
 

An approximate approach for the joint problem of level of
repair analysis and spare parts stocking
Citation for published version (APA):
Basten, R. J. I., Heijden, van der, M. C., & Schutten, J. M. J. (2011). An approximate approach for the joint
problem of level of repair analysis and spare parts stocking. (BETA publicatie : working papers; Vol. 347).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/54404cef-46af-4150-a86c-a167da386545


 

 

 

 

 

 

 

 

 

An approximate approach for the joint problem of 

level of repair analysis and spare parts stocking 

 
R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten 

 
Beta Working Paper series 347 

 
 
 
 
 
 
 
 
 
 
 
 
 

 BETA publicatie WP 347  (working 
paper) 

ISBN 978-90-386-2496-9 
ISSN 
NUR 

 
804 

Eindhoven April  2011 



An approximate approach for the joint problem of level
of repair analysis and spare parts stocking

R.J.I. Basten • M.C. van der Heijden • J.M.J. Schutten

Eindhoven University of Technology, School of Industrial Engineering
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

University of Twente, School of Management and Governance
P.O. Box 217, 7500 AE, Enschede, The Netherlands

April 14, 2011

Abstract

For the spare parts stocking problem, generally metric type methods are used in the
context of capital goods. Implicitly, a decision is assumed on which components to discard
and which to repair upon failure, and where to perform repairs. In the military world, this
decision is taken explicitly using the level of repair analysis (lora). Since the lora does
not consider the availability of the installed base, solving the lora and spare parts stocking
problems sequentially may lead to suboptimal solutions. We propose an iterative algorithm
to solve the two problems. We compare its performance with that of the sequential approach
and a recently proposed, so-called integrated algorithm. The latter finds optimal solutions
for two-echelon, single-indenture problems. In our experiment, we use a set of such problems,
and a set of multi-echelon, multi-indenture problems, for which we achieve a cost reduction
of 3% on average (35% at maximum) compared with the sequential approach. Compared
with the integrated algorithm, the gap is only 0.6% on average (5% at maximum), while the
maximum computation time falls from 3 hours to 2.5 minutes. In a case study, we achieve
a cost reduction of 10% compared with the sequential approach.

Service logistics, Level of repair analysis, Spare parts, Inventories

1 Introduction

Capital goods are physical systems that are used to produce products or services. They are
expensive and technically complex, and they have high downtime costs. Examples of capital
goods are manufacturing equipment, defense systems, and medical devices. Before capital
goods are deployed, several tactical level questions concerning their corrective maintenance
need to be answered: which components to repair upon failure and which to discard, where
to perform the repairs, and which amount of spare parts to stock at which locations in the
repair network. These questions should be answered such that a target availability of the
installed base is achieved against the lowest possible costs.

Due to the high downtime (unavailability) costs of capital goods, a defective component
will usually be repaired by replacement of a spare part. In the defense industry, the compo-
nents that are replaced are called LRU s or line replaceable units. Defective lrus may be
discarded, which means that a new one needs to be acquired. However, since lrus are often
expensive, they are generally repaired, typically by replacement of a subcomponent, called
SRU or shop replaceable unit.

Figure 1 gives an example of a multi-indenture product structure, including the naming
convention that we use. We use the terms component and subcomponent if the indenture
level is irrelevant. Repairs and discards can be performed at various echelon levels in the
multi-echelon repair network, an example of which is shown in Figure 2. We use the naming
convention as depicted in this figure. To be able to perform repairs, discards, or movements
of components, resources may be required. Resources include test, repair, and transportation
equipment, but one time training of service engineers may also be considered as a resource
for which a one-time investment is required. Spare parts need to be located in the repair
network as well, in order to enable quick repairs of both the installed base (spare lrus) and
of lrus and srus (spare srus and parts, respectively).
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Figure 2: Repair network

The level of repair analysis (LORA) can be used to make the above mentioned repair/-
discard decisions:

1. which components to repair upon failure and which to discard; and

2. at which locations in the repair network to perform the repairs and discards.

The third set of decisions that is made in the lora is:

3. at which locations to deploy resources.

The lora is typically modeled as a deterministic integer linear optimization problem (see,
e.g., Basten et al. 2009, 2010). This means that it is not possible to model the downtime
waiting for spares and the availability of the installed base, since that would result in a non-
linear constraint. Since the spare parts costs can be included only in a rudimentary way,
usually only the other relevant costs are considered, consisting of both fixed costs and costs
that are variable in the number of failures. Fixed costs are due to the resources. They result
from a certain repair/discard decision, but are incurred no matter how often components
are actually repaired or discarded, for example, costs for training of service engineers and
depreciation costs of repair equipment. Variable costs may include transportation costs,
working hours of service engineers, and usage of bulk items.

Using the results of the lora as an input, the spare parts stocking analysis is conducted
to decide which components to put on stock at which location(s) in the repair network
in which quantity, such that a target availability of the capital goods is achieved against
minimum spare parts costs. A well-known method to conduct this analysis is (vari-)metric
(see, e.g., Sherbrooke 2004, Muckstadt 2005).

Performing the lora first and next the spare parts stocking analysis, the sequential
approach, may lead to a solution that is not optimal. For example, if repairs are performed
at the operating sites, each operating site requires a resource, whereas only one resource is
required in total if repairs are performed at the central depot. As a result, the lora often
recommends to perform repairs at the central depot (repairing centrally leads to higher
transportation costs of components, but these costs are generally low compared to costs
for resources in a high-tech environment). The lora neglects the fact that when repairs
are performed centrally, the repair lead times (including transportation lead times) are
higher than when repairs are performed at the operating sites, thus leading to higher spare
parts requirements. This is especially problematic if the spare parts costs make up a large
percentage of the total costs, as we have observed in a case study in the defense industry
(see Section 6).

We propose an iterative algorithm to solve the joint problem of lora and spare parts
stocks. The basic idea is that we use the results of the spare parts stocking problem to
adapt the lora inputs. So, we solve a lora first and then use vari-metric to solve the
spare parts stocking problem. We next adapt the lora inputs to start a second iteration
and continue in this way until we do not find a different solution anymore. We compare
our results with the sequential solution (this is the solution of the first iteration of our

2



algorithm) and with the solutions resulting from an algorithm that was recently proposed by
Basten et al. (2011a) for two-echelon, single-indenture problems. Their so-called integrated
algorithm finds optimal solutions, or in fact, efficient points on the curve of costs versus
expected number of backorders (see Section 2.2). The integrated algorithm can be extended
to multi-echelon, multi-indenture problems, but Basten et al. (2011a, Appendix) explain
that in that case, finding efficient points cannot be guaranteed. However, we believe that
the integrated algorithm still finds solutions that are close to optimal (see also Section 5).
The major drawback of the integrated algorithm is that it is very slow due to its enumerative
approach.

We perform an extensive numerical experiment. On a set of two-echelon, single-indenture
problems, the iterative algorithm achieves a cost reduction of 3.80% on average compared
with the sequential approach, whereas the integrated approach achieves a cost reduction of
5.07% on average. This means that the iterative algorithm closes most of the optimality gap
of the sequential approach. Using a set of multi-echelon, multi-indenture problems, we find
that the iterative algorithm is much faster than the integrated algorithm, while its solution
value is on average only 0.58% higher than that of the integrated algorithm (5.26% higher at
maximum). Compared with the sequential procedure, the iterative algorithm achieves a cost
reduction of 2.85% on average and 34.69% at maximum. In a case study at Thales Nederland,
a manufacturer of naval sensors and naval command and control systems, we show that
solving the joint problem iteratively instead of sequentially leads to a cost reduction of
almost 10% which is worth millions over the life time of a couple of sensor systems.

