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Samenvatting

Het doel van dit proefschrift is het generaliseren de methode masking die
wordt gebruikt ter verbetering van de betrouwbaarheid van digitale syste-
men. Tevens wordt een methode gepresenteerd die het correct functioneren
van een fouten-tolererend systeem onafhankelijk maakt van een onbetrouw-
bare omgeving. Voor dit laatste doel is een nieuw en efficient algoritme voor
interactieve consistentie ontwikkeld.

Tot nu toe werden fouten-tolererende digitale systemen veelal beschreven
door te verklaren hoe in een bepaalde architectuur de extra, d.w.z redun-
dante, onderdelen of deelsystemen worden benut om de betrouwbaarheid van
het totale systeem te verbeteren.

In deze context dient betrouwbaarheidsverbetering te worden beschouwd
als de verhouding tussen de Mean-Time-Between-Failures van een fouten-
tolererend systeem en de Mean-Time-Between-Failures van een niet-fouten-
tolererend systeem met dezelfde functionaliteit.

Fouten-tolererende architecturen worden tegenwoordig met succes toegepast
in telefoon centrales, in computers voor het betaalverkeer, ruimtevaart, en
zelfs in de burgerluchtvaart.

Het nadeel van de huidige ontwerpmethoden voor fouten-tolererende digitale
systemen is het feit dat de betrouwbaarheid niet alleen afhankelijk is van de
verbetering die verkregen wordt door het toepassen van een basisarchitec-
tuur, maar dat de betrouwbaarheidsverbetering tevens afhankelijk is van
allerlei ontwerpdetails. Bovendien wordt de betrouwbaarheidsverbetering
bepaald door de vraag of het architectuurconcept consequent is toegepast
of dat bepaalde aanpassingen zijn gemaakt teneinde de kosten te verlagen.
Voor veel ontwerpen van fouten-tolererende digitale systemen blijkt het erg
moeilijk te zijn om gedurende het ontwerpproces de ontwerpbeslissingen te
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herkennen die kritisch zijn voor de betrouwbaarheidsverbetering. In feite
komt het er op neer dat als gevolg van de toegepaste ontwerpmethode de
betrouwbaarheidseigenschappen niet kunnen worden geverifieerd tijdens het
ontwerpproces. Dus de uiteindelijke betrouwbaarheidsverbetering van het
fouten-tolererend systeem hangt sterk af van de kwaliteit van het ontwerp,
het ontwerpproces en het validatieproces. In ieder geval is de berekende of
geschatte betrouwbaarheidsverbetering van veel ontwerpen twijfelachtig.

In dit proefschrift wordt beschreven hoe voor de klasse van fouten-tolererende
digitale systemen die gebaseerd zijn op “masking” een aantal van deze na-
delen weg te nemen zijn door het fouten-tolererend systeem te reduceren
tot een verzameling gekoppelde Moore machines en door de kritische data
communicaties in een dergelijk systeem te identificeren.

Bovendien zal het klassieke masking concept worden gegeneraliseerd door de
meerderheidsfunctie, die de kern vormt van deze methode, te vervangen door
een decodeerfunctie van een foutencorrigerende code. Het resultaat hiervan
zullen we “Generalized Masking” noemen.

De totale klasse van fouten-tolererende digitale systemen, die gebaseerd is
op Generalized Masking met inbegrip van de klassieke masking-systemen
kan, indien de systemen op een voldoend hoog nivo van abstractie beschre-
ven zijn, door twee deelklassen worden gekarakteriseerd, athankelijk van de
wijze waarop de deelsystemen verbonden zijn. Deze twee deelklassen worden
gekarakteriseerd door respectievelijk twee functies,;nl. A en Y of door drie
functies nl. X',) en Z, alsmede door het maximum aantal T te tolereren
defecte modules. De systemen die door deze twee klassen beschreven worden
zijn respectievelijk (X,),T) systemen en (X,Y, Z,T) systemen.

De functie A’ beschrijft de manier waarop ieder van de modules in het fouten-
tolererend systeem zijn informatie ontvangt van de buitenwereld. We zullen
aantonen dat deze functie altijd correct moet worden uitgevoerd ook wan-
neer die buitenwereld foutieve en misleidende informatie naar het systeem
stuurt. Is aan deze voorwaarde niet voldaan, dan kan het fouten-tolererend
systeem zich incorrect gaan gedragen zelfs wanneer minder modules defect
zijn dan volgens het ontwerp is toegestaan. Dit wordt het “Input Problem”
genoemd.

Het correct unitvoeren van de functie X’ houdt in dat de correct functione-
rende modules in het fouten-tolererend systeem allemaal tot dezelfde con-



clusie moeten komen betreffende de informatie die zij vanuit de externe bron
hebben ontvangen. Wanneer die externe bron correct functioneert dan moet
die conclusie overeenkomen met de data die door die externe bron was ver-
stuurd.

Algoritmen die soortgelijke eigenschappen bezitten als de eigenschappen die
vereist zijn voor de functie X zijn de zogenaamde algoritmen voor interac-
tieve consistentie of Byzantijnse Generaals Algoritmen. Sinds 1978 worden
deze algoritmen onderzocht en sindsdien zijn vele resultaten gepubliceerd.

De algoritmen voor Interactieve Consistentie hebben het nadeel dat wanneer
twee of meer fouten getolereerd moeten worden, een enorme hoeveelheid data
tussen de modules van het fouten-tolererend systeem moet worden uitgewis-
seld. Voor praktische toepassingen betekent dit dat niet meer dan drie of
vier defecte modules in een systeem getolereerd kunnen worden. Teneinde
de hoeveelheid data die verzonden moet worden te verminderen, wordt een
nieuwe klasse van algoritmen voor interactieve consistentie gepresenteerd, die
minder communicatie vereist indien het aantal te tolereren defecte modules
kleiner is dan vier. Helaas wordt geen verbetering verkregen voor het meest
eenvoudige algoritme, nl. het algoritme dat geschikt is voor vier modules
waarvan er ten hoogste eén fout mag zijn.

Tenslotte worden in dit proefschrift een aantal methoden gepresenteerd die
het Input Problem oplossen. Deze algoritmen zijn gebaseerd op algoritmen
voor interactieve consistentie.

Samenvattend is het doel van dit proefschrift

¢ De generalisatie van de ver-N-voudiging methode, welke gebaseerd is
op een gedistribueerde uitvoering van een foutencorrigerende code. Het
resultaat noemen we “Generalized Masking”.

o De definitie van twee klassen fouten-tolererende systemen die de klasse
van systemen die gebaseerd zijn op Generalized Masking karakterise-
ren.

e De presentatie van een bepaalde architectuur, het (N, K)-concept die
gebaseerd is op Generalized Masking en waarvan de voordelen in de
praktijk zijn bewezen.
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De presentatie van een symboolcorrigerende code ten behoeve van het
(4,2) concept, die naast de symboolfouten ook nog in staat is bit-fouten
te corrigeren zonder dat daar extra redundantie voor nodig is.

De definitie van het Input Problem van een fouten-tolererend systeem.

De presentatie van een nieuwe klasse van synchrone deterministische
algoritmen voor interactieve consistentie die gebaseerd is op meerder-
beidsbeslissingen en foutencorrigerende codes en die in practische toe-
passingen minder data communicatie vereist dan de bestaande syn-
chrone deterministische algoritmen voor interactieve consistentie.

De oplossing van het Input Problem met behulp van gelijksoortige
algoritmen als de algoritmen voor interactieve consistentie.



Summary

This thesis attempts to generalize a particular method, called masking, which
is used for improving the reliability of digital systems, such as computer sys-
tems. Moreover a method is presented which makes the proper functioning
of a fault-tolerant system independent of an unreliable external world. For
the latter purpose a new and effective interactive consistency algorithm is
developed.

Thus far fault-tolerant digital systems are mostly described just by explain-
ing how the spare (i.e. redundant) components or subsystems in a particular
architecture are utilized for improving the overall system reliability.

In the present context the reliability improvement should be interpreted as
the ratio between the mean time between failures of the fault-tolerant sys-
tem and the mean time between failures of a non-fault-tolerant system with
the same functionality.

At present many fault-tolerant architectures are successfully applied in real
world systems, such as telephone exchanges, space vehicles, computers for
transaction processing, etc., and even in civil aviation.

The drawback of the current design methods for fault-tolerant systems how-
ever is that reliability improvement not only depends on the improvement
achieved by the application of some basic architecture, but that the reliabil-
ity also depends on many design details and whether the architectural ideas
are implemented straightforwardly or whether some adaptations have been
made in order to arrive at a more cost-effective design. In many fault-tolerant
designs, design decisions which are critical with respect to the reliability im-
provement, are very difficult to recognize during the design process. In fact it
often turns out that due to the design methods applied, the reliability prop-
erties of the system cannot be verified during the design process. Hence the
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quality of the design, the design process and the validation process heavily
determines the final reliability of the fault-tolerant system. At least the cal-
culated or estimated reliability improvement of many of the present designs
is questionable.

In this thesis we will try to overcome some of these drawbacks for the class
of fault-tolerant architectures which are based on masking, by reducing a
fault-tolerant digital system which is based on masking to a set of coupled
Moore machines and identifying the critical data transfers.

Moreover, the classical masking concept, the N-modular redundancy scheme,
will be generalized by replacing the majority vote, which is the key of this
method, by the decoder function of an error-correcting code. The result will
be called “Generalized masking”.

Provided the systems are described on a sufficiently high level of abstraction,
the entire class of fault-tolerant systems based on generalized masking, the
classical masking systems inclusive, can be described in two ways depending
on the interconnection of the subsystem. One of these subclasses is charac-
terized by two functions, i.e. X and Y and the number 7" of faulty modules
that can be tolerated. The other subclass is characterized by three functions
X,Y and Z and the number T of faulty modules that can be tolerated.
The systems described by these two classes are called (X, Y,T) systems and
(X,Y,2Z,T) systems respectively.

The function X describes the way in which each of the modules of the fault-
tolerant system receives its information from the outside world. We will
show that this function must be performed “fault free” even if the outside
world produces incorrect data, otherwise the fault-tolerant system might go
down even if it contains less faulty modules than it is designed to tolerate.
This will be called the “Input Problem?”.

A “fault free” performance of the function X means that the correctly func-
tioning modules in the fault-tolerant system all must come to the same con-
clusion about what the external source has sent them. And if the external
source functions correctly, this conclusion should be the data which were
sent by the external source.

Algorithms with properties similar to those which are required for the func-
tion X are the so-called Interactive Consistency Algorithms or Byzantine



Generals Algorithms. They have been investigated since 1978 and many
results have been published since then.

The interactive consistency algorithms suffer from the fact that if two or
more faulty modules are to be tolerated an enormous amount of data has
to be transmitted between the modules of the fault-tolerant system. In
practice this means that no more than three or four faulty modules can be
tolerated in a system. In order to reduce the amount of data which has
to be transmitted, a new class of interactive consistency algorithms will be
presented which is based on error correcting codes and which if the number
of faulty modules is four or less, requires less data to be transmitted than
the existing algorithms. Unfortunately no improvement is obtained for the
most simple algorithm which runs on 4 modules of which at most one may
be faulty.

Finally we will present a number of methods which solve the Input Prob-
lem. These methods are based on an algorithm similar to the interactive
consistency algorithms.

In summary this thesis aims at

e A generalization of the N-modular redundancy scheme which is based
on the distributed implementation of error-correcting codes, and which
will be called generalized masking.

e A definition of the two classes of systems which characterize the sys-
tems that are based on generalized masking.

e The presentation of a particular architecture, called the (N, K)-concept,
which is based on generalized masking and the feasibility of which is
proved by application in a commercial system.

o The presentation of a symbol-error-correcting code to be used in the
(4,2)-concept, which in addition to symbol-errors is also capable of
correcting bit errors without requiring extra redundancy.

o A definition of the Input Problem of a fault-tolerant system.

o The presentation of a new class of interactive consistency algorithms
which is based on voting and coding, and which requires in most prac-
tical applications less data transfer than the existing synchronous de-
terministic interactive consistency algorithms.



SUMMARY

¢ The solution of the Input Problem on the basis of algorithms similar
to the interactive consistency algorithms.



Preface

The field of fault-tolerant computing is still rather new. This can be con-
cluded from a still continuing discussion on definitions and a lack of standard
literature in which the area is treated from a formal point of view instead
of from a phenomenological point of view. Therefore a short introduction
to the field of fault-tolerant computing and one of its most intriguing issues,
the so-called “Input problem” is presented in Chapter 1. In this chapter sub-
sequently the aspects which determine the reliability of a digital system are
discussed, the relevant reliability criteria are defined, and a survey is given
of the various methods and techniques which are available for improving
the reliability of digital systems such as fault avoidance and fault-tolerance
based on error detection, masking redundancy or dynamic redundancy.
Futhermore, in this chapter we will point out that the method to be used
often depends on the required form of reliability (fail-safe, fault-tolerant,
survivable without repair) and the degree of improvement to be achieved.
In a separate section the arguments are presented which support the opinion
that repairable fault-tolerant systems should be implemented by means of
masking redundancy, the latter being the subject of this thesis.

Finally the “Input problem” which is an integral part of any fault-tolerant
system will be explained.

In Chapter 2 the well known N-modular redundancy scheme will be gen-
eralized to a class of systems which we will call “Generalized masking re-
dundancy”. As an introduction to Generalized masking first a particular
architecture, called the (N, K)-concept, which belongs to this class will be
presented. This new fault-tolerant computer architecture is based on a “dis-
tributed implementation” of a symbol-error-correcting code. The faults in
this (N, K)-concept are masked by this error-correcting code instead of by a
majority vote function which is the case in N-modular redundant systems.
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To understand better the time dependency of a synchronous digital system
we will model a synchronous digital system by means of the Moore model
and relate time and space by unfolding time into space.

Using as a basis the unfolded representation of the N-modular redundancy
scheme we will identify and discuss the critical data transfers. We will show
that the broadcast of data and the voting on the results can be replaced by
the encoder function and the decoder function of an error-correcting code
respectively. This can be implemented for the I/O of the system as well as
for the state of the system. This results in the definition of a (X, Y, T) fault-
tolerant system and a (X, Y, Z,T) fault-tolerant system. Real fault-tolerant
systems based on generalized masking will be based on a mixture of both.
The basic ideas behind Generalized masking could also be described in terms
of a “distributed implementation of an error-correcting code” or in terms of
“the encoding of physically implemented functions”.

The (N, K)-concept is described in detail for N =4 and K = 2.

It will be shown that symbol-error-correcting codes with additional bit-error-
correcting capabilities make additional memory protection by means of bit-
error-correcting codes superfluous and a newly designed symbol- and bit-
error-correcting code for the (4,2)-concept will be presented.

The systems described in Chapter 2 are all based on the assumption that
the Input Problem is solved. In Chapter 5 this finally will be done on the
basis of interactive consistency algorithms. Chapters 3 and 4 will be devoted
to these interactive consistency algorithms.

In Chapter 3 the Byzantine Generals problem, which is also called the Inter-
active consistency problem, will be sketched based on its original description.
Its relevant parameters will be discussed and the requirements which have to
be fulfilled by an algorithm which solves the problem are defined. Thereafter
a survey will be given of the existing literature and the results obtained so
far.

In the second part of Chapter 3 a new class of algorithms will be defined
which will be called Dispersed Joined Communication algorithms and which
satisfy some properties which can be regarded as a more liberal version of
the interactive consistency requirements.

Based on these Dispersed Joined Communication algorithms a new class of
algorithms for reaching interactive consistency will be presented. This class
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of algorithms is based on voting and error-correcting codes and meets both
the N > 3T + 1 bound and the K > T + 1 bound.

The class of Interactive Consistency algorithms based on voting and error-
correcting codes comprises:

o the class of algorithms based on voting published in the early eighties,
which we will call the classical algorithms.

e a new class of algorithms based on voting which require considerably
less data communication than the classical algorithms and which meet
both the K > T + 1 bound and the N > 3T + 1 bound.

The class of algorithms described in Chapter 3 contains algorithms which
require much less data communication between the modules than the ex-
isting synchronous deterministic algorithms. In order to compare the new
algorithms defined in Chapter 3 with the existing synchronous determmlstxc
algorithms two criteria will be defined, i.e.:

e the number of messages which needs to be transmitted between the
modules,

e the minimum size of the original message.

For these criteria a number of relations will be derived which make it possible
to calculate these figures. For a large number of practical examples the
resulting figures are presented.

Although the number of messages in our new class of algorithms based on
voting and error-correcting codes, increases exponentially with the number
of faults which are to be tolerated and the number of messages in one of the
algorithms published by Dolev grows polynomial with the number of faults
which are to be tolerated, we will show that for practical applications the
algorithms in the class of algorithms which is based on voting and coding
are favourable.

In Chapter 5 a method is presented which makes the proper functioning of a
fault-tolerant system independent of an unreliable external world. In other
words, the solution to the Input Problem will be presented. This solution
will be extended to a general solution for the interconnection of fault-tolerant
systems.

The correctness of the behaviour of a fault-tolerant system depends among
other things on the correct distribution of the data of unreliable I/O devices
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over the modules of the fault-tolerant system. A malfunctioning system,
whether it is fault-tolerant or not, should never defeat a correctly function-
ing fault-tolerant system, i.e a system which does not contain more faulty
modules than it is designed to tolerate. In order to cope with this prob-
lem, in Chapter 5 interactive consistency of communicating fault-tolerant
systems will be defined. Thereafter a number of interconnection methods
and algorithms will be presented which satisfy the above-mentioned inter-
active consistency. These interconnection methods and algorithms are all
based on interactive consistency algorithms. The implementation of such an
algorithm for interactive consistency between communicating fault-tolerant
systems is described in detail for the (4,2)-concept fault-tolerant computer
system architecture.
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Chapter 1

An introduction to
fault-tolerant computing

Vartous methods can be used for tmproving the reliability of computer sys-
tems. The method to be used often depends on the required form of rela-
bility (fail-stop, fault-tolerant, survivable without repair) and the degres of
tmprovement to be achieved.

In this chapter a survey is given of the various methods and techniques avasl-
able, with emphasis on those techniques that are based on the addition of
supplementary (redundant) hardware.

The arguments are presented which support the opinion that a repasrable
system of which a reliability improvement is required of the order of 100
should be based on masking redundancy.

It unll be shown that any faoult-tolerant system sets special requirements for
the function which disiributes the data of an ezternal unreliable source vver
the modules of the fault-tolerant system. This is the “Input Problem”.

1.1 Introduction

Even in the development of the first electronic calculating machines, reliabil-
ity played an important role. The great number of electron tubes used and
their low reliability made it impossible to run a computer program lasting
longer than a few hours. Even so, much time elapsed before any useful liter-
ature covering the field of reliable computer systems was published. Among
the earliest works were those of Shannon (1948) and Hamming (1950) on
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which redundancy and error correction were founded, and that of von Neu-
mann (1956) which established the basis for the use of redundancy to mask
defective components.

In the course of the sixties the topic of reliable computer systems was tackled
systematically by companies such as IBM (System 360} and Bell (No.1 ESS),
and by the aviation and astronautics industry, although at that time, the
exchange of ideas had hardly got underway. Not until the seventies did an ex-
plosion of literature occur in the field of computer reliability ,[FTCS 71-90],
[Siew. 82|, [And. 79], [And. 81].

The present chapter surveys the various aspects of fault-tolerant computing,
the present state of engineering and the application of engineering methods.
First of all emphasis will be laid on the hardware available to us, then dy-
namic redundant systems will be compared to systems based on masking
and finally the Input problem which is common to all fault-tolerant systems

will be sketched.

1.2 Designing reliable systems

1.2.1 The various stages in the life of a system

The reliability of a computer system is determined by more than just its
architecture and the reliability of its components. The entire time, from
specification via design to the end of the period of use, is decisive for relia-
bility and has to be taken into account. Faults can occur at all stages and
must often be treated in different ways. Table 1.1 summarizes the various
stages and their corresponding sources of faults as well as how these faults
are currently detected.

Faults originating at one stage often only become apparent at a much later
stage. A well-known example of this is the occurrence of design faults in an
operating system which manifest themselves only after years of operation.
Another is the occurrence of faults in the design of the timing, which are
often revealed during production only if an unfavourable combination of
otherwise properly operating components is used.
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wiring faults,
assembly faults,
timing faults,
defective components

stages sources of faults detection techniques
specification faulty and ambiguous | simulation
and design specification and faulty | audits
algorithms
prototype faulty algorithms, testing

production and

wiring faults,

testing of system,

users’ faults
environmental
influences

installation defective components diagnosis and built-in
assembly faults means of detection
utilization defective components automatic diagnosis,

preventive testing of
system, and built-in
means of detection

Table 1.1: The sources of faults and their detection techniques in the various

stages of the life of a system

1.2.2 Fault classification

A fault in a computer system, in its widest meaning, is ¢ deviation in the

behaviour of the system with respect to what the user expects of it.

This definition is so wide in its scope as to be questionable. Yet we will base
our discussions on this definition in order to indicate that fault-tolerant
computing goes much further than the design of systems in which some

defective components can be tolerated without loss of functionality.

Faults can be divided into two main groups, i.e.:

o Design faults and

e Hardware faults.

Design faults

These include all faults which, after repair, lead to a system which differs
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from the previous system in respect of design.

Examples that can be mentioned are: incorrect specification, hardware de-
sign faults and faults in the software. Depending on the specification and
the way we observe the system, i.e. from the point of view of the manufac-
turer or user, software faults by the user can also sometimes be considered
as design faults.

Hardware faults

These include all faults caused by a physical defect, for example a defective
gate or connection.

The way in which hardware faults manifest themselves can differ greatly.
In the case of a permanent fault the deviation is stable.

An sntermstient fault becomes apparent not continuously but at irregular
intervals.

A transient fault occurs only once and cannot be traced later on.

The way in which a fault becomes apparent depends on the level at which
the system is considered, i.e. at the logic level, at the subsystem level or
at the system level. A “stuck-at” fault at the logic level (permanent fault)
may manifest itself at the system level as an intermittent fault. A design
fault, for example in the software, may become apparent so rarely that for
the user it cannot be distinguished from a transient fault.

1.2.3 Reliability criteria

The standards that the reliability of a computer system must meet depend
greatly on the application. This can be explained with a number of examples.

The space shuttle has a mission time of only a few days. The failure of
certain functions that are performed by the computer system aboard will
put the crew at risk. The system cannot be repaired during the mission.
Hence the decisive criterion here is the probability that the system will still
be functioning correctly after a week. This probability must be practically
one.

An unmanned space vehicle to another planet has a mission time of a few
years. A probability of 70% that the computer system on board will then
still be functioning may be acceptable.

The reliability function used above, i.e. the probability of survival as a



1.2. DESIGNING RELIABLE SYSTEMS 17

function of time is, however, insufficient to define the reliability of a telephone
exchange. Here a high degree of avaslability is demanded, which is expressed
by the condition that the system shall not be out of operation for altogether
two hours in forty years. The availability thus is the fraction of time in which
the system is not out of operation. Hence the availability is only a relevant
criterion for repairable systems.

Other criteria which are used to express the reliability are the mean time be-
tween failures, MTBF, the mean time between down, MTBD, and the mean
time to repair, MTTR. The mean time between failures is the expected value
of the time which elapses between the moment the system is started up or a
previous failure has been repaired and the moment at which a {subsequent)
failure appears. Notice that faults which are automatically corrected by the
system and which do not cause the loss of the functionality of the system
are also taken into account.

The mean time between down is the expected value of the time which elapses
between the moment the system is started up (possibly after a repair) and
the moment at which the system loses its functionality due to the occurrence
of a fault. Notice that in this case, faults which are austomatically corrected
by the system and which do not cause the loss of the functionality of the
system do not influence the MTBD.

Similarly the mean time to repair is the expected value which elapses from
system down to system up.

Thus an unavailability of two hours in forty years, for example, can be
interpreted as a MTBD (meantime between down) of forty years with a
MTTR (mean time to repair) of two hours, but also as a MTBD of one
year and a MTTR of three minutes. The designer is free to decide how this
availability condition must be interpreted.

For computers to be used in civil aviation, where their reliability directly
determines the safety of the flight, a system failure rate (i.e. the reciprocal
of the MTBD) of 1071° /hour is acceptable. This is equal to the failure rate
of a resistor. Given the small numbers of computers used in this application,
it is impracticable for such a failure rate to be subject to experiments.

Fortunately in most cases the specifications are not too strict and the degree
of reliability is determined by the aspects of costs: the question of how much
can additionally be invested in reliability for the purpose of effecting a saving
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in service costs for the supplier and a saving in loss of production for the
customer if the computer system is defective. Here it must be remembered
that for the customer the costs from loss of production may often be ten
times the actual repair costs.

The effect of the measures to improve the system reliability is often ex-
pressed in terms of the reliability ¢mprovement factor. This is defined as the
ratio between the MTBD of the fault-tolerant system and the MTBD of an
equivalent system in which no measures have been adopted to increase the
reliability.

It is important to determine the part and the function of the system to
which the reliability requirements apply. By way of example consider the
control of a telephone exchange where the loss of data corresponding to a
given connection is acceptable if it does not happen too often. Failure of
the computing function would mean that a connection can no longer be
established. The computing function and the program store must therefore
meet high reliability requirements, but the storage of the data recording a
certain connection need not have such a high degree of reliability.

The opposite occurs in a computer used for salary administration. The
failure of the computing function is acceptable, provided it is recognized in
time and does not lead to irreparable faults. The loss of stored information,
however, is completely inadmissible.

1.3 Methods to improve the reliability of com-
puter systems

Improvement of reliability can be approached in two ways, namely by fault
avoidance and by fault tolerance.

1.3.1 Fault avoidance

Fault avoidance is achieved by using established methods of design and es-
tablished design rules, and by the use of the most reliable components possi-
ble. With this manner of working one can achieve a reliability improvement
factor of 10 without exceptionally high costs. Moreover properly designed
cooling, the prevention of hot spots, stable supply voltages, etc. can also
lead to considerable improvement. In addition the “learning curve® plays
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an important role in the avoidance of defects. This curve indicates the im-
provement in reliability as a function of the number of systems produced.
A factor of two to five in reliability improvement is not uncommon in large
series.

1.3.2 Fault tolerance

If fault avoidance does not yield a satisfactory result or if it is too expen-
sive, something extra must be added (redundancy) in order to cancel out
the influence of defective components or subsystems. Such redundancy can
manifest itself in two ways, namely in extra time and in extra hardware.
To detect a defect one can, for example, repeat a calculation and compare
the result, i.e. redundancy in time. If the calculation is performed on two
different machines, there can be said to be redundancy in hardware.

In the span from defect to repair a number of stages can be distinguished:
o fault detection,
o fault localization,
o reconfiguration,
s recovery and restarting, and
& repair.

Fault_detection

A defect need not immediately lead to a logic fault and a logic fault does
not always result in a wrongly performed function. Some time will therefore
pass between the occurrence of the defect and the instant at which the
fault is detected. In this time the fault can propagate through the system
and damage data elsewhere. It is even possible that a function improperly
performed owing to a defect will not be detected at all.

Fault localization

Once a fault has been detected, the site of the defect must be determined
as accurately as possible, and this must be at least down to the level of an
exchangeable unit. As a result of fault propagation and inadequate means of
detection it is possible that the means of detection will provide insufficient
information about the location of the defect and that diagnostic programs
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will have to be run in order to localize the defect. In fact the behaviour of
the system is then tested once more. The cause of a transient failure will
thus not be found and the chance of localization of an intermittent fault
is small. Systems in which diagnostic programs must be run to allow the
reconfiguration are therefore poorly equipped to cope properly with this kind
of faults.

If the location of the defective unit and the location of the data which have
been corrupted due to the defect can be different, then in addition to local-
ization of the defect damage assessment is also required.

Reconfiguration

Once the site of the defect has been determined, the defective unit can be
switched off automatically or be replaced by a stand-by unit. If no spare unit
is present, the result is a system with more limited possibilities or a smaller
capacity. Often this is acceptable, because only a part of the functions
fulfilled by the system must meet strict reliability requirements. These are
referred to as systems based on graceful degradation.

Recovery and Restarting

The defect may damage data in the system, and this data must therefore
be restored. In many systems this is done by regularly making a “back-up”,
which means that all data of the computer is stored, a number of status
codes inclusive. By restarting from this data, one circumvents, as it were,
the faults made. If too much data is lost the system must be restarted after
the whole system has once more been loaded.

Repair

This can take place “on-line” as well as “off-line”. For on-line repair special
provisions must be made to prevent disturbance of the system and to re-
introduce a repaired component in the system.

In the different types of fault-tolerant systems we may not always find all the
stages described above. The literature [Siew. 78] distinguishes three types:

o systems based on fault detection,

s systems based on masking of faults - masking redundancy or static
redundancy, and

¢ systems based on reconfiguration - dynamic redundancy.
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Systems based on fault detection

These systems are characterized by the fact that only fault detection takes
place on-line. The aim is to detect a fault as quickly as possible, in order to
prevent functions being performed wrongly or data being lost.

Diagnosis, repair and restarting are left to the user. This kind of system is
used where high reliability is demanded of the function to be carried out and
where the availability of the function is of less importance. If the system is
automatically shut down to a safe state after a fault has been detected, it is
called a fail-stop system.

Fault detection techniques can be built in at all levels of the system, both
in the hardware and in the software. Actually each operating system is
constructed and provided with checks such that a hardware fault generally
leads to the system shutting down without causing further damage. This is
achieved by inspecting in software whether certain locations in the memory
may be altered or only read, or by checking whether the result falls within
a previously determined set of valid results (consistency checks). These
software checks are in fact designed to detect software faults. Many faults
caused by hardware defects are also detected, but usually only after some
time and without information regarding the site of the fault. Between the
occurrence of the fault and its detection a great deal of information may
already have been lost and functions may have been performed improperly.

An advantage of software checks is that they detect certain software faults
(design faults) which are not seen by hardware detection methods.
Software checks must be considered as redundancy in time, because they
take up additional computing time.

Fault detection techniques performed by extra hardware are:

e Duplication

e Fault-detecting codes
o Self-checking logic

¢ Watch-dog timers.

Duplication

The most rigorous method of detection of hardware faults is duplication of



22 CHAPTER 1. INTRODUCTION

an entire computer. In this case both machines receive the same information
and simultaneously perform the same task. Comparison of the results leads
to an almost 100% certain fault detection. The question is at what level the
results should be compared. In the case of a system where no requirements
are imposed on the availability, and strict requirements are imposed on the
correctness of the performed function, it suffices to compare the output of
both computers.

In many telephone computers duplication finds application as part of a dy-
namically redundant system in which many processes take place simulta-
neously. Rapid detection is essential here and therefore each data transfer
between processor and memory is compared.

Duplication in this way requires careful synchronization of the processors in
both computers.

At the level of abstraction which is of interest for the duplication strat-
egy, most general-purpose computers are not fully deterministic in their
behaviour. This means that when two machines processing the same status
variables are offered the same input data, it is possible for the results to
come out of the machines in different sequences. One possible reason is that
the time references of both machines are never exactly equal, but it'is also
possible that internal delays of the logic cause two independent processes to
be performed by both machines in different sequences. Machines that are
not deterministic cannot be used in a strategy of duplication.

Duplication at subsystem level is also used. An example of this is duplication
of the ALU (arithmetic and logical unit)

Fault-detecting codes

Fault-detecting codes demand much less redundancy than duplication. The
best known method is the use of the parity bit. The addition of a bit to
a word ensures that the number of ‘ones’ in a word is always even. If the
probability of a single bit fault is much higher than the probability of a
multiple bit fault, then this is an effective and cheap method. Almost every
defect in a memory leads to single bit faults in a word if the different bits of
a memory word are stored in different chips.

Parity bits are used particularly for fault detection in memories and parallel
data paths.

Many logic circuits have the property that in the case of a defect the logic
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levels deviate only in one logic direction (unidirectional faults). This type
of faults can be detected by means of M-out-of-N codes. Such codes consist
of words of N bits in which the number of ‘ones’ is always M.

Check-sums

Check-sums are used very often to detect faults in tables. The best known
method is the cyclic redundancy check. All check-sum methods boil down to
performing a simple calculation on a table of numbers {data words). The re-
sult of the calculation, which is called the check-sum, is added as a redundant
number (data word) to the table. If the table is read again, the same calcu-
lation is made again and the result is compared with the stored check-sum.
If there is a difference, a fault must have occurred. The computing algo-
rithm must be such that the most probable faults are always detected. The
fault detection capacity for random fault patterns is very high. A random
fault pattern is to be understood as arbitrary mutilation of the entire table.
This high detection capacity is shown by the following., Suppose the results
of the calculations of the check-sums are uniformly distributed between the
pumbers 0 and @ — 1, i.e. the set of all possible tables can be divided into
@ subsets such that all tables in a subset result in the same check-sum. The
check-sum algorithm preferably should be such that all subsets are equally
sized. In that case the probability that a random fault is not detected is 1 in
Q. Thus if Q = 2%, a redundancy of only 16 bits is necessary for achieving
a probability of 99.998% for detecting random faults.

Self-checking logic

In the literature much has been written about self-checking logic. This is
a logic circuit which supplies a redundant output, for example each logic
output level is to be produced by two bits (“true” = 0 1 and “false” =
1 0). The circuit is then constructed so that a random defective gate will
always lead (at one or more of the logic output levels) to the value 0 0 or
1 1. The problem with this technique is that it relies on only one of the
gates in the network being defective. If all gates are integrated in an IC,
this assumption applies to only a small percentage of possible faults. As a
general rule the probability of detection is therefore too low. Nevertheless
this kind of circuits are occasionally used.
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Figure 1.1: Principle of triplication

Watch-dog timers

Watch-dog timers monitor the time allocated to a certain function. If this
time is exceeded, a fault report is generated. This kind of monitoring can
be realized both in hardware and in software. A method widely used for
inspecting the progress of the processes in a real-time system is the following:
A hardware clock must for example be reset at least once each millisecond
by the software. If this does not happen the computer is stopped. This
method is effective because many hardware and software faults may cause
the process to settle in a loop.



1.3. METHODS FOR RELIABILITY IMPROVEMENT 25

The effectiveness of a fault detection mechanism in a certain application is
expressed as the coverage. This is defined as the probability that a (random)
fault in a system is detected. According to this definition the coverage is
determined in part by the frequency of occurrence of the different kinds of
faults.

Systems based on the masking of faults

In systems based on fault masking, the tasks fault detection, fault local-
ization and recovery form a whole. In fact the computing process s not
interrupted. All data in the system must therefore be reproduced so that if,
as the result of a defect, some of this data is incorrect, it will be seen from
the rest of the data what it should have been.

The best known version is called triple modular redundancy TMR. In du-
plication we obtained fault detection by comparing the outputs. With trip-
lication we are able to take a majority decision. It is important to triplicate
these majority voters also, because otherwise they become decisive for the
reliability of the system. Figure 1.1 represents the basic principle of TMR.
The level at which the majority decision has to be taken depends on appli-
cation.

One can, for example, allow three computers to perform the same functions
synchronously and take a majority decision in respect of the results. A
more reliable system is obtained by dividing the entire system into smaller
modules, triplicating each module and providing it with a majority decider.
The implementation of such a system, however, becomes more expensive
because of the large number of voters.

It is also possible in the case of three computers to subject each data transfer
from memory to processor to a majority decision. The architecture of such
a system is presented in Figure 1.2. Here the input and output have been
omitted. The only output of each module of the triad is the bus which sends
the data via the voters to the processor. Irrespective of what goes wrong in
a module, the fault will always be masked by the voters. This architecture
can be considered as a feedback version of the method shown in Figure 1.1.

The voters will as a general rule be provided with additional hardware which
records the fact that a fault has been masked and in which module it has
occurred. This information need not be directly reported to the system



26 ‘CHAPTER 1. INTRODUCTION

M[, M[ M[,
Pt P e P |-
A 4 ¥ )
a2 [ 3
A\’ A% A"
M = memory

P = processor

'V = voter (majority decoder)
Figure 1.2: A computer system triplicated at system level

because it is of interest only to the user a.pd is not necessary for a recovery
process. This is in contrast to the systems which will be treated below and
which are based on dynamic redundancy.

The addition of redundancy must take place very carefully. Extra hardware
increases the probability of defects, with the possible consequence that re-
liability will decrease instead of increase. This effect occurs especially in
non-repairable systems where the probability of survival as a function of the
time is decisive.

If a defect causes a fault in more than one of the three modules, the sys-
tem breaks down. The likelihood of this kind of fault must therefore be
- minimized, in other words the three modules must be completely indepen-
dent. One speaks of fault isolation areas or fault containment unsts if the
faults within such an area may be related but the faults in different areas
are independent.

It is very difficult indeed to divide a system into fault isolation areas so that
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the probability of related faults in different areas can be eliminated. Exam-
ples of these related faults are clock generators, supply voltages and causes
lying outside the system, such as mains interference and strong electromag-
netic pulses. The likelihood of faults by the user must not be forgotten
either, for example pulling out a wrong board during on-line repair.

The great influence of these dependent faults will become apparent from
the following numerical example. Let there be a threefold redundant sys-
tem (TMR) consisting of three modules in which the amount of hardware
will be three times that of a non-fault-tolerant system. The MTBF (mean
time between failures) of a module will be the same as the MTBF of a non-
redundant system; let it be 10° hour. In the non-fault-tolerant system any
fault will cause the system to go down, hence the mean time between down,
MTBD, of the non-fault-tolerant system is 10% hours.

Let the mean time to repair, MTTR, be 1 hour. Then the MTBD of the
threefold system is 1.66 x 10° hours (about 20 years). The reliability im-
provement factor thus is 166. ;
This is shown by the following. The mean time between failures of each of
the three modules of the threefold system is 103 hours. So on average every
333 hours a fault occurs in one of the modules. If such a fault occurs the
mean time required to repair this fault is 1 hour. During the repair, the
probability that a fault occurs in one of the two remaining correct function-
ing modules is 2.1073. Thus once per 500 occurrences of a first fault the
system will go down due to a second fault in another module during the
repair of the first fault. Hence the mean time between down of the threefold
system is 500 x 333 = 1.66 x 10° hours.

