

A generalization of fault-tolerance based on masking

Citation for published version (APA):
Krol, T. (1991). A generalization of fault-tolerance based on masking. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR357271

DOI:
10.6100/IR357271

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR357271
https://doi.org/10.6100/IR357271
https://research.tue.nl/en/publications/af451930-a540-4775-8438-a016cdf318c1

A Generalization of Fault-Toleranee

Based on Masking

Cover
The architecture of a (4,2)-concept fault-tolerant computer

Aan Anneke, Ingrid, Rinzeen Eelco

@1991 Th.Krol, Mierlo, The Netherlands

All rights reserved. No part of this pubHeation may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

A Generalization of Fault-Toleranee

Based on Masking

Proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

dinsdag 24 september 1991 om 16.00 uur.

door

Thijs Krol

geboren te Leeuwarden

Dit proefschrift is goedgekeurd door de promotoren:

Prof. ir. A. Heetman

en

Prof. dr. ir. J. Vytopil

The work described in this thesis bas been carried out at the Philips Research
Laboratories Eindhoven as a part of the Philips Research programme.

Contents

Samenvatting 1

Summary 5

Preface 9

1 An introduetion to fault~tolerant computing 13
1.1 Introduetion 13
1.2 Designing reliable systems 14

1.2.1 The various stages in the life of a system 14
1.2.2 Fault classification 15
1.2.3 Reliability criteria 16

1.3 Methods to imprave the reliability of computer systems 18
1.3.1 Fault avoidanee 18
1.3.2 Fault toleranee 19

1.4 Systems based on fault masking versus dynamic redundant
systems

1.5 The Input Problem .
1.6 Condusion

2 Generalized Masking Redundancy
2.1 Introduetion
2.2 The (N, K)-concept
2.3 On modeling the behaviour of fault-tolerant systems

2.3.1 The combinatorial model
2.3.2 The Moore model
2.3.3 Unfolding time into space .
2.3.4 The meaning of behaviour .

29
32
37

41
41
43
48
48
49
51
52

u CONTENTS

2.3.5 System decomposition 54
2.3.6 Specification, design and implementation 55
2.3.7 Correct and malicious behaviour 56

2.4 An abstract view on N modular redundancy 60
2.4.1 An N-modular redundant implementation of a combi­

natorial system . 61
2.4.2 An N-modular redundant implementation of a sequen-

tia! system without state voting 63
2.4.3 An N -modular redundant implementation of a sequen-

tia! system with state voting . . 68
2.5 A generalization of masking redundancy 73

2.5.1 Introduetion 73
2.5.2 (X, Y, T) Fault-tolerant systems 77
2.5.3 Examples of (X, y, T) Fault-tolerant systems 78
2.5.4 (X, Y, T) fault-tolerant systems basedon authentication 84
2.5.5 (X, Y, Z, T) Fault-tolerant systems 85
2.5.6 Examples of (X, Y, Z, T) fault-tolerant systems 88

2.6 The (4, 2)-concept . 94
2.6.1 System description 94
2.6.2 Data transfer between processor and memory 95
2.6.3 Applicable symbol-error-correcting codes for the (4,2)-

concept 96
2. 7 Symbol- and bit-error-correcting codes 99
2.8 Decading symbol- and bit-error-correcting codes 102
2.9 Decoder implementation 107
2.10 Some facts about the implementation of the (4,2)-concept 113

3 A class of algorithms for reaching interactive consistency
based on voting and coding 115
3.1 Introduetion to the Byzantine Generals Algorithms 116

3.1.1 The definition of the Byzantine Generals problem. . . 116
3.1.2 The parameters relevant for interactive consistency al-

gorithms 117
3.1.3 Results publisbed 120

3.2 Introduetion to the algorithms and their proof 124
3.2.1 A survey of the algorithms considered 124
3.2.2 The way in which the algorithms are described 125

3.3 The Dispersed Joined Communication Algorithms 128

CONTENTS lll

3.3.1 Introduetion 128
3.3.2 The construction of the Dispersed Joined Communi­

cation Algorithms . 132
3.3.3 The existence of Dispersed Joined Communication Al-

gorithms in the classes Jl(T, K,a,D,Ns) 139
3.3.4 Some behavioural properties of the Dispersed Joined

Communication algorithms in the presence of at most
T modules which behave maliciously 143

3.4 A class of algorithms for reaching interactive consistency based
on voting and coding . 147

3.5 Some remarks on the construction of Interactive Consistency
Algorithms which are based on voting and coding 149
3.5.1 The general construction of Interactive Consistency

Algorithms which arebasedon voting and coding. . . 150
3.5.2 Two simple examples 155
3.5.3 The Minimal Voting algorithms and the Maximal Cod-

ing algorithms . . . 162
3.5.4 The Subset Method 164

4 A comparison of the existing algorithms and the algorithms
basedon voting and coding 167
4.1 Introduetion 167
4.2 The algorithms selected for comparison 168
4.3 The criteria 169

4.3.1 Introduetion to the criteria . . . 169
4.3.2 The number of messages in the algorithm based on

voting and coding 169
4.3.3 The number of messages in the Subset Method 171
4.3.4 The minimum size of the original message in the souree 175
4.3.5 The number of messages in the Dolev-algorithm 176

4.4 The algorithms compared 177

5 Interconnecting fault-tolerant systems 185
5.1 Introduetion . 185
5.2 Communication of a fault-tolerant system withits environment187

5.2.1 The DJC Method applied to a single input device 189
5.2.2 The DJC Method applied toa fault-tolerant input de-

vice with post-observation 191

IV CONTENTS

5.2.3 The DJC Method applied toa fault-tolerant input de-
vice with pre-observation 195

5.2.4 The DJC Method applied to an NMR input device
with pre-coding and pre-observation 199

5.3 Some examples of the interconnection of fault-tolerant systems 203
5.3.1 An (N, K)-concept fault-tolerant system interconnected

with external sourees 203
5.3.2 Some simple examples of the interconnection of fault-

tolerant systems 204
5.3.3 The architecture of a { 4, 2) module 208
5.3.4 Some concluding remarks 210

6 Conclusions 211

Curriculum vitae 223

1

Samenvatting

Het doel van dit proefschrift is het generaliseren de methode masking die
wordt gebruikt ter verbetering van de betrouwbaarheid van digitale syste­
men. Tevens wordt een methode gepresenteerd die het correct functioneren
van een fouten-tolererend systeem onafhankelijk maakt van een onbetrouw­
bare omgeving. Voor dit laatste doel is een nieuw en efficient algoritme voor
interactieve consistentie ontwikkeld.

Tot nu toe werden fouten-tolererende digitale systemen veelal beschreven
door te verklaren hoe in een bepaalde architectuur de extra, d.w.z redun­
dante, onderdelen of deelsystemen worden benut om de betrouwbaarheid van
het totale systeem te verbeteren.
In deze context dient betrouwbaarheidsverbetering te worden beschouwd
als de verhouding tussen de Mean-Time-Between-Failures van een fouten­
taiererend systeem en de Mean-Time-Between-Failures van een niet-fouten­
toleterend systeem met dezelfde functionaliteit.

Fouten-tolererende architecturen worden tegenwoordig met succes toegepast
in telefoon centrales, in computers voor het betaalverkeer, ruimtevaart, en
zelfs in de burgerluchtvaart.

Het nadeel van de huidige ontwerpmethoden voor fouten-tolererende digitale
systemen is het feit dat de betrouwbaarheid niet alleen afhankelijk is van de
verbetering die verkregen wordt door het toepassen van een basisarchitec­
tuur, maar dat de betrouwbaarheidsverbetering tevens afhankelijk is van
allerlei ontwerpdetails. Bovendien wordt de betrouwbaarheidsverbetering
bepaald door de vraag of het architectuurconcept consequent is toegepast
of dat bepaalde aanpassingen zijn gemaakt teneinde de kosten te verlagen.
Voor veel ontwerpen van fouten-tolererende digitale systemen blijkt het erg
moeilijk te zijn om gedurende het ontwerpproces de ontwerpbeslissingen te

2 SAMENVATTING

herkennen die kritisch zijn voor de betrouwbaarheidsverbetering. In feite
komt het er op neer dat als gevolg van de toegepaste ontwerpmethode de
betrouwbaarheidseigenschappen niet kunnen worden geverifieerd tijdens het
ontwerpproces. Dus de uiteindelijke betrouwbaarheidsverbetering van het
fouten-tolererend systeem hangt sterk af van de kwaliteit van het ontwerp,
het ontwerpproces en het validatieproces. In ieder geval is de berekende of
geschatte betrouwbaarheidsverbetering van veel ontwerpen twijfelachtig.

In dit proefschrift wordt beschreven hoe voor de klasse van fouten-tolererende
digitale systemen die gebaseerd zijn op "masking" een aantal van deze na­
delen weg te nemen zijn door het fouten-tolererend systeem te reduceren
tot een verzameling gekoppelde Moore machines en door de kritische data
communicaties in een dergelijk systeem te identificeren.

Bovendien zal het klassieke masking concept worden gegeneraliseerd door de
meerderheidsfunctie, die de kern vormt van deze methode, te vervangen door
een decodeerfunctie van een foutencorrigerende code. Het resultaat hiervan
zullen we "Generalized Masking" noemen.

De totale klasse van fouten-tolererende digitale systemen, die gebaseerd is
op Generalized Masking met inbegrip van de klassieke masking-systemen
kan, indien de systemen op een voldoend hoog nivo van abstractie beschre­
ven zijn, door twee deelklassen worden gekarakteriseerd, afhankelijk van de
wijze waarop de deelsystemen verbonden zijn. Deze twee deelklassen worden
gekarakteriseerd door respectievelijk twee functies,nl. X en Y of door drie
functies nl. X, Y en Z, alsmede door het maximum aantal T te tolereren
defecte modules. De systemen die door deze twee klassen beschreven worden
zijn respectievelijk (X, Y, T) systemen en (X, Y, Z, T) systemen.

De functie X beschrijft de manier waarop ieder van de modules in het fouten­
toleterend systeem zijn informatie ontvangt van de buitenwereld. We zullen
aantonen dat deze functie altijd correct moet worden uitgevoerd ook wan­
neer die buitenwereld foutieve en misleidende informatie naar het systeem
stuurt. Is aan deze voorwaarde niet voldaan, dan kan het fouten-tolererend
systeem zich incorrect gaan gedragen zelfs wanneer minder modules defect
zijn dan volgens het ontwerp is toegestaan. Dit wordt het "Input Problem"
genoemd.
Het correct uitvoeren van de functie X houdt in dat de correct functione­
rende modules in het fouten-tolererend systeem allemaal tot dezelfde con-

3

clusie moeten komen betreffende de informatie die zij vanuit de externe bron
hebben ontvangen. Wanneer die externe bron correct functioneert dan moet
die conclusie overeenkomen met de data die door die externe bron was ver­
stuurd.

Algoritmen die soortgelijke eigenschappen bezitten als de eigenschappen die
vereist zijn voor de functie X zijn de zogenaamde algoritmen voor interac­
tieve consistentie of Byzantijnse Generaals Algoritmen. Sinds 1978 worden
deze algoritmen onderzocht en sindsdien zijn vele resultaten gepubliceerd.

De algoritmen voor Interactieve Consistentie hebben het nadeel dat wanneer
twee of meer fouten getolereerd moeten worden, een enorme hoeveelheid data
tussen de modules van het fouten-tolererend systeem moet worden uitgewis­
seld. Voor praktische toepassingen betekent dit dat niet meer dan drie of
vier defecte modules in een systeem getolereerd kunnen worden. Teneinde
de hoeveelheid data die verzonden moet worden te verminderen, wordt een
nieuwe klasse van algoritmen voor interactieve consistentie gepresenteerd, die
minder communicatie vereist indien het aantal te tolereren defecte modules
kleiner is dan vier. Helaas wordt geen verbetering verkregen voor het meest
eenvoudige algoritme, nl. het algoritme dat geschikt is voor vier modules
waarvan er ten hoogste eénfout mag zijn.

Tenslotte worden in dit proefschrift een aantal methoden gepresenteerd die
het Input Problem oplossen. Deze algoritmen zijn gebaseerd op algoritmen
voor interactieve consistentie.

Samenvattend is het doel van dit proefschrift

• De generalisatie van de ver-N-voudiging methode, welke gebaseerd is
op een gedistribueerde uitvoering van een foutencorrigerende code. Het
resultaat noemen we "Generalized Masking".

• De definitie V'dn twee klassen fouten-tolererende systemen die de klasse
van systemen die gebaseerd zijn op Generalized Masking karakterise­
ren.

• De presentatie van een bepaalde architectuur, het (N, K)-concept die
gebaseerd is op Generalized Masking en waarvan de voordelen in de
praktijk zijn bewezen.

4 SAMENVATTING

• De presentatie van een symboolcorrigerende code ten behoeve van het
(4, 2) concept, die naast de symboolfouten ook nog in staat is bit-fouten
te corrigeren zonder dat daar extra redundantie voor nodig is.

• De definitie van het Input Problem van een fouten-tolererend systeem.

• De presentatie van een nieuwe klasse van synchrone deterministische
algoritmen voor interactieve consistentie die gebaseerd is op meerder­
heicisbeslissingen en foutencorrigerende codes en die in practische toe­
passingen minder data communicatie vereist dan de bestaande syn­
chrone deterministische algoritmen voor interactieve consistentie.

• De oplossing van het Input Problem met behulp van gelijksoortige
algoritmen als de algoritmen voor interactieve consistentie.

5

Summary

This thesis attempts to generalize a particular method, called masking, which
is used for improving the reliability of digital systems, such as computer sys­
tems. Moreover a method is presented which makes the proper functioning
of a fault-tolerant system independent of an unreliable external world. For
the latter purpose a new and effective interactive consistency algorithm is
developed.

Thus far fault-tolerant digital systems are mostly described just by explain­
ing how the spare (i.e. redundant) components or subsystems in a particular
architecture are utilized for improving the overall system reliability.
In the present context the reliability improvement should he interpreted as
the ratio between the mean time between failures of the fault-tolerant sys­
tem and the mean time between failures of a non-fauit-tolerant system with
the same functionality.

At present many fault-tolerant architectures are successfully applied in real
world systems, such as telephone exchanges, space vehicles, computers for
transaction processing, etc., and even in civil aviation.

The drawback of the current design methods for fault-tolerant systems how­
ever is that reliability improvement not only depends on the improvement
achieved by the application of some basic architecture, but that the reliabil­
ity also depends on many design details and whether the architectural ideas
are implemented straightforwardly or whether some adaptations have been
made in order to arrive at a more cost-effective design. In many fault-tolerant
designs, design decisions which are critical with respect to the reliability im­
provement, are very difficult to recognize during the design process. In fact it
often turns out that due to the design methods applied, the reliability prop­
erties of the system cannot he verified during the design process. Hence the

6 SUMMARY

quality of the design, the design process and the validation process heavily
determines the final reliability of the fault-tolerant system. At least the cal­
culated or estimated reliability impravement of many of the present designs
is questionable.

In this thesis we will try to overcome some of these drawbacks for the class
of fault-tolerant architectures which are based on masking, by reducing a
fault-tolerant digital system which is based on masking to a set of coupled
Moore machines and identifying the critica} data transfers.

Moreover, the classica! masking concept, the N-modular redundancy scheme,
will be generalized by replacing the majority vote, which is the key of this
method, by the decoder function of an error-correcting code. The result will
be called "Generalized masking".

Provided the systems are described on a sufficiently high level of abstraction,
the entire class of fault-tolerant systems based on generalized masking, the
classica! masking systems inclusive, can be described in two ways depending
on the interconnection of the subsystem. One of these subclasses is charac­
terized by two functions, i.e. X and Y and the number T of faulty modules
that can be tolerated. The other subclassis characterized by three functions
X, Y and Z and the number T of faulty modules that can be tolerated.
The systems described by these two classes are called (X, Y, T) systems and
(X, Y, Z, T) systems respectively.

The function X describes the way in which each of the modules of the fault­
tolerant system receives its information from the outsiele world. We will
show tbat this function must be performed "fault free" even if the outside
world produces incorrect data, otherwise the fault-tolerant system might go
down even if it contains less faulty modules than it is designed to tolerate.
This will be called the "Input Problem".
A "fault free" performance of the function X means that the correctly func­
tioning modules in the fault-tolerant system all must come to the same con­
dusion about what the external souree bas sent them. And if the external
souree functions correctly, this condusion should be the data which were
sent by the external source.

Algorithms with properties similar to those which are required for the func­
tion X are the so-called Interactive Consistency Algorithms or Byzantine

7

Generals Algorithms. They have been investigated since 1978 and many
results have been publisbed since then.

The interactive consistency algorithms suffer from the fact that if two or
more faulty modules are to be tolerated an enormous amount of data has
to be transmitted between the modules of the fault-tolerant system. In
practice this means that no more than three or four faulty modules can be
tolerated in a system. In order to rednee the amount of data which has
to he transmitted, a new dass of interactive consistency algorithms will be
presented which is basedon error correcting codes and which if the number
of faulty modules is four or leas, requires less data to be transmitted than
the existing algorithms. Unfortunately no impravement is obtained for the
most simple algorithm which runs on 4 modules of which at most one may
he faulty.

Finally we will present a number of methods which solve the Input Prob­
lem. These methods are based on an algorithm similar to the interactive
consistency algorithms.

In summary this thesis aims at

• A generalization of the N-modular redundancy scheme which is based
on the distributed implementation of error-correcting codes, and which
will he called generalized masking.

• A definition of the two classes of systems which characterize the sys­
tems that are based on generalized masking.

• The presentation of a partienlar architecture, called the (N, K)-concept,
which is based on generalized masking and the feasibility of which is
proved by application in a commercial system.

• The presentation of a symbol-error-correcting code to be used in the
(4, 2)-concept, which in addition to symbol-errors is also capable of
correcting bit errors without requiring extra redundancy.

• A definition of the Input Problem of a fault-tolerant system.

• The presentation of a new class of interactive consistency algorithms
which is based on voting and coding, and which requires in most prac­
tical applications less data transfer than the existing synchronous de­
terministic interactive consistency algorithms.

8 SUMMARY

• The salution of the Input Problem on the basis of algorithms simHar
to the interactive consistency algorithms.

9

Preface

The field of fault-tolerant computing is still rather new. This can he con­
cluded from a still continuing discussion on definitions and a lack of standard
literature in which the area is treated from a formal point of view instead
of from a phenomenological point of view. Therefore a short introduetion
to the field of fault-tolerant computing and one of its most intriguing issues,
the so-called "Input prohlem" is presented in Chapter 1. In this chapter suh­
sequently the aspects which determine the reliahility of a digital system are
discussed, the relevant reliahility criteria are defined, and a survey is given
of the various methods and techniques which are availahle for improving
the reliahility of digital systems such as fault avoidanee and fault-tolerance
hased on error detection, masking redundancy or dynamic redundancy.
Futhermore, in this chapter we will point out that the metbod to he used
often depends on the required form of reliahility (fail-safe, fault-tolerant,
survivahle without repair) and the degree of improverneut to he achieved.
In a separate section the arguments are presented which support the opinion
that repairahle fault-tolerant systems should he implemented hy means of
masking redundancy, the latter heing the subject of this thesis.
Finally the "Input problem" which is an integral part of any fault-tolerant
system will he explained.

In Chapter 2 the well known N-modular redundancy scheme will he gen­
eralized to a class of systems which we will call "Generalized masking re­
dundancy". As an introduetion to Generalized masking first a partienlar
architecture, called the (N, K)-concept, which helongs to this class will he
presented. This new fault-tolerant computer architecture is hased on a "dis­
trihuted implementation" of a symhol-error-correcting code. The fanlts in
this (N, K)-concept are masked hy this error-correcting code instead of hy a
majority vote function which is the case in N-modular redundant systems.

10 PREFACE

To understand better the time dependency of a synchronous digital system
we will model a synchronous digital system by means of the Moore model
and relate time and space by unfolding time into space.

Using as a basis the unfolded representation of the N-modular redundancy
scheme we will identify and discuss the critica} data transfers. We will show
that the broadcast of data and the voting on the results can he replaced by
the encoder function and the decoder function of an error-correcting code
respectively. This can he implemented for the I/0 of the system as well as
for the state of the system. Th is results in the definition of a (X, Y, T) fault­
tolerant system and a (X, Y, Z, T) fault-tolerant system. Real fault-tolerant
systems based on generalized masking will he based on a mixture of both.
The basic ideas bebind Generalized masking could also he described in terms
of a "distributed implementation of an error-correcting code" or in terms of
"the encoding of physically implemented functions".

The (N, K)-concept is described in detail for N = 4 and K = 2.
It will he shown that symbol-error-correcting codes with additional bit-error­
correcting capabilities make additional memory proteetion by means of hit­
error-correcting codes superfluons and a newly designed symbol- and hit­
error-correcting code for the (4, 2)-concept will he presented.

The systems described in Chapter 2 are all hased on the assumption that
the Input Problem is solved. In Chapter 5 this finally will he done on the
basis of interactiva consistency algorithms. Chapters 3 and 4 will he devoted
to these interactive consistency algorithms.

In Chapter 3 the Byzantine Generals problem, which is also called the Inter­
active consistency prohlem, will he sketched hased on its original description.
lts relevant parameters will he discussed and the requirements which have to
he fulfilled hy an algorithm which solves the problem are defined. Thereafter
a survey will he given of the existing literature and the results ohtained so
far.

In the second part of Chapter 3 a new class of algorithms will he defined
which will he called Dispersed Joined Communication algorithms and which
satisfy some properties which can he regarded as a more liberal version of
the interactive consistency requirements.

Based on these Dispersed Joined Communication algorithms a new class of
algorithms for reaching interactive consistency will he presented. This class

11

of algorithms is based on voting and error-correcting codes and roeets both
the N 2:: 3T + 1 bound and the K 2:: T + 1 bound.
The class of Interactive Consistency algorithms based on voting and error­
correcting codes comprises:

• the dass of algorithms based on voting publisbed in the early eighties,
which we will call the classica! algorithms.

• a new class of algorithms based on voting which require considerably
less data communication than the classica! algorithms and which meet
both the K :::: T + 1 bound and the N 2:: 3T + 1 bound.

The class of algorithms described in Chapter 3 contains algorithms which
require much less data communication between the modules than the ex­
isting synchronous deterministic algorithms. In order to compare the new
algorithms defined in Chapter 3 with the existing synchronous deterministic
algorithms two criteria will be defined, i.e.:

• the number of messages which needs to be transmitted between the
modules,

• the minimum size of the original message.

For these criteria a number of relations will be derived which make it possible
to calculate these figures. For a large number of practical examples the
resulting figures are presented;
Although the number of messages in our new class of algorithms based on
voting and error-correcting codes, increases exponentially with the number
of fanlts which are to be tolerated and the number of messages in one of the
algorithms publisbed by Dolev grows polynomial with the number of faults
which are to be tolerated, we will show that for practical applications the
algorithms in the class of algorithms which is based on voting and coding
are favourable.

In Chapter 5 a method is presented which makes the proper functioning of a
fault-tolerant system independent of an unreliable external world. In other
words, the solution to the Input Problem will be presented. This solution
will be extended to a general solution for the interconneet ion of fault-tolerant
systems.
The correctness of the behaviour of a fault-tolerant system depends among
other things on the correct distribution of the data of unreliable I/0 devices

12 PREFACE

over the modules of the fault-tolerant system. A malfunctioning system,
whether it is fault-tolerant or not, should never defeat a correctly function­
ing fault-tolerant system, i.e a system which does not contain more faulty
modules than it is designed to tolerate. In order to cope with this prob­
lem, in Chapter 5 interactive consistency of communicating fault-tolerant
systems will be defined. Thereafter a number of interconnection methods
and algorithms will be presented which satisfy the above-mentioned inter­
active consistency. These interconnection methods and algorithms are all
based on interactive consistency algorithms. The implementation of such an
algorithm for interactive consistency between communicating fault-tolerant
systems is described in detail for the {4,2)-concept fault-tolerant computer
system architecture.

Chapter 1

An introduetion to
fault-tolerant computing

13

Various methoda can be used for improving the reliability of computer sys­
tema. The method to be uaed often depends on the required form of relia­
bility {fail-stop, fault-tolerant, survivable without repair} and the degree of
impravement to be achieved.
In this chapter a survey is given of the various methods and techniques avail­
able, with emphasis on those techniques that are based on the addition of
supplementary {redundant} hardware.
The arguments are presented which support the apinion that a repairable
system of which a reliability impravement is required of the order of 100
should be basedon masking redundancy.
It will be shown that any fault-tolerant system sets special requirements for
the function which distributes the data of an external unreliable souree over
the modules of the fault-tolerant system. This is the "Input Problem".

1.1 Introduetion

Even in the development of the first electronic calculating machines, reliabil­
ity played an important role. The great number of electron tubes used and
their low reliability made it impossible to run a comp'\].ter program lasting
longer than a few hours. Even so, much time elapsed before any usefulliter­
ature covering the field of reliable computer systems was published. Among
the earliest works were those of Shannon (1948) and Hamming (1950) on

14 CHAPTER 1. INTRODUCTION

which redundancy and error correction were founded, and that of von Neu­
mann (1956) which established the basis fortheuse of redundancy to mask
defective components.

In the course of the sixties the topic of reliable computer systems was tackled
systematically by companies such as IBM (System 360} and Bell (No.1 ESS),
and by the aviation and astronautics industry, although at that time, the
exchange of ideas had hardly got underway. Not until theseventies did an ex­
plosion of literature occur in the field of computer reliability ,[FTCS 71-90],
[Siew. 82], [And. 79], [And. 81].

The present chapter surveys the various aspects of fault-tolerant computing,
the present state of engineering and the application of engineering methods.
First of all emphasis will be laid on the hardware available to us, then dy­
namic redundant systems will be compared to systems based on masking
and finally the Input problem which is common to all fault-tolerant systems
will he sketched.

1.2 Designing reliable systems

1.2.1 The various stages in the life of a system

The reliability of a computer system is determined by more than just its
architecture and the reliability of its components. The entire time, from
specification via design to the end of the period of use, is decisive for relia­
bility and has to be taken into account. Fanlts can occur at all stages and
must often be treated in different ways. Table 1.1 summarizes the various
stages and their cortesponding sourees of fanlts as well as how these fanlts
are currently detected.

Fanlts originating at one stage often only become apparent at a much later
stage. A well-known example of this is the occurrence of design fanlts in an
operating system which manifest themselves only after years of operation.
Another is the occurrence of fanlts in the design of the timing, which are
often revealed during production only if an unfavourable combination of
otherwise properly operating components is used.

1.2. DESIGNING RELIABLE SYSTEMS 15

stages sourees of faults detection techniques
specification faulty and ambiguons simulation
and design specification and faulty audits

algorithms
prototype faulty algorithms, testing

wiring faults,
assembly faults,
timing faults,
defective components

production and wiring faults, testing of system,
instaBation defective components diagnosis and built-in

assembly faults means of detection
utilization defective components automatic diagnosis,

L
users' faults preventive testing of
environmental system, and built-in
influences means of detection

Table 1.1: The sourees of laults and their detection techniques in the various
stages of the life of a system

1.2.2 Fault classification

A fault in a computer system, in its widest meaning, is a deviation in the
behaviour of the system with respect to what the user expects of it.

This definition is so wide in its scope as to he questionable. Yet we will base
our discussions on this definition in order to indicate that fault-tolerant
computing goes much further than the design of systems in which some
defective components can he tolerated without loss of functionality.

Faults can he divided into two main groups, i.e.:

• Design faults and

• Hardware faults.

Design faults

These indude all faults which, after repair, lead to a system which differs

16 CHAPTER 1. INTRODUCTION

from the previous system in respect of design.
Examples that can he mentioned are: incorrect specification, hardware de­
sign fanlts and fanlts in the software. Depending on the specification and
the way we observe the system, i.e. from the point of view of the manufac­
turer or user, software fanlts by the user can also sometimes he considered
as design faults.

Hardware fanlts

These include all fanlts caused by a physical defect, for example a defective
gate or connection.
The way in which hardware fanlts manifest themselves can differ greatly.
In the case of a permanent fault the deviation is stable.
An intermittent fault becomes apparent not continuously but at irregular
intervals.
A transient fault occurs only once and cannot he traeed later on.
The way in which a fault becomes apparent depends on the level at which
the system is considered, i.e. at the logic level, at the suhsystem level or
at the system level. A "stuck-at" fault at the logic level (permanent fault)
may manifest itself at the system level as an intermittent fault. A design
fault, for example in the software, may become apparent so rarely that for
the user it cannot he distinguished from a transient fault.

1.2.3 Reliability criteria

The standards that the reliability of a computer system must meet depend
greatly on the application. This can he explained with a number of examples.

The space shuttle has a mission time of only a few days. The failure of
certain functions that are performed by the computer system ahoard will
put the crew at risk. The system cannot he repaired during the mission.
Hence the decisive criterion here is the probability that the system will still
he functioning correctly after a week. This prohability must he practically
one.
An unmanned space vehide to another planet has a mission time of a few
years. A probability of 70% that the computer system on board will then
still he functioning may he acceptable.

The reliability lunetion used ahove, i.e. the prohahility of survival as a

1.2. DESIGNING RELIABLE SYSTEMS 17

function of time is, however, insuffi.cient to define the reliability of a telephone
exchange. Here a high degree of availability is demanded, which is expressed
by the condition that the system shall not he out of operation for altogether
two hours in forty years. The availability thus is the fraction of time in which
the system is not out of operation. Hence the availability is only a relevant
criterion for repairable systems.

Other criteria which are used to express the reliability are the mean time be­
tween failures, MTBF, the mean time between down, MTBD, and the mean
time to repair, MTTR. The mean time between failures is the expected value
of the time which elapses between the moment the system is started up or a
previous failure has been repaired and the moment at which a (subsequent)
faiture appears. Notice that fanlts which are automatically corrected by the
system and which do not cause the loss of the functionality of the system
are also taken into account.
The mean time between down is the expected value of the time which elapses
between the moment the system is started up (possibly aft er a repair) and
the moment at which the system loses its functionality due to the occurrence
of a fault. Notice that in this case, faults which are automatically corrected
by the system and which do not cause the loss of the functionality of the
system do not infl.uence the MTBD.
Similarly the mean time to repair is the expected value which elapses from
system down to system up.

Thus an unavailability of two hours in forty years, for example, can he
interpreted as a MTBD (meantime between down) of forty years with a
MTTR (mean time to repair) of two hours, but also as a MTBD of one
year and a MTTR of three minutes. The designer is free to decide how this
availability condition must he interpreted.

For computers to he used in civil aviation, where their reliability directly
determines the safety of the fl.ight, a system failure rate (i.e. the redprocal
of the MTBD) of 10-10 /hour is acceptable. This is equal to the failure rate
of a resistor. Given the small numbers of computers used in this application,
it is impracticable for such a failure rate to he subject to experiments.

Fortunately in most cases the specifications are not too strict and the degree
of reliability is determined by the aspects of casts: the question of how much
can additionally he invested in reliability for the purpose of effecting a saving

18 GRAPTER 1. INTRODUCTION

in service costs for the supplier and a saving in loss of production for the
customer if the computer system is defective. Here it must he rememhered
that for the customer the costs from loss of production may often he ten
times the actual repair costs.

The effect of the measures to improve the system reliability is often ex­
pressed in terms of the reliability impravement factor. This is defined as the
ratio between the MTBD of the fault-tolerant system and the MTBD of an
equivalent system in which no measures have been adopted to increase the
reliability.

It is important to determine the part and the function of the system to
which the reliability requirements apply. By way of example consider the
control of a telephone exchange where the loss of data corresponding to a
given conneetion is acceptable if it does not happen too often. Failure of
the computing function would mean that a conneetion can no longer he
estahlished. The computing function and the program store must therefore
meet high reliability requirements, hut the storage of the data recording a
certain conneetion need not have such a high degree of reliability.
The opposite occurs in a computer used for salary administration. The
failure of the computing function is acceptable, provided it is recognized in
time and does not lead to irreparable faults. The loss of stored information,
however, is completely inadmissible.

1.3 Methods to imprave the reliability of com­
puter systems

Impravement of reliability can he approached in two ways, namely by fault
avoidanee and by fault tolerance.

1.3.1 Fault avoidanee

Fault avoidanee is achieved by using established methods of design and es­
tablished design rules, and by the use of the most reliable components possi­
ble. With this manner of working one can achieve a reliability impravement
factor of 10 without exceptionally high costs. Moreover properly designed
cooling, the prevention of hot spots, stabie supply voltages, etc. can also
lead to considerable improvement. In addition the "learning curve" plays

1.3. METHODS FOR RELIABILITY IMPROYEMENT 19

an important role in the avoidanee of defects. This curve indicates the im­
provement in reliability as a function of the number of systems produced.
A factor of two to five in reliability improverneut is not uncommon in large
series.

1.3.2 Fault toleranee

If fault avoidanee does not yield a satisfactory result or if it is too expen­
sive, something extra must be added (redundancy) in order to cancel out
the influence of defective components or subsystems. Such redundancy can
manifest itself in two ways, namely in extra time and in extra hardware.
To detect a defect one can, for example, repeat a calculation and compare
the result, i.e. redundancy in time. If the calculation is performed on two
different machines, there can be said to be redundancy in hardware.

In the span from defect to repair a number of stages can be distinguished:

• fault detection,

• fault localization,

• reconfiguration,

• recovery and restarting, and

• repatr.

Fault detection
A defect need not immediately lead to a logic fault and a logic fault does
not always result in a wrongly performed function. Some time will therefore
pass between the occurrence of the defect and the instant at which the
fault is detected. In this time the fault can propagate through the system
and damage data elsewhere. It is even possible that a function improperly
performed owing to a defect will not be detected at all.

Fault localization
Once a fault has been detected, the site of the defect must be determined
as accurately as possible, and this must be at least down to the level of an
exchangeable unit. As a result of fault propagation and inadequate means of
detection it is possible that the means of detection will provide insufHeient
information about the location of the defect and that diagnostic programs

20 CHAPTER 1. INTRODUCTION

will have to he run in order to localize the defect. In fact the behaviour of
the system is then tested once more. The cause of a transient failure will
thus not he found and the chance of localization of an intermittent fault
is small. Systems in which diagnoetic programs must he run to allow the
reconfiguration are therefore poorly equipped to cope properly with this kind
of faults.
If the location of the defective unit and the location of the data which have
been corrupted due to the defect can he different, then in addition to local­
ization of the defect damage assessment is also required.

Reconfiguration
Once the site of the defect bas been determined, the defective unit can he
switched off automatically or he replaced by a stand-by unit. If nospare unit
is present, the result is a system with more limited possibilities or a smaller
capacity. Often this is acceptable, because only a part of the functions
fulfilled by the system must meet strict reliability requirements. These are
referred to as systems based on graceful degradation.

Recovery and Reatarting
The defect may damage data in the system, and this data must therefore
he restored. In many systems this is done by regularly makinga "back-up",
which means that all data of the computer is stored, a number of status
codes inclusive. By reatarting from this data, one circumvents, as it were,
the faults made. H too much data is lost the system must he restarted after
the whole system bas once more been loaded.

Repair
This can take place "on-line" as well as "off-line". For on-line repair special
provisions must he made to prevent disturbance of the system and to re­
introduce a repaired component in the system.

In the different types of fault-tolerant systems we may not always find all the
stages described above. The literature [Siew. 78] distinguishes three types:

• systems based on fault detection,

• systems based on masking of faults - masking redundancy or static
redundancy, and

• systems based on reconfiguration - dynamic redundancy.

1.3. METHODS FOR RELIABILITY IMPROYEMENT 21

Systems based on fault detection

These systems are characterized by the fact that only fault detection takes
place on-line. The aim is to detect a fault as quickly as possible, in order to
prevent functions being performed wrongly or data being lost.
Diagnosis, repair and reatarting are left to the user. This kind of system is
used where high reliability is demanded of the function to be carried out and
where the availability of the function is of less importance. If the system is
automatically shut down to a safe state after a fault bas been detected, it is
called a fail-atop system.

Fault detection techniques can he built in at all levels of the system, both
in the hardware and in the software. Actually each operating system is
constructed and provided with checks such that a hardware fault generally
leads to the system shutting down without causing further damage. This is
achieved by inspecting in software whether certain locations in the memory
may be altered or only read, or by checking whether the result falls within
a previously determined set of valid results (consistency checks). These
software checks are in fact designed to detect software faults. Many fanlts
caused by hardware defects are also detected, but usually only after some
time and without information regarding the site of the fault. Between the
occurrence of the fault and its detection a great deal of information may
already have been lost and functions may have been performed improperly.

An advantage of software checks is that they detect certain software fanlts
(design fanlts) which are not seen by hardware detection methods.
Software checks must be considered as redundancy in time, because they
take up additional computing time.

Fault detection techniques performed by extra hardware are:

• Duplication

• Fault-detecting codes

• Self-checking logic

• Wateh-dog timers.

Duplication

The most rigorons metbod of detection of hardware faults is duplication of

22 CHAPTER 1. INTRODUCTION

an entire computer. In this case both machines receive the same information
and simultaneously perform the same task. Comparison of the results leads
to an almost 100% certain fault detection. The question is at what level the
results should be compared. In the case of a system where no requirements
are imposed on the availability, and strict requirements are imposed on the
correctness of the performed function, it suffices to compare the output of
both computers.

In many telephone computers duplication finds application as part of a dy­
namically redundant system in which many processes take place simulta­
neously. Rapid detection is essential here and therefore each data transfer
between processor and memory is compared.
Duplication in this way requires careful synchronization of the processors in
both computers.
At the level of abstraction which is of interest for the duplication strat­
egy, most general-purpose computers are not fully deterministic in their
behaviour. This means that when two machines processing the same status
variables are offered the same input data, it is possible for the results to
come out of the machines in different sequences. One possible reason is that
the time references of both machines are never exactly equal, but it' is also
possible that internal delays of the logic cause two independent processes to
he performed by both machines in different sequences. Machines that are
not deterministic cannot be used in a strategy of duplication.

Duplication at subsystem level is also used. An example of this is duplication
of the ALU (arithmetic and logkal unit)

Fault-detecting codes

Fault-detecting codes demand much less redundancy than duplication. The
best known method is the use of the parity bit. The addition of a bit to
a word ensures that the number of 'ones' in a word is always even. If the
probability of a single bit fault is much higher than the probability of a
multiple bit fault, then this is an effective and cheap method. Almost every
defect in a memory leads to single bit faults in a word if the different bits of
a memory word are stored in different chips.
Parity bits are used particularly for fault detection in memories and parallel
data paths.

Many logic circuits have the property that in the case of a defect the logic

1.3. METHODS FOR RELIABILITY IMPROYEMENT 23

levels deviate only in one logic direction (unidirectional faults). This type
of faults cao he detected by means of M-out-of-N codes. Such codes consist
of words of N bits in which the number of 'on es' is always M.

Check-sums

Check-suros are used very often to detect faults in tables. The best known
method is the cyclic redundancy check. All check-surn methods boil down to
performing a simple calculation on a table of numbers (data words). The re­
sult of the calculation, which is called the check-sum, is added as a redundant
number (data word) to the ta.ble. If the ta.ble is read again, the sa.me ca.lcu­
la.tion is made again and the result is compared with the stored check-sum.
If there is a difference, a fault must have occurred. The computing algo­
rithm must he such that the most proba.ble fa.ults are always detected. The
fault detection capacity for random fault patterns is very high. A random
fa.ult pattern is to he understood as arhitrary mutilation of the entire table.
This high detection capacity is shown by the following. Suppose the results
of the ca.lcula.tions of the check-sums are uniformly distributed between the
numbers 0 and Q 1, i.e. the set of all possible tables cao he divided into
Q subsets such that all tables in a subset result in the sa.me check-sum. The
check-surn algorithm prefera.bly should he such that all subsets are equa.lly
sized. In tha.t case the probability tha.t a. random fa.ult is not detected is 1 in
Q. Thus if Q 216 , a redunda.ncy of only 16 bits is necessa.ry for a.chieving
a. probability of 99.998% for detecting random faults.

Self-checking logic

In the literature much ha.s been written about self-checking logic. This is
a. logic circuit which supplies a. redundant output, for exa.mple ea.ch logic
output level is to he produced by two bits ("true" = 0 1 a.nd ''fa.lse" =
1 0). The circuit is then constructed so tha.t a. random defective gate will
a.lways lead {at one or more of the logic output levels) to the value 0 0 or
1 1. The problem with this technique is that it relies on only one of the
gates in the network being defective. If all gates are integrated in a.n IC,
this assumption applies to only a. small percentage of possible faults. As a
general rule the probability of detection is therefore too low. Nevertheless
this kind of circuits are occasionally used.

24

Wateh-dog timers

CHAPTER 1. INTRODUCTION

single system or su bsystem

s

s

s

triplicated system

S = system or su bsystem

V= voter (majority decoder)

Figure 1.1: Principle of triplication

Wateh-dog timers monitor the time allocated to a certain function. If this
time is exceeded, a fault report is generated. This kind of monitoring can
be realized both in hardware and in software. A method widely used for
inspecting the progress of the processes in areal-time system is the following:
A hardware doek must for example be reset at least once each millisecond
by the software. If this does not happen the computer is stopped. This
method is effective because many hardware and software faults may cause
the process to settie in a loop.

1.3. METHODS FOR RELIABILITY IMPROYEMENT 25

The effectiveness of a fault detection mechanism in a certain application is
expressedas the coverage. This is defined as the probability that a (random)
fault in a system is detected. According to this definition the coverage is
determined in part by the frequency of occurrence of the different kinds of
faults.

Systems based on the masking of faults

In systems based on fault masking, the tasks fault detection, fault local­
ization and recovery form a whole. In fact the computing process is not
interrupted. All data in the system must therefore he reproduced so that if,
as the result of a defect, some of this data is incorrect, it will he seen from
the rest of the data what it should have been.

The best known version is called triple modular redundancy TMR. In du­
plication we obtained fault detection by comparing the outputs. With trip­
Heation we are aQle to take a majority decision. It is important to triplicate
these majority voters also, because otherwise they become decisive for the
reliability of the system. Figure 1.1 represents the basic principle of TMR.
The level at which the majority decision has to be taken depends on appli­
cation.
One can, for example, allow three computers to perform the same functions
synchronously and take a majority de~ision in respect of the results. A
more reliable system is obtained by dividing the entire system into smaller
modules, triplicating each module and providing it with a majority decider.
The implementation of such a system, however, becomes more expensive
because of the large number of voters.
It is also possible in the case of three computers to subjecteach data transfer
from memory to processor to a majority decision. The architecture of such
a system is presented in Figure 1.2. Here the input and output have been
omitted. The only output of each module of the triad is the bus which sends
the data via the voters to the processor. lrrespective of what goeswrong in
a module, the fault will always be masked by the voters. This architecture
can he considered as a feedback version of the metbod shown in ~igure 1.1.

The voters willas a general rule he provided with additional hardware which
records the fact that a fault has been masked and in which module it has
occurred. This information need not be directly reported to the system

26

M =memory

P = processor

CHAPTER 1. INTRODUCTION

V= voter (majority decoder)

Figure 1.2: A computer system triplicated at system level

because it is of interest only to the user and is not necessary for a recovery
process. This is in contrast to the systems which will be treated below and
which arebasedon dynamic redundancy.

The addition of redundancy must take place very carefully. Extra hardware
increases the probability of defects, with the possible consequènce that re­
liability will decrease instead of increase. This effect occurs especially in
non-repairable systems where the probability of survival as a fundion ~f the
time is decisive.

If a defect causes a fault in more than one of the three modules, the sys­
tem breaks down. The likelibood of this kind of fault must therefore be
minimized, in other words the three modules must be completely indepen­
dent. One speaks of fault isolation areas or fault containment units if the
faults within such an area may be related but the faults in different areas
are independent.

It js very difficult indeed to divide a system into fault isolation areas so that

1.3. METHODS FOR RELIABILITY IMPROYEMENT 27

the probability of related fanlts in different areas can he eliminated. Exam­
ples of these related fanlts are doek generators, supply voltages and causes
lying outside the system, such as mains interference and strong electromag­
netic pulses. The likelibood of fanlts by the user must not he forgotten
either, for example pulling out a wrong board during on-line repair.