The remainder of this paper is organized as follows. In Section 2, we discuss the related
literature. We outline our model for the joint problem of lora and spare parts stocking in
Section 3, and in Section 4, we present the iterative algorithm. In Section 5, we show the
results of our numerical experiment, and we then present the results of the case study that
we performed in Section 6. We give conclusions and recommendations for further research
in Section 7.

2 Literature review

We discuss the literature on lora, spare parts stocking, and the joint problem of lora and
spare parts stocking in Sections 2.1, 2.2, and 2.3, respectively.

2.1 Level of repair analysis

Barros (1998) proposes a multi-echelon, multi-indenture lora model in which decisions
are taken per echelon level. So, if it is decided to repair a certain component at a certain
operating site, it is also repaired at all other operating sites. Barros further assumes that
all components at a certain indenture level require the same resource and that resources are
uncapacitated. The latter means that there is no downtime waiting for resources, and either
zero or one resource is located at each location. As in all papers on lora, Barros formulates
her model as an integer programming model. She solves it using cplex. Barros and Riley
(2001) use the same model as Barros does and solve it using a branch-and-bound approach.

Saranga and Dinesh Kumar (2006) make the same assumptions as Barros (1998), except
that the former assume that each component requires its own unique resource. They use a
genetic algorithm to solve the model. Basten et al. (2009) generalize the two aforementioned
models by allowing for components requiring multiple resources and multiple components
requiring the same resource. As in the remaining three papers in this section, Basten et al.
(2009) use cplex to solve the model.

Basten et al. (2010) generalize the model of Basten et al. (2009) by allowing for different
decisions at the various locations at one echelon level. They show that the lora problem
can be modeled efficiently as a generalized minimum cost flow model. Basten et al. (2011b)
propose a number of extensions to the model of Basten et al. (2010) so that, for example, a
probability of unsuccessful repair can be modeled, or capacitated resources. The latter does
not mean that waiting times are incorporated.
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Brick and Uchoa (2009) use similar assumptions as Basten et al. (2010), except that the
former assume that resources have a maximum capacity (as Basten et al. 2011b, do). They
further consider one echelon level only and effectively assume two indenture levels. Integrated
in their lora is the decision of which facilities to open (facility location problem).

2.2 Spare parts stocking

In the area of capital goods, the paper of Sherbrooke (1968) is generally seen as the seminal
paper on the multi-item spare parts stocking problem. Sherbrooke develops the metric
model (Multi-Echelon Technique for Recoverable Item Control), which is the basis for a huge
stream of metric type models. The goal in these models is to find the most cost effective
allocation of spare parts in a network, such that a target availability of the installed base is
achieved. This is achieved by focusing on the expected number of backorders: if a spare part is
requested, but not available yet, this is called a backorder. As an approximation, the number
of backorders of lrus at operating sites equals the number of systems that are unavailable
waiting for spares. The metric type methods focus on minimizing the expected number of
backorders, instead of maximizing the availability, because this allows for decomposing the
overall problem into subproblems per lru. A marginal analysis approach is used to construct
an ebo-curve of spare parts costs versus expected number of backorders. Construction of the
curve is stopped as soon as the number of backorders has decreased enough to achieve the
target availability. Generally, the achieved availability is somewhat higher than the target
availability, which is called overshoot.

A key assumption in these models is that demand at the operating sites follows a Poisson
process, which means that demand at higher echelon levels follows a Poisson process as well.
As a result, the number of components in repair or in the replenishment loop (after discard)
at the highest location is Poisson distributed. However, the number of backorders at that
location is not Poisson distributed if spare parts are located there. As a result, analysis of
the so-called pipeline at the lower echelon levels gets complicated, the pipeline being the
number of components that is sent upwards for repair or discard, and not replaced by a
functioning component yet. Sherbrooke (1968) chooses to approximate the number of items
in the pipeline by assuming that it is also Poisson distributed. Muckstadt (1973) extends
the work by Sherbrooke (1968); the latter considers single-indenture product structures only,
whereas the former develops a multi-echelon, multi-indenture model, called mod-metric.
The development of the vari-metric models (Graves 1985, Sherbrooke 1986) has been
the next important step forward: a two-moment approximation is used for the pipelines.
It is also possible to evaluate the model exactly (Graves 1985, Rustenburg et al. 2003),
but this is computationally intensive, and vari-metric is known to give small errors only.
Furthermore, backorders at higher echelon levels are not the only cause of delays; backorders
for subcomponents can delay repairs of components in a way that is similar to what we
described above.

2.3 Joint problem of level of repair analysis and spare parts stock-
ing

We are aware of two papers in which a method is presented to solve the joint problem of
lora and spare parts stocking: Alfredsson (1997) and Basten et al. (2011a).

Alfredsson (1997) assumes a single-indenture product structure and a two-echelon repair
network. He further assumes that each component requires exactly one tester (resource)
and that all components that require the same tester are repaired at the same location.
Furthermore, one multi-tester exists. It can be used for the repair of a number of components,
and adapters can be added in a fixed order to enable the multi-tester to be used for the repair
of additional components. If the multi-tester can be used to repair a certain component, then
this component necessarily uses the multi-tester instead of the original resource that it used.
Resources are capacitated, which means that multiple resources of the same type may be
required at one location. System downtime includes the waiting times for the resources,
the repair times, and the waiting times for spares. The problem is modeled as a non-linear
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integer programming model and Alfredsson uses a decomposition method that sequentially
decomposes the overall problem into smaller subproblems to solve the model.

Basten et al. (2011a) also consider single-indenture, two-echelon problems, but they
allow for more general component-resource relations: components may share resources and
a component may require multiple resources simultaneously. This substantially complicates
the problem. The basic idea is to recursively decompose the problem in a smart way such
that all possible solutions are enumerated without taking too much time. For the single-
indenture, two-echelon problem, Basten et al. (2011a) find ebo-curves consisting of efficient
points. This means that it is not possible to achieve a lower expected number of backorders
for the costs that they find. They also show that it cannot be guaranteed that efficient points
are found for general multi-indenture problems, but that solutions are probably still close
to optimal.

3 Model

In Section 3.1, we give the assumptions that we make, and we present the mathematical
model formulation in Section 3.2.

3.1 Assumptions

A key assumptions is that we take the same decisions at all locations at one echelon level
for each component and resource. This implicitly means that we assume symmetrical repair
networks, i.e., we have the same costs, demand rates, lead times, et cetera at all locations
at one echelon level, and the same number of locations attached to a location at the higher
echelon level. In such a network, taking the same decision at all locations at one echelon
level is an optimal strategy, except that the overshoot increases (see Section 2.2).

Next, we make some assumptions that are commonly made for the lora problem:

• discarding a component implies that its subcomponents are discarded as well;

• each subcomponent may be the cause of a failure of a component (otherwise, it need
not be modeled), so repairing a component may result in replacement of any one
subcomponent. As a result, if it is decided to repair a component at a certain echelon
level, a decision needs to be taken for each subcomponent at the same echelon level;

• a failed (sub)component may not be shipped to a lower echelon level;

Furthermore, we make a few assumptions that are standard in the metric type models.