If 1% of the faults are dependent, so that they will cause a system crash,
the MTBD becomes only 2.8 x 10* hours. This follows from the fact that
after each first fault there is a probabilty of 10~2 that the second fault is a
dependent fault which causes the system to go down and there is a probabil-
* ity of 2.1072 that during repair of the first fault a second independent fault
appears in one of the two remaining correct functioning modules. Hence the
chance that a first fault leads to a system crash is 1.2 x 10~2. Therefore the
MTBD becomes 333/(1.2 x 107%) = 2.8 x 10* hours. :
The reliability improvement factor has thus fallen from 160 to 28.

An especially elegant and flexible solution results from multiplication of the
processes in a multi-processor system and running the various copies of a
process on different processors. [Wensley 78]. However multiplication of
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hardware offers no protection whatsoever against design faults and software
foults. So this solution only offers protection against hardware faults and
therefore results in a very high availability only if both the hardware design
and the software are relatively simple and their correctness can be proved.

Error-correcting codes

The use of error-correcting codes is a cheap and effective way of masking
faults. If a data word is supplemented in a certain manner with redundant
bits, then it is possible to correct one or more faulty bits. The percentage of
redundant bits decreases with increasing length of the data word (assuming
a constant correction capability) and the percentage of redundant bits in-
creases if more bits require correction for the same length of the data word
[MacW 78]. To protect an 8-bit data word against a one bit fault, four re-
dundant bits are needed. For a 16-bit word this becomes only five bits. To
allow correction of two bit faults simultaneously, about twice as many bits
have to be added. The mutual dependence of the bit faults in one and the
same data word can be made small by distributing the bits of a word over
different chips. This fault masking method is currently used in many large
memories.

Triplication can also be considered as an application of error correcting cod-
ing. After all, each data word is present in triplicated form in the system.
The code word thus consists of three data words, two of which are redun-
dant. The method presented in Figure 1.2 can therefore be considered as
the application of an error-correcting code at system level. This can be gen-
eralized to (X,Y,T) or (X,Y,Z,T) fault tolerance, as will be explained in
Chapter 2. The (N, K)-concept is a special implementation example of this
generalization, and will also be discussed extensively in Chapter 2.

Systems based on dynamic redundancy

In the case of systems based on masking redundancy or dynamic redundancy,
the functions of detection, localization, reconfiguration, recovery and restart-
ing are performed automatically. The characteristic of dynamic redundant
system is that the reconfiguration (and restarting) can be distinguished as
a separate action (in the literature one often finds a somewhat differing
definition).

The means available to us for fault detection have already been described
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in Section 1.3.2. But in addition the more rigorous means described in
1.3.2, such as triplication, N-modular redundancy and {N,K)-concept fault
tolerance, which will be dealt with in Chapter 2, can serve as a basis for
dynamically redundant system. In that case the functions of detection, lo-
calization and part of the recovery form a whole, the advantage being that
reconfiguration can be postponed to a more favourable moment.

We are thus able to distinguish two kinds of dynamically redundant systems:

o dynamically redundant systems based on the detection of faults, and
e dynamically redundant systems based on the masking of faults.

The disadvantage of the former is that transient and intermittent faults
often cannot be localized. At the moment that the site of the defect is
being sought by means of a diagnostic program, the defect will often have
already disappeared. But by means of roll-back the fault can be cancelled. .
The influence on the reliability improvement factor of the poor ability of
localization of transient and intermittent faults is difficult to determine.

Reconfiguration takes place by switching off the defective module and hav-
ing its tasks taken over by another. The difficulty here is maintaining the
integrity of the data.

1.4 Systems based on fault masking versus
dynamic redundant systems

In the last two decades various methods have been proposed and imple-
mented for improving the reliability and availability of computer systems
by means of adding redundant hardware [Wensley 78], [Hopkins], [Gallager],
[Siew. 82], [Avizienis], [Siew. 78]. Which of these methods is most suitable
depends on the application and the required system reliability. This sec-
tion, however, presents arguments which support our opinion that repairable
fault-tolerant systems of which a reliability improvement is required to the
order of 100, should be based on masking redundancy.

When a reliability improvement is required of less than ten, adding redun-
dancy is not very cost effective. In such cases the reliability improvement
can be achieved by fault avoidance, i.e. by improving the physical reliability
of the components.
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Dynamic redundant systems based on error detection are characterized by
software-based recovery algorithms and in most cases they need diagnostic
routines to trace the faulty module.

The recovery algorithms influence the application software in two ways:

e When a fault is detected the application program has to be interrupted
immediately, which is not always allowed by the application,

e The recovery software always interferes with the application software
and increases the complexity of the software design.

The penalty is very much higher software design costs and more difficult
debugging of the software. ‘

Because the software design is always the most complex part, this makes a
case for implementing fault-tolerance in hardware.

The reliability improvement is strongly influenced by the concept of coverage,
which was introduced by Bouricius [Bouricius]. Coverage is defined here as
the probability that the system will recover given the existence of a fault.
Let the coverage of a dynamic redundant system be ¢ and let the mean time
between down of a comparable non-fault-tolerant system be dn hours. In
the non-fault-tolerant system each fault will result in a system crash. Hence
the mean time between failures of the non-redundant system is also dn. The
total amount of hardware needed for the redundant system clearly will be
more than the amount of hardware needed to build the non-fault-tolerant
system. Thus the mean time between failures dr of the redundant system will
be less than dn. After the occurrence of a first fault the redundant system
might go down for two reasons. Firstly, the recovery mechanism could fail,
the probability of such an event is 1 — ¢. Secondly, during the repair of
the first fault and after a successful recovery, a second fault might appear
which causes the system to go down. Let this probability be p (under the
condition of successful recovery after the first fault). Then the mean time
between down ddr of the redundant system is dr/(1—c +c.p). Thus because
dr < dn, the reliability improvement factor ddr/dn is less than 1/(1 — ¢).
So these simple calculations shows that in a repairable system the reliability
improvement is bounded by the coverage ¢ to 1/(1 — ¢).

In dynamic redundant systems the coverage depends on the effectiveness
of the diagnostic and recovery programs. Intermittent and transient faults
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often defy these diagnostic and recovery programs. In practice it therefore
appears that a required coverage of 0.99 is hard to obtain.

As far as repairable systems are concerned all these objections can be obvi-
ated by employing masking redundancy.

Masking can be applied at different levels, i.e. at the logic level (quading}, at
(sub-)system level (N-modular redundancy, TMR) and at the process level
(SIFT).

Owing to dependent faults in LSI and difficult fault localization, masking at
the logic level has to be rejected.

Masking at the process level might be an attractive solution but it requires
a lot of software overhead. Moreover additional circuitry is needed for fault
localization and debugging.

For repatrable systems we therefore propose o redundancy scheme which 1s
based on masking at the (sub-)system level.

The most obvious solution would be to use TMR in which the voting is
implemented at the data transfer level, as is done in the C.vmp. [Siew. 78].

In the design of a fault-tolerant system based on masking at data transfer
level, for instance a TMR system, the location of the voters in the system
determines to a great extent the performance of the system and the amount
of hardware needed.

A TMR. system consists of three fault tsolation areas. Within these fault
isolation areas (henceforth called modules) faults may be interdependent,
whereas they are assumed to be mutually independent between the areas.
In such a system the three modules run synchronously and all data are
triplicated in the system. The voters have to mask any failure in a single
module. This can be implemented by a majority vote on the data transfers
between processor and memory and possibly on the address information sent
by the processor to the memory.

The simplest solution however is only to vote on the data which are trans-
ferred from the memory to the processor. (The I/O will be neglected for the
time being.) The architecture of such a system already has been given in
Figure 1.2 on page 26.
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1.5 The Input Problem

Fault-tolerant systems will always be connected to other systems based on
different methods for reliability improvement. In any case they will be con-
nected to basically unreliable input devices.

The interconnection of these external sources to a fault-tolerant system has
to be done very carefully.

Two communicating fault-tolerant systems must never defeat each other as
long as they are both functioning well, i.e. in both systems no more failures
should occur than they were designed to tolerate. Also data originating from
a malfunctioning system, which is not included in the fault-tolerant system,
must never cause the receiving fault-tolerant system to go down.

The fault-tolerant systems discussed in the remainder of this thesis are all
based on masking redundancy. So we assume that the fault-tolerant systems
can be divided into a number of fault isolation areas such that faults are
mutually independent between these fault isolation areas. We therefore only
have to discuss the faults that can occur during the information exchange
between the modules or between a group of modules and the environment.

In redundant systems data originating from a particular module are always
broadcast to at least a number of other modules. When transmitting data
from one module to a number of other modules two fault models can be
distinguished, i.e.:

e The data received by the modules is erroneous, but all modules receive
identical data.

e The modules receive different data (some of which may be correct).

The first fault model will be called the classical fault model, the second will
be called the byzantine fault model. The faults in the latter model are said
to cause broadcast errors. A pictural explanation of the difference between
both fault models is given in Figure 1.3.

In most fault-tolerant designs only the first type of fault is taken into consid-
eration. The second type of fault, called broadcast errors, cannot be ignored
however. Experiments and practical experience have shown that it is even
predominant in the event of power failures. The existence of broadcast errors
is obvious when there is a separate connection between any two modules, but



1.5. THE INPUT PROBLEM 33

Classical Byzantine

fa,ult model fault model

OF O
(© @ , © oF

a a
® OF
transmitted by 0 : a transmitted by 0: a
received by 1: x received by 1: x
" 2:x s 2:y
' 3:x ”» 3:2

Figure 1.3: The classical fault model compared to the byzantine fault model

they also occur when a bus-type interconnection is used. In the latter case
they are typically caused by timing failures or by failing bus drivers sending
ambiguous logic levels. Notice that no two logic discrimination levels nor
any two sampling instants are exactly identical.

The basic fault mechanisms which cause broadcast errors are elucidated in
Figures 1.4 and 1.5. Figure 1.4 shows a broadcast error caused by a source
sending an ambiguous logical level to two receiving modules which have
different discrimination levels. Figure 1.5 shows that a source which changes
its output due to a timing failure at the common sampling time causes a
broadcast error. This is because receiver 1 samples the data just before and
receiver 2 samples the data just after the trailing edge of the output signal
of the source.

If an external faulty module produces broadcast errors, a fault-tolerant system
which 1s still correctly functioning and which recetves data from this module
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Figure 1.4: Broadcast error due to a failing driver in the source and different
discrimination levels of the receivers 1 and 2. The result is that receiver 1
will decide in favour of 0 and receiver 2 will decide in favour of 1.

can be brought down by these broadcast errors.

This is what we call the Input Problem.

Unfortunately any fault-tolerant system has to co-operate with single unre-
liable sources. The way in which a fault-tolerant system might go down due
‘to broadcast errors will be clarified by the following example:

Consider a triplicated system (a TMR system) of which one module is failing
(in our example this is module 1), thus the system as a whole is still function-
ing correctly. A single module which produces broadcast errors is connected
to this system. The failing module in the triplicated system also produces
broadcast errors. The data flow in the system is elucidated in Figure 1.6.

The external module sends message A to module 3 of the TMR system and
message B to the modules 1 and 2. Thereafter the modules 2 and 3 broadcast
the message correctly but the failing module 1 sends A to module 3 and B to
module 2. After the majority vote has been calculated in each module, both
correctly functioning modules will disagree such that module 3 concludes
that the message A was sent and module 2 concludes that the B was sent.
The result of module 1 is assumed to be X, because this module is faulty.
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Figure 1.5: Broadcast error due to a timing failure in the source and different
sampling instances of the receivers 1 and 2. The result is that receiver 1 will
decide in favour 1 and receiver 2 will decide in favour of 0.

The TMR system will then go down because no correct majority vote can
be obtained from the values X, B and A.

The Input Problem could be conquered by an algorithm which distributes
the data from the external source over the modules of the fault-tolerant
system and which has the following properties:

o The result of the algorithm is identical in all correct functioning mod-
ules of the fault-tolerant system, and

o if the external source is functioning correctly, i.e. it sends to all mod-
ules of the fault-tolerant system identical data, then the result of the
algorithm in all correct functioning modules equals the data sent by
the external source.

We will show in this thesis that such algorithms can be constructed under
certain conditions.

The problem sketched above is related to the interactive consistency prob-
lem, which is also called the Byzantine Generals Problem. This problem is
considered as one of the most important problems in distributed comput-
ing. The way in which this problem was originally formulated is presented
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Figure 1.6: The flow of data in a triplicated fault-tolerant system which
receives data from a faulty external single source while one of the modules
in the triplicated system is also defective. The result is a total system break
down.

in introduction of Chapter 3. Here the Byzantine Generals Problem will be
defined in terms similar to the Input Problem, as follows:

Let there be N communicating modules with independent data links between
the modules. Among these modules T or less are malfunctioning, probably
transmitting conflicting information to different parts of the network, i.e.
generating broadcast errors. Whenever one of the N modules, called the
source, transmits a message to all other modules (or possibly conflicting
messages when it is malfunctioning) by means of some algorithm, we say
that this algorithm fulfils the snteractive consistency requirements when the
following conditions are fulfilled:

o The result of the algorithm is identical in all correct functioning mod-
ules and

o if the source is functioning correctly, i.e. it sends to all modules of the
fault-tolerant system identical data, the result of the algorithm in all
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correctly functioning modules equals the data sent by the source.

Algorithms which fulfil these properties are called Interactive Consistency
Algorithms or Byzantine Generals Algorithms.

The similarity between the requirements which should be fulfilled by the al-
gorithms which solve the Input Problem and the requirements for the Byzan-
tine Generals Algorithms is obvious. The only difference lies in the fact that
the Input Problem is based on an external source which may be faulty and a
fault-tolerant system consisting of a number of modules of which some may
be faulty, while the Byzantine Generals Problem is based on a number of
modules in which the source is included.

Byzantine Generals Algorithms do exist in the case where N > 3T + 1. A
literature survey of these algorithms is given in Chapter 3. Moreover in this
chapter a new class of more efficient algorithms is presented.

The Byzantine Generals Algorithms are the basis of the algorithms which
solve the Input Problem, [Krol 85], Chapter 5.

1.6 Conclusion

In the above sections we have considered the factors playing a role in the
improvement of the reliability of a computer system and the techniques
available for this purpose. Within this compass it is not possible to achieve
completeness.

Which technique is to be chosen depends entirely on the kind and degree of
reliability required. Even if this has been carefully specified in advance it
still remains difficult to make a choice.

If a reliability improvement factor is allowed to be less than 10, there is little
point in adding much redundancy. Such an improvement can be obtained
by fault avoidance and a few simple measures in the hardware and in the
software to mask the most serious faults.

If the reliability improvement factor needs to be of the order of 100, very
rigorous methods will be required, preferably systems based on fault mask-
ing, or even dynamically redundant systems based on masking. The amount
of redundant hardware to be added, together with the redundancy in time,
will then quickly rise to 200 or even 300%.
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The failure rate of the components from which a computer is constructed is
reasonably well known. For that reason it is possible, if rigorous methods
for the adding of redundancy are used, to calculate a kind of lower limit of
the system reliability, but only in respect of hardware defects.

The “failure rate” of the designer will always remain the great unknown.
Especially in the case of dynamically redundant systems based on fault de-
tection this is a decisive factor. To determine the coverage of the system the
designer must reason out all possible fault mechanisms and recovery strate-
gies. The designer does not know what he has forgotten, and in order to
achieve a reliability improvement of 100 the coverage must be better than

99.7%!

In systems with extremely high reliability, such as those required for critical
aviation applications, credibility will also play an important role. Everybody
is willing to believe that the probability of a wing breaking off from a plane
in civil aviation is less than 10710 per flying hour. But who will believe the
designer of a computer system who claims that the MTBD of his system is
1019 hours, which is one million years! Yet this is a reasonable requirement
in respect of a computer, the failure of which leads to the crashing of a plane.

Hitherto, for improvement of reliability, use was made as far as possible of
software means. Often a consequence of this is that conditions are imposed
on the designer of the users’ software, such as the inclusion of check points,
rollback etc. And in the case of real time control the designer must take
into account that the normal operation of the system can be interrupted at
any moment for, say, 0.1 second because a recovery action due to a defect
is underway. This sometimes increases the complexity of the software quite
considerably.

The ratio of hardware to software costs is shifting ever more in favour of the
hardware. Hence expectations are that in the future ever more techniques
based on hardware redundancy will be applied.

There are strong arguments which support the opinion that repairable fault-
tolerant systems, of which a reliability improvement is required of the order
of 100, should be implemented by means of masking redundancy.

The problem, the “Input Problem”, of connecting external unreliable sources
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to a fault-tolerant system such that a malfunctioning source cannot disturb
the correct operation of the fault tolerant system has been solved. However
there still is a need for more efficient algorithms.
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CHAPTER 1.

INTRODUCTION
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Chapter 2

Generalized Masking
Redundancy

This chapter describes a new fault-tolerant computer architecture based on a
“distributed implementation” of a symbol-error-correcting code. In this, the
(N, K)-concept as at is called, the faults are masked by this code.

The concept of “distributed implementation of an error-correcting code wnél be
generalized to “the encoding of physically implemented functions”, which will
result in the definition of a (X,Y,T) fault-tolerant system and o (X,Y,Z,T)
fault-tolerant system.

The (N, K)-concept is described in detail for N =4 and K = 2.

It is shown that symbol-error-correcting codes with additional bit-error-cor-
recting capabilities make additional memory protection by means of bit-error-
correcting codes superfluous and o newly designed symbol- and bit-error-cor-
recting code for the (4,2) concept is presented.

2.1 Introduction

In Chapter 1 a number of arguments have been presented which support
the statement that repairable systems of which the reliability improvement
needs to be in the order of 100, should preferably be implemented by means
of masking redundancy at the (sub)system level.

Thus far the only known example of masking redundancy at system level
which can be applied for any digital system is N-modular redundancy. Le.
the comparable non-redundant system is N-fold implemented. Triple mod-
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ular redundancy,TMR, thus is a special case with N = 3. At subsystem
level masking redundancy is, in addition to N-modular redundancy, also
implemented by means of error-correcting codes. However thus far error-
correcting codes are only used for masking faults in memories and commu-
nication channels.

The purpose of this chapter is threefold, i.e.:

e To describe of a new fault-tolerant computer architecture, which will be
called the (N, K)-concept. In this architecture error-correcting codes
are applied at system level. The class of systems according to the
(N, K)-concept can be considered as a generalization of the N-modular
redundancy scheme.

e To identify the fundamental ideas behind masking redundancy on the
basis of the combinatorial model and the Moore machine model and to
define of two basic systems concepts which span the class of systems
based on N-modular redundancy. lLe. N-modular redundancy with
and without state voting.

o To generalize these two system classes by replacing the majority voters
by the decoder functions of error-correcting codes.

In order to introduce the ideas behind generalized masking, in Section 2.2
the N-modular redundancy scheme is generalized to the new redundancy
scheme, called the (N, K)-concept. In this section the meaning of faults,
behaviour and correctness is still used in a rather sloppy way. The meaning
of behaviour often leads to a lot of confusion, therefore in Section 2.3 we
will first introduce and define two system models, i.e. the combinatorial
model for combinatorial systems and the Moore model for sequential sys-
tems. Based on these models we will define the meaning of behaviour. In
order to be able to talk about correct behaviour we need to compare the
implementation with the specification. So the next step will be to introduce
a meaning of specification, design and implementation which is suitable for
describing fault-tolerant systems. Based on this a number of definitions of
correct behaviour will be presented.

With these ingredients we are able to describe in Section 2.4 three classes of
N-modular redundant (NMR) designs, viz. an NMR design of a combinato-
rial system, an NMR design of a sequential system without state voting and
an NMR design of a sequential system with state voting.
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The reliability properties of these classes will be discussed and it will be
shown that NMR implementations can only be based on resettable systems.

In Section 2.5 the first two classes of the NMR systems mentioned above
will be generalized to (X,Y,T) fault-tolerant systems and the last class,
i.e. the one with state voting, will be generalized to (X,Y,Z,T) fault-
tolerant systems. We will show that the reliability properties (X,Y,T) and
(X,Y,2,T) fault-tolerant systems are comparable with their corresponding
NMR systems. Both classes will be elucidated with a number of examples
and we will show that the (V, K)-concept is based on a mixture of both the
class of (X,Y,T) and (X,Y, Z,T) fault-tolerant systems.

The Sections 2.6 to 2.10 are devoted to a detailed description of the (4,2)-
concept. It is shown in these sections that symbol-error-correcting codes with
additional bit-error-correcting capabilities make additional memory protec-
tion by means of a bit-error correcting code superfluous.

A new and optimal symbol- and bit-error-correcting code developed for the
(4,2)-concept is presented in Section 2.7 and the design of its decoder is ex-
plained in Section 2.8. In Section 2.10 some facts about the implementation
are presented.

2.2 The (N, K)-concept

As an introduction to the (N, K)-concept, we start with the TMR system
described in Section 1.3.2 and 1.4.

Such a TMR system consists of three modules. Within these modules faults
may be interdependent, whereas they are assumed to be mutually indepen-
dent between the areas. The three modules run synchronously and all data
are triplicated in the system. The voters have to mask any failure in a single
module.

This is implemented by a majority vote on the data which are transferred
from the memory to the processor. {The I/O will be neglected for the time
being.) The architecture of such a system is given in Figure 2.1. The only
output of a module, via which data can be sent to the other modules is the
output of the memory. So whatever might go wrong in a single module it
can only affect the memory output (possibly after some delay) and the fault
will be masked by the voters.
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Figure 2.1: An example of triple modular redundancy; the (3,1) concept.

A linear error-correcting code generally is defined as a set of n.-tuples of
symbols taken from some alphabet, [MacW 78]. The n.-tuples are called
the code words. The code words in the code are obtained by a linear map-
ping of the set of all k.-tuples over the alphabet onto a set of n.-tuples
which constitutes the error-correcting code. The k,-tuples are called the
data words. In order to be able to correct T faulty symbols in a mutilated
code word, the code words in the code should have a Hamming distance d,
such that d, > 2T + 1, i.e. any two different code words in the code differ in
at least d, symbol locations. Error-correcting codes are often characterized
by a tuple (n.,k.) or a triple {n., k., d;).

From any linear (n,k.) error-correcting code a so-called systematic code
can be derived in which at %, symbol locations, the symbols in the code
words are identical to the symbols in the corresponding data words. Hence
k. symbols in the code word form the data word. The remaining n, — k,
symbols are called check symbols.

In a TMR system the memory data as well as the processor data are tripli-
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cated and are thus in fact encoded into a (3,1) error-correcting code. This
code consists of three symbols (the data words in the memories) one of which
can be considered as the information symbol (the one-symbol data word) and
the other two as check symbols. Because the code words of this code are a
repetition of the data words, such a code is called a repetition code. The
code is single symbol-error-correcting, i.e. an entire symbol may be muti-
lated. The (3,1) repetition code thus is a particular (trivial) example of the
class of (N, K) codes which consist of N symbols of which K symbols are
information symbols and N — K symbols are redundant check symbols.

The observation that in a TMR system the memory data as well as the
processor data are encoded in a (3,1) repetition code leads to the following
generalization in which different coding schemes are applied for memory data
and processor data.

module 0 module 1 module N—1
M[" M[” M
Eco) L['K Eci) LK —89 LK
P [~ Pre— I ..... P [
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Dec Dec Dec
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HE
M = memory

P = processor

Dec = decoder

Figure 2.2: Basic architecture of the (N, K)-concept

In the (N, K)-concept shown in Figure 2.2 the procéssor data is N-fold
repeated, i.e. encoded in a (N,1) symbol-error correcting code. Thus in
each module a copy of the processor data word is present. The memory data
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however are encoded into an (N, K) symbol-error correcting code, where each
of the modules contains one symbol of the code word.

Let the size of the data words of the processor in the comparable non-fault-
tolerant system be L bits, then the processor data in the modules of the
(N, K) concept is also encoded into L bit words. The symbol size, in terms
of the number of bits to represent a symbol, of the (N, K) code is K times
smaller than the size of the data word. So a data word of L bits is encoded
into N symbols of L/K bits. Each module of the (N, K) concepts stores one
symbol of the (N, K) code. So the size of the words stored in the memories
is in the (N, K) concept K times smaller than the size of the words stored
in the TMR system.

The applied (N, K) symbol-error-correcting code can be chosen to be Max-
imum Distance Separable (MDS) [MacW 78]. Such a code is capable of
correcting up to T = (N — K)/2 randomly failing symbols and only requires
a factor of (N — K)/K additional memory hardware.

This is much less than the amount of additional memory hardware needed
in the N-modular redundancy scheme. It has however to be paid for by a
less efficient use of the redundant processor hardware.

The N-fold processor would in principle be capable of correcting

(N — 1)/2 randomly failing processors, but these capabilities are not fully
utilized.

When data are transferred from the N processors Py, ..., Py-1 to the mem-
ories Mo,...,Mn_1 (Fig.2.2) the N-fold data are encoded into N symbols
such that there is no intercommunication between the N modules (fault
isolation areas). The N partial encoders Cp,...,Cn_1 together form an
encoder of the (N, K) symbol-error-correcting code.

When data are transferred from the memories to the processors all modules
receive the complete code word and in each module the decoder masks the
faulty symbols. Notice that within a faulty symbol any number of bits may
be wrong.

Because the only output of a module is a single symbol of the code word, the
number of randomly failing modules that is tolerated by the system equals
the symbol-error-correcting capabilities of the code.

Just as in the TMR system described in the previous section, no matter
what goes wrong in a particular module it can only affect the output of the
memory, probably after some delay.
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Because the memory is in general the most unreliable part of the system,
in most TMR systems the memory is protected additionally by a bit-error
correcting code. Besides, it appears that due to the bit sliced implementation
a bit-error-correcting code is very effective. Such a bit-error-correcting code
requires in each memory 30 to 50% added redundancy, depending on the
data word length. Therefore the amount of memory hardware in a TMR
system is often more than four times the amount of hardware needed in a
non redundant system.

In the (N, K)-concept the required bit-error-correcting capabilities can be
combined with the symbol-error-correcting code without using additional
redundancy. These codes are capable of correcting a number of bit-errors in
different symbols which exceeds the number of symbols that can be corrected.
Initiated by the (N, K)-concept and the {4,2) single-symbol/double-bit error-
correcting code described in Section 2.7, a large class of codes has since then
been found, [Gils 86], [Gils 87|, [Gils 88], [Boly-88].

As far as reliability improvement is concerned, an (N, K)-concept fault-
tolerant computer is comparable with a (N — K + 1)-fold computer. Both
are able to tolerate (N — K)/2 randomly failing modules.

When the location of some failing modules is already known to the decoders,
i.e. some of the modules are already suspected due to preliminary knowledge
of the fault behaviour of the system, the symbols descending from these
modules can be considered by the decoders as erasures. An (N, K)-concept
fault-tolerant system can tolerate simultaneously U symbol-erasures and T
random symbol-errors as long as 2T+ U < N — K.

Hitherto in this chapter, for reasons of simplicity, masking redundancy has
been described on the basis of a von Neumann computer. Although this is
the most important application, in the next section, Section 2.5, masking
redundancy will be placed in a broader context.

A more detailed description of the (N, K)-concept will be given in the Sec-
tion 2.6, for the case N = 4 and K = 2. This description will be again based
on a von Neumann computer, but the conclusions and the results can be
easily generalized by the reader.

The (4,2)-concept fault-tolerant computer has been appiied as a control pro-
cessor in the SOPHO S2500 system, which is the fully digital business com-
munication system produced by Philips, [Sopho].
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2.3 On modelling the behaviour of fault-tolerant
systems

In this section the notion of behaviour and correct behaviour will be defined
on the basis of two system models, i.e. the combinatorial model and the
Moore model.

In (fault-tolerant) digital systems we will be concerned with two types of
circuits or subsystems from which these systems are built, i.e. combinatorial
and sequential circuits. The name combinatorial conveys the idea that the
output at any time is a function solely of the input at that time. However
in reality the input to the system will always be provided before the output
becomes available but both events take place during the same time slot.
Sequential systems are those in which the current output does not only
depend on the current input but also on a sequence of prior events.

2.3.1 The combinatorial model

In combinatorial systems the current output only depends on the current
input. So the relation between the input value z and the output value y can
easily be described by: ‘

y= Fc(x) (2'1)

The function F, not only describes the way in which the input and output
are related, but also the domain and codomain of the function, thus the
value sets of the input and output. We will restrict ourselves to finite value
sets.

In real systems a sequence of input values will be added to the combinatorial
system resulting in a sequence of outputs. Such a sequence of values can be
represented by a function on the time. We choose a finite set of time instances
represented by the set T.

So, let T be the finite set of time instances which are taken into consideration,
such that T is a subset of the set of integers, T C Z, then the functions z
and y representing the input stream and output stream are defined over the
set T of time instances. If the codomains of  and y, i.c. the set of values
which can be observed on the input and output, are denoted by X and Y,
then the types of z and y are determined by:
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| (2.2)
The relation between the input and output stream is then fully described
by:

:se(T-—}X)
ye(T-»Y)

y(t) = Fe(z(t))
(2.3)
From an external point of view, a particular combinatorial system is fully
specified by the description of the function F,. Such a description includes
the description of the domain, codomain and the way the input values are
mapped on the output values.

2.3.2 The Moore model

Any system can be specified by a relation on the input and output streams
of the system and the initialization. If the system output at a particular
moment depends on the history of the input, i.e. on prior events, an easy
way to cope with the history is to describe the system by means of the
Moore machine model. In this model, the state at any time ¢ is described as
a function of the state and the input at the previous time instance (¢t — 1). -

The output is only a function of the momentary state. See for instance [Hill].
Thus:

y(t) = Fo{z(t))

2(t) = Fo(2(t — 1),2(t — 1))
(2.4)
With
Fo=FoF,

this set of equations is equivalent to
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F,(2(t —1),2(t — 1))
z(t) = Fy(2(t — 1),2(t - 1))
(2.5)

In which 2(t) is the state at time ¢, and z(t) and y(t) are the input and
output respectively. The state-function F,, and the output function F, again
not only specify the relation between the input and old-state on the one
hand and output and new-state on the other hand, but also the domain and
codomain. Thus F, and F, also specify the value-sets of input, output and
state, i.e. the types.

o
oo
S
St
I

Notice that the Moore model is very restricted, because:

e Time is discrete and only a finite number of time instances are taken
into account. Thus the domain of the functions z, y, and z, are a
linearly ordered finite set. This informally means there exists a first
time instance called #; and a last time instance called ¢;. After the
time instance ¢; we are no longer interested in the value which can be
observed on the input, output and state.

o The value sets of the input, i.e. the codomain of the function z, the
value sets of the output, i.e. the codomain of the function ¥, and the
value sets of the state, i.e. the codomain of the function z, are all finite
sets,

Our universe of discourse is thus a finite set, built from 1dent1ﬁable
objects. This will hold throughout this thesis.

Notice that the Moore machine model differs from the Turing machine model,
in the sense that the Moore model is much more restricted.

The graphical representation of a Moore machine is depicted in Figure 2.3.

2(t)
z(t-1) | F v(2)

Figure 2.3: The graphical representation of a Moore machine

The functions z, y, and 2, denoting the stream of input values, the stream of
output values, and the successive state values respectively are not all defined
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on the same domain.
Let T be the linearly ordered finite set of time instances which are taken
into consideration,
let o and #; be the first and the last element in this set respectively,
let t; be the successor of tg, and let t — 1 be the predecessor of ¢ provided a
predecessor exists, then:
The function z is defined over the set T~ of time instances {to,t1,...,4—1}.
The function y is defined over the set T* time instances {ty,...,4 — 1,#}.
And the function z is defined over the set T of time instances

{to,tl, R 1,t1}.
So if the codomains of z, y, and z, i.e. the set of values which can be observed
on the input and output, and the state space, are denoted by X, Y, and Zz,
then the types of z, y, and z are determined by:

ze (T — X)
ye (Tt —Y)

zE (T — Zz)
(2.6)
From an external point of view, a particular system is fully specified accord-
ing to the Moore model by the description of the functions F, and F,. Such
a description encompasses the descriptions of the domains, codomains and
the way input and old-state are mapped on output and new-state.

2.3.3 Unfolding time into space

In the Moore machine model the equations (2.5) specify the behaviour of the -
system recursively. This means that the relation between the input z and
the output y is uniquely determined by the functions F;, and F, provided
#(to) is known.

The difficulty of understanding the behaviour of sequential hardware lies in
the notions of state and time. One possible way to circumvent this difficulty
is unfolding the time into the space. This means that at each time instance
a new instantiation exists of the (physically) implemented function. This
principle is applicable to both the combinatorial model and the Moore model
and is shown in Figure 2.4 and Figure 2.5 respectively. The result is a systolic
array of identical timeless functions, in which the state is just an intermediate
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variable. The time ¢ in z(¢) has been reduced to just an index.

z(t) . F yit)

o=

not unfolded

y(i—-1) y(t) y(#+1}
F F F
2(-1) 2t 2(t+1)
unfolded

Figure 2.4: Unfolding the time variable in the combinatorial model

2(t)
z{t-1) JF v

not unfolded

y(t) y(t+1) y(t4+2)

z{t~1} F 2(t} F 2(+1) . F z(t-i—g)
2(t-1) z(t) 2{t41)
unfolded

Figure 2.5: Unfolding the time variable in the Moore machine model

2.3.4 The meaning of behaviour

Talking about the behaviour of a system one generally refers to the relation
between the input values and the output values. However, especially in the
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case of sequential systems the notion of behaviour needs to be more carefully
defined.

For this reason we will more carefully define the notions of

* behaviour, and

e behavioural equivalence.

Behaviour

In some cases and in particular in relation to real systems, behaviour is
interpreted as a description of only the observed values at the terminals of the
system. This interpretation does not suit our purpose. The term behaviour
will only be used in the context of specification, design and tmplementation.
Obviously specification and design are just models. But in this thesis an
implementation also is only a model of what reality could be. So if we talk
about the relation between the input and output values we mean all possible
pairs of “input value, output value” which could or should be observed at the
terminals of the implementation of the system. we thus use the mathematical
meaning of relation, i.e. a subset of the cartesian product of the types of the
input and output values.

So the behaviour of a specification, a design, as well as an implementation is
expressed in the combinatorial model by a relation between the input values
and the output values, i.e. the function ¥, of the Combinatorial model, cf.
equation (2.3).

In a sequential system the relation between the succesive input and output
values depends on the state of the system, or at least on the initialization at
the beginning of the period considered. Moreover further down in this section
we also will have to treat malicious behaviour caused by faulty systems or
subsystems. The correctness of system behaviour then will become time
dependent. For this reason we will include the state in our definition of
behaviour of a sequential system.

So the behaviour of a specification, a design, as well as an implementation
is expressed in the sequential model by a relation between the input values
and old-state values on the one hand and the output values and new-state
values on the other hand, i.e. the functions F, and F, of the Moore model,
cf. equation (2.6).
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Because behaviour is described in the combinatorial case by the function
F, and in the sequential case by the functions F, and F, we conclude that
behaviour of correctly functioning systems is independent of time.

Behaviour only relates to the values at the system terminals, and in the case
of the Moore model also to the system state.

In general a system is always composed from a number of subsystems, mod-
ules or circuits. In a system description thus variables or signal values can be
found which do not refer to the input, output or state at system level. These
variables are called iniernal variables. If we want to discuss these signals we
first have to decompose the system into subsystems. Then we are able to
describe the properties of the variables which are internal at system level in
the form of input or output variables at subsystem level. The properties of
the variables which are internal at system level are then discussed in terms
of the behaviour of a subsystem.

It is for this reason not possible to talk about the behaviour of a system
before the model has been defined and before the terminals and, if appro-
priate, the state have been defined with this model. Neither is it possible
to talk about the properties of internal variables without decomposing the
system into subsystems.

Equivalence of behaviour

We say that two systems P, and F, which are described according to the
combinatorial model are behaviourally equivalent if and only if

P, =F,

And, similarly, we say that two systems P,, P, and F,, F, which are described
according to the Moore model are behaviourally equivalent if and only if

P,=F, and P, =F,

2.3.56 System decomposition

Fault-tolerant systems aim at diminishing the influence of faulty subsystems
(modules). Therefore we need to decompose a system into subsystems.
Let the modules of a system be identified by the elements of a set Ns, then
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the input, output and state at time instance ¢ of a subsystem o will be
denoted by z(a)(t), y(a)(t), and 2z(a)(t) respectively, with a € Ns.
And thus

z € (Ns — (T™ — X))
y € (Ns — (T* - Y))
z € (Ns — (T — Zz))

Similarly the function which specifies a module in the combinatorial model is
denoted by F¢(a) and the output function and the state function of a module
a according to the Moore model are denoted by Fy(a) and Fi{a).

If a particular module a is behaviourally equivalent to some earlier defined
module P (Moore machine) holds

F,(a) =P, and F,(a)= P,

In that case we say that module a is an snstentiation of module P.

2.3.6 Specification, design and implementation

In the context of this thesis any system description is a model of a real or
realizable system. However, a system can be described at different levels of
detail. For this reason we will distinguish between specification, design and
smplementation as follows:

e The specification describes the (external) behaviour of the system.
(what we wanted)

e The design describes in which way a system is composed from its
subsystems together with the specification of these subsystems.
(how we plan to make it)

o The implementation describes the real system.
(what reality could turn out to be)

Obviously the external behaviour of a design can be derived from the design
description. This external behaviour, in the case of a correct design, is
equivalent to the one described by the specification.
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Notice again that the description of the implementation is also just a model
of what the real system could be.

This thesis aims at diminishing the influence of hardware faults. If we start
by assuming that the specification and design are correct, we can only talk
about faults in the implementation, i.e. a system implementation which does
not satisfy the specification, or at subsystem level a subsystem implementa-
tion which does not satisfy the specification of the subsystem defined by the
design.

2.3.7 Correct and malicious behaviour

Bear in mind that in the context of this thesis any system description is a
model of a real or realizable system and that both the specification and the
design are assumed to be correct.