The great inftuence of these dependent fanlts will become apparent from
the following numerical example. Let there he a threefold redundant sys-"
tem (TMR) consisting of three modules in which the amount of hardware
will he three times that of a non-fauit-tolerant system. The MTBF (mean
time between failures) of a module will he the same as the MTBF of a non­
redundant system; let it he 103 hour. In the non-fauit-tolerant system any
fault will cause the system to go down, hence the mean time between down,
MTBD, of the non-fauit-tolerant system is 103 hours.
Let the mean time to repair, MTTR, he 1 hour. Then the MTBD of the
threefold system is 1.66 x 105 hours (about 20 years). The reliability im­
provement factor thus is 166.
This is shown by the following. The mean time between failures of each of
the three modules of the threefold system is 103 hours. So on average every
333 hours a fault occurs in one of the modules. If such a fault occurs the
mean time required to repair this fault is 1 hour. During the repair, the
probability that a fault occurs in one of the two remaining correct function­
ing modules is 2.10-3 • Thus once per 500 occurrences of a first fault the
system will go down due to a second fault in another module during the
repair of the first fault. Hence- the mean time between down of the threefold
system is 500 x 333 = 1.66 x 105 hours.
If 1% of the fanlts are dependent, so that they will cause a system crash,
the MTBD becomes only 2.8 x 104 hours. This follows from the fact that
after each first fault there is a probabilty of 10-2 that the second fault is a
dependent fault which causes the system togodown and there is a probabil­
ity of 2.10-3 that during repair of the first fault a second independent fault
appears in one of the two remaining correct functioning modules. Hence the
chance that a first fault leads to a system crash is 1.2 x 10-2• Therefore the
MTBD becomes 333/(1.2 x 10-2) = 2.8 x 104 hours.
The reliahility impravement factor has thus fallen from 160 to 28.

An espedally elegant and ftexihle solution results from multiplication of the
processes in a multi-processor system and running the various copies of a
process on different processors. [Wensley 78]. However multiplication of

28 CHAPTER 1. INTRODUCTION

hardware offers no proteetion wkatsoever against design faults and software
faults. So this solution only offers proteetion against bardware faults and
tberefore results in a very high availability only if both the hardware design
and the software are relatively simple and their correctness can he proved.

Error-correcting codes

The use of error-correcting codes is a cheap and effective way of masking
faults. lf a data word is supplemented in a certain manner with redundant
bits, then it is possible to correct one or more faulty bits. The percentage of
redundant bits decreases with increasing length of the data word (assuming
a constant correction capability) and the percentage of redundant bits in­
creases if more bits require correction for the same length of the data word
IMacW 78]. To proteet an 8-bit data word against a one bit fault, four re­
dundant bits are needed. Fora 16-bit word this becomes only five bits. To
allow correction of two bit faults simultaneously, about twice as many bits
have to he added. The mutual dependenee of the bit faults in one and the
same data word can he made small by distributing the bits of a word over
different chips. This fault masking metbod is currently used in many large
memories.

TripHeation can also he considered as an application of error correcting cod­
ing. After all, each data word is present in triplicated form in the system.
The code word thus consists of three data words, two of which are redun­
dant. The metbod presented in Figure 1.2 can therefore he considered as
the application of an error-correcting code at system level. This can he gen­
eralized to (X, Y, T) or (X, Y, Z, T) fault tolerance, as will he explained in
Chapter 2. The (N, K)-concept is a special implementation example of this
generalization, and will also he discussed extensively in Chapter 2.

Systems based on dynamic redundancy

In the case of systems based on masking redundancy or dynamic redundancy,
the functions of detection, localization, reconfiguration, recovery and reatart­
ing are performed automatically. The characteristic of dynamic redundant
system is that the reconfiguration (and restarting) can be distinguished as
a separate action (in the literature one often finds a somewhat differing
definition).

The means available to us for fault detection have already been described

1.4. MASKING VERSUS DYNAMIC REDUNDANCY 29

in Section 1.3.2. But in addition the more rigarous means described in
1.3.2, such as triplication, N-modular redundancy and (N,K)-concept fault
tolerance, which will he dealt with in Chapter 2, can serve as a basis for
dynamically redundant system. In that case the functions of detection, lo­
calization and part of the recovery form a whole, the advantage being that
reconfiguration can he postponed to a more favourable moment.
We are thus able to distinguish two kinds of dynamically redundant systems:

• dynamically redundant systems based on the detection of faults, and

• dynamically redundant systems based on the masking of faults.

The disadvantage of the former is that transient and intermittent faults
often cannot he localized. At the moment that the site of the defect is
being sought by means of a diagnostic program, the defect will often have
already disappeared. But by means of roli-back the fault can he cancelled.
The infiuence on the reliability impravement factor of the poor ability of
localization of transient and intermittent faults is difficult to determine.

Reconfiguration takes place by switching o:ff the defective module and hav­
ing its liasks taken over by another. The difficulty here is maintaining the
integrity of the data.

1.4 Systems based on fault masking versus
dynamic redundant systems

In the last two decades various methods have been proposed and imple­
mented for improving the reliability and availability of computer systems
by means of adding redundant hardware [Wensley 78], [Hopkins], [Gallager],
[Siew. 82], [Avizienis], [Siew. 78]. Which of these methods is most suitable
depends on the application and the required system reliability. This sec­
tion, however, presents arguments which support our apinion that repairable
fault-tolerant systems of which a reliability impravement is required to the
order of 100, should he based on masking redundancy.

When a reliability impravement is required of less than ten, adding redun­
dancy is not very cost e:ffective. In such cases the reliability impravement
can he achieved by fault avoidance, i.e. by improving the physical reliability
of the components.

30 CHAPTER 1. INTRODUCTION

Dynamic redundant systems based on error detection are characterized by
software-based recovery algorithms and in most cases they need diagnostic
routines totrace the faulty module.
The recovery algorithms influence the application software in two ways:

• When a fault is detected the application program has to he interrupted
immediately, which is not always allowed by the application.

• The recovery software always interferes with the application software
and increases the complexity of the software design.

The penalty is very much higher software design costs and more difficult
debugging of the software.
Because the software design is always the most complex part, this makes a
case for implementing fault-tolerance in hard~are.

The reliability improverneut is strongly influenced by the concept of coverage,
which was introduced by Bouricius [Bouricius]. Coverage is defined here as
the probability that the system will reeover given the existence of a fault.
Let the coverage of a dynamic redundant system he c and let the mean time
between down of a comparable non-fauit-tolerant system he dn hours. In
the non-fauit-tolerant system each fault will result in a system crash. Hence
the mean time between failures of the non-redundant system is also dn. The
total amount of hardware needed for the redundant system clearly wiU be
more than the amount of hardware needed to build the non-fauit-tolerant
system. Thus the mean time between failures dr of the redundant system will
be less than dn. After the occurrence of a first fault the redundant system
might go down for two reasons. Firstly, the recovery mechanism could fail,
the probability of such an event is 1 - c. Secondly, during the repair of
the first fault and after a successful recovery, a second fault might appear
which causes the system to go down. Let this probability he p (under the
condition of successful recovery after the first fault). Tben the mean time
between down ddr of the redundant system is dr / (1 - c + c.p). Thus because
dr < dn, the reliability impravement factor ddr/dn is less than 1/(1- c).
So these simple calculations shows that in a repairable system the reliability
improverneut is bounded by the coverage c to 1/(1 c).

In dynamic redundant systems the coverage depends on the effectiveness
of the diagnostic and recovery programs. Intermittent and transient fanlts

1.4. MASKING VERSUS DYNAMIC REDUNDANCY 31

often defy these diagnostic a.nd recovery programs. In practice it therefore
appears that a required coverage of 0.99 is hard to obtain.

As fa.r as repa.irable systems are concerned all these objections can he obvi­
ated hy employing masking redundancy.

Masking can he applied at different levels, i.e. at the logic level (quading), at
(suh-)aystem level (N-modular redundancy, TMR) and a.t the process level
(SIFT).

Owing to dependent faults in LSI a.nd difficult fault localization, ma.sking at
the logic level has to he rejected.

Masking at the process level might he an attractive solution but it requires
a lot of software overhead. Moreover a.dditional circuitry is needed for fault
localization and dehugging.

For repairable systems we there/ore propose a redundancy scheme which is
based on masking at the (sub-}system level.

The most ohvious solution would he to use TMR in which the voting is
implemented a.t the data transfer level, as is done in the C.vmp. [Siew. 78].

In the design of a fault-tolerant system based on masking a.t data. transfer
level, for instanee a TMR system, the location of the voters in the system
determines to a. great extent the performance of the system and the amount
of hardware needed.

A TMR system consists of three fault isolation areas. Within these fault
isolation areas (henceforth called modules) fanlts may he interdependent,
whereas they are assumed to he mutually independent hetween the areas.
In such a system the three modules run synchronously and all data are
triplicated in the system. The voters have to mask any failure in a single
module. This can he implemented hy a majority vote on the data transfers
between processor and memory and possibly on the a.ddress information sent
hy the processor to the memory.

The simplest solution however is only to vote on the d.ata which are trans­
ferred from th.e memory to the processor. (The 1/0 will he neglected for the
time heing.) The architecture of such a system already has been given in
Figure 1.2 on page 26.

32 CHAPTER 1. INTRODUCTION

1.5 The Input Problem

Fault-tolerant systems will always be connected to other systems based on
different methods for reliability improvement. In any case they will be con­
nected to basically unreliable input devices.
The interconnection of these external sourees to a fault-tolerant system has
to be done very carefully.
Two communicating fault-tolerant systems must never defeat each other as
long as they are both functioning well, i.e. in both systems no more failures
should occur than they were designed to tolerate. Also data originating from
a malfunctioning system, which is not included in the fault-tolerant system,
must never cause the receiving fault-tolerant system to go down.

The fault-tolerant systems discussed in the remainder of this thesis are all
basedon masking redundancy. So we aasurne that the fault-tolerant systems
can be divided into a number of fault isolation areas such that faults are
mutually independent between these fault isolation areas. We therefore only
have to discuss the fanlts that can occur during the information exchange
between the modules or between a group of modules and the environment.

In redundant systems data originating from a partienlar module are always
braadcast to at least a number of other modules. When transmitting data
from one module to a number of other modules two fault roodels can be
distinguished, i.e.:

• The data received by the modules is erroneous, but all modules receive
identical data.

• The modules receive different data (some of which may he correct).

The first fault model will he called the classical fault model, the second will
be called the byzantine fault model. The fanlts in the latter model are said
to cause braadcast errors. A pictural explanation of the difference between
both fault roodels is given in Figure 1.3.

In most fault-tolerant designs only the first type of fault is taken into consid­
eration. The secoud type of fault, called braadcast errors, cannot be ignored
however. Experiments and practical experience have shown that it is even
predominant in theevent of power failures. The existence of braadcast errors
is obvious when there is a separate conneetion between any two modules, but

1.5. THE INPUT PROBLEM

Classica!

fault model

x

x

x

transmitted hy 0 : a

received hy 1 : x

" 2:x

"
3:x

Byzantine

fault model

x

y

z

transmitted hy 0: a

received hy 1 : x

"
2:y

3: z

33

Figure 1.3: The classical fault model compared to the byzantine fa.ult model

they also occur when a bus-type interconnection is used. In the latter case
they are typically caused by timing failures or by failing bus drivers sending
ambiguons logic levels. Notice that no two logic discrimination levels nor
any two sampling instauts are exactly identical.

The basic fault mechanisms which cause broadcast errors are elucidated in
Figures 1.4 and 1.5. Figure 1.4 shows a broadcast error caused by a souree
sending an ambiguons logical level to two receiving modules which have
different discrimination levels. Figure 1.5 shows that a souree which changes
its output due to a timing failure at the common sampling time causes a
broadcast error. This is because receiver 1 samples the data just before and
receiver 2 samples the data just after the trailing edge of the output signal
of the source.

If an external faulty module produces braadcast errors, a fault-tolerant system
which is still correctly functioning and which receives data from this module

34 CHAPTER 1. INTRODUCTION

Vmax
logicall

- - - - - - - - - - -
discr. level . - . . - . . - . . - .
receiver 1

actual output ambiguons

of the souree
discr. level . - . . - • . . . - .
receiver 2

- - - - - - - - - -
logical 0

GRND

Figure 1.4: Broadca.st error due toa fa.iling driver in the souree and different
discrimina.tion levels of the receivers 1 and 2. The result is tha.t receiver 1
will decide in fa.vour of 0 a.nd receiver 2 will decide in fa.vour of 1.

can be brought down by these broadcast error8.

This is what we call the Input Problem.
Unfortunately a.ny fault-tolera.nt system has to co-operate with single unre­
liable sources. The way in which a fault-tolerant system might go down due
to broadcast errors will be clarified by the following example:
Consider a triplicated system (a TMR system) of which one module is failing
(in our example this is module 1), thus the system as a wholeis still function­
ing correctly. A single module which produces broadcast errors is connected
to this system. The failing module in the triplicated system also produces
broadcast errors. The data flow in the system is elucidated in Figure 1.6.

The external module sends message A to module 3 of the TMR system and
message B to the modules 1 and 2. Thereafter the modules 2 and 3 broadcast
the message correctly but the failing module 1 sends A to module 3 and B to
module 2. After the majority vote has been calculated in each module, both
correctly functioning modules will disagree such that module 3 coneindes
that the message A was sent and module 2 concludes that the B was sent.
The result of module 1 is assumed to he X, because this module is faulty.

1.5. THE INPUT PROBLEM 85

t 1 sampling time receiver 1

t 2 =sampling time receiver 2

I I

·1t· I I._ ___ _
discr. level

tl t2

Figure 1.5: Braadcast error due to a timing failure in tbe souree and different
sampling instauces of tbe receivers 1 and 2. Tbe result is tbat receiver 1 wiJl
dedde in favour 1 and receiver 2 wiJl decide in favour of 0.

The TMR system will then go down hecause no correct majority vote can
he obtained from the valnes X, B and A.

The Input Problem could he conquered hy an algorithm which distributes
the data from the external souree over the modules of the fault-tolerant
system and which has the following properties:

• The result of the algorithm is identical in all correct functioning mod­
ules of the fault-tolerant system, and

• if the external souree is functioning correctly, i.e. it sends to all mod­
ules of the fault-tolerant system identical data, then the result of the
algorithm in all correct functioning modules equals the data sent by
the external source.

We will show in this thesis that such algorithms can he constructed under
certain conditions.
The prohlem sketched above is related to the interactive consistency prob­
lem, which is also called the Byzantine Generals Prohlem. This problem is
considered as one of the most important prohlems in distributed comput­
ing. The way in which this problem was originally formulated is presented

36 CHAPTER 1. INTRODUCTION

1 defect k:::-----:m- x
A----

B B

~--*'--!~ B 2 correct

B A----
B

~----A~ A 3 correct
A

souree defect

t

Figure 1.6: The Bow of data in a triplicated fault-tolerant system which
receives data Erom a faulty external single souree while one of the modules
in the triplicated system is also defective. The result is a tota.l system break
down.

in introduetion of Chapter 3. Here the Byzantine Generals Problem will be
defined in terms similar to the Input Problem, as follows:

Let there he N communicating modules with independent data links between
the modules. Among these modules T or less are malfunctioning, probably
transmitting confiicting information to different parts of the network, i.e.
generating braadcast errors. Whenever one of the N modules, called the
source, transmits a message to all other modules (or possibly conflicting
messages when it is malfunctioning) by means of some algorithm, we say
that this algorithm fulfils the interactive consistency requirements when the
following conditions are fulfilled:

• The result of the algorithm is identical in all correct functioning mod­
ules and

• if the souree is functioning correctly, i.e. it sends to all modules of the
fault-tolerant system identical data, the result of the algorithm in all

1.6. GONGLUSION 37

correctly functioning modules equals the data sent by the source.

Algorithms which fulfil these properties are called Interactive Consistency
Algorithms or Byzantine Generals Algorithms.

The similarity between the requirements which should he fulfilled by the al­
gorithms which solve the Input Problem and the requirements for the Byzan­
tine Generals Algorithms is obvious. The only difference lies inthefact that
the Input Problem is based on an external souree which may he faulty and a
fault-tolerant system consisting of a number of modules of which some may
he faulty, while the Byzantine Generals Problem is based on a number of
modules in which the souree is included.

Byzantine Generals Algorithms do exist in the case where N ;::: 3T + 1. A
literature survey of these algorithms is given in Chapter 3. Moreover in this
chapter a new class of more efficient algorithms is presented.
The Byzantine Generals Algorithms are the basis of the algorithms which
solve the Input Problem, [Krol 85], Chapter 5.

1.6 Coneinsion

In the above sections we have considered the factors playing a role in the
improverneut of the reliability of a computer system and the techniques
available for this purpose. Within this compass it is not possible to achieve
completeness.

Which technique is to he chosen depends entirely on the kind and degree of
reliability required. Even if this bas been carefully specified in advance it
still remains difficult to make a choice.
If a reliability improverneut factor is allowed to he less than 10, there is little
point in adding much redundancy. Such an improverneut can he obtained
by fault avoidanee and a few simple measures in the hardware and in the
software to mask the most serious faults.
If the reliability improvement factor needs to he of the order of 100, very
rigorons methods will he required, preferably systems based on fault mask­
ing, or even dynamically redundant systems based on masking. The amount
of redundant hardware to be added, together with the redundancy in time,
will then quickly rise to 200 or even 300%.

38 CHAPTER 1. INTRODUCTION

The failure rate of the components from which a computer is constructed is
reasonably well known. For that reason it is possible, if rigorons methods
for the adding of redundancy are used, to calculate a kind of lower limit of
the system reliability, but only in respect of hardware defects.

The "failure rate" of the designer will always remain the great unknown.
Especially in the case of dynamically redundant systems based on fault de­
tection this is a decisive factor. Todetermine the coverage of the system the
designer must reason out all possible fault mechanisms and recovery strate­
gies. The designer does not know what he has forgotten, and in order to
achieve a reliability improverneut of 100 the coverage must be better than
99.7%!

In systems with extremely high reliability, such as those required for critica}
aviation applications, credibility will also play an important role. Everybody
is willing to believe that the probability of a wing breaking off from a plane
in civil aviation is leas than 10-10 per Hying hour. But who will believe the
designer of a computer system who claims that the MTBD of his system is
1010 hours, which is one million years! Vet this is a reasonable requirement
in respect of a computer, the failure of which leads to the crashing of a plane.

Hitherto, for impravement of reliability, use was made as far as possible of
software means. Often a consequence of this is that conditions are imposed
on the designer of the users' software, such as the inclusion of check points,
roUback etc. And in the case of· real time control the designer must take
into account that the normal operation of the system can be interrupted at
any moment for, say, 0.1 second because a recovery action due to a defect
is underway. This sametimes increases the complexity of the software quite
considerably.

The ratio of hardware to software costs is shifting ever more in favour of the
hardware. Hence expectations are that in the future ever more techniques
based on hardware redundancy will be applied.

There are strong arguments which support the opinion that repairable fault­
tolerant systems, of which a reliability impravement is required of the order
of 100, should he implemented by means of masking redundancy.

The problem, the "Input Problem", of connecting external unreliable sourees

1.6. CONCLUBION 39

to a fault-tolerant system such that a malfunctioning souree cannot disturh
the correct operation of the fault tolerant system has been solved. However
there still is a need for more efficient algorithms.

40 CHAPTER 1. INTRODUCTION

Chapter 2

Generalized Masking
Redundancy

41

This chapter describes a new fault-tolerant computer architecture based on a
"distributed implementation" of a symbol-error-correcting code. In this, the
(N, K)-concept as at is called, the faults are masked by this code.
The concept of "distributed implementation of an error-correcting code will be
generalized to "the encoding of physically implemented functions", which wilt
re sult in the definition of a (X, Y, T) fault-tolerant system and a (X, Y, Z, T)
fault-tolerant system.
The (N, K)-concept is described in detail for N = 4 and K = 2.
ft is shown that symbol-error-correcting codes with additional bit-error-cor­
recting capabilities make additional memory proteetion by means of bit-error­
correcting codes superfluous and a newly designed symbol- and bit-error-cor­
recting code for the (4, 2) concept is present ed.

2.1 Introduetion

In Chapter 1 a number of arguments have been presented which support
the statement that repairable systems of which the reliability improverneut
needs to he in the order of 100, should preferably he implemented by means
of masking redundancy at the (sub)system level.
Thus far the only known example of masking redundancy at system level
which can he applied for any digital system is N-modular redundancy. I.e.
the comparable non-redundant system is N-fold implemented. Triple mod-

42 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

ula.r redunda.ncy,TMR, thus is a. special case with N = 3. At subsystem
level masking redunda.ncy is, in a.ddition to N-modula.r redunda.ncy, a.lso
implemented by mea.ns of error-correcting codes. However thus fa.r error­
correcting codes are only used for masking fa.ults in memories a.nd commu­
nica.tion cha.nnels.

The purpose of this chapter is threefold, i.e.:

• To describe of a. new fa.ult-tolera.nt computer a.rchitecture, which will be
called the (N, K)-concept. In this architecture error-correcting codes
are applied at system level. The class of systems according to the
(N,K)-concept can be considered as a generalization ofthe N-modular
redunda.ncy scheme.

• To identify the fundamental ideas behind masking redunda.ncy on the
basis of the combinatorial model a.nd the Moore machine model a.nd to
define of two basic systems concepts which span the cla.ss of systems
based on N-modula.r redunda.ncy. I.e. N-modula.r redundancy with
and without state voting.

• To generalize these two system classes by repla.cing the majority voters
by the decoder functions of error-correcting codes.

In order to introduce the idea.s behind genera.lized masking, in Section 2.2
the N-modula.r redunda.ncy scheme is genera.lized to the new redunda.ncy
scheme, called the (N, K)-concept. In this section the mea.ning of faults,
behaviour a.nd correctness is still used in a rather sloppy way. The meaning
of behaviour often leads to a lot of confusion, therefore in Section 2.3 we
will first introduce and define two system models, i.e. the combinatorial
model for combinatorial systems a.nd the Moore model for sequentia.! sys­
tems. Based on these models we will define the meaning of behaviour. In
order to he a.ble to talk about correct behaviour we need to compare the
implementation with the specification. So the next step will be to introduce
a meaning of specification, design a.nd implementa.tion which is suitable for
descrihing fault-tolerant systems. Based on this a number of definitions of
correct beha.viour will be presented.
With these ingredients we are able to describe inSection 2.4 three classes of
N-modular redundant (NMR) designs, viz. an NMR design of a combinato­
rial system, an NMR design of a. sequentia! system without state voting and
an NMR design of a sequentia! system with state voting.

2.2. THE (N, K)-CONCEPT 43

The reliahility properties of these classes will he discussed and it will he
shown that NMR implementations cao only he hased on resettahle systems.

In Section 2.5 the first two classes of the NMR systems mentioned ahove
will he generalized to (X, Y, T) fault-tolerant systems and the last class,
i.e. the one with state voting, will he generalized to (X, Y, Z, T) fault­
tolerant systems. We will show that the reliahility properties (X, Y, T) and
(X, Y, Z, T) fault-tolerant systems are comparable with their corresponding
NMR systems. Both classes will he elucidated with a number of examples
and we will show that the (N, K)-concept is hased on a mixture of hoth the
dass of (X, Y, T) and (X, Y, Z, T) fault-tolerant systems.

The Sections 2.6 to 2.10 are devoted toa detailed description of the (4,2)­
concept. It is shown in these sections that symhol-error-correcting codes with
additional bit-error-correcting capabilities make additional memory protee­
tion by means of a bit-error correcting code superfiuous.
A new and optima! symbol- and bit-error-correcting code developed for the
(4,2)-concept is presented in Section 2.7 and the design of its decoder is ex­
plained in Section 2.8. In Section 2.10 some facts about the implementation
are presented.

2.2 The (N, K)-concept

As an introduetion to the (N, K)-concept, we start with the TMR system
described in Section 1.3.2 and 1.4.
Such a TMR system consistsof three modules. Withinthese modules faults
may he interdependent, whereas they are assumed to he mutually indepen­
dent between the areas. The three modules run synchronously and all data
are triplicated in the system. The voters have to mask any failure in a single
module.
This is implemented hy a majority vote on the data which are transferred
from the memory to the processor. (The I/0 will he neglected for the time
heing.) The architecture of such a system is given in Figure 2.1. The only
output of a module, via which data can he sent to the other modules is the
output of the memory. So whatever might go wrong in a single module it
can only affect the memory output (possihly aft er some delay) and the fault
will he masked hy the voters.

44 GRAPTER 2. GENERALIZED MASKING REDUNDANCY

module 0 module 1

M =memory

P = processor

V = voter (ma.jority decoder)

module 2

Figure 2.1: An example of triple modular redundancy; the (3, 1) concept.

A linear error-correcting code generally is ~efined as a set of nc-tuples of
symhols taken from some alphahet, [MacW 78]. The nc-tuples are called
the code words. The code words in the code are ohtained hy a linear map­
ping of the set of all kc-tuples over the alphahet onto a set of ne-tuples
which constitutes the error-correcting code. The k,:-tuples are called the
data words. In order to he ahle to correct T faulty symhols in a mutilated
code word, the codewordsin the code should have a Hamming distance de
such that de ;:::: 2T + 1, i.e. any two different code words in the code differ in
at least de symhol locations. Error-correcting codes are often characterized
hy a tuple (ne,ke) or a triple (nc,kc,de)·
From any linear (nc, kc) error-correcting code a so-called systematic code
can he derived in which at kc symhol locations, the symhols in the code
words are identical to the symhols in the corresponding data words. Hence
ke symhols in the code word form the data word. The remaining nc - kc
symhols are called check symhols.

In a TMR system the memory data as well as the processor data are tripli-

2.2. THE (N,K)-CONCEPT 45

cated and are thus in fact encoded into a (3, 1) error-correcting code. This
code consistsof three symbols (the datawordsin the memories) one of which
can be considered as the information symbol (the one-symbol data word) and
the other two as check symbols. Because the code words of this code are a
repetition of the data words, such a code is called a repetition code. The
code is single symbol-error-correcting, i.e. an entire symbol may be muti­
lated. The {3, 1} repetition code thus is a partienlar (trivial) example of the
class of (N, K) codes which consist of N symbols of which K symbols are
information symbols and N - K symbols are redundant check symbols.

The observation that in a TMR system the memory data as well as the
processor data are encoded in a (3, 1) repetition code leads to the following
generalization in which different coding schemes are applied for memory data
and processor data.

module 0

L/K

module 1

M =memory

P == processor

Dec = decoder

module N-1

Figure 2.2: Basic architecture of the (N, K)-concept

In the (N, K)-concept shown in Figure 2.2 the processor data is N-fold
repeated, i.e. encoded in a (N, 1) symbol-error correcting code. Thus in
each module a copy of the processor data word is present. The memory data

46 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

however are encoded into an (N, K) symhol-error correcting code, where each
of the modules contains one symbol of the code word.
Let the size of the data words of the processor in the comparable non-fauit­
tolerant system he L bits, then the processor data in the modules of the
(N, K) concept is also encoded into L bit words. The symbol size, in terms
of the numher of bits to repreaent a symbol, of the (N, K) code is K times
smaller than the size of the data word. So a data word of L bits is encoded
into N symbols of L/ K bits. Each module of the (N, K) concepts stores one
symbol of the { N, K) code. So the size of the words stared in the memories
is in the (N, K) concept K times smaller than the size of the words stared
in the TMR system.

The applied (N, K) symbol-error-correcting code can be chosen to be Max­
imum Distance Separable (MDS) [MacW 78]. Such a code is capable of
correcting up toT= (N- K)/2 randomly failing symbols and only requires
a factor of (N- K)/ K additional memory hardware.

This is much less than the amount of additional memory hardware needed
in the N-modular redundancy scheme. It has however to be paid for by a
less efficient use of the redundant processor hardware.
The N-fold processor would in principle he capable of correcting
(N- 1)/2 randomly failing processors, but these capabilities are not fully
utilized.

When data are transferred from the N processors Po, ... ,PN-1 to the mem­
ories Mo, ... , MN-1 (Fig.2.2) the N-fold data are encoded into N symbols
such that there is no intercommunication between the N modules (fault
isolation areas). The N partial eneaders Co, ... , CN-l tagether form an
eneader of the (N, K) symbol-error-correcting code.

When data are transferred from the memories to the processors all modules
receive the complete code word and in each module the decoder masks the
faulty symhols. Notice that within a faulty symbol any number of bits may
be wrong.

Because the only output of a module is a single symbol of the code word, the
number of randomly failing modules that is tolerated by the system equals
the symbol-error-correcting capabilities of the code.

Just as in the TMR system described in the previous section, no matter
what goes wrong in a partienlar module it can only affect the output of the
memory, prohably after some delay.

2.2. THE (N, K)-CONCEPT 47

Because the memory is in general the most unreliable part of the system,
in most TMR systems the memory is protected additionally by a bit-error
correcting code. Besides, it appears that due to the bit sliced implementation
a bit-error-correcting code is very effective. Such a bit-error-correcting code
requires in each memory 30 to 50% added redundancy, depending on the
data word length. Therefore the amount of memory hardware in a TMR
system is often more than four times the amount of hardware needed in a
non redundant system.
In the (N, K)-concept the required bit-error-correcting capabilities can he
combined with the symbol-error-correcting code without using additional
redundancy. These codes are capable of correcting a number of bit-errors in
different symbols which exceeds the number of symbols that can he corrected.

Initiated by the (N,K)-concept and the (4, 2) single-symbol/double-bit error­
correcting code described inSection 2.7, a large class of codes has since then
been found, [Gils 86], [Gils 87], [Gils 88], [Boly-88].

As far as reliability impravement is concerned, an (N, K)-concept fault­
tolerant computer is comparable with a (N- K + 1)-fold computer. Both
are able to tolerate (N- K)/2 randomly failing modules.

When the location of some failing modules is already known to the decoders,
i.e. some of the modules are already suspected due to preliminary knowledge
of the fault behaviour of the system, the symbols deseending from these
modules can he considered by the decoders as erasures. An (N, K)-concept
fault-tolerant system can tolerate simultaneously U symbol-erasures and T
random symbol-errors as long as 2T +U~ N- K.

Hitherto in this chapter, for reasons of simplicity, masking redundancy has
been described on the basis of a von Neumann computer. Although this is
the most important application, in the next section, Section 2.5, masking
redundancy will he placed in a broader context.
A more detailed description of the (N, K)-concept will he given in the Sec­
tion 2.6, for the case N = 4 and K = 2. This description will he again based
on a von Neumann computer, but the conclusions and the results can he
easily generalized by the reader.

The (4,2)-concept fault-tolerant computer has been applied as a control pro­
cessor in the SOPHO 82500 system, which is the fully digital business com­
munication system produced by Philips, [Sopho].

48 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

2.3 On modeHing the behaviour of fault-tolerant
systems

In this section the notion of behaviour and correct behaviour will he defined
on the basis of two system models, i.e. the combinatorial model and the
Moore model.
In (fault-tolerant) digital systems we will he concerned with two types of
circuits or subsystems from which these systems are built, i.e. combinatorial
and sequentia! circuits. The name combinatorial conveys the idea that the
output at any time is a function solely of the input at that time. However
in reality the input to the system will always he provided before the output
becomes available but both events take place during the same time slot.
Sequentia! systems are those in which the current output does not only
depend on the current input but also on a sequence of prior events.

2.3.1 The combinatorial model

In combinatorial systems the current output only depends on the current
input. So the relation between the input value x and the output value y can
easily be described by:

(2.1)

The function Fe not only describes the way in which the input and output
are related, but also the domain and codomain of the function, thus the
value sets of the input and output. We will restriet ourselves to finite value
sets.

In real systems a sequence of input values will be added to the combinatorial
system resulting in a sequence of outputs. Such a sequence of valnes can be
represented by a function on the time. We choose a fini te set of time instances
represented by the set T.

So, let T be the fini te set of time in stances which are taken into consideration,
such that T is a subset of the set of integers, T c Z, then the functions x
and y repreaenting the input stream and output stream are defined over the
set T of time instances. If the codomains of x and y, i.c. the set of values
which can he observed on the input and output, are denoted by X and Y,
then the types of x and y are determined by:

2.3. CORRECT AND MALIClOUS BEHAVIOUR

x E (T -+X)

y E (T-+ Y)

49

(2.2)
The relation between the input and output stream is then fully described
by:

xE (T-+X)

y E (T-+ Y)

y(t) = Fe(x(t))
(2.3)

From an extern al point of view, a particular combinatorial system is fully
specified by the description of the function Fe. Such a description includes
the description of the domain, codomain and the way the input values are
mapped on the output values.

2.3.2 The Moore model

Any system can be specified by a relation on the input and output streams
of the system and the initialization. H the system output at a particular
moment depends on the history of the input, i.e. on prior events, an easy
way to cope with the history is to describe the system by means of the
Moore machine modeL In this model, the state at any time t is described as
a function of the state and the input at the previous time instanee (t 1).
The output is only a function of the momentary state. See for instanee [Hili].
Thus:

y(t) = F~(z(t))

z(t) = F8 (z(t 1), x(t- 1))
(2.4)

With

this set of equations is equivalent to

50 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

y(t) = F0 (z(t -1),x(t -1))

z(t) = F8 (z(t -1),x(t -1))
(2.5)

In which z(t) is the state at time t, and x(t) and y(t) are the input and
output respectively. The state-function F8 and the output function Fa again
not only specify the relation between the input and old-state on the one
hand and output and new-state on the other hand, but also the domain and
codomain. Thus F0 and F8 also specify the value-sets of input, output and
state, i.e. the types.

Notice that the Moore model is very restricted, because:

• Time is discrete and only a finite number of time instauces are taken
into account. Thus the domain of the functions x, y, and z, are a
linearly ordered finite set. This informally means there exists a first
time instanee called to and a last time instanee called t,. After the
time instanee t, we are no Jonger interested in the value which can be
observed on the input, output and state.

• The value sets of the input, i.e. the codomain of the function x, the
value sets of the output, i.e. the codomain of the function y, and the
value sets of the state, i.e. the codomain of the function z, are all finite
sets.

Our universe of discourse is thus a finite set, built from identifiable
objects. This will hold tbraughout this thesis.

Notice that the Moore machine model difFers from the Turing machine model,
in the sense that the Moore model is much more restricted.

The graphical representation of a Moore machine is depicted in Figure 2.3.

Lr-J z(t)

z(t-1) ~ y(t) .,.

Figure 2.3: The graphical representation of a Moore machine

The functions x, y, and z, denoting the stream of input values, the stream of
output values, and the successive state valnes respectively are not all defined

2.3. CORRECT AND MALIClOUS BEHAVIOUR 51

on the same domain.
Let T he the linearly ordered finite set of time instances which are taken
into consideration,
let to and t, he the first and the last element in this set respectively,
let t1 he the successor of to, and let t - 1 he the predecessor of t provided a
predecessor exists, then:
The function x is defined over the set T- of time instances { t0 , t1, ... , t,-1}.
The function y is defined over the set T+ time instances {i}, ... , t, - 1, t,}.
And the function z is defined over the set T of time instances

{to, t1, ... ,t, -l,tl}.
So if the cadomains of x, y, and z, i.e. thesetof values which can he observed
on the input and output, and the state space, are denoted by X, Y, and Zz,
then the types of x, y, and z are determined by:

x E (T- _,.X)

y E (T+ _,. Y)

zE (T _,. Zz)
(2.6)

From an external point of view, a partienlar system is fully specified accord­
ing to the Moore model by the description of the functions F0 and F,. Such
a description encompasses the descriptions of the domains, cadomains and
the way input and old-state are mapped on output and new-state.

2.3.3 Unfolding time into space

In the Moore machine model the equations (2.5) specify the hehaviour of the
system recursively. This means that the relation between the input x and
the output y is uniquely determined by the functions F0 and F, provided
z(to) is known.

The difficulty of understanding the behaviour of sequentia! hardware lies in
the notions of state and time. One possible way to circumvent this difficulty
is unfolding the time into the space. This means that at each time instanee
a new instantiation exists of the (physically) implemented function. This
principle is applicable to both the combinatorial model and the Moore model
and is shown in Figure 2.4 and Figure 2.5 respectively. The result is a systolic
array of identical timeless functions, in which the state is just an intermediate

52 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

variable. The timet in x(t) bas been reduced to just an index.

z(t) ·0 y(t) •
not unfolded

y(t-1) u(t) u(t+l)

$ $ $
:~:(t-1) z(t) z(t+l}

unfolded

Figure 2.4: Unfolding the time variabie in the combinatorial model

tl(t)

z(t-1)

z(t-1)

L.r-,_j z(t)

z(t-1) ~ y(t) •

z(t)

not unfolded

tl(t+l)

z(t)

unfolded

z(f.t-1)

y(t+2)

z(t+2)

z(t+l)

Figure 2.5: Unfolding the time variabie in the Moore machine model

2.3.4 The meaning of behaviour

Talking about the behaviour of a system one generally refers to the relation
between the input values and the output values. However, especially in the

2.3. CORRECT AND MALIClOUS BEHAVIOUR 53

case of sequentia! systems the notion of behaviour needs to he more carefully
defined.

For this reason we will more carefully define the notions of

• behaviour, and

• behavioural equivalence.

Behaviour

In some cases and in particular in relation to real systems, behaviour is
interpreted as a description of only the observed val u es at the terminals of the
system. This interpretation does not suit our purpose. The term behaviour
will only be used in the context of specification, design and implementation.
Obviously specification and design are just models. But in this thesis an
implementation also is only a model of what reality could he. So if we talk
about the relation between the input and output values we mean all possible
pairs of "input value, output value" which could or should he observed at the
terminals of the implementation of the system. we thus use the mathematica!
meaning of relation, i.e. a subset of the cartesian product of the types of the
input and output values.

So the behaviour of a specification, a design, as well as an implementation is
expressed in the combinatorial model by a relation between the input values
and the output values, i.e. the function Fe of the Combinatorial model, cf.
equation (2.3).

In a sequential system the relation between the succesive input and output
values depends on the state of the system, or at least on the initialization at
the beginning of the period considered. Moreover further down in this section
we also will have to treat malicious behaviour caused by faulty systems or
subsystems. The correctness of system behaviour then will become time
dependent. For this reason we will include the state in our definition of
behaviour of a sequentia! system.

So the behaviour of a specification, a design, as well as an implementat.ion
is expressed in the sequentia! model by a relation betw.een the input values
and old-state values on the one hand and the output values and new-state
values on the other hand, i.e. the functions F0 and F8 of the Moore model,
cf. equation (2.6).

54 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

Because behaviour is described in the combinatorial case by the function
Fe and in the sequentia! case by the functions F0 and F8 we condude that
behaviour of correctly functioning systems is independent of time.

Behaviour only relates to the values at the system terminals, and in the case
of the Moore model also to the system state.
In general a system is always composed from a number of subsystems, mod­
ules or circuits. In a system description thus variables or signal values can he
found which do not refer to the input, output or state at system level. These
variables are called internal variablea. If we want to discuss these signals we
first have to decompose the system into subsystems. Then we are able to
describe the properties of the variables which are internal at system level in
the form of input or output variables at subsystem level. The properties of
the variables which are internal at system level are then discussed in terros
of the behaviour of a subsystem.

It is for this reason not possible to talk about the behaviour of a system
before the model has been defined and before the terminals and, if appro­
priate, the state have been defined with this model. Neither is it possible
to talk about the properties of internal variables without decomposing the
system into subsystems.

Equivalence of behaviour

We say that two systems P~ and Fe which are described according to the
combinatorial model are behaviO'Itrally equivalent if and only if

And, similarly, we say that two systems P0 , P8 and F0 , F8 which are described
according to the Moore model are behaviourally equivalent if and only if

2.3.5 System decomposition

Fault-tolerant systems aim at diminishing the influence of faulty subsystems
(modules). Therefore weneed to decompose a system into subsystems.
Let the modules of a system he identified by the elements of a set Ns, then

2.3. CORRECT AND MALIClOUS BEHAVIOUR 55

the input, output and state at time instanee t of a subsystem a will be
denoted by x(a)(t), y(a)(t), and z(a)(t) respectively, with a E Ns.
And thus

x E (Ns-+ (T--+ X))

y E (Ns-+ (T+-+ Y))

zE (Ns-+ (T-+ Zz))

Similarly the function which specifies a module in the combinatorial model is
denoted by Fe (a) and the output function and the state function of a module
a according to the Moore model are denoted by F0 (a) and F8 (a).

lf a partienlar module a is behaviourally equivalent to some earlier defined
module P (Moore machine) holds

In that case we say that module a is an instantiation of module P.

2.3.6 Specifi.cation, design and implementation

In the context of this thesis any system description is a model of a real or
realizable system. However, a system can bedescribed at different levels of
detail. For this reason we will distinguish between specification, design and
implementation as follows:

• The specification describes the (external) behaviour of the system.
(what we wanted)

• The design describes in which way a system is composed from its
subsystems together with the specification of these subsystems.
(how we plan to make it)

• The implementation describes the real system.
(what reality could turn out to be)

Obviously the external behaviour of a design can be derived from the design
description. This external behaviour, in the case of a correct design, is
equivalent to the one described by the specification.

56 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

Notice again that the description of the implementation is also just a model
of what the real system could be.

This thesis aims at diminishing the infiuence of hardware faults. If we start
by assuming that the specification and design are correct, we can only talk
about faults in the implementation, i.e. a system implementation which does
not satisfy the specification, or at subsystem level a subsystem implementa­
tion which does not satisfy the specification of the subsystem defined by the
design.

2.3.1 Correct and malicious behaviour

Bear in mind that in the context of this thesis any system description is a
model of a real or realizable system and that both the specification and the
design are assumed to be correct.

Obviously the correctnessof the implementation may be timedependentand
thus it is useful to talk about correct and malicious behaviour at a particular
time instanee t or over a particular period of time.

Correct and malicious behaviour at system level

The combinatorial model

If the implementation is functioning correctly at time t then the val u es at the
input and output at time instanee t are in accordance to the specification.
In other words the behaviour of the implementation at time t is equivalent
to the behaviour expressed by the specification.

If the implementation does behave maliciously at timet, the relation between
the values at the input and output may be different from the specification,
but the phenomena at the terminals are still of the correct type.

Thus, if we let Fe be the specification of a system and let x and y repreaent
the successive input and output values of the implementatiou, then:
A sy8tem which i8 behaving correctly at time iMtance t, with tE T, Mti8jie8:

2.3. CORRECT AND MALIClOUS BEHAVIOUR

and

y(t) = Fc(x(t))

x(t) EX

y(t) E Y

57

(2.7)

A system which is behaving maliciously at time instanee t, un'th t E T,
satisfies:

z(t) EX

y(t) E Y

Consequently, correct behaviour is contained in malicious behaviour.

The Moore model

{2.8)

If the implementation is functioning correctly at time t the valnes at the
output and the new-state of the implementation at time instanee t must
he related to the input and the old-state of the implementation at t- 1 in
accordance to the specification.
In other words at time t the behaviour of the implementation is equivalent
to the behaviour expressed by the specification.

H at time t the implementation behaves maliciously, the relation between
the valnes at the output and the new-state of the implementation and the
input and the old-state of the implementation may he different from the
specification, but the phenomena at the terminals and the states are still of
the correct type.

Thus, if we let F0 , Fa he the specification of a system and let x, y, and z rep­
resent th-e successive input, output and state valnes of the implementation,
then:
A system which behaves correctly at time instanee t, with tE T+, satisfies:

58 GRAPTER 2. GENERALIZED MASKING REDUNDANCY

and

y(t) = Fo(z(t- 1), x(t- 1))

z(t) = F8 (z(t -1),x(t -1))

x(t -1) EX

y(t) E Y

z(t), z(t ~ 1) E Zz
(2.9)

A system which behaves maliciously at time instanee t, with t E T+, satis­
fies:

x(t-1)EX

y(t) E Y

z(t), z(t- 1) E Zz

Again, correct behaviour is contained in malicious behaviour.
(2.10)

Obviously if we are talking about correct behaviour over a period of time
we mean correct behaviour at all time instauces in that period.
From a practical point of view one could argue that this requirement is too
stringent, because in fact we will only he interested in the external behaviour
of the system, that is the relation between the input valnes and the output
val u es· over the period of time. Of course this relation depends on the state
of the system at the beginning of this period and in the case of correct
behaviour we possibly also wish that the state at the end of the period
corresponds to the specification. However, the consecutive states during the
period are in fact internal variables which may differ from the specification
as long as they do not influence the relation between the input valnes over
the period, the old-state at the beginning of the period, the output valnes
over the period, and possibly the new-state at the end of the period.

