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Summary 
 
Computer-based products are capable of recording and sharing information on the 
state of a product and its components, while the product is in operation. That 
information is acquired in the form of traces. Traces are a valuable source of 
information for identifying the causes of failures in computer-based products.  
Professional systems are such products, characterized by their large size and high 
complexity. There is a strong requirement for these systems to remain functional for 
long periods of time. These products are being developed and maintained with certain 
availability targets in mind. Information on the failures that these systems experience 
in the field can help to manage the resources effectively and meet the availability 
targets.  
 
The traces generated by professional systems that are operating in the field, here 
referred to as system traces, have the potential of becoming an important source of 
information to support effective availability management. On operational level, traces 
can guide corrective maintenance activities by providing information on the root 
cause of failures. On planning level, traces can help to identify the main causes of 
system unavailability, which can lead to improvements in the system design or the 
preventive maintenance plan. In order to use system traces for this purpose, it is 
necessary to identify which of the many records in a long sequence of traces represent 
a distinctive physical event of interest, e.g. system failure.    
 
However, because of the multiplicity of the components in these systems, as well as 
the long operating times, the amount of traces that is produced is beyond the capacity 
of human processing. In this thesis, a system trace transformation methodology is 
proposed that enables the systematic reduction of the data size of system traces 
without losing the relevant information that is useful for effective availability 
management. The data size reduction is achieved in two steps: 

1- Clustering of raw traces into representations of single physical event instances; 
2- Clustering of the latter representations into new representations of instances of 

physical event types. 

 

The proposed methodology is generic and does not make use of system type specific 
information to drive the data size reduction. The methodology relies on unsupervised 
data mining techniques that operate on the features of the data structures found in 
system traces. The performance of the methodology is measured by the compression 
ratio, i.e. the ratio of the number of data points needed to convey the information after 
compression over the number of data points needed to convey the same information 
before the compression.  
 
The research is organized in three main sections. In the first section the features of the 
data structures in system traces are explored. Three different approaches, namely 
domain experts, experimentation and graphical analysis, are used to increase the 
knowledge on the feature characteristics of the data structures found in system traces. 
The second section is utilizing the knowledge on the feature characteristics and 
proposes a set of methods and tools to systematically reduce the data size by 
organizing the data structures in the traces appropriately. The proposed methods have 
been developed to tolerate variation in the feature characteristics of data structures 
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when applied in the field. The third section is a case study. The proposed 
methodology is applied to a sample of system traces collected by X-ray scanners that 
are operating in the field. The case study is used to demonstrate the data compression 
that is achieved by applying the methodology on raw system traces and to assess the 
methodology’s reliability. In the case study it is shown that the data compression ratio 
can exceed the order of 0.01, i.e. 100 times fewer data points are needed to convey the 
same amount of information as in the original sequence.  
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Chapter 1 
 

1 Introduction 
Advanced professional systems are products that are used in the core processes of 
businesses. Examples of such products are medical systems, manufacturing or 
assembly machinery, baggage handling systems in airports, professional printers, etc. 
These systems are capital producing, they play an integral role in the productivity of 
businesses by affecting the yield of consumer goods or services. The interruption of 
normal operation of these systems, planned or unplanned, can have serious 
consequences not only for the health of the businesses but also for wider parts of 
society.  
 
Recently an unexpected shutdown of a Canadian nuclear reactor (Chalk River, 
Ontario) that coincided with the scheduled maintenance of the Petten nuclear reactor 
in the Netherlands caused a worldwide shortage of medical isotopes [Reu10]. In a 
different example, system fault of the baggage system of a new  terminal in Heathrow 
airport caused thousands of bags being stranded and flights being cancelled and 
delayed [Air08] [Tel08].   
 
Costs accompanying such interruptions derive mainly from the loss of productivity, 
penalties imposed by breaking contracted deliverables and the cost of repair and spare 
parts. Original equipment manufacturers (OEMs) that produce these systems are 
aware of how important it is for their products to deliver their functionality 
uninterrupted. Therefore availability is perceived as a key performance indicator of 
these products. To provide products with high availability two attributes of the 
product's performance are considered: 
 

 The frequency of system failures 
 The period of time the system is unavailable as a result of a failure 

 
To increase availability, one or both of these attributes has to be reduced. Reduction 
of system failures is achieved during design by using highly reliable components and 
by redundancy of critical components. Both tactics are considered during the design 
phase of the system. However, even when both design tactics are considered, 100% 
system reliability is practically impossible to achieve. Failures occurring during 
operation cannot be entirely avoided.  These failures have to be handled by 
maintenance operations taking place in the field.   
 
In the event of unexpected failure corrective maintenance is required. Corrective 
maintenance can be a time consuming activity because it involves failure diagnosis, 
spare part availability and logistics. To overcome the effects of unexpected 
downtimes, OEMs and businesses have turned to preventive maintenance policies. 
Under these policies, systems and their components are maintained on a regular basis 
before any failure occurs. This proactive approach has the advantage that the 
maintenance activity can be planned and prepared to reduce downtime to the 
minimum required.  
 



 

 2 

In both cases, corrective or preventive maintenance activities are a result of the 
awareness about the system's state. Awareness of the system's state is created with the 
help of some form of signaling function. For corrective maintenance, that awareness 
can come for example from an audio alarm going off if the system malfunctions, or 
simply from the operator who detects the malfunction.  For preventive maintenance, 
the awareness is made possible with the use of system monitoring techniques. These 
techniques allow the monitoring of the state of the system and its components. For 
example, information on the state of a component combined with engineering 
knowledge can help anticipate the component's failure. This technique is known as 
condition based maintenance. If a failure is anticipated, the component is replaced or 
repaired before that failure occurs and thereby system failure is avoided.  For both 
types of maintenance, the signaling of the components or system's state is used to 
decide what action to take to reduce system unavailability.  
 
For professional systems it is beneficial to avoid downtime due to system failure or 
maintenance altogether. In systems where much of the functionality is provided by 
software, engineers have implemented a protective tactic against failures, known as 
system resilience. System resilience describes the system's ability to either mitigate 
the effects of errors and confine the failure to retain as much as possible of the critical 
functionality, or to enable the system to recover from a failure as soon as possible 
back to its normal operating state as it was before the failure occurred. Whether the 
mechanism is error mitigation or failure recovery, engineers need to employ this 
solution where the system needs it most. Information on system failures can help 
engineers identify the functional areas of the system that need to become resilient.  
 
Whether it is to guide maintenance activities, to improve the components reliability, 
or to design resilience into the system, information on the failures of the system is 
valuable.  Such information can be obtained directly from the system. Computer-
based systems are capable of recording and sharing information on the state of the 
system and its components, while the system is in operation. That information is 
acquired in the form of traces. Traces are a human readable, text based data form that 
contains semantic information on component level. Traces can contain information 
about the operational status of components or processes. Traces also contain the time 
when the recording took place. They are produced during operating time and their 
digital format allows them to be shared via network connection in almost real time.  
 
Traces can also contain information about component failures and the recoveries that 
took place. For engineers this is a valuable source of information for understanding 
the system's behavior in relation to failures and recoveries. However, the extraction of 
such information from traces is not a trivial task. Due to the multiplicity of 
components and the running system processes, traces can contain a vast amount of 
data (thousands of entries) for a few hours of operating time. To manually inspect raw 
traces and identify instances of failures or recoveries is a time consuming exercise 
even when it is done for one system only. Sometimes it is necessary to inspect the 
traces from a fleet of systems to obtain a clear picture of a problem.    
 
To make the amount of data manageable, the volume of raw traces has to be reduced 
to the point where only the most relevant data is retained. Moreover, the remaining 
data should be provided in a format that allows the direct application of some of the 
analytical techniques that are used in availability management. The whole process has 
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to be automated and made as generic as possible, free from product specific 
dependencies.  

1.1 Motivation 

This thesis is entitled “An end-to-end data transformation process for increasing the 
information yield of system traces”. The methods presented here seek to 
systematically reduce the size of traces using pattern recognition techniques, without 
losing any of the essential original semantic information and to transform them into a 
data format suitable for analytical post processing. The analytical methods and tools 
that are used for post processing are out of the scope of this thesis. Nevertheless, 
certain categories of such methods, namely stochastic modeling and sequential data 
mining, are considered and used as a reference for setting the requirements for the 
format of the data that should derive from the transformation of raw traces.  
 
Since professional systems are in many cases managed in large numbers known as 
fleets, the combination of information from traces of multiple systems is being 
examined in the research.  
 
The models and techniques are developed with the help of traces sampled from 
systems that are operating in the field. These sample set is used as a learning ground. 
Abstract data characteristics derived from the learning set are used for the 
development of a model that can represent basic characteristics of system traces. This 
data abstraction assures that our methods are not product specific but are based on 
system trace generic patterns. The developed models and methods are demonstrated 
and assessed using a case study.     
  
The remainder of this chapter is organized as follows: first the concept of a system 
will be described. Then the importance of availability for professional systems is 
underlined in 1.3. In 1.4, the system engineering approach that is used to develop 
professional systems is described. The discussion includes how system availability is 
addressed during system design, and how fault resilience, and monitoring techniques 
are incorporated into that design. Also, in the same section, the role of the system 
environment in supporting the availability of the system is addressed and it is briefly 
described, how component state monitoring techniques are used to support the 
maintenance activities as well as the allocation of resilience. In section 1.6 current 
works on the area on the use of traces for system availability are discussed. Finally, in 
1.6.2 we present the objectives of this research regarding the transformation of traces. 
More specifics about the objectives of the transformation process will be given in 
Chapter 2. 
 
The research was carried out in cooperation with Philips Healthcare.   

1.2 The System 

The digital revolution brought by computer and information technology in the last 
thirty years had its impact on the design of capital goods. Most professional systems 
are now computer based, with data processing and storage capabilities. Software 
applications are to a great extent responsible for providing the system's functionality. 
Embedded software is controlling the operation of hardware components, and other 
software components are establishing the communication between hardware and 
software applications. Components are communicating with each other by passing on 
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digital information and signals. They provide the functionality efficiently by 
cooperating in a synchronized manner.  
   
The system is modeled as a collection of physical components (electrical, mechanical, 
mechatronic, software) which are controlled and coordinated by software to achieve 
the system function. A module or a subsystem is a collection of components put 
together to provide a certain type of service. A basic assumption of this thesis is that 
complex systems follow a modular design, with strong coherence of components 
within modules and week coupling between modules. This assumption is generally 
true for complex systems. These systems are designed in a modular fashion to allow 
reduction of complexity during development and allow easier maintenance in the 
field. This assumption has to hold for the methodology in chapter 5 to be applicable. 
In this thesis the software and hardware are treated on an equal basis. Later in the 
thesis, it will be shown how the fault injection experiment (chapter 3) induces faults in 
software and hardware components to determine how they affect the system as a 
whole and how they affect the traces that the system is producing. Additionally, in 
this thesis the system availability is directly linked to component and process 
availability. The failure and unavailability of the latter directly implies failure and 
unavailability of the former. The recovery of the component directly implies recovery 
of the system. This assumption applies particularly to core functionalities, where the 
failure of a component makes the system unable to provide its service as required and 
therefore be considered unavailable.   

1.3 Availability: key performance indicator for professional 
systems 

Availability is one of the most important performance aspects of professional systems 
because their operation is directly affecting business costs, throughput and quality. 
Availability is defined as the proportion of time that the system is operational. This 
section aims in underlying the importance of availability management of professional 
systems. The drawback of current data sources and the advantages of traces for 
supporting the decision making in the areas described in this section will be described 
in chapter 8.   

1.3.1 Life Cycle cost and Total cost of ownership 

The life cycle of the system is roughly divided into four phases in the following order: 
design & development, production, exploitation and disposal. Each phase has various 
types of costs associated with it. The cost of research and development are affecting 
the first phase and manufacturing costs the second. Utilization and maintenance costs 
are affecting the third and the costs of disposing the system come at the end of the life 
cycle. The cost throughout all phases is known as life cycle cost (LCC). More detail 
on the costs associated with each phase can be found in Blanchard et al. [Bla06]. 
 
The LCC that is paid by the owner of the system throughout its life cycle is known as 
total cost of ownership (TCO). Traditionally the customer is bearing the entire LCC. 
Design, development and manufacturing cost are included into the price of acquisition 
that constitutes part of TCO.  Utilization, maintenance and disposal are a part of TCO 
too.  
 



 

 5 

Studies have shown that 70% of TCO are due to downtime and maintenance costs, 
whereas downtime alone can account for 50% of TCO [Öne10] [Asi98]. Customers 
are becoming more and more aware of what effect system unavailability has on TCO, 
and are motivated to perform TCO analysis before they decide which system to 
purchase [Fer02].  

1.3.2 From product acquisition to product leasing  

The provision of service as a way of making business is becoming an increasingly 
interesting prospect for manufacturers. This model proposes customers paying for the 
functionality of the product and manufacturers being responsible for the continuous 
availability of that functionality [Mar05]. The model holds benefits for both customer 
and manufacturers: 
 

 Manufacturers can create substantial revenue from managing their installed 
base. Services have greater margins than products and services provide a more 
stable source of revenue as they are resistant to the economic cycles that drive 
investment and equipment purchases [Oli03]. 

 Services are more difficult to imitate, they provide opportunities for 
differentiation and competitive advantage for manufacturers [Van88].  

 Customers prefer acquiring the functionality than the physical product because 
this way they can reduce the TCO and their head count, and they can focus the 
attention on their core business. They also get access to technical system 
expertise and therefore can acquire improved service delivery and quality 
[Mar05]. 

 
Availability directly suggests functionality. For the above mentioned reasons OEMs 
are becoming very interested in providing to their customers systems with high 
availability.  

1.3.3 High availability is perceived as good quality 

The economic success of a product depends heavily on its quality. Eventually buyers 
will seek the brand with higher product quality [Mud02]. This is equally true for 
professional systems. Some of the aspects of customer perceived superiority of 
industrial products, which leads to product success is quality, reliability and 
availability [Coo79]. Moreover, product quality is a key element in winning customer 
loyalty. Product quality, perceived mainly as reliability and performance, is the main 
brand-equity-generating variable in the business to business (B2B) market [Ben04].  
Product quality, reliability and of course availability are therefore major competitive 
attributes of the product. 
 
Although availability is one of the main quality characteristics of professional 
systems, failures that relate to safety are for manufacturers more critical problems. In 
many cases manufacturers are legally bound to consider all possible safety issues that 
relate to the functionality of their systems. Solving a safety related problem would 
most certainly have a higher priority that improving availability. In this thesis the 
discussion is set on an availability centered basis; i.e. component failures that cause 
high system unavailability are ranked high in the list of problems to solve. Although 
in reality safety critical issues would top a list of availability related issues, in this 
thesis we treat safety critical issues as lack of availability.  
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1.4 Designing for availability  

Professional systems pose an engineering and economic challenge for OEMs. They 
need to fulfill customer needs by incorporating systematically, diverse technological 
knowledge into one economically sustainable and durable product solution.  

1.4.1 The System Engineering approach 

To engineer a professional system that fulfills customer requirements in a financially 
competitive manner, OEMs follow a system engineering approach [Bla06]. The 
approach takes requirements from all product life cycle (PLC) phases of the system 
into account and incorporates them in the design and development of the product 
(More detail about the PLC can be found in appendix A). Next to the system specific 
requirements, the system engineering approach also looks into the system support 
environment to identify components e.g. maintenance engineers, spare parts 
inventories, logistics, etc. on which the system's performance will depend. During the 
design and development phase the requirements of the system are considered together 
with the requirements of the support environment. The intention is to provide a 
system that can provide its functionality successfully during utilization, a support 
environment that can help sustain it, but also a system environment interaction that 
allows the best utilization of resources.  

1.4.2 Availability requirements addressed by the system 
engineering approach 

To fulfill system availability requirements, decisions regarding the frequency of 
system failures are addressed during the early stages of design and development.  The 
reliability of components and the level of redundancy play a key role in the frequency 
of system failures. Critical components are designed with high reliability and two or 
more are put in parallel configuration to ensure the availability of the delivered 
function. The level of reliability designed into the components and the amount of 
redundancy in the system is based on the tradeoff between the cost of reliability and 
the required level of system reliability. Although these design tactics have been 
proved to be effective in improving system reliability, it is not unlikely that once a 
system has been introduced into the field, it is discovered that some components do 
not meet their reliability requirements and are the cause of frequent system failures. 
Such a discovery is backed by component failure information collected from fielded 
systems.    

1.4.3 System resilience against failures 

Recently, another design tactic has been added to the set of techniques for enhancing 
system availability, namely system resilience. The principle of resilience is that in the 
event of a failure the mechanism put in place will either confine the effects of a 
component's failure or restore the system to its prior to the failure state as soon as 
possible.  
  
Resilience can be defined as "...the intrinsic ability of a system to maintain or regain a 

dynamically stable state, which allows it to continue operations after a major mishap 

and/or in the presence of continuous stress" [Hol06]. The concept emerged from the 
necessity and ability of organizations to anticipate exceptional events that can lead to 
accidents and mitigate their effect by taking appropriate action. This ability is 
particularly relevant for systems used in safety critical operations such as medical 
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intervention procedures on patients or air traffic control systems regulating the path of 
airplanes approaching and leaving the airport.    
 
The key element of resilience engineering is the early detection of exceptional events, 
such as signs of imminent failure, in order to make necessary adjustments to the 
system as early as possible. The earlier the adjustment takes place the smaller the 
adjustments need to be.  
 
Many professional systems have started to incorporate resilience engineering concepts 
into their design. When loss or degradation of the functionality is detected by an 
internal monitoring mechanism, the system initiates a “graceful degradation” process 
that limits the loss of its functionality. This way the system can continue to provide its 
core functionality without interruption of its operation, until the problem is addressed. 
Alternatively, if the failure cannot be contained and the system fails, internal recovery 
mechanisms can bring the system back to its functional state, by resuming the state of 
system prior to the failure. In software engineering the term is known as 
recoverability [ISO01]  
 
For engineers it is important to know where in the system to implement resilience and 
how effective these mechanisms are in dealing with failures. Resilience engineering is 
benefiting from digital technology, which provides the means to monitor these 
mechanisms and assess their effectiveness.  

1.4.4 System support environment preventive maintenance 

The system support environment's role in system availability is decisive. In the event 
of system failure (and where no recovery is possible) corrective maintenance is 
required. The duration of system downtime depends on several factors such as the 
responsiveness of the maintenance engineer, the ability to recognize, diagnose and 
isolate the failure quickly, the availability and delivery time of spare parts etc. No 
different than the product quality, service quality in the B2B market has similar 
impact on customer satisfaction and affects repurchasing decisions [Pat09]. Service 
quality can depend on pre agreed deliverables. One of the dimensions of service 
quality is the ability of the service supplier to respond quickly to a customer's problem 
and to do things right the first time [Lap00]. Manufacturers of professional systems 
make decisions on how to configure the support environment to provide efficient 
levels of service. To reduce the chances of unexpected failure and to avoid the 
drawbacks of corrective maintenance's, preventive maintenance policies are adopted. 
During preventive maintenance components are replaced proactively to reduce the 
probability of failure or the degradation of their functionality. Although for hardware 
preventive maintenance comes in the form of replacement or repair, for software 
based components preventive maintenance can be perceived as correcting a newly 
discovered fault in the code  and then uploading that fixed code version to all fielded 
systems before the failure actually occurs in any of those systems.  The support 
environment is in many cases responsible for deciding which preventive maintenance 
policies can yield the required levels of availability.   
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1.5 Monitoring the state of components with the help of 
traces 

To support the system design decisions and maintenance activities it is important to 
have information about the system operation on component level. Knowing where an 
error occurred, which components were affected, whether the system was able to 
recover or not, and how long the system was unavailable can guide the decision 
making on when, where and how to act. Corrective maintenance can be triggered by 
the signal of a failing component. The diagnosis that the field engineer has to perform 
can be guided by the semantic information that is collected by the monitoring 
mechanism. For preventive maintenance, information taken out from frequencies of 
component failures or condition monitoring techniques is paramount. An eminent 
failure can be anticipated by using the knowledge on how the component's state 
changes over time.  
 
To gain such information engineers rely on monitoring techniques. Next to direct 
visual inspection, engineering methods to monitor the level of vibrations, the pressure, 
the noise or temperature, or the chemical analysis of fluids, can help to gain insight in 
a component's state. For computer based systems these traditional condition based 
monitoring techniques are not applicable. The state of digital components and 
software cannot be monitored by external observation. Instead, the software of the 
system is capable of reporting events occurring in the components. These events are 
recorded in an event log, known as traces. Traces contain semantic information on 
component states, e.g. errors or recoveries. This information is recorded together with 
a timestamp containing the time of occurrence of the event.  
 
The monitoring and recording mechanism is embedded into the system's design. 
During design, “checkers” or “hooks” are put in place in the product’s software. 
Numerous checkers in the code target the behavior of a predetermined set of 
components. These sensing points are producing traces that contain information on 
the state of the components during operation. Traces are stored in the system and can 
be shared via a remote network connection. Sensing points can be added if that is 
deemed necessary to increase the capability to monitor a wider area of the system. 
However wider coverage comes with the cost of increasing the amount of data 
recorded. The information that is recorded in the traces can be used by engineers for 
post analysis to determine the background of certain events e.g. system failures or to 
help them understand the overall system performance.  
 
The analysis of traces by humans is labor intensive. The ability of the system to 
record traces rapidly, the large number of components in the system and the numerous 
hooks in the software result to long sequences of traces that can contain thousands of 
entries for few hours of operation. For humans to use traces to monitor the operation 
of systems, these sequences have to be reduced to a manageable size that contains 
only the information of interest.   

1.5.1 Analytical methods for assessing system availability 

The aim of this thesis is to prepare raw traces for analysis that seeks to improve the 
availability of the system. Firstly traces are used for failure diagnosis after a system 
failure. This use of traces is fundamental. The ability to use the information in the 
traces for failure diagnosis has to be retained after their transformation. Beyond this 
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use, in this thesis two types of analytical methods are considered.  Engineers can use 
these methods to determine if and where the system requires attention in order to meet 
its availability targets.  
 
The first of these methods is stochastic availability modeling. In stochastic availability 
modeling, densities of failure and repair/recovery times are modeled and used to 
analyze design, performance or maintenance scenarios. The result of the analysis can 
help to decide on which design is superior or which maintenance policy will yield 
higher availability for lower cost. For this type of analysis traces can provide the 
empirical input for determining the type of probabilistic failure models that are 
suitable for system modeling and for the parameterization of these models. Traces can 
be also used to compare actual against expected performance. 
 
The second technique is known as discovery of association rules and is a type of 
sequential data mining. Association rule discovery can give answers to questions such 
as “which recovery processes are associated with which types of failures”. This 
information can help engineers assess whether the system resources are allocated 
effectively to deal with errors and prevent system failures.  
 
The application of these techniques in conjunction with the use of system traces are 
described in more detail in Chapter 8. 
 
To support the two techniques, failure and recovery events have to be provided in the 
form of point representations. In raw traces, the instances of the physical events, 
failures or recoveries, can be represented by multiple traces. The collection of one or 
more traces resulting from the occurrence of a failure or recovery is knows as 
subsequence (the term will be defined in Chapter 2). Subsequences can have nonzero 
duration. Given a physical event, there length of time between the moment the first 
relevant trace is recorded till the last trace related to the same event is recorded can be 
greater the zero. To meet the requirements of the above mentioned analytical post 
processing techniques, subsequences have to be represented by points with a single 
temporal location and of zero duration.   

1.6 The role of traces in system availability related research 

Availability analysis of complex systems using traces has been a topic of interest for 
researchers from the field of computer system engineering and network management 
[Sim05][Mar05][Mor90][Kal99][Tal99]. The challenge in extracting the relevant 
information from long sequences of traces is to identify, without manual inspection 
which traces form the subsequences that represent the physical events of interest, i.e. 
error and recoveries.  
 
Different techniques have been used for identifying instances of physical failures in 
long sequences of traces. In some occasions physical failures are represented by a 
single trace. In [Sim05] measurements of product availability are retrieved from long 
sequences of traces by using the time of occurrence of single traces, which in turn can 
represent the occurrence of a physical error and a crash. A mapping of the semantics 
onto failure types was conducted in advance, which allows the identification of the 
relevant single traces in long sequences. A similar approach is being followed by 
[Mor90]. However, there the system recoveries are not recorded. The availability is 
estimated assuming a fixed duration of downtime for each occurrence of a failure. In 
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[Kal99], availability is estimated using traces, with emphasis on the recovery 
recordings. In this study too, categorization of trace precedes the quantitative analysis. 
In the above studies physical failure events or crashes are identified in long sequences 
of traces because the semantics of the traces of interest have been either linked to 
failure types in advance or other product specific knowledge has been added in the 
analysis. The availability of a software system is assessed in [Mur95] by using the 
time between system crashes using traces. However, traces that contain information 
on the cause of the crashes i.e. failures are not taken into account in the analysis 
 
In another line of studies, the semantics of subsequences that represent errors have not 
been linked to external knowledge on failure or recovery types.  However, other 
information about the traces is known. Cinque et al [Cin05] are simulating user 
profiles and produce traces on occurrences of failures. Multiple traces are clustered 
into one group to represent one physical failure. The clustering is performed based on 
the knowledge about the starting and ending point of the subsequence of traces.  In 
[Ham03], single error traces are classified into categories of failure types by searching 
for key words in the content of the error message. Then the types are correlated to 
system states. A similar approach is used to analyze outages in a university network 
by [Cho07] and to analyze the availability of processors [Qua00]. Clustering methods 
for traces without the use of any prior knowledge on the content of subsequences are 
described by Tsao [Tsa83] and the extensions made by Hansen [Han88]. The 
clustering is based on the temporal distances between successive traces found in long 
sequences. This approach is used as basis for the methodology that is proposed in 
Chapter 4.  
 
Beyond availability measurement or analysis, traces have been used in other areas, 
such as root cause analysis and fault diagnosis [And95] [Laz92], failure detection and 
prediction [Lim08][Tha96][Tie00], analysis of system and network of systems 
behavior by correlating events representing alarms [Bel] [Yam05], and model 
validation [Wei90]. These latter studies try to correlate a single trace to a physical 
error. They are depending heavily on prior knowledge on the description of failure 
symptoms.  

1.6.1 Current methods 

The manual extraction of information from traces is labor intensive, making the 
processing of traces from large scale applications virtually impossible. Even for the 
processing of traces from a single system an engineer would have to search through 
thousands of log entries to find the most relevant and decide how to organize them in 
a meaningful for the purpose manner. Such a manual operation is meaningful if 
information from traces is needed to help the diagnosis of a single system failure 
event, where a short strip of the traces has to be analyzed.  However when the 
required information is about the occurrence of multiple failure events, the process of 
manually analyzing traces even for one single system goes beyond the capabilities of 
humans.  
 
For this reason automated methods are developed to process traces and extract the 
required information. The methodologies proposed in literature are mostly ad hoc 
solutions to specific problems (exception is [Tsa83]). They depend on case specific 
knowledge to decode the information in traces, i.e. a priori mapping of trace onto 
failure types, key words in the description field, start and stop marks etc. Such 
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knowledge can be collected with the help of exploratory exercises. For example, 
extensive fault injections under specific operating scenarios can provide a collection 
of error and recovery traces. These can be used for identifying the same fault in the 
trace recorded in the field. But such an approach can produce only a finite set of fault 
traces. Covering all possible faults scenarios under different operational conditions is 
practically infeasible due to the high number of components and their complex 
interdependencies.  The second way of obtaining additional knowledge is when the 
system is operating in the field. Engineers can perform root-cause analysis to relate 
traces to the physical fault events. Root cause analysis requires dedicated resources to 
investigate traces.  
 
The above techniques are putting heavy requirements on resources especially because 
the investigation of traces is not directed to the most prominent failures, but follows a 
gunshot approach i.e. investigate traces as they occur without prioritization given the 
criticality of the event. A more efficient approach is to focus the investigation on a 
narrow group of traces that seem to be most relevant to system unavailability. For that 
the failure events with high frequency of occurrence or/and the events that cause long 
down times can be singled out using the temporal information in traces. Then, the 
semantic information can be used to guide root cause analysis.   
 
Many studies that are using traces are focusing on either error or recovery traces. The 
association between the two types of traces is not examined. However, for supporting 
design and maintenance decision making, both types of traces are relevant. The 
information retrieved from traces can guide engineers to choose between changing the 
design, i.e. component reliability, resilience or enhance the maintenance of the system 
i.e. guide corrective or preventive maintenance.  Therefore both types of traces should 
be included in the transformation methodology.  

1.6.2 Proposed approach 

The objective is to develop a methodology for reducing the size of raw traces through 
a series of transformation steps so that human interpretation of the data is enhanced. 
Other than the requirements that are described in the sections above, the methodology 
will have to take into account some other considerations:  

1.6.2.1 Black box approach 
A black box approach is followed in the methodology of this thesis. System specific 
information is not used as an input for developing the methodology. In the literature 
the black box approach is referred to as measurement based (see below), whereas the 
approach that is using design details is known as model based.  
 
Model based approaches rely on analytic or simulated models of the system or its 
behavior. This approach requires design information that describes components and 
their interactions. Once defined, a model based approach is useful in exploring the 
system behavior under different scenarios. However, the accuracy of the results 
depends on how realistically the model represents the system and its behavior. Given 
the increasing complexity of systems, accurate modeling has become a difficult task 
[Mar05][Tri08].  Moreover, model based approaches still depend on measurements 
for estimating their parameters and for validation.   
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A measurement based approach relies on observations made directly on the traces. It 
has the advantage that knowledge can be acquired from the data collected from the 
field without having to know the system in great detail. The approach relies more on 
the understanding of the data, their structure and the information they carry.  Such an 
approach can provide accurate results and is particularly useful when it is applied to 
operational systems [Iye00]. In this thesis observations and measurements are made 
on two basic characteristics of traces: 

1. The temporal distance between successive traces (1.6.2.1.1) 

2. The association between pairs of traces (1.6.2.1.2) 
 
To establish our understanding on these two characteristics, an extensive exploratory 
study is conducted using traces collected from systems operating in the field (chapter 
3).   

1.6.2.1.1 The temporal distance between successive traces 

Traces contain the timestamp of the occurrence of the event or state they represent.   
Multiple traces form an ordered sequence of events. Their temporal order and the 
temporal distance between traces define the temporal structure of the sequence.  A 
sequence can consist of traces that are put densely next to each other, e.g. a few 
seconds between two successive records, or can have long intervals between two 
successive records, e.g. several seconds between two successive records. Typically 
when the system is active the distance between successive traces is short i.e. traces are 
recorded rapidly, whereas when the system is idle the distance between successive 
traces tends to be long. The temporal characteristics of the formations found in long 
sequences of traces are one of the main features that can help develop a generic, 
system independent methodology for identifying failure and recovery events. The 
temporal structure of traces is explored in chapter 3 and used to develop the 
segmentation method presented in chapter 4. The method is enhanced to deal with the 
variation in temporal structures found in real life applications.    

1.6.2.1.2 Association between pair of traces  

Professional systems can be highly complex. The complexity of the system derives 
from the number of components, the diversity of technological fields from which 
these components originate and the interactions between these components. To 
manage design complexity, professional systems use modular system architecture. 
The modularity allows the management of system complexity by organizing 
components into modules with inherent strong functional dependency. The modular 
system design is characterized by the principle of strong coherence among 
components that are part of the module and weak coupling between components of 
different modules. The strong coherence/weak coupling principle has a direct effect 
on the formation of subsequences of traces. Failure and recovery events usually 
involve components of the same module, due to the effect of failure propagation or 
recovery protocols. Therefore, the traces produced by failure and recovery events can 
represent these functional dependencies. Subsequences are formations of traces that 
can be attributed to one event. The subsequences of traces that are produced by failure 
and recovery events are manifestations of the strong coherence/weak coupling system 
design principle. Given that the system design remains fundamentally unchanged over 
its lifecycle, the strong coherence/weak coupling principle can be considered as a 
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constant reference for the formation of subsequences. This reference has model like 
properties; i.e. given a system design and assuming the same initial system state, 
every occurrence of the same failure or recovery event would produce the same 
subsequence of traces. The proposed methodology uses the generally applicable 
strong coherence/weak coupling principle in system design to develop an approach 
for processing long sequences of traces. This principle is explored in chapter 3 and 
applied in the methodology of chapter 5. 

1.6.2.2 Variations in temporal structure and associations 
Professional systems do not operate in isolation. Professional systems interact with 
their environment: operators, other systems and external devices. The interaction with 
the environment together with system specific conditions can make the structure of 
subsequences vary for different instances of the same physical event. Similar variation 
can be seen in the associations between traces. This observation is made in chapter 3 
and is taken into account for developing the processing methods discussed in chapters 
4 and 5.  

1.6.2.3 Sequential processing 
Among the methods used in applications that operate on traces, two distinctions can 
be made: the online and the offline set up. Online methods apply to incoming traces, 
in close to real time manner. Off-line approaches work with a snapshot of the traces 
over a period of time taken from databases. The decision to use an online or offline 
method depends on the latency requirements for system state awareness and the rate 
with which the system state can change. In the context of availability management, a 
real time approach addresses the needs of maintenance operations where the 
awareness on the system state can help corrective maintenance in fault diagnosis. 
When management control and long term planning are the dominant objectives the 
time horizons are longer and therefore information can be delivered in longer time 
intervals [Kee78]. Because the methodology should provide support for both design 
(long term) and maintenance, and it has to satisfy the stricter requirements of the latter 
and therefore be able to process data in close to real time manner.  
 
The proposed methodology applies in the following manner: parameter estimation and 
algorithm calibration is performed off-line using snapshots of system traces. 
Application of the methodology on operating systems is online and close to real-time. 
The two modes are discussed in more detail in chapter 8. The latter objective requires 
the processing methods for traces to follow a sequential model; i.e. data are processed 
as they arrive into the data repository. The sequential nature of the process is shown in 
chapter 4.  

1.6.2.4 Combining traces from distributed systems  
The proposed methodology is most likely to be applied to fleets of professional 
systems. That means that data from traces of multiple systems can be combined. For 
example, the training of the algorithms can be based on data collected from various 
systems. Combining data would allow the faster training of the mining algorithms, 
because more observations would become available in shorter time.  
 
For that purpose, it is important that the data from various systems do not contradict 
each other but rather work complementary. However, environmental factors can have 
an effect on the formation of subsequences. Even though the system design is a 
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constant parameter across the distributed systems, the effect of the environment can 
compromise the suitability of a combinatory approach.   
 
In this thesis a method to assess the consistency in the structure of subsequences 
obtained from distributed systems is proposed. This is method is presented in chapter 
6.  

1.7 Overview of objectives 

An overview of the objectives for the methodology is given below: 
 

1. The methodology seeks to reduce the size of the data via a series of 
transformation steps making it easier for human interpretation (chapters 3, 4, 
5). 
 

2. During the transformation all relevant information has to be retained. In the 
context of availability management that means that temporal locations of 
events have to be known after the transformation. Also the original semantics 
that relate to an event need to be available after the transformation so that they 
can be used for further investigation. The transformed data should represent 
the physical events as accurately as possible (chapters 3, 4).  

 
3. The transformed data should be in a format that is suitable for post-processing 

by analytical methods. When the method is applied is should rely little on 
manual work. These objectives have to be reached under a set of conditions 
(chapter 4): 

 
4. The methodology has to be generic, applicable to traces of any large systems 

(that have modular design) without the need to incorporate system specific 
information (follow a black box approach regarding the system). The 
methodology should rely only on generic characteristics of traces (chapter 4) 
together with generic system design principles (chapter 5).  

 
5. The methodology has to be able to deal with variations found in the structure 

of the subsequences of traces. Time dependent factors such as the system load 
or type of operation can result to different trace manifestations of the same 
physical event in different instances.   

 
6. The methodology has to be able to be applicable for close-to real time 

processing of traces (chapters 4 and 5). In the context of availability 
management, the most demanding requirement regarding the latency of 
information comes from the need to react quickly in the case of corrective 
maintenance. The transformed traces need to be available quickly to support 
this type of maintenance.   

 
7. The methodology needs to exploit the fact that traces are collected from 

multiple systems of the same type operating in the field but are geographically 
distributed (chapter 6). The information that is collected from the traces of 
multiple systems can help to speed up the process of parameterizing the 
algorithms that are used for the transformation of traces.  

 



 

 15 

1.8 Outline of the thesis 

The thesis is outlined as follows: in chapter 2 traces are introduced formally. Their 
origin, their temporal and semantic structure is described. In the same chapter the 
knowledge discovery framework is introduced. The framework describes a high level 
process of how to make sense of large volumes of data, a problem that applies here 
too. This framework puts the basis for developing the particular methods and tools 
that will allow information extraction from traces. The methodology that derives from 
the framework consists of three steps: exploration of traces, sequence segmentation 
and subsequence matching. Chapters 3, 4, 5 are dealing with each one of these steps 
respectively. In chapter 6 the option of using traces from multiple systems as a 
method to increase the efficiency of the parameterization of the algorithms is 
considered. The option relies on whether the structures of subsequences across 
distributed systems have consistent characteristics. Chapter 7 contains a case study 
where the methods that are presented in chapters 4, 5 and 6 are applied to traces that 
have been collected from systems operating in the field. The case study serves also as 
a form of validation as it allows the evaluation of the results of the transformation and 
the performance of the methodology. Chapter 8 describes in more detail how the 
transformed traces can be used for post processing analysis. The transformed traces 
can help to create an entire decision support system for availability management. Such 
a system is described in chapter 8. Finally chapter 9 concludes the thesis with the 
findings of this research and a discussion on the proposed methodology. 
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Chapter 2 

2 Knowledge discovery framework for traces 
To achieve the objectives stated in 1.7 a step by step process is defined that will 
perform the end to end transformation of raw traces.  The sequence of the steps is 
designed around a framework that is borrowed from the domain of knowledge 

discovery in large databases (KDD).  
 
