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Introduction 

Presumably, man has always been aware of the limitations of his senses. Occa
sionally, one even feels doubt about what the senses tell about the real world. 
This shows there exists an awareness about a world outside and a projection of 
that world via the senses. But this distinction between a world outside and a per
ceived world has become more acute now that physicists describe a world in terms 
that is more and more at odds with our daily experience. Terms like 'mass' are 
used instead of 'weight' and light is described as a 'spectrum of electromagnetic 
frequencies' while one observes 'colours'. 

Therefore, the relation between the world described in physical terms and the 
world as perceived by our senses gains in scientific interest, also supported by the 
demands for knowledge about this relation for use in technical equipment. This 
thesis reflects this interest and, more specifically, it is concerned with the relation 
between visual stimuli described in physical terms and human percepts. This is 
still a rather large field and is much more narrowed down in the following chapters. 

In this introduction, we will look into three issues that occur again and again 
in each chapter of this thesis. Therefore, it is worthwhile to start this thesis by 
considering these items in a more global way than could be done in the various 
chapters. These items are: 
• the processing of visual stimuli, 
• descriptive formulations of experimental findings (models), 
• interpretations of models. 

The processing of visual stimuli 

The field of research that is of interest in this thesis is the processing of visual 
stimuli by the human eye and brain. We restrict ourselves to non-cognitive pro
cesses, and to psychophysical data and models. The actual processing by nerve 
cells is not our direct concern, although there obviously has to be a connection 
between physiological findings and psychophysical results. But it must always be 
kept in mind that psychophysical results must presumably be attributed to large 
masses of nerve cells, and physiological research concentrates on the behaviour of 
single cells or cooperations of small groups of cells. Psychophysics is essentially a 
black-box approach: only relations between input and output signals are investi
gated. The actual implementation by nerve cells is of secondary importance, and 
the modelling of psychophysical data as is done in this thesis provides in general 
no information about this. 

The input signal in our black-box approach is a visual stimulus: the luminance 
distribution described in physical terms. The output signals are human percepts 
e.g., colour, brightness, apparent contrast, apparent size. Frequently the term 
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'apparent' appears in names of human percepts, since we often have to distinguish 
between the physical definition of these terms and the judgments of the human 
observer. 

From this large field we will concentrate on threBhold data and the transient 
ByBtem. Threshold data are the data concerning the relations between the phys
ical quantities of a stimulus (upon a certain background) such that these can 
just be detected. We concentrate ourselves on threshold data for two reasons, 
mainly. First, these data are important as limits for technical realization of visual 
equipment. Secondly, this kind of analysis is a well-established first step in the 
modelling of nonlinear systems. This is a consequence of the small-signal theory: 
small variations of input signals around some steady level can usually be described 
by linear processing. Essentially, this is an engineering approach to the problem, 
that was started in the temporal domain of the visual perception by the work of 
De Lange (1952). However, the experimental data as collected by De Lange will 
not be a starting point for our modelling, as will be discussed in Chapter 1. It is 
doubtful whether linearity holds in general for threshold data. 

Although the visual system acts in general nonlinearly for threshold stimuli, 
there are certain conditions in which linearity holds. From this finding and from 
physiology (e.g., Lennie, 1980), the idea of parallel pathways evolved. Nowadays, 
models for visual processing at threshold level commonly consist of parallel linear 
filters that cooperate in some nonlinear way. 

In the temporal domain usually two temporal channels are distinguished: the 
transient and sustained channel (Kulikowsky and Tolhurst, 1973; Roufs, 1974; Bre
itmeyer and Ganz, 1976; Krauskopf, 1980; Roufs and Blommaert, 1981; Green, 
1984). Some studies (Mandler and Ma.kous, 1984} point at three separate channels. 
The sustained channel is tuned to the low temporal frequencies, the transient chan
nel is most sensitive to fast temporal changes. In the spatial domain the sustained 
channel and the transient channel are sensitive to high-spatial and low-spatial 
frequencies, respectively (e.g., Breitmeyer and Ganz, 1976; Legge, 1978}. These 
channels are also founded on the different percepts that are observed. For peri
odic stimuli of high-temporal frequency the.percept is flicker, sometimes described 
as 'agitation' (Roufs, 1974). For periodic signals of low-temporal frequency the 
percept seems more related to brightness: increases and decreases of the ampli
tude can be observed. Therefore this percept is sometimes called 'swell' (Roufs, 
1974). For pulse and step-like stimuli there is also a dear difference in percept in 
case of processing by the transient and sustained channel. In the former case a 
disturbance of the homogeneity of the field is seen, a sudden and hard to localize 
event. In the latter case a clearer increase (or decrease) of brightness at a localized 
position in the field is observed. 

In this thesis we are mainly concerned with the transient visual channel. The 
data that is used is considered to be solely contributable to the transient visual 
system, unless explicitly stated otherwise. As argued in Chapter 1, it is possible 
to obtain appropriate experimental data to model this channel. 
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Models 

As mentioned above, we are concerned with modelling the transient visual chan
nel. This channel is assumed to act linearly around some steady background level, 
at least for threshold excitations. Indications for linearity have been found by 
De Lange (1954), Roufs and Blommaert (1981), Krauskopf {1980), Blommaert 
and Roufs (1987) and this author (Chapter 2 of this thesis). Roufs and Blom
maert (1981) suggested a method (the perturbation technique) for experimentally 
determining time-domain the impulse response of circular discs. These impulse 
responses for larger disc sizes are associated with the transient channel (Roufs and 
Blommaert, 1981; de Ridder, 1987), and will form the starting point of the mod
elling. Using a parameter estimation program, the parameters of a linear model 
are determined from the impulse response data. Not only the impulse response 
but also the step response, the gain, and phase characteristic of the system can 
be experimentally determined by the perturbation technique. These data can be 
used as an independent test for the estimated model. 

Modelling the system has several advantages: 
• the modelled data is condensed into a few parameter values, 
• the noise in the data is smoothed, 
• predictions can be made with respect to new experiments and the modelling 
provides therefore an important contribution to generalization, 
• hopefully, the model and its estimated parameters give insight into the system 
(see next section). 

In Chapter .3 a chain of linear filters is proposed as a model of the transient 
channel. The last filter is 'matched' with respect to signals occurring in the earlier 
stages. This concept is based on an explicit functional argument about the system. 
In Chapter 4, 5 and 7 a fourth and sixth-order linear filter are taken as a model 
for the temporal behaviour. The choice of these filters is a very common approach 
in engineering and is more general than the approach in Chapter 3. The reason 
to introduce these n-th order filters is that (the macroscopic behaviour of) many 
physical systems can be described by a differential equation of limited order. 

It turns out that both above mentioned models provide a nice description of the 
impulse response data, and give adequate predictions of threshold-versus-duration 
curves, subthreshold measurements of gain and phase characteristics and of the 
high-frequency side of De Lange curves. 

Interpretation of models 

The results of the estimated models give rise to two different interpretations. 
The first interpretation tries to find a relation with physiological data. For 

instance, an n-th order linear filter is a description in poles and zeros of the sys
tem and in general one hopes that it is possible to attribute different poles (and 
zeros) to different subsystems that actually perform the processing. However, we 
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have to he extremely careful with this, since physiology is usually concerned with 
single cell behaviour whereas psychophysics presumably reflects the behaviour of 
an enormous number of different nerve cells. Even if we can distinguish different 
subprocesses that agree with physiological events, it must be kept in mind that 
from modelling the total response only a rough estimate of the subprocesses can 
he obtained. All details in subprocesses are more or less filtered out in a chain of 
processes. 

Another way of interpreting the estimation results is achieved by comparing 
the parameters over different experimental conditions. In that case it is necessary 
to have an estimate of the variance of the estimated parameters. It is found 
that if the same experimental conditions are used with different observers, the 
estimated filters can be considered one and the same. This is not a surprising 
result: it already seems apparent in the data, and secondly, this is a common 
finding in perceptual research. This enables us to introduce a 'standard filter' and 
a 'standard subject' in a given experimental condition. 

Varying the field size reveals that some of the estimated parameters of the 
fourth-order filter vary by an amount that cannot be attributed to statistical ef
fects. This leads to the concept that, at least functionally, a subsystem is found 
that incorporates all spatiotemporal interactions within the transient channel. A 
simple linear spatiotemporal model is proposed to account for the processing per
formed by this subsystem {Chapter 6). 

Variation of the background level gives similar results: also here specific pa
rameters change by an amount not attributable to statistical effects. From this we 
derive a nonlinear model that is able to account for the observed changes. This 
nonlinear model, a fast adaptive closed-loop mechanism, gives a generalization of 
our results to conditions of arbitrary background levels, and can possibly even 
account for some suprathreshold phenomena (Chapter 7). 

In this respect our modelling reveals relations between conditions that are (a 
posteriori) hidden in the experimental data. We think that this is the most inter
esting merit from the modelling. 

In conclusion we would like to say that the whole exercise performed in this 
thesis is a rather tricky business; the collecting of the experimental data., the 
choice of the model and its parametrization and the h,1terpreta.tions are so linked 
up, that it is hardly possible to start with an 'unprejudiced' view of this matter. 
Even though one starts with adhering to viewpoints that may be questionable, it 
is hoped that the thesis establishes the fruitfulness of the chosen approach, and 
that the many suggestions- in the different chapters act a.s a catalyst for insight 
and future research. 

An outline of the thesis 

In the first chapter we devote attention to experimental data that can be used 
to model (part. of) the visual system. In particular the De Lange· curves are 
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considered, and it is discussed that this kind of experimental data is probably not 
a good starting point for modelling. 

In the second chapter a statistical test is performed on the subthreshold data 
from a perturbation experiment. It is shown that this statistical test supports 
the notion that the transient channel is operating linearly, and rejects models 
containing quadratic elements. 

On the basis of the linearity assumption the impulse response data obtained by 
the perturbation technique are modelled as a linear filter. In Chapter 3 a proposal 
is made for the linear filter (a pseudo-matched filter) and it is shown that the 
behaviour of the system agrees well with such model. 

A more general filter (a fourth-order linear filter) is proposed in Chapter 4, and 
an estimation technique is described to estimate the parameters of this filter. A 
short discussion of the results of the estimation method is included. 

In Chapter 5 the estimation results of the fourth-order linear filter are discussed 
in more detail, and it is shown that by the choice of the filter and its parameters 
interpretations of the processing within the transient system can be made. 

One of the conclusions in Chapter 5 is that a relatively simple spatiotemporal 
model should be able to account for the spatiotemporal interaction within the 
transient system. In Chapter 6 we take a closer look at the possibilities that 
membrane models offer to explain the results from Chapter 5. 

The results of the estimation procedure (Chapter 5) with background level are 
elaborated in the Chapter 7. A sixth-order filter is taken as a model and by 
comparison of the estimated parameters of the filter it is found that these results 
can be interpreted as a closed-loop adaptive filter. 
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chapter 1 

Considerations on modelling from De Lange curves1 

A.C. den Brinker 
F .J .J. Blommaert 

Abstract 

Starting with the pioneering work of De Lange1, many attempts have been made to 
model temporal human vision on the basis of thresholds for sinusoidally modulated 
light. In this way it is hoped to acquire a general function from which thresholds 
for other time-varying stimuli can be predicted. Recently several new studies 
appeared. Reconsidering these attempts we argue that this kind of approach often 
suffers from assumptions which are not or not fully acknowledged. 

1.1 Introduction 

As proposed by Sperling2 and Levinson3 at the Flicker Symposium held at Ams
terdam in 1963, a curve which describes the log of the modulation- or amplitude 
sensitivity as a function of the log frequency for sinusoidally modulated light is 
called a De Lange characteristic or De Lange curve. Such a curve is often seen as 
a fundamental characteristic of the temporal properties of the visual system. This 
stems from the notion that linear systems theory may be applicable to the visual 
system, at least for threshold excitations around some steady background level. 

De Lange1•4•5 showed that starting from a De Lange characteristic the sensitivity 
of the system to other periodic stimuli of high temporal frequency content can 
successfully be predicted. The extension of this idea is that one might be able to 
predict the sensitivity for arbitrary stimuli, especially aperiodic ones, on the basis 
of a De Lange curve. 

As this idea has been put forward in various studies over the years, some of 
them recently, one wonders about the assumptions and fruitfulness of such an 
approach. We therefore reconsider the assumptions that are usually made in the 
prediction of thresholds for aperiodic stimuli, and argue that the linear approach 
is not as straightforward as often suggested. Other measurements might be more 
appropriate to characterize temporal properties of vision. 

In the second Section of this paper we turn our attention to several studies 
that model the visual system starting from a De Lange curve, and focus on the 
similarities and differences in these papers. Next a closer look is taken at the 
assumptions underlying the modelling. In Section 3, predictions of these models 
for threshold-versU&-duration curves are discussed, and compared to experimental 

1submitted to Psychological Review 
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data. As a last point we discuss an alternative experimental approach which aims 
at a more direct determination of impulse responses and phase spectra. This kind 
of approach involves restrictions, as will be discussed. 

1.2 Models on temporal processing 

If a De Lange curve is taken for modelling the visual system around threshold 
by using linear system theory, one should have some indication that the system 
is actually behaving linearly. There is ample evidence for linear processing at 
threshold level (cf. De Lange4); on the other hand there are also indications for 
temporal processing in different channels6•7•8• Furthermore, there is always noise 
to consider, which cannot be accounted for in a linear model either. 

Nevertheless, under the assumptions that the visual system acts as a single 
temporal channel, and that thE! noise can be neglected, the De Lange curve is 
equal to the amplitude-gain characteristic (TMTF, Temporal Modulation Transfer 
Function) of the unknown linear filter. These assumptions (single channel and 
negligible noise) will be discussed in more detail further on. 

One way to start modelling the visual system is to postulate a certain impulse 
response or an equivalent network, and take the parameters such that the absolute 
value of the Fourier transform of this impulse response fits the De Lange curve. 
Early examples of this approachare the studies of KeUy9, who used a diffusion 
stage followed by a pulse encoder, Matin10 and Sperling and Sondhi11 , who used 
a network consisting of a cascade of RC elements with parametrically controlled 
time constants, and Roufs12, who postulated a minimal phase network (using a 
ten-stage lowpass filtering network plus two differentiating sections). More recent 
examples can he found in the work of Watson and Nachmias13 and Bergen and 
Wilson1

\ who used the impulse response of a ten-stage lowpass filter added to a 
delayed and inverted replica of itself, of Georgeson15, who took a single cycle of 
a raised cosine with halfwidth T, plus an inverted delayed and attenuated copy 
of the same waveform with a delay T, and of Ohtani and Ejima16, who used a 
combined differentiating and integrating network. 

A weak point in most of these studies might be that the choice of the impulse 
response (or the network) is rather arbitrary. To comment on this, we have to 
distinguish between two different kinds of stimuli. . 

On the one hand there is the case of targets with fine detail. A lowpass character 
is found in aDe Lange curve which does not seem dependent on either background 
or spatial frequency15•16, except for a multiplication factor (overall sensitivity). For 
a lowpass gain characteristic (not having a very high fall-off) there is little choice 
in the shape of the impulse response: it has to be something like a positive 'bump', 
although in principle small negative parts of the impulse response are permitted. 
How this 'bump' is described is not so essential for purposes of prediction. How
ever, from the point of view of a systems approach, there are preferences. For 
instance, one would prefer a.n n-th order linear filter description to a description 
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in the form of one period of a raised cosine15 • 

On the other hand we have the condition of low spatial frequency stimuli. At 
high background intensities a De Lange curve shows a (nearly) bandpass character, 
which changes into lowpass at low background levels. In this case the choice of the 
impulse response to fit a De Lange curve is essentially arbitrary: roughly speaking, 
it may consist of several positive and negative 'bumps' which can be arranged in 
various ways to obtain the same amplitude-gain characteristic. Fascinatingly, all 
cited authors agree that the impulse response should be (almost) biphasic, with 
the first phase positive and most pronounced. The argumentation of this choice 
is, as far as we know, physiologically inspired: the processing of visual informa
tion in cones17, horizontal18, bipolar19 and ganglion cells20 shows biphasic impulse 
responses, as far as the linear part of the cell responses is concerned. Although 
cells are the basic units for perception, it is not clear how these cell responses 
contribute to a resulting overall perceptual response. Therefore, postulating a 
biphasic impulse response as a model for the perceptual impulse response is an 
unwanted restriction. 

A way to circumvent the arbitrariness of the choice of an impulse response was 
sought by Stork and Falk21 • They did not consider a specific choice of impulse 
response to fit the De Lange data, but wanted to reconstruct the phase spectrum 
from the De Lange curve without any new assumption. They stated that on the 
basis of the causality of the impulse response the phase spectrum of the filter could 
be retrieved from a De Lange curve by means of the Kramers-Kronig relations, 
without any new assumption. 

The notion that there is an unique connection between causality and the Kramers
Kronig relation is incorrect, and is not even supported by the reference22 that Stork 
and Falk21 used. The Kramers-Kronig relation is equivalent to a minimal phase 
assumption, as was acknowledged by Swanson et al.23 , who used the Stork and 
Falk22 scheme to derive impulse responses from their De Lange curves for lumi
nance and chromatic stimuli. However, it is questionable whether minimal phase 
is an appropriate assumption for chromatic temporal responses, as was already 
recognized by De Lange5• With chromatic stimuli23 it is expected that difference 
signals from different colour-sensitive pathways determine the responses. It is well 
known that a transfer resulting from the difference of two minimal phase transfer 
functions generally exhibits a non-minimal phase behaviour (cf. electrical bridge 
circuits). 

The fact that causality does not imply a minimal phase relation, is shown 
with a counter example in Fig. 1. An amplitude spectrum (Fig. la), which can 
be associated with different phase spectra (Fig. lb), can lead to different causal 
impulse responses (Fig. lc). 

The foregoing discussion can be extended to the genera1 conclusion that it is 
impossible to derive an impulse response or a phase spectrum from an amplitude 
spectrum (TMTF) without any further assumptions. And in as much as a biphasic 
impulse response is an arbitrary choice, so is the assumption of a minimal phase. 
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Figure 1: A. Amplitude-gain characteristic of a fourth-order linear filter. B. 
Two phase-spectra. belonging to the amplitude-gain curve of Fig. la.. The 
upper curve (I) is a phase spectrum with the zeros of the transfer function in 
the left half-plane; for the lower curve (II) the zeros have been mirrored with 
respect to the origin of the s-plane. C. Normalized impulse responses derived 
from the amplitude and phase spectra of Figs. la and lb. For clarity, the 
upper curve is shifted over two units. 
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Sustained and transient channels 

The channel idea emerged from the electrophysiologically defined sustained and 
transient cells24 (for a review see Lennie25), and was soon adopted in psychophysics 
6

•
26

•
13

•
8

• It was found that different temporal behaviour is coupled to different 
sensitivities for spatial patterns: the sustained behaviour is found for stimuli with 
fine detail, the transient system is associated with spatially coarser targets. The 
discussion on this subject is not yet concluded. A recent overview of arguments in 
this debate can be found in Watson27• 

As already mentioned, for fine-detail targets all the De Lange curves appear 
quite similar. However, for spatially coarser targets the characteristics change 
with spatial frequency and background level, and different percepts are observed 
at low and high temporal frequencies 7 • So, in the region of low spatial frequencies, 
there is not only a problem with the choice of the impulse response, but also with 
the question of whether a De Lange curve can be attributed to one channel only. 

The influence of noise 

The approaches to modeling the visual system, as mentioned above, all assume 
that a De Lange curve equals the amplitude-gain characteristics of the linear filter. 
This implies that there is no (or negligible) noise, or that the noise identically 
influences the measured sensitivity to different frequencies. That the influence of 
noise is not negligible can be readily shown experimentally: the sensitivity to a 
gated sinusoid is dependent on the duration of the signai28• This means that if a 
De Lange curve is used to model the temporal behaviour, the conjecture is made 
that the noise affects the sensitivity of different frequencies by an equal amount 
{on a logarithmic scale). For two special noise conditions this conjecture is not 
hard to prove (see Appendix), viz. if either a large part of the power spectrum of 
the noise is above the frequency domain of the linear filter, or if the autocorrelation 
function of the noise has time constants larger than the observation time which 
is used in the measurement of the De Lange curve (i.e. the dominant part of the 
power spectrum of the noise is located at very low frequencies). 

However, both noise conditions are probably not realistic assumptions for the 
noise in the visual system. There is no reason to assume that frequencies to which 

. the filter is sensitive are absent in the noise spectrum: It is more likely that all 
three frequency components mentioned are present in the power spectrum of the 
noise. 

Low and medium frequency noise components might explain the differences in 
the slopes ofthe psychometric functions that are found using a fast measurement 
technique (Biomma.ert and Roufs29; f3 = 6 - 8 if one uses Watson's27 description 
for the psychometric function) or a more time-consuming one (where {:J 3- 4 
may be found27

). 

Nevertheless, since significant noise is also found in fast measurements of psy-
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chometric functions, one must assume that part of the noise is located around the 
frequencies to which the eye is most sensitive. This mea.ns that this noise might 
give unequal reduction in sensitivity a.t different frequencies of a De Lange curve. 

1.3 Prediction of threshold-versus-duration curves 

From the modeled visual system, predictions can in principle be made for thresh
olds of arbitrary time-varying stimuli. For validation of models, pulses with vari
able durations are often used. Usually, predictions of thresholds for fine-detail 
targets are in satisfactory agreement with experimental data if noise is incorpo-
rated in the model. For spatially coarser targets there is less agreement between 
these predictions and experimental data 15•16• We will therefore turn our attention 
to these cases. 

Examples of experimental data. that make up such curves for not too small 
field sizes with a completely dark surround are shown in Fig. 2. These curves 
(taken from Blomma.ert and Roufs29) show a. linear relation between sensitivity and 
duration for small durations (Bloch's law) and a. duration-independent threshold 
intensity for long durations. 
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Figure 2: Reduced thre~hold-versus-duration curve for a 1 degree disk without 
surround. The individual curves were shifted horizontally and vertically such 
that the asymptotes at short and long durations coincided (for details see 
Blommaert and Roufs29, reprinted with permission). 

Bloch's law can be explained by a processing in the visual system that starts 
with a linear filter (with no transfer at the very high frequencies) followed by any 
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nonlinear processing30•31 • The independence of the threshold at long duration rules 
out a lowpass filter; a lowpass filter will not provide a steady threshold at long 
durations if noise is taken into account32

• This means that the linear filter must 
have a (nearly) bandpass character. 

The most remarkable element in such curves is that under certain conditions, 
these curves show a pronounced dip (about 0.15log unit) at intermediate durations 
33

•
29

•
23

: this is the threshold version of the Broca-Sulzer brightness phenomenon84• 

This dip, occurring at low spatial frequencies, cannot be explained by a biphasic 
impulse response and deterministic processing. Furthermore, the influence of noise 
is probably too small to account for the dip. Since Gorea and Tyler35 ignored other 
than mono- and biphasic impulse responses, they concluded that no linear model 
would be able to predict this dip. (That this is not the case if triphasic impulse 
responses are used was shown by Blommaert and Roufs29 .) Therefore, Gorea and 
Tyler introduced a nonlinear model, consisting of a linear filter with a biphasic 
impulse response, followed by a nonlinear double integrator. Apart from the fact 
that they fitted the biphasic impulse response directly to the De Lange curve, 
thus neglecting the contributions of their nonlinear operator, and apart from an 
incorrect derivation of the nonlinear parameter from the psychometric function, 
their model is still unable to predict a threshold-versus-duration curve showing 
a dip of the correct magnitude except for very unlikely values of the nonlinear 
parameters. In short, none of the models discussed up to now is able to explain 
the dip in the threshold-versus-duration curve from a biphasic impulse response. 

1.4 Concluding remarks 

Summarizing the foregoing, impulse responses can be derived from a De Lange 
characteristic if three conditions are fulfilled: 
• noise should contribute equally at different temporal frequencies 
• the temporal properties of one channel only are reflected in the De Lange curve 
• a choice is made on either the phase spectrum, the impulse response or a network 
that is used as a model. 
If this procedure is followed and it is found that predictions do not agree with 
experimental data, the mentioned conditions have to be reconsidered. This was 
actually done by Roufs7, Georgeson15, and Ohtani an<J Ejima16• These authors 
agree in that they attribute the discrepancies to the action of two different chan
nels. The most detailed analysis of a two-channel concept can be found in the work 
of Roufs7• He postulated a bandpass filter for the transient channel and succeeded 
in unifying experimental results on periodic and aperiodic stimuli with substantial 
temporal high frequency content. In a later stage this idea was pursued further in 
attempts to determine phase behaviour36 and impulse responses33 of the separate 
channels by using a subthreshold summation technique. The impulse responses 
determined in this way showed a triphasic character (like the impulse response in 
Fig. lc), and the phase spectrum exhibited a non-minimal phase relation. These 
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findings cast doubt upon the usual assumption of a biphasic impulse response or 
a minimal phase relation. However, the analysis of the properties of individual 
channels has the disadvantage that only predictions within a single channel can be 
accounted for. This means that this approach is only a partial way out of the prob
lem that is posed by modelling the visual system from a De Lange characteristic, 
since new unknown factors are introduced, i.e. interactions between channels. 
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Appendix. Contributions of noise to a De Lange curve 

In this appendix the effect of noise on the sensitivity of the visual system to a 
gated sinusoid is approximated for two special cases. First a high-frequency noise 
with a cut-off frequency leN is considered. Second, the effect of low-frequency 
noise is evaluated. 

We start with the scheme in Fig. 3: the input signal is a gated sinusoid with 
duration T. This duration T is much larger than the period 1/ I of the lowest 
frequency f in the De Lange curve. The slow onset and offset are used to elim
inate transient phenomena at the start and end of the presentation. The time 
constants of the gating onset and offset functions are much smaller than the pre
sentation time T. Within T the input signal is described by e:sin(211"/t), and 
e: > 0. The gated sinusoid is the input to a linear filter with transfer H(f) 
IH(f)lexp(-N(f)), IH(f)l being the amplitude spectrum and t/1(/) the phase 
spectrum of the linear filter. The output s(t) of the linear filter is considered to 
be equal to e:IH(f)l sin(2n"/t t/J(/)), within time interval T. Noise n(t} is added 
to the output of the linear filter. The last stage of the processing is a detection 
mechanism with a symmetric threshold values (-d, +d). 

n(t) 

L(E) 
no 

Figure 3: Model for noise analysis. 

Taking a Weibull distribution37 and under the assumption that the cut-off fre
quency leN of the noise is much larger than the cut-off frequency of the linear filter, 
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the noise behaviour can be translated into a deterministic nonlinear operator. For 
the threshold value e,,. of a gated sinusoid it is found that38•16 

loge,, = -log(IH(f)l/d) ')log(/cN) 

-~ log(T) -~log~~ J; I sin pi~' dp) , (1) 

where fj is the parameter from the Weibull distribution. 
From this equation we see that the effect of noise is identical for each fre

quency /, as long as the same presentation timeT is used. 
We find that the substitution of the stochastic behaviour of the noise by a non

linear deterministic rule is only applicable under the assumption of high-frequency 
noise. Consequently, this description of the noise is not as plausible27 as sometimes 
thought. 