We will however stay with the definition that in the case of correct behaviour
over a period of time, at each time instanee during that period the relation
between the input, output and states is in accordance to the specification.
The reason is that it will ease the analysis of fault-tolerant systems which

2.3. CORRECT AND MALIClOUS BEHAVIOUR 59

are going to he described in the next sections.

Correct behaviour should not be interchanged with correctness of the output
values. At least according to the definition of behaviour presented in this
thesis this is· an incorrect interpretation. Correctness of behaviour here is
only a proposition on the equivalence between the input, output and state
relations expressed by the specification and the implementation. So in the
combinatorial model we only may say that the output is correct at t if the
input and the system are correct at time t. And in the Moore model we only
may say that the output is correct at t if the system is correctly functioning
at time instanee t and the input and state are correct at t - 1. So a :oystem
which is functioning correctly (at time instanee t) may very well produce
incorrect output values.

We will avoid talking about the correctness of output values as far as possible
and if we do so it will be to he brief and always under the impHeit assumption
that the input and the state at the previous time instanee are correct. So if
we say that the output value is correct we always mean that the behaviour
of the system which produces the output value is correct.

Correct and malicious behaviour at subsystem level

In a similar way the correct and malicious behaviour of modules (subsystems)
can he described.
If we let Ft be a set-function on T repreaenting the module identifiers which
refer to the modules which are functioning correctly at timetand let Ft he
a similar set-function repreaenting the module identifiers which refer to the
modules which are functioning maliciously, such that for all t, with t E T,
Ft(t) U Ft(t) = Ns holds, tben:
The correct and malicious behaviour at a particular time instanee t of a
particular module a is described by:

Combinatorial model

x(a)(t) EX

y(a)(t) E Y

a E F(t) => y(a)(t) = Fc(a)(x(a)(t))
(2.11)

60 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

in which x, y, and z refer to the implementation and Fc(a) re/ers to the
specification of module a in the design.

Moore model

x(a)(t -1) EX

y(a)(t) E Y

z(a)(t -l),z(a)(t) E Zz

a E F(t) => (y(a)(t) = F0 (a)(z(a)(t -1),x(a)(t -1})

1\ z(a)(t) = F6 (a)(z(a)(t- 1), x(a)(t -1)))
{2.12)

in which x, y, and z refer to the implementation and F0 (a) and F,(a) refer
to the specification of module a in the design.

2.4 An abstract view on N-modular redundancy

In Chapter 1 the triple modular redundancy scheme, TMR, was used to
elucidate fault-tolerant systems which are based on the masking of faults.
This TMR scheme is just an example of the more general N-modular redun­
dancy scheme {NMR) in which the "comparable" non-fauit-tolerant system
is N-fold implemented in order to tolerate up· to (N -1)/2 failing modules.

At the level of abstraction which is suflident for our discussions, the "com­
parable" non-fauit-tolerant system may he regarded as the specification of
the fault-tolerant design.

An N-modular redundant design system thus consist of N instantiations of
its specification. Thus all N modules are identical.
In the following we will discuss the properties of three classes of NMR im­
plementations, i.e.:

• An NMR implementation of a combinatorial system

• An NMR implementation of a sequentia! system without state voting

• An NMR implementation of a sequentia! system with state voting

2.4. NMR SYSTEMS 61

2.4.1 An N-modular redundant implementation of a com­
binatorial system

An N-modular redundant design (NMR design) of a combinatorial system
and its specification are depicted in Figure 2.6.

z'(O)(t) {~] tl{O)(t)
I •
I

z1f1)(t) ·@J r/{1)(t)
I I • z(t) ·@J v(t)
I I - •
I I
I I
I I
I I specifica.tion
I I

z'WI-1)(t) ·@J I u1(N-1)(t)
I I I ••
I I I I I
I I I I I
I I I I I

J
I L

u(t) L-. y(-1)
L-- voter

N-modula.r redundant syatem

Figure 2.6: A pictural representation of the relation between the design of
an NMR combinatorial system and the specification

In this picture the braadcasting of the input data is represented by a combi­
natorial function X, which will he called the distributing function, and the
majority-vote function is represented by the combinatorial function y<-1).

The latter will he called the observing function.

The distributing funetion which is represented by the lunetion X and the
observing lunetion which is represented by the function y(-1) are not a part
of the NMR design.

The function X and the function y<-11 are only used to relate the behaviour

62 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

of the NMR design to the beha.viour expressed by the specifica.tion. Includ­
ing the function X a.nd the function y<-11 in the design would suggest the
existence of one or more modules which are not allowed to fa.il.
The correctness of the distributing function is rela.ted to the Input Problem
which has been introduced in Cha.pter 1. The correctness of the observing
function is left to the observer.

From Figure 2.6, the preceding definitions of beha.viour a.nd the fa.ct that the
ma.jority-vote function y<-1l, is able to mask the influence of L N;1J fa.ulty
modules, follows tha.t the beha.viour expressed by a.n NMR implementa.tion
together with the distributing function and the observing function at a. time
t, equals the beha.viour of the specifica.tion, provided that:

• at time instanee t the behaviour of at least (N + 1) /2 modules equals
the behaviour expressed by the specification,

• at time instanee t the behaviour of the broadcast function X is correct,
a.nd

• at time instaneet the behaviour of the majority-vote function y(-1) is
correct.

Implicitly assuming tha.t the beha.viour of the functions X a.nd y<-11 is cor­
rect we ma.y say tha.t the behaviour of the NMR implementation is correct
in the presence of T fa.ulty modules at the sa.me time, if T:::; N;1 .

So even if each module behaves ma.liciously at one or more time instances,
the beha.viour of the NMR implementation still ma.y be correct over all time
instances t, with t E T. The only requirement is tha.t at the sa.me time
instanee at least the behaviour of (N + 1)/2 modules is correct. Thus if the
implementa.tion sa.tisfies:

'-' - N+l
vt : tE T ===> !Ft(t)!2::: -

2
-

Another way to look at N modular redundancy is as follows:

{2.13)

The simplest error-correcting code is a (N, 1) repetition code. Theencoder of
such a repetition code adds to a.ny data. word a code word which is composed
by conca.tenating N words, each being identical to the original data word.
Let the non-fauit-tolerant system (the specifica.tion) he the data. word, then

2.4. NMR SYSTEMS 63

the N-fold system can be considered as a system which bas been constructed
from the non-fauit-tolerant system by applying the encoder function of the
repetition code. Notice that both the function and the data are encoded.
The N instantiations of the function Fe in the NMR implementation in
Figure 2.6 are obtained by applying the encoder function of the (N, 1) rep­
etition code on the function Fe in the specification. Also the data values in
the NMR design follow from the data values in the specification by means
of this (N, 1) repetition code.
By applying a decoder function (the observing function) on the results pro­
duced by the N functions the infiuence of faulty functions can be masked.
The data produced by the correctly functioning modules provides sufBeient
information to derive the torreet data.

The preceding illustrates clearly the principle of "encoding hardware". In
the next sections it will he shown that encoding hardware can also be based
on error-correcting codes other than the repetition code.

2.4.2 An N-modular redundant implementation of a se­
quentia! system without state voting

An NMR design of a sequentia} system and its specification are shown in
Figure 2.7.
The behaviour of each of the modules in the NMR design is again identical
to the behaviour expressed by the specification.
The braadcasting of the input data is represented in Figure 2.7 by a func­
tion X and the majority-vote function is represented by the function y(-l).

Notice that both the function X and the function y(-1) are combinatorial
functions. Moreover these functions again are not a part of the NMR de­
sign. The unfolded representation of the system in Figure 2. 7 is given in
Figure 2.8.

The correctness of the behaviour of the NMR sequentia! system will he
judged by comparing the behaviour of the system consisting of the NMR
system tagether with the functions X and yC- 1), with the behaviour ex­
pressed by the specification.
The correctness of behaviour of an implementation is based on the equiva­
lence of the behaviour of the implementation and the behaviour expressed by
the specification, cf. (2.9) and (2.10) on page 58 . The input and output of

64 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

z1(0)(t-1) l@ !11(0)(t)
I ..
I

SiE I

z'f1)(t-1) !11(1)(t) § I I I .. z(t-1) 1/(t)
I I I - ..
I I I
I I I I
I I I I

specifica.tion

I I I I I I
I I I I I I
I I I I I I

z(t-11) lx'
I I L
I L- y(-1) y(t)

L-- voter

N-modula.r redundant system

Figure 2.7: A pictural representation of the relation between the design of
an NMR sequentia] system and the specification

the NMR system tagether with the functions X and y(-1), are comparable
with the input and output of the specification. In order to compa.re the old­
state and new-state of the implementation with the old-state and new-state
of the specification, we use the majority vote over both the old-states and
the new-states of the modules of the implementation. This majority-vote
function used for eomparing the states of the modules in the NMR imple­
mentation with the state of the specification will he denoted hy s<-1). The
function S(-t) is intentionally not drawn in Figure 2.7, hecause neither in
the NMR implementation itself nor in the environment of the system will
the function S(-1) he found.

From Figure 2.8, the preceding remarks and the definition of behaviour at
a time instanee t, it follows that the hehaviour at a time instanee t of an
NMR implementation together with the distrihuting and ohserving functions

2.4. NMR SYSTEMS 65

z1(b)(t-1) z 1(b)(t)

z 1(b){t-l)

z1(a)(t-1 z1(a)(t)

Figure 2.8: The unfolded representation of a NMR sequentia] system with­
out state voting, consisting of N modules; the modules are identiB.ed by a
variabie a, with a E Ns, but also by the variable t, because at each time
instanee t we assume a new instantiation of the module.

equals the behaviour of the specification provided that:

• the behaviour of the broadcast function X is correct at time instanee
t- 1,

• the behaviour of the majority-vote function y< - 1) is correct at time
instanee t, and

• the behaviour at a time instanee t, of at least (N + 1) /2 modules equals
the behaviour which is expressed by the specification,

• the state inputs z1 (a)(t - 1) of all correctly functioning modules a are
identical.

Notice that these conditions are suflident but not necessary.

66 CHAPTER 2. GENERALIZED .. MASKING REDUNDANCY

We implicitly assume that the firát two requirements are fulfiltec;l. And there­
fore if the last two requirement are fulfilled we say that the beha.viour at time
in~tance t of the NMR implementation is correct in the presence of T faulty
modules, if T S N-;1 .

Notice that. correctness ofthe behaviour at time instanee t tells nothing
about.the correctnessof the output value y at time instancet.

From the usèr's point of view we are only interested in the way the system
responds .to a partienlar input stream. Due to the requirement that all state
inputs (old .. st~tes} ofthe correct modules must he identical, this definition
mightlook rather unsatisfactory; Neverthel~ss it provides the basis for a
detailed discuesion of the properties. ofNMR.sequential·systems ..

. .

The rèquirement that allstate inputs z1(a)(t -1} of all correctly functioning
modules a are identieal is guaranteed if the modules that fundion correctly
at time instanee t are also functioning correetly at t - 1 and. are provided
with identicalstate inputs ~1(a)(t- 2). This by induction boils down to the
sufficient requirement that:

.··• aU modules which arefunetioning correctly at time instaneet arealso
correctly functioning at all time instahees prior to t and

· • all modules are initialized at the same value.
' ' ' '

This requirement however is still unsatisfactory, because in real systems a
me~hanism will. he needed to. force the state of the modûlés to a common
value.

The problem of system initialization can he solved .in two ways, i.e. with:

• systems with a limited history and

• systems which are resettable.

Insome systems with a limited history, the output only depends on a limited
number of prior inputs. This means· that a numbér k exists such that for
all t 't:Q.e output at t is independent of all inputs and states prior to t - k.
Obviously in the Moore model k is at least one. If k = 1 we are dealing
with. a Moore model in which the state space consist of only one element.
A simple example of a system with limited history i~ a delay line of k time
units.

2.4. NMR SYSTEMS 67

It is ea.sily seen tha.t · if we a.re dealing. with a system with a limited history
k, the requirements for a correctly functioning NMR system may he reduced
to

• over all periods of k successive time instances the number of modules
which are functioning correctly at all time instances quring that period, ·
must he at lea.St (N + 1)/2.

NMR implementations of systems with a limited history of k time units which
fulfil the previous requirement do not need to he iniÜalized on a cómmon
value. They start behaving correctly after time instanèe t0 + k.

In resettable systems one or more reset sequences a.re defined. A reset se­
quence consists of a number of well-defined consecutive input valnes which
may he a part ofthe input stream. Reset sequences have the following prop­
erties. Let the length of a reset sequence he k. If the reset sequence is
applied to the input of the system starting at t, then the state of the system
at t + k is independent of the state at t and thus independent from all states
and input values prior to t. Notice that in the Moore model the input and
old-state at t determine the output and new-state at t + 1. · Ohviously the
class of systems with a limited history are a subset of thè class of resettab Ie
systems. This means' that in the cla.ss of systems with a limited history k,
any input sequence of length k is a reset sequence.

For resettahle systems the requirements for a correctly functioning NMR
implementation may he reduced to:

• over any period between two successive reset sequences, starting at
the beginning of the reset sequence and ending at the beginning of the
next reset sequence the number of modules whieh hebave corrèctly at
all time instances during that period, must he at least (N + 1)/2.

NMR implementations of resettable systems which fulfil the previous re­
quirement do not need to he initialized on a common valnEL They start
behaving correctly after time instanee to + k, provided a reset sequence of
length k is applied to the system starting at time instanee to.

Summary of the properties of NMR implementations of sequentia}
systems without state voting

• The NMR implementation without state voting is huilt from N copies

68 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

(instantiations) of the comparable non-fauit-tolerant system (the spec­
ification).

• The system (specification) must he a memher of the class of resettable
systems.

• The distributing function X and the observing function y(-l) are not
a part of the NMR system and are assumed to hebave correctly.

• In the case of a resettable system:

- We require that over any period between two auccessive reset
sequences, starting at the beginning of the reset sequence and
ending at the beginning of the next reset sequence, the number
of modules which is functioning correctly at all time instauces in
that period must he at least (N + 1)/2.

System initialization is obtained by means one of the reset se­
quences.

• In the case of a system with limited history k:

We require that over all periods of k successive time instauces
the number of modules which is functioning correctly at all time
instauces in that period must he at least (N + 1)/2.

- System initialization is automatically obtained because the NMR
implementation starts behaving correctly after time instanee
to + k.

2.4.3 An N-modular redundant implementation of a se-
quentia} system with state voting

The modules in a NMR implementation without state voting as described
above are not interconnected. Or in other words, the different rows in the
systolic array in Figure 2.8 do not influence each other. Consequently, a
re-initialization of the system after a temporary defect in one of the mod­
ules or after on-line repair can only he done by interference from outside
the system. Hence the reliability of the fault-tolerant system depends on
something outside the system. The environment might wrongly reset the
system. Moreover, in many systems the data stored in the memory needs

2.4. NMR SYSTEMS 69

to he recovered after a reinitialization. This is impossible in these systems
without the help of the environment.

This drawback can he overcome by letting the modules observe and infiuence
each other.
In an NMR implementation without state voting, the observer outside the
system observes at each time instanee one column of output values and is
able to derive by means of the function y(-l) from these data the correct
output of the system in the presence of some faulty modules.
Similarly, at suitable time instances, (for instanee each time instance), a
module can observe the column of state variables and determine from it
by means of a majority vote the correct value of the state variabie in the
presence of some faulty modules. This value is used for re-initializing the
module. The majority vote function which operatea on the state outputs
of the modules will he denoted by z{-I). We will call such a system an
NMR system with state voting.

The pictural representation of an NMR system with state voting is shown in
Figure 2.9. The unfolded representation of this design is given in Figure 2.10.
In the latter picture the distributing function X and the observing function
y(-l) are omitted. For simplicity we assume that the re-initialization takes
place each time instance. Clearly the majority vote function z{-t) is able to
mask the influence of the same number T of faulty modules as the observing
function y(-l) does.

In NMR designs with state voting the functions z(-t) are a part of the
NMR design and are prone to faults, but the functions X and y< -l) are not
a part of the design and are considered to hebave correctly in the same way
as defined in the combinatorial case and the sequentia! case without voting.

In order to re-initialize each module automatically at each time instance,
each module is provided with a voter to determine the correct state value.
Malicious behaviour of such a state-voter at time t causes malicious be­
haviour at time t of the module in which the voter resides. Notice that in
the Moore model the output of the voter is just an internal variable.

The correctness of the behaviour of the NMR sequentia! system with state
voting will again he judged by comparing the behaviour of the system con-

70 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

z'(o)(t-1}

1

z'fl)(t-1)

I I
I I

I I
I I
I I

z'~NI-1)(t-l)

I I I
I I I
I I I

z{~-:) lx'

I I
I I
I 1
I I

I I I
I I I
I I I

: ~ ~:j y(-!) ~..:;.tl.;...:(t)._.
L--~Yoter.

Figure 2.9: A pictural representation of the of an N-modular redundant
system with state voting

sisting of the NMR system (of course including the state-voters) together
with the fundions X and yC -l}, with the behaviour expressed by the speci­
fication. Again the old-state and new-state of the specification are compared
with the majority vote taken over the corresponding state of the modules.

From the Figures 2.9 and 2.10 and from the definition of behaviour at a
time instanee t, it follows that the behaviour at a time instanee t of an NMR
implementation equals the behaviour of the specification provided that:

• the behaviour of the broadcast function X is correct at time instanee
t -1,

• the behaviour of the majority-vote function yc -1) is correct at time

2.4. · NMR SYSTEMS 71

~ - - - - ti'((i)(l) - ~

I

I z1(0){t)

I I
I I .. ____ zïo}!t-:}.L ., .

1.a'(N-1)(t-1) 1.a1(N::.C.t)(t)
I I I I ·

I '()l~ . .,, I
.. - - - L ~-.! 1.!-b .,

I · I
.. - - - ~(~-.!)(!-!) .I

Figure 2.10: The unfolded representation of an NMR design. The distribut­
ing lunetion X and the observing lunetion y<-1) are omitte.d

instanee t and

• the behaviour at a time instanee t of at least (N + 1) /2 modules equals
the behaviour which is e:xpressed by the specification,

• at least (N + 1)/2 the state outputs z'(a)(t -1) are identical.

We implicitly assume that the first two requirements are iulfilled. And there­
fore if the last two requirements are fulfilled we say that the behaviour at
time instanee t of the NMR implementation is correct in the presence of T
faulty modules, if T $ N;1 .

The requirement that at least (N +1)/2 state outputs z'(a)(t-1) are identical
is guaranteed if at time instanee t- 1 also at least (N + 1)/2 modules are
functioning correctly and are provided with at least (N + 1) /2 identical state
inputs z'(a)(t 2). By induction this boils down to the sufficient requirement
that:

72 GRAPTER 2. GENERALIZED MASKING REDUNDANCY

• At time instaneet and each time instanee priortot at least (N+l)/2
modules are functioning correctly and

• all modules are initialized at time instanee to at the same value.

So also NMR systems with state voting must belong to the class of resettable
systems. The advantage of systems with state voting is the ability of each
module to reeover the state value after a failure. This makes online repair
possible without the need to reset the entire system. Resetting an NMR
system with state voting is only required with initia! start-up of the system
and after a complete system crash.
Like the NMR implementations without state voting and a limited history k,
the implementations with state voting and limited history are automatically
initialized, both at to and aftera complete system crash.

Summary of the properties of NMR implementations of sequentia!
systems with state voting

• The NMR implementation is built from N co pies (instantiations) of the
comparable non-fauit-tolerant system (the specification). To each of
the modules a majority voter z(-1) is added, which receives the state
information from all other modules. The state input (old-state) of the
copy of the specification is provided with the result of the function
z(-11.

• The system (specification) must he a memher of the dassof resettable
systems.

• The distributing function X and the observing function y(-l) are not
a part of the NMR system and are assumed to behave correctly.

• In the case of a resettable system:

We require that at each time instaneet at least (N+1)/2 modules
are functioning correctly.

- System initialization at to is obtained by means one of the reset
sequences.

• In the case of a system with limited history k:

2.5. GENERALIZED MASKING 73

We require that at eaeh time instaneet at least (N+1)/2 modules
are funetioning correctly.

System initialization is automatieally obtained beeause the NMR
implementation starts behaving eorrectly after time instanee to +
k.

2.5 A generalization of masking redundancy

2.5.1 Introduetion

In the preceding we already pointed out that the distributing function X
and the observing function y(-1) may he interpreted as the eneader and
decoder function of an error-correeting code respectively. In this case it
was an (N, 1)-repetition code. This observation suggest a generalization in
which the distributing function X and the observing function y(-l) may he
the eneader and decoder function of an error-correcting code which is less
trivial than the repetition code.

First we will explain the basic principle of this generalization and thereafter
we will explain two basic classes of fault-tolerant systems, i.e.:

• (X, Y, T) fault-tolerant systems which characterize the generalization
of the NMR implementations of combinatorial systems and the NMR im­
plementations of sequentia! systems without state voting.

• (X, Y, Z, T) fault-tolerant systems which characterize the generaliza­
tion of the NMR implementations of sequentia! systems with state
voting.

The basic principle will he explained based on the combinatorial model and
the most simple specification, i.e. the identity function (=). In Figure 2.11
the NMR design of such a system together with the distributing function X
and the observing function yC-1) is visualized. The distributing function X
and the observing function y(-l) are the eneader function and the decoder
function of a (N, 1)-repetition code respeetively. The decoder function thus
is a majority voter.
Clearly if no more than (N 1)/2 of the (=) modules behave maliciously,
the relation between x and y still satisfies the specification.

74 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

:~: 1 (0) 6 t~'(o)

X· y(-1) y

z'(N-1) 6 ti'(N-1)

voter

Figure 2.11: A graphica.l representation of the N-modular redundancy
scheme. The lunetion X is a simple braadcast funetion. The lunetion Y
is a majority voter.
lf tbe braadcast lunetion and the voter are functioning eorrectly and less
than half the number of "=" boxes fails, then the relation between the input
x and the output y is not affeeted by errors caused by the "=" boxes.

Figure 2.12 shows a fault-tolera.nt design of the identity function simila.r
to the NMR design. However, in this design the distributing function X
in Figure 2.11 has been replaced by the encoder function Y of a. T-error­
correcting code a.nd the ma.jority voter y(-l) in Figure 2.11 ha.s been repla.ced
by the cortesponding decoder function of the T-error-correcting code. Notice
tha.t the decoder functions yC-1) in Figure 2.11 a.nd Figure 2.12 are different
functions. Theencoding function Y in Figure 2.12 is divided into N pa.rtia.l
encoding functions Y {i) with 0 ~ i ~ N - 1, such tha.t Y (i) delivers the i-th
symbol of the code word.
Because the code is a.ble to correct T errors, the fa.ult-tolerant implementa.­
tion in Figure 2.12 beha.ves correctly, provided tha.t, no more than T of the
(=) modules behave maliciously.

The encoder and decoder function of a.n error-correcting code are denoted
by Y and yC-t) respectively. Clea.rly

yC-t) o y = Id

in which I d is the identity function.
Notice that Y o y(-l) is not an identity function.

2.5. GENERALIZED MASKING 75

t/(N-1)

y (-1) 1-----:;;11

u'(o)

decoder

Figure 2.12: A gra.pb.ical representa.tion of a.n eneader a.nd decoder wb.icb.
proteet tb.e "=" boxes a.ga.inst fa.ilures. If tb.e encoder a.nd decoder a.re func­
tioning correctly a.nd tbe number of fa.iling "=" boxes does not exceed tb.e
error-correction ca.pa.bility of tbe code, tben the rela.tion between tbe input
x a.nd the output y is not a.ffected by errors ca.used by the "=" boxes.

The part of the encoder function Y, which produces symbol a of the code
word, will he called the partial encoder lunetion for symbol a and will he
denoted by Y(a). So in Figure 2.12 it holds that

x1(a) = Y(a)(x)

Remember that an error-correcting code usually is denoted by the triple
(N, kc, de), in which N denotes the number of symbols of which the code
word is composed, kc denotes the number of symbols of the data word and
de is the Hamming distance of the code [MacW 78]. A code with Hamming
distance de is able to correct T random errors if T ~ 4c21 • The Hamming
distance of a code is at most nc - kc + 1. This bound can always he met
provided the symbol size bc is sufficiently large. Codes which meet this
bound are called Maximum Distance Separahle (MDS) codes. H we restriet
ourselves for practical reasons to codes which are defined over some binary
extension field, then the type of the variables may he expressed in the symbol
size bc, i.e. in the number of bits required to represent a symbol. In that
case for bc ;:::: log2 (N -1) a code which roeets the de = nc- kc+ 1 bound
always exists.

76 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

In Figure 2.12 the size of the variables x and y thus is kc.bc and the size
of the variables x' (i) and y1 (i) is bc. The type of the indentity function
performed in the modules thus differs from the type of the identity function
which describes the specification.

:e 11(N-1 v'(N-1)

x X· y (-1) t--___ Y...,.

z11 (0) v'(o)

Figure 2.13: A lault-tolerant system basedon generalized masking. The dis­
tributing lunetion X is a simple broadcast lunction. Tbe observing lunetion
y(-1) is the decoder lunetion of a T-error-correcting code.
If the distributing lunetion and tbe observing lunetion bebave correctly a.nd
the number of modules whicb bebave maliciously does not exceed tbe error
correction ca.pa.bility of the code, tben tbe rela.tion between the input x and
tbe output y is equivalent to tbe speciJied identity function.

The distributing function and the observing function in the design shown
in Figure 2.12 are the encoding and decading function of the same T-error­
correcting code Y respectively. This however is not required. In Figure 2.13
a design is presented in which the distributing function X is the encoder
function of a (N, 1, N) repetition code, while the observing function y(-l)

is the decoder function of an arbitra.rily chosen T-error-correcting code with
parameters (N, kc, de)· In order to get the behaviour of this fa.ult-tolerant
implementation including the distributing function and the observing func­
tion, equivalent to the specification, the partial en co ding functions Y (i) of
the encoder function Y have been shifted from the distributing function to
the modules which performed the identity function =.
In this fault-tolerant design, Figure 2.13, the size of the variables x a.nd y

2.5. GENERALIZED MASKING 77

again is kc.bc and the size of the variables y1
(i) is bc, hut the size of the

variabie x" (i) is kc .bc.

From the Figures 2.12 and 2.13 it is easily seen that a fault-tolerant im­
plementation according to Figure 2.13 hehaves correctly if at least N-T
modules hehave correctly.

The preceding discussion clearly shows that the NMR design can he gener­
alized hy replacing the distrihuting function and the ohserving function hy
the encoder and decoder functions of error-correcting codes respectively.

It is also not necessary that all modules in the fault-tolerant design are iden­
tical copies of the specification. The behaviour of modules may differ between
modules and may be different from the specification.

In the previous section in which we elahorated on the different NMR imple­
mentations we identified three classes of NMR implementations, i.e.:

• NMR implementations of combinatorial systems,

• NMR implementations of sequentia! systems without state voting, and

• NMR implementations of sequentia! systems with state voting.

Apart from the distinction hetween combinatorial and sequentia! systems
the first two classes are characterized hy the distrihuting function X, the
ohserving function y(-1) and the numher T of faulty modules which can
he tolerated. The third class is characterized hy X, y(-l), T and the state
voter z<-11. Therefore the generalization illustrated ahove can he divided
into two classes, i.e.:

• (X, Y, T) fault- tolerant systems and

• (X, Y, Z, T) fault-tolerant systems.

The first class applies to hoth combinatorial and sequentia! systems and the
second class only applies to sequentia! systems.

2.5.2 (X, Y, T) Fa uit-tolerant systems

(X, Y, T) Fault-tolerant systems are huilt from N modules as is depicted in
Figure 2.14 and are ahle to tolerate T faulty modules. The modules in the

78 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

design are identified by the elements of a set Ns and the behaviour of the
modules is specified by the functions Q(a) with a E Ns. The distributing
function X and the observing function y<-1l are not a part of the fault­
tolerant design but characterize the system and are needed to relate the
behaviour which is expressed by the fault-tolerant design to the specification.

The correctness of the behaviour of (X, Y, T) fault-tolerant systems is based
on camparing the behaviour of the implementation with the behaviour of
the specification by means of the fundions X, yC-11, and s<-1l. This cor­
responds to the definition of correctness for NMR implementations. Reeall
from page 64 that s(-l) maps the N-tuples of states onto the state expressed
by the specification. The fundion S(-l) is in general not a majority-vote
function but may he any decoder function of an error-correcting code.

So a (X, Y, T) fault-tolerant systems can de defined as follows:

Definition 2.1 A system belongs to the class of (X, Y, T) fault-tolerant sys­
tems i/ the behaviour of the fault-tolerant implementation tagether with the
functions X, yC-tl, and sC-tJ, in the presence oJT or less faulty modules,
is equivalent to the behaviour expressed by the specification.

The unfolded representation of a (X, Y, T) fault-tolerant system is shown in
Figure 2.15. From the definition of the class of (X,Y,T) fault-tolerant sys­
tems, the definition of NMR systems without state voting and a comparison
of the Figures 2.14 and 2.15 with the Figures 2.7 and 2.8, it immediately
follows that the reliability properlies of (X, Y, T) fault-tolerant implemen­
tations are identical to those of NMR implementations without state voting
and of which the number of modules is 2T + 1.
Obviously the class of NMR systems without state voting is a subclass of
the class of (X, Y, T) systems.

2.5.3 Examples of (X, y, T) Fa uit-tolerant systems

If r is a braadcast function and yc -l) is the decoder function of a non-trivial
T-error-correcting code, many practical examples of such a fault-tolerant
system can he devised.

Let Y be theencoding function which corresponds to the decoding function
y< -t). The parameters of the code are (N, kc, de). The function Y maps a

2.5. GENERALIZED MASKING

I I
I I
I I
I I

I I
I
I

I I I
I I I
I I I

_z(;:...t-_1.:...) __ §...; F t-----"fl_,_(t.:...) --11-ll

specifica.tion

~~~~ 
(X, .Y, T) fa.ult- tolerant system 

79 

Figure 2.14: A pictura.l representa.tion of a. (X, Y, T) fa.ult-tolera.nt system 
a.nd its specilica.tion 

kc-tuple of symhols (the data word) onto an N-tuple of symhols (the code 
word). The function Y ca.n he divided into N different partial encoding 
functions Y(a) with a E Ns, such that the function Y(a) applied to the 
kc-tuple delivers the a-th symhol of the code word. 

In an NMR implementation without state voting like the one depicted in 
Figure 2.7 on page 64 which is functioning correctly, all outputs y1(a)(t) 
of the correct modules are identical. So if we apply the partia.l encoding 
function Y (a) to the outputs y1 (a) ( t), the result will he the a-th symhol of 
the code word. Clearly, if the decoder function yC-11 is applied to this code 
word and no more than T modules hehave maliciously, the original output 
value y(t) will he retrieved. 

Based on this idea, an (X, Y, T) design ca.n he huilt from any specification, 
cf. Figure 2.16. 



80 GRAPTER 2. GENERALIZED MASKING REDUNDANCY 

z'(t-1)(6) z'(t)(b) 

z'(t-l)(b) 

z'(t-l)(a z'(t)(a) 

Figure 2.15: The unfolded representation of a {X, Y, T) fault-tolera.nt system 
consisting of N modules. The modules are identified by a variabie a, with 
aENs. 

Let the pair of functions F0 , Fa describe the specification. Then 

• the distributing X is a broadcast function ((N, 1) repetition code), 

• the observing function y(-l) is the decoding function of a non-trivial 
T-error-correcting code. The partial encoding functions corresponding 
to this code are Y (a) and 

• the behaviour of the N modules is defined by the pair of functions 
Y(a) o Fo, Fa, with a E Ns. 

So the mapping s<-tl of the N-tuple of states of the implementation to the 
state of the specification is in this case a majority vote function. 



2.5. GENERALIZED MASKING 

I I 
I I 
I I 
I I 
I 

v'(O)(t) 

!11(1)(t) 

I I -
I I 
I I 
I I 
I 

I I I 
I I I 
I I I 

_z(-~_l_J ____ ~M F ~--~~~~(t~J_.. 

specifica.tion 

~~~~ 
(X, Y, T) fault-tolerant system

81

Figure 2.16: A pictural representation of a (X, Y, T) fault-tolerant system
and its specification. The distributing lunetion is a simple braadcast func­
tion, the observing lunetion is a non-trivia] error-correcting code. A module
eonsists of the eoneatenation of a eopy of the speeification and a partial
eneader lunetion

A systero like this has the same reliability properties as an NMR systero
without voting, of which the norober of modules is 2T + 1

If X and y(-l) bothare theencoding and decoding function of possibly dif­
ferent non-trivial error-correcting codes, other iropleroentations than the one
roentioned above, at first glance are less obvious. In fact the only solutions
which are known are those in which the specification, thus the coroparable
non-fauit-tolerant system, is extreroely sirople. Exaroples are:

• a delay line

• a fixed permutation function, and

82 GRAPTER 2. GENERALIZED MASKING REDUNDANCY

• a transmission system.

For instanee in a X, Y, T fault-tolerant design of a system which delays a
stream of words, the functions X and Y refer to the same T-error-correcting
code with parameters (N, kc, de) and symhol size bc. The kc.bc-bit words
at the input are first encoded hy the distrihuting function X into N sym­
hols of bc hits. Thereafter each of them is delayed in a different module.
The ohserving function y(-1) is ahle to mask the infiuence of T maliciously
behaving modules. Notice that this system helongs to the class of systems
with a limited history. The mapping s<-1l of the N-tuple of states of the
implementation to the state of the specification is constructed in this case
from three decoder functions which each equal the observing function y(-l).

The unfolded representation of this design is shown in Figure 2.17. Obviously
the reliahility properties of this implementation are the same as those of an
NMR implementation without state voting, of which the number of modules
is 2T + 1 and which is based in a sequentia! system with limited history.

The other examples mentioned can be designed in a similar way.

Another interesting design example is as follows:
A large fault-tolerant storage system consists of N disc units, each having
their own controller. The distrihuting function X is a broadcast function
and the observing function y(-1) is the decoder function of a (N, kc, de)
error-correcting code, which is capable of correcting T random errors, thus
T = l d•;1 J. A message m, which must be storedis broadcast together with
the address and a WRITE command to all disc units. In each unit i the
controller partially eneodes the message m, and stores the result on disc,
i.e. the value Y (i)(m) is stored. Y (i) is the partial en co der function which
delivers the i-th symbol of the code word.
Retrieving information is done by broadcasting the address to all disc units
together with a READ command and from the data returned hy the units
the observer can calculate the message m by applying the decoder function
y(-l) on the data received. The calculated message is correct provided that
no more than T units are malfunctioning.

2.5. GENERALIZED MASKING 83

u'(b)(t)

z'(b)(t-1) z1(b)(t) z1(b){t+l)

Figure 2.17: Tbe unfolded representation (X, Y, T) implementation of a de­
lay line wbicb delays tbe input x over 3 time units. In tbis case X and
Y are tbe encoder and decoder lunetion of tbe same error-correcting code
respectively.

84 GRAPTER 2. GENERALIZED MASKING REDUNDANCY

2.5.4 (X, Y, T) fa uit-tolerant systems based on authentica­
tion

The preceding description of a (X, Y, T) fault-tolerant system might sug­
gest that the observing function only can he the decoder function of an
error-correcting code of which the Hamming distance de is related to T by
de ~ 2T + 1. This however is not required. Suppose the messages which
are braadcast to the modules are authenticated. This means that they are
signed and encrypted in such a way that the module can performa function
on it but cannot influence the signature and the encription. The result of a
correct function application thus is again signed and encrypted. However, if
the module is functioning improperly, the result always needs to he an in­
correctly authenticated message. In practice this would mean that (almost)
any malfunction of a module can he detected. In that case the minimum
number of modules required in the fault-tolerant system is only T + 1. This
type of system is quite similar to those systems which in the literature are
called dynamic redundant systems.

The following example is a proper (X, Y, T) fault-tolerant system based on
authentication, cf. Figure 2.18, 2.19, and 2.20.
Let the function X in the previous example (the storage system consisting
of N disc units) he as follows:
The message mis encoded by means of a (N, kc) Maximum Distance Sep­
arable code C which is defined over a symbol set. The Hamming distance
of such a code is N - kc + 1 and the code is able to correct N - kc symbol
erasures. The latter are symbol errors of which the location is known. Af­
ter encoding we have N symbols, each consisting of a number of bits which
is 1/kc times the number of bits of the original message m. Each of these
symbols is concatenated with the address (the signature) at which the mes­
sage has to he stored and thereafter encrypted. Finally these symbols are
sent to the corresponding disc units together with the (non-encripted) ad­
dress and the WRITE command. When a message is read from the storage
system, first all received authenticated symbols are decrypted by means of
the function Decript. The result will he N addresses at which the symbols
should have been stored and N symbols of the encoded message. Whatever
might have gone wrong during storing and retrieving of the symbol, either
the symbol has been mutilated, which results in an incorrect encryption, or
a correct encrypted symbol is returned from a wrong address. Both are de-

2.5. GENERALIZED MASKING 85

auth. mess.
DISK

auth. mess.

READ/WRITE UNIT
address N-1

mess. mess.

RE/WJ x y(-1)
auth. mess. auth. mess.

addres§ READ/WRITE
DISK

UNIT
address 0

READ/WRITE

address

Figure 2.18: A (X, Y, T) fault-tolerant system based on authentication

tected (almost) with certainty. Notice that the address was comhined with
the message hefare encryption. Provided N ke or less of the retrieved sym­
hols are mutilated, the original message can he calculated from the correct
symbols and the pointers (erasure fiags) to the faulty symbols. Notice that
in this case the error-correcting code C is used for erasure decading in stead
of for decoding random errors.

2.5.5 (X,Y,Z,T) Fault-tolerant systems

In the same way as the (X, Y, T) fault-tolerant systems are obtained from
the NMR systems without state voting, the {X, Y, Z, T) fault-tolerant de­
signs are a generalization from the NMR systems with state voting, which
is obtained by replacing the state voter by the decoder function zC -l) of a
T'-error-correcting code, with T' ~ T.

86 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

·8«><1• oymb. auth. mess. 1 Encript __,.. to
disk READ/WRITE
unit

addreas N-1
mess .

...e~ e SYJ ab.
auth. m~ Encript __,.. to

READ/WRITE disk
unit

addreo._s 0

READ/WRITE READ/WRITE

address addre111

Figure 2.19: The design of the lunetion X of the system shown in Figure 2.18

Reeall that the distributing function X and the observing function y(-l)

used in the definition of the (X, Y, T) fault-tolerant systems are not a part
of the fault-tolerant design but characterize the system and are needed to

· relate the behaviour which is expressed by the fault-tolerant design to the
specification. The N-tuple of states of the modules (X, Y, T) fault-tolerant
systems were related to the state expressed by the specification by the func­
tion S (-l), which is the decoder function of an error-correcting code.

In contrast to this, in an (X, Y, Z, T) fa uit-tolerant system the function
z(-l) is used to relate the N-tuple of statesin the fault-tolerant design to
the state expressed by the specification. The function zC-tJ thus is used in
two ways, firstly as a piece of hardware available in each module in order to
re-initialize the module each time instanee and secondly for comparing the
N-tuple of statesof the implementation with the state of the specification.

So (X, Y, Z, T) fault-tolerant systems are built from N fully interconnected

2.5. GENERALIZED MASKING 87

code symb.

auth. meas.
N-1

Decript. N-1

D
E
c
0 mess.

code sy D
E

auth. meas. Decript. 0 R
0

address

address

Figure 2.20: The design of the lunetion y(-I) of Figure 2.18

modules as is depicted in Figure 2.21 and are able to tolerate T faulty mod­
ules. The modules in the design are identified by the elements of a set Ns
and the behaviour of the modules is specified by the functions z(-1) and
Q(a) with a E Ns. The distributing function X and the observing func­
tion y(-t) are not a part of the fault-tolerant design but characterize the
system and are needed to relate the behaviour which is expressed by the
fault-tolerant design with the specification. Thus:

Definition 2.2 A system belongs to the class of (X, Y, Z, T) fault-tolerant
systems ij the behaviour of the fault-tolerant implementation together with
the functions X and y(-l), in the presence ofT or less faulty modules, is
equivalent to the behaviour expressed by the specification.