This chapter is organized as follows: First, the basic terms used to describe traces, 
examples of traces and a brief description of the mechanism behind traces are 
presented in 2.1. In section 2.2 traces are generalized and described as event based 

data sequences. This view highlights the importance of the “evolving character of 
records” in traces, an informative aspect that is relevant for this research. The concept 
of variation found in traces is described in 2.3. In section 2.4 the framework to 
process the traces is presented. First in 2.4.1 the generic KDD framework for 
processing large data sets is presented. This generic framework puts the ground for 
defining a series of steps for transforming traces into a data format suitable for 
analysis. In section 2.4.3 the end–to-end transformation process for traces is defined. 
Finally the chapter closes with section 2.5 where the sample set of traces that is used 
in this research is described.   

2.1 Traces  

A single trace contains information about the state of a component in the system at a 
certain point in time.  This information is in the form of human readable text format 
(see example of trace in Table 2-1). Such a message describes briefly the state of the 
component, for example "processing data" or "data processing completed".  The 
message can contain static and/or dynamic information. Static information consists of 
a predefined description that remains the same in different instances of the trace. For 
example "processing data" is a description that appears in that form in all instances 
whenever this trace appears. Dynamic information in the description can take the 
value of a variable, for the level of usage of a resource. For example, "memory usage 
at 90%" is a description that contains the variable of the percentage of usage. This 
value may differ in different instances of the message. In this research the dynamic 
information i.e. the variables are ignored and in relation to traces the term 
“description” is a synonymous to the term "message". 
 
Traces have a distinctive identification code known as trace identification code or ic. 
The trace ic is uniquely linked to the description. For static information that means 
that the ic represents also the description field of the trace. The ic is also uniquely 
linked to each component. The trace ic helps to quickly identify the qualitative 
information of a trace without having to read the message. Trace ic are used 
extensively in this research as they allow fast machine processing.  
 
An important element of the trace is its timestamp. The timestamp provides the 
information about the date and the time the trace was logged. Logging mechanisms 
can record traces with timestamps with a granularity of millisecond. This allows the 
rapid logging of traces and reduces the chance of having traces recorded with the 
exact same timestamp. However having traces with the exact same time stamp is 
common.  
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timestamp ic message/description class 
02-10-2007 9:27:31 730000001 

InfraToolsSaveDevData 
startup completed 

Information 

02-10-2007 9:27:36 760000200 
Archiving:Communication 
Lost 

Error 

Table 2-1 Form of single trace 

Another element of interest is the field class. Class describes whether the trace 
represents an informative state of the component, i.e. a normal operation state of 
component, or an erroneous state, i.e. abnormal operation. Additional fields can 
describe the mode of the system, e.g. normal operation, start-up etc., the source code 
that produced the message and other. These fields are used for the initial filtering of 
the traces of interest e.g. the field class is used to separate the “Error” and “Recovery” 
traces from the rest. The field mode allows the exclusion of specific system modes 
such as start-up and shut-down, to retain only traces produced during normal 
operation.  
 
Traces are recorded when hooks in the software are triggered. Triggering occurs when 
components enter certain states that have been predefined. The "sensing" of states is 
done either with the use of electronic, mechanical sensors or programming sensors 
[Tie00]. The latter are found in the firmware (embedded software) of components of 
professional systems [Len02] or the application layer.  
 
When a sensor is triggered, the message that relates to the sensed component state, 
together with the values of the other fields and the trace ic, are sent to the logging unit 
that stores the information together with a timestamp. Several "sensors" are 
distributed throughout the system. As the system is operating, this network of sensors 
produces a chronologically ordered long sequence of traces (example of sequence in 
Table 2-2). Traces are also known as system event logs, and the process of sensing, 
reporting and recording is known as system event logging or simply logging.  In this 
thesis the entire mechanism for logging is referred to as the logging mechanism.   
 
timestamp ic message class 

19-06-2008 14:58:44 570000020   Initialize job queue Information 

19-06-2008 14:58:45 540019921   Command: SelectRevExam  Information 

19-06-2008 14:58:46 650028673   Monitor: Starting Application completed Information 

19-06-2008 14:59:05 73200000   ISB_FRONTAL  Information 

19-06-2008 15:03:50 73700000   Frontal Channel  Information 

19-06-2008 15:03:53 73600000   Frontal Channel  Information 

19-06-2008 15:05:04 510020389   Cumulative dose values Information 

19-06-2008 15:05:04 510021391   System not ready  Information 

19-06-2008 15:05:05 510021393   System ready  Information 

19-06-2008 15:05:06 540019921   Command: CloseExam  Information 

19-06-2008 15:05:07 510028691   Applied tube protection Information 

19-06-2008 15:05:08 510028691   Applied tube protection Information 

19-06-2008 15:05:09 510019388   Fluo flavour selection completed Information 

19-06-2008 15:05:10 510999921   Command: XTraVisionReadyStatus  Information 

19-06-2008 15:05:11 510999920   User msg: Total free space 203410 (51316) images Information 

19-06-2008 15:05:12 510021393   System ready for fluoroscopy x-ray acquisition Information 

19-06-2008 15:05:13 510021390   System ready for exposure x-ray acquisition Information 

Table 2-2 Sequence of traces 
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The connection between traces and physical events is not explicit. Traces do not 
contain information that relates them to distinctive physical events. This relation has 
to be established with diagnosis. In this thesis it is assumed that such connection 
exists i.e. physical events cause the logging mechanism to produce traces. When one 
or more traces are the result of one distinct physical event, they are considered to be 
forming a subsequence. A general example of a physical event is the archiving of a 

file, a system crash, or the restarting of the system after the crash. These are events 
that are technically interesting and that engineers use to describe the operation of the 
system. In Table 2-3 a subsequence is shown that contains traces describing the event 
of archiving a file. The physical event can have duration as it is the case in the 
example. The timestamps of the subsequence provide the information about the time 
of occurrence of the event e.g. the event started at 5:03:09. The semantics of the 
subsequence allow the understanding of the nature of the event. From the semantics of 
the subsequence in this example the connection between the subsequence and the 
physical event is clear. This is not always the case. Particularly error subsequences 
require further diagnosis into the problem before this relation is clear.  
 
timestamp ic message class 
02-10-2009 5:03:09 670000001 Open database connection Information 

02-10-2009 5:03:10 570000021 Execution of job started. Information 

02-10-2009 5:03:11 570000015 Archiving Job Completed. Information 

Table 2-3 Subsequence containing representing the archiving event 
 
The information in the traces is categorized into the semantics that refers to qualitative 
information such as the trace ic and the description, the class etc. and the temporal 
that refers to the date/time information found in the timestamps. The same terms are 
used to refer to derivatives of the above. For example “time between successive 
traces” is also temporal information.  

2.2 Event based data sequences 

Traces are a type of data form known as event based data sequences. The value of 
event based data sequences lies on the fact that they "enable the understanding of the 
evolving character of records in a data set" [Vro10]. The records, the traces, consist of 
the semantics (ic, or description) and the temporal information (timestamps). The 
semantic information provides the qualitative aspect of the event (what happened and 
where) and the temporal information provides the temporal aspect of the event (when 
did it happen). Put in a sequence, the semantic and temporal information of traces 
form the evolving character of the records. In the context of system operation, the 
evolving character of records represents the evolving states of the components in the 
system. Such records can be revealing and concealing the same time. They can be 
revealing by allowing a view into the states of components that can report on their 
state. Traces can be concealing, because components that cannot report on their state 
are not found in the records and they can be easily omitted. 
 
To illustrate this, an example is provided.  Figure 2-1 shows the evolution of the states 
of a system in 7 consecutive points in time. The system is represented by the blue 
panels. Each panel represents a point in time of the system state.  
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Figure 2-1Evolving states of components 

 
The points in time are marked by the notation 

it located in the center of each panel, 
where 1,2,3,4,5,6,7i . The system contains four components A, B, C and PM. 
Components A, B, C together provide the functionality of the system. Component PM 
is the process manager of the system, responsible for resource allocation and the 
synchronization between the components. Some of the components can report on their 
state and they can send this information to the logging unit. This operation is indicated 
by the red arrows that connect a component to the logging unit. The components with 
the logging ability are A, B, and PM.  
 
At time 1t  component A is encountering an error and fails. Because of functional 
dependency, components B and C follow and fail at times 2t  and 3t  respectively. At 
time 4t the PM detects that the system service is down, and orders components A, B 
and C to restart in order to restore the service. Components A, B and C, following a 
recovery protocol, restart progressively at times 5t , 6t and 7t respectively.  
 
The traces that are produced by the logging unit are of the form (the format is 

): 
 

1

2

4

6

7

,

,

,

,

,

Error A t

Error B t

Start Service PM t

Starting A t
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The traces reveal the progression of states. The semantic information reveals which 
components were involved in the incident and what their states were (what happened 
and where). The temporal information in the traces reports on the latency of the events 
(when it happened). Overall it is understood that the system experienced a failure at 
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time 1t  and the system recovered at time 7t . From the above the evolving states of the 
system can be understood.   
 
However, the sequence in the example does not contain any trace of component C. 
Component C cannot log traces and therefore its states remain unrecorded. If this 
component would be the cause of the system failure, the traces would not be able to 
help the diagnosis of the problem. It is a challenge to find the right balance between 
covering all interesting component states by increasing the instrumentation of the 
system with sensors and software hooks, and the same time keep the effort of 
instrumenting low and the amount of data manageable.  The amount of data that are 
recorded depends on the logging mechanism that is responsible for the sensing, 
reporting and recording of component states. The more instrumentation the system 
contains, the more data there is to analyze and bigger need to automate their analysis. 
Usually systems have numerous of software hooks and the sequences that are 
recorded by one system can contain a great amount of traces. An hour long sequence 
of traces from one system can contain tens of thousands of entries.   
 
Event based data sequences differ from another well-known computer based 
information source, the core dump. The core dump is a file that contains information 
on the state of the memory and/or the program at specific point in time e.g. a system 
crash. The core dump is produced only when such an event occurs. Traces on the 
other hand are incessant representations of the system's components during operation.  

2.3 Variation in subsequences 

The structure of subsequences i.e. the number of traces, the type of semantics the time 
between successive traces, is subject to variation. This variation results from the fact 
that under operational conditions the system can react, to a certain extent, in different 
ways to the same physical events. For example variation can occur due to the path an 
error propagates through the system. If the same fault occurs twice in the same 
component in two points in time, a different number of components might be affected 
in the two instances due variation in the error propagation. This difference can be 
motivated by the difference in the operational state the system at different instances.  
Similarly, in different instances of the same fault, the same number of components 
can experience errors in different sequence or with different time elapses between the 
component errors.  
 
Additional variation can derive from the dynamics in the logging mechanism itself. 
As errors are sensed and the messages are sent to the logging unit, the logging can 
introduce variation in the sequence of logged traces or in the time of logging. 
Variation is found in the traces obtained from the same system and in traces of 
different systems. Variation in subsequences is taken into account when developing 
the transformation methodology. The variation in subsequences is explored in chapter 
3 using experimentation. In chapter 4 and 5 it is discussed how the variation in 
subsequences can affect the results of the transformation. The proposed methodology 
incorporates features that enable it to account for the variation found in subsequences. 
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2.4 A sequential process for making sense of large amounts 
of data  

"Drinking from the fire hose of knowledge" and "data asphyxiation" are phrases often 
used in literature to signify the wealth of information stored in databases and the 
difficulty of extracting useful information from it. Knowledge discovery in databases 
(KDD) is the field of research devoted to methods and tools that enable the efficient 
sense making from large amounts of data [Fay96]. Knowledge is discovered in the 
form of patterns in the data that can describe a phenomenon.  An example is the 
consumer behavior patterns found in supermarket data and the consumer’s tendency 
to buy certain products together.  In event based sequences in particular, patterns are 
found in the timing or ordering of events. The discovery of such patterns is 
information that is directly usable, like the consumer behavior example, or it can lead 
to the discovery of usable information [Fra92]. The focus of KDD to discover patterns 
in large data sets is the attractive aspect of this framework that makes it suitable for 
the objectives of this research.  
 
KDD has a discovery process that is made up from a series of steps that can lead from 
raw data sets to knowledge discovery. This thesis makes use of the KDD framework 
to develop a step by step transformation process for system traces. In the following 
section 2.4.1 the general KDD process is presented briefly, focusing on its most 
relevant aspects. In section 2.4.2 some elements of the KDD are discussed in detail. 
These elements were used strongly in this research. In the last section 2.4.3 the 
discovery process is described as defined for needs of this thesis.  

2.4.1 The KDD discovery process 

The knowledge discovery process consists of a series of steps that start from the raw 
data and end in the creation of knowledge. In Figure 2.2-2 the steps of a KDD are 
represented schematically. The raw data can be recordings of various types e.g. events 
(purchases, orders etc.), entities (income, professional skills etc.) that are stored in 
large amounts in databases or repositories. The data are structured in the sense that 
they have a specific format e.g. events are recorded in a particular calendar time 
format and there can be relationships between the records e.g. professional skills are 
linked to income.  In each step of the KDD the data undergo a transformation.  
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Figure 2.2-2 KDD Process steps (source [Fay96]) 

 
Step 1: Selection 
The discovery process is applied on a sample from the entire volume of raw data. 
The sample does not suggest representation of the entire database. It is merely a 
stratum that allows the efficient implementation of the KDD methods. The 
selection of the sample is based on characteristics of particular interest of the data, 
for example a period of time where it is known that events of interest have taken 
place, or records with certain attribute values. In the context of traces for 
availability management, a sample can be a particular group of systems, a period 
of time when high failure rates where experienced or a design change was 
introduced.  

 
Step 2: Preprocessing 
The sample contains raw data, i.e. the data are in their original form as they have 
been recorded. Raw data usually contain uninteresting or unwanted entries, 
missing entries etc. Preprocessing is an important step in the knowledge discovery 
process. Preprocessing prepares the data set for the more information generating 
steps of the process that will follow. By removing unnecessary or unwanted 
entries and enhancing the structure of the data of interest the raw data are put into 
a form that will allow next steps to be more effective. During preprocessing, 
fundamental data structures such as distances, orders, dimensions etc. remain 
unchanged.  

 
Step 3: Transformation 
The data transformation step is perhaps the most important step of the whole KDD 
process. This step of the transformation process is the most relevant step for this 
thesis. The goal of the transformation is to increase the informativeness (reducing 
the data size) of the data i.e. the number of data points required to convey the 
same amount of information. The increase of informativeness in the data set is 

 
Raw Data 

Sample 

 

Preprocessing 

Selection 

Data Mining 

Transorfmatio
n 

Knowledge 

Patterns 

Transformed 
data 

Preprocessed 
data 

Interpretation 



 

 24 

achieved by reducing the dimensionality of the data and by retaining the most 
interesting features by which the data can be represented [Fay96]. The 
transformation step of the KDD framework has similarities with signal processing 
in the sense that the desired information in a signal is extracted by enhancing the 
interesting features and weakening the irrelevant or noisy features [Ben80].  
 
Reduction of the dimensionality is the operation where several data points can be 
replaced by objects that represent more interesting concepts. Meaningful concepts 
can arise from raw data with the help of abstraction i.e. the representation of one 
or more data instances by familiar abstract concepts. Conceptualization increases 
the effectiveness of the knowledge discovery process by allowing the latter to 
operate with objects that are meaningful in the domain. The same time 
conceptualization should ensure that the objects retain their connection to the data 
set. Last but not least conceptualization should be done in respect to the data 
analytic method that will be used later for knowledge discovery.  
 
The above is in line with the objectives of this research, namely to find and 
replace subsequence with point representations without losing relevant 
information.   

 
Step 4: Data Mining 
Data mining is the process step that enables the discovery of knowledge by 
searching for patterns, associations etc. Discovered patterns are often represented 
by models. Choosing the right model representation is as important as discovering 
patterns because it allows the fidelious modeling of the data [Fay96]. This step of 
the KDD relates to the analytical tools that can be used for availability 
management such as the discovery of association rules.  

 
Step 5: Interpretation 
In the last stage of the discovery process the knowledge that is discovered is being 
interpreted and used either directly in an application or as an input to promote 
further new discoveries.   

2.4.2 Elements of KDD 

Next to the framework there are a number of methods and tools that play a key role in 
the knowledge discovery process. Some, like data visualization techniques, help gain 
better understanding of the problem in hand by allowing intuitive exploration. Others, 
like domain knowledge, play a supportive role by setting the premises for the 
formulation of hypotheses. Different forms of reasoning help promote knowledge 
discovery by extending existing knowledge to the new data, testing discovered 
patterns against known facts and redirecting the search.  These elements are discussed 
in detail below: 

2.4.2.1 Data visualization 
The inquisitive role of the user in the discovery process is essential. Visualization of 
data or patterns is a strong tool in integrating the user in the discovery process. It 
allows the user to comprehend data quickly and to detect structures that can be 
exploited. The choice of the right mining tools depends very much on the effective 
visualization of data. Data visualization can also help extend our knowledge in the 
problem area and can help to form new hypotheses based on observations. For 
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example, data visualization may reveal unexpected patterns in the data that require 
new hypotheses to explain the phenomenon that created these data entries.  

2.4.2.2 Domain knowledge 
Knowledge on a domain can be acquired during previously completed knowledge 
discovery processes. Knowledge can also be based on long established facts of the 
domain or even come from other domains that relate to the domain of interest. 
Domain knowledge is used to increase the efficiency of the process by allowing the 
analyst to emphasize his attention on the most interesting aspects of the data, to use 
tools that are specialized for the task and to evaluate discoveries from a better 
informed position [Mat93].  Domain knowledge can however become restrictive by 
setting tight boundaries in the discovery process. This can occur when domain 
knowledge is drawn from very specific cases. To avoid the restrictive effect of 
domain knowledge on the discovery process and to make it also applicable to a wider 
range of problems, domain knowledge has to remain as generic as possible [Djo95]. 
Domain knowledge should not act as a prejudice that can lead to the exclusion of 
interesting findings in the data set. 

2.4.2.3 Reasoning methods in KDD: Inductive, deductive and abductive  
Any process that aims on knowledge discovery has to make use of one or more of the 
reasoning methods: induction, deduction and abduction. In KDD deductive and 
inductive methods have been integrated in several frameworks [She94] [Sim96] 
[Gre01].  
 
Deduction, also known as the top-down approach in KDD, allows the refinement of 
concepts already known to the user. Concepts can be expressed as relations between 
data attributes in the form of "If A then B". Such relations can describe a causal 
relation between traces, structural information of the data sequence or simply 
associations between traces. Domain knowledge is a contributor of deductive 
reasoning in KDD.  
 
Inductive methods or bottom-up, are purely empirical knowledge discovery 
mechanisms. In KDD they are used to discover rules that characterize a database. 
Induced rules can then be evaluated for their parsimony, generality and statistical 
significance [Sim96].  
 
Abductive reasoning is less common in KDD approaches, but nevertheless a powerful 
way of reasoning that can lead to the discovery of new knowledge [Pei34/60]. This 
power derives from the ability to suggest a plausible hypothesis for an observation. 
Abductive reasoning can be used to express new hypotheses when an unexpected 
event is observed [Ho94]: 
 
The unexpected phenomenon B is observed 

If A were true, B would be a matter of course  
Hence there is reason to suspect that A might be true. 
 
Although at first abduction might seem to allow the formulation of arbitrary 
hypotheses in order to explain a surprising event, its ability to come up with new 
explanations should be in accordance with other background information and not just 
the event per se. Pavola [Pav04] discussed the role of strategies in abductive 
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reasoning and states: "...my explanation must explain or at least be consistent with, 

most other clues and information that I have available concerning the subject in 

matter". 
 
The ability to discover new knowledge relies on the combinatory use of the above 
reasoning methods.  

2.4.2.4 Machine Processing 
The processing of large amount of data in any of the KDD steps requires the use of 
machine processing. Machine processing can exploit the format of the data and 
perform operations of large amounts of data in close to real time manner.  

2.4.2.5 Unsupervised learning  
In KDD the aim is to discover unknown patterns in the data that have informative 
value. Because the patterns are at the start of the process unknown, it is not possible to 
use methods that require previously training. In contrast to supervised learning where 
the algorithms are trained on predefined data structures KDD relies on the use of 
unsupervised learning methods that try to detect "sensible" structures in the data.  
When interesting formations are discovered they are compared to each other to reveal 
similarities and differences. Based on these comparisons, conclusions can derive that 
will lead to the definition of patterns [The06]. Because these patterns are unknown a 
priori they have to be validated for their plausibility. This can be done with the use of 
internal validation criteria [The06].  

2.4.3 Adjusted KDD to be used for traces 

The framework that is defined for the transformation of traces follows the general 
model of KDD (2.4.1).  The KDD framework is adjusted to the particular 
characteristics of traces as data form and the objectives of the research. In order to 
distinguish between the steps that are within the interest of this research and the steps 
that are beyond the scope, the general framework is divided into two phases:  
 

1. KDD phase one (Figure 2-3a), which is the main focus of this thesis, is 
responsible for the selection, the preprocessing, and the transformation of the 
raw data. During this phase the size of the traces is reduced without the loss of 
essential information. This phase is covered by chapters 3,4,5,6 and 7.  

 
2. KDD phase two (Figure 2-3b) is the knowledge discovery phase. Knowledge 

discovery in the context of availability management in this thesis is perceived 
as the identification of unavailability bottlenecks, the relationships between 
failure and recovery events and so on. Although this phase is out of the scope 
of the research, examples are provided in Chapter 8 to illustrate how the 
transformed data obtained from phase one can be used for availability 
management.   
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Figure 2-3  End-to-end transformation process 
 
Phase one consists of two stages. The first stage is the Preparation. Preparation is 
made out of two steps: Selection and Preprocessing. The second stage is the 
Transformation. This phase consists of the steps Segmentation, Tagging and Tag 

matching.  

2.4.4 First stage, Preparation  

Selection 
Raw traces are collected from the systems operating in the field. Traces recorded by 
the system over many hours of operating time are stored into a file. The file is 
remotely downloaded from the system via remote connection and stored in a database. 
This process is repeated over time in regular intervals so that multiple files of the 
same system are stored. The database contains files from several systems.  
 
The selection of the stratum of interest is based on several factors. First is the system 
type. Traces of systems that use the same software version are easier to combine in 
analysis as the semantics of the traces are identical. Another factor is the connectivity 
level of the system to the network. The connectivity level of a system affects the 
completeness of the data set. Systems with high connectivity provide completer data 
because high connectivity levels provide longer periods of uninterrupted data 
recordings.  
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Preprocessing Raw traces contain a variety of information relating to the operation of 
multiple components in the system. This methodology of this thesis focuses on error 
and recovery traces. Before applying any type of clustering algorithms onto the traces, 
all irrelevant traces are removed using simple filtering methods. Preprocessing also 
includes the formation of one long sequence of traces out of multiple shorter 
sequences obtained by the log files of a single system. The concatenation of multiple 
sequences to form a single sequence is done with the help of the timestamps.  
 
One of the most important aspects of preprocessing is exploration. The exploration of 
the traces helps to increase the knowledge about the structures that are found in the 
traces. Unknown characteristics of the traces can be discovered. These discoveries can 
then help to guide the development of methods for the transformation stage. In this 
thesis three different methods are used to explore traces:  
 

1. Expert Knowledge: 
Expert knowledge can be used to place the semantics of single traces into the 
context of system availability i.e. try to link the description found in a trace to the 
particular error that caused it and to the state of the system given that error. If such 
linking is possible, the perceived informativeness of traces can increase 
considerably. With such a linking in place, a sequence of traces can be interpreted 
in terms of system states and root causes that can be used directly to guide 
decision making. Engineers who have deep knowledge of the system's design and 
operation are asked to provide this link out of the context of system operation. 
However, interpreting of semantics using the information found in single trace and 
out of the context of system's operation is not an easy task. The knowledge that is 
obtained from this exercise can be uncertain. A method is defined that allows the 
direct assessment of the level of uncertainty involved in the categorization of 
traces, by a single expert. The method is used on a sample data set and the results 
are presented. The method and case study are discussed in chapter 3 in section 3.1.  
 

2. Experimentation 
Experimental settings can help understand the causal relationship between types 
of faults and the generation of error traces. Repetitive injections of the same fault 
types generate sets of subsequences that can be examined for their characteristics. 
Characteristics of interest are semantics e.g. which ids appear in the subsequences 
and quantitative e.g. the number of traces that form the subsequences, the duration 
of the subsequence or the time lapse between consecutive traces in the same 
subsequence. The information retrieved from the experimentation can help 
understand how the structure of subsequences depends on the type of faults. The 
experimentation also looks into subsequences that result from system recoveries. 
The knowledge obtained from the experimentation becomes part of the domain 
knowledge that assists the development of methods and tools in the transformation 
stage. The experiment and the findings are presented in chapter 3 section 3.2. 
 

3. Graphical representation: 
The graphical representation of the sequence can facilitate the exploration process 
by enabling the visual inspection of sequences. If visualized, complex 
relationships in the data such as the temporal proximities of traces in the sequence 
can be explored and intuitively understood. Visual inspection can lead to the 
discovery of unknown data structures in the sequence. Discovery of "unwanted" 



 

 29 

structures serves the preprocessing. The removal of unwanted structures can 
increase the efficiency of the discovery process. Exploration of traces should be 
quick and effortless to allow fast iterations. A method for visualizing traces 
quickly and effectively is presented in chapter 3, section 3.3.  

 
Last but not least, part of preprocessing is the removal of unwanted data structures. 
Unwanted structures in sequences of traces are known as partially periodic 
subsequences (pps).  Because these structures are formed by traces of the class 
attribute "Error" or "Recovery" they can slip through the first naive filtering that is 
done during the selection step. The specifics of pps and a method for detecting pps 
efficiently in sequences of traces are presented in chapter 3, section 3.4. 

2.4.5 Stage two, Transformation  

As described before the aim of the transformation process is to reduce the size of the 
data and increase the informativeness of the data set by retaining only the most 
relevant features and help them to stand out with appropriate representation.  
 
Segmentation: A sequence can contain numerous subsequences, each representing a 
physical failure or recovery event. In a raw data sequence, it is not explicit how traces 
belong to the same subsequence. Traces need to be assigned to subsequences on the 
basis of criteria that justify that assignment. The process of assigning traces to 
subsequences is called segmentation. As the raw data sequence can contain hundreds 
or thousands of traces, an automated method is needed that can assign traces to 
subsequences. The decision whether one or more traces belong to the same 
subsequence, is made on the basis of the temporal distance that separates any two 
consecutive traces. An unsupervised clustering method is presented that segments a 
sequence into subsequences. The segmentation is guided by a measure that rates the 
segmentation result based on the compactness of the subsequences. The segmentation 
method is extended to account for variation in the temporal location of traces. This 
method is described in chapter 4.  
 
Tagging:  The transformation of the data continues with the definition of point 
representations for the discovered subsequences. The step of the transformation 
process responsible for creating point representations out of subsequences is the 
tagging. The tags are constructs that contain all relevant semantic information of the 
original subsequence and but only a single temporal location. With the tagging the 
sequence is transformed to a series of ordered tags. The tagging step is described in 
chapter 5, section 5.1.    
 
Tag matching: A sequence can contain several tags, each tag representing the 
instance of a physical event. Some of the tags in the sequence can represent instances 
of the same type of physical event. To reduce the size of the data and to increase the 
informativeness of the sequence even further it is useful to group the tags into tag 

types, where each tag type can represent a physical event type. This operation is called 
tag matching. With the tag matching, the sequence consists of representations of 
instances of physical event types rather than representations of event instances.  
 
Variation of subsequences can affect the tag matching operation. In some cases tags 
are identical and they can be easily grouped into the same tag type with simple string 
matching techniques. In other cases, differences in the semantics of the tag make the 
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comparison and categorization less straightforward. Evaluating which tags are similar 
enough to be categorized to the same tag type is done using an unsupervised learning 
method that is based on appropriately defined similarity criteria and the semantic 
information found in the tags. The unsupervised learning method tolerates variation in 
the type of semantics and the number of semantics found in tags.  The clustering of 
tags into tag types is guided by a measure that rates again the compactness of the 
produced clusters. This method is described in Chapter 5 section 5.2.    

2.4.6 KDD phase two 

In phase two, analytical tools are applied to generate knowledge from the discovered 
patterns. In this thesis there are two objectives in that fall are part of this phase. The 
first objective which is also within the scope of the thesis is to make the 
transformation process more efficient by using the data and the discovered patterns 
from multiple identical systems. The second objective, which is out of the scope of 
this thesis, is to use the patterns found in the traces to support availability 
management using analytical tools such as availability modeling and association rules. 
 
Characteristics of subsequences from multiple distributed systems 
The Segmentation and the tag matching of the transformation stage are both based on 
unsupervised clustering methods. These methods require parameterization which is 
performed on sampled sequences from the systems. The parameterized algorithms are 
then used to perform the transformation in real time manner on the same systems as 
they are operating in field. This means that for every newly installed system a period 
has to be awaited for a sequence to adequate length to sampled, before any application 
can begin. However given that these systems share the same design and are used in 
the same type of applications, it can be possible to define for each type of system a set 
of generic parameters that can be used for the algorithms. In chapter 6 a method is 
proposed that examines whether a generic parameter values can be defined for a group 
of similar systems (chapter 6).  
 
Availability management using traces 
At the end of the transformation the sequences consists of tag types. Tag types are 
handled as representations of failure and recovery event types. Availability modeling 
can be used to determine which failure types contribute most to system unavailability. 
The relationship between failures and recovery event types can give insight in how the 
system is capable in managing different failures types. The information obtained from 
the analysis is used to support decision making. An example of how knowledge 
discovery based on the transformation of traces can take place is given in chapter 8.  

2.4.7 Data Compression 

One of the main objectives of the methodology is to reduce the amount of data 
representations in the sequence without the loss of relevant information. The 
compression ratio is defined as: 
 

number of data representations after transformation
compression ratio

number of data representations before transformation
 

 
The compression ratio is given separately for the two steps of the transformation 
process: 
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1. Compression achieved by segmentation  
In the preprocessed sequence each single trace represents potentially one physical 
event. With the segmentation, all traces are organized into subsequences.  The 
information regarding the occurrence of physical events is now conveyed by the 
subsequences.  An equal or lower amount of subsequences compared to single traces 
is used to convey this information.  The segmentation can therefore achieve data 
compression. The compression ratio is measured as:  
 

in
sS

number of subsequences the sequence
cr

number of trace in the sequence
 

 
2. Compression achieved by tag matching  
After the segmentation each subsequence represents an instance of a physical event. 
With the matching operation tags are grouped into tag types according to their 
similarities and each tag type represents an instance of a type of physical event.  The 
matching operation makes the transition from a sequence of instances of unique 
physical events to a sequence of instances of unique physical event types. The tag 
matching can therefore achieve data reduction that is defined as: 

 
in

M

number of tag types the sequence
cr

number of tags in the sequence
 

 

2.5 Data set used in case study 

To study the traces a data set collected from operational professional systems (X-ray 
scanner) is used.  Traces are obtained from of 137 systems.  The systems, of which 
traces are used, are selected based on a set of criteria (selection step). The sample 
criteria are: 
 

1. System type: All systems in the sample are of the same type. All sampled units 
have the same hardware and the same software version installed on them.  

2. System usage: All systems in the sample are used in the same medical field. 
Therefore they have comparable operational profiles. 

3. System connectivity: To ensure that the traces in the sample set are 
representing a continuous period of time of system operation, systems with a 
connectivity rate above 90% were selected. 

 
As part of the preparation phase for each system multiple log files, are concatenated to 
form one long sequence of traces. To concatenate multiple sequences, the temporal 
information of the traces is used. This single sequence should represent a continuous 
period of system operating time. To achieve this, two operations are performed: 
 

1. Start-up and shut-down periods are removed from the sequence using an 
appropriate attribute (mode) field in the trace as filtering criterion. The reason 
why these periods are removed is that during system start-up and shut-down, 
error traces can be logged because sensors detect communication errors as 
some components try to communicate with others that have not started up yet. 
The same happens during shut down.  
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2. Field servicing periods are removed from the sequence. Servicing periods 
contain a high number of error and recovery traces due the activities of the 
service engineer.  These periods can be removed by filtering out segments of 
the sequence where traces have the value 'service" in the attribute field mode. 
Also short periods of normal operation mode found between periods of service 
mode are removed because there is high change that the service engineer was 
testing the system.  

 
The above operations produced 137 long temporal data sequences each for every 
system in the sample. The length of these data sequence varies between 200 and 4000 
operating hours with an average of 800 hours of operating time per system. The 
sample data are used to apply and assess the methodology. The case study is presented 
in chapter 7.  
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Chapter 3 

3 Exploration and preparation of system traces  
To understand how the system traces relate to and represent the physical events, it is 
interesting to explore the nature and the origin of traces. For the exploration, different 
types of methods are used to help increase gradually our understanding over error and 
recovery traces, subsequences and sequences. This chapter presents a series of 
methods that raise the level of understanding on the information found in the 
semantics of traces, the formation of subsequences and other data structures found in 
sequences.  
 
The chapter consists of four sections: 

3.1 Uncertainty in expert interpretation of semantics  
3.2 Exploring the structure of subsequences with fault injection 
3.3 Exploring long sequences of traces using data visualization 
3.4 Data preprocessing: removal of partially periodic subsequences 
 

Each section is self-contained i.e. it has its own problem definition, methodology a 
case study and a discussion. The findings from each section are used as input for the 
following chapters. All exploratory studies conducted in this thesis provide some new 
insight into traces that is helpful for the transformation stage.  
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3.1 Uncertainty in expert interpretation of semantics 

One of the main objectives is to reduce the data size and make long sequences of 
traces easy to be interpreted by engineers. Such an objective can be met if the abstract 
descriptions of traces in the sequence can be replaced by other representations that 
contain some degree of interpretation in them. For example the subsequence in Table 
2-3 can be replaced by another representation with the description “Archiving job”. 
The new representation contains some interpretation of the traces in it, since the 
information in the three traces has been combined to conclude that a file has been 
archived. Similarly error or recovery races can be replaced by meaningful 
representations. A meaningful representation is defined by the informative value the 
representation has within a certain business or engineering context.  
 
The interest to replace traces by more meaningful representations was motivated by 
other studies [Sim05] [Mor90] [Kal99] where single traces are linked to specific fault 
types with help of domain experts, making their interpretation easier. In these studies 
various types of faults of components can be singled out with a quick inspection of the 
traces because the interpretation of single traces has been done in advance. For this 
thesis the context is availability management and for the purpose of this study a 
meaningful representation of an error trace would have to describe the root cause i.e. 
the physical event that triggered the trace, and the system state i.e. the effect of the 
physical event on the system.  Such a priori interpretation of single traces in those 
two lines can be seen as effort to enrich the sequence with context specific 
information. A sequence of traces that can be replaced with such representations can 
be used for example to assess directly system performance with measures such as 
mean time between system failures, or to detect the most frequently occurring error 
causes.  
 
To enable such a representation single traces need to be interpreted by domain 
experts. In the above mentioned studies the systems are of relatively low complexity 
e.g. a server that has 4 to 5 main modules. For such systems the certainty of the 
domain expert e.g. the computer engineer, in interpreting single traces is high, 
because a one-to-one mapping of traces to fault types is guided by a simple mental 
model of the system's architecture. Also, a relatively small scale failure mode and 
effects analysis could support such an effort. As the number of modules and the 
complexity of the system increases, cause and effect relationships become less 
straightforward and the linking of traces to fault types and system states becomes less 
accurate, hence the interpretation of a single trace becomes more ambiguous. As the 
ambiguity of the interpretation increases the added value of trying to enrich the 
sequences with domain knowledge is decreasing.  
 
In this thesis the process of interpreting traces to representation of root causes and 
system states is referred to as conceptualization. For the conceptualization of traces a 
classification scheme is used where fault types and system states are represented by 
categories. The linking is performed by experts who classify each trace into the 
categories they believe are most relevant for that trace. Each trace can be assigned to 
multiple categories of fault types and system states. The count of category 
membership (single vs. multiple) measures the amount of uncertainty the expert is 
introducing when classifying a single trace. To capture the expert's uncertainty a 
confusion measure is defined. The confusion measure is capturing the uncertainty of a 
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single engineer conceptualizing a single trace. The proposed method can be extended 
to combine measure from multiple experts, but this possibility is not examined here. 
 
First the conceptualization process is described in 3.1.1. In 3.1.2 the confusion 
measure is described. Finally a case study is presented in 3.1.3 where the 
conceptualization is applied on a collection of semantics of traces.  The results of the 
case study are provided in 3.1.4 and a discussion on the findings and the conclusions 
are given in 3.1.5.  

3.1.1 Conceptualization of traces 

Concepts are abstractions that derive from existing knowledge models, which describe 
adequately the domain they represent [Gai93]. According to the prototype view 
[Ham93], a concept can be defined by a set of attributes that describe the concept 
adequately.  In the context of availability management the concept error can be 
defined by the attributes root cause and severity. Root cause describes the trigger that 
causes the error and severity the effect the error has on the system.  
 
To conceptualize an error trace, the engineer has to use the semantics in the trace, to 
indicate the root cause and the severity that the trace can represent. A classification 
scheme is used to facilitate the conceptualization. The attributes (root cause and 
severity) are represented by the classes

iC  of the classification scheme and the 
attribute values are a set of non-overlapping subclasses 1 2{ , ,... }i nC c c c . Engineers 
assign traces to sub classes. The assignment of a trace x to a subclass

ic  is indicated by 
the weight ( , )iw x c [Haw81].  
 
Concepts can be described in various levels of abstraction. The level of abstraction is 
defined by the values that are given to the attributes.  For example for the concept root 

cause the attributes can be defined on a level such as database connection timeout, 
database connection or just database. The first level has more information in 
describing the root cause than then other two levels. The abstraction level of the 
concepts that is used in the interpretation defines the balance between the uncertainty 
and the informativeness of the interpretation. More detailed concepts can have a 
higher informative value but can come with higher levels of uncertainly in the 
interpretation.   
 
When a trace is assigned to a single sub class the weight for the assigned subclass

ic , 
becomes ( , ) 1iw x c  and for the unassigned subclasses , ( , ) 0jw x c . Assignment 
to multiple sub classes is permitted.  A trace x  can be assigned to multiple sub classes 
of a class if the following conditions are met:  

and 
1

( , ) 1
n

i

i

w x c  ( 3-1) 

The assignment of a trace to multiple subclasses of an attribute marks the uncertainty 
of the expert for that assignment. The value of the weight ( , )iw x c can be given by the 
expert based on the confidence of his assignment (less weight suggests less 
confidence). In the absence of weight specifications, the weight can be distributed 
uniformly among all subclasses in which case the weight per subclass is equal to the 
reciprocal of the number of subclasses assigned.   



