springer-Verlag, Berlin, pp 54-78

[Bel] Bellec J. H., Kechadi M.T, Carthy J., Performance Evaluation of Data Mining
Techniques of Alarms Analysis, Internal Report, School of Computer Sciences &
Informatics, University College Dublin, Belfield, Ireland

[Ben04] Bendixen M., Bukasa K. A., Abratt R., 2004, Brand equity in business
to business market, Industrial marketing management, vol. 33, no.5, pp. 371-380

[Ben80] R. Benjamin, 1980, Some philosophical aspects of signal processing,
Communications, Radar and Signal Processing, IEE Proceedings F ,Vol. 127, No. 2,
pp. 67-75

[Bha03] Bharatendra R., Nanua S., 2003, Hazard rate estimation from
incomplete unclean warranty data, Reliability Engineering and Systems Safety, vol.
81, pp. 79-92

[Bla06] Blanchard B.S., Fabrycky W.J., 2006, Systems Engineering and
Analysis, New Jersey: Pearson Prentice Hall

[Bla98] Blanks H.S, 1998, The challenge of quantitative reliability, Quality and
Reliability Engineering International, vol. 14, pp. 167-176

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4644477

 172

[Cao05] H., Mamoulis N., Cheung D.W., 2005, Mining frequent spatio-
temporal sequential patterns, Fifth IEEE international conference on data mining,
Houston, TX, pp. 82–89

[Cao07] Cao H., Mamoulis N., Cheung D.W., 2007, Discovery of periodic
patterns in spatiotemporal, Knowledge and Data Engineering, IEEE Transactions on
knowledge and data engineering

[Car98] J. Carreira, H. Madeira, J. G. Silva, 1998, Xception: A technique for the
experimental evaluation of dependability in modern computers, IEEE Transactions on
Software Engineering, vol. 24, No.2, pp. 125–136

[Che69] Cheetham A.H., Hazel J.E., 1969, Binary (presence-absence) similarity
coefficients, Journal of paleontology, vol. 43, no. 5, pp. 1130-1136

[Che98] Chen X., Petrounias I., 1998, A framework for temporal data mining,
Proc. Ninth International Conference on database and expert systems applications,
DEXA '98, Vienna, Austria., Springer-Verlag, Berlin, Lecture Notes in computer
science 1460, pp796-805

[Che69] Cheetham A.H., Hazel J.E., 1969, Binary (presence-absence) similarity
coefficients, Journal of paleontology, Vol. 43, No. 5, pp. 1130-1136

[Cho04] Chopra S., Meindl P., 2004, Supply chain management, strategy,
planning, and operations, Pearson Education Inc., New Jersey

[Cho07] Choi C.B., Song S., Koffler G., Medhi D., 2007, Outage analysis of
university campus network, Proceedings of the 16th international conference on
computer communication and networks 2007

[Cho90] Choi G. S., Iyer R.K., Carreno V.,A., 1990, Simulated fault injection:
A methodology to evaluate fault tolerant microprocessor architectures., IEEE
Transactions on reliability. vol.,39, no. 4, pp. 486-491

[Cin05] Cinque M., Cornevilli F., Cotroneo D., Russo S., 2005, An Automated
Distributed Infrastructure for Collecting Bluetooth Field Failure Data, to appear in
Proc. of the 8th IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC’05)

[Coh03] Cohen W.W., Ravikumar P., Fienberg S.E., 2003, A comparison of
string distance metrics for name matching tasks, In Proceedings of the IJCAI-2003
Workshop on Information Integration on the Web (IIWeb-03)

[Coi86] Coit D.W., Dey K.A., Turkowski W.E., 1986, Practical reliability data
and analysis, Reliability Engineering, vol. 14, pp. 1-17

[Con99] Constantinescu C., 1999, Assessing error detection coverage by
simulated fault injection, Lecture notes in computer science, Vol. 1667, pp. 161-170

[Coo79] Cooper R. G., 1979, The dimensions of industrial new product success
and failure, The journal of marketing, vol. 43, no 13, pp. 93-103