• components fail according to a Poisson process with a constant rate;

• a failure in a component is caused by a failure in at most one subcomponent;

• replacement of a failed component by a functioning component takes zero time;

• resources are uncapacitated, meaning that at most one resource of a certain type needs
to be installed at each location;

• minimizing the expected number of backorders is a good approximation of maximizing
the availability (see Section 2.2);

• there are no lateral transshipments between locations at the same echelon level or
emergency shipments from locations at a higher echelon level; functioning spare parts
are only supplied from one specific location at the next higher echelon level;

• for each component at each location, an (S−1, S) continuous review inventory control
policy (one for one replenishment) is used;

• the repair lead times are i.i.d. random variables that include the time used for sending
the failed component to the repair location and for diagnosing the failure cause;

• the replenishment lead times for discarded components are i.i.d. random variables that
include the time used for diagnosing the failure cause;

5



• the move lead time (to move a functioning, repaired or newly purchased, component
from a location to one of its child locations) is deterministic;

• repairs are always successful.

To ease the presentation in the remainder of this paper and to decrease the problem size,
we make three additional assumptions that are not critical for our algorithm:

• there is no commonality, so a subcomponent may not be part of two different compo-
nents;

• since resources that are required to enable discard or movement do not occur frequently
in practice, e.g., not in our case study, we assume that resources may be required to
enable repair only;

• since the discard costs mainly consist of the costs of acquiring a new component, we
assume that discard costs for a certain component are equal at all echelon levels. Since
the costs to move a component to another echelon level are relatively low, we consider
discard at the highest echelon level only.

3.2 Mathematical model

In Section 3.2.1, we introduce the notation that we use and we give the mathematical model
formulation in Section 3.2.2.

3.2.1 Notation.

Let C be the set of all components, with C1 ⊆ C being the set of lrus. Γc is the (possibly
empty) set of subcomponents of component c ∈ C at the next higher indenture level.

The set E consists of all echelon levels, the highest echelon level being emax. The set D
consists of the possible decisions that can be made: D = {discard, repair,move}. The set
of options that is available at echelon level e ∈ E is De. For e ∈ E \ emax, De = D, and
Demax = {discard, repair}.

Let R be the set of resources. Ωr ⊆ C is the set of components that require resource r
in order to be repaired.

We define the following decisions variables:

Xc,e,d =

{
1, if for component c ∈ C at echelon level e ∈ E decision d ∈ De is made,
0, otherwise;

Yr,e =

{
1, if resource r is located at echelon level e,
0, otherwise;

Sc,e = the number of spare parts of component c located at each location at echelon level e.

Furthermore, we denote X as the three-dimensional array with entries Xc,e,d and S as
the two-dimensional array with entries Sc,e.

For each component c ∈ C, we define λc (> 0) as the total annual failure rate over all
operating sites. We define three cost types. For component c ∈ C at echelon level e ∈ E,
vcc,e,d (≥ 0) are the variable costs of making decision d ∈ D. Since we have chosen, without
loss of generality, to minimize the total annual costs with our definition of λc, we define fcr,e
(≥ 0) to be the annual fixed costs to locate resource r ∈ R at echelon level e ∈ E and we
define hc′c,e (> 0) to be the annual costs of holding one spare of component c ∈ C at each
location at echelon level e (we use the prime to ease notation later on).

3.2.2 Mathematical model formulation.

We define our model as follows:
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minimize
∑
c∈C

∑
e∈E

∑
d∈De

vcc,e,d · λc ·Xc,e,d +
∑
r∈R

∑
e∈E

fcr,e · Yr,e +
∑
c∈C

∑
e∈E

hc′c,e · Sc,e (1)

subject to: ∑
d∈D1

Xc,1,d = 1 ,∀c ∈ C1 (2)

Xc,e,move ≤
∑

d∈De+1

Xc,e+1,d ,∀c ∈ C ,∀e ∈ E \ emax (3)

Xc,e,repair ≤
∑
d∈De

Xb,e,d ,∀c ∈ C ,∀b ∈ Γc ,∀e ∈ E (4)

Xc,e,repair ≤ Yr,e ,∀r ∈ R,∀c ∈ Ωr ,∀e ∈ E (5)

availability(X ,S) ≥ target availability (6)

Xc,e,d, Yr,e ∈ {0, 1} (7)

Sc,e ∈ N (8)

Constraints 2 to 5 are the ‘lora constraints’ and define the same model as Basten et al.
(2010) use, except that they do not necessarily take the same decision at each location at
one echelon level. Constraint 2 assures that for each lru a decision is made at the operating
site. If a component is discarded, no further decisions need to be made for that component
or its subcomponents. If a component is moved, Constraint 3 assures that a decision is
made for that component at the next higher echelon level, and if a component is repaired,
Constraint 4 assures that a decision is made for each of its subcomponents. Some options
are only available if all resources are present, which is guaranteed by Constraint 5. Finally,
Constraint 6 assures that the target availability is met; this is the only ‘spare parts stocking
constraint’. Since the availability is a non-linear function of all repair/discard decisions X
and all spare parts decisions S, our model cannot be solved using an ilp solver. Notice that
in Constraint 6, the various lead times play a role (we have not introduced notation for those
lead times).

4 Iterative algorithm

As mentioned in Section 1, the joint problem of lora and spare parts stocking analysis is
in practice usually solved sequentially. First, a lora is performed, focusing on achieving
the lowest possible costs, consisting of both fixed costs (

∑
r∈R

∑
e∈E fcr,e · Yr,e), and costs

that vary with the number of failures (
∑
c∈C

∑
e∈E

∑
d∈D vcc,e,d · λc · Xc,e,d). Next, given

the decisions that result from the lora, a spare parts stocking problem is solved (e.g., using
vari-metric) that determines where to locate spare parts in the repair network, such that
a target availability of the installed base is achieved against the lowest possible spare parts
holding costs (

∑
c∈C

∑
e∈E hc

′
c,e · Sc,e).

We propose an iterative algorithm that uses in each iteration the same two building
blocks as the sequential approach (see figure 3). After the first iteration, we therefore have the
solution of the sequential method. The spare parts holding costs are then used to adapt the
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Spare parts holding costs (hci+1
c,e,d) after

lora costs iteration 1 iteration 2 iteration 3
Component Component Component Component

Decision A B A B A B A B

Repair at ship 32 62 0 0 0 0 4 0
Repair at depot 22 37 16 0 16 20 16 15
Discard 30 30 0 30 20 30 20 30

Total costs
(lora and spares)

98 107 88

Table 1: Costs in the LORA problem (×e1,000)

lora inputs so that a second iteration of lora and spare parts stocking may be performed.
The key idea is that, as an approximation, we may decompose the spare parts holding costs
into spare parts holding costs per component, so that for each component c the spare parts
holding costs are

∑
e∈E hc

′
c,e · Sc,e. The implicit assumption is that the spare parts holding

costs that result from a repair/discard decision are independent of the decisions taken for the
other components. Of course, this assumption is violated, since vari-metric is a multi-item
approach (an example is given below).