 

 36 

3.1.2 Confusion measure for the classification of error messages 

The confusion measure captures the uncertainty associated with the linking of a single 
trace to an error attribute. The uncertainty measure  is based directly on 
Shannon's formula for measuring the entropy of random variable [Jay79] and is 
defined as:  

( ) ( , ) log ( , )
n

i i i

i

H w w x c w x c ( 3-2), 

Intuitively the confusion measure resembles Shannon’s entropy of information in the 
sense that, as the increase of the number of likely outcomes of a message increases 
Shannon’s entropy, so the increase of the likely ways to interpret a trace increases the 
confusion measure. The confusion measure describes the uncertainty of a single 
engineer when he interprets the semantic information of a trace by using a finite set of 
concept attributes. The distribution of the confusion measure describes the uncertainty 
in the interpretation of the entire set of traces. Given the distribution of the confusion 
measure for a set of traces, it is possible to see if the interpretation of traces by a 
single expert is with confidence about the meaning of the traces or not. 
 
The measure is takes it lowest value ( ) 0H w (no uncertainty) when the trace is 
assigned to a single sub class ( ( , ) 1iw x c ) and it takes the highest value when the 
trace is assigned to all sub classes and only if 1 2( , ) ( , ) ... ( , )nw x c w x c w x c and

1( , )
| |iw x c
C

, where | |C is the size of the class i.e. number of sub classes. Classes 

with a higher number of subclasses assume higher values for maximum confusion. 
  
To illustrate the use of the confusion measure an example is provided: 
30 traces are conceptualized. Each trace can be assigned to four different subclasses 
of an attribute by one classifier (expert). Because the classifier has four options, the 
confusion measure trace that is assigned, can take four values i.e. 

( ) {0, 0.6931, 1.0986, 1.3863}H w depending whether the trace is assigned to one, 
two, three or four subclasses respectively. In the case where the expert classifies all 
traces with full confidence, the distribution of the confusion measure for this set of 
traces has the form as seen in Figure 3-1. The confusion measure for each trace is 
zero, since each trace was assigned to one single subclass.  
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Figure 3-1 Distribution of confusion measure for no uncertainty in the classification 

  
In a different scenario (e.g. other expert), each trace is assigned by the classifier to all 
four available subclasses, the confusion measure for each trace takes the maximum 
value, which for this case is equal to 1.3863 (Figure 3-2).  

 
Figure 3-2 Distribution of confusion measure for maximum ambiguity 

 
For both scenarios the situation, regarding the amount of uncertainty found in the 
interpretation of traces, becomes immediately clear by the two distributions of the 
confusion measure. Any amount of uncertainty lying between these two extreme 
scenarios can be represented by the distribution of the confusion measure. This 
representation is effective in conveying directly the information to the analyst 
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regarding the amount of uncertainty induced during the interpretation of a set of 
traces.   
 
There are two advantages of using Shannon's entropy theorem as a basis of the 
confusion measure: 
1) The measure can be generalized to use the broader framework of belief measures 

and plausibility measures [Kli87], which, under certain conditions, might be a 
more appealing method to use in expert knowledge elicitation, since these 
measures can account for ignorance from the expert's side.  

2) The measure allows the use of Dempster and Shafer's (D-S) rule of combination 
[Dub99] [Sha76] to update the measurement with new evidence. The D-S rule 
allows as well the combination of evidence provided by several experts.  
 

3.1.3 Case study: Interpreting error messages with the help of 
experts 

A set of 416 unique error traces is collected. This is the complete set of traces that can 
be logged by the system of the sample data. Experts were asked to conceptualize these 
traces. The concept "fault type" is defined by two classes: root cause and severity.  
 

Due to the multiplicity of the components and the complexity of the system's 
architecture, it was decided to abstract for both classes. The sub classes for class root 

cause are:  
1) Software i.e. the trace represents an error for which the root cause is found in the 
system's software 
2) Hardware i.e. the trace represents an error for which the root cause is found in the 
system's hardware 
 
For the class severity three subclasses were provided:  
 

 Critical: This type of error may cause a mission failure, unacceptable 
downtime, or loss of data. The effect of this error is disruption of the workflow 
by system unavailability that cannot be overcome without expert support.  

 Moderate: This type of error may cause undesirable downtime or partial loss 
of function, but it may be temporarily circumvented. Error leads to temporary 
disruption in the workflow that can be overcome by the user by restarting the 
system. This error may lead to loss of metadata or limited performance like for 
example longer reaction times, or lower image quality. .   

 Negligible: This type of error has little effect on the functionality of the system 
except that it may be a nuisance to the user. Error leads to prolongation of 
execution time by recalling the command. It may never be fixed and still have 
a negligible effect on the overall system.  

 
The 416 traces were divided into groups according to the modules they originate 
from. One module expert was asked to classify the set of traces of every module. 
Dividing the traces based on relevant modules and asking the corresponding expert 
should increase the chance of classifying the trace with high confidence i.e. fewer 
selected subclasses.  
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The weights were distributed uniformly among the number of assigned subclasses of 
each attribute. For example, for the attribute severity if the trace assigned to three 
subclasses, each value would have a weight of 0.33.  

3.1.4 Results of case study 

The overall results of the classification process of the 416 traces, for the attribute 
severity can be seen in Figure 3-3  and for the attribute root cause in Figure 3-4. 

 
Figure 3-3 Distribution of confusion measure for severity 

 

 
Figure 3-4 Distribution of confusion measure for root cause 

Both figures convey the information on the overall uncertainty of the linking for all 
traces in the set. The confusion measure with value zero (no uncertainty) is the highest 
in both graphs. However, the linking of traces to the attribute severity involved more 
uncertainty than making the linking to root cause subclasses. This is obvious by the 
higher bar of the confusion measure with value 0,6931 for the former. Nevertheless 
the amount of uncertainty measured for the assignment of traces to root cause is 
worrying, considering that the experts had to choose between only two subclasses 
each representing highly abstract attribute values (hardware vs. software). For certain 
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modules almost half of the traces were assigned to both subclasses of the attribute 
root cause (Figure 3-5).     
 

 
Figure 3-5 Distribution of confusion measure for attribute root cause for the set of error messages 

corresponding to sub-system A 
 

3.1.5 Discussion and conclusion  

Though the classification of the traces in this case study showed that overall the 
uncertainly about the linking of traces the error attributes was low, considering the 
level of abstraction, especially for the attribute root cause, the conceptualization has 
little practical value. To increase the practical relevance of the conceptualization the 
attributes have to be defined in higher granularity. If the attributes are defined with 
higher granularity e.g. specific components for root cause, the distribution of the 
confusion measure has to be redefined, depending on the number of subclasses for 
each error attribute.  
 
This case study supports the view that the transformation of traces from single 
semantics to meaningful representations is difficult when done out of context. The 
interpretation of the trace may depend on the conditions in which the trace was 
logged, for example the type of mode the system was in, start-up mode vs. normal 
operation mode, or the type of operation it was performing when the error occurred. 
Instead of interpreting the semantics of traces upfront without any knowledge of the 
context, it is likely more effective to perform the interpretation of traces after the 
traces are prioritized based on their relation to system unavailability. Fewer number of 
traces that are highly relevant for system unavailability can be examined in depth 
taking in to account more information about the system state at the time the error trace 
was logged and by using full root cause and system effect analysis. 
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3.2 Exploring the structure of subsequences with fault 
injection  

Subsequences are the end product of a process that begins with an error occurring in a 
single component and ends with the logging of one or more traces in the trace 
sequence. A fault causes a component to experience an error. The error might 
propagate to other components due to the functional dependencies, causing them also 
to produce errors. The errors are picked up by the "sensors" in the system. The 
logging mechanism reports the erroneous states in the form of traces. The collection 
of traces resulting from a single physical error event, form an error subsequence 
(Figure 3-6).  A similar process produces the subsequences that describe a system 
recovery. 

 
Figure 3-6 Process from error to subsequence 

 
As the process repeats itself over time it results to the formation a long sequence that 
contains several subsequences.  
 
To transform a long sequence of traces into a sequence of point representations for 
physical events, the subsequences have to be identified first. To device methods that 
can identify the subsequences in long sequences of traces, a better understanding of 
the relationship between physical events (the triggers) and subsequences is needed. To 
understand this relationship an exploratory study is conducted. The exploratory study 
is performed with the help of fault injection experimentation. The experiment consists 
of three phases: 
1. A certain fault is injected into the system multiple times under the same conditions  
2. The subsequences resulting from the multiple injections of the same fault are 

collected and compared.  
3. The experiment is repeated for different types of faults that are selected to cover a 

wide area of the system's architecture.   
 
The exploratory study intends to address the following questions: 
 

 Verify the causal relationship between faults and traces as it was suggested by 
the conceptualization in 3.1. The root cause that was indicated by the expert as 
the most likely trigger of a trace is now injected into the system and the 
resulting subsequence is searched for the trace in question. The state of the 
system after fault injection is also compared to the system state suggested by 
the expert. 

 
 Given that the structure of a subsequence is defined by its temporal and 

semantic characteristics, how do these characteristics manifest in a 
subsequence for different types of faults?   
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 Do subsequences that result from the same error under the same conditions 
show variation in their structure or is the process deterministic?  Information 
on the structure of subsequences e.g. the number, type, order of traces, the 
length of a subsequence, the temporal distance between consecutive traces 
within the subsequence are compared.  

 
 Does the system recover after the failure as expected and is that recovery 

visible in the traces?  This steps it to verify the presence of recovery traces and 
their association to system failures.  

 
This section is organized as following: firstly, fault injection techniques used in other 
studies are discussed briefly in 3.2.1. Then the experimental setup and its execution 
are described in 3.2.2. A set of observation areas are defined that can help draw 
conclusions from the experimentation results. These observation areas are described 
in 3.2.3 and the results of the experiment are presented 3.2.4. Finally the experiment 
results are discussed in relation to the objectives of the study and conclusions are 
presented in 3.2.5. 

3.2.1 Related work 

Experimentation gives the opportunity to explore unknown mechanisms by carefully 
controlling the inputs and the surrounding conditions. It also allows problems that are 
too complex for analytical modeling to be studied in parts and learn about the 
dynamics that govern them. Fault injection is an experimental technique that is used 
to assess the behavior of operating components or systems when subjected to faults. 
The dependability of processors and processor architectures and the detectability of 
faults and errors has been the focus of several fault injection experiments [Mar02] 
[Arl90] [Con99] [Car98] [Gu03] [Cho90]. To facilitate such experiments, techniques 
for fault injection on hardware and on software have been developed [Kan92] 
[Hsu97]. These techniques inject the faults either directly into the processor's pins 
using an erroneous input or into the software by manipulation of the code. Most of the 
techniques require the use of special hardware or software to inject the faults at the 
right moment and at the right location during system operation. Sophisticated methods 
like these are required in order to test resilience of components during operation. 
Some of these studies examine the ability of the logging mechanism to detect errors; 
however none of them examine the effect of the logging mechanism itself on the 
traces.   
 
In this study the focus is exploring the relationship between the physical error events 
and the structure of subsequences. The techniques used in this research are simpler 
and do not require the destruction of components. The choice for the techniques used 
was based on the feasibility of injection and the reproducibility of the injected faults.  

3.2.2 Experimental set up 

The system in the study is a medical imaging system. The hardware and software 
configuration is such, to match that of the sample of systems used in the reset of the 
research (see 2.5). The system was installed at the site of the manufacturer and was in 
full operational condition.  
 
The inputs for the fault injection experiment are taken from the results of the 
conceptualization process (see 3.1.5). The link between trace, root cause (fault) and 
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system state is used. For a given trace the indicated root cause is injected into the 
system with the intention to receive the same trace back (Figure 3-7). If necessary a 
function of the system is initiated to trigger the error e.g. fluoroscopy is triggered. 
Once the fault is injected the resulting error subsequence is collected, the system state 
is monitored and if available the resulting recovery subsequence is collected (Figure 
3-7.b). Once the cycle is complete, the system is brought back to normal state either 
by automatic or manual recovery. For a given trace the process of fault injection is 
repeated multiple times.   
 

 
Figure 3-7 Fault injection experiment  

 
 
A set of fault types is prepared for injection. The faults to be injected are selected 
based on the following criteria: 
  

a. Technical ability to inject the fault: fault injection has to be nondestructive for 
the component and easy to execute. For example, to achieve communication 
interruption the cable connecting a component to its control board is 
disconnected at an appropriate point in time 

b. Coverage of the system's architecture: The injected faults should cover a wide 
area of the system's architecture. This design allows examining whether the 
location of the fault has an effect on the formation of the subsequence.   

c. Severity of the error: The injected faults should represent all severity 
subclasses as defined by the classification scheme of the conceptualization 
process 

d. Root cause of the error: The injected faults should cover both, hardware and 
software components 
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A restriction on the selected number of faults for injection was put on the time that 
was available for fault injection (the system was available for two days). 21 faults 
were selected to be injected into the system. The set of selected faults fulfill the above 
criteria.  
 
The distribution of the injected faults over the system’s architecture is shown in 
Figure 3-8. Subsystems are indicated by the areas with the red contour. Each 
subsystem consists of numerous modules represented by boxes.  A module contains 
one or more components. faults are injected into the components. The system has four 
architectural layers (layers are separated with blue horizontal lines):  
 

1. User interface 
2. Application layer 
3. Application library layer 
4. Technical layer 

  
Usually in multilayered systems the components located in the highest layers e.g. 
layer 1, have dependencies on the components on lower layers. Errors tend to 
propagate from components in deeper layer to components in higher layers. An error 
that occurs in layer 4 is more likely to cause other components in higher layer to 
experience errors.   
 
In Figure 3-8 the distribution of the locations in the system to be subjected to fault 
injection are shown. The squares represent modules. Modules that form sub-systems 
are grouped by the red outlines. The modules that contain components capable of 

detecting errors and recording traces are represented by the colored squares. Out of 
these components, the modules that contain components that are chosen to be injected 
with a fault are colored in black .The distribution of the black squares shows how the 
injected faults cover a wide area of the systems architecture targeting different 
subsystems of all four layers.  
 

 
Figure 3-8 Targeted components (colored squares) in system's architecture 
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Layer 2 

Layer 3 
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The 21 selected faults to be injected are distributed over hardware and software 
components and are of severity subclasses Critical (B), Moderate (C) and Negligible 
(D) (Figure 3-9, label format (severity, count)).  

 
Figure 3-9 Distribution of hardware, software faults across severities 

Methods on how to inject the faults were obtained by domain experts. These are 
grouped into six general categories, each relating either to hardware or to software 
faults (Table 3-1).  

Fault injection method Hardware  Software 

Disconnect cable/ remove component 10  

Terminate process  5 

Corrupt file or registry  4 

Incompatible procedure 1  

Software incompatibility  1 

Table 3-1 Methods of fault injection 

3.2.3 Experimentation focus areas 

The experimentation focus areas are aspects of the experimentation that can help 
answer the predefined questions. These focus areas are described here under the 
corresponding experimentation objective: 
 
 Causal relationship between the fault and the trace: A specific trace is expected to 

be observed for a specific injected fault (Figure 3-7b). When the expectation is 
met, the existence of a causal relationship between the fault and the trace is 
verified. However, if the expectation is not met, it does not necessarily suggest the 
lack of such relationship.  Failing to trigger the expected trace may be due to 
missing conditions during the fault injection.  

 
 Structure of subsequences: The subsequences that result from the fault injections 

are collected and examined. The information collected can help understand the 
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structural characteristics of the subsequences for different types of faults and the 
variation in the structures of subsequences resulting for the same type of fault.   

 

The structure of a subsequence is described by the recording of the following 
characteristics:  

a. The number of traces in the subsequence 
b. The number of different types of traces in the subsequence.  
c. The temporal distance (in seconds) between traces in the subsequence  
d. The length of the subsequence  
e. The order of the traces in the subsequence 

 
The observation of the characteristics aims in comparing the subsequences that are 
obtained from multiple injections of the same type of fault.  

 
1. System Recovery: Recovery related subsequences are the result of the recovery 

processes that restore the system to normal state after a failure. This experiment 
aims in verifying the existence of recovery subsequences and examine their 
latency in relation to the error subsequences. 

3.2.4 Results of experimentation 

The experiment was conducted over a period of two days. Out of the 21 selected fault 
injections 20 were executed. One fault type was left out because it was not be 
successfully injected. The complete cycle of fault injection, data collection, system 
recovery and system restart, proved to be more time consuming than expected 
(approx. 25 minutes). Because of that only limited repetitions of each experiment 
were conducted. Observations were made on all areas of interest. The observations are 
presented below: 
 
Causal relationship: For 14 out of the 20 injected faults, the expected trace was 
observed (Table 3-2). For the rest of the injected faults, error messages that are 
semantically close to the expected messages were observed.  The intended error 
messages were not observed for 4 faults injections that involved a cable or component 
disconnection and 2 that involved a registry corruption.  
 

 Intended trace present? 

Fault Simulation No Yes 

Disconnect cable/ remove component 4 6 

Kill process  4 

Corrupt file or registry 2 2 

Incompatible procedure  1 

Software incompatibility  1 

Table 3-2 Observation on the causal relationship between faults and error messages 
 
Structure of subsequences: The number of traces found in the subsequences for 
injected faults varied from 1 to 151. There was no correlation between the number of 
traces found in the subsequences and the depth of the architectural layer in which the 
fault was injected. The length of the subsequences for injected faults varied from few 
milliseconds to 200 seconds. The length of the subsequence was found to be 
positively correlated to the architectural layers of the system i.e. faults injected in 
deeper layers produced subsequences of longer duration. The number of different 
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traces in a subsequence varied from 1 to 16. There was no sign of association between 
the number of traces and the number of different types of traces in a subsequence. 
There was also no sign of association between the number of different types or traces 
in a subsequence and the depth of architectural layers in which the fault was injected. 
The distance between consecutive traces within a subsequence varied from few 
milliseconds to 180 seconds.    
  
Variation in the structure of subsequences of the same fault type: For this observation 
the fault injection was repeated several times and different instances of subsequences 
were obtained. Because of the duration of the fault injection procedure only two faults 
were selected: Fault A was repeated 8 times and Fault B 4 times 
 
a. Fault A: The subsequences resulting from the injection of Fault A used a pool of 

23 traces. In the 8 subsequences obtained it was observed that each subsequence 
contains from 11 to 17 (43% to 73 %) of the traces in the pool. Moreover the order 
of the traces in these subsequences can differ significantly. The total length of the 
subsequences varied from 71 to 159 seconds. The distance between successive 
traces in the subsequences varied as well from few milliseconds up to 60 seconds.   

 
b. Fault B: The instances produced by Fault B showed greater consistency. The pool 

of traces is formed by only 5 traces. Each of the 4 subsequences obtained 
contained 2 to 4 (40% to 80%) of the traces in the pool.   The order of the traces in 
the subsequences of this fault had partly a pattern. Two of the traces that appeared 
in all instances, appeared in the same order in all subsequences. The other traces 
of the pool were either absent or ordered randomly. The total length of the 
different instance varied between few milliseconds to 26 seconds. Similarly the 
distance between consecutive traces varied across the subsequences but will 
smaller fluctuations.  

 

System Recovery: Fault A provided a good example for system recovery observation. 
The injection of the fault required the termination of a specific process. On the 
occurrence of the error the system initiates the recovery by restarting the terminated 
process. In all 8 injections of Fault A the recovery of the terminated process was 
found in the temporal data sequences following within few seconds.  For Fault B no 
automated recovery was observed.  

3.2.5 Discussion and Conclusions 

The causal relationship between failures and the resulting traces was verified for most 
of the cases of injected faults. For 6 out of the 20 injected faults the expected trace 
was not observed. All traces that were selected for the fault injection experiment had 
no uncertainly in their interpretation (see 3.1). The result is another indication that the 
linking of traces to concepts with the help of experts does not provide reliable results.   
 
The observations made on the structure of subsequences had some interesting 
findings. For the subsequences that were obtained from all injected faults, 
considerable variations were fund in the duration of the subsequence, the number of 
traces and the type of traces. Given that these subsequences were obtained from 
different injected faults, the result is not surprising. Similarly there was variation also 
in the distance between successive traces is the subsequences. However these 
distances were for most of the cases only few seconds. The largest distance between 
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two consecutive traces that was observed was 180 seconds. The distance between the 
successive traces in a subsequence that was observed in the experiment is very short 
considering that successive subsequences can be separated by many hours of 
operating time. This finding suggests that subsequences are dense data structures in 
the sequence can span over hundreds of hour of operating time.  
 
Another interesting observation was made on the subsequences obtained from the 
multiple injections of the same fault. In both cases (Fault A and Fault B) the 
subsequences produced by the same fault, varied in the number of traces, the number 
of different types of traces and their order of appearance.  It is clear that the concept 
of fault signature, a subsequence that is used as an identifier of a specific fault, 
applies loosely here because patterns do not appear in a deterministic way. 
Subsequences that are produced due to the same fault are found to have variation in 
their structure. Variation can be found in the temporal and the semantic aspect of their 
structure.   
 
The experiment provided also the first evidence on the association between error and 
recovery subsequences. The latter were observed after a relatively fixed period of time 
that was defined by the duration of the system recovery process.  
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3.3 Effective visual representation of traces for fast 
exploration 

So far the information collected on traces is obtained from field studies, first the 
conceptualization processes with the help of system engineers and then the fault 
injection experiment in a controlled environment. In both cases the knowledge that is 
gained over the traces is based on the assumption that the system operates in generic 
or constant conditions. The experts interpret traces given a limited number of generic 
scenarios of system operation. The experimentation on the other hand provides a view 
on subsequences under controlled and constant conditions. Systems that are operating 
in the field experience a wide spectrum of conditions. Given that, sequences that are 
collected from systems that are operating in the field are likely to contain a bigger 
variety of data structures.  
 
To utilize these sequences in order to increase the knowledge on subsequences of 
traces, a method is needed that will allow fast exploration of sequences obtained from 
system operating in the field. Such an exploration can be performed with the help of 
visual representation techniques. Traces can be represented visually to effectively 
reveal both, the semantic and the temporal characteristics of the subsequences. Visual 
representation as an exploratory technique has its advantages. The visual 
representation allows the human to intuitively explore the data. In cases where little is 
known about the problem in hand, visual representation can help with its fast learning 
iterations to adjust the objectives of the data analysis [Kei01].  
 
To facilitate the semantic and temporal information, traces can be plotted on a plane 
where one dimension (vertical) represents the semantics and the other (horizontal) 
represents time. A sequence can contain multiple semantics. Their arrangement on the 
vertical axis can be done either randomly or controlled. Generally in visualizations, 
randomly positioned dimensions yield less information than ordered dimensions 
[Ma99]. The ordering of the data has to be done accordingly to enhance certain 
features of interest. To achieve effective visualization of traces it is preferred to order 
the arrangement of semantics of the vertical axis of the graph according to their 
pairwise associations. 
 
In this thesis the item to item similarities are assumed to be defined by the underlying 
functional dependencies of the components of the system. When an error occurs in a 
component multiple types of traces can be logged closely to each other to form 
subsequences. The multiple traces are logged as the error propagates to other 
components of the system that are functionally coupled with the first erroneous 
component.  The stronger the coupling between the components the more consistent 
the co-occurrence of the traces is. This co-occurrence of traces, referred to as 
association, is a manifestation of the functional coupling of components. An 
appropriate measure is used to capture the association of traces and use it to enhance 
the readability of visualization of traces.  
 
Various techniques, such as multidimensional scaling, factor analysis, principal 
component analysis, are available for enhancing exploratory data visualization 
[Fer03]. Among them, multidimensional scaling is often used in data visualizations to 
enhance functional dependencies [Kei96]. Metric multidimensional scaling uses a 
matrix of item to item similarities to optimize their positioning on a low dimensional 
space, so that the distances between the item to item positions agree with the item to 
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item similarities. Defining an item to item similarity measure that can be used in fast 
visual exploration of traces is the main interest of this section. The optimization 
method itself is out of the scope of this thesis.  
 
This section is organized as follows: Section 3.3.1 describes the problem of non-
ordered visualization and sets the basic requirements for effective visualization.  In 
section 3.3.2 a framework borrowed from the domain of multidimensional scaling is 
described with which dimensions in a graph can be ordered to enhance the features of 
the data.   For traces the feature of interest is their association in the sequence.  In 
section 3.3.3 a measure of association is described that is appropriate for traces. The 
method for measuring association of traces and the resulting artifacts needed for the 
scaling operation are described in 3.3.4. In 3.3.5 the scaling operation is described 
briefly and the effect on the visualization is discussed. A case study is presented in 
3.3.6, where the effective visualization is used to explore traces collected from 
systems operating in the field, with the intention to increase the understanding on the 
structure of subsequences. Section 3.3.7 contains the discussion and conclusion on the 
effective visualization and the finding of the exploration.  

3.3.1 Visualization of traces 

To create a graph of traces that can convey the temporal and semantic information 
found in the sequence, a two dimensional space is needed. Time is represented on the 
horizontal axis and the types of semantics represented on the vertical axis. In Figure 
3-10 an example is shown of a sequence plotted on such a two dimensional graph. In 
the sequence there are 32 different types of semantics. These are positioned on the y-
axis in a lexicographic order since no other ordering is suggested at this point.  For the 
plot of the graph each trace (represented by a red cross) is positioned using the 
coordinates trace ic (ic represents uniquely the semantics) and time stamp.  
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Figure 3-10 y-x plot semantics vs. time 

The length of the sequence is over 4000 hours of operating time. The traces in 
subsequence are separated by few seconds. The distance between successive traces in 
the subsequence is very small compared to the length of the sequence. This makes the 
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traces that are close to each other appear on the graph as if they are arranged on top of 
each other. These vertical arrangements help to identify quickly the subsequences in 
the sequence. By first inspection of the graph some subsequences become 
immediately visible. For example the vertical arrangement of crosses in the upper left 
corner (delineated by the solid blue line) suggests that a number of traces are very 
close to each. Detecting other structures in the graph is however not as straight 
forward as the first example. In the lower part of the graph (delineated by the blue 
dashed line) subsequences are less clearly visible. There is a "cloudy display" of data 
points that does not allow easy identification of subsequences. The cloudy display is 
the effect of the arbitrary ordering of the semantics on the vertical axis. An arbitrary 
or random ordering will set the semantics of traces that tend to appear together far 
apart from each other, making the visualization less effective.  
 
The problem in hand relates to the ordering of the positions of semantics on the 
vertical axis. The temporal aspect of the graph is well served with the current setting 
because the relative temporal proximity of traces is clearly visible (vertical alignment 
of traces that close to each other). To enhance the informativeness of the graphical 
representation of traces, the positioning of the semantics on the vertical axis of the 
graphs has to be ordered. The ordering of the semantics on the graph has to allow 
semantics that are usually members of the same subsequence to be positioned close to 
each other on the vertical axis. Since the membership of the traces in subsequences is 
not known in advance the ordering can only happen by using the observations as these 
are made in the sequence.  

3.3.2 Optimizing the ordering of dimensions for effective 
visualization 

The interest in this thesis is to control the ordering of the semantics on a single axis 
(vertical axis), the optimization problem reduces to a single dimension, hence a 
unidimensional scaling problem.   
 
The scaling problem consists of two parts: 
 The distance matrix, which contains the item to item (dis)similarities. The distance 

matrix has to meet the metric properties [Gow86] so that the item to item relative 
dissimilarities can be retained after the scaling.   

 A cost function that has to be minimized by an optimization algorithm in order to 
find the best positions for the semantics 
 

The focus here is on the definition of a dissimilarity matrix that fits the information 
found in sequences of traces. For the cost function the least-squares criterion is used 
[Hub06]. To perform the optimization process, unidimensional scaling is used with 
the least square criterion 2L . The method is explained in short in 3.3.5.1. For further 
reading the reader is referred to [Hub06].  

3.3.3 Association between traces 

To measure the strength of the association between two traces an appropriate 
association measure is needed. Several association coefficients are found in the 
literature across different research domains [War08] [Che69]. The coefficients base 
their measurements on the observations that are made on how events occur in relation 
to each other, either in the time of in the space domain. To illustrate how observations 
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on events are made, an example is given. There are two types of events A and B .The 
occurrence of the events is monitored on a daily basis (time domain). Four event 
counters are used to measure the phenomenon: 
 

 
 (3-3) 

 
 

 
At the start all counters are set to zero. Depending on what observations are made at 
the end of each day the corresponding counter is increased by one. To evaluate the 
association coefficient the counters are combined appropriately to convey the 
indented measure of association. Among the several coefficients that are found in the 
literature for this thesis the Jaccard is chosen. The Jaccard coefficient measures the 
ratio of common occurrences over the sum of all occurrences of the two events. The 
coefficient is chosen because it shifts the weight of measuring the association on the 
co-occurrences of events rather the common absences. The Jaccard coefficient ignores 
in its calculation the number of occasions where both events are absent i.e. AB

x  
making the measure of association independent from the occurrence of other events. 
In the context of traces, the observation of two traces being both absent in a 
subsequence does not have an added value because it is not a statement on the 
functional coupling between two components. The Jaccard coefficient  has all 
properties of a metric [Gow86]. The coefficient  is defined as follows:   
 

 ( 3-4) 

3.3.4 Dissimilarity matrix for traces  

The association of traces in a sequence is measured by their co-occurrence in 
subsequences. At this point however subsequences are not known. The sequence 
consists of ordered traces. To measure the association between any two traces in a 
sequence, the sequence is partitioned into a finite number of time frames. If a pair of 
traces falls within the same time frame, this is counted as a co-occurrence. This 
method provides an approximation of the association of traces since it is based on the 
occurrence of traces in these frames and not in the subsequences. The method is 
defined formally here.  
 
A sequence of traces of lengthT is partitioned into n non-overlapping time frames tf of 
width l , where  , so that  

,  ( 3-5) 
where r , is the remainder of the sequence. The total number of time frames 
after partition is ' 1n n for 0r , and 'n n for 0r . For every jtf  , where 

1,2,3,..., 'j n the number of occurrences ijc are counted for each 
iic that is found in 

the sequence, where {1,2,..., }i m . Since the interest lies in the co-occurrence of 
traces and not in the number of occurrences, the count of the number of occurrences 
for a type of semantic 

iic is transformed into a state element ijb  obtained via a binary 
function: 
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1 0 ( )
0 0 ( )

ij

ij

ij

for c presence
b

for c absence
  ( 3-6) 

 
The event counters (3.3-1) are updated for all pairs ,i kic ic , where 

, {1,2,3,... }i k m . Based on these the Jaccard coefficient iks is evaluated for all pairs 
,i kic ic  of semantics. The association coefficients of all pairs form a similarity 

matrix Sdt of size m m  that describes the pairwise associations of traces in the 
sequence. The dissimilarity matrix Pdt  that is required for the cost function of the 
optimization operation is acquired by 1Pdt Sdt .  

3.3.5 Optimization of the ordering using temporal associations  

3.3.5.1 Optimization Method 
The method that is used in this thesis is known as random restarts unidimensional 

scaling [Hub06] and will be described briefly here. Given an initial (random) ordering 
of positions, the optimization of the criterion 2L (defined below) is approached 
through simple pair-wise interchange/rearrangement heurists. Such local interchanges 
continue until no further improvement in the criterion can be made. The minimum 
reached by this tactic is a local minimum and therefore not the optimal solution. To 
obtain a near to optimal solution, several local minima are obtained and the best out 
the set is chosen. To ensure a good approximation of the optimal solution, the set of 
local minima has to cover as much as possible of the input space. To achieve that, the 
process is initiated numerous times using random orderings 0Y  of the initial positions 

of traces as the input. The result is a set of local optima 2minL  over the input space. 
The lowest value 2minmin{ }L obtained from the set of local minima gives the 
approximated optimal solution for that run.  
 
The least square criterion is defined as 

2
2 ( | |)ik k i

i k

L p y y , 

where the element 
ikp  in Pdt   is defined as 1ik ikp s and ,i ky y the set of 

coordinates (positions) of data type  
iic and 

kic respectively . 

3.3.5.2 Effective ordering of positions of traces on the graph 
To set the width l , domain knowledge is used. According to domain experts and the 
observations that were made during the fault injection experiments (3.2), the duration 
of a subsequence is not expected to exceed 300 seconds. The dissimilarity matrix Pdt  
of the data types found in the data sequence is computed using the method described 
in 3.3.4. The random restarts unidimensional scaling method is used with the 
computed Pdt as the input. The 2minmin{ }L found suggests the optimal ordering minY . 
 
When the ordering minY  that is obtained from the optimization method is used to plot 
the semantics on the vertical axis, the result is an improved visualization. This can be 
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seen in Figure 3-11. The sequence in Figure 3-11 is the same sequence as in Figure 
3-10. 

 
Figure 3-11: Optimally reordered dimensions (data types) in y-x plot 

 
Subsequences become clearly visible when the ordering of the positions on the 
vertical axis is done based on the pairwise associations of traces.  Visual exploration 
of the data sequences is made easier.  

3.3.6 Case study: Visual exploration of temporal data sequences 
obtained from professional system operating in the field 

This case study shows how the visual exploration of the sequence of traces, using the 
effective visualization technique described here, can help increase the knowledge over 
the formation of subsequences. In the context of this research, visual representation 
can help enhance or weaken the following beliefs: 
 

1. Subsequences are dense formations i.e. traces located relatively close to each 
other compared.   

2. Subsequences with similar structure (temporal and semantic) can be found in 
long temporal data sequences. The operating conditions in the field can have 
an effect on the structure of subsequences. Does this effect allow the formation 
of subsequences that show similarities the same way as the results from the 
fault injection experimentation?  

3. Recovery subsequences follow error subsequences. The association between 
error and recovery subsequences is interesting because it is a data 
manifestation that is in line with the motivation of this thesis. The motivation 
of this thesis is to use information on the co-occurrences of error and recovery 
events to improve the availability of the system. The association between 
recovery and error subsequences was observed under the controlled conditions 
of the experimentation. How does the phenomenon occur in operational 
conditions?  
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4. Search for new unknown data structures. The data structures that are known 
are the subsequences. These are dense formations with a relatively short 
duration.  Are there other data structures in the sequence that do not follow the 
same pattern?   

 
Each of the 137 sequence in the sample set is represented visually and observations 
that are relevant to the three beliefs are recorded. The findings are presented in the 
following sections. Findings in relation of belief 1 and 2 are described in section 
3.3.6.1 , about belief 3 in section 3.3.6.2 and about belief 4 in section 3.3.6.3. 

3.3.6.1 Temporal structure and semantic content of subsequences 
Using the visualization technique described here and by producing the graphical 
representations of all sequences in the data sample, it is observed that:  
 
 Subsequences, error or recovery, are indeed found in the form of bursts. Example 

of this can be seen in (Figure 3-12 and Figure 3-13) where vertically aligned data 
points, i.e. subsequences, are formations of closely located traces and subsequent 
subsequences are separated by relatively long intervals. This observation enhances 
the confidence regarding  belief 1 and develops into conjecture 1 on the temporal 

structure of subsequences: 
 
Traces of the same subsequence are found in close temporal proximity. Traces of 

different subsequences are separated by relatively long intervals of time. 
 

 Subsequences can re-occur consisting of the exact same traces (subsequences 
outlined with dotted line in Figure 3-12 and Figure 3-13). Also, subsequences can 
re-occur consisting partly of the same traces and partly of traces that are unique to 
each subsequence (subsequences outlined with dashed line in Figure 3-12, the 
traces shared among all four subsequences are colored in blue). This observation 
enhances belief 2 and develops into conjecture 2 on the semantic content of 
subsequences: 
 
Semantics can reoccur together with a varying level of consistency to form 

subsequences.    
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Figure 3-12 Error subsequences 
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Figure 3-13 Recovery subsequences 

3.3.6.2 Association between subsequences representing faults and recoveries 
The association between error and recovery subsequences was first observed during 
the fault injection experiments where system failures where succeeded by automatic 
recoveries. The experiments were conducted in a controlled environment with specific 
operating conditions. Traces obtained from systems operating in the field can provide 
a new insight into this aspect because the information they contain represents 
operational conditions.  
 
The visual exploration of the sampled data set provided strong evidence that such 
associations exist. Examples of such association can be seen in Figure 3-14 (Error 
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traces, are represented with red crosses, recovery traces are represented by blue 
circles).  

 
Figure 3-14 Associations between error and recovery subsequences 

 
Associations between error subsequences and recovery subsequences can be seen 
where vertical alignments of crosses and circles exist. In the sample data, it was 
observed that recovery subsequences are preceded by error subsequences, which is 
enhancing the initial belief 3 and leading to conjecture 3 that: 
 
Subsequences representing recoveries follow subsequences representing failures.   
 

3.3.6.3 Discovery of unknown formations in long sequences of traces 
Visual exploration helps to identify aspects of the data sequence that were previously 
unknown. Plots of sequences from the same sample set revealed the presence data 
structures that were previously not known. These structures seem to cover the entire 
length of the sequence with frequent entries that appear to be equally spaced. The 
structures are found in error and recovery traces (in Figure 3-15 and Figure 3-16) as 
data points that form horizontal lines.  
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Figure 3-15 Error traces forming dense horizontal structure 

 
Figure 3-16 Recovery traces forming dense horizontal structures 

 
This evidence supports belief 4 and leads to the conjecture 4: 
 
Data structures that differ from the conventional structure of subsequences are 

present in the sequences of traces 

 
These data structures are identified as partially periodic subsequences (pps). Pps do 
not represent physical events that in similar manner as subsequences do. Pps are 
artifacts of the logging mechanism. Pps will be discussed in detail in section 3.4. As it 
will be shown in 3.4, pps are obstructing the transformation process and therefore 
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need to be removed to allow further processing of the sequences. In section 3.4, a 
technique for fast detection of pps in long sequences is presented. 