[Cox62] Cox D. R., 1962, Renewal Theory, Methuen & Co. Ltd, UK

[Das97] Das G., Fleischer R., Gasieniec L., Gunopulos D., Karkkainen, J.
1997, Episode matching. In Proceedings of the 8th Symposium on Combinatorial
Pattern Matching (CPM ’97), Aarhus, Denmark, pp. 12–27

 173

[Dav79] Davies D. L., Bouldin D.W., 1979, A cluster separation measure, IEEE
transactions on patter analysis and machine intelligence. vol. PAMI-1, no. 2

[Djo95] Djoko S., Cook D. J., Holder L. B., 1999, Analyzing the benefits of
domain knowledge in substructure discovery, In 1st ACM SIGKDD Intl. Conference
on Knowledge Discovery and Data Mining, pp. 75-80

[Dua99] Duarte J.M., Santos J.B., Melo L.C., 1999, Comparison of similarity
coefficients based on RAPD markers in the common bean, Genetic and molecular
biology, vol. 22, no. 3, pp. 427-432

[Dub99] Dubois D., Prade H., 1999, Properties of measures of information in
evidence and possibility theories, Fuzzy sets and systems, vol. 100, pp. 35-49

[End01] Endrenyi J. et al, 2001, The present status of maintenance strategies
and the impact of maintenance on reliability, IEEE Transactions on power systems,
vol. 16, no. 4, pp. 638-646

[Fay96] Fayad U., Piatesky-Shapiro G., Smyth P., 1996, Knowledge Discovery
and data mining: towards a unifying framework, Proc. 2nd Int. Conf. on Knowledge
Discovery and Data Mining, Portland, OR, , pp. 82-88.

[Fer02] Ferring B. G., Plank A. E., 2002, Total cost of ownership models: an
exploratory study, The journal of supply chain management, vol. 38, no. 3, pp. 18-19

[Fer03] Ferreira M. C. , Levkowitz H. , 2003, Form visual data exploration to
visual data mining: a survey, IEEE Transactions on visualization and computer
graphics, vol. 9. no. 3, pp. 378-394

[Fra92] Frawley W. J., Piatesky-Shapiro G., Matheus C. J., 1991, Knowledge
discovery in databases: an overview, in G. Piatetsky-Shapiro and W. J.Frawley (eds.),
Knowledge Discovery in Databases, AAAI/MIT Press, pp. 1-27

[Gai93] Gaines B.R., 1993, Modeling practical reasoning, International journal
of intelligent systems, vol. 8, pp. 51-70

[Gow86] Gower J.C., 1986, Metric and Euclidean properties of dissimilarity
coefficients, Journal of classification, vol.3, pp. 5-48

[Gre01] Greco S.,Masciari E.,Pontieri L., 2001, Combining inductive and
deductive tools for data analysis, AI communications, vol. 14, pp. 69-82

[Gri67] Grizzle J.E., 1967, Continuity correction in the chi-square-test for 2x2
tables, The american statistician, vol. 21, pp. 28-32

[Gu03] Gu W., Kalbarczyck Z., Iyer R.K., Yang Z., 2003, Characterization of
Linux Kernel Behavior under Errors, Proceedings of the 2003 International
Conference on Dependable Systems and Networks, IEEE, 22 -25 June

[Ham03] Hamilton J., 2003, Active server availability feedback, Proceedings for
the 2003 CIDR Conference

[Ham93] Hampton J.A., 1993, Prototype models of concept representation in In
I. Van Mechelen, J. A. Hampton, R. S.Michalski, & P. Theuns (Eds.), Categories and
concepts: Theoretical views and inductive data analysis, London: Academic Press. pp.
64-83

[Han92] Hansen J.P., Siewiorek D.P., 1992, Models for time coalescence in
event logs, Proc. 22nd Int'l Symp. Fault-Tolerant Computing (FTCS-22), pp. 221-227

 174

[Han00] Hand D.J., Blunt G., Kelly M.G., Adams N.M., 2000, Data mining for
fun and profit (with discussion), Statistical Science, vol.15, pp. 111-131.