The effects of low-frequency noise will now be considered where, similar to the 
case of high-frequency noise, we again consider intervals in which the noise is un
correlated. H the time constants of the autocorrelation function of the noise are 
much larger than T, the threshold determination in each interval T is a deter
ministic event with threshold d - n (with noise n approximated as steady over 
the complete presentation time). Repeating such an experiment with the same 
frequency f and duration T, we find in each experiment a different value for the 
noise n. However, the distribution of n is not dependent on /,so: 

[ (
IH(f) I)] e[Ioge,,.] = -t log d _ n - log ( IHY) I) ' (2) 

in a first order approximation of any distribution with e[n] 0 (e stands for 
expected value). 

An extension of this low-frequency noise can be described qualitatively. Con
sider noise with time constants of the autocorrelation smaller than the presenta
tion timeT, but larger than that of the period of even the lowest frequency in a 
De Lange curve. The presentation time T can then be divided into a number of 
intervals with duration T.,c (T.,c about the largest time constant of the autocorrela
tion function). This rough approximation shows a deterministic behaviour within 
T ac and independent noise contributions in the different intervals. In that case the 
effect of the noise is dependent on the presentation timeT, but independent of the 
presented frequency f. Furthermore, one would expect to see a sequence of peaks 
(over periods of roughly Tac), contrary to the case of high-frequency noise, where 
detection would consist of observing independent peaks randomly distributed over 
the presentation interval T. 

However, the most interesting case of noise with a significant part of its spec
trum located around the frequencies to which the linear filter is optimally sensitive 
cannot be treated in the rough approximations as before. Nevertheless, one thing is 
dear: such noise will give different sensitivity increases to different input frequen
cies. Essential in those cases is the precise form of the autocorrelation function 
(or the power spectrum) of the noise. 
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chapter 2 

Linear and quadratic models for threshold data 
of the transient visual system1 

A.C. den Brinker 

Abstract 

In this paper two models are considered for the transient visual system at thresh
old. One is a linear model and the other a model containing a quadratic element. 
Both models are commonly used based on experimental results from different 
sources. It is shown that both models act in a similar way for the experiments 
using a perturbation technique as is the case at IPO. It is, however, possible to 
distinguish between these models in an experiment with a perturbation technique 
using a statistical test. This test is discussed and performed and it is shown that 
it supports the linear and rejects the quadratic model. 

2.1 Introduction 

Data obtained from a psychophysical threshold experiment (Roufs and Blommaert, 
1981) are interpreted and modelled as the impulse response from a linear system. 
Within the sets of linear models there is one, which we will call a pseudo-matched 
filter, which fits the data. This model has some resemblances to two nonlinear 
models: the Reichardt model (Reichardt, 1957; 1961; Reichardt and Varju, 1959), 
and the Rashbass model (Rashbass, 1970; 1974). It is shown that the measured 
data can also be interpreted as being derived from these nonlinear models. In 
these ca.Ses the measurement data are interpreted not as an impulse response, but 
as the autocorrelation of the impulse response of the linear stage of these models. 
Additional data (e.g. step responses and block responses) also fit into the linear 
and nonlinear models. Therefore the problem is how to distinguish between the 
linear and the nonlinear models. It is pointed out that a measurement performed 
by Elsner (1986) is probably not decisive in distinguishing between these linear and 
nonlinear models. It is shown that a perturbation experiment makes it possible to 
discriminate between the linear and nonlinear models by using a simple statistical 
test. 

2.2 A qualitative comparison 

In this section the similarities in behaviour of the Rashbass, the Reichardt, and 
the pseudo-matched filter model are shown with regard to certain stimuli. 

1 Parts of this chapter appeared in IPO Annual Prbgress Report 21, 53-62, 1986. 
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The Reichardt model (Reichardt, 1961) was originally developed for the move
ment detection of insects, but later these models were also applied to human move
ment detection. Here only the main part of this model (Figure lA) is used and 
all refinements are omitted. This main part consists of two equal linear filters D, 
plus a cross-correlator. 

b.~R 

R 

Figure 1: A. A simplified version of the Reichardt model. This model consists 
of two identical linear filters D, a time delay T, a multiplier M, and an ideal 
integrator S. 

B. The Rashbass model. Dis a linear filter, which is followed by a quadratic 
element, and an integrator S. 

C. The pseudo-matched filter model, consisting of a series of linear filters /; 
(i = 2,3,4} and an amplifier A. 

For non-moving stimuli (e.g. flashed discs) the excitation at different points 
of the retina has the same time variation. The maximum response of the cross 
correlator will therefore occur for a time delay T = 0. Since the time courses at 
the two inputs of the simplified Reichardt model are equal, the multiplier can be 
substituted by a quadratic element, simultaneously o~itting the second input of 
Figure 1A. This is depicted in Figure lB. This model is called the Rashbass model 
(Rashbass, 1970; 1974). This means that the simplified Reichardt model acts in 
the same way as the Rashbass model for short time delays T, and non-moving 
stimuli. We will not discuss whether a small time delay is appropriate within the 
Reichardt model; the point here is that if small delays are used in the Reichardt 
model, then this model is equivalent to the Rashbass model for static stimuli. 

The pseudo-matched filter model is sketched in Figure lC. The fourth filter 
[,(t) has the same impulse response as the third filter f 3 (t) except for a reversal 
of the time axis and a time delay to make this filter causal. The essential part is 

R 



20 chapter 2 

constituted by these last two filters. By omitting the amplifier A and the first
order filter h(t), this can be made to act in a way similar to the Rashbass model, 
but only if a Dirac function is chosen as excitation. To this end the impulse 
response /a(t) and the impulse response of the linear filter D have to be equal. 
The filter D in the Rashbass model and the filter f 3(t) in the pseudo-matched 
filter model are both biphasic. 

There is a strong connection between matched filtering and correlation tech
niques. In detection tasks a correlator is often used. If the incoming signal is 
known by its form, then an appropriate filter, a matched filter, acts in the same 
manner as a correlator for such a signal (Papoulis, 1977). 

The concluding remark for this section is therefore that all three models (Fig
ure 1) are expected to act in a very similar manner when using a non-moving 
stimulus, with a Dirac function as the principal part of its time course. We will 
show this in more detail in the rest of this paper, and also discuss a measurement 
that makes a definite distinction possible between the linear and nonlinear model 
and nevertheless contains a Dirac pulse as the principle part of its time course. 

2.3 The linear model in a perturbation experiment 

Consider a linear model followed by a threshold mechanism. The threshold mech
anism is symmetrical with output 1 if the absolute value of the input signal is 
larger than the threshold value d and the output is zero otherwise. The follow
ing analysis is not restricted to the pseudo-matched filter model, but applies to 
any linear model. The model is deterministic; there are no noise sources present 
(Figure 2A). The impulse response of the linear filter can be measured using a 
perturbation technique (see also Roufs and Blommaert, 1981). 

The impulse response of the linear filter L is called v(t). The step response is 
called w (t), so that 

w(t) f v(u) du. (1) 

We now take eht,.(t) as the input signal of the linear filter, where ht,.(t) is an 
amplitude-normalized function (the peak of h;,. being normalized) and e is the 
amplitude. We define h(t) as the response of the linear filter to the input signal 
hin(t), so 

h(t) = ht,.(t) * v(t), (2) 

where * denotes a convolution. The signal in front of the threshold mechanism 
is then eh(t). The lowest value of e at which detection occurs is called e1• This 
means that 

e1 max lh(t)l d. (3) 

In actual measurements there is considerable noise and we take that value of e 
as the threshold value for which the detection probability equals 0.5. The (first) 
moment at which the extreme value of h(t) is reached is called t,llf). 
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a. 
R (yes;no) 

b. R (yes/no) 

Figure 2: A. The linear filter L and the threshold mechanism. 
B. The simplified Reichardt model. v(t) the impulse response of the linear 
filter D, T the time delay. Ideal integration over total time. Time delay and 
integration are done in C. 
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Now take e{h;n(t) + qg;n(t- r)} as the input signal. The function Uin(t) is an 
amplitude-normalized function, q is a proportionality factor and T is a time delay. 
Assume 

g(t) Uin(t) * v(t), {4) 

then the signal before the detector becomes e{h(t) + qg(t- r)}. The lowest value 
of e; for which detection occurs is called e.. On the assumption that 

h(fes) :> qg(t), for all t, (5) 

it is true that 
e:.{h(t • .,) + qg(t • .,- r)} =:: d, (6) 

if lh(t)l has one sharp peak that is dominant over all other peaks of lh(t)l. The 
lowest detectable amplitude e• is a function of r and q, given h(t) and g(t). By 
combining (6) and (3), we obtain 

g(t • .,- r) 1 { e1 } · 
h(t • .,) = q e:0 (r) - 1 · . (7) 

The right-hand side is a function of the measurement data only. The function h(t) 
is called the probe and the function g(t) is the test signal. Expression (7) shows 
that the form of the test signal g(t) can be measured by varying r. 

This perturbation technique is used for the measurement of the impulse and 
step response of the linear filter. First take 

hon(t) = gin(t) = H(t) - H(t tJ), 



h(t) g(t) ~ t'J v(t), 

q ~ 1, 

with H(t) the Heaviside function, and t'J much smaller than the time constants of 
the linear filter. Then the normalized impulse response v*(t • .,-r) can be calculated 
from the measurements according to (7), yielding 

(8) 

In the second place this method can be used to measure the form of the step 
response by taking 

h;..,(t) 
g,,.(t) 
h(t) 
g(t) 

H(t)- H(t 
::: H(t), 
= t'Jv(t), 

w(t), 

t'J), 

where, as in the previous case, t'J is much smaller than the time constants of the 
system. Now a scaled version of the step response w•(t • .,- r) is found, that is 

w(t • .,-r) 1{ C:t } 
w"(t • .,- r) t'Jv(t.,) = q c:.(r)- 1 . (9) 

The relation between this step response w• ( t) and the normalized impulse response 
v(t) is given by 

1 rtu-r 
w•(t.,- r) =;; lo v*(a) dn. (10) 

2.4 The linear model and the norm factors 

From v*(t) the response v(t) can be expressed in threshold units d: 

v(t) v*(t) 
-=--, 

d c:6t'J 
(11) 

and similarly the response w(t) can be expressed in threshold units d by 

w(t) w*(t) --=--, 
d ~r. 

(12) 

with e6 and ~r. the smalle8t values of e: for which the impulse response and the 
step response, respectively, are detected, and w*(t) is the amplitude-normalized 
version of w(t) (and w•(t)). The values (e:6t'J)-1 and e:;1 are called norm factors 
NF6 and NF.: 

= <e:~ur~. 
e:;t. 

(13) 
(14) 
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From (11) and the linearity of the system the response R(t) to an arbitrary input 
signal r(t) can he expressed in d units: 

R(t) NFs r(t) * v*(t). {15) 

Using the norm factors a check on the assumption of the linearity· of the system 
can be made. From (1) and (11) we find 

w"(t) I t v*(o) du = es w(t), 
-oo {) d 

(16) 

and especially 

w"(T.:) = E:s, (17) 
e, 

using (12) and where T., is defined by w*(T • .,) = 1. (17) states that the maximum 
of w"(t), which can he measured according to (9), can be predicted from the ratio 
of the sensitivities of the system to a short pulse and a step input. 

Also the normalized impulse and step response are related by the norm factors. 
From (10) it is found 

dw"l {)-I (18) = ' t .. 

dw*l NFs 
(19) dt t •• NF,· 

Equation (17) (or (19)) can be used as an indication of the linearity hypothesis 
of the system. The procedure is as follows: the impulse response v*(t • ., - r) is 
measured. A continuous function is fitted to these data (e.g. Chapter 4). From 
this fit the step response w"(t) (or w*(t)) can be calculated and compared to the 
measured values eo and e., according to (17) (or (19)}. Note also that NF0 /NF. is 
the interception of the two asymptotes in the block response data (see Figure 4}, 
i.e. the critical duration Tea (Roufs, 1974a). 

There are a few problems with this check. First of all the norm factors, or 
amplitudes e0 and e., are normally not derived from measurements using a drift 
correction as described by Roufs and Blommaert (1981).- These data are therefore 
subject to large hour-to-hour and day-to-day variations which can be as much as 
a factor 2. Furthermore{) is used either to calculate the maximum in (16) or is 
used in NF6 in (19). Although this value may be set very accurately electronically, 
this is fed to some light source which may not be so good at reproducing the exact 
area belonging to the Dirac probe. 

Still, we will evaluate this quantitatively. As an example the simultaneous fit 
of the impulse response and the step response was taken (an adapted version of 
Figure 12 from Roufs and Blommaert, 1981). These fits were obtained by first 
averaging over the Fourier coefficients of the impulse response and the Fourier 
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coefficients of the impulse response calculated from the step response, and then 
applying an inverse transform to these averages. In Figure 3 v• is called u; and w* 
is called u;. From Figure 3 the derivative of u; at t • ., can easily be estimated by 
drawing a straight line through the continuous line of the step response at r = 0 
(as is indicated by the dashed line). In this way we find for subject FB 

NF, _1 
NF. ~80s , 

Making allowances for the precision of the measured data as mentioned above, this 
must be regarded as a good quantitative agreement. Of course this is in no way a 
proof of the linearity of the system. 

For the impulse response of subject HR (100Td, 1 degree field) we obtain from 
the fourth-order linear filter fit {Chapter 4) for the slope of the step response at 
r=O 

dw*l - = 24s-1
• 

dt . 
t~z 

From the block response we find 

N F6 = T-1 ...., 27 -t 
NF, c - s . 

This is also in good agreement. 
The linearity assumption is not rejected by the independent measurement of the 

norm factors. For clarity we would like to stress that the check performed on the 
linearity is not trivial. The norm factors are measured exactly at threshold level. 
On the other hand the impulse and step response are measured by a subthreshold 
perturbation technique. For instance the impulse response of FB (Figure 3A) is 
measured with q 0.15, which means the measured impulse response is 6 times 
below the threshold level. We conclude that the test performed on the linearity is 
a severe one. 

2.5 The cross-correlator and a perturbation technique 

As explained earlier, only the main part of the1 Reichardt model will he used in this 
section to outline what happens in an experil:~.ent using a perturbation technique. 
From the discussion in Section 2 it is clear that this also applies to the Rashbass 
model for the stimuli used here. The model is shown in Figure 2B. The impulse 
response of the linear filter is called v(t), the step response w(t), and relation (1) 
holds. The time delay is called T. 

The cross-correlation ~"11 of two signals x(t) and y(t) is defined by 

~.,,(T) = /_: x(t)y(t- T)dt = t/1,.,(-T). (20) 
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-1 

u• s 
1 

PULSE RESPONSE 
SUBJ. FB 
E= 1200Td 
o: 1° 
NORM FACTOR : 1.2 

STEP RESPONSE 
SUBJ. FB 
E= 1200Td 
0: 1° 
NORM FACTOR : 0.015 

Figure 3: Measured impulse and step response of subject FB at a background 
level of 1200Td, and for a field size of 1 degree with a dark surround (Roufs 
and Blommaert, 1981). From the slope of the step response at r = 0 (the 
dashed line) a check on the linearity assumption can be made. The slope 
tan1p dU;/dt ~ 67 at r = 0. 
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The cross-correlation of a signal with itself is called the autocorrelation t/Jn and 

1/J.,.,(-T) = t/Jn(T). (21) 

We introduce ¢.,., as the maximum of 1/J.,.,: 

;'J,.,.,::: 1/J.,.,(O) 2:: 1/J.,.,(T), for every T. (22) 

The equal sign of (22) holds only for some T =f 0 if x(t) is periodic. For a signal 
f(t) which contains g(t- r) as perturbing function of h(t) according to 

f(t) h{t) + qg(t r), (23) 
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the autocorrelation can be expressed in the autocorrelation terms t~;,.,., t/;11 and the 
cross-correlation term : 

Only the last two terms, the cross-correlation terms, are dependent on the time 
shift r. 

Assume the transient system consists of an infinity of mechanisms as sketched 
in figure lA (simplified Reichardt model) all with different T, and h.(t) is a non
periodic function. As in the linear model analysis, we assume h.;n(t) and g;n(t) to 
be amplitude-normalized functions. The responses of the linear filter to h.n(t) and 
U;n(t) are h.(t) and g(t), respectively. Again amplitudes have to be taken into ac
count. e1 and e. are defined as the amplitudes for excitations exactly at threshold 
level: 

2A 
E:ltPhh 

2 A 2 A 2 
e:.[tPhh + q t/199 ] + 2qe:.¢,.9 (r) 

By combining (26) and (25), we have 

d, 
d. 

(25) 

(26) 

(27) 

On the right-hand side of this equation only measurement data occur except for 
the ratio q2¢99f¢,.,.. This equation (27) should be compared to (7) of the linear 
model. 

We take the same excitations as for the analysis of the linear model. By first 
taking a short rectangular pulse with duration fJ (approximating a Dirac function) 
as probe and as test signal, it follows that 

h.(t) g(t) f'::$ fJ v(t), 
q < 1. 

The normalized autocorrelation tfo;.,(r) of v(t) is found by applying (27), so that 

(28) 

Again taking a. short rectangular pulse as probe but now a. step as test, we obtain 

h(t) C! fJ v(t), 
g(t) = w(t), 

and again applying (27), we have 

1 ~ _ l _ q2 tPww 
[ )

2 A ] 

2q c.(r) fJ2;p.,., • 

(29) 
(30} 

(31) 
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From the relation between w(t) and v(t), 

w(t) lot v(u) du, 

together with the definition of¢;., and t/J!w we find an integral relation, comparable 
to (10), that is 

(32) 

The interpretation of the measurement of the step response is only clear if the 
factor q2 ;J;wwf;J;.,., is small enough. This is not known beforehand, and can only 
be assumed and later checked. This factor cannot be made arbitrarily small by 
taking q small, because in that case the test signal would disappear in the noise. 

For every r the measurements give a value for c:t/ e:c. With this value we can 
compute v•(t • ., r) according to (7) and also tP;,(r) according to (28). Performing 
this calculation for the data measured at IPO gives two plots, both showing a 
figure with a positive central phase around r 0 and two smaller negative phases 
on both sides of the positive phase, see Figure 6A and 6D. 

2.6 The cross·correlator model and the norm factors 

Just as with the linear model a relation can be found between the normalized 
autocorrelation function tP;., ( r) and the amplitudes c:6 and c:$ for detection of an 
impulse and step excitation, respectively: 

2A 
{eo.?) t/Jvv d, (33) 

2A 
{c:$) t/J'Ww d. (34) 

Also from (33) and (34) it is found that 

and subsequently t/J!:,"'(T) is defined by 

t/J~w(r) = ~ !7 t/J!..,(u) du e:~.?t/Jvw(r)/d. 
As with (17) and (19) it is found 

dt/J!w(r)l = _,-1, 
dr r=O 

tP!,w(O) = (e:6/e:,)2. 

(35) 

(36) 

Because of all the simplifications made in the original model, (36) is quite an 
unrealistic approximation. With suitable adjustments for nonideal multiplication, 
integration, and windowing in the integration, it is always possible to make a more 
realistic model in which the predicted amplitude of e:. is in accordance with the 
measured value. The conclusion is that the norm factors cannot be used to reject 
or support the models containing a quadratic element. 
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2. 7 Block response data 

Taking a block response with variable duration -8 as an input for the transient 
system, and measuring the sensitivity, a figure such as the one sketched in Figure 4 
is found (taken from Roufs and Bouma, 1980). 

\ r------,-------.-------.------· 
~~--~----~----r---~ 

LOG DURATION & I.OG ..... 

Figure 4: Threshold intensity as function of the block duration. Data of 
subject FB (1200Td, 1 degree field). The line is the prediction of the linear 
model, the dashed line the correction of the prediction for stochastic effects 
at long flash durations (probability summation) .. From: Roufs, J.A.J. and 
Bouma, H.: Towards linking perception research and image quality. Proc. 
SID 21, 247-269 (1980). Reprinted with permission. 

Bloch's law is found for small -8. A constant sensitivity is measured for large 
-8. Both in the linear model and in the nonlinear models this is predicted, if the 
integrator in the nonlinear models has a finite integration time. 

The only thing that might be critical is the dip (see also Roufs, 1974a), occurring 
at intermediate values of -8. This dip is predicted in the linear model: a triphasic 
transient impulse response means a biphasic step response (see Figure 3B), with a 
negative first phase. This causes the dip in the figure according to thc:~ linear model. 
Furthermore, this dip is in excellent quantitative agreement with the measured 
impulse response (see also Blommaert and Roufs, 1987). 

Simulations with the Rashbass model showed that this dip also is predicted in 
this model, as a consequence of a finite window in the integrator. Suitable choices 
for the extent of the window can account for the strength of the dip (Biommaert, 
1974). 

We conclude that the threshold-versus-duration curve is in agreement with the 
linear model. On the other hand the nonlinear models are neither rejected nor 
supported by these data, since the integration window in this model cannot be 
estimated from the perturbation experiment and is still a free parameter. 
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2.8 A measurement for distinguishing between the linear 
and nonlinear models 

We have shown that the norm factors and the threshold-versus-duration curve do 
agree with the linear model. Latency responses can also be predicted from the 
linear model (Roufs, 1974b; Blommaert and Roufs, 1987). On the other hand 
the cross correlator model can be made to fit the norm factors and the threshold
versus-duration curve, because one of the parameters of the nonlinear model, the 
nonideal integration, cannot be estimated reliably from the measurements with 
a perturbation technique. Because of this free parameter, it is difficult to make 
adequate predictions for the above mentioned measurements. Parameters can 
always be found that will show predictions and measurements to be in agreement. 
Thus such predictions neither reject nor support the nonlinear models. 

As can be seen from the discussion in Section 2, the linear and nonlinear mod
els are expected to act in a similar way when the main part of the input signal 
consists of a pulse. Other inputs may well make a good distinction between these 
models. A step as probe and an impulse as test signal, for instance, predicts the 
measurement of the impulse response, while the cross-correlator model predicts 
the measurement of the cross-correlation of impulse response and step response. 
However, from the triphasic impulse response it is also predicted that the step 
response is biphasic with, in absolute value, an almost equal maximum and min
imum (see Figure 3B). Therefore, applying a step as a probe and interpreting 
the results in the linear model is contradictory to one of the assumptions for the 
perturbation experiment, namely the existence of one clearly dominant extreme. 
Also, when using a step as probe input to the visual system, the sustained channel 
may make a considerable contribution to the overall response. Since it is not yet 
known how to model the sustained channel, nor how these two channels interact, 
we feel that such an experiment would fall short in its interpretation. Neverthe
less, this kind of experiment was performed by Elsner (1986), who actually used a 
sawtooth step, but the slow decay of the sawtooth ensures a response very similar 
to a stepresponse. Another complicating factor here is that they used reaction 
time measurements, which may be something quite different to the threshold ex
periment mentioned earlier. Elsner and Hauske found a behaviour that suits the 
Rashbass model well. However, we maintain that, if it _is not known whether the 
same system is measured, nor if other channels are operating, plus the assumption 
for applying the perturbation technique in the linear case being invalid, these data 
have no unambiguous interpretation. 

The problem of another channel also operating is a very real one. Therefore all 
excitations for measuring the transient channel are always of short duration. For 
the measurements of the Rashbass model it was explicitly stated that only short 
luminance excursions from the baseline were used (Broekhuysen et a.l., 1976). 
In Section 2 it was already mentioned that for these stimuli, which contain fast 
changes, the linear and quadratic models are to be expected to act in a very similar 
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manner. 
Up till now we have no effective means of separating different,temporal.chan

nels, except for smallest spatial stimuli. We have always found that a large field 
(e.g. 1 deg.) stimulus without surround is a suitable configuration in which to have 
little contribution from sustained channels. However, for stimuli of low temporal 
modulation the transient response will eventually be zero. Thus, for long dura
tion after onset, the sustained response will always be larger than the transient 
response. This means that the transient system can only be measured with stimuli 
of high temporal modulation. Hence a measurement with which to make a distinc
tion between models for the transient system at threshold level must necessarily 
be closely related to the perturbation experiment. 

We recall to mind relations (8) and (28) for the linear model calculating the 
impulse response and for the cross-correlation model (Fig. lA} calculating the 
autocorrelation of the impulse response, respectively: 

(37) 

(38) 

The values of e-1 and ec are dependent on the input functions. This means that ec 
is dependent on both q and r. The value of v*(t • ., -~)at a certain r should not be 
dependent on q if the transient system acts as a linear model, for all q for which 
the perturbation requirement applies (see also Roufs and Blommaert, 1981). The 
same is true for T/;~., ( r) if the transient system acts as a the mechanism sketched in 
Fig. 1A. From (37) and (38) it can be seen that the measured values of e-I/e-. are 
dependent on q in different ways for the linear or the cross-correlator model. It 
is also shown in Figure 5 that, for each ratio e-I/ e-., v• and T/J;., can be calculated. 
This gives a different plot of v• versus T/;~., for each q-value. Thus we can test if the 
dependence of e-1/e-. on q is according to a linear model, a cross-correla.tor model 
or neither. The quantitative difference between the the autocorrelation and the 
impulse response interpretation at different q is not large, given the noise on the 
measurements. But since there are measurements available for twenty values of r, 
these differences become significant, as will be shown below. 

We therefore define the variables A.v, and AT/;, according to 

A.v; v;(t • ., - r;) - v;(t • ., - r1), (39) 

(40) 

where vi and v; are the values calculated according to (37} and T/;;.,2 and T/;;.,1 
according to (38} from experiments at the same sampling moment r; using two 
different q-values: q1 for vi and T/J;ui> and q2 for v2 and .p;d. From the variance of 
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0.0 

-tO 

-1.0 0.0 
-v* 

Figure 5: Relation between v•(t • .,- r) and tf!Zu(r) for q = 0.2 and q = -0.2. 
A different relation between normalized impulse response and normalized au
tocorrelation exists for each q. The linear and cross-correlator model can be 
discriminated on the basis of the interval between the lines of the relation 
v*(t • .,- r) versus .p;.,(r) for different q. 
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et/ e::. the variance of vi, t/J:.,1 , v; and t/J;.,2 can be calculated and the variance of 
~v; and ~t/J; likewise. These variances uiv, and ui..,, are taken as 

(41) 

U~..p, = U~;v~(.-;) + U~;. 2{r;)· (42) 
The expected values of these two variances uiv, and ui..,

1 
are approximately equal, 

as can be shown from an analysis of the error propagation using a Taylor series 
expansion of (37) and (38), giving 

e[u~i.l = ('[etl)2 ~ 1, (43) 
t[uv.] e[e-.] 

where t [ ] denotes the expected values of a stochastic variable and where the 
approximation sign stems from the perturbation requirement. It can be shown in 
a perturbation experiment that the expected values of the variances at different 
sampling instants r, are approximately equal. Therefore the variances at different 
sampling moments can be averaged, and a mean variance is introduced for ~v, 
and ~t/J; 

1 M 
ul., ML:uiv, 

i=l 

and from (43) it is found that 

and 

~2 ~ ...,.2 
"tl.v- "'t;..;· 

2 - 1 ~ 2 
Ut;,..p = M L..,Ut;...p,. 

i;l 

(44) 

(45) 
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Now a. null hypothesis test can be performed for the linear and quadratic model. 
If the system acts as a linear model or like the autocorrelator model, we expect 

or (46) 

respectively. This test is performed by comparison of the mean values Av and A'f/J 
of Av, and A¢; respectively, according to 

and (47) 

with the standard deviation Ut. of the mean, which is given for both (see (43)) by 

It was found for measurement data of subject JAJR, at q-values q:::: +0.2 and 
q -0.2 (see Roufs and Blommaert, 1981) that .1-v = 0.013, .1.'1/J -0.142 and 
the estimator of the standard deviation Ut.v was BAv = 0.046. From these values 
we see that .1-v is inside the standard deviation interval of the mean, while .1.'1/J is 
outside the highly significant interval of 2.5 times the standard deviation of the 
mean. 