Obviously the correctness of the implementation may be time dependent and
thus it is useful to talk about correct and malicious behaviour at a particular
time instance £ or over a particular period of time.

Correct and malicious behaviour at system level

The combinatorial model

If the implementation is functioning correctly at time ¢ then the values at the
input and output at time instance ¢ are in accordance to the specification.
In other words the behaviour of the implementation at time ¢ is equivalent
to the behaviour expressed by the specification.

If the implementation does behave maliciously at time ¢, the relation between
the values at the input and output may be different from the specification,
but the phenomena at the terminals are still of the correct type.

Thus, if we let F, be the specification of a system and let z and y represent
the successive input and output values of the implementation, then:
A system which s behaving correctly at time instance t, witht € T, satisfies:
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y(t) = Fe(=(t))
z(t) e X

yt)eY
(2.7)

and
A system which s behaving malictously at time snstance t, unth t € T,
satisfies:

(2.8)

Consequently, correct behaviour is contained in malicious behaviour.

The Moore model

If the implementation is functioning correctly at time £ the values at the
output and the new-state of the implementation at time instance ¢ must
be related to the input and the old-state of the implementation at ¢ — 1 in
accordance to the specification.

In other words at time ¢ the behaviour of the implementation is equivalent
to the behaviour expressed by the specification.

If at time t the implementation behaves maliciously, the relation between
the values at the output and the new-state of the implementation and the
input and the old-state of the implementation may be different from the
specification, but the phenomena at the terminals and the states are still of
the correct type.

Thus, if we let F,, F,; be the specification of a system and let z, y, and 2 rep-
resent the successive input, output and state values of the implementation,
then:

A system which behaves correctly at time instance t, with t € T, satisfies:
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y(t) = Fol2(t — 1), 2(t - 1))
2(t) = Fy(2(t — 1),z(t — 1))
z(t—1)eX
y(t)eY

2(t),2(t 1) € Zz
(2.9)
and , ,
A system which behaves maliciously at time instance t, with t € T, satis-

 fies:
o z(t~-1)eX
y(t)eY

z(i%z(i -1)e 2z
(2.10)

Again, correct behaviour is contained in malicious behaviour.

Obviously if we are talking about correct behaviour over a period of time
we mean correct behaviour at all time instances in that period.

From a practical point of view one could argue that this requirement is too
stringent, because in fact we will only be interested in the external behaviour
of the system, that is the relation between the input values and the output
values over the period of time. Of course this relation depends on the state
of the system at the beginning of this period and in the case of correct
behaviour we possibly also wish that the state at the end of the period
corresponds to the specification. However, the consecutive states during the
period are in fact internal variables which may differ from the specification
as long as they do not influence the relation between the input values over
the period, the old-state at the beginning of the period, the output values
over the period, and possibly the new-state at the end of the period.

We will however stay with the definition that in the case of correct behaviour
over a period of time, at each time instance during that period the relation
between the input, output and states is in accordance to the specification.
The reason is that it will ease the analysis of fault-tolerant systems which
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are going to be described in the next sections.

Correct behaviour should not be interchanged with correctness of the output
values. At least according to the definition of behaviour presented in this
thesis this is an incorrect interpretation. Correctness of behaviour here is
only a proposition on the equivalence between the input, output and state
relations expressed by the specification and the implementation. So in the
combinatorial model we only may say that the output is correct at ¢ if the
input and the system are correct at time ¢. And in the Moore model we only
may say that the output is correct at ¢t if the system is correctly functioning
at time instance ¢t and the input and state are correct at t — 1. So a system
which is functioning correctly (at time instance t) may very well produce
incorrect output values.

We will avoid talking about the correctness of output values as far as possible
and if we do so it will be to be brief and always under the implicit assumption
that the input and the state at the previous time instance are correct. So if
we say that the output value is correct we always mean that the behaviour
of the system which produces the output value is correct.

Correct and malicious behaviour at subsystem level

In a similar way the correct and malicious behaviour of modules (subsystems)
can be described.

If we let F; be a set-function on T representing the module identifiers which
refer to the modules which are functioning correctly at time ¢ and let F; be
a similar set-function representing the module identifiers which refer to the
modules which are functioning maliciously, such that for all ¢, with ¢t € T, .
F¢(t) U Fy(t) = Ns holds, then:

The correct and malicious behaviour at a particular time tnstance t of a
particular module a 1s described by:

Combinatorial model

z(a)(t) e X
y(a)(t) e Y

a € F(t) = y(a)(t) = Fe(a)(z(a)(t))
(2.11)
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in which z, y, and z refer to the implementation and F.(a) refers to the
specification of module a in the design.

Moore model

z{a){t—1) eX
ya)()eY
z(a)(t - 1), 2(a)(t) € Zz

a € F(t) = (y(a)(t) = Fola) (2(a) (t - 1), 2(a) (¢ - 1))
A 2(a)(t) = Fu(a)(2(a)(t - 1),z(a)(t - 1)) )

(2.12)
wn which z, y, and z refer to the implementation and F,(a) and F,(a) refer
to the specification of module a in the design.

2.4 An abstract view on N-modular redundancy

In Chapter 1 the triple modular redundancy scheme, TMR, was used to
elucidate fault-tolerant systems which are based on the masking of faults.
This TMR scheme is just an example of the more general N-modular redun-
dancy scheme (NMR) in which the “comparable” non-fault-tolerant system
is N-fold implemented in order to tolerate up to (N —1)/2 failing modules.

At the level of abstraction which is sufficient for our discussions, the “com-
parable” non-fault-tolerant system may be regarded as the specification of
the fault-tolerant design.

An N-modular redundant design system thus consist of N instantiations of
its specification. Thus all N modules are identical.

In the following we will discuss the properties of three classes of NMR. im-
plementations, i.e.:

e An NMR implementation of a combinatorial system
¢ An NMR implementation of a sequential system without state voting

¢ An NMR implementation of a sequential system with state voting
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2.4.1 An N-modular redundant implementation of a com-
binatorial system

An N-modular redundant design (NMR design) of a combinatorial system
and its specification are depicted in Figure 2.6.

= {0)(¢ o)+
{l )t) . F, : ¥, (0)(2)
1 1
1 1

z'f1)(¢) F oy
™1 ™ L. T (¢ t
L L = =) . F, y(t)
(I [
[ [
[ | It
Pt It specification
1t [}

z INL1)(¢ [ HN-1)(t
el T )a( ) » F. 1 ‘y:( )
[ [ |
[ I I | | I |
11 | |

ot 1oL

o(t) I | I y(-—l) ﬂ,
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N-modular redundant system

Figure 2.6: A pictural representation of the relation between the design of
an NMR combinatorial system and the specification

In this picture the broadcasting of the input data is represented by a combi-
natorial function X, which will be called the distributing function, and the
majority-vote function is represented by the combinatorial function y('l).
The latter will be called the observing function.

The distributing function which 18 represenied by the function X and the
observing function which ts represented by the function‘y(“l} are not a part
of the NMR design.

The function X and the function ¥(~1) are only used to relate the behaviour
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of the NMR design to the behaviour expressed by the specification. Includ-
ing the function X and the function ¥{~1 in the design would suggest the
existence of one or more modules which are not allowed to fail.

The correctness of the distributing function is related to the Input Problem
which has been introduced in Chapter 1. The correctness of the observing
function is left to the observer.

From Figure 2.6, the preceding definitions of behaviour and the fact that the
majority-vote function ¥(~1, is able to mask the influence of Li\l_i:_l_l faulty
modules, follows that the behaviour expressed by an NMR implementation
together with the distributing function and the observing function at a time
t, equals the behaviour of the specification, provided that:

e at time instance ¢ the behaviour of at least (N + 1}/2 modules equals
the behaviour expressed by the specification,

e at time instance ¢ the behaviour of the broadcast function X is correct,
and

e at time instance ¢ the behaviour of the majority-vote function ¥ (-1 is
correct.

Implicitly assuming that the behaviour of the functions X and }/('1) is cor-
rect we may say that the behaviour of the NMR implementation is correct
in the presence of T faulty modules at the same time, if T < ﬁiﬁ

So even if each module behaves maliciously at one or more time instances,
the behaviour of the NMR implementation still may be correct over all time
instances ¢, with t € T. The only requirement is that at the same time
instance at least the behaviour of (N + 1)/2 modules is correct. Thus if the
implementation satisfies:

N+1
2

Vi:teT=[F:t) > (2.13)

Another way to look at N modular redundancy is as follows:

The simplest error-correcting code is a (N, 1) repetition code. The encoder of
such a repetition code adds to any data word a code word which is composed
by concatenating N words, each being identical to the original data word.
Let the non-fault-tolerant system (the specification) be the data word, then
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the N-fold system can be considered as a system which has been constructed
from the non-fault-tolerant system by applying the encoder function of the
repetition code. Notice that both the function and the data are encoded.
The N instantiations of the function ¥, in the NMR implementation in
Figure 2.6 are obtained by applying the encoder function of the (N, 1) rep-
etition code on the function F, in the specification. Also the data values in
the NMR design follow from the data values in the specification by means
of this (N, 1) repetition code.

By applying a decoder function (the observing function) on the results pro-
duced by the N functions the influence of faulty functions can be masked.
The data produced by the correctly functioning modules provides sufficient
information to derive the correct data.

The preceding illustrates clearly the principle of “encoding hardware”. In.
the next sections it will be shown that encoding hardware can also be based
on error-correcting codes other than the repetition code.

2.4.2 An N-modular redundant implementation of a se-
quential system without state voting

An NMR design of a sequential system and its specification are shown in
Figure 2.7.

The behaviour of each of the modules in the NMR. design is again identical
to the behaviour expressed by the specification.

The broadcasting of the input data is represented in Figure 2. 7 by a func-
tion X and the majority-vote function is represented by the function ¥(-9.
Notice that both the function X and the function ¥{~Y) are combinatorial
functions. Moreover these functions again are not a part of the NMR de-
sign. The unfolded representation of the system in Figure 2.7 is given in
Figure 2.8.

The correctness of the behaviour of the NMR sequential system will be
judged by comparing the behaviour of the system consisting of the NMR
system together with the functions X and Y(-1), with the behaviour ex-
pressed by the specification. .

The correctness of behaviour of an implementation is based on the equiva-
lence of the behaviour of the implementation and the behaviour expressed by
the specification, cf. (2.9) and (2.10) on page 58 . The input and output of
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Figure 2.7: A pictural representation of the relation between the design of
an NMR sequential system and the specification

the NMR system together with the functions X and Y1, are comparable
with the input and output of the specification. In order to compare the old-
state and new-state of the implementation with the old-state and new-state
of the specification, we use the majority vote over both the old-states and
the new-states of the modules of the implementation. This majority-vote
function used for comparing the states of the modules in the NMR imple-
mentation with the state of the specification will be denoted by S$(~1). The
function $(-1) is intentionally not drawn in Figure 2.7, because neither in
the NMR implementation itself nor in the environment of the system will
the function $(-1) be found.

From Figure 2.8, the preceding remarks and the definition of behaviour at
a time instance i, it follows that the behaviour at a time instance ¢ of an
NMR implementation together with the distributing and observing functions
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Figure 2.8: The unfolded representation of a NMR sequential system with-
out state voting, consisting of N modules; the modules are identified by a
variable a, with a € Ns, but also by the variable t, because at each time
instance t we assume a new instantiation of the module.

equals the behaviour of the specification provided that:

e the behaviour of the broadcast function X is correct at time instance

t—1,

e the behaviour of the majority-vote function ¥(~1) is correct at time

instance ¢, and

e the behaviour at a time instance ¢, of at least (N +1)/2 modules equals
the behaviour which is expressed by the specification,

e the state inputs 2’(a)(t — 1) of all correctly functioning modules a are

identical.

Notice that these conditions are sufficient but not necessary.
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We implicitly assume that the first two requirements are fulfilled. And there-
fore if the last two requirement are fulfilled we say that the behaviour at time
msta.nce t of the NMR implementation is correct in the presence of T faulty
modules, #T < N -3

" Notice that correctness of the behaviour at time instance ¢ tells nothing
‘about the correctness of the output value y at time instance ¢. \

From the user’s point of view we are only interested in the way the system
responds to a particular input stream. Due to the requirement that all state
inputs: (o}d-states) of the correct modules must be identical, this definition
might.look rather unsatisfactory. Nevertheless it prov1des the basis for a
detmled discussion of the properties.of NMR- -sequential systems..

o . The requirement that all state in‘p‘uts #/(a)(t — 1) of all correctly functioning

‘modules a are identical is guaranteed if the modules that function correctly

o _-at time instance ¢ are also functioning correctly at ¢ — 1 and are provided

with identical state inputs #'(a)(t — 2) Th:s by mductmn boxls down to the
sufficient requirement that:

‘o all modules which -are functioning correctly at time instance t are also
correctly functlonmg at all time mstances prior to ¢ and

‘e aH modules are 1n1tla.hzed at the same value,

5 This ‘reqmr‘ement however is still unsatisfactory, because in real systems a
. mechanism will be. needed to force the state of the modules to a common
value ’ ‘

The problem of system initialization can be solved in two ways, i.e. with:
" o systems with a limited history and
- ® systems which are resettable.

‘ fIn some systems with a limited history, the output only depends on a limited
number of prior inputs. This means that a number k exists such that for
- all ¢ the output at ¢ is independent of all inputs and states prior to ¢ — k.

~* " Obviously in the Moore model k is at least one. If k = 1 we are dealing

~with a Moore model in which the state space consist of only one element.
A simple example of a system with limited history i isa dela.y line of &k time
units.
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It is easily seen that if we are dealing with a system with a limited historyv :
k, the requirements for a correctly functioning NMR system may be reduced
to : ‘ S

o over all periods of & successive time instances the number of modules
which are functioning correctly at all time instances during that period, -
must be at least (N+1)/2. ’

NMR Implementatmns of systems with a lumted history of k& tune units wlnch '
fulfil the previous requirement do not need to be initialized on a common
value. They start behaving correctly after time instance ¢o + k.

In resettable systems one or more reset sequences are defined. A reset se-
quence consists of a number of well-defined consecutive input values which
may be a part of the input stream. Reset sequences hiave the following prop-
erties. Let the length of a reset sequence be k. If the reset sequence is |
applied to the input of the system starting at ¢, then the state of the system
at t+ k is independent of the state at ¢t and thus independent from all states
and input values prior to . Notice that in the Moore model the input and
old-state at t determine the output and new-state at ¢ + 1. Obviously the - -
class of systems with a limited history are a subset of the class of resettable
systems. This means:that in the class of systems with a limited hxstory k,
any input sequence of length k is a reset sequence.

For resettable systems the requirements for a correctly functioning NMR
implementation may be reduced to:

e over any period between two successive reset sequences, starting at.
the beginning of the reset sequence and ending at the beginning of the
next reset sequence the number of modules which behave correctly at
all time instances during that period, must be at least (N +1)/2.

NMR implementations of resettable systems which fulfil the previous re-.
quirement do not need to be initialized on a common value. They start
behaving correctly after time instance iy + k, provided a reset sequence of
length k is applied to the system starting at time instance to.

Summary of the prbperties of NMR implementations of sequential
systems without state voting '

e The NMR implementation without state voting is built from N copies
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(instantiations) of the comparable non-fault-tolerant system (the spec-
ification).

e The system (specification) must be a member of the class of resettable
gystems.

e The distributing function X and the observing function ¥() are not
a part of the NMR system and are assumed to behave correctly.

o In the case of a resettable system:

— We require that over any period between two successive reset
sequences, starting at the beginning of the reset sequence and
ending at the beginning of the next reset sequence, the number
of modules which is functioning correctly at all time instances in
that period must be at least (N + 1)/2.

— System initialization is obtained by means one of the reset se-
quences.

e In the case of a system with limited history k:

~ We require that over all periods of k& successive time instances
the number of modules which is functioning correctly at all time
instances in that period must be at least (N + 1)/2.

— System initialization is automatically obtained because the NMR
implementation starts behaving correctly after time instance
tg + k.

2.4.3 An N-modular redundant implementation of a se-
quential system with state voting

The modules in a NMR implementation without state voting as described
above are not interconnected. Or in other words, the different rows in the
systolic array in Figure 2.8 do not influence each other. Consequently, a
re-initialization of the system after a temporary defect in one of the mod-
ules or after on-line repair can only be done by interference from outside
the system. Hence the reliability of the fault-tolerant system depends on
something outside the system. The environment might wrongly reset the
system. Moreover, in many systems the data stored in the memory needs
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to be recovered after a reinitialization. This is impossible in these systems
without the help of the environment.

This drawback can be overcome by letting the modules observe and influence
each other.

In an NMR implementation without state voting, the observer outside the
system observes at each time instance one column of output values and is
able to derive by means of the function ¥{~1) from these data the correct
output of the system in the presence of some faulty modules.

Similarly, at suitable time instances, (for instance each time instance), a
module can observe the column of state variables and determine from it
by means of a majority vote the correct value of the state variable in the
presence of some faulty modules. This value is used for re-initializing the
module. The majority vote function which operates on the state outputs
of the modules will be denoted by Z(~1). We will call such a system an
NMR system with state voting.

The pictural representation of an NMR system with state voting is shown in
Figure 2.9. The unfolded representation of this design is given in Figure 2.10.
In the latter picture the distributing function X and the observing function
y("'l) are omitted. For simplicity we assume that the re-initialization takes
place each time instance. Clearly the majority vote function Z (=1 is able to
mask the influence of the same number T of faulty modules as the observing
function Y (-1 does.

In NMR designs with state voting the functions Z(-Y) are a part of the
NMR design and are prone to faults, but the functions X and Y¥(-1) are not
a part of the design and are considered to behave correctly in the same way
as defined in the combinatorial case and the sequential case without voting.

In order to re-initialize each module automatically at each time instance,
each module is provided with a voter to determine the correct state value.
Malicious behaviour of such a state-voter at time ¢ causes malicious be-
haviour at time ¢ of the module in which the voter resides. Notice that in
the Moore model the output of the voter is just an internal variable.

The correctness of the behaviour of the NMR sequential system with state
voting will again be judged by comparing the behaviour of the system con-



70 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

. - {~-1] .
20 )T P v (0)(t)
el i hl

! 1

i ‘ i

1 : 7 (—1 |
z'§1)(¢-1) " | P ' y'()e)
LI hl T 1

i1 ' 11

L L

Pl P

i 1

1 .

11 P

U % (-1 £ ;

z AN+1)(2-1) " P U1 g/ (N-1)(t)
T P el UL

1t 1t

IR 11

Pt P i

===k L | y(t)
] I (—~1}

s X Tl Lo e

Figure 2.9: A pictural representation of the of an N-modular redundant
system with state voting

sisting of the NMR system (of course including the state-voters) together
with the functions X and ¥(~Y, with the behaviour expressed by the speci-
fication. Again the old-state and new-state of the specification are compared
with the majority vote taken over the corresponding state of the modules.

* From the Figures 2.9 and 2.10 and from the definition of behaviour at a
time instance ¢, it follows that the behaviour at a time instance ¢t of an NMR
implementation equals the behaviour of the specification provided that:

» the behaviour of the broadcast function X is correct at time instance
t—1,

‘e the behaviour of the majority-vote function Y{~V) is correct at time
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Figure 2.10: The unfolded representation of an NMR design. The distribut-
ing function X and the observing function Y~V are omitted

instance t and’

"o the behaviour at a time instance ¢ of at least (N +1)/2 modules equals
the behaviour which is expressed by the specification, :

e at least (N + 1)/2 the state outputs 2'(a)(t — 1) are 1dentlca.l

We implicitly assume that the first two requirements are fulfilled. And there-
fore if the last two requirements are fulfilled we say that the behaviour at
time instance ¢ of the NMR implementation is correct in the presence of T
fa.ulty modules, if T < N Lob 3

The requirement that at least (N+1)/2 state outputs 2'(a){t—1) are identical

is guaranteed if at time instance ¢ — 1 also at least (N + 1)/2 modules are =

functioning correctly and are provided with at least (V+1)/2 identical state
inputs 2'(a)(¢t—2). By induction this boils down to the sufficient requirement
that:



72 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

e At time instance ¢ and each time instance prior to ¢ at least (N+1)/2
modules are functioning correctly and

e all modules are initialized at time instance fg at the same value,

So also NMR systems with state voting must belong to the class of resettable
systems. The advantage of systems with state voting is the ability of each
module to recover the state value after a failure. This makes online repair
possible without the need to reset the entire system. Resetting an NMR
system with state voting is only required with initial start-up of the system
and after a complete system crash.

Like the NMR implementations without state voting and a limited history k,
the implementations with state voting and limited history are automatically
initialized, both at £y and after a complete system crash.

Summary of the properties of NMR implementations of sequential
systems with state voting

o The NMR implementation is built from N copies (instantiations) of the
comparable non-fault-tolerant system (the specification). To each of
the modules a majority voter Z(~1) is added, which receives the state
information from all other modules. The state input (old-state) of the
co(py]of the specification is provided with the result of the function
Z-1,

e The system (specification) must be a member of the class of resettable
systems.

e The distributing function X and the observing function Y¥(~1) are not
a part of the NMR system and are assumed to behave correctly.

e In the case of a resettable system:

— We require that at each time instance ¢ at least (N+1)/2 modules
are functioning correctly.

— System initialization at #g is obtained by means one of the reset
sequences.

e In the case of a system with limited history &:
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— We require that at each time instance ¢ at least (N+1)/2 modules
are functioning correctly.

— System initialization is automatically obtained because the NMR
implementation starts behaving correctly after time instance g+

k.

2.5 A generalization of masking redundancy

2.5.1 Introduction

In the preceding we already pointed out that the distributing function X
and the observing function ¥~ may be interpreted as the encoder and
decoder function of an error-correcting code respectively. In this case it
was an (N, 1)-repetition code. This observation suggest a generalization in
which the distributing function X and the observing function ¥(~1) may be
the encoder and decoder function of an error-correcting code which is less
trivial than the repetition code.

First we will explain the basic principle of this generalization and thereafter
we will explain two basic classes of fault-tolerant systems, i.e.:

e (X,Y,T) fault-tolerant systems which characterize the generalization
of the NMR implementations of combinatorial systems and the NMR im-
plementations of sequential systems without state voting.

e (X,Y,2,T) fault-tolerant systems which characterize the generaliza-
tion of the NMR implementations of sequential systems with state
voting.

The basic principle will be explained based on the combinatorial model and
the most simple specification, i.e. the identity function (=). In Figure 2.11
the NMR design of such a system together with the distributing function X
and the observing function ¥ () is visualized. The distributing function X
and the observing function Y¥(~1) are the encoder function and the decoder
function of a (N, 1)-repetition code respectively. The decoder function thus
is a majority voter.

Clearly if no more than (N — 1)/2 of the (=) modules behave maliciously,
the relation between = and y still satisfies the specification.
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Figure 2.11: A graphical representation of the N-modular redundancy
scheme. The function X is a simple broadcast function. The function Y
is a majority voter.

If the broadcast function and the voter are functioning correctly and less
than half the number of “=” boxes fails, then the relation between the input
z and the output y is not affected by errors caused by the “=" boxes.

Figure 2.12 shows a fault-tolerant design of the identity function similar
to the NMR design. However, in this design the distributing function X
in Figure 2.11 has been replaced by the encoder function Y of a T-error-
correcting code and the majority voter ¥{~1) in Figure 2.11 has been replaced
by the corresponding decoder function of the T-error-correcting code. Notice
that the decoder functions y(-ll in Figure 2.11 and Figure 2.12 are different
functions. The encoding function Y in Figure 2.12 is divided into N partial
encoding functions ¥ (3) with 0 < ¢ < N —1, such that }/(z) delivers the i-th
symbol of the code word.

Because the code is able to correct T errors, the fault-tolerant implementa-
tion in Figure 2.12 behaves correctly, provided that, no more than T of the
(=) modules behave maliciously.

The encoder and decoder function of an error-correcting code are denoted
by Y and Y~V respectively. Clearly

y(—l) oY =1Id

in which Id is the identity function.
Notice that Y o y(“l) is not an identity function.
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Figure 2.12: A graphical representation of an encoder and decoder which
protect the “=" boxes against failures. If the encoder and decoder are func-
tioning correctly and the number of failing “=” boxes does not exceed the
error-correction capability of the code, then the relation between the input
z and the output y is not affected by errors caused by the “=" boxes.

The part of the encoder function ¥, which produces symbol a of the code
word, will be called the partial encoder function for symbol a and will be
denoted by Y(a). So in Figure 2.12 it holds that

Remember that an error-correcting code usually is denoted by the triple
(N, k.,d.), in which N denotes the number of symbols of which the code
word is composed, k. denotes the number of symbols of the data word and
d. is the Hamming distance of the code [MacW 78|. A code with Hamming
distance d, is able to correct T random errors if T < -&2:1. The Hamming
distance of a code is at most n, — k. + 1. This bound can always be met
provided the symbol size b, is sufficiently large. Codes which meet this
bound are called Maximum Distance Separable (MDS) codes. If we restrict
ourselves for practical reasons to codes which are defined over some binary
extension field, then the type of the variables may be expressed in the symbol
size b,, i.e. in the number of bits required to represent a symbol. In that
case for b, > log, (N — 1) a code which meets the d, = n, — k. + 1 bound
always exists.
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In Figure 2.12 the size of the variables z and y thus is k;.b, and the size
of the variables z'(¢) and y'(z) is b,. The type of the indentity function
performed in the modules thus differs from the type of the identity function
which describes the specification.

> I y(-—l) et

2” {0)

Yy = >

A

Figure 2.13: A fault-tolerant system based on generalized masking. The dis-
tributing function X is a simple broadcast function. The observing function
Y1) js the decoder function of a T-error-correcting code.

If the distributing function and the observing function behave correctly and
the number of modules which behave maliciously does not exceed the error
correction capability of the code, then the relation between the input x and
the output y is equivalent to the specified identity function.

The distributing function and the observing function in the design shown
in Figure 2.12 are the encoding and decoding function of the same 7-error-
correcting code Y respectively. This however is not required. In Figure 2.13
a design is presented in which the distributing function X is the encoder
function of a (N, 1, N) repetition code, while the observing function Y(~1
is the decoder function of an arbitrarily chosen T-error-correcting code with
parameters (N, k., d.). In order to get the behaviour of this fault-tolerant
implementation including the distributing function and the observing func-
tion, equivalent to the specification, the partial encoding functions Y () of
the encoder function Y have been shifted from the distributing function to
the modules which performed the identity function =.

In this fault-tolerant design, Figure 2.13, the size of the variables z and y
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again is k..b, and the size of the variables y(z) is b, but the size of the
variable z'(2) is k.b,.

From the Figures 2.12 and 2.13 it is easily seen that a fault-tolerant 1m-
plementation according to Figure 2.13 behaves correctly if at least N — T
modules behave correctly.

The preceding discussion clearly shows that the NMR design can be gener-
alized by replacing the distributing function and the observing function by
the encoder and decoder functions of error-correcting codes respectively.

It is also not necessary that all modules in the faull-tolerant design are iden-
tical copies of the specification. The behaviour of modules may differ between
modules and may be different from the specificaiton.

In the previous section in which we elaborated on the different NMR imple-
mentations we identified three classes of NMR implementations, i.e.:

» NMR implementations of combinatorial systems,
o NMR implementations of sequential systems without state voting, and
o NMR implementations of sequential systems with state voting.

Apart from the distinction between combinatorial and sequential systems
the first two classes are characterized by the distributing function X, the
observing function Y(~Y) and the number T of faulty modules which can
be tolerated. The third class is characterized by X, Y(=1, T and the state
voter Z(~11. Therefore the generalization illustrated above can be divided
into two classes, i.e.

e (X,Y,T) fault-tolerant systems and

o (X,Y,Z,T) fault-tolerant systems.
The first class applies to both combinatorial and sequential systems and the
second class only applies to sequential systems.
2.5.2 (X,Y,T) Fault-tolerant systems

(X,Y,T) Fault-tolerant systems are built from N modules as is depicted in
Figure 2.14 and are able to tolerate T faulty modules. The modules in the
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design are identified by the elements of a set Ns and the behaviour of the
modules is specified by the functions @Q(a) with ¢ € Ns. The distributing
function X and the observing function ¥{~1 are not a part of the fault-
tolerant design but characterize the system and are needed to relate the
behaviour which is expressed by the fault-tolerant design to the specification.

The correctness of the behaviour of (X, Y, T) fault-tolerant systems is based
on comparing the behaviour of the implementation with the behaviour of
the specification by means of the functions X, yf"U, and SC-1). This cor-
responds to the definition of correctness for NMR implementations. Recall
from page 64 that ${-1) maps the N-tuples of states onto the state expressed
by the specification. The function $(~1 is in general not a majority-vote
function but may be any decoder function of an error-correcting code.

So a (X,Y,T) fault-tolerant systems can de defined as follows:

Definition 2.1 A system belongs to the class of (X, Y,T) fault-tolerant sys-
tems if the behaviour of the fauli-tolerant implementation together with the
functions X, YU, and S, in the presence of T' or less faulty modules,
1s equivalent to the behaviour expressed by the specification.

The unfolded representation of a (X, Y,T) fault-tolerant system is shown in
Figure 2.15. From the definition of the class of (X, Y,T) fault-tolerant sys-
tems, the definition of NMR systems without state voting and a comparison
of the Figures 2.14 and 2.15 with the Figures 2.7 and 2.8, it immediately
follows that the reliability properties of (X,Y,T) fault-tolerant implemen-
tations are identical to those of NMR implementations without state voting
and of which the number of modules is 27"+ 1.

Obviously the class of NMR systems without state voting is a subclass of
the class of (X,Y,T) systems.

2.5.3 Examples of (1,Y,T) Fault-tolerant systems

If X is a broadcast function and Y (1) is the decoder function of a non-trivial
T-error-correcting code, many practical examples of such a fault-tolerant
system can be devised.

Let Y be the encoding function which corresponds to the decoding function
Y1, The parameters of the code are (N, k;,d;). The function ¥ maps a
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Figure 2.14: A pictural representation of a (X,Y,T) fault-tolerant system
and its specification

k.-tuple of symbols (the data word) onto an N-tuple of symbols (the code
word). The function Y can be divided into N different partial encoding
functions Y(a) with @ € Ns, such that the function Y(a) applied to the
k.-tuple delivers the a-th symbol of the code word.

In an NMR implementation without state voting like the one depicted in
Figure 2.7 on page 64 which is functioning correctly, all outputs y'(a)(t)
of the correct modules are identical. So if we apply the partial encoding
function Y(a) to the outputs y'(a)(t), the result will be the a-th symbol of
the code word. Clearly, if the decoder function §¥(~1) is applied to this code
word and no more than 7" modules behave malxcmusly, the original output
value y{t) will be retrieved.

Based on this idea, an (X, Y,T) design can be built from any specification,
cf. Figure 2.16.
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Figure 2.15: The unfolded representation of a {X,Y,T) fault-tolerant system
consisting of N modules. The modules are identified by a variable a, with
a € Ns.

Let the pair of functions F,, F,; describe the specification. Then
e the distributing X is a broadcast function {(NV, 1) repetition code),

» the observing function y(~1) is the decoding function of a non-trivial
T-error-correcting code. The partial encoding functions corresponding
to this code are Y(a) and

e the behaviour of the N modules is defined by the pair of functions
Y(a) o F, , F,, with a € Ns.

So the mapping S{-1 of the N-tuple of states of the implementation to the
state of the specification is in this case a majority vote function.
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Figure 2.16: A pictural representation of a (X,Y,T) fault-tolerant system
and its specification. The distributing function is a simple broadcast func-
tion, the observing function is a non-trivial error-correcting code. A module
consists of the concatenation of a copy of the specification and a partial
encoder function

A system like this has the same reliability properties as an NMR system -
without voting, of which the number of modules is 27 + 1

If X and ¥ (~1) both are the encoding and decoding function of possibly dif-
ferent non-trivial error-correcting codes, other implementations than the one
mentioned above, at first glance are less obvious. In fact the only solutions
which are known are those in which the specification, thus the comparable
non-fault-tolerant system, is extremely simple. Examples are:

o a delay line

e a fixed permutation function, and
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¢ a transmission system.

For instance in a X,Y,T fault-tolerant design of a system which delays a
stream of words, the functions X and Y refer to the same T-error-correcting
code with parameters (N, k.,d,) and symbol size b,. The k,.b.,-bit words
at the input are first encoded by the distributing function X into N sym-
bols of b, bits. Thereafter each of them is delayed in a different module.
The observing function Y(~1 is able to mask the influence of T' maliciously
behaving modules. Notice that this system belongs to the class of systems
with a limited history. The mapping S{~U of the N-tuple of states of the
implementation to the state of the specification is constructed in this case
from three decoder functions which each equal the observing function y(—ll.
The unfolded representation of this design is shown in Figure 2.17. Obviously
the reliability properties of this implementation are the same as those of an
NMR implementation without state voting, of which the number of modules
is 2T + 1 and which is based in a sequential system with limited history.

The other examples mentioned can be designed in a similar way.

Another interesting design example is as follows:

A large fault-tolerant storage system consists of N disc units, each having
their own controller. The distributing function X is a broadcast function
and the observing function Y(~Y is the decoder function of a (N, k,,d.)
error-correcting code, which is capable of correcting T random errors, thus
T= [%"—IJ A message m, which must be stored is broadcast together with
the address and a WRITE command to all disc units. In each unit ¢ the
controller partially encodes the message m, and stores the result on disc,
i.e. the value Y(7)(m) is stored. Y(s) is the partial encoder function which
delivers the :-th symbol of the code word.

Retrieving information is done by broadcasting the address to all disc units
together with a READ command and from the data returned by the units
the observer can calculate the message m by applying the decoder function
Y1 on the data received. The calculated message is correct provided that
no more than T units are malfunctioning.
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84 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

2.54 (X,Y,T) fault-tolerant systems based on authentica-
tion

The preceding description of a (X,Y,T) fault-tolerant system might sug-
gest that the observing function only can be the decoder function of an
error-correcting code of which the Hamming distance d, is related to T by
d. 2 2T + 1. This however is not required. Suppose the messages which
are broadcast to the modules are authenticated. This means that they are
signed and encrypted in such a way that the module can perform a function
on it but cannot influence the signature and the encription. The result of a
correct function application thus is again signed and encrypted. However, if
the module is functioning improperly, the result always needs to be an in-
correctly authenticated message. In practice this would mean that (almost)
any malfunction of a module can be detected. In that case the minimum
number of modules required in the fault-tolerant system is only 7+ 1. This
type of system is quite similar to those systems which in the literature are
called dynamic redundant systems.

The following example is a proper (X,Y,T) fault-tolerant system based on
authentication, cf. Figure 2.18, 2.19, and 2.20.

Let the function X in the previous example (the storage system consisting
of N disc units) be as follows:

The message m is encoded by means of a (N, k.) Maximum Distance Sep-
arable code C which is defined over a symbol set. The Hamming distance
of such a code is N — k. 4+ 1 and the code is able to correct N — k, symbol
erasures. The latter are symbol errors of which the location is known. Af-
ter encoding we have N symboels, each consisting of a number of bits which
is 1/k. times the number of bits of the original message m. Each of these
symbols is concatenated with the address (the signature) at which the mes-
sage has to be stored and thereafter encrypted. Finally these symbols are
sent to the corresponding disc units together with the (non-encripted) ad-
dress and the WRITE command. When a message is read from the storage
system, first all received authenticated symbols are decrypted by means of
the function Decript. The result will be N addresses at which the symbols
should have been stored and N symbols of the encoded message. Whatever
might have gone wrong during storing and retrieving of the symbol, either
the symbol has been mutilated, which results in an incorrect encryption, or
a correct encrypted symbol is returned from a wrong address. Both are de-
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Figure 2.18: A (X,Y,T) fault-tolerant system based on authentication

tected (almost) with certainty. Notice that the address was combined with
the message before encryption. Provided N —k, or less of the retrieved sym-
bols are mutilated, the original message can be calculated from the correct
symbols and the pointers (erasure flags) to the faulty symbols. Notice that
in this case the error-correcting code C is used for erasure decoding in stead
of for decoding random errors.

2.5.5 (X,Y,Z,T) Fault-tolerant systems

In the same way as the (X,Y,T) fault-tolerant systems are obtained from
the NMR systems without state voting, the (X,Y, Z,T) fault-tolerant de-
signs are a generalization from the NMR systems with state voting, which
is obtained by replacing the state voter by the decoder function Z(~1) of a
T’-error-correcting code, with 7V > T.



86 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

N \code symb. . anth. mes,
| Encript 20055

o
EAD/WRITE dls,k
> unit
mess. addre_gg N-1
cofie symb.
-b-@ ™ Encr ‘ipi auth. mesg to

Ap/wriTE disk

unit
addrege_ 0
READ/WRITE READ/WRITE
address adch’eg

Figure 2.19: The design of the function X of the system shown in Figure 2.18

Recall that the distributing function X and the observing function Y(~1
used in the definition of the (X,Y,T) fault-tolerant systems are not a part
of the fault-tolerant design but characterize the system and are needed to
" relate the behaviour which is expressed by the fault-tolerant design to the
specification. The N-tuple of states of the modules (X,Y,T) fault-tolerant
systems were related to the state expressed by the specification by the func-
tion $(~1) which is the decoder function of an error-correcting code.

In contrast to this, in an (X,Y,Z,T) fault-tolerant system the function
Z(=1) is used to relate the N-tuple of states in the fault-tolerant design to
the state expressed by the specification. The function Z(Y thus is used in
two ways, firstly as a piece of hardware available in each module in order to
re-initialize the module each time instance and secondly for comparing the
N-tuple of states of the implementation with the state of the specification.