Notice that the move decisions can be seen as ‘intermediate’ decisions; the decision to
repair or discard a component is the ‘final’ decision. Therefore, we need to adapt the costs
for the repair and discard decisions only. We define hcic,e,d as the spare parts holding costs
that are added to the variable costs of component c ∈ C for decision d ∈ {discard, repair}
at echelon level e ∈ E in iteration i ≥ 1. So, the variable costs that are used in the lora
for component c ∈ C at echelon level e ∈ E in iteration i are vcc,e,d + hcic,e,d for decision

d ∈ {repair,discard}, and vcc,e,d for decision d = move. In the first iteration, hc1c,e,d = 0 for
all tuples (c, e, d). For each tuple (c, e, d) for which Xc,e,d > 0 in iteration i−1 (i > 1), we set

hcic,e,d =
∑

f∈E hc
′
c,f ·Sc,f

λc
(Sc,f resulting from iteration i−1). For all other possible repair and

discard decisions (Xc,e,d = 0 in iteration i− 1), we set hcic,e,d = hci−1c,e,d. This means that the
spare parts holding costs that we include in the lora inputs are changed in iteration i only
if the related repair/discard decision was chosen in iteration i− 1. In this way, we gradually
find an estimate for the resulting spare parts holding costs for all relevant repair/discard
decisions and the algorithm will eventually find a lora solution that leads to low total costs:
lora costs (excluding the added spare parts holding costs) plus spare parts holding costs
resulting from the spare parts stocking analysis. We stop the algorithm as soon as the lora
solution is identical in two consecutive iterations. If in the second of these iterations, two
different lora solutions exist that lead to the same costs, we choose the one we also had in
the previous iteration so that the algorithm terminates. In Appendix B, we show that the
algorithm cannot cycle between two solutions and that it therefore necessarily terminates
after a finite number of iterations.

We use an example to illustrate the feedback mechanism. We consider a radar system
that consists of two components (A and B). The radar system is installed at two ships, which
are supported by a depot. Components A and B both require a unique resource in order
to enable repair, the fixed annual costs of which are e10,000 and e25,000, respectively. For
both components, the annual failure rate per ship is 1, the discard costs are e15,000, the
variable repair costs are e6,000, and the move costs are e0.

In the first iteration, spare parts holding costs of zero are included in the lora problem.
Therefore, the repair/discard options with the lowest lora costs are chosen for both compo-
nents (see Table 1 for an overview of all resulting costs): A is repaired at depot, which leads
to annual costs of e22,000 (variable repair costs are e12,000, since there are two failures,
one at each ship, and a resource at the depot costs e10,000), and B is discarded, which leads
to annual discard costs of e30,000. Next, the spare parts stocking problem is solved, which
results in stocking spare parts at both the ships and the depot, leading to annual spare
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parts holding costs of e16,000 for A and e30,000 for B. In the second iteration, the lora
is solved with modified inputs. The lora chooses to discard A, since that leads to costs of
e30,000, whereas repair at depot leads to total costs of e22,000 + e16,000 = e38,000. For
B, repair at depot is the most cost effective option. We next find spare parts holding costs of
e20,000 for both components. Notice that the total costs in the second iteration (e107,000)
are higher than those in the first iteration (e98,000). In the third iteration, it is decided to
repair A at ship, and B at depot. This results in annual spare parts holding costs of e4,000
for A and e15,000 for B.

Notice that the spare parts holding costs for B change, although the repair/discard
decision for B does not change. This is a result of the system approach that is used in vari-
metric. We simply replace the old costs by the newly calculated costs. Notice furthermore
that for A, we found the spare parts holding costs estimate related to ‘repair at depot’ when
‘discard’ was chosen for component B. This value may be lower if B is repaired at ship or at
depot and as a result, in the optimal solution, we may have to repair A at depot. However,
the solution in the next iterations will be to repair A at ship and to repair B at depot. This
risk of using spare parts holding costs that are too high is the key drawback of our approach
and it may result in not selecting a cost-effective option anymore. As a result, we may end
up with a non-optimal solution.

It is possible to slightly improve the feedback algorithm. For example, instead of replacing

an old value (hci−1c,e,d) by a new value (hcic,e,d =
∑

f∈E hc
′
c,f ·Sc,f

λc
), we may take a weighted

average of the old and new value (hcic,e,d = α·
∑

f∈E hc
′
c,f ·Sc,f

λc
+(1−α)hci−1c,e,d, with 0 < α < 1).

However, such improvements require setting additional values (what is a good value for α?),
they make the algorithm more difficult to grasp and implement, and they lead to higher
computation times. Therefore, we do not consider them here. In his Ph.D. thesis, Basten
(2010) shows the results of implementing three such improvements.

5 Numerical experiment

We design a numerical experiment that we present in Section 5.1. In Section 5.2, we discuss
the results of our tests by answering the following questions:

1. What cost reduction can be achieved by solving the joint problem of lora and spare
parts stocking iteratively instead of sequentially?

2. How does the iterative algorithm perform compared with the integrated algorithm?

3. Which model parameters influence the cost reductions that may be achieved by solving
the joint problem using the integrated or iterative algorithm instead of sequentially?

4. How do the repair strategies change when solving the joint problem using the integrated
or iterative algorithm instead of sequentially?

For two-echelon, single-indenture problem instances, Question 2 effectively means compari-
son of the iterative algorithm with the optimal solution. Therefore, our experiment consists
of a set of two-echelon, single-indenture problem instances, and a set of multi-echelon, multi-
indenture problem instances.

The algorithms are implemented in Delphi 2007 and problems instances are solved on an
Intel Core 2 Duo P8600@2.40 GHz, with 3.5 GB RAM, under Windows XP SP 3. For the
iterative and sequential algorithm, the lora building block consists of the model of Basten
et al. (2009) (but implemented using the minimum cost flow model of Basten et al. 2010). The
spare parts stocking building block in the sequential algorithm consists of either the exact or
approximate, two-moment evaluation of Graves (1985), with the optimization as described by
Muckstadt (2005) and Basten et al. (2011a) (which is exact if exact evaluation is used). The
approximate evaluation is extended to the general multi-echelon, multi-indenture problem as
described in Rustenburg et al. (2003). In the iterative algorithm, the approximate evaluation
is always used. The integrated algorithm is an extension of the work by Basten et al. (2011a).
As in the sequential approach, we use either the exact or approximate evaluation of Graves
(1985). We clearly indicate which one is used in each test.
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Default Additional Varied in
Parameter value value(s) test set

# Echelon levels 3 2 1
# Central depots 1 — —
# Intermediate depots 2 — —
# Operating sites1 10 — —

# Indenture levels 3 2 1
# lrus 50 100 1
# Subcomponents per parent 2 — —

# Resources 10 — —
# Component types 4 3 3
% Resources used by 1 component 50% 0% 3

Table 2: Fixed values in the experiments

5.1 Design

First, we explain our main problem instances, which are multi-echelon, multi-indenture
problems instances, in Section 5.1.1. Next, we discuss in Section 5.1.2 the problem instances
that Basten et al. (2011a) have used in their numerical experiment.

5.1.1 Multi-echelon, multi-indenture problem instances

We use three sets of problem instances, each having its own focus:

1. Varying the problem size, the spare parts holding costs, and the lead times.

2. Varying the attractiveness of acquiring resources by changing the annual number of
failures and the costs of resources and components (resulting in different variable repair,
discard, and move costs).