The whole statistical procedure is shown in Figure 6. In Figure 6A and 6B 
the calculated normalized impulse responses are shown for the two q-va.lues. In 
Figure 6D and 6E the calculated normalized autocorrelation& are shown. The 
difference of the calculated impulse responses .1-v, and the autocorrelations .1.'1/J, is 
shown in Figure 6C and 6F respectively, together with the (estimated) standard 
deviations 8Av, and 8A9; (=1M SA, where M gives the number of samples). The 
dotted lines are the plus and minus the mean standard deviations (located round 
the baseline). In Figure 6C the differences .1-v; are located around the baseline, 
while in Figure 6F most of the values .1.¢; are located beneath the baseline, and 
often more than the standard deviation. 

2.9 Conclusion 

In this chapter, linear models for the transient visual system at threshold level are 
compared to "quadratic" models. Quadratic models are the models containing a 
quadratic element (the Ra.Shbass model) and those containing an autocorrelator · 
(the Reichardt model). It is suggested that the linear model and these nonlinear 
models act similarly for most of the commonly used excitations: perturbation mear
surerpents with a Dirac pulse as probe and threshold measurements of pulses with 
variable duration. For reasons of simplicity we would prefer the linear model to a 
nonlinear one when there is no significant difference in behaviour. Furthermore, 
we have shown that even in a perturbation measurement with suitable excitation, 
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Figure 6: A. Impulse response interpretation vi(r;) of the measured data 
where q = -0.2. 
B. Impulse response interpretation vi(r;) of the measured data where 

q = +0.2. 
C. Difference .6.v; of the calculated values from A and B. 
D. Autocorrelation interpretation a.p;vl (ri) of the measured data where 
q = -0.2. 
E. Autocorrelation interpretation a.p;v2(r;) of the measured data where 
q = +0.2. 
F. Difference .6.f/!; of the calculated values from D and E. 
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a difference in behaviour can be predicted and also measured. These experimen
tal data favour the linear model, which agrees with the conclusions of Roufs and 
Blommaert ( 1981), who based their arguments on the asymmetry of the responses 
with respect to the r = 0 axis. We think that the difference in behaviour for pos
itive and negative disturbances is (statistically) so significant that even changed 
versions of the quadratic models (e.g. taking into account integration windows, 
nonideal multiplication) will not be able to account for the measured differences. 
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chapter 3 

A pseudo-matched filter model applied to the tran
sient system of the visual perception 1 

Albertus C. den Brinker 
Hans A. L. Piceni 
Frans E. W. Vervuurt 

Abstract 

A pseudo-matched filter configuration is presented as a model for the transient 
system of the human visual perception. This model has close resemblances to 
the Reichardt [1] and the Rashbass [2] model, but on the other hand the pseudo
matched filter model is linear. The choice of the model is based on the shape of the 
psychophysically measured impulse response and on physiological and functional 
arguments. The parameters of the model are estimated for different data sets. The 
behaviour of the model agrees with the experimental data in all essential aspects, 
and can be used for prediction and further modelling of the human visual system. 

3.1 Introduction 

An important branch in psychophysical research is concerned with the measure
ment of the characteristics of the visual system at threshold level. Even these 
small signals are not processed linearly in the visual system, and it is usually as

sumed that the visual system can be modelled by different channels operating in 
parallel. In the temporal domain there are usually two channels postulated: the 
sustained and the transient channel [3,4,5,6]. Roufs and Blommaert [7] showed 
that the impulse response of these temporal channels can be measured separately. 
This paper discusses the parameter estimation of a linear model on the basis of 
data [7,8] from impulse responses of the transient channel. 

Performing this type of estimation a compact description of the measurement 
data is obtained, and predictions on the basis of the model can be made. Of more 
importance is the possibility of models to give insight into the system that is being 
modelled. 

A linear filter configuration is chosen as a model of the transient channel. We 
prefer to call this model a pseudo-matched filter model. A matched filter optimizes 
the detection performance of the overall system for a certain specified input signal 
in the presence of white noise at the input of the matched filter. The transient 
channel is also a detection mechanism in which non-negligible noise is present, as in 
all biological systems. Furthermore, a matched filter model has close resemblances 

1submitted to IEEE Transa.c. Biom. Eng. 
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to autocorrelation processes. In this way the model is reminiscent of the models 
of Reichardt [1] and Rashbass [2]. 

It has been shown [7] that the linear model for the transient system proposed by 
Roufs [4, 7] and the nonlinear model of Rashbass [2] yield a vastly similar behaviour 
for pulse-like stimuli. Rashbass [9] showed that these two models can be seen as 
the extreme cases of a large set of models that are now commonly used for visual 
processing. We argue that there is a second reason for the quadratic model of 
Rashbass and the linear model of Roufs to exhibit quite similar behaviour. This 
is done in the sequel of this paper by showing that a linear interpretation of the 
measurement data can be found within the class of filters based on the matched 
filter theory. It is well known that there are strong similarities between matched 
filtering and autocorrelation processes [10] (see also chapter 2) for certain specific 
input signals. 

The pseudo-matched filter model we propose here is fit to experimental data. 
The data on which the parameter estimations are performed are derived from 
psychophysical experiments. These experiments are detection tasks, i.e. a subject 
states whether he has seen or not seen a certain stimulus. A perturbation tech
nique is used to obtain impulse responses from such experiments. This. technique 
is described by Roufs and Blommaert [7]. Using this technique some a priori 
information on the impulse response is available. This information must be in
corporated into the model that is being fit, resulting in some restrictions on the 
degrees of freedom of the chosen model. 

The impulse response data [7,8] are interpreted as being derived from a contin
uous system. The model being fitted to these data consists of three linear filters 
operating in cascade. Two of these filters are designed according to the matched 
filter theory, as will be explained later. 

The method used to obtain the parameters of this model is the well-known least
squares estimation. The objective function, which is being minimized during the 
estimation process, is a nonlinear function of the parameters of the three filters. 
For the estimation of the filter parameters standard routines from the NAG-library 
are used [11]. We do not find it opportune to write our own programs to this end 
[12,13]. 

The chapter is organized in the following way. The data are presented in Sec
tion 2, and the model in Section 3. Section 4 describes the nonlinear parameter 
estimation process and its implementation. The results of this parameter estima
tion are presented in Section 5. Comparisons of predictions of the behaviour of the 
model to experimental data are shown in Section 6. We conclude with a discussion 
(Section 7). 

3.2 The impulse response data 

The response of the eye to a certain stimulus is generally supposed to be processed 
in different channels operating in parallel !3,4,5,6]. In the temporal domain two 
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channels are usually assumed to intermediate between the physical stimulus and 
the human percept. These are the sustained and transient channel. The transient 
channel is tuned to low spatial frequencies and fast temporal changes (cf. [14]). 

The available data consist of impulse responses of seven subjects at 1200 Td 
and four subjects at a 100 Td background [7,8]. These data are obtained from 
threshold measurements of flashed discs (1 degree visual angle) upon a circular 
background of the same extent and a certain luminance projected foveally. The 
surround of the disc is completely dark. It is assumed that in this way the transient 
channel of the eye is most stimulated [4,7], and so the measured impulse responses 
are solely attributable to the transient channel. 

The normalized impulse responses were measured with the perturbation tech
nique [7]. The perturbation technique uses a two-pulse temporal excitation, where 
the response of one pulse (the probe flash) is perturbed by the response of a sec
ond (smaller) pulse (the test flash). This causes an increase or decrease in the 
threshold amplitude of the probe flash. The change in threshold amplitude caused 
by the test flash can be determined as a function of the time delay r between the 
two pulses. (Positive r means that the disturbing pulse is delayed in respect to 
the probe pulse.) In this way the shape of the perturbing signal, i.e. the response 
of the system to the test flash, can be obtained. For further details on this tech
nique see [7]. The absolute sensitivity of the system for a single flash (the norm 
factor NF, see [7]) can be measured separately. 

There are, however, some consequences of this· method with respect to the 
obtained data that we need to discuss. First, the method requires rather time
consuming experiments. For this reason the number of samples (with a different 
r) that is being measured, is as low as possible. The number usually ranges 
from about twenty to thirty samples. In most cases an extra tail of four or five 
samples was added to the measured data, with mean values equal to zero and 
standard deviations taken as the mean of the standard deviations of the actually 
measured samples. This tail is added in the region where the impulse response 
is approximately zero to facilitate the estimation process and to prevent severe 
oscillations of the estimated impulse responses in this region. Secondly, as a result 
of the perturbation technique the position of the starting point of the impulse 
response (let's say t 0) is lost. The origin of the tilp.e axis is located exactly 
on the extremum of the impulse response (see Figure 1). Note also that the time 
scale is plotted in the independent variable -r. It was preferred to stick dose to 
the same variable as used In the original measurements, which is T. To obtain the 
direction of a normal time axis (later events on the righthand side) the variable -T 

had to be taken. Thirdly, the extremum should be exactly equal to one. Actual 
measurement of this extremum gives a value close to but not exactly one, because 
of the noise in the system (see Figure 1 at r 0 ms). Since the response axis of 
the experimental data. is normalized the amplification of our model will not be a 
free. parameter in .the estimation process. 
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Figure 1: An example of data obtained from a psychophysical experiment 
using a perturbation technique, for the measurement of the impulse response. 
The points represent the mean value, the bars represent twice the standard 
deviation of the mean. Subject JP, E 1200 Td and stimulus diameter is one 
degree. 
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The data show that the impulse response is nearly symmetrical with respect to 
the extremum. This is a well known feature of matched filter responses [10]. In 
the model (see Section 3) the impulse responses of the three filters are chosen in 
such a way that the overall impulse response is approximately symmetrical. As 
a consequence of the symmetry in the impulse response the phase characteristic 
of the system and the model will have a large linear component. Independent 
measurement of the (relative) phase characteristic of the transient visual channel 
confirms this property [15,16]. 
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3.3 The pseudo-matched filter mod~l 

In this section the model is presented. The choice of the model's components is 
based on the measured data and physiological and functional arguments. This 
model has certain similarities to earlier proposed models, notably the Reichardt 
model [1] and the Rashbass model [2,9]. This is described in chapter 2. 

Figure 2: The pseudo-matched filter model, consisting of an amplifier A and 
three linear filters operating in cascade (for details see text). 

yes/no 

As a model of the transient channel of the visual perception an amplifier A and 
a cascade of three linear filters / 11 /2, /3 is proposed (see Figure 2). The first filter 
is a first-order filter with impulse response !I ( t): 

II (t) = exp( -at)H(t), 

where H(t) is the Heaviside function: 

H(t) = { ~: t < o, 
t::::: 0. 

(1) 

(2) 

The second filter is a second-order filter and its impulse response f2(t) is given by 

h(t) = exp( -bit) sin(w0t)H(t), (3) 

where bi is the damping parameter (bi > 0) and w0 the angular frequency. The 
third filter has a biphasic impulse response h(t), where the second phase is positive 
and most pronounced: 

/s(t) = - exp( -b2t) sin(w0t) {H(t) - H(t- T)} (4) 

where T = 211' jw0 and b2 < 0. This is an exponentially growing sinusoid truncated 
after one period T. Note that if b2 = -bi the impulse responses / 2(t) and /s(t) 
are each others mirrored images with respect to a vertical axis, except for a shift 
in time, an amplification factor, and the truncation in time: 

h(t) = 12(-t + T) exp(biT) H(t), (5) 



a. pseudo-matched filter model 41 

n(t) 

L MF yes/no 

Figure 3: The matched filter model, consisting of a transmission channel and 
a matched filter MF (for details see text). 

Therefore we will call filter / 3 pseudo-matched on the impulse response of filter / 2• 

The overall impulse response of the three linear filters and the amplifier is called 
f(t) and is given by a convolution * according to 

f(t) = A /1 (t} * /2(t} * /!(t). (6) 

Consider a simplification of Figure 2, where the amplifier and the first filter 
have been omitted (Figure 3). Suppose the input signal consists of pulses only, 
and there is a linear medium L with a second-order impulse response x(t) = /2 (t). 
Suppose further there is a white noise source n{t). If we want to make a detection 
mechanism, the optimal linear filter is a matched filter [17]. This filter has an 
impulse response that is a mirrored version of the input signal with respect to 
the vertical axis. The signal to noise ratio SNRopt at the output of this (optimal) 
matched filter would be [10]: 

SNRopt = 2E /No, (7) 

where 
E = f~oo x2(t) dt, the energy of the input signal, 
N0 the spectral density of the white noise signal n(t). 

This optimal SNR is not affected by any time delay in the impulse response of 
the matched filter. This property is used to obtain a matched filter with a causal 
impulse response. Naturally, this is only possible for ·signals of finite duration. 
Since we assumed that x{t) = h(t) the optimal filter can only approximately 
realized. This was done by taking the filter MF (see Fig. 3} with an impulse 
response y(t) equal to 

y(t) = x(T- t)H(t), (8) 

which means y(t) /!(t), under the condition that boz -b1• The signal to noise 
ratio SNR at the output of filter MF can be calculated and is found to be 

(9} 
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From {9) it can be seen that the signal to noise ratio is not seriously impaired 
by the truncation of the mirrored version of x(t) as long as 411'b1 > w0 • The 
results from the fits of the overall impulse response f(t) to the measured data 
{Section 4) are always such that this holds. For instance, with b1 = -b2 = 30 s-1 

and w0 = 80 rad/s we find a reduction of only 1 percent in the SNR as a consquence 
of the truncation. Similarly, if b1 and -b2 have the same order of magnitude (and 
b1 < w0 ; -b2 < w0 ) the SNR is still close to the optimum [18]. Besides the filters / 2 

and / 3 , Fig. 2 depicts an amplifier and an extra filter / 1• The amplifier A does 
not change the SNR, and if the parameter a of filter h is such that a > w0 the 
reduction of the SNR as a consequence of this filter is small [18]. 

The choice of the filters in Fig. 2 has to be seen in connection with the impulse 
response data and some physiological findings. First of all, the measured impulse 
response as described in Section 2 is nearly symmetrical round its extremum r = 0. 
As stated before, this is a feature of matched filter responses. Secondly, the data 
is triphasic. By chosing the second and third filter as above, (see formulas {3) 
and {4)), an approximation to a triphasic impulse response is ensured. b2 not 
necessarily being equal to -b1 provides some additional freedom to fit the model 
to the experimental data, with only a small impairment of the SNR [18]. 

The first filter {11) is chosen because it can account for the small asymmetry in 
the impulse response data. Furthermore, it ensures that the high-frequency fall-off 
is 1.5 log units per octave (with a small ripple caused by the truncation), which 
agrees well with the de Lange characteristics of stimuli with large spatial extent 
[19,20]. A magnification factor does not exist in any of the filters; this is separately 
modelled in the amplifier. As already noted, our data has an extremum exactly 
equal to one. So this amplification will not be a free parameter when the model 
is fitted to the impulse response data. 

The model is also physiologically inspired. Apart from the amplifier, the order
ing in Figure 2 is such as might be present in the visual system. The first-order 
filter is a (maybe gross) approximation of a receptor cell response [21]. The sec
ond filter is conceived as an approximation to the (linear part of the) response 
of the retina cells behind the receptor: many physiological measurements show 
a biphasic impulse response of these cells (cf. [22]). The responses of these cells 
are transmitted to the cortex and we assume that in thjs transmission the largest 
amount of internal noise is introduced (this is illustrated by the noise source n(t) 
in Fig. 3). Suppose further that the cells in the cortex are functionally intercon
nected in such a way as to minimize noise influences in their detection operation. 
Then, under the condition of linearity of the transient channel around threshold 
level ([23,7,24,8] and chapter 2), the overall effect of these cortex cells necessarily 
can be modeled by an impulse response that looks like that of filter 3. In this way 
the chain of filters in Fig. 2 is not only chosen to. get resemblance to the experimen
tally determined impulse response (Fig. 1), but it is also related to physiological 
data (filters 1 and 2) and based on an explicit functional reason (filter 3). 
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3.4 The parameter estimation process 

The model outlined in Section 3 is to be fit to the impulse response data. [7,8]. From 
noise analysis of experiments using a perturbation technique it can be shown that 
the expected value of the noise at the various sampling instants T; is approximately 
equal (see Appendix). Therefore, the residuals at different T; need not be weighted 
differently in the objective function w (i.e. the function that is to be minimized). 
The objective function is taken to be the sum of unweighted and squared residuals: 

M 

w = L {!( -T.,. + t • .,)- u;( -r.,.)}2' (10) 
m=l 

where 
M = number of samples, 
Tm m-th sample time, m = 1, ... , M, 
u;( -r.,.) = measured (amplitude normalized) response at -r,., 
t,,. time of occurence of the extremum of the 

fitted impulse response f(t). 
This function W depends on the parameters A,a,b11 ~,w0 • Since the experimen
tally determined impulse response is normalized (see Section 2) the amplification A 
is chosen in such a way that the extremum of the impulse response f(t) equals 
one. As a result A is a function of the other parameters: 

(11) 

We did not find an analytical expression for this relation. With any parameter set 
(a, blt ~. w0) the extremum, which we call K, can be searched for numerically. 
Then A can be set to 

{12) 

and so the maximum is scaled to unity. 
We can either search for the maximum of the impulse response f(t), or for 

zeros of the derivative df I dt. The latter approach was adopted in the computer 
programs using routine C05AZF from the NAG-library !11]. A search for zeros of 
the derivative was preferred to a search for the maximum, since the former method 
provides better accuracy in the value oft.,.. This value t .... is also needed, since the 
time axis of the measurement data is shifted by this amount (see Section 2). Just 
like A, t.,. is a function of the filter parameters: t.,. = t • .,(a,611 62 ,w0). An explicit 
relation for this relation was not found since df I dt = 0 holds not only for t,., but 
for an infinite number of values oft. 

Although we did not find an analytical expression for A, we were still able to 
formulate first and second derivatives of f(t) explicitly with respect to the param
eters. This is possible since a relation between the change in t • ., and changes in the 
parameters can be established. This means that all first and second derivatives of 
W can be formulated even though a numerical search for t.IIC (and A) is performed. 
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This allowed us to use routine E04HEF from the NAG-library IUJ, which is an 
estimation routine in which first and second derivatives are not approximated by 
finite differences, but have to be formulated explicitly. 

Having implemented the optimization programs in the above mentioned way, 
we soon found that the parameter a was ill conditioned in the estimation process. 
This is a direct consequence of the model: the first-order filter (see Section 3) 
was merely introduced to obtain a sufficient fall-off in the gain characteristic. 
This means that a is always larger than the other parameters and it has only 
minor influence on the shape of the impulse response and is consequently poorly 
conditioned in the optimization procedure. Therefore we excluded parameter a 
from the optimization by setting a= 2w0 • This ensures that the influence of this 
parameter is exactly as outlined above: it affects only the frequencies roughly 
above the cut-off frequency (under the condition that b11 -b2 < w0) and has only 
minor effect on the shape of the impulse response. In this way the optimization 
program was restarted, with only three free parameters: bt. ~. w0 • 

A problem in least-squares optimization is always the possible occurence of 
local minimi of the function lit. Fortunately, there is only a small number of 
parameters (three) and a good guess for the initial parameters can be obtained 
directly from the experimental data. Twice the width of the positive phase can 
act as a first guess of the period timeT 21rjw0). This means about 80 rad/s for 
the angular frequency w0 at the 1200 Td level and about 50 rad/s at 100 Td for 
all subjects. Parameters b1 and -~ can be chosen equal and roughly estimated 
from the ratio of positive and negative phase. This is always somewhere between 
10 to 30 (1/s). With these rough guesses for the initial parameters we never found 
any local minimi, which was checked by trying different starting parameters. 

3.5 Results of the estimation process 

The results of the fit of the model of Figure 2 to data sets from two different 
subjects on different background levels are shown in Figure 4. For most subjects 
a reasonable fit is obtained. In general the fits are especially good for the first 
negative and the positive phase, hut poor for the second negative phase. This 
can also be seen in Figure 4A. Note also that the time axis -r from Figure 1 is 
corrected by t • ., so an ordinary time axis t = t • ., - r ·is obtained, where t = 0 
indicates the start of the impulse response. 

The agreement between experimental data and the fit is numerically shown in 
Table 1. In this table the standard deviation s,. estimated from the measurements 
is compared to the standard deviation s. estimated from the result of the fitting 
procedure. sm is derived from the measured variance averaged over the different 
samples according to 

2 1 ~ 2( ) sm = M L...J s r, , 
i=l 

(13) 
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Figure 4: Two examples of estimated impulse responses of tbe 
pseudo-matched filter modeL 
.A. Subject HD, 1 degree field at 1200 Td. 
B. Subject HR, 1 degree field at 100 Td. 
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where s(r;) is the measured standard deviation at the i-th sampling moment (see 
also Figure 1). The standard deviation s4 is estimated from the (final) fit of the 
model to the measured data according to 

(14) 

where 'If is the objective function at the final estimate, M the number of sam
ples and N the number of degrees of freedom in the estimation [25,26,11]. The 
estimated standard deviation is in most cases larger than the measured standard 
deviation, reflecting the poor fit of the second negative phase. 

back- 8m .e. Ill 
ground 
(Td) 

JR74 1200 .120 .149 .488 
JAJR 1200 .086 .129 .364 
FB 1200 .074 .162 .761 
JP 1200 .112 .112 .278 
LT 1200 .139 .130 .369 
HD 1200 .118 .125 .362 
IH 1200 .106 .122 .326 

LT 100 .109 .127 .353 
HR 100 .113 .116 .502 
JW 100 .170 .222 1.432 
KS 100 .140 .146 .857 

Table 1: Measured standard deviation s.,. and the standard deviation s. 
calculated from the fit (see text). The sum of squared residuals is given by Ill. 

The estimated parameters and their variances (s;, i = 1, 2, 3) are shown in 
Table 2. The confidence intervals of the parameters can be calculated from the 
variances [25,26,11]. For the true parameter value Of the.following inequality holds: 

where 

0;- JvarO; tfJ/'2,M-N < 9f < 91 + Jvar8; t1312,M-N• 

9; 

var(8;) 

Of 

t{3/2,M-N 

the i-th estimated parameter, 1 $ i $ N, 

the estimated variance of 8;, 

the true value of the i-th parameter, 

100~ /2 percentage point of the t-distribution. 

(15) 
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The size of the confidence intervals points out the well and poorly conditioned 
parameters. This is about the same for all datasets. The frequency parameter 
w0 is a very well conditioned parameter; its confidence interval is relatively small 
(about 10%). The damping parameters (b11 b2) have a (relatively) larger variance. 

A·NF a b! ± 8! b2 ± 82 wo± 8s 

I0S(Td- 1s-6) (s-1) (s-1) (s-1) (rad/s) 
JR74 92.5 149 45.5± 25.6 5.9± 6.4 74.5± 5.6 
JAJR 74.5 179 42.9± 19.3 9.5± 6.8 79.5± 5.8 
FB 50.3 181 33.4± 14.6 15.4± 9.5 90.4± 7.6 
JP 66.6 167 45.3± 18.3 10.5± 6.5 83.7± 5.5 
.LT 64.8 169 24.3± 7.9 15.1± 10.4 84.6± 5.5 
HD 207.3 181 41.5± 17.2 10.5± 8.5 90.7± 6.7 
IH 25.4 174 32.4± 11.6 28.5± 13.6 86.9± 7.2 

LT 1.6 110 29.3± 11.2 16.0± 6.0 55.1± 4.3 
HR 0.2 100 19.6± 4.2 22.4± 6.3 49.9± 2.9 
JW 2.9 117 18.9± 7.1 8.0± 6.6 58.5± 4.2 
KS 1.0 100 15.8± 7.7 . 9.7± 8.0 49.9± 4.5 

Table 2: Parameters of the pseudo-matched filter for seven subjects at a 
1200 Td level and four subjects at a 100 Td level (upper and lower part ofthe 
table respectively). In all cases the stimulus diameter is 1 degree. 

The estimated parameters are also shown in Figure 5. From this figure (and 
Table 2) it can be seen that the estimated filter parameters cluster in specific areas 
in the complex plane, fairly independent of the subjects (see also the variances in 
Table 2) but strongly dependent on background luminance. From comparison of 
Figures 5A and 5B we see that only a significant change (given the variances) 
in the angular frequency parameter w0 occurs: an increase in frequency with an 
increase in background level. As a consequence of our assumptions (i.e. a = 2w0 ) 

the parameter a changes by the same proportional amount with the background 
as w0 • There seems to be a trend in the damping parameter b1 to higher values at 
higher levels (see Figure 5), but this is within the confidence regions (see Table 2). 

In Figure 6 an example (subject LT, E 1200 Td, 1° field diameter) is shown 
of the confidence regions of the three estimated parameters. Essentially, the con
fidence region is a three-dimensional figure, a.nd Figure 6 shows only the cross" 
sections of this hyper ellipsoid with the parameter planes. However, Figure 6 gives 
a good impression of this three-dimensional hyper ellipsoid. This was checked by 
the singular value decomposition (SVD) of the Hessian matrix at the final es
timated parameters. The SVD can be used to obtain information on well and 
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Figure 5: The estimated parameters for different subjects of a field of 1 degree 
diameter. A. 4 subjects at 100 and B seven subjects at 1200 Td background 
level. 
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poorly conditioned directions in the parameter space [25,26,11]. Essentially, the 
SVD ranges N orthogonal combinations of parameters from best to poorliest condi
tioned. In almost all cases the best parameter directions (from the point of view of 
the estimation process) are approximately the directions of the model parameters. 
This means that there are no directions in the parameter space with confidence 
intervals that are much larger than those shown in Figure 6. This guarantees 
furthermore that we had a well-defined optimization process, especially since the 
order of magnitude of the variances of the three estimated parameters is equal (see 
Table 2 and Figure 6). 