The unfolded representation of an (X, Y, Z, T) fault-tolerant system is shown
in Figure 2.22. From the definition ofthe class of (X,y,Z,T) fault-tolerant
systems, the definition of NMR systems with state voting and a comparison
of the Figures 2.21 and 2.22 with the Figures 2.9 and 2.10, it immediately
follows that the reliability properties of (X, Y, Z, T) fault-tolerant implemen-

88 CHAPTER 2. GENERALIZED MASKING REDUNDANCY

I I
I I
I I
I I
I I
I I
I I

:z:'fN.l-l)(t-1)

I I
I I
I I
I I

ll'(l)(t)

I I
I I

I I I

~~~~ 

Figure 2.21: A pictural representation of a (X, Y, Z, T) fault-tolerant system 
with state voting 

tations are identical to those of NMR implementations with state voting, of 
which the number of modules is 2T + 1. 
Obviously the class of NMR systems with state voting is a subclass of the 
class of (X, Y, Z, T} systems. 

2.5.6 Examples of (X, Y, Z, T) fault-tolerant systems 

In principle for any system which is specified according to the Moore model 
and for any T an (X, Y, Z, T) design can he made straightforwardly. Such 
a design is depicted in Figure 2.23. 

If we let the specification of the system he described by the pair of functions 



2.5. GENERALIZED MASKING 89 

lz'(N-l)(t) 
I I 

I I 
.. - - - ~(~-.!)(!-!) .I 

I I 
.. - - -~(~-.!)(!-!).I 

Figure 2.22: The unfolded representation of a (X, Y, Z, T) fault-tolerant 
design. The distributing lunetion X and the observing lunetion y{-l) are 
omitted 

F0 , Fa, then the design is constructed as follows: 

• the distributing function X is a broadcast function ((N, 1) repetition 
code}, 

• the observing function y(-1) is the decoding function of a non-trivial 
T'-error-correcting code, with T' ~ T. The partial encoding functions 
corresponding to this code are denoted Y(a), with a E Ns, and 

• the state decoding function z(-1) is the decoding function of a non­
trivia} T"-error-correcting code, with T" ~ T. The partial encoding 
functions corresponding to this code are denoted by Z(a), and 

• the behaviour of the N modules is defined by the pair of functions 
Y(a) o Fo, Z(a) o Fa, with a E Ns. 



90 

z'(o)(t-1) 

I 

z1 ~1)(t-1) 

I I 

I I 

I I 
I I 
I I 
I I 
I I 

CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

I I 

z'~N'-l)(t-1) 

I I I 

I I I 
I I I 

z(;-1

1

) lx' 
I I I 

liL~ 

~==~ 

Figure 2.23: A pictural representation of a straightforwardly obtained 
(X, Y, Z, T) fa uit-tolerant design 

The choice of the code can only be made on criteria outside the scope of this 
discussion and in general will depend on the specification. For this reason 
we will only make a few remarks. 

Further on in this thesis we will show that the Input Problem can only 
he solved if the number of modules is at least 3T + 1, while an NMR im­
plementation with or without state voting only requires 2T + 1 modules. 
For economical reasons it better to have all modules as identical as possi­
ble. Therefore the class of (X, Y, Z, T) design offers the possibility to match 
the number of modules with the requirement which sterns from the Input 
problem. 



2.5. GENERALIZED MASKING 91 

In Figure 2.23 the data offered to the next column in the systolic array is 
encoded hy means of the partial encoding functions Z(a), which are derived 
from the encoding function Z. Clearly this could he any T-error-correcting 
code. Each module must produce one symhol of the encoded state. Suppose 
we choose for this code a (N, kc) maximum distance separahle code. In that 
case the system is capahle of correcting the infiuence of T = (N- kc.)/2 
randomly failing modules. The minimum value of kc is of course 1. The 
amount of hardware which is required for the implementation of the functions 
is proportional to N . . Thus for fixed T, the amount of hardware required 
tends to increases proportionally with kc, depending on the application. 
However the amount of data to he transmitted (N modules sending symhols 
toN modules) is proportional to N 2 /kc, which is minimal for kc.= 2T. Thus 
in that sense the ( 4, 2)-concept is optima!. If the cost function is determined 
by the amount of data produced hy the modules, i.e. the cost function is 
proportional to fc ~: + 1, then the cost of the system decreases with 
increasing kc. 

Clearly an (X, Y, Z, T) implementation of a system which bas a large state 
space is for practical reasous not possible. Therefore another solution will 
be presented, which in fact is a mixture of an (X, Y, T) and an (X, Y, Z, T) 
design. 
In systems with a large state space in most cases something like a memory 
can he recognized. Typically in a von Neumann computer, the state of the 
system is determined hy the content of the memory, the registers and the 
counters. The result of a function executed at a partienlar time instanee in a 
von Neumann computer, only depends on a part ofthe state information and 
possibly on the input. To he more precise, only the content of a few registers, 
the counters and the content of the selected memory location(s) can he used 
as input for the function. Hence only that part of the state information 
bas to he availahle in the form of plain data, the rest may remain encoded. 
This leads to a system in which the largest part of the state information is 
transferred to the next time instanee of the same row in the systolic array 
in the form of encoded data without interference with the other rows and 
without heing affected hy the function. These data typically are the encoded 
memory data. A smal! part of the encoded data may be affected by the 
function, i.e. due to write operations on the memory. A part of the state 
information is transferred in the form of plain data without interference with 
the other rows. This is typically the register and counter data, when it is not 



92 GRAPTER 2. GENERALIZED MASKING REDUNDANCY 

affected by the function. Some of this plain data may he (partly) changed by 
the function application. Only a small part of the encoded state information 
is broadca.st to the other rows. The decoder function is a.pplied to this data. 
in order to obtain a. common result a.mong the correctly functioning modules. 

u'(O}(t} u'(o)(t+l) 

encoded 
plain 

1l(O)(t+1) 

encoded encoded 
plain plam 

z'(N-l)(t+l) 

z'(N-l}(t-1) z'(N-l)(t) 

Figure 2.24: The unfolded representation of a von Neumann machine on 
which the (N, K)-concept applied 

The basic principle of such a system is shown in Figure 2.24. A typical 
exa.mple of a. system like this is the (N, K)-concept as it has been described 
in Section 2.2. In order to elucida.te the relation between the typical von 
Neuma.nn machine based description in Section 2.2 a.nd the description in 
this section by means of unfolding the time, in Figure 2.25 one cell of the 
systolic array in Figure 2.24 is shown, which corresponds to the architecture 



2.5. GENERALIZED MASKING 93 

in Figure 2.2 on page 45. The cellis divided into an ALU part and an address 
decoder part. In each part the functional dependendes between input and 
output of both the ALU and the address decoder are shown. 

encoded data (memory 
I 

plain data. (registers) 

output 

input 

ALU part 

encoded d. 

Address Decoder part 

Figure 2.25: One cell of the systolic array in Figure 2.24 in detail 

In (X, Y, Z, T) fault-tolerant systems at each time instanee the state decoder 
z< -1) is applied in each module on the entire combined state of all modules. 
In (X, Y, T) fault-tolerant systems the state of a module is not affected by 
the other modules and can only he affected by means of the input of the 
system. 
In the (N,K)-concept each time instanee the state decoder z(-1) is in each 
module is only applied on a small part of the combined state of all modules. 
Hence this part operates according to a (X, Y, Z, T) fault-tolerant system. 
The remaining state information, which in Figure 2.24 is indicated by the 
up permost two inputs of the function F, is not affected by the other modules. 
Hence this part operatea according to a (X, Y, T) fa uit-tolerant system. 
Each part of the state information is accessible by the state decoders and of 
course each part of the state information can he changed. So the system itself 
determines which part operatea according to an (X, Y, Z, T) fault-tolerant 
system and which part operatea according to an (X, Y, T) fault-tolerant 
system. 



94 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

From the preceding it follows that in a system such as the one depicted 
in Figure 2.24, during a single time instanee only a part of the encoded 
data, and in general also only a part of the plain data, can be replaced 
by a common value. So re-initialization of the system will take many time 
instances. We will elaborate on this problem in detail when descrihing the 
( 4, 2)-concept in the next section. 

The previous discussion shows that, starting from a specification, fault­
tolerant systems can be designed and analyzed in a top-down process. The 
different concepts of fault-tolerance, (X, Y, T) fault-tolerance and 
(X, Y, Z, T) fault-tolerance may he combined arbitrarily. The functions X, 
Y and Z may be any T-error-correcting code or a function which provides 
error-correction on the basis of authentication. If a fail-stop or fail-safe sys­
tem is required, error-detecting codes may he used. 
The previous discussion also shows that unfolding of time into space is a 
simple metbod which can be uaed fora better understanding of the behaviour 
of the fault-tolerant design. Playing with pictural repreaentations of unfolded 
systems leads to many different fault-tolerant architectures. 

The time axis of the systolic arrays in the previous examples alao might be 
interpreted as an axis in space. The fault-tolerance properties are indepen­
dent of the interpretation of these axes, so fault-tolerant systolic arrays can 
be designed according to the same philosophy. 
Another freedom in the design process sterns from the fact that the time 
between two successive time instances, i.e. one time unit, might be composed 
from a number of sub-time units. Hence the functional boxes in the previous 
examples may also he interpreted as finite state machines. 

Each of the modules in the systolic array may he again a fault-tolerant sys­
tem. This idea for instanee could be applied to construct extremely reliable 
communication networks. 

2.6 The (4, 2)-concept 

2.6.1 System description 

The ( 4, 2)-concept consists of four modules, Figure 2.26. The processor 
part is quadrupled as compared with a non-redundant computer, whilst the 



2.6. THE ( 4, 2)-CONCEPT 95 

memory consists of four parts, each with a word length { symbol size) of half 
a data word. So the memory is only doubled. 

module 0 module 1 

M=memory 

P = processor 

Dec = decoder 

module 1 

Figure 2.26: The ( 4, 2)-concept 

module 3 

The information stored in the memories of the four modules is protected by 
means of a symbol- and bit-error-correcting code. Because the data word 
length is 16 bits, the code consists of four 8-bit symbols, two of which are to 
he regarcled as information symbols while the other two are check symbols. 
This code is built up from two interleaved codes, both consisting of four 
symbols of four bits. The code can correct all possible single symbol-errors 
and all possible double bit-errors even if these bit-errors are in different 
modules. 
The four processors, one in each module, contain identical information and 
run synchronously. 

2.6.2 Data transfer between processor and memory 

Data transfer between processor and memory proceeds as follows. When 
information is sent from the processor to the memory (i.e. a WRITE opera-



96 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

tion), the 16-bit data word is encoded into 8 bits in each module and written 
into the memory of that module. The encoding rules for the four modules 
are different in such a way that the four 8-bit symbols tagetherforma word 
of the afore-mentioned symbol- and bit-error-correcting code. Notice that 
the hardware implementation of the modules differs only in the encoders. 

When information has to be transferred from the memory to the processor 
(i.e. a READ operation), each module will receive not only the 8-bit symbol 
which is stored in its own module but also the other three symbols of the 
code word stored in the other modules. 
So each module receives the complete code word of four 8-bit symbols. If 
any one of these symbols should be wrong or two bits possibly in different 
modules should be wrong, it can be corrected by the decoders available in 
each module. The only interconnections between the modules are the 8-bit 
symbols which are interchanged between the modules. This means that, 
whatever fault occurs in a module, it can affect only the 8-bit symbol that 
is sent to the other modules. These modules, however, can correct the fault. 
In other words, a hardware fault, as long as it is limited to one module or 
affects only two bits in different modules, does not affect the functioning of 
the system. 

Both the ( 4,2)-concept and a triplicated system tolerate one failing fault­
isolation area, so their reliability impravement must he of the same order of 
magnitude. 

2.6.3 Applicable symbol~error~correcting codes for the (4,2)-
concept 

Basically, in the ( 4,2)-concept, any single symbol-error-correcting code of 
the maximum distance separable (MDS) type can he applied, e.g. a Reed­
Soloman code [MacW 78]. The minimum symbol size bof an MDS code 
which is defined over symbols from the binary extension field is determined 
by b ~ log2{N + 1), in which Nis the wordlengthof the code, [MacW 78]. 
Hence it follows that a four-symbol MDS code requires a minimum symbol 
size of two bits. Codes with 8-bit symbols can simply he derived from it by 
interleaving four of these codes. This offers the advantage that each decoder 
can he split up into four decoders, each acting on 2-bit symbols. In non­
interleaved codes based on larger symbol sizes a lot of redundancy is left 
unused. However insome codes this redundancy can be used for additional 



2.6. THE ( 4, 2)-CONCEPT 97 

bit-error-correcting capabilities. Most 16-bit microprocessors are able to 
read and write single 8-bit bytes, therefore a code word must not contain 
more than 8 bit data. Thus, because the data is stored in two symbols, the 
symbol size is restricted to four bits. 
An exhaustive computer search led to an optima} ( 4,2) symbol-error-correc­
ting code with 4-bit symbols, the mathematica! description of which is given 
in Section 2. 7. 
The decoder of this code can operate in different modes. Each mode results 
in a different decoding strategy, depending on preliminary knowledge of the 
fault behaviour of the system. 

The code has the following charaderistic properties. In the "random mode" 
it corrects: 

• any single symbol-error and 

• all double bit-errors, even if they are not located in the same symbol. 

(double bit-errors and single symbol-errors cannot be corrected simultane­
ously) 
In the "erasure mode" it corrects: 

• any single bit-error in the presence of a symbol erasure ( the latter is a 
symbol-error whose location is already known by the decoder). 

Notice that there are four erasure modes, each pointing to a different suspi­
eions module. 
Next to the random mode and the four erasure modes, there are six single 
modes. Due to the MDS property of the code the data word can be derived 
from any two correct symbols of the code word. So the system is able to run 
faultfree on only two modules, provided these modules are working correctly. 
If the system runs on two modules, the symbols in the code word originating 
from the other two modules are considered by the decoders as erasures. 
Clearly in this mode no additional correction or detection capacity is left. 

Often the failure rate of the memory is predominant. But when the memory 
is bit-sliced, a single failing memory chip only infiuences one bit of the code 
word and thus produces only bit-errors. Most of them are transient. So the 
profitability of the additional bit-error-correcting properties of the code is 
obvious. 



98 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

system down 

Figure 2.27: The state transfers of the decoder 

Under fault-free conditions, the system operatea in the random mode, in 
which all the single symbol-errors and all double bit-errors are corrected. 
The system remains in the random mode when a bit-error occurs, but as 
soon as the decoders detect and correct a symbol-error that is not a bit­
error, they automatically switch to the erasure mode indicating the failing 
module, ( cf. Figure 2.27). Hence the code word which is read immediately 
after the code word containing a symbol-error is already decorled in the 
erasure mode. 

Suppose a repair time sets in when a permanent bit fault or a symbol fault is 
corrected. Then the system will only go down if two additional bit faults or 
a symbol fault arise during repair time. However, when the fault initiating 
the repair time is a bit fault and the second fault is a symbol fault, there is a 
good chance that the first fault will not he effective at that instant and the 
system will survive because it immediately switches to the erasure mode. 

From the foregoing it is clear that the memory failure rate hardly influ­
ences the mean time between down when the ( 4,2)-concept is provided with 



2.7. SYMBOL- AND BIT-ERROR-CORRECTING CODES 99 

symbol- and bit-error-correcting code. 

Similar properties could have been obtained by applying a Reed-Solomon 
code over 4-bit symbols and adding a parity bit to each symbol. The decoder 
complexity would have been the same but the memory hardware would have 
been 2.5 fold instead of 2 fold compared toa single non-redundant system. 

2. 7 Symbol- and bit-error-correcting codes 

In this section we will describe the symbol- and bit-error-correcting code 
for the ( 4,2)-concept fault-tolerant computer which was found by means of 
an exhaustive computer search. The properties of this code however can he 
proved mathematically. 
The code is defined as the null space of its parity check matrix H: 

H _ ( a1 o:n o:o I() ) 
- 0:11 0:7 I() 0:0 (2.14) 

where o: is a root of the primitive polynomial x4 + x + 1 which generatea 
GF(24 ) and I() is the zero element of GF(24). Thus this block code is a two­
dimensional subspace of the four-dimensional vector space (GF(24))

4
• The 

symbols of GF(24 ) again forma four dimensional vector space over GF(2). 
The basis of this vector space is constituted by o:3 , o:2 , o:1 , and o:0 • These 
symbols correspond to the basis veetors (1000), (0100), (0010), and (0001) 
respectively. 
A generator matrix G for this code is: 

G= ( ~ ~) (2.15) 

A number of properties of the code will he derived, using the following 
definitions: 

• The symbol weight W 3 of a code word is the number of non-zero symbols 
in that code word. 

• The minimum symbol weight W 3.: of the code is the minimum symbol 
weight taken over all non-zero code words of the code (which equals 
the symbol distance of the code). 



100 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

• The bit weight w", of a symbol is the number of non-zero bits in that 
symbol. 

• The bit weight w0 of a code word is the total number of non-zero bits 
in the code word. 

Lemma 2.1 The minimum symbol weight Wsc of the code, which is defined 
by the parity matrix in equation (2.14}, iJJ 9. 

Pro of 
By inspeetion we see that any 2 x 2 sub-matrix of H is non-singular and the 
generator matrix shows the existence of a code word with symbol weight 3. 

0 

Lemma 2.2 No code word exists with a symbol weight 4, where the bit 
weight of all symbols is 1. 

Pro of 
Suppose the existence of a code word with symbol weight w8 = 4 where the 
bit weight of each symbol is wbl! 1. Thus all symbols of the code word 
are taken from the set { a8 , a 2, a:1, a 0}. Th en from the generator matrix it 
follows that the following relations must hold: 

and 
all+i + a1+k E { ao, a:\ a2, a:s} 

in which i and k E {0,1,2,3}. 

(2.16) 

(2.17) 

Calculating that part of the addition table of GF(24 ), which represents 

as a power of a with i and k E {0, 1, 2, 3}, we obtain the following table in 
which only the exponents of a are shown. 

k 
a1+i + a:ll+A: 0 1 2 3 

0 8 2 5 1 
~ 1 7 9 3 6 

2 2 8 10 4 
3 14 3 9 11 



2.7. SYMBOL- AND BIT-ERROR-CORRECTING CODES 101 

From this ta.ble we deduce tha.t the preceding rela.tions (2.16) and (2.17) 
never hold simultaneously. 

0 

Lemma 2.3 No code word exists with symbol weight 3 where two or three 
symbols have bit weight 1. 

Prpof 
From the generator matrix it follows that all code words with symbol weight 
W 8 = 3 are described by: 

( a4+i , a' , cp , a9+i ) and ( a• , a4+i , a 9+i , cp ) 

(2.18) 
with i E {0, 1, · · ·, 14}. 

The symbols of bit weight 1 a.re in the set { a0 , a 1 , a 2 , a 3}. 

Inspeetion of the above code words shows that no two or three symbols of a. 
code word can be in this set simultaneously. 

0 

Theorem 2.4 The code defined by the parity check matrix H given above 
has the property that: 

• Two different single symbol-errors never result in the same syndrome. 

• Two different double bit-errors never result in the same syndrome. 

• The set of all single symbol-errors and the set of all double bit-errors 
are disjoint. 

Pro of 
The first property follows immedia.tely from lemma (2.1) and the second 
property from lemma (2.2) and (2.3). . 
The last property can be derived from lemma (2.1) and (2.3). When a double 
bit-error has the same syndrome as a single symbol-error, the bit-by-bit sum 
of these error veetors must be a code word. So a code word should exist 
with symbol weight 3 of which two of these symbols should have bit weight 
1. Or this code word should have symbol weight 2. However, both cases are 
excluded by the lemmas (2.1) and (2.3). 

0 



102 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

Theorem 2.5 The code defined by the above parity check matrix H is ca­
pable of correcting single bit-errors in the presence of an erased symbol. 

Pro of 
Remember that the location of an erased symbol but not the error value is 
known. Again the bit-by-bit sum of any two correctable errors should not 
he a code word. Thus the sum of two symbol-erasures at the same location 
and two random bit-errors must not he a code word. This would imply 
the existence of a code word of symbol weight 2 or a code word of symbol 
weight 3 of which two symbols have bit weight 1. This again is excluded by 
lemma (2.1) and (2.3). 0 

It is very likely that symbol- and bit-error-correcting codes can he found, 
for any value of N and K, provided the symbol size is sufficiently large. 
As an example a (3, 1) symbol- and bit-error-correcting code can he obtained 
from the (4,2) code described in this paper by just shortening the (4,2) 
code by one symbol. The parity check matrix of this code follows from the 
parity check matrix of the (4, 2) code by deleting one column. However this 
code certainly is not the best code that can he found in the (3, 1) case. In 
[Gils 86], [Gils 87], [Gils 88] and,[Boly-88] a large class of combined symbol­
and bit-error-correcting codes are described. 

2.8 Decoding symbol- and bit-error­
correcting codes 

The propagation delay of the decoders must he as small as possible because 
this delay has to he added to the memory access time and so influences the 
performance of the system. Therefore the decoders must he implemented as 
a combinatorial network. 
The complexity of the decoders is such that they should preferably he im­
plemented in LSI. 

An easy-to-implement decoder which is in principle applicable for any 
(N, K) symbol- and bit-error-correcting code can he based on deriving the 
syndrome from the code word received, thereafter deriving the error pattern 
from this syndrome and then subtracting this error pattern from the code 
word received. 



2.8. DECODING S&B CODES 103 

The syndrome is found by multiplying the code word received by the parity 
check matrix which ca.n he implemented by mea.ns of 
EXCLUSIVE-OR gates. Beca.use there is a. one-to-one relation between syn­
dromes and the error pa.tterns, the mapping from the syndrome into the 
error pa.ttern can he implemented with a. ROM. This decading principle is 
depicted in Figure 2.28. 
A decoder like this is however not optima.l in terms of propagation delay 
and hardware. Moreover the size of the ROM grows exponentially with the 
number of check bits, i.e. (N- K)L. In this context Lis the symbol size of 
the code in bits. 

N.L 

N.L 

received 
code word 

H 

decoding mode 

Ll ROM K.L 

N.L 

Figure 2.28: A simple and last read-only memory based decoder 

In the remaioder of this section a. new decoder principle will be presented 
which is very well suited for decading combined symbol- and hit-error­
correcting codes. This principle will he expla.ined with the help of the de­
coder for the ( 4, 2) code which has been defined in the previous section. The 
design is based on LSI implementa.tion and optirnized for minimum propa­
gation delay. The decading principle ca.n he genera.lized to other valnes of 
N and K, as for instanee has been done in [Gils 86] for N = 3 and K = 1. 

The data words in the ( 4, 2) code can always be recovered from a.ny two 
fault-free symbols in the code word. This follows from the MDS properties, 
[Ma.cW 78]. The correction capabilities ofthe code show that there are never 
more than two faulty symbols in the code word. So for correction it is only 
necessary to locate two fault-free symbols and to derive the data word from 



104 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

these symbols. 
Therefore the decoder consists of two parallel working parts, i.e.: 

• A circuit that calculates 6 versions of the data word from the 6 pairs 
of symbols of the received word. 

• A circuit that calculates first the syndrome and then determines from 
this which symbols are faulty and thus which version(s) of the data 
word is (are) correct. 

The circuitry for deriving the six versions of the data word from the received 
word is based on the property that each of the six square submatrices of the 
generator matrix G are nonsingular. Hence each of the six versions of the 
data word can he derived by taking the redprocal of the corresponding 
square submatrix of G and multiplying this with the corresponding two 
symbols of the word received. 

In order to find the error locations (i.e which symbols are erroneous), we 
start from an expanded parity check matrix Q. In this expanded parity 
check matrix two rows are added to the original matrix, such that: 

• The two rows added are a linear combination of the rows in the original 
parity check matrix, 

• All the 2 x 2 submatrices of the 4 x 4 matrix Q are nonsingular. 

• Each row of the matrix Q contains an entry equal to p, such that all 
columns contain one cp. 

Notice that the original parity check H may be multiplied by an arbitrary 
2 x 2 nonsingular matrix without changing the code. 
There are many solutions for tlse matrix Q, for example the matrix Q in: 

The syndrome vector s bas the following properties: 

• If there is no error all symbols of s are cp. 

(2.19) 



2.8. DECODING S&B CODES 105 

• lf there is a. single symbol-error, one symbol of s equa.ls 'P a.nd the other 
three a.re unequa.l to 'P· So from the matrix Q it follows immedia.tely 
tha.t the loca.tion of the 'P symbol in s indica.tes the erroneous symbol 
in the word received. 

• 1f there is a. double bit-error in which the erroneous bits a.re loca.ted in 
different symbols a.ll the symbols of 8 a.re nonzero. 

The proof of the first property is trivia.l, the second property follows from 
the fa.ct tha.t a.ny two rows of Q define the code, a.nd the last property ca.n 
he proved a.s follows: 
Suppose one of the symbols of 8 equa.ls 'Pin the case of a. double bit-error of 
which the erroneous bits a.re in different symbols. Let the index of this 'P in 
s hel. Consider the l-th row of Q. None of the erroneous bits will he in the 
l-th symbol. Consider a.n error pa.ttern consisting of the previously defined 
double bit-error a.nd a. symbol-error a.t loca.tion l. This error pa.ttern, a.fter 
multiplica.tion by Q, will a.lso result in sz = 'P· The va.lue of the symbol-error 
ca.n a.lwa.ys he chosen so tha.t the error pa.ttern a.lso ca.uses a.nother 'P in s. 
But a.ny two rows of Q define the code a.nd the correction properties of the 
code require tha.t this error pa.ttern results in a. non-zero syndrome, which 
contradiets the zero symbol in s. 

The conditions on which the symbol loca.tions of a. double bit-error ca.n he 
found from the syndrome vector s a.re a.s follows. 
Let the error vector e = (ese2e1eo) repreaent a. double bit-error on the symbol 
loca.tions i a.nd j (i ::/= j) a.nd let the two non-zero symbols of e a.t the loca.tions 
i a.nd j he represented by 

in which i, j, j, g E {0, 1, 2, 3} 
Let the k-th row of Q he 

Thus 
s~c = h~c:.ctr h~c:.etr = (hk,i·al + hk,j·a9 ) 

Beca.use hi,i = 'P a.nd hi,i = 'P we find 



106 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

and 
S .- h· etr- h· · ,.,/ :J- ,. - :J ........ 

Thus Si is not influenced by an error at location i and Sj is not infl.uenced 
by an error at location j. 

Let 

then 

Thus for arbitrary bit-errors at symbol locations i and j 

and 

Double bit-errors not located in symbol i and j can never cause the syndrome 
satisfying the previous condition, because that would imply that two double 
bit-errors result in the same syndrome. (Remember that any two rows of 
Q are a complete parity check matrix of the code.) Thus these conditions 
are su:fficient for deriving the symbollocations of a double bit-error (which 
is not a symbol-error). 

For determining the symbollocation of the bit-error in erasure mode i which 
points to an erasure symbol-error in module i, only row i of Q bas to he 
considered. The erasure symbol-error does not influence the value of Si, so 
the value of si uniquely determines the location of the bit-error. 

Starting from correctable error patterns, the conditions on which the error 
locations are found can he summarized as follows: 

• Random mode: 

[ :3i,j : i i-j 1\ Si = cp 1\ si = cp ] ...;::::? No Error 

(Si = cp 1\ [ V j : si :f. t,p ]) ...;::::? Single Symbol-error at Location i 



2.9. DECODER IMPLEMENTATION 

(i f:. 1· A Si E { a.i1, a.h+l, a.i1+2, a's} As; E { a.ÏI, a.fl+l, a.fl+2, a.ia}) 

{::::::::> Double Bit-error Locations i and 

• Erasure mode: erasure at location i 

in which a.it = hi,i with i f:. j. 

107 

Notice that in each mode the conditions on which the error type is deter­
mined are mutually exclusive. 

From these conditions the hardware implementation of the decoder can he 
derived straightforwardly, as we will see in the next section. 

Note that incorrigible errors can be detected in some cases. Otherwise they 
will he interpreted by the decoder as no error or lead to miscorrection. Be­
cause in random mode 157 of the 256 possible syndromes are related to 
correctable error patterns or no error, the probability that an arbitrary in­
corrigible error will be detected is only about 38% in random mode. 
The decoding principle which has been described in this section for the ( 4,2) 
code can he applied for any other ( N, K) symbol- and bit-error-correcting 
code with the samecorrection capabilities (the detection properties may he 
better). 

2.9 Decoder implementation 

In the previous section we dealt with the principles on which the decading 
algorithm is hased. In this section some details a hout the decoder design will 
he presented. Many design decisions that have been taken are infiuenced hy 
the required minimum decoding time, which should he less than 100 nsec. 
and the fact that the decoder should be implemented as a CMOS-LSI circuit, 
(technology 1981). The only solution then is to implement the decoder as a 



108 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

error and mode 
registers 

t ! 
4 expanded 4 "' error 

I parity 

"' 
logsing 

4 check 4 drcuitry 

matrix "' 4 4 

4 4 version "' I 
selection "' - - --
~ 4 

:4 

calculation :4 4 

of the 4 :4 

version a 4 
14 

V 
selector 

Figure 2.29: Block diagram ofthe decoder for the {4,2) single-symbol double­
bit-error-correcting code 

combinatorial network. Hence the number of gates was of little importance 
compared to the depth of the combinatorial network. 

The block diagram of the decoder is shown in Figure 2.29. It consists of: 

• A straightforward implementation of the expanded parity check ma­
trix. 

• Circuitry for the calculation of six versions of the data word. Each 
version is calculated from a different pair of code word symbols. 

• Circuitry for determining, from the syndrome, which of the six versions 
is (are) correct. This circuitry is combined with the circuitry provided 



2.9. DECODER IMPLEMENTATION 109 

for error logging and automatic mode register update. 

• A selector for selecting the correct version. 

This architecture is advantageous because determining which of the symbols 
of the code word are faulty is done in parallel with the calculation of the 
versions. Moreover the latter calculations take advantage of the calculation 
of the syndrome. 

Circuitry for tbe calculation of tbe syndrome 

Racall that the symbols over which the code is defined forma four-dimensinal 
vector space over GF(2). The basis of this vector space is o:3 , o:2, o:l, and 
o:0 • These symbols are associated with the veetors (1000}, (0100), (0010), 
and (0001) respectively. Moreover o: is the primitive root of the polynomial 
x4 +x+1. Hence the correspondence between the symbols denoted by veetors 
over GF(2) and the symbols denoted as a power of the primitive root of the 
polynomial x4 + x + 1 is as follows: 

<p 0000 o:"( 1 0 1 1 
0:0 0001 0:8 0 1 0 1 
0:1 0010 0:9 1 0 1 0 
0:2 0100 0:10 0 1 1 1 
0:3 1000 0:11 111 0 
0:4 0 0 11 0:12 1111 i 

0:5 0 11 0 0:13 1 1 0 1 i 

0:6 11 0 0 0:14 1 0 0 1 

Multiplication of a symbol a= (asa2a1ao), expressedas a vector over GF(2), 
with a constant o:i = (csC2CJCo) can be represented by a matrix vector mul­
tiplication. The multiplication 

o:'.a 

can be represented by 

or 



110 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

Let c; he the vector representation of the symbol af, then the previous 
expression can he formulated by: 

The matrix over GF(2) 

is called the companion matrix of al. 

So for example the multiplication of (a3a2a1ao) with a6 is represented hy: 

The a.ddition modulo 2 corresponds to the EXCLUSIVE-OR 
in Boolean algebra, so the hardware implementation of such a multiplication 
is obvious, see Figure 2.30. 

Circuitry for the calculation of six versions of the data word 

The six versions of the data word. are calculated by determining the inverse 
of all six 2 x 2 submatrices of the generator matrix. 
So for example the version which follows from c3 and c2 is found as follows: 
From the definition, of the generator in (2.15) we know: 

( 
d1 ) ( ao tp ) -

1 

( cg ) 
do = a7 a 11 • c2 

or 

( ~~ ) = ( ::1 ; ) . ( ~: ) 
By replacing the symbols of the matrix by their companion matrix and the 
symbols in the veetors by their vector representation, we ohtain a represen­
tation of the multiplication which can easily be implemented in binary logic. 



2.9. DECODER IMPLEMENTATION 111 

Ys 

Y2 

Yl 

ao Yo 

Figure 2.30: The hardware implementation of the multiplication y = a6 .a, 
where a is a root of the primitive polynomial x 4 + x + 1 which generates 
GF(24), and where y {YsY2YtYo} and a= {asa2a1ao}. 

For example the calculation of the version which follows from es and c2 is 
described as follows: 

dt,3 1 0 0 0 0 0 0 0 cs,s 
dt,2 0 1 0 0 0 0 0 0 cs,2 
dt,l 0 0 1 0 0 0 0 0 es, I 
dt,O 0 0 0 1 0 0 0 0 cs,o 

-
do,s 1 1 1 1 1 1 0 0 Ct,3 
do,2 0 1 1 1 0 1 1 0 Ct,2 

do,t 0 0 1 1 1 0 1 1 Ct,l 
do,o 1 1 1 0 1 0 0 1 Ct,O 

Circuitry for determining, from the syndrome, which of the ver· 
sions of the data word are correct 

From the Îour 4-bit syndrome symbols the following binary values are de-
rived: 



112 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

The values ze(3), ze(2), ze(1), and ze(O) are determined by 

So in Boolean algebra 

The 12logical values in(i,i) with i f:. j, i,j E {0,1,2,3}, and ~.i= ai 1 are 
defined by: 

The faulty modules can be selected from these logical values. This will be 
elucidated for two typical cases, i.e. the selection conditions for the version 
obtained from cs and c2, and the'selection conditions for the version obtained 
from ca and Ct. 

If in random mode all symbols of the code word are correct we choose the 
version of the data word which is obtained from cg and c2. Similarly if in 
erasure mode 0 or erasure mode 1 no bit-fault occurs, we also choose the 
version of the data word which is obtained from cs and c2. 

With these choices the conditions on which a partienlar version must be 
selected can be easily found from the conditions for the error locations as 
they are stated in the previous section. 

The version which is obtained from cs and c2 is selected if: 
In random mode 

(ze(O) A ze(1) A ze(2) A ze(3)) V ( in(O, 1) A in(l, 0)) 

In erasure mode 0 
in(O, 1) V ze(O) 

In erasure mode 1 
in(l, 0) V ze(l) 

· The version which is obtained from es and Ct is selected if: 
In random mode 

(in(0,2) Ain(2,0)) 



2.10. IMPLEMENTATION DETAILS 113 

In erasure mode 0 
in(O, 2) 

In erasure mode 2 
in(2, 0) 

The other selection circuitry is derived in the same way. 

2.10 Some facts about the implementation of a 
( 4, 2 )-concept 

When a fault occurs it is masked by the code. These fanlts have to he 
reported, although this does not have to take place immediately. In each 
decoder, therefore, a fault register is available into which the data of the 
fault are written as soon as the fault occurs. Such fault registers should he 
regarcled as single, unprotected 1/0 devices which the system must he able 
to read out. The prohierna that might he introduced by single unprotected 
1/0 devices are extensively discussed in Chapter 1. 

When a symbol and bit-error-correcting code is used, each decoder musi; he 
equipped with a mode register which tells the decoder which strategy should 
he used in decoding an erroneous code word. 
The number of different modes depends on the code applied. In the case of 
a ( 4, 2 )-concept a random mode, four er as ure modes and six single modes 
can he distinguished, (cf. Section 2.6). In single mode operation the system 
runs on two modules only. All mode transitions are performed under software 
control via the decoders, except the transition from random mode to erasure 
mode which can also he done by the decoders themselves. 

The four modules operate in full synchronism. Each of the four modules is 
provided with its own doek. These four clocks synchronize one another in a 
fault-tolerant way. 
The decoders are combinatoriallogic networks: thus at the instant an input 
changes its logical value the output will he incorrect even if the changing 
input bits are restricted to a single symbol. Therefore each decoder has to 
he implemented with an input register which samples the data on the bus. 

Synchronous clocks do not guarantee instruction synchronism. Therefore 
for initia! system start-up, resynchronization and reanimation of a repîüred 



114 CHAPTER 2. GENERALIZED MASKING REDUNDANCY 

module a special hardware mechanism is required which farces the system 
into instruction synchronism. Because most. microprocessors can only be 
stareed in a predefined way hy applying a reset, this wiJl form the basis of 
the instruction synchronization. 

The recovery procedure is implemented as follows: 

• All information stared in the (correct functioning) microprocessors is 
saved by transferring it to fixed memory locations. 

• In each (correct) module a reset signa! is generated, initiated by soft­
ware and sent to all other modules. 

• In each module a majority vote is taken on these signals by which the 
hardware reset mechanism is activated. 

• The microprocessor data are retrieved from the fixed memory locations 
(via the decoders, so faulty data is corrected). 

The whole procedure described above must be implementod ao an indivisible 
act ion. However, updating the memory of the repaired module can be done 
at any moment by just letting the system read and write back memory words. 



115 

Chapter 3 

A class of algorithms for 
reaching interactive 
consistency based on voting 
and coding 

In thia chapter a new class ofsynchronous de terministic algorithms for reach­
ing interactive consistency wilt be presented. The number of modules and the 
number of rounds of i.nformation exchange of these algorithms is minima!, 
i.e. they meet both the N = 3T + 1 bound and the K T + 1 bound. The 
class of algorithmH will bc bas cd on error-correcting codes and camprises the 
original algorithm based on voting published in the early eighties. Thi.s new 
class of algorithms based on voting and coding requires considerably less data 
communication than the original algorithm. Moreover the class of algorithms 
also camprises algorithms based entirely on voting which require considerably 
less data communication than the original algorithm. 
The algorithm based on voting and coding wiil be defincd and proved on the 
basis of a class of algorithms, called the Diapersed Joined Communication 
algorithms. 



116 CHAPTER 3. !.A.C. BASEDON VOTING AND CODING 

3.1 Introduetion to the Byzantine Generals 
Algorithms 

3.1.1 The definition of the Byzantine Generals problem 

In the introduetion to the Input Problem, Section 1.5, it alrea.dy has been 
explained that fault-tolerant systems wil! always be conneeted to other sys­
tems based on different methods for reliability improverneut and in any case 
wil! be conneeted to basically unreliable input devices. 
These unreliable sourees might cause a fault-tolerant system to break down 
even if the fault-tolerant system does contain no more faults than it is de­
signed to tolerate, The example in Seetion 1.5 showed that the root of the 
problem was in the broa.dcasting of the data by the extemal souree to the 
N modules of the fault-tolerant system. 

In Chapter 2 the definition of (X, Y, T) and (X, Y, Z, T) fault-tolerance ha~~ 
been based on the assumption that the function X can be performed fauli 
free if at most T modules are faulty. 
The Input Problem is related to the Byzantine Generals Problem, or as it 
is sometimes called the Interactive Consisteney Problem. This Interactive 
Consistency Problem wil! be the subject of this chapter. In Chapter 5 we 
will show that the Input Problem indeed can be solved by means of an 
Interactive Consistency Algorithm or similarly by means of Dispersed Joined 
Communication algorithms. 

The lnteractive Consistency Problem is considered to be one of the most 
important problems in distributed computing. The problem is, in one of the 
first papers on thîs topic by Lam port, Shostak and Pease[Lamp 82], sketched 
as follows: 

We imagine that several divisions of the Byzantine army are camped outside 
an enemy city, each dîvision commanded by its own generaL The generals 
can communicate wîth one another only by messen gers. After observing the 
enemy, tbey must decide upon a common plan of action. However, some 
of the generals may be traîtors, trying to prevent the loyal generals from 
reaching agreement. So the generals must have an algorithm to guarantee 
that: 

A. All generals decide u pon the same plan of action. 



3.1. THE BYZANTINE GENERALS 117 

The loyal generals wil! all do what the algorithm says they should, but 
the traitors may do anytbing they wish. The algorithm must guarantee 
condition A regardless of what the tni.Îtors do. 
The loyal generals should not only reach agreement, but should agree upon 
a reasanabie plan. We therefore also want to insure that 

B. A small number of traitors cannot cause the loyal generals to adopt a 
bad plan. 

Here we finish quoting the sketch of the prohlem in paper of Lamport et aL 
[Lamp 82] 
Condition B is hard to formalize, since it requires a definition of a bad plan. 
Therefore the problem sketched ahove wil! he divided into the following two 
distinct parts 

• Initially, all generals possess a part of the data, the initia! data, on 
which the plan wil! be hased. This data will he distributed by all 
generals to all generals hy an algorithm, which is called the lnteractive 
Con..•i•tency Algorithm. This algorithm ensures that : 

Allloyal generals agree among each other on the data they think 
they have received from one of the generals, and 

if the latter is a loyal general the above-mentioned agreement 
should equal the initia! data actually sent by this genera!. 

• After having applied this algorithm on the initia! data possessed by 
each of tbe generals, all loyal generals will he in possession of the same 
data on which they apply tbc same algorithm, whatever this may he, 