[Han88] Hansen J., 1988, Trend Analysis and Modeling of Uni/Multi-Processor
Event Logs, Master’s Thesis, Carnegie-Mellon University, Pittsburgh, PA

[Haw81] Hawkins D., 1981, An analysis of expert thinking, International journal
of man machine studies, Vol. 18, pp. 1-47

[Ho94] Ho Y.C., 1994, Abduction? Deduction? Induction? Is there a logic of
exploratory data analysis?, Annual meeting of American educational research
association, New Orleans, Louisiana

[Hol06] E. Hollnagel, D.D. Woods, N. Leveson, 2006, Resilience Engineering
Concept and Precepts, TJ International Ltd, Padstow, Cornwall, United Kingdom

[Hsu97] Hsueh, M.C., Tsai, T. K., Iyer, R. K., 1997, Fault injection techniques
and tools. IEEE Computer, vol. 4, pp. 75-82

[Hub06] Hubert L., Arabie P., Meulman J., 2006, the structural representation of
proximity matrices with Matlab, Society for industrial and applied mathematics,
Philadelphia

[ISO01] ISO/IEC Standard 9126-1, Software Engineering – Product Quality –
Part 1 : Quality Model, ISO Copyright Office, Geneva, June 2001

[Iye00] Iyer R. K., Kalbarczyk Z., Kalyanakrishnam M., 2000, Measurement-
Based Analysis of Networked, System Availability. Performance Evaluation Origins
and Directions, Ed. G. Haring, Ch. Lindemann, M. Reiser, Lecture Notes in Computer
Science, 1769, Springer Verlag

[Iye82] Iyer R.K., Rosetti D., Hsueh M.C., 1986, Measurement and Modeling
of Computer Reliability as Affected by System Activity, ACM Transactions on
Computer Systems, vol. 4, no. 3, , pp. 214-213

[Iye86] Iyer R.K., Young L.T., Sridhar V., 1986, Recognition of error
symptoms in large systems, Proceedings of 1986 ACM Fall joint computer
conference, Dallas, Texas, United States, pp. 797-806

[Jai88] Jain A.K., Dubes R.C., 1988, Algorithms for clustering data, Prentice
Hall Inc., New Jersey, USA

[Jay79] Jaynes E.T., 1979, Where do we stand on maximum entropy, in:
Levine R.L., Tribus M., The maximum entropy formalism, MIT Press

[Jay82] Jaynes E.T., 1982, On the rationale of maximum-entropy methods,
Proceedings of the IEEE, vol. 70, pp. 939-952

[Kal99] Kalyanakrishnam M., Kalbarczyk Z., Iyer R., 1999, Failure data
analysis of a LAN of Windows NT based computers, In Proc.of the Symposium on
Reliable Distributed Systems (SRDS’99),pp. 178–189, Washington - Brussels -
Tokyo, Oct. IEEE.

[Kan92] Kanawati, G., Kanawati, N., Abraham, J., 1992, FERRARI: A Tool
for the Validation of System Dependability Properties. Proc. 22nd FTCS Symposium,
pp. 336-344

[Kee78] Keen P. G. W., Morton M. S. S., 1978, Decision support systems: an
organizational perspective, Addison-Wesley publishing company

 175

[Kei96] Keim D.A, Kriegel, P.,1996 Visualization techniques for mining large
databases: A comparison, IEEE Transactions on knowledge and data engineering, vol.
8.,no6. pp. 923-936

[Kei01] Keim, D.A., 2001, Visual exploration of large data sets,
Communications of the ACM, vol. 44., no. 8, pp. 38-44

[Kli87] Klir G.J., 1987, Where do we stand on measures of uncertainty,
ambiguity, fuzziness, and the like?, Fuzzy sets and systems, vol. 24, pp. 141-160

[Lan69] Lancaster H.O., 1969, The Chi-squared distribution, John Wiley &
Sons, New York

[Lap00] Lapierre J., 2000, Customer perceived value in industrial contexts,
Journal of business & industrial marketing, vol. 15, no. 2/3, pp122-145

[Law92] Lawless J.F., Kalbfleisch J.D., Some issues in the collection and
analysis of field reliability data, in: J.P.Klein, P.K. Goel (Eds.), 1992, Survival
Analysis: State of the Art, Kluwer, Amsterdam, pp. 141–152.