3.6 Predictions from the model 

Threshold-versus-duration curves 

In Figure 7 the detection threshold e is plotted versus the duration 11 of a rect
angular pulse. The solid line gives the prediction of the model estimated in the 
previous section for subject JR, at a background level of 1200 Td, and a 1 degree 
field without surround. The dots show the measured value of e for the same con
ditions [8]. Figure 7 shows that the predicted curve agrees well with the measured 
data, with a small underestimate of the threshold amplitude at long durations. 
This is a direct consequence of the poor fit of the estimated model to the second 
negative phase of the experimental data. 
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From subject LT estimated impulse responses are avail~ble at two different back
ground levels. From these estimated impulse responses the gain characteristics 
were calculated. The gain characteristics of the estimated linear models are shown 
in Figure 8. The figure is to some extent comparable to the de Lange character
istics (amplitude sensitivity versus frequency of a sinusoid, cf. [19,20]). However, 
a direct quantitative comparison is not possible. First of all, we do not have 
these experimental data of subject LT. Secondly, we assume that the de Lange 
curve is an envelope of different channels (cf. [4]) and thirdly, a de Lange curve 
incorporates stochastic effects (cf. [271). Nevertheless, Fig. 8 allows a qualitative 
comparison with the high-frequency side of a de Lange curve. The gain character-
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Figure 7: Prediction and experimental data of a threshold-versus-duration 
curve. Subject JR, 1200 Td and a 1 degree field. 

istics show that at the higher background level the peak value of the gain curve is 
lower and the cut-off frequency is higher and that the high-frequency asymptotes 
of both levels (virtually) coincide. This is in agreement with the experimental 
data [19,20], while the slope of the high-frequency asymptote also agrees well with 
the experimental results. 

For subject JP the gain and phase characteristics were measured using a sub
threshold summation technique, in the same way as the impulse responses were 
determined [15,16]. The advantages of this method are the possibility of measuring 
the amplitude sensitivity of the transient visual system (i.e. without contributions 
from other channels), and of revealing the (relative) phase characteristic. This 
means that a quantitative comparison of the frequency behaviour of the estimated 
linear model with experimental data is possible. We did not allow any vertical 
shifts in the predicted curve since the model is fully specified by its parameters, 
including the gain (see Table 2), and the contributions" of probability summation 
in the measurement data should only be negligible as a consequence of the pertur
bation technique. 

Figure 9A shows the gain characteristic of the model (continuous line) and the 
subthreshold measured data (dots) of the amplitude sensitivity of the transient 
channel. The predicted curve and the experimental data are in good agreement; 
except for the lowest frequencies. This is. a direct consequence of the underesti
mation of the second negative phase of the impulse response; a more pronounced 
second negative phase results in smaller predicted values of the low-frequency side 
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of the gain characteristic. Figure 9B shows the phase characteristic of the model 
(continuous line) and the experimental data (dots). Both show a nearly linear 
dependence on frequency. 

3. 7 Discussion 

In this paper we have presented a model for the transient channel of the visual 
system. The model consists of a. cascade of linear filters, .and is based on physiolog
ical and functional arguments. These arguments provide a conceptually attractive 
modeL The functional argument, i.e. the fact that the system performs according 
to a nearly optimal detection unit, is in our view the most important one. However, 
the choice of the filters might contain weak points: the filter model is somewhat too 
rigid to contain all details of actual occurring physiological responses. Providing 
possibilities for further detail in the first and second filter would mean introducing 
extra parameters. In view of the parsimony principle we decided to take filters 
with the smallest number of parameters possible and so with very little possibility 
of detail. 
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The model was fitted to experimentally determined impulse responses of the 
transient channel of the visual system. In most cases the model's parameters were 
found so a reasonable fit was obtained (considering the variance in the measure
ment data). However, the second negative phase of the impulse response is mostly 
underestimated by the model. This is a consequence of the rigid choice of the 
linear filters. Other filters that are slight modifications of the ones proposed here 
may provide a better fit to the impulse response data without losing the concept 
of the model. Since the concept is considered of more importance than its actual 
implementation and because probably only slight modifications in the model are 
sufficient to provide better fits, we continued to examine the behaviour of the 
model. 

It was found that under the same conditions (background level and field diame
ter) the estimated model was essentially the same for different subjects. Compar
ison of the results from the fits at different background levels showed that from 
the three parameters in the model only the angular frequency changed by more 
than the estimated standard deviation. This means the model is also incorporates 

. a very simple description of changes in background level. 
Finally it was shown that the model is in agreement with other psychophysi

cal data. This was shown by predicting the threshold-versus-duration curve and 
the sensitivity to sinusoidal stimuli. The model's threshold-versus-duration curves 
agree well with the experimental data. From the prediction of gain character
istic it was found that the low-frequency side is overestimated. This is a direct 
consequence of the underestimation of the second negative phase of the impulse 
response rather than a discrepancy. The phase characteristic shows a linear de
pendence on frequency. This does not only agree with the experimental results, 
but may also be an attractive system property. In view of the idea of parallel 
operating channels, linear phase characteristics would provide an easy means to 
establish timing between transient and sustained channel. Sustained channels (see 
the impulse responses of point sources [7]) also show linear phase behaviour over 
the essential part of their frequency spectrum. 

In short, we conclude that a chain of filters incorporating a matched filter is an 
attractive frame for analysing and understanding the temporal behaviour of the 
transient channel of the visual sytem. 
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Appendix 

Consider the output of a linear filter L detected by a deterministic mechanism 
with threshold d. The detection process, however, is stochastic because of the 
noise source n(t), see Figure 10. The noise n(t) is assumed stationary and white. 
For the mean and the variance a~ of n(t) we take 

e[n(t)] 0 

e [n( t)2
] = 0'~, 

(16) 

(17) 

where e [] denotes the expected value. It is assumed that the high threshold 
assumption is valid, i.e. a0 < d. For a pulse to be detected in the deterministic 
case (a0 = 0), a certain amplitude e:1 is taken 

{18) 

where At is the duration of the pulse (At much smaller than the time constants of 
the linear filter), U6(t) is the impulse response of the linear filter and t • ., is the time 
of occurence of the extremum of the impulse response. In the stochastic case and 
assuming a high threshold and one clear dominant extremum of U6(t), equation 
(18) has to be corrected for the noise contribution at t.:t: 

(19) 

The measured value of e:1 will be a stochastic variable too. 



56 chapter 3 

n(t) 

L yes/no 

Figure 10: The linear model L (impulse response Us(t) ), the additive 
noise n(t) and the detection mechanism (with threshold d). 

For the detection of an impulse response perturbed by an amplitude normalized 
function f(t) under the same assumptions as earlier, an equation is found similar 
to· (19): 

(20) 

where q is a constant so 

q f(t • ., r) ~ Us(t • .,), for all r. (21) 

e. will have a stochastic nature too. From (19) and (20} it is found that a 
constant ratio exists between the mean c01 and Eoe and their standard deviation 
(u1 and u.) 

0'1 O'c O'o (22} 
Eot = Eoc = -;[• 

This ratio is called the Crozier coefficient. This ratio is constant over ·a large 
number of stimulus conditions [27]. The normalized disturbance is calculated 
according to [7J 

f(t • .,- r) _1 ex } 
g(t.,. - r) = A U ( ) = q {-(-) - 1 . t 5 t0 , c0 T 

(23) 

This function will be stochastic with mean g0 (r) and variance u;(~)· Using a Taylor 
series expansion around c01 and e-0., it is found 

_1{e:ol q -
eoe 1}, (24) 

(25) 
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The last approximation stems from the perturbation requirement (21). From (25) 
it is seen that at each sampling moment the noise is approximately the same. The 
measured noise at different moments r can therefore be compared directly to each 
other, and the introduction of a mean measured noise a!. (eq. 13) is justified. 
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Nonlinear parameter estimation applied to 
psychophysically measured impulse responses 1 

Albertus C. den Brinker 
Jacques A. J. Roufs 

Abstract 

A technique is presented for the estimation of the impulse response, based on 
data from a psychophysical experiment on threshold vision. A two-step method 
is used for the estimation of the model parameters. The first step is a Hankel 
matrix approach, the second an unweighted least-squares method. Results of this 
estimation technique are presented. The model with the estimated parameters 
corroborates other psychophysical data. The estimates obtained are adequate for 
the intended purposes of simulation and modelling. 

4.1 Introduction 

Much research in the field of human visual perception is directed at visual threshold 
characteristics. It is usually assumed that these char~teristics result from different 
channels operating in parallel. Each channel is tuned to some specific temporal 
and spatial frequency range. These channels are assumed to act linearly for sma11 
excursions from a steady background. In the temporal domain there are usually 
two channels postulated (e.g., [1,2,3,4]). One is tuned to temporally low frequencies 
and is called the sustained channel, the other to higher temporal frequencies and 
is called the transient channel [1,2,3,4[. Roufs and Blommaert [5] have shown that 
the temporal channels (the sustained and the transient channel) can be isolated 
from each other, and that the impulse responses of these channels can be measured 
psychophysically. 

This paper discusses the parameter estimation of a linear model based on psy
chophysical measurements of the impulse responses of the transient channel. The 
linear model is an n-th order filter described by the poles and zeros of the transfer 
function (see Section 4). The reasons for this type of estimation are threefold. In 
the first place, it allows a convenient and simple description of the results of the 
measurements, because the model. condenses all insight and knowledge on the sys
tem into a few parameters. In this case some 25 experimental data are translated 
into five parameters which describe a function that smoothes and interpolates the 
original data. Also, the parameters give insight in the behaviour of the system, 

1This chapter is the (slightly modified version of the) text from an article with the same title. 
It is in press by IEEE Transactrions on Biomedical Engineering. 
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e.g., the poles represent the eigen functions of the system, i.e. the possible output 
signals in absence of an excitation. Secondly, this description enables us to predict 
the response of the modelled system for other excitations [6]. An example of a 
threshold-versus-duration curve will be shown in Section 6. Thirdly, in the long 
run we want to model (part of) the behaviour of the responses of the retina in a 
model with distributed parameters. In such a spa.tiotemporal model, the parame
ters from these estimations can be used to identify and model certain parts of this 
larger system. How the estimated parameters may be used in connection with a. 
distributed parameter model will be given elsewhere (chapters 5 and 6). 

The data. on which the parameter estimations are performed here are derived 
from psychophysical experiments. Data from such experiments are rather noisy, as 
are all measurement data from biological systems. Furthermore, the experiments 
to obtain these data are time-consuming. Therefore the number of samples avail
able is small. A small number of relatively noisy samples is an extra complicating 
factor in the process of estimating the modelled system. 

An impulse response of a certain channel of the visual system cannot be mea
sured directly by psychophysical means. However, from psychophysical detection 
experiments (where a subject states whether he has seen or not seen a certain 
stimulus) using a perturbation technique [5], a normalized impulse response can 
be obtained. The absolute sensitivity of the system can be measured separately. 

The use of the perturbation technique has been extensively described by Roufs 
and Blommaert [5]. In essence, this technique uses a two-pulse temporal excitation, 
where the response of one of the pulses is perturbed by the response of the other 
(smaller) pulse. This causes an increase or decrease in threshold amplitude of 
the larger pulse. The change in threshold amplitude caused by the smaller pulse 
can be measured as a function of the time delay r between these two pulses. 
From such data the shape of the perturbing signal can be retrieved [5]. As a 
consequence of this technique some a priori information on the experimental results 
is available. This information must be incorporated into the model, resulting in 
some restrictions on the degrees of freedom of the model chosen. 

The data are interpreted as being derived from a continuous system: the signals 
are not quantized and are functions of a continuous time variable. The model being 
fitted to these data is an n-th order continuous linear filter, with some restrictions 
on its structure. 

The method used to obtain the parameters of this model is the well known 
least-squares estimation. The objective function, which is being minimized during 
the estimation, is a nonlinear function of the parameters of the n-th order filter. A 
problem with such nonlinear parameter estimations is that the objective function 
may have (many) local minima. In order to limit the chance that the minimization 
of the objective function is trapped in such a local minimum, a fairly good initial 
estimate of the parameters is helpful. 

For this reason the parameter estimation considered here consists of a two-step 
method. As a first step an estimation procedure is used that is not sensitive 
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to local minima. To this end a Hankel approximation (see Section 3) is used. 
Thus an acceptable estimate for the initial parameters of the .model is obtained. 
As the second step the least-squares method is used for the nonlinear parameter 
estimation of the ultimate model. 

There are several reasons for using this second step. Firstly, the Hankel ap
proach leads to a time-discrete model. Although an equivalent continuous system 
can be formulated, this still means that non-equidistant datapoints cannot be 
taken into account in the first step. Secondly, the optimization criterion in the 
Hankel estimation cannot easily be given in terms of known criteria (e.g., least
squares, maximum deviation). Thirdly, there is no possibility to introduce a priori 
information in the first step, e.g., that the impulse response is continuous at its 
starting moment. 

Estimations using this Hankel matrix approach have shown that the results 
obtained are quite dose to the minimum, in an unweighted least-squares sense, 
for a model having the same degree of freedom [7]. So in this way the nonlinear 
least-squares estimation of the second step can be started with afairly good initial 
guess of the optimal parameters. 

The paper is organized in the following way. Section 2 discusses the data sets 
and the specific consequences of the measurement technique. Section 3 deals with 
the Hankel matrix approach, the way in which the data are used, and the method 
used to translate the results of this estimation into the parameters of a continuous 
model. Section 4 describes the continuous model used in the second estimation step 
as well as the restrictions on the parameters based on a priori information. The 
implementation of the estimation process in computer programs is briefly indicated 
in Section 5. In Part 6 some actual results of the estimations are presented, as 
well as some problems encountered. 

4.2 The impulse response data 

The response of the eye to a certain stimulus is generally supposed to be processed 
in different channels operating in parallel [1,2,3,4]. In the temporal domain two 
channels are usually assumed to intermediate between the physical stimulus and 
the human percept. These are the sustained and the transient channels [1,2,3,4]. 

The experimentally determined impulse responses [5,6] of different subjects at 
two different background levels, were obtained by the so-called perturbation tech
nique [5]. The impulse response data a.re derived from flashed discs of a. diameter 
of 1 degree visual angle, superimposed on an equally large disc of a given lumi
nance. The disc was projected foveally a.nd the surround of the disc was always 
completely dark. It was found [2,5,6] that the transient system is dominant for 
this spatial configuration when only fast temporal excitations (flashes) are used 
(as is the case with the perturbation technique, see Section 1). 

There are, however, some consequences of this method with r!;!Spect to the 
measured data '{5,6] that .we need to discuss. First, the.method requires ra.ther 
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time-consuming experiments. For this reason the number of datapoints that is 
usually measured is taken as low as possible. The number usually ranges from 
about twenty to thirty. In most cases an extra tail of some 4 or 5 samples was added 
to the measured data, with mean values equal to zero and standard deviations 
taken as the mean of the standard deviations of the actually measured samples. 
This extra tail was added in the region where the impulse response is approximately 
zero, and ensures that the estimated filter has the properties of a stable system 
(Bounded Input-Bounded Output). Secondly, there is the offset of the time axis. 
As a result of the perturbation technique the position of the starting point of the 
impulse response (say t 08) is lost. A time axis is obtained in which the origin 
of the axis is located exactly on the extremum of the impulse response (see Fig. 1). 
Note also that the time scale is plotted in the independent variable -T. It was 
preferred to stick close to the same variable as used in the original measurements, 
which is r; To obtain the direction of a normal time axis (later events situated 
on the right-hand side) the variable -r had to be taken. Thirdly, the extremum 
should be exactly equal to one, since a normalized impulse response is obtained 
with the method used . Actual measurement of this extremum gives a value close 
to but not exactly one, because of the noise in the system (see Fig. 1A at r = 0 ms). 

The system is not fully specified by its normalized impulse response u;(t). The 
amplification factor of the filter is not constrained by the experimental procedure. 
This constant can be measured separately. We suppose that after the linear filter 
considered here, an ideal detector with an unknown threshold level is operating. 
By measuring the intensity e at the detection level of a pulse with a duration '11 
that is short compared to the time constants of the filter, the normalizing constant 
can be expressed in units of the internal detection mechanism. The normalizing 
constant is called the norm factor NF and is equal to e-111-1• The norm factor 
multiplied by the normalized impulse response gives the impulse response of the 
system in threshold units per second. Consequently the response R(t) of the linear 
filter to an arbitrary input e,,./;,.(t) can be expressed as a convolution: 

R(t) = fco e,,./;,.(p) NF u;(t- p) dp = e'l1 foo f,,.(p) u;(t p) dp, (1) 

where J;,.(t) is an amplitude-normalized signal and e;, is the amplitude. There
sponse R(t) is in this way expressed in threshold units, e.g., R(t) = 2, the response 
is twice as large as the internal threshold level. Alternatively the intensity e;,. of 
an arbitrary stimulus to reach the threshold can be calculated. 

The data of the normalized impulse response (see Fig. lA) show an oscillatory 
behaviour. This points to a bandpass or nearly bandpass character of the system. 
Furthermore, from the data it can be seen that the experimentally determined 
impulse response is (probably) continuous at the unknown starting point. It is 
also (probably) slowly starting, i.e. the first derivative equals zero at the starting 
point. This is true for most biological responses. 

These remarks have consequences for the model that is being fitted to these 
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Figure 1: A. An example of data obtained from a psychophysical experiment 
using a perturbation technique, for the measurement of the impulse response. 
The points represent the mean value, the bars represent twice the standard 
deviation of the mean. B. The data of Fig. lA (midpoints of the vertical 
error bars) used in the Hankel estimation (the non-equidistant samples of 
Fig. lA are omitted), together with the Hankel realization of order four based 
on these data. C. Data of Fig. lB (midpoints of the vertical error bars) for 
the Hankel estimation, and the continuous impulse response calculated from 
the Hankel realization. The impulse response starts with a time delay equal 
to the sampling time (see (3)). 

data. It implies that there are a number of restrictions on the chosen model, and 
thus that this will result in a reduced number of degrees of freedom in the model. 
This will be dealt with in section 4. 
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4.3 The Hankel matrix approach 

In this section the first part of the two-step method in the estimation procedure is 
discussed. It should provide the initial values of the parameters for the second step. 
Our aim is to use the estimated model for simulations. The method of deriving 
the estimate (e.g., equation error method, output error method) determines the 
possible applications of these estimates [8,9]. As shown in [9] an equation error 
method will not give an adequate estimate for purposes of simulation with the 
experimental data at hand. For models to be used in simulations the output error 
model is to be preferred [8], since in that case the predicted (i.e. model) response 
does not depend on the foregoing system (i.e. measured) responses. Since an 
output error method will be used in the second step, the estimation in the first 
step should also be closely linked to an output error method step, and should not 
be sensitive to local minima. The Hankel matrix approach is such a method. 

A Hankel realization is an estimate of a discrete n-th order model from a se
quence of impulse response points. The realization is a state space model. The way 
in which the parameters of the n-th order discrete state space model are derived 
from the data of the impulse reponse can be found in Van den Hof [10]. 

The parameters of this state space model can be translated into the parameters 
q; and R. of a discrete transfer function according to 

F(z) 
n R. 
2:;-, 
i=l z- q; 

(2) 

F(z) being the transfer function in the z-domain, q; and Rt being the (discrete) 
poles and residues, respectively. 

To use this discrete model estimation, the data are assumed to be obtained 
from a discrete system. Therefore all non-equidistant samples are omitted and, 
if necessary, interpolated samples are used. Furthermore, an ad hoc assumption 
has to be made for the starting point of the impulse response. This has to be an 
integer multiple of sampling intervals used in the experiments. If the data are not 
obtained by equidistant sampling this method cannot be used. 

In Fig. lB only the data from Fig. lA are plotted that are used in the Hankel 
estimation. The non-equidistant samples are omitted, as well as the data before 
the assumed starting point (which was taken 8* !Oms before the extremum}. This 
method gives an estimate of the parameters Rt and q; of a discrete system. The 
time-discrete impulse response associated with the estimated parameters is also 
plotted in Fig. lB. 

From this discrete model a corresponding continuous model can be calculated. 
The continuous model is described by its transfer function H(s) in the Laplace 
domain 8: 

n Rt 
H(8) =exp(-sT)I;--, 

<=1 8- P; 
(3) 
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where p;, ~are the poles and the residues, respectively, of the continuous transfer 
function, and T is the time delay (equal to one sampling interval). From the 
discrete model parameters q; the parameters p; can be derived: 

q; exp( -p; T), 

Re{Pt} = r-1 ln lq1!, 

Im{p;} = 
r-t arctan(Im{q1}/ Re{q1}) 

r-1 arctan(Im{q;}/ Re{q;}) + 1r 

r-t arcta.n(Im{qi}/ Re{q;})- 1r 

, if Re{q1} > 0, 

, if Re{q;} < 0 and Im{q;} > 0, 

, if Re{q;} < 0 and Im{q;} < 0. 

(4) 
(5) 

(6) 

In Fig. lC the continuous impulse response is plotted, along with the data. (the 
midpoints of the vertical error bars) used for the Hankel estimation. The contin
uous impulse response coincides with the impulse response of the discrete model 
at the sampling points. 

From these estimations it is possible to obtain an estimate for the order of the 
model in the second step. This can be done by simply performing the estimation 
for several orders, and evaluating (e.g.) the sum of square errors. The poles (see 
formula. ( 4)) are used as an initial guess of the parameters of the continuous model 
described in the next part. The residues cannot be used directly to get an initial 
estimate of the remaining parameters of the continuous model because of the 
restrictions on these parameters. This will be elaborated on in Section 6. 

In view of the noisiness of the experimental data and of the problems that 
are caused by the sensitivity of a least-squares optimization to local minima, the 
Hankel matrix approach is a convenient starting point. To be more specific, we can 
distinguish three advantages of using the Hankel matrix approach as a first step. 
We already mentioned that the Hankel method can easily provide an estimate of 
the order of the system. Secondly, also already mentioned, initial values for the 
parameters in the second step (the least-squares optimization) are provided. As a 
third point we would like to draw attention to the fact that the estimated poles 
and zeros also provide an indication of the surplus of poles with respect to zeros of 
the system. This is of considerable importance, since if it were tried to fit a. filter 
that has not an appropriate difference in poles and zeros by means of an least
squares output error method, the least-squares technique will fail. If there are too 
many zeros, the norm of at 'least one zero will be large with respect to the norms 
of the poles and· the other zeros, thus creating a badly conditioned problem. This 
problem is especially acute in a least-squares estimation, since when the process 
proves to be badly conditioned, it is unknown whether this is a. consequence of 
an inappropriate choice of the model (e.g., a. wrong number of poles and zeros), 
or simply caused by a bad choice of initial parameters. On the other hand, a. too 
small number of zeros will lead to a bad fit. In short, an estimate of the surplus 
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of the number of poles with respect to the zeros is provided by the Hankel matrix 
approach, and would be a cumbersome problem in a least-squares estimation. E.g., 
from the fourth order Hankel realizations it was found that, for almost all cases, 
the estimation results gave only one zero with a norm that was in the region of 
the norms of the poles. 

In conclusion, the first step in the suggested two-step approximation procedure 
is used to provide the numbers of relevant poles and zeros and the values of the 
initial parameters in the least-squares estimation. If there is some other source 
that yields this information, then the Hankel matrix approach can be substituted 
by this other source. This may be either a priori knowledge about the modelled 
system, or may consist of another estimation procedure that is not sensitive to 
local minima, and is (also) closely linked to a least-squares method. 

As already stated, the important advantage of this method is that no local 
minima occur. The method has the following disadvantages: in the first place 
the restrictions we want to impose on the realization cannot be implemented. 
These restrictions are that the extremum of the impulse response equals one, the 
extremum occurring at r 0 ms, a continuous impulse response and a continuous 
first derivative. Secondly, the samples that are not equidistant cannot be taken 
into account. Thirdly, an ad hoc assumption has to be made for the time at 
which the impulse excitation took place. To overcome these drawbacks a second 
estimation procedure is added to the first. This second procedure is described in 
the next part. 

4.4 The continuous model, transfer function, parameters 
and the restrictions 

A general continuous causal n-th order linear filter can be described by the transfer 
function F(s) in the s-domain, i.e. the Laplace transform C of the impulse response 
f(t) : 

F(s) C{f(t)} = fooo f(t)exp(-st)dt, (7) 

(8) 

The reason for the choice of the parameters C; in the numerator is that in that 
case the restrictions mentioned earlier can be imposed on the model in a simple 
manner. 

Since the impulse response is a real valued signal, and the system is stable, the 
only restrictions on the poles are that they occur in complex conjugated pairs, and 
that the real part of the poles is non-negative. 

The reason for the choice of the denominator in the form of a product containing 
the poles as parameters is that it can easily be translated into an impulse response 
in the form of damped .sinusoids. If we were to chose to describe the denominator 
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in a form containing the natural frequencies n •• and the damping ratios e. as the 
parameters, then 

(9) 

and a restriction has to be imposed on e,: 0 s; e, s; 1. This would result in 
an undesirable constraint on the optimization problem that can be avoided by the 
choice of the parameters in the form of the poles p;. H we were to chose to describe 
the denominator in the form of a summation by 

.. 
l:E;s', E,. 
i=O 

1, (10) 

with E;, (i=O, ... ,n-1) as the parameters, a search has to be made for the zeros of 
an n-th degree polynomial every time the impulse response is compared with the 
data in order to calculate the objective function in each iteration step. 

We have found that for our data the Hankel approximations always gave the 
largest possible number of complex pole pairs, i.e. always only one real pole, if 
the order is uneven. The estimated complex pole pairs for our impulse response 
data [5,6J were never located near the real axis, but always contained a considerable 
imaginary component. The data are such that the poles are always estimated so 
as to have a real part less than zero. This means there is no need to impose any 
restrictions on the poles from the stability point of view. 

The restrictions on the parameters C; can simply be derived. Assuming there 
is no impulsive component in the impulse response, that the impulse response is 
continuous, and that· also its derivative is continuous at the starting point means, 
respectively 

c .. """' 0, 

Cn-1 0, 

Cn-2 = 0. 

F(s) is now simplified to the form: 

F(s) 

where 
D; = C;/Cn-s , i = 0, ... , n 3. 

(11) 
(12) 
(13} 

(14) 

(15) 

It is obvious that the restriction of the extremum of the impulse response being 
equal to one results in a restriction on C,._3 , that is to say C,...c3 is a function of 
the other parameters: 

C,._s = Cn-3(Pi>Dc), k = 0, ..• ,n 4, i = 1, ... ,n. (16) 
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The analytic expression (16) for Cn_3 is, however, hard to derive for the general 
case. Before imposing the restriction on the extremum, the transfer function is 
translated into the impulse response f(t). 

The impulse response associated with F(s) according to (14} can be written as 
n 

f(t) = .c-1{F(s)} L Res; exp(p;t) H(t), 
i=l 

where H(t) is the Heaviside function defined by 

H(t) = { 01 ' t < 0 
, t ~ 0. 