So (X,Y,Z,T) fault-tolerant systems are built from N fully interconnected
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Figure 2.20: The design of the function Y1) of Figure 2.18

modules as is depicted in Figure 2.21 and are able to tolerate T faulty mod-
ules. The modules in the design are identified by the clements of a set Ns
and the behaviour of the modules is specified by the functions Z{~1 and
Q(a) with @ € Ns. The distributing function X and the observing func-
tion ¥{-1) are not a part of the fault-tolerant design but characterize the
system and are needed to relate the behaviour which is expressed by the
fault-tolerant design with the specification. Thus:

Definition 2.2 A system belongs to the class of (X,Y,2,T) fauli-tolerant
systems of the behaviour of the fault-tolerant implementation together with
the functions X and y("l) , tn the presence of T or less faulty modules, is
equivalent to the behaviour expressed by the specification.

The unfolded representation of an (X, ¥, Z,T') fault-tolerant system is shown
in Figure 2.22. From the definition of the class of (X, Y, Z,T) fault-tolerant
systems, the definition of NMR systems with state voting and a comparison
of the Figures 2.21 and 2.22 with the Figures 2.9 and 2.10, it immediately
follows that the reliability properties of (X, Y, Z,T) fault-tolerant implemen-
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Figure 2.21: A pictural representation of a (X,Y, Z,T) fault-tolerant system
with state voting

tations are identical to those of NMR implementations with state voting, of
which the number of modules is 2T + 1.

Obviously the class of NMR systems with state voting is a subclass of the
class of (X,Y,Z,T) systems.

2.5.6 Examples of (X,Y,Z,T) fault-tolerant systems

In principle for any system which is specified according to the Moore model
and for any T an (X,Y,Z,T) design can be made straightforwardly. Such
a design is depicted in Figure 2.23.

If we let the specification of the system be described by the pair of functions
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Figure 2.22: The unfolded representation of a (X,Y,Z,T) fault-tolerant
design. The distributing function X and the observing function Y1) are
omitted

F,, F,, then the design is constructed as follows:

» the distributing function X is a broadcast function ({N,1) repetition
code), '

e the observing function J{(~1) is the decoding function of a non-trivial
T'-error-correcting code, with 7" > T'. The partial encoding functions
corresponding to this code are denoted Y(a), with o € Ns, and

e the state decoding function Z(~1 is the decoding function of a non-
trivial T"-error-correcting code, with 7" > T. The partial encoding
functions corresponding to this code are denoted by Z(a), and

e the behaviour of the N modules is defined by the pair of functions
Y(a)o F,, Z(a)o Fs, with a € Ns.
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Figure 2.23: A pictural representation of a straightforwardly obtained
(X,Y,2,T) fault-tolerant design

The choice of the code can only be made on criteria outside the scope of this
discussion and in general will depend on the specification. For this reason
we will only make a few remarks.

Further on in this thesis we will show that the Input Problem can only
be solved if the number of modules is at least 37 + 1, while an NMR im-
plementation with or without state voting only requires 2T 4+ 1 modules.
For economical reasons it better to have all modules as identical as possi-
ble. Therefore the class of (X, Y, Z,T) design offers the possibility to match
the number of modules with the requirement which stems from the Input
problem.
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In Figure 2.23 the data offered to the next column in the systolic array is
encoded by means of the partial encoding functions Z(a), which are derived
from the encoding function Z. Clearly this could be any T-error-correcting
code. Each module must produce one symbol of the encoded state. Suppose
we choose for this code a (N, k) maximum distance separable code. In that
case the system is capable of correcting the influence of T' = (N — k.)/2
randomly failing modules. The minimum value of k, is of course 1. The
amount of hardware which is required for the implementation of the functions
is proportional to N. Thus for fixed T, the amount of hardware required
tends to increases proportionally with k., depending on the application.
However the amount of data to be transmitted (N modules sending symbols
to N modules) is proportional to N?/k,, which is minimal for k, = 2T". Thus
in that sense the (4,2)-concept is optimal. If the cost function is determined
by the amount of data produced by the modules, i.e. the cost function is
proportional to %‘E = % <+ 1, then the cost of the system decreases with

increasing k.

Clearly an (X,Y, Z,T) implementation of a system which has a large state
space is for practical reasons not possible. Therefore another solution will
be presented, which in fact is a mixture of an (X, Y,T) and an (X,Y,2Z,T)
design.

In systems with a large state space in most cases something like a memory
can be recognized. Typically in a von Neumann computer, the state of the
system is determined by the content of the memory, the registers and the
counters. The result of a function executed at a particular time instance in a
von Neumann computer, only depends on a part of the state information and
possibly on the input. To be more precise, only the content of a few registers,
the counters and the content of the selected memory location(s) can be used
as input for the function. Hence only that part of the state information
has to be available in the form of plain data, the rest may remain encoded.
This leads to a system in which the largest part of the state information is
transferred to the next time instance of the same row in the systolic array
in the form of encoded data without interference with the other rows and
without being affected by the function. These data typically are the encoded
memory data. A small part of the encoded data may be affected by the
function, i.e. due to write operations on the memory. A part of the state
information is transferred in the form of plain data without interference with
the other rows. This is typically the register and counter data, when it is not
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affected by the function. Some of this plain data may be (partly) changed by
the function application. Only a small part of the encoded state information
is broadcast to the other rows. The decoder function is applied to this data
in order to obtain a common result among the correctly functioning modules.

v'(0)(t) v'(0)(#+1)
encoded ) encogled V
plain . plain . -
# - F # F
encoded - (0)¢-1) 3'(0](*} encoded - # (0)“]‘ 3’(0)(‘5‘1‘1}
"|Dec[ plain | - |Dec| plain "
2'(0)(¢-1) z'(0)(¢)
y(N-1)(t) j Y'(N-1)(t+1)
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F . F
- Dec }318511 - . . Dec plain > >
encoded A(N=1) (1] H{(N-1}(t) encoded MN-1)(¢ 2H{(N-1){#+1)
= (N-1)(t-1) ! (N-1)(t)

Figure 2.24: The unfolded representation of a von Neumann machine on
which the (N, K)-concept applied

The basic principle of such a system is shown in Figure 2.24. A typical
example of a system like this is the {V, K)-concept as it has been described
in Section 2.2. In order to elucidate the relation between the typical von
Neumann machine based description in Section 2.2 and the description in
this section by means of unfolding the time, in Figure 2.25 one cell of the
systolic array in Figure 2.24 is shown, which corresponds to the architecture
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in Figure 2.2 on page 45. The cell is divided into an ALU part and an address
decoder part. In each part the functional dependencies between input and
output of both the ALU and the address decoder are shown.

output
A
encoded data (memory) encodedd. . Jencoded data (memory)
P i "
plain data (registers) plain 4. plain data (registers)
~, I " address ' g
lain d. lain /
encodeg Dec| P > p o Encl—> encoded data >
data data
f 3 l
F
input
ALU part Address Decoder part

Figure 2.25: One cell of the systolic array in Figure 2.24 in detail

In (X,Y, Z,T) fault-tolerant systems at each time instance the state decoder
Z(=1} is applied in each module on the entire combined state of all modules.
In (X,Y,T) fault-tolerant systems the state of a module is not affected by
the other modules and can only be affected by means of the input of the
system.

In the (N, K)-concept each time instance the state decoder Z(~1) is in each
module is only applied on a small part of the combined state of all modules.
Hence this part operates according to a (X,Y, Z,T) fault-tolerant system.
The remaining state information, which in Figure 2.24 is indicated by the
uppermost two inputs of the function F, is not affected by the other modules.
Hence this part operates according to a (X,Y,T) fault-tolerant system.
Each part of the state information is accessible by the state decoders and of
course each part of the state information can be changed. So the system itself
determines which part operates according to an (X,Y, Z,T) fault-tolerant
system and which part operates according to an (X,Y,T") fault-tolerant
system.
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From the preceding it follows that in a system such as the one depicted
in Figure 2.24, during a single time instance only a part of the encoded
data, and in general also only a part of the plain data, can be replaced
by a common value. So re-initialization of the system will take many time
instances. We will elaborate on this problem in detail when describing the
(4,2)-concept in the next section.

The previous discussion shows that, starting from a specification, fault-
tolerant systems can be designed and analyzed in a top-down process. The
different concepts of fault-tolerance, {(X,Y,T) fault-tolerance and
(X,Y,2,T) fault-tolerance may be combined arbitrarily. The functions X,
Y and Z may be any T-error-correcting code or a function which provides
error-correction on the basis of authentication. If a fail-stop or fail-safe sys-
tem is required, error-detecting codes may be used.

The previous discussion also shows that unfolding of time into space is a
simple method which can be used for a better understanding of the behaviour
of the fault-tolerant design. Playing with pictural representations of unfolded
systems leads to many different fault-tolerant architectures. ‘

The time axis of the systolic arrays in the previous examples also might be
interpreted as an axis in space. The fault-tolerance properties are indepen-
dent of the interpretation of these axes, so fault-tolerant systolic arrays can
be designed according to the same philosophy.

Another freedom in the design process stems from the fact that the time
between two successive time instances, i.e. one time unit, might be composed
from a number of sub-time units. Hence the functional boxes in the previous
examples may also be interpreted as finite state machines.

Each of the modules in the systolic array may be again a fault-tolerant sys-
tem. This idea for instance could be applied to construct extremely reliable
communication networks.

2.6 The (4,2)-concept

2.6.1 System description

The (4,2)-concept consists of four modules, Figure 2.26. The processor
part is quadrupled as compared with a non-redundant computer, whilst the
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memory consists of four parts, each with a word length (symbol size) of half
a data word. So the memory is only doubled.

module 0 © module 1 module 1 module 3
M M M[" M[T
;co) 8 c;) 18 ;Cg) 8 ;Cs) 8
P P [ P - P |-«
16 16 16 18
R [ B 2 ¥ + ¥
Dec Dec Dec Dec
|8
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18
8

M = memory
P = processor

Dec = decoder

Figure 2.26: The (4,2)-concept

The information stored in the memories of the four modules is protected by
means of a symbol- and bit-error-correcting code. Because the data word
length is 16 bits, the code consists of four 8-bit symbols, two of which are to
be regarded as information symbels while the other two are check symbols.
This code is built up from two interleaved codes, both consisting of four
symbols of four bits. The code can correct all possible single symbol-errors
and all possible double bit-errors even if these bit-errors are in different
modules.

The four processors, one in each module, contain identical information and
run synchronously.

2.6.2 Data transfer between processor and memory

Data transfer between processor and memory proceeds as follows. When
information is sent from the processor to the memory (i.e. a WRITE opera-
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tion), the 16-bit data word is encoded into 8 bits in each module and written
into the memory of that module. The encoding rules for the four modules
are different in such a way that the four 8-bit symbols together form a word
of the afore-mentioned symbol- and bit-error-correcting code. Notice that
the hardware implementation of the modules differs only in the encoders.

When information has to be transferred from the memory to the processor
(i.e. a READ operation), each module will receive not only the 8-bit symbol
which is stored in its own module but also the other three symbols of the
code word stored in the other modules.

So each module receives the complete code word of four 8-bit symbels. If
any one of these symbols should be wrong or two bits possibly in different
modules should be wrong, it can be corrected by the decoders available in
each module. The only interconnections between the modules are the 8-bit
symbols which are interchanged between the modules. This means that,
whatever fault occurs in a module, it can affect only the 8-bit symbol that
is sent to the other modules. These modules, however, can correct the fault.
In other words, a hardware fault, as long as it is limited to one module or
affects only two bits in different modules, does not affect the functioning of
the system.

Both the (4,2)-concept and a triplicated system tolerate one failing fault-
isolation area, so their reliability improvement must be of the same order of
magnitude.

2.6.3 Applicable symbol-error-correcting codes for the (4,2)-
concept

Basically, in the (4,2)-concept, any single symbol-error-correcting code of
the maximum distance separable (MDS) type can be applied, e.g. a Reed-
Solomon code [MacW 78]. The minimum symbol size b of an MDS code
which is defined over symbols from the binary extension field is determined
by b > logy(N + 1), in which N is the word length of the code, [MacW 78].
Hence it follows that a four-symbol MDS code requires a minimum symbol
size of two bits. Codes with 8-bit symbols can simply be derived from it by
interleaving four of these codes. This offers the advantage that each decoder
can be split up into four decoders, each acting on 2-bit symbols. In non-
interleaved codes based on larger symbol sizes a lot of redundancy is left
unused. However in some codes this redundancy can be used for additional
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bit-error-correcting capabilities. Most 16-bit microprocessors are able to
read and write single 8-bit bytes, therefore a code word must not contain
more than 8 bit data. Thus, because the data is stored in two symbols, the
symbol size is restricted to four bits.

An exhaustive computer search led to an optimal (4,2) symbol-error-correc-
ting code with 4-bit symbols, the mathematical description of which is given
in Section 2.7.

The decoder of this code can operate in different modes. Fach mode results
in a different decoding strategy, depending on preliminary knowledge of the
fault behaviour of the system.

The code has the following characteristic properties. In the "random mode”
it corrects:

e any single symbol-error and
e all double bit-errors, even if they are not located in the same symbol.

(double bit-errors and single symbol-errors cannot be corrected simultane-
ously)
In the ”erasure mode” it corrects:

e any single bit-error in the presence of a symbol erasure (the latter is a
symbol-error whose location is already known by the decoder).

Notice that there are four erasure modes, each pointing to a different suspi-
cious module.

Next to the random mode and the four erasure modes, there are six single
modes. Due to the MDS property of the code the data word can be derived
from any two correct symbols of the code word. So the system is able to run
faultfree on only two modules, provided these modules are working correctly.
If the system runs on two modules, the symbols in the code word originating
from the other two modules are considered by the decoders as erasures.
Clearly in this mode no additional correction or detection capacity is left.

Often the failure rate of the memory is predominant. But when the memory
is bit-sliced, a single failing memory chip only influences one bit of the code
word and thus produces only bit-errors. Most of them are transient. So the
profitability of the additional bit-error-correcting properties of the code is
obvious.
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Figure 2.27: The state transfers of the decoder

Under fault-free conditions, the system operates in the random mode, in
which all the single symbol-errors and all double bit-errors are corrected.
The system remains in the random mode when a bit-error occurs, but as
soon as the decoders detect and correct a symbol-error that is not a bit-
error, they automatically switch to the erasure mode indicating the failing
module, (cf. Figure 2.27). Hence the code word which is read immediately
after the code word containing a symbol-error is already decoded in the
erasure mode.

Suppose a repair time sets in when a permanent bit fault or a symbol fault is
corrected. Then the system will only go down if two additional bit faults or
a symbol fault arise during repair time. However, when the fault initiating
the repair time is a bit fault and the second fault is a symbol fault, there is a
good chance that the first fault will not be effective at that instant and the
system will survive because it immediately switches to the erasure mode.

From the foregoing it is clear that the memory failure rate hardly influ-
ences the mean time between down when the (4,2)-concept is provided with
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symbol- and bit-error-correcting code.

Similar properties could have been obtained by applying a Reed-Solomon
code over 4-bit symbols and adding a parity bit to each symbol. The decoder
complexity would have been the same but the memory hardware would have
been 2.5 fold instead of 2 fold compared to a single non-redundant system.

2.7 Symbol- and bit-error-correcting codes

In this section we will describe the symbol- and bit-error-correcting code
for the (4,2)-concept fault-tolerant computer which was found by means of
an exhaustive computer search. The properties of this code however can be
proved mathematically.

The code is defined as the null space of its parity check matrix H:

7 11 0
H= ( R ‘; o ) (2.14)
where o is a root of the primitive polynomial z* + z + 1 which generates
GF(2%) and o is the zero element of GF(2*). Thus this block code is a two-
dimensional subspace of the four-dimensional vector space (GF (24))4. The
symbols of GF(2*) again form a four dimensional vector space over GF(2).
The basis of this vector space is constituted by a3, o?, o, and a®. These
symbols correspond to the basis vectors (1000), (0100), (0010}, and (0001)
respectively.

A generator matrix G for this code is:

o P
0
= ¢ «
G= o ol (2.15)
ol ot

A number of properties of the code will be derived, using the following
definitions:

e The symbol weight w, of a code word is the number of non-zero symbols
in that code word.

e The minimum symbol weight w,. of the code is the minimum symbol
weight taken over all non-zero code words of the code (which equals
the symbol distance of the code).
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e The bit weight w;, of a symbol is the number of non-zero bits in that
symbol.

e The bit weight w; of a code word is the total number of non-zero bits
in the code word.

Lemma 2.1 The minimum symbol weight w,, of the code, which 13 defined
by the parity matriz in equation (2.14), 1s 3.

Proof

By inspection we see that any 2 X 2 sub-matrix of H is non-singular and the

generator matrix shows the existence of a code word with symbol weight 3.
[m]

Lemma 2.2 No code word exists with a symbol weight 4, where the bit
weight of all symbols s 1.

Proof

Suppose the existence of a code word with symbol weight w, = 4 where the
bit weight of each symbol is wp, = 1. Thus all symbols of the code word
are taken from the set {a®,a?, ol,00}. Then from the generator matrix it
follows that the following relations must hold:

o™ + ol e {af, o}, o?, o) (2.16)
and

oMt 4 o™ e (a0 ol 0?, of} (2.17)
in which ¢ and k € {0,1,2,3}.
Calculating that part of the addition table of GF(2*), which represents

as a power of o with 7 and k € {0,1,2,3}, we obtain the following table in
which only the exponents of o are shown.

k
a?—if'i + all'f‘k 0 1 9 3
0] 8 2 5 1
) 1,7 9 3 6
2, 2 8 10 4
3,14 3 9 11
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From this table we deduce that the preceding relations {2.16) and (2.17)

never hold simultaneously.
m]

Lemma 2.3 No code word exists with symbol wetght 8 where two or three
symbols have bit weight 1.

Proof
From the generator matrix it follows that all code words with symbol weight

w, = 3 are described by:

1144 a?’-H)

((p , ai , o , 744 , all-i—i)

(e, e, @

3

(a4+i, as"p}a%—z‘) and (aj’ a4+t”a9+£’ 99)
(2.18)

with i € {0,1,---,14}.

The symbols of bit weight 1 are in the set {ao,al,az,as}.
Inspection of the above code words shows that no two or three symbols of a

code word can be in this set simultaneously.
i

Theorem 2.4 The code defined by the parity check matriz H given above
has the property that: ’

o Two different single symbol-errors never result tn the same syndrome.
e Two different double bit-errors never result in the same syndrome.

o The set of all single symbol-errors and the set of all double bit-errors
are disjoint.

Proof
The first property follows immediately from lemma (2.1) and the second
property from lemma (2.2) and (2.3). A
The last property can be derived from lemma (2.1) and (2.3). When a double
bit-error has the same syndrome as a single symbol-error, the bit-by-bit sum
of these error vectors must be a code word. So a code word should exist
with symbol weight 3 of which two of these symbols should have bit weight
1. Or this code word should have symbol weight 2. However, both cases are
excluded by the lemmas (2.1) and (2.3).

0
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Theorem 2.5 The code defined by the above parity check matriz H s ca-
pable of correcting single bit-errors in the presence of an erased symbol.

Proof

Remember that the location of an erased symbol but not the error value is
known. Again the bit-by-bit sum of any two correctable errors should not
be a code word. Thus the sum of two symbol-erasures at the same location
and two random bit-errors must not be a code word. This would imply
the existence of a code word of symbol weight 2 or a code word of symbol
weight 3 of which two symbols have bit weight 1. This again is excluded by
lemma (2.1) and (2.3). O

It is very likely that symbol- and bit-error-correcting codes can be found,
for any value of N and K, provided the symbol size is sufficiently large.

As an example a (3, 1) symbol- and bit-error-correcting code can be obtained
from the (4,2) code described in this paper by just shortening the (4,2)
code by one symbol. The parity check matrix of this code follows from the
parity check matrix of the (4,2) code by deleting one column. However this
code certainly is not the best code that can be found in the (3,1) case. In
[Gils 86], [Gils 87], [Gils 88] and,[Boly-88] a large class of combined symbol-
and bit-error-correcting codes are described.

2.8 Decoding symbol- and bit-error-
correcting codes -

The propagation delay of the decoders must be as small as possible because
this delay has to be added to the memory access time and so influences the
performance of the system. Therefore the decoders must be implemented as
a combinatorial network.

The complexity of the decoders is such that they should preferably be im-
plemented in LSI.

An easy-to-implement decoder which is in principle applicable for any
(N, K) symbol- and bit-error-correcting code can be based on deriving the
syndrome from the code word received, thereafter deriving the error pattern
from this syndrome and then subtracting this error pattern from the code
word received.
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The syndrome is found by multiplying the code word received by the parity
check matrix which can be implemented by means of

EXCLUSIVE-OR gates. Because there is a one-to-one relation between syn-
dromes and the error patterns, the mapping from the syndrome into the
error pattern can be implemented with a ROM. This decoding principle is
depicted in Figure 2.28.

A decoder like this is however not optimal in terms of propagation delay
and hardware. Moreover the size of the ROM grows exponentially with the
number of check bits, i.e. (N — K)L. In this context L is the symbol size of
the code in bits.

decoding mode
L i K.L
{(N-K}.L
syndrome
4

N.L N.L N {—]-"L-» & —HL
reéeived I - corrected
code word data word

Figure 2.28: A simple and fast read-only memory based decoder

In the remainder of this section a new decoder principle will be presented
which is very well suited for decoding combined symbol- and bit-error-
correcting codes. This principle will be explained with the help of the de-
coder for the (4,2) code which has been defined in the previous section. The
design is based on LSI implementation and optimized for minimum propa-
gation delay. The decoding principle can be generalized to other values of
N and K, as for instance has been done in [Gils 86] for N =3 and K = 1.

The data words in the (4,2) code can always be recovered from any two
fault-free symbols in the code word. This follows from the MDS properties,
[MacW 78|. The correction capabilities of the code show that there are never
more than two faulty symbols in the code word. So for correction it is only
necessary to locate two fault-free symbols and to derive the data word from
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these symbols.
Therefore the decoder consists of two parallel working parts, i.e.:

e A circuit that calculates 6 versions of the data word from the 6 pairs
of symbols of the received word.

» A circuit that calculates first the syndrome and then determines from
this which symbols are faulty and thus which version(s) of the data
word is (are) correct.

The circuitry for deriving the six versions of the data word from the received
word is based on the property that each of the six square submatrices of the
generator matrix G are nonsingular. Hence each of the six versions of the
data word can be derived by taking the reciprocal of the corresponding
square submatrix of ¢ and multiplying this with the corresponding two
symbols of the word received.

In order to find the error locations (i.e which symbols are erroneous), we
start from an expanded parity check matrix Q. In this expanded parity
check matrix two rows are added to the original matrix, such that:

o The two rows added are a linear combination of the rows in the original
parity check matrix,

o All the 2 X 2 submatrices of the 4 x 4 matrix @ are nonsingular.

o FEach row of the matrix @ contains an entry equal to ¢, such that all
columns contain one .

Notice that the original parity check H may be multiplied by an arbitrary
2 x 2 nonsingular matrix without changing the code.
There are many solutions for tie matrix Q, for example the matrix Q in:

0 10 ]

83  a a«a o c3
0 6 10
s9 o v o « ¢
g = = a7 o 2l =Q.ctr (2.19)
51 o o Y o c3
80 cx7 0.'11 ao ¥4 [#y)

The syndrome vector s has the following properties:

o If there is no error all symbols of s are .



2.8. DECODING 5&B CODES 105

e If there is a single symbol-error, one symbol of s equals ¢ and the other
three are unequal to ¢. So from the matrix @ it follows immediately
that the location of the ¢ symbol in s indicates the erroneous symbol
in the word received.

e If there is a double bit-error in which the erroneous bits are located in
different symbols all the symbols of 8 are nonzero.

The proof of the first property is trivial, the second property follows from
the fact that any two rows of Q define the code, and the last property can
be proved as follows:

Suppose one of the symbols of s equals ¢ in the case of a double bit-error of
which the erroneous bits are in different symbols. Let the index of this ¢ in
g be [. Consider the I-th row of ). None of the erroneous bits will be in the
{-th symbol. Consider an error pattern consisting of the previously defined
double bit-error and a symbol-error at location . This error pattern, after
multiplication by @, will also result in s; = ¢. The value of the symbol-error
can always be chosen so that the error pattern also causes another ¢ in s.
But any two rows of @) define the code and the correction properties of the
code require that this error pattern results in a non-zero syndrome, which
contradicts the zero symbol in s.

The conditions on which the symbol locations of a double bit-error can be
found from the syndrome vector s are as follows.

Let the error vector e = (egeze;eg) represent a double bit-error on the symbol
locations ¢ and 7 (3 # ) and let the two non-zero symbols of e at the locations
¢ and 7 be represented by

e; =of and e; = of

in which 4,7, f,¢ € {0,1,2,3}
Let the k-th row of @ be

hy = (hi3, b2, hi1, ho)

Thus
S = hk.ctr = hk‘etr = (hk,,-.af + hk,,-.ag)

Because h;; = © and h;; = p we find

L1
8 — h.g.e = h,-,j.o:g
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and
e h. off b f
s; =h;e" =hj;a

Thus s; is not influenced by an error at location ¢ and s; is not influenced
by an error at location j.

Let
h,',j = ai‘ and hj,,' = Ozjl

then
s; = a"*? and 8§ = airtf
Thus for arbitrary bit-errors at symbol locations ¢ and 7

5 € {atl’ a=1+1’a‘1+2, a'1+3}

and
85 € {a,n , a.71+1, a11+2, a31+3}

Double bit-errors not located in symbol ¢ and 5 can never cause the syndrome
satisfying the previous condition, because that would imply that two double
bit-errors result in the same syndrome. (Remember that any two rows of
@ are a complete parity check matrix of the code.) Thus these conditions
are sufficient for deriving the symbol locations of a double bit-error (which
is not a symbol-error).

For determining the symbol location of the bit-error in erasure mode ¢ which
points to an erasure symbol-error in module 7, only row ¢ of @ has to be
considered. The erasure symbol-error does not influence the value of s;, so
the value of s; uniquely determines the location of the bit-error.

Starting from correctable error patterns, the conditions on which the error
jocations are found can be summarized as follows:

¢ Random mode:
[ Fij :i#FEiAs =pAsj=¢ | < No Error

(s,- =pA[ V5 : s; Fp D <=> Single Symbol-error at Location ¢
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(i #IAs € {aix’aiﬁ-l’ah-}'?’aia} Asj € {ajl’ aj1+l,ajl+2,aj3})

<= Double Bit-error Locations 7 and ;

in which oft = hi; and ot = hj;.
e Erasure mode: erasure at location i
8; = g <=> No Bit-error

(si € {0, a‘1+1,a£1+2,a‘3}) <= Bit-error at Location j

in which oft = hi; with 7 # 7. ‘
Notice that in each mode the conditions on which the error type is deter-
mined are mutually exclusive.

From these conditions the hardware implementation of the decoder can be
derived straightforwardly, as we will see in the next section.

Note that incorrigible errors can be detected in some cases. Otherwise they
will be interpreted by the decoder as no error or lead to miscorrection. Be-
cause in random mode 157 of the 256 possible syndromes are related to
correctable error patterns or no error, the probability that an arbitrary in-
corrigible error will be detected is only about 38% in random mode.

The decoding principle which has been described in this section for the (4,2)
code can be applied for any other (N, K) symbol- and bit-error-correcting
code with the same correction capabilities (the detection properties may be
better).

2.9 Decoder implementation

In the previous section we dealt with the principles on which the decoding
algorithm is based. In this section some details about the decoder design will
be presented. Many design decisions that have been taken are influenced by
the required minimum decoding time, which should be less than 100 nsec.
and the fact that the decoder should be implemented as a CMOS-LSI circuit,
(technology 1981). The only solution then is to implement the decoder as a
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error and mode
registers
4
4
i4 expanded : 4 . \ error
parity \ logging
4 check 4 . cireuitry
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matrix 4 \
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Figure 2.29: Block diagram of the decoder for the (4,2) single-symbol double-
bit-error-correcting code

combinatorial network. Hence the number of gates was of little importance
compared to the depth of the combinatorial network.

The block diagram of the decoder is shown in Figure 2.29. It consists of:

e A straightforward implementation of the expanded parity check ma-
trix.

o Circuitry for the calculation of six versions of the data word. Each
version is calculated from a different pair of code word symbols.

e Circuitry for determining, from the syndrome, which of the six versions
is {are) correct. This circuitry is combined with the circuitry provided
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for error logging and automatic mode register update.
e A selector for selecting the correct version.

This architecture is advantageous because determining which of the symbols
of the code word are faulty is done in parallel with the calculation of the
versions. Moreover the latter calculations take advantage of the calculation
of the syndrome.

Circuitry for the calculation of the syndrome

Racall that the symbols over which the code is defined form a four-dimensinal
vector space over GF(2). The basis of this vector space is o, o2, o, and
a®. These symbols are associated with the vectors (1000), (0100), (0010),
and (0001) respectively. Moreover « is the primitive root of the polynomial
z*+23+1. Hence the correspondence between the symbols denoted by vectors
over GF(2) and the symbols denoted as a power of the primitive root of the

polynomial z¢ + z + 1 is as follows:

e 0000’ [1011
® {0001 c® |0D101
o' {0010 e® |1010
o 0100 a® {0111
a® 1000 ott|1110
el 0011fat® {1111
of 0110|1101
a1 1100|1001

Multiplication of a symbol a = {a3aza100), expressed as a vector over GF(2),
with a constant of = {(cgeacicp) can be represented by a matrix vector mul-
tiplication. The multiplication

o'a

can be represented by
ai.(ag.a3 + ag.a2 -+ al.al -+ ao.ao)

or
as.a' 3 + a0.0' % + a1.08 ! + gg.0f
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Let ¢; be the vector representation of the symbol o, then the previous
expression can be formulated by:

a3

tr ir ir ir @z
(Cg+3,cs'+2vci+1aci ) a1
ag

The matrix over GF(2)

ir ir ir ir
(ci+3:°i+2ac£+1s°¢ )
is called the companion matrix of o.

So for example the multiplication of (agazajag) with o is represented by:

1011 a3
0 10 1 a3
1 010 a1
0110 ag

The addition modulo 2 corresponds to the EXCLUSIVE-OR
in Boolean algebra, so the hardware implementation of such a multiplication
is obvious, see Figure 2.30.

Circuitry for the calculation of six versions of the data word

The six versions of the data word are calculated by determining the inverse
of all six 2 X 2 submatrices of the generator matrix.

So for example the version which follows from ¢3 and ¢3 is found as follows:
From the definition of the generator in (2.15) we know:

(4)=(2 5) (2)
(2)=(22)(3)

By replacing the symbols of the matrix by their companion matrix and the
symbols in the vectors by their vector representation, we obtain a represen-
tation of the multiplication which can easily be implemented in binary logic.

or
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43 . Ys
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@ »
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&b >
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Figure 2.30: The hardware implementation of the multiplication y = of.a,

where o is a root of the primitive polynomial z* + z 4+ 1 which generates
GF(2%), and where y = (yayay1y0) and a = {agaza1a0).

For example the calculation of the version which follows from ¢3 and ¢y is
described as follows:

(dl’g\ 1000 0000\ (83’3\
dy.z 0100 0000 cs.2
dia 0010 0000 c3,1
dl,o 0 0 0 1 0 000 €3.0
dO,S 1111 1100 C1,3
do 2 01 11 011890 c1,2
do 0011 1011 e11
\ doo 1110 100 1) \eyp)

Circuitry for determining, from the syndrome, which of the ver-
sions of the data word are correct ~

From the four 4-bit syndrome symbols the following binary values are de-
rived:
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The values ze(3), ze(2), ze(1), and 2¢(0) are determined by
ze(i) <= (8 = p)

So in Boolean algebra
ze(i) = 8i{,3.8{,2.8{1.5%{0

The 12 logical values in(i,§) with i # 7, 1,7 € {0,1,2,3}, and h; ; = o'* are
defined by:
in[i,j) PR (s‘. e {af‘l,aﬂ%—l’aﬂ-ﬂ’ah%—a})

The faulty modules can be selected from these logical values. This will be
elucidated for two typical cases, i.e. the selection conditions for the version
obtained from ¢z and ¢y, and the selection conditions for the version obtained
from ¢z and ¢;.

If in random mode all symbols of the code word are correct we choose the
version of the data word which is obtained from ¢3 and c3. Similarly if in
eragure mode O or erasure mode 1 no bit-fault occurs, we also choose the
version of the data word which is obtained from c3 and ¢3.

With these choices the conditions on which a particular version must be
selected can be easily found from the conditions for the error locations as
they are stated in the previous section.

The version which is obtained from ¢3 and ¢z 1s selected if:
In random mode

(2e(0) A ze(1) A ze(2) A ze(3)) V (3n(0,1) A 1n(1,0))

In erasure mode 0
in(0,1) V ze(0)

In erasure mode 1
in(1,0) V ze(1)

- The version which is obtained from cs and c; is selected if:
In random mode

(#n(0,2) A in{2,0))
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In erasure mode 0

1n(0,2)

In erasure mode 2
in(2,0)

The other selection circuitry is derived in the same way.

2.10 Some facts about the implementation of a
(4,2)-concept

When a fault occurs it is masked by the code. These faults have to be
reported, although this does not have to take place immediately. In each
decoder, therefore, a fault register is available into which the data of the
fault are written as soon as the fault occurs. Such fault registers should be
regarded as single, unprotected I/0O devices which the system must be able
to read out. The problems that might be introduced by single unprotected
I/O devices are extensively discussed in Chapter 1.

When a symbol and bit-error-correcting code is used, each decoder must be
equipped with a mode register which tells the decoder which strategy should
be used in decoding an erroneous code word.

The number of different modes depends on the code applied. In the case of
a (4,2)-concept a random mode, four erasure modes and six single modes
can be distinguished, (cf. Section 2.6). In single mode operation the system
runs on two modules only. Al mode transitions are performed under software
control via the decoders, except the transition from random mode to erasure
mode which can also be done by the decoders themselves. '

The four modules operate in full synchronism. Each of the four modules is
provided with its own clock. These four clocks synchronize one another in a
fault-tolerant way.

The decoders are combinatorial logic networks: thus at the instant an input
changes its logical value the output will be incorrect even if the changing
input bits are restricted to a single symbol. Therefore each decoder has to
be implemented with an input register which samples the data on the bus.

Synchronous clocks do not guarantee instruction synchronism. Therefore
for initial system start-up, resynchronization and reanimation of a repaired
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module a special hardware mechanism I3 required which forces the system
inte instruction synchronism. Pecause most microprocessors ¢an only be
started in a predefined way by applying a reset, this will form the basis of
the instruction synchronization.

The recovery procedure is implemented as follows:

+ All information stored in the (correct functioniﬁg) MiCroprocessors is
saved by transferring it to fixed memory locations.

¢ In each (correct} module a reset signal is generated, initiated by soft-
ware and sent to all other modules.

¢ In each module a majority vote is taken on these signals by which the
hardware reset mechanism is activated.

s The microprocessor data are retrieved from the fixed memory locations
{via the decoders, so faulty data is corrected}.

The whole procedure described above must be implemented as an indivisible
action. However, updating the memory of the repaired module can be done
at any moment by just letting the system read and write back memory words.



Chapter 3

A class of algorithms for
reaching interactive
consistency based on voting
and coding

In this chapler a new class of synchronous determanisie algorithmas for reech-
g tnderactive consisfency will be presented. The number of modules and the
number of rounds of information exchange of these elgorithma s munimel,
te. they meet both the N = 3T + 1 bound and the K = T + 1 bound. The
class of algorithms unll be based on error-correciing codes and comprises the
original algorithm based on voting published n the early eighires. This new
class of algorithms based on voling and coding reguires conmderably less data
communicalion than the origtnal algorithm, Moreover the elnss of algorithms
also comprises clgorithms based entirely on voling which require considerably
less date communieation than the original algorithm,

The algorithm based on voting and coding will be defined and »vroved on the
basis of o clnss of algorithms, called the [hepersed Joined Commaunication
algorithma.
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3.1 Introduction to the Byzantine Generals
Algorithms

3.1.1 The definition of the Byzantine Generals problem

In the introduction to the Inpui Problem, Section 1.3, it already has been
explained that fault-tolerant systems will always be connected to other sys-
tems based on different methods for reliability improvement and in any case
will be connected to basically unreliable input devices.

These unreliabie sources might cause a fault-tolerant system to break down
even if the fault-tolerant system does contain no more faults than it is de-
signed to tolerate. The example in Section 1.5 showed that the root of the
problem was in the broadcasting of the data by the external source to the
N modules of the fault-tolerant system.

In Chapter 2 the definition of (X, Y, T} and (X, VY, Z,T) fault-tolerance has
been based on the agsumption that the function X can be performed fauli
free if at most T modules are faulty.

The Input Problem is related to the Byzaniine Generals Problem, or as it
is sometimes called the Interactive Consistency Problem. This Interactive
Consistency Problem will be the subject of this chapter. In Chapter § we
will show that the Input Problem indeed can be solved by means of an
Interactive Consistency Algorithm or similarly by means of Dispersed Joined
Communication algorithms.

The Interactive Consistency Problem is considered to be one of the most
impeortant problems in distributed computing. The problem is, in one of the
first papers on this topic by Lamport, Shestak and Pease[Lamp §2], sketched
as follows:

We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals
can communicate with one another only by messengers. After observing the
enemy, they must decide upon a common plan of action, However, some
of the generals may be traitors, trying to prevent the loyal generals from
reaching agreement. So the generals must have an algorithm to guarantee
that:

A. Al generals decide upon the same plan of action.
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The loyal generals will all do what the algorithm saye they should, but
the traitors may do anything they wish. The algorithm must guarantee
condition A regardless of what the traitors do,

The loyal generals should not only reach agreement, but should agree upon
a reasonable plan. We therefore also want to insure that

B. A small number of traitors cannot cause the loyal generals to adopt a
bad plan.

Here we finish quoting the sketch of the problem in paper of Lamport et al.
[Lamp 82]

Condition B is hard to formalize, since it requires a definition of a bad plan.
Therefore the problem sketched above will be divided into the following two
distinct parts

e Initially, all generals possess a part of the data, the initial data, on
which the plan will be based. This data will be distributed by all
generals to all generals by an algorithm, which is called the Interactive
Consistency Algorithm. This algorithm ensures that :

— All loyal generals agree among each other on the data they think
they have received from one of the generals, and

— if the latter is a loyal general the sbove-mentioned agreement
should equal the initial data actually sent by this general.