[Laz92] Lazar A. A., Wang W., Deng R., 1992, Models and algorithms for
network fault detection and identification: A review, In ICC

[Lev01] Levine E., Domany E., 2001, Resampling method for unsupervised
estimation of cluster validity, Neural computation, vol. 13, pp. 2573-2593

[Lev66] Levensthein V.I., 1966, Binary codes capable of correcting deletions,
insertions and reversals, Soviet phys. Dokl., vol. 10 , no. 8, pp. 707-710

[Lim08] Lim C., Singh N., Yajnik S., 2008, A log mining approach to failure
analysis of enterprise telephony systems. In Proc. DSN

[Loh00] Loh S., Wives L. K., de Oliveira J. P. M., 2000, Concept-based
knowledge discovery in texts extracted from the web, SIGKDD Explorations, vol. 2,
no. 1, pp. 29-39

[Ma99] Ma S., Hellerstein J.L., 1999, Ordering categorical data to improve
visualization, Proceedings IEEE symposium on information visualization

[Ma01] Ma S., Hellerstein J.L., 2001, Mining partially periodic event patterns
with unknown periods, Proceedings 17th International Conference on Data
Engineering

[Man97] Mannila H., Toivonen H., Verkamo A.I., Discovery of frequent
episodes in event sequences, Data mining and knowledge discovery, vol. 1, no. 3, pp.
259-289

[Mar02] Mardsen E., Fabre JC. Arlat J., 2002, Dependability of CORBA
systems: Service characterization by fault injection, 21st IEEE Symposium on reliable
distributed systems, pp. 276-285

[Mar05] Markeset T., Kumar U., 2005, Product support strategy: conventional
versus functional product, journal of quality in maintenance engineering, vol. 11, no.
1, pp. 53-67

[Mar93] Marzal A., Vidal E., 1993, Computation of normalized edit distance
and applications, IEEE Transactions on pattern analysis and machine intelligence, vol.
15, no. 9, pp. 926-933

 176

[Mat93] Matheus C.J., Chan P.K., Piatesky-Shapino G., 1993, Systems for
knowledge discovery in databases, IEEE Transactions on knowledge and data
engineering, vol. 5, no. 6, pp. 903-913

[Mil85] Milligan G.W., Cooper M.C., 1985, An examination of procedures for
determining the number of clusters in a data set, Psychometrica, Vol 50, no. 2, pp.
159-179

[Mis06] Mishra K., Trivedi K. S., 2006, Model based approach for autonomic
availability management. In Proc. Int. Symposium on Service Availability, ISAS,
Helsinki, Finland

[Moj75] Mojena R., 1975, Hierarchical grouping methods and stopping rules:
An evaluation, The Computer Journal, vol.20, pp. 359-363

[Mor90] Moran P., Saffney P., Melody J., Condon M., Hayden M., 1990,
System Availability Monitoring,” IEEE Trans. Reliability, vol. 39, no. 4, pp. 480-485

[Mud02] Mudambi S., 2002, Branding importance in business to business
markets: There buyer clusters, Industrial marketing management, vol. 31, pp. 525-533

[Mur 95] Murphy B., Gent T., 1995, Measuring System and Software Reliability
using an Automated Data Collection Process, Quality and Reliability Engineering
International, vol. 11, pp. 341–353

[Oli03] Olivia R., Kallenberg R., 2003, Managing the transition from products
to services, International journal of service industry management, Vol. 14, pp. 160-
172

[Öne10] Öner K.B., 2010, Optimal reliability and upgrading decisions for
capital goods, Proefschrift, University printing office, Eindhoven

[Pav04] Pavola S., 2004, Abduction as a logic and methodology of discovery:
the importance of strategies, Foundation of Science, vol. 9, pp. 267-283

[Pat09] Patterson P.G., Spreng R. A., 1997, Modeling the relationship between
perceived value, satisfaction and purchase intentions in a business-to-business, service
context: an empirical examination, International journal of service industry
management, vol. 8, no. 8, pp. 414-434