in order to co me to a good plan. 

Hence the problem boils down to the design of an Interactive Con.istency 
Algorithm or Byzantine Generals algorithm. 

3.1.2 The parruneters relevant for interactive consistency 
algorithms 

The prime parameters that characterize an interactive consistency algorithm 
are: 

• The number of generals, N. 



118 CHAPTER 3. I.A.C. BASEDON VOTING AND CODING 

• The maximum numher of traitors, T, tbat can he tolerated for the 
algorithm fullilling its reqnirements. If an algorithm can tolerate at 
most T traitors, it is said to he T-resilient. 

• The number of round~ K, i.e. t he maximum numher of times a message 
is relayed from the one general to the other, or in other words, the 
depth of the algoritbm. 

• The availahility of a path hetween a pair of generals, i.e. the graph 
which repre.sents the communication possibilities. 

• The total amount of data which has to be transmitted between the 
gener als. 

Th ere are however several other parameters that characterize the Byzantine 
Generals Problem. These parameters define the synchrony of the system, 
the behaviour of the traitors, and the way in which the algorithm terminates. 

By the synchrony of the system we mean whether a loyal general responds 
within a commonly known time span or not. If the loyal generals relay the 
data received, possihly after having processed it, within a commonly known 
limited time span, traitors refusing to relay data can he detected by the 
loyal generals by means of a time-out mechanism. Such systems wil! be 
called synchronous systemfl. 

The second parameter rnentioned is the behaviour of the traitors. In general 
they eau act as they wish, such as refusing to relay data, mutilating the 
data or sending conflicting information to different destinations. However, 
the hehaviour of the traitors is limited if the initia] data to be broadcasted 
by a general is enciphered and signed in such a way that the other generals 
can decode thc message but not encipher and sign it again. In this case a 
traitor only can refuse to relay the message or mutilate it. The latter however 
will immediately be detected by the receiver. This divides the algorithms in 
algorithms with and without aulhentication. 

In non-authenticated algorithms, a general at least nceds to know by which 
general the messenger was sent, i.e. he needs to know the sender of the 
message he receives, regardless of whether the message is corrector not. 



3.1. THE BYZANTINE GENERALS 119 

One of the prime parameters is the maximum number of rounds K needed by 
the algorithm. Forsome algorithms this number is fixed or always less than 
some fixed constant; these algorithms are called deterministic. However, 
other algorithiiîs,might need an infinite number of rounds. In that case K 
is a random variabie with an finite estimated value. The latter algodthms 
are called, for more than t!tis reasou alone, randomized Byzantine Generals 
protocols. 

The last parameter to be mentioned is the connectivity of the graph repre­
senting the communication possibilities between the generals. We already 
pointed out in the sketch of the Byzantine Generals problem that the gen­
erals communicate with one another by means of messengers. Some of these 
messengers might not be available at all and the communication between 
two generals can only be clone via a third genera!. The communication pos­
sihilities between the generals can be expressed by a graph in which the 
nocles are the generals and an edge denotes an existing direct communiea­
tion possibility between two gener als. It is readily seen that this graph needs 
to have a minimum connectivity in order to fulfil the interactive consistency 
requirements. 

In the following we will abstract from the story of the generals and consider 
the Byzantine generals problem as the problem of N communicating modules 
with independent data links between the modules. Among these modules T 
or less are behaving maliciously, possibly by transmitting conllicting infor­
mation to different parts of the network, i.e. generating broadcast errors. 
Whenever a module transmits by means of an algorithm a message to all 
other modules (or possibly conllicting messages when it is rnalfunctioning), 
we define that the algorithm fullils the interactive consistency requirements 
whcn the following conditions are fulfilled: 

Definition 3.1 (Tnteractive Consistency) 
IJ a.n algorithm runs on a system consisting of N modules of which one is 
the aource, and iJ in this system at most T modules beho.ve maliciously, this 
algorithm is sa.id to fulfil the interactive consistency requiremcnts when the 
following conditions are fulfilled, regardless of which modules are faulty and 
what data was sent by the source: 

• The we/1-functioning modules agree among each other on the data they 
think they have received from the source. 



120 CHAPTER 3. I.A.C. BASED ON VOTING AND CO DING 

• lfthe souree is we/1-functioning, the above-mentioned agreement should 
equa/ the data actual/y sent by the source. 

D 

3.1.3 Results publisbed 

In this section a chronological overview wil! he presented of the most impor­
tant papers which address the topic of interactive consistency. Many papers 
are not mcntioned hecausc they only deal with a related or weaker prohlem, 
or these papers are overruled hy improved ones. Some of these papers are 
however mention cd in the list of references. 

The first publication in which a prohlern was addressed which is closely 
related to the Byzantine generals, is the paper by Davles and Wakerly, 
IDavies 78], in 1978, in which the mutual synchronization of modules, some 
of which produce braadcast errors, was investigated. 
The investigation at Stanford Research International of a fa uit-tolerant com­
puter, called SIFT, hased on software implemented masking ( cf. reference 
[Wensley 78)) induced the definition and partlal solution of the Byzantine 
generals prohlem. The result was a puhlication hy Pease, Shostak and Lam­
port in 1980, [Pease 80]. In this paper the prohlem of interactive consistency 
(JAC) was formulated and it was shown that the lAG requirements as stated 
in Definition 3.1 for synchronous systems without authentication cannot he 
fullilled if the numher of faulty modules is one third of the total numher of 
modules or more. For synchronous authenticated systems they showed that 
I AC only can he obtained if N :;;: T + 1. 

Notice that the interactive consistency requirement can always he fulfilled 
if N == 2 or N = 1. Moreover a system in which N - 1 modules hebave 
maliciously also satisfies the interactive consistency requirements. So we 
only consider systems with N :;;: 3 in which less than N- 1 modules hebave 
maliciously. 
It is readîly seen that the N :;;: 3T + 1 bound for synchronous algorîthms 
without authentication and the N :;;: T + 1 for synchronous algorîthms with 
authentication at least must hold for asynchronous systems. 

Moreover in [Pease 80], a synchronous algorithm with and a synchronous al­
gorithm without authentication was presented, in which the ahove-mentioned 



3.1. THE BYZANTINE GElVERALS 121 

bounds were met. In both a!gorithms the number of rounds, K, needed by 
the algorithms is T + L The number of messages to be transmitted by the 
algorithms grows exponentiall with T, thus the number of messages which 
must be transmitted is 0 (NT). 

In papers by Dolev, {Dolev 81], [Dolev 82-1], the connectivity of the graph, 
which represents the communication possibHities between the modules bas 
been studied. In this paper it is shown that the connectivity of this graph 
must he at least 2T + 1 for non-authenticated algorithms. A synchronous 
a!gorithm which meets this bound is presented, but the number of rounds 
needed by this algorithm will in general be la.rger than T + L The latter 
depends on the graph. The amount of messages to he transmitted between 
the modules during the execution of the algorithm again is exponential in 
T. 

Notice that the connectivity of the graph in the case of algorithms with 
authentication trivialy must he at least T + L 

In a paper by Lam port, Shosta.k and Pease [Lamp 82], the I AC problem 
is stuclied for a special ch•ss of graphs and algorithms are described which 
solve the problem in these cases. 

Synchronous algorithms,. in which the number of messages which needs to 
be transmitted is polynomial in N and T, were first publisbed by Dolev 
and Strong [Dolev 82-2] and thereafter improved in a paper by Dolev, Fis­
cher, Fowler, Lynch and Strong [Dolev 82-3]. In this paper a synchronous 
algorithm basedon messages without aothentication is described, which can 
he used for any N ;:: 3T + 1, which requires K = 2T + 3 rounds, and in 
which the total number of messages which needs to be transmitted is only 
O{NT + T 3 logT). 

Ûne of the most sorprising results which has been obtained is that the mini­
mum number of roonds needed for any synchronous algorithm is T + 1. Th is 
boond holds for bath algorithms with and without authentication. The 
K ;:: T + 1 bound wa.s first publisbed by Fischer and Lynch {Fischer 82] and 
thereafter it was generalized by Dolev and Strong [Dolev 83-1]. 

The latter paper [Dolev 83-1] also presentod a synchronous algorithm based 
on authentication, with N = T + 1 and K = T + 1, and which only requires 
0 (NT) messages. 



122 GRAPTER 3. !.A.C. BASED ON VOTING AND CODING 

So far, all algorithms publisbed are cicterministic and are ba.,ed on a syn­
chronous system. Thus the maximum number of rounds needed by the al­
gorithm is bounded by some constant and any correctly functioning module 
wiJl pass through its data within a commonly known time span. 
Fisher, Lynch and Patersou [Fischer 83], [Fischer 85] showed that in asyn­
chronous systems deterministic algorithms are impossible. These results 
have been elaborated and strengthened by Dolev, Dwork and Stochmeyer, 
[Dolev 83-2] by defining more carefully the meaning of asynchrony. 

Randomized Byzantine generals algorithms were first publisbed by Rabin, 
[Rabin 83] and Ben-Or, [Ben-Or 83]. Rabin publisbed an algorithm with 
N > lOT for asynchronous systems. The expected number of rounds needed 
by this algorithm is only four. The algorithm published by Ben-Or neecis 
N > 5T modules. The latter result has been improved by Bracha 
[Bracha 87-1]. This paper proves that asynchronous randomized algorithms 
are possible if and only if N > 3T. }'or this proof the definition of termina.­
tion needed to be refined. 

In [Bracha 87-2] Bracha presents a randomized algorithm for synchronous 
systems which only needs 0 (log N) expected number of rounds of in forma­
tion exchange. If authenticated messages are used the number of modules 
must be N > 2T. Without authentication N > 3T is required. This is an 
impravement compared to the K 2: T + 1 for deterministic a!gorithms. 

Summary of the results published 

The main results obtained in the papers mentioned can be summarized as 
follows: 

• Interactive consistency algorithms 

- without authentication are only possible if N 2: 3T + 1, and 

- with authentication are only possible if N ::> T + 1. 

• The connectivity K., of the graph representing the communication pos­
sihilities in the system must be 

- at least 2T + 1 for non-authenticated messages, and 

- at least T + 1 for authenticated messages. 



3.1. THE BYZANTINE GENERALS 123 

• Deterministic I AC algoritbms for asyncbronous systems are not pos~ 
sible. 

• Deterministîc JAC algorithms for synchronous systems are only pos~ 
sible if K 2 T -+- 1. 

• Dcterministic I AC algorithms based on synchronous systems, a fully 
connected graph, and the following parameters exist: 

- non~authent., N 2 3T+ 1, K=T+1, #mess= O(NT). 

authent., N 2 T+ 1, K=T+l, #mess= O(N.T). 

non~autbent., N 2 3T+1, K = 2T+3, 
#mess O(N.T + T3 1ogT). 

• Determinist ie I AC algorithms for synchronous systems based on a not 
fully connected graph can alwa.ys be derived from the algorithms which 
are based on a fully connected graph at the expence of the number 
of rounds that are needed, provided the connectivity requirement is 
fulfilled. 

• Randomized I AC algorithms exist for the fol!owing parameters: 

asynch., non-authent., N 2 lOT+ 1, Keopected = 4. 

asynch., non~authent., N ~ 3T + 1 

synch., non-authent., N 2 3T+ 1, #mess= O(logN) 

synch., authent., N ~ 2T + 1, #mess = 0 (log N) 

Open question: 

This summary shows clearly that there are many open questions. In practice 
the application of Intera.ctive Consistency Algorithms is limited by the la.rge 
number of messages whîch needs to be tra.nsmitted between the modules of 
the system, cf. Cha.pter 4. Therefore one of the most challenging questions 
is whether a bound can be proven on the minimum uumber of messages 
which need to be transmitted for obtaining Byzantine agreement given N, 
K and T. 



124 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

3.2 Introduetion to the algorithms and their proof 

3.2.1 A survey of the algorithms considered 

In the following we will present a daas of synchronous deterministic algo­
rithms which solves the Byzantine Generals problem for all values N ~ 3T+1 
and K ~ T + 1. This class of Intera.ctive Consistency Algorithms which is 
ba.sed on voting and error-correcting codes will he derived from a cla.ss of 
algorithms which we will cal! Dispersed Joined Communication algorithms. 
The latter class of algorithms satisfies more liberal properties than those 
which a.re required for the Interactive Consistency Algorithms. 

The basic ideas hehind these classes of algorithms have similarities with 
the algorithm which we will call the Pease algorithm and which is pre­
sentod in [Pease 80], Dolev [Dolev 82-1], and van Gils [Gils 85] and with 
the (X, Y, Z, T) fault-tolerant systems. 
The Pease a.lgorithm is a memher of our class of algorithms. 

In the new class of JAC a.lgorithms presentod in this chapter, the amount of 
messages which needs to be transmitted between the modules is reduced 
considerably compared with the existing synchronous deterministic non­
authenticated algorithms. 

• Firstly by reducing the number of directions in which a message is 
forwarded and 

• secondly by repla.cing the braadcast functions by the eneader func­
tions of error-correcting codes and sirnultaneously replacing the voting 
function in the decision-making process by the decoder functions of 
the error·correcting codes applied in the braadcast process. 

The class of Intera.ctive Consistency Algorithms which is the issue of this 
chapter tbus contains a subclass which is basedon voting, cf. Figure 3.1. In 
this subclass the only functions applied are braadcasting data and majority 
votes on data. In the entire class of algorithms, ho wever, the braadcast 
function is replaced by the encoding function of an error-correcting code 
and the majority vote by the corresponding decoder function of the error­
correcting code. 
The difference between the algoritbms in the subclass hased on voting and 
the algorithm presentod in [Pea.se 80] is that in the latter algorithm during 



3.2. INTRODUCTION 

P-ea.se 
a.lgorithm 

Algorithms 
baaed on voting 

"------Algorithms baaed on error-oorncting codes 

' '------------// 
'.. Diaperaed Joined Communica.tion Algorithms 

125 

Figure 3.1: Tbe classes of Intera.ctive Consistency Algorithms a.nd the cla.ss 
of Disperscd Joined Communica.tion Algorithms discussed in this chapter. 

each round a message is relayed to all modules whieh have not yet passed 
by the message, while in our algorithm each message only needs to be sent 
to at least 2T + l modules which have not yet been passed. 

3.:2.:2 The way in which the algorithms are described 

Let a system be composed of N fully interconnected modules. So between 
any two modules a cornmunication channel is available in both directions. 
Due tothese individual cba.nnels between the modules, if it behaves correctly 
a receiving module always 'knows' whicb module haa inserted data on the 
input side of the cbannel, regardless of whether tbe sending module behaves 
correctly or maliciously. 
The modules are identified by the elements of the set Ns. So INsl = N. 
At most T of the modules in tbe system are allowed to bchave maliciously. 

In the current context an algorithm aims at transmitting a message from a 
partienlar souree to a number of destinations. The algorithm prescribes the 
rules a.nd formats for conducting communications on the network and the 
operations performed on the messages in the modules. So the description of 
an algorithm may be regarcled as a protocol. 
On the other band, the input of an algorithm is the original message in 
the souree and the output are tbe decisions ( estimates) calculated by tbe 
destinations about what the souree tried tosend to them. 



126 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

So an algorithm ha.s both topological and behavioural aspeds, i.e.: 

• Topological aspeds which provide information about the souree mod­
ule, the set of destinations and the way a message is routed through 
the network from the souree to the destinations. 

• Behavioural aspeds which provide information about the fundions 
performed in the modules on the messages before they are forwarded 
to the next module and the fundions which are performed in order to 
calculate the decision in the destinations. 

We restriet ourselves to synchronous deterministic algorithms. This means 
that the modules in the system run synchronously and have a common notion 
of time. Moreover the number of rounds of the algorithm is fixed. Therefore 
the system can he modelled according to the Moore model. The number of 
time instances used by the algorithm is K + 1, herree the algorithm comprises 
K + 1 rounds synchronously executed by the modules. These rounds are 
enurnerated 0,1,· ·· ,}(. 
For convenience an algorithm is divided into two parts: 

• a braadcasting process which comprises the rounds 0, · · ·, K- 1. 

• a decision-makt."ng process which is executed during round K and m 
which the result of the algorithm in each module is calculated. 

Each round of the braadcasting process consists of two parts: 

1. A number of ( combinatorial) functions is applied on the data received 
in the previous round in each module, one for each module to which a 
result wil! he sent. Such a fundion may depend on: 

• the module in which it is executed, 

• the round, and 

• the destination to which the result is sent. 

2. The exchange of data between the modules. 

During the last round, i.e. the decision-making process, no information 
exchange takes place. The algorithm thus cornprises K rounds of information 
exchange. 



3.2. INTRODUCTION 127 

The braadcasting process 

Data sent from one module to another durlog a particular round is divided 
into a numher of messages. Eacb message is treated hy a module individually. 
Fundions are thus only applied on a single message and the result of the 
fundion application again is a single message. Clearly in a partic u larmodule 
duringa particular round more than one function may he applied on the same 
incoming message rcsulting in more tban one outgoing message, hut during 
that. round all these messages will he sent in different directions. Tbis means 
that a message which is received during a particular round can only cause 
single messages to he sent in different dircdions. Conversely, if a message is 
transmitted from a first module toa second, thcn this is always caused by a 
message which in the previous round has been received by the first module. 
Thus no messages are gencrated spontaneously. Also the original message 
availahle in the souree at the beginning of round 0 is regarcled as having 
been received during the previous round. 
Consequently the messages can he identified by the path they travelled 
through the network. For example, a message which originated in mod­
ule a and which after modiikation by a function was sent to module b, and 
again after modification was sent to module c, is identified by the string 
(path) (a,b, c). Only K + 1 time instances are taken into account which 
encompass K rounds of information exchange. So messages are identified 
by elements of the set of all strings of length K + 1 or less over the set of 
module identifiers Ns. A string wil! be denoted by a symbollike l'· 
Messages are not forwarded in all directions, therefore we define a function 
Bon thesetof all strings of lcngth Kor less over Ns, such that B(!i) is the 
set of modules to which the message which is identified by !', is sent after 
modification. 

The messages, or more precisely the val u es of tbe messages, are represented 
as a function m on the set of message identifiers. So m(ll) is the message 
which is identified hy !' and m(a, b, c) is tbc message (= message value) which 
is received during round 1 by module c from module b and which travelled 
from module a via module b to module c. 

The decision-making process 

The dccision-making process acts independently in eaclt module on the mes­
sages which are received by that module during tbe entire braadcast process. 



128 CHAP1'ER 8. I.A.C. BASED ON VOTING AND CO DING 

If we are dealing with Interactive Consistency Algorithms, the results of the 
calculations performed in each module by the decision-making processes have 
to fulfil the interactive consistency requirements as defined in Definition 3.1 
on Page 119. 

3.3 The Dispersed Joined Communication Algo­
rithms 

3.3.1 Introduetion 

In this section we will define a new class of algorithms which will be called 
Dispersed Joined Communication algorithms (DJC algorithms). These aim 
to transmit a message from a single souree module to a number of destina­
ti ons in the presence of a number of maliciously behaving modules. 

In order to be able to tolerate modules which bchave maliciously, the com­
munication between the souree and the destinations Îll dispersed, i.e. the 
message which needs to be transmitted Îll sent possibly in differently modi­
lied verslons, via different paths from the souree to the destinations. 
A DJC algorithm prescribes the way in which the message is forwarded 
through the network from the souree to the destinations, the way in which 
the messages are modified by the modules, and the way in which the final 
result Îll calculated in the destina.tions. Although the message passing is 
dispersed, the message passing and modification for different destinations is 
joined as much as possible, i.e. for a.ny two destinations d a.nd e, it holds 
tha.t all paths from the souree to these destina.tions are shared a.s much as is 
compatible with the additiona.l requirement tha.t a. message is never relayed 
toa module that it has a.lrcady passed. This means that thesetof dircctions 
B(~) into which a. module will forward a. message ~ it received in the previous 
round does notdepend on its fina.l destinations, but only on the path foliowed 
hitherto. 

First in Section 3.3.2, we will describe the way in which these a.lgorithms are 
constructed. 
Next, in Section 3.3.3, we will investiga.te for which parameters N, K and 
T they ca.n be constructed, i.e. we will investigate the topological a.spects of 
the a.lgorithm. 
And fina.lly in Section 3.3.4, we will prove some of their beha.vîoural proJ>-



3.3. DISPERBED JOINED COMMUNICATION 129 

erties, i.e. tbe relation between the original message value in the souree 
module and the value finally caleulated in the destinations. 

The bebavioura.l properties of the DJC algoritbms have strong simila.ri­
ties witb the interaetive consisteney requirements but differ from the latter 
that in partieularly well-defined circumstances eorrectly functioning modules 
might a.rrive at different dedsions. 

To be more precise, tbe DJC algorithms wîll be defined sucb that they satisfy 
tbe following bebavioural properties: 

• If tbe souree and destination are bath funetioning eorreetly, then the 
deeision ealculated by tbe deeision-making process in the destina.tion 
equals the original message in the souree. 

• For an algorithm which is based on K rounds of informa.tion exchange 
and which aims at eommunicating a message from a souree module a 
to a number of destinations, it wil! hold that if the result ealculated in 
two correctly functioning destinations is different then a message has 
travelled along a patb of length K from the souree module a to these 
destina.tions eonsisting of K different modules which all {the souree 
module a inclusive) beha.ve ma.liciously. 

A sub-class of these DJC algorithms wil! define and prove the properties of 
a. new class of Interactive Consisteney Algorithms wbich are based on voting 
and eoding. 
Moreover tbe algorithms which solve the Input Problem wil! be based on 
these DJC a.lgoritbms. 

So tbe cla.ss of DJC algorithms encompasses the class of Interactive Consis­
teney algoritbms whieb are based on voting a.nd eoding, cf. Figure 3.1 on 
page 125. 

Dispersed Joined Communication Algorithms are defined on a set Ns of 
fully interconnected modules. A partienlar DJC a.lgorithm a.ims at sending 
a pa.rticular message from a particula.r souree module a to a pa.rticula.r set of 
destinations D, by means of K rounds of information exchange, Figure 3.2. 

In general there wiJl exist many DJC a.lgorithms which have the same proJr 
ertiea. 



130 CHAPTER 3. l.A.C. BASED ON VOTING AND CODING 

r.-.-, 

i i d"K((a),a) 

I a I 
r·-·-·-·-·-·-, 
. I . 
I · I 

m(a) 0! 0 0 0 0 0 o oif 
dl 

I d"K((a),d) • 
I 
I 

I 

I 
I 

o oif .I 0 i 0 0 0 0 0 
d"K((a), •) • 

a 

I . 
"Ns- {a) t.P.- · _j 
t.:·-·-·-·-·-·_j 

Figure 3.2: A pictural representation of an algoritbm in tbe class 
A(T,K,a,D,Ns). 
Direct communication is indkated by -, communication via other modules 
by 0 0 o. 

Therefore we define classes 

A(T,K,a,D,Ns) 

of DJC algorithms in which: 

T is the maximum number of maliciously behaving modules 
which is tolerated. 
K is the number of rounds of information exchange. 
a is the souree module of tbe algorithm. 
D is the set of destinations. 
Ns is thesetof modules in the system. 

(3.1) 



3.3. DISPERBED JOINED COMMUNICATION 131 

Obviously these classes A (T, K, a, D, Ns) of DJC a.lgorithms are only defined 

if 
K ;?: 1 a.nd a E Ns a.nd D c Ns (3.2) 

In order to exclude some pathologica.l classes we additionally require 

!Dl ;:>: K + 1 (3.3) 

A partienlar algorithm in a. class A(T,K,a,D,Ns) la.ys down in detail the 
way in which a. message travels from the souree a to the destinations d in D 
via different parallel pa.ths in K rounds of information exchange. Moreover 
the algorithm prescribes the way in which the messages are modilied during 
their journey though the network and the wa.y in which in each destination 
d a decision is ca.lculated starting from all data received by d. 

An algorithm in the dass A(T, K, a, D, Ns) forwards the original message in 
the souree module in K rounds of information exchange to the destinations 
in D. In accordance to our rema.rks in the previous section, the original 
message in the souree is denoted by 

m(!!, a) or by m(a) (3.4) 

The prefix !! to the souree module identifier a is only used if we need to 
distinguish between different messages in the same module a and in tbat 
case denotes the path along which tbc message travelled to module a. 

If a message m(!!, a) (or m(a)) is sent to the modules in the set D by means 
of an algoritbm from the class A(T,K,a,D,Na), then tbe results calculated 
in the modules d are denoted by 

decK((!!,a),d) (orby decK((a),d)) with dED (3 . .'5) 

Notice that for the delinition of the a.Igoritbms it is not necessary to have an 
expression for a pa.rticular algorithm in a class of a.lgorithms. Moreover we 
do not use an explicit single expression for the relation between tbe input 
value m(a) and the output va.lue dekK((a),d). 
In order to elucidate tbc difference between an explicit and an implicit de­
scription, we consider the following example. 
Suppose a class of systems S consistsof two conca.tenated modules identified 
by a and b. Tbc input value to a is denoted by x, the value sent from a to b 



132 GRAPTER 3. l.A.C. BASED ON VOTING AND CO DING 

by y, and the output value of b is denoted by z. In module a a function I is 
executed which belongs toa class of functions F and in module ba function 
g is executed which belongs to a class of fundions G. 
The explicit definition of the class of systems S is as follows: 

Let S be a class of systems with input value x and output value 
z, the relation between x and :z is defined by z = s( x) in which 
s go I and I is a function from the dass F and g is a function 
from the class G. 

The implicit definition of the dass of systems S is as follows: 

Let S he a class of systems with input value x and output value 
z. The systems in the class S are composed of two modules a 
and b. In module a a function from the class F is executed on its 
input value x and the result is forwarded to module b. In module 
b a function from the class G is executed on the value received 
from a. The result is called z. 

Both the explicit and the implicit description define the behavioural aspects 
of the system equally weiL However, the latter (implicit) definition provides 
additional topological information about the system. This topological infor­
mation is important for the DJC algorithms and therefore we wil! apply the 
implicit way of defining the DJC algorithms. 

3.3.2 The construction of the Dispersed Joined Communi­
cation Algorithms 

Let a system be composed from a number of fully interconnected modules. 
At most T of the modules in the system are allowed to bchave maliciously. 

The algorithms in the classes A(T,K,a,D,Ns) will he defined recursively 
with respect to K. The basis of the reenrsion is the case K = 1. 

The construction of the algorithms in the class A(T,l, a, D, Ns) 

An algorithm in the class A(T, l,a,D,Ns) is basedon only one round of 
information exchange. 
Reeall from (3.1) through (3.3) that a dcnotes the souree module of the 
algorithm, D denotcs the set of destinations and Ns denotes the set of 
modules in the system. 



3.3. DISPERBED JOINED COMMUNICATION 133 

Moreover reeall tha.t classes A(T,l,a,D,Ns) of DJC a.lgorithms are only 
defined if 

aENs a.nd DcNs a.nd IDI~2 (3.6) 

These restrictions concern the topologica.l a.spects of the cla.ss of a.lgorithms. 

Under the given conditions the cla.ss A(T, l,a,D,Ns) conta.ins the following 
a.lgorithm: 
During round 0, the souree module a sends the origina.l message m{ a) directly 
a.nd uncha.nged to all modules in D- {a}. Ir a E D then module a keeps a. 
copy of the message m( a) itself in order to be used in the decision-ma.king 
process during round 1. The messages received by the modules d in D- {a} 
from module a are denoted by m(a, d), cf. Figure 3.3. 

r·-·, 
I I dec1((a),a) 

I a I . 
I I 

m(a) m(a,d) 
I I 

dec1((a),d) 

I d ! 
I I 
I I 

m(a,e) I I dec1((a), e) 

a e 

Figure 3.3: A pictural representation of an algorithm m the class 
A(T, 1, a,D,Ns). 



134 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

During round 1 the decision-making process is executed in which in each 
module d, with d E (D - {a}), the message m( a, d) received from a is taken 
as decision dee1 ( (a), d) and if a E D then the decision dee1 ( (a), a) in module 
a will be equal to the stared message m( a). 
So the behavioural aspectsof the algorithms in the class A(T,l,a,D,Ns) 
(starting from correctly functioning modules) are defined by: 

dE (D- {a})=> m(a,d) = m(a) 

a E D => dec1((a), a) m(a) 

dE (D- {a})=> dee1((a),d) = m(a,d) 
(3.7) 

Notice that for any module a and any sets D and Ns which satisfy (3.6), 
such an algorithm can be constructed. Thus the class A(T,l,a,D,Ns) in 
that case is non-empty. 

The recursive construction of the algorithms in the class 
A(T,K,a,D,Ns) with K > 1 in termsof algorithms from thesetof 
classes A(T,K 1,b,D {a},Ns {a}) with b E Ns. 

Bear in mind that the original message in a souree module is denoted by 
m(a). Also remember that the result of a DJC algorithm from the class 
A(T,K,a,D,Ns) calculated in a module d with dE Dis represented by 
decK(( a), d). 

The construction of the algorithms in the class A (T, K, a, D, Ns) 
with K > 1 will be based on encoding the original message m{ a) in the 
souree into symhols of a T-error-correcting code, thereafter transmitting 
each symbol to a different module b, which forwards the received symbols to 
the destinations by means of an algorithm from the class A (T, K - 1, b, D -
{a},Ns- {a}). 

Therefore let Y(a) he the eneader function of some T-error-correcting code 
of which the code words consist of n(a.) symbols of size b(a.) and of which the 
data words consist of k(a) symhols. The corresponding decoder function is 

as usual denoted by yf~l). Suppose the original message m(a) consists of 
k(a) symhols and the symhol which is senttob is denoted by m(a,b), then 



3.3. DISPERBED JOINED COMMUNICATION 135 

this symbol is related to m( a) by 

m(a,b) = Y(a)(b)(m(a)} (3.8) 

in which the Y(a)(b) is called the partial encoder function of the encoder 
function Y(a) which delivers the symbol which has to he sent to module b. 

With the preceding remarks we are able to define the DJC algorithms in the 
class Jl (T, K, a, D, Ns) with K > 1. See Figures 3.4, 3.5 and 3.6. 

decK a),a) 

a 

r·-·-·-·-·-·-·-·-·-·, 
r·-·-·, 

m(a) 

a 

. I c o 1 o 
I o o I 
i i!'i•l_ . - • _j 0 0 0 0 0 0 ! .I tK~a},d} 
'Ns- {a} · 
~·-·-·-·-·-·-·-·-·-·~ 

Figure 3.4: A pictural representation of the construction of an algorithm in 
the class Jl(T,K,a,D,Ns). 

The DJC algorithms in the class Jl(T,K,a,D,Ns) with K > 1 are con­
structed as follows: 

1. During round 0 

(a) If the souree module is one of the destinations, thus a E D, the 
original message m( a) in the souree is kept stored in the module in 



136 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

Figure 3.5: A pictural representation of the way in which the decision 
decK((a),d) in a module d with d~ B(a) is obtained Erom the partially 
encoded messages sent by module a to the modules in B(a) 

order to be used later on during round K in the decision-making 
process, cf. Figure 3.4. 

(b) Furthermore in the souree module a a number of partially encoded 
vers i ons m( a, b) of the original message m( a) are calculated such 
that m(a, b) = Y(a)(b)(m(a)). 

(c) Thereafter each of these partially encoded versions m(a,b) ofthe 
original message is sent to a different module. These modules are 
indicated by the next-set B(a). So b E B(a). The number of 
modules b to which the partially encoded messages are sent must 
he at least 2T + 1. 

2. During the rounds 1, · · · K, each module b in the next-set B{ a) for­
wards the received partially encoded message m( a, b) to the destina­
tions indicated by D - {a} by means of an algorithm from the class 
fi.(T,K -1,b,D {a},Ns-{a}). The results orthese algorithms in the 
destinations d E (D {a}) are denoted by decK -1 ( (a, b), d). These re-



3.3. DISPERBED JOINED COMMUNICATION 137 

m(a,b) 

m(a} b 

decK((a), à) 

m(a,à) 

à 

Figure 3.6: A pictural representation of the way in which the decision 
decx((a),d) in a module d with d E B(a) is obtained from the partially 
encoded messages sent by a to the modules in B( a) 

sults are calculated during the first part of the decision-making process 
which is executed in round K. 

3. During the second part of the decision-making process which is exe­
cuted during round K, the decision decx((a),d) in the modules d with 

dE {D {a}) is obtained by applying the decoder function y~I) on 

the results decx-t((a,b),d) with b E B(a). 
If a E D then the decision decx((a),a) is obtained by taking the mes­
sage value m(a) which had been kept storedinmodule a, cf. Figures 3.5 
and 3.6. 



138 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

Notice that the algorithms in the class A(T,K,a,D,Ns) require K rounds 
of information exchange, while the algorithms in the cla.ss A (T, K -1, b, D­
{a},Ns- {a}) require K- 1 rounds of information exchange. The latter 
are preceded by the round in which the partially encoded messages are sent 
from a to b. So round t, with 1 :$ t :$ K, of the algorithms in the cla.ss 
.A (T, K, a, D, Ns) corresponds to round t - 1 of the algorithms in the cla.ss 
A (T, K- 1, b, D- {a}, Ns- {a}). And thus the calculation of the decisions 
decK-t((a,b),d) in a moduledE {D- {a}) precedes the calculation of the 
decisions decK((a),d) during the same round K. 

We further remark that during round t, with t ~ 2, a module b in gen­
eral receives more than one message m(~i, b), which arrives from the souree 
module a via different paths ~· Each of these messages is dealt with by b 
separately. If t :$ K - 2, they are each encoded by means of a.n encoder 
function that depends on §.i and thereafter forwarded to destinations which 
are determined by the set B(§.i>b) which depends on §.i· How module b dis­
criminatea between the messages it receives is a matter of implementation 
and will not he further commented on. 

Clearly the construction described above is possible if and only if 

• A next-set B( a) can be found which is a subset of Ns- {a} and which 
contains at least 2T + 1 modules. 

• A T-error-correcting code exists of which the code words consist of· 
IB(a) I symbols. 

• The classes A(T,K -1,b,D- {a},Ns- {a}) of DJC algorithms with 
b E B(a) are all non-empty. 

(3.9) 

The behavioural aspects ofthe algorithms in the cla.ss A(T,K,a,D,Ns) can 



3.3. DISPERBED JOINED COMMUNICATION 139 

he summarized as follows: 

m(a,b) = YcaJ(b)(m(a)) for all b E B(a) 

decK _1 ( (a, b), d) follows from m( a, b) hased on 

an algorithm from the class A(T,K -1,b,D- {a},Ns- {a}) 

d ::/:-a==? decx((a),d) = Y{~l) applied on 

the values decx-1((a,b),d) with b E B(a) 

d =a==? decx((a),d) = m(a) 
(3.10) 

3.3.3 The existence of Dispersed Joined Communication 
Algorithms in the classes A(T,K,a,D,Ns) 

The next step is to investigate for which parameters DJC algorithms can 
he constructed or stated in a different way, for which parameters the classes 
A(T,K,a,D,Ns) are non-empty. 

Reeall from (3.2) and (3.3) that the classes A(T,K,a,D,Ns) of DJC algo­
rithms are only defined if 

K?: 1 and a E Ns and D c Ns and !Dl ?: K + 1 (3.11) 

H these constraints are not satisfied a class A(T, K, a, D, Ns) is empty hy 
definition. 

Within this context, the next theorem will show that the non-emptiness of 
the classes A (T, K, a, D, Ns) only depends on the numher of modules in the 
system, i.e. jNsj, the numher of rounds K and the numher Tof faults which 
is to he tolerated. 

Theorem 3.1 

• For all T with T ?: 1 and 

• for all K with K ?: 2 and 



140 GRAPTER 3. !.A.C. BASED ON VOTING AND CODING 

• for all Jully interconnected systems consisting of INs! modules, and 

• for all souree modules a in the system, and 

• for all sets D of destinations, with D C Ns and IDI ~ K + 1 

it holds that the class of algorithms Jl(T, K, a, D, Ns) ia non-empty iJ and 
only iJ 

INs!~ 2T+K 

0 

Pro of: 

The theorem will be proved by induction with respect to K. The basis of 
the induction will beK= 2. 
However before we elaborate on the classes of algorithms with K = 2 and 
prove the theorem for K = 2 we will fi.rst have to determine the constraints 
for the classes of algorithms with K = 1. 

Throughout the pro of we aasurne that the parameters K and T, the souree 
module a, and the sets Ns and D satisfy 

T ~ 1 and K ~ 1 and a E Ns and D C Ns and IDI ~ K + 1 (3.12) 

Reeall that classes A(T, K, a, D, Ns) which do not satisfy these constraints 
are assumed to be empty. 

From the construction of the algorithms in the classes A(T, l,a,D,Ns) we 
know that in these algorithms the original message in a is sent directly and 
unchanged to the modules in D- {a} and that if a E D the message m(a) 
is kept stored in the module. Because we start from a set of fully intercon­
nected modules, such algorithms can always be constructed and thus the 
class of algorithms A(T, l,a,D,Ns) is non-empty if and only if the general 
constraints expressed in (3.11) are fulfi.lled, i.e.: 

D c Ns and IDI ~ 2 (3.13) 

From this immediately follows the necessary and sufficient requirement 

INs!~ 2 (3.14) 

The proof of the theorem for K = 2 is as follows: 
From our remarks (3.9) on the construction we reeall that the construction 
of algorithms with K 2 is possible if and only if 



3.3. DISPERBED JOINED COMMUNICATION 141 

1. A next-set B(a) can he found which is a subset of Ns- {a} and which 
contains at least 2T + 1 modules. 

2. A T-error-correcting code exists of which the code words consist of 
IB(a)i symbols. 

3. The classes A(T, 1,b,D- {a},Ns- {a}) of DJC algorithms with b E 

B(a) are all non-empty. 

The first requirement can he satisfied if and only if 

jNsj ~ 2T+2 (3.15) 

The second requirement can always he fulfilled because jB( a) I ~ 2T + 1 and 
because it is always possible to construct a T-error-correcting code with code 
words consisting of any number of symbols if this number of symbols is at 
least 2T + 1, [MacW 78]. 
The third requirement is fulfilled if the general constraints of the classes 
A (T, 1, b, D- {a}, Ns - {a}) are satisfied, i.e. 

T ~ 1 and b E (Ns - {a}) (3.16) 

and 
(D- {a}) C {Ns- {a}) and ID- {a}!~ 2 (3.17) 

and the if and only if the condition expressed in {3.14) is satisfied, i.e.: 

jNs-{a}j~2 (3.18) 

Predicate (3.16) is trivially satisfied by the assumption (3.12) and the facts 
that b E B(a) and B(a) c Ns- {a}. 
Predicate (3.17) follows from (3.12) and 

(D C Ns) ==> ((D {a}) C (Ns- {a})) 

Moreover K = 2 and !Dl~ K + 1 in (3.12) implies jD- {a}j ~ 2. 
Predicate (3.18) is implied by K 2 and !Dl ~ K + 1 and D C Ns. 

Hence for all T, a, Ns, D with T ~ 1 and a E Ns and D. c Ns and !Dl ~ 3 it 
holds that the class of algorithms Jl(T,2,a,D,Ns) is non-empty if and only 
if 

INs!~ 2T+2 (3.19) 



142 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

Which proves Theorem 3.1 for K = 2. 

Suppose Theorem 3.1 holds for K - 1 with K ~ 3. So suppose for all 
T,a,Ns,D with T ~ 1 and a E Ns and D C Ns and jDj ~ K holds that 
the class of algorithms A(T,K 1,a,D,Ns) is non-empty if and only if 

jNsj ;;:: 2T + K- 1 (3.20) 

Again from our remarks (3.9) to the construction we reeall that the construc­
tion of algorithms based on K rounds of information exchange is possible if 
and only if 

1. A next-set B(a) can he found being a subset from Ns- {a} which 
contains at least 2T + 1 modules. 

2. A T-error-correcting code exists of which the code words consist of 
jB(a)j symbols. 

3. The classes fl.(T,K -l,b,D- {a},Ns- {a}) of DJC algorithms with 
b E B{a) are all non-empty. 

The first requirement can he satisfied if and only if 

jNsj ~ 2T+2 {3.21) 

The second requirement can always he fulfilled because jB(a)j ~ 2T + 1 and 
because it is always possible to construct a T-error-correcting code with code 
words consisting of any number of symbols if this number of symbols is at 
least 2T + 1, [MacW 78]. 
The third requirement is fulfilled if the general constraints of the classes 
Jf(T,K- 1,b,D- {a},Ns- {a}) are satisfied, i.e. 

T ;;:: 1 and K- 1 ;;:: 1 and b E (Ns- {a}) (3.22) 

and 

(D- {a}) C (Ns- {a}) and ID-: {a}j;;:: K (3.23) 

and if and only if the condition expressed in (3.20) is satisfied, i.e.: 

jNs-{a}j;;::2T+K 1 (3.24) 



3.3. DISPERBED JOINED COMMUNICATION 143 

Predicate (3.22) is satisfied by the assumption (3.12), the assumption K ~ 3, 
and the fact that b E B(a) and B(a) c Ns- {a}. 
Predicate (3.23) follows from (3.12) and 

(D c Ns) => ((D- {a}) c {Ns- {a})) 

Moreover IDI ~ K + 1 in {3.12) implies ID- {b}l ~ K. 
Predicate (3.24) is satisfied if and only if 

!Nsl ~ 2T+K (3.25) 

So the necessary and suflident condition (3.21) for satisfying the first require­
ment is implied by the necessary and suflident condition (3.25) for satisfying 
the third requirement. Moreover the second requirement is always satisfied. 

Hence the assumption (3.20) implies that for all T,a,Ns,D with T ~ 1 and 
a E Ns and D c Ns and !Dl ~ K + 1 it holds that the class of algorithms 
A(T,K,a,D,Ns) is non-empty if and only if 

INs!~ 2T+K (3.26) 

We already proved the theorem for K = 2 and thus by induction on K we 
obtain that (3.26) holds for any K ~ 2. 
Which completes the proof of Theorem 3.1. D 

3.3.4 Some behavioural properties of the Dispersed Joined 
Communication algorithms in the presence of at most 
T modules which hebave maliciously 

The behavioural properties of the Dispersed Joined Communication algo­
rithms are expressed in the following theorem. 

Theorem 3.2 
Let the modules of a fully conneeled system be represented by the set Ns. At 
most T of these modules behave maliciously. 
Suppose that by means of any DJO algorithmfrom the cl(J.ss A(T,K,a,D,Ns) 
a message m( a) is transmitted from the souree module a to the destinations 
represented by the set D. And let the decisions calculated in the destinations 
d with d E D be denoted by decK ( (a), d), then 



144 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