(17) 

(18) 

The residues Res; can be calculated from the set {p1, Cn-a, D~:), i = 1, ... , n; 
k = 0, ... , n- 4, by 

. L:~;;;g D~;pf 
Res;= hm(s- pi)F(s) = Cn-3TI" ( )' (19) •-P• k=I,kii Pi - Pic 

assuming that all poles p; are distinct. 
As said before, the analytical expression for Cn-ll as a function of the other 

parameters is hard to derive. We circumvent this problem numerically. Given any 
set (p;, D 11 ), i = 1, ... , n , k 0, ... , n- 4, the residues Res; can be calculated 
according to (19), apart from the factor Cn-S· If Cn-s is set at a certain numerical 
value, e.g. unity, a numerical search for the extremum of f(t) can be made for any 
parameter set. The value of the extremum found in this way is called K ; K may 
be positive or negative. Cn-s is set to 

(20) 

The impulse response f(t) is thereby scaled to unity. 
During the search for K the numerical value of t,z, the moment at which the 

extremum of the impulse response of the model occurs, is found also. This value t,., 
equals of course exactly the shift between the time axis of the impulse response 
that is being fitted, and the time axis of the measurements. The loss of the starting 
point in the measurements does not give rise to an extra degree of freedom: the 
shift between the origin of the -T axis and the filter response axis t is not arbitrary, 
but is uniquely given by the condition that the extremum of the filter response 
should coincide with r = 0. The expression /{ -r + t • .,) given by 

n 

f( -r + t • .,) = L Res; exp(p;t • .,) exp( -p,r) H( -r + t • .,), (21) 
i=l 

can now be compared with the data. 
The number of degrees of freedom N in an n-th order model is (in formula {14)) 

N = 2n 3. (22) 

Because of the restrictions on the numerator of the transfer function the minimum 
order of the model is three. 
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4.5 Objective function and implementation for the second 
estimation step 

From noise analysis of experiments using a perturbation technique it can be shown 
that the expected value of the noise at the various sampling instants T; is approxi
mately independent ofT [5). For this reason an unweighted least-squares objective 
function \II is chosen: 

where 
M 

M 

w = L {!( -Tm + t,,) - u; ( -Tm)}
2

, 

m=l 

number of samples , 
m-th sample time, m = 1, ... ,M, 

u;(rm) measured response at Tm· 

(23) 

In contrast to the Hankel matrix approach non-equidistant samples are included 
in the optimization process of (23). There are no constraints on the values of the 
parameter set (p;, Dk)· The poles p; are complex valued, but always occurring in 
complex conjugated pairs. The computer programs for estimation purposes work 
with real-valued parameters only. Therefore p; is split into its real and imaginary 
parts and these act as actual parameters in the programs. There are no constraints 
on the values of these real and imaginary parts. But it means that the number 
of complex pole pairs has to be stated if the programs are not to become too 
complex. The Hankel realization always showed a maximum number of complex 
pole pairs given any order, i.e. all poles are complex or there is only one real pole. 
The least-squares estimation programs incorporate this assumption. 

For the estimation process we used subroutines from the NAG library [11). The 
estimation is an unconstrained nonlinear least-squares problem. Only function 
values of \II are supplied, no analytic derivatives of \II with respect to its parameters 
are used. The subroutines E04FDF and E04FCF from the NAG library are meant 
for such a problem [11). These routines use a modified Gauss-Newton method to 
search for the minimum of the objective function [12). Programs were written in 
Fortran and implemented on a VAX 11/750 computer. 

4.6 Results and discussion 

The results of the Hankel estimation have been mentioned several times before. 
They show a good fit of the model to our data (see the example in Fig. 1B) for 
each data set, for orders ranging from 4 to 6. 

The poles of the Hankel realization are used to calculate an initial guess of the 
poles in the least-squares estimation step. The values of "the initial guess of the 
poles and the ultimately obtained poles from the second estimation step agree 
well. 

Essentially, from the residues of the Hankel estimation no adequate information 
can be derived for an initial guess of the Dk parameters in the second step, because 
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of all the restrictions imposed. For a fourth-order filter, enough additional infor
mation is present to get an idea about what the initial value for these parameters 
should be. 

The data show that the realization approximately must have a bandpass char
acter. Consequently at least one zero of the continuous transfer function is small 
with respect to the poles. Furthermore, from measurements of the phase charac
teristics it is known that the system has a non-minimum phase characteristic [13]. 
This means that at least one zero is lying in the right-half of the s-plane. 

Turning our attention to a model of order four, sufficient information exists for 
the initial guess of the D0 parameter. With a fourth order model there is only one 
(real valued) zero z1 outside infinity. From (14) it follows that this zero has the 
value 

(24} 

The two considerations mentioned above (a zero small with respect to the poles, 
and a zero in the right half plane) apply to this one zero. In this way we can 
make a reasonable guess for the Do parameter. For higher orders than four it is 
much harder to attain an initial value for the D parameters on the basis of such 
considerations. 

In Figs. 2 and 3 several results of the two-step method of estimation are shown. 
The measured data are from different subjects and at two different background 
luminance levels2 (1200 Td for Fig. 2, 100 Td for Fig. 3). The fourth-order models 
fit reasonably well. This can also be shown numerically. In Tables 1 and 2 the 
measured standard deviation sm derived from the variance averaged over the dif
ferent datapoints is compared with the standard deviation s, estimated from the 
realization: 

2 \ll 
8

' = M N' 
(25) 

where \11 is the objective function at the final estimate, M the number of data
points, and N the number of free variables in the least-squares estimation [14,15J. 
The estimated standard deviation s, should not be much larger than the measured 
standard deviation sm. This would mean that the estimate is not an adequate rep
resentation of the measured data. On the other hand, s, must not be much smaller 
than sm, otherwise the estimation process would not perform one of its main func
tions, which is to dispose of (part of) the noise that is present in the measured 
data. 

The least-squares fits are in most cases better than the Hankel estimates, even 
though the number of free parameters is larger in the Hankel estimation. The 
reason for this is that the Hankel estimation does not minimize a least-squares 
criterion, and is in this respect always sub-optimal. 

2 The number of trolands (Td) is given by multiplying the luminance in Cd m- 2 by the pupil 
area in mm2 • 
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Sm s. s. 
from from 

Hankel least-
squares 

JR74 .120 .157 .144 
JAJR .090 .105 .099 
FB .074 .145 .127 
JP .112 .144 .131 
LT .139 .110 .115 
HD .118 .134 .138 

Table 1: Measured {s,.) and estimated (s.) standard deviations for six dif
ferent subjects at 1200Td. 

Sm s. s. 
from from 

Hankel least-
squares 

LT .109 .122 .096 
HR .113 .114 .116 
JW .170 - .247 

Table 2: Measured (sm) and estimated (s.) standard deviations for three 
different subjects at lOOTd. 

In Fig. 4 an example of a pole-zero plot is shown. The differences in estimated 
parameters of different subjects at the same background level are relatively small. 
For different background levels there is a consistent change in estimated parame
ters. Such an analysis of the estimated parameters under different conditions will 
be carried out in chapter 5. 

In all estimates the zero z1 is located in the right-half plane. The system there
fore has a non-minimum phase characteristic. This is consistent with independent 
measurements of the phase [13]. The ratio of z1 and the smallest norm of the poles 
is far from being constant over the different subjects. It ranged between 0.1 and 
1.1. At the higher background level the zero became relatively smaller, indicating 
poorer d.c. response at higher light levels. 

Probably. a still better fit would be possible with a least-squares estimation of 
a higher order fit to the data. As yet such higher order fits have not been tried. 
There is still a problem with the fourth-order least-squares estimations, i.e. the 
estimation of the Do parameter. It is found that fm; most, data the estimation is 
hardly sensitive to variations in this parameter. The Do parameter determines the 
output of the system to a step response for long times after onset. If the system 
is (nearly) bandpass, it is obvious that this value is hard to estimate from impulse 
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Figure 2: Fourth-order estimates of the ultimate model (14) for six different 
subjects at a background luminance of 1200 Td. Data from subjects JR74 
(4A), JAJR (4B), FB (4C), JP (4D), LT (4E), and HD (4F). For clarity 
Figs. A and D are shifted 2.4 units and Figs. B and E 1.2 units in the vertical 
direction. 
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response data. This can also be seen from (19). For order four the numerator is 
p; + Do. Do being small with respect to IP• I means it has hardly any influence on 
the residues. Consequently the influence of D0 on the objective function is very 
small in these cases. With such an ill-determined parameter in the fourth-order 
model, it was not found advisible to try even higher order fits. 

One way to solve this problem would be to fix the Do parameter in those cases 
where the zero z1 is small with respect to IPtl· We could, for instance, assume the 
zero to be lying in the origin of the s-plane, which is to say assuming the system to 
be bandpass. In this manner we can eliminate such an ill-determined parameter. 
Another way to overcome this problem might be to make simultaneous fits using 
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chapter 4 

Figure 3: Fourth-order estimates of the ultimate model for three different 
subjects at a background luminance of 100 Td. Data from subjects LT (5A), 
HR (5B), and JW (5C). For clarity Figs. A and B are shifted vertically 2.4 
and 1.2 units respectively. 

data in which the D0 parameter is not so badly conditioned, e.g., using data from 
step responses. 

The research will be continued in this direction, also taking into account the 
reliability of the estimated parameters. However, up till now we are content with 
the fourth order descriptions of the measurement data. The most important fea
tures of the experimental data can be represented in such a simple description, and 
these features are also consistent with other psychophysical data. Furthermore, 
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Figure 4: Pole-zero plot of the fourth-order ultimate model for subject JAJR. 

with these descriptions the response of this system to any time excitation can be 
predicted, and also the modelling of more complex systems (as a formal analogy 
of the performance of the human eye) comes within closer reach. 

~ 
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Figure 5: Threshold of rectangular flashes as a function of the duration{} for 
subject FB. The circles are the experimental data, the continuous line is the 
prediction derived from the estimated impulse response. 

An example of a prediction of the model is shown in Fig. 5, where the detection 
amplitude is plotted versus the duration of rectangular pulses. The circles give 
the experimental data of subject FB for the same experimental conditions for 
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which the impulse response has been measured {1 degree field, 1200Td). The 
continuous line is the threshold value predicted from the estimated linear filter 
on basis of the experimentally determined impulse response. Since the model is 
completely described by the normalized impulse response and the norm factor, 
there are no degrees of freedom to fit the prediction to these data. From Fig. 5 it 
can be seen that the estimated impulse response gives an adequate prediction of 
this threshold-versus-duration curve, even for long durations. This confirms the 
assumed linearity [2,5,6] of the transient visual system (see also [16,17]). 

The small irregularities in the predicted threshold curve for long durations 
are due to the nonlinear detection unit. The response of the filter to a pulse 
is the difference of two step responses. The first starts at the onset of the pulse 
and has a positive amplitude, the second at the offset of the pulse and has a 
negative amplitude. For pulses of long duration the response to the offset adds 
to the tail of onset response, which is a small oscillatory signal. Thereby the 
detection sometimes occurs at the maximum of the onset response, and sometimes 
on the minimum of the offset response, depending on the pulse duration. This 
produces the irregularities in the prediction. These irregularities probably do not 
occur in reality, but are a consequence of the low order of the filter that is used 
to approximate the real system, together with the nonlinear behaviour of the 
threshold unit. 
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chapter 5 

A comparison of results from parameter estima
tions of impulse responses of the transient visual 
system1 

A.C. den Brinker 

Abstract 

Parameter estimations of a fourth-order linear model are applied to data from 
subthreshold measurements of impulse responses of the transient visual system. 
These impulse responses were obtained experimentally by several subjects, at two 
different background luminance levels and for different field sizes. The parame
ter estimations show consistent results over different subjects. For both different 
background levels and field sizes there are consequent changes in the estimated pa
rameters. On the basis of these changes a proposal is made for a spatiotemporal 
model of the transient visual system. 

5.1 Introduction 

It is generally agreed that the human visual,system processes stimuli in different 
parallel subsystems, called channels. In the temporal domain two channels are 
usually assumed: the sustained and the transient channel. The simplest model for 
a single channel is given in Figure 1, and consists of a linear filter L followed by an 
additive noise source N and a detection mechanism with threshold d. The linear 
filter characteristics depend on the (mean) background, the spatial dimension of 
the stimulus and surprisingly little on the subject, as will be shown. 

By. means of a perturbation technique it is possible to measure the impulse 
responses of the transient and sustained channel of the human visual system (Roufs 
and Blommaert, 1981). Such an experiment has been carried out by different 
subjects at different background levels (Roufs and Blommaert, 1981; Blommaert 
and Roufs, 1987) and for different field sizes. The results of these. measurements 
show a triphasic impulse response for large field sizes (i.e. diameters larger than 
approximately 0.3 degree). This response is associated with the transient visual 
system (Roufs, 1974a; Roufs and Blommaert, 1981). 

In this paper it is shown that these triphasic impulse responses can be ade
quately modelled as a fourth-order linear filter. In the Laplace domain this linear 
filter is described as a transfer function with two compl~ pole pairs, one zero 

1This chapter is the (slightly modified) text of an article with the same title. It is in pre88 by 
Biological Cybernetics. Part of this work was presented in cooperation with J.A.J. Ronfs at the 
89. Tagung der Deutsche GeseUschaft fiir angewandte Optik, Eberbach, FRG, 24-28 May 1988. 
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N 

L(E) 

E 

Figure 1: The model for the transient channel: a linear filter L, an additive 
noise source N, and a detection mechanism with threshold d. 
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and an amplification factor (chapter 4). In this article, the parameters and 90% 
confidence regions obtained by the estimation process described in chapter 4 are 
compared over the different experimental conditions under which the impulse re
sponse measurements were performed. 

This comparison of estimated parameters (poles and zeros of the transfer func
tion) of the linear filter might give information about the behaviour of the system 
with varying experimental conditions. In this way this analysis can give insight 
into the fundamental properties of the processing of visual stimuli, and might pro
vide a link with the experimental results obtained by electrophysiology. As far as 
we know, this kind of research of systematic changes in parameters of a linear filter 
as a function of experimental conditions has not been performed before, except in 
more general terms, where characteristic quantities (cut-off frequency,·sensitivity) 
have been experimentally determined as a function of background (Kelly, 1961; 
Roufs, 1972) and spatial dimension (Roufs and Bouma, 1980). 

The estimated parameters show that there are relatively small intersubject vari
ations of their values if the same background and the same spatial configuration 
of the stimulus are used. Over different background levels there is a consistent 
change in the measured impulse response. The measured impulse responses seem 
to be isomorphic (Roufs 1974a; Roufs and Blommaert, 1981). The change of the 
measured impulse response is reflected in a change of the estimated parameters 
of the fourth-order linear filter. From the fourth-order linear filter estimates it is 
found that for the largest part there is indeed a change in time scale. As a sec
ond minor effect a change in the lowpass behaviour occurs. Together this means 
that the impulse responses at different levels are indeed approximately isomorphic, 
though not precisely as Roufs (1974a) assumed. 

Variation of the field size (for one subject and one background level) results 
in a change of the measured impulse response. These changes are reflected in the 
parameters of the estimated filter. It will be shown that only part of the estimated 
parameters vary with a change in spatial configuration. This implies that it is 



78 chapter 5 

possible to isolate the lateral and the afferent information spread contained in 
these impulse responses. On the basis of this finding a simple spatiotemporal 
model for the transient visual system is proposed. 

In the last part of the article we will show that the impulse response data and 
the analysis of the behaviour of the parameters of the linear filter are in agreement 
with other experimental findings, most notably the measurements of the sensitivity 
versus the frequency of a sinusoid, the so-called De Lange curves. 

6.2 Measurement data, the description of the fourth-order 
linear filter and evaluation of the fit 

Available experimentally obtained impulse responses 

The experimentally obtained impulse responses that are available and considered 
here are: 
• impulse responses of seven subjects at a 1200 Td level for a 1 degree field, 
• impulse responses of three subjects at a 100 Td level for a 1 degree field, 
• impulse responses of two subjects at a 1200 Td level for different field diameters. 

How these impulse responses are derived experimentally is not an issue in this 
paper (see Roufs and Blommaert, 1981). The measured impulse responses are 
estimated as a fourth-order linear filter with a transfer function described by two 
complex pole pairs and one zero. The parameter estimation technique is described 
elsewhere (chapter 4), and extended by estimates of the 90% confidence regions of 
the parameters. The estimates of the confidence region are only appropriate if the 
objective function in the optimization problem is (approximately) quadratic within 
these regions. In all cases a check was made on this assumption. In this paper 
we will concentrate on the results of these parameter estimations. In cases where 
estimated parameters are compared over different experimental conditions, and 
parameter shifts are supposed to result from the changed experimental conditions, 
support for this reasoning will be sought from the estimates of the confidence 
regions, insofar as these could be estimated. 

The transfer function of the linear filter 

As a linear model for the transient system a fourth-order filter is used, with transfer 
function H(s) in the Laplace domains. The transfer is given in threshold units d 
(see Fig. 1). The characteristics of the filter are described by its parameters 
(PI> p2, z, A, NF) according to 

H( ) = NF A (s- z) 8 
(s- PI)(s- Pi)(s- P2)(s- Pi)' 

(1) 
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where 
NF 
A 
z 

= norm factor 
an amplification factor 

= a zero of the transfer function 
Pt, P2 complex poles of the transfer function 

the conjugate of a complex number. 
The impulse response h(t) can be calculated from H(s) as 

2 

h{t) = NF ·A L {R. exp{p;t} + R; exp{p;t}}, 
i=l 

where R. are the (complex valued) residues given by 
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(2) 

(3) 

(4) 

Some examples of measured and estimated normalized impulse responses are 
shown in Figure 4 and will be discussed later. All estimated impulse responses 
mentioned in this article and not shown in Figure 4 can be found in chapter 4. As 
a result of the measurement technique the measured impulse response is basically 
scaled to an extremum equal to one, the absolute value being obtained separately. 
The amplification factor A is such that the fitted curve H(s)/NF has an extremum 
exactly equal to one. 

The filter H(s) given by (1) is the transform of an impulse response that con
sists of a sum of damped sinusoids (2). If this description is to supply insight 
into the processing within the transient channel, it presupposes that different sub
systems within this channel can approximately be described by impulse responses 
that are damped sinusoids. Conceptually, this is not unlikely: many physiologi
cal experiments and models describe feedback mechanisms (e.g., adaptive models; 
Shapley and Enroth-Cugell, 1984). Such mechanisms often show these oscillatory 
responses as a direct consequence of the feedback loop. In actual measurements of 
single neurons mostly biphasic impulse responses are found (e.g., Naka, 1982; Daly 
and Normann, 1985). If the real part of the poles is not too small with respect 
to its imaginary part, the impulse response associated with a complex conjugated 
pole pair can be considered as an approximation to these responses. From this 
point of view the filter (1) may not only provide descriptive formula of the impulse 
response, but may also be able to reveal the underlying properties of the temporal 
processing. 

Estimated and measured noise 

Given the experimental uncertainty the fits agree reasonably well with the mea
surements. This is shown numerically in Table 1. Here we have compared the 
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mean measured and the estimated noise given by the standard deviations. 
mean measured standard deviation sm is taken as 

2 1 ~ 2 
sm = M £...., 8 (to), 

i=l 

where 
M the number of samples, 
t; the sampling moments of the impulse response, 1 :::; i :::; M, 
s(t;) the measured standard deviation of the mean at t;. 

The 

(5) 

For the estimated standard deviations. we find (Bard, 1974; Wolberg, 1967) 

where 
IJI 
M 
N 

2 IJI 
s.=M-N' 

sum of squared residuals at the final estimate, 
number of measured samples, 
number of free variables in the estimation process, 
N = 5 (see chapter 4). 

(6) 

Table 1 shows that the estimated standard deviation is in most cases greater 
than the measured standard deviation. Some of the fits, notably FB and JW, are 
not adequately represented by the fourth-order filter. Probably a higher order filter 
would be better. However, averaged over different subjects the estimated standard 
deviation s. is only about 8% larger than the measured standard deviation sm. 
Therefore we argue that in most cases a fourth-order filter is a sufficiently elaborate 
model to represent the measured impulse responses. Furthermore we will show 
that, even in cases of poorer fits, the estimated fourth-order linear filters are similar 
to those estimated for other subjects under the same experimental conditions. 

Apart from the above-mentioned estimations we also fitted the same fourth
order filter (1) with a bandpass restriction, i.e. z = 0. In the fits of the data to 
a bandpass filter only the complex pole pairs acted as degrees of freedom in the 
estimation process. The results of the bandpass estimates show that the fits to 
this model are not as good as those with z as a free parameter. Not only is the 
estimated standard deviation ab in all cases greater then a. (see Table 1), but 
also that these fits always overestimated the first (negative) phase. The reason 
for estimating a bandpass filter for the transient system is that in contrast to 
usual assumptions about the transient system (Roufs, 1974a), our model (given 
by eq.(1)) has spurious sustained activity; its response to a step function shows 
a large response at the onset, but also a small steady response for long durations 
after onset. 

5.3 Intersubject variations of estimated parameters 

First the intersubject variations of the estimation results for a 1 degree field with
out surround will be considered. The estimated parameters for seven subjects at 
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back- field 8,. s, 8b 

ground size 
(Td) (deg) 

JR74 1200 1 .120 .144 .157 
JAJR 1200 1 .086 .099 .Ill 
FB 1200 1 .074 .127 -
JP 1200 1 .112 .131 .139 
LT 1200 1 .139 .115 .131 
HD 1200 1 .118 .143 .144 
IH 1200 1 .106 .154 .156 

LT 100 1 .109 .096 .180 
HR 100 1 .113 .116 .217 
JW 100 1 .170 .247 .252 

HD 1200 0.28 .168 .145 .219 
HD 1200 1.00 .118 .143 .144 
HD 1200 5.50 .124 .111 .179 
IH 1200 0.28 .153 .087 .106 
IH 1200 0.50 .152 .126 .12S 
IH 1200 1.00 .106 .154 .156. 
IH 1200 5.50 .093 .078 .148. 

Table 1: Measured standard deviation sm and the calculated standard devia
tion of the noise. The estimated noise for a. model according to (1) is denoted 
by s,; for the same model but now with z = 0 (a. bandpass filter) the noise is 
denoted as sb. 
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a 1200 Td background level and three subjects at 100 Td are shown in Table 2. 
The first columns contain the estimated parameters p., p2 and z. The complex 
values p1 and p2 are split up into two real valued parameters: 

p; = 0:; + j /3;, i = 1,2 (7) 

where j = A and a:;, /3; E !R (i 1, 2). a:; is the i-th damping parameter and 
/3; the i-th (radian) frequency parameter. The pole p1 is the pole with the largest 
norm. The last two columns contain the amplification A and the norm factor NF. 
The amplification A was not a free parameter in the estimation process but was 
calculated to obtain an extremum of the impulse response equal to one (chapter 4). 
The norm factor NF gives the experimentally measured sensivity of the system to 
an impulse, and is expressed in units Td-1s-1 • Together the parameters in Table 2 
describe the system in threshold units d. The impulse response h(t) ca~ now be 
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given in these damping and frequency parameters by 

2 

h(t) NF ·ALB; exp{ o:;T} cos(,81t + ~1 ) 
i=l 

where B; = 2R;exp{-j~,}. 

0:2 ,82 z A NF 
(e-1) (radfs) (s-1) (104s-2) (Td-1s-1) 

JR74 -15.4 42.1 6.87 -.946 0.68 
JAJR -15.4 46.5 13.6 -1.07 0.90 
FB -20.5 101. -12.9 54.1 19.2 -.874 1.2 
JP -22.5 94.1 -18.8 44.8 13.2 -1.04 1.09 
LT -20.4 94.3 -20.2 54.0 20.2 -.935 0.59 
HD -23.3 99.8 -19.3 51.8 11.8 -1.13 0.44 
IH -19.8 103. -22.0 50.2 53.8 -.833 1.01 

LT -16.6 56.1 -20.8 26.6 20.1 -2.11 3.86 
HR -13.0 58.5 -14.1 28.0 32.9 -3.47 7.46 
JW -10.1 58.1 -11.8 28.8 17.8 -3.38 4.59 

Table 2: Estimated parameters of the fourth-order linear filter for six subjects 
at a 1200 Td level and three subjects at a 100 Td level (upper and lower part 
of the table respectively). In all cases the stimulus diameter is 1 degree. 

(8) 

From Table 2 we see that the variation of the estimates over the different sub
jects is relatively small, given a. specific background level. This is also shown in 
Figs. 2A and 2B. In Fig. 2A the estimated poles and zeros of seven subjects at 
the 1200 Td level are shown, in Fig. 2B the estimated poles for three subjects 
at 100 Td. From these plots it can be seen that there are only minor variations 
between subjects if identical spatial configuration and background level are used. 
All parameters p1, P2 and z cluster, at both 1200 (Fig. 2A) and 100 Td back
ground (Fig. 2B). At 1200 Td there is one zero (for subject IH, see Table 2) which 
has an exceptional location with respect to the cluster formed by the other zeros. 
But then, this zero has a large variance as can be seen from the 90% confidence 
intervals shown in Fig. SB (this figure will be discussed later). 

Comparing Figs. 2A and 2B we see that a change in background level shows a 
much larger change in the estimated parameters than the intersubject variation at 
one level. 
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Figure 2: Pole-zero plots in the complex plane. Horizontal and vertical axes 
are the real a.nd imaginary axes, respectively. The units are in s- 1. The lower 
part of the s-plane is not shown in this plot. A. Estimated parameters of all 
impulse responses at 1200 Td. The crosses and circles are the poles and zeros, 
respectively. B. Estimated parameters of all impulse responses at 100 Td. 
The crosses a.nd circles a.re the poles a.nd zeros, respectively. C. Estimated 
parameters of subject LT at 100 and 1200 Td. The crosses and circle are the 
poles a.nd zero respectively, at 1200 Td. The squares a.nd diamond are the 
poles a.nd zero respectively, at 100 Td. The dotted lines give the direction of 
the movement of the poles P1 a.nd P2 with variation in background (see text). 
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5.4 Changes in estimated parameters with background 

In section 3 it was shown that at one background level for a certain spatial config
uration (1 degree field) the estimated parameters for different subjects have only 
minor variations. We now try to establish invariances over the two background 
conditions that were used in the experiments. 

First we will argue that the zero z is nearly independent of the background. 
From Table 2 it can be seen that this parameter for different subjects lies roughly 
between 10 and 25 s-1 for both levels (except for IH). But, more important, the 
results for subject LT, from whom impulse responses at both levels are available, 
show an estimated zero that is nearly identical at both levels. A similar argument 
holds for the damping parameter o:2• This is also illustrated in Fig. 2C where the 
estimated poles and zeros of subject LT at both levels are simultaneously plotted. 

As a second source of information on invariances over both background lev
els, we look at the relative location of these parameters in the ~-plane, i.e. we 
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ignore the absolute values of the parameters, but consider the ratio of the different 
parameters. 

This is tabulated in Table 3. The two last columns give the ratio -ad /31 and 
-a2/ f12· This ratio is a measure of the direction of these poles in the s-plane. 
In columns three and four the ratios ad a2 and /31//32 can be found, which relate 
the location of pole p1 to pole p2• The mean values of the relative location of 
the poles have also been calculated and are shown in Table 3. This averaging of 
estimated parameters over different subjects seems allowed, since the intersubject 
variations over one level are small in comparison to the variation of the parameters 
with background. However, we have to observe the necessary caution, since at the 
100 Td level only three parameter sets are available, where one parameter set 
(JW) is derived from a data set which is rather noisy, and where the fit is not as 
good as one would like (see Table 1). 

back- at/a2 f3t/ /32 -at/f3t -a2/fJ2 
ground 

JR74 1200 1.63 1.00 .299 .365 
JAJR 1200 1.80 2.02 .294 .330 
FB 1200 1.58 1.87 .202 .239 
JP 1200 1.20 2.10 .239 .418 
LT 1200 1.01 1.75 .216 .374 
HD 1200 1.21 1.92 .234 .373 
IH 1200 0.90 2.06 .191 .438 
mean 1200 1.33 1.96 .239 .362 

LT 100 .796 2.11 .295 .782 
HR 100 .923 2.09 .221 .501 
JW 100 .858 2.01 .174 .409 
mean 100 .857 2.07 .230 .564 

Table 3: The relative location in the s-plane of the estimated parameters of 
the fourth-order linear filter. Six subjects at 1200 Td and three subjects at a 
100 Td background level. In all cases the stimulus diameter is 1 degree. 