3. Varying the component-resource relations.

Tables 2 and 3 give the exact parameter settings that we use in each of the test sets, which
will be explained below. We use a full factorial design: we test each possible combination of
parameter settings in each set. If we give a range for a parameter, we randomly draw values
from the given range. These values are the same for all settings of the other parameters.
For each combination of parameter settings, we generate ten problem instances, in order to
obtain a variety of problem instances. Since each parameter setting has a default value (or
range) that is the same in each test set, there are ten problem instances that are part of each
each set. The parameter settings for these ten problem instances are used below to explain
how we generate problem instances. Table 2 gives the values for the parameters that do not
vary over a range and Table 3 gives the values for the parameters that do vary. In total,
sets 1, 2, and 3 consists of 1,280, 160, and 80 problem instances, respectively. Each problem
is solved using a target availability of 95%.

The (symmetrical) repair network consists of a central depot, two intermediate depots,
and ten operating sites. Details on the lead times can be found in the tables; for a definition
of the lead times, see Section 3.1. The product structure consists of 50 lrus, 100 srus, and
200 parts (more details in Appendix B). The failure rate of a component is equal to the
summation of the failure rates of its subcomponents (if any exist) and the failure rate of
each lru is close to the range [0.01; 0.25] (more details in Appendix B). The net component
price is in the range [1,000; 10,000] (more details in Appendix B). Using these prices, we
calculate the variable costs as follows:

• repair costs are a fraction of the net component price. This fraction is in the range
[0.25; 0.75];
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Default Additional Varied in
Parameter range range(s) test set

Annual demand of lru 0.01 – 0.25 0.01 – 0.1 & 0.01 – 0.5 & 0.01 – 1 2

Net cost of component 1,000 – 10,000 1,000 – 100,000 2
Discard costs 0.75 – 1.25 — —
Repair costs 0.25 – 0.75 — —
Move costs 0.01 – 0.01 — —
Annual holding costs 0.20 – 0.20 0.20 – 0.40 1
Annual cost of resource 10,000 – 100,000 10,000 – 500,000 2

Discard lead time (in years) 1/10 – 1/2 1/4 – 1/2 1
Repair lead time (in years) 0.5/52 – 4/52 2/52 – 4/52 1
Move lead time (in years) 0.5/52 – 4/52 2/52 – 4/52 1

# Components per resource 2 – 6 2 – 3 3

Table 3: Values that vary over a range in the experiments

Table 4: Fixed values

Parameter Value(s)

# Echelon levels 2
# Central depots 1
# Operating sites 5

# Indenture levels 1
# lrus 100

# Resources 10
# Component types 1
% Resources used by 1 component 100%

• we recursively add the costs of each subcomponent to its parent to get the gross
component price;

• discard costs are a fraction of the gross component price. This fraction is in the range
[0.75; 1.25] and includes the costs for acquiring a new component;

• move costs are 1% of the gross component price;

• annual costs of holding one spare part of a component are 20% of the gross component
price.

There are ten resources and their annual costs are in the range [10,000; 100,000] (more
details in Appendix B). 50% of the resources are required by one component only, the other
50% are required by 2 to 6 components. We distinguish 4 ‘component types’, for example
electronic and mechanical components. Each resource and each lru family (an lru including
all its subcomponents at any indenture level) is randomly assigned to one of the component
types, so that resources of one component type do not interact with resources of another
component type, which is realistic in practice.

5.1.2 Two-echelon, single-indenture problem instances

The generator that we described in Section 5.1.1 is an extended version of the generator that
Basten et al. (2011a) have used to generate two-echelon, single-indenture problem instances.
Therefore, we only give the parameter settings here, in Tables 4 and 5. In total this set
consists of 10 · 27 = 1,280 problem instances.
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Table 5: Values that vary over a range

Parameter Range(s)

Annual demand of lru 0.01 – 0.1

Net cost of component 1,000 – 10,000 & 1,000 – 100,000
Discard costs 75% – 125%
Repair costs 25% – 75%
Move costs 1% – 1%
Annual holding costs 20% – 20% & 20% – 40 %
Annual cost of resource 10,000 – 100,000 & 10,000 – 500,000

Discard lead time (in years) 1/10 – 1/2 & 1/4 – 1/2
Repair lead time (in years) 0.5/52 – 4/52 & 2/52 – 4/52
Move lead time (in years) 2/365 – 4/52 & 1/52 – 4/52
# Components per resource 2 – 3 & 2 – 6

Table 6: Overview of the results for the problem instances of Basten et al. (2011a)

Cost reduction
Average compared with
achieved sequential

Algorithmused availability average maximum

Sequential exact 95.14% – –
Iterative approximation 95.07% 3.80% 35.46%
Integrated exact 95.11% 5.07% 43.26%
Integrated approximation 95.11% 5.07% 43.26%

5.2 Results

We address the questions that we posed at the start of Section 5. In Section 5.2.1, we
compare the results of the iterative algorithm with those of the sequential approach and the
integrated algorithm of Basten et al. (2011a) at a high level, and in Section 5.2.2, we analyze
how repair strategies change and which parameters influence the results.

5.2.1 Comparison of sequential, iterative, and integrated algorithms

Table 6 gives an overview of the results on the two-echelon, single-indenture test set of
Basten et al. (2011a). Compared with solving the two problems sequentially (exact), solving
the joint problem using the integrated algorithm (exact) results in a cost reduction of 5.07%
on average and more than 43% at maximum. Notice that the results of the exact and
approximate version of the integrated algorithm are almost equal (it differs in 2 of the
1,280 problem instances only). We see that the iterative algorithm achieves most of the cost
reductions that may be achieved in this test set.

We are mainly interested in the multi-echelon, multi-indenture problem instances. For a
fair comparison, we use the approximate evaluation for all three algorithms here. Table 7
gives an overview of the results over the three test sets. A key observation is that the results
are in line with the results on the two-echelon, single-indenture problem instances. This
suggests that the integrated algorithm finds solutions that are still close to optimal and that
the iterative algorithm is very robust. The iterative algorithm achieves a cost reduction of
2.85% on average and almost 35% at maximum compared with the sequential approach. In
9.5% of the problem instances, a cost reduction of over 10% is achieved. The gap with the
integrated algorithm is less than 2.5% in over 95% of the problem instances, which means
that changes of being a few percent off are very small using the iterative algorithm.

The integrated algorithm requires on average about 35 times as much computation time

12



Table 7: Overview of the results over the three multi-echelon, multi-indenture test sets

Computation time Achieved Cost reduction compared with
in seconds availability sequential iterative

average maximum average maximum average maximum average maximum

Sequential 0.18 1.83 95.25% 96.32% — — — —
Iterative 4.50 41.09 95.11% 96.12% 2.85% 34.69% — —
Integrated 155.81 10,456.37 95.20% 96.24% 3.40% 36.88% 0.58% 5.26%

Table 8: Cost reduction for important parameter settings

Average cost reduction
iterative integrated integrated

Test compared with
set Parameter Setting sequential sequential iterative

1
# lrus

50 4.35% 4.98% 0.69%
100 1.10% 1.46% 0.37%

Move lead time
[0.5/52; 4/52] 4.59% 5.29% 0.76%
[2/52; 4/52] 0.86% 1.15% 0.30%

2 Demand per lru

[0.01; 0.1] 10.96% 12.06% 1.20%
[0.01; 0.25] 2.47% 2.73% 0.27%
[0.01; 0.5] 1.32% 2.77% 1.47%
[0.01; 1] 3.09% 4.61% 1.56%

as the iterative algorithm. At maximum, the integrated algorithm requires almost three
hours, which is more than 250 times as much as the iterative algorithm. This clearly shows
that the iterative algorithm scales much better (this effect is even stronger for the case study,
see Section 6.3).