3.3.7 Discussion and conclusions 

Visual representation is a powerful tool in the exploration of data sets when little 
information is known about how the data is structured. Improving the graphical 
representation by optimizing the position of trace on the vertical axis can increase the 
power of visual exploration.  The proposed method is an inexpensive ordering 
technique that can improve the effectiveness of the visual representation of traces. Its 
inexpensiveness lies in the fact that without deep prior knowledge on the formation of 
subsequences, the association of semantics can be measured quickly and effectively, 
by using a simple partitioning technique of the sequence with the combination of the 
appropriate measure of association i.e. the Jaccard coefficient. This measure, together 
with the use of a simple optimization algorithm can improve considerably the 
graphical representation of traces.   
 
Exploring the sequences for structures without the effective representation would be 
virtually impossible. The exploration of sequences of the sample helped to increase 
the understanding on the structure of subsequences by getting a visual feel of the data 
structures that are present. Unknown aspects of the traces were discovered. The 
presence of pps is problematic for the implementation of data mining tools and need 
to be removed. Although pps can be removed by simply filtering out the traces that 
form them, their automated detection is not straight forward.  
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3.4 Detection of partially periodic subsequences 

An important part of the preprocessing of traces is to remove any unwanted data 
structures that can hinder the transformation process. The visual examination of the 
graphical representations of the traces revealed such structures in the data sequences. 
By closer examination it is found that that some traces form “horizontal” structures. 
Within these structures instances of the same trace ic are spread over long intervals. 
The instances are spaced apart in almost constant distances. This spacing continues 
for a period of time, intermits for some other period of time, only to resume at some 
point later following a similar pattern.  

 
Figure 3-17  Partially periodic subsequence in the audit trail 

 
Such data structures are known as partially periodic patterns or partially periodic 

subsequences (pps) [Ma01].  The term periodic refers to the constant interval between 
successive traces and the term partially to the fact the periodic structure is 
intermitting.    
 
Pps are not the result of randomly occurring failures as the traces that appear in 
vertical structures, but are the product a semi-deterministic processes. They are likely 
to be the result of periodic monitoring mechanisms. These patterns occur for example 
when, due to an erroneous component, a periodic monitoring and recording 
mechanism is initiated. The purpose of such loggings is to give an alert to operators 
and make the problem visible to them when traces are visually inspected. Once the 
problem is solved the monitoring mechanism stops the recording of the data and the 
data structure terminates.  
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The presence of pps is problematic because as a data structure it masks the failure and 
recovery “vertical” subsequences to the discovery algorithms. Subsequences in the 
long sequence (encircled in blue in Figure 3-17) can be identified because of the 
compact arrangement of traces within the subsequences and the relatively long 
distances between subsequences. This arrangement is used by data mining techniques 
(chapter 4) for detecting subsequences in long sequences. The pps extends over long 
lengths in the sequence and masks subsequences by "bridging" the distances between 
consecutive bursts. As a result, subsequences of interest that otherwise would be 
clearly separated by relatively long periods of time, in the presence of pps become 
virtually invisible to data processing algorithms. 
 
Because pps do not represent random physical failure events and its presence obstruct 
the further transformation of traces they are unwanted structures and should be either 
removed entirely from the sequence or replaced by another representation. Detecting 
the traces that exhibit pps structure is a large set of sequences, is a rigorous manual 
task. An automated method is needed that can search and find traces that follow pps 
patterns. The method has to examine recursively all types of traces in each sequence 
and detect these that exhibit pps structure. One of the challenges in detecting such 
patterns is that the period i.e. the length of the constant interval between subsequent 
traces in an on-segment, is not known in advance.  Another problem is that, though 
the interval of the period is mostly constant it is not in an absolute manner. Small 
variations within the patter can exist.   
 
A method is presented for detecting efficiently the type of traces that exhibit pps 
structure in a sequence. In section 3.4.1 the pps is described and defined formally. 
Section 3.4.2 presents current methods found in literature for detecting pps and 
discusses their shortcomings.  In 3.4.3 am efficient method is presented for detecting 
pps in sequences of traces. Section 3.4.4 described a comparative study between the 
proposed method and the state of the art method found in literature. In section 3.3.5 a 
cases study is presented where the proposed method is applied on the sample 
sequences and the findings are discussed. Section 3.4.5 is concludes the discussion on 
pps.  

3.4.1 Partially periodic subsequences 

In contrast to a continuous periodic pattern where events reoccur continuously in 
regular intervals, pps periodic occurrence of events is present for a period in time, the 
on-segment, and ceases to exist for a following period phase in time, the off-segment. 
In Figure 3-18 two on-segments are shown where events are taking place at times 

it . 
In the pps purest form, successive events in on-segments are separated by intervals of 
constant length, known as the period p. The on- or off-segments can be of various 
lengths. In the example of Figure 3-18 the pps has a period of p=3 e.g. time units.  
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Figure 3-18 Partially periodic subsequence (pps) 

 
In the context of the logging mechanism, the on-segment intervals correspond to the 
phases in time when a sensing mechanism is activated due to an error, in contrast to 
the off-segment intervals where the mechanism is inactive. If it is decided to replace 
the pps instead of removing it entirely, an option can be to replace each on-segment of 
the pps with a single trace of the same type. The single replacement trace should be 
located at the point in time where on-segment starts.  
 
To detect a pps it has to be determined that a certain type of follows a pps pattern. The 
pps can appear with some degree of distortion in its structure. The distortion can be 
found in the form of additional traces of the same type placed randomly within the on-
segment and adjacent to the traces that form the pure pps. Similarly additional traces 
can be placed in the off-segment closely to the border traces of the on-segments. In 
Figure 3-19 a pps with distortion is shown. The pps has two on-segments. The period 
is p=3 time units. The events that follow the period are indicated by the black vertical 
lines. Additional traces located randomly and adjacent to the segments of the pps are 
indicated by the red vertical lines.   

 
Figure 3-19 Distortion in partially periodic subsequence 

 
Given that the period of a pps in not known in advance the presence of distortion can 
make the determination of the period p of the pps difficult because it blurs out the 
deterministic structure of the on-segments.  The discovery of pps in the presence of 
such distortion is a challenge that requires specifically designed methods. Researchers 
have been working on the problem of pps detection.  

3.4.2 Related work  

The problem of discovering pps in data sets has been dealt by using different 
approaches. Ma et al. [Ma01], use association rules to discover pps in temporal data 
sequences. A different approach is used by Yang et al [Yan00]: a subsequence 
consists out of segments where the data type exhibits periodicity; the longest valid 
subsequence with periodicity is characterized as pps. A third approach is presented by 
Cao et al. [Cao07], where a symbol matching scheme is used in combination to 
shifting and comparing the sequence with itself to discover the pps. 
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Regardless of the approach, the biggest challenge for discovering which type of trace 
exhibits a pps structure in a sequence where multiple traces occur in different point in 
time, is that the period p  of the pps is not known beforehand. Some methods propose 
an exhaustive search of all possible lengths for period p, which is clearly not an 
efficient method if the amount of traces in the sequence is high. There is a need to 
narrow down the possible lengths for period p in order to improve the efficiency of 
these algorithms. Such a method is proposed by Ma et al [Ma01], where binomial 
hypothesis testing is used. The test is designed to detect which interval length between 
successive events appears in greater than expected frequencies, under the assumption 
that all interval lengths are equally likely to occur. To perform the test, the difference 
between consecutive data points in the sequence is computed. The count of each 
interval length is compared against the 95% confidence level of the expected count for 
that interval length, under the assumption of equally likely occurrences. If the count 
exceeds that level, the interval becomes a candidate period i.e. an interval length that 
could potentially be the period of the pps. Once the set of candidate periods is defined, 
it is used to search for pps with one of the methods described above.   In essence the 
objective of detecting candidate periods is to narrow down the number of trials for 
detecting the pps.   
 
In a data sequence S that consists of N data points (events of the same type), 

it  
represents the time of occurrence of a data point, where 1,2,...,i N  and  for 

. The thn order difference is given by: 
 

n i i ndiff t t , for  and    ( 3-7) 

and the 1st order difference is the difference between consecutive data points in S and 
is given by 1 1i idiff t t . 
 
Identifying candidate period by using the 1st order difference comes with limitations. 
In the presence of distortion the 1st differences may not be the appropriate measure to 
detect the period of the pps. In Figure 3-20, an example of pps with distortion (in red) 
is shown.   
 

 
Figure 3-20 Effect of distortion on period detection 

 
The intervals that indicate the period are represented by bidirectional arrows with 
solid lines and the 1st order differences by bidirectional arrows with dashed lines. In 
the example it can be seen how in the presence of distortion the 1st order difference 
misses to measure the correct number of intervals lengths that are equal to the length 
of the period.  In the on-segment on the right, the first difference returns only one 
interval length that is equal to length of the actual period. This shortcoming was 
recognized by Ma et al [Ma01], and in their paper they suggest that for highly 
distorted data sequences, additional, higher order differences (e.g. the second, third 
etc.) can be used to perform the test. This is however not an efficient method since the 

period 

1st diff. 
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test has to be repeated several times, one for every order of difference. Also, the level 
of distortion is not known in advance and therefore it is not possible to foresee 
whether the second or third or other order of differences should be used.   
 
Here a test is proposed that can detect correctly the presence of periods in a data 
sequence with high rates of success even with high levels of distortion, using a single 
round of computation.  The test is built on the same principle of the binomial 
hypothesis test of Ma et al [Ma01], but instead of taking only a single order of 
differences at a time to make the comparison between counted and expected interval 
lengths, all orders of differences between the traces are taken at the same time.  

3.4.3 Mixed Erlang test for detecting candidate periods in temporal 
data sequences 

3.4.3.1 Mixed Erlang Distribution 
For a data sequence S  that consists of N data points, the differences between data 
points of all orders can be computed using 3.4-1. The result of the computations is 
represented in Table 3-3. The head row indicates the order of difference. For example 
the column of "1st diff" indicates all differences

n i i ndiff t t  of the order 1n , the 
column "2nd diff" of the order 2n and so on. Each column contains the number of 
differences 

nD obtained when performing 3.4-1 on all data points in S for a specific 
order n. For example the first column contains  1 1D N  differences between all 
successive points in S . The number of differences reduces as the order n increases.   
  
 1st diff 2nd diff. 3rd diff.   thn  diff  ( 1)thN

diff 
 2 1t t    
 3 2t t  3 1t t    
      
 1i it t  2i it t  3i it t   1it t    
        
 1N Nt t  2N Nt t  3N Nt t   

N N nt t   1Nt t   
number of 1N  2N  3N   N n   1  
differences  

Table 3-3 All Differences of all orders between all data points in S  
 
The number of differences obtained from S for the thn order is

nD N n , whereas 
the total number of differences obtained from the 1st until the thn order is given by: 

1

1

1( ) ( 1)
2

N

n

K N n N N   ( 3-8) 

 
Assuming that is R a random data sequence, the data points

it for 1,2,...,i N  follow a 
Poisson process with parameter . By the properties of the Poisson process, the set of 
differences 

ndiff of the thn order is a sample from an Erlang ( , )E n distribution with 



 

 65 

density [Cox62]. Let X  be a continuous random variable that represents the set of 
differences 

ndiff   of thn order with density: 
1e( )

( 1)

n n xx
f x

n
 ( 3-9)  

If the samples of the differences of all orders n, where {1,2,3,..., 1}n N  are put 
together the distribution becomes a mixed Erlang, where each ( , )E n has a mixing 
proportions .N nq  

N n

N n
q

K
  ( 3-10) 

The mixed density is thus 
1 11 1

1 1

e 2( ) e( )
( 1) ( 1) ( 1)

n n x n n xN N

N n

n n

x N n x
f x q

n N N n
 ( 3-11) 

 with first moment 
1

1

1 N

N N n

n

nq  ( 3-12) 

3.4.3.2 Binomial hypothesis test for nth order differences  
To detect candidate periods 

cp  a binomial hypothesis test is constructed. Given a 
sequence S, the test compares the observations 

il
O (counts) made of an interval length 

il , where {1,2,3,4,...}i  computed from the differences of all orders n( 
{1,2,3,..., 1}n N ), with the expected number of intervals 

il
E assuming a random 

sequence. In specific the null hypothesis is formulated as follows: 
 
H0: The count of intervals of length 

il  is obtained from the differences of all orders 
from a random data sequence. 
 
And the alternative hypothesis states: 
 
H1: The count of intervals of length 

il is obtained from the differences of all orders 
from a non-random data sequence.  
 
Non-random in the context of traces can be either a pps or an entirely periodic data 
structure (on-segment only).  
 
To test the hypothesis the observations 

il
O  made for each interval length 

il is 
compared against the expected number

il
E . The expected number follows a binomial 

distribution ( , )
il

B K P , where K is the total number of intervals of any length and 
il

P the 
probability of an interval of length 

il occurring. 
 
To test the hypothesis the standardized deviation from the expectation

il
E is used: 
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2
2 ( )

(1 )
i i

i i

l l

i

l l

O E
Y

E P
  ( 3-13) 

 
The statistic derives from the sampling distribution of the variance [Lan69]: 

2
2 2

1 1
~

z r z r
i

i r

z z

X
Y   ( 3-14) 

in particular: 
2 2

1~iY  ( 3-15) 

 
and is used on the basis of the central limit theorem that states that for sufficiently 
large samples ( 30 ) the sampling distribution of the variance of a variable 

iX  
obtained from a non-normal distribution approaches a chi-squared distribution ( 
Xi  approaches the standard normal). 

The statistic 2
iY uses the true mean

i iE K P , where 
il

E the expected number of 
intervals of length 

il , K is the total number of intervals (3.4-2) and 
iP the probability 

of an interval of length 
il and the true variance 2 (1 )

i il lE P . 

The probability 
il

P is computed by condensing the probabilities of the cumulative 
mixed Erlang distribution: 

  ( 3-16) 

where d is an arbitrary real number.  
 
When 2

iY exceeds the value of 2 3.84 (for a 95% confidence level), the null 
hypothesis can be rejected, the observations 

il
O  for interval length 

il cannot originate 
from a random data sequence and the interval length 

il becomes part of the set of 
candidate periods

cndp .  

3.4.3.3 Reducing the number of candidate intervals  
The hypothesis test can return a set of candidate periods 

cndp  containing more than 
one interval length. Within this set of candidates it is likely that there are interval 
lengths that are multiples of other lengths. That happens because a higher order 
difference can produce interval lengths that are multiples of intervals from a lower 
order difference.  
 
For example an interval of length 

cl is computed taking the 1st order difference 
between traces. If 

cl is a candidate interval i.e. its counts exceed the expectation 
according to the mixed Erlang, the 2nd order difference will produce intervals of 
length ' 2c cl l . Also the count of 'cl is likely to exceed the expectation and therefore 
become a candidate period. The count of 'cl  is an artifact of the computation method. 
Only the interval 

cl should become a candidate period. To prevent such artifacts, 
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interval lengths in set of candidate periods that are multiples of other interval lengths 
are excluded. The candidate periods are examined in ascending order of interval 
length.  The shortest intervals lengths are kept whereas intervals that are multiples of 
those are excluded.  

3.4.4 Assessing the effectiveness of proposed detection method 

The effectiveness of proposed method for detecting candidate intervals in the presence 
of distortion is assessed with an experiment. A pps is produced with period 5p and 
total length 500T time units. The pps has three on-segments and two off-segments 
of various lengths. The method described in this section is used to find candidate 
periods. If the period p=5 is within the set of candidate periods the tests is successful, 
otherwise it that tests results to failure. 
 
To simulate distortion, additional data points are added randomly to the pps. The level 
of distortion is increased gradually and the search for candidate period is repeated. To 
measure the level of distortion for each run, the distortion-to-signal ratio (DSR) is 
used. The ratio indicates the number of additional random data points added to the pps 
over the number of pps data points. The experiment starts with the DSR set to zero 
and gradually increased to 4.  
 
The model proposed here based on the mixed Erlang (model A) is compared to the 
performance of the model suggested by Ma et al [Ma01] (model B). For each DSR 
level 100 runs are conducted. Each run can result to a success or a failure, depending 
whether the correct period ( 5p ) is detected or not. The average success rate (ASR) 
for all runs is indicating the performance of each model in the test. In addition, the 
number of false positives is counted on each distortion level i.e. intervals of lengths 
other than 5 are added to the set of candidate periods. The average number of false 
positives is computed for the 100 runs as well.    
 
In Figure 3-21 the results of the analysis can be seen. The solid line represents the 
results of model A whereas the dashed line model B. Model A outperforms model B 
undoubtedly.  
 
For the first runs of the test the results of model B agree with those reported by Ma et 
al. [Ma01]. The average success rate of model B remains high until the DSR reaches 
the value of one, where the number of distorted traces is equal to the number of signal 
traces. Then the ASR drops rapidly and becomes equal to zero when the DSR is equal 
to two. For model A the ASR keeps perfect score even when the DSR exceeds the 
value of 2. At this point there are on average 2 additional randomly positioned data 
point for each data point in the pps.    
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Figure 3-21 Average success rate vs. DSR 

Another observation made is that the performance of model A seems to increase again 
once the DSR takes values 3 . This can be explained in the following way: 
 
The pps of the experiment has a period of 5p . Once the DSR approaches the value 
of 3, there will be on average 3 additional randomly positioned data points every two 
pps data points. This means that the interval of length 1 1l becomes the shortest 
dominant interval and is recognized as a candidate period. Because the interval of 
length 5 5l  is a multiple of 1l , it is recognized again as a candidate period. 
Consequently the curve of ASR reverses from decreasing to increasing and reaches 
perfect score again when DSR becomes equal to 4. At this point there are some many 
randomly positioned data points that they are present at every time unit. The pps has 
been transformed from having p=5 to having p=1. In a real situation a data sequence 
similar to that of the experiment at the point where 3DSR will be correctly 
recognized as a pps with period 1p .  
 
The number of false positives provides additional information to the performance of 
the two methods. False positives reduce the efficiency of the mining algorithms by 
falsely increasing the number of candidate periods. In Figure 3-22 the average number 
of false positives (AFP) against DSR is shown. The solid line represents the AFP 
for model A and the dashed line represents the AFP for model B. In Figure 3-23 
the difference of the numbers of false positives produced by the two models is shown 
( ( ) ( )ABComp False positives of ModelA DSR False positives of ModelB DSR ).  
It can be seen how the two models perform identically (

ABComp in Figure 3-23) as 
long as the DSR level remains below 1. From the DSR level of 1 until the value of 2, 
model A produces increasingly more false positives, but still in low numbers. At this 
point there are 470 interval lengths that are put to test and the AFP is 20. Moreover at 
this point model B cannot identify the correct interval as candidate period. From this 
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point on the AFP of model A continues to increase with the same rate until the DSR 
takes values  3  where the period switches from 5p to 1p .  

 
Figure 3-22 Average number of false positives vs. NSR 

 

 
Figure 3-23 Difference between numbers of false positives for two models 

3.4.5 Case study: pps in sequences of traces 

Sequences from 137 systems operating in the field are prepared for the 
transformation. At this phase of the data preparation the objective is to identify the 
trace types that are pps end remove them from the temporal data sequence.  
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3.4.5.1 Identifying candidate intervals in system event loggings: analysis  
The first step in identifying a pps is to detect any candidate intervals using the mixed 
Erlang test that was discussed in this section. For every sequence in the sample data 
set, each trace type is tested whether it has candidate intervals.   
 
A sequence of traces S contains N entries. For each type of trace jci (represented by 
its id), where {1,2,3,..., }j k , the test needs to be applied separately to determine 
whether it is a pps. To do that, for each type of trace jci , data sequence '

jS is 
produced from S  that contains only traces of a that trace type, by filtering out any 
instance of all other 1k  and keeping the temporal information (timestamps) intact. 
The resulting subsequence '

jS is of length  and contains '
jN traces, where 

.  
 
In Figure 3-24 an example of a data sequence is shown containing error traces only. In 
this data sequence 20 different types of traces can be identified (vertical axis). For this 
example the test has to be performed 20 times, once for every type of trace. 
 

 
Figure 3-24 20 different types of traces in a sequence 

The mixed Erlang distribution is used to establish the null hypothesis under the 
assumption of random temporal locations of traces in 'S . The null hypothesis allows 
to test whether the counts of interval lengths computed for 'S are higher than what is 
expected under the assumption of randomness. To achieve that the counts in 

il
O  are 
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compared to the expectation
il

E for a mixed Erlang distribution ( )Xf x , with 

parameters 'N  and 
'
'j

j

ci

j

N

T
.  

 
Given that pps are the result of build-in monitoring mechanisms, traces that are found 
to be pps in one system could be pps also in another. This assumption can be extended 
to the period that defines the pps and consequently to the candidate intervals that were 
detected.  
 
The procedure is executed with Matlab. Results are presented in the following 
subsection  

3.4.5.2 Identifying candidate intervals in system event loggings: results  
In all data sequences examined from 137 different systems, 202 different trace types 
were found. Out of these trace types, 8 were found to be a pps in the sequences of all 
systems in the sample. One type of trace has period of 1p sec and the other seven 
have 898p sec. The results are consistent across all sequences in the sample i.e. if a 
trace type is found to form a pps in a sequence it is can be found only as pps in other 
sequences with the same period. All instances of trace types that are pps are removed 
leaving sequences with only burst like subsequences (Figure 3-25).  

 
Figure 3-25 Sequence cleared from pps 

Removing the pps allows for further processing of the data sequences. In the next 
chapter a method for identifying subsequences in a data sequence will be presented. 
To achieve that, an unsupervised learning method is used.  

500 1000 1500 2000 2500 3000
63000324

80010055

80010051

60000011

10000000

10000016

20028787

20027272

730999902

730999900

730999901

730020000

510710102

E
v
e
n
t 
T

y
p
e
s

Time (hours)

Data types-Error, pps removed, System:23734



 

 72 

3.4.6 Discussion and conclusions 

In this section a method was presented that allows the identification of candidate 
intervals for detecting pps. A binomial hypothesis test is proposed to identify the 
candidate intervals. The test is based on comparing the occurring frequencies of 
interval lengths with the expected frequencies under the assumption of randomness in 
the locations of data points. The mixed Erlang distribution is used to estimate the 
expectations.  
 
In the experiment the performance of the proposed model is high for increasingly high 
DSR levels outperforming an alternative method proposed by Ma et al [Ma01].   
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Chapter 4 

4 Detection of subsequences in sequences  
Long sequences of traces can extend over periods of many operating hours and can 
contain thousands of entries. The traces that originate from single error or recovery 
events form subsequences. Subsequences are data structures that are characterized by 
the relatively close temporal proximity of its traces. Identifying the subsequences in a 
long sequence of traces is the first step of the transformation process and it is the step 
that defines the locations for the representations of physical events. Because the 
amount of traces in a sequence can be very high, the subsequence discovery process 
has to be performed automatically. 
 
The method for subsequence discovery in sequences has to be system generic, capable 
of performing independently of the type of system or its use, using solely the 
information that can be found in the sequence. In this chapter a method for detecting 
subsequences in long sequences of traces is presented that is based on the structural 
characteristics of the subsequences i.e. the relatively close temporal proximity of 
traces within the same subsequence compared to the distant temporal proximity of 
traces between different subsequences (conjecture 1, section 3.3.6.1). The knowledge 
that allows the formulation of this structural characteristic of subsequences has been 
obtained by the exploratory analysis discussed in Chapter 3.  
 
The process of detecting subsequences in a long sequence of traces is referred to as 
segmentation. An unsupervised clustering algorithm is used for the detection of 
subsequences in long sequences of traces. The term "unsupervised" suggests that there 
is no external validation data that can be used to train the algorithm. To guide the 
segmentation operation, a measure of cluster separation is used. The measure is used 
to choose the segmentation of the sequence that satisfies best conjecture 1.  
 
This chapter is organized as follows: previous works found in literature, on the topic 
of segmentation of temporal data sequences are presented in 4.1. In 4.2 the proposed 
framework for segmenting long sequences of traces is presented. In subsections 4.2.1-
4.2.5 each step of the framework is described in detail. The emphasis is put on the 
robustification of the segmentation method against variation in the subsequences, 
which is described in subsection 4.2.3. The chapter closes with the discussion and the 
conclusions on this stage of the transformation process in section 4.3. The 
segmentation method described in this chapter is applied in the case study of chapter 
7.   

4.1 Related work 

Different methods for detecting subsequences in long sequences are found in the 
literature. In their most dependent form these methods require a priori knowledge on 
the specific form of subsequences. The specifics of the form can be the number and 
the type of traces that define a subsequence, or even the order of occurrence of the 
traces. Based on this knowledge string matching techniques are used to search for the 
subsequences in the sequence that best match the already known forms 
[Ant01][Che98]. To obtain such information on the form of subsequences requires 
extensive failure injection to create a knowledge base of cause and symptom 
relationship. Fault injection is an expensive exercise, especially for complex 
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professional systems where the number of different forms can be high. Moreover such 
a process can never be exhaustive to cover all possible types of errors that can occur 
in a system operating in the field. 
 
Sequential clustering techniques have been used for segmenting data sequences, by 
identify patterns using the semantic information of subsequences 
[Cao05][Man97][Das73]. When an adequate number of matching subsequences is 
found (defined by the user how many), the subsequence is regarded as a pattern. This 
approach is appropriate when subsequences come in great numbers. Enough evidence 
has to be collected in relatively short period of time to support the existence of 
patterns. The time required to collect enough support in order to define patterns 
depends on the failure rate and the variety of types of failures. Professional systems 
are in general reliable products and failure events are relatively rare.  
 
The detection of subsequences in long sequences of traces can be based solely on the 
temporal structure of subsequences. Such an approach is proposed by Tsao [Tsa83]. 
The proposed method uses the distance between two successive traces as the cutoff 

parameter to decide whether consecutive traces belong to the same subsequence. 
However Tsao defines the value of the cutoff parameter arbitrarily. Though this 
method is suitable for segmenting a sequences based solely on the structure of 
subsequences, the arbitrary setting of the cutoff parameter is not satisfactory, since it 
does not allow the segmentation operation to adjust to the characteristics of different 
sequences e.g. differences in the compactness of subsequences.  In this thesis Tsao's 
method is used as the basis to guide segmentation, but it is developed further to 
include a criterion that can help to decide on the best value for the cutoff parameter. 
The segmentation of a sequence comes also with some risks of erroneously assigning 
traces to certain subsequences. These risks are particularly relevant when the value of 
the cutoff criterion is decided based on the information collected from a sampled 
sequence, but the same value has to serve the uses of field applications where new 
subsequences will arise. Finally an unsupervised clustering method required some 
form of validation. These considerations are discussed in the following section. A 
framework is proposed that is addressing these considerations.  

4.2 Unsupervised segmentation of a long sequence of traces 

The closeness of the temporal proximities of traces in the sequence indicates whether 
they are "members" of the same subsequence or not. Based on this observation Tsao 
[Tsa83] defines subsequences by using the cutoff parameter i.e. a threshold distance 
between consecutive traces, to decide whether these belong to the same subsequence 
or not. The clustering operation is performed by a sequential clustering algorithm. 
Tsao sets the value of the cutoff parameter arbitrarily. Setting arbitrarily the value of 
the cutoff parameter can result to errors in the segmentation of subsequences. What is 
an adequate cutoff value for one subsequence can be too short for another, which will 
result to mistakenly splitting traces when they should belong together. The problem 
can occur also in the other direction where a cutoff value that is set too high results 
into merging together traces that actually belong to different subsequences. The above 
problems are known in the literature of temporal data sequences [Han92] as:  
 

1. The risk of truncation: the risk of assigning traces to different subsequences 
that should belong to the same subsequence.  
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2. This risk of collision: the risk of grouping together traces into one 
subsequence that actually belong to two or more different subsequences.  

 
Between the two types of risks the risk of truncation is the most relevant risk in the 
segmentation of sequences coming from professional systems.  
 
It was shown in chapter 3 that subsequences can vary in their temporal structure i.e. 
the distance between consecutive traces in a subsequence. Although subsequences 
tend to consist of traces that are placed densely next to each other (compact structure), 
other subsequences can extend over longer periods with longer intervals between 
successive traces (loose structure). Variation can be also found in the structure of 
subsequences that result from different instances of the same type of physical event 
e.g. same type of failure. Different instances can have more compact or less compact 
structures1. Such differences can be attributed to the operation of the logging 
mechanism. The mechanism can fail to produce traces, or record multiple traces 
instead of one. Delays in logging can result to recordings of messages in later point in 
time than the exact time of error [Han92]. It has been also shown that the level and the 
type of the system workload have an effect on the way failures are represented by 
traces [Iye82]. The variation in subsequences can result to truncation during the 
segmentation of a new sequence if the cutoff criterion is set to a low value based on 
the observations made in sampled sequences with compact subsequences.  
 
Professional systems tend to be reliable products. Their failure rates are low. The 
creation rate of subsequences follows that failure rate of the system. It is expected that 
sequences of professional systems are well separated. To avoid speculating on a 
representative failure rate of professional systems, it is adequate to say that the 
interval between consecutive subsequences is typically measured in hours of 
operating time. On the other hand it was shown in chapter 3 using the fault injection 
that the length of subsequences can extend over approximately 300 seconds. More 
importantly the distance between successive traces in a subsequence is of lengths of 
few seconds. This structure enables the identification of subsequences using the 
information on the relative temporal location of traces in the sequence.      
 
Instead of setting the value of the cutoff parameter arbitrarily, an appropriate criterion 
is needed that will take into account the compactness of all subsequences in a 
sequence. In the literature of data mining and particularly under the area a data 
clustering, many criteria exist for different types of needs [The09]. For the sequence 
segmentation, the aim is to find compact clusters. A criterion that favors the discovery 
of compact clusters is the cluster separation measure (CSM).  
 
The value of the cutoff parameter is set with the help of the CSM and a sample 
sequence. This value fits the overall characteristics of the sample sequence and returns 
the most compact clusters for that sample sequence. However when the algorithm is 
put in use, it operates on newly formed sequences that can vary from the 
subsequences found in the sample. This variation in the structure of subsequences can 
lead particularly to higher risks of truncation. To reduce the risk of truncation in 
applications, the value of the cutoff parameter needs to be increased to an adequate 
                                                 
1 Even though the variation in the structure of subsequences can be found in both aspects of the 
structure: temporal and semantics, in this step of the transformation process the interest lies in the 
temporal structure. 
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level that can tolerate variation in the subsequences.  Given that there is only one 
sampled sequence available, variation in the subsequences has to be simulated. The 
variation is simulated using a random data sampling method that can produce variants 
of the original data sequence [Lev01]. The random sampling method is referred to as 
the resampling method. The value of the cutoff parameter has to perform equally well 
on the original as on the variant sequences. To measure this performance a new 
criterion is defined, the hybrid cluster separation measure hCSM.  The process of 
selecting a value for the cutoff parameter that performs well according to the hCSM is 
referred to as robustification. The hCSM is the primary criterion to decide which 
value of the cutoff parameter to use in field applications for the segmentation of a 
sequence.  

The risk of collision is perceived as a low risk here.  Nevertheless it is advised to 
choose a value of the cutoff criterion that reduces the risk of collision. The risk of 
collision is quantified by the collision probability (CP), which is estimated using a 
method proposed by Hensen [Han92]. For the segmentation process the CP is used as 
a secondary criterion.  
 
Given that no external data are available to validate the segmentation results, an 
internal validation method is used to assess whether the segmentation is the result of 
the inherent data structure found in the sequence or whether the segmentation that is 
obtained is likely to be the result of a random data structure.   
 
According to the above, the framework for the segmentation consists of five elements: 

1. A sequential clustering algorithm to segment the sequence.  For each value of the 
cutoff parameter the clustering algorithm produces a segmentation of the sequence 
(4.2.1) 

2. The CSM to decide which value of the cutoff parameter return the most compact 
clusters. (4.2.2) 

3. Robustification of the value of the cutoff criterion to account for structural 
variation  of subsequences using the resampling method and the hCSM (4.2.3) 

4. Chose a robustified value of the cutoff criterion that also reduces the risk of 
collision during the application (4.2.4) 

5. An internal validation criterion to verify that the segmentation of the sampled 
sequence using the selected value of the cutoff parameter is not the result of 
randomly positioned data points being grouped together (4.2.5) 

 
In the following sections each one of the elements of the segmentation framework is 
discussed in detail.  

4.2.1 Segmentation of temporal event sequence using a sequential 
clustering method 

Each trace in the sequence is represented by a data point 
it (data points represent 

traces of all types), where 
it is the time of occurrence. The sequence is represented as 

an ordered set of N data points (traces) 1 2( ),( ),...,( )NS t t t , where 1 2 ... Nt t t . A 
sequential clustering algorithm is used to segment the sequence. The clustering 
operation starts with the first data point in the data sequence 1t . The operation 
continues sequentially for every data point in the data sequence until all points have 
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been processed. Throughout the chapter the Euclidean distance is used as a measure 
of distance.  
 
The clustering with the sequential algorithm operates as follows:  
The first cluster 1C is formed by the first data point 1( )t found in the data sequence S. 
For the next data point 2( )t in the sequence S, a decision is made, whether to assign 
the data point 2( )t to the existing cluster 1C or to form a new cluster 2C . The decision 
is made by comparing the distance 2 1( , )d t C , between the first cluster 1C and the data 
point 2( )t , against the value  of the cutoff parameter , where  and

10 Nt t . If 2 1( , )d t C  is true, the data point 2( )t is added to the current cluster

1C . If 2 1( , )d t C , a new cluster 2C  is formed that contains at this stage only the 
data point 2( )t . The next data point 3( )t is examined in similar manner, by comparing 
its distance from the last formed cluster i.e. 3 2( , )d t C . The last formed cluster is 
referred to as the current cluster. The algorithm continues this operations until all N 
data points in S are processed.  
 
The distance ( , )i md t C  between a data point ( )it and the current cluster

1 2{( ),( ),..., ( )}m i i i lC t t t is ( , )i m i md t C t t , where 1 2 1max{ , ,..., }m i i i l it t t t t , 
therefore  1( , )i m i id t C t t  
(Figure 4-1 vertical lines represent data points in the sequence, the blue ellipse 
represents cluster

mC ). 

 
Figure 4-1: Sequential clustering algorithm 

 
The pseudo code for this algorithm is given 
 

 m=1 

 1 1{ }C t  
 for i=2:N 

o if ,( )i md t C then 

 m=m+1 

 { }m iC t  
o else 

 { }m m iC C t   
o end if 

 end for 
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For a data sequence containing N data points a clustering result RC  can contain k 

clusters, where 1 k N depending on the value of . For 0 , N clusters are 
returned, one for each data point.  

4.2.2 Cluster Separation Measure 

The segmentation of the sequence is repeated for different cutoff values p  of the 
threshold parameter , where p ℕ. The values p  for the cutoff parameter are 

defined as a range pa b . For each value p  a clustering result R

pC is returned. For 

each clustering result R

pC  the value of pCSM is computed separately.  
 
The CSM is a measure of the intra-cluster compactness and inter-cluster separation of 
a clustering result RC [Dav79].  Compact and well separated clusters return low values 
ofCSM .  The CSM helps to identify which values p  return from the data sequence 
clustering results with the most compact and well separated clusters.  
 
The CSM derives from two primary measures:  
 

1) The intra cluster dispersion measure
mD , which measures the compactness of 

clusters. The dispersion measure 
mD is calculated for every cluster

mC ,
1,2,...m k in the clustering result R

pC . 
2) An inter cluster distance measure ijM  or inter cluster separation measure. The 

inter cluster distance ijM  is computed for any two pairs of clusters 
iC and jC in 

the clustering result R

pC .  
 
Given a clustering result 1 2{ , ,..., }R

p kC C C C : 
 

 The intra cluster dispersion measure  is the mean distance of the data 
points-members of a cluster 

mC  around the cluster mean
m

 ,  

 
1

1 | |
mN

m j m

jm

D t
N

  (4-1) 

, | |m mN C is the size of the cluster (number of data points in a cluster) and  

 
1

1 mN

m j

jm

t
N

 (4-2) 

is the cluster mean for cluster
mC , where 1,2,...,m k . 

mZ is also the point 
representation of each cluster 

mC  that is used for computing the distance between 
two clusters. The dispersion measure for single-member clusters is equal to zero, 
as 

m
and jt are identical (Figure 4-2).   
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Figure 4-2: Cluster Separation Measure 

  
 The inter cluster distance measure ijM  is defined as the Euclidean distance 

between the point representatives 
i
 and j of any pair of clusters 

iC and jC  

in R

pC  (Figure 4-2).   

 | |ij i jM , 1,2,...i k and 1,2,...j k   (4-3) 

For a clustering result R

pC  that contains k  clusters, a k k symmetric matrix M  
is produced that contains the pairwise inter cluster distances ijM for a given 
clustering result (all elements on the diagonal of M are all equal to zero).   

 
Given the above, the intermediate measure ijR  for any pair of clusters

iC and jC  in 
R

pC  is given by: 

 i j

ij

ij

D D
R

M
  (4-4) 

For each cluster 
iC  the separation measure equals to the highest value among the 

separation measurements between the cluster
iC  and any other cluster jC in the 

clustering result R

pC . 

 ' max{ , 1,2,.. , }, 1,2,...i ijR R j k j i i k  (4-5) 

 
The above measures are calculated only for the upper triangular of the M matrix.  
 
For a clustering result R

pC , the cluster separation measure CSM is given by the 
average of the intermediate measure : 

 '

1

1 k

p i

i

CSM R
k

 (4-6) 

It is clear from function  i j

ij

ij

D D
R

M
  (4-4 that the more compact the 

clusters are the smaller the values
iD and jD  will be, which will reduce ijR . Also, the 

more separated the clusters 
iC and jC are, the larger the distance ijM   will be, which 

again will reduce ijR . Therefore, low values of CSM indicate compact clusters that are 
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well separated from each other. This in turn suggests that the corresponding cutoff 
value p returns desirable segmentations.  

4.2.2.1 Benefits of using CSM over other alternatives 

The cutoff parameter  that returns the lowest CSM among all other values in the 
range is selected. For making a choice it is important to have clear indication on 
which value of the cutoff parameter performs best.  
 
An alternative method to the CSM is to plot the number of clusters formed for each 
value of the cutoff parameter in the range of  [Tsa83]. The plot of number of 
clusters indicates the best value for  by the "knee" (see Figure 4-3a). In this graph 
the vertical drop of cluster count versus  changes into an almost horizontal curve. 
This is the “knee” of the plot and an indication that this location is a good value for
. The knee in the plot suggests that the data points have been allocated to the "right" 
amount of clusters as the clustering result remains unchanged for a long range of 
values of . However, the criterion of cluster count does not perform always that 
well. In a different example seen in Figure 4-3b, the curve does not provide any clear 
indication as to where a good value for the cutoff criterion is. In the second example 
the cluster count continues to decrease as the values for increases, without any 
"knee" becoming visible in plot.  
 