[Pei34/60] Peirce C.S., 1934/1960, Collected papers of Charles Sanders Peirce,
Cambridge: Harvard University Press

[Pet03] Petkova V., 2003, An analysis of field feedback in consumer
electronics industry, PhD thesis, Universiteitsdrukkerij Technische Universiteit
Eindhoven

[Phi06] Philips Medical Systems Nederland B.V., 2006, Software Architecture
Specification Rocket C, version 0.4

[Pro00] Prodromidis A., Chan P., Stolfo S., 2000, Meta-learning in distributed
data mining systems: Issues and approaches. In H. Kargupta and P. Chan, editors,
Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press,
Cambridge, MA

[Qua00] Quach N., 2000, High Availability and Reliability in the Itanium
Processor, IEEE Micro, vol.20, no.5, pp. 61-69.

[Reu10] Reuters, Sep 2010, Dutch medical isotope reactor to restart

 177

[Rod02] Roddick J.F., Spiliopoulou M., 2002, A survey of temporal knowledge
discovery paradigms and methods, IEEE transaction on knowledge discovery and data
engineering, vol. 14, no. 4, pp. 750-767

[Rou87] Rousseeuw P.J., 1987, Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis, Journal of computational and applied mathematics,
vol. 20, pp. 53-56

[Sha48] Shannon C.E.,1948, A mathematical theory of communication, Bell
System Techn. Journal, vol. 27, pp. 379-423, 623-656,

[Sha76] Shafer Glenn, 1976, A mathematical theory of evidence, Princeton
University Press, Princeton, New Jersey

[She94] Shen W.M., Mitbander B., Ong K., Zaniolo C., 1994, Using
Metaqueries to Integrate Inductive Learning and Deductive Database Technology, In
Proc. AAAI'94 Workshop Knowledge Discovery in Databases (KDD'94), pp. 335-
346, Seattle, WA

[Sim05] Simache C., Kaâniche M., 2005, Availability assessment of
sunOS/solaris unix systems based on syslog and wtmpx log files: A case study, In
Pacific Rim Intl. Symp. on Dependable Computing, pages 49–56. IEEE Computer
Society

[Sim96] Simoudis E., 1996, Integrating inductive and deductive reasoning for
data mining, Advances in knowledge discovery and data mining, AAAI Press,
London

[Tal99] Talagala N., Patterson D., 1999, An Analysis of error behaviour in a
large storage system, In the workshop on fault tolerance in parallel and distributed
systems

[Tel08] The Telegraph, February 2008, Heathrow engulfed by baggage chaos

[Tha96] Thakur A., Iyer R., 1996, Analyze-NOW--an environment for
collection and analysis of failures in a network of workstations, IEEE Transactions on
Reliability, R46(4)

[The06] Theodoridis S., Koutroumbas K., 2006, Patter Recognition Third
edition, Academic Press, London, UK

[Tie00] Tierney B., Crowley B., Gunter D., Holding M., Lee J., Thompson M.,
2000, A monitoring sensor management system for grid environments, In Proc. 9th
IEEE Symp. on High Performance Distributed Computing, pp. 97–104

[Tri08] Trivedi K., Ciardo G., Dasarathy B., Grottke M., Rindos A., Matias R.,
Vashaw B., 2008, Achieving and Assuring High Availability, Proc. 13th IEEE
Workshop on Dependable Parallel, Distributed and Network-Centric Systems/22nd
IEEE International Parallel & Distributed Processing Symposium

[Tsa83] Tsao M.M., 1983, Trend Analysis and Fault Prediction, Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, PA

[Van88] Vandermerwe S., Rada J.,1988, Servitization of Business: Adding
value by adding services, European management journal, vol. 6, no. 4, pp. 314-324

[Vid88] Vidal E., Cascuberta F., Benedi J. M., Lloret M.J., Rulot H., 1988, On
the verification of triangle inequality by dynamic time warping dissimilarity
measures, Speech Communication, vol. 7, pp. 67-79