• 1. lf the souree module a and a destination d are both functioning cor­
rectly then the result decK ( (a), d) of the algorithm calculated in module 
d equals the original message m(a) in module a. 

• 2. For any two destinations d and e which are both functioning cor­
rectly it holds that i/ the results decx((a),d) and decx((a),e) are un­
equal, then the number of maliciously behaving modules in the system 
is at least K. 0 

Proof: 

We start with property 1. 
Let us assume that a and d are two correctly functioning modules in the 
system in which a is the souree module of the algorithm, a E Ns, and dis 
one of the destinations, dE D. 
If a= d then according to the construction ofthe algorithms Jl.(T, K, a, D, Ns) 
with K = 1 on page 133 and with K > 1 on page 135, it holds that 
decx((a),d) = m(a). 
So we need only to consider the case d f= a, i.e. d E (D - {a}). For these 
cases we prove decx((a),d) = m(a) by induction with respect toK. 
Basis: K = 1. 
From the construction we know that any algorithm in a class Jl.(T, 1, a,D,Ns) 
is based on only one round of information exchange. During round 0 the 
original message m( a) in a is sent to d directly and unchanged and during 
round 1 the decision taken in module d equals the message received from a. 
So because we assume that a and d are functioning correctly it holds that 
dect((a),d) = m(a). 

Induction step: K > 1 
The algorithms in a class Jl(T,K,a,D,Ns) have been constructed from the 
algorithms in the class Jl(T,K l,b,D {a},Ns- {a}) with b E B(a) and 
B{a) c (Ns- {a}). 
For the latter algorithms we know from the induction hypothesis that if a 
message m(a,b) is communicated by a correctly functioning souree module 
b to a correctly functioning destination d in D - {a} then 

decx-t((a,b),d) = m(a,b) (3.27) 

Moreover from the construction we know the following: 
In module a by means of the encoder function Y(a)' the original message is 



3.3. DISPERBED JOINED COMMUNICATION 145 

encoded into IB(a)l symbols a.nd during round 0 ea.ch symbol is sent to a. 
different module b, with b E B(a). So 

m(a,b) = Y(a)(b)(m(a)) {3.28) 

cf. (3.10). Ea.ch of these modules b thereafter forwards the message m{ a, b) 
(is the code word symbol) to the destina.tions represented hy the set D- {a} 
by mea.ns of an algorithm from the class A(T,K -1,b,D- {a},Ns- {a}). 
As the result of these algorithms in each destina.tion d of the set D - {a}, 
IB(a)l decisions decK-~((a,b),d) will become available. If modulebis func­
tioning correctly then according to (3.27) and (3.28) it holds that 

decK-l((a,b),d) = Y(a)(b}(m(a)) (3.29) 

The decoder function Y{~I) is applied tothese decisions decK-l((a,b),d) 
with b E B(a) in each module d. At most T modules b hebave maliciously so 
at most T decisions do not satisfy (3.29). The code Y(a) is T-error-correcting 
and thus decK ( (a), d) which is the result of applying the decoder fundion 
on the valnes decK-t((a,b),d) must he equal to m(a). 
This compietea the proof of property 1. 

Next we prove property 2. 
Let us assume that two destination d and e, with d, e E D hebave correctly 
and that decK((a),d) =/= decK((a),e). 
If the souree module a is functioning correctly then, by property 1 it holds 
that 

decK((a),d) = m(a) = decK((a),e) 

conHicting the assumption decK((a),d) =/= decK((a),e). So we conclude that 
module a is behaving maliciously a.nd thus d =/= a and e I= a. 
Again we use in duetion with respect to K. 
Basis: K=1 
We already concluded from our assumption decK ( (a), d) I= decK ( (a), e) and 
d and e both behaving correctly, that module a is behaving maliciously. 
Hence the system conta.ins at least one maliciously behaving module. 

Induction step: K > 1 
Reeall that during round 0 the symbols are sent by module a to the modules 
b with b E B(a). During the rounds 1, .. · K, each of these symbols m(a, b) 



146 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

is forwarded to the destinations in the set D - {a} by means of an algo­
rithm from the class A(T,K -l,b,D- {a},Ns- {a}). The results of these 
algorithms calculated in the modules d with d E (D - {a}) are denoted by 
decx-t( (a, b), d). 

Let decx-t((a,b),d) and decx-t((a,b),e) with b E B(a) he decisions cal­
culated in modules d and e. We already concluded from our assumption 
decK((a),d) -:J: decx((a),e) and d and e both behaving correctly, that mod­
ule a is behaving maliciously and d -:J: a and e -:J: a. Hence d, e E (D - {a}). 
Since d -:J: a and e -:J: a, the decision decK ( (a), d) is based on applying the 

function Yf;j1l on the decisions decx- 1((a,b),d) with b E B(a), whereas the 

decision decK(( a), e) is based on applying the same function Yf;j1
) on the 

decisions decK-t((a,b),e) with b E B(a). It follows that 

Vb : b E B(a) ===? decx-t((a,b),d) = decK-t((a,b),e) (3.30) 

would imply decK((a),d) = decK((a),e). The latter however is con:H.icting 
with the assumption decx((a),d) -:J: decK((a),e) so we must conclude 

3b : b E B(a) 1\ decK-t((a, b), d) # decK-t((a, b), e) (3.31) 

Reeall that our assumption implies d, e E (D - {a}). So from the definition 
of the construction of the algorithms in the class A (T, K, a, D, Ns) we know 
that the decisions decx-t((a,b),d) are the result of the algorithms from the 
classes A(T,K,a,D- {a},Ns- {a}) with b E B(a). 
According to the induction hypothesis it holds for the latter classes that if 
the modules d and e are both functioning correctly and decK-t((a,b),d) ;/; 
decK-t((a,b),e) then the number ofmaliciously behaving modules in the set 
Ns- {a} must be at least K -1. And thus with (3.31) we conclude that the 
set Ns- {a} must contain at least K- 1 maliciously behaving modules. We 
already concluded from the assumption that module a behaves maliciously. 
Hence the set Ns must contain at least K maliciously behaving modules. 
Which completes the proof of Theorem 3.2. D 



3.4. lAG BASED ON VOTING AND CODING 147 

3.4 A class of algorithms for reaching interactive 
consistency based on voting and coding 

The class of algorithms for reaching interactive consistency based on voting 
and coding immediately follows from the Dispersed Joined Communication 
Algorithms defined in the previous section. 

Let a system consist of N modules identified by the elements of a set Ns. 
At most T modules in this set hebave maliciously. Then the classes of 
Interactive Consistency Algorithms among the classes of DJC algorithms 
are those in which the set of destinations encompasses the entire system and 
the number of rounds is one more than the number of maliciously behaving 
modules which need to he tolerated, i.e. the classes: 

A(T,K,a,D,Ns) with 

T ~ 1 and K T + 1 and D = Ns 
(3.32) 

From Theorem 3.1 on page 139 we know that a class of DJC algorithms 
A(T,K,a,D,Ns) with D C Ns and IDI ~ K + 1, is non-empty if and only 
if 

INsl ~ 2T+K 

So from (3.32) and (3.33) it follows that: 

(3.33) 

Corollary 3.3 lnteractive Oonsistency Algorithms based on voting and cod­
ing can always be constructed ij 

T ~ 1 and N ~ 3T + 1 and K = T + 1 

The Interative Consistency Algorithms in a class A(T,T+ l,a,Ns,Ns) sat­
isfy the interactive consistency requirements, as they have heen defined in 
Definition 3.1 on page 119, i.e.: 

Theorem 3.4 Any Interactive Oonsistency Algorithmfrom the class A(T,T+ 
1, a, Ns, Ns) which runs on a system of N modules, N ~ 3T + 1, which are 
identijied by the elements of the set Ns, of which at most T behave mali­
ciously, T ~ 1, and which aims at transmitting a message m(a) in the souree 



148 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

module a to all modules of the eyetem, eatiefies the interactive consistency 
requirements 

Vd: a,dEF=>deCT+t((a),d)=m(a) 

and Vd, e : d, e E F => decT+t((a), d) = decT+t((a), e) 

in which F is any set of correctly functioning modules such that 

IFI ~ N-T and F C Ns 

and decT+t((a), d) with d E Ns denotes the decision in a module d about 
what module a tried to send. 0 

Pro of: 

Consider Interactive Consistency Algorithms which are defined by the non­
empty dass ofDJC algorithms A(T,K,a,Ns,Ns) with 

T ~ 1 A N ~ 3T + 1 A K = T + 1 (3.34) 

Moreover let F he any set of correctly functioning modules sueh that 

IFI ~ N - T and F C Ns 

From Theorem 3.2 we know that 

• lf the souree module a and a destination d are both functioning cor­
rectly then the result decK((a), d) of the algorithm calculated in mod­
ule d equals the original message m(a) in module a. 

Thus: 

\:/d : a,d E F => decK((a),d) = m(a) (3.35) 

Which proves the first part of the interactive consistency property. 

From the second part of Theorem 3.2 we know that 

• For any two destinations d and e which are both functioning correctly 
it holds that if the results decK((a), d) and decK((a), e) are unequal, 
then the number of maliciously behaving modules is at least K. 



3.5. CONSTRUCTION OF JAC ALGORITHMS 149 

However this conflicts with the constraint K = T + 1 and the a.ssumption 
that at most T modules hebave maliciously. Thus if both modules d and e 
are behaving correctly, the decisions decx((a),d) and decx((a),e) must be 
identical. So 

Vd,e: d,eEF===> decx((a),d) =decx((a),e) (3.36) 

Which completes the proof of Theorem 3.4. D 

3.6 Some remarks on the construction of Interac­
tive Consistency Algorithms which are based 
on voting and coding 

In the previous sections we have defined the Interactive Consistency Algo­
rithms which are based on voting a.nd coding, starting from the Dispersed 
J oined Communication algorithms. In this section we will first discuss the 
design process and the design freedom which is left by the definition of these 
IAC algorithms. Thereafter we will elucidate the design of the Interactive 
Consistency Algorithms ba.sed on voting and coding with two examples. 
In the introduetion to this chapter we daimed that the rednetion of the 
number of messages which needs to be transmitted between the modules 
can be obtained in two ways, i.e.: 

• by minimizing the number of directions in which the messages are 
broadca.st each round, and 

• by replacing the voting function by an error-correcting code. 

From the construction we immediately see that replacing the voting function 
hy an error-correcting code causes a.n increase in the numher of modules to 
which a modified message ha.s to be sent. However, the size of the messages 
to he transmitted decreases compared to the original message in the source. 
In the next chapter we will show that choosing an error-correcting code is 
more efficient than reducing the number of directions in which a message is 
sent each round. The advantage of fewer messages to he transmitted due to 
the application of non-trivial error-correcting, ha.s to he paid for hy a larger 
minimal size of the original message in the souree and by the fact that the 
implementation of the decoding function of an error-correcting code is much 
more complex than the implementation of a simple majority voter. 



150 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

Forthese reasons we will define inSection 3.5.3 two subclasses of a.lgorithms, 
t.e 

• The Minimal Voting a.lgorithms. In this cla.ss of a.lgorithms the number 
of directions in which a. message is sent in each round, is minimized 
a.nd in the decision-ma.king process only ma.jority voting is a.pplied. 

• The Maximal Goding algorithms. In this class of algorithms the mes­
sages are broa.dcast to as ma.ny modules as is allowed by the definition 
of DJC a.lgorithms, such tha.t the a.mount of redunda.ncy in a.n error­
correcting code word is as little as possible a.nd the size rednetion of 
the messages in ea.ch step is maximaL 

Another wa.y of minimizing the a.mount of messages is to reduce the a.mount 
of destina.tions in which the dedsions are ca.lcula.ted a.nd therea.fter to broa.d­
cast the results in an a.dditiona.l round to the other modules. This Subset 
Method will be the issue of Section 3.5.4. 

3.ó.l The general construction of Interactive Consistency 
Algorithms w hich are based on voting and coding 

Suppose we want to design a.n IAC a.lgorithm for a. system consisting of N 
modules of which at most T ma.y beha.ve ma.liciously. Such a. construction is 
a.lwa.ys possible if 

T ?:. 1 A N ?:_ 3T + 1 A K = T + 1 

cf. Corolla.ry 3.3. 

The broadcasting process 

From the definition of the IAC a.lgorithms on voting a.nd coding we know 
tha.t the souree module a communiea.tes the origina.l message m(a) by mea.ns 
of a. DJ C algorithm from the class A ( T, K, a, D, N s) with T = K + 1 a.nd 
D = Ns to all modules in D. The souree module in this case is alwa.ys one 
of the destina.tions and thus the original message m( a) is kept stored in the 
souree module. ( cf. item l.a. of the definition of the construction on page 
135). The decision decK((a),a) in the souree equals the origina.l message 
m( a), which has been kept stored in the souree until round K, ( cf. 3 of the 
definition of the construction). 



3.5. CONSTRUCTION OF IAC ALGORITHMS 151 

The souree module a communica.tes the origina.l message m(a) to the other 
modules, i.e the modules in Ns- {a}, as follows: 
Module a sends during round 0 (modified) messages m( a, b) to a. number 
of modules identified by the next-set B(a). Thus b E B(a). Notice tha.t 
B(a) c (Ns- {a}). a.nd thus the number of elementsin B(a) is at most 
N 1. The modified messages which are forwa.rded by module a are pa.rtia.lly 
encoded copies of the origina.l message. The choice of the T-error-correcting 
code Y(a) which is used in module a for encoding is limited by the number 
of modules to which symbols can he sent, i.e., the number n(a) of symbols of 
a. code word of the T-error-correcting code equa.ls IB( a} I and thus may he at 
most N- 1. Furthermore T-error-correcting codes consisting of code words 
of n(a} symbols exist if and only if n(a) 2 2T + 1, provided the symbol size 
b(a) is sufficient large. So 

2T + 1 :::; n(a) S N - 1 

Obviously for T = 1 a.nd N = 4, i.e. the most simple JAC algorithm, no 
choice is left, but in all other cases a. code can he freely chosen within the 
preceding constraint. 

From item 2 of the definition of the construction on page 135 we know that 
each message m(a,b) received by a modules b, with b E B(a) is communi­
cated to the destinations d in the set D - {a}, by mea.ns of an algorithm 
from the class JI.(T,K l,b,D- {a},Ns- {a}), in which K -1 =Tand 
(D- {a})= (Ns- {a}). 

The a.lgorithms from the class A(T,T,b,Ns- {a},Ns- {a}), with b E B(a) 
will a.ga.in after encoding, forward the message m(a,b) to the modules c with 
c E B(a,b). In which B(a,b) is the next-set which belongs to the a.lgorithm 
chosen from the class A(T,T,b,Ns- {a},Ns- {a}). 
Clearly the module b will he one of the destinations, so due to the algorithm 
chosen the message m(a,b) will also he kept stared in moduleband become 
the decision decK -1 ( (a, b), b) during round K. 
The messages mentioned before, which are received during round 1 by the 
modules c, with c E B(a,b}, are denoted by m(a,b,c). 
These messages m(a, b, c) are a.ga.in communica.ted to the modules d in the 
set Ns - {a, b} by mea.ns of a.n a.lgorithm from the cla.ss A (T, T- 1, c, Ns­
{a,b},Ns {a,b}) and because c E B{a,b) a.nd B(a,b) C Ns- {a,b} the 
module c a.lso will he one of the destina.tions and therefore the message 



152 CHAPTER 3. !.A.C. BASED ON VOTING AND CODING 

m( a, b, c) will also he kept stored. 

Notice that in a partienlar module c more than one message might arrive. 
For example, suppose that the messages m( a, bt, c) and m( a, b2, c) arrive in 
module c. Thus bt,b2 E B(a), and c E B(a,bt), and c E B(a,b2). In that 
case of course the choice of the algorithm from the classes A(T, T -1, c, Ns­
{a,bi},Ns- {a,bt}) and A(T,T- 1,c,Ns- {a,b2},Ns- {a,b2}) for for­
warding the messages m(a, bt, c) and m(a, b2, c) may he made independently. 
This process is continued until the last round of information exchange, i.e. 
round K- 1. During this round each message m(a,§,p) which arrives in a 
module p, is forwarded to the destinations in the set Ns- set{ a,!) hy means 
of the only algorithm in the class A(T, l,p, Ns- set{ a,!), Ns- set( a,!)). 
In which, set{ a,!) denotes thesetof modules from which the string (a,!) is 
composed. 

From the preceding and the definition of the construction on page 135 it 
follows that: 
A partienlar algorithm in the class A (T, K, a, D, N s) is fully determined hy 

• the choice of the set B (a), 

• the choice of the code Y(a)• and 

• for each module b with b E B(a), the choice of the algorithm in the 
class A(T,K -l,b,D- {a},Ns- {a}) hy means of which the message 
m(a,b) is forwarded to the destinations in D- {a}. 

Similarly a partienlar algorithm in the class A(T,K -t,p,D-set(a,§),Ns­
set(a,§)), with l(a,§)l = t, which is utilized hy an algorithm from the class 
A (T, K, a, D, Ns) for forwarding a message m( a,§, p ), is fully determined hy 

• the choice of the set B(a,§,p), 

• the choice of the code Y(a,_!,p)• and 

• for each module q with q E B(a,§,p), the choice of the algorithm in 
the class A(T, K-t- 1, q,D- set(a,§,p),Ns- set(a,§,p)) hy means 
of which the message m(a,§,p,q) is forwarded to the destinations in 
D- set(a,§,p). 



3.5. CONSTRUCTION OF JAC ALGORITHMS 153 

Notice again that for each message m(a,§.,p) the choice of the algorithm 
from the class A(T,K- t,p,D- set(a,§.),Ns- set(a,.§.)) may be made in­
dependently and only is restricted by the definition of the construction. 

Obviously, nót every string of length K + 1 or less over the set Ns will 
identify a message caused by a partienlar IAC algorithm. 
Therefore, let Sm be the set of all strings which identify messages which 
are caused by a partienlar IAC algorithm from the class A(T,K,a,Ns,Ns), 
then Sm will be determined by 

(a) E Sm 

( (!!) E Sm A p EB(!!) ) => (1_,p) E Sm 
(3.37} 

Clearly the sets B (!!), are only defined for 1 ~ I! I ~ K and ! E Sm. 

Reeall that the set B(!, p) amongst other things determines a partienlar 
algorithmin the dass JI.(T,K-t,p,D-set(~_),Ns-set(.!!)), with l!l = t, which 
is utilized by an algorithm from the class A(T,K,a,Ns,Ns) for forwarding 
a message m(§.,p). 
Th is set B{_!!, p) will have to satisfy the rules imposed by the definition of 
the construction on page 135, i.e.: 

( (§.,p) E Sm A 1 ~ I(!!,P)I ~ K- 1) => 

( ( B(_!!,p) C (Ns- set(§.,p) ) 

A( 2T + 1 ~ IB(!!,P)I ~ INs- set(!,p) I)) 
(3.38) 

The last round of information exchange during the braadcasting process is 
determined by the algorithms from the classes JI.(T,l,p,Ns- set(.!!),Ns­
set(!!)), with l1.l = K - 1. These algorithms forward the messages directly 
to the destinations. Soforthese algorithms the next-set is defined by 

( (!,P) E Sm A I(!!,P)I = K) => B(§.,p) = (Ns- set(!!,p)) (3.39) 

From the preceding it therefore follows that a partienlar algorithm in the 
class 
A(T, K, a, Ns, Ns) is fully determined by the sets B(.!!) with §. E Sm and the 
T-error-correcting codes Y~) with §. E Sm and 1 ~ l!l ~ K- 1 . 



154 CHAPTER 3. l.A.C. BASED ON VOTING AND CODING 

The decision-making process 

From the definition of the construction on page 135, of the DJC algorithms 
in a class A(T, K- t,p,Ns- set(!!),Ns- set(!!)), with 111 = t, we know that 
the decision-making process of such an algorithm which is executed in the 
"source module" p, only consists of taking the message m(§.,p) which had 
been kept stored since round t. Thus 

decx-t((!i,p),p) = m(!i,p) (3.40) 

Moreover we know that the decision-making process of such an algorithm 
which is executed in a module d, with d E (Ns - set(!!, p)) encompasses the 
n(!,p) decision-making processes of the algorithms chosen from the class 
A(T,K- t -1,q,Ns- set{!!,p),Ns- set{!!,p)), with q E B(!!,p) foliowed 

by the execution of the decoder function Y{;;j, cf. Figures 3.5 and 3.6 on 
page 136. 

So the decision-making process executed by an algorithm from the class 
A(T,K,a,Ns,Ns), in a. module d during round K starts with the cal­
culation of the results dec1 ( (y, p, q), d) of the algorithms chosen from the 
classes A(T, l,q,Ns-set(y,p),Ns-set(y,p)), which forwarded the messages 
m(y,p,q) to module d in the set D- set(y,p). Obviously (y,p,q) E Sm 
and any string y starts with a. 
The decision dec1 ( (!!, p, q), d) with p =/: d equals the message m(y, p, q, d) 
received by module d during round K -1. Because D = Ns and the message 
m(y,p, q) is communicated to the destinations in D-set(y,p) it holds that q 
is one ofthe destinations. So dE B(y,p). And according to the construction 
dect((y,p, d), d) equals the message m(y,p, d) received by module d during 
round K- 2. 
So for all destinations d with dE (Ns- set(y,p)) it holds that: 

q =/: d ==} dec1((y,p,q),d) = m(y,p,q,d) 

dec1((y,p,d),d) = m(y,p,d) 

So in all destinations d represented by D 
dect((y,p,q),d) can he calculated. 

(3.41) 
set (y, p), the decisions 

After the calculation of the decisions dec1((y,p,q),d) in the modules d in 
Ns set(y, p), the decisions dec2 ( (!!, p), d) of the algorithms chosen from the 



3.5. CONSTRUCTION OF IAC ALGORITHMS 155 

classes .:lt (T, 2, q, Ns-set(y), Ns-set(y)), which communicated the messages 
m(y,p) to modules d in Ns- set(y), are calculated in these modules d from 
Ns set(y). 
If d = p the decision dec2((y,p),d) equals the message m(y,p) which was 
kept stored in module p. So what remains to he shown is the calculation of 
the decisions in the d in Ns- set(y,p). 
The modules q to which the message m(y,p) is sent after encoding are 
determined by the set B(y,p). We already concluded that in all modules 
d with dE (Na- set(!:!,P)) decisions dect((y,p,q),d) have been calculated 
first. 
So in these modules d for each message m(y,p) received by module p a 
number of n(!!,p) decisions dect((y,p,q),d) are available with q E B(y,p). 

the decoder function Yl;,~~ is applied tothese decisions, which results in the 
decisions dec2 ( (y, p), d). 

The decisions dec2((!:!,p),d) which have been calculated thus far in the mod­
ules d in Ns set(y), could heregardedas estimates calculated by the mod­
ulesdof the message value m(y,p) received by module p during round K -3. 

The first round of applying decoder functions Yl;.~, together with 

dec2 ( (y, d)' d)' delivers for each .1! a number of nm) decisions dec2 ( (y, p)' d) 

with p E B(y) and dE (Ns- set(y) ). The decoder function Yl;)l) is applied 
tothese decisions, which results in the decisions dec3 ((y), d). 

This processis continueduntil decx((a),d) has been calculated by means 
of the decoder function Y{;j1

) for d ;/= a and decx((a), a) is obtained from 
m(a). 

3.5.2 Two simple examples 

In order to elucidate the general construction metbod of Intractive Consis­
tency Algorithms based on voting and coding we will present two examples 
in detaiL 
The first example is the most simple algorithm, i.e. T = 1 and N = 4, thus 
an algorithm from the class .:lt(1, 2, 0, {0, 1, 2, 3}, {0, 1, 2, 3} ). We will see tha.t 
in this class there is only one a.lgorithm a.nd tha.t this a.lgorithm is identica.l 
to the Pea.se a.lgorithm. 



156 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

m(O) 

N=4 T=1 K=2 

Ns = {0,1,2,3} 

I 
B(0,1) = {2,3} 

B(O) = {1, 2, 3} B(O, 2) {1, 3} 
B{O, 3} = {1, 2} 

Table 3.1: The next-sets 

N=4 T=l K=2 

m(O,l) ==::> 
I m(O,l,2) 

m(0,1,3) 

==::> m(0,2) ==::> 
I m(O, 2,1) 

m.(0,2,3) 

m(0,3) ==::> 
I m(0,3,1) 

m.(0,3, 2) 

Table 3.2: The messages 



3.5. CONSTRUCTION OF IAC ALGORITHMS 157 

N=4 T=1 K=2 

m(O) ==> dec2((0), 0) 

m(O, 1) ==> dec1((0,1), 1) I 
m(O, 2, 1) ==> dect((O, 2), 1) ==> dec2((0), 1) 
m{0,3, 1) ==> decl((0,3), 1) 

m(O, 1, 2) ==> dec1({0, 1), 2) I 
m(O, 2) ==> dect((O, 2), 2) ==> dec2((0), 2) 
m(0,3, 2) ==> dec1((0,8), 2) 

m(O, 1,3) ==> dtct((O, 1), 3) I 
m(O, 2,3) ==> deci((0,2),8) ===> dec2((0), 8) 
m(0,3) ===> dec1({0, 8), 8) 

Table 3.3: The decision-making process 

The sets B(!.) are shown in Table 3.1. The souree bas to broadcast its 
messagetoa number of modules which is determined by the code. However, 
remember that in this example no choice is left and the only possibility is a 
(3, 1) repetition code. Thus module 0 sends the original message unchanged 
to 3 different modules, i.e. the modules in the set {1, 2, 3}. These modules 
a forward the message m(O, a) by means of the only algorithm in the class 
A(1,1,a,Ns- {a},Ns- {a}) with Ns = {0,1,2,3}. 

The sets Sm and B(O, a) can he easily calculated by means of the relations 
(3.37), (3.38), and (3.39). It is easily seen that in this example there is no 
design freedom, except in the naming of the modules. 

The messages caused by the algorithm, thus the · messages m(.~) with §. E Sm 
are shown in Table 3.2. Notice that a message m(O, 1) represents the message 
received at the end of round 0 by module 1 from module 0. The data 
dependency between the messages is indicated in the figure by ==> I . For 
example m(O, 1) ==> jm(O, 1, 2) indicates that the message m(O, 1, 2) received 
by module 2 from module 1 is obtained from m(O, 1) by applying a partial 
encoding function on m(O, 1). In this case the partial encoder function is the 
identity function. 



158 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

The flattened non-recursive) representation of the decision-making pro­
cess is given in Table 3.3. The decision-making process in a module is based 
on all messages received by the module during the entire broadcast process. 

From the preceding we know that the decision-making process starts with 
the calculation of the decisions decl((O,a),d). The messages m(O,a) are 
forwarded to the destinations during round 1 by means of an algorithm 
from the class A'(l,l,a,{1,2,3},{1,2,3}) with a E B(O). So according 
to the definition of the construction of the algorithms with K = 1 on 
page 132, it holds that dect((0,1),1) = m(O,l), dect((0,2),1) = m(0,2,1), 
and dect({0,3), 1) = m(0,3, 1). In the second step of the decision-making 
process the decisions dec2((0), d) are calculated, i.e. dec2((0), 0) = m(O) 
and dec2((0), 1) is obtained by taking the majority vote over the values 
dec1( (0, 1), 1), dec1 ( (0, 2), 1), and dec1 ((0, 3), 1). The decisions dec2 ( (0), 2) 
and dec2((0),3) are obtained similarly. 

The way in which the decisions decx-t({~),a) are calculated from the deci­
sions decx-t-I((~,b),a) with b EBt(~), by means of the decoder function 
Y{;j1

) is denoted in the table by I ~. 

The second example is a little more complex and concerns an algorithm from 
the class A'(2,3,0,Ns,Ns) with Ns = {0, 1, · · · ,6}. Thus T = 2, K = 3, and 
N = 7. The sets, the messages and the decision-making process are given 
in the Tables 3.4, 3.5, and 3.6. This example again meets the 3T + 1 bound 
and the K + 1 bound. The example provides some more design freedom. 

The next-set B(O) should he contained in the set {1, · · · ,6}, cf. (3.38). 
Moreover this next-set must contain at least 2T + 1 = 5 modules. Hence we 
may choose between 5 and 6 modules. The first choice would again imply a 
repetition code and therefore we choose B(O) {1, · · ·, 6}. 
Bear in mind that T-error-correcting codes can always he constructed with 
n(o) = k(o) +2T and any symbol size of b(o) 2 log2 (n(o} -1) bits in which n(o) 
is the number of symbols of a code word and k(o) is the number of symbols 
of a data word. Hence a code with n(o) = 6, k(o) = 2, and b(o) = 3 suffices. 
From the preceding it follows that the minimum size msize of the original 
message in the souree is 6, i.e. 2 symbols of size 3. 

During round 0, in the souree module 0, the original message is encoded 
into 6 symbols of 3 bits. Each of these symbols is senttoa different module 



3.5. CONSTRUCTION OF lAG ALGORITHMS 

N=7 T=2 K=3 

~s= {0,1,2,3,4,5,6} 

B(O, 1, 2) = {3, 4, 5,6} 
B(0,1,3) = {2,4,5,6} 

B(O, 1) = {2,3,4, 5,6} B(O, 1, 4) = {2, 3, 5,6} 
B(O, 1, 5) = {2,3,4,6} 
B(O,l, 6) ::: {2,3,4, 5} 

B(o, 2) = {1,3,4, 5,6} 
B(O) = {1, 2,3,4, 5, 6} B(0,3) ::: {1, 2,4, 5,6} 

B(0,4) = {1,2,3,5,6} 
B(0,5) {1,2,3,4,6} 

B(0,6,1) = {2, 3, 4, 5} 
B(0,6,2) = {1,3,4,5} 

B(0,6} = {1,2,3,4,5} B(0,6,3) = {1,2,4,5} 
B(O, 6,4) = {1, 2, 3, 5} 
B(0,6,S) = {1,2,3,4} 

Table 3.4: The next-sets 

159 



160 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

Table 3.5: The messages 



3.5 CONSTRUCTION OF IAC ALGORITHMS 161 

Table 3.6: Tbe decision-ma.king process 



162 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

of the set B{O). Thereafter during the rounds 1 and 2 these symbols are 
forwarded to the destinations by means of the algorithms from the classes 
A(2,2,a,Ns- {O},Ns- {0}). The next-sets B(O,a) can be easily derived 
by means of the relation (3.38), i.e. 

B(O,a) c (Na- {O,a}) 

2T + 1 :$IB(O,a)l :$INs- {O,a}l 

Because IN si = 7 and T = 2 the only choice left for B{O, a) is Ns - {0, a} 
and the only choice left for the code applied by the algorithms is a repetition 
code. 

The dependency between the messages is illustrated in Table 3.5 and the 
decision-making process is illustrated in Table 3.6, both in the same way a.s 
in the previous example. 

3.5.3 The Minimal Voting algor:ithms and the Maximal Cod-
ing algorithms 

The Minimal Voting algorithm 

For each class A(T, K, a, Ns, Ns) of Interactivo Consistency Algorithms which 
are basedon voting and coding, a subclass of algorithms exists which is en­
tirely basedon voting. In this subdass thus only repetitioncodes are applied 
and consequently during each round of the braadcast process a received mes­
sage m(ll.) is braadcast unchanged toa number of modules given by the set 
B(!.)· In order to rednee the amount of transmitted information as much as 
possible, during each round except the last one, each message is relayed to 
exactly 2T + 1 modules, which is the minimum number tha.t is required, cf. 
(3.38). During the last round a message m(J!,p) is sent to the modules in 
Ns set(J!,p), cf. (3.39). 
Algorithms which satisfy the preceding requirements are called Minimal Vot­
ing algorithm.•. 

So the subclass of Minimal Voting algorithms within a class of a.lgorithms 
A(T,K,a,Ns,Ns) with 

N ~ 3T + 1 and K = T + 1 



3.5. CONSTRUCTION OF IAC ALGORITHMS 163 

is made up of those algoritbms which satisfy 

)B(~)) = 2T + 1 for 1> E Sm and 1 :s; )i) :S K- 1 
(3.42) 

The Maximal Coding algorithm 

l"or each cla.'ls Jl (T, K, a, Ns, Ns) of Interactive Consistency Algorithms which 
is based on voting and coding, another subclass of algoritbms exists in whicb 
the advantages of using error-correcting codes are used to tbe full in order 
to rednee the amount of information which needs to be transmitted. The 
algorithms in this subclass are called Maximal Coding algoritkms. 

When a T-error-correcting code Y(!!) is applied consisting of code words of 
n(!) symbols of size b(l!) and data words consisting of k(!) symbols of the 
same size, then the total amount of information broadca.st by a module 
during round t is a. factor "(!)/k(!!) more than the amount of information 
received by tbat module during round t- 1. 
:F'rom [MacW 78) we know that a T-error-correcting code Y(!!) can be con­
structed if and only if nl!!) 2: kl!!l + 2T. 

In the subdassof Maximal Coding algorithms, the fraction n(!)/k(!) is kept 
as low as possible. So the partially encoded messages are sent to as many 
modules as is allowed by the construction of the DJ C algorithms and we 
choose "(!!) = k(l!) + 2T. Codes with these parameters always exist if the 
symbol size b(l!) satisfies 

b(l!) ~ log2 ( n(!) - 1) 

Reeall requirement (3.38), i.e. 

2T + 1 ~ !B(~)I ~ )Ns- set(!!) I for 1 :s; )!!) ~ K- 1 and Jl. E Sm 

We choose the set B(!!) to be as large as possible, thus 

)B(i)) = )Ns- set(ll) I for 1 :s; )Jl.i ~ K- 1 and Jl. E Sm (3.43) 

Let t denote the round in which the code Y(!} is applied. So IJl.)= t + 1. 
From (3.43) then follows 

n(l!) = )B(t>) I = N - t - 1 for 0 ~ t :s; K - 2 (3.44) 



164 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

So the subclass of Maximal Coding algorithms within class A(T, K, a,Ns,Ns) 
of Interactive Consistency Algorithms which arebasedon voting and coding, 
is characterized by the parameters of the applied T-error-correcting codes 

as follows: 
For each round t with 0 ~ t ~ K - 2 a T-error-correcting code is applied 
with parameters 

number of code word symbols: 

number of data word symbols: 

symbol size in number of bits: 

if N - t - 1 ~ 2T + 1 then: 

if N - t - 1 = 2T + 1 then: 

n(!!,a) = N - t - 1 

k(!!,a) = N - t - 1 - 2T 

bc~,a) ~ log2{N- t- 2) 

b(!!,a) ~ 1 
{3.45) 

Notice that in the case of a repetition code, i.e. N- t - 1 = 2T + 1, the 
minimal symbol size is only 1. 
Because during each round of information exchange, except the last, a partial 
encoder function is applied to the message, the message size decreases each 
round. We will elaborate on this in the next chapter. 
If N = 3T + 1 the code used during round K- 2 is always a simple repetition 
code. This follows immediately from (3.45) and K = T + 1. Notice again 
that during the last round, i.e. round K- 1, no code is applied and the 
messages are forwarded unchanged to their destinations. 

3.5.4 The Subset Metbod 

In Chapter 2, it has been shown that once agreement among N' modules, 
with N' ~ 2T + 1 in a set of N modules of which at most T are faulty, 
is obtained, the agreement property can be obtained in all N modules by 
partially encoding the data in each of the N' modules and sending this 
encoded data to the remaining N- N' modules. Notice that in contrast to 
the DJC algorithms, each of the N' modules calculates only one symbol of 
the error-correcting code and sends this symbol to all modules in the set of 
N- N' modules. 

Clearly in order to obtain agreement in the N' modules at least 3T + 1 mod­
ules need to be involved, but not all the modules involved need to execute 



3.5. CONSTRUCTION OF IAC ALGORITHMS 165 

the decision-making process. Consequently the data received by the mod­
ules involved during round K- 2, bas only to he sent to the N' destinations 
represented by the set D. This reduces the information to he transmitted 
during round K - 1. So in this case we are dealing with an adapted Interac­
tive Consistency algorithm based on voting and coding, which is built from 
DJC algorithms and in which the set of destinations D is only a subset of 
the total set of modules Ns. The only difference between the "ordinary" 
IAC algorithm and the adapted IAC algorithm is in round K- 1 and round 
K, i.e. during round K -1 messages are only sent to the modules in D and 
during round K the decision-making processis only executed in the destina­
tions in D. The fact that the interactive consistency properties remain valid 
for the decisions calculated in the modules represented by D is obvious. 

From the construction of the DJC algorithms we know that the amount 
of information which needs to he transmitted only depends on the error­

. correcting codes chosen. So reducing the set of destinations influences only 
the last round of information exchange, i.e. round K - 1. 

So let a system consist of N modules identified by the Ns of which at most 
T are faulty. This system first executes any adapted interactive consistency 
algorithm, which is chosen from the class of DJC algorithms 

A(T,K,O,D,Ns) with: 

K = T + 1 and IDI 2::: 2T + 1 and jNsj 2::: 3T + 1 
(3.46) 

This algorithm willlead to agreement among the correctly functioning mod­
ules of the set D about the original message in the source, N' = jDj. In 
the N' modules a partial encoder function of a T-error-correcting code Z 
consisting of code words of nz symbols and n,a: = IN'j, is applied on the 
calculated decision. Thus, Z(i) is applied on the decision in module i, with 
iE D. Notice that in this case the T-error-correcting code Z is determined 
by the N' sourees and that in each of the sourees one partial encoder func­
tion is applied. However in the lnteractive Consistency algorithm based on 
voting and coding, the T-error-correcting coderis determined by the number 
of modules to which a modilied message is to he sent, i.e the next-set B(.!!), 
and in one module nc partial encoder functions are applied, one for each 
direction in which a message is to he sent. 



166 CHAPTER 3. I.A.C. BASED ON VOTING AND CODING 

In the Subset Metbod in the additional round of information exchange, round 
K, the partial encoded decisions are sent to all N - N' remaining modules 
which each apply the decoder function z< -I) on the received data. Because 
correct functioning modules in the set of D modules have reached agreement 
and there are no more than T faulty modules, the correct modules among 
the N - N' modules arrive at the same decision as the N' modules did. 

We will show that the Subset Methad is often very efficient, though it has 
to he paid for by an additional round. In accordance with the terminology 
used by Dolev, we will call the subset of N' modules the "active modules" 
and the remaining modules the "passive modules". Notice however that in 
our Subset Method some of the passive modules may he involved in the 
broadcasting process of the interactive consistency algorithm. 



167 

Chapter 4 

A comparison of the existing 
algorithms and the 
algorithms based on voting 
and coding 

In this chapter the algorithms based on voting and coding will be compared 
with the existing BynchronouB deterministic algorithms. For thiB purpoBe a 
number of criteria will be dejined and the resulting jigures for a number of 
examples will be presented. We wilt show that for practical applications the 
algorithms in the class of algorithms which is based on voting and coding are 
favourable. 

4.1 Introduetion 

In the previous chapter we have defined classes of Interactive Consistency 
algorithms basedon voting and coding which fulfil the interactive consistency 
requirements. 
The algorithms can he constructed for any set of parameters N, T, and K, 
which satisfy: 

T ~ 1 and N ~ 3T + 1 and K = T + 1 

So both the N ~ 3T + 1 and the K ~ T + 1 bound are met. 



168 CHAPTER 4. OOMPARING IAC ALGORITHMS 

In this chapter we will compare these new classes of algorithms with the 
existing synchronous deterministic Intera.ctive Consistency algorithms. 

4. 2 The algorithm.s selected for comparison 

It cannot he said which of the algorithms is most favourable, an algorithm 
entirely based on voting, an algorithm based on co ding or one of the other al­
gorithms which are mentioned in the literature survey in Chapter 3, without 
knowing all design constraints. 
In order to give some insight into the dependency of the parameters, a num­
ber of cases are presented in the Tables 4.1 to 4.5. 

However, the selection of the algorithms which will he compared and the 
criteria on which they will he compared needs to he discussed first. 

In our opinion a system of cooperating modules, in which the response time 
of a correctly functioning module might he unbounded, cannot he considered 
as a fault-tolerant system in the sense described in the first chapters of this 
thesis. Because the randomized algorithms may take an infinite time to 
come to a condusion about what the souree bas sent, we will exclude them 
as algorithms which can he used in a ( N, K)-fault-tolerant system. However, 
if we were to start from a more liberal definition of a fault-tolerant system, 
these algorithms could he very useful, but in that case, the algorithm itself 
would have to he considered as a souree of failures. Forther research in this 
area is needed. 
Asynchronous deterministic algorithms do not exist, thus our comparison 
will he restricted to synchronous deterministic algorithms. This class again 
is divided into algorithms with and without authentication. 
Among the synchronous deterministic algorithms based on authentication 
publisbed so far, the one publisbed by Dolev [Dolev 83-1], is favourable, 
because only 0 (NT) messages have to he sent. Whether algorithms exist 
which require less messages is not known. Again this is a matter which awaits 
further investigations. Although authenticated algorithms are favourable in 
terms of the number of messages, their disadvantage is the authentication 
itself which might require great overheads in processing power, delay time 
and channel capacity. 
From the preceding it follows that only the synchronous deterministic algo­
rithms without authentication require forther discussion. 



4.3. THE CRITERIA 169 

The algorithm publisbed in [Pease 80] and [Gils 85] is based on voting, and 
is contained in the class of algorithms described in Chapter 3. We will refer 
to this algorithm as the Pease algorithm. 
The only remaining synchronous deterministic algorithm without authenti­
cation is the one publisbed by Dolev [Dolev 82-3]. This algorithm requires 
a number of messages which is polynomial in N and T, while in the other 
algorithms the number of messages is exponential in N and T. We will refer 
to this algorithm as the Dolev algorithm. 
So the algorithm by Pease, the algorithm by Dolev and the algorithms de­
scribed in Chapter 3 should he included in the comparison. Among the latter 
special attention will he paid to the Minimal Voting algorithm and the Max­
imal Coding algorithm, these being two extremes in the design space. 

4.3 The criteria 

4.3.1 Introduetion to the criteria 

The criteria on which the algorithms will he compared are: 

• The number of messages, #mess, that needs to he transmitted between 
the modules. 

• The minimum size, msize, of the original message. 

The amount of computation to he performed by the modules will not he 
taken into account because for all algorithms, in the same way, it is propor­
tional to the number of transmitted messages. Moreover the computational 
effort will in general never he the bottleneck. 

4.3.2 The number of messages in the algorithm based on 
voting and coding 

For the class of algorithms which are based on voting and coding, the number 
of messages which has to he exchanged between the modules during the 
braadcast process, can he calculated as follows. 
We will restriet ourselves to algorithms in which the choice of the code only 
depends on the round in which the encoding of the messages is performed. 
Let a code used during round t consist of code words of n~(t) symbols, 
obtained from data words of kc(t) symbols, let the symbol size be bc(t) 



170 CHAPTER 4. GOMPARING JAC ALGORITHMS 

bits. Moreover let the amount of information of the original message to 
he broadcast by the souree he the unit. So each amount of information is 
expressed in terms of a number of messages of the size of the original message 
m(O). 

During the first round the souree broadcasts its data, after having it encoded, 
to nc(O) modules. Then during round 0, the amount of information which is 
sent in each direction is (kc(0))-1 unit messages, and the total amount of in­
formation which is transmitted in round 0 thus is nc(O).(kc(0))-1 . In round 1 
the size of the message is again red u eed by a factor kc ( 1) d ue to the partial en­
coderfunction. Hence the message size will he (kc(O).kc(1))-1. Each message 
is sent in nc(1) directions, so the total amount of messages transmitted dur­
ing round 1 will he nc(O).nc(1). And thus the number of messages in terms 
of unit messages transmitted during round 1 is nc(O).nc(1)(kc(O).kc(1))-1 . 

During the rounds 0 ~ t ~ K- 2, each module sends all its received data, 
after having it encoded, to nc(t) modules. Encoding for one direction, thus 
applying the partial encoder function, causes a data reduction of kc(t). The 
number of messages increases withafactor nc(t). Hence in round t, 

messages are transmitted. 
The total amount of messages transmitted up to and including round K- 2 
then is 

(4.1) 

During the last round, i.e. round K - 1, of the broadcast process, the 
messages are sent without encoding them, to all modules, which have not 
yet been passed by the message. During round 0 · · · K- 2, each message has 
passed K distinct modules (the destination in round K- 2 included). So 
each message resulting from round (K- 2), still has to he sent to N- K 
modules. The total number of messages transmitted in round (K- 2), is 
Il~0 2 (nc(i) ). The size of the messages in round K- 1 equals the size of 
the messages in round K - 2 and is Il~02 (kc (i)) - 1 • Thus the number of 



4.3. THE CRITERIA 171 

messages which is transmitted in round K - 1, is 

(N- K). if (n~:(t)) 
t::;:Q k.:(t) 

(4.2) 

From the preceding follows that: 
For the algorithm which is ba8ed on voting and coding, the total amount of 
messages which is transmitted during the braadcast process, in terms of the 
number of unit messages, is: 

Notice that because K T + 1, the number of messages is exponential inT. 
From equation (4.3) it is readily seen that if N and T are fixed, the number 
of messages is minimal for the smallest possible fractions G;f!~). 

4.3.3 The number of messages in the Subset Metbod 

In the description of the Subset Methad we maintained the relation K = 
T+1, hence due to the additional round, the number ofrounds in the Subset 
Method is K + 1 and the number of rounds of information exchange is K. 

So let a system consist of N modules identified by the set Ns of which at 