  
Figure 4-3 Cluster count plots (a left, b right) 

Obviously the cutting point in the second figure is subject to the analyst's decision. 
Compared to the cluster count the CSM provides clear indications. In Figure 4-4 the 
CSM is plotted for the same sequence and over the same range of values for as for 
the cluster count criterion in Figure 4-3b. The lowest values for CSM can be clearly 
identified. A CSM value is computed for every clustering result given a value of . 
For 0  the CSM is equal to zero as for this cutoff value each cluster contains only 
one data point and therefore the intra dispersion measure is null. When 0  the 
CSM clearly indicates that the best result is that for 4  (area of red rectangle in 
Figure 4-4). A magnification of the red rectangle is shown in Figure 4-5.  
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Figure 4-4 Cluster separation measure vs. Theta 
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Figure 4-5 Minimum CSM value magnified from Figure 6 

The CSM is not an absolute measure of good segmentation. The CSM indicates the 
best clustering results among the set of clustering results R

pC  that have been obtained 
by segmenting the data sequence S within a given range of . Using the CSM values 
to compare the segmentation results for sequences is not informative.   

4.2.3 Robustification the cutoff parameter 

To reduce the risk of truncation when the algorithm is applied in the field, the value of 
the cutoff parameter is adjusted to tolerate variation in the structure of subsequences. 
In the fault injection experiment it was shown that distances between successive 
traces can vary although the overall length of the subsequence can remain 
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approximately the same. For different instances of the same type of subsequence (type 
defined by the injected fault) the average distance between the traces can remain 
approximately the same; however the configuration of the points within the 
subsequence’s length can vary. The configuration of traces is specific for every 
instance of the subsequence, and since the sample sequence consists of such instances 
the cutoff value as it is set with the help of the CSM value, is subject to the particular 
trace configurations of the sampled sequence. The risk of truncation is caused if the 
sampled sequence leads to a “tight” fit of the cutoff parameter. To reduce this risk 
more instances of the sampled sequence can be simulated where the configuration of 
the traces is different. The simulated instances of the original sequence are called 
variants. In variants the subsequences are manifested in such a way that the average 
distance between traces remains the same but the different configurations of traces in 
the subsequence allow the distance between successive traces to take extreme values. 
The cutoff value is then assessed how well it can perform on the variants.  

The variation in the sequence is simulated using the resampling method (RM) of 
Levine [Lev01]. The original idea behind Levine's method [Lev01] is to assist the 
clustering operation in the presence of noise (random data entries). Here it is used to 
produce variants 'S of the original sample data sequence S . The variants 'S are then 
segmented using the same clustering algorithm and the clustering results are used to 
assess how robust p  is to variation in the structure of subsequences. The resampling 
method is described in 4.2.3.1. The parameterization of the resampling method is 
described in 4.2.3.2. The hCSM and the robustification of the cutoff value are 
described in 4.2.3.3. 

4.2.3.1 Resampling method  
Variants 'S are produced out of the original sequence S by randomly selecting data 
points out of S with a thinning probability f .For every data point in the original data 
sequence S , there is a probability f that it will be selected during resampling. The 
variant 'S is therefore a "thinned" or "diluted" version of the original data sequence S . 
 
In Figure 4-6 an illustration of the resampling method is shown. The original 
sequence S contains three subsequences. Each subsequence consists of a number of 
traces (vertical lines). The red lines indicate the traces that are selected in a sampling 
instance with a thinning probability of 0,5f . With this thinning probability, half of 
the original data points will be selected on average to form the variant 'S .  The higher 
the thinning probability f is, the more data points of the original sequence S  will be 
present in the variant 'S .  
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Figure 4-6 Resampling data sequence S 

 
Once a variant has been produced both S  and 'S are segmented. First the original 
data sequence is segmented for the cutoff value p , producing a clustering result R

pC . 

Then the resampled data sequence 'S is processed using as cutoff value ' p

p
f

 and a 

clustering result 'R

pC for the variant is produced.  The two clustering results are the 
compared to find out which data points that are members of the same cluster in the 
clustering result R

pC of the original data sequence S , also remain members of the 

same cluster in the clustering result 'R

pC of the resampled data sequence 'S . The 
agreement between the membership of data points for the results of the original 
sequence and its variant is reflected by the measure of merit

LM . If all data points that 
are members of a cluster in S are also members of the same cluster in 'S , there is a 
total agreement between the two clustering results. This agreement results to a 
measure of merit 1LM . If the measure of merit is lower than 1, it suggests that there 
was not absolute agreement between the membership of data points in clusters in the 
original clustering result and the result of the variant sequence. This in turn suggests 
that the value for the cutoff criterion is not less to variation. The lower the measure of 

merit
LM is, the lower the robustness of cutoff value p .  

  
The process is repeated k times, by producing k variants of S using the same thinning 
probability. Each variant is segmented and the clustering result is compared again the 
original clustering result to compute the measure of merit. Averaging 

LM  over all k  
gives a representative measure of agreement for the clustering results produced by p . 
  
The resampling method is applied on the data sequence over the selected range of 
values for p . An example of how 

LM  varies over the range of p is shown in Figure 
4-7. The higher the value of

LM is (max is 1), the more robust p is to the variation in 
the structure of subsequences.  

subsequence 

 

 

resampling of  
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Figure 4-7 Robustness measure 

LM  vs. Theta 

The above described resampling method allows the creation of random variants of 
subsequences every time the original sequence is sampled. The figure of merit then 
indicates how robust p is to the induced level of variation. To select the value p that 
returns a good segmentation result and is also robust to variation the two measures 
CSM and 

LM are combined to produce the hybrid CSM (hCSM). 

4.2.3.2 Choosing the thinning probability  
At this point it is required to decide which value of f serves best the robustification of 
the cutoff parameter. Since the main target of the robustification is to reduce the risk 
of truncation, it is of interest to produce at least one variant that contains a distance 
between successive traces (DBST) that exceeds the maximum distance between 
successive traces that is found in the original subsequence. Variants that contain at 
least one such DBST will lead for a given cutoff value to the truncation during the 
clustering of variant sequence, which in turn will reduce the figure of merit 

LM  for 
that cutoff value.  
 
The variants of the original subsequences are produced in such a way that they retain 
their relative structure. This structure is defined as the subsequence’s density i.e. the 
mean distance between successive traces (mDBST). This restriction assures that the 
variants are effectively variations of the original subsequence where the traces are 
rearranged within the same interval length as the original subsequence. 
 
Given the above the aim is in choosing a value of the thinning probability, for which 
the variants: 

a) Retain the density of the original subsequence.  
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b) Produce DBST that exceed the DBST in the original sequence. This criterion 
represents the effectiveness of the thinning probability in the robustification.  

c) Have a high chance of producing DBST that exceed the DBST in the original 
sequence. This criterion represents the efficiency of the thinning probability in 
producing DBSTs that will exceed the maximum DBST of the original 
subsequence. 

 
To find out which value of the thinning probability f can achieve best the above 
criteria, an empirical analysis is conducted. Original subsequences are produced for 
different density levels mDBSTo = [3,5,8,10,16,20,40,50,65,95,180,345]. For each 
level of  variants of the original subsequence are produced using the 
resampling method. The resampling uses a range of values of the thinning probability 
starting from =0.05 and increasing by a step of 0.05 up to =0,95. For every new 
variant that is produced by resampling the distances between points in the 
subsequence are rescaled with the thinning probability . This resembles the effect of 
adjusting the cutoff value as in the resampling method.  
 
For each level of  100 subsequences are produced. For each level of the 
thinning probability the original subsequence is resampled 5000 times. For each level 
of  the following measures are averaged over the 100 samples: 

a) The mean distance between traces in the original subsequence  
b) The largest distance between successive traces in the original subsequence 

 
 

For each level of the thinning probability  the following measures are averaged over 
the 5000 samples: 

a) The mean distance between traces of the variants  
b) The  largest distance between successive traces,  in the variants 
c) The number of DBST in the variants that are greater than .  

 
To examine how the thinning probability performs for each one of the stated criteria, 
the following measures are computed for each level of and for each value of 
the thinning probability : 

a) The ratio    

b) The ratio   

c) The ratio  

4.2.3.2.1 Retain the density of the original subsequence  

Since the  of the original subsequence has multiple levels, the criterion is 
tested using the ratio  . The criterion is met when the ratio is 1, which 
suggests that the mDBSTv of the variants is approximately equal to the mDBSTo of 
the original subsequence. In Figure 4-8 the ratio is graphed using a contour plot. The 
vertical axis represents the levels of average  and the horizontal axis the 
values of the thinning probability. The coloring of the lines in the plot indicates how 
close the ratio is to 1. The color coding is explained in the color scale on the right side 
of the figure. Dark brown and red lines indicate the areas where the ratio is equal to or 
very close to 1.   
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Figure 4-8 Ratio of average mDBSTo over average mDBSTv for all f 

It can be seen that for dense subsequences (levels of  [3,5,8,10,16,20] ) the 
thinning probability performs well (the ratio is close to 1). As the  increases 
>20 the performance of the low values of the thinning probability begin to drop, but 
the performance remains on good levels for higher values of the thinning probability. 
The area where the performance of the criterion is satisfactory is on the right side of 
the red contour line that starts at the bottom left corner and ends at the right of the 
middle of the top of the figure. Within this area the thinning probability performs well 
and is meeting the first criterion for all levels of mDBSTo.  

4.2.3.2.2 Produce DBST that exceed the DBST in the original sequence 

Figure 4-9 shows the three dimensional plot of the ratio  over all 
levels of and all values of the thinning probabability . For every level of  
the average , the performance of the ratio is assessed over the range of 
values of the thinning probabilities. Large values of the ratio are preferred as they 
indicate large DBST in the variants that exceed  . For a given level of 
average mDBSTo, the location where the ratio is the highest, is the best choice of the 
thinnning probability. The blue curve in Figure 4-9 indicates for each level of average 

the location in the range of thinning probabilities where the ratio takes its 
highest value. The red curve in Figure 4-9 is the projection of the blue curve on the -
mDBST plane. The red curve makes the reading of the best locations of the thinning 
proabbaility easier.  
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Figure 4-9 Ratio of average maxDBSTv over maxDBSTo for all f 

The red curve shows that the most effective (maximum) values of the thinning 
probability for dense subsequences are between 0.3 and 0.5. As the density of the 
original subsequence reduces, mDBSTo>50, the most effective values of the thinning 
probability are found in the high end of the range.  
 
The red curve of Figure 4-9 is shown Figure X on the -mDBST plane. For dense 
subsequences the average  can be larger than average by a 
factor of two.  The ratio drops just below the factor of 2 for lower density levels but 
still performs keeping in mind that this is an average value and a single such large 
value is enough to cause the truncation of the variant subsequence. 

 
Figure 4-10 Best values of ratio over average mDBSTo 
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4.2.3.2.3 High chance of producing DBSTs that exceed the maxDBST in the 
original sequence 

The third aspect of this experiment is the efficiency with which the thinning 
probability in producing such variants that contain DBSTs that exceed the 

 of the original subsequence. In Figure 4-11the results of the analysis are 
shown. The figure shows the ratio of the average number of DBSTv that are greater 
than the  over the total number of DBSTv in the variant. The blue curve 
indicates the peaks of the ratio i.e. the locations where the ratio is the highest. The red 
curve is the projection of the blue curve on the - mDBST plane.  
 

 
Figure 4-11 Ratio of number of DBSTv that exceed maxDBSTo over total number of DBSTv in 

variants 

The efficiency of the resampling method is highest for values of the thinning 
probability other than the values that score best for effectiveness. However the ability 
to produce a  that exceeds the  is more important than the 
efficiency with which these large distances are being produced. Moreover when if the 
thinning probability is chosen based on effectiveness, the efficiency of those values is 
only marginally lower than if the thinning probability is chosen based on best 
efficiency. In Figure 4-12 the black curve indicates the values of the ratio where it 
peaks in the ranges of the thinning probability and the red curve indicates the values 
of the ratio where the thinning probability is most effective.      
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Figure 4-12 Efficiency of the thinning probability in producing large DBSTv 

 

4.2.3.2.4 Proposed thinning probabilities 

Based on these results the value for the thinning probability is selected in accordance 
to the density of the subsequences, as they are produced for a given value of the cutoff 
criterion. The table below shows these values: 
  

mDBST Value of 
thinning 
probability 

3 0.3 
5 0.3 
8 0.4 
10 0.4 
16 0.4 
20 0.4 
40 0.4 
50 0.5 
65 0.6 
95 0.6 
180 0.7 
345 0.9 

Figure 4-13 Proposed values for the thinning probability for different levels of mDBSTo 

4.2.3.3 Hybrid-CSM, a criterion for choosing robust p  

To combine the information obtained from the resampling method together with the 
CSM, a new measure is defined, the hybrid cluster separation measure: 
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The hCSM is applied on the range of values of p that have been indicated by the 
CSM to return the most compact clusters. This measure has the property of penalizing 
CSM for the areas of p  that do not score well in robustness. Areas that score 
perfectly well in robustness ( 1LM ) retain their original CSM value. For the hCSM 
the selection of the best clustering result is done in the same way as for the CSM i.e. 
the lowest value indicates the best clustering result.  
 
To illustrate how

LM transforms CSM to hCSM, a data sequence is processed and both 
measures are obtained. In Figure 4-7 the entire range of p is shown. The black line 
represents the CSM and the red line the hCSM. Areas of p that did not perform well 
during the resampling method, are penalized by the low value of 

LM   
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Figure 4-14 Original CSM and hybrid-CSM vs. Theta 

The best segmentation results are found at the low end of the range (red rectangle). In 
Figure 4-15 a magnification of the area in the red rectangle of Figure 4-7 is shown. 
The original CSM (black line) suggests that the best values for p is the narrow range 
between the values[2,16] . The hCSM however suggests that the best range is [8,16] . 
The hCSM suggests obviously a region with higher cutoff values, because larger value 
of the cutoff criterion can perform better after the thinning of the original sequence. 
The cutoff values in the range [2,7]did not score well in robustness. The value 

LM

was low, leading to an increase of hCSM.  
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Figure 4-15 Original and hybrid-CSM magnified at area of interest 

With the above robustification of the cutoff value the risk of truncation is reduced.  

4.2.4 Collision probability (CP) 

The problem of collision was discussed by Hansen [Han92] who described an 
empirical approach in estimating the probability of collision (CP) given a clustering 
result. The collision probability is most relevant of the application of the algorithm in 
the field. Taking CP into account when defining the cutoff parameter will reduce the 
probability of merging together subsequences that are created by random failure 
events that occur closely after each other.  
 
Given that X is a random variable for the inter arrival time of the error process and L a 
random variable for the length of the subsequence resulting from an error, a collision 
will take place if the interval Z=X-L, that is the time between the end of one 
subsequence and the beginning of the next subsequence, is smaller than the cutoff 
value p .The probability of collision can then be estimated by [Han92]:  

*

1
Pr( ) 1 F p F i

n
l

p i

i

X L e p e  ( 4-8) 

 
Where *

ip the probability for length
il occurring. The values for *

ip are empirically 
estimated from the collection of clusters in the clustering result 1 2{ , ,..., }R

p kC C C C . 

Every cluster iC in R

pC  has a cluster length
il , defined by the two most distant 

members within that cluster max minil t t ,where 0il  ( max min0il if t t . i.e. a 
singleton cluster). 
 
The failure intensity

F
 of the physical process is assumed to be exponentially 

distributed. Because it cannot be measured directly it is estimated based on the 
clustering result. The method is described in detail in [Han92]:  
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The smaller the value p of the cutoff criterion, the lower the CP is.  
 
To illustrate how CP affects the choice of p , an example is provided. For simplicity 
reasons in the example CSM is used instead of hCSM. The CP applies on both 
measures in the same manner.  
 
The objective is to reduce CP given a range of p that was indicated by CSM as 
returning the best segmentation of the sequence. CP tends to favor the left end of the 
proposed range. This is because the smaller the value of the cutoff criterion is, the 
lower CP is. In Figure 4-16 the CSM values from the segmentation of sequence is 
shown. The best region for p is lies between the two vertical lines as shown in the 
graph. The CP criterion suggests the lowest value of the range, where the CP is the 
lowest.   
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Figure 4-16 Effect of CP on the selection of the value of the cutoff criterion 

 

4.2.5 Internal Criteria Validation 

The sections so far discussed the process of selecting an appropriate cutoff value 
using hCSM as the primary and the CP as the secondary criterion. The result of that 
process is a cutoff value

u
for which the clustering result satisfies best three 

requirements:  
 

1. Best possible segmentation result of the sample sequence 
2. Robustness to variation of subsequences (reduced risk of truncation) 
3. Low collision probability 
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This section discusses the last step of the segmentation process, which is the 
validation of the cluster result R

uC .  

4.2.5.1 Random position hypothesis testing 
The aim of the hypothesis test is to examine whether the clusters obtained from the 
segmentation of the sequence S are due to the non-random arrangement of traces in 
the sequence. The test examines the likelihood of obtaining similar clusters from a 
sequence with the same number of traces, but where the traces a randomly arranged 
over the length of the sequence. If such likelihood is small, then the clustering result 
obtained by the segmentation, is a sensible result, and combined with the use of CSM 
it is the best sensible result.   
 
The random positioning hypothesis assumes that "All arrangements on K vectors in a 

specific region of the l-dimensional space are equally likely to occur"[The06][Jai88]. 
In the case of traces this assumption can reformulated as: "All N traces found in the 

sequence S, are positioned randomly". If the sequence has a random structure, i.e. the 
traces are arranged randomly over the length of S then the clustering result that is 
obtained by the segmentation of S is coincidental. If so, a similar result can be 
obtained by other randomly structured sequences. The hypothesis test examines how 
likely it is to obtain from randomly generated sequences similar results, as the results 
obtained from sequence S. The null hypothesis is formulated as following:   
 

H0: The clustering result R

uC  that is obtained by the segmentation of S , which 

contains N data points ,and by using the cutoff value
u
, is equally likely to be 

obtained from a data sequence
RS  of the same length as S , where N data points are 

positioned randomly. 

 

the alternative hypothesis states: 
 
H1: The clustering result R

uC  that is obtained by the segmentation of S , which 

contains N data points, and by using the cutoff value
u
, is unlikely to be obtained 

from a data sequence
RS  of the same length as S , that contains N data points that are 

positioned randomly. 

 
The test consists of the steps: 
 

1. Generate a sequence 
RS of the same length as the sequence S, and which 

contains N points uniformly distributed over its length.   
2. Use an appropriate test statistic to compare the clustering result obtained by 

segmenting S against the clustering result obtained by segmenting
RS

  
 

3. Perform the hypothesis test using the empirical distribution of the test statistic.  

4.2.5.2 Test statistic  
To test the hypothesis the normalized ˆ statistic is used. The normalized ˆ statistic is 
a normalized version of Hubert's statistic [The06].  The ˆ statistic measures the 
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correlation between two matrices. Large absolute values of ˆ are an indication of 
good agreement between the elements of the matrices. 
 
For a given cutoff value, the statistic is computed for the sequence and clustering 
result and is compared against the distribution of the statistic of the random position 
sequences and their clustering results.   
 
The sequence is represented by a proximity matrix. The proximity matrix contains the 
information on the distances of a data point to all other data points in the sequence. 
The proximity matrix is a symmetric matrix where the values of the diagonal are 
equal to zero (distance of a data point to itself). The clustering result R

uC  is 
represented by the dis-connectivity matrix CT . The dis-connectivity matrix CT is a 
cluster membership representation of the data points in the sequence. The pairs of data 
points that are not members of the same cluster are indicated by the value of 1.   
 
The normalized ˆ statistic measures the agreement between the proximity matrix and 
the dis-connectivity matrix CT  . Large values of ˆ suggest that the clustering result 

R

uC agrees with the inherent structure (relative distances of data points) of the 
sequence.  
 
The matrices P and CT  as well the test statistic ˆ are described in more detail in 
Appendix C. 

4.2.5.3 Null hypothesis testing 
The hypothesis testing is based on the comparison of the ˆ

u statistic obtained from the 

sequence against the empirical distribution of the statistic ˆ
r obtained by the random 

positioning sequences.  
 
Random positioning sequences are produced k times, by distributing uniformly N data 
points over an interval of length equal to the sampled sequence S. For every random 
positioning sequence

iRS , 1,2,...,i k , the corresponding proximity matrix 
RiP  is 

produced. Also, the sequential algorithm is applied on every
iRS with the same value 

u
of the cutoff criterion.  Given the clustering result the dis-connectivity matrix CRiT is 

produced for each sequence and the statistic ˆ
r is computed. The set of 

1 2
ˆ ˆ ˆ ˆ{ , ,..., }r k provides the empirical distribution of the test static under the null 

hypothesis of random positioning ˆ( | )r oP H  
 
At a significance level , the null hypothesis is rejected (accepted) if ˆ

u is greater 

(smaller) than (1 )k  of the ˆ
r values.  
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4.3 Discussion and Conclusions 

In this chapter the first step of the transformation process was described. The 
segmentation step operates on the sequence and defines the subsequences. The 
subsequences are representations of physical events. The parameterization of the 
segmentation algorithm is done using a sampled sequence from a single system. The 
parameterization is based on the definition of the most compact subsequences possible 
in the sampled sequence. This is based solely on the temporal information in the 
sequence.  
 
The hCSM that is proposed in this chapter allows the selection of values for the cutoff 
parameter that perform can reduce the risk of truncation due to variation in the 
subsequences, when the algorithm is applied in the field. Additionally the value of the 
cutoff parameter is adjusted to reduce the risk of collision using the collision 
probability criterion.   
 
The clustering result is validated whether it is likely to be obtained from a sequence 
with no particular data structure. The segmentation method used in this research falls 
under the category of unsupervised clustering. The random positioning hypothesis 
aims to validate that the detected subsequences are sensible clusters based on the 
arrangement of traces in the sequence.  
 

The proposed method meets the requirement of detecting subsequences by using only 
the information found in the sequence. It also prepares the method for real life 
applications with the robustification. The segmentation method described in this 
chapter is demonstrated in chapter 7. 
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Chapter 5 

5 Tagging of subsequences and tag matching  
In this chapter the second step of the transformation phase is described. This step 
involves Tagging and Tag matching. The reduction of the size of data, without the 
loss of any relevant information, is one of the main goals of this research. This 
objective will be addressed with this step.  
 
With the segmentation of the sequence, the subsequences are identified and 
consequently so are the points in time where physical error and recovery events are 
believed to have occurred. One form of data reduction comes with the appropriate 
point representation of subsequences. With the point representation, a subsequence 
that can consist out of multiple traces each having its own temporal location, is 
represented by a single point in time. This way the temporal representation of the 
physical event is simplified.  
 
Besides the time of occurrence of a system failure or a system recovery, there is also 
the semantic aspect of the physical event. The semantics of traces can provide 
information about the nature (what and where) of the events that have occurred. The 
semantics within a subsequence can indicate the location and the cause of the error by 
the qualitative information of the attribute fields of traces such as description, logging 

unit, system state etc. In this chapter the focus shifts from the temporal to the semantic 
information found in subsequences. The methodology presented aims in reducing the 
amount of representations needed to convey the same information on error and 
recovery events.  
 
Firstly the semantics within the subsequences are reduced to the minimum necessary 
and they are ordered. A subsequence can contain multiple traces of the same type i.e. 
same ic. Replicates of a type of trace contain the exact same semantic and have 
therefore no additional informative value. Replicates are redundant and can be 
removed. The order of traces in the subsequence is the result of variation induced by 
the error propagation and the logging mechanism. It is therefore possible to reorder 
the traces in the subsequence in a preferred manner without losing relevant 
information. The point representation, the elimination of replicates and the ordering of 
semantics, are defined by one method, the tagging of the subsequence. The tagging 
transforms a subsequence to a tag.  
 
Each tag in the sequence contains a string of semantics that represents an instance of 
an unknown physical event. Identical tags are assumed to represent instances of the 
same type of physical event. On the basis of known relation between the semantics in 
a tag and the occurrence of a physical event (fault injection experiment), the more 
similar the tags are, the more likely it is that they represent the same physical event. 
Based on this assumption, a methodology is introduced that can help simplify the 
representation of physical events in the sequence by grouping tags into tag types 
according to the similarities between tags. The comparison and grouping of tag into 
tag types is referred to as tag matching. The basis of the inter tag similarity measure is 
a cost function that roots in the engineering design principle of strong coherence 
within and weak coupling between modules.  This engineering principle sets the rules 
on which traces can occur in the same subsequence and which cannot. Components of 
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the same module can fail together thus the traces of those components can occur 
together and. The more often trace occur together the stronger the similarity between 
these traces is and vice versa.  
 
The chapter is organized as follows: The tagging operation is described in 5.1. The tag 
matching is described in 5.2. The chapter closes with discussion and conclusions in 
5.3.  

5.1 Tagging Subsequences 

For the representation of the semantics the identification code ic of each trace is used. 
An ic is a unique alphanumerical identifier that represents all static semantic 
information of a trace 
 
The tagging operates on the semantic information found in the traces in the 
subsequence. To facilitate the description of the operation the notation for traces used 
in Chapter 4 is extended to include the semantic information: a trace is represented by 
the tuple ( , )A t , where A is the semantic information of the trace and t is the time of 
occurrence. The semantic A  can take takes values from a finite set of identification 
codes 1 2{ , ,..., }qIC ic ic ic . 
 
The tagging eliminates the replicated of a semantic

iic  in the subsequence and 
arranges semantics in lexicographical order. The tagging also transforms the 
subsequence to a point representation. First background information regarding the 
variation found in the semantics is provided in 5.1.1. Then the tagging operation is 
described in 5.1.2.  

5.1.1 Variation in order and frequencies of traces in subsequences 

The results of the fault injection experiment showed that the ordering and the 
frequencies of the traces found in subsequences resulting from the same fault can 
vary. In the example of Figure 5-1 three instances of error subsequences result from 
the same fault being injected into the system. For this example the semantic A takes 
values from the low case Latin alphabetical characters ( ).  
 

 
Figure 5-1 Fault injection and result signature instances 

 
Although all three instances contain the semantics a, b and c, these semantics appear 
in different order and in different counts in each subsequence. The 1st instance 
contains three counts of a , one of b and two of c . The second instance contains three 
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counts of a, one of b and three of c. The third instance contains 2 counts of a, two of b 
and two of c. Although the three instances of subsequences differ in the order and the 
count of semantics, they carry the same information, namely the occurrence of a, b 
and c. The replication of semantics does not bring additional informative value 
because the information in replicate is identical. In the fault injection experiment it 
was shown that the order of semantics in the subsequences can vary significantly for 
the same type fault. In this methodology the order is ignored and is considered to be 
an artifact cause by the dynamics between the components and the logging 
mechanism.   To reduce this source of variation in the semantics of subsequences, the 
semantics are ordered in an appropriate manner to increase the readability of the 
subsequence and make the comparison of subsequences easier.   

5.1.2 From subsequences to tags 

Given a collection of subsequences 1 2{ , ,..., }R

MC C C C obtained from the same 
sequence, the tagging transforms each subsequence

mC , {1,2,3,.., }m M , into a tag

,( )m mL t , where
mL the semantic information and 

mt  the temporal information of the 
tag.  
 
The process is taking place in two actions and is unidirectional i.e. it is not possible to 
retrieve the original form of the subsequence after tagging. The first step transforms 
the temporal information and the second the semantic information of

mC . With the 
tagging operation complete, the set of subsequences RC becomes a set of tags RC .  

5.1.2.1 Tagging the temporal information 
The transformation maintains only one temporal location for each subsequence

mC . 
For error subsequences the most representative temporal location is the first trace of 
the subsequence because it indicates the first moment in time the physical error was 
detected. For recovery subsequences the most representative location is the last trace 
of the subsequence, as it is the closest point in time when the recovery of the system is 
completed. In this chapter the operation is described assuming error subsequences.  
 
For a subsequence 1( , ), ( , ),..., ( , )m i i i nC A t A t A t , where {1,2,3,... }i N and  
the temporal location of ,( )m mL t is 1min{ , ,..., }m i i i n it t t t t .  The definition of the tag 
can be extended to include other temporal information of the subsequence if that is 
required, as for example the duration of the subsequence 

m i n id t t , can be included 
to form a 3-tuple of the form ,( , )m m mL t d .  

5.1.2.2 Tagging the semantic information 
For the transformation of semantic information a function F is defined that is 
transforming the subsequence 

mC into the tag
mL . The function F is composed out of 

two sub-functions
O SF f f , an order function 

Of  and set function
Sf . The two sub 

functions are applied in the following order:  
 
1. The order function 

Of produces a pre-tag 
mpL by ordering the semantics A found 

in
mC , in a total lexicographic order ( d ). For example a subsequence 
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( ), ( ), ( ), ( ), ( ), ( )mC c b a a c a (times are omitted) is transformed into the pre-tag is 

of the form ( ), ( ), ( ), ( ), ( ), ( )mpL a a a b c c . 
 
2. The set function 

Sf  operates on the semantics of the pre-tag
mpL by eliminating 

the replicates and producing the tag
mL , where each type of semantic that appears 

in the subsequence appears only once in the produced tag. Continuing the previous 
example, for the pre-tag ( ), ( ), ( ), ( ), ( ), ( )mpL a a a b c c  the set function produces

, ,mL a b c .  
 
With both operations completed a subsequence of the form

1 2 3 4 5 6( , ), ( , ), ( , ), ( , ), ( , ), ( , )mC c t b t a t a t c t a t  results to a tag of the form 1( , , , )a b c t

(see Figure 5-2 for an example of an error tag).  

 
Figure 5-2: From subsequence

mC  to  tag ( , )m mL t  

Once the tagging operation is complete, the collection of subsequences RC  becomes a 
collection of tags 1 1 2 2 3 3{( , ), ( , ), ( , ),..., ( , )}R

M MC L t L t L t L t . Tags provide a better basis 
for the matching operation because much of the variation that is found in the 
subsequences has been reduced. For the remainder of this chapter the term tag we will 
be referring to the semantic information

mL only. 

5.2 Matching tags 

5.2.1  Tag similarity based on the system's design 

Professionals systems are large complex machines capable of performing a wide 
range of operations. To manage their complexity systems are built out of subsystems. 
Each subsystem is designed to provide certain functionality. Subsystems consist of 
components, which work together to provide that functionality.  Components are 
interacting with each other passing signals or information in order to execute their 
operation in a coordinated manner.  Sub-systems interact with each other via 
interfaces to deliver the overall system functionality. A good system engineering 
principle requires strong coherence between components of the same subsystem and 

weak cohesion between sub-systems.  That means that components that belong to the 
same sub system are closely interconnected and dependent on each other when 
operating to provide a certain set of functionality. Components of different sub 
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systems have no direct connection to each other. They communicate via interfaces on 
sub-system level. This engineering configuration is known as modular system design. 
It allows sub systems to be developed more independently from each other but also 
enables them to sustain a level of resilience during operation against errors that occur 
in other sub systems. When an error occurs in a component it will very likely 
propagate to other components of the same subsystem because of the strong 
dependencies between the components. However other subsystem can withstand this 
error because their functionality is self-contained and there are mechanisms in place 
that monitor the interfaces and can handle "external" unexpected behavior.  
 
The traces resulting from failures and recoveries reflect these design characteristic. 
This was verified by the fault injection experiment, where faults injected into a sub 
system produced subsequences that contained traces created by components that 
belong to that sub system. On the other hand, faults that are injected into different sub 
systems produce subsequences which rarely contain shared types of traces. These 
findings support the belief that there is a relation between the semantic content of 
subsequences and the modular design of the system. This relationship is also 
supported by the use of trace based fault signatures for fault diagnosis [Iye86]. Fault 
signatures are manifestations of the symptoms that the components show when the 
same errors occur. Fault signatures are possible because given the same error, most 
likely the same components will exhibit the same symptoms, a behavior that is based 
on the functional dependencies between these components.  
 
The manifestation of symptoms is not happening in deterministic manner for each 
occurrence of the same error. The fault injection experiments (see 3.2) showed that 
even under controlled conditions, subsequences resulting from the same injected 
faults can vary in their semantic content. Variation can be found in the number of 
traces as well as the number of different types of traces (see 3.2.4). Moreover, given 
that the structure of subsequences can be affected by environmental factors acting on 
the logging mechanism, it is natural to expect that under operational conditions, 
variation in the traces of subsequences will be present. It is more realistic to expect 
that multiple occurrences of a particular type of physical error are represented by 
similar instances of subsequences rather than identical subsequences.  
 
Which subsequences are similar enough to be perceived as originating from the same 
physical error is a matter of the definition of the similarity measure. In this thesis, it is 
assumed that systems are designed in a modular way. Therefore, when traces are 
frequently appearing together it is an indication that they originate from components 
that are functionally dependent. The stronger the functional dependency the more 
frequent the co-occurrence of traces is and the more similar these traces are perceived 
to be. If, for example, two components are directly dependent to each other, when one 
experiences an error the other will experience an error. If both components can log 
error traces, these traces will always appear together.   
 
A similarity measure is required that can reflect the modular design of the system. The 
similarity between subsequences can then be evaluated on the basis of the 
manifestation of the strong coherence /weak coupling principle of modular system 

design in traces. The benefit of such a similarity measure is that the similarity can be 
evaluated directly from the sequence without using any system specific information. 
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The following subsections are organized as follow: In 5.2.2 an end to end matching 
process for traces is described. In 5.2.3 the cost function is defined, which is the main 
contribution of this chapter.  An example of how the tag matching performs is given 
in 5.2.4. 

5.2.2 Matching operation 

The objective of the matching process is to group a given collection of tags obtained 
from a single system, into tag types according to their similarity. A tag type can 
contain multiple instances of tags. Though the discussion on comparing tags was 
based on the use of term “similarity”, the grouping of tags into tag type is using as a 
measure the dissimilarity or distance between them.  

Dissimilarity between two tags is measured with the help of the edit distance. The edit 
distance is defined by the cost of the edit operations that are performed on the 
semantics of one tag to transform it into the tag that to which it is compared with 
[The09]. The cost of each edit operation is defined by the cost function. In this section 
a cost function is defined that reflects the (dis)similarities between traces.  

The tag matching operation is essentially a clustering operation. To perform the 
clustering the following elements are needed: 

a. The clustering algorithm  
b. The cost function which sets the cost of each edit operation. The cost 

function is nested in the edit-distance function. 

c. An edit-distance function, computes the dissimilarity between two tags 

d. A stopping rule, which helps to find the best clustering result given a 
collection of tags and the edit distance between them 

 
In the following sections these four elements will be presented. First the context of the 
tag matching operation will be set by presenting the clustering algorithm, the stopping 
rule and the edit function in the sections 5.2.2.1-5.2.2.3. The first three sections also 
outline some of the requirements that are put on the cost function. Then in section 
5.2.3.3 the cost function will be presented.  

5.2.2.1 Clustering algorithm 
Clustering tags into tag types is done on the basis of tag similarity. Tags that are very 
similar should be clustered into the same tag type. This type of clustering results to 
compact clusters. The agglomerative complete link algorithm is most suitable 
clustering algorithm for retrieving compact clusters from a data set [The06]. The 
agglomerative complete link clustering algorithm performs the clustering process 
bottom-up. It does that by iterating as many times as the number of tags in the initial 
collection of tags 1LC . At the starting position the agglomerative algorithm treats each 
object as a singleton cluster (a cluster containing one tag) then successively merges 
pairs of clusters until all clusters are merged into one cluster. Figure 5-3 shows an 
example of how the gradual clustering progresses from multiple clusters at the bottom 
(x-axis) to one final cluster containing all tags at the top of the dendrogram. The y- 
axis shows the distances where the clustering  is taking place.  In the first iteration the 
algorithm begins with as many clusters as tags (singleton clusters). As the algorithm 
iterates, one or more clusters are merged (branches in dendrogram merging) to form 
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single clusters until the final iteration where the last two remaining clusters are 
merged.  

 
Figure 5-3 Complete link clustering algorithm dendrogram 

The similarity between two clusters is computed based on their most dissimilar 
(distant) members. This computation rule serves the creation of tag types where the 
evidence on inter cluster similarity is strong to support their grouping.  
 
To perform this operation, the algorithm requires as input the edit distances between 
the tags in the collection 1LC . The edit distances are provided in the form of a distance 
matrix 1H that contains the pairwise dissimilarities between the tags in 1LC .  At the 

start the distance matrix 1H is a M M matrix containing the edit distances between 
all pairs of tags in 1LC , where  1

RLC C  and 1 2{ , ,..., }R

MC L L L . At every iteration 
of the algorithm, a new clustering result qLC  is produced and the distance matrix qH , 
where  , is recomputed.  
 
More details on how the complete link clustering algorithm operates can be found in 
9.5.3Appendix D 

5.2.2.2 Stopping rule 
For every iteration of the clustering algorithm a cluster result qLC , ,  

is produced. To choose a clustering solution S

qLC  that returns compact clusters of tags, 
a stopping or cutting rule is used. Literature is providing an abundance of stopping 
rules [Mil85] [Moj75] out of which the measure of silhouettes [Rou87] is chosen 
because it fits to ratio scale measures of dissimilarity and it favors compact and well 
separated clusters (tag types with very similar tags as members). The silhouette value 
measures how similar the tag is to tags of the same cluster compared to tags in other 
clusters, and it ranges from -1 to +1.  
 
The silhouette value  for the mth tag is defined: 

( ) ( )( )
max{ ( ), ( )}

m m
m

m m

b L a L
s L

a L b L
   ( 5-1) 
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where ) is the average distance from the mth tag to the other tags of the same 
cluster as m, and   is the minimum average distance from the mth tag to tag in a 
different cluster, minimized over clusters.  

The average silhouette measure  for the qth clustering result qLC is defined as

1
( )

M

m

q

s L

Sil
M

  ( 5-2), 

where . The average silhouette measure can take values between
1 1qSil . The higher the value of qSil , the more compact the clusters are in the 

clustering result.  