From Table 3 it can be seen that the (mean) ratio of the imaginary parts of 
the two poles is nearly independent of the background level, and so is the ratio of 
the real and imaginary parts of pole p1• This means that a~> /31 and /32 change 
by an equal amount if the background level is changed from 100 Td to 1200 Td. 
The ratio a1fa2 and -a2/f32 changes with background, so it appears that this 
parameter a 2 does not change by an equal amount as do the parameters a 1, /31 

and /32. Indeed, this should be the case if a 2 is independent of the background 
level, as was argued before. 
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In Figure 2C all invariances in the parameters over the two background levels 
are illustrated in the pole-zero plots of subject LT at 100 and 1200 Td. The relative 
location of p1 is approximately constant: for the two background levels the poles 
p1 are (roughly) located on a straight line through the origin. For subject LT the 
ratio of the frequencies {31 at 1200 and 100 Td and idem for {32 is in the mean 
about 1.8. In Figure 3 the estimated impulse response of LT is plotted together 
with the estimated impulse response of LT at 100 Td with a time axis scaling 
for this last response by the same factor (1.8) as is found for the ratio of the 
estimated frequencies. From this we see that the responses of the transient system 
at different levels are nearly isomorphic with a small change in lowpass behaviour: 
the first negative phase is broader and slightly deeper, and the second negative 
phase is deeper for the higher background condition. 

u* 0 1 

T 

0 

0 100 

--1200Td 
_._ 100Td 

LT, fit= 1° 

200 

---+ t (ms) 

Figure 3: The estimated impulse responses of subject LT for a 1 degree field 
at 100 and 1200 Td. The time axis of the 100 Td impulse response is scaled 
with a factor 1.8 (see text). 

In this way a comparison of results from parameter estimations of impulse 
responses can give insight into the changes in the parameters of the linear filter. 
It appears that this change in the parameters of the linear filter can be described 
by one multiplication factor only. This, however, has been established only for a 
change of background level from 100 to 1200 Td. On the other hand, the shift in 
the parameters may well reflect the general change of the parameters of the linear 
filter for any change in background level. 
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5.5 Changes in estimated parameters with variation of field 
size 

The data that are available for different field sizes consist of impulse responses of 
two different subjects at 1200 Td. Subject HD measured three impulse responses 
for field diameters of 0.28, 1 and 5.5 degrees. From subject IH we have four 
impulse responses for field sizes of 0.28, 0.50, 1.0 and 5.5 degrees. The impulse 
response data and estimates are shown in Figure 4. All these impulse responses 
are triphasic, and as a general trend it can be seen that for larger field sizes the 
impulse responses become slightly faster. 

0 100 200 0 100 200 

--+ t (ms) 

Figure 4: Measured and estimated nornia.lized impulse responses u; at 
1200 Td for HD (Figs. A, B and C are for field sizes 0.28, 1.0 and 5.5 de
grees resp.) and IH (Figs. D, E, F and G a.re for field sizes 0.28, 0.50, 1.0 
and 5.5 degrees resp.). For presentation purposes, a.ll the figures except G a.re 

shifted along the vertical axis. 
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The estimated parameters are shown in Table 4. The estimated parameters of 
subject HD for a field with a diameter of 0.28 degr~es were extremely unreliable. It 
was not possible to obtain variances and covariances of the estimated parameters. 
The results of the estimation process of the two subjects are also shown in Fig. 5 
as confidence regions of the parameters in the s-plane. From Table 4 we see that 
the pole p2 with the smallest norm is estimated to be almost equal over these field 
sizes for each subject. This is also reflected in Fig. 5, since the estimated (co
)variance regions of the pole p2 all overlap. The other parameters vary with the 
field diameter. The pole p1 moves approximately on a straight line parallel to the 
imaginary axis; the estimated frequency parameter (31 decreases with decreasing 
field size. From Table 4 and Fig. 5 it can be seen that there is also a change in 
the parameter z with field size. This change in z is not as easily portrayed as 
is the case with (3 since there seems to be no monotonous relation between this 
parameter and field size. 
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Figure 5: Pole-zero plots in the complex plane. Horizontal and vertical axes 
are the real and imaginary axes, respectively. The units are in s-1 . The lower 
part of the s-plane is not shown in this plot. The ellipses give estimates of the 
90% confidence regions of the poles. The estimated. poles are located in the 
centres of the ellipses. The zeros are indicated by a small circle and. the bars 
give the 90% confidence intervals. A. Subject HD, 5.5 (a), 1 (b) and 0.28 (c) 
degrees field. B. Subject IH, 5.5 (a), 1 (b), 0.50 (c) and0.28 (d) degrees field. 
For subject HD and a 0.28 degree field it was not possible to estimate reliable 
confidence regions; inthis case the poles are given by crosses and the zero is 
indicated by a small circle denoted c. 

The condusion we draw from this is that. only part of .the beh~viour of the 
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processing in the transient system is dependent on the spatial configuration of the 
stimulus. More specifically: the part of the processing of a linear filter that has 
spatiotemporal properties is reflected in the parameters p1 = o:1 + j {31 and z. 

diam. at P1 o:, p, z A NF 
e) (s-1) (ra.d/s) (s-1) (ra.d/s) (s-1) (104s-2) (Td- 1s-1 ) 

HD 0.28 -72.9 77.3 -36.9 58.6 47.7 -2.36 0.15 
HD 1.00 -23.3 99.8 -19.3 51.8 11.8 -1.13 0.44 
HD 5.50 -34.6 150. -31.0 62.9 63.1 -2.01 1.01 

m 0.28 -23.5 82.7 -31.4 42.5 15.3 -1.19 0.21 
IH 0.50 -23.8 91.2 -25.9 48.4 9.64 -1.23 0.38 
IH 1.00 -19.8 103. 1-22.0 50.2 53.8 -.833 1.01 
IH 5.50 -24.5 115. -23.2 51.9 44.8 -1.17 2.07 

Table 4: Estimated parameters of the fourth-order linear filter. Subject HD 
at 1200 Td and stimulus diameter 0.28, 1 and 5.5 degrees. Subject IH at 
1200 Td and stimulus diameter 0.28, 0.50, 1.0 and 5.5 degrees. 

5.6 Relation with other experimental. data 

We want to compare the results we obtained from the analysis of the shifts in 
the parameters of the fourth-order linear filter with other psychophysical data. 
An obvious choice is to look at the De Lange curves that have been given in the 
literature many times. However, we do have to make several remarks. The first is 
that we do not have the De Lange curves for the same subjects as those for whom 
the impulse responses were measured. Second, the amplitude spectrum of the 
Fourier transform of the estimated impulse response cannot be compared directly 
with a De Lange curve. In measuring a De Lange curve the experiment necessarily 
incorporates a stochastic effect. The detection of a sinusoid that is slowly switched 
on and off has a probability of being seen at each peak of the sinusoid. This will 
cause a lowering of the threshold because of 'probability summation' (Roufs, 1974b; 
Quick, 1974). To account for the probability summation the noise of the system 
has to be modelled, and the exact circumstances of the De Lange measurement 
have to be known. Furthermore, the De Lange characteristic will be an envelope 
of the frequency characteristics of the sustained and transient channel operating 
in parallel. The transient system is the highest tuned filter, so the high frequency 
side of the De Lange curve should be comparable with the amplitude spectrum 
of the Fourier transform of the estimated impulse response, after correction for 
the probability summation. Because of the above remarks the comparison of the 
estimated filters with the De Lange curve can be qualitative only. 
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It iS well known (Kelly, 1971; Roufs, 1972) that the De Lange curves change 
to a higher peak and cut-off freque~cy at higher luminance levels. In Figure 6A 
several De Lange curves are shown with the background level as parameter (from 
Roufs, 1972). The same behaviour is found in our estimates too. Figure 6B shows 
the amplitude gain spectrum of the Fourier transform of the impulse responses of 
LT at 100 Td and 1200 Td. The vertical axis is not arbitrary but scaled according 
to the sensitivity (the norm factor NF) of the transient system to an impulse for 
both levels. An increase in background level results in a lower sensitivity, a higher 
peak frequency and a higher cut-off frequency in both Figure 6A and 6B. 
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Figure 6: "A. De Lange curves at different background levels for two subjects. 
Reprinted with permission from Vision Research 12, J.A.J. Roufs, Dynamic 
properties of vision.-1. Copyright 1972 Pergamon Journals Ltd. B. Ampli
tude spectrum of the Fourier transform of the impulse responses of LT at 
100 Td and 1200 Td. The vertical axis is not arbitrary but scaled according 
to the sensitivity of the transient system to an impulse at these two JeyeJs. 
C. The amplitude spectra of the estimated impulse responses of subject LT 
(1 degree field) at 100 and 1200 Td. The spectra of the estimated impulse 
responses (Fig. 6) are both multiplied by the amplitude transfer function of a 
second-order filter (see text). 

Except for the low frequency side, which we cannot compare. with the simu-

100 
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lations from our model, as argued before, the effect of the variation of the field 
size on the De Lange curve is similar to the 4effect of the changing parameters of 
the impulse response as we have found (see'Figure 7). An increase in field size 
changes the temporal characteristics to a higher sensitivity, a higher peak and a 
higher cut-off frequency (Roufs and Bouma, 1980). This is the same as is found in 
our analysis: the parameter p1 changes to a higher norm, the impulse response is 
faster (see Figure 4) and the measured sensitivity to an impulse response is higher 
for more extended fields (see norm factors NF in Table 4). 
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Figure 7: A. De Lange curves for different field diameters at a background of 
62 Td, from Roufs and Bouma, 1980. Permission for reprint, courtesy Society 
of Information Display. B. Amplitude spectrum of the Fourier transforms 
of the estimated impulse responses of HD at 1200 Td for three different field 
sizes: from bottom to top 17', 1°, 5.5°. The vertical axis is not arbitrary but 
scaled according to the sensitivity of the transient system to an impulse for 
these field sizes at 1200 Td. 

There is a qualitative difference between the amplitude spectrum of the pro
p~ed linear filter and the· De Lange curves. The slope for high frequencies of 
the De Lange curves is steeper than the slope (0.9 log units/octave) in the linear 
model (1). Another difference between the De Lange curves and the calculated 
Fourier transforma at different background levels is that the high frequency asymp
totes of the De Lange curves coincide. In the Fourier transform there is a difference 
in height of about 0.5 log units between the high frequency asymptotes for the 100 
and 1200 Td levels. There are several reasons why a steeper slope was not incor-

100 
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porated in our model. First of all the impulse response to which the linear filter 
is fitted is adequately described by the fourth-order filter. To take more parame
ters into account would be contradictory to the parsimony prim;iple. Furthermore 
it would probably mean introducing ill-conditioned parameters in our estimation 
process. 

However there is a simple way of changing the linear filter (1) such that it fits 
the De Lange curves. In Figure 6C the Fourier transforms from Figure 6B are 
multiplied by a second-order process, 

p2 
G(s) = ( 3 )2. 

s- Ps 
(9) 

For the 1200 Td level we took p3 = 100 s-1 and for the 100 Td level we scaled 
Ps down by the same factor as in Pt. namely 1.8 (see Section 4). The value of 
the pole p3 is not critical at all. It should be somewhere above the peak of the 
Fourier transforms of Figure 6B. Consequently, the two curves coincide for high 
frequencies (see Figure 6C). The high frequency fall-off in Figure 8 is now the 
same as was found experimentally, about 1.5 log units/octave (Kelly, 1971; Roufs, 
1972). The estimated impulse response will hardly change after introducing this 
extra second-order process, since only the high frequency end (above the·cut-off 
frequency) of the gain characteristic is modified. In the time domain the impulse 
response g(t) of this extra filter is given by 

(10) 

where c-• denotes the inverse Laplace transform. 
Other experimental data that are consistent with the estimated impulse re

sponses are threshold measurements of pulses with variable duration (Biommaert 
and Roufs, 1987) and the experimentally determined phase characteristic. The 
phase characteristic has been measured by a subthreshold summation technique 
and showed a linear phase relation for a 1 degree field at 1200 Td for frequencies 
from 1 to 25Hz (Roufs e.a., 1984). The estimated parameters of the fourth-order 
filters are such that they give an approximately linear phase for that frequency 
range (see Appendix). 

In condnsion we can state that the effects of background and field size variation 
are qualitatively the same in De Lange curves, impulse response measurements and 
in the estimated parameters of the fourth-order linear model. From the estimated 
parameters of our model we see that the effect of an increase in background level 
and an increase in field sizes has quite a different effect on the estimated parame
ters. 

6.7 Discussion 

In Section 2 our choice for the model was given. It was hoped that the filter (1) 
would give a good description of the available data, but also that it would allow 
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us to obtain insight into the temporal processing within the transient channel. 
However, the choice was also founded on its. common usuage in engineering and 
its convenient mathematical formulation. It does not rule out the possibility that 
filters other then (1) can provide descriptions of the experimental data that are 
equally well, nor do we think that the observed shifts in the parameters is exdu· 
sively reserved to the choice of damped sinusoids as fundamental functions. 

We have shown that the subthreshold measurements of the impulse response 
of the transient visual system can be adequately modelled in a fourth-order linear 
filter with two complex pole pairs and one zero in its transfer function. From 
this representation of the measured impulse responses predictions of the response 
of the system can be made for other stimuli (Blomma.ert and Roufs, 1987). But 
more important is that these fourth-order filters give insight into the processing of 
stimuli in the transient channel of the visual system for different mean luminance 
levels and different spatial configurations. 

On the basis of the systematic parameter changes, we are able to propose a 
model for the transient system which provides an approach towards a description 
of the spatiotemporal processing. The model is shown in Figure 8, and is spa.
tiotemporal in nature. It consists of two processing stages. The first step is a 
linear spatiotemporal filter L1• This filter is not only dependent on the mean lu
minance E, but also on the spatial configuratlon, which we describe by its spatial 
frequency w. This is denoted as 

(11) 

For the parameter p1 which describes this filter L1 the shift in the parameter 
caused by background variation and by field size variation can be separated, at 
least in a first-order approximation: 

Pt(w,E) = f>t(w) /(E), (12) 

where /(E) is a real valued function of the mean luminance E, and p1 is the value 
of p1 for f(E) 1. The separability of the effect of the mean luminance and field 
size was shown in our analysis for a 1 degree field only. However, such separability 
will probably exist for field sizes near 1 degree, where the transient activity is 
dominant and which is, therefore, very attractive from a modelling point of view. 

The parameter z, the position of the zero, changes with field size, so this pa
rameter should be incorporated in the spatiotemporal filter L1• The complicating 
factor for this parameter is -that there is no monotonous change with field size, as 
was observed for PI· 

The second step is a purely temporal linear filter L2• In the transfer function 
(eq. (1)) this filter is reflected in the pole Ph the pole with smallest norm. This 
pole is dependent on the mean luminance only. We denote the dependence as 

(13) 
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Figure 8: Proposal for a spatiotemporal model, based on analysis ofchanges 
in estimated parameters from a fourth-order model that is fitted to subthresh
old measurements of impulse responses. The filter Lt is dependent on both 
mean luminance E and spatial characteristics of the stimulus, while the fil
ter L2 is dependent on the mean luminance only. The spatial dependence is 
denoted by w, the spatial frequency of the stimulus. The last stage is formed 
by a detector with threshold d. 

where the mean luminance level is given by E. 
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The refinement of the fourth-order model, i.e. the introduction of a third stage 
characterized by p3 , can be easily incorporated in Figure 8. It was shown that P3 
changes with background level in the same way as p1 • Whether and how Ps should 
change with field diameter, and consequently whether it belongs to L1 or L2 , is 
something as yet to be explored. 

For the spatiotemporal filter L 1 it is possible to construct a distributed electrical 
network as has. been done in several studies for the electrical coupling between 
retinal cells (Bennet, 1977; Torre et al., 1983). It was found that pole p1 changes 
in such a way with field size that for larger fields the filter L1 has a 'faster' impulse 
response. This corroborates the physiological findings of Detwiler et al. (1980), 
who found this for the rods in the retina of the snapping turtle. Possibly the 
filter Lt is located in the retina. We hope to explore the possibilities of translating 
the foregoing behaviour of the poles and zeros with spatial extension into the 
behaviour of a linear distributed electrical network elsewhere (chapter 6). 

In conclusion, we have analysed the behaviour of poles and zeros of lin~ar filters 
that were fitted to impulse responses obtained under different experimental con
ditions. On the basis of the shifts that are observed in the poles and zeros upon a 
change in experimental conditions it is possible to obtain insight into the operation 
of the transient .visual system. From our analysis a spatiotemporal model for the 
transient system evolved (Fig. 8}. The main features of this model are linearity, 
simplicity and parsimonious use of parameters. Also it was shown that changes 
in background level and spatial extension of the stimulus have strikingly different 
effects on the parameters of the model, and that these two effects are probably 
separable. The model is in agreement with phys.iological data. As a consequence of 
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the simplicity of the model, it is suitable for detailing. This was shown by making 
a small modification such that the model matches the De Lange curves. 
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Appendix. Approximation of a linear phase characteristic 
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Figure 9: The phases cp; (i = 0, 1, 2} of the fourth-order filter approximated 
by linear pieces (see text). 

Consider the fourth-order filter given by (1). The zero z is assumed to be located 
in the right-half plane, the amplification factor A is assumed to be negative (see 
Table 2). We define the phase</> by 

H(jw) = IH(jw) I exp{j<f>(w)}. 

The phase </> is split into three parts: 

where 

<Po arctan(~), 

</>1 = arctan (w - f3t) + arctan ( w + f3t) , 
-a1 -a1 

</>2 = arctan (w - (32) + arctan (w + (32) . 
-a2 -a2 
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Figure 10: The estimated phase characteristic of subject JP (1 degree field, 
1200 Td). The parameters of the fourth-order filter are given in Table 1. The 
straight line depicts the relation wteo:· 

The phases q,, for i = 0, 1, 2 are approximated by linear.line pieces (see Figure 9) 
so that 

arctan b) 
arctan(1) 

1· hi:::; ,.-;2, 
sgn(1) 1r /2, hi > 1r /2, 

where sgn denotes the sign of a variable. To obtain a linear phase <P for low 
frequencies in this. first-order approximation of the phases<;; the parameters {a., 
Pt. z) with (i = 1, 2) are dependent according to 

z -a1 = -a2, 
~ PI 

-- =1f. 
-a2 -2at 

From Table 2 we see that the phase characteristic of the fourth-order filter at 
1200 Td and a 1 degree field is close to a first-order approximation of a linear phase 
for low frequencies. For other conditions (than 1200 Td and 1 degree field) this is 
not so. In Figure 10 the phase characteristic of subject JP (1200 Td, 1 degree field) 
is plotted with the parameters from Table 2. We see that the estimated phase is 
indeed close to a linear pha::;e characteristic. The dotted line in the Figure 10 is the 
line w t.,. where t.,. is the time of the occurrence of the extremum of the etimated 
impulse response. This line and the phase characteristic are very dose. This is 
in accordance with the measurements of the phase characteristic as performed by 
Roufs et al. (1984). 



97 

chapter 6 

A membrane model for spatiotemporal coupling1 

A.C. den Brinker 

Abstract 

A model is proposed for spatiotemporal coupling within the transient visual sys
tem. The main features of the model are linearity, rotation symmetry and parsimo
nious use of parameters. The spatial transfer function of the model has a low-pass 
character with a cut-off frequency that depends on the temporal frequency. For 
the transient system the model can be completely parametrized using subthreshold 
measurements of impulse responses. The model is in agreement with physiological 
data on lateral information spread within the retina. The model was tested for 
predictions on flashed and sinusoidal stimuli and agrees in all major aspects with 
the experimental data. 

6.1 Introduction 

Much research on visual processing is focussed on the threshold behaviour of the 
visual system. By threshold behaviour is meant the magnitude of physical variables 
of the stimulus in order to be on the brink of being seen or not seen. 

The importance of this kind of research is partly due to its applicability to 
technical realizations of visual information displays. Knowledge of the threshold 
behaviour can give criteria for the design of visual equipment. Two kinds of 
boundaries can be stated: one for the information that should be seen, the other 
for visual artefacts of the equipment that are allowable. 

In order to use the experimental data on threshold behaviour for the above
mentioned purpose, a convenient way to represent these data is provided by a 
model which is adequate and yet as simple as possible. Unfortunately, the be
haviour of the visual system of even small signals around some steady background 
level (as is usually the case for threshold experiments) is far from simple, or rather, 
is not well understood. 

The processing of visual stimuli at threshold level is usually assumed to be 
performed in different pathways that are operating in parallel. In the temporal 
domain there are usually two channels operating in parallel postulated (Kulikowski 
and Tolhurst, 1973; Roufs, 1974; Breitmeyer and Ganz, 1976). These two channels 
are called the sustained and the transient channel, based on an electrophysiological 
concept (Cleland et al., 1971). In some psychophysical studies (e.g., Mandler and 
Makous, 1984) three temporal channels are advocated. 

1submitted to Biological Cybernetics 
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There is not only a difference in temporal characteristics of the different chan
nels, but also in spatial features. In the spatial domain the number of different 
channels ranges from four (Wilson and Bergen, 1979) to (virtually) infinity (Koen
derink and Van Doorn, 1978). It is generally accepted that a channel which is most 
sensitive to high-temporal frequencies is spatially low-tuned and vice versa (Bre
itmeyer and Ganz, 1976; Legge, 1978). 

The transient system is tuned to high temporal and to low spatial frequencies 
(e.g., Legge, 1978). Associated with the transient system is the percept of agitation 
(Roufs, 1974). The different channels are assumed to be spatiotemporally coupled. 
This can be seen from the De Lange curves, where the threshold amplitude of a 
(gated) sinusoid is plotted versus its (temporal) frequency. For larger field sizes 
De Lange curves are obtained, which show higher cut-off and peak frequencies 
(Roufs and Bouma, 1980; see also Section 8). Since the transient system is most 
sensitive to large stimuli we expect to find the most pronounced spatiotemporal 
interaction in this channel. Furthermore, there is much experimental material 
available to model this channel (Roufs and Blommaert, 1981; Roufs and Bouma, 
1980). For these reasons we have concentrated our research on spatiotemporal 
coupling on the transient system. 

From physiological experiments there is also evidence of spaiiotemporal cou
pling. Detwiler et al. (1978, 1980) found an information spread in the retina of 
the turtle that becomes faster for larger field sizes. This is similar to the psy
chophysical findings of the variation in the De Lange curves as shown in Roufs 
and Bouma (1980) and Section 8. 

Many models have been proposed on either spatial or temporal behaviour. How
ever, many phenomena cannot be accounted for in just a spatial or a temporal 
model, and spatiotempora.l ones are scarce (Korn and von Seelen, 1972; Marko, 
1981). In this article a spatiotemporal model is proposed, and it is argued that this 
model can account for several phenomena associated with the transient channel. 
Also a quantitative comparison of the model behaviour and experimental data is 
made in this article. Since the point of view that is taken in deriving a description 
for spatiotemporal interaction is fairly general, it is hoped that the model is also 
applicable to data outside of those discussed here. 

The spatiotemporal model derived here is not derived from physiological data 
on the behaviour of single neurons. The reason for t.his is that, firstly, we do 
not know what would be the relevant data for this modelling, and secondly, that 
we want to model psychophysical behaviour, i.e. responses of a mass of neurons. 
How to relate single neuron activity to the activity of a. mass of neurons would, in 
our view, involve too many assumptions. Instead, we start from a general partial 
differential equation, a kind of relation between input and output signals that is 
often used in physics to describe the behaviour of a thin medium. This kind of 
modelling is essentially a black-box approach to account for the behaviour of a 
layer of neurons (such as are found in the retina). How this may be realized is not 
relevant for the modelling of psychophysical data. Nevertheless, we will consider 
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an electrical network that can be described by the partial differential equation 
(PDE). In this way, a possible realization is shown and the parameters of the PDE 
are interpreted as physically realizable impedances. 

A large number of restrictions is imposed on the PDE. One of these is lin
earity. Although the visual system as a whole does not act as a linear system 
(even at threshold level), there are indications that at least within a single chan
nel linearity is applicable (De Lange, 1952; Roufs, 1974; Krauskopf, 1980; Roufs 
and Blommaert, 1981; Blommaert and Roufs, 1987). From the PDE a transfer 
function is derived, and the root locus diagrams of these transfer functions are 
discussed. It is shown that the model can be fully parametrized from subthresh
old measurements of impulse responses of the transient visual system. This was 
done and the model was tested by comparison of predictions and experimental 
data on flashed and sinusoidal stimuli. There is a good agreement between these 
two although some refinements in the model seem necessarily. 

6.2 A partial differential equation 

The spatiotemporal interaction such as is found in visual processing is probably 
an operation performed in layers of neurons, e.g., horizontal or amacrine cells. 
Input and output signals are then essentially situated in the same plane, or may 
be separated by a small medium (a membrane). Partial differential equations are 
often used to describe the processing of signals within a membrane. The general 
form of such an equation is given by 

KLM a1r:a1am 
LL L c~:,l,m'Dka·"atmu(x,y,t) = 
lr:=O 1=0 m=O X 9 

(1) 

K' L1 M' air: a' am 
L L L d~r:,l,mjik-;-j <>tm v(x,y,t), 
k=O 1=0 m=O vX uy u 

(2) 

where v(x,y,t) and u(x,y,t) are input and output signal, respectively. With this 
partial differention equation (PD E) the lateral information spread within the visual 
system is to be described. 

To be able to solve a PDE given an input signal v(x,y,t) the initial and bound
ary conditions have to be specified. We assume that the system is causal, that the 

·spatial extension ranges from minus to plus infinity for x and y and that excitations 
that have bounded amplitudes cause responses with bounded amplitudes. 

Further, we assume time invariance of the system: the parameters Ck,l,m and 
dk,l,m (k,l,m = 0,1,2,· .. ) are independent oft. Also we assume a processing 
which is locally space invariant. These assumptions lead to constants for Ct,l,m and 
d~r:,l,m· Contrary to the time invariance, the space invariance of the processing in 
the visual system is not a very common assumption. The reason for introducing 
this assumption is threefold. Firstly, we will concentrate on stimuli projected 
in the fovea.. We assume processing's independence of location to be justified 
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within this area. Secondly, we are of the opinion that before introducing more 
complicated fuodels the utility of very simple models to account for measurement 
data should be thoroughly explored. Thirdly, the assumption is in accordance 
with stack models (e.g., Koenderink and van Doorn, 1978), where in each layer 
homogeneous processing takes place. We assume that the transient system can be 
seen as a layer within such a stack model, presumably the layer with the largest 
receptive fields and the largest extent. 