most T are faulty. This system first executes during the rounds 0, · · · K any 
adapted interactive consistency algorithm, which is chosen from the class of 
DJC algorithms 

A(T, K, a,D,Ns) with: 

K = T + 1 and IDI 2 2T + 1 and IN si 2 3T + 1 
{4.4) 

The destinations of this algorithm which are given by the set D are called 
the active modules. Let N = INs! and N' = IDI. 
After the decisions have been calculated in the active modules, the results 
are encoded and are sent during round K to the remaining N- N' modules. 



172 GHAPTER 4. GOMPARING lAG ALGORITHMS 

The number of messages transmitted during the round 0 · · · K - 2, for the 
algorithm based on voting and coding turned out to be 

(4.5) 

(cf (4.1)) 
This figure is independent of the number of modules N, be it that the val u es 
nc(t) are restricted by N. 

Notall modules in the system which are represented by the set Ns need to be 
really involved in the Interactive Consistency algorithm. There might well 
be modules which never receive a message during the rounds 0, · · · K - 1. 
Let the modules which are involved in the algorithm during the rounds 
0, .. · ,K- 2 be denoted by the set Nsinv and let Ninv = !Nssnvl· Notice 
that the rounds K 1 and K are excluded from the definition of the modules 
involved. Clearly Ninv ~ N. 
The number Nf.nv of modules involved in the rounds 0, · · · , K- 2 is calculated 
as follows: 
The number of modules involved is again kept as small as possible during 
the successive braadcast rounds. Hence at the end of round 0 the number of 
modules involved is nc{O) + 1. At the end of round 0 each message bas passed 
2 modules, the dest~nation in round 0 included, so the number of modules 
involved neededat the end of round 1 is max((nc(O) + 1), (nc(1) + 2)). At 
the end ofround t -1 each message bas passed t + 1 modules, the destination 
in round t - 1 included, so the number of modules involved needed at the 
end of round t mustbeat least (nc(t) + t + 1). And thus 

Ninv=Max(O~t~K-2: nc(t)+t+l) (4.6) 

During the last round, i.e. round K- 1, of the braadcast process of the 
Interactive Consistency a.lgorithm, the messages are sent without encoding 
them, to all N 1 active modules the set D, which are not yet passed by the 
message. It is a.lways possible to construct the algorithm such that either 
these N' active modules are a subset of the Ninv modules involved in the 
interactive consistency algorithm, or the NintJ modules are a subset of the 
N' active modules. Thus we assume 



4.3. THE CRITERIA 173 

Moreover we assume that the souree is contained in thesetof active modules 
and in the set of modules involved. 

Suppose D C Nsinv· 
Thus N' :::; Ninv· 
During round 0 · · · K- 2, each message has passed K distinct modules (the 
souree module and the destination in round K- 2 included). Obviously 
these K modules beloog to the set Nsinv· However from these K modules 
K- 1 might beloog to the set Nsinv- D, because we assumed a ED. So 
each message received in round K- 2 is sent during round K- 1 to at most 
N' 1 other modules. If we ingnore the fact that it is not necessary to send 
messages to involved but oot active modules, then the number of modules 
to which a message is to he sent is at most Ninv - K. Hence the number of 
modules to which a message has to he sent during round K- 1 will never 
he more than min((N' -1), (Ninv- K)). 

Next suppose Nsinv C D. 
Thus Ninv :::; N'. 
At the end of round K - 2, each message has passed K modules of the set 
Dof N' modules, hence during round K- 1 each message needs to he sent 
to N 1 K modules. 

So in conclusion, the number of modules to which a message has to he sent 
during round K - 1 is oot more than: 

if N':::; Ninv then min((N'- 1), (Ninv- K)) 

and 
if N' 2 Ninv then N' - K 

Notice that N'-K 2 min((N'-1), (Ninv-K)) implies that either (N'-K) 2 
(N' 1) or (N'- K) 2 (Ninv - K). Because K 2 2 the first term never 
holds and thus N' K 2 min{(N' -1), (Ninv- K)) implies N' 2 Ninv· 
Similarly, N'-K:::; min{(N'-1), (Ninv-K)) implies that (N'-K):::; (N'-1} 
and (N'- K):::; (Ninu K). Because K 2 2 the first term always holds and 
thus N'- K:::; min((N'- 1), (Ninv- K)) implies N':::; Ninu· 

Hence the number of modules to which a message has to he sent during 
round K - 1 is oot more than 

max((N'- K),min((N' -1), (Nt.nv- K))) 



174 CHAPTER 4. GOMPARING lAG AWORITHMS 

The total number of messages transmitted in round (K -2), is fi[~;02 (nc(i) ). 
The size of the messages in round K - 1 equals the size of the messages in 
round K- 2 and is [l~;02 (kc(i))- 1 • Thus the number of messages which is 
transmitted in round K- 1, is at most 

K-2 () 

(max((N'- K),min((N' -1), (Ninv- K))) ). IT (nkc(t)) (4.7) 
t=O c t 

The additional number of messages for the extra round in the Subset Metbod 
is calculated as follows: 
Agreement after K = T + 1 rounds is obtained in N' modules. At the end of 
round T + 1, thus after the decision-making process, each module calculates 
its symbol of the T-error-correcting code, with parameters nc = N' and 
kc = nc - 2T. Hence we restricted ourselves for simplicity to the class of 
MDS codes. The result of the decision-making process is of the same type 
as the original message in the source, hence the size of the symbols reauiting 
from theencoding is 1/(N'- 2T) unit message. 
In the additional round, round T + 2, the N' modules send their symbol to 
the N - N' passive modules. Thus the number of additional unit messages 
is: 

N'(N- N') 
N'-2T 

(4.8) 

From the preceding equations (4.5), (4.7), (4.6), and (4.8) it follows that: 
In the Subset Method the total amount of information which i8 transmitted 
during the broadcast process, in terms of the number of unit messages; ~s 

at most: 

N'(N- N') K-
2 

t nc(i) 
#mess = N' - 2T + t; }] (kc (i) ) 

K-2 (t) 
+ ( max((N'- K), min((N' -1), (Ninv- K))) ). IT (nkc()) 

t=O c t 
(4.9) 

with 
Ninv = Max(O St S K- 2 nc(t) + t + 1) (4.10) 

and 
K=T+1 



4.3. THE CRITERIA 175 

4.3.4 The minimum size ofthe original message in the souree 

When discussing the Interactive Consistency algorithms on voting and cod­
ing, we already pointed out that in a module q, the size of the message on 
which a partial encoder function operates, thus the size of the data word, 
is k(y,p,q)·b(y,p,q) bits, in which k(y,p,q) is the number of data symbols of the 
code Y(y,p,q)• and b(!!,p,q) is the size of the symbols expressed in the number 
of bits. 
The size of the data word received by module q must he equal to the message 
(symbol) size b(!!,p)' produced by the partial encoder functions of the code 
Y(y,p) in module p. And thus 

We also conduded that the choice of the code only needs to depend on the 
round t. Moreover I (y, p) I = t + 1. So instead of parametrizing the code with 
the string (y,p) which identifies the message on which the DJC algorithms 
AK-t((y,p),d) operate, we may parametrize the code with the round t. So 
Yt denotes the code applied by the algorithms AK-t((y,p), d). The number 
of symbols in a code wordthen is denoted by nc(t), The number of symbols 
in a data word by kc ( t), and the symbol size by bc ( t). 
And thus we require 

Vt : 1 ~ t ~ K- 2 =} bc(t- 1} = kc(t).bc(t) (4.11) 

and for the original message in the souree 

msize = kc(O).bc(O) (4.12) 

Moreover the symbol size of each code must be sufficiently large, so in the 
case of MDS codes we need to satisfy 

Vt : 0 ~ t 5:, K- 2 =}((kc= 1 =} bc(t) ~ 1)/\ 

(kc ~ 2 =} bc ( t) ~ log2 ( nc ( t) - 1))) 
(4.13) 

By means of these relations the value msize can be calculated. 

The Subset Metbod might impose an additional constraint. In the Subset 
Metbod in the additional round, round T + 1, the messages which result 



176 CHAPTER 4. OOMPARING IAC ALGORITHMS 

from the decision-making process in the N' modules are encoded with a 
(N',N'- 2T,2T + 1)-MDS code. Hence the size of the original message 
must equal the size of the data word of this code. The symbol size of this 
code should be at least flog2(N'- 1)1 bits. Consequently the size of the 
data word is at least ( N' - 2T) .pog2 ( N' - 1 )l bits. So the Subset Metbod 
additionally requires 

N 1 = 2T + 1 ==?- msize ~ 1 

N' ~ 2T + 1 ==?- msize ~ (N' 2T).log2(N' 1) 
( 4.14) 

4.3.5 The number of messages in the Dolev-algorithm 

In order to minimize the number of messages needed by the algorithm, in 
[Dolev 82-3], Dolev divides the system into two sets of modules, the active 
modules and the passive modules. The active modules include the souree 
and the number of active modules is 3T + 1. Thus the active modules form a 
minimal system with respect to T. The IAC algorithm in fact only runs on 
the active modules, while the passive modules only receive that data which 
allows them to obtain agreement. 

We will first concentrate on the active modules, thus we assume N = 3T + 1. 

In the first round a binary value is sent to all modules. This will result in 
N - 1 messages of one bit. During the following rounds, the data which can 
be broadcast by each module, consists of a number of messages. Each of these 
messages may be the name of a module, a "supporter", or a special message 
called " * ", which means that the sender "initiated" in the previous round. 
So a message can be encoded by rlog2(N + 1)1 bits. A module sends each 
module name at most once during the entire process. Also the " * "-message 
is sent at most once by a module. Thus the total number of messages sent 
by a partienlar module is at most N + 1. These messages are sent to all 
other modules. Thus the total number of one-bit messages needed by the 
algorithm, including round 0, is at most: 

N- 1 + (N -1)N(N + 1) flog2(N + 1)1 



4.4. THE ALGORITHMS GOMPARED 177 

Or, beca.use N = 3T + 1: 

3T + 3T(3T + 1)(3T + 2)flog2(3T + 2)1 

Th is ligure differs slightly from the ligure calcula.ted in [Dolev 82-3[, because 
Dolev a.lso counts the messages sent by a module to itself and ignores the 
messages sent in round 0. 

If N > 3T + 1, the set of passive modules is non-empty. These passive 
modules only receive the " * " messages from the active modules and the 
passive modules do not have to intercommunicate. Each module braadcasts 
the " * " message only once during the algorithm. So the number of addi­
tional one-bit messages is only {3T + l)(N- 3T- 1). 
From the preceding it follows that: 
The total number of me•sage• needed by the Dolev-algorithm is at mo•t: 

(3T + l)(N 3T- 1) + 3T + 3T{3T + 1){3T + 2) flog2{3T + 2)1 

Or: 

#mess= (3T + l)(N- 3T) -1+ 3T(3T+ 1)(3T + 2) pog2 (3T + 2)1 (4.15) 

4.4 The algorithms compared 

The criteria "number of messages", the number of rounds K, and the min­
imal sizc of the original message in the souree are calculated for different 
values N and T, for 

o the selected existing algorithms, i.e.: 

- the Pease algorithm and 

- the Dolev algorithm. 

o the algorithms developped and proved in this thesis, i.e.: 

- the Minimal Voting a.lgoritbm, 

- the Maximal Coding algorithm, and 



178 GHAPTER 4. GOMPARING lAG ALGORITHMS 

some arbitrarily chosen algorithms hased on voting and coding 
models. 

Moreover, some examples of the Subset Metbod are presented in which the 
IAC algorithm runs on a smaller number of active processors and the remairr­
ing modules receive their data encoded in an additional round. Dividing the 
modules in active and passive modules in order to reduce the numher of 
messages is a metbod already implemented in the Dolev algorithm. 
The results are presented in the tables 4.1, 4.2, 4.3, and 4.4. Tahle 4.5 
compares separately the Dolev algorithm, the Minimal Voting algorithm 
and the Maximal Coding algorithm. 

Notice that in these tables the number of messages are exact figures for 
the algorithm hased on voting. The number of messages calculated for the 
Su hset metbod and the Do lev algorithm is an upperhound and in general 
will he a little less. The calculated minimum message size is in all cases 
the exact value, but hy introducing dummy hits in the data word aften the 
message size can he reduced on the account of an increased numher of unit 
messages. 

In the tables, the algorithms basedon voting and coding are identified hy the 
error-correcting codes which are applied consecutively during the braadcast 
process and if applicable by the code used during the additional round in 
the Subset Method, Each code is indicated by a [ne, ke, be]-tuple in which 
ne stands for the number of symhols in the code word, ke stands for the 
number of symbols in tbe corresponding data word, and be stands for the 
number of bits of which each symbol is composed. All codes mentioned have 
a Hamming distance of least 2T + 1 and do exist. In most cases MDS codes 
are applied, but in some cases we used other codes in our examples, like 
Hamming codes aud BCH codes. In cases where non-MDS codes are applied, 
the design constraints mentioned in tbe previous sections have been adapted 
accordingly. 
During rouud K 1 nocode is applied but instead all data is sent to all mod­
ules which have not yet been passed. Tberefore where the Su hset Metbod is 
applied this round is indicated hy "-". 

The examples presented in the tables are not exhaustive and are only in­
tended to explore the design space. Many other and probahly even hetter 
solutions can he found. The purpose of the data presented is only to give an 



4.4. THE ALGORITHMS COMPARED 179 

indication of the way in which the parameters and the criteria are related. 

Oomparing algorithms wîth a different minimal message size is rather dan· 
gerous 1 because 

• lf the minimum message size becomes large the overhead caused by 
authentication becornes relatively smal!, and thus the algorithms pre­
sented in the following tables can no Jonger compete with synchronous 
deterministic algorithms based on authentication. 

• It has not been investigated whether it is possible to generalize the 
Dolev algorithm to la.rger message sizes. Clear}y if the message size is 
I we are able to apply the algorithm l times. This does not inlluence 
our comparison. However a non-trivia! generalization of the Dolev 
algorithm might result in more efficient algorithms in terms of the 
number of unit messages. 

From the tables the following conclusions may he drawn: 

• If the number of faults which needs to he tolerated in the system is 
four or more, T ;;:: 4, and the number of modules is minima!, i.e. 
N = 3T + 1, all algorithms are extremely inef!icient. This means 
each message which bas to be distributed by a single souree to all 
other modules generatea many thousands of new messages that must be 
transmitted over the communication network between the modules. In 
practical applications, synchronous deterministic algorithms for T ;;:: 4 
therefore cannot be implemented. 

• lf T = 4 the Maximal Coding algorithm still is a factor 2 better tban 
the Dolev algoritbm, however on account of the minimal message size. 
All other algorithms are at least a factor 10 worse. ForT ;;:: 5 the Do lev 
algorithm is the best known synchronous deterministic algorithm, but 
unfortunately it is only of theoretica! interest. 

• lf the number of modules needs to he minimal with respect to the 
number of tolerabie faults, i.e. N = 3T + 1, and the minimal size of 
the original message must be one, in practical systems, i.e. T :::; 3, the 
Minimal Voting algorithm requires the least number of messages. 

• In practical systems, i.e. T :::; 3, the Maximal Coding Algorithm turns 
out to he superior in terros of number of messages. Huwever this is 



180 GRAPTER 4. GOMPARING lAG ALGORITHMS 

on account of the minima.] message size, which is some cases might 
become unacceptably large. 

• If N > 3T + 1 and T "' 3, and a.n a.cceptable minimal message size is 
required, other codes ca.n be chosen such tha.t the resulting a.lgorithm 
has an accepta.ble message size a.nd a numher of messages w bieb is not 
to fa.r awa.y from the optimum. 

• Especia.lly if N > > 3T + 1, T = 2 or 3, a.nd the minimal message 
size should be not too large, further improverneut ca.n he ohta.ined by 
applying the Subset Method, in whicb tbe modules are divided into in 
a.ctive and passive modules and the Intera.ctive Consistency algorithm 
is executed on the a.ctive modules, while the passive modules receive 
the encoded decision of the a.ctive modules in a.n additiona.l round. 

• If T = 1 and N 4 the Pease algorithm, the Minimal Voting and the 
Maximal Coding algorithm turn out to be tbe sa.me. 

The previous discussion shows that many items need further research. 
The K ~ T + l hound a.nd the N è!: 3T + 1 bound restriet the cla.ss of Intera.c­
tive Consistency algorithms, but algorithms which require fewer messages to 
he tra.nsmitted compared to the ones presented bere, might very well exist. 
Notice that a bound for the minimum number of messages ha.s not yet been 
found. 

For the following tables holds: 

Ntot. = the tota.l number of modules in the system. 

Nact. = the number of modules in the system in wbich m a case 
wbere the subset method is applied, the decision-making 
process of the lAG algorithm is executed during the last but 
one round. 

K = the number of rounds of information exchange. 

mstze = the minimal size of the original message in the souree in bits. 

#mess = the number of messages transmitted by the algorithms 
counted according to the size of the original message in the 
source. 



4.4. THE ALGORITHMS COMPARED 181 

T - 1 

I algorithm Nt t N t I K I mrin #meu I applied codes o. ., 
Dolev 4 4 5 1 183 
Pease 4 4 2 1 9 [3,1,1) 
MinVat 4 4 2 1 9 [3,1,1) 

Max:Cod 4 4 2 I 9 ia,t,!J 
Dolev 5 4 5 1 187 
Pease 5 5 2 1 16 [4,1,1) 
MinVat 5 5 2 1 12 [3,1,1) 
Max:Cod 5 5 2 4 8 [4,2,2) 
Subset 5 4 3 4 11 j3,1,4J-[4,2,2L 
Dolev 6 4 5 1 191 
Pease 6 6 2 1 25 [5,1,1) 
MinVat 6 6 2 1 15 [3,1,1) 

6 6 2 4 10 [4,2,2) 
Max:Cod 6 6 2 6 8.3 [5,3,2) 
Subset 6 5 3 6 9.7 [4,2,3)-[5,3,2) 
Subset 6 4 3 4 13 (3,1,4j.(4,2,2j 
Dolev 16 4 5 1 231 
Pease 16 16 2 1 225 [15,1,1) 
MinVat 16 16 2 1 45 [3,1,1) 

16 16 2 4 30 [4,2,2) 
16 16 2 18 20 [8,6,3) 
16 16 2 4 26.25 [7,4,1) 
16 16 2 11 20.5 [15,11,1) 

Max:Cod 16 16 2 52 17.3 [15,13,4) 
Subset 16 3 3 1 48 [3,1,1)·[3,1,1) 
Subset 16 3 3 4 45 [4,2,2)·[3,1,4) 
Subset 16 4 3 4 33 [3,1,4)·[4,2,2) 
Subset 16 4 3 4 32 [4,2,2)·[4,2,2) 
Subset 16 8 3 30 20.4 j7,5,6j.j8,6,5j 
Pease 64 64 2 1 3969 [63,1,1) 
Dolev 64 4 • 1 423 
MinVat 64 64 2 1 189 [3,1,1) 

64 64 2 4 126 [4,2,2) 
64 64 2 32 78.8 [10,8,4) 
64 64 2 4 110.25 [7,4,1) 
64 64 2 57 69.6 [63,57,1) 

Max:Cod 64 64 2 336 65.1 [63,61,6) 
Subset 64 4 3 4 129 [3,1,4)·[4,2,2) 
Subset 64 3 3 1 192 [3,1,1)-[3,1,1) 
Subset 64 18 3 80 72 [18, 16,6)-[ 18,16,5) 

Table 4.1: The minimal message size and number of messages generated by 
some IAC algorithms which tolerate one fai!ing module. 



182 GRAPTER 4. GOMPARING IAG ALGORITHMS 

T - 2 

I algorithm I Ne t N t I K I m.!in I #mt.u I applied codes 0. ., 
Dolev 7 7 7 1 1014 
Pease 7 7 3 1 156 16,1,1][5,1,11 
MinVat 7 7 3 1 130 15 ,1,1][5,1,1 1 
Ma.xCod 7 7 3 6 78 16,2,3][5,1,3[ 
Dolev 8 7 7 1 1021 
Pease 8 8 3 1 259 17,1,11[6,1,1[ 
MinVat 8 8 3 1 155 15,1,1][5,1,1[ 

8 8 3 12 57 16,2,6][6,2,3[ 
MaxCod 8 8 3 18 44.3 17,3,6[16,2,3[ 
Subset 8 6 4 1 146 i6,1,1J 16,1,1[-16,1,1[ 
Pease 16 16 3 1 2966 115,1,1][14,1,1[ 
Dolev 16 7 7 1 1077 
MinVat 16 16 3 1 355 15 ,1,1][5 ,1,1[ 

16 16 3 66 45.9 115,11,6][14,6,1[ 
Ma.xCod 16 16 3 440 28.1 115,11,401 114,10,4[ 
Subset 16 5 4 1 185 15,1,1[ I5,1,1J-I5,1,1J 
Subset 16 8 4 24 60.3 Î7,3,8Î16,2,4Î-Î8,6 ,4Î 
Pease 64 64 3 1 242235 [63,1,1Jl62,1,1[ 
Dolev 64 7 7 1 1413 
MinVat 64 64 3 1 1555 15,1,1][5,1,1[ 

64 64 3 2950 83 I63,59,50JI62 ,50,1[ 
Ma.xCod 64 64 3 20532 72 163,59,348[ 162.58 ,6[ 
Subset 64 5 4 1 425 I• ,1,1[[ 15,1,1[- 15 ,1,1[ 
Subset 64 12 4 48 120 I8,4,12JI8,4,3J-I12,8,6J 
Subset 64 16 4 660 92 i 15,11,6oi [14,10,6.]- i16,12,55] 

Table 4.2: The minimal message size and number of messages generated by 
some IAG algorithms which tolerate two failing modules. 



4.4. THE ALGORJTHMS COMPARED 183 

T - 3 

I algorithm I N t I N t I K I msize I #meu applied !.".Odes ... "' 
Dolev 10 10 9 1 3969 
Pease 10 10 4 1 3609 [9,t,tl[a,t,IJI7,t,t 1 
MinVat 10 10 4 1 2457 [7,t,t 1 [7, 1 ,, 1 [7, 1,11 
MaxCod 10 10 4 18 603 [9,3,6Î [a, 2 ,3][7,1,31 
MaxCod 11 11 4 72 250 10,4,18ii9,3,6J18,2,3 
Pease 16 16 4 1 35715 (15,1 ,IJ (14, 1, liJ 13,1, 1 I 
Dolev 16 10 9 1 4029 
MinVat 16 16 4 1 4515 [7, 1,1 ][7, 1,11 [7,1, '1 

16 16 4 256 212 [ 10,4,64][10,4,16][ 10,4,41 
Max:Cod 16 16 4 2016 75 [t5 ,9,2241 [14,a,2a 1 [t3, 7,41 
Subset 16 10 5 16 2472 [7, 1,16][7,1, 16][7,1,161-[10,4,41 
Subset 16 10 5 256 180 iw,4,M]Jio,4,t6if to,4,4I-II0,4,64 1 
Do lev 64 10 9 1 4509 
MinVat 64 64 4 1 20979 [7,t,tJ17,t,tl[7,t,t 1 
MaxCod 64 64 4 1053360 85 [63,67, 18480][62 ,56,3301 [61 ,55,61 
Subset 64 10 5 256 300 [to,4 ,641 [to,4, t61 1 to,4,4l-[to,4,64l 

Table 4.3: The minimal message size and number of messages generated by 
some JAC algorithms which tolerate three failing modules. 

T 4 

I algorithm I Ntot I Nu.d I K mMze I #meu applied codes 

Pease 13 13 5 1 108384 (12,1 ,lJill,l ,lJilO, 1 ,1J19 ,1 ,1 J 
Dolev 13 13 11 1 8748 
MinVat 13 13 5 1 59868 [9,1,1 I [9,1, 11 [9 ,1,1 1 [9,1,11 
Max:Cod 13 13 6 96 4524 [ 12,4,241 [11 ,3,8li 10 ,2,4IJ9, 1,41 
Do lev 16 13 11 1 8787 

16 16 5 1024 1011 [12,4, 2561 [ 12,4,641 [12 ,4,161 [12,4 ,41 
Ma.xCod 16 16 5 3360 488 1 ts, 7,48oîi t4,6,80J [13,5,t6ji t2,4 .•1 
Do lev 64 13 11 1 9411 

64 64 5 1024 4899 [12,4,2661 [12,4,641 112 ,4,16Jit2,4,4 1 
Subset 64 16 6 1024 1107 [12,4,2661 112,4,641112,4,161 

[12 ,4,41-[16,8,128] 

Tab ie 4.4: The minimal message size and number of messages generated by 
some JAC algorithms which tolerate four failing modules. 



184 CHAPTER 4. GOMPARING JAC ALGORITIIMS 

N=31'+I 

Dot~v i MinVot 
m.~tize = 1 m.Mzt =I 

N Ti :fmeu #me u mrize :'lf:-meu 

• I 183 9 1 
1: I 1 2 1014 130 6 

10 3 3009 2457 18 603 I 
13 ' 4 8748 59868 96 4524 : 
HJ i 5 20415 1.8106 480 33356 

Table 4.5: A comparison of the minimal message size and tbe number of mes­
sages genera.ted by the Dolev (polynomial) algoritbm, the Minimal Voting 
(exponentia.I) algorithm, and the Maximal Coding {exponential) algorithm, 
in the case where N 3T + l. 



Chapter 5 

Interconnecting 
fault-tolerant systems 

In this chapter the salution to the Input Problem will be presented. 

185 

The correctness of the behaviour of a fault-tolerant system depends among 
other things on the correct distribution of the data deseending from unreli­
able I/0 devices over the modules of the fault-tolerant system. A maliciously 
behaving system, whether it is fault-tolerant or not, should never defeat a cor­
rectly functioning fault-tolerant syatem, i. e a system which does not contain 
more faulty modules than it is designed to tolerate. In order to cope with this 
problem, in this chapter the definition of interactive consistency wilt be re­
formulated for interactive consisteneg between communicating fault-tolerant 
syatems and a number of interconnection methods and algorithms will be 
presented which solve this problem. These interconnection methoda and al­
gorithma are basedon the Dispersed Joined Communication algorithms and 
the Interactive Consistency algorithma. The implementation of such an al­
gorithm in a {4,2) concept fault-tolerant computer system is described in 
detail. 

5.1 Introduetion 

In the introduction, Chapter 1, Section 1.5, we already pointed out that 
fault-tolerant systems always will be connected to other systems based on 
different methods for reliability improvement. In any case they will he con­
nected to basically unreliable input devices. For example, the error registers 



186 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

which store the information about the faults detected by the decoders in a 
(N, K) concept fault-tolerant system are to he considered as such unreliable 
input devices. 
The interconnection of these sourees to a fault-tolerant system has to he 
done very carefully. 
This means two communicating systems must never defeat each other as long 
as they are both functioning correctly. Reeall from Chapter 2 that a fault­
tolerant system is functioning correctly if its external behaviour in the pres­
enee of a number of tolerabie internal faults is equivalent to the behaviour 
expressed by the specification. So data originating from a malfunctioning 
system must never cause the receiving system to go down. In Section 1.5 
we showed that an external system generating braadcast faults might cause 
the receiving fault-tolerant system to go down, even if the number of faults 
in the receiving system is not more than it is designed to tolerate. 
In Chapter 2 the discussion of the fault-tolerance properties of the N­
modular redundant systems and the systems based on generalized mask­
ing, i.e. the (X, Y, T) and the (X, Y, Z, T) fault-tolerant systems assumed 
that the distribution function X is functioning correctly. Due to braadcast 
faults, in a real system this requirement will however not he satisfied by 
just transmitting the output value of a module to a number of destinations. 
We will have to cope in some way with these broadcast faults, which have 
been defined in Chapter 1, and thus the distribution function will have to 
he implemented by some algorithm. 

In this chapter we will present four methods for the interconnection of fault­
tolerant systems with each other and with single unreliable 1/0 devices. 
These methods are based on the lnteractive Consistency algorithms or the 
Dispersed Joined Communication algorithms which have been described in 
Chapter 3. We will show that an (N, K) concept fault-tolerant computer 
which is interconnected withits environment according to one of these meth­
ods never can he brought down by a maliciously behaving system transmit­
ting data to it, even if the transmitting system is a maliciously behaving 
fault-tolerant system, [Krol 85]. 

The following methods and system environments will discussed 

• The DJC Metbod applied to a single input device. 

• The DJC Metbod applied to a fault-tolerant input device with post-



5.2. COMMUNICATION WITH THE ENVIRONMENT 187 

observation. 

• The DJC Metbod applied to a fault-tolerant input device witb pre­
observation. 

• Tbe DJC Metbod applied to a NMR fault-tolerant input device witb 
pre-observation and pre-coding. 

The first three methods are similar to the methods publisbed in [Krol 85] 
and [Krol 86] in which these methods have been explained on the basis of 
Interactive Consistency algorithms. 

5.2 Communication of a fault-tolerant 
system with its environment 

In this section we will deal with the problem of the communication of a 
fault-tolerant system with its environment. It is reasonable to require that 
a correctly implemented fault-tolerant system only goes down if more mod­
ules in it hebave maliciously than the system is designed to tolerate. Reeall 
that in Section 2.5 we concluded that a (X, Y, Z, T) fault-tolerant system 
is functioning correctly if it is correctly initialized and not more than T of 
its modules behaved maliciously in any period between two complete re­
initializations. Similarly an (N, K) concept fault-tolerant computer which 
is able to tolerate T maliciously behaving modules and whicb is correctly 
initialized must continue behaving correctly as long as the number of mali­
ciously behaving modules is less or equal than T, regardless of the behaviour 
of the environment. Reeall from Section 2.3. 7 that the meaning of "correct 
behaviour" should not he interchanged with the "correctness" of data val­
ues. In Chapter 2 we showed that correct behaviour which is independent 
of the environment indeed can he obtained if the distribution function X is 
functioning correctly. 
Moreover reeall that the correctness of the decoding function y(-I) is the 
reponsibility of the observer. 
In this section we will present four generally applicable algorithms which are 
executed by the transmitting and the receiving fault-tolerant system and 
which result in the correct execution of the function X, provided sufHeient 
modules of the receiving system are functioning correctly. 



188 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

We assume that our universe of discourse consists of a receiving system, 
which is called the r-system and its environment which is called the (trans­
mitting) t-system. Let the receiving fault-tolerant r-system consist of N, 
modules and let it be able to tolerate the infiuence of Tr maliciously be­
having modules. This system receives data from a possibly "fault-tolerant" 
t-system, which consists of Nt modules and is able to tolerate the infiuence 
of Tt faulty modules. The t-system may be any system, so for instanee 
Nt = 1 and Tt = 0. Thus a t-system which is composed of a single module is 
also allowed. The observing function of the t-system is denoted by Yt(-1). 

Obviously if Tt = 0 then Yt(-1) is an identity function. 

We define interactive consistency between communicating fault-tolerant sys­
tems as follows: 

Definition 5.1 

• Let a receiving system, called the r-system consist of Nr modules. The 
r-system is designed to tolerate Tr maliciously behaving modules and 
let it contain at most Tr maliciously behaving modules. 

• Let a transmitting system, called the t-s11stem consist of Nt modules. 
The t-system is designed to tolerate Tt maliciously behaving modules. 

• Let the t-system transmit an {encoded} message 11 to the r-system. Let 
the original data value be Xt. The Nt-tuple 11 thus is the encoded version 
of the of the message Xt. The partial encoder functions are denoted b11 
Yt(it) withit E Nst, where Nst is thesetof modules constituting the 
t-system. Each correctly functioning module it of the t-system sends 
a partially encoded message y(it) to all or some of the modules of the 
r-system, in which y(it) = Yt(it)(xt)· 

Then interactive consistency between communicating systems is guaranteed 
ij: 

• The well-functioning modules dr of the r-system always agree with each 
other on the decoded message dec( dr) they calculate from the data they 
received from the t-system. 

• IJ the t-system is functioning correctly, i.e. ij it contains at most Tt 
maliciously behaving modules, the above-mentioned agreement should 
equal the decoded data actually sent, i.e. dec( dr) = Xt. 



5.2. COMMUNICATION WITH THE ENVIRONMENT 189 

Thus, i/Ft and F,. repreaent the sets of correctly functioning modules in the 
t-system and the r-system respectively, then: 

VFt,Fr : jF,.j ~ N,.- Tr => 

( (IFtl ~ Nt- Tt => [ Vd,. : d,. E F,. => dec(d,.) = Xt ])A 
[ Vd,.,e,. : d,.,e,. E F,. => dec(d,.) = dec(e,.) J) 

0 

Without proof we state that these requirements can only he satisfied when 
the number of modules in the receiving system is la.rger than three times the 
number of ma.lfunctioning modules in that system, thus only if N,. ~ 3T,. + 1. 

5.2.1 The DJC Method applied toa single input device 

IF the t-system consists of one module then the DJC Metbod a.pplied to a 
single input device is defined as follows: 

Definition 5.2 

• The single module Ot in the t-system communicates its message m(Ot) = 
Xt to all modules d,. of the r-system by means of a DJC algorithm from 
the class A(T,., T,. + 2, Ot, Ns,.,Ns,.U{Ot} ). 

• The decision dec( d,.) in a module d,. of the r-system is the result 
decTr+2( (Ot), d,.) of the DJC algorithm. 

0 

The metbod is elucidated in Figure 5.1. In this figure the DJC algorithm 
from the class A(T,.,T,. + 2,0t,Ns,.,Ns,.U{Ot}) has been decomposed in al­
gorithms from the classes Jl(T,.,T,. + l,a,.,Ns,.,Ns,.) with a,. E B(Ot), sur-

rounded by the encoding function Y(oe) and the decode~ function Y~~). 
The communications due to the algorithms from the class 
A(T,.,T,. + l,a,.,Ns,.,Ns,.) are denoted by o o o. 



190 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

~·-·-·-·-·-·-·-·-·-·-.r-system 

0 
0 

0 
0 0 0 

0 
0 0 

0 
0 

0 0 

0 0 
0 

0 0 
0 

0 

0 0 0 0 0 0 0 

·-·-·...1 L·-·-·-·-·-·-·-·-·-·-

Figure 5.1: The DJC Method applied toa single input device 

This decomposition corresponds to the decomposition which has been used 
in the recursive definition of the DJC algorithms in Chapter 3. 

Notice that the algorithms from the classes A(Tr,Tr + 1,ar,Nsr,Nsr) with 
arE B(Ot) are IAC algorithms according to the definition in Section 3.4. 
Futhermore from the definition of the class A(Tr,Tr + 2,0t,Nsr,NsrU{Ot}) 
we know that IB(Ot)l should be at least 2Tr + 1. Hence our algorithm can 
be implemented if Nr ~ 3Tr + 1. · 

A single input device which is connected toa fault-tolerant system according 
to the method defined above can never cause this system to go down, i.e.: 

Theorem 5.1 IJ the DJO Method is applied for connecting a single input 
device, the t-system, to a fault-tolerant system, the r-system, as is defined 
in Definition 5.2, then the t-system and the r-system satisfy the interac­
tive consistency requirement between communicating systems as is defined 
in Definition 5.1. 0 

Pro of: 

From Definition 5.2 we know that the original message m(Ot) in the in­
put device is communicated to the modules dr of the r-system by means 



5.2. COMMUNICATION WITH THE ENVIRONMENT 191 

of DJC algorithms from the class A(T,.,Tr + 2,0t,Nsr,NsrU{Ot}). From 
Theorem 3.2 on page 143 we know that if the modules Ût and dr are both 
functioning correctly, the result decT,+2((0t), d,.) equals the original message 
m(Ot) and thus equals Xt· Thus: 

Since Tt 0 it holds that the proposition "Ot is functioning correctly" is 
equivalent to the condition IFtl 2 Nt- Tt. Moreover we defined dec(dr) = 
decT,+2((0t),d,.) and thus 

Which proves the first part of the "interactive consistency between commu­
nicating systems" . 

From the second part of Theorem 3.2 we know that if a message is communi­
cated by means of an algorithm from the class A(T,., T,.+2,0t, Ns,., Ns,.U{Ot}) 
to the modules in Ns,., the following holds: 
lf the modules d,. and e,., with d,., er E Ns,., are both functioning correctly 
and the results of the algorithm calculated in module d,. and e,. are unequal 
then the number of faulty modules among the modules in NsrU{Ot}) is at 
least T,. + 2. 
Because the t-system consists of only one module and the r-system is sup­
posed to contain at most Tr maliciously behaving modules, the number of 
maliciously behaving modules in NsrU{Ot}) is at most T,. + 1. 
Hence if both modules d and e are behaving correctly, the decisions dec( d,.) 
and dec( e,.) must he identical, i.e.: 

'r/d,.,er : dr,er E F,. ==} dec(d,.) = dec(er) 

Which completes the proof of Theorem 5.1. 

(5.2) 

0 

5.2.2 The DJC Metbod applied to a fault-tolerant input 
device with post-observation 

Suppose the input device is a fault-tolerant system .. In this case too we 
do notwant such an input device to cause the receiving system to go down, 
regardless of whether the fault-tolerant input system is functioning correctly 
or behaving maliciously. 



192 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

Let the t-system consist of Nt modules and let each of these modules deliver 
one symbol of the encoded output. So module it delivers the partially en­
coded version m(it) of some data value Xt, i.e. m(it) Yt(it)(xt), where Yt 
is a Tt-error-correcting code. The observing function is as usual denoted by 
Yt(-1}. Then the DJC Metbod applied toa fault-tolerant input device with 
post-observation is defined as follows: 

Definition 5.3 
Let the observing lunetion of the t-system be denoted by Yt(-l), then 

• All modules it in the t-system communicate their messages m(it) -
Yt(it)(xt) to all modules d, ofthe r-system by means of DJC algorithms 
which are chosen /ram the classes Jl(T,, T, + 2, Ît, Nsr, Ns,U{ it}). 

• The decision dec( ir) in a module d, of the r-system is the result of the 
observing lunetion Y t( -l) applied on the Nt decisions decx, +2 ( ( it), d,) 
ofthe algorithms chosenfrom the classes Jl(Tr,Tr+2,it,Nsr,Ns,U{it}). 

0 

The indication "post-observation" sterns from the fact that the observing 
function is applied after the DJC algorithms are applied. 

The metbod is shown in Figure 5.2. In this figure the algorithms chosen 
from the classes Jl(T,,Tr + 2,it,Ns,,NsrU{it}). are again decomposed in 
algorithms chosen from the classes Jl(Tr,Tr+1,a"Nsr,Nsr) surrounded by 
theencoding function Y(it) and the decoder function Y&~{). The communi­
cations due to the algorithms from the classes Jl(T,, T,. + 1, a,.,Nsr,Ns,) are 
denoted by o o o. 

Firstly, notice that the choice B(it) = B(.h) which is suggested by Figure 5.2 
is not required. The sets B(it) only have to satisfy the defi.nition of the 
DJC algorithms, thus B(it) C Ns, and !B(it)! ~ 2T,. + 1. 
Secondly, notice that the algorithms from the classes Jl(T,., T,.+1, ar, Ns,.,Ns,.) 
are again JAC algorithms. 

In each module d, the algorithms chosen from the classes 
Jl (Tr, T, + 2, it, Ns,, Ns,U{ it} ), with it E Nst result in Nt decisions 
decT,+2 ( ( it), d,). lgnoring possible faults, these decisions will he equal to the 
partial encoded values of Xt. So the value Xt is calculated from the decisions 
decT,+2((it),d,) by means ofthe observing function yt<-11. 



5.2. COMMUNICATION WITH THE ENVIRONMENT 

0 0 
0 

0 0 
0 

0 0 0 

0 0 ° 

0 0 
0 

0 

0 

8 @ 
0 0 0 

0 
0 0 

0 0 
0 0 0 

0 

0 8 0 0 0 0 0 8 0 

0 
0 

0 0 0 0 0 0 0 0 0 

193 

ài!CT,+2((it), er) 
L·-·-·-·-·-·-·-·-·-·-·-·-

Figure 5.2: The DJC Metbod applied to a fault-tolerant input device with 
post-observation 

From Theorem 3.1 we know that the class A(T,.,T,. + 2,it,Ns,.,Ns,.U{it}) 
is non-empty if and only if INs,.U{it}l;::: 2T,. +T,. +2. Hence our algorithm 
always can he implemented if N,. ;::: 3T,. + 1. 

A fault-tolerant input device which is connected to a fault-tolerant system 
according to the method defined above can never cause the latter system 
to go down, regardless of whether the fault-tolerant input device functions 
correctly or not, i.e.: 

Theorem 5.2 IJ the DJC Method with post-observation is applied for con­
necting a fault-tolerant input device~ the t-system, to a fault-tolerant system, 
the r-system, as is defined in Definition 5.9, then the t-system and the r­
system satisfy the interactive consistency requ,·rement between communicat­
ing systems as is defined in Definition 5.1. 0 



194 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

Pro of: 

From Definition 5.3 it follows that a DJC method applied toa fault-tolerant 
input device with post-observation is constructed from an Nt-fold application 
of the DJC method for a single input device, foliowed by the application of 
the observing function in each module of the r-system. 

From Theorem 5.1 we know that when a message m(it) is communicated 
by module it of the t-system to the modules d,. of the r-system by means 
of algorithms from the classes JI(T,.,T,. + 2,it,Ns,.,Ns,.U{it}) the following 
holds: 
1. Hthe module it is functioning correctly, then the decision decT.H((it),d,.) 
ofthe algorithm from the class JI(T,.,T,.+2,it,Ns,.,Ns,.U{it}) which is cal­
culated in a correctly functioning module d,., equals the message m(it)· 
2. Regardless of the correctnessof the module it, any pair of decisions calcu­
lated in correctly functioning modules d,. and e,. satisfies decT.+2 ( ( it), d,.) = 
decT.+2( ( it), e,.). 

From the preceding it follows that after the DJC algorithms have been com­
pleted: 
1. H the t-system is functioning correctly, i.e. at least Nt - Tt modules 
forwarded a message m(it) = Yt(it)(zt), then in a correct module d,. of the 
r-system at least for Nt - 11 decisions holds 

And thus if the observing function Yt(-1) is applied on these values 
decT.+2((it), d,.) then the result will he 

dec(d,.) = Zt 

2. Regardless of whether the t-system is functioning correctly or not, in all 
correctly functioning modules d,., the sameset of Nt decisions decT.+2((it), d,.) 
is available and in all modules the same observing function Yt(-1) is applied 
on these values. So the reaults dec(d,.) will be the same in all correctly 
functioning modules. 

The fact that d,. is functioning correctly is again expressed by d,. E F ,., and 
the fact the the t-system is functioning correctly by !Ft I ;?: Nt- Tt. So from 
the preceding we obtain 



5.2. COMMUNICATION WITH THE ENVIRONMENT 

'v'Ft,Fr: IFri~N,.-T,.=> 

( (IFtl ~ Nt- Tt => [ Vd,. : dr E F,. => dec(d,.) = Xt ])I\ 

[ 'ïldner : d,.,e,. E F,. => dec(d,.) = dec(e,.) ]) 

Which completes the proof of Theorem 5.2. 

195 

(5.3) 
D 

5.2.3 The DJC Metbod applied to a fault-tolerant input 
device with pre-observation 

The pre-observation metbod is an efficient alternative to the post-observation 
method. Again we start from the assumption that the input device is a fault­
tolerant system of which the output is encoded by means of an observing 
function Yt able to correct Tt errors. 
The t-system consists of Nt modules and each of these modules delivers one 
symbol of the encoded output. So module it delivers the partially encoded 
version m(it) of a data value Xt. I.e. m(it) = Yt(it)(zt)· The observation 
function is again denoted by Yt( -l). Th en the DJC Metbod applied to a 
fault-tolerant input device with pre-observation is defined as follows: 

Definition 6.4 
Let Inp be a set of Ninp modules in the r-system which provide for the 
communication from the t-system, such that 2Tr + 1 :::; Ninp :::; N,.. 

• Each modules it in the t-system sends its messages m(it), with m(it) = 
Yt( it )( Xt), to the Ninp modules of the set Inp in the r-system. 

• In each module a,. of the r-system with a,. E Inp, the observing ju netion 
Yt(it), is applied on the Nt messages received from the t-system. Let 
the result obtained in module a,. be denoted by m( a,.). 

• In module a,. the message m( a,.) is encoded by means of the partial 
encoder function W(a,.) of a T,.-error-correcting code W of which the 
number of symbols in a code word is Ninp· Let the Ninp results be 
denoted by the function y, hence y(a,.) = W(a,.)(m(a,.)). 

• Each module a,. communicates its message y(a,.) to all modules of the 
r-system by means of a DJO algorithm (is an lAG algorithm} from the 
class A(T,.,T,. + 1,a,.,Ns,.,Ns,.). 



196 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

• The decision dec( d,.) in a module d,. of the r-system is the result of the 
decading Ju netion W ( -l) applied on the Ninp decisions decT,+l ( (a,.), d,.) 
of the lAG algorithms which are chosen from the classes A(T,.,T,. + 
1, a,., Ns,., Ns,.). 

0 

The indication "pre-ohservation" sterns from the fact that the ohserving 
function of the t-aystem is applied hefore the DJC algorithms. 

0 0 
0 

0 
(;) 

I o o o 
0 

~ 0 0 

0 

0 

~ ~ 0 0 0 0 0 

· I 11, I 
I .· . 
. L·-·-·-·-·-·J 
L·-·-·-·-·-·-·-·-·-·-·-·-·-

Figure 5.3: The DJC Methad applied to a fault-tolerant input device with 
pre-observation 

The metbod is shown in Figure 5.3. In this figure the communications due to 
the algorithms which are chosen from the classes A (T,., T,. + 1, a,., Ns,., Ns,.) 
are denoted hy o o o. 
In the modules a,. with a,. E lnp an estimate is calculated for the value 
Xt. Ignoring possihle faults, these estimates m(a,.) will he equal to Xt. The 
estimates are partially encoded like in an ( N, K)-concept and forwarded to 
all modules d,. of the r-system hy means of DJC algorithms from the class 
A(T,.,T,.+1,a,.,Nsr,Ns,.) with a,. E Inp. In each module d,. these algorithms 
will result in Ninp decisions decT,+l ((a,.), d,. ). Again ignoring possihle faults, 
these decisions will he equal to the partial encoded values of Xt. So the value 



5.2. COMMUNICATION WITH THE ENVIRONMENT 197 

Xt is calculated from the N;np decisions decT.+t((ar),dr) hy means of the 
decading function w<-11. 

From the definition it follows that after the ohserving function Yt is applied, 
an Interactive Consistency algorithm is applied for each message y(ar)· So, 
the metbod can clearly always he applied if the r-system contains at least 
3Tr + 1 modules. In that case it is ohviously possihle to satisfy the condition 
2Tr + 1 ::; Ninp ::; 3Tr + 1 ::; Nr from Definition 5.4. 

A fault-tolerant input device which is connected to a fault-tolerant system 
according to the metbod de:fined ahove can never cause the latter system 
to go down, regardless of whether the fault-tolerant input device functions 
correctly or not, i.e.: 

Theorem 5.3 IJ the DJG Method with pre-observation is used for connect­
ing a fault-tolerant input device, the t-system, to a fault-tolerant system, the 
r-system, as is defined in Definition 5.4, then the t-system and the r-system 
satisfy the interactive consisteneg requirement between communicating sys­
tems as is defined in Definition 5.1. D 

Pro of: 

Let the set of correctly functioning modules in the t-system and ·the r-system 
again he denoted hy Ft and Fr respectively. Reeall that !Ft! ?: Nt- Tt 
indicates that the t-system is functioning correctly. 
lf the t-system is functioning correctly then the result m( ar) of the ohserving 
function Yt(-l) applied in a correctly functioning module ar on the received 