 178

[Vro10] K. Vrotsou, 2010, Everyday mining, Exploring sequences in event
based data, Dissertation No. 1331, LiU-Tryck, Linköping, Sweden

[Wag74] Wagner R.A., Fischer M.J., 1974, The string-to-string correction
problem, Journal of the association for computing machinery, vol. 21, no. 1, pp. 168-
173

[War08] Warrens M.J., 2008, On association coefficients for 2x2 tables and
properties that do not depend on the marginal distributions, Psychometrica, Vol. 73,
No. 4, pp. 777-789

[Wei90] Wein A., Sathaye A., 1990, Validating complex computer system
availability models, IEEE Transactions on Reliability, vol. 39, no. 4, pp. 468–479

[Woo97] Woodward D. G., 1997, Life cycle costing-theory information
acquisition and application, International Journal of project management, vol. 15, no.
6, pp. 335-344

[Yam05] Yamanishi K., Maruyama Y., 2005 Dynamic syslog mining for
network failure monitoring, Proceedings 11th ACM SIGKDD, International
Conference on Knowledge Discovery and Data Mining, ACM Press, New York, pp.
499-508

[Yan00] Yang J., Wang W., Yu P.S., 2000, Mining asynchronous periodic
patterns in time series data, Proceedings of the 6th international conference on
knowledge discovery and data mining

[Yuj07] Yujian L., Bo L., A normalized Levenshtein distance metric, IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1091-
1095

The product life cycle
The approach requires all phases of PLC to be taken into account when developing
the product and to be incorporated into all processes from the very first identification
of customer needs until the physical product is realized and is ready to be sold. This
approach helps in reducing life cycle costs as well as lead time of the PSS readiness.
This is achieved by looking at product requirements from a long term, life cycle
perspective.

 179

 The product life cycle Appendix A
To outline the approach the most basic phases of PLC need to be identified.

 PLC-Concept-Preliminary Design Phase (PDP)
During the initial stages of the PDP, the product concept is defined in respect to
the customer needs in the form of requirements: operational requirements (when
the product is in operation) e.g. functionality, capacity, compatibility, meta-
operational requirements (for the product to be in operation) like reliability,
maintainability, flexibility and other performance requirements as operating cost
or environmental compliance. One of the objectives of this stage is to define the
system specifications on top level and the product base-line, which will serve as
the basis for further product development.

 Detailed Design and Development (PDP)

In a top-to-bottom approach technical requirements on system level are
decomposed into all necessary hierarchical levels of the system's architecture.

 Production/Assembly
Material requirements have been established and suppliers have been identified.
The production/assembly processes has to satisfy market demands with products
that meet specifications.

 Utilization Phase
The product is in its economic useful life. The product needs to meet its TPMs and
the PSS has to ensure that the product fulfills this requirement. However changes
can be still introduced into the product's design either to improve the product's
functionality or to correct design flaws if this is necessary.

PDP

PLC

Product Retirement, Phase-out, and

Disposal

MLC

Conceptual/
Prelimenary

Desing

Detail Design
and

Development

Production

Manufacturing
Configuration

Design

Support and
Maintenance

Product Support
Configuration Design

Acquisition Phase Utilization Phase

SLC

DLC

Production
Operations

Product Use, Phase-
out and Disposal

Figure A-1: Product life cycle together with manufacturing, support and disposal life cycle

 180

 PLC – Phase Out and Disposal
In this phase the product becomes obsolete and it is being replaced by newer
versions. Product parts may be reused or will be disposed according to
environmental regulations. Together with it the SLC comes to an end.

The first three phases form the product development process (PDP). The PDP together
with the production phase is known as product creation process (PCP).

The complete PLC can be segmented into two phases, the acquisition phase where the
OEM is responsible for all product related activities and the utilization phase where
product management is shared between customer and OEM or third parties.