5.2.2.3 Edit-Distance function - metric properties 
To initiate the clustering process the dissimilarity matrix 1H  is provided. The 
dissimilarity matrix 1H  contains the distance between any pair of singleton clusters in 
the tag collection 1LC . The distance between two singleton clusters is provided by the 
edit distance function. The distance functions needs to meet certain conditions that 
cascade to the edit distance function. Any distance function F has to satisfy three 
conditions:  
 

1. ( , ) 0i jF L L , that of positivity, with equality only if i jL L  
2. ( , ) ( , )i j j iF L L F L L , that of symmetry 
3. ( , ) ( , ) ( , )i j i k k jF L L F L L F L L ,that of triangle inequality 

 
Among the three, the triangle inequality is the most difficult to satisfy. Triangle 
inequality assures that when comparing objects, the distance between any two objects 

( , )F B C is always the shortest way to go from A to B and no other way e.g. 
( , ) ( , )F B A F A C can be shorter (Figure 5-4).  

 
Figure 5-4 Triangle inequality 

If the triangle inequality is not satisfied by a distance function at all times, a 
comparison of the distances between three objects can fail, compromising the 
performance of the clustering operation. The triangle inequality criterion is a criterion 
of good performance for the distance function but it is a necessary condition for the 
cost function as will be shown in 5.2.3.   
 
The performance of a distance function can be measured with the inequality 

looseness test. The test measures the proportion of tag triplets 1 2 3( , , )L L L that belong 
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in a collection of tags 1
RLC C  which violate the triangle inequality criterion 

[Vid88].   

( , , ) ( , ) ( , ) ( , ) 0F A B C F A B F B C F A C  ( 5-3) 
When the failure rate of the inequality looseness test is zero the triangular inequality 
requirement is not violated. The greater the failure rate is the more the validity of the 
comparison is compromised. Low failure rates do not compromise the validity of the 
comparison [Yuj07] [Mar93] [Vid88][Ars00].  

5.2.2.4 Edit distance function 
A tag is a set of lexicographically ordered semantics 

iic , obtained from a finite pool 
of semantics 1 2{ , ,..., }wIC ic ic ic . The finite pool of semantics IC  is similar to the 
letters of the alphabet and tags are like words that are formed by these letters. Given 
that, the distance functions that are appropriate for measuring the distance between 
tags are based on edit operations of string matching applications [Coh03].  
 
The Levenshtein edit distance (LED) is a method that has been widely used in string 
matching applications and is known for its effectiveness and simplicity.  The LED is 
estimating the dissimilarity between two tags  and , by performing the 
transformation  from [Lev66]. This transformation can be completed by a 
sequence of edit operations. There are three types of edit operations: 
 

 Replacement ( )e a b : a semantic a in  is replaced by another semantic b   
 Deletion ( )e a : a semantic a in   is deleted 
 Insertion ( )e b : a semantic b in  is inserted 

 
There is cost associated with each edit operation of replacement, deletion and 
insertion respectively denoted by ( ), ( ), ( )a b a a respectively. 
 
There are multiple combinations of edit operations that can transform a tag into . 
Any sequence of operations that completes the transformation is an editing path

1 2( , )eP L L .  The editing path for the transformation  has a length of ( )eLen P , 
where , which is defined as the number of elementary 
edit operations described by 1 2( , )eP L L  [Mar93]. The total cost of an editing path is 
given by the sum of the cost of each edit operation in the path. 

 
1 1

( )

1 2 1... 1...
1

( ( , )) ( )
e

k k k k

Len P

e i i j j

k

D P L L L L    ( 5-4), 

For (5.2-1) to hold the elementary cost function  has to be a metric [Mar93] 

The edit distance ( , )L i jD L L between two tags
iL  and jL , is given by the minimum cost 

of transforming tag 
iL  into jL : 

( , ) min( ( ( , )) | ( , ) )L i j i j i j i jD L L D P L L P L L is anedit path from L to L  ( 5-5) 

The distance between any pair of tags
iL  and jL  can be computed in this way. LED 

does not take into account the length of the tags.  
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One typical characteristic of tags is that their length can vary. Differences in the 
length of the tags can be found even if the tags represent the same type of physical 
event. Tags may differ in length by one or more semantics ic . The variation in the 
length of tags poses a problem for LED. It is more likely to find differences when 
comparing long tags than when comparing short tags. Consequently long tags have a 
disadvantage in finding matches compared to short tags when using LED. The 
comparison of tags has to be performed taking into account their lengths. Differences 
found in longer tags should be less important than difference in short tags. To 
compensate for that, the distance function has to take into account the length of the 
tag when computing the edit distance.  
 
The shortcomings of LED regarding the consideration of tag lengths are overcome 
with the use of the Normalized Edit Distance (NED). The normalized edit distance is 
appropriate for tags of different lengths because it normalizes the cost of an edit 
transformation by the number of edit operations. In the literature there are two main 
definitions for a normalized edit distance. 
 
The first normalized edit distance (NED1) is described by Marzal and Vidal [Mar93], 
where normalization is taking place on the minimum found for each edit length 

( )eLen P .  The normalized edit distance 1 2( , )AnD L L  between two labels 1L and 2L is 
the minimum of the normalized distances of all edit lengths:   

  ( 5-6) 

In [Mar93] it is argued that when the global minimized edit distance ( , )L i jD L L is 
found first and then it is normalized by the length of its edit path ( )eLen P this gives 
wrong results.   
 
Another definition of a normalized edit distance (NED2) is given by Yujian [Yuj07], 
which given the distance by LED between two labels, 1 2( , )LD L L  and the length of 
those labels 1| |L and 2| |L  the normalized edit distance is given by: 

   ( 5-7),  

 if and γ is a metric.  
  
Method NED1 does not always meet the triangular inequality criterion of a metric 
depending on the data set [Mar93]. The failure rates for meeting the criterion, given a 
data set, can be computed using the inequality looseness test [Yuj07]. Method NED2 
is always a metric if the conditions for γ are met [Yuj07]..  

5.2.3 Cost function for traces 

The cost for elementary edit operations is defined by the cost function . There are 
two basic requirements that the cost function needs to meet: 

1. Represent the functional association of components 
Tags are grouped into tag types based on the assumption that there is an 
underlying functional association of the components that produced them. Coupled 
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occurrences of semantics in tags represent such associations. Therefore the cost 
function has to reflect the associations between semantics.  

2. Meet all metric properties 

5.2.3.1 Association between semantics 
To meet the first requirement the cost function needs to be capable of reflecting the 
association of traces as found in the sequence. The Jaccard coefficient that was used 
in section 3.3.3 can provide that measure because it shifts the weight for measuring 
the association on the co-occurrences of events and it ignores completely the number 
of occasions where both events are absent. By ignoring the occurrence of other events, 
this definition of association provides an independent association measure between 
the two events of interest: 

11

11 12 21
AB

x

x x x
  ( 5-8) 

 
As a reminder to the reader: 

11x : attributes A and B are both present 

12x : attribute A is present but B is absent  

21x : attribute B is present but A is absent 
 
The coefficient takes values 0 1, where 0 indicates independence (no 
similarity) between A and B , and 1when A and B are absolutely dependent to 
each other (identical). The coefficient is symmetric, i.e. ij ji .  
 
However the coefficient is used here differently than in 3.3.3. Instead of measuring 
the occurrence of traces in arbitrary segments of the sequence, here the measurement 
is done on the occurrence of semantics within the tags. The degree of association 
between ics is measured as they are found in the tags of the collection 1

RLC C . The 
association coefficient is computed for all pairs of ics in 1 2{ , ,..., }wIC ic ic ic  that are 
found in 1LC .  

5.2.3.2 Computation of  based on observations in labels sets 

Given RC , the collection of tags produced by the tagging process, the input set for the 
clustering is 1

RLC C  . The set 1LC contains M tags. Every tag contains a collection 
of semantics ics. The association coefficient ij  is computed for all the semantics 
| |IC w  that are found in the tags of 1LC  and it expresses the association between 
semantic 

iic  and jic . The values of ij are arranged in a w wmatrix where the 

rows and columns are ordered lexicographically 1 2 3,...,d d d

wic ic ic ic (see Table 
5-1).  
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1ic  2ic  ... 

wic  

1ic  11  12  ... 
1w

 

2ic  12  22  ... 
2w

 

.

.

.  

.

.

.  

.

.

.  

.
.

.

 

.

.

.  

wic  1w
 2w

 ... 
ww

 

Table 5-1 w wMatrix of pair wise association coefficients between semantics 
 
To test whether the association between 

iic and jic is significantly different than that 
of a random association, at least 20 observations are required [Gri67]. A test statistic 

2 is used to perform the test. The test statistic 2 is defined as: 
2

2 11 22 21 12

11 22 11 21 21 22 12 22

( )
( )( )( )( )

x x x x n

x x x x x x x x
 (5-9),  

22x : attribute B and A are both absent 
The test statistic 2 follows then approximately a 2 distribution with 1 degree of 
freedom [Gri67]. 

5.2.3.3 Cost of edit operations 
The cost function is described by a ( 1) ( 1)w w matrix. The w w  elements of 
the body of the matrix contain the cost for the pairwise replacement operations 

i jic ic , the bottom row ( 1)w  contains the cost of the insertion operations 
iic

and the right most column ( 1)w  contains the cost of the deletion operations 
iic

. 

 1ic  2ic  ... wic   

1ic  1 2( )ic ic  1 2( )ic ic  ... 1( )wic ic  1( )ic  

2ic  2 1( )ic ic  2 2( )ic ic  ... 2( )wic ic  2( )ic  

.

.

.  

.

.

.  

.

.

.  

.
.

.

 

.

.

.  

.

.

.  

wic  1( )wic ic  2( )wic ic  ... ( )w wic ic  ( )wic  

 1( )ic  2( )ic  ... ( )wic  ( )  

Table 5-2 Cost function  
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5.2.3.4 Cost of replacement operations 
Given the association matrix  for a set 1LC , the cost of the replacement operations 
is defined as: 

( ) 1i j ijic ic   ( 5-10) 

The measure takes values in 0 ( ) 1i jic ic   ( 5-11) 

 
Intuitively the cost function suggests that strongly associated ics (high values of ij ) 
are economical to replace (low values of ( )i jic ic ) because their strong 
association suggests strong similarity. The opposite applies for weakly associated ics.  
 
Given the above definition the weights of replacement satisfy all conditions of a 
metric: 
Positivity: 0 ( ) 1i jic ic , derives directly from the definition of the coefficient 
and (5.2-5) 
Symmetry: ( ) ( )i j j iic ic ic ic , ij ji  
Triangular inequality: for triplet ( , , )i j kic ic ic ,  

( ) ( ) ( )i k i j j kic ic ic ic ic ic (the proof is lengthy and is therefore not 
included here, further reading in [Gow86], Theorem 10, page 15)  

5.2.3.5 Cost function for deletion and insertion operations 
For the edit operations of insertion and deletion, the coefficient of association measure 
does not satisfy conceptually as it does for the replacement operation. If an ic needs to 
be inserted or deleted the cost of the operation has to have a global interpretation 
rather than its association with another ic.  Here a different approach is followed. The 
edit operations of insertion and deletion of ics have a weigh that depends on the 
abundance or rarity of an ic in the preprocessed sequence i.e. after the removal of ppt.  
The cost of deletion and insertion are defined as follows:  
 
The relative frequency of 

iic  in the sequence is given by  

1

i
i w

k

k

f
rf

f

, where 
if is the frequency of 

iic and 
1

w

k

k

f the sum of frequencies of all ics 

The measure takes values 0 1irf    ( 5-12) 

and the sum of all relative frequencies is
1

1
w

i

k

rf   ( 5-13) 

The weight of insertion and deletion of 
iic is defined as: 

( ) ( ) 1i i iic ic rf  ( 5-14) 

Intuitively the above definition suggests that rare ics are more expensive to insert or to 
delete than frequent ones. The weights for insertion and deletion as defined here, 
satisfy all conditions of a metric: 
Positivity: 0 ( ) 1jic  
Symmetry: ( ) ( )i iic ic  
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Triangular inequality: ( ) ( ) ( )i k i kic ic ic ic does always hold 
since: ( ) ( ) 1 1 2 ( ) 1i k i k i kic ic rf rf rf rf  
The cost function  as defined satisfies the criteria of a metric. This allows the use of 
the normalized edit distances NED. However for NED2 the conditions for γ are not 
met since .   

5.2.4 Tag matching example 

An example is given to demonstrate the performance of the normalized edit distance 
versus Levenshtein edit distance. Also the performance of the cost function is 
examined.  In the example ics are represented by lower case letters of the alphabet. 
The set of tags to be matched into tag types are shown in Table 5-3 Collection of tags.  
 

Index Tag 
1 <a,b,c> 
2 <a,b> 
3 <a,c> 
4 <a,b,c,d> 
5 <k,l,m,n> 
6 <k> 
7 <k,l> 
8 <m,n> 
9 <m,n,d> 
10 <y,z> 
Table 5-3 Collection of tags 

The tags 1, 2, 3 and 4 originate from the same module. The most extended form of the 
tag is <a,b,c> but because of the variation in the logging mechanism the tag appears 
also as <a,b> or <b,c> . The tag <a,b,c,d>  results from the addition of the ic “d” to 
the tag <a,b,c>. The ic “d” however is not specific to this module. It is a common 
error trace  that occurs frequently with different types of error events. The tags 5, 6, 7, 
8, and 9 originate from the same module (second module). The tag <k,l,m,n> is the 
extended tag form of this error. Due to variation the tag rarely appears as <k,l> , 
<m,n> or <m,n,d>. The 10th tag <y,z> is originating from another module (third 
module) not related to any of the above.  
 
The above tags would be represented correctly by 3 tag types according to their 
origin. First tag type contains tags 1,2,3,4, second tag type contains tags 6,7,8,9, and 
the third contains tag 10.   
 
To perform the matching operation the cost function needs to be defined. The cost 
function is defined by the associations between ics for the replacements operation and 
their relative frequencies in the sequence for the deletion and insertion operations.  
 

The associations between ics can be seen in Table 5-4      
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 a b c d k l m n y z 
a 1 0.6 0.6 0.3 0 0 0 0 0 0 
b 0.6 1 0.6 0.3 0 0 0 0 0 0 

c 0.6 0.6 1 0.3 0 0 0 0 0 0 
d 0.3 0.3 0.3 1 0.3 0.3 0.3 0.3 0.3 0.3 
k 0 0 0 0.3 1 1 0.9 0.9 0 0 
l 0 0 0 0.3 1 1 0.9 0.9 0 0 
m 0 0 0 0.3 0.9 0.9 1 1 0 0 
n 0 0 0 0.3 0.9 0.9 1 1 0 0 

y 0 0 0 0.3 0 0 0 0 1 1 
z 0 0 0 0.3 0 0 0 0 1 1 

Table 5-4 Associations between ics 

The associations between ics are in line with their origin. The ics always occur 
together is one e.g.  . The ics that often occur together have high association 
e.g. . The associations between ics that never occur 
together are zero e.g. .   
 
The ic “d” is the most frequent trace in the preprocessed sequence occurring 50% of 
the time. The remaining 50% of occurrence is equally spread across the other ics. The 
relative frequencies of the ics as measured before the tagging operation are: 

a b c d k l m n y z 
0.055 0.055 0.055 0.5 0.055 0.055 0.055 0.055 0.055 0.055 

Table 5-5 Relative frequencies of ics 

From the associations and the relative frequencies the cost function is defined as 
follows: 
 a b C d k l m n y z  
a 0 0.4 0.4 0.7 1 1 1 1 1 1 0.945 
b 0.4 0 0.4 0.7 1 1 1 1 1 1 0.945 
c 0.4 0.4 0 0.7 1 1 1 1 1 1 0.945 
d 0.7 0.7 0.7 0 0.7 0.7 0.7 0.7 0.7 0.7 0.5 

k 1 1 1 0.7 0 0 0.1 0.1 1 1 0.945 
l 1 1 1 0.7 0 0 0.1 0.1 1 1 0.945 
m 1 1 1 0.7 0.1 0.1 0 0 1 1 0.945 
n 1 1 1 0.7 0.1 0.1 0 0 1 1 0.945 
y 1 1 1 0.7 1 1 1 1 0 0 0.945 
z 1 1 1 0.7 1 1 1 1 0 0 0.945 

 0.945 0.945 0.945 0.5 0.945 0.945 0.945 0.945 0.945 0.945 Inf 
Table 5-6 Cost function for edit operations 

From the cost function it can be seen that when ics are strongly associated their cost 
of replacement is low and vice versa. When an ic is abundant in the sequence it is also 
cheaper to delete or insert than a rarely occurring ic.  With the cost function defined 
the distance between the tags can be calculated. These distances are used the 
clustering of the tags into tag types using the complete link clustering algorithm. 
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5.2.4.1 Matching tags 
To demonstrate the benefits of the normalized edit distance over the non-normalized, 
bot algorithms are used and the results are compared.  

5.2.4.1.1 Levenshtein edit distance (non-normalized) 

The edit distances computed by the Levenshtein algorithm are shown in Table 5-7.  
 1 2 3 4 5 6 7 8 9 10 
1 0 0.945 0.945 0.5 3.945 2.89 2.945 2.945 2.7 2.945 
2 0.945 0 0.4 1.445 3.89 1.945 2 2 2.5 2 
3 0.945 0.4 0 1.445 3.89 1.945 2 2 2.5 2 
4 0.5 1.445 1.445 0 3.7 3.39 3.445 3.445 2.945 3.445 
5 3.945 3.89 3.89 3.7 0 2.835 1.89 1.89 1.745 3.89 
6 2.89 1.945 1.945 3.39 2.835 0 0.945 1.045 1.545 1.945 
7 2.945 2 2 3.445 1.89 0.945 0 0.2 0.7 2 
8 2.945 2 2 3.445 1.89 1.045 0.2 0 0.5 2 
9 2.7 2.5 2.5 2.945 1.745 1.545 0.7 0.5 0 2.5 
10 2.945 2 2 3.445 3.89 1.945 2 2 2.5 0 

Table 5-7 Edit distances as computed with the Levenshtein edit distance algorithm 

Using the edit distance in Table 5-7, the tags are clustered into tag types using the 
agglomerative algorithm. The clustering of tag is an iterative process. The sequence 
with which the tags are clustered is represented by the dendrogram of Figure 5-5. The 
dendrogram is read bottom-up. The clustering process begins with singleton clusters 
i.e. each cluster contains one member. The dendrogram shows which clusters (x -axis) 
are clustered together and at what distance (y-axis).  At each clustering iteration the 
clustering of tags is represented by the merging of their branches.  A clustering result 
is obtained where the dendrogram is cut horizontally. 
 

 
Figure 5-5 Dendrogram of clustering results using non-normalized edit distances 

The horizontal dotted line in Figure 5-5 shows when the clustering algorithm has 
clustered the tags into 3 tag types. The result is not the expected outcome because tag 
10 has been clustered together with tag 6,7,8,9. The distance of tag 10 from tags 6, 7, 
8and 9 is short because of the tags short length. On the other and tag 5 is not grouped 
together with 6, 7, 8 and 9. Indeed tag 5 is added to the cluster only in the last 
iteration of the clustering process and after tag 1,2,3,4 are clustered together with 6, 7, 
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8, 9, and 10. Tag 5 is the furthest away from any other tag in the set because it is a 
lengthy tag.  

5.2.4.1.2 Normalized edit distance 

In the table below the normalized edit distances between the tags in the set can be 
seen.   
 1 2 3 4 5 6 7 8 9 10 
1 0 0.315 0.315 0.125 0.945 0.945 0.945 0.945 0.8613 0.945 

2 0.315 0 0.2 0.3613 0.945 0.945 0.945 0.945 0.8333 0.945 

3 0.315 0.2 0 0.3613 0.945 0.945 0.945 0.945 0.8333 0.945 

4 0.125 0.3613 0.3613 0 0.889 0.8475 0.8613 0.8613 0.7363 0.8613 

5 0.945 0.945 0.945 0.889 0 0.7088 0.4725 0.4725 0.4363 0.945 

6 0.945 0.945 0.945 0.8475 0.7088 0 0.4725 0.5225 0.515 0.945 

7 0.945 0.945 0.945 0.8613 0.4725 0.4725 0 0.1 0.2333 0.945 

8 0.945 0.945 0.945 0.8613 0.4725 0.5225 0.1 0 0.1667 0.945 

9 0.8613 0.8333 0.8333 0.7363 0.4363 0.515 0.2333 0.1667 0 0.8333 

10 0.945 0.945 0.945 0.8613 0.945 0.945 0.945 0.945 0.8333 0 

Table 5-8 Edit distance computed with the normalized edit distance 

In the Table 5-8 it can be seen how the distances between tags are on a scale from 0 to 
1. The dendrogram of the tag clustering process using the normalized edit distances is 
shown in Figure 5-6. 
 

 
Figure 5-6 Dendrogram of clustering results using the normalized edit distances 

When the clustering is terminated at 3tag types, the tags are clustered as expected. 
One tag type contains tags 1, 2, 3, 4, another contains 5, 6, 7, 8, 9 and a third tag type 
contains tag 10.   Because of the normalization of the edit distance, tag 5 though it is 
lengthy, it is still similar to tags 7, 8, 9, and 6. Also, tag 10 though short in length is 
now distant from all the nonrelated tags.     
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5.2.4.1.3 The cost function and edit path defines the normalized edit 
distance 

The example is continued with the normalized edit distance only. Few cases are 
picked out of the tag matching process to demonstrate better how the cost function 
and the edit paths define the edit distances.  
 
Case 1: Given the same length of edit path and cost of edit operations the edit 
distance between tags is the same. The distance between tags 1 and 2 is equal to the 
distance between tags 1 and 3.  
 

 
 

 

 
 

 
 

 

 
 
Case 2:  The distance between tag 5 and 9 is shorter than the distance between tag 5 
and 7 (or 8) even though there are more different ics between tags 5 and 9 than there 
are between tag 5 and 7. This is due to the ability of the algorithm to utilize all 
similarities of the ics even if the ics are not perfectly aligned. It also is due the low 
cost of deleting “d”.    
 

 
 

 
 

 

 
 

 
 

 
Case 3: The cost of deletion and/or insertion can burden considerably the distance 
between two seemingly similar tags. The distance between tag 8 and tag 6 is larger 
than the distance between tag 8 and tag 7 even though tags 8 and 6 have one common 
ic and tags 8 and 7 have none.  
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5.2.4.1.4 Silhouette value as the clustering stopping rule 

To control the clustering process result, the silhouette value is used as a stopping rule.  
The objective is to obtain as fewer tag types as possible to achieve maximum data 
compression by defining tags types that are compact i.e. tags within the tag types are 
more similar to the other tags of the same tag type than the tag of other tag types. The 
average silhouette value for the clustering process using the normalized edit distance 
is shown in Figure 5-7.  The clustering process returns 3 tag types at an average 
silhouette value , suggesting that the tags are arranged in compact 
clusters. If the clustering process is stopped one step later the algorithm returns 1 tag 
types for all tags. This is because tag 10 has the same maximum distance from the 
tags 1,2,3,4 and 5,6,7,8,9 . The silhouette for a single tag type drops at . 
If the clustering process is stopped one step earlier at 4 tag types, the average 
silhouette value is again lower at . The drop of the average silhouette 
value is due to the removal of tag 6 from the tag type that contains tag 5, 7, 8 and 9.  
By removing tag 6 the silhouette value for tag 6 increases to 1 as it becomes a 
singleton cluster (see Table 5-9), but  this results to the drop  of the silhouette values 
for tags 5, 7, 8, and 9 leading to a drop in the average silhouette value for the entire 
result. If the clustering process is stopped at an earlier stage e.g. at 5 tag type, the 
average silhouette value is higher but the gain in data compression is reduced as more 
singleton clusters are being returned.  
 
In general it is expected that the clustering process will be stopped at average 
silhouette values that are lower than the optimal value of 1. This is the case because 
the tags are not identical and the string matching operation is calculating distances 
between tags are different than 1 and 0.  

 
Figure 5-7 Average silhouette value for clustering results 
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 Clustering results – number of clusters 
 1 3 4 5 6 7 8 9 

Tag 1 0.2754 0.7003 0.699 0.6967 0.4237 0.4237 0.4237 1 
Tag 2 0.2713 0.6784 0.6765 0.6733 0.4212 1 1 1 
Tag 3 0.2713 0.6784 0.6765 0.6733 0.4212 1 1 1 
Tag 4 0.2569 0.6365 0.6357 0.6284 0.4884 0.4884 0.4884 1 
Tag 5 0.2291 0.4373 0.3466 1 1 1 1 1 
Tag 6 0.2178 0.3967 1 1 1 1 1 1 
Tag 7 0.3388 0.6497 0.4186 0.6279 0.6279 0.6279 0.5627 0.5627 
Tag 8 0.3379 0.6475 0.5036 0.6751 0.6751 0.6751 0.4668 0.4668 
Tag 9 0.2987 0.5713 0.4292 0.498 0.498 0.498 1 1 
Tag 10 1 1 1 1 1 1 1 1 

Table 5-9 Silhouette values of each tag at each clustering result 

5.2.4.1.5 Inequality Looseness test 

To test whether the all metric properties of the normalized edit distance are met, the 
inequality looseness test is performed on the values of normalized edit distance of 
Table 5-8. For the 10 tags in the example there are 120 triplets. The results of the test 
can be seen in Figure 5-8. There is no triplet that fails the test i.e. there is no outcome 
with a negative value. The normalized edit distance using the cost function of this 
example meets all metric properties.  

 
Figure 5-8 Histogram of outcome of the inequality looseness test  

5.3 Discussion and Conclusions 

This chapter presented the last two steps of the transformation process.  First step is 
the transformation of subsequences into tags. Tags are semantically simplified 
versions and point representations of the subsequences. With the tagging the data size 
is already reduced. The next step is the tag matching operation. This operation is 
technically more challenging. Tags are examined for their similarities and grouped 
into tag types. To perform comparison, a tag matching operation is defined that 
consists of several elements. Among those elements the newly defined cost function is 
specifically designed for being applied on traces and used by edit distance functions. 
The definition of the cost function remains true to the requirement not to relay on 
external or system specific information. It utilizes the semantic information found in 
traces and allows comparing tags for their similarities.  
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From the example in 5.2.4 it can be seen that clustering of tag into tag types depends 
greatly on the cost of deletion and insertion. This is the case because tags can vary in 
their length (the number of ics in the tag). With the current definition of the cost 
function the deletion or insertion of an ic depends strictly on relative frequency of the 
ics as this is measured before the tagging of the sequences. Another version of the 
cost function can be defined to take into account associations when deleting and 
inserting ics so that when tags differ in length but do so with ics that are associated an 
additional discount on the cost can be applied to reduce their distance between these 
tags.  
 
The proposed cost function meets all metric properties and reflects the engineering 
relevance between semantics. The matching operation contributes further to the 
reduction of the data size of the sequence by grouping tag into tag types. Once 
complete a sequence is represented by a set of event type representatives rather than 
event instance representatives. This stage of the transformation will be presented in 
the case study of chapter 7.  
 
  



 

 118 



 

 119 

Chapter 6 

6 Utilizing traces from multiple systems 
In real life applications, multiple identical systems that are geographically distributed 
form a single observation group. Depending on the observed performance of these 
systems, decisions are made to act on each system individually e.g. corrective 
maintenance, or to all system collectively e.g. preventive maintenance. The 
transformation process described in chapters 4 and 5 is applied to each system 
individually.  This allows the fitting of parameters for the segmentation (cutoff 
parameter) and the tag matching (cost function) suitable to the sequence generated by 
each system. This custom fitting approach requires however a "burn in" period for 
each system, where a sequence that will contain traces of error and recovery events 
has to be collected to be used for fitting the transformation tools, before the 
application can begin. Considering that professional systems are generally reliable 
products and failures occur rarely, this "burn in" period can be lengthy. Consequently 
the transformed format of the sequence for a newly installed system will not be 
available until the "burn in" period has elapsed. 
 
These systems are identical and the structures of error and recovery subsequences of 
distributed systems should show similar forms. The similarity of subsequences across 
different systems can be described using the temporal and semantic structure of 
subsequences. The temporal structure of subsequences is capture by the cutoff 
parameter and the semantic structure is captured by the cost function. If the parameter 
values of several systems are similar, a representative value for each type of 
parameter can be used to characterize the group. The group characteristic parameter 
values can be used for the initialization of the transformation process of newly 
installed identical systems. For a newly installed system, the system group values can 
be used until enough traces are collected to make a custom fit of the transformation 
algorithms.  
 
To follow such an approach, a degree of confidence is needed that the temporal and 
semantic structures of subsequences of multiple systems are coherent. This is 
particularly important since the algorithms are based on unsupervised learning 
techniques. The lack of coherent data structures among different systems poses a 
difficulty for the large scale applications of unsupervised machine learning 
tools[Pro00][Han00]. Incoherence of data structures can prohibit the applicability of a 
data mining methods from one type of system to another. Given that these groups 
consist of identical systems, which share identical design and logging mechanisms, 
coherence of the characteristics of subsequences is expected. However, even in the 
case of identical system it has been shown that the level and the type of the system 
workload have an effect on the manifestation of errors in the data sequences [Iye82].  
In this thesis it is assumed that identical systems show similar patterns in the temporal 
and semantic structure of their subsequences unless there is proof of the opposite. In 
his chapter a method is presented to test the temporal and semantic characteristics of 
subsequences obtained from multiple systems, for evidence of non-coherence.  
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6.1 Characteristic subsequence structure of a system group 

Given a group of systems where the parameterization of the segmentation algorithm 
and the cost function has been completed, the group characterizations can be made 
based on: 
 

 For each system the segmentation cutoff parameter value represents the 
distance between successive traces that assigns traces in the sequence to the 
most compact clusters. Do identical systems have a characteristic value for the 
cutoff parameter?  

 For each system the association between any two semantics represents the 
association between the components. Do identical systems have a 
characteristic value for the pairwise associations?  

 
To accept that the group of systems produces subsequences of coherent structure 
characteristics, temporal and semantic, the values of the respective parameters have to 
demonstrate clear signs of localization in their distribution. Plotted as a histogram, 
such localization is manifested as a unimodal distribution.   
 
Although tests for unimodality do exist [Har85] [Fis94] they tend to be quite elaborate 
requiring extensive simulations to estimate parameter values. In this thesis a simpler 
approach is followed. To determine whether the values of a characteristic have a 
unimodal empirical distribution the evidence is collected in two simple steps:  
 

1. Visual inspection of the data that will identify whether the histogram is 
unimodal   

2. A formal hypothesis test to support the belief that what appears to be a 
unimodal distribution is not a uniform distribution.  

6.1.1 Visual Inspection 

A visual inspection of the histogram of the values of the characteristic of interest i.e. 
cutoff values and pair wise associations between semantics can reveal directly 
whether a single mode exists. The location of the single mode of the empirical 
distribution is not very restrictive although there are some preferences depending on 
the parameter type. For the cutoff parameter for example the empirical distribution 
should ideally have a mode at the low end of range because this indicates compact 
subsequences through the group (short distance between successive traces). For pair 
wise associations the mode ideally should demonstrate either strong (high end of 
range) or weak (low end of range) associations.  In Figure 6-1 two examples of 
unimodal histograms are shown.  
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Figure 6-1 Unimodal distributions 

Histograms that are clearly multimodal or uniform do not qualify for characterizing 
the system group.  

6.1.2 Testing for uniformity  

Though a visual inspection can identify the histogram has one or more modes, 
unimodality should be verified formally. A formal verification is needed because the 
shape of the distribution can be deceiving and a distribution that can be identified as 
unimodal can be in fact uniform. In the Figure 6-2 all histograms depict random 
number from a uniform distribution. All distributions of these examples can be 
perceived as being unimodal.     

  

  
Figure 6-2 Histograms of uniformly random numbers 

To ensure that such an error is unlikely to occur, a chi-square hypothesis test is used.  
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The Null hypothesis of the test is formulated as following:  
0 :H "The empirical distribution is uniform"  

 

Whereas the alternative states:   
1 :H "The empirical distribution is non-uniform".    

 
The test is performed with the Pearson's goodness of fit test for uniformity. The 
goodness of fit test helps establish whether or not an empirical distribution differs 
significantly from a theoretical uniform distribution. The N observations of the sample 
data are divided into n cells. Each cell contains the observed frequencies

iO . The 
theoretical frequency for any cell under the null hypothesis is: 

i

N
E

n
, where 1,2,...,i n . 

Condition for determining the number of cells is that 5iE .The test statistic is 
evaluated: 

2
2

1

( )n
i i

i i

O E
X

E
  ( 6-1) 

The Chi square statistic is used to evaluate the p-value of the test statistic 2X , with 
1n degrees of freedom, and for a significance level . 

6.1.3 Type I and II Errors and associated risks 

The errors of incorrectly rejecting a true null hypothesis (Type I) or incorrectly not 
rejecting a false null hypothesis (Type II), come with different types of costs. These 
costs are assessed here in the context of this application.  
 
Type I error leads to incorrectly applying a system group characteristic to newly 
installed systems. This results to erroneous processing of traces. For the segmentation 
process, this most likely would lead to the truncation of subsequences (generally this 
is a higher risk compared to collision as the latter depends greatly on the system 
failure rate). The truncation of subsequences would inevitably affect the association 
coefficient and consequently the cost function, which would mislead the tag matching 
process. Type I error has an impact on the consistency of the information obtained 
after transformation. .  
 
Type II error on the other hand, would reject a group wide parameter value that would 
result to newly installed systems to be parameterized independently, which has a 
delay on the utilization of the transformation process. 
 
The transformation process emphasizes the benefits gained from the utilization of 
traces. For effective utilization, data consistency is vital. In this work, no method is 
proposed that will allow the timely identification of wrongful transformation of traces 
of newly installed systems if a group value is applied wrongly. To be able to detect 
mistakes in the transformation, there has to be enough data (adequate number of 
subsequences) to allow the parameterization of the system following the proposed 
methodology. This will happen after the burn in period is over. Consequently a Type I 
error would lead to costs of misinformation plus the costs of Type II error. Based on 
that, the lower cost is identified with Type II error. To reduce the risk of Type I Error 
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the level of significance for the Goodness of fit test is set to 0,001a . Though the 
significance level is set arbitrarily, it is certainly a very low probability for Type I 
error to occur. 
 
In section 6.1.4 the test for uniformity is described as it applies for the cutoff 
parameter. In section 6.1.5 the test is described as it applies for the association 
coefficients.   

6.1.4 Goodness of fit for the cut off parameter values 

The segmentation process returns one value for the cutoff parameter for every 
sequence that has been segmented. Every sequence represents one system. For a 
group of N systems there will be equal number of cutoff values forming the sample 
set. The range that these values will cover is not known in advance. To perform the 
hypothesis test this range has to be defined, as it will be the range where the 
theoretical uniform distribution will be expected.  
 
To set the range we look into the sample dataset of the cutoff values. For a set of 
values of the cutoff parameter, the range is defined by min max[ , ] , where 

min min( ) and max max( ) . This range is divided into n cells so that the 
condition 5iE  is satisfied. Given the above the test can be performed.   

6.1.5 Goodness of fit test for association coefficients 

As in the case with the cutoff parameter values, the association coefficients are tested 
too. However there are two main differences between the two cases.  
 
The first difference is that there might be some pairs of semantics for which no 
observations are made in some systems. This is not the case for the cutoff value that is 
obtained given a sequence with error or recovery subsequences. For semantics to be 
available, the events that trigger them need to have occurred.  
 
The second difference is that the range in which the theoretical uniform distribution is 
expected is known in advance i.e. [0,1] .  
 
To be able to perform the test on the association coefficients from all systems in the 
group, the pair wise coefficients need to be arranged appropriately. To explain this 
arrangement, the notation of Chapter 5 is used.  
 
Since the pool of semantics is knows in advance (the set of semantics a system can 
produce is a known design feature), the association matrix is formed by the 
orthogonal arrangement of all semantics | |IC w  (here IC  represents the pool of 
semantics). This ensures that the matrices of all systems are of the same size and that 
the semantics are ordered in the same way (lexicographically) across all systems. For 
the group of N systems, equal number of association matrices are arranged in tandem 
to form a three dimensional matrix C of size w w N , containing the associations

ij for the kth system in the two dimensional setting w w  of
k
, where 1 k N

(Figure 6-3). The associations ij are tested across the third dimension of C  (e.g. the 
grey cells in Figure 6-3 represent the association 1w

between 1ic  and 
wic across all

k
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). As mentioned before not every ij has a value depending whether some ics are found 
in the collection of tags

0kLC or not. Therefore the set of pair-wise associations
1 2 3{ , , ,..., }N

ij ij ij ijS , where k

ij k  across N systems, can have a size of 
0 | |ijS N counts. 

 
Figure 6-3 Collective association matrix C  

 
The association measure ij  as defined in chapter 5, is a continuous measure that takes 
values in 0 1ij . The null hypothesis is based on the discrete uniform distribution 
over n values. To fit to that requirement, the interval [0,1]oI  is divided into n  non-
overlapping subintervals 

iI of equal width
iw . The probability of an association ij

falling in any of the subintervals 
iI  under the null hypothesis is

| |ij

i

S
E

n
. Given the 

matrix C the test is performed for the pairs of semantics where the size of the set 
| |ijS  allows 5iE . The observed frequency 

iO is computed by counting the 

association coefficients k

ij that fall within each subinterval
iI .  

6.2 Discussion and conclusion  

Though the search for unimodality in the histogram of the empirical distribution and 
the formal test that follows ensure that the parameter values show coherence the level 
of coherence is not tested formally.  
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Ideally the congruence of the parameter values would manifest itself as a compact 
empirical distribution, with most values clustered around a central point (low spread). 
For the cutoff parameter this would suggest that the distributed systems, though 
operating under different conditions, form subsequences with very similar temporal 
structure i.e. distance between traces of the same subsequence. If the point of 
congruence, the mode, is a low value e.g. 1-3 sec, this would suggest that the 
subsequences are also very compact. Similarly for the association coefficient, 
congruence of the coefficient values to the left or to the right of the range would be a 
clear sign of weak or strong association respectively.  
 