» After having applied this algorithm on the initial dafa possessed by
each of the generals, all loyal generals will be in possession of the same
data on which they apply the same algorithm, whatever this may be,
in order to come to a good plan.

Hence the problem boils down to the design of an Inieractive Consislency

Algerithm or Byzaniine Generals algorithm.

3.1.2 The parameters relevant for interactive consistency
algorithms

The prime parameters that characterize an interactive consistency algorithm
are:

« The number of generals, N.
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s The maximum number of traitors, T, that can be tolerated for the
algorithm fulfilling its requirements. I an algorithm can tolerate at
most T traitors, it 1s said to be T.resthient.

¢ The number of rounds K, i.¢. the maximum number of times 2 message
is relayed from the one general to the other, or in other words, the

depth of the algorithm.

¢ The availability of a path between a pair of generals, i.e. the graph
which represents the communication possibilities.

e The tatal amount of data which has to be transmitied between the
generals,

There are however several other parameters that characterize the Byzantine
Generals Problem. These parameters define the synchrony of the system,
the behaviour of the traitors, and the way in which the algorithm terminates.

By the synchrony of the system we mean whether a loyal general responds
within a commeonly known time span or not. If the loyal generals relay the
data received, possibly after having processed it, within a commonly known
limited time span, traitors refusing to relay data can be detecied by the
loyal generals by means of a time-out mechanism. Such systems will be
called synchronous sysfema,

The second parameter mentioned is the behaviour of the traitors. In general
they can act as they wish, such as refusing to relay data, mutilating the
data or sending conflicting information to different destinations. However,
the behaviour of the traitors is limited if the initial data to be broadcasted
by a general is enciphered and signed in such a way that the other generals
can decode the message but not encipher and sign it again. In this case a
traitor only can refuse to relay the message or mutilate it. The latter however
will immediately be detected by the receiver. This divides the algorithms in
algorithms with and without authentication,

In non-authenticated algorithms, a general at least needs to know by which
general the messenger was sent, i.e. he needs to know the sender of the
message he receives, regardless of whether the message is correct or not.
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One of the prime parameters is the maximum number of rounds K needed by
the algorithm. For some algorithms this number is fixed or always less than
some fixed constant; these algorithms are called deterministic. However,
other algorithm# might need an infinite number of rounds. In that case K
is a random variable with an finite estimated value. The latier algorithms
are called, for more than this reason alone, rendomized Byzaniine {enerals
protocols.

The last parameler to be mentioned is the conneciivity of Lhe graph repre-
senting the communication possibilities between the generals. We already
pointed out in the sketch of the Byzantine Generals problem that the gen-
erals communicate with one another by means of messengers. Some of these
messengers might not be available at all and the communication between
two generals can only be done via a third general. The communication pos-
sibilities belween the generals can be expressed by a graph in which the
nodes are the generals and an edge denotes an existing direct communica-
tion possibility between two generals. It is readily seen that this graph needs
to have a minimum connectivity in order to fulfil the interactive consistency
requirernents.

In the following we will abstract from the story of the generals and consider
the Byzantine generals problem as the problem of N communicating modules
with independent data links between the modules. Among these modules T
or less are behaving maliciously, possibly by transmitting conflicting infor-
mation to different parts of the network, i.e. generating broadcast errors.
Whenever a module transmits by means of an algorithm a message to all
other modules {or possibly conflicting messages when it is malfunctioning),
we define that the algorithm fulfils the fnieractive consisiency requirernents
when the following conditions are fulfilled:

Definition 3.1 (Interactive Consistency)

If an algorithm rune on o system consisting of N modules of which one s
the source, and if tn thia system al most T modules behove maliciously, this
algorithm s seid to fulfil the interactive consistency reguirernenis when the
Jellowing conditions are fulfilled, regardiess of which modules are faulty and
whatl dola was sent by the source:

¢ The well-functioning modules egree omong each other on the daio they
think they have received from the source.
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s [f the source is well-funcfioning, the above-mentioned agreement should
egual the data actually sent by the source.

W

3.1.3 Results published

In this section a chronological overview will he presented of the most impor-
tant papers which address the topic of interactive consistency. Many papers
are not mentioned because they only deal with a related or weaker problem,
or these papers are overruled by improved ones. Some of these papers are
however mentioned in the list of references.

The first publication in which a problem was addressed which is closely
related to the Byzantine generals, is the paper by Davies and Wakerly,
[Davies 78], in 1978, in which the mutual synchronization of modules, some
of which produce broadcast errors, was investigated,

The investigation at Stanford Research International of a fault-tolerant com-
puter, called SIFT, based on software implemented masking {cf. reference
[Wensley 78]) induced the definition and partial solution of the Byzantine
generals problem. The result was a publication by Pease, Shostak and Lam-
port in 1980, [Pease 80]. In this paper the problem of interactive consistency
{IAC) was formulated and it was shown that the JAC requirements as stated
i Definition 3.1 for synchronous systems without authentication cannot be
fulfilled if the number of faulty modules is one third of the total number of
modules or more. For synchronous authenticated systems they showed that
TAC only can be obtained f N > T + 1,

Notice that the interactive consistency requirement can always be fulfilled
if N =2 o0or N = 1. Moreover a system in which N — 1 modules behave
maliciously alse satisfies the interactive consistency requirements. So we
only consider systems with NV > 3 in which less than N — 1 modules bebave
maliciously.

It is readily seen that the N > 37 + 1 bound for synchronous algorithms
without authentication and the N > T + 1 for synchronous algorithms with
authentication at least must hold for asynchronous systems.

Moreover in {Pease 80], a synchronous algorithm with and a synchronous al-
gorithm without authentication was presented, in which the above-mentioned
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bounds were met. In both algorithms the number of rounds, K, needed by
the algorithms is T 4+ 1. The number of messages to be transmitted by the
algorithms grows exponentiall with T, thus the number of messages which

must be transmitted is O(NT).

In papers by Dolev, {Dolev 81|, [Dolev 82-1], the connectivity of the graph,
which represents the communication possibilities hetween the modules has
been studied. In this paper it is shown that the connectivity of this graph
must be at least 27 + 1 for non-authenticated algorithms. A synchreonous
algorithm which meets this bound is presented, but the number of rounds
needed by this algorithm will in general be larger than T + 1. The latter
depends on the graph. The amount of messages to be transmitted between
the modules during the execution of the algorithm again is exponeatial in
T.

Notice that the connectivity of the graph in the case of algorithms with
authentication trivialy raust be at Jeast T 4 1.

In a paper by Lamport, Shostak and Pease [Lamp 82|, the JAC problem
is studied for a special class of graphs and algorithms are described which

golve the problem in these cases.

Synchronous algorithms, in which the number of messages which needs to
be transmitted is polynomial in N and T, were first published by Dolev
and Strong [Dolev 82-2] and thereafter improved in a paper by Dolev, Fis-
cher, Fowler, Lynch and Strong [Dolev 82-3]. In this paper a synchronous
algorithm based on messages without authentication is described, which can
be used for any N > 37 + 1, which requires A = 27 -+ 3 rounds, and in
which the total number of messages which neads to be transmitied is only
O(NT +T%logT).

One of the most surprising results which has been obtained is that the mini-
muin number of rounds needed for any synchronous algorithm is '+ 1. This
bound holds for both algorithms with and without authentication. The
K > T +1 bound was first published by Fischer and Lynch [Fischer 82] and
thereafter it was generalized by Dolev and Strong [Dolev 83-1].

The latter paper [Dolev 83-1] also presented a synchronous algerithm based
on authentication, with ¥ = T'+ 1 and K = T + 1, and which only requires
O{NT) messages.
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So far, all algorithms published are deterministic and are based on a syn-
chronous system. Thus the maximum number of rounds needed by the al-
gorithm 1s bounded by some constant and any correctly functioning module
will pass through its daia within a commonly known time span.

Fisher, Lynch and Paterson [Fischer 83], {Fischer 83} showed that in asyn-
chronous gysfems deterministic algorithms are Impossible. These results
have been elaborated and strengthened by Dolev, Dwork and Stochmeyer,
[Dolev 83-2} by defining more carefully the meaning of asynchrony.

Randomized Byzantine generals algorithms were first published by Rabin,
{Rabin 83] and Ben-Or, {Ben-Or 831, Rabin published an algorithm with
N > 10T for asynchronous systems. The expected number of rounds needed
by this aigorithm is only four. The algorithm published by Ben-Or needs
N > 5T modules. The latter result has been bmproved by Bracha
[Bracha 87-1]. This paper proves that asynchronous randomized algorithms
are possible if and cnly ¥ N » 37. For this proof the definition of termina-
tion needed to be refined.

In [Bracha 87-2] Bracha presents a randomized algorithm for synchronous
systems which only needs O(log N) expected number of rounds of informa-
tion exchange. If authenticated messages are used the number of modules
musi be N > 2T, Without aushentication & » 37 is required. This Is an
improvement compared to the K > T + 1 for determinisiic algorithms.

Bummary of the results published

The main resulls oblained in the papers mentioned can be summarized as
Tollows:

s Interaclive consistency algorithms

— without authentication are only pessible if ¥ > 37 + 1, and
— with authentication are only possible if N > T + 1.

+ The connectivity K, of the graph representing the communication pos-
sibilities in the system must be

— at least 2T + 1 for non-authenticated messages, and

— at least T + 1 for authenticated messages.
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s Deterministic TAC algorithms for asynchronous systems are not pos-
sible.

¢ Deterministic FAC algorithms for synchronous systems are only pos-
sible f K > T + 1.

e Deterministic FAC algorithms based on synchronous systems, a fully
connected graph, and the following parameters exist:
— nop-authent,, N > 3T +1, K=T-+1, #fmess=O(NT}.
~ authent., N>T+1, KE=T+1, #mess=0(NT)
~ non-authent., N > 3T + 1, K =2T +3,
#mess = O[N.T + T log T).

» Determinisiic FAC algorithms for synchronous systems based on a not
fully connected graph can always be derived from the algorithms which
are based on a fully connected graph af the expence of the number
of rounds that are needed, provided the conpectivity requirement is
fulfilled.

» Randomized 7 AL algorithms exist for the following parameters:

- asynch., non-authent., N > 107 + 1, Kerpectza = 4.
asynch., non-authent., &% > 3T+ 1

— synch., wnon-authent., N > 3T+ 1, #tmess = O(log N)
synch., authent., N 22T +1, #tmess = OflogN)

i

Open question:

This summary shows clearly that there are many open questions. In practice
the application of Interactive Consistency Algorithms is limited by the large
number of messages which needs to be transmitted between the modules of
the system, cf. Chapter 4, Therefore one of the most challenging guestions
s whether a bound can be proven on the minimum uwumber of messages
whick need to be transmitted for obtaining Byzantine agreement given N,
K and T.
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3.2 Introduction to the algorithms and their proof

3.2.1 A survey of the algorithms considered

In the following we will present a class of synchronous deterministic algo-
rithms which solves the Byzantine Generals problem for all values ¥ > 8741
and K > T + 1. This class of Interactive Consistency Algorithms which is
based on voting and error-correcting codes will be derived from a class of
algorithms which we will call Dispersed Joined Communication algorithmas.
The latter class of algorithms satisfies more liberal properties than those
which are required for the Interactive Consistency Algorithms.

The basic ideas behind these classes of algorithms have similarities with
the algorithm which we will call the Pease algorithm and which is pre-
sented in {Pease 80|, Dolev {Dolev 82-1}, and van Gils [Gils 85] and with
the {X,¥Y,Z,7T) fault-tolerant systems.

The Pease algorithm is a member of our class of algorithms.

In the new class of IAC algorithms presented in this chapter, the amount of
messages which needs to be tranemitted between the modules is reduced
considerably compared with the existing synchronous deterministic non-
authenticated algorithms.

s Firstly by reducing the number of directions in which a message is
forwarded and

» secondly by replacing the broadecast functions by the encoder fune-
tions of error-correcting codes and simuitaneously replacing the voting
function in the decision-making process by the decoder functions of
the error-correcting codes applied in the broadcast process.

The class of Interactive Consistency Algorithms which is the issue of this
chapter thus contains a subclass which is based on voting, ef. Figure 3.1. In
this subclass the only functions applied are broadcasting data and majority
votes on data. In the entire class of algorithms, however, the broadcast
function is replaced by the encoding function of an error-correcting code
and the majority vote by the corresponding decoder function of the error-
correcting code.

The difference between the algorithms in the subclass based on voting aad
the algorithm presented in [Pease 80] is that in the latter algorithm during
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!
algorithm

Algorithme
baned on vating

Algorithrme based on error-correcting c<odes /,

\\ Diapersed Joined Communication Algorithms //

Figure 3.1: The classes of Interactive Consistency Algorithms and the class
of Dispersed Joined Communication Algorithms discussed in this chapter.

each round a message is relayed to all modules which have not yet passed
by the message, while in our algorithm each message only needs to be sent
to at least 2T + 1 modules which have not vet been passed.

3.2.2 The way in which the algorithms are described

Let a system be composed of N fully interconnected modules. So between
any two modules a communication channel is available in both directions.
Due to these individual channels between the modules, if it behaves correctly
a recelving module always ‘knows’ which module has inserted data on the
input side of the channel, regardless of whether the sending module behaves
correctiy or maliciously,

The modules are identified by the elements of the set Na. So [Ns| = N.

At most T of the modules in the system are allowed to behave maliciously.

In the current context an algorithm aims at tranemitting a message from a
particular source to a number of destinations. The algorithm preseribes the
reles and formats for conducting communications on the network and the
operations performed on the messages in the modules, So the description of
an algorithm may be regarded as a protocol.

On the other hand, the input of an algorithm is the original message in
the source and the output are the decisions {estimates] calculated by the
destinations about whal the source tried io send to them.
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So an algorithm has both topological and behavioural aspects, i.e.:

¢ Topological aspects which provide information about the source mod-
ule, the set of destinations and the way a message s routed through
Lhe network from the source to the destinations.

e Behavioural aspects which provide information about the functions
performed in the modules on the messages before they are forwarded
to the next module and the functions which are performed in order to
calculate the decision in the destinations.

We restrict ourselves to synchronous deterministic algorithms. This means
that the modules in the system run synchronously and have a common notion
of time. Moreover the number of rounds of the algorithm is fixed. Therefore
the system can be modelled according to the Moore model. The number of
time instances used by the algorithm is K+ 1, hence the algorithm comprises
K + 1 rounds synchronously executed by the modules. These rounds are

enumerated 0,1, -, K.
For convenience an algorithm is divided into two parts:

e a broadcasiing process which comprises the rounds 0,---, K — 1.

e a decision-making process which is executed during round K and in
which the result of the algorithm in each module is calculated.

Each round of the broadcasting process consists of two parts:

1. A number of (combinatorial) functions is applied on the data received
in the previous round in each module, one for each module to which a
result will be sent. Such a function may depend on:

e the module in which it is executed,
# the round, and

o the destination to which the result is sent.
2. The exchange of data between the modules.

During the last round, i.e. the decision-making process, no information
exchange takes place. The algorithm thus comprises K rounds of information

exchange.
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The broadcasting process

Data sent from one module to another during a particular round is divided
into a number of messages. Each message is treated by a module individually.
Functions are thus only applied on a single message and the result of the
function application again is a single message. Clearly in a particular module
during a particular round more than one function may be applied on the same
incoming message resulting in more than one outgoing message, but during
that round all these messages will be sent in different directions. This means
that a message which is received during a particular round can only cause
single messages to be sent in different directions. Conversely, if a message is
transmitted from a first module bo a second, then this is always caused by a
message which in the previous round has been received by the first module.
Thus no messages are generated spontaneously. Also the original message
available in the source at the beginning of round 0 is regarded as having
been received during the previous round.

Consequently the messages can be identified by the path they travelled
through the network. For example, a message which originated in mod-
ule 2 and which aller modification by a function was sent to module ¥, and
again after modification was sent to module ¢, is identified by the siring
(path} {a,b,c}. Only K + 1 time instances are taken into account which
encompass K rounds of information exchange. So messages are identified
by elements of the set of all strings of length K 4 1 or less over the set of
module identiliers Ns. A string will be denoted by a symbol like g,
Messages are not forwarded in all directions, therefore we define a function
B on the set of all strings of length K or less over Ns, such that Bis] is the
set of modules to which the message which is identified by g, is sent after
modification.

The messages, or more precisely the values of Lthe messages, are represented
as a function m on the set of message identifiers. So m{s) is the message
which is identified by g and m{a, b, ¢) is the message {== message value) which
is received during round 1 by module ¢ from module & and which travelled
from module o via module 5 to module ¢.

The decision-making process

The decision-making process acts independently in each module on the mes-
sages which are received by that module during the entire broadcast process.
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If we are dealing with Interactive Consistency Algorithins, the results of the
calculations performed in eack module by the decision-making processes have
te Fulfil the interactive consistency requirements as defined in Definition 3.1

on Page 119,

3.3 The Dispersed Joined Communication Algo-
rithms

3.3.1 Introduction

In this section we will define a new class of algerithms which will be called
Dispersed Joined Communication algorithms {DJC algorithms). These aim
to transmit a message from a single source module to a number of destina-
tions in the presence of a number of maliciously behaving modules.

In erder to be able to tolerate modules which behave maliciously, the com-
munication between the source and the destinations is dispersed, i.e. the
message which needs to be transmitted is sent possibly in differently modi-
fied versions, via different paths from the source to the destinations.

A DJC algerithm prescribes the way in which the message is forwarded
through the network from the source to the destinations, the way in which
the messages are modified by the modules, and the way in which the final
resnlt is calculated in the destinations. Although the message passing is
dispersed, the message passing and medification for different destinations is
Joined as much as possible, l.e. for any two destinations d and e, it holds
that all paths from the source to these destinations are shared as much as is
compatible with the additional requirement that a message is never relayed
to a module that it has already passed. This means that the set of directions
B(s} into which a module will forward a message g it received in the previous
round does not depend on its final destinations, but only on the path followed
hitherto,

First in Section 3.3.2, we will describe the way in which these algorithms are
constructed.

Next, in Section 3.3.3, we will investigate for which parameters N, X and
T they can be constructed, i.e. we will investigate the topological aspects of
the algorithm.

And finally in Section 3.3.4, we will prove some of their behavioural prop-
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erties, 1.e. the relation between the original message value in the source
modile and the value finally calculated in the destinations.

The behavioural properties of the DJC algorithms have strong similari-
ties with the interactive consistency requirements but differ from the latter
that in particularly well-defined circumstances correctly functioning modules
might arrive at different decisions.

To be more precise, the DJC algorithms will be defined such that they satisfy
the following behavioural properties:

« If the source and destination are both functioning correctly, then the
decision calculated by the decision-making process in the destination
equals the original message in the source.

« For an algorithm which is based on X rounds of information exchange
and which aims at cemmunicating a messape from a source module a
to a number of destinations, it will hold that if the result calculated in
two correctly functioning destinations is different then a message has
travelled along a path of length K from the source module a to these
destinations consisting of K different modules which all {(the source
module a inclusive} behave maliciously.

A sub-class of these DJC algorithms will define and prove the properties of
a new class of Interactive Consistency Algorithms which are based on voting
and coding.

Moreover the algorithms which solve the Input Problem will be based on
these DJC algorithms.

So the class of DJC algorithms encompasses the class of Interactive Consis-
tency algorithms which are based on voting and coding, ¢f. Figure 3.1 on
page 125,

Dispersed Joined Communication Algorithms are defined on a set Ns of
fully interconpected modules. A particular DJC algorithm aims at sending
a particular message frem a particular source module g to a particular sef of
destinations D), by means of K rounds of information exchange, Figure 3.2.

In general there will exist many DJC algorithms which have the same prop-
erties,
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Figure 3.2: A pictural representation of an algorithm in the class
A(T,K,a,D,Ns).
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Therefore we define classes

A(T,K,a,D,Ns)

of DJC algorithms in which:

T is the maximum number of maliciously behaving modules

which is tolerated.

K is the number of rounds of information exchange.
a is the source module of the algorithm.

D is the set of destinations.

Ns is the set of modules in the system.
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Obviously these classes A{T, K, ¢, D, Ns) of DJC algorithims are only defined
if
K>1 and e€Ns and DCNs (3.2}

In order to exclude some pathological ¢lasses we additionally require
DI >K+1 (3.3)

A particular algorithm in a class A(T, K, a,D,Ns} lays down in detail the
way in which a message travels from the source g to the destinations d in D
via different parallel paths in K rounds of information exchange. Moreover
the algorithm prescribes the way in which the messages are modified during
their journey though the network and the way in which in each destination
d a decision is calculated starting from all data received by d.

An algorithm in the class A{T, K,a, D, N8} forwards the original message in
the source module in K rounds of information exchange to the destinations
in D. In accordance to our remarks in the previous section, the original
message in the source is denoted by

m(s,a} orby m(a) (3.4)

The prelix & to the source module identifier a is only used if we need to
distinguish between different messages in the same module ¢ and in that
case denotes the path along which the messapge travelled to module a.

If a message m(s,a) (or m{a}} is sent to the modules in the set D by means
of an algorithm from the class A{T, K,a,I},Nas), then the results calculated
in the modules d are denoted by

decy((s,a),d} (or by decx((e}.d})} with deD (3.5)

Notice that for the definition of the algorithms it is not necessary to have an
expression for a particular algorithm in a class of algorithms. Moreover we
do not use an explicit single expression for the relation between the input
value m{a) and the output value deky((a},d).

lu order to elucidate the difference between an explicit and an implicit de-
scription, we consider the following example.

Suppose a class of systems § consists of two concatenated modules identified
by @ and 4. The input value to a is denoted by z, the value sent from a to b
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by y, and the output value of b is denoted by #. In module a a function f is
executed which belongs to a ¢lass of functions F and in module b a function
¢ is executed which belongs to a class of functions &,

The explicit definition of the class of systems 5 is as follows:

Let 5 be a class of systems with input vaive 2 and output value
#, the relation beiween z and z is defined by z = s(z) in which
#==go f and f is a function from the class ¥ and ¢ is a function
from the class . '

The implicit definition of the class of systems S is as follows:

Let S be a class of systems with input value 2 and output value
z. The systems in the class § are composed of two modules a
and b. In module z a function from the class F is executed on its
input value z and the result is forwarded to module . In module
b a function from the class G is executed on the value received
from a. The result is called z.

Both the explicit and the implicit description define the behavioural aspects
of the system equally well. However, the latter {(implicit) definition provides
additional topelogical information about the system. This topological infor-
mation is important for the DJC algorithms and therefore we will apply the
implicit way of defining the DJC algorithms.

3.3.2 The constroction of the Dispersed Joined Communi-
cation Algorithms

Let a system be composed from a number of fully interconnected modules.
At most T of the modules in the system are allowed o behave malicionsly.

The algorithms in the classes A(T', K, 2,13, Ns) will be defined recursively
with respect to K. The basis of the recursion is the case K = 1.

The construction of the algorithms in the class A(T,1,a,D,Ns)

An algorithm in the class A(T,1,a,1),Ns) is based on only one round of
information exchange.
Recall from (3.1} through (3.3) that a denotes the source module of the
algorithm, D denotes the set of destinations and Ns denotes the set of
modules in the system,
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Moreover recall that classes A(T,1,a,D,Ns) of DJC algorithms are only
defined if

a€Ns and DCNs and |D|>2 (3.6)

These restrictions concern the topological aspects of the class of algorithms.

Under the given conditions the class A(T,1,a,D, Ns) contains the following
algorithm:

During round 0, the source module a sends the original message m(a) directly
and unchanged to all modules in D — {a}. If a € D then module a keeps a
copy of the message m(a) itself in order to be used in the decision-making
process during round 1. The messages received by the modules d in D — {a}
from module a are denoted by m(a,d), cf. Figure 3.3.

i ] V deey((a),a) .

m{a) mfa,d) deci{(a),d)

m{a, e) decy((a), €}

A

Figure 3.3: A pictural representation of an algorithm in the class
A(T,1,a,D,Ns).
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During round 1 the decision-making process is executed in which in each
module d, with d € (D — {a}), the message m(a, d) received from a is taken
as decision decy({a),d) and if a € D then the decision deci((a),a) in module
a will be equal to the stored message m(a).

So the behavioural aspects of the algorithms in the class A(T\,1,q¢,D,Ns)
(starting from correctly functioning modules) are defined by:

d € (D - {a}) => m(a,d) = m(a)
a € D = decy((a),a) = m(a)

d € (D — {a}) => decy((a),d) = m{a,d)
(3.7)

Notice that for any module @ and any sets D and Ns which satisfy (3.6),
such an algorithm can be constructed. Thus the class A(T,1,a,D,Ns) in
that case is non-empty.

-

The recursive construction of the algorithms in the class
A(T,K,a,D,Ns) with K > 1 in terms of algorithms from the set of
classes A(T,K —1,b,D — {a},Ns — {a}) with b € Ns.

Bear in mind that the original message in a source module is denoted by
m(a). Also remember that the result of a DJC algorithm from the class
A(T,K,a,D,Ns) calculated in a module d with d € D is represented by
deck((a),d).

The construction of the algorithms in the class A(T, K,a,D,Ns)

with K > 1 will be based on encoding the original message m(a) in the
source into symbols of a T-error-correcting code, thereafter transmitting
each symbol to a different module b, which forwards the received symbols to
the destinations by means of an algorithm from the class A(T, K —1,5,D —

{a},Ns — {a}).

Therefore let Y(4) be the encoder function of some T-error-correcting code
of which the code words consist of n(,) symbols of size b(,) and of which the
data words consist of k(,) symbols. The corresponding decoder function is
as usual denoted by y((a‘)”. Suppose the original message m(a) consists of
k(a) symbols and the symbol which is sent to b is denoted by m(a,b), then
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this symbol is related to m(a) by

m(a,b) = Y(5)(b)(m(a)) (3.8)

in which the Y(,)(b) is called the partial encoder function of the encoder
function Y(4) which delivers the symbol which has to be sent to module b.

With the preceding remarks we are able to define the DJC algorithms in the
class A(T, K,a,D,Ns) with K > 1. See Figures 3.4, 3.5 and 3.6.
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Figure 3.4: A pictural representation of the construction of an algorithm in

the class A(T,K,a,D,Ns).
The DJC algorithms in the class A(T, K,a,D,Ns) with K > 1 are con-
structed as follows:

1. During round 0

(a) If the source module is one of the destinations, thus a € D, the
original message m{a) in the source is kept stored in the module in
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Figure 3.5: A pictural representation of the way in which the decision
deck((a),d) in a module d with d¢ B(a) is obtained from the partially
encoded messages sent by module a to the modules in B(a)

(b)

order to be used later on during round K in the decision-making
process, cf. Figure 3.4.

Furthermore in the source module a a number of partially encoded
versions m{a,b) of the original message m(a) are calculated such
that m{a,b) = Y(4)(b){m{a)).

Thereafter each of these partially encoded versions m(a,b) of the
original message is sent to a different module. These modules are
indicated by the nezi-set B(a). So b € B(a). The number of
modules b to which the partially encoded messages are sent must
be at least 27 + 1.

2. During the rounds 1,--- K, each module b in the next-set B(a) for-
wards the received partially encoded message m(a,b) to the destina-
tions indicated by D — {a} by means of an algorithm from the class
A(T,K—1,b,D—{a},Ns—{a}). The results of these algorithms in the
destinations d € (D — {a}) are denoted by deck-1((a,b),d). These re-
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Figure 3.6: A pictural representation of the way in which the decision
deck((a),d) in a module d with d € B(a) is obtained from the partially
encoded messages sent by a to the modules in B(a)

sults are calculated during the first part of the decision-making process
which is executed in round K.

3. During the second part of the decision-making process which is exe-
cuted during round K, the decision decx((a), d} in the modules d with
d € (D — {a}) is obtained by applying the decoder function y{(;}” on
the results decx_1({a,b),d) with b € B(a).
If a € D then the decision deck((a),a) is obtained by taking the mes-
sage value m(a) which had been kept stored in module a, cf. Figures 3.5
and 3.6.
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Notice that the algorithms in the class A(T, K,q,D,Ns) require K rounds
of information exchange, while the algorithms in the class A(T, K —1,b,D —
{a},Ns — {a}) require K — 1 rounds of information exchange. The latter
are preceded by the round in which the partially encoded messages are sent
from a to b. So round ¢, with 1 < ¢t < K, of the algorithms in the class
A(T,K,a,D,Ns) corresponds to round ¢ — 1 of the algorithms in the class
A(T,K —1,b,D — {a},Ns — {a}). And thus the calculation of the decisions
deck_1({a,b),d) in a module d € (D — {a}) precedes the calculation of the
decisions deck((a},d) during the same round K.

We further remark that during round ¢, with ¢t > 2, a module b in gen-
eral receives more than one message m(s;,b), which arrives from the source
module a via different paths s;. Each of these messages is dealt with by &
separately. If £ < K — 2, they are each encoded by means of an encoder
function that depends on s; and thereafter forwarded to destinations which
are determined by the set B(s;,b) which depends on g;. How module & dis-
criminates between the messages it receives is a matter of implementation
and will not be further commented on.

Clearly the construction described above is possible if and only if

e A next-set B(a) can be found which is a subset of Ns — {a} and which
contains at least 27 + 1 modules.

e A T-error-correcting code exists of which the code words consist of -
|B(a)| symbols.

o The classes A(T,K —1,b,D — {a},Ns — {a}) of DIC algorithms with
b € B(a) are all non-empty.

3

(3.9)

The behavioural aspects of the algorithms in the class A(T, K, a,D,Ns) can
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be summarized as follows:

m(a,b) = Y(uy(b)(m(a)) for all b € B(a)
deck1((a,b),d) follows from m(a,b) based on
an algorithm from the class A(T,K —1,6,D — {a},Ns — {a})
d # a => deck((a),d) = y((;)‘) applied on
\ the values decx_y((a,b),d) with b€ B(a)
d = a = deck((a),d) = m(a)
(3.10)
3.3.3 The existence of Dispersed Joined Communication
Algorithms in the classes A(T,K,a,D,Ns)

The next step is to investigate for which parameters DJC algorithms can
be constructed or stated in a different way, for which parameters the classes
A(T,K,a,D,Ns) are non-empty.

Recall from (3.2} and (3.3) that the classes A(T, K, a,D Ns) of DJC algo-
rithms are only defined if

K>1 and a€Ns and DCNs and [D|>K+1 (3.11)

If these constraints are not satisfied a class A(T, K,a,D,Ns) is empty by
definition.

Within this context, the next theorem will show that the non-emptiness of
the classes A(T, K,a,D,Ns) only depends on the number of modules in the
system, i.e. |[Ns|, the number of rounds K and the number T of faults which
is to be tolerated.

Theorem 3.1

o ForallT withT > 1 and
o for all K with K > 2 and
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o for all fully interconnected systems consisting of |Ns| modules, and
e for all source modules a in the system, and
o for all sets D of destinations, with D C Ns and [D| > K +1

it holds that the class of algorithms A(T, K,a,D,Ns) s non-empty if and
only if
INs| > 2T + K

Proof:

The theorem will be proved by induction with respect to K. The basis of
the induction will be K = 2.

However before we elaborate on the classes of algorithms with K = 2 and
prove the theorem for K = 2 we will first have to determine the constraints
for the classes of algorithms with K = 1.

Throughout the proof we assume that the parameters K and T, the source
module a, and the sets Ns and D satisfy

T>1and K>1 and a€Ns and DCNs and |D| > K+1 (3.12)

Recall that classes A(T, K,a,D,Ns) which do not satisfy these constraints
are assumed to be empty.

From the construction of the algorithms in the classes A(T,1,a,D,Ns) we
know that in these algorithms the original message in a is sent directly and
unchanged to the modules in D — {a} and that if a € D the message m(a)
is kept stored in the module. Because we start from a set of fully intercon-
nected modules, such algorithms can always be constructed and thus the
class of algorithms A(T, 1, a,D,Ns) is non-empty if and only if the general
constraints expressed in (3.11) are fulfilled, i.e.:

DcNs and |D|>2 (3.13)
From this immediately follows the necessary and sufficient requirement
|Ns| > 2 (3.14)

The proof of the theorem for K = 2 is as follows:
From our remarks (3.9) on the construction we recall that the construction
of algorithms with K = 2 is possible if and only if
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1. A next-set B(a) can be found which is a subset of Ns — {a} and which
contains at least 27" 4+ 1 modules.

2. A T-error-correcting code exists of which the code words consist of
|B(a)| symbols.

3. The classes A(T,1,5,D — {a},Ns — {a}) of DJC algorithms with b €
B(a) are all non-empty.

The first requirement can be satisfied if and only if
|Ns| > 2T + 2 (3.15)

The second requirement can always be fulfilled because [B(a)| > 2T +1 and
because it is always possible to construct a T-error-correcting code with code
words consisting of any number of symbols if this number of symbols is at
least 2T + 1, [MacW 78].

The third requirement is fulfilled if the general constraints of the classes
A(T,1,b,D — {a},Ns — {a}) are satisfied, i.e.

T>1 and be (Ns— {a}) (3.16)

and

(D —{a}) c(Ns—{a}) and D-{a}|>22 - (8.17)
and the if and only if the condition expressed in (3.14) is satisfied, i.e.:
|Ns — {a}| > 2 (3.18)

Predicate (3.16) is trivially satisfied by the assumption (3.12) and the facts
that b € B(a) and B(e) c Ns — {a}.
Predicate (3.17) follows from (3.12) and

(D c Ns) = ((D — {a})  (Ns — {a}))

Moreover K = 2 and [D| > K + 1 in (3.12) implies [D ~ {a}| > 2.
Predicate (3.18) is implied by K =2 and |D| > K + 1 and D C Ns.

Hence for all T',a,Ns,D with T > 1 and e € Ns and D.c Ns and [D| > 3 it
holds that the class of algorithms A(T,2,a,D,Ns) is non-empty if and only
if

INs| > 2T + 2 (3.19)
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Which proves Theorem 3.1 for K = 2.

Suppose Theorem 3.1 holds for K — 1 with K > 3. So suppose for all
T,a,Ns,D with T > 1 and ¢ € Ns and D C Ns and |D| > K holds that
the class of algorithms A(T, K — 1,a,D,Ns) is non-empty if and only if

[Ns| > 2T+ K —1 (3.20)

Again from our remarks (3.9) to the construction we recall that the construc-
tion of algorithms based on K rounds of information exchange is possible if
and only if

1. A next-set B(a) can be found being a subset from Ns — {a} which
contains at least 27" + 1 modules.

2. A T-error-correcting code exists of which the code words consist of

[B(a)| symbols.

3. The classes A(T,K —1,b,D — {a},Ns — {a}) of DJC algorithms with
b € B(a) are all non-empty.

The first requirement can be satisfied if and only if

INs| > 2T + 2 (3.21)

The second requirement can always be fulfilled because (B(a)| > 27+ 1 and
because it is always possible to construct a T-error-correcting code with code
words consisting of any number of symbols if this number of symbols is at
least 27" + 1, [MacW 78].

The third requirement is fulfilled if the general constraints of the classes
A(T,K — 1,b,D ~ {a},Ns — {a}) are satisfied, i.e.

T>1and K-12>1 and be& (Ns—{a}) (3.22)

and

(D-{a}) c (Ns—{a}) and D—{a}|> K (3.23)

and if and only if the condition expressed in (3.20) is satisfied, i.e.:

INs - {a}| > 0T+ K — 1 (3.24)
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Predicate (3.22) is satisfied by the assumption (3.12), the assumption K > 3,
and the fact that b € B(a) and B(a) c Ns — {a}.
Predicate (3.23) follows from (3.12) and

(D ¢ Ns) = ((D - {e})  (Ns - {a}))

Moreover [D| > K + 1 in (3.12) implies [D — {b}| > K.
Predicate (3.24) is satisfied if and only if

INs| > 2T+ K (3.25)

So the necessary and sufficient condition (3.21) for satisfying the first require-
ment is implied by the necessary and sufficient condition (3.25) for satisfying
the third requirement. Moreover the second requirement is always satisfied.

Hence the assumption {3.20) implies that for all 7', a,Ns,D with T > 1 and
a € Ns and D ¢ Ns and [D| > K +1 it holds that the class of algorithms
A(T, K,a,D,Ns) is non-empty if and only if

INs| > 2T + K (3.26)

We already proved the theorem for X = 2 and thus by induction on K we
obtain that (3.26) holds for any K > 2.
Which completes the proof of Theorem 3.1. o

3.3.4 Some behavioural properties of the Dispersed Joined
Communication algorithms in the presence of at most
T modules which behave maliciously

The behavioural properties of the Dispersed Joined Communication algo-
rithms are expressed in the following theorem.

Theorem 3.2

Let the modules of a fully connected system be represented by the set Ns. At
most T of these modules behave maliciously.

Suppose that by means of any DJC algorithm from the class A(T, K, a,D,Ns)
a message m(a) s transmitted from the source module a to the destinations

represented by the set D. And let the decisions calculated in the destinations
d with d € D be denoted by deck((a),d), then
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e 1. If the source module a and a destination d are both functioning cor-
rectly then the result deck((a),d) of the algorithm calculated in module
d equals the original message m{a) in module a.

e 2. For any two destinations d and e which are both functioning cor-
rectly it holds that if the results deck((a),d) and decx((a),€) are un-
equal, then the number of maliciously behaving modules in the system
18 at least K. ]

Proof:

We start with property 1.

Let us assume that a and d are two correctly functioning modules in the
system in which a is the source module of the algorithm, ¢ € Ns, and d is
one of the destinations, d € D.

If a = d then according to the construction of the algorithms A(T, K, a,D,Ns)
with K = 1 on page 133 and with K > 1 on page 135, it holds that
deck((a),d) = m(a).

So we need only to consider the case d # a, i.e. d € (D — {a}). For these
cases we prove deck ((a),d) = m(a) by induction with respect to K.

Basis: K == 1.