There are some problem instances for which the integrated algorithm yields higher costs
than the iterative approach, at most 2.76%. This is due to the overshoot problem (see
Section 2.2 and Section 6.3, especially Figure 5). The integrated algorithm yields a higher
availability in these cases as well. There are no problem instances on which the iterative
algorithm yields both lower costs and a higher availability than the integrated algorithm.
This further strengthens our assumption that the approximate version of the integrated
algorithm finds solutions that are close to optimal.

5.2.2 Detailed analysis of repair strategies and important parameters

Here, we focus on the multi-echelon, multi-indenture problem instances only. Table 8 gives
the cost reductions for those parameter settings that substantially impact the cost reductions
that we achieve. We discuss the results below, including a discussion of the changes in the
repair strategies. The other parameters that we varied in test sets 1, 2, and 3 do not have a
substantial impact on the achieved cost reductions.

We see that if the difference between the integrated and the sequential algorithm in-
creases, then the difference between the integrated and the iterative algorithm increases
as well, but not as fast. So, if the sequential approach leaves more room for improvement,
the iterative algorithm will improve more, both absolutely and relatively. Compared with
the improvements that the integrated algorithm finds, it seems that the iterative algorithm
‘randomly’ misses some opportunities for improvement; we are not able to find structural
problems in the solutions.

In order to give the best comparison between solving the two problems jointly and
sequentially, we only focus on the difference between the integrated and the sequential
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Table 9: Detailed results on problem instances consisting of 50 or 100 LRUs

% of the demand for % spare lrus
lrus that is repaired that is located

number in at echelon level at echelon level
of lrus total 1 2 3 1 2 3

Sequential
50 94.0% 90.4% 0.0% 3.6% 97.7% 0.7% 1.6%
100 96.7% 93.4% 0.0% 3.3% 99.0% 0.2% 0.7%

Integrated
50 94.5% 80.7% 4.9% 9.0% 92.8% 3.7% 3.5%
100 96.9% 89.6% 2.8% 4.5% 97.0% 1.7% 1.3%

Notice: Some

problem instances consist of two echelon levels only (echelon levels 1 and 3 in the table).

algorithm below. Table 9 gives some more detailed results on the problem instances consisting
of either 50 or 100 lrus. Before we discuss the differences that result from the difference
in number of lrus, we first discuss how the repair strategies change when solving the joint
problem instead of solving the two problems sequentially.

Notice that in the sequential solution, repairs are never performed at the intermediate
depots (in test set 1). The reason is that resources are never located at the intermediate
depot, probably because they are so expensive that they are interesting only at the central
depot. As a result, repairs can be performed at the operating site if no resources are required
(why pay more to ship them to the intermediate depot?) or at the central depot if resources
are required and available there. Using the integrated algorithm, the numbers change, due
to two reasons.

1. More resources are located at the central depot (30% and 16% more for 50 and 100
lrus, respectively) which means that some components that are discarded in the se-
quential solution, are now repaired. As a result, the lead time decreases and less spare
parts are required.

2. Notice that if repairs of a certain component are performed at the operating sites, then
spare components may only be located at the operating sites as well. As a result, some
components that do not require any resource in order to be repaired, are repaired at
a more central location in the solution of the integrated solution so that risk pooling
effects may be used (a spare part can now be located at a more central location and
be used at various operating sites).

For the number of lrus, part of the explanation of the difference in achieved cost reduc-
tion is that we do not vary the number of resources in our problem instances, so that there
are relatively more lrus that require a resource in order to be repaired when there are 50
lrus. This gives more possibilities for cost reductions stemming from option 1 above. Next,
we notice that if we increase the target availability for the problem instances with 50 lrus
to 97.5%, the achieved cost reduction reduces to about 2%. 97.5% target availability for 50
lrus leads to a target availability per lru that is almost equal to the target availability
per lrus in problem instances consisting of 100 lrus and having a target availability of
95%. If we then look at the cost reductions that may be achieved for the various values of
the demand per lru, we see that it is lowest for our second lowest setting ([0.01; 0.25]); it
is higher when the demand is either lower or higher. It appears that multiple effects (e.g.,
target availability and demand per lru) interact, as a result of which there is sometimes a
lot to be gained from solving the two problems jointly instead of sequentially, and sometimes
not. We are not able to state beforehand which of the two cases will happen.

If the move lead time is relatively low (compared with the repair and discard lead times),
changes are high that the sequential approach will lead to a large optimality gap. In that case,
the total lead time (repair lead time plus move lead time) when repairing at a higher echelon
level is only slightly higher than the repair lead time when repairing at the operating sites.
As a result, the disadvantage of repairing at a higher echelon level is relatively small, and the
advantage of being able to use risk pooling effects outweighs more often that disadvantage.
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For the computation times, all results are as may be expected. Computation times in-
crease using either of the three approaches when the number of indenture levels, number
of lrus, number of echelon levels, or the demand increases. For the integrated algorithm,
the computation times also increase when components require more resources on average
(maximum number of components per resource increases or the percentage of resources used
by one component only decreases).

6 Case study at Thales Nederland

We perform a case study on a sensor system (combined radar and electro-optical surveillance
system) manufactured by Thales Nederland. The goal of this study is to find out which cost
reduction we may obtain in practice and which advantages and drawbacks of our joint
approach we can identify for application in practice. Thales Nederland is part of the Thales
Group, which is a high-technology company active in aerospace, space, defense, security, and
transportation. Thales Nederland is a manufacturer of naval sensors and naval command
and control systems. Since Thales Nederland is active in the defense industry, it is a perfect
company for a case study because both the lora problem and the spare parts stocking
problem have been well known problems in the military world for decades. Thales’ customers
include many navies, e.g., the Royal Netherlands Navy. If such a navy acquires a set of sensor
systems, it also demands a plan on how to maintain the systems, which includes a lora
and a recommended spares list. In Section 6.1, we discuss how logistic engineers at Thales
Nederland solve the lora and spare parts stocking problems, and the difficulties this leads
to. We give the technical details of the case study in Section 6.2, and in Section 6.3, we
compare the results of the iterative algorithms with those of the sequential and integrated
algorithms, and those of the logistic engineers.

6.1 Current practice

The logistic engineers at Thales Nederland first conduct a so-called non-economic LORA.
The goal of this non-economic lora is to exclude non-realistic repair or discard options and
to simplify the problem. Questions that are posed are, for example:

• Is the component prone to failure? Casings, for example, are not under normal circum-
stances and are therefore not considered in the lora.

• Does the customer prescribe the maintenance policy for the component? If so, this
policy is followed.

• Does the value of the component exceed a certain threshold? If not, it can be discarded
by default, since it is not worth repairing.

The result is that for some components, repair/discard options are excluded. If one option
only remains, no decision needs to be taken in the lora problem for that component, but
the component is still taken into account in the spare parts stocking problem, because of
its influence on the availability. Furthermore, only part of the resources are included in the
lora, mainly the expensive ones.