Next the PDE is assumed to be rotation-symmetrical. Although we know of 
physiological findings that contradict this assumption (e.g., orientation sensitiv
ity), this restriction is imposed for the same reason as for the location-independent 
processing: the parsimony principle. Furthermore, there is psychophysical evi
dence of isotropic processing of visual stimuli by the transient system (Kelly and 
Burbeck, 1987). Rotation symmetry leads to the following restrictions on the 
parameters of the PDE: 

K L, {3) 
K' = L' 

' 
(4) 

C2k+l,l,m = ck,21+l,m = 0, (5) 

d2k+l,l,m = dk,2l+l,m = 0, (6) 

Ck,l,m. = Cl,k,m., (7) 

dk,l,m = dl,k,m• (8) 

We also take K' < K to ensure that the response tends to zero for stimuli with 
increasing spatial frequency. 

The last restriction we make on the PDE is the choice of the highest partial 
differentiation with respect to time and space. From analysis of experimentally 
obtained impulse responses it was found that the spatiotemporal coupling in the 
transient system is of a second-order temporal nature in a first-order approxima
tion (chapter 5, see also section 7). Therefore we take M = 2. 

The lowest partial differentation with respect to x and y to obtain spatiotem-:
poral coupling is k + l ~ 2. This restriction is again made from the point of 
view of parsimony. We now have a PDE with only temporal differentiations on 
the right-hand side. Consequently, the right-hand side does not contribute to any 
spatiotemporal coupling. Therefore, an input signal i(x, y, t) is introduced, which 
is defined by 

- 2 am 
i(x, y, t) = :E do,o,m iJtm v(x, y, t). 

m=O 

(9) 

Replacing the right-hand side of the PDE by i(x, y, t) gives no loss of generality 
with respect to the spatiotemporal character of the equation and is a somewhat 
more convenient description. 

All the assumptions lead to a very simple PDE to describe the spatiotemporal 
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coupling: 

Am == -co,2,m 

Bm Co,O,m· 
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(10) 

(11) 
(12) 

Although this class of partial differential equations is very limited, it contains 
some equations that are often used in physical science. It comprises, for example, 
the diffusion and the wave equation. A combined diffusion and wave equation 
takes the form 

{
a2 u a2 u} 1 a2 u {3 au (P . 

- ax2 + ayz + v2 (Jt2 +; at + 4 u = s(x,y,t}, {13) 

and is within the above-mentioned class of PDEs. 

6.3 The transfer function 

We assume that only signals i(x, y, t) and u(x, y, t} occur for which Fourier trans
forms with respect to the spatial variables and a Laplace transform with respect 
to the time variable exist. The Fourier transform GF(w.,) of a function g(x) is 
taken as 

GF(w.J 1.,{g(x)} == r: g(t) exp(-jw.,x)dx, i=A. (14) 

(The Fourier transform GF(wu) of a function g(y) is defined similarly.) The Laplace 
transform GL(s) of a. causal function g(t) is taken as 

GL(s) .Ct{g(t)} = fo g(t) exp( -s t) dt. (15) 

The transforms I(w.,,wu,s) and U(w.,,w11 ,s) of the signals i(x,y,t) and u(x,y,t) 
are defined by 

I(w.,,w11 ,s) 1.,fu.Ct{i(x,y,t)}, 
U(w.,,w11 ,s) == .1.,J;,.Ct{u(x,y,t)}. 

(16} 
(17) 

Since in our case the spatial dimensions of the stimulus are expressed in degrees, 
the spatial angular frequencies w., and w11 are expressed in dg-1• With the help of 
these transforms the PDE is changed into an explicit relation between the input 
and output signal: 

2 

L {Am(w! + w;) + Bm}sm U(w.,,w11 ,s) = I(w.,,w11 ,s). (18) 
m=O 
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The transfer function H ( Wz, w11 , 8) is defined as the ratio of the transforms of 
response and excitation, so that 

U(w,,w11 ,s) 1 

l(wz,w11 ,s) = L:!,=0 {Am(w: + w:) +B.,.} s"" · 
(19) 

With the transfer function H(w.,,w11 ,s) is associated a function h(x,y,t), by 

H(w.,,w11 , s) = 1.,J;,.Ct{h(x, y, t)} (20) 

The (causal) function h(x,y,t) is called Green's function. Green's function gives 
the relation between excitation and response in the spatial and temporal domain 
by a convolution: 

u(x,y,t) = h(x,y,t) * i(x,y,t), (21) 

where * denotes convolution over x, y and t. 
As a consequence of the assumed rotation symmetry of the processing, the 

transfer function H(wz,w11 , s) is not dependent on w., and w11 separately, but on the 
sum of squares of w., and w11 • The (rotation-symmetric) spatial angular frequency w 
is therefore introduced by 

w ..jw; + w;, 
and thus the transfer function is dependent on w and 8 

1 
H(w.,,w11 ,s) = H(w,8) = " 2 {A 2 B } m· 

L..m=O ,.w + m 8 

(22) 

(23) 

Similarly, Green's function h(x,y,t) is rotation-symmetrical, and depends on the 
radius r = ~. so that 

h(x,y,t) h(r,t). {24) 

The relation between the transfer function H(w,8) and Green's function h(r,t) is 
given by a Hankel transform Nr and a Laplace transform: 

H( w, s) 211" Nr.Ct{h(r, t)}, (25) 

where the Hankel transform GH(w) of a function g(r) is given by 

GH(w) N.{g(r)} {" g(r) r J0 (wr) dr, (26) 

and where J0 is the Bessel function of zeroth order and first kind. 
From the transfer function H(w,s) (eq. (23)) it can be seen that there are 

six free parameters: At and B, for i 0, 1, 2. Eigenfunctions of the system 
are Bessel functions J0 in the spatial domain. In the temporal domain com
plex exponentials are the eigenfunctions. Thus, taking as input signal i(x,y,t) = 
J0(w0~)cos(w0t) gives as response the signal u(x,y,t), where 

u(x,y,t) = IH(wo,iwo)l Jo(wo..)x2 + y2)cos(wot + 4>), (27) 
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and where 
<P = arg{H(wo,iwo)}. (28) 

Taking as input signal i(x,y, t) = J0 (w0 Jx2 + y2) c(t) gives an output signal which 
is the product of the spatial modulation J0(w0~} of the input signal and a 
second~order impulse response T(t) in time: u(x, y, t) = J0 ( wovxr.+rr) T(t). The 
temporal modulation T(t) is the inverse Laplace transform c-1 of the transfer 
function for w = w0 , so that 

T(t) = c-1 
{ 2 { \ } • L:m=O Am Wo + Bm} sm 

(29) 

If the system described by (23) is to be stable, then the response of the system 
should be stable for arbitrary w. From (29) it is easy to see that the the polynomial 
of s has to be a Hurwitz polynomial for each w, so the signs of the parameters A;, 
B, (i = O, 1, 2) have to be identical. If the system is stable for arbitrary w, then 
the system is completely stable. 

6.4 A membrane model 

In this section an electrical network is proposed that behaves according to the 
class ofPDEs {10) considered earlier, if adequate restrictions on its impedances are 
imposed (see next section). In this way, a possible realization of the class of PDEs 
is available and the parameters of the PDE can be interpreted and understood 
in a more physical representation. This realization of·the PDE in the form of 
an electrical network has as a second advantage that it is possible to make a 
comparison with physiological models, since these are usually also modelled as 
electrical networks. 

Consider a tw~dimensional electrical network consisting of equal sections as 
shown in Figure 1. The input signal of the section at location (mtlx, n~y) is a 
current source j(mtlx,ntly,t), the output signal u(mtlx,ntly,t) is the potential 
at the node of the impedances. The admittance and the impedances are described 
as an admittance and impedances in the Laplace domain: Y1(s), Z1(s) and Z2(s). 
We take the admittance Y1 (s) to be proportional to the area Llxtly of the section: 

Y1(s) Y(s) Llxdy. (30) 

Y(s) is the parallel admittance of a unit area. The impedances Z1(s) and Z2(s) are 
taken to be proportional to the length of the sections and inversely proportional 
to the width, with the same proportionality factor 

Z(s) d:~2, 

z<s> dX~2· 

(31) 

(32) 
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Z(s) is the surface impedance of unit length and width. The impedance between 
two adjacent output signals is twice the sketched impedance, if similar sections 
are joined together. The current j(m.6.x, n.6.y, t) is assumed to be proportional to 
the area of the section: 

j(m.6.x, n.6.y, t) i(m.6.x, n.6.y, t) Ax .6-y. 

The dimension of i is the dimension of a current density. 

l.i<mllX,Myl 

Figure 1: Section of an electrical network suggested as a model for the spa
tio~emporal coupling in the visual system. 

(33) 

Consider an infinitely large network of sections as shown in Figure 1 in both di· 
mensions x andy. Assume furthermore that the sections Ax and .6-y are infinitely 
small. The electrical network becomes a distributed network with a current den
sity i(x, y, t) as input signal and a potential u(x, y, t) as output. Both signals are 
continuous distributed signals as a. function of both spatial coordinates. 

The transforms I(w,.,wll,s) and U(w.,,wil, s) of the signals i(x,y, t) and u(x, y, t) 
are defined by 

I(w.,,w11 ,s) = 1.,J;,.Ct{i(x,y,t)}, (34) 
U(w,.,w11 , sJ 1.,J;,.Ct{u(x, y, t)}. (35) 

The transfer function ii(w,.,w11 ,s) is taken as the ratio oftransforms of the input 
and the output signal. 

Z(s) 
(36) 

{w; + w:) + Z(s) Y(s) · 
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From the transfer function H(w,s) where w = Jw~ + w; it can be seen that 
• for a stable network the ratio Z(jw) Y(iw) may not be zero or negative real for 
any real value of w, 
• for spatiotemporal inseparable behaviour of the distributed network it is required 
that the ratio Z(jw) Y(jw) depends on w, 
• the network is low-pass in its behaviour in the spatial angular frequency w 

(see Figure 2). The cut-off spatial frequency depends on the temporal angular 
frequency w, 
• the transfer function H(w, s) of the distributed network of Figure 1 is the same 
as the transfer function H(w, s) belonging to the PDE (10), if adequate restrictions 
are imposed on the surface impedance Z(s) and the parallel admittance Y(s). 

Figure 2: Amplitude characteristic IH(w,jwo)l as a function of the spatial 
frequency w. Peak value and cut-off frequency We of the transfer function 
depend on the temporal frequency wo. In the case that the model is used for 
the visual system, the units of the amplitude characteristic are in Td-1 . 

6.5 The impedance and admittance of the electrical network 

If the electrical network described by if ( w, s) is to be governed by the same re
lations between input and output signals as the class of PDEs (10) considered 
earlier, some restrictions have to be made on the impedance Z(s) and the admit
tance Y(8). Assume that Y(s) and Z(s) can be written as the ratio of two real 
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polynomials in s, by 

Y(s) 

Z(s) 

where 
Cy , C z amplification factors , 
Zy; , zz; zeros of the admittance and the impedance, respectively , 
py; , pz; poles of the admittance and the impedance, respectively. 

(37) 

{38} 

We assume that all zeros Zy; of the parallel admittance and all poles PZi of the 
surface impedance are in the left-half of the complex plane. In so far as the poles 
and zeros of the admittance (and of the impedance) are not real-valued, these 
occur in complex conjugated pairs. 

Substituting (37) and {38) in the transfer function ii(w,s) (eq.36) of the elec
trical network the following expression for the transfer is found: 

if(w,s) Gy fl?It(s- py;) TI~~(s- zz;) 
Cw W2 TI~Il(s py;) n~~l(s Pz;) + n~Hs- Zy;) n~~(s- Zz;)' (

39
) 

where G., Cy /Gz. Comparing ii(w,s) to H(w, s) (eq.23), it is easy to see which 
restrictions have to be imposed on the admittance Y(s) and impedance Z(s) to 
obtain equal transfer functions for both cases. We find that 

ny mz = 0, 

my nz = 2. 

(40) 

{41) 

From (40) and (41) it follows that Y(s) and Z(s) are active elements and can
not he synthesized as impedances consisting of passive resistors, capacitors and 
inductances. We do not think of this as a drawback of our model, since we do not 
assume that neurons act as passive elements (Koch, 1984). Furthermore, if t1 had 
not been replaced by i (9) then it would be possible to realize the membrane with 
passive elements. However, as argued before, for our purpose it is not necessary to 
have zeros in the transfer function that are independent of the spatial frequency. 
Thus, from the point of view of simplicity, these zeros are unwanted within the 
membrane model. 

With the restrictions {40 and 41) on the impedance and admittance the transfer 
function if ( w, s) can be written as 

ii(w,s) = G 2n2 ( 
111 w i=:l 8 

Gy 

pz;) + TI;,1(s- zy;)' 

and for equivalence of ii(w,s) and H(w,s) (eq. (23)) it is found that 

A2 Gi1; At =: -2 Gz 1(Pzt + Pz2); Ao = Ci1 Pzt Pz2, 

B2 = Gy:1
; Bt = -2 C:Y1

(zYl + zn); Bo = C:Y1 
ZY1 zn. 

(42) 
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From these equations it is seen that the parameters of the PDE (A;, B;, i = 
0, 1, 2) can be interpreted as the zeros of a parallel admittance and the poles of 
the surface impedance of a distributed electrical network. 

6.6 Root locus trajectory 

It is common usage to characterize temporal behaviour by the poles of the model. 
Since the model considered here is a spatiotemporal one, a pole migration takes 
place: from (23) (and (42)) it can be seen that for each spatial angular frequency 
w the model acts as a second-order temporal filter. The range of (complex) values 
that the poles span as a function of the spatial angular frequency characterizes 
the model. This characteristic is a figure in the complex plane that is called the 
root locus diagram. As is shown in the following, the location of the poles in the 
complex plane forms a specific pattern, given the transfer function (23). 

For any spatial frequency w the distributed network described by H(w,s) acts 
as a second-order temporal filter. The temporal characteristics are described by 
the poles of the transfer function at w. The poles are the roots 8 of the quadratic 
characteristic equation of fi ( w, s), which is given by 

(43) 

As stated before, the poles pz; (and zeros Zy;), i = 1,2 are both real-valued 
or form a complex-conjugated pair. The characteristic equation has also two real
valued or two complex-conjugated solutions. 

For w = 0 the poles of H(w,8) are the zeros of Y(s), and for w-+ oo the poles 
of H(w,8) are the poles of Z(s). The solutions 8 of the characteristic equation are 
a function of the spatial frequency w, and can be plotted in the 8-plane similarly 
to what is usually done with feedback systems (Kuo, 1962). The same rules apply 
for the construction of a root locus trajectory in both cases. 

If there are complex solutions of the characteristic equation (43), then these 
are located on a circle with centre on the real axis. The circles include the case 
of a circle with an infinitely large radius, i.e. a root locus which is (part of) a line 
parallel to the imaginary axis. In Figure 3 some examples of root locus trajectories 
of if ( w, 8) are shown. 

From psychophysical measurements it was found that larger fields (containing 
lower spatial frequencies) tend to temporal responses with faster oscillations. The 
De Lange curves have a higher peak and cut-off frequency for more extended field 
sizes (Granit and Harper, 1930; Roufs and Bouma, 1980; see also Section 8). Such 
behaviour is also found physiologically in the retina (Detwiler et al., 1978, 1980). 

Because of the oscillatory character of the system responses complex-valued 
poles are needed in the model. Furthermore, the imaginary part must increase 
with decreasing spatial frequency w, to account for faster responses for larger 
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Figure 3: Two examples ofroot locus tr(\jectories of fl(w, s) as a function of 
the spatial angular frequency w. The crosses and the filled circles indicate the 
poles of the transfer function for w = 0 and w = oo, respectively. The lines 
with the arrows indicate the direction of the pole migration with increasing 
w. 

fields. Thus, contrary to cable models of nervous cells (Bennet, 1977) the surface 
impedances in our model cannot be taken as resistive elements. This would mean 
that a root locus is found with poles going to infinity for large spatial frequencies. 

On similar grounds (poles going to infinity for w -+ oo} the combined wave and 
diffusion equation (13) must be rejected for a spatiotemporal model of the transient 
visual system. Such a PDE gives slower temporal respouses for decreasing spatial 
frequency. 

6. 7 Parametrization of the membrane for the spatiotempo
ral coupling in the transient sys~em 

The question that arises is whether this spatiotemporal model can be fully param
etrized from psychophysical measurements. If the model behaves similarly to the 
real system, we expect that by measuring the temporal behaviour of the system at 
several spatial frequencies the root locus of the spatiotemporal model can be found 
and from this the model can be parametrized, apart from a multiplication factor. 
Having the poles at three different spatial frequencies is sufficient to parametrize 
the model. 

In chapter 4 and chapter 5 fourth-order linear filters were fitted to data from 
subthreshold measurements of impulse responses of circular discs with a completely 
dark surround (Roufs and Blommaert, 1981). These estimation procedures were 
also performed on data from two subjects at a 1200 Td background level for several 
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field sizes. The results of the parameter estimations on these impulse responses 
are shown in Figure 4A. In this figure the estimated 00% confidence regions of the 
poles and zeros are plotted. From Figure 4A it can be seen that one pole pair {the 
one with largest norm) is shifting, if we compare the estimates obtained from the 
impulse responses of discs of different size. The estimate of the other pole seems 
to be independent of the diameter of the stimulus. 

Figure 4: Pole-zero plots in the complex plane. Horizontal and vertica.l axis 
are the real and imaginary axis, respectively. The units are in s-1. The lower 
part of the s-plane is not shown in this plot. A Pole-zero plot of filter param
eters of a fourth-order linear filter determined from ex~rimentally obtained 
impulse responses. Subject IH, 1200Td, for field diameters of 5.5 (a), 1.0 (b), 
0.50 (c) and 0.28 (d) degrees. The ellipses give estimates of the 90% confi
dence regions of the poles. The estimated poles are located in the centres of 
the ellipses. The zeros are indicated by a small circle and the bars give the 
90% confidence intervals. {Replot from chapter 4.) B Pole-zero plot of the 
membrane model as a function of the spatial frequency w (see text). 

An impulse response described by such a location of the poles (Fig. 4A) is 
shown in Figure 5 for subject IH at 1200 Td and a 30' field diameter, together 
with the data of the experimentally determined impulse response {see Roufs a.nd 
Blommaert, 1981). 
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Figure 5: Experimentally determined normalized impulse response and fitted 
fourth-order linear filter (see chapter 5). The bars through the experimental 
data points are twice the standard deviation of th~ mean. 

In chapter 5 it was therefore argued that the transient system could be described 
by two second-order filters in cascade where only one of these filters contains lateral 
interaction. This is shown in Figure 6, the first filter is dependent on w, the spatial 
frequency, the second is not. Underneath the filters are sketches of an input signal 
(a pulse-like stimulus), the (internal) responses from the filters L1 and L2, and the 
signalin the detection mechanism. The response of the first filter is the response 
of a second-order filter but the exact form depends on the field size that is used. 
Convolution of this second-order filter response with the impulse response of the 
second filter gives an impulse response shown by r2 (Figure 6). This signal is 
contaminated by noise and then compared with the threshold level. 

The behaviour of the largest pole as a function of the diameter of the field is 
reminiscent of the root locus trajectory of the membrane model (see Section 6, 
Figure 3). But then the plot of Figure 3 is only applicable for (zero order) Bessel 
functions on a background with an infinite extension, while the estimated param
eters in Figure 4A are derived from discs with a completely dark surround. In 
the latter case the transient system is probably not operating homogeneously over 
space, since the lateral interaction between neurons is presumably affected by some 
(local) measure of the mean luminance. 
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Figure 6: Spatiotemporal model of the transient visual system as suggested 
in chapter 5. The model consists of two linear filters, both dependent on the 
mean luminance E, where the first filter accounts for the spatiotempora.l cou
pling, and the second filter is temporal only. Both filters are of a second-order 
temporal nature only. The last stage of the model is a detector with (symmet
rical) threshold d. Underneath the sketched model a pulse-like input signal 
is shown, and the internal responses. The response of the first filter is a sec
ond-order filter response, where the parameters of this filter are dependent on 
the field diameter of the stimulus. 

Still, we want to make use of this kind of psychophysical data, since it so 
clearly demonstrates the effects of spatiotemporal coupling, and since this effect 
is contained in so few parameters. To be able to test the membrane model, by 
incorporating the data from Figure 4A, some additional assumptions about the 
behaviour of the model have to be made. These assumptions are: 
• the parameters of the membrane model (Y(s) and Z(s)) are locally controlled 
by the background, 
• in the case of a sharp light-dark border the admittance Y(s) seen from the light 
area is (virtually) infinite. 
This implies that for discs of a certain diameter D, Y(s) and Z(s) are constant 
within this area, and the boundary condition for the PDE is given by u(x, y, t) = 0, 
for (x,y) E border. This, in turn, means that at a light-dark borderalllateral
going signals are totally reflected (with a negative sign). The two foregoing as
sumptions are without doubt idealizations, but may be adequate for a first-order 
approximation. 

The first assumption stating that the processing in the transient system adapts 
to the background level is trivial, except for the statement that the membrane pa
rameters are locally regulated. There is physiological evidence for this assumption: 
horizontal cells show summation of adaptation within an area smaller than their 
receptive fields (Itzhak:i and Perlman, 1987). 

The second assumption is inspired by two perceptual findings: 
•,detection of temporal events upon .a disc with a completely dark surround takes 
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place at or near the centre, but never close to the border, 
• if some short suprathreshold increment is given in the luminance of the disc, 
then a 'blob' is observed which peaks in the middle and is zero at the border. 

In the case of a completely reflecting border, each rotation-symmetrical stim
ulus on the disc can be described as a Fourier-Bessel series (Watson, 1966), and 
the dynamics of the membrane within this disc area is described by the transfer 
function H(w,s). For a stimulus with a diameter equal to the background, the 
main component in this series is the first component, which is a Bessel function J0 

(zeroth order, first kind) with spatial angular frequency 

w 

where 
i1 is the first zero of this Bessel function (J0 (jt) 0), 
D is the diameter of the disc. 

(44) 

We therefore take as a first-order approximation that for a field of diameter D, the 
temporal behaviour of the membrane is dominated by the pole pair correspond
ing to the frequency w = 2j1/ D. Consequently, the largest pole in the estimated 
fourth-order filters of the impulse responses of discs (diameter D) with a com
pletely dark surround is a pole that should be associated with a spatial frequency 
w =Zit/D. 

In this way, impulse responses of discs with a completely dark surround of three 
different diameters (same subject and background level) can be used to parametrize 
the membrane model. Admittedly, this procedure to obtain parameters of the 
membrane from this impulse responses relies heavily upon some non-trivial as
sumptions. Nevertheless, we will show that this rough procedure can give some 
indication whether the simple membrane model presented in the foregoing can be 
used to describe the spatiotemporal coupling within the transient visual system. 

6.8 Predictions from the model 

Model parameters 

Parameter estimations of fourth-order filters (chapter 5 and Figure 4A) have 
been applied to experimentally determined impulse responses (Roufs and Blom
maert,1981; Blommaert and Roufs, 1987). The membrane parameters were de
rived from these estimates- in the manner suggested in the previous section. It 
was found that the parameters of the membrane are (approximately) Cw = 0.07, 
zn, zn -23 ± j120 s-1 and pz11 pz2 = -23 ± j70 s-1• The amplification factor 
Ca. was taken to be unity. The root locus diagram is shown in Figure 4B and the 
resemblance with the behaviour of pole with the largest norm estimated from the 
impulse responses can be clearly seen from comparison with Figure 4A. 

The second filter L 2 (Figure 6) is a second order temporal filter with transfer 
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function H2(s) (chapter 5): 

A (s- z) 
(45) 

(s- p)(s- p•)' 

where A is an amplification factor and p, p• and z are the poles and zero of the 
transfer function. The parameter values of this filter were derived from the esti
mates performed on the impulse response over different subjects at 1200 Td and 
for 1 o fields. These values were taken to be p = - 23 + j 45 s -l, z 15 s -l and 
A= 0.6·10S. 

For both the parameters in the membrane as for the parameters of filter L 2 

rounded values were taken in view of the variances in the estimates from which 
these parameters were derived (see chapter 5). The model presented above is 
totally deterministic, no effects of probability summation (either in time or over 
space) are taken into account. 

Predictions of the model with the above mentioned parameters were made of 
threshold-versus-duration curves and amplitude gain characteristics for fields of 
different sizes with a dark surround. These predictions will be compared in the 
sequel with experimental data. But first the experimental apparatus and procedure 
are described. 

Apparatus and procedure 

In both the threshold-versus-duration and the De Lange measurements, the stimu
lus was a centrally fixated circular field of diameter 0.25, 0.5, 1.0, 2.0 or 5.0 degrees 
with a dark surround. The stimulus was presented (monocularly) in Maxwellian 
view through an artificial pupil of 2 mm. The lights were generated by linearised 
glow modulators, operated around a suitable working point. The luminance of 
the background was set by means of neutral density filters. The modulation of 
the background was controlled electronically by function generators. The modula
tion was either a rectangular pulse of variable duration or a sinusoid with variable 
frequency. The duration of the sinusoid was 0.8 s and was slowly switched on 
and off by a ramp function which lasted for 0.25 s. The amplitude of the desired 
function could be adjusted using a dB step attenuatoi'. · The calibration of the 
dynamic· stimuli was checked before every session by means of a photomultiplier 
tube, properly corrected with respect to spectral sensitivity. 

A P800 mini computer guided the experiments. The subject had one knob 
to release the stimulus, which was delayed for 300 ms. The beginning of the 
stimulus was marked by an acoustic signal. "Yes" or "No" answers were directly 
fed into the computer. For a certain modulation amplitude 10 identical stimuli 
were presented successively and the detected percentage was determined by the 
computer and used for generating the next modulation amplitude. In each case, 
the 50% threshold amplitude was determined by linear regression from at least .2 
amplitude values with detection chances between 20% and 80% .. This was done 
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four times for each duration (in the threshold-versus-duration characteristic) or 
frequency (in the De Lange experiment). :The durations and frequencies were 
presented in counterbalance (two sessions in counterbalance provide four estimates 
of the threshold amplitude). 

Two subjects participated in all experiments: LT and BdB, both male and ages 
at the time of the experiment 36 and 30, respectively. Furthermore, subjects HD 
and IH (aged 28 and 43, respectively) also provided data on the normfactors. All 
subjects had normal acuity, although some of them used a slight correction. 

-"' •en 
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LL. 0 
z 
a- 0 ~BdB 
0 TLT ...., 
CJ OIH 
"' .... OHD -1 
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field diam. D ( log1o o) c 

Figure 7: The norm factor of shortly flashed circular disc with a dark surround 
at a 1200 Td background level as a function the field diameter. The line is the 
prediction from the model (see text), the symbols represent the experimental 
data for different subjects as indicated. 

Results 

In the first experiment threshold-versus-duration curves were determined as a func
tion of field size. Only a very limited number of durations was used in the mea
surement. Essentially, to determine the norinfactor NF only one duration within 
Bloch's region is necessarily. The norinfactor is the inverse of the energy of such 
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pulse to reach threshold: 

NF:;:: l/(et7), 

where 
s the amplitude of the pulse at threshold level, 
f) the duration of the pulse. 
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(46) 

The thresholds of several pulses with a duration outside Bloch's region were also 
determined to check whether the threshold-versus-duration curves had a dip at 
intermediate durations. This was always the case for the field sizes that were 
used in the experiments and is interpreted as indication that the transient system 
determined the response. For smaller field sizes the sustained system starts to 
determine the response and (of course) cannot be used as verification of the model. 
Also the largest field size was taken as s• in diameter to ensure that there are no 
areas stimulated very far outside the fovea (see also Discussion). 