 181

 The measure of merit
LM for the Appendix B

resampling method [Lev01]
To make the comparison of the membership of data points between the clustering
results R

pC and 'R

pC , both results need to be represented in a suitable manner. The

clustering result R

pC is represented with the help of a N N cluster connectivity
matrix pT defined by:

1

0ijpT
points i and j belong to the same cluster

otherwise
(B-1)

The connectivity matrix gives a very clear indication of the membership of data points
in a cluster. Data points that belong to the same cluster are indexed with the value
one, otherwise they a valued with zero. All elements on the diagonal are valued by
definition with one (Table B-1). Assume the clustering result R

pC of the data sequence

1 2 9(),(),..., ()S t t t for the value p for the cutoff parameter. The clustering result is
shown in Table B-1. It can be seen that the clustering result contains four clusters:

1 1 2(,)C t t , 2 3 4 5(, ,)C t t t , 3 6 7(,)C t t , 4 8()C t and 5 9()C t . The membership of
the data points to the same cluster is indicated by the values of one in the upper
diagonal of the matrix.

Table B-1Example of connectivity matrix for original sequence S

The original sequence S is sampled randomly k times producing a set of secondary
sequences ' ' ' '

1 2, ,..., kS S S S . For the resampling of S , a "dilution factor" f is used,
that is the probability of sampling a data point in the sequence (0 1f). Because of
the dilution the average distance between two points in 'S is scaled upwards by a
factor f in relation to S . To compensate for that scaling, every subsequence 'S is

 1t 2t 3t 4t 5t 6t 7t 8t 9t

1t 1 1 0 0 0 0 0 0 0

2t 1 0 0 0 0 0 0 0

3t 1 1 1 0 0 0 0

4t 1 1 0 0 0 0

5t 1 0 0 0 0

6t 1 1 0 0

7t 1 0 0

8t 1 0

9t 1

 182

processed by the clustering algorithm but this time using adjusted cutoff value p

f
. A

set of cluster results ' ' ' '
1 2{ , ,..., }R

p p p pkC C C C is obtained by clustering every '
iS in 'S .

Every clustering result in ' ' ' '

1 2{ , ,..., }R

p p p pkC C C C is represented also by the
corresponding connectivity matrix resulting to a set of connectivity matrices

' ' ' '
1 2{ , ,..., }p p p pkT T T T , where '

pT is a fN fN matrix.

In this example a dilution probability of 0.5f is used on S . Approximately half of
the data points in the original data sequence are left out when resampled. In Table B-2
the clustering result of the resampling data sequence 'S is shown with its connectivity
matrix '

pT . For clarity the data points that are excluded in the resampling are marked
with a red cross. Practically they do not exist in 'S anymore, but are included in the
matrix to demonstrate the method. It can be seen that data points 2 4 8 9, , ,t t t t are
excluded in 'S . As a consequence the clusters now present in the clustering result are

1 1()C t , 2 3 5(,)C t t , 3 6 7(,)C t t . The particular interest here lies with cluster 2C . In
fact the data points 3t and 4t will end up in the same cluster only if p is large enough
to allow the algorithm to cluster these points together. Only then the data points that
where in the same clusters in R

pC will remain in the same clusters also in 'R

pC (One
data point encircled in green). If p is not large enough, the two data points will be
assigned to different clusters and the original segmentation of the data sequence S will
not be matched. Data points that do not exist in the resampled data sequence do not
interfere with the measure of merit.

Table B-2Example of connectivity matrix for resampled sequence 'S

The measure of merit LpM is computed by averaging the agreement between the

connectivity matrix pT of the original date sequence S and '
pT of the subsequences '

pS
over all k.

 1 1 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0
 1 1 1 0 0 0 0
 1 1 0 0 0 0
 1 0 0 0 0
 1 1 0 0
 1 0 0
 1 0
 1

x x x
x

x

x

x

x x

x

x

x

x x x

 183

 The agreement between pT and '
piT is expressed by

',
()

ij mij
L p T T

k

M (B-2)

The number of data points that are members of the same cluster in R

pC and in 'R

piC is
expressed by ',ij mij

T T
. This is averaged over all pairs of points ij that are members of

the same cluster in the original clustering solution R

pC and survived the resampling.

The operation is indicated by ',p pmij ij
T T

 . Another averaging operation is performed

over all k and LpM is derived for a given value of p .
LM is taking values 0 1LM ,

with 1LM being the perfect score for total agreement.