messages m(it) will he equal to the original message value Xt in the t-system, 
l.e.: 

According to Definition 5.4 the results m( ar) are encoded hy means of 
the partial eneader function W (ar) of a Tr-error-correcting code such that 
y(ar) = W(ar)(m(ar)). And thus if bath the t-system and module ar are 
functioning correctly it holds that y(ar) = W(ar)(xt). 

The val u es y (ar) with ar E Inp are communicated hy Interactive Consistency 
algorithms from the classes Jl(Tr, Tr + 1, ar,Nsr,Nsr) to all modules of the 
r-system. So for the results decT.+t((ar),dr) of these IAC algorithm it holds 



198 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

that 

ar, dr E Fr==> decTT+l((ar), dr) = y(ar) 

dr,er E Fr==> decT.H((ar),dr) = decT,H((ar),er) 
(5.5) 

After the IAC algorithms have been completed, each module dr in the r­
system contains Nt.np decisions decT,+l ( (ar), dr). H both the t-system and 
module ar are functioning correctly it thus holds that decT,+l ( (ar), dr) = 
W(ar)(xt)· In each module dr the decoder function wt-l) of the Tr-error­
correcting code is applied to these decisions decT,+l ( (ar), dr). The result is 
denoted by dec( dr). At most Tr modules ar are behaving maliciously. Hence 
if the t-system is functioning correctly, then dec(dr) = Xr· So 

(5.6) 

which proves the first property of interactive consistency between communi­
cating fault-tolerant systems. 

From the properties (5.5) of the IAC algorithm we know that all correctly 
functioning modules arrive at the same decision decT,H((ar),dr), regardless 
of whether the module ar is functioning correctly or maliciously. In all mod­
ules dr the samedecoder function is applied to the values decT,+l((ar),dr)· 
Hence the results dec( dr) must he the same in all modules. I.e 

(5.7) 

which proves the second property of interactive consistency between com­
municating fa.ult-tolerant systems. 0 

The DJC metbod with pre-observa.tion will generally require less communi­
cation than the DJC metbod with post-observation. This can he explained 
as follows: 
Suppose the sets B(it) in the metbod basedon post-observation and the set 
Inp in the metbod based on pre-observation are of the same size. Let this 
size heN". 
In both methods during round 0 the partially encoded messages Yt(it)(xt) 
which are available in the modules it of the t-system are each transmitted 



5.2. COMMUNICATION WITH THE ENVIRONMENT 199 

to the N" modules of ther-system. However, in the DJC metbod with post­
observation they are first encoded by means of theencoding function Y(ie) of 
the algorithm from the class A(T ... ,T,. + 2,it,Ns,.,Ns ... U{it}). So in the case 
of post-observation the size of the messages transmitted during round 0 will 
generally be smaller and thus the number of messages counted according to 
the message size will besmaller too. 
However, in the case of post-observation all Nt.N" messages which are re­
ceived at the end of round 0 by the modules of the r-system, have to be 
communicated to all modules of the r-system by means of an algorithm from 
the classes A (Tr, Tr + 1, at, Ns,., Nsr), whereas in the case of pre-observation 
only N 11 messages have to be communicated to all modules of the r-system 
by algorithms from the same classes. The messages which are to be commu­
nicated in round 1 are in both cases partially encoded copies of the message 
Yt(it)(xt)· In case of post-observation the encoding function is Y(it) and 
in the case of pre-observation the en co ding lunetion is W (ar). Because the 
size rednetion due to these encoding functions will be about the same, the 
number of messages which are to be tra.nsmitted after rounds 0 will in the 
case of pre-observation be a factor N" smaller compared to post-observation. 
This reduction in general counts more than the fact that during round 0 the 
number of messages in the case of pre-observation is more than in the case 
of post-observation. 

5.2.4 The DJC Metbod applied to an NMR input device 
with pre-coding and pre-o bservation 

Though pre-observation is an efficient alternative to the post-observation 
method, further improvements can be obtained if the t-system can be con­
sidered as an NMR system, i.e. if the observing functión of the t-system is 
a repetition code. In that case the partial encoder functions W (ar) may be 
moved backwards in the data flow from the modules in the r-system to the 
modules in the t-system. This causes a rednetion in the amount of infor­
mation which is to be transmitted between the t-system and the r-system. 

The DJC Metbod applied to an NMR input device with pre-observation and 
pre-coding is defined as follows: 

Deftnition 5.5 
Let the t-system be an NMR fault-tolerant input device and let Inp be a set 



200 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

of N;.np moel-ules in the r-system which provides for the communication from 
the t-system, such that 2T,. + 1 ~ N;.np ~ N,.. 

• Each correctly functioning module it in the t-system possesses the orig­
inal message value Xt. In each module it this value is encoded by means 
of a T,.-error-correcting code W in which a code word consists of N;.np 

symbols. The N;np symbols are each sent to a different module of the 
set lnp. So the partial encoded message w(it,ar) = W(a,.)(xt) is sent 
from module it in the t-system to module a,. in the set of modules Inp 
in the r-system. 

• In each module a,. of the r-system with a,. E lnp, a majority vote M aj 
is applied to the Nt messages w ( it, a,.) received from the t-system. Let 
the result obtained in module a,. be denoted by m( a,.). 

• Each module a,. with a,. E Inp communicates its message m( a,.) to all 
modules of the r-.>JJi:item by means of a DJC algorithm /rom the class 
Ji(T,.,T,. + l,a,.,Ns,.,Ns,.) (this is an JAC algorithm}. 

• The decision dec(d,.) in a module d,. of the r-system is the result of the 
decading /unction W(-1) applied to the N;.np decisions decT,H((a,.),d,.) 
with a,. E lnp resulting from the lAG algorithms. 

The metbod is elucidated in Figure 5.4. In this figure the IAC algorithms 
from the classes Ji(T,.,T,. + l,a,.,Ns,.,Ns,.) with a,. E lnp are again denoted 
by 0 0 o. 

In the modules a,. with a,. E lnp an estimate is calculated of the value 
W(a,.)(xt)· These estimates are forwarded to all modules d,. of the r-system 
by means of DJC algorithms from the classes Ji(T,.,T,. + l,a,.,Ns,.,Ns,.). In 
each module d,. these IAC algorithms result in Ninp decisions decT,+ 1 ( (a,.), d,.). 
Ignoring possible faults, these decisions will be equal to the partial en­
coded valnes W(a,.)(xt)· So the value Xt is calculated from the decisions 
decT,H((a,.), d,.) by means of the decoding function W(-l}. 

Although the observing function Yt(- 1) of the NMR t-system is a majority 
vote, this function differs from the function M aj applied in the modules a,. 
in the set lnp, because Yt( -l} operatea on the original message Xt and M aj 
operatea on the partially encoded versionsof Xt. 



5.2. COMMUNICATION WITH THE ENVIRONMENT 201 

~·-·-·-·-·-·-·-·-·-·-·-·-.r-system 

· - t:systêm: fT·-·-·, 0 0 
.lnP . 

0 0 
0 

I I o o 
0 0 

0 
0 

! 
0 

I 0 

0 0 

0 0 

0 
0 

0 
0 0 

0 0 

0 

T o o o o o o o o 

L.-.-.J 

L·-·-·-·-·-·-·-·-·-·-·-·-

Figure 5.4: The DJC Metbod applied to 8.11 NMR fault-tolerant input device 
with post-observa.tion a.nd pre-coding 

From the definition we know that after the majority vote M aj has been 
applied in the modules ar of the r-system which provide for the input, an 
Interactive Consistency algorithm is applied for each module ar. So clearly 
tbe metbod can always he implemented ü tbe r-system contains at least 
3Tr + 1 modules. 

An NMR fault-tolerant input device which is connected to a fault-tolerant 
system according to tbe metbod defined above can never cause the latter 
system to go down, regardless wbetber the fault-tolerant input device is 
functioning correctly or not, i.e.: 

Theorem 5.4 IJ the DJC Methad with pre-obse.rvation and pre-coding is 
applied for connecting an NMR fault-tolerant input device, the t-syste.m, to 
a fault-tole.rant syste.m, the r-system, as is defined in Definition 5. 5, then 
the t-system and the r-system satisfy the interactive consistency requirement 
between communicating systems as is defined in Definition 5.1. D 



202 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

Pro of: 

Let the set of correctly functioning modules in the t-system and the r-system 
again he denoted by Ft and F,. respectively. Reeall that IFtl ;?: Nt - Tt 
indicates that the t-system is functioning correctly. Because the t-system is 
an NMR system it holds that Nt ;?: 271 + 1. 

If the t-system is functioning correctly then each correctly functioning mod­
ule a,. in the set Inp will receive at least Tt + 1 val u es w ( it, a,.) such that 
w(it,ar) = W(a,.)(xt)· Hence the result ofthe majority vote will be m(a,.) = 
W (a,. )(xt)· I.e. 

(!Ft!;?: Nt -111\ a,. E lnp A a,. E F,.) => m(a,.) = W(a,.)(xt) (5.8) 

The valnes m( a,.) are communicated by means of Interactive Consistency 
algorithms to all modules of the r-system. So for the results decT,+t((a,.), d,.) 
of the algorithms chosen from the classes A (T,., T,. + 1, a,., Ns,., Ns,.) it holds 
that 

a,.,d,. E F,. => decT,+I((a,.),d,.) = m(a,.) 

d,.,e,. E F,. => decT,+I((a,.),d,.) = decT,+I((a,.),e,.) 
(5.9) 

After the IAC algorithm has been completed each module d,. in the r-system 
contains Ninp decisions decT,H((a,.), d,.). If both the t-system and module 
a,. are functioning correctly it thus holds that decT,+l ( (a,.), d,.) = W (a,.)( x,.). 
On these decisions decT,+l ( (a,.), d,.) in each module d,. the decoder function 
W(-l) of the T,.-error-correcting code is applied. The reauit is denoted by 
dec(d,.). At most T,. modules a,. are behaving maliciously. Hence if the 
t-system is functioning correctly, then dec(d,.) =x,.. So 

(5.10) 

which proves the first property of interactive consistency between communi­
cating fault-tolerant systems. 

From the properties (5.9) of the IAC algorithm we know that all correctly 
functioning modules arrive at the same decision decT,+t((a,.),d,.), regardless 



5.3. EXAMPLES OF INTERCONNECTION 203 

of whether the module ar is functioning correctly or maliciously. In all mod­
ules dr the samedecoder function is applied on the valnes decr,+t((ar),dr)· 
Hence the results dec( dr) must he the same in all modules. l.e 

(5.11) 

which proves the second property of interactive consistency between com­
municating fault-tolerant systems. D 

5.3 Some examples of the interconneet ion of fa uit­
tolerant systems 

In this section we will elaborate onsome system parameters imposed by the 
requirement of interactive consistency between communicating fault-tolerant 
systems. Moreover we will present a number of simple examples of the 
interconnection of fault-tolerant systems with Tt = 0 or 1, and Tr = 1. For 
these examples the number of messages which needs to he transmitted in 
order to obtain interactive consistency between communicating systems will 
he presented. Finally, the I/0 architecture of a ( 4, 2) concept fault-tolerant 
system will he discussed. 

5.3.1 An (N,K)-concept fault-tolerant system interconnected 
with external sourees 

In the previous section it was shown that whenever it is required that a 
fault-tolerant system which is hased on generalized masking must not he 
defeated by a malfunctioning souree then it is necessary that Nr is greater 
than 3Tr. 
For an (N, K)-concept fault-tolerant computer, in which a T-error-correcting 
MDS code is applied, it holds that N- K = 2T. The requirement of 
interactive consistency between communicating systems imposes N !::: 3T + 
1. Hence, choosing the minimum value for N, i.e. 3T + 1, we get K = 
T + 1. So we obtain an (N,K) = (3T + l,T + 1)-concept fault-tolerant 
computer which is ahle to tolerate T random module failures simultaneously 
and which guarantees interactive consistency in the fault-free modules when 
a malfunctioning souree is connected to it. 
In the (N, K)-concept fault-tolerant computer the amount of processor hard­
ware is N fold compared with a non-redundant system and the amount of 



204 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

memory hardware needed is N / K times the amount of memory hardware 
needed in a non-redundant system. 
In the (3T + 1, T + 1 )-concept fault-tolerant computer the amount of processor 
hardware is determined by the interactive consistency requirement. With 
respect to the non-redundant system the amount of memory hardware is 
only duplicated for T = 1 and almost triplicated for large T. This is a 
considerable impravement compared to an N-modular redundant system in 
which the amount of processor hardware and also the amount of memory 
hardware are 3T + 1 times as much as in a non-redundant system. 
Thus the ( N, K) -concept generalization makes ~·t possible to adapt the mask­
ing redundancy requirements to the interactive consistency requirements. 

5.3.2 Some simple examples of the interconnection of fa uit­
tolerant systems 

Suppose we are dealing with a ( 4, 2)-concept receiving system and a single 
input device. Thus 

Nt = 1 and Tt = 0 and N,. = 4 and T,. = 1 

Let the single module in the t-system again he denoted by Ot. Wh en using the 
DJC metbod applied to a single input device, we know from Definition 5.2 
that the data value Xt in the input device Ot is communicated by means 
of algorithms from the class A(1,3,0t,Ns,.,Ns,.U{Ot}) to the modules dr 
in Ns,.. The next-set B(Ot) must contain at least 3 modules, because the 
code is to he single error-correcting, but can contain at most 4 modules 
because B{Ot) C Ns,.. Similarly the next-sets B(Ot, a,.) must contain at least 
3 modules. From the elucidation to the construction of the DJC algorithms 
on page 153, equation (3.38) we know B(Ot,ar) c (Ns,.- {a,.}). Hence 
IB(Ot,ar)l = 3. 
So for the code Y(ot) used by the algorithm from the class 
A(1,3,0t,Ns,.,Ns,.U{Ot}) we may choose between a [4,2,2] code and a 
[3, 1, 1] code. Reeall from Cha.pter 4 tha.t a [nc, kc, bc] code indicates a code 
consisting of code words of nc symbols, data words of kc symbols and symbols 
which are represented by bc bits. 
The codes Y(ot,<~r) used by the algorithms from the classes A(1, 3, a,., Ns,.,Ns,.) 
must consist of 3-symbol code words. So if Y(Oe) is a [4, 2, 2] code then Y(ot,a,) 

must he a [3, 1, 2] code, and if Y(Oe) is a [3, 1, l] code then Y(oe,a,) must he a 
[3, 1, 1] code. 



5.3. EXAMPLES OF INTERCONNECTION 205 

The implementa.tion of the metbod will he cha.ra.cterized by the encoder a.nd 
decoder functions applied in the order of the data flow. 
We will use the following nota.tion: 

[nc, kc, bc] Denotes the a.pplication of the encoding function of a 
[ne, kc, be] error-correcting code. The nc results are sent in 
nc different directions. 

{nc, kc, bc) Denotes the applica.tion of the decoding function of a 
[nc, kc, bc] error-correcting code. 

t Indicates that the data is transmitted. 

8 

Indicates that the data will he sent unchanged to all modules 
in the set of destinations which has not yet been passed by 
the message. 

Indicates that one of the symbols of the code word is selected 
for transmission. 

For example in one of the possible implementations of the DJC metbod 
applied to a single input device which was mentioned above, the [3, 1, 1] 
code is applied twice. 
This example is characterized as follows: 

Before round 0 of the DJC algorithm: 
[1, 1, 1] First the observing function Yt of the single input device is 

denoted by a 0-error-correcting code [1, 1, 1]. 

During round 0, first part, of the DJC algorithm: 
[3, 1, 1] Then the encoder function Y(ot) is applied, which is a [3, 1, 1] 

code. 
During round 0, second part: 

t The data is transmitted to the r-system, which is indica.ted by 
t. 
During round 1, first part: 

[3, 1, 1] Again a. [3, 1, 1] code is applied, i.e. the encoder functions 

Y(Ot,ar)· 

During round 1, second part: 
t And the data is a.ga.in sent to the next modules, which is indi­

cated by t. 
During round 2: 



206 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

-t During the last round the messages are braadcast to all desti­
nations which have not yet heen passed hy the messages. The 
braadcasting is indicated hy '-' and the transmission hy t. 
Dnring round 3, first part: 

{3, 1, 1} In the destination first the decoder functions Yc~~L) of the 
[3, 1, 1] code are executed; this is indicated by (3, 1, 1}. 

During round 3, secoud part: 
(3, 1, 1) Thereafter the decoder functions Y~)) code are executed. 

After round 3 of the DJC algorithm: 
(1, 1, 1} And finally the ohservation function denoted by {1, 1, 1) is ap­

plied. Notice that the ohservation function in this case is just 
an identity function. 

So our example is characterized hy: 

[1, 1, 1][3, 1, 1]t[3, 1, 1]t- t{3, 1, 1}(3, 1, 1}{1, 1, 1) 

In the same way the other implementation is characterized hy 

[1, 1, 4][4, 2, 2}t[3, 1, 2}t - t{3, 1, 2) { 4, 2, 2) (1, 1, 4) 

The numher of messages which needs to he transmitted and the minimum 
size of the original message Xt in the "source" can he easily calculated from 
this notation. 
For example in our second example we start from messages of 4 hits. These 
are encoded into 4 symhols of 2 hits and each symbol is transmitted during 
round 0. This gives 4 x 0.5 = 2 unit messages. During round 1, each symhol 
is encoded with a [3, 1, 2] code, resulting in 3 x 4 = 12 messages of 2 hits, 
i.e. 6 unit messages. In the last round each two-hit message is sent to the 
remaining 2 destinations causing 24 messages of 2 of unit messages which 
needs to he transmitted in this algorithm is 20. 

In the same way the other methods can he characterized hy the succession 
of coders, transmissions and decoders. 
If in a module only one partial encoder function is applied, like the function 
W(ar) in the DJC metbod with pre-observation, this will he denoted by 
an s following the code, indicating that only one symbol of the encoding is 
selected for transmission. 

In Table 5.1 a numher of implementations are presented. 



5.3. EXAMPLES OF INTERCONNECTION 207 

Nt 

3 

3 

4 

4 

Nt 

3 

3 

4 

4 

The DJC Method applied toa single souree 
Tt = 0, N, = 4, T, = 1 

code sequence 

[1,1,1][3,1,l)t[3,1,1)t-t{3,1,1)(3,1,1}{1,1,1) 

1,1,4}[4,2,2Jt[3,1,2Jt-t(3,1,2)(4,2,2)(1,1,4) 

m.size 

1 

4 

3 

2 

f/:mess #mess 
r-> r tot. 

27 

18 

30 

20 

The DJC Methad applied to a fault-tolerant souree with post-observation 
Tt = 1, N, =4, T, = 1 

code sequence m.size f/:mess f/:mess :i/: mess 
t-> r r-> r tot. 

[3,1,1] (3,l,l]t[3,1,1]t-t(3,1,1} ( 3,1,1) (3,1,1) 1 9 81 90 

[3,1,4] [4,2,2]t[3,l,l]t-t{3,1,1}{ 4,2,2) {3,1,4) 4 6 54 60 

[4,2,2] [3,1,2Jt[3, 1,2]t-t(3, 1,2}{3,1,2}(4,2,2) 4 :I 54 60 

[4,2 ,4] [4, 2 ,2]t[3,1,2]t-t{3,1,2}( 4,2,2)( 4,2,4) 8 36 40 

The DJC Method applied to a fault-tolerant souree with pre-obaervation 
Tr = 1, N, =4, T, = 1 

code sequence m.size :i/: mess fl:~ fl:mess 
t-> r r- tot. 

[3,1, 1] [3,1,1]t( 3,1,1 ) [1,1,1]s[3,1,1]t-t(3,1 ,1) (3, 1,1) 1 9 27 36 

(3,1,4] [4, 1,4]t(3, 1,4 ) [4, 2,2Js[3,1,2]t-t(3,1, 2) ( 4,2,2) 4 12 18 30 

[4,2,2][3,1,2]t(4,2,2 )[1,1,4]s[3,1,4]t-t{3,1,4}(3,1,4) 4 6 27 33 

[4,2,2][4,1,2]t(4,2,2 }[4,2,2]s[3,1,2]t-t(3,1,2}(4,2,2) 4 8 18 26 

The DJC Methad applied with pre-observation and pre-coding 
Tt = 1, N, = 4, T, = 1 

m.sb:e f/:mess f/:mess #mess 
t-> r r-> r tot. 

4 6 18 24 

Table 5.1: A comparison of the four different DJC Methods for obtaining 
interactive consistency between communicating modules. 



208 CHAPTER 5. INTERCONNECTING FT-SYSTEMS 

5.3.3 The architecture of a ( 4, 2) module 

In order to implement the preceding algorithms each module of the ( 4, 2) con­
cept is provided with a separate 1/0 processor or I/0 controller. In Fig­
ure 5.5 the architecture of one module is shown. The 1/0 processor 1/0PROC 
has its own random access memory 1/0MEM. This memory cannot he ac­
cessed by the main processor MAINPROC, so communication between the 
main processor and the 1/0 processor takes place via the main memory 
MAINMEM. A separate I/0 processor is chosen because in most multi­
processor syatema the algorithms and protocola needed for the I/0 are a 
conaiderable load for the system. When the algorithma described in the 
preceding section are implemented the load is even larger. 

I 
L _ MAIN 

PROC. 

l;o (4,2) bus 

I 
I 
I 

- - - - - ,.add!.es.!. ~" 

(4,2) bus (4 x (2 x 4)) 

Figure 5.5: The architecture of the ( 4,2)-concept provided with the means 
for reaching interactive consistency 

The decoders DEC/VOT and the interconnection bus between the modules, 
the (4,2) bus, are ahared by the main processor and the I/0 processor. 



5.3. EXAMPLES OF INTERCONNECTION 209 

The decoders not only act as a decoder for the ( 4, 2) code but they also 
take care of the braadcasting and voting functions needed for the interactive 
consistency algorithm. 

Messages received from outside sourees are stared in I/0 buffers 
1/0BUF, which are connected to the I/0 memory bus (memory mapped 
1/0). An interrupt is treated like a message. The I/0 processors poll these 
I/0 buffers. 

The easiest way to explain the architecture shown in Figure (5.5) is to de­
scribe the data transfers in the module caused by reading one of the I/0 
buffers in one of the modules. 

Suppose an 1/0 buffer in module 0 has to he read, then all four I/0 proces­
sors perform synchronously a read operation on their I/0. Only the address 
on the address bus of the I/0 processor in module 0 is able toselect an I/0 
buffer. The data from the selected 1/0 buffer in module 0 is transferred over 
the 8-bit wide 1/0 bus to the drivers of the (4,2) bus. The other modules 
transfer zero information via their I/0 buses and drivers to the ( 4,2) bus. 
At the same time the address bus of the I/0 processor forces the decoder 
into a mode called the braadcast mode, in which the 8 bits from module 0 
are transferred to the lower byte output of the decoder. This is done in all 
modules, so the data byte from the I/0 buffer in module 0 is now transferred 
to all I/0 processors. 

The next step of the algorithm is to write the byte in a memory location 
(of I/OMEM.) spedally reserved for data deseending from the I/0 buffers 
of module 0. This is done by a synchronous write operation in the four 
modules. The encoders are bypassed during this operation, so the bytes are 
unchanged. 

In the following step a read operation is performed on the memory location 
in which the byte was stored. This is done synchronously by all four proces­
sors. So in the fault-free case four identical bytes appear at the ( 4,2) bus in 
parallel. Again the addresa bus of the I/0 processor forces the decoders into 
another special mode, called the voting mode, in which the decoders take 
a majority decision on the bytes received from the modules 1, 2 and 3 (the 
byte received from module 0 is neglected). The reserved address for data 
deseending from the I/0 buffers of module 0 ia of course the same one that 
forces the decoder into this special mode. After this read operation all non­
faulty modules contain identical data, regardless of whether module 0 was 



210 GRAPTER 5. INTERCONNECTING FT-SYSTEMS 

producing braadcast errors or one of the other modules was malfunctioning. 
The four bytes residing in the four 1/0 processors can now he treated as 
general data in the (4, 2)-concept. Thus during the next step the data can 
he written into the main memory, during which write operation the four 
bytes are encoded. 

In order to cope with a single source, this procedure must he executed for 
each of the three copies of the message sent by the single souree to the 
modules of the (4,2)-concept and a majority vote has to he taken on the 
results. 

5.3.4 Some concluding remarks 

The (N, K)-concept makes it possible to choose the ratio between memory 
and processor redundancy. This ratio can he chosen such that the total 
amount of hardware is minimaL However it is often more important to 
reduce the number of service eaUs·. In that case the added redundancy for the 
most unreliable components should he as small as possible. At first glance 
this contradiets the reliability requirements. The reliability impravement 
however depends on the number of failing modules that can he tolerated. In 
the (N, K) concept this is (N- K)/2. The added redundancy of the memory 
is ( N - K) / K and the added processor redundancy is N - 1. So without 
influencing the reliability improvement, the number of service calls can he 
made minimal by choosing appropriate val u es for N and K. It should he 
noted that the bit-error-correcting property has to be taken into account. 
Furthermore it was shown that the (N, K) concept enables the number of 
modules to he adapted to the number that is needed to fulfil the interactive 
consistency requirements. 



211 

Chapter 6 

Conclusions 

In this thesis we have shown that methods for improving the reliability of 
digital systems which arebasedon N-modular redundancy can he general­
ized to methods which are based on a distributed implementation of error­
correcting codes. These methods have been called "Generalized Masking 
Redundancy" 

Within the class of fault-tolerant systems based on generalized masking two 
sub-classes can he identified which characterize the systems that are based 
on generalized masking. 
The first class requires, after repair, some state initialization from the en­
vironment and is identified by the a distributing function X, ( the encoder 
function of an error-correcting code), an observing function Y ( the decoder 
function of an error-correcting code) and the number T of maliciously be­
ha ving modules which are tolerated. 
The second class re-initializes itself each time instanee and is identified by a 
distributing function X, an observing function Y, a state decoder Z ( the de­
coder function of an error-correcting code) and the number T of maliciously 
behaving modules which are tolerated. 

It bas been shown that in practical cases none of the two classes will suf­
fice. Firstly, because re-initialization by external means causes the reliabil­
ity of the system to depend on the environment. And secondly, because 
re-initializing the entire state each time instanee is too costly. So practical 
implementations will be a mixture of these two classes, i.e. the system will 
re-initialize itself within a particular span of time. 



212 CHAPTER 6. CONCLUSIONS 

An example of an architecture based on generalized ma.sking is called the 
(N, K)-concept, of which the fea.sibility is proved by application in a com­
mercial system. Due to the concept of generalized ma.sking on which the 
( N, K)-concept is based the following is gained 

• The ratio between memory and processor redundancy can he optimized 
with respect to the total amount of hardware needed or with respect 
to the call-rate of the system. 

• Codes can he introduced which are capable of correcting both symbol 
and bit faults without requiring additional redundancy. In this way 
the code which is usually applied for memory proteetion is saved. 

• The number of modules (fault isolation area.s) required for fault toler­
anee can he adapted to the number of modules required for consistent 
communication with the environment. 

The existence of codes which are able to correct both symbol and bit errors 
without requiring additional redundancy is shown with the presentation of 
such a symbol and bit-error-correcting code for the ( 4, 2)-concept. Moreover 
we have shown that a one-chip decoder for this code can he designed with a 
propagation delay of about lOOnsec. 

One of the worst problems in fault toleranee is the Input Problem. If spe­
cial precantions are not taken, a correctly functioning fault-tolerant system 
might go down due to external faults. We have shown that this Input Prob­
lem is similar to the Interactive Consistency problem. 
Interactive Consistency Algorithms give rise large numbers of messages which 
need to he exchanged between the modules. This limits their application to 
systems in which at most 3 or 4 faulty modules are tolerated. 
In order to reduce the number of messages which need to be exchanged, a 
new class of Interactive Consistency Algorithms based on voting and coding 
has been defined. In practical applications in which less than 4 maliciously 
behaving modules are tolerated, these synchronous deterministic Interactive 
Consistency Algorithms turn out to he superior to their existing counter­
parts. 

The properties of the class of Interactive Consistency Algorithms based on 
voting and coding have been proven on the basis of a newly defined class of 



213 

algorithms called Dispersed Joined Communication algorithms which have 
more liberal properties. 

Finally, four algorithms based on Dispersed Joined Communication algo­
rithms and Interactive Consistency algorithms have been presented which 
solve the Input Problem. 

In this thesis we restricted ourselves to fault-tolerant systems in which the 
means for reliability impravement are implemented rather close to the hard­
ware level. In general this turns out to he a cost-effective approach, both 
from the point of view of system cost and from the point of view of scpa­
ration of concerns during the design process. It enables the development of 
software independently from the reliability requirements. 
Implementation of the means for reliability impravement close to the hard­
ware level naturally leads to a synchronous deterministic approach. This 
holds for the system fault toleranee as well as for the algorithms which solve 
the Input Problem. 
However, if one wishes to start from off-the-shelf modules, the approach 
foliowed in this thesis will often not suffice. Firstly, a less strict definition 
of synchronism will he needed which is based on only time-outs. This will 
require adapted fault-tolerant synchronization algorithms. Secondly, the 
algorithms for solving the Input Problem will he applied on a higher level, 
in which case algorithms based on authentication will he cheàper. Much 
work in this "quasi asynchronous" field has still to he done. 

The reliability of systems not only depends on the reliability of their consti­
tuting physical components but also on the correctness of the design. The 
field of specification and design description with respect to fault toleranee 
has hardly been explored. Only on the basis of formal destription meth­
ods can proof systems he designed. Any result in this field will ease the 
validation problem of fault-tolerant systems. 



214 CHAPTER 6. CONCLUSIONS 



BIBLIOGRAPHY 215 

Bibliography 

[And. 79] 

[And. 81] 

[A vizienis] 

[Baba 86] 

[Ben-Or 83] 

[Bouricius] 

[Boute 88] 

[Bir 87] 

T.Anderson, B.Randell, "The theory and practice of reliable 
system design", Cambridge Univeraity Preaa, 1979. 

T.Anderson, P.A.Lee, "Fault toleranee principles and prac­
tice", Prentice Hall International, 1981 

A.Avizienis et al., "The STAR (Self-Testing and Repair­
ing) Computer: An Investigation of the Theory and Prac­
tice of Fault-tolerant Computer Design" IEEE trana. Comp, 
Vol.C20, NoH, Nov.1971, pp.1312-1321. 

O.Babaoglu and R.Drumond, "Streets of Byzantium: net­
work architectures for fast reliable broadcast" IEEE Tr. on 
Softw. Eng., Vol.SE-11, No.6, 1986. 

M.Ben-Or, "Another advantage of free choice: Completely 
asynchronous agreement protocols" Proc. 2nd ACM Symp. 
on Principles of Distributed Computing Montreal, Canada, 
August 1983, pp.27-30. 

W.G.Bouricius, W.C.Carter, P.R. Schneider, "Reliability 
modeling techniques of selfrepairing computer systems", Pre. 
of the 24th National Conf. of the AOM pp295-333, 1969 

R.T.Boute, "System Semantics: Principles, Applications, 
and lmplementation" ACM Tr. on Progr. Lang. and Sys­
tems. pp118-155, Vol.lO, No.l, 1988. 

K.Birman and T.Joseph, "Reliable Communications in the 
Presence of Failures" ACM Tr. on Comp. Syst. Vol.5, No.l, 
1987. 



216 BIBLIOGRAPHY 

[Boly-88] J.P.Boly W.J. van Gils, "Codes for combined symbol-and­
digit error control" IEEE Tr. on Inf. Theory, Vol.34, Nr.5, 
September 1988. 

[Bracha 87-1] G.Bracha, "Asynchronous Byzantine Agreement Protocols" 
Inform. and Oomp. Vol.75, Nov.1987, pp.130-143. 

[Bracha 87-2] G.Bracha, "An O(logn) Expected Rounds Randomized 
Byzantine Generals Protocol" Joumal of the AOM Vol.34, 
1987, pp.910-920. 

[Chen 78] L.Chen, A.Avizienis, "N-version Program-
ming: A fault-tolerance approach to reliability of software 
operation" 8-th Annual Symposium on Fault-Tolerant Oom­

. puting Systems,pp3-9, Toulouse, France, June, 1978. 

[Cristian 85] F.Cristian, H.Aghili, R.Strong, D.Dolev, "Atomie Broad­
cast: From Simple Diffusion to Byzantine Agreement", 15th 
INt, Conf. on Fault-Tolerant Computing, 1985. 

[Cristian 86] F.Cristian, H.Aghili, R.Strong, "Approximate clock synchro­
nization despite ommission and performance faults and pro­
cessor joins" 16th INt, Conf. on Fault-Tolerant Computing, 
1986. 

[Davies 78] D.Davies, J.Wakerly, "Synchronization and matching in re­
dundant systems" ,IEEE Tr. on Comp. C-27,6 pp.531-539, 
June 1978. 

[Dolev 81] D.Dolev,"Unanimity in an unknown and unreliable envi­
ronment" ,Proc. 22nd Annual Symposium on Foundations of 
Computer science pp.159-168, 1981. 

[Dolev 82-1] D.Dolev, "The Byzantine Generals strike again" ,Journal of 
algorithms,Vol.3, pp.14-30. 

[Dolev 82-2] D.Dolev and H.R.Strong, "Polinomial Algorithms for multi­
ple processor agreement", Proc. Ljth ACM SIGACT Sym­
posium on Theory of Computing, May 1982. 



BIBLIOGRAPHY 217 

[Dolev 82-3] D.Dolev, M.J.Fischer, R.Fowler, N.A.Lynch and 
H.R.Strong, 
"An Efficient Algorithm for Byzantine Agreement without 
Authentation" lnformation and Control Vol.52, No.2, pp257-
274, 1982. 

[Dolev 83-1] D.Dolev and H.R.Strong, "Autenticated algorithms for 
Byzantine agreement" SIAM COMP, Vol.12, No.4, pp.656-
666, Nov. 1983. 

[Dolev 83-2] D.Dolev, C.Dwork and L.Stockmeyer, "On the mm1mum 
synchronism needed for distributed consensus" Proc. 24th 
Symp. Foundations of Computer Science Tucson, Arizona, 
Nov. 1983, 

[Fischer 82] M.Fischer and N.Lynch, "A lower bound for the time to as­
sure interactive consistency" lnform. Proc. Letters, Vol.14, 
pp.183-186, 1982. 

[Fischer 83] M.Fischer, N.Lynch and M.Paterson, "lmpossibility of dis­
tributed consensus with one faulty processor" Proc. 2-nd 
A CM Symp. on principles of database systems 1983. 

[Fischer 85] M.Fischer, N.Lynch and M.Paterson, "lmpossibility of dis­
tributed consensus with one faulty processor" Journ. of the 
ACM Vol.32, No.2, pp.374-382, 1985. 

[Fischer 86] M.Fischer, N.Lynch and M.Merritt. "Easy impossibility 
proofs for distributed consensus problems" Proc 4th ACM 
Symp. Principles of Distributed Computing Minaki, Canada, 
Aug. 1985, pp.59-70. (Journal of the ACM July 88)??? 

[Fischer 86] M.Fischer, N.Lynch and M.Merritt. "Easy impossibility 
proofs for distributed consensus problems" Proc 4th ACM 
Symp. Principles of Distributed Computing Minaki, Canada, 
Aug. 1985, pp.59-70. (Journal of the ACM July 88)??? 

[FTCS 71-90] "Digests of the Annual Symposium on Fault-Tolerant Com­
puting" FTCS 1-18, 1971-1988, IEEE Computer Society. 



218 

[Gallager] 

[Gils 85] 

[Gils 86] 

[Gils 87] 

[Gils 88] 

[Hadz 87] 

[Harari] 

[Hill] 

[Hopkins] 

[Knight 86] 

BIBLIOGRAPHY 

L.E.Gallager, W.N.Toy, "The Fault-tolerant 3B-20 Proces­
sor", National Computer Conference pp.41-48,1981. 

W.J.van Gils, "How to cope with faulty processors in a com­
pletely connected network of communicating processors" ln­
formation Processing Letters Vol.20, Nr.4, May 1985, pp.207-
213. 

W.J. van Gils, "A Triple Modular Redundancy Technique 
Providing Multiple Bit Error Proteetion Without Using Ex­
tra Redundancy", IEEE Tr. on Comp. Vol.C-35, Nr7, pp623-
631,July 1986. 

W.J.van Gils, J.P.Boly, "On combined symbol and bit error 
control [4,2] codes over {0, 1}8 to he used in the (4,2) concept 
fault-tolerant computer." IEEE Tr. on Inf. Theory Vol. IT-
33, Nr 6, November 1987. 

W.J.van Gils, "Design of error control coding schemes for 
three probieros of noisy information transmission, storage 
and processing" Ph.D. thesis, Eindhoven University of Tech­
nology, Januari 1988. 

V.Hadzilacos, "Connectivety requirements for Byzantine 
agreement under restricted types of failures" Distributed 
Computing Vol.2,,1987, pp.95-103. 

F.Harari, "Graph theory" Addison- Wesley, Reading, Mas­
sachusetts, 1972, ISBN 0-201-02787-9. 

F.J.Hill and G.R.Peterson, "Switching Theory and Logical 
design" John Wiley, New York, 1974. 

A.L.Hopkins, T.B.Smith, J.H.Lala, "FTMP-A Highly Reli­
abie Multiprocessor for Aircraft", Proceedings of the IEEE, 
Vol.66,No.10,pp.1221-1239,0ct.1978. 

J.C.Knight, N.G.Leveson, "An emperical study of failure 
probabilities in multi-version software" 16-th Annual Sympo­
sium on Fault-Tolerant Computing Systems,pp156-170, Vi­
enna, July, 1986. 



BIBLIOGRAPHY 219 

(Krol 82] 

[Krol 83] 

[Krol 85] 

[Krol 86] 

[Lamp 82] 

[Laprie 82] 

[Laprie 85] 

[Lynch 82] 

[Lund. 84] 

[MacW 78] 

"The (4,2) concept fault-tolerant computer" 11!-th Annual 
Symposz'um on Fault- Tolerant Gomputing, pp49-54, Santa 
Monica, CA, June, 1982. 

Th.Krol, "The ( 4,2) concept fault-tolerant computer" Philips 
Tech.Rev. No.41,ppl-11,1983. 

Th.Krol, W.J.van Gils, "The Input/Output architecture of 
the {4,2) concept fault-tolerant computer" 15-th Annual 
Symposium on Fault-Tolerant Computing, pp254-259, Ann 
Arbor, MI, June, 1982. 

Th.Krol, "(N,K) Concept Fault tolerance" IEEE Tr. on 
Gomp., Vol.C35, No 4, April 1986, pp339-349. 

L.Lamport, R.Shostak, and M.Pease, "The Byzantine Gen­
eral's Problem" ,AGM Trans. Program. Lang. Syst., Vol.4, 
No.3, pp382-401, 1982. 

J.C.Laprie, A.Costes, "Dependability: A Unifying Concept 
For Reliable Computing" 12-th Annual Symposium on Fault 
Tolerant Gomputing, pp18-21, Santa Monica, CA, June, 
1982. 

J.C.Laprie, "Dependable Computing and Fault-tolerance: 
Concepts and Terminology", Proc. 15th. Int. Symp. on 
Fault-tolerant Gomputing, Ann Arbor, June 1985, pp.2-11. 

N.Lynch, M.Fischer and M.Fowler, "A simple and efficient 
Byzantine Generals Algorithm" Proc Second IEEE Symp. 
Reliability in Distributed Software and Data Base Systems 
Pittsburg, Pennsylvania, pp46-52. 

J.Lundelius and N.Lynch, "A new fault-tolerant algorithm 
for doek synchronization" Proc Third Annual ACM Symp. 
Principles of Distributed Computing, Vancouver Canada, 
Aug. 1984, pp.75-88. 

F.J.MacWilliams and N.J.A.Sloane, "The Theory of Error­
Correcting Codes." Amsterdam, The Netherlands: North 
Holland, 1978. 



220 BIBLIOGRAPHY 

[Melham 87] T.F .Melham, "Abstraction Mechanisms for Harware Verifi­
cation" Technical Report 106 University of Cambridge UK, 
Computer Laboratory, May 1987. 

[Merritt 84] M.Merritt, "Elections in the presence of faults" Proc Third 
Annual AGM Symp. Principles of Distributed Gomputing, 
Vancouver Canada, Aug. 1984, pp.89-102. 

[Pease 80] M.Pease, R.Shostak, and L.Lamport, "Reaching agreement 
in the presence of faults" J. Assoc. Gomput. Mach., Vol.27, 
No.2, pp228, 1980. 

[Perry 85] K.J.Perry, "Randomized Byzantine Agreement" IEEE Tr. 
on Softw. Eng. Vol.ll, No.6, pp.539-546, Jun 1985. 

[Rabin 83] M.O.Rabin, "Randomized Byzantine Generals" Proc. 24th 
Symp. Foundations of Computer Science Tucson, Arizona, 
Nov. 1982, pp403-409. 

[Shin 87] K.Shin and P.Ramanatan "Clock synchronization of a large 
multiprocessor system" IEEE Tr. on Gomp. Vol.36, No.l, 
pp2-13, 1987. 

[Siew. 78] D.P.Siewiorek et al., "C.vmp: A Voted Multiprocessor" Pra­
eeedinga of the IEEE, Vol.66,No.10,pp.l190-1198,0ct.l978. 

[Siew. 82] D.P.Sieviorek, R.S.Swarz, "The theory and practice of reli­
abie system design" Digital Press 1982, Digital Equipment 
Corporation, USA. 

[Sopho] "Special Issue on SOPHOMATION: The total approach to 
information management", Philips Telecommunication Re­
view, Vol.43, No.2, June 1985. 

[Srikanth 87] T.K.Srikanth and S.Toueg, "Optimal doek synchronization" 
Proc 4th Symp. Principlesof Distributed Gomputing Minaki, 
Canada, Aug. 1985, pp.89-102. (Journal of the ACM July 
88)??? 

[Toueg 87] S.Toueg, K.Perry and T.K.Srikanth, "Fast distributed agree­
ment" Proc 4th Symp. Principles of Distributed Computing 



BIBLIOGRAPHY 221 

Minaki, Canada, Aug. 1985, (SIAM J Computing, Vol.16 
No.3 June 1987.) 

[Wensley 78] J.H.Wensley et al., "SIFT: design and analysis of a fault­
tolerant computer for aircraft control " Proc. IEEE, Vol. 66, 
pp.1240-1255, Oct. 1978. 

[patent] Th.Krol, (1978) USA patent 4,335,458 "Local error detection 
and aggregated correction". 

[patent] Th.Krol, (1979) USA patent 4,402,045 "Fault-tolerant 
( 4,2) computer requires less memory". 

[patent] Th.Krol, B.J.Vonk, {1981) USA patent 4,512,020 "lmproved 
code for the ( 4,2) concept, code 81". 

[patent] Th.Krol, (1982) USA patent 4,633,472 "Error proteetion of 
the I/0 memory in the (4,2) concept" 

[patent] Th.Krol, W.J. v. Gils, (1984) Ned. patent 8402472 pending 
Can. patent 1,241,758 "Multiplicating incoming message in 
(N ,K) concept". 



222 



223 

Curriculum vitae 

Thijs Krol was born on November 17, 1942, in Leeuwarden, The Netherlands. 
He stuclied electrical engineering at Eindhoven University of Technology, The 
Netherlands, from which he graduated cum laude on January 14, 1971. In 
1971 he joined Philips Research Lahoratories. From 1971 to 1985 he bas 
been working in different areas of fault-tolerant computing, error-correcting 
codes and telecommunication switching systems. Since 1985 he is mainly 
involved with specification and high-level hardware description languages 
for VLSI design. 
From 1983 to 1990 he has been guest-lecturer in fault-tolerant computing at 
the Eindhoven University of Technology. 



Stellingen 

behorende bij het proefschrift 

A Generalization of Fault-Toleranee 

Based on Masking 

van 

Thijs Krol 

Eindhoven 
24 september 1991 



1. In tegenstelling tot fouten tolererende systemen die gebaseerd zijn op 
ver-N-voudiging, biedt een fouten tolererend systeem dat gebaseerd 
is op het (N, K) concept, de mogelijkheid om de totale hoeveelheid 
hardware of de call-rate van het systeem te minimaliseren door de 
verhouding tussen de hoeveelheid hardware voor het geheugen en de 
hoeveelheid hardware voor de processoren te varieren. 
Het (N, K) concept biedt tevens de mogelijkheid het aantal benodigde 
modules voor fouten tolerantie aan te passen aan het aantal modules 
dat nodig is voor consistente communicatie met de omgeving. 

[dit proefschrift] 

2. De toepassing van het (N, K) concept wordt beperkt door de tijd die 
nodig is voor decoderen. 

[dit proefschrift] 

3. ·wanneer geen hebruik gemaakt wordt van authenticatie is het Input 
Probleem en het Byzantijnse Generaals Proheem in praktijk tot nu 
toe alleen oplosbaar wanneer het aantal te tolereren fouten minder is 
dan vier. 

[dit proefschrift] 

4. Van alle tot nu toe bekende synchrone deterministische Byzantijnse 
Generaals Algorithmen, die geen gebruik maken van authentiseren, 
belasten de algorithmen, die gebaseerd zijn op fouten corrigerende 
codes, het communicatienetwerk tussen de modules het minst. 

[dit proefschrift] 

5. Uitspraken over betrouwbaarheidsverbeteringsfactoren hoger dan 103, 

die uitsluitend gebaseerd zijn op berekeningen zonder experimentele 
verificatie, moeten in het algemeen als fabels worden beschouwd. 

6. Een fout-hypothese is een uitstekend middel om minder gunstige prak­
tijk resultaten te verbergen. 



7. Het woord fout in "fouten tolererende digitale systemen" suggereert 
ten onrechte dat dergelijke systemen ook bestand zouden zijn tegen 
foute input gegevens. 
Het is daarom beter te spreken van "systemen die in staat zijn incorrect 
gedrag van de componenten waaruit ze zijn opgebouwd te tolereren". 

8. De voorliefde van wiskundigen om hun bewijzen zo elegant mogelijk 
op te schrijven, maakt deze bewijzen voor hen die aan de zijlijn van 
de wiskunde werken vaak moeilijk toegankelijk. 

9. De hoeveelheid wetenschappelijke publicaties op het gebied van zelf­
controlerende logica is meer bepaald door de geschiktheid van het on­
derwerp voor doctoraalscripties en proefschriften, dan door het prac­
tisch belang van het onderwerp. 

10. De langzame invoering van het gebruik van formele methoden voor 
het ontwerpen van digitale systemen wordt mede veroorzaakt door 
de beperkte kennis op het gebied van wiskunde en informatica bij de 
ontwerpers en door gebrek aan kennis van het ontwerpproces bij de 
informatici en wiskundigen. 

[Proceedings IFIP WG 10.2-WG10.5 International Workshop on Ap­
plied Pormal Methods For Correct VLSI Design, Houthalen, Belgie, 
13-16 November 1989] 

11. Een project georganiseerde research organisatie kan slechts voorspel­
bare resultaten opleveren. Mits aan de juiste omgevingsvoorwaarden 
is voldaan heeft daarentegen een discipline georganiseerde research or­
ganisatie de potentie in zich tot werkelijke vernieuwing. 

12. Wetenschappelijke vooruitgang wordt vaak verkregen door het poneren 
van stellingen en daarna een ander het tegendeel te laten bewijzen. 