In Figure 7 the normfactor NF is plotted versus the field diameter. The model 
predicts a slope of 2 (on log-log basis) for small diameters and a constant level 
for large field sizes. The experimental data agrees nicely with the prediction, 
although one should maybe allow a subject dependent spatial integration. (Mainly 
the parameter Gw in the model determines the transition point from slope 2 to a 
constant level). Only data from subject HD do not seem to fit the predictions; this 
is probably due to the fact that for this subject large gaps in time existed between 
the measurements of the norm factors of different field sizes. 

In Figure 8 De Lange curves are shown (subject BdB, 1200 Td background) 
for several field sizes. From this figure the top value (the sensitivity factor S) 
and the cut-off frequency f,. (0.3 log units below S) were taken as characteristic 
quantities of the high frequency side (and thus of the transient system). These 
data were replotted in Figure 9 as a function of field size, together with data from 
a second subject (LT, 1200 Td background level). The model predicts a slope 2 
(on log-log basis) for the sensitivity factor of fields with a small diameter, and a 
constant sensitivity factor for large field sizes. The experimental data confirms 
this (Fig. 9A). The prediction is for aU field sizes about 0.2-0.3 log units below 
the experimental data, an amount that can be easily attributed to probability 
summation over time (Roufs, 1974; Roufs and Pellegrino, 1976). The cut-off fre
quency (Fig. 9B) increases both in the model simulations and in the experimental 
data with an increase in field size (see also Granit and Harper, 1930; Roufs and 
Bouma, 1980). The model predicts values for the cut-off frequency that are too 
high in comparison to the experimental data. Apart from the fact that it is not 
always easy to make a good estimate of the cut-off frequency from the experimen
tal data, this discrepancy was already noted before. The fourth-order estimates 
as derived from the impulse response measurements show a fall-off in their gain 
that is too slow (chapter 5} and consequently provide a too high estimate of the 
cut-off frequency (see also Discussion). 
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Figure 8: De Lange curves of subject BdB at 1200 Td background for different 
field sizes (as indicated in the figure). 

6.9 Discussion 

In this article a linear model is presented as a model for spatiotemporal coupling 
within the transient visual system. The model is described by a PDE. This PDE 
is of a very simple form because of the many restrictions imposed on it (linearity, 
time and space invariance, rotation symmetry, low order of the PDE). The many 
restrictions are simultaneously the weak and strong features of the model. The 
strong point is the simplicity and the parsimony in parameters of the model. The 
weak point is the set of many major assumptions which have to be made regarding 
the model in order to obtain such a simple description. 

The model does not agree with the current idea of local processing of visual stim
uli. But then, the model presented here should account for the transient system, 
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Figure 9: A The sensitivity factor S and B the cut.-off frequency ft, as a 
function of the of the field diameter. The line represents the prediction from 
the model (see text), the symbols show the experimental data for two different 
subjects. 
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i.e. the channel with the largest spatial interactions. We suppose that approxima
tion with an infinitely outstretched processing over space is a good approximation 
to that with a large yet finite window. 

The PDE can be seen as belonging to a distributed electrical network. The 
system is low-pass in the spatial domain, for each temporal frequency. Alterna
tively, the filter is of a second-order temporal nature for each spatial frequency. 
The temporal behaviour of the model with variation of the spatial modulation can 
be seen from a root locus trajectory. The model can he fully parametrized given 
a proper root locus trajectory. 

In chapter 5 parameter estimations of subthreshold measured impulse responses 
were discussed. From these kinds of psychophysical measurements the suggested 
spatiotemporal model can be parametrized. This results in a simple spatiotem
poral model for the transient visual system as is shown in Figure 6 and consists 
of the membrane model in cascade with a temporal filter (of second-order) and 
a detection unit. The model can be completely parametrized from the estimated 
fourth-order linear filters of the experimentally determined impulse responses leav
ing no free parameters in the model. 

The membrane behaviour is qualitatively similar to physiological findings in the 
rod network (Detwiler et al., 1980). The rationale of such coupling as suggested 
by Detwiler et al. (1978, 1980) is a trade-off between the need for large spatial 
integration and long temporal integration in order to obtain an internal response 
level (for signals with small amplitude) that is large enough to exceed the internal 
noise level. 

The membrane model was quantitatively tested by comparing predictions of 
normfactors, sensitivity factors and cut-off frequencies to experimental data. Mak
ing allowances for the fact that the model is deterministic, the model performed in 
accordance with the experimental results over a limited range of (relatively large) 
stimulus. dimensions presented foveally. Only the cut-off frequency of the model 
was always found to be too high in the model. This is a consequence of the fourth
order .that were used as the starting point of the parametrization of the model. 
An easy way to overcome this problem is to use higher order filters as a model 
for the impulse response as argued in chapter 5. In the model presented here this 
would mean that instead of using a second-order filter for the temporal filter L 2 a 
higher order temporal filter would be more adequate. 

From the simulations of the model it was also found that the location of the 
maximum in the spatial domain varied with the dimension of the stimulus. For 
small field sizes (< 1°) the response of the membrane is completely dominated 
by the first Bessel function from the series that are associated with the disc, and 
consequently the maximum is always located in the middle of the disc. For larger 
field diameters the simulations showed that the maximum occurred somewhere 
between the centre and the border of the disc. This is in agreement with the 
perceptual observation that for larger field sizes the detection occurs somewhere 
off-centre. 
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The model is <:>pen for further detailing. The responses from the membrane may 
be considered as rough approximations to actual occurring retinal cell responses. 
We did not refine the membrane responses in this way since in the first place 
we are interested in psychophysical modelling and, secondly, given the presented 
results, we do not think that such approach is very fruitful. For psychophysical 
modelling some refinements are needed. For instance, the predicted temporal fre
quency fall-off of the model is rather low (0.9 log unit per octave) in comparison 
with the De Lange characteristics. Furthermore, it may be worthwhile to confront 
the membrane model with the matched filter model we presented elsewhere (chap
ter 3). The idea behind the latter model would be that response of the membrane is 
transmitted to the cortex, presumably a process in which a large amount of noise is 
introduced. If cortical cells act in such a way as to minimize these noise influences 
and if the system acts linearly around threshold level (De Lange,1952; Krauskopf, 
1980; Roufs and Blommaert, 1981; Blommaert and Roufs, 1987), then the tem
poral filter should have the characteristics of a matched filter (chapter 3). In this 
way not only an appropriate fall-off of the gain characteristic can be obtained and 
presumably a better prediction of the cut-off frequency, but simultaneously this 
would provide a functional interpretation of the filter L 2 (see Figure 6). 

Another possibility for further research lies in extending the membrane prop
erties to extra-foveal phenomena by introducing slowly varying admittance and 
impedance values (Y(s), Z(s)) as a function of eccentricity. Also, the behaviour of 
these parameters with background level may yield interesting interpretations. In 
this way maybe phenomena as found by Rovamo and Raninen (1984) and Raninen 
and Rovamo (1986) can be accounted for within the model. 
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chapter 7 

Changes with background in the linear model of 
the transient visual system 1 

A.C. den Brinker 

Abstract 

There is evidence that the transient channel of temporal human vision behaves as 
a linear filter for small excursions around a steady background level. The linear 
filter characteristics depend on the background level. 

From experimentally obtained impulse responses of the transient channel the 
linear filter can be modelled and parametrized. This has been done for two different 
background levels. The two sets of estimated parameters at these two levels show 
a shift in the parameters which can be described by a single multiplication factor. 
This result. was extrapolated to arbitrary background levels by postulating that 
each change in background level can be described by a multiplication factor. This 
leads to an assumption on the variation of the parameters of the linear filter of 
the transient channel with changes in the background level. 

This assumption is tested by simulating the system for different parameter sets 
of the linear filter. The simulations give a good agreement with experimental data 
on threshold-versus-duration curves and De Lange curves. The (minor) quantita
tive differences in simulations and experimental data can be explained. 

7.1 Introduction 

The temporal behaviour of the visual system at threshold level is usually assumed 
to be adequately described by two channels working in parallel (Roufs, 1974a; 
Breitmeyer and Ganz, 1976; Green, 1984). These channels are called the sustained 
and the transient channel. Psychophysical evidence shows that both channels act 
linearly for small changes around a steady background level (Krauskopf, 1980; 
Roufs and Blomma.ert, 1981; Blommaert and Roufs, 1987). The sustained channel 
is in the temporal frequency domain tuned to low frequencies, the transient to 
high frequencies. 

The impulse response of the transient system can be described as a fourth
order linear filter (chapter 4) and its parameters can be estimated from impulse 
responses measured by a perturbation technique (Roufs and Blommaert, 1981; 
Blommaert and Roufs, 1987). The interesting part of modelling (apart from being 
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able to make predictions) is the possibility it offers to give insight into the way 
data are processed in the system. In chapter 5 a fourth-order linear filter was used 
as a model for the transient system. There it was found that the parameters of 
this filter changed in a characteristic way if either a change in background level· 
or spatial extension of the stimulus was introduced in the experiment. This made 
it possible to implement a refinement on the assumption of isomorphic impulse 
responses of the transient channel at different background levels (Roufs, 197 4a; 
Roufs and Blommaert, 1981). Also a simple spatiotemporal model was presented 
on the basis of the shifts in estimated parameters with diameter of the stimulus. 
Here we will concentrate on the changes in the parameters of a linear model for the 
trausient channel that are found from experiments at different background levels. 

In chapter 5 a fourth-order linear filter was used to model the transient system. 
It was found that such a moqel provides an agreeable fit with the experimental 
data, and with reliably estimated parameters. Furthermore it was shown that some 
of the parameters were independent of background level, while others changed with 
background. However, it was also shown that the fourth-order linear filter did not 
agree with data on sensitivity versus frequency of a sinusoid (TMTF, Temporal 
Modulation Transfer Function, also called De Lange curve), since the fall-off of this 
linear filter was essentially too low. A sixth-order filter can provide the necessary 
fall-off and is therefore more appropriate. 

Therefore we restart the modelling of the transient system by fitting a sixth
order linear filter to the experimentally determined impulse response data. Again 
it is found that the estimated parameters show very small intersubject variation, 
if the same experimental conditions are used. On the other hand, background 
variations provide substantial shifts in the estimated parameters. 

We will introduce a (simple) description of how parameters of the sixth-order 
linear filter might change with background level. By simulation this postulated 
change in parameters is confronted with experimental data. Sensitivity factors, 
cut-off frequency and critical duration can be calculated from the model and com
pared with experimental data. The results show a good agreement between th~ 
suggested parameter change and the experimental data. Quantitative differences 
will be discussed and explained. 

7.2 Filter description 

The model used for the transient system is shown in Figure l. The input signal is a 
variation e:(t) of the retinal luminance (the background E), expressed in Trolands. 
The linear filter Lis described by its impulse response U6(t). The relation between 
e:(t) and r(t) is given by a convolution according to 

r(t}. = £ e:(r) U6(t- r) dr. (1) 
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An input signal is detected if there exists a t such that 

lr(t) + n(t)l ~d. (2) 

In conditions relevant for this analysis (photopic levels and not too small diameters, 
R:: 1 degree) there is experimental evidence which justifies the assumption that the 
signal threshold dis symmetrical for dynamic stimuli (Roufs, 1974b; du Buf, 1987), 
as is expressed in (2) and Figure 1. 

N 

c:<t> L(E) 
r<t) 

E 

Figure 1: Model for the transient system of the human visual threshold 
perception. e(t) is the input signal, L is a linear filter, N a noise source and 
the last stage is a detector mechanism with threshold d. The linear filter L is 
dependent on the background luminance E. 

The internal threshold d is a quantity that is not accessible via any psychophys
ical measurement. However, all internal responses can be expressed in this thresh
old. Rewriting (1) we obtain 

ft U6(t- r) 
r(t)/d = lo e:(r) d dr. (3) 

We now define the normalized impulse response 

U6(t)/d = NF · U6(t), (4) 

where 
u;(t) = the amplitude-normalized impulse response 

(i.e. the peak is normalized), 
NF the norm factor. 

The norm factor NF is the reciprocal of the amplitude factor needed for a Dirac 
excitation in order to obtain an internal response that reaches the threshold d. 
This is open to measurement and can be approximated by the measurement of the 
amplitude e:~ of a pulse with duration iJ, where iJ is small with respect to the time 
constants of the system. The. norm factor is then given by 

1 
NF=-·-. 

e:~ iJ 
(5) 
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Note that the norm factor can be measured by any {)within Bloch's region. 
The noise n(t) can be measured with respect to its distribution function by 

measuring the psychometric function of, for instance, an impulse. Like the situa
tion with the norm factor, the noise can be measured in threshold units only. This 
noise can then be modelled as a normal distribution, a log-normal distribution 
(Roufs, 1974b) or a Weibull distribution (Weibull, 1951). However, measurement 
of the noise is still problematic, because of large drift effects (Roufs and Blom
maert, 1981; Watson, 1982; Blommaert and Roufs, 1987), and because different 
experimental procedures (method of constant stimuli, two alternative forced choice 
methods) seem to yield different experimental results (Nachmias, 1981; McKee et 
al., 1985). 

The amplitude-normalized impulse response u;(t) can be obtained psychophys
ically by using a perturbation technique (Roufs and Blommaert, 1981). This ex
perimentally determined normalized impulse response u;(t) can be modelled using 
a fourth-order linear causal filter (chapter 4) by 

C{U*( )} - ii( ) - A (s- z) 
6 t -

8 
- (s- P1)(s- Pi)(s- P2)(s- Pi)' 

(6) 

where 
c denotes the Laplace transformation, 
p., p2 are the (complex) poles of the transfer function H(s), 
Pi, Pi are complex conjugates of the poles p1 and P2 respectively, 
z is the zero of the transfer function fi ( s), 
A denotes a multiplication factor such that H(s) is the 

Laplace transform of a normalized impulse response. 
However, in this article we will take a sixth-order linear filter as our model for 
the transient system, since it is not possible to reconcile De Lange data (TMTF, 
Temporal Modulation Transfer Function) with a fourth-order filter (chapter fi). 
The model now used is a simple elaboration of (6), where two (complex conjugated) 
poles (p3 , P3) are added. The transfer function H(s) becomes 

* • A(s-z) 
C{U6 (t)} = H(s) = IT3 ( _ ·)( _ •)" 

i=l s p, s Pi 
('7) 

Assuming that all the poles are simple, the impulse response u;(t) can be express•Jd 
as 

3 

u;(t) = _E {R; exp{pit} + R; exp{pit}}, (B) 
i=l 

where R; (i=1,2,3) are the (complex valued) residues given by 

A (Pi- z) 
R;=( •)rrs ( )( •)' Pi - Pi A:=l,A:;o!i Pi - PA: Pi - Po~: 

i = 1,2,3. (!~) 

and R; is the complex conjugate of R;. 
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Apart from problems with respect to the noise characteristics, the system as 
shown in Figure 1 is completely open to psychophysical experiments, except for 
the threshold itself. Therefore we use a transfer function H(8) which is expressed 
in threshold units: 

H(8) = £ { U6dt)} = NF ,C{U;(t)}, 

which according to (7) leads to 

H ( 8) = NF s A ( 8 - z) * . 
Il;=t(8- p;}(8- P;) 

(10) 

(11) 

Basically, (8) expresses that the impulse response consists of a sum of damped 
sinusoids. There are several reasons for choosing this set of fundamental functions. 
To start with, it is a mathematical convenient description that is often used in 
engineering. The filter is of finite order and so the model is a lumped system. 
Secondly, these kind of responses provide ~ good description of many physical 
systems, including feedback systems. Transmission between nerve cells is often 
described as a feedback mechanism, and the linear part of responses of nerve 
cells is usually described by biphasic ·impulse responses (Naka, 1982; Daly and 
Normann, 1985). If the real part of a pole is not too small with respect to the 
imaginary part, the response associated with a pole pair (p;, p;) can be considered 
to be an approximation to these kind of responses. In this way it was hoped that 
fitting the chosen filter (7) to the impulse response data is more than mere curve 
fitting, but might be helpful in exposing underlying mechanisms. 

7.3 Estimated sixth-order linear filters 

The filter H(8) (eq. (7)) was fitted to the experimentally determined impulse 
responses (Roufs and Blommaert, 1981; Blommaert and Roufs, 1987). The results 
of the fits for different subjects at 1200 and 100 Td for 1 degree fields without 
surround are shown in Table 1. First of all the estimated standard deviation 8 06 

is shown, given by (Bard, 1974) 

where 
Ws 
M 
N 

the sum of squared residuals at the optimal parameter set, 
= number of measured data points, . 

number of degrees of freedom in the fit (N = 7, three 
complex conjugated pole pairs and one zero). 

(12) 

Next the mean measured standard deviation 8m is shown. This was calculated 
according to 

2 1 ~ 2( ) 
8m = M LJ8 t;, 

i=l 

(13) 
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where s(t;) is the measured standard deviation of the mean at the i-th sampll~g 
moment t;. For comparison we also tabulated the estimated standard deviati~n 
s.4 of the fourth-order filters (from chapter 5). ! 

subject JR74 JR FB JP LT HD IH LT HR JW 

background 1200 1200 1200 1200 1200 1200 1200 100 100 100 
(Td) 
S,s .118 .074 .105 .112 .119 .125 .138 .114 .243 
s,.. .120 .086 .074 .112 .139 .118 .106 .109 .113 .170 

Su .144 .099 .127 .131 .115 .143 .154 .096 .124 .247 
O:t (s-1) -10.9 -12.0 -10.4 -15.0 -15.1 -15.4 -15.6 -17.8 -9.9 
fJ1 (s-1) 36.0 39.0 47.4 37.8 44.9 42.9 37.6 25.0 
a2 (s-1) -14.6 -16.9 -15.1 -18.5 -15.2 -17.4 -15.9 -18.6 
fJ2 (s-1) 66.8 70.7 82.1 73.4 82.2 83.7 77.9 45.5 
as (s-1) -11.6 -13.4 -11.1 -12.0 -19.0 -15.4 -10.8 -14.6 
fJs (s-1) 114.1 118.2 131.1 117.3 125.1 143.8 117.6 69.2 
z (s-1) 12.4 6.6 12.9 7.2 14.9 10.5 29.4 27.9 
A (108s-•) -.412 -.495 -.575 -.543 -.635 -1.080 -.440 -.108 
NF (Td-1s-1) 0.68 0.90 1.20 1.09 0.59 0.44 1.01 3.86 7.46 

Table 1: Results of the fits of a sixth-order filter to experimentally determined 
impulse responses of the transient visual system. 

22.1 
-9.7 
44.1 
-6.8 
65.4 
8.8 

-.052 
4.59 

From comparison of s,s and "" we find that there is an improvement of jhe 
fit with a sixth-order linear filter over a fourth-order filter. Only for subject ~T 
at 1200 Td do we find that the reduction of 111 does not weigh up to the incre~e 
in free parameters: s,s is larger than s.4 • But then, in this case the estima~ed 
standard deviation of the fourth-order fit is already smaller than the measured 
standard deviation. The improvement of s.6 over s.4 is greater for the 1200 trd 
data than for the 100 Td case. The estimated standard deviation s.6 agrees ni<~ly 
with the mean measured one (s,..), indicating that good fits to the experimetjtal 
data are provided by the filter (7). . ! 

Below the estimated standard deviations we find in Table 1 the estimated ~a
rameters p1 , Ps, Ps and z. The poles are split into two real valued parameters:! 

Pi= a;+ i (J;, i = 1,2,3, i H, (~4) 

where a; is the i-th damping parameter arid (J; the i-th angular frequency par;~
eter. In all cases the indexes for p were taken such that IPtl < IPtl < !Psi· 

All poles (p., p2, p8). and the zero z for the estimated filters at 1200 Td e~ch 
cluster in a. specific region in the s-plane, as is shown in Figure 2A. Rou@~ly 



128 chapter 7 

A B 
1200 Td 150 100Td 150 
0=1° 

X 
0=1° 

X j1m j1m X 

t 
100 100 

~ X 

X 

~ 
50 xx 50 

xx 

-50 50 -50 50 
____... ____... 
Re Re 

Figure 2: Pole-zero plot of the estimated parameters of the sixth-order lin
ear filter. The horizont&! and vertical axes are the real and imaginary axes 
respectively. Units along the axis are expressed in s-1• The lower half of the 
a-plane has been omitted in the plot. The crosses and circles are the estimated 
poles and zeros, respectively. A. Estimated poles and zeros of 1 degree fields 
at 1200 Td for seven subjects. B. Estimated poles and zeros of 1 degree fields 
at 100 Td for two subjects. 

speaking, we could introduce a1 a2 a3 -z = -15, and {J3 = 1.5fJ2 = 3{J1 = 
120 as a smoothed parameter set of a "standard" subject at 1200 Td. 

For the 100 Td level we have data sets of three subjects. For one of these sets 
(subject LT) the pole Ps was shifted to very large values in the estimation process: 
IPs I > IP2I, IPtl· In that case the estimate obtained is essentially a fourth-order 
filter. In other words, we could not fit a sixth-order filter to these data. In this 
case too the estimated standard deviation of the fourth-order fit is already smaller 
than the measured standard deviation, indicating a very accurate fourth-order fit. 

For the 100 Td level the location of the poles and zeros is not as clear as for the 
1200 Td level. First of all there are only two subjects for which the parameters 
could be estimated, the improvement from fourth to a sixth-order filter is only 
small, one data set (JW) is extremely noisy, and the 00%-confidence region in 
the s-plane around each pole is considerably larger for the sixth than for the 
fourth-order estimates. (At 1200 Td the confidence region around each pole in the 
sixth-order estimates is about as large as for the fourth-order.) 

It seems that a sixth-order filter is easier to fit at high than at low background 
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levels: at lower levels there is less improvement in the estimated standard deviation 
and the confidence regions are increasing going from a fourth to a sixth-order 
estimation. This means that care has to be taken in drawing conclusions about 
shifts in the parameters if we are to base these (also) on the results of the estimated 
parameters at 100 Td. 

Nevertheless, if the parameters at the 100 Td level are plotted (Fig. 2B) in the 
same way as for the 1200 Td case (Fig. 2A), it can be seen that the norm of pole Pi 
is smaller in the 100 than in the 1200 Td case, but the structure of the poles is 
strikingly the same: {33 ::::J 1.5/32 ::::J 3/31• However, as already mentioned, we have to 
be careful with such observations since especially pole p3 is not as well-conditioned 
as one would like. 

Now we postulate the following: the parameters a 1, a 2 and z are independent 
of background level, and the parameters a 3 , /311 {12 and Ps each change by the same 
proportional amount with a change in background. This ad hoc postulated change 
is similar to what was found for the parameters of the fourth-order filter, and is a 
refinement on the assumption of isomorphous impulse responses at different back
ground levels (see furtheron), where the refinement consists of a change towards a 
filter with a more pronounced bandpass character for higher background levels (see 
chapter 5). We will confront this postulate with data of threshold-versus-duration 
curves and with De Lange characteristics in the sequel of this paper. But first we 
will show that starting from the estimated parameters of LT at 1200 Td, given the 
postulated shift, we are able to obtain a good representation of the 100 Td exper
imental data of the impulse response (of the same subject LT). Essentially, we are 
performing an estimation with one free parameter: the shift in several parameters. 

H the parameters a 3 , Pt. {32 and /3s (LT, 1200 Td) are multiplied by a factor 11. = 
0.56, an impulse response is obtained which is similar to the experimental data of 
LT at 100 Td, as is shown in Figure 3. Plotted here are the impulse response of the 
estimated sixth-order filter together with the experimental data points at 1200 Td 
(top curve), and the impulse response from the shifted parameters together with 
the 100 Td data (bottom curve). The estimated standard deviation for the 100 Td 
level is s. = 0.125, and is dose to the mean measured standard deviations,. (see 
Table 1). 

This postulated parameter shift gives not only a good fit to the data of subject 
LT (100 Td), but also an interpretation of why a sixth-order filter is harder toes
timate from the experimental data at lower than at higher background levels. The 
ratios a 1/f31 and a 2/{32 (the damping ratios) are smaller at lower background lev
els, and consequently the amplitude spectrum associated with these poles changes 
into a more low-pass characteristic for lower backgrounds. Therefore the activity 
of pole Ps (and P3) in the amplitude spectrum falls more and more in the cut
off caused by the other poles, and less in the dominant frequency range of the 
spectrum. This means that, at the lower backgrounds, the pole-pair (p3 , Ps) only 
influences howfast (or slow) the impulse response starts. This, in turn, is liard to 
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Figure 3: Experimentally determined normalized impulse responses andes.
timated impulse responses from a sixth-order linear filter. Subject LT for a 
1 degree field without surround at 100 and 1200 Td. For clarity, the 1200 Td 
curve is shifted upward over 1.8 units. 

estimate from an impulse response measurement in which the starting moment is 
unknown (as is the case with the perturbation technique). 

1.4 Parameter changes with background 

In the foregoing it was shown that the parameters of a. sixth-order filter at 1200 Td 
ca.n be shifted in such a way that the filter forms a description of the 100 Td 
measurement data. We postulate this as a general property of the transient system 
and will confront this with other experimental data. In mathematical notation the 
postulate reads: 

Pt(E) &t + j Pt p,(E), (15) 

P2(E) &2 + j P2 p,(E), (16) 

Ps(E) = &s p,(E) +iPs p,(E), (17) 

z(E) = z, (18) 
A·NF = A·NF, (19) 

where p,(E) is a real valued function of the background E, a.nd 0:1, f;b az, Pz, as, 
?;3 , z, A a.nd NF are the filter parameters for that value of E for which p,(E) = 1. 
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These relations ((15) to (18)) state that p3 moves along a line through the 
origin, that p1 and P2 move along a line parallel to the imaginary axis, and that 
the location of z in the s-plane is constant. They also state that all the shifts in 
parameters occur by the same factor. The only degree of freedom that is left is the 
relation tt(E). Taking A· NF constant ensures that the high frequency asymptotes 
of the filter for all ~ coincide. 

The function tt(E) is a monotonically increasing function, as can be seen from 
the De Lange curves (Figure 8A) and the assumed parameter shifts ((15) to (18)). 
The De Lange curves are tuned to higher frequencies for higher background lev
els E. From {15) to (18) it is also clear that any increase in Jt is an increase in 
the bandwidth. From this we conclude that tt(E) is a monotonically increasing 
function, whose numerical relation is yet to be established. 

Note that the suggested parameter shift is somewhat more complicated than the 
isomorphy of the impulse responses at different background levels, as was suggested 
by Roufs (1974a), Roufs and Blommaert (1981) and Blommaert and Roufs (1987). 
If the impulse responses at different background levels were isomorphous all the 
poles and zeros would be shifting along straight lines through the origin. 

However, in the suggested parametric shift ((15) to (18)) there is still a large 
amount of isomorphy. This can be seen from Figure 4, where the normalized 
impulse response of LT is plotted at 100 Td (tt = 1, the same as for the bottom 
curve of Fig. 3) and for logJt -