From the construction we know that any algorithm in a class A(7,1,e,D,Ns)
is based on only one round of information exchange. During round 0 the
original message m(a) in a is sent to d directly and unchanged and during
round 1 the decision taken in module d equals the message received from a.
So because we assume that a and d are functioning correctly it holds that

deci((a),d) = m{a).

Induction step: K > 1

The algorithms in a class A(T, K, a,D,Ns) have been constructed from the
algorithms in the class A(T, K —1,5,D — {e},Ns — {a}) with b € B(a) and
B(a) Cc (Ns — {a}).

For the latter algorithms we know from the induction hypothesis that if a
message m(a,b) is communicated by a correctly functioning source module
b to a correctly functioning destination d in D — {a} then

decg_1({a,b),d) = m{a,b) (3.27)

Moreover from the construction we know the following:
In module a by means of the encoder function y(a), the original message is
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encoded into |B(a)| symbols and during round 0 each symbol is sent to a
different module b, with b € B{a). So

m(a,b) = Y(a)(b)(m(a)) (3.28)

cf. (3.10). Each of these modules b thereafter forwards the message m(a,b)
(is the code word symbol) to the destinations represented by the set D — {a}
by means of an algorithm from the class A(T, K — 1,b,D - {a},Ns — {a}).
As the result of these algorithms in each destination d of the set D — {a},
|B(a)| decisions decx—1((a,b),d) will become available. If module b is func-
tioning correctly then according to (3.27) and (3.28) it holds that

deck-1((a,b),d) = Y(a)(5)(m(a)) (329)

The decoder function y(‘;)l) is applied to these decisions decx_1((a,b),d)
with b € B(a) in each module d. At most T modules b behave maliciously so
at most T decisions do not satisfy (3.29). The code Y(a) is T-error-correcting
and thus deck({e),d) which is the result of applying the decoder function
on the values deckx-1((a,b),d) must be equal to m{a).

This completes the proof of property 1.

Next we prove property 2.

Let us assume that two destination d and e, with d,e € D behave correctly
and that deck ((a),d} # deck((a),€).

If the source module a is functioning correctly then, by property 1 it holds
that

deck((a),d) = m(a) = deck((a),e)

conflicting the assumption deck ({(a),d) # deck((a),e). So we conclude that
module a is behaving maliciously and thus d # a and e # a.

Again we use induction with respect to K.

Basis: K=1

We already concluded from our assumption deck ((a),d) # deck((a),e) and
d and e both behaving correctly, that module a is behaving maliciously.
Hence the system contains at least one maliciously behaving module.

Induction step: K > 1
Recall that during round 0 the symbols are sent by module a to the modules
b with b € B(a). During the rounds 1,--- K, each of these symbols m(a, b)
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is forwarded to the destinations in the set D ~ {a} by means of an algo-
rithm from the class A(T, K —1,b,D — {¢},Ns — {a}). The results of these
algorithms calculated in the modules d with d € (D — {a}) are denoted by

decx—1((a,b),d).

Let deck—1((a,b),d) and decx—1{(a,b),e) with b € B(a) be decisions cal-
culated in modules d and e. We already concluded from our assumption
deck((a),d) # deck((a),e) and d and e both behaving correctly, that mod-
ule g is behaving maliciously and d # @ and e # a. Hence d,e € (D — {a}).
Since d # a and e # a, the decision deck((a),d) is based on applying the

function y(‘;)" on the decisions decx_1((e,b),d) with b € B(a), whereas the

decision deck((a),e) is based on applying the same function y((;)” on the
decisions decx_1((a,b),e) with b € B(a). It follows that

Vb : b€ B(a) = deckx-1((a,b),d) = deck_1({a,b), ) (3.30)

would imply deck ({a),d) = deck((a),e). The latter however is conflicting
with the assumption deck ({a),d) # decx((a), ) so we must conclude

b : beB(a) Adeck-1((a,b),d) # deck_1((a,b),e) (3.31)

Recall that our assumption implies d,e € (D — {a}}. So from the definition
of the construction of the algorithms in the class A(T, K, ¢, D, Ns) we know
that the decisions deck-1((a,b),d) are the result of the algorithms from the
classes A(T,K,a,D — {a},Ns — {a}) with b € B(a).

According to the induction hypothesis it holds for the latter classes that if
the modules d and e are both functioning correctly and deck_y((a,b),d) #
decg_1{(a,b},e) then the number of maliciously behaving modules in the set
Ns — {a} must be at least K — 1. And thus with (3.31) we conclude that the
set Ns — {a} must contain at least K — 1 maliciously behaving modules. We
already concluded from the assumption that module a behaves maliciously.
Hence the set Ns must contain at least K maliciously behaving modules.
Which completes the proof of Theorem 3.2. o
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3.4 A class of algorithms for reaching interactive
consistency based on voting and coding

The class of algorithms for reaching interactive consistency based on voting
and coding immediately follows from the Dispersed Joined Communication
Algorithms defined in the previous section.

Let a system consist of N modules identified by the elements of a set Ns.
At most T' modules in this set behave maliciously. Then the classes of
Interactive Consistency Algorithms among the classes of DJC algorithms
are those in which the set of destinations encompasses the entire system and
the number of rounds is one more than the number of maliciously behaving
modules which need to be tolerated, i.e. the classes:

A(T,K,a,D,Ns) with

T>1 and K=T+1 and D=Ns
(3.32)
From Theorem 3.1 on page 139 we know that a class of DJC algorithms
A(T,K,a,D,Ns) with D ¢ Ns and |[D| > K + 1, is non-empty if and only
if
[Ns| > 2T+ K (3.33)

So from (3.32) and (3.33) it follows that:

Corollary 3.3 Interactive Consistency Algorithms based on voting and cod-
tng can always be constructed if

T21 and N2>23T+1 and K=T+1

The Interative Consistency Algorithms in a class A(T,T + 1, a, Ns, Ns) sat-
isfy the interactive consistency requirements, as they have been defined in
Definition 3.1 on page 119, i.e.:

Theorem 3.4 Any Interactive Consistency Algorithm from the class A{(T, T+
1,a,Ns,Ns) which runs on a system of N modules, N > 3T + 1, which are
tdentified by the elements of the set Ns, of which at most T behave mali-
ciously, T > 1, and which aims at transmitting a message m(a) in the source
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module a to all modules of the system, satisfies the interactive consistency
requirements

Yd : a,d € F = decry1((a),d) = m(a)
and Vd,e : d,e € F = decr41((a),d) = decr1((a), e)

in which F 18 any set of correctly functioning modules such that
[F|>N-T and FCNs

and decry1({a),d) with d € Ns denotes the decision in a module d about
what module a tried to send. O

Proof:

Consider Interactive Consistency Algorithms which are defined by the non-
empty class of DJC algorithms A(T, K, a,Ns, Ns) with

T>1AN23T+1 AK=T+1 (3.34)
Moreover let F be any set of correctly functioning modules such that
[F|>N~-T and FcNs
From Theorem 3.2 we know that

e If the source module a and a destination d are both functioning cor-
rectly then the result decx({(a),d) of the algorithm calculated in mod-
ule d equals the original message m(a) in module a.

Thus:

Vd : a,d € F = deck((a),d) = m(a) (3.35)
Which proves the first part of the interactive consistency property.
From the second part of Theorem 3.2 we know that

» For any two destinations d and e which are both functioning correctly
it holds that if the results decx((a),d) and decx((a),e) are unequal,
then the number of maliciously behaving modules is at least K.
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However this conflicts with the constraint K = 7T + 1 and the assumption
that at most T modules behave maliciously. Thus if both modules d and e
are behaving correctly, the decisions decx((a),d) and deck((a),e) must be
identical. So

Vd,e : d,e € F = decg((a),d) = deck{(a),¢€) (3.36)

Which completes the proof of Theorem 3.4. ]

3.5 Some remarks on the construction of Interac-
tive Consistency Algorithms which are based
on voting and coding

In the previous sections we have defined the Interactive Consistency Algo-
rithms which are based on voting and coding, starting from the Dispersed
Joined Communication algorithms. In this section we will first discuss the
design process and the design freedom which is left by the definition of these
IAC algorithms. Thereafter we will elucidate the design of the Interactive
Consistency Algorithms based on voting and coding with two examples.

In the introduction to this chapter we claimed that the reduction of the
number of messages which needs to be {ransmitted between the modules
can be obtained in two ways, i.e.: ‘ o

¢ by minimizing the number of directions in which the messages are
broadcast each round, and

e by replacing the voting function by an error-correcting code.

From the construction we immediately see that replacing the voting function
by an error-correcting code causes an increase in the number of modules to
which a modified message has to be sent. However, the size of the messages
to be transmitted decreases compared to the original message in the source.
In the next chapter we will show that choosing an error-correcting code is
more efficient than reducing the number of directions in which a message is
sent each round. The advantage of fewer messages to be transmitted due to
the application of non-trivial error-correcting, has to be paid for by a larger
minimal size of the original message in the source and by the fact that the
implementation of the decoding function of an error-correcting code is much
more complex than the implementation of a simple majority voter.
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For these reasons we will define in Section 3.5.3 two subclasses of algorithms,
ie

e The Minimal Voting algorithms. In this class of algorithms the number
of directions in which a message is sent in each round, is minimized
and in the decision-making process only majority voting is applied.

e The Mazimal Coding algorithms. In this class of algorithms the mes-
sages are broadcast to as many modules as is allowed by the definition
of DJC algorithms, such that the amount of redundancy in an error-
correcting code word is as little as possible and the size reduction of
the messages in each step is maximal.

Another way of minimizing the amount of messages is to reduce the amount
of destinations in which the decisions are calculated and thereafter to broad-
cast the results in an additional round to the other modules. This Subset
Method will be the issue of Section 3.5.4.

3.5.1 The general construction of Interactive Consistency
Algorithms which are based on voting and coding

Suppose we want to design an IAC algorithm for a system consisting of N
modules of which at most T may behave maliciously. Such a construction is
always possible if

T>1ANZ23T+1ANK=T+1

cf. Corollary 3.3.
The broadcasting process

From the definition of the IAC algorithms on voting and coding we know
that the source module a communicates the original message m{a) by means
of a DJC algorithm from the class A(T, K,a,D,Ns) with T = K + 1 and
D = Ns to all modules in D. The source module in this case is always one
of the destinations and thus the original message m(a) is kept stored in the
source module. (cf. item 1.a of the definition of the construction on page
135). The decision decx((a),a) in the source equals the original message
m(a), which has been kept stored in the source until round K, (cf. 3 of the
definition of the construction).
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The source module @ communicates the original message m(a) to the other
modules, i.e the modules in Ns — {a}, as follows:

Module a sends during round 0 (modified) messages m(e,b) to a number
of modules identified by the next-set B(a). Thus b € B(a). Notice that
B(a) ¢ (Ns — {a}). and thus the number of elements in B(a) is at most
N —1. The modified messages which are forwarded by module a are partially
encoded copies of the original message. The choice of the T-error-correcting
code Y(4) which is used in module a for encoding is limited by the number
of modules to which symbols can be sent, i.e., the number n(4) of symbols of
a code word of the T-error-correcting code equals |B(a}| and thus may be at
most N — 1. Furthermore T-error-correcting codes consisting of code words
of n(,) symbols exist if and only if n(,) > 2T + 1, provided the symbol size
b(a) is sufficient large. So

W+1<ngy <N-1

Obviously for T' = 1 and N = 4, i.e. the most simple IAC algorithm, no
choice is left, but in all other cases a code can be freely chosen within the
preceding constraint.

From item 2 of the definition of the construction on page 135 we know that
each message m(a,b) received by a modules b, with b € B(a) is communi-
cated to the destinations d in the set D — {a}, by means of an algorithm
from the class A(T,K — 1,5,D ~ {a},Ns — {a}), in which K — 1 =T and
(D - {a}) = (Ns - {a}).

The algorithms from the class A(T,T,b,Ns — {a},Ns — {a}), with b € B(a)
will again after encoding, forward the message m(a,b) to the modules ¢ with
¢ € B{a,b). In which B(a,b) is the next-set which belongs to the algorithm
chosen from the class A(T,T,b,Ns — {a},Ns — {a}).

Clearly the module b will be one of the destinations, so due to the algorithm
chosen the message m(a,b) will also be kept stored in module b and become
the decision decx_1({a,b),b) during round K.

The messages mentioned before, which are received during round 1 by the
modules ¢, with ¢ € B(a,b), are denoted by m(a,b,c).

These messages m(a,b,c) are again communicated to the modules d in the
set Ns — {a,b} by means of an algorithm from the class A(T,T —1,¢,Ns —
{a,b},Ns — {a,b}) and because ¢ € B(a,b) and B(a,b) c Ns — {a,b} the
module ¢ also will be one of the destinations and therefore the message
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m(a,b,c) will also be kept stored.

Notice that in a particular module ¢ more than one message might arrive.
For example, suppose that the messages m(a,b1,c) and m(a,bs,c) arrive in
module ¢. Thus b;,b; € B(a), and ¢ € B(a,b;), and ¢ € B(a,bz). In that
case of course the choice of the algorithm from the classes A(T,T—1,¢,Ns—
{a,b1},Ns — {a,b1}) and A(T,T — 1,¢,Ns — {a,b2},Ns — {a,bs}) for for-
warding the messages m(a,b1,c) and m(a, b2, c) may be made independently.
This process is continued until the last round of information exchange, i.e.
round K — 1. During this round each message m(a,s,p) which arrives in a
module p, is forwarded to the destinations in the set N's —set(a,s) by means
of the only algorithm in the class A(T,1,p, Ns — set(a,s), Ns — set(a,s)).
In which, set(a,s) denotes the set of modules from which the string (a,s) is
composed.

From the preceding and the definition of the construction on page 135 it
follows that:
A particular algorithm in the class A(T, K, a,D,Ns) is fully determined by

e the choice of the set B(a),
e the choice of the code Y(,), and
o for each module b with b € B(a), the choice of the algorithm in the
class A(T,K —1,b,D — {a},Ns — {a}) by means of which the message
m(a,b) is forwarded to the destinations in D — {a}.
Similarly a particular algorithm in the class A(T, K —t,p,D —set(a,s), Ns—
set(a,s)), with |(a,8)| = t, which is utilized by an algorithm from the class
A(T, K, a,D,Ns) for forwarding a message m(a,s,p), is fully determined by
e the choice of the set B(a,s,p),
e the choice of the code Y(,; 5, and
e for each module ¢ with ¢ € B(a,s,p), the choice of the algorithm in
the class A(T,K —t — 1,q,D — set(a,s,p), Ns ~ set(a,s,p)) by means

of which the message m{a,s,p,q) is forwarded to the destinations in
D — set(a,s,p)-
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Notice again that for each message m(a,s,p) the choice of the algorithm
from the class A(T, K — t,p,D — set(a,s), Ns — set(a,8)) may be made in-
dependently and only is restricted by the definition of the construction.

Obviously, not every string of length K + 1 or less over the set Ns will
identify a message caused by a particular IAC algorithm.

Therefore, let Sm be the set of all strings which identify messages which
are caused by a particular IAC algorithm from the class A(T, K, a,Ns, Ns),
then Sm will be determined by

{a) e Sm

((8) €SmApeB(s) ) = (s,p) €Sm
(3.37)
Clearly the sets B(s), are only defined for 1 < |s| £ K and g € Sm.

Recall that the set B(s,p) amongst other things determines a particular
algorithm in the class A(T, K—t,p, D—set(s), Ns—set(s)), with |s| = ¢, which
is utilized by an algorithm from the class A(T, K, a,Ns,Ns) for forwarding
a message m(s,p).

This set B(s,p) will have to satisfy the rules imposed by the definition of
the construction on page 135, i.e.:

((s,p) €SmALL|(8,p)| < K~-1)=>

((Blg,p) € (Ns - set(s,p) )

A( 2T + 1 < [B(s,p)| < [Ns - set(s,p) |)) ,
(3.38)
The last round of information exchange during the broadcasting process is
determined by the algorithms from the classes A(T,1,p,Ns — set(s),Ns —
set(s)), with |8] = K — 1. These algorithms forward the messages directly
to the destinations. So for these algorithms the next-set is defined by

((s,p) €SmA|(s,p)| = K ) => B(s,p) = (Ns —set(s,p))  (3.39)

From the preceding it therefore follows that a particular algorithm in the
class

A(T, K, a,Ns,Ns) is fully determined by the sets B(s) with 8 € Sm and the
T-error-correcting codes Y(g) with s € Sm and 1 < sl < K—-1.
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The decision-making process

From the definition of the construction on page 135, of the DJC algorithms
in a class A(T, K —t,p,Ns — set(s), Ns — set(s)), with |s| = t, we know that
the decision-making process of such an algorithm which is executed in the
“source module” p, only consists of taking the message m(s,p) which had
been kept stored since round ¢. Thus

deck-+((s,p),p) = m(s,p) (3.40)

Moreover we know that the decision-making process of such an algorithm
which is executed in a module d, with d € (Ns — set(s,p)) encompasses the
N(gp) decision-making processes of the algorithms chosen from the class
A(T,K —t — 1,q,Ns — set(s,p), Ns — set(s,p)), with g € B(s,p) followed
by the execution of the decoder function y((; ,;)} , cf. Figures 3.5 and 3.6 on
page 136.

So the decision-making process executed by an algorithm from the class
A(T,K,a,Ns,Ns), in a module d during round K starts with the cal-
culation of the results deci((u,p,q),d) of the algorithms chosen from the
classes A(T,1,q, Ns—set(u,p), Ns—set(u,p)), which forwarded the messages
m(u,p,q) to module d in the set D — set(u,p). Obviously (u,p,q) € Sm
and any string u starts with a.

The decision decy((u,p,q),d) with p # d equals the message m(u,p,q,d)
received by module d during round K —1. Because D = Ns and the message
m(u,p,q) is communicated to the destinations in D —set(u, p) it holds that ¢
is one of the destinations. So d € B(u,p). And according to the construction
decy((u,p,d),d) equals the message m(u,p,d) received by module d during
round K — 2.

So for all destinations d with d € (Ns — set(u,p)) it holds that:

q # d = decl((-‘la?)?)ad) = m(ﬂ:p)(z’>d)

decy((u,p, d),d) = m(u,p,d)
(3.41)
So in all destinations d represented by D — set(u,p), the decisions
decy((u,p,q),d) can be calculated.

After the calculation of the decisions dec;((u,p,q),d) in the modules d in
Ns —set(u, p), the decisions decs((u, p), d) of the algorithms chosen from the
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classes A(T, 2,q, Ns—set(u), Ns—set(u)), which communicated the messages
m(u,p) to modules d in Ns — set(u), are calculated in these modules d from
Ns — set(u).

If d = p the decision decs{(u,p),d) equals the message m(u,p) which was
kept stored in module p. So what remains to be shown is the calculation of
the decisions in the d in Ns — set(u, p).

The modules g to which the message m(u,p) is sent after encoding are
determined by the set B{u,p). We already concluded that in all modules
d with d € (Ns — set(u,p)) decisions decy({u,p,q),d) have been calculated
first.

So in these modules d for each message m(u,p) received by module p a
number of n(yy) decisions decy((u,p,q),d) are available with ¢ € B(u, p).
the decoder function y‘(,_;‘;)} is applied to these decisions, which results in the

decisions decs((u,p), d).

The decisions decz((u,p),d) which have been calculated thus far in the mod-
ules d in Ns —set(u), could be regarded as estimates calculated by the mod-
ules d of the message value m(u, p) received by module p during round K —3.

The first round of applying decoder functions yé‘;’;}), together with
decz((u,d), d), delivers for each u a number of n(y) decisions deca((u,p), d)
with p € B(u) and d € (Ns —set(u)). The decoder function yé;)” is applied
to these decisions, which results in the decisions decs((u), d).

This process is continued until deck((a),d) has been calculated by means
of the decoder function y((;')l) for d # a and deckx((a),a) is obtained from -
m(a).

3.5.2 Two simple examples

In order to elucidate the general construction method of Intractive Consis-
tency Algorithms based on voting and coding we will present two examples
in detail.

The first example is the most simple algorithm, i.e. T = 1 and N = 4, thus
an algorithm from the class 4(1,2,0,{0,1,2,3},{0,1,2,3}). We will see that
in this class there is only one algorithm and that this algorithm is identical
to the Pease algorithm.
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N=4 T=1 K=2
Ns = {0,1,2,3}

B(0
B(0) = {1,2,3} | B(0
B(0

Table 3.1: The next-sets

N=4 T=1 K=2

m(0,1}] = | m{0,1,

m(0) =3 | m{0,2) = | m{0,2,8)

m({0,8) = | m(0,3,2)

Table 3.2: The messages
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N=4 T=1 K=2
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m{0) deca{(0),0)
m(0,1) = deey((0,1),1)
m(0,2,1] =>  dee;((0,2),1) decs({0},1)
m{0,3,1) => dee;{(0,3),1)
m(0,1,2) =>  dee1({0,1),2}
m(0,2) =  deey({0,2),2) deeg((0), 2)
m{0,3,2] => dec1{{0,3),2)
m{0,1,3) =>  dec:((0,1),8)
m{0,2,3) => dee;((0,2),3) decq{(0},3)
m(0, 3) =>  dec1{{0,3),3)

Table 3.3: The decision-making process

The sets B(s) are shown in Table 3.1. The source has to broadcast its
message to a number of modules which is determined by the code. However,
remember that in this example no choice is left and the only possibility is a
(3,1) repetition code. Thus module 0 sends the original message unchanged
to 3 different modules, i.e. the modules in the set {1,2,3}. These modules

a forward the message m(0,a) by means of the only algorithm in the class
A(1,1,a,Ns — {a},Ns — {a}) with Ns = {0, 1,2, 3}.

The sets Sm and B(0,a) can be easily calculated by means of the relations
(3.37), (3.38), and (3.39). It is easily seen that in this example there is no
design freedom, except in the naming of the modules.

The messages caused by the algorithm, thus the messages m(s) with s € Sm
are shown in Table 3.2. Notice that a message m(0, 1) represents the message
received at the end of round 0 by module 1 from module 0. The data
dependency between the messages is indicated in the figure by == | . For
example m(0,1) => |m(0, 1,2) indicates that the message m(0, 1, 2) received
by module 2 from module 1 is obtained from m(0,1) by applying a partial
encoding function on m(0,1). In this case the partial encoder function is the
identity function.
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The flattened (= non-recursive) representation of the decision-making pro-
cess is given in Table 3.3. The decision-making process in a module is based
on all messages received by the module during the entire broadcast process.

From the preceding we know that the decision-making process starts with
the calculation of the decisions deci{(0,a),d). The messages m(0,a) are
forwarded to the destinations during round 1 by means of an algorithm
from the class A(1,1,q,{1,2,3},{1,2,3}) with ¢ € B(0). So according
to the definition of the construction of the algorithms with K = 1 on
page 132, it holds that decy((0,1),1) = m(0,1), decy((0,2),1) = m(0,2,1),
and decy1{(0,3),1) = m(0,3,1). In the second step of the decision-making
process the decisions decz{(0),d) are calculated, ie. decy({0),0) = m(0)
and decs((0),1) is obtained by taking the majority vote over the values
decy((0,1),1), decy((0,2),1), and dec1((0,3),1). The decisions decs((0),2)
and decg((0),3) are obtained similarly.

The way in which the decisions deckx_+((8),a) are calculated from the deci-
sions deck—¢+-1((8,b),a) with b € By(s), by means of the decoder function

Yl is denoted in the table by | => .

The second example is a little more complex and concerns an algorithm from
the class A(2,3,0,Ns,Ns) with Ns = {0,1,---,6}. Thus 7" =2, K = 3, and
N = 7. The sets, the messages and the decision-making process are given
in the Tables 3.4, 3.5, and 3.6. This example again meets the 3T + 1 bound
and the K + 1 bound. The example provides some more design freedom.

The next-set B(0) should be contained in the set {1,---,6}, cf. (3.38).
Moreover this next-set must contain at least 27"+ 1 = 5 modules. Hence we
may choose between 5 and 6 modules. The first choice would again imply a
repetition code and therefore we choose B(0) = {1,---,6}.

Bear in mind that T-error-correcting codes can always be constructed with
n(0) = k(o) +2T and any symbol size of b(g) > logy(n(g)—1) bits in which n(g)
is the number of symbols of a code word and k(o) is the number of symbols
of a data word. Hence a code with ng) = 6, k(o) = 2, and b(g) = 3 suffices.
From the preceding it follows that the minimum size msize of the original
message in the source is 6, i.e. 2 symbols of size 3.

During round 0, in the source module 0, the original message is encoded
into 6 symbols of 3 bits. Each of these symbols is sent to a different module
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N=7 T=2 K=3
Ns = {0,1,2,3,4,5,6}

B(0,1,2) = {3,4,5,6}

B(0,1,3) = {2,4,5,6}

B(0,1) = {2,3,4,5,6} | B(0,1,4) = {2,3,5,6}

B(0,1,5) = {2,3,4,6}

B(0,1,6) = {2,3,4,5}
B(0,2) = {1,3,4,5,6} ...
B(0) = {1,2,3,4,5,6} | B(0,3) = {1,2,4,5,6} ......
B(0,4) = {1,2,3,5,6} ...
B(0,5) = {1,2,3,4,6} ...

B(0,6,1) = {2,3,4,5}

B(0,6,2) = {1,3,4,5}

B(0,6) = {1,2,3,4,5} | B(0,6,3) = {1,2,4,5}

B(0,6,4) = {1,2,3,5}

B(0,6,5) = {1,2,3,4}

Table 3.4: The next-sets
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N=T7 T=2 K=3

m(0,1,2,3)
m(0,1,2,4)
m(0,1,2) => | m(0,1,2,5)
m(0,1,2,8)
m(0,1,3,2)
m{0,1,3,4)
m(0,1,3) => | m{0,1,3,5)
m(0,1,8,8)
m(0,1}] = | m{0,1,4] => ...
m(0,1,5) =S e
m(0,1,6,2)
m(0,1,6,3)
m(0,1,8) = | m{0,1,6,4)
m(0,1,8,5)
m(0,2) => ...
m(0,3) => ...
m{0) = | m{0,4 = ...
m(0,5) = ...
m(0,6,1,2)
m(0,86, 1,38}
m(0,6,1) => | m(0,6,1,4}
m{0,6,1,5)
m{0,6,2) =% ...
m{0,8] == | m{(0,6,8) = ...
m(0,6,4) — ...
m(0,6,5,1)
m(0,6,5,2)
m(0,6,5) => | m(0,6,5,3)
m{0,6,5,4)

Table 3.5: The messages
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N=7 T=2 K=3

{0} =  deecaf{},0}
mi0, 1} =  deea{{0, 1}, 1}
m{Q, 2,1} =y dee{{Q,2,1),1}
m{3,2,3,1) = deei({0,2,3),1}
m{i],2,4,1} == 40 ({0, 2,41} | = deeg{(D,2},1)
m(0,2,35,1} ==  deeyf(3,2,5),1}
m(0,2,8,1]  w==>  deeaf(0,2,8), 1}
m{t, 3, 1) == desy{{0,8,1),1)
m{6,3,2,1) ==  deci((0,3,211)
m{0, 8,4, 1) == des;({0,3,4),1) | =  dee3{{0,3}, 1)
m{0,3,5,1) == dec;({0,3,6),1)
m(0,3,6,1) ==  dee;((0,3,6),1)
= deeg((0,4),1) | = deca{(0}, 1}
........... = deca{(0,5),1)
m{0, 6,1} ==  dec1{{0,5,1),1}
m(0,6,2,1) == decy((0,6,2),1)
m(0,6,8,1} ==  de2a((0,6,8),1) | = deea{{u,¢),1)}
mi0,6,4,1} ==  deeyf(0,8,4},1}
mi0,6,5,1) === de2y((0,6,5},1)

....... == deca(10), 1}
,,,,,,, mm dees{{0),3)
....... ==  decal{0), 4]
...... == deea{f0},5)

Table 3.6: The decision-making process
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of the set B(0). Thereafter during the rounds 1 and 2 these symbels are
forwarded to the destinations by means of the algorithms from the classes
A(2,2,a,Ns — {0},Ns ~ {0}). The next-sets B(0,a} can be easily derived
by means of the relation (3.38), i.e.

B(0,q) ¢ {Ns —{0,a})
2T + 1 < |B(0,2)] < INs — {0,a}]

Because |[Ns| = 7 and T = 2 the only choice left for B{0,2) is Ns — {0,a}
and the only choice lefi for the code applied by the algorithms is a repetition
code.

The dependency between the messages is illustrated in Table 3.5 and the
decision-making process is illustrated in Table 3.6, both in the same way a=
in the previous example.

3.5.3 The Minimal Voting algorithms and the Maximal Cod-
ing algorithms

The Mintmal Veoting algorithm

For each class 4(T, K, a,Ns, Ns) of Interactive Consistency Algorithms which
are based on voting and coding, a subclass of algorithms exists which is en-
tirely based on voting. In this subclass thus only repetition codes are applied
and consequently during each round of the broadcast process a received mes-
sage m(s) is broadcast unchanged to a number of modules given by the set
B{s). In order to reduce the amount of transmitted information as much as
possible, during each round except the last one, each message is relayed to
exactly 277 + 1 meodules, which is the minimum number that is required, <f.
{3.38). During the last round a message m{g, p) is sent to the modules in
Ns — set{s,p}, f. {3.39).

Algorithms which satisfy the preceding requirements are called Mintmal Vot-
tng algorithma.

So the subclass of Minimal Voting algorithms within a class of algorithms
A(T,K,a,Ns,Ns) with

N>3T+1 and K=T+1
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is made up of those algorithms which satisfy

|B{s)! = 2T +1 for 5€8m and 1< [g/< K -1
(3.42)

The Maximal Coding algorithm

For each class A{T, K, a, Ns, Ns) of Interactive Consistency Algorithms which
is based on voting and coding, another subclass of algorithms exists in which
the advantages of using error-correcting codes are used to the full in order
to reduce the amount of information which needs to be transmitted. The
algorithms in this subclass are called Mazimal Ceoding algorithmas.

When a T-error-correcting code Y, is applied consisting of code words of
n(g) symbols of size by and data words consisting of k() symbols of the
same size, then the total amount of information broadcast by a module
during round ¢ is a factor nyy)/k) more than the amount of information
received by that module during round 2 - 1.

From {MacW 78] we know that a T-error-correcting code Yie) can be con-
structed if and only if ngg) > k) + 2T

In the subclass of Maximal Coding algorithms, the fraction T{a} /’k@ is kept
as low as possible. So the partially encoded messages are sent to as many
modules as is allowed by the construction of the DJC algorithms and we
choose ny) = kig) + 2T Codes with these parameters always exist if the
symbol size big) satisfies

by 2 logy(nig) — 1)
Recall requirement (3.38), i.e.
2T +1 < 1B(s)| < [Ng ~set{s)| for 1< |8/ < K —~1 and s €8m
We choose the set B(g] to be as large as possible, thus
|B(8)| = {Ns — setfg)| for 1 <|s| <K ~1 and s €Sm (3.43)

Let ¢ denote the round in which the code ¥, is applied. So || =1 + 1.
From (3.43) then follows

ntg}xfﬁ(gjgw}f—-t—l for 0<t< K—-2 (3.44)
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So the subclass of Maximal Coding algorithms within class A(T, K, a, Ns, Ns)
of Interactive Consistency Algorithms which are based on voting and coding,
is characterized by the parameters of the applied T-error-correcting codes
as follows:

For each round ¢ with 0 < ¢t < K — 2 a T-error-correcting code is applied
with parameters

number of code word symbols: Nga) =N-t-1
number of data word symbols: kgay =N —-t—-1-2T
symbol size in number of bits:

if N—t—12>2T+1then: bgq) > logy(N —t — 2)

fN—-t—-1=2T+1then: by =>1
(3.45)

Notice that in the case of a repetition code, ie. N —t—1 = 2T + 1, the
minimal symbol size is only 1.
Because during each round of information exchange, except the last, a partial
encoder function is applied to the message, the message size decreases each
round. We will elaborate on this in the next chapter.
If N = 3T +1 the code used during round K —2 is always a simple repetition
code. This follows immediately from (3.45) and K = T + 1. Notice again
that during the last round, i.e. round K — 1, no code is applied and the
messages are forwarded unchanged to their destinations.

3.6.4 The Subset Method

In Chapter 2, it has been shown that once agreement among N' modules,
with N/ > 2T + 1 in a set of N modules of which at most T are faulty,
is obtained, the agreement property can be obtained in all N modules by
partially encoding the data in each of the N’ modules and sending this
encoded data to the remaining N — N’ modules. Notice that in contrast to
the DJC algorithms, each of the N' modules calculates only one symbol of
the error-correcting code and sends this symbol to all modules in the set of
N — N' modules.

Clearly in order to obtain agreement in the N’ modules at least 3T + 1 mod-
ules need to be involved, but not all the modules involved need to execute
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the decision-making process. Consequently the data received by the mod-
ules involved during round K — 2, has only to be sent to the N’ destinations
represented by the set D. This reduces the information to be transmitted
during round K — 1. So in this case we are dealing with an edapted Interac-
tive Consistency algorithm based on voting and coding, which is built from
DJC algorithms and in which the set of destinations ID is only a subset of
the total set of modules Ns. The only difference between the “ordinary”
IAC algorithm and the adapted TAC algorithm is in round K — 1 and round
K, i.e. during round K — 1 messages are only sent to the modules in D and
during round K the decision-making process is only executed in the destina-
tions in D. The fact that the interactive consistency properties remain valid
for the decisions calculated in the modules represented by D is obvious.

From the construction of the DJC algorithms we know that the amount
of information which needs to be transmitted only depends on the error-
"correcting codes chosen. So reducing the set of destinations influences only
the last round of information exchange, i.e. round K — 1.

So let a system consist of NV modules identified by the Ns of which at most
T are faulty. This system first executes any adapted interactive consistency
algorithm, which is chosen from the class of DJC algorithms

A(T,K,0,D,Ns) with:

K=T+1 and |[D|22T+1 and |Ns|>3T+1
(3.46)

This algorithm will lead to agreement among the correctly functioning mod-
ules of the set D about the original message in the source, N' = [D|. In
the N' modules a partial encoder function of a T-error-correcting code Z
consisting of code words of n, symbols and n, = |N’|, is applied on the
calculated decision. Thus, Z(7) is applied on the decision in module 7, with
¢ € D. Notice that in this case the T-error-correcting code Z is determined
by the N’ sources and that in each of the sources one partial encoder func-
tion is applied. However in the Interactive Consistency algorithm based on
voting and coding, the T-error-correcting coder is determined by the number
of modules to which a modified message is to be sent, i.e the next-set B(s),
and in one module n, partial encoder functions are applied, one for each
direction in which a message is to be sent.
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In the Subset Method in the additional round of information exchange, round
K, the partial encoded decisions are sent to all N — N’ remaining modules
which each apply the decoder function Z(~1) on the received data. Because
correct functioning modules in the set of D modules have reached agreement
and there are no more than T faulty modules, the correct modules among
the N — N! modules arrive at the same decision as the N' modules did.

We will show that the Subset Method is often very efficient, though it has
to be paid for by an additional round. In accordance with the terminology
used by Dolev, we will call the subset of N' modules the “active modules”
and the remaining modules the “passive modules”. Notice however that in
our Subset Method some of the passive modules may be involved in the
broadcasting process of the interactive consistency algorithm.
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Chapter 4

A comparison of the existing
algorithms and the
algorithms based on voting
and coding

In this chapter the algorithms based on voting and coding will be compared
with the existing synchronous deterministic algorithms. For this purpose o
number of criteria will be defined and the resulting figures for a number of
ezamples will be presented. We will show that for practical applications the
algorithms tn the class of algorithms which is based on voting and coding are
Sfavourable.

4.1 Introduction

In the previous chapter we have defined classes of Interactive Consistency
algorithms based on voting and coding which fulfil the interactive consistency
requirements.
The algorithms can be constructed for any set of parameters N, T, and K,
which satisfy:

T>1 and N2>23T+1 and K=T+1

So both the N > 3T + 1 and the K > T + 1 bound are met.
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In this chapter we will compare these new classes of algorithms with the
existing synchronous deterministic Interactive Consistency algorithms.

4.2 The algorithms selected for comparison

It cannot be said which of the algorithms is most favourable, an algorithm
entirely based on voting, an algorithm based on coding or one of the other al-
gorithms which are mentioned in the literature survey in Chapter 3, without
knowing all design constraints.

In order to give some insight into the dependency of the parameters, a num-
ber of cases are presented in the Tables 4.1 to 4.5.

However, the selection of the algorithms which will be compared and the
criteria on which they will be compared needs to be discussed first.

In our opinion a system of cooperating modules, in which the response time
of a correctly functioning module might be unbounded, cannot be considered
as a fault-tolerant system in the sense described in the first chapters of this
thesis. Because the randomized algorithms may take an infinite time to
come to a conclusion about what the source has sent, we will exclude them
as algorithms which can be used in a (N, K)-fault-tolerant system. However,
if we were to start from a more liberal definition of a fault-tolerant system,
these algorithms could be very useful, but in that case, the algorithm itself
would have to be considered as a source of failures. Further research in this
area is needed. ) ’

Asynchronous deterministic algorithms do not exist, thus our comparison
will be restricted to synchronous deterministic algorithms. This class again
is divided into algorithms with and without authentication.

Among the synchronous deterministic algorithms based on authentication
published so far, the one published by Dolev [Dolev 83-1], is favourable,
because only O(NT) messages have to be sent. Whether algorithms exist
which require less messages is not known. Again this is a matter which awaits
further investigations. Although authenticated algorithms are favourable in
terms of the number of messages, their disadvantage is the authentication
itself which might require great overheads in processing power, delay time
and channel capacity.

From the preceding it follows that only the synchronous deterministic algo-
rithms without authentication require further discussion.
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The algorithm published in [Pease 80] and [Gils 85] is based on voting, and
is contained in the class of algorithms described in Chapter 3. We will refer
to this algorithm as the Pease algorithm.