 184

 Definition of matrices P , CT and the test Appendix C

statistic ˆ

 The proximity matrix P is a measure of the internal structure of the data
sequence S, and is given by:

(,)ij i jP d x x (C-1)

, where (,) | |i j i jd x x x x , the Euclidean distance between points
ix and jx .

 The dis-connectivity matrix for the clustering result C, CT is defined as follows:

1

0ijCT
points i and j belong to different clusters

otherwise
(C-2)

for , 1,2,...,i j N

 The correlation between the P and CT , is given by:
1

1 1
(1/) ((,))((,))

ˆ
C

C

N N

P C T
i j i

P T

M P i j T i j

 (C-3)

where (1) / 2M N N is the number of pairwise elements in P or CT (the
statistic is using the upper diagonal elements of the matrices).

The mean value

P
 for P is given by:

1

1 1
(1/) (,)

N N

P

i j i

M P i j (C-4)

and variance 2
P :

1
2 2 2

1 1
(1/) (,)

N N

P P

i j i

M P i j (C-5)

Correspondingly for CT the mean
CT

1

1 1
(1/) (,)

C

N N

CT
i j i

m
M T i j

M
 (C-6)

where m the number of pairs of points that belong to different clusters
and variance 2

CT :
1

2 2 2
2

1 1

()(1/) (,) ()
C

N N

CT
i j i

m m M m
M T i j

M M
 (C-7)

The ˆ statistic takes values ˆ0 1, with ˆ 1being the perfect match between
matrices P and CT .

ˆ

ir
is calculated for every

ir
C in the same way producing the set.

 185

 Agglomerative clustering algorithm Appendix D

The input is the collection of tags 1
RLC C . At this point, each tag is considered to

form one cluster. At the first iteration of the algorithm two clusters
aC and

bC ,
, {1,2,3,..., },a b M a b , are merged into one new cluster 1MC . This results to a

new clustering result 1LC with 1M number of clusters. The process continues until
the result 1MLC is obtained where one single cluster 2 1MC contains all tags.

Another input to the clustering algorithm is the distance matrix 1 1()H H LC . 1H is a
M M matrix containing the pair wise distances between of tags in 1LC . At each
iteration, when two clusters are merged into one the distance matrix is updated. The
matrix then decreases in size by one unit in both dimensions by deleting the rows and
columns of the clusters

aC and
bC that where merged and by inserting a new row and

one column for the newly created cluster qC . The distance between the newly created
cluster qC and any other cluster

sC in qLC is given by:

(,) max((,), (,))q s a s b sd C C d C C d C C (0-3)

The pseudo code for the agglomerative complete link algorithm is shown below

 1q
 1

RLC C

 1 1()H H LC

o for 1 1q to M

 Find
iC and jC such that (,) min()i j q

i j
d C C LC

 Merge
iC and jC into 1qC and form

1 ({ , }) { }q q i j qLC LC C C C

 Produce 1qH using the function
(,) max((,), (,))q s i s j sd C C d C C d C C

 186

 187

Curriculum Vitae

Kostas Kevrekidis was born on the 9th of February1976 in Kavala, Greece. After
receiving in 2002 his Bachelor’s degree in Automation Engineering at the Technical
Institute of Thessaloniki in Greece, he graduated in 2005 with a Master’s degree in
Quality Management from the School of Science of the University of the West of
Scotland in Paisley, Scotland. In 2005 he started a PhD project at the Eindhoven
University of Technology, of which the results are presented in this dissertation. Since
2010 he is employed as a senior reliability engineer at TomTom International BV.

	Acknowledgements
	Summary
	Table of Contents

	List of Abbreviations

	1.
 Introduction
	2. Knowledge discovery framework for traces
	3. Exploration and preparation of system traces
	4. Detection of subsequences in sequences
	5. Tagging of subsequences and tag matching
	6. Utilizing traces from multiple systems

	7. Case study
	8. Knowledge discovery using transformed traces
	9. Conclusions and recommendations for future research

	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Curriculum Vitae