After the input data has been structured and filtered, the logistic engineer finds a first
solution, using decisions made for previous products, his experience, and spreadsheet calcu-
lations. Then, he uses a spare parts stocking tool (inventri, based on vari-metric and the
work of Rustenburg 2000) to stock spare parts. Analyzing the results, he finds components
for which spare parts holding costs are very high. If he thinks that it might help to change
the lora decision for these components, he does so and calculates the new lora costs and
solves a spare parts stocking problem. So in fact, the logistic engineer tries to perform some
manual iterations, which has as its drawbacks that this approach is:

• time consuming, since an analysis takes up to a few days after all data has been
acquired;

• unreproducible, because of the judgmental feedback loop;
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• error sensitive.

Usage of the iterative (or integrated) algorithm would take away these drawbacks.

6.2 Case: a sensor system

Although the considered product structure consists of six indenture levels, we consider only
three indenture levels, as a result of the non-economic lora. For the same reason, the
product structure consists of over 1,500 components, but only slightly more than 200 turn
out to be relevant, of which 40% are lrus. For about one third of the components, only one
repair/discard option remains, and for an additional one third, the repair/discard options
that can be chosen are restricted. The repair network consists of twelve ships, attached to
two intermediate depots, a central depot and the oem (spare parts may not be stocked at
the oem and if repairs are performed at the oem, then the variable repair costs per repair
action are higher, but an investment in resources is not required for the navy). There are
54 resources, 34 of which are ‘adapters’. These adapters are used in concurrence with other
test equipment.

The costs of the various components can be up to one million euros, and the costs of
the various resources can be up to a couple of million euros. These costs are not used
directly. Instead, there are three types of costs in the joint problem of lora and spare parts
stocking: variable costs per repair or discard action, fixed annual costs for locating resources,
and annual spare parts holding costs. For each type of costs, we give the most important
cost factors that we include (another overview of the cost factors to include can be found in
Saranga and Dinesh Kumar 2006):

• Variable repair costs (customer’s network): working hours (e.g., locating failure, ex-
changing subcomponents, and performing direct repair), variable costs for using re-
sources (e.g., energy consumption and wear), and usage of additional parts (e.g., bulk
items such as screws and wires).

• Variable repair costs (oem and outsourced in general): listed repair price.

• Variable discard costs: procurement price for the component that replaces the discarded
component and disposal costs or a residual value of the discarded component.

• Variable move costs: transportation, handling, and administrative costs.

• Fixed resource costs: depreciation costs, costs of capital, a risk factor (e.g., insurance
against damage and theft), fixed operating costs (e.g., a location to operate the equip-
ment), and maintenance costs of the resource. Resources may have a residual value
after their economic lifetime.

• Spare parts holding costs: costs of capital, a risk factor, and storage costs. Spares may
have a residual value after the lifetime of the product.

6.3 Results

Figure 4 shows the results on the case study, with a target availability of 95%. We see that
the iterative algorithm finds the best solution with a cost reduction of 9.7%. The reason that
the solution of the integrated algorithm leads to higher costs is the overshoot problem, as
can be seen in Figure 5. We also see that some parts of the curve are quite dense, whereas
others are not. This means that if we would have aimed for an availability of, for example,
94.8%, the overshoot would be very low. The figure also shows that the iterative algorithm
finds a solution that is very close to the curve of solutions that the integrated algorithm
finds, and therefore probably very close to optimal.

The iterative algorithm requires less than one minute (11 iterations), whereas the inte-
grated algorithm requires almost two days. This means that for usage at Thales Nederland,
the iterative algorithm fits best.

The cost reductions are achieved as follows. More resources are installed and more repairs
are performed in the customer’s network and in total. This leads to higher resource costs and
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Figure 5: Availability as a function of total costs for the case study

higher variable costs, but also to much lower spare parts holding costs. The cost reduction
is achieved by:

• installing two resources at the depot that are not installed in the sequential solution;

• installing one resource at both intermediate depots instead of one at the central depot;

• installing one resource at all ships instead of one at each of the two intermediate depots.

The other resources are installed at the same echelon level in both solutions. The logistic
engineer at Thales Nederland achieves about a quarter of the cost reduction that we achieve
using the iterative algorithm. He locates resources at a more central location than our
iterative algorithm does, but at a more decentralized location than the sequential algorithm
does.

7 Conclusions and further research

In this paper, we presented an iterative algorithm for the joint problem of lora and spare
parts stocking for multi-indenture, multi-echelon problem instances with very mild restric-
tions on the resource-component relations. Our conclusions are as follows:

• The iterative algorithm performs very good on average. Only in rare cases do cost
differences of a few percent exist with the integrated method.

• The difference between the approximate and exact version of the integrated algorithm
is very small.
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• The iterative algorithm scales very well. Computation time is not a problem, whereas
it is a huge problem for the integrated algorithm

• The iterative algorithm can be used in practice and leads to a substantial cost reduction
compared to solving the two problems sequentially. In fact, the algorithm has been
adopted by Thales Nederland.

• The iterative algorithm may easily be extended if extensions affect only one building
block. An example would be certain flexibility options in the spare parts stocking
analysis, e.g., lateral transshipments or emergency shipments.

Our recommendations for further research are as follows:

• Extend the model so that the exact repair network can be modeled. In both the lora
and the spare parts stocking problem this is easily done, so the key problem to solve
is how to decompose the spare parts holding costs so that they can be fed back to the
lora.

• Include finite repair capacities in the model. This is already difficult for the spare parts
stocking problem alone, but there is some literature available (see, e.g., Sleptchenko
et al. 2002). The feedback mechanism changes since the spare parts holding costs are
now not attached to one possible repair/discard decision, but to a possible repair/-
discard decision including a number of resources (in case of repair). However, we do
not expect too much problems with this change in the feedback mechanism.

Many practically relevant extensions such as a probability of unsuccessful repair and the
aforementioned flexibility options in the spare parts stocking analysis may be included as
well. Since they do not affect the feedback mechanism, they will not cause problems and are
therefore interesting from a business point of view, but probably not from an academical
point of view.

With all possible extensions, it will be hard to compare the iterative algorithm with the
integrated algorithm, since the computation time of the latter algorithm will explode.

Acknowledgments

The authors gratefully acknowledge the support of the Innovation-Oriented Research Pro-
gramme ‘Integral Product Creation and Realization (iop ipcr)’ of the Netherlands Ministry
of Economic Affairs, Agriculture and Innovation.

A Termination of the iterative algorithm

We proof that the iterative algorithm necessarily converges in a finite number of iterations.
We do so by showing that the number of possible solutions is finite and that it is not possible
to have a cycle (a number of iterations after which we find exactly the same solution). In
our proof we assume that the discard option is available at each echelon level to decrease
the notational complexity. The proof is straightforwardly adapted if discard is available at
the central depot only.

Lemma 1. The number of possible solutions is finite.

Proof. If there are |E| echelon levels, then each resource can be located at the various echelon
levels in 2|E| ways. Since there are |R| resources, the total number of combinations for the

resource locations is 2|E|
|R|

.
Each component may be repaired or discarded at any of the |E| echelon levels, so there

are 2 · |E| repair/discard options per component. Since there are |C| components, there

are (2 · |E|)|C| options in total. In fact, there are generally less combinations, since some
repair/discard options are unavailable for a subcomponent given the repair/discard decision
for its parent component.
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Combining the options for the resources and the components shows that there are at most

2|E|
|R| · (2 · |E|)|C| possible solutions for the lora problem. Due to the exact allocation of

resources to echelon levels, some repair options may not be available for certain components.
Since a given solution for the lora problem leads to one specific allocation of spare parts

in the spare parts stocking problem, there are also at most 2|E|
|R| · (2 · |E|)|C| solutions for

the joint problem.