The only remaining synchronous deterministic algorithm without authenti-
cation is the one published by Dolev [Dolev 82-3|. This algorithm requires
a number of messages which is polynomial in N and T, while in the other
algorithms the number of messages is exponential in N and T'. We will refer
to this algorithm as the Dolev algorithm.

So the algorithm by Pease, the algorithm by Dolev and the algorithms de-
scribed in Chapter 3 should be included in the comparison. Among the latter
special attention will be paid to the Minimal Voting algorithm and the Max-
imal Coding algorithm, these being two extremes in the design space.

4.3 'The criteria

4.3.1 Introduction to the criteria

The criteria on which the algorithms will be compared are:

e The number of messages, #mess, that needs to be transmitted between
the modules.

e The minimum size, msize, of the original message.

The amount of computation to be performed by the modules will not be
taken into account because for all algorithms, in the same way, it is propor-
tional to the number of transmitted messages. Moreover the computational
effort will in general never be the bottleneck.

4.3.2 The number of messages in the algorithm based on
voting and coding

For the class of algorithms which are based on voting and coding, the number
of messages which has to be exchanged between the modules during the
broadcast process, can be calculated as follows,

We will restrict ourselves to algorithms in which the choice of the code only
depends on the round in which the encoding of the messages is performed.
Let a code used during round ¢ consist of code words of n.(t) symbols,
obtained from data words of k.(t) symbols, let the symbol size be b.(t)
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bits. Moreover let the amount of information of the original message to
be broadcast by the source be the unit. So each amount of information is
expressed in terms of a number of messages of the size of the original message

m(0).

During the first round the source broadcasts its data, after having it encoded,
to n.(0) modules. Then during round 0, the amount of information which is
sent in each direction is (k.(0))~! unit messages, and the total amount of in-
formation which is transmitted in round 0 thus is n.(0).(k.(0))~!. In round 1
the size of the message is again reduced by a factor k.(1) due to the partial en-
coder function. Hence the message size will be (k.(0).k.(1))~!. Each message
is sent in n.(1) directions, so the total amount of messages transmitted dur-
ing round 1 will be n.(0).n.(1). And thus the number of messages in terms
of unit messages transmitted during round 1 is n.(0).n.(1)(k.(0).k.(1))~1.

During the rounds 0 < t < K — 2, each module sends all its received data,
after having it encoded, to n.(t) modules. Encoding for one direction, thus
applying the partial encoder function, causes a data reduction of k.(t). The
number of messages increases with a factor n.(t). Hence in round ¢,

messages are transmitted.
The total amount of messages transmitted up to and including round K — 2
then is

S (4.)
t=0 {=0 ke (7) .

During the last round, i.e. round K — 1, of the broadcast process, the
messages are sent without encoding them, to all modules, which have not
yet been passed by the message. During round 0 -+ K — 2, each message has
passed K distinct modules (the destination in round K — 2 included). So
each message resulting from round (K — 2), still has to be sent to N — K
modules. The total number of messages transmitted in round (K — 2), is
[T552%(ne(1) ). The size of the messages in round K — 1 equals the size of
the messages in round K — 2 and is [J¥;%(k.(:))~!. Thus the number of
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messages which is transmitted in round K — 1, is

v-x). T () (42)
. =0 kc(t} ‘

From the preceding follows that:

For the algorithm which 1s based on voting and coding, the total amount of
messages which ts transmitted during the broadcast process, in terms of the
number of unit messages, vs:

K-2 K-2 t n.(s
#mess= (N - K). [[ (:—:%) + 3 H(kc&;) (4.3)

i=0

Notice that because K = T"+ 1, the number of messages is exponential in T'.
From equation (4.3) it is readily seen that if N and T are fixed, the number

of messages is minimal for the smallest possible fractions ( %:8-)

4.3.3 The number of messages in the Subset Method

In the description of the Subset Method we maintained the relation K =
T'+1, hence due to the additional round, the number of rounds in the Subset
Method is K + 1 and the number of rounds of information exchange is K.
So let a system consist of N modules identified by the set Ns of which at
most T are faulty. This system first executes during the rounds 0,--- K any
adapted interactive consistency algorithm, which is chosen from the class of
DIC algorithms '

A(T,K,a,D,Ns) with:

K=T+1 and |D|>2T+1 and |Ns|>3T+1
(4.4)
The destinations of this algorithm which are given by the set ID are called
the active modules. Let N = |Ns| and N' = |D|.
After the decisions have been calculated in the active modules, the results
are encoded and are sent during round K to the remaining N — N’ modules.
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The number of messages transmitted during the round 0--- K — 2, for the
algorithm based on voting and coding turned out to be

K-2 ¢ -
> 1 (49) (43)

(cf (4.1))
This figure is independent of the number of modules N, be it that the values
n.(t) are restricted by N.

Not all modules in the system which are represented by the set Ns need to be
really involved in the Interactive Consistency algorithm. There might well
be modules which never receive a message during the rounds 0,-.- K — 1.
Let the modules which are involved in the algorithm during the rounds
0,---,K — 2 be denoted by the set Ns;,, and let N;,, = |Ns;p,|. Notice
that the rounds K —1 and K are excluded from the definition of the modules
involved. Clearly N;,, < N.

The number Ny, of modules involved in the rounds 0,---, K —2 is calculated
as follows:

The number of modules involved is again kept as small as possible during
the successive broadcast rounds. Hence at the end of round 0 the number of
modules involved is n.(0)+1. At the end of round 0 each message has passed
2 modules, the destination in round 0 included, so the number of modules
involved needed at the end of round 1 is max((n.(0) + 1), (n.(1) + 2)). At
the end of round ¢t — 1 each message has passed ¢+ 1 modules, the destination
in round ¢ — 1 included, so the number of modules involved needed at the
end of round ¢ must be at least (n.(t) +¢+1). And thus

Nipy =Max{0 <t < K —2 : n.(t)+t+1) (4.6)

During the last round, i.e. round K — 1, of the broadcast process of the
Interactive Consistency algorithm, the messages are sent without encoding
them, to all N' active modules the set D, which are not yet passed by the
message. It is always possible to construct the algorithm such that either
these N’ active modules are a subset of the N;,, modules involved in the
interactive consistency algorithm, or the N;,, modules are a subset of the
N’ active modules. Thus we assume

DcNsyy or Nsjpppu,CD
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Moreover we assume that the source is contained in the set of active modules
and in the set of modules involved.

Suppose D C Nsyyy.

Thus N' < Nipe.

During round 0--- K — 2, each message has passed K distinct modules (the
source module and the destination in round K — 2 included). Obviously
these K modules belong to the set Ns;y,,. However from these K modules
K — 1 might belong to the set Ns;,, — D, because we assumed a € D. So
each message received in round K - 2 is sent during round K — 1 to at most
N’ —1 other modules. If we ingnore the fact that it is not necessary to send
messages to involved but not active modules, then the number of modules
to which a message is to be sent is at most N;,, — K. Hence the number of
modules to which a message has to be sent during round K — 1 will never

be more than min((N' — 1), (Niny — K)).

Next suppose Ns;,y € D.

Thus Nine < N'.

At the end of round K — 2, each message has passed K modules of the set
D of N' modules, hence during round K — 1 each message needs to be sent
to N' — K modules.

So in conclusion, the number of modules to which a message has to be sent
during round K — 1 is not more than:

if N' < Nipy then min((N' — 1), (Nipy — K))

and

if N' > Njy then N’ - K
Notice that N'—K > min((N'—1), (N;ny—K)) implies that either (N'—K) >

(N'—1) or (N' = K) > (Niny — K). Because K > 2 the first term never
holds and thus N' — K > min{(N' — 1), (Njpy — K)) implies N' > Nyp,.
Similarly, N'—K < min({(N'~-1), (Nipy—K)) implies that (N'—K) < (N'—-1)
and (N’ — K) < (Niny — K). Because K > 2 the first term always holds and
thus N' — K < min((N' — 1), (Niny — K)) implies N’ < Ny,,.

Hence the number of modules to which a message has to be sent during
round K - 1 is not more than

max((N’ — K),min{(N' - 1), (Nipy — K)))
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The total number of messages transmitted in round (K —2), is [TX5%(n.(s) ).
The size of the messages in round K — 1 equals the size of the messages in
round K — 2 and is [JX5%(ke(s))~. Thus the number of messages which is
transmitted in round K — 1, is at most

K2
(max((N' ~ K), min((N' - 1), (Niww ~ X)) )- g(”j )y u

The additional number of messages for the extra round in the Subset Method
is calculated as follows:
Agreement after K = T'+ 1 rounds is obtained in N’ modules. At the end of
round 7"+ 1, thus after the decision-making process, each module calculates
its symbol of the T-error-correcting code, with parameters n, = N’ and
k. = n, — 2T. Hence we restricted ourselves for simplicity to the class of
MDS codes. The result of the decision-making process is of the same type
as the original message in the source, hence the size of the symbols resulting
from the encoding is 1/{N' — 2T) unit message.
In the additional round, round T + 2, the N' modules send their symbol to
the N — N’ passive modules. Thus the number of additional unit messages
is: NN — NY)
N'=-2T
From the preceding equations (4.5), (4.7), (4.6), and (4.8) it follows that:
In the Subset Method the total amount of information which ts transmitted
during the broadcast process, tn terms of the number of unit messages, is
at most:

e = OS2 (2D
+ (mas{ (V= K, min( (V' 1), (i ~ X)) )- T )
- (4.9)

(4.8)

with
Niny = Maz(0 <t <K —2 : n.t) +t+1) (4.10)

and
K=T+1
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4.3.4 The minimum size of the original message in the source

When discussing the Interactive Consistency algorithms on voting and cod-
ing, we already pointed out that in a module ¢, the size of the message on
which a partial encoder function operates, thus the size of the data word,
15 k(u,p.q)P(upgq) bits, in which k(y ;) is the number of data symbols of the
code ym,?,q}, and by, q) is the size of the symbols expressed in the number
of bits.

The size of the data word received by module ¢ must be equal to the message
~ (symbol) size b(u,p), Produced by the partial encoder functions of the code

Y(u,p) in module p. And thus

bu,p) = k(n,p,0)-0(up.0)

We also concluded that the choice of the code only needs to depend on the
round t. Moreover |(u,p)| = t+1. So instead of parametrizing the code with
the string (u,p) which identifies the message on which the DJC algorithms
Ag_¢((u,p),d) operate, we may parametrize the code with the round ¢. So
Y; denotes the code applied by the algorithms Ag_;((u,p),d). The number
of symbols in a code word then is denoted by n,(t), The number of symbols
in a data word by k,.(t), and the symbol size by b.(t).

And thus we require

Vi : 1<t <K —2=b(t —1) = k.(t).b.(t) (4.11)
and for the original message in the source
msize = k.(0).b.(0) (4.12)
Moreover the symbol size of each code must be sufficiently large, so in the
case of MDS codes we need to satisfy
Vi:0<t<K-2= ((ke=1=>b.(t) > 1)A

(ke > 2 => be(t) > logy(ne(t) ~ 1))
(4.13)

By means of these relations the value msize can be calculated.

The Subset Method might impose an additional constraint. In the Subset
Method in the additional round, round T + 1, the messages which result
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from the decision-making process in the N’ modules are encoded with a
(N',N'" — 27,2T + 1)-MDS code. Hence the size of the original message
must equal the size of the data word of this code. The symbol size of this
code should be at least [logy(N’ — 1)] bits. Consequently the size of the
data word is at least (N' — 2T").[log,(N' — 1)] bits. So the Subset Method
additionally requires

N =2T+1=>mstze>1

N' > 2T +1 == msize > (N' — 2T).log,(N' — 1)
(4.14)

4.3.5 The number of messages in the Dolev-algorithm

In order to minimize the number of messages needed by the algorithm, in
[Dolev 82-3], Dolev divides the system into two sets of modules, the active
modules and the passive modules. The active modules include the source
and the number of active modules is 37+ 1. Thus the active modules form a
minimal system with respect to . The IAC algorithm in fact only runs on
the active modules, while the passive modules only receive that data which
allows them to obtain agreement.

We will first concentrate on the active modules, thus we assume N = 37T +1.

In the first round a binary value is sent to all modules. This will result in
N — 1 messages of one bit. During the following rounds, the data which can
be broadcast by each module, consists of a number of messages. Fach of these
messages may be the name of a module, a “supporter”, or a special message
called “ * 7, which means that the sender “initiated” in the previous round.
So a message can be encoded by [log,(V + 1}] bits. A module sends each
module name at most once during the entire process. Also the  * ”-message
is sent at most once by a module. Thus the total number of messages sent
by a particular module is at most N + 1. These messages are sent to all
other modules. Thus the total number of one-bit messages needed by the
algorithm, including round 0, is at most:

N —-14 (N —-1)N(N +1)[logs(N + 1)]
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Or, because N =37+ 1:
3T + 8T(3T + 1)(3T + 2)[log, (37 + 2}]

This Ggure differs slightly from the figure calculated in [Dolev 82-3], because
Dolev also counts the messages sent by a module to itself and ignores the
messages sent in round 0.

If N > 3T + 1, the set of passive modules is non-empty. These passive
modules only receive the “ * 7 messages from the active modules and the
passive modules do not have to intercommunicate. Each module broadcasts
the “ * ” message only once during the algorithm. So the number of addi-
tional one-bit messages is only (37" + 1){N — 8T — 1].

From the preceding it follows that:

The total number of measages needed by the Dolev-algorithm 1s af mogt:

(3T + 1)(N — 3T — 1) + 3T + 3T(37 + 1){3T + 2)[log, (3T + 2)]
Or:

#mess = (3T + 1)(N — 8T") — 1+ 3T(3T + 1) (3T + 2)[log, (3T +2)] (4.15)

4.4 The algorithms compared

The criteria “number of messages”, the number of rounds K, and the min-
imal size of the original message in the source are calculated for different

values N and T, for
o the selected existing algorithms, i.e.:

— the Pease algorithm and

— the Dolev algorithm.
e the algorithms developped and proved in this thesis, i.e.c

— the Minimal Voting algorithm,
~ the Maximal Coding algorithm, and
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— some arbitrarily chosen algorithms based on voting and coding
models.

Moreover, some examples of the Subset Method are presented in which the
TIAC algorithm runs on a smaller number of active processors and the remain-
ing modules receive their data encoded in an additional round. Dividing the
modules in active and passive modules in order to reduce the number of
messages is 3 method already implemented in the Dolev algorithm.

The results are presented in the tables 4.1, 4.2, 4.3, and 4.4. Table 4.5
compares separately the Dolev algorithm, the Minimal Voting algerithm
and the Maximal Coding algorithm.

Notice that in these tables the number of messages are exact figures for
the algorithm based on voting. The number of messages calculated for the
Subset method and the Dolev algorithm is an upperbound and in general
will be a little less. The calculated minimum message size is in all cases
the exact value, but by introducing dummy bits in the data word often the
message size can be reduced on the account of an increased pumber of unit

messages.

In the tables, the algorithms based on voting and coding are identified by the
error-correcting codes which are applied consecutively during the broadcast
process and if applicable by the code used during the additional round in
the Subset Method. Each code is indicated by a [n., k., b.]-tuple in which
n, stands for the number of symbols in the code word, k. stands for the
number of symbols in the corresponding data word, and b, stands for the
number of bits of which each symbol is composed. All codes mentioned have
a Hamming distance of least 2ZT" 4+ 1 and do exist. In most cases MDS codes
are applied, but in some cases we used other codes in our examples, like
Hamming codes and BCH codes. In cases where non-MDS codes are applied,
the design constraints mentioned in the previous sections have been adapted
accordingly.

During round X — 1 no code is applied but instead all data is sent to all mod-
ules which have not vet been passed. Therefore where the Subset Method is
applied this round is indicated by *-7.

The examples presented in the tables are not exhaustive and are only in-
tended to explore the design space. Many other and probably even better
solutions can be found. The purpose of the data presented is only to give an
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imndication of the way in which the parameters and the criteria are related,.

Comparing algorithms with a different minimal message size i3 rather dan-
gerous, because

¢ If the minimum message size becomes large the overhead caused by
authentication becomes relatively small, and thus the algorithms pre-
sented in the following tables can no longer compete with synchronous
deterministic algorithms based on authentication.

# It has not been investigated whether it is possible to generalize the
Dolev algorithm to larger message sizes. Clearly if the message size is
[ we are able to apply the algorithm { times. This does not influence
our comparison. However a non-trivial generalization of the Delev
algerithm might result in more efficient algorithms in terms of the
number of unit messages.

From the tables ihe following conclusions may be drawn:

# If the number of faulis which needs to be folerated in the system is
four or more, T > 4, and the number of modules is minimal, ie.
N = 8T + 1, all algorithms are extremely inefficient. This means
sach mesasage which has to be disiributed by a single source to all
other modules generates many thousands of new messages that must be
transmitted over the communication network between the modules. In
practical applications, synchronous deterministic algorithms for T > 4
therefore cannot be implemented.

o If T = 4 the Maximal Coding algorithm still is a factor 2 better than
the Dolev algorithm, however on account of the minimal message size.
All other algorithms are at least a factor 10 worse. For T > 5 the Doley
algorithm is the best known synchronous deterministic algorithm, but
unfortunately it is only of theoretical interest.

» If the number of modules needs to be minimal with respect to the
number of tolerable faults, i.e. N = 3T + 1, and the minimal size of
the original message must be one, in practical systems, ie. 7° < 3, the
Minimal Voting algorithm requires the least number of messages.

» In practical systems, i.e. T < 3, the Maximal Coding Algorithm turns
out te be superior in terms of number of messages. However this is
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on account of the minimal message size, which is some cases might
hecome unacceptably large.

HN>3T+1and T <3, and an acceptable minimal message size is
reguired, other codes can be chosen such that the resulting algerithm
has an acceptable message size and a number of messages which is not
to far away from the opthmum.

Especially # N »>> 87 4+ 1, T = 2 or 3, and the minimal message
size should be not too large, further improvement can be obtained by
applying the Subset Method, in which the modules are divided into in
active and passive modules and the Interactive Consistency algorithm
is executed on the active modules, while the passive modules receive
the encoded decision of the active modules in an additional round.

If T'=1 and N = 4 the Pease algorithm, the Minimal Voting and the
Maximal Coding algorithm turn out to be the same.

The previous discussion shows that many items need further research.

The K > T+ 1 bound and the N > 37 41 bound restrict the class of Interac-
tive Consistency algorithms, but algorithms which require fewer messages to
be transmitted compared to the ones presented here, might very well exist.
Notice that a bound for the minimum number of messages has not yet been

found

For the following tables holds:

Nipt. = the total number of modules in the system.

Naer. = the number of modules in the systern in which in a case
where the subset method is applied, the decision-making
process of the JIAC algorithm is executed during the last but
one round.

= the number of rounds of information exchange.
matze =  the minimal size of the original message in the source in bits.
#mess = the number of messages transmitted by the algorithms

counted according to the size of the original message in the
source.
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T = 1 |
algorithm | Nigt. | Nact | K | maize | #mess | applied codes |

Dolev 4 4 5 1 183
Pease 4 4 2 1 9 311
MinVot 4 4 2 1 9 311
MaxCod 4 4 2 1 g 31,1
Dolev 5 4 5 1 187
Pease 5 5 2 1 16 4,1,1
MinVot 5 5 2 1 12 31,1
MaxCod 5 5 2 4 8 4,2,2
Subset 5 4 3 4 11 3,1,4]-[4,2,2]
Dolev L] 4 5 1 191
Pease 6 6 2 1 25 [5,1,1]
MinVot 6 6 2 1 15 [3,1,1]
6 6 2 4 10 [4,2,2]

MaxCod 6 6 2 6 8.3 [5.3,2}
Subset 6 5 3 6 9.7 [4,2.3}-[5,3,2}
Subset 6 4 3 4 13 (3,1.4]-14,2,2]
Dolev 16 4 5 1 231
Pease 16 18 2 1 225 {15,1,1]
MinVot 16 16 | 2 1 45 {3,1,1]

16 16 | 2 4 30 [4,2,2]

16 16 2 18 20 [8,6,3]

16 6 | 2 4 26.25 | [7.4.1]

16 16 | 2 11 20.5 15,11,1j
MaxCod 16 16 2 52 17.3 15,13,4]
Subset 16 3 3 1 48 3,1,1}-{3,1,1}
Subset 16 3 3 4 4b 4,2,2)-13,1,4]
Subaet 16 4 3 4 a3 [3,1,4]-]4,2,2]
Subset 16 4 3 4 32 4,2,2)-44,2,2]
Subset 16 8 3 30 204 7.5,6]-]8,6,5]
Pease 64 64 2 1| 3969 63,1,1]
Dolev 64 4 5 1 423
MinVot 64 64 2 1 189 3,1,1j

64 64 2 4 126 4,2,2}

64 64 2 a2 78.8 10,8,4}

64 64 | 2 4| 11025 | [74,]]

64 64 2 57 68.6 63,57,1]
MaxCod 64 64 2 336 65.1 [63,61,6]
Subget 64 4 3 4 129 [3,1,4]-[4,2,2]
Subaet 64 3 3 1 192 3,1,1)-[3,1,%]
Subaet 64 18 3 BO 72 18,16,5]-[18,16,5]

Table 4.1: The minimal message size and number of messages generated by
some IAC algorithms which tolerate one failing module.
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| T = 2 |
[ algorithm | Nige. | Nact | K | maize | #meas | applied codes ]
Dolev 7 7 7 1 1014
Pease 7 7| 3 1 156 [8,1,1][5,1,1]
MinVot 7 7| 3 1 130 [5,1,1][5,1,1]
MaxCod 7 7| 3 6 78 [6,2,3][5.1,3]
Dolev 8 7 7 1 1021
Pease B 8| 3 1 259 [7.1,1]]6,1,1]
MinVot 8 8| 3 1 155 5,1,1}[5,1,1]
8 8| 3 12 57 6,2,6][6,2,3)
MaxCod 8 8| 3 1B 44.3 | [7,3,6](6,2.3]
Subset 8 | 4 1 145 6,1,1][5,1,1]-[5,1,1}
Pease 16 16| 3 1 2055 15,1,1][14,1,1]
Dolev 16 T 7 1 1077
MinVot 16 16| 3 1 355 i5,1,1][5,1,1}
16 16 | 3 66 45.9 | [15,11,6]{14,6,1]
MaxCod 16 16| 3 440 28.1 | [15,11,40][14,10,4]
Subset 16 5| 4 1 185 5,L,2][5,1,1]-[5,1,1]
Subset 16 B | 4 M 60.3 | [7,3.8]]6,2,4)-[8,6,4]
Pease 64 64 [ 3 1| 242235 63,1,1][62,1,1]
Dolev 64 T 7 1 1413
MinVot 64 64 | 3 1 1555 5,1,1][5,1,1]
64 64 | 3 2650 B3 63,59,50)(62,50,1]
MaxCod 64 64 | 3 | 20532 72 63,59,348|[62,58,6]
Subset 64 51 4 1 425 5,1,1]][5,1,1]-[5,1,1]
Subset 64 12 | 4 48 120 8.4,121(8,4,3]-[12,8,6]
Subset 64 16 | 4 660 92 15,11,60][14,10,6)-[18,12,55]

Table 4.2: The minimal message size and number of messages generated by
some JAC algorithms which tolerate two failing modules.
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| T = 3 |
[ algorithm | Nege, | Nuce | K | meize | #mees | spplied codes |
Dolev 10 10 9 1 3969

Pease 10 10| 4 1| 3608 | [9,1,1][8,1,1][7,1,1]

MinVat 10 10 4 1 2457 7.1,1][7.1,1][7,1,1]

MaxCad 10 10 4 18 603 5,3,68,2,3][7.1,3]

MaxCod 1t 11 4 72 250 10,4,18]]9,3,61(8,2,3]

Pease 16 18 4 1 | 35715 15,1,1][14,1,1j|18,1,%]

Dolev 16 10 g9 1 4029

MinVot 18 16 | 4 1| 4515 7.L1}[7,1,1][7,1,1]

18 18 4 256 212 10,4,64](10,4,16][10,4,4]

MaxCod 16 16 4 2016 75 15,9,224)[14,8,28][13,7 4]

Subset 18 10 5 16 2472 7,1,16][7,1,16}{7,1,16)-{10 4,4}
Subset 16 10| 5 256 180 10,4,64][10,4,16)[10,4,4]-[10,4,64]
Doley 64 10 9 1 4509

MinVot 64 64 4 1| 20079 7,1,1){7,1,1][7,1,1]

MaxCaod 64 64 4 1063360 85 63,57,18480][62,56,330][61,55,6]
Subset 64 10| 5 256 300 10,4,64][10,4,16][10,4,4]-[10,4,64]

Table 4.3: The minimal message size and number of messages generated by
some IAC algorithms which tolerate three failing modules.

| T =4 |
| algorithm | Niot. | Naet | K | masize | #mess | applied codes \
Pease 13 13 5 1 | 108384 [ [12,1,1][11,1,1}j10,1,1][9,1,1]
Dolev 13 13 | 11 1 8748
MinVot 13 13| 5 1| 59868 | [9,1,1][5,1,1][%,1,1][8,1,1]
MaxCod 13 13| & 9 4524 | [12,4,24][11,3,8]{10,2,4]{9,1,4]
Dolev 18 13 [ 11 1 8787
16 16| 5 1024 1011 | [12,4,256][12,4,64][12,4,16][12,4 4]
MaxCod 16 16 | 5| 3360 488 | [15,7,480][14,6,80]/18,5,16][12,4 4]
Dolev 64 1311 1 9411 ]
64 64 | 5 1024 4899 | [12,4,266][12,4,64](12,4,16][12,4,4]
Subset 64 16| 6 1024 1107 | [12,4,256][12,4,64][12,4,16]
{12,4,4]-[16,8,128]

Table 4.4: The minimal message size and number of messages generated by
some IAC algorithms which tolerate four failing modules.
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: N = 3F +1
Polev MinVot Maxiiod

mayize =1 mafze=1
N T Fmess #mess | metze | Fmeas
4 1 183 E] i g
7 2 1034 130 & 7B
14 3 3066 2457 18 B3
181 4 8748 58868 G& 4524
16 & 204156 1.8 10% 484 33386

Table 4.5: A comparison of the minimal message size and the number of mes-
sages generated by the Dolev (polynomial) algorithm, the Minimal Voiing
{exponential) algorithm, and the Maximal Coding (exponential] algorithm,

in the case where N = 3T + 1.
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Chapter 5

Interconnecting
fault-tolerant systems

In this chapter the solution to the Input Problem unll be presented.

The correctness of the behaviour of a fault-tolerant system depends among
other things on the correct distribution of the data descending from unreli-
able I/0 devices over the modules of the fault-tolerant system. A maliciously
behaving system, whether it 18 fault-tolerant or not, should never defeat a cor-
rectly functioning faull-tolerant system, i.e a system which does not contasn
more faulty modules than it is designed to tolerate. In order to cope with this
problem, in this chapter the definttion of interactive consistency will be re-
formulated for interactive consistency between communicating fault-tolerant
systems and o number of interconneciton methods and algorithms will be
presented which solve this problem. These interconnection methods and al-
gorithms are based on the Dispersed Joined Communication algorithms and
the Interactive Consistency algorithms. The implementation of such an al-
gorithm in a (4,2) concept foult-tolerant computer system is described in
detasl.

5.1 Introduction

In the introduction, Chapter 1, Section 1.5, we already pointed out that
fault-tolerant systems always will be connected to other systems based on
different methods for reliability improvement. In any case they will be con-
nected to basically unreliable input devices. For example, the error registers
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which store the information about the faults detected by the decoders in a
(N, K) concept fault-tolerant system are to be considered as such unreliable
input devices.

The interconnection of these sources to a fault-tolerant system has to be
done very carefully.

This means two communicating systems must never defeat each other as long
as they are both functioning correctly. Recall from Chapter 2 that a fault-
tolerant system is functioning correctly if its external behaviour in the pres-
ence of a number of tolerable internal faults is equivalent to the behaviour
expressed by the specification. So data originating from a malfunctioning
system must never cause the receiving system to go down. In Section 1.5
we showed that an external system generating broadcast faults might cause
the receiving fault-tolerant system to go down, even if the number of faults
in the receiving system is not more than it is designed to tolerate.

In Chapter 2 the discussion of the fault-tolerance properties of the N-
modular redundant systems and the systems based on generalized mask-
ing, i.e. the (X,Y,T) and the (X,Y,Z,T) fault-tolerant systems assumed
that the distribution function X is functioning correctly. Due to broadcast
faults, in a real system this requirement will however not be satisfied by
just transmitting the output value of a module to a number of destinations.
We will have to cope in some way with these broadcast faults, which have
been defined in Chapter 1, and thus the distribution function will have to
be implemented by some algorithm.

In this chapter we will present four methods for the interconnection of fault-
tolerant systems with each other and with single unreliable I/O devices.
These methods are based on the Interactive Consistency algorithms or the
Dispersed Joined Communication algorithms which have been described in
Chapter 3. We will show that an (N, K) concept fault-tolerant computer
which is interconnected with its environment according to one of these meth-
ods never can be brought down by a maliciously behaving system transmit-
ting data to it, even if the transmitting system is a maliciously behaving
fault-tolerant system, [Krol 85].

The following methods and system environments will discussed
e The DJC Method applied to a single input device.

e The DJC Method applied to a fault-tolerant input device with post-
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observation.

o The DJC Method applied to a fault-tolerant input device with pre-
observation.

e The DJC Method applied to a NMR, fault-tolerant input device with
pre-observation and pre-coding.

The first three methods are similar to the methods published in [Krol 85]
and [Krol 86] in which these methods have been explained on the basis of
Interactive Consistency algorithms.

5.2 Communication of a fault-tolerant
system with its environment

In this section we will deal with the problem of the communication of a
fault-tolerant system with its environment. It is reasonable to require that
a correctly implemented fault-tolerant system only goes down if more mod-
ules in it behave maliciously than the system is designed to tolerate. Recall
that in Section 2.5 we concluded that a (X,Y, Z,T) fault-tolerant system
is functioning correctly if it is correctly initialized and not more than T of
its modules behaved maliciously in any period between two complete re-
initializations. Similarly an (N, K) concept fault-tolerant computer which
is able to tolerate T maliciously behaving modules and which is correctly
initialized must continue behaving correctly as long as the number of mali-
ciously behaving modules is less or equal than T, regardless of the behaviour
of the environment. Recall from Section 2.3.7 that the meaning of “correct
behaviour” should not be interchanged with the “correctness” of data val-
ues. In Chapter 2 we showed that correct behaviour which is independent
of the environment indeed can be obtained if the distribution function X is
functioning correctly.

Moreover recall that the correctness of the decoding function Y(~1 is the
reponsibility of the observer.

In this section we will present four generally applicable algorithms which are
executed by the transmitting and the receiving fault-tolerant system and
which result in the correct execution of the function X, provided sufficient
modules of the receiving system are functioning correctly.
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We assume that our universe of discourse consists of a receiving system,
which is called the r-system and its environment which is called the (trans-
mitting) t-system. Let the receiving fault-tolerant r-system consist of N,
modules and let it be able to tolerate the influence of 7, maliciously be-
having modules. This system receives data from a possibly “fault-tolerant”
{-system, which consists of Ny modules and is able to tolerate the influence
of T; faulty modules. The t-system may be any system, so for instance
N; =1 and T; = 0. Thus a t-system which is composed of a single module is
also allowed. The observing function of the t-system is denoted by Y-,
Obviously if 73 = 0 then yt( 1) is an identity function.

We define interactive consistency between communicating fault-tolerant sys-
tems as follows:

Definition 5.1

e Let a recesving system, called the r-system consist of N, modules. The
r-system 1s designed to tolerate T, maliciously behaving modules and
let it contain at most T, maliciously behaving modules.

o Let a transmitting system, called the t-system consist of Ny modules.
The t-system 15 designed to tolerate T; maliciously behaving modules.

o Let the t-system transmit an (encoded) message y to the r-system. Let
the original data value be x;. The Ni-tuple y thus is the encoded version
of the of the message ;. The partial encoder functions are denoted by
Yi(i:) with 1y € Ns;, where Ns; is the set of modules constituting the
t-system. FEach correctly functioning module 1; of the t-system sends
a partially encoded message y(i;) to all or some of the modules of the
r-system, in which y(i¢) = Yi(1;)(z:)-

Then interactive consistency between communicating systems is guaranteed
if:

o The well-functioning modules d, of the r-system always agree with each
other on the decoded message dec(d,) they calculate from the data they
recetved from the t-system.

o If the t-system is functioning correctly, i.e. if it contains at most T;
maliciously behaving modules, the above-mentioned agreement should
equal the decoded data actually sent, i.e. dec(d,) = ;.
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Thus, if Fi and F, represent the sets of correctly functioning modules in the
t-system and the r-system respectively, then:

VFQ,F,’ : IF_,-I >N, —T, =
((IF(] >N~ Ty — [ Vdr 2 d, G-F,- e ds‘,’C(df) = I ]):‘\
[ Vd,,er : dv,e, € Fp = dec(d,) = dec(ey) ])
O

Without proof we state that these requirements can only be satisfied when
the number of modules in the receiving system is larger than three times the
number of malfunctioning modules in that system, thus only if N, > 37, +1.

5.2.1 The DJC Method applied to a single input device

IF the t-system consists of one module then the DJC Method applied to a
single input device is defined as follows:

Definition 5.2

e The single module 0 in the t-system communicates its message m(0;) =
z; to all modules d, of the r-system by means of a DJC algorithm from
the class A(T,, T, + 2,0¢ Ns,,Ns,U{0;}).

o The decision dec(d,) in a module d, of the r-system is the result

decr,+2((0:),d,) of the DJC algorithm.

O

The method is elucidated in Figure 5.1. In this figure the DJC algorithm
from the class A(7,, T, + 2,0¢, Ns,,Ns,U{0;}) has been decomposed in al-
gorithms from the classes A(Ty,T, + 1,q,,Ns,,Ns,) with a, € B(0;), sur-
rounded by the encoding function Y(q,) and the decoder function y(((;; ;).
The communications due to the algorithms from the class

A(T,,T, +1,a,,Ns,,Ns,) are denoted by o o o.
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Figure 5.1: The DJC Method applied to a single input device

This decomposition corresponds to the decomposition which has been used
in the recursive definition of the DJC algorithms in Chapter 3.

Notice that the algorithms from the classes A(T}, Ty + 1,a,,Ns,,Ns,) with
a, € B(0:) are IAC algorithms according to the definition in Section 3.4.
Futhermore from the definition of the class A(T,, T, + 2,0¢,Ns,,Ns,U{0;:})
we know that |B(0;)| should be at least 27, + 1. Hence our algorithm can
be implemented if N, > 3T, + 1.

A single input device which is connected to a fault-tolerant system according
to the method defined above can never cause this system to go down, i.e.:

Theorem 5.1 If the DJC Method is applied for connecting a single input
device, the t-system, to o fauli-tolerant system, the r-system, as 1s defined
wn Definition 5.2, then the t-system and the r-system satisfy the interac-
tive consistency requirement between communicating systems as 18 defined
wn Definition 5.1. a

Proof:

From Definition 5.2 we know that the original message m(0;) in the in-
put device is communicated to the modules d, of the r-system by means
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of DJC algorithms from the class A(Zy, T + 2,0¢, Ns,,Ns,U{0;}). From
Theorem 3.2 on page 143 we know that if the modules 0; and d, are both
functioning correctly, the result decr,+2((0¢),dr) equals the original message
m(0;) and thus equals z;. Thus:

decr,+2((0),ds) = =

Since 7; = 0 it holds that the proposition “0; is functioning correctly” is
equivalent to the condition |[Fi| > N; — T;. Moreover we defined dec(d,) =
dect,+2((0;),d,) and thus

€| > N - T = [ Vd, : dy € Fy => dec(d,) = 3¢ ] (5.1)

Which proves the first part of the “interactive consistency between commu-
nicating systems”.

From the second part of Theorem 3.2 we know that if a message is communi-
cated by means of an algorithm from the class A(T},T,+2,0;, Ns,, Ns,U{0:})
to the modules in Ns,, the following holds:

If the modules d, and e,, with d,,e, € Ns,, are both functioning correctly
and the results of the algorithm calculated in module d, and e, are unequal
then the number of faulty modules among the modules in Ns,U{0;}) is at
least T, + 2.

Because the t-system consists of only one module and the r-system is sup-
posed to contain at most T, maliciously behaving modules, the number of
maliciously behaving modules in Ns,U{0;}) is at most 7} + 1.

Hence if both modules d and e are behaving correctly, the decisions dec(d,)
and dec{e,) must be identical, i.e.:

Yd,,er : dy,ep € F, = dec(d,) = dec(e,) (5.2)

Which completes the proof of Theorem 5.1. g

5.2.2 The DJC Method applied to a fault-tolerant input
device with post-observation

Suppose the input device is a fault-tolerant system. In this case too we
do not want such an input device to cause the receiving system to go down,
regardless of whether the fault-tolerant input system is functioning correctly
or behaving maliciously.
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Let the t-system consist of N; modules and let each of these modules deliver
one symbol of the encoded output. So module 4; delivers the partially en-
coded version m(i;) of some data value zy, i.e. m(t;) = Yi(it)(z:), where Yt
is a Ti-error-correcting code. The observing function is as usual denoted by
Yt(=1). Then the DJC Method applied to a fault-tolerant input device with
post-observation is defined as follows:

Definition 5.3
Let the observing function of the t-system be denoted by yt(‘l) , then

o All modules 1; in the t-system communicate their messages m(i) =
Yi(4:)(z¢) to all modules d, of the r-system by means of DJC algorithms
which are chosen from the classes A(T,, T, + 2,4, Ns,,Ns,U{s}).

o The decision dec(i,) in a module d, of the r-system is the result of the
observing function Yt(=1) applied on the N, decisions deer, +2({(%:), d.)
of the algorithms chosen from the classes A(T,, T, +2,%, Ns,, Ns,U{3;}).

0

The indication “post-observation” stems from the fact that the observing
function is applied after the DJC algorithms are applied.