Such observations would not only allow the characterization of group with parameter 
values, it would also be strong evidence of the soundness of the transformation 
process, because it would demonstrate that consistent results are obtained throughout 
independent samples of sequences. 
 
The interpretation of the observed congruence of the parameter values in the system 
group is also bound to the size of the sample. The restriction put by the goodness of fit 
test 5iE , results to wider cells for smaller sample size in order to meet the criterion. 
Consequently, the statements about the observed congruence have to be given in 
respect to the width of the cells.   This methodology is applied in the case study of 
chapter 7. 
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Chapter 7 

7 Case Study 
The methodology that was presented in chapters 4, 5 and 6 is applied on a sample set 
of traces obtained from systems operating in the field. This chapter contains the 
results of the application of the proposed methodology on the sampled data set. The 
chapter’s aim is to: 
 

1. Demonstrate the application of the transformation process on a single 
sequence  

2. Demonstrate the data reduction that is achieved by the transformation process 
on the sample set of sequences 

3. Perform the test for coherence (test of uniformity) for the cutoff parameter and 
the associations between semantics for the sequences in the sample 

4. Assess the performance of cost function in respect to the triangle looseness 
criterion 

 
First an overview of the sample data set is given in 7.1. In section 7.2 the 
transformation methodology is applied on a single sequence. In section 7.3 the data 
reduction that is achieved on the sample set with the proposed methodology is 
presented. In section 7.4 the test of coherence is applied on the parameter values 
obtained from the sample set. In section 7.5 the performance of the cost function is 
discussed. The chapter closes with section 7.6 where the results are discussed.  

7.1 The sample data set 

The sample sequences are taken from 137 systems. The systems are of the same type 
with the same software and hardware components installed. These systems are 
geographically distributed. The systems are used in the same area of clinical 
application but their actual operating conditions are not known. The sequences are 
cleared from all irrelevant types of traces (see preprocessing 2.5). The only types of 
traces that remained in the sequence are those of type error and recovery. Partially 
periodic subsequences are removed too using the procedure described in 3.4.   
 
The sequences are of various lengths and contain various amounts of traces. This 
allows testing the transformation process under different combinations of sequence 
length and number of traces. In any case the segmentation, which is the most 
influential phase of the transformation process, should return the most compact 
subsequences possible given the arrangement of traces in the sequence. In Figure 7-1 
the lengths of the sequences are shown in an increasing order. Their durations vary 
from less than 500 hours of operating time up to almost 10000 hours.   
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Figure 7-1 Operating time per system 

The sequences contain a variety of number of trace. In Figure 7-2 the number of error 
traces is plotted against the length of the sequence. There is a weak positive 
correlation between the number of error traces and the length of the sequence.  

 
Figure 7-2 Data points (errors) in a data sequence 

 
Similarly for recovery events the scatter plot of the recovery traces versus the 
operating time is seen in Figure 7-3. Again there is a weak correlation between the 
number of recovery traces logged and the length of the sequence. 
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Figure 7-3 Data points (recovery) in a data sequence 

 
The absence of strong correlation between the number of traces found in a sequence 
and the length of the sequence is an indication of how the location and system specific 
factors, such as the type of events, the workload, the operating conditions, system 
configuration etc. can contribute to the amount of traces logged. This is a reminder of 
how subsequences can vary from one system to another in the number of traces and 
type of semantics they can contain. The observation made here is in line with the 
observations made in the fault injection experiment (3.2).  

7.2 Transformation methodology applied on a single 
sequence 

In this example the untransformed sequence has a length of over 2200 hours of 
operating time. The example follows the framework of 2.4.3. Selection has taken 
place with choosing the sample set. The steps that follow are preprocessing, 
segmentation, tagging and tag matching.    

7.2.1 Preprocessing 

First all traces that are of type other than “Error” are removed. This is done 
automatically using a script that filters out unwanted events.  
 
After removal of all unwanted events, the sequence contains 21970 error traces. A 
graphical representation of the sequence is shown in Figure 7-4. 
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Figure 7-4 Graphical representation of error sequence before pps are removed 

   
As part of the preprocessing step, all ics of error traces are tested if they are pps. The 
result of the tests shows that three ics are pps, namely 73400000, 7320000 and 
570000013. The pps are removed from the sequence. After the removal of pps the 
sequence contains 489 error traces. The preprocessed sequence is show in Figure 7-5 

 
Figure 7-5 Error sequence after preprocessing is completed 

 
 The sequence is shown in Figure 7-5 using the visualization method described in 3.3.  
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7.2.2 Segmentation step 

The segmentation process consists of five elements: 
 

1. Use a sequential clustering algorithm to segment the sequence and obtain 
multiple segmentation results for a range of values for the cutoff criterion. (see 
method in 4.2.1) 

2. Find which values of the cutoff criterion give the best segmentation result 
using a cluster separation measure (see method in 4.2.2). 

3. Robustify the value of the cutoff criterion to account for structural variation 
using the resampling method and the hCSM (see method in 4.2.3). 

4. Chose the adjusted value of the cutoff criterion that reduces the risk of 
collision for application (see method in 4.2.4). 

5. Perform internal validation to verify that the segmentation of the sampled 
sequence using the selected cutoff value is not the result of data points being 
grouped randomly (see method in 4.2.5). 

7.2.2.1 Segmentation (elements 1 and 2) 
The sequence is segmented using the sequential clustering algorithm. The range of 
values for the cutoff parameter is Θ=[0,1000]. A CSM value is obtained for the cluster 
result of each value of Θ (theta). The plot of the CSM values over the range of Θ is 
shown in Figure 7-6.  

 
Figure 7-6 Values of CSM over the range of theta 

 
The lowest CSM value(s) indicate which segmentation result returns the most 
compact clusters. The lowest value of the CSM is found in the range 
cutoff_low_CSM = [60, 128], where CSM=0.0169.  Within this range the number of 
the identified subsequences is 68. At this point the compression ratio achieved with 
the segmentation is   

7.2.2.2 Robustification (element 3) 
The resampling method is applied on the range of best segmentation results as 
indicated by the cutoff parameter, cutoff_low_CSM = [60, 128]. The mean distance 
between successive traces of the subsequences is mDBST=2.8519, therefore the 
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preferred thinning probability is  (see 4.2.3.2). The sequence is resampled 
1000 times and the average figure of merit obtained  from the procedure. The 
results of the resampling method can bees in Figure 7-7 (blue curve). 

 
Figure 7-7 Figure of merit ML over the best range of cutoff parameter values 

For the entire range of the cutoff parameter the figure of merit is high (>0.965), 
which suggests robustness to variation.  However, in the low end of the range the 
clustering of the resampled sequences resulted to more truncations than in the high 
end. The risk of truncation is lowest for the values of the cutoff parameter that are at 
the high end of the range.  
 
Using the CSM and the figure of merit the hCSM is calculated. The hCSM is shown 
in Figure 7-8.  

 
Figure 7-8 hCSM values over the best range of the cutoff parameter values 

The lowest values of the hCSM are found for two values of the cutoff parameter, 
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7.2.2.3 Collision probability (element 4) 
To estimate the collision probability when the algorithm is applied in the field, the 
empirical distribution of the length of the subsequences is needed. The lengths of 
subsequences are taken directly from the segmentation result. The empirical 
distribution of the lengths of subsequences for the sequence in the example is shown 
in Figure 7-9. 

 
Figure 7-9 Empirical distribution of lengths of subsequences 

Using the method described in 4.2.4, the collision probability is estimated for the 
chosen range of values of the cutoff parameter. The collision probability for this range 
is shown in Figure 7-10 Collision probability for selected range of cutoff parameter 
values. The collision probability is overall very low, but as expected it is increasing as 
the value of the cutoff parameter is increasing. The effect of the collision probability 
is naturally working in favor of the lowest value   of the cutoff parameter. 
The value  is the one that should be used when the sequence of traces for 
this system is segmented in field application.    

 
Figure 7-10 Collision probability for selected range of cutoff parameter values 
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7.2.2.4 Random position hypothesis test (element 5) 
The test is performed by first calculating the ˆ statistic. For the sequence in the 
example the statistic is . The empirical distribution of ˆ

r is computed 
from 5000 random positioning sequences, where 486 data points are randomly 
generated in an interval equal to the length of the original sequence in the sample. The 
empirical distribution can be seen in Figure 7-11 (blue histogram).  The statistic ˆ  for 
the sequence in the example is larger than all ˆ

r (red line indicates the value of ˆ ), 
therefore the null hypothesis can be rejected. It is very unlikely that the clustering 
result obtained by the segmentation of the original sequence can be obtained by a 
sequence with randomly positioned traces. The clustering result is a sensible result 
based on the non-random arrangement of traces in the sequence.  

 
Figure 7-11 Empirical distribution of gamma statistic under the  null hypothesis 

 

7.2.3 Tagging 

The tagging operation eliminates the replicates of semantics in the subsequences, it is 
ordering the semantics lexicographically and it is assigning point representations to 
the subsequences. An example of a tagging of a subsequence is shown below. The 
subsequence after the segmentation (A) contains 12 traces of 5 different types (ics): 
 

A. Subsequence after the segmentation 
10000006 10000006 40000202 103262105 103366143 103366188 103366143 

 
103368255 103366143 103366143 40000202 103262105 

 
B. After the tagging of the semantics (eliminate replicates and ordering): 

103262105 103362105 103366143 103366188 103368255 

 
After the tagging of the semantics the subsequence contains only 5 types of traces, 
which are ordered. The temporal information is tagged by assigning to eat 
subsequence the time of occurrence of the first trace in the subsequence.  
 
With the tagging of the semantic and temporal information, the sequence contains 
only tags. The result of the tagging of subsequences can be seen in Table 7-1. The 
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table contains all tag in the sequence. The tags are presented in order of occurrence. 
The time of occurrence is given in the third column of the table labeled as "Times". 
The fourth column shows the time between tags (TBT). The TBT shows that most 
tags are separated from each other by relatively long intervals.  

 
Index Tags Times 

(sec) 
TBT 
(sec) 

1 
<520010000, 520010103, 520019900, 520019901, 650409900, 660009900, 
660009901, 660040012, 730999912> 

0  

2 <510999900, 510999901, 650409900, 730999900, 730999902> 1579 1579 
3 <510610015, 510610100> 17975 16396 
4 <730999900, 730999902> 30895 12920 

5 

<540019909, 570000002, 590009909, 610039912, 640019909, 640029912, 
650409900, 660009900, 660009901, 660020012, 670009909, 730999900, 
730999902, 730999912> 

37544 6649 

6 <640029912> 38603 1059 
7 <63000189, 63000238> 42990 4387 
8 <70010003> 167658 124668 
9 <70010003> 871503 703845 
10 <510710102> 1098922 227419 
11 <70010003> 1337862 238940 
12 <90002002> 1478041 140179 
13 <70010003> 2073731 595690 
14 <650000050> 2581353 507622 
15 <650000050> 2653180 71827 
16 <10000006> 2706767 53587 
17 <540000072> 2812450 105683 
18 <540000072> 2812646 196 
19 <540000072> 2812982 336 
20 <70010003> 3083172 270190 
21 <70010003> 3491866 408694 
22 <70010003> 3492001 135 
23 <540000072> 3702845 210844 
24 <10000006> 3729326 26481 
25 <10000006> 3730245 919 
26 <730999900, 730999902> 3924446 194201 
27 <80010055> 3947995 23549 
28 <650000050> 3948141 146 
29 <80010055> 3955251 7110 
30 <730999900, 730999902> 4131265 176014 
31 <730999900, 730999902> 4206195 74930 
32 <80010055> 4248512 42317 
33 <70010003> 4386967 138455 
34 <730999900, 730999902> 4500504 113537 
35 <70010003> 4540707 40203 
36 <540000072> 4692482 151775 

37 
<10000006, 40000202, 103262105, 103362105, 103366143, 103366188, 
103368255> 

4777343 84861 

38 <730999900, 730999902> 4781481 4138 
39 <70010003> 4785630 4149 
40 <100020002> 4847227 61597 
41 <100020002> 4848112 885 
42 <10000006, 510610011, 510610100> 4871819 23707 
43 <730999900, 730999902> 5746691 874872 
44 <70010003> 5785741 39050 
45 <730999900, 730999902> 5934973 149232 
46 <70010003> 5975885 40912 
47 <730999900, 730999902> 6167294 191409 
48 <730999900, 730999902> 6186146 18852 
49 <70010003> 6240492 54346 
50 <540000072> 6596103 355611 
51 <730999900, 730999902> 6841564 245461 
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52 <10000006> 6998704 157140 
53 <63000188, 63000238> 7348973 350269 
54 <63000238> 7349132 159 
55 <63000238> 7349360 228 
56 <63000238> 7356978 7618 
57 <730020000> 7357244 266 
58 <730020000> 7357442 198 
59 <80010055> 7358275 833 
60 <40000202, 63000238, 103262105, 103266143, 103268255, 730020000> 7358811 536 
61 <63000238> 7359325 514 
62 <80010055> 7359531 206 
63 <730020000> 7359856 325 
64 <730020000> 7360481 625 
65 <730020000> 7362617 2136 
66 <730020000> 7363918 1301 
67 <730020000> 7364133 215 
68 <10000006, 510610011, 510610100> 7700983 336850 

 
Table 7-1 Tags in the sequence 

7.2.4 Tag matching 

The tag matching operates on the tags seen in Table 7-1. The clustering algorithm for 
the matching operation is terminated for a silhouette value of 0.9716 (Figure 7-12) 
where a satisfactory clustering result was obtained.  The clustering result is 
satisfactory because the number of tag types that are produced is low (high data 
reduction) and the clustering cutoff criterion value is high. The tag types are shown in 
Table 7-2 (horizontal axis represents the number of tag types, vertical axis represents 
the silhouette value).  

 
Figure 7-12 Silhouette clustering stopping criterion 

Given the distances between the tags the tag matching operation returns 19 tag types. 
These are shown in Table 7-2, achieving another compression of . 
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Tag 
Type 

Tag type members 

1 <510999900, 510999901, 650409900, 730999900, 730999902> 
2 <520010000, 520010103, 520019900, 520019901, 650409900, 660009900, 660009901, 660040012, 

730999912> 
3 <730999900, 730999902> 
4 <540019909, 570000002, 590009909, 610039912, 640019909, 640029912, 650409900, 660009900, 

660009901, 660020012, 670009909, 730999900, 730999902, 730999912> 
5 <640029912> 
6 <80010055> 
7 <63000188, 63000238> 
 <63000189, 63000238> 
 <63000238> 
8 <730020000> 
9 <40000202, 63000238, 103262105, 103266143, 103268255, 730020000> 
10 <10000006, 40000202, 103262105, 103362105, 103366143, 103366188, 103368255> 

11 <10000006, 510610011, 510610100> 
12 <10000006> 
13 <510610015, 510610100> 
14 <510710102> 

15 <100020002> 
16 <90002002> 
17 <540000072> 
18 <650000050> 
19 <70010003> 

Table 7-2 Tags grouped into tag types 
 
In the clustering result of this example the tag types that are produced can be 
categorized in three cases. First is the case were the content of the tag type is a single 
tag that has occurred only once. Such tag types are 1, 2, 4, 9 and 10. These tags 
contain few common traces but mostly contain traces that are unique for that tag. 
There is not enough information on similarities for these traces to help cluster the tags 
together. This case does not contribute to data reduction as a single tag instance 
defines the tag type. The second case is tag types that contain a single tag that has 
occurred multiple times. Such tag types are 3, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18, 
and 19. The tag types resulted from the fact that their edit distance is equal to zero as 
they are exact matches. In this example these tag types are mostly responsible for the 
data reduction as they have taken multiple instances of identical tags and grouped 
them. The third case is the tag types where different tags are grouped in the same tag 
type because of their similarity based on the edit distance. The tag type 7 is falls case. 
Tag type 7 contains three different tags. Though the common occurrence of the trace 
63000188 with 63000238 as well as the common occurrence of 63000189 with 
63000238 results to a similarity between the traces of the pairs that is greater than 
zero, in this case the strongest factor for the clustering of the tags into the same tag 
type is that these tags are short and share the same trace namely 63000238. The edit 
transformation from the tag <63000188, 63000238> to the tag <63000238> for 
example is achieved most efficiently by deleting and replacing 63000238 
with itself.  
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At this point the transformation process is complete. The sequence is represented by 
only 19 tag types and 68 points in time as sown in Figure 7-14. The visual 
representation of the sequence in Figure 7-5 can be compared against the 
representation of the sequence of tags. The correspondence between Figure 7-13 and 
Figure 7-14 is made with the help of Table 7-2. The vertical formations of traces in 
Figure 7-13 are represented by the instances of tag types Table 7-2. 

 
Figure 7-13 Error sequence after preprocessing

 
Figure 7-14 Transformation complete: sequence of tag types 
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7.3 Data reduction on sample sequence 

Since the main objective of this methodology is to reduce the size of data, the data 
compression that is achieved by applying the methodology to the entire sample set is 
presented. The results are organized according to the type of traces.  

7.3.1 Error Traces 

Out of the 137 sequences, 9 did not contain any traces after preprocessing. From the 
128 sequences that were left, three sequences returned singleton clusters i.e. 
subsequences containing a single trace. These data sequences are not included in the 
analysis as they pose no interest for the transformation process. 
 
1. Compression achieved by segmentation  
In Figure 7-15 it can be seen that the majority of the sequences are compressed to a 
rate lower than 0.05, which equals to a reduction of a sequence that originally would 
contain 100 traces to a sequence that contains 5 subsequences.  

 
Figure 7-15 Compression ratios after segmentation 

2. Compression achieved with tag matching  
The tag sets obtained from the sequences after the segmentation are examined for 
matching tags. Tag sets that contain less than 20 observations are not considered 
because for none of the associations of the semantics there can be any statistical 
significance. This reduces the number of tag sets from 128 to 53.  The matching 
process is performed as described in Section 5.2.2. The matching process is applied 
on each of the 53 tag sets. The clustering operation is stopped for high values of the 
silhouettes stopping rule (at least >0.9). The distribution of the compression ratio after 
tag matching for sample set is shown in Figure 7-16. 
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Figure 7-16 Distribution of compression ratios after tag matching 

 
For the majority of tag sets a compression of ratio of 0,2 was achieved. That 
amounts to a considerable compression in the tag set. For example a sequence that 
initially consisted of 100 tags can now be described by only 20 tag types, without any 
loss of semantic of temporal information.  

7.3.2 Recovery traces 

The procedure is repeated for the sample sequences, but this time the sequences 
contain recovery traces only (error traces are filtered out). Out the 137 sequences, 24 
were found not to contain any traces once the partially periodic events were removed. 
For 16 sequences singleton clusters were returned. These sequences are not examined 
further.  
1. Compression achieved by segmentation  
The compression ratios achieved after segmentation is shown Figure 7-17. 
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Figure 7-17 Compression ratios after segmentation  

2. Compression achieved with tag matching  
The matching process is applied on the tags of recovery traces. The Silhouette 
stopping criterion is used to recover the resulting class labels.  Given the requirement 
of at least 20 subsequences in the set, only 5 systems are examined. For the rest of the 
sequences, the observed subsequences were fewer than 20. The compression ratio for 
the recovery related label set can be seen in Figure 7-18.  

 
Figure 7-18 Distribution of compression ratios for recovery related label sets 

 
The inequality looseness test produced also positive result for the performance of the 
distance function. Only for 3 out of the 8 labels sets there were a percentage of failed 
triplets. Within this set of 3 the highest percentage of failed triplets being 0,0203%, 
which is extremely low. The violation of the triangular inequality criterion is minimal.  
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7.4 Test for uniformity 

All sequences of the sample set have been segmented and the cost function for each 
tag set has been computed. At this point the values of all parameters for testing the 
coherence of the characteristics of the subsequences across the systems are available. 
The tests are performed separately for sequences of error and recovery traces.  

7.4.1 Test for temporal characteristic of the group 

For the temporal characteristic of systems in the sample the test for uniformity is 
performed using the empirical distribution of the values of the cutoff parameter across 
systems that were obtained with the segmentation. The test is performed using the 
methodology in 6.1.4 
 
1. Error traces 
The histogram of the cutoff values the sequences of error traces is seen in Figure 7-19. 
By visual inspection the empirical distribution is clearly unimodal. The set of 126 
values

u
 spans over a range from min( ) 1u

 to max( ) 784u
. 

 
Figure 7-19 Histogram of 

u
for 128 systems 

To meet the criterion of more than 5 expected observations per cell, the set of cutoff 
values is grouped in 25 non overlapping cells with width 32 seconds. Given this 
grouping of the cutoff values, the test statistic is calculated to be 627,6. The null 
hypothesis of uniformity is rejected with a p-value of -1187.4551x10 .  
 
2. Recovery traces 
The histogram of the cutoff values the sequences of error traces is seen in Figure 7-20. 
By visual inspection the histogram is unimodal. The set of 95 values

u
 spans over a 

range from min( ) 3u
 to max( ) 780u
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Figure 7-20 Histogram of 

u
for 95 systems 

To meet the criterion of more than 5 expected observations per cell, the set of cutoff 
values was grouped in 19 non overlapping cells of width 43,667 seconds. Given this 
grouping of the cutoff values, the test statistic for this set is 1106,3. The null 
hypothesis of uniformity is rejected with a p-value of -2241.5088x10 . 

7.4.2 Test for the association of semantics across the group 

As in the case with the cutoff parameters, here the coefficients are handled separately 
for error and recovery semantics. To make the results easier to present an additional 
step is introduced. If the uniformity test is rejected the association between two 
semantics is classified as either weak (the distribution is unimodal and positive 
skewed) or strong (the distribution is unimodal and negative skewed). A strong 
association is represented by a solid line connecting the two ics (ics are represented by 
single digits to mask the real ic numbers). 

 
A weak association is represented by dotted line connecting the two ics. 

 
 
1. Error traces 
For the test, labels sets that contain 20 or more labels are chosen. This requirement is 
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number of tag sets from 137 to 53. For the remaining labels sets, the associations are 
inserted into the global association matrix F

k  as described in 6.1.5.    
 
To meet the requirement that the expected number of observations in each cell is 
greater than 5, the range 0 to 1 is divided into 10 cells. At significance level 0.05a

and 1 9df m , the chi square distribution returns the value 2
0.95,9  16.9190 .  

From the 53 tag sets, 524 association coefficients are computed. Not all of them are 
found in every system. Out of the 524 coefficients, only 68 are large enough (found in 
more than 50 systems) to perform the test.  
 
For 10 out of the 68 pairs the null hypothesis for uniformity can be rejected. The 
associations of ICs that are consistent across systems are shown in Figure 7-21.  
 

 
Figure 7-21 Consistent associations of error ICs across distributed systems 

 
In the graph of Figure 7-21 it can be seen how the semantics are associated with each 
other in a consistent manner across the systems of the sample. There are four 
associations (1, 78), (1, 74), (1, 95), (36, 74) that are consistently weak. This suggests 
that these semantics are never or rarely found in the same tag. There are six strong 
associations found in the results. Two of them, (145, 150) and (165,166), appear as 2-
tuples. There is one 3-tuple (74, 78, 26) that is consistently strong across all systems. 
The associations between semantics 26, 78 and 81 are found to be strong for (26, 78) 
and (78, 81) but no consistent result is found the pair (26, 81). The strong associations 
between error semantics are verified by using the “Software Architecture 
Specification” document [Phi06] of the system. The semantics with coherent strong 
association across systems, trace back to components that belong to the same module.   
 
2. Recovery Traces 
Out of the 137 tag sets, only 9 consist of more than 20 tags. These 9 tag sets form a 
set of 94 associations ijS .  Out of these none contains more than 50 observations. The 
uniformity test could not be performed because of the small sample size (this applies 
for the grouping of data into 10 cells).  
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7.5 Performance of cost function 

For the clustering of tags into tag types the performance of the normalized edit 
function ( , )i jnD L L in respect to the triangle inequality criterion is interesting because 
inform whether the comparison is reliable. The performance of the edit function is 
measured by the triangle inequality looseness. The triangle inequality looseness is 
computed for each triplet of labels ( , , )i j kL L L  in label set 0LC : 

( , , ) ( , ) ( , ) ( , )i j k i j j k i kF L L L nD L L nD L L nD L L  
The performance of the edit function is defined by the percentage of triples that do not 
satisfy the inequality looseness among all triples in a label set.  
 
During the tag matching of the tag sets, all triplets were tested for the inequality 
looseness. The number of triplets that failed to meet the triangle inequality over the 
entire number of triplets tested can be seen in the Figure 7-22. The triples that pass the 
test are on the right hand side (black bars) of the zero point and the triplets that failed 
the test on the left hand side (red bar).  

 
Figure 7-22 Fraction of failed triplets 

 
The test was performed for all tag sets (all systems in the sample set). For each tag set 
the percentage of failed triplets over the entire set of triplets was measured.  The result 
can be seen in   
Figure 7-23. For the majority of tag sets the triangle inequality was not violated. For a 
small fraction of the tag sets the triangle inequality was violated to a small extend.  
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Figure 7-23 Distribution of percentages of failed triplets 

 
Overall this performance is satisfactory. It indicates that the cost function that was 
defined here based on the associations of the semantics in the tags for the edit 
operation performs well when used in combination with the normalized edit distance.  

7.6 Discussion and conclusions 

The test for the consistency of the characteristics of subsequences across the systems 
showed that the cutoff values for error and recovery sequences are not inconsistent. 
The visual inspection of the histograms (Figure 7-19 and Figure 7-20) and the 
uniformity tests, indicate that for both types of sequences, the subsequences tend to be 
coherent (right skewed histograms). These results encourage the collective use 
sequences from distributed systems for the parameterization of the segmentation 
algorithm foe newly installed systems. However this decision should be made 
considering that the test for uniformity was done based on the grouping of the cutoff 
values into cells, where the width of each cell is 32.625 and 43,667, for error and 
recovery sequence respectively. The width of the cell of the histogram defines the 
granularity at which differences in cutoff values are ignored. Rejecting the null 
hypothesis of uniformly distributed cutoff values, with small cell width is a stronger 
statement of consistency than with wide cell width because the differences in the 
cutoff values that are ignored are smaller.  
 
Regarding the consistency of the association coefficients across distributed systems, 
the results show that only a small fraction 2.9% of associations of error semantics is 
consistently strong across the systems of the sample. This result might discourage the 
use of association coefficients obtained from other systems, in the matching operation 
of newly installed systems.  
 

A striking observation is that even with a long observation period (sum of operating 
times of sample systems), there is shortage of data for statistical inference. For the 
error related semantics only 38.9% of the tag sets had adequate amount of 
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observations to perform the uniformity test. From these tag sets, 524 association sets 
were found, but only 7.4% had again an adequate number of observations to be tested.  
 
It is clear that the uniformity test requires a large number of observations. Perhaps this 
demand can be mitigated with the use of "external" design data to complement the 
measure of associations between semantics. Such information can be retrieved from 
system design documentation that is describing the functional relation between 
components. 
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Chapter 8 

8 Knowledge discovery using transformed traces 
So far the first phase of the transformation process, which is also the scope of the 
thesis, was presented. In this chapter the second phase of the process is described 
shortly.  The aim of this chapter is to illustrate how analytical tools can be applied to 
the transformed sequences, which in turn can lead to knowledge discovery. 
Knowledge discovery is considered in the context of effective availability 
management. First the differences between using the methodology for 
parameterization on sample data and the filed application are described in 8.1. In 
section 8.2 knowledge discovery is demonstrated assuming the input is a transformed 
sequence. The chapter concludes in 8.3 with a comparative analysis between 
traditional failure data collection methods and the use of traces.  

8.1 From parameterization to application 

The approach for applying the methodology consists of two main stages: a) 
Parameterization and b) Real time implementation. For each stage the steps of the 
transformation process are either relevant or not (Table 8-1): 
1. Parameterization 
At this stage the cutoff parameter for the segmentation algorithm is defined. The 
parameter is defined either for each system specifically or for groups of systems, 
depending on the result of the test for consistency of characteristics of subsequences.  
 
2. Real time implementation  
The methodology is applied in real time. Traces are processed as they are produced by 
the system. Once a subsequence is defined it is tagged, the cost function is updated 
and the tags (new and existing) are matched again.  
 
Operations is different stages of the application 
 Parameterization Field implementation 
Data input Sample sequence Continuous data flow 
Preprocessing Yes Yes 
Segmentation hCSM is estimated 

using  the resampling 
method and adjusted to 
reduce the collision 
probability 

hCSM is applied 

Test for group 
characteristic cutoff value 

Yes No 

Tagging Yes Yes 
Tag matching Yes Yes 
Test for group 
characteristic associations 
of semantic 

Yes No 

Post Analysis (knowledge 
discovery) 

No Yes 

Table 8-1 Overview of steps for two stages of application 
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8.2 Availability management with traces 

In this hypothetical scenario the focus is availability management using information 
from traces. The information is collected from transformed traces, now referred to as 
tag type sequences (TTS).  Here, an example of TTS is shown to demonstrate how it 
can be used for effective availability management. The methods are grouped under 
two tiers of knowledge generation.  
 
1. The first tier uses directly the information from TTS. Direct measurements 
taken from TTS can provide information on the availability of individual systems and 
on the types of failures that cause the longest downtimes. The first tier supports also 
corrective maintenance.   
 
2. The second tier uses the information from traces to support decision making in 
system design and system support. This tier is using the information from traces to 
feed modeling techniques that in turn can help improve the system design or the setup 
of the support system.  
 
First the TTS is described in 8.2.1 then the tier 1 described in 8.2.2 and tier 2 in 
8.2.3.28.3.3. 

8.2.1 Tag type sequences 

In the context of system resilience it is assumed that every system failure is followed 
by a system recovery. However, in a real case scenario the system may not recover by 
itself after each failure. For some failures a field engineer is needed to repair the 
system. In this example repairs are also considered to be recovery events.  
 
The preprocessing and transformation of traces produces a TTS. The TTS consists of 
error tag types E  succeeded by recovery tag types R . The tag types E and R contain 
the semantic information describing the type of event. Each tag in the sequence is 
represented by the tuple , where , denotes the ith  error tag type 
occurring at time where , and N is the number of all events, and 
each recovery tag is represented by the tuple  , where  denotes the 
jth recovery tag type occurring at time . The observations start at the time 

of the first error tag and 0 0t  (synchronous). 

 
Figure 8-1 Tag type sequence 
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In Figure 8-1, two error tag types can be seen. Each is followed by a different 
recovery tag type. During the times of 0 1t t  and 2 3t t the system is unavailable.  

8.2.2 Tier 1: Measurement and corrective maintenance 

 
To measure the system operational availability the information from the tag type 
sequence is used directly to calculate the system down time: 

 

and the total operating time of the system from time  to the current point in time  
 

Then the operating availability is: 

 

 
For the purposes of corrective maintenance the TTS can be used as following: at the 
occurrence of a new error event, the error tag is either categorized into a known tag 
type or it defines a new tag type. In the first case corrective maintenance can proceed 
(assuming system does not recover by itself) based on the knowledge that is already 
available for the existing tag type. In the second case diagnostics have to be 
performed before maintenance can begin. Once maintenance is completed and the 
correction has been verified, the information regarding the error is added to the newly 
defined error tag type.    

8.2.3 Tier 2: availability modeling and association rules  

8.2.3.1 Availability modeling: identifying bottlenecks  
Stochastic modeling is used for availability analysis. Availability analysis provides 
computations of point availability, i.e. the probability that the system will be in up-
state at a time t, and steady state availability or limiting availability i.e. the 
availability of the system in the long run. Measurements taken from traces can be used 
as input for availability models.  
 
To illustrate this, an example is provided: the failure process of a complex system is 
modeled as a composite of the failure processes of single failure types. Each failure 
type together with its associated recoveries is modeled by a single failure type 

process.  When all single failure type processes are superimposed they compose the 
system failure process (Figure 8-2). It is assumed that failures are occurring 
independently from each other, that they don't occur at the same time and that after 
every recovery the system is as good as new.  
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Figure 8-2 Composing system failure process by superimposing single failure type processes 

 
The system failure process describes essentially a system made out of multiple 
components put in series (Figure 8-3). This configuration is based on the principle 
that when one component fails the system fails. Here each block in Figure 8-3 
represents one failure type rather than a physical component. The analogy remains: 
when any type of failure occurs the system is down.  

 
Figure 8-3 Reliability diagram of a multi component series configuration 

8.2.3.1.1 Simple failure type process defined 

A simple failure type process according to the above description is defined 
analytically as follows: 
  
When a failure event of failure type 

iE  occurs at time 
kt the system becomes 

unavailable for a period of time , until it recovers by the recovery 
event 1,j kR t  . After recovery, a period  follows where the 
system is operational. The process continues with the same alternation. The 
alternation of the intervals and  form an alternating renewal process 
[Ave98]. 
 
The length of intervals and  are modeled as random variables, with 
distributions F  and G respectively. Mean Time to Failure 

F
 and Mean Time to 

Recovery 
G

are the means of these distributions.  
 

 

 

  

  

 
 

  

  

E1 E2 E3 Em . . . .  



 

 153 

Given a series of operational and recovery intervals 1 1 2 2, , , ,...A U A U the following two 
variables are introduced [Ave98]: 
 

Time to the nth failure: 
1

1 1
1
( ), ,

n

n k k

k

S A U A n N ( 8-1) 

and the time to the completion of the nth  recovery: 
1
( ),

n
o

n k k

k

S A U n N ( 8-2) 

 
The sequence given by o

nS forms an ordinary renewal process 0N with distribution 
function ( )o nH , where ( ) ( )o n nH F G , and (n) denotes the n-fold convolution ( ) 
of the distribution 0H  process [Ave98]. The renewal function 0M of o

nS is: 

0 0( )

1
( ) ( )n

n

M t H t ( 8-3) 

Given the above, the point estimate for the availability iAv (t) of the system in 
relation to failure type

iE is:  
 
Av ( ) ( ) ( )o

i ii it F t F M t  ( 8-4), 

 where 1i iF F  
 
and the point estimate of unavailability iAv (t) because of failure type

iE is:  

Av 1 Av ( ) ( ) ( )o
ii i i it F t F M t ( 8-5) 

 
The limiting availability Ai is defined as: 

Av lim Av ( ) i F

i i
t

i F iG

t ( 8-6) 

and the limiting unavailability caused by failure type 
iE  : Av 1 Avi i ( 8-7) 

8.2.3.1.2 System failure process defined 

Having modeled the simple failure processes, the composite system failure process 
can be obtained by superimposing the l sequences o

lnS  of the failure types
iE .   

 
The point availability of the system at time t  is given by: 

System
1

Av ( ) Av ( )
m

i

i

t t , for 1,2,3...i m ( 8-8) 

and the limiting availability for the system 

System
1

lim Av ( ) i

m
F

t
i i F iG

t ( 8-9) 

 
From the above formulas, the system limiting availability provides the information 
whether the system performs as good as expected. If the system availability is below 
the desired level, the availability bottlenecks can be identified by the ordering of the 
point estimates or the limiting unavailability of failure types.    
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8.2.3.1.3 Measurements from the TTS are used for parameter estimation of 
availability modeling 

The distributions F  andG are obtained from the TTS by measuring the time of 
occurrence of failure types 

iE  and their associated recoveries jR . Parameters for these 
distributions are estimated based on these measurements.  
 
For a failure type 

iE the first time to failure is the interval 1 0 0i iA t t , where 0 0t is 
the start of the observation and 0 0it (if first failure is

iE , then 0 0 0it t ). For 
failure type 

iE the first time to recovery is 1 1 0i i iU t t  where 1it is the time of the 
subsequent recovery event 

iR . For the kth time to failure we  

1ik ik ikA t t ( 8-10) 

and for kth time recovery: 
1ik ik ikU t t ( 8-11) 

The above measurements are taken for all occurrences of each error tag type and their 
associated recovery tag types found in the label sequence.   
 
Using this measurement the limiting unavailability for each error tag type can be 
estimated. By ranking the tag types in descending order of limiting unavailability, a 
list of availability bottlenecks is obtained, prioritized from the most severe to the least 
severe. Improvement actions can be taken after analyzing the list top down.   

8.2.3.2 Association rules 
The information from availability analysis focuses on the availability bottlenecks. 
Since the modeling approach is failure centric i.e. one failure process defined for a 
failure type, the information collected by now is pointing out to the most damaging 
failure types.  
 
To improve availability system designers want to examine two options: 

1. reduce the frequency of failures  
2. enhance system resilience  

 
To support the above decision, semantic information on the types of failures and 
recoveries is obtained from the label sequence with the discovery of association rules.  
 
Association rules in temporal data sequences describe the relationship between two or 
more events. In the case of failure and recovery events in traces the association rules 
describe causal relationships between the two events [Rod02]. Using sequential or 
temporal data mining tools it is possible to detect and measure the relationship 
between an error tag type 1E and its associated recovery tag types jR .  
 
Association rules on error and recovery sag types can help complement the 
information regarding the bottlenecks of availability. Association rules provide 
qualitative information on the availability performance. For the tag type 1E , mining 
the TTS for association rules can reveal the recovery tag types that are mostly related 
to it e.g. 1 1 4{ } { , }E R R .  
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With the information about the association rules the engineering analysis can be 
directed to the semantics information of the tag types. A root cause analysis can 
provide more details on the nature of the error and the recovery event. The gain here 
is that the root cause analysis, which is expensive and time consuming, is performed 
on already prioritized problems.  

8.3 Availability management & decision making: past, 
present and future 

The computerization of systems did not only come with new challenges it came also 
with new abilities in information sharing. In contrast to traditional systems with 
strong mechanical and electrical designs, these systems can record, collect, store and 
share data about the status of their components and the overall state. The easiness with 
which this information can be recorded and shared has a strong potential in 
transforming many aspects of availability and reliability management of professional 
systems.  
 
Both availability and reliability management depend on information. Information is 
required about the operational status of systems in the field, for diagnostics and 
maintenance planning and for spare part inventory management. Availability and 
reliability analysis techniques that have been developed for a range of problems such 
as, design decisions, maintenance policies, spare parts inventories, rely on data input 
collected from the field. Without it, even the most sophisticated analytical method 
will become just academic exercises. In this section the limitations of traditional data 
collection techniques (8.3.1) and their effect on the effectiveness of availability 
management (8.3.2) will be presented. To illustrate that effect, four decision making 
areas that relate to availability management are examined: 

 Corrective maintenance: Restore operation to the system after failure 
 Preventive maintenance: Reduce the frequency of system failures by 

replacing critical components based on information about their reliability 
 Resource management: Management of spare parts inventories, logistics and 

maintenance staff Product creation 
 Design and build high availability into systems 
 Performance indicators: Measurements of availability system performance    

 
Then in 8.3.3 it will be shown how traces provide advantages for data recording and 
collection, and how these advantages affect the same areas of decision making (8.3.4).   