We define Hi as the three-dimensional array with entries hcic,e,d in iteration i.

Corollary 1. Hi can be filled in at most (|C| · |E| · 2)
1+2|E|

|R|
·(2·|E|)|C|

ways.

Proof. As a result of Lemma 1, each entry hcic,e,d in Hi can be filled in at most 2|E|
|R| ·

(2 · |E|)|C| ways in each iteration i (i > 1). In addition, each hc1c,e,d = 0. Since there are

|C| · |E| · 2 values to be filled, Hi can be filled in at most (|C| · |E| · 2)
1+2|E|

|R|
·(2·|E|)|C|

ways.

We now show that cycling cannot occur, which is formalized in Lemma 2. In iteration i,
an estimate of the spare parts holding costs is included in the inputs for the lora problem
(Hi). The iteration starts with solving the lora problem, leading to a certain lora solution
LSi (the repair/discard decisions and resource locations) with resulting lora costs LCi

(variable and fixed costs) and resulting estimated spare parts holding costs ECi. Next, the
spare parts stocking problem is solved. The total costs of the solution in iteration i are now
the lora costs (excluding the estimated spare parts holding costs) LCi plus the spare parts
holding costs resulting from the spare parts stocking problem SCi. In iteration i + 1, the
estimates of the spare parts holding costs in the lora inputs are adapted again (to Hi+1)
and a new lora solution is found LSi+1, with associated costs LCi+1+ECi+1. The proof of
Lemma 2 states that cycling can occur only if LCi+1+ECi+1 is equal to LCi+SCi. In other
words, the solution that is found in iteration i+ 1 may be different from the solution that is
found in iteration i, but they lead to the same costs using the lora inputs in iteration i+ 1
(including Hi+1). Therefore, we could just as well pick solution LSi again and terminate
the algorithm, which is what we describe in Section 4.

Lemma 2. The iterative algorithm cannot cycle between a number of realizations of Hi.

Proof. We define Xi
c,e,d, Y

i
r,e, and Sic,e as the realization in iteration i of Xc,e,d, Yr,e,

and Sc,e, respectively. Then, we define LCi =
∑
c∈C

∑
e∈E

∑
d∈De

vcc,e,d · λc · Xi
c,e,d +∑

r∈R
∑
e∈E fcr,e ·Y ir,e, ECi =

∑
c∈C

∑
e∈E

∑
d∈{discard,repair} hc

i
c,e,d ·λc ·Xi

c,e,d, and SCi =∑
c∈C

∑
f∈E hc

′
c,f ·Sic,f . ECi represents the estimated spare parts holding costs in the lora

solution in iteration i, whereas SCi represents the actual spare parts holding costs result-
ing from solving the spare parts stocking problem in iteration i. Remember from Section 4
that for each tuple (c, e, d) (with d ∈ {repair,discard}) for which Xi−1

c,e,d > 0, we set hcic,e,d =∑
f∈E hc

′
c,f ·S

i−1
c,f

λc
. Therefore SCi =

∑
c∈C

∑
f∈E hc

′
c,f ·Sic,f =

∑
c∈C

∑
e∈E

∑
d∈{discard,repair} λc·

hci+1
c,e,d · Xi

c,e,d. Finally, we define ∆i as the difference between SCi and ECi, so ∆i =

SCi − ECi =
∑
c∈C

∑
e∈E

∑
d∈{discard,repair}

(
hci+1
c,e,d − hcic,e,d

)
· λc ·Xi

c,e,d.

If LCi+1+ECi+1 = LCi+SCi, we know that LSi+1 = LSi and the algorithm terminates.
So, in a cycle of length n (n > 1) it should hold that LCi+1 + ECi+1 < LCi + SCi =
LCi+ECi+∆i. For iteration i+2 it then holds that LCi+2+ECi+2 < LCi+1+ECi+1+∆i+1,
so LCi+2+ECi+2 < LCi+1+ECi+1+∆i+1 < LCi+ECi+∆i+∆i+1. For the nth iteration,
we get LCi+n + ECi+n < LCi + ECi +

∑n−1
k=0 ∆i+k. In a cycle of length n (n > 1), we

also know that LCi+n = LCi and ECi+n = ECi, so it should hold that
∑n−1
k=0 ∆i+k >

0. However,
∑n−1
k=0 ∆i+k =

∑n−1
k=0

∑
c∈C

∑
e∈E

∑
d∈{discard,repair}

(
hci+k+1
c,e,d − hci+kc,e,d

)
· λc ·

Xi+k
c,e,d =

∑
c∈C

∑
e∈E

∑
d∈{discard,repair}

∑n−1
k=0

(
hci+k+1
c,e,d − hci+kc,e,d

)
·λc ·Xi+k

c,e,d. We know that
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if Xi+k
c,e,d = 0, then hci+k+1

c,e,d = hci+kc,e,d. We also know that hci+nc,e,d = hcic,e,d. It is now easily

seen that
∑n−1
k=0

(
hci+k+1
c,e,d − hci+kc,e,d

)
·λc ·Xi+k

c,e,d = 0 for all c ∈ C, e ∈ E, d ∈ {discard, repair}
and therefore

∑n−1
k=0 ∆i+k = 0. We have shown that a cycle cannot occur if we only pick

another lora solution in iteration i + 1 if that leads to a strictly better result than using
the lora solution of iteration i again. Therefore, the iterative algorithm cannot cycle.

Theorem 1. The iterative algorithm always terminates after a finite number of iterations.

Proof. This holds since the number of possible matrices Hi is finite, as stated in Corollary 1,
and the algorithm cannot cycle between a number of realizations ofHi, as stated in Lemma 2.

B Problem instances generator

In this appendix, we supply additional details on the generation of the product structure,
failure rates, component prices, and resources prices.

The three-indenture product structure consists of 50 lrus, 100 srus, and 200 parts (so
two subcomponents per component on average). Each subcomponent is randomly assigned
to one of the components at the next lower indenture level. As a result, in general, the
number of subcomponents per component differs for the various components. The annual
demand for a component is equal to the annual demand of its subcomponents (if any exist).
We achieve this by drawing the annual demand of each part from a uniform distribution on
the interval [0.01/(#subcomp. per comp.)2; 0.25/(#subcomp. per comp.)2], and recursively
calculating the annual demand of the srus and lrus. The demand for srus or lrus without
subcomponents is drawn from the same interval as the demand for parts.

For each component, we draw a net price from a shifted exponential distribution with shift
factor 1,000 and rate parameter 7/(10,000− 1,000). As a result, we do not have components
with a price below 1,000, since they are typically discarded by default. Furthermore, there are
considerably more cheap components than expensive ones. On average 1h of the components
get a value larger than 10,000, but we draw a new price for these components to avoid odd
problem instances. The annual costs of the resources are drawn from a shifted exponential
distribution with shift factor 10,000 and rate parameter 7/(100,000− 10,000). To avoid odd
problem instances, we draw a new value if we have drawn a value higher than 100,000.
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