The method is shown in Figure 5.2. In this figure the algorithms chosen
from the classes A(T;,T; + 2,7, Ns,, Ns,[U{#;}). are again decomposed in
algorithms chosen from the classes A(T},T, + 1, a,, Ns,,Ns,) surrounded by
the encoding function Y(;,) and the decoder function y((;;”. The communi-
cations due to the algorithms from the classes A(T},7, + 1, a,,Ns,,Ns,) are
denoted by o o o.

Firstly, notice that the choice B(s;) = B(z) which is suggested by Figure 5.2
is not required. The sets B(%) only have to satisfy the definition of the
DJC algorithms, thus B(¢;) € Ns, and |B(s;)| > 27, + 1. _
Secondly, notice that the algorithms from the classes 4(Z}, 7, +1, a,, Ns,, Ns,)
are again JAC algorithms.

In each module d, the algorithms chosen from the classes

A(T,, Ty + 2,%,Ns,,Ns,U{3;}), with 7; € Ns; result in N; decisions
dect,+2((4:), dr). Ignoring possible faults, these decisions will be equal to the
partial encoded values of z;. So the value z; is calculated from the decisions
dect, +2((%), dr) by means of the observing function Yt(~1),
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Figure 5.2: The DJC Method applied to a fault-tolerant input device with
post-observation

From Theorem 3.1 we know that the class A(T}, T, + 2,1, Ns,,Ns, U{7;})
is non-empty if and only if [Ns,U{4:}| > 2T, + T, + 2. Hence our algorithm
always can be implemented if N, > 37, + 1.

A fault-tolerant input device which is connected to a fault-tolerant system -
according to the method defined above can never cause the latter system
to go down, regardless of whether the fault-tolerant input device functions
correctly or not, i.e.:

Theorem 5.2 If the DJC Method with post-observation is applied for con-
necting a fault-tolerant input device, the t-system, to a fault-tolerant system,
the r-system, as 18 defined tn Definition 5.8, then the t-system and the r-
system salisfy the interactive consistency requirement between communicat-
tng systems as ts defined in Definition 5.1. O
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Proof:

From Definition 5.3 it follows that a DJC method applied to a fault-tolerant
input device with post-observation is constructed from an N;-fold application
of the DJC method for a single input device, followed by the application of
the observing function in each module of the r-system.

From Theorem 5.1 we know that when a message m(7;) is communicated
by module 2; of the t-system to the modules d, of the r-system by means
of algorithms from the classes A(T, T, + 2,4, Ns,,Ns,U{s;}) the following
holds:

1. If the module 7 is functioning correctly, then the decision decr,+2((%:), dr)
of the algorithm from the class A(T}, T, + 2,4, Ns,, Ns,U{2;}) which is cal-
culated in a correctly functioning module d,, equals the message m/(s¢).

2. Regardless of the correctness of the module 4;, any pair of decisions calcu-
lated in correctly functioning modules d, and e, satisfies decr,+2((%),d,) =

decr, +2((4), er)-

From the preceding it follows that after the DJC algorithms have been com-
pleted: :

1. If the t-system is functioning correctly, i.e. at least N; — T; modules
forwarded a message m(v:) = Yt(3;)(z:), then in a correct module d, of the
r-system at least for N; — T} decisions holds

dect, +2((1), dr) = m(i) = Yi(it)(z1)

And thus if the observing function yt(“l) is applied on these values
dect, +2((3t), d,) then the result will be

dec(d,) = z;

2. Regardless of whether the t-system is functioning correctly or not, in all
correctly functioning modules d,, the same set of N; decisions decr, +2((%t), dy)
is available and in all modules the same observing function yt(“l) is applied
on these values. So the results dec(d,) will be the same in all correctly
functioning modules.

The fact that d, is functioning correctly is again expressed by d, € F,, and
the fact the the t-system is functioning correctly by [F¢| > N; — T;. So from
the preceding we obtain
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VFt,F,- : I—F,l > N, — T =>
(([Fe|> N - T = [ Vd, : d €Fr=> decld,) = 2¢ ])A

[ Vd, e, : dy,e, € Fr => dec(d,) = dec(e,) ])
(5.3)
Which completes the proof of Theorem 5.2. o

5.2.3 The DJC Method applied to a fault-tolerant input
device with pre-observation

The pre-observation method is an efficient alternative to the post-observation
method. Again we start from the assumption that the input device is a fault-
tolerant system of which the output is encoded by means of an observing
function Yt able to correct T; errors.

The t-system consists of N; modules and each of these modules delivers one
symbol of the encoded cutput. So module #; delivers the partially encoded
version m(i:) of a data value z;. Le. m(3) = Yt(i:)(z:). The observation
function is again denoted by Yt(~1). Then the DJC Method applied to a
fault-tolerant input device with pre-observation is defined as follows:

Definition 5.4
Let Inp be a set of Nin, modules in the r-system which provide for the
communication from the t-system, such that 2T, + 1 < Nip < N,

o Each modules 1y in the t-system sends its messages m(i;), with m(i;) =
Yt(ie)(=:), to the Niypp modules of the set Inp in the r-system.

e In each module a, of the r-system with a, € Inp, the observing function
Yi(ss), s applied on the Ny messages recetved from the t-system. Let
the result obtained in module a, be denoted by m(a,).

e In module a, the message m(a,) is encoded by means of the partial
encoder function W(a,) of a T,-error-correcting code W of which the
number of symbols tn a code word ts Nin,. Let the Ny, results be
denoted by the function y, hence y(a,) = W(a,)(m{a,)).

s Each module a, communicates its message y(a,) to all modules of the
r-system by means of a DJC algorithm (is an IAC algorithm) from the
class A(T,,T, +1,a,,Ns,,Ns,).
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o The decision dec(d,) in a module d, of the r-system is the result of the
decoding function W(=1) applied on the Nipp decisions dect,11((ar), d)
of the IAC algorithms which are chosen from the classes A(T,,T, +
1,a,,Ns,,Ns,).

O

The indication “pre-observation” stems from the fact that the observing
function of the t-system is applied before the DJC algorithms.
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Figure 5.3: The DJC Method applied to a fault-tolerant input device with
pre-observation

The method is shown in Figure 5.3. In this figure the communications due to
the algorithms which are chosen from the classes A(T}, T, + 1, a,, Ns,, Ns,)
are denoted by o o o,

In the modules a, with a, € Inp an estimate is calculated for the value
z¢. Ignoring possible faults, these estimates m(a,) will be equal to z;. The
estimates are partially encoded like in an (N, K)-concept and forwarded to
all modules d, of the r-system by means of DIC algorithms from the class
A(Ty,Ty+1, ar,Ns,,Ns,) with a, € Inp. In each module d, these algorithms
will result in Ny, decisions decr, +1((ar),dr). Again ignoring possible faults,
these decisions will be equal to the partial encoded values of z;. So the value



5.2. COMMUNICATION WITH THE ENVIRONMENT 197

z; is calculated from the Nj,, decisions decr,+1((ar),d,) by means of the
decoding function W(-1),

From the definition it follows that after the observing function Yt is applied,
an Interactive Consistency algorithm is applied for each message y(a,). So,
the method can clearly always be applied i the r-system contains at least
37, + 1 modules. In that case it is obviously possible to satisfy the condition
27y +1 £ Nipp < 3T, + 1 £ N, from Definition 5.4.

A fault-tolerant input device which is connected to a fault-tolerant system
according to the method defined above can never cause the latter system
to go down, regardless of whether the fault-tolerant input device functions
correctly or not, i.e.:

Theorem 5.3 If the DJC Method wnth pre-observation s used for connect-
ing a fault-tolerant input device, the t-system, to a fault-tolerant system, the
r-system, as 15 defined in Definition 5.4, then the t-system and the r-system
satisfy the interactive consistency requirement between communicating sys-
tems as 18 defined in Definstion 5.1. O

Proof:

Let the set of correctly functioning modules in the t-system and the r-system
again be denoted by F; and F, respectively. Recall that ]Ft] > Ny — Ty
indicates that the t-system is functioning correctly.
If the t-system is functioning correctly then the result m(a,) of the observing
function yt(’l} applied in a correctly functioning module a, on the received
messages m(s:) will be equal to the original message value z; in the t-system,
ie.:

(JF)| > N: -~ Ty Aa, €InpAa, €F,) = m(a,) = 2 (5.4)

According to Definition 5.4 the results m(a,) are encoded by means of
the partial encoder function W(a,) of a T,-error-correcting code such that
v(ar) = W(ar)(m(a,)). And thus if both the t-system and module a, are
functioning correctly it holds that y(a,) = W(a,)(zs).

The values y(a,) with a, € Inp are communicated by Interactive Consistency
algorithms from the classes A4(7},T, + 1,a,,Ns,,Ns,) to all modules of the
r-system. So for the results decr, +1{(a,),d,) of these IAC algorithm it holds
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that

a,,dy € Fp = decr, 1+1((a,),ds) = y(ar)

d., e € ¥, => decr +1((a,),dr) = decr, +1((2+), er)

(5.5)
After the IAC algorithms have been completed, each module d, in the r-
system contains Ny, decisions dect,11({ar),d,). If both the t-system and
module a, are functioning correctly it thus holds that decr,+1((ar),d,) =
W(er)(z:). In each module d, the decoder function W(~Y of the Ty-error-
correcting code is applied to these decisions decr,+1((ar), dr). The result is
denoted by dec(dy). At most T modules a, are behaving maliciously. Hence
if the t-system is functioning correctly, then dec(d,) = z,. So

(¥ > N: — T Ad, € F,) = dec(d,) = = (5.6)

which proves the first property of interactive consistency between communi-
cating fault-tolerant systems.

From the properties {5.5) of the IAC algorithm we know that all correctly
functioning modules arrive at the same decision decr,+1((ay), d,), regardless
of whether the module a, is functioning correctly or maliciously. In all mod-
ules d, the same decoder function is applied to the values decr,+1({a,),d,).
Hence the results dec(d,) must be the same in all modules. Le

dy,er € Fy => dec(d,) = dec(e,) (6.7)

which proves the second property of interactive consistency between com-
municating fault-tolerant systems. =]

The DJC method with pre-observation will generally require less communi-
cation than the DJC method with post-observation. This can be explained
as follows:

Suppose the sets B(#;) in the method based on post-observation and the set
Inp in the method based on pre-observation are of the same size. Let this
size be N”.

In both methods during round 0 the partially encoded messages Yt(i;)(z;)
which are available in the modules 1; of the t-system are each transmitted
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to the N" modules of the r-system. However, in the DJC method with post-
observation they are first encoded by means of the encoding function Y;,) of
the algorithm from the class A(7,, T, + 2,4, Ns,,Ns,U{5;}). So in the case
of post-observation the size of the messages transmitted during round 0 will
generally be smaller and thus the number of messages counted according to
the message size will be smaller too.

However, in the case of post-observation all N;.N” messages which are re-
ceived at the end of round 0 by the modules of the r-system, have to be
communicated to all modules of the r-system by means of an algorithm from
the classes A(T,,T, +1,a4,Ns,, Ns, ), whereas in the case of pre-observation
only N” messages have to be communicated to all modules of the r-system
by algorithms from the same classes. The messages which are to be commu-
nicated in round 1 are in both cases partially encoded copies of the message
Yt(3:)(2¢). In case of post-observation the encoding function is Y;,) and
in the case of pre-observation the encoding function is W(a,). Because the
size reduction due to these encoding functions will be about the same, the
number of messages which are to be transmitted after rounds 0 will in the
case of pre-observation be a factor N smaller compared to post-observation.
This reduction in general counts more than the fact that during round 0 the
number of messages in the case of pre-observation is more than in the case
of post-observation.

5.2.4 The DJC Method applied to an NMR input device
with pre-coding and pre-observation

Though pre-observation is an efficient alternative to the post-observation
method, further improvements can be obtained if the t-system can be con-
sidered as an NMR system, i.e. if the observing function of the t-system is
a repetition code. In that case the partial encoder functions W(a,} may be
moved backwards in the data flow from the modules in the r-system to the
modules in the t-system. This causes a reduction in the amount of infor-
mation which is to be transmitted between the t-system and the r-system.

The DJC Method applied to an NMR input device with pre—observatmn and
pre-coding is defined as follows:

Definition 5.5
Let the t-system be an NMR fault-tolerant input device and let Inp be a set
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of Ninp modules in the r-system which provides for the communication from
the t-system, such that 2T, + 1 < Nipp < N,

e Each correctly functioning module 13 in the t-system possesses the orig-
tnal message value z:. In each module 1; this value 1s encoded by means
of a T,-error-correcting code W in which a code word consists of Ny,
symbols. The Nin, symbols are each sent to a different module of the
set Inp. So the partial encoded message w(is,a,) = W(a,)(:) is sent
from module t; in the t-system to module a, in the set of modules Inp
in the r-system.

e In each module a, of the r-system with a, € Inp, a majority vote May
18 applied to the Ny messages w(is,a,) recetved from the t-system. Let
the result obtained in module a, be denoted by m(a,).

o Each module a, with a, € Inp communicates its message m(a,) to all
modules of the r-sysiem by means of a DJC algorithm from the class
A(T,,T, +1,a,,N8,,Ns,) (this is an IAC algorithm).

o The decision dec(d,) tn a module d, of the r-system is the result of the
decoding function W=V applied to the Ninp decisions decr,11((a,),dy)
with a, € Inp resulting from the IAC algorithms.

The method is elucidated in Figure 5.4. In this figure the IAC algorithms
from the classes A(7,,T, +1,4a,,Ns,,Ns,) with a, € Inp are again denoted
by o o o.

In the modules a, with a, € Inp an estimate is calculated of the value
W(a,)(z:). These estimates are forwarded to all modules d, of the r-system
by means of DJC algorithms from the classes A(T}, T, + 1,a,,Ns,,Ns,). In
each module d, these IAC algorithms result in Ny, decisions decr, +1((ar),d,)-
Ignoring possible faults, these decisions will be equal to the partial en-
coded values W(a,)(z:). So the value z; is calculated from the decisions
decr, +1((ar),d,) by means of the decoding function W{(~1).

Although the observing function ¥t(~1) of the NMR t-system is a majority
vote, this function differs from the function Maj applied in the modules a,
in the set Inp, because yt("l) operates on the original message z; and May
operates on the partially encoded versions of z;.
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dec(e)

Figure 5.4: The DJC Method applied to an NMR fault-tolerant input device
with post-observation and pre-coding

From the definition we know that after the majority vote Maj has been
applied in the modules a, of the r-system which provide for the input, an
Interactive Consistency algorithm is applied for each module a,. So clearly
the method can always be implemented if the r-system contains at least
37, + 1 modules.

An NMR fault-tolerant input device which is connected to a fault-tolerant
system according to the method defined above can never cause the latter
system to go down, regardless whether the fault-tolerant input device is
functioning correctly or not, i.e.:

Theorem 5.4 If the DJC Method with pre-observation and pre-coding is
applied for connecting an NMR fault-tolerant input device, the t-system, to
a fault-tolerant system, the r-system, as is defined in Definition 5.5, then
the t-system and the r-system satisfy the interactive consistency requirement
between communicating systems as s defined in Definition 5.1. 1
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Proof:

Let the set of correctly functioning modules in the t-system and the r-system
again be denoted by Fy and F, respectively. Recall that [F¢| > Ny — T}
indicates that the t-system is functioning correctly. Because the t-system is
an NMR system it holds that Ny > 2T; + 1.

If the t-system is functioning correctly then each correctly functioning mod-
ule a, in the set Inp will receive at least T; + 1 values w(i;,a,) such that
w(it,ay) = W(a,)(z¢). Hence the result of the majority vote will be m(a,) =

W(a,)(z¢). Le.

(F| > N~ Tina, € Tnp A, €F,) = mia,) = W(a)(z)  (589)

The values m(a,) are communicated by means of Interactive Consistency
algorithms to all modules of the r-system. So for the results decr, +1((a,), d,)
of the algorithms chosen from the classes A(T;, 7T, + 1, a,,Ns,, Ns,) it holds
that

ar,dy € F, = dect,+1((ar),d,) = m(ay)

dy, e, € ¥y => decr, +1((ar), dr) = decr, +1{{as), )

(5.9)
After the JIAC algorithm has been completed each module d, in the r-system
contains Ny, decisions decr,41({(a,),d,). If both the t-system and module
ay are functioning correctly it thus holds that decr,+1((ar), dr) = W(ay){z,).
On these decisions dec,+1((a), d,) in each module d, the decoder function
W1} of the T,-error-correcting code is applied. The result is denoted by
dec(d,). At most T, modules a, are behaving maliciously. Hence if the
t-system is functioning correctly, then dec(d,) = z,. So

(IF:| > Ny~ e A d, €F,) = dec(d,) = z; (5.10)

which proves the first property of interactive consistency between communi-
cating fault-tolerant systems.

From the properties (5.9) of the IAC algorithm we know that all correctly
functioning modules arrive at the same decision decr,+1{(a,), d\), regardless
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of whether the module a, is functioning correctly or maliciously. In all mod-
ules d, the same decoder function is applied on the values decr, +1((ar), d\).
Hence the results dec(d,) must be the same in all modules. Le

dr,er € ¥ = dec(d,) = dec(e,) (5.11)

which proves the second property of interactive consistency between com-
municating fault-tolerant systems. o

5.3 Some exafnples of the interconnection of fault-
tolerant systems

In this section we will elaborate on some system parameters imposed by the
requirement of interactive consistency between communicating fault-tolerant
systems. Moreover we will present a number of simple examples of the
interconnection of fault-tolerant systems with 7; = 0 or 1, and 7, = 1. For
these examples the number of messages which needs to be transmitted in
order to obtain interactive consistency between communicating systems will
be presented. Finally, the I/O architecture of a (4,2) concept fault-tolerant
system will be discussed.

5.3.1 An (N, K)-concept fault-tolerant system interconnected
with external sources

In the previous section it was shown that whenever it is required that a
fault-tolerant system which is based on generalized masking must not be
defeated by a malfunctioning source then it is necessary that N, is greater .
than 37,.

For an (N, K)-concept fault-tolerant computer, in which a T-error-correcting
MDS code is applied, it holds that N — K = 2T. The requirement of
interactive consistency between communicating systems imposes N > 31" +
1. Hence, choosing the minimum value for N, ie. 3T + 1, we get K =
T + 1. So we obtain an (N,K) = (3T + 1,T + 1)-concept fault-tolerant
computer which is able to tolerate T random module failures simultaneously
and which guarantees interactive consistency in the fault-free modules when
a malfunctioning source is connected fo if.

In the (N, K)-concept fault-tolerant computer the amount of processor hard-
ware is N fold compared with a non-redundant system and the amount of
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memory hardware needed is N/K times the amount of memory hardware
needed in a non-redundant system.

In the (37+1,T+1)-concept fault-tolerant computer the amount of processor
hardware is determined by the interactive consistency requirement. With
respect to the non-redundant system the amount of memory hardware is
only duplicated for T = 1 and almost triplicated for large T. This is a
considerable improvement compared to an N-modular redundant system in
which the amount of processor hardware and also the amount of memory
hardware are 37" + 1 times as much as in a non-redundant system.

Thus the (N, K)-concept generalization makes it possible to adapt the mask-
ing redundancy requiremnents to the inieractive consistency requirements.

5.3.2 Some simple examples of the interconnection of fault-
tolerant systems

Suppose we are dealing with a (4,2)-concept receiving system and a single
input device. Thus

N;=1 and Ty =0 and N, =4 and T, =1

Let the single module in the t-system again be denoted by 0;. When using the
DJC method applied to a single input device, we know from Definition 5.2
that the data value z; in the input device 0; is communicated by means
of algorithms from the class A(1,3,0¢ Ns,,Ns,U{0:}) to the modules d,
in Ns,. The next-set B{0¢) must contain at least 3 modules, because the
code is to be single error-correcting, but can contain at most 4 modules
because B(0;) C Ns,. Similarly the next-sets B(0;, a,) must contain at least
3 modules. From the elucidation to the construction of the DJC algorithms
on page 153, equation (3.38) we know B(0¢,a,) C (Ns, — {a,}). Hence
IB(Dg,a;—)‘ = 3.

So for the code Yq,) wused by the algorithm from the class
A(1,3,0;,Ns,,Ns,U{0;}) we may choose between a [4,2,2] code and a
[3,1,1] code. Recall from Chapter 4 that a [n,, k., b.] code indicates a code
consisting of code words of n, symbols, data words of k. symbols and symbols
which are represented by b, bits.

The codes Y(q, q,) used by the algorithms from the classes 4(1, 3, a,, Ns,, Ns,)
must consist of 3-symbol code words. So if Y(o,) is a [4,2, 2] code then Yior,a,)
must be a [3,1,2] code, and if Yo, is a [3,1,1] code then Y(q, ,,) must be a
[3,1,1] code.
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The implementation of the method will be characterized by the encoder and
decoder functions applied in the order of the data flow.
We will use the following notation:

['nm kc: bc]

Denotes the application of the encoding function of a
[ne, ke, be] error-correcting code. The n, results are sent in
n, different directions.

{ne, ke, be)  Denotes the application of the decoding function of a

[n¢, k¢, bs] error-correcting code.
Indicates that the data is transmitted.
Indicates that the data will be sent unchanged to all modules

in the set of destinations which has not yet been passed by
the message.

Indicates that one of the symbols of the code word is selected
for transmission.

For example in one of the possible implementations of the DJC method
applied to a single input device which was mentioned above, the [3,1,1]
code is applied twice.

This example is characterized as follows:

(1,1,1]

[3,1,1]

[3,1,1]

Before round 0 of the DJC algorithm:
First the observing function Yt of the single input device is
denoted by a 0-error-correcting code [1,1,1].

During round 0, first part, of the DJC algorithm:

Then the encoder function Y(q,) is applied, which is a [3,1,1]
code.

During round 0, second part:

The data is transmitted to the r-system, which is indicated by
t.

During round 1, first part:

Again a [3,1,1] code is applied, i.e. the encoder functions
y(o:,a;] «

During round 1, second part:

And the data is again sent to the next modules, which is indi-
cated by ¢.

During round 2:
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~t During the last round the messages are broadcast to all desti-
nations which have not yet been passed by the messages. The
broadcasting is indicated by ‘—’ and the transmission by ¢.

During round 3, first part:
(3,1,1) In the destination first the decoder functions y(((;; 2') of the
[3,1,1] code are executed; this is indicated by (3,1, 1).

During round 3, second part:
(3,1,1) Thereafter the decoder functions y(((;; ;) code are executed.

After round 3 of the DJC algorithm:

{(1,1,1) And finally the observation function denoted by (1,1,1} is ap-
plied. Notice that the observation function in this case is just
an identity function.

So our example is characterized by:
[1,1,1][3,1,1]¢[3,1,1]t — ¢(3,1,1)(3,1,1){1,1,1)
In the same way the other implementation is characterized by
[1,1,4][4,2,2]¢[3,1,2]t — £(3,1,2)(4,2,2)(1,1,4)

The number of messages which needs to be transmitted and the minimum
size of the original message z; in the “source” can be easily calculated from
this notation.

For example in our second example we start from messages of 4 bits. These
are encoded into 4 symbols of 2 bits and each symbol is transmitted during
round 0. This gives 4 x 0.5 = 2 unit messages. During round 1, each symbol
is encoded with a [3,1,2] code, resulting in 3 X 4 = 12 messages of 2 bits,
i.e. 6 unit messages. In the last round each two-bit message is sent to the
remaining 2 destinations causing 24 messages of 2 of unit messages which
needs to be transmitted in this algorithm is 20.

In the same way the other methods can be characterized by the succession
of coders, transmissions and decoders.

If in a module only one partial encoder function is applied, like the function
W(a,) in the DJC method with pre-observation, this will be denoted by
an s following the code, indicating that only one symbol of the encoding is
selected for transmission.

In Table 5.1 a number of implementations are presented.
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The DJC Method applied to a single source
Tg=0, Nf=4’ Ty=l

N: | code sequence m.sizge | Fmess | Fmess | Fmess
t—->¢r | r=>7r tok.

1| [1,3,1[3,1,1]8]3,1,1)t-£(3,1,1)(3,1,1){1,1,1) 1 3 27 30
1| [1,1,4)[4,2,2]8]3,1,2}6-4(3,1,2)(4,2,2)(1,1,4) 4 2 18 20

The DJIC Method applied to a fault-tolerant source with post-observation
Tt:l, Nf=4, Tr=1

N: | code sequence m.agige | #mess | F#mess | Fmess
t—>r | r—>r tot.

3 | [3,1,1][3,1,1]8[3,1,1]t-£(3,1,1)(3,1,1)(8,1,1) 1 9 81 90
3| [3,1,4][4,2,2]t[3,1,1]t-£(3,1,1){4,2,2)(3,1,4) 4 6 54 60
4 | [4,2,2][3,1,2]t[3,1,2]t-8(3,1,2)(3,1,2)(4,2,2) 4 6 54 60
4 | [4,2,4][4,2,2]6]3,1,2]6-£(3,1,2){4,2,2){4,2,4) 8 4 36 40

The DIC Method applied to a fault-tolerant source with pre-observation
Te=1, N,=4, T,=1

N; | code sequence m.size | Fmess | Fmess | Fmess
t—>r r—>r tot.

3 [3,1,1][8.,1,1]6(3,1,1 )[1,1,1]s[3,1,1]t-£(3,1,1)(3,1,1} 1 9 27 36
3 [3,1,4][4,1,4]t(3,1,4 )[4,2,2]s[3,1,2]t-t(3,1,2)(4,2,2) 4 12 18 30
4 [4,2,2][3,1,2]t(4,2,2 }|1,1,4]s[3,1,4]t-4(3,1,4}(3,1,4) 4 8 27 33
4 [4,2,2][4,1,2]t(4,2,2 }[4,2,2]8[3,1,2]t-4{3,1,2){4,2,2) 4 8 18 28

The DJC Method applied with pre-observation and pre-coding
Th=1 N,=4, T,=1

N; | code sequence m.gige | Fmess | #mess | Fmess
t—>r re—>r tot.

3 [3,1,4][4,2,2]t(3,1,2 )[8,1,2]t-£(3,1,2}(4,2,2) 4 6 18 24

Table 5.1: A comparison of the four different DJC Methods for obtaining
interactive consistency between communicating modules.
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5.3.3 The architecture of a (4,2) module

In order to implement the preceding algorithms each module of the (4,2) con-
cept is provided with a separate I/O processor or I/O controller. In Fig-
ure 5.5 the architecture of one module is shown. The I/O processor I/OPROC
has its own random access memory I/OMEM. This memory cannot be ac-
cessed by the main processor MAINPROC, so communication between the
main processor and the I/O processor takes place via the main memory
MAINMEM. A separate I/O processor is chosen because in most multi-
processor systems the algorithms and protocols needed for the I/O are a
considerable load for the system. When the algorithms described in the
preceding section are implemented the load is even larger.

to (4,2) bus
___________________ - - - - o
! 2x4 i
1 - < |
' <« I/OBUF
L MAIN | | 2x4 2x4 !
- MEM. | jw 1 | 10 !
, ‘ | MEM.
, | 1
i
| © |, *
i
|
i L— ; :
L. MAIN | ’ - o o |
1 proc. [T 4x4 4x4 [ ProOC. [T
< - i
|
|
DEC/VOT | = = = = = a2ddress bug
444

(4,2) bus (4 x (2 x 4))

Figure 5.5: The architecture of the (4,2)-concept provided with the means
for reaching interactive consistency

The decoders DEC/VOT and the interconnection bus between the modules,
the (4,2) bus, are shared by the main processor and the I/O processor.
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The decoders not only act as a decoder for the (4,2) code but they also
take care of the broadcasting and voting functions needed for the interactive
consistency algorithm.

Messages received from outside sources are stored in I/O buffers

I/OBUF, which are connected to the I/O memory bus (memory mapped
1/0). An interrupt is treated like a message. The I/O processors poll these
1/0 buffers.

The easiest way to explain the architecture shown in Figure (5.5) is to de-
scribe the data transfers in the module caused by reading one of the 1/O
buffers in one of the modules.

Suppose an 1/O buffer in module 0 has to be read, then all four I/O proces-
sors perform synchronously a read operation on their I/O. Only the address
on the address bus of the I/O processor in module 0 is able to select an 1/O
buffer. The data from the selected I/O buffer in module 0 is transferred over
the 8-bit wide I/O bus to the drivers of the (4,2) bus. The other modules
transfer zero information via their I/O buses and drivers to the (4,2) bus.
At the same time the address bus of the I/O processor forces the decoder
into a mode called the broadcast mode, in which the 8 bits from module 0
are transferred to the lower byte output of the decoder. This is done in all
modules, so the data byte from the I/O buffer in module 0 is now transferred
to all I/O processors.

The next step of the algorithm is to write the byte in a memory location
(of I/OMEM.) specially reserved for data descending from the I/O buffers
of module 0. This is done by a synchronous write operation in the four
modules. The encoders are bypassed during this operation, so the bytes are
unchanged.

In the following step a read operation is performed on the memory location
in which the byte was stored. This is done synchronously by all four proces-
sors. So in the fault-free case four identical bytes appear at the (4,2) bus in
parallel. Again the address bus of the I/O processor forces the decoders into
another special mode, called the voting mode, in which the decoders take
a majority decision on the bytes received from the modules 1, 2 and 3 (the
byte received from module 0 is neglected). The reserved address for data
descending from the I/O buffers of module 0 is of course the same one that
forces the decoder into this special mode. After this read operation all non-
faulty modules contain identical data, regardless of whether module 0 was
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producing broadcast errors or one of the other modules was malfunctioning.
The four bytes residing in the four I/O processors can now be treated as
general data in the (4,2)-concept. Thus during the next step the data can
be written into the main memory, during which write operation the four
bytes are encoded.

In order to cope with a single source, this procedure must be executed for
each of the three copies of the message sent by the single source to the
modules of the (4,2)-concept and a majority vote has to be taken on the
results.

5.3.4 Some concluding remarks

The {N, K)-concept makes it possible to choose the ratio between memory
and processor redundancy. This ratio can be chosen such that the total
amount of hardware is minimal. However it is often more important to
reduce the number of service calls. In that case the added redundancy for the
most unreliable components should be as small as possible. At first glance
this contradicts the reliability requirements. The reliability improvement
however depends on the number of failing modules that can be tolerated. In
the (N, K) concept this is (N — K)/2. The added redundancy of the memory
is (N — K)/K and the added processor redundancy is N — 1. So without
influencing the reliability improvement, the number of service calls can be
made minimal by choosing appropriate values for N and K. It should be
noted that the bit-error-correcting property has to be taken into account.
Furthermore it was shown that the (N, K) concept enables the number of
modules to be adapted to the number that is needed to fulfil the interactive
consistency requirements.
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Chapter 6

Conclusions

In this thesis we have shown that methods for improving the reliability of
digital systems which are based on N-modular redundancy can be general-
ized to methods which are based on a distributed implementation of error-
correcting codes. These methods have been called “Generalized Masking

Redundancy”

Within the class of fault-tolerant systems based on generalized masking two
sub-classes can be identified which characterize the systetns that are based
on generalized masking.

The first class requires, after repair, some state initialization from the en-
vironment and is identified by the a distributing function X, (the encoder
function of an error-correcting code), an observing function Y (the decoder
function of an error-correcting code) and the number T of maliciously be-
having modules which are tolerated.

The second class re-initializes itself each time instance and is identified by a
distributing function X', an observing function Y, a state decoder Z (the de-
coder function of an error-correcting code) and the number T of maliciously
behaving modules which are tolerated.

It has been shown that in practical cases none of the two classes will suf-
fice. Firstly, because re-initialization by external means causes the reliabil-
ity of the system to depend on the environment. And secondly, because
re-initializing the entire state each time instance is too costly. So practical
implementations will be a mixture of these two classes, i.e. the system wdl
re-initialize itself within a particular span of time.
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An example of an architecture based on generalized masking is called the
(N, K)-concept, of which the feasibility is proved by application in a com-
mercial system. Due to the concept of generalized masking on which the
(N, K)-concept is based the following is gained

e The ratio between memory and processor redundancy can be optimized
with respect to the total amount of hardware needed or with respect
to the call-rate of the system.

o Codes can be introduced which are capable of correcting both symbol
and bit faults without requiring additional redundancy. In this way
the code which is usually applied for memory protection is saved.

e The number of modules (fault isolation areas) required for fault toler-
ance can be adapted to the number of modules required for consistent
communication with the environment.

The existence of codes which are able to correct both symbol and bit errors
without requiring additional redundancy is shown with the presentation of
such a symbol and bit-error-correcting code for the (4,2)-concept. Moreover
we have shown that a one-chip decoder for this code can be designed with a
propagation delay of about 100nsec.

One of the worst problems in fault tolerance is the Input Problem. If spe-
cial precautions are not taken, a correctly functioning fault-tolerant system
might go down due to external faults. We have shown that this Input Prob-
lem is similar to the Interactive Consistency problem.

Interactive Consistency Algorithms give rise large numbers of messages which
need to be exchanged between the modules. This limits their application to
systems in which at most 3 or 4 faulty modules are tolerated.

In order to reduce the number of messages which need to be exchanged, a
new class of Interactive Consistency Algorithms based on voting and coding
has been defined. In practical applications in which less than 4 maliciously
behaving modules are tolerated, these synchronous deterministic Interactive
Consistency Algorithms turn out to be superior to their existing counter-
parts.

The properties of the class of Interactive Consistency Algorithms based on
voting and coding have been proven on the basis of a newly defined class of
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algorithms. called Dispersed Joined Communication algorithms which have
more liberal properties.

Finally, four algorithms based on Dispersed Joined Communication algo-
rithms and Interactive Consistency algorithms have been presented which
solve the Input Problem.

In this thesis we restricted ourselves to fault-tolerant systems in which the
means for reliability improvement are implemented rather close to the hard-
ware level. In general this turns out to be a cost-effective approach, both
from the point of view of system cost and from the point of view of sepa-
ration of concerns during the design process, It enables the development of
software independently from the reliability requirements.

Implementation of the means for reliability improvement close to the hard-
ware level naturally leads to a synchronous deterministic approach. This
holds for the system fault tolerance as well as for the algorithms which solve
the Input Problem.

However, if one wishes to start from off-the-shelf modules, the approach
followed in this thesis will often not suffice. Firstly, a less strict definition
of synchronism will be needed which is based on only time-outs. This will
require adapted fault-tolerant synchronization algorithms. Secondly, the
algorithms for solving the Input Problem will be applied on a higher level,
in which case algorithms based on authentication will be cheaper. Much
work in this “quasi asynchronous” field has still to be done.

The reliability of systems not only depends on the reliability of their consti-
tuting physical components but also on the correctness of the design. The
field of specification and design description with respect to fault tolerance
has hardly been explored. Only on the basis of formal description meth-
ods can proof systems be designed. Any result in this field will ease the
validation problem of fault-tolerant systems.
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ot

. In tegenstelling tot fouten tolererende systemen die gebaseerd zijn op

ver-N-voudiging, biedt een fouten tolererend systeem dat gebaseerd
is op het (IV, K) concept, de mogelijkheid om de totale hoeveelheid
hardware of de call-rate van het systeem te minimaliseren door de
verhouding tussen de hoeveelheid hardware voor het geheugen en de
hoeveelheid hardware voor de processoren te varieren.

Het (N, K') concept biedt tevens de mogelijkheid het aantal benodigde
modules voor fouten tolerantie aan te passen aan het aantal modules
dat nodig is voor consistente communicatie met de omgeving.

[dit proefschrift]

. De toepassing van het (N, K) concept wordt beperkt door de tijd die

nodig is voor decoderen.
[dit proefschrift)

Wanneer geen bebruik gemaakt wordt van authenticatie is het Input
Probleem en het Byzantijnse Generaals Probeem in praktijk tot nu
toe alleen oplosbaar wanneer het aantal te tolereren fouten minder is
dan vier.

[dit proefschrift]

Van alle tot nu toe bekende synchrone deterministische Byzantijnse
Generaals Algorithmen, die geen gebruik maken van authentiseren,
belasten de algorithmen, die gebaseerd zijn op fouten corrigerende
codes, het communicatienetwerk tussen de modules het minst.

[dit proefschrift]

. Ultspraken over betrouwbaarheidsverbeteringsfactoren hoger dan 103,

die uitsluitend gebaseerd zijn op berekeningen zonder experimentele
verificatie, moeten in het algemeen als fabels worden beschouwd.

. Een fout-hypothese is een uitstekend middel om minder gunstige prak-

tijk resultaten te verbergen.



10.

11.

12.

Het woord fout in “fouten tolererende digitale systemen” suggereert
ten onrechte dat dergelijke systemen ook bestand zouden zijn tegen
foute input gegevens.

Het is daarom beter te spreken van “systemen die in staat zijn incorrect
gedrag van de componenten waaruit ze zijn opgebouwd te tolereren”.

. De voorliefde van wiskundigen om hun bewijzen zo elegant mogelijk

op te schrijven, maakt deze bewijzen voor hen die aan de zijlijn van
de wiskunde werken vaak moeilijk toegankelijk.

. De hoeveelheid wetenschappelijke publicaties op het gebied van zelf-

controlerende logica is meer bepaald door de geschiktheid van het on-
derwerp voor doctoraalscripties en proefschriften, dan door het prac-
tisch belang van het onderwerp.

De langzame invoering van het gebruik van formele methoden voor
het ontwerpen van digitale systemen wordt mede veroorzaakt door
de beperkte kennis op het gebied van wiskunde en informatica bij de
ontwerpers en door gebrek aan kennis van het ontwerpproces bij de
informatici en wiskundigen.

[Proceedings IFIP WG 10.2-WG10.5 International Workshop on Ap-
plied Formal Methods For Correct VLSI Design, Houthalen, Belgie,
13-16 November 1989]

Een project georganiseerde research organisatie kan slechts voorspel-
bare resultaten opleveren. Mits aan de juiste omgevingsvoorwaarden
is voldaan heeft daarentegen een discipline georganiseerde research or-
ganisatie de potentie in zich tot werkelijke vernieuwing.

Wetenschappelijke vooruitgang wordt vaak verkregen door het poneren
van stellingen en daarna een ander het tegendeel te laten bewijzen.