8.3.1 Conventional methods for failure data detection and 
reporting  

In this section we will show how widely used current practices, used by 
manufacturers for capturing and reporting field failure data miss to provide the 
information required for effective availability management.  

8.3.1.1 Data via help desk 
It is not unusual that a system failure experienced at the customer's site is reported to 
the help desk of the service provider. This practice has several drawbacks:  

 The response for corrective maintenance is delayed by the handling of the call.  
 The information that is collected this way contains as little as the time of the 

call, name of the customer, and a vague description of the problem [Pet03]. 
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 For the purposes of analysis this data collection introduces left truncated data, 
as the exact moment of failure is most likely unknown [Bha03].  

8.3.1.2 Data from field reports 
The help desk will try to solve the problem remotely, given that its severity is low by 
giving instructions to the customer to overcome the problem. If this is not successful a 
field service engineer (FSE) is sent to the site. More information on the failure will 
become available only when the FSE is on site and after the diagnosis on the system is 
complete. It may be the case that under time pressure to restore the system, the FSE 
will choose to replace parts in trial and error fashion, to bring the system back in 
operational state as quickly as possible. 
 
The information on the completion of the corrective maintenance is added to the 
failure report, containing for example repair activity description, parts used, hours 
spent for the completion of the maintenance. This data reporting method has severe 
impact on the accuracy and availability of failure information and can obstruct or 
mislead further use [Pet03] [Bla98].Often the time scale used is calendar time, which 
puts limitations on the use of the data and values of covariates are entirely missing 
[Law92]. Reports of this type may be filled by staff of different skills, in different 
language, in different locations. This suggests that extracting information from them 
can be an elaborate, time consuming process.  
 
Warranty data are often a source of failure information for manufacturers. They 
usually are produced by the FSE. They have however some limitations that relate to 
the length of the warranty period. Because the data are of interest for the period of 
time the product is under warranty, data beyond that point are not recorded. The result 
is that organizations are left with truncated and right-censored data sets [Bha03]. 
Another issue with warranty data is the time for the data to become available. From 
the moment of the warranty claim until the data is available time will pass due to 
administrative and processing issues [Law92].  

8.3.1.3 Data from surveys/cross sectional samples 
Surveys and cross sectional sampling are performed by external parties or the 
manufacturers themselves to collects system failure information. They are often 
carried out as a response to perceived problems in the field. Some issues with the data 
that have been collected this way is that the data on the surveyed products are 
response related, and they may be heavily censored and truncated [Law92].   

8.3.2 Consequences of conventional methods on availability 
management 

Conventional practices in failure reporting involve extensive manual labor and human 
interference, causing inconsistencies in the data. They are lengthy and time 
consuming practices. They also fail to provide a complete overview on the product’s 
performance in the field due to their strong dependency on activities such as 
corrective maintenance. Conventional failure reporting practices fail to support 
availability management in:   
 
1. Corrective maintenance 
The data collected via customer calls has little informative value. It has no technical 
information, since the customer is not capable of commenting more on the failure than 
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the observations that can be made on the product's state. The result is that the FSE has 
to perform full diagnosis, detection and isolation of the fault on arrival on the site. For 
the complete diagnosis of the product, testing tools may be required that are not often 
available at the first visit. In this case, a second visit is required to complete diagnosis.  
Only when the diagnosis is complete and the fault has been located, the repair or 
replacement can begin. The tools and/or parts needed for the repair/replacement have 
to be ordered and shipped to the site. The above prolong the duration of system down 
time.  
 
2. Maintenance Policies 
Poor data input results in limited options for maintenance policies. Many companies 
would like to make use of more effective maintenance methods but are hindered by 
the lack of appropriate information input [End01] [Bla98].  
 
3. Resource management 
Lack of or inaccurate information on demand of parts can increase inventory levels 
and subsequently cost of stocks. Inaccurate demand information can result to delays in 
the delivery of parts due to bad transportation planning or facility misallocation and 
staff unavailability, which would lead to service delays [Cho04].  
 
4. Product Creation Process 
Censoring of data (right and left) is one of the main issues that come with current 
failure data recording practices. Dealing with censored data in reliability analysis 
requires the use of appropriate methods [Ans89], but it is doubtful whether estimates 
deriving from such data can be accurate [Coi86]. The analysis of life data requires 
knowledge on failure as well as on survival data (product without failures) otherwise 
reliability estimates will be pessimistic [Coi86]. Current methods however, do not 
keep track of systems without failures.  
 
Due to absence of failure data, engineers often make too simplistic assumptions on the 
failure rates of electronic components when predicting product reliability in the 
development process. Moreover, the use of standard sources of failure rate as the 
MIL-HDBK 217 handbook can lead to great inaccuracies in reliability prediction 
because they neglect the effect of environmental factors [Bla98] [Woo94]. Possibly 
one of the biggest shortcomings in the current practices of recording failure data is the 
absence of information on covariates, environmental or use conditions. Mixing data 
from various sources does increase the level of uncertainty on parameter estimation of 
probabilistic models.  
 
Many current failure recording methods are not capable of keeping track of software 
failures since these cannot be handled by FSE or the help desk. The delay in making 
field failure data available for analysis, is an obstacle in their use for detecting failure 
trends quickly and take actions on time to remedy design flaws of existing products.   
 
5. Performance indicators 
Organizations miss to provide their customers with estimates of LCC and TCO, a 
factor that becomes increasingly important in purchasing decisions. They also miss to 
provide their customers with feedback about their products’ performance in 
availability. Such reports would prove their commitment for continuous product 
evaluation and improvement.  
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8.3.3 System failure information from traces 

Managing system availability throughout the product life cycle requires the 
appropriate data to be captured and transformed to information and passed on to the 
right parties at the right time and in the right format. To achieve an effective end-to-
end solution, automation needs to be incorporated at all stages of the information 

system, i.e. data capture, collection, storage, processing and distribution.  
 
Traces have great potential for availability management of professional systems 
because:   
 

 Its implementation is designed into the product and assures data availability 
and effective coverage of all critical components 

 Being in digital form, these data can easily be sent via remote connectivity to 
any location allowing remote, close to real-time, monitoring capabilities 

 No human intervention assures such high levels of data consistency 
 The digital form of the data allows their integration with IT and machine 

processing applications, making data analysis and information available and 
fast  

 Its relatively inexpensive implementation allows the monitoring of fleets of 
products in the field   

8.3.4 Advantages of traces for availability management 

The advantages that come with traces can be found in all areas relevant to availability 
management:  
 
1. Corrective maintenance 
Traces can provide diagnostic support to FSEs. Semantic information in traces can 
indicate the location of the fault, This information is available immediately after 
system failure and can reduce corrective maintenance down time, by guiding the FSE 
in locating and isolating the fault and by making sure that the right tools and testing 
equipment are on site the same time as the FSE at the first visit. In combination with 
parts tracking technologies, the needed spare parts will be requested at the time of 
failure which can reduce further delays due to logistics.  
 
2. Preventive Maintenance 
Failure data components are collected accurately and timely, which can help in the 
planning of preventive and predictive maintenance activities. Moreover, digital 
components can now be included in preventive maintenance planning. For software 
components for which failure intensity is measured high, bug fixes can be provided 
remotely.  
 
3. Resource Management 
Real time data availability can provide accurate and timely forecasting information for 
spare part inventory management and manufacturing. It can also provide similar input 
for logistics and maintenance staff planning. 
 
4. Product Creation Process 
Field data on product performance from the moment of installation until 
decommissioning will provide a valuable input for product evaluation. Continuous 
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monitoring of failures in the field can detect timely availability trends that might 
suggest the need for design modifications. Additional information on product use can 
help in the improvement of the design, by adding redundancy or increasing resilience 
to overcome design shortcomings.  
 
5. Performance indicators 
Warranty estimates will be based on actual field performance and usage. LCC and 
TCO estimation can be done on the basis of accurate and complete use of spare parts, 
maintenance activities, down times etc.   

8.3.4.1 Improving the logging mechanism 
As the observations on systems are made based on the analysis of traces, new 
requirements for the logging mechanism arise. New areas of interest need to be 
covered to gain more insight in the role of components on the system's availability. 
The quality of traces needs to be improved, by trying to record traces in more compact 
(close temporal proximity) manner to increase the effectiveness of the mining 
algorithms. The improvement on the logging mechanism goes hand in hand with the 
need for more information to provide new/better insight into the system's behavior.  
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Chapter 9 

9 Conclusions and recommendations for future 
research 

This chapter concludes the thesis with the discussion on the objectives of the research, 
the validity, the scientific and practical contribution and the recommendations for 
future research. First the objectives of the research are discussed in 9.1. Then in 9.2 
the validity and reliability of the proposed methodology is discussed. In 9.3 the 
scientific and practical contributions are presented and in 9.4 some reflection on the 
work around this research are laid out. Finally section 9.5 provides some 
recommendations for future research.  

9.1 Research Objectives 

In this section the objectives that were set in 1.6.2 are presented and discussed 
separately.   
 
The main objective of the research is the reduction of the size of traces without the 
loss of any information regarding the events that are relevant for the availability 
management of systems i.e. failures and recoveries. The data reduction should also 
lead to a new data representation that is suitable for specific analytical tools used for 
system availability analysis. The objective is discussed in its parts: 

 
 

Reduction of the size of traces without the loss of relevant information 
Data reduction is performed throughout the preprocessing and the transformation 
stage. During preprocessing the pps found in the sequence of traces is removed. A 
pps can consist of thousands of entries over a period of hundreds of hours of 
operating time. With the removal of the pps the sequence can be processed 
effectively.  
 
The transformation stage is where the data size reduction is achieved formally. The 
basis for the reduction of the size of data is to reduce the amount of distinctive data 
points required to convey the same information. Before the transformation the 
"raw" sequence consists of multiple instances of traces representing the occurrence 
of one or more physical events. Each trace, being a data point, carries a piece of the 
information about the physical event it represents. After the transformation stage 
the tag types are the new data representations of physical events and the sequence 
is referred to as tag type sequence. The tag type sequence conveys the same 
amount of information as the original sequence with fewer representations. In the 
case study it is shown that the data compression ratio can exceed the order of 0,01 
i.e. 100 times fewer data points are needed to convey the same amount of 
information as the original sequence (see case study chapter 6). With the data size 
reduced, not only is it possible to use the tag type sequence in analytical methods, 
but it becomes easier for engineers to use the information in traces for diagnostic 
purposes. Throughout the transformation the temporal and the semantic 
information is not lost. The temporal location of the physical event and the 
semantics are inserted into the tag.   
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The above two objectives are met under the conditions: 

 
 
 
 
 

Point representation of physical events  
The tag type sequence consists of point representations of physical event instances. 
Through the transformation stage, with the segmentation the traces are clustered 
into subsequences, each representing an instance of a physical event and with the 
tagging the subsequence becomes point representations. This method of 
representation is not only suitable to specific analytical methods (see chapter 8), it 
also allows effective manual inspection of the data because of its reduced size and 
its organization into event types.  

The methodology is generic and does not require system specific information 
The methodology for the transformation of traces does not depend on system 
specific information, such as design documentation. Also complementary 
information such as expert domain knowledge was not used. As it was shown in 
3.1, domain expert can introduce uncertainty in their interpretation of traces, and 
are therefore not a dependable source of information. To avoid external data 
dependencies the methodology is using generic domain knowledge and the 
appropriate interpretation of the data structures found in the sequence. The generic 
domain knowledge comes from the system engineering domain and suggests that 
complex system have modular design. Based on that, the temporal proximities of 
traces and the association between semantics in the sequence are used to develop 
the methodology. Such information is inherent in long sequences of traces of any 
system that has been designed according to the modular principle. The information 
that is needed for the transformation of the raw traces of a system is taken from a 
sequence of that system. Specifically the sampled sequence is used to set the 
values of the cutoff parameter for the segmentation (chapter 4) and the values of 
the cost function for the tag matching operation (chapter 5). This approach allows 
the methodology to be applied on any type of professional system that has a 
modular design.  
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The methodology can deal with variation inherent in the traces that might 
affect the transformation results 
Variation is present in traces. As it was shown in the fault injection 
experimentation (3.2) and the visual representation technique (3.3), multiple 
instances of the same type of physical can result to several variant subsequences. 
The variation is twofold. Firstly it is found in the temporal distance between 
consecutive traces in each variant subsequence. Secondly the semantics can vary in 
the type and number of occurrences in each variant subsequence. Nevertheless the 
variant subsequences seem to contain semantics from a single pool. To handle 
these two types of variation three methods where used: 
a. The cutoff parameter used for segmentation process is robustified during the 

segmentation of the sample sequence, by using the resampling technique 
(4.2.3). The resampling technique simulates the presence of variation in the 
temporal distance between consecutive traces in the subsequence. The amount 
of simulated variation can be controlled.  

b. Redundant occurrences of semantics in a subsequence are eliminated with the 
tagging (5.1). The tagging also reduces variation by ordering the semantics 
lexicographically. Both operations do not have a negative impact on the 
information. As it was shown in the fault injection experimentation, multiple 
occurrences of the same semantic and the order of the semantics is an artifact 
of the logging mechanism.   

c. The tag matching operation is capable of dealing with variation found in the 
lengths of tags (5.2). In order to find matches between tags, the semantics of 
these tags are compared. However tags are not necessarily of the same length. 
To avoid penalizing differences between the lengths of tags a normalized 
dissimilarity measure is used. To use this measure effectively a cost function is 
defined that allows the distance measure to meet the metric properties. The 
proposed cost function also allows the comparison of tags for their 
(dis)similarities, according to the underlying engineering dependencies 
between components incorporating that way the system design information in 
the tag matching process.  

The methodology has to be applicable for close to real-time data processing 
The methodology in this thesis is designed to process data in sequential manner. In 
field applications traces can potentially be transformed as they are produced by the 
logging mechanism in a close-to real time manner. The segmentation algorithm 
can process traces as they are produced and define subsequences. The 
subsequences are transformed then into tags. The relative frequencies and the 
association coefficients can be updated also a close to real time manner. The cost 
function is updated and the tags are being matched into tag types (see section 8.1).  
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The methodology has to exploit the number of available systems to increase its 
efficiency 
The methodology can benefit from the use of traces from multiple identical 
systems that are geographically distributed. The efficiency of the methodology can 
increase if the learning from a group of systems of the same type can be 
generalized for that system type, and applied to any newly installed system. Such a 
generalization can decrease the period of time that is needed to until the traces of 
the newly installed system can be utilized because it allows the use of the same 
parameter values for the same system types. To enable such generalizations, the 
methodology proposes formal tests for investigating whether the subsequences 
collected from distributed systems show consistency in their structural 
characteristics (chapter 6). 
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9.2  Research validity and reliability  

In this section the validity, internal and external, and the reliability of the research are 
discussed.  

9.2.1 Internal validity 

Internal validity is the extent to which systemic error has been minimized in defining 
and formulating the causal relationship between physical events such as system errors 
and recoveries and the subsequences that represent them. The understanding of this 
relationship affects the methods that are developed in the transformation 
methodology.  
 
The information was collected from various sources and using different methods. The 
proposed methodology is based on an extended literature review of the domain and on 
a rigorous exploratory phase, which led to the good understanding of the mechanics 
behind the formation of data structures found in long sequences of traces. During the 
exploratory phase the observations were made on the structure of sequences of traces 
from three different perspectives, the input of domain experts, experimental setup, and 
graphical analysis. There has been maturation in familiarity with traces during these 
three phases that spanned over a period of 12 months.  
 
A large data sample was selected for observation and analysis. The graphical analysis 
and the case study are making use of a data sample that was selected for the 
completeness of the trace sequences and the homogeneity of the systems that 
produced that. The identical systems share the same system design i.e. system 
architecture and the same logging mechanism i.e. same semantics. This similarity 
allows comparisons of the observations on the data structures across the sequences. 
However, even though the systems where operating in the same application field, they 
were from different geographical locations and of different lengths of operating times. 
These differences introduce the variation in the sequences that allow observations to 
vary enough to provide a wide view on the spectrum of what is possible in the 
formation of subsequences.  
 
To avoid the bias towards specific forms of data structure, the experiment of fault 
injection, faults where injected in software and hardware components, and in different 
layers of the architecture. This design allowed a wide coverage of the system’s 
architecture and provided wide range of observations on the structure of subsequences 
in relation to the location of the root cause.   

9.2.2 External Validity 

External validity refers to the extent to which findings and methods can be 
generalized. The objective of this thesis is to provide a generic methodology for the 
reduction of the data size in traces. A threat to external validity is the sample specific 
features that affect strongly the finding and limit generalization.   
 
To avoid adopting features that are specific to the sample used in the research, all 
findings of the exploratory phase are abstracted to a level where the relation with the 
specifics of the sample is weak but the general features of interest remain strong.  
Though the observations are made on data produced by a specific type of professional 
system, the key information that describes the features of interest refers to generic 
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characteristics, such as close or distant temporal proximity, or strong or weak 
associations.   
 
In the end of the exploratory study (chapter 3), 4 conjectures are stated on which the 
methodology is based. All 4 conjectures are statements on abstract features of the data 
structures found in traces and they apply on a wide range of professional systems. 
These conjectures are set under assumptions of known and well established 
engineering principles i.e. modular system design.  
     
The method of data collection also helps the generalization of findings. The 
experimental setup and the graphical analysis of the sample set, provided a two 
dimensional perspective onto the data structures of traces. In the latter case an in 
depth view into the interaction of the system’s design and the formation of 
subsequences was gained and in the former case a wide view across multiple systems 
allowed the comparison of structures and the identification of commonalities and 
differences. Moreover the sequences in the sample set originate from an X-ray 
scanner that is considered to be complex system. Data from a complex system are 
more likely to contain a big variety of data structures to make observations on.    
 
Overall the proposed methodology was developed with generalization in mind. It 
includes methods to help characterize the data set of a new application before 
implementation.  The methodology proposes to use the entire framework, from 
preprocessing and exploration, to tag matching in any new situation. Also the methods 
that reply on parameterization require the fitting of parameter values on the new data 
set.  

9.2.3 Reliability 

Reliability in this research is understood as the dependability on the proposed 
methodology to return credible results when applied. The reliability of the proposed 
methodology can be credited to two aspects of this research. The first aspect is the 
ability to understand and describe the difficulties that need to be overcome to meet the 
objective i.e. data reduction. The second aspect of the research is the effectiveness of 
the methods that can be used to overcome these difficulties.  
 
The first aspect was addressed by the discussion over internal validity. Avoiding the 
bias in the description of the problem is part of a reliable problem description.  From 
the description of the procedure followed in the fault injection experiment and in the 
graphical analysis, care has been taken so that observations are credible. In the 
experiment, the system type that was chosen is identical to the type of the systems 
used in the sample data set. Between fault injections the system is reset to assure 
independency of the experiments. In the graphical analysis, observations made in on 
sequence are compared with others. The features that are observed are considered 
credible, for example the presence of pps across different systems or the close 
temporal proximity of traces of the same subsequence.    
 
The reliability of the proposed methodology is derived from different levels. On high 
level the methodology is designed around few clear guidelines for overcoming the 
identified difficulties. In both segmentation and tag matching the methodology strives 
for compact clusters.  Having simple and clear rules helps to choose methods that can 
best the requirements.  
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At a lower level, where distinctive methods are proposed, proofs or evidence are 
provided where necessary for the methods: 

1. The discovery of pps in long sequences of traces (3.4). A computational 
analysis is provided that proves that the proposed method for detecting pps is 
more effective than current state of the art.  

2. Choosing the value of the thinning probability (chapter 2). A computation 
analysis is provided to help chose the value of the thinning probability that 
will yield the best results in terms of robustification of the cutoff parameter. 

3. The normalized edit distance is more suitable for use with traces than non- 
normalized (chapter 5). An example is provided that shows how the 
normalized edit distance performs better than the Levenshtein edit distance in 
grouping together similar tags.  

4. Cost function meets all metric criteria (chapter 5). An analytical proof is given 
that shows that all criteria of a metric are met by the proposed cost function.  

 
Decision making aides and tests are provided where necessary to guide the 
implementation of the method and assess results. Unsupervised data mining methods 
are used in the transformation process for the steps of segmentation and matching. For 
unsupervised methods there are no external data to either train the algorithms or 
validate the findings. For this reason the methods are fitted with rules that can guide 
the implementation. For the segmentation of the sequence the implementation is 
guided by the hCSM and the tag matching is guided by the silhouette stopping rule. In 
addition an “internal validation criterion” i.e. a hypothesis test, is used to assess the 
plausibility of the segmentation and for the tag matching operation the performance of 
the cost function is assessed by the “looseness equality test”.  
 
The reliability of the methodology also derives from the detailed description used 
throughout the thesis allowing the reader to critically assess it. A case study is used 
where the implementation of the proposed methodology is demonstrated.   
 
Particularly useful for the reliability of the methodology is test for unimodality for the 
characteristics of subsequences across systems. This test does not only provide the 
means to make the implementation of the methodology on a group of systems more 
efficient but is a way to verify that when the methodology is applied on different 
systems the results have a degree of agreement that can be tested formally. The 
agreement of the results is proof of the methodology has repeatability when applied 
on different data sets.  

9.3 Contribution of thesis 

The contribution of this thesis is twofold, scientific and practical. The scientific 
contribution is found in the new methods that are presented in the research and that 
been developed to address specific problems found in the data structures of traces. 
The practical contribution is found in the entirety of the methodology that is the first 
end to end process that describes the utilization of traces for the availability 
management of systems.  

9.3.1 Scientific contribution 

The scientific contributions are the new and some improved methods proposed 
thought the thesis, for processing event based data sequences. In chapter 3 in Section 
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3.1 the multi class membership classification scheme together with the use Shannon’s 
entropy theorem, constitute a novel method for assessing the uncertainty of our 
knowledge on relationships between events or objects and concepts. The method is 
particularly interesting because it allows updating of the uncertainly measure with 
new information to obtain a new measurement of the level of our understanding.   
 
In section 3.3 an efficient visualization method was presented that is suitable for fast 
visual exploration of event based data. The method does not require rigorous data 
mining algorithms to detect associations. It uses a simple mapping of associations 
between data types in the form of a bitmap. The method is not precise because it is 
uses arbitrarily defined intervals to segment the sequence but it is easy to adjust and to 
deploy for fast data exploration. Nevertheless the method can be improved to use data 
mining segmentation methods. 
 
In the same chapter in section 3.4 the pps problem gave the opportunity to develop a 
more efficient detection method of pps in a data sequence that requires only one pass 
through the data sequence, as opposed to several in previously proposed method, to 
make the detection of pps possible. This was achieved with the definition of a 
hypothesis test that is based on a mixed Erlang distribution.  
 
In chapter 4 the hybrid cluster separation measure is an improvement of the existing 
separation measure, because it prevents the over fitting on the data. The hybrid 
separation measure was defined using an existing separation measure and a 
resampling method. The result was a method that accounts for variation in the event 
based data sequence.  
 
In chapter 5 a novel cost function was defined based on the measure of association 
between semantics. The cost function fulfills all criteria of a metric and makes it 
suitable for measuring the similarities between ordered subsequences of traces. In the 
context of system generated traces it is the first cost function for comparing 
semantics.      
 
In chapters 6 the concept of characteristics of the structures of subsequences is 
defined. The definition uses the temporal and the semantic aspect of the subsequences 
to specify the structural characteristics. The definition allows the comparison of 
subsequences obtained from distributed systems to be compared for similarities in 
their structure.  

9.3.2 Practical contribution 

The practical contribution of the thesis has been elaborated extensively in chapter 8. 
The proposed methodology is the first end-to–end process that enables the 
transformation of raw traces to sequences of point representation of physical failure 
and recoveries. The transformed sequence enables the use of analytical tools, such as 
availability modeling and data mining techniques to discover interesting system and 
component performance characteristics. The methodology is designed with 
application in mind. The data are processed in sequential manner. This widens the 
spectrum of applications allowing not only retrospective analysis but close to real 
time application to support operational activities of an organization. Finally the 
methodology allows the use of numerous distributed sources of traces to increase the 
efficiency of the application.  
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9.4 Reflection on work  

Even though measures were taken to increase the reliability of the methodology for 
producing valid results, there are some methods that were not used, which can 
contribute to this objective: 

9.4.1 Feedback loops 

The use of unsupervised data mining methods in the methodology might leave some 
doubt on the correctness of the results. Since there are no external data to validate the 
results, the correctness relies on the use of the guidance aides (hCSM, silhouette 
value), and the tests (internal validation criterion, looseness equality test) to provide 
confidence. Another valuable element in this methodology would be the use of 
feedback loops particularly when the methodology is used in operational conditions in 
the field. In their simplest form these feedback loops would require expert engineers 
to assess the results of the methods and recommend corrections where necessary. For 
example one feedback loop can inform how the cutoff value performs in respect to the 
risks of truncation and collision and make adjustments if necessary. Another feedback 
loop can inform on the correctness of clustering tags into tag type. In this case an 
engineer can inspect the clustering results and make adjustments to the cost function 
to either force separation or groupings of tags. Such feedback loops were not 
described in this thesis, but undoubtedly they will be valuable assets for increasing 
reliability of the methodology.  

9.4.2 Use simulated data to verify the methodology. 

Since the clustering operations used in the methodology fall under the category of 
unsupervised learning, it is hard to validate the results without having an exact 
description of the expected outcome. This shortcoming of unsupervised machine 
learning, cold have been mitigated, if the methodology would have been validated 
using also simulated sequences with known number of subsequences and known 
structure of these subsequences.  

9.4.3 Assess the performance of real time applications 

The proposed methodology is designed with real-time applications in mind. However 
the main focus in thesis is the parameterization of the algorithms before these are put 
to use in the field. In the case study too, the methodology is applied on the sample 
data on off-line mode. To have a full assessment of the methodology, this should be 
tested in an on-line setting. Such a test would give information on how well the 
parameterized algorithms perform on real time data in terms of correctness and 
efficiency. The learning from this test can be used for recommendations to improve 
the proposed methodology.  

9.5 Recommendations for future research 

The problem of reducing the size of traces and transform them into sequences of point 
representations allowed the identification of some new interesting aspects of the 
domain that can be explored. Here some of the interesting topics are listed.  

9.5.1 Designing the logging mechanism 

The relationship between the logging mechanism and traces is important. The amount 
of sensing points that the mechanism has is decisive for the traces. Anything that is 
not covered by the sensing network remains invisible for later analysis.  In addition to 
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that the logging mechanism has a strong effect on the formation of the subsequences. 
An interesting research subject is to provide a framework for designing an effective 
logging mechanism with a dedicated logging format and performance that can cover 
all critical components and can provide data sequences that can be processed easily. 
Such a framework can make use of system Failure Mode and Effects Analysis 
methods as input for designing an effective sensing network. Data recording protocols 
could provide data sequences with compacts subsequences and reduced number of 
redundant entries.   

9.5.2 Integration with information systems for real time 
applications 

An implementation of the methodology proposed here would be part of an integrated 
information system that would cover the entire area from the front-end system data 
recording and collection methods to the back-end of information provision for 
supporting decision making for system availability management. The design of such a 
system is challenging. It would make use of state of the art information system 
technology and business requirements to provide an end-to-end solution. The 
proposed methodology would be one of the core engines in such a system.  

9.5.3 Define and refine the range analytical methods that can be 
applied on information from traces. 

The focus for analysis using information from traces was put in this thesis on 
availability modeling and discovery of association rules. These two methods where 
used as examples to illustrate the use of traces in decision making on availability 
management. A review on the area of availability management problems can reveal a 
wide range of analytical problems that can benefit from traces.  
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The product life cycle 
The approach requires all phases of PLC to be taken into account when developing 
the product and to be incorporated into all processes from the very first identification 
of customer needs until the physical product is realized and is ready to be sold. This 
approach helps in reducing life cycle costs as well as lead time of the PSS readiness. 
This is achieved by looking at product requirements from a long term, life cycle 
perspective.  
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 The product life cycle Appendix A
To outline the approach the most basic phases of PLC need to be identified.  

 PLC-Concept-Preliminary Design Phase (PDP) 
During the initial stages of the PDP, the product concept is defined in respect to 
the customer needs in the form of requirements: operational requirements (when 
the product is in operation) e.g. functionality, capacity, compatibility, meta-
operational requirements (for the product to be in operation) like reliability, 
maintainability, flexibility and other performance requirements as operating cost 
or environmental compliance. One of the objectives of this stage is to define the 
system specifications on top level and the product base-line, which will serve as 
the basis for further product development.  

 Detailed Design and Development (PDP) 

In a top-to-bottom approach technical requirements on system level are 
decomposed into all necessary hierarchical levels of the system's architecture. 

 Production/Assembly 
Material requirements have been established and suppliers have been identified. 
The production/assembly processes has to satisfy market demands with products 
that meet specifications.      

 

  
 
 

 Utilization Phase 
The product is in its economic useful life. The product needs to meet its TPMs and 
the PSS has to ensure that the product fulfills this requirement. However changes 
can be still introduced into the product's design either to improve the product's 
functionality or to correct design flaws if this is necessary.   

 

PDP 

PLC 

 
Product Retirement, Phase-out, and 

Disposal 

MLC 

Conceptual/
Prelimenary 

Desing 

Detail Design 
and 

Development 

 
Production 

Manufacturing 
Configuration 

Design 

 
Support and 
Maintenance 

Product Support 
Configuration Design 

Acquisition Phase Utilization Phase 

SLC 

DLC 

 
Production 
Operations 

Product Use, Phase-
out and Disposal 

Figure A-1: Product life cycle together with manufacturing, support and disposal life cycle 
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 PLC – Phase Out and Disposal 
In this phase the product becomes obsolete and it is being replaced by newer 
versions. Product parts may be reused or will be disposed according to 
environmental regulations. Together with it the SLC comes to an end.  
 

The first three phases form the product development process (PDP). The PDP together 
with the production phase is known as product creation process (PCP). 

The complete PLC can be segmented into two phases, the acquisition phase where the 
OEM is responsible for all product related activities and the utilization phase where 
product management is shared between customer and OEM or third parties.  
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 The measure of merit 
LM for the Appendix B

resampling method [Lev01] 
To make the comparison of the membership of data points between the clustering 
results R

pC  and 'R

pC , both results need to be represented in a suitable manner. The 

clustering result R

pC  is represented with the help of a N N cluster connectivity 
matrix pT  defined by: 
 

1

0ijpT  
points i and j belong to the same cluster 

otherwise 
( B-1) 

The connectivity matrix gives a very clear indication of the membership of data points 
in a cluster. Data points that belong to the same cluster are indexed with the value 
one, otherwise they a valued with zero. All elements on the diagonal are valued by 
definition with one (Table B-1). Assume the clustering result R

pC of the data sequence 

1 2 9( ),( ),..., ( )S t t t  for the value p for the cutoff parameter. The clustering result is 
shown in Table B-1. It can be seen that the clustering result contains four clusters:

1 1 2( , )C t t , 2 3 4 5( , , )C t t t , 3 6 7( , )C t t , 4 8( )C t and 5 9( )C t . The membership of 
the data points to the same cluster is indicated by the values of one in the upper 
diagonal of the matrix.  

 
Table B-1Example of connectivity matrix for original sequence S  

 
The original sequence S  is sampled randomly k times producing a set of secondary 
sequences ' ' ' '

1 2, ,..., kS S S S . For the resampling of S , a "dilution factor" f is used, 
that is the probability of sampling a data point in the sequence ( 0 1f ). Because of 
the dilution the average distance between two points in 'S is scaled upwards by a 
factor f in relation to S . To compensate for that scaling, every subsequence 'S  is 

 1t  2t  3t  4t  5t  6t  7t  8t  9t  

1t  1 1 0 0 0 0 0 0 0 

2t   1 0 0 0 0 0 0 0 

3t    1 1 1 0 0 0 0 

4t     1 1 0 0 0 0 

5t      1 0 0 0 0 

6t       1 1 0 0 

7t        1 0 0 

8t         1 0 

9t          1 
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processed by the clustering algorithm but this time using adjusted cutoff value p

f
. A 

set of cluster results ' ' ' '
1 2{ , ,..., }R

p p p pkC C C C is obtained by clustering every '
iS in 'S .  

 
Every clustering result in ' ' ' '

1 2{ , ,..., }R

p p p pkC C C C is represented also by the 
corresponding connectivity matrix resulting to a set of connectivity matrices

' ' ' '
1 2{ , ,..., }p p p pkT T T T , where '

pT is a fN fN matrix. 
  
In this example a dilution probability of 0.5f is used on S . Approximately half of 
the data points in the original data sequence are left out when resampled. In Table B-2 
the clustering result of the resampling data sequence 'S is shown with its connectivity 
matrix '

pT . For clarity the data points that are excluded in the resampling are marked 
with a red cross. Practically they do not exist in 'S anymore, but are included in the 
matrix to demonstrate the method. It can be seen that data points 2 4 8 9, , ,t t t t are 
excluded in 'S . As a consequence the clusters now present in the clustering result are

1 1( )C t , 2 3 5( , )C t t , 3 6 7( , )C t t . The particular interest here lies with cluster 2C . In 
fact the data points 3t and 4t will end up in the same cluster only if p is large enough 
to allow the algorithm to cluster these points together. Only then the data points that 
where in the same clusters in R

pC  will remain in the same clusters also in 'R

pC (One 
data point encircled in green). If p is not large enough, the two data points will be 
assigned to different clusters and the original segmentation of the data sequence S will 
not be matched. Data points that do not exist in the resampled data sequence do not 
interfere with the measure of merit.  

 
Table B-2Example of connectivity matrix for resampled sequence 'S  

 
The measure of merit LpM is computed by averaging the agreement between the 

connectivity matrix pT of the original date sequence S  and '
pT of the subsequences '

pS  
over all k.  
 

          
 1 1 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 0 
   1 1 1 0 0 0 0 
    1 1 0 0 0 0 
     1 0 0 0 0 
      1 1 0 0 
       1 0 0 
        1 0 
         1 

 

x x x 
x 

x 

x 

x 

x x 

x 

x 

x 

x x x 
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 The agreement between pT and '
piT is expressed by   

',
( )

ij mij
L p T T

k

M   ( B-2) 

 
The number of data points that are members of the same cluster in R

pC and in 'R

piC  is 
expressed by ',ij mij

T T
. This is averaged over all pairs of points ij that are members of 

the same cluster in the original clustering solution R

pC and survived the resampling. 

The operation is indicated by ',p pmij ij
T T

 . Another averaging operation is performed 

over all k and LpM is derived for a given value of p .
LM is taking values 0 1LM , 

with 1LM  being the perfect score for total agreement.     
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 Definition of matrices P , CT  and the test Appendix C

statistic ˆ  
 

 The proximity matrix P is a measure of the internal structure of the data 
sequence S, and is given by: 

( , )ij i jP d x x   ( C-1) 

, where ( , ) | |i j i jd x x x x , the Euclidean distance between points 
ix and jx .  

 
 The dis-connectivity matrix for the clustering result C, CT is defined as follows: 

 
1

0ijCT  
points i and j belong to different clusters 

otherwise 
( C-2) 

for , 1,2,...,i j N  
 

 The correlation between the P and CT , is given by: 
1

1 1
(1/ ) ( ( , ) )( ( , ) )

ˆ
C

C

N N

P C T
i j i

P T

M P i j T i j

 ( C-3) 

where ( 1) / 2M N N  is the number of pairwise elements in P or CT  (the 
statistic is using the upper diagonal elements of the matrices).  
 
The mean value 

P
 for P is given by: 

1

1 1
(1/ ) ( , )

N N

P

i j i

M P i j  ( C-4) 

and variance 2
P : 

1
2 2 2

1 1
(1/ ) ( , )

N N

P P

i j i

M P i j  ( C-5) 

Correspondingly for CT the mean 
CT  

1

1 1
(1/ ) ( , )

C

N N

CT
i j i

m
M T i j

M
 ( C-6) 

where m the number of pairs of points that belong to different clusters 
and variance 2

CT : 
1

2 2 2
2

1 1

( )(1/ ) ( , ) ( )
C

N N

CT
i j i

m m M m
M T i j

M M
 ( C-7) 

The ˆ statistic takes values ˆ0 1, with ˆ 1being the perfect match between 
matrices P and CT .  
 
ˆ

ir
is calculated for every

ir
C in the same way producing the set.   
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 Agglomerative clustering algorithm Appendix D

The input is the collection of tags 1
RLC C  . At this point, each tag is considered to 

form one cluster. At the first iteration of the algorithm two clusters 
aC and

bC , 
, {1,2,3,..., },a b M a b ,  are merged into one new cluster 1MC . This results to a 

new clustering result 1LC with 1M number of clusters. The process continues until 
the result 1MLC is obtained where one single cluster 2 1MC  contains all tags. 
 
Another input to the clustering algorithm is the distance matrix 1 1( )H H LC . 1H  is a 
M M matrix containing the pair wise distances between of tags in 1LC . At each 
iteration, when two clusters are merged into one the distance matrix is updated. The 
matrix then decreases in size by one unit in both dimensions by deleting the rows and 
columns of the clusters 

aC and
bC that where merged and by inserting a new row and 

one column for the newly created cluster qC . The distance between the newly created 
cluster qC  and any other cluster 

sC  in qLC is given by: 
 

( , ) max( ( , ), ( , ))q s a s b sd C C d C C d C C ( 0-3) 

 
The pseudo code for the agglomerative complete link algorithm is shown below 
 

 1q  
 1

RLC C  

 1 1( )H H LC  

o for 1 1q to M  

 Find 
iC and jC such that ( , ) min( )i j q

i j
d C C LC  

 Merge 
iC and jC into 1qC and form 

1 ( { , }) { }q q i j qLC LC C C C  

 Produce 1qH using the function 
( , ) max( ( , ), ( , ))q s i s j sd C C d C C d C C  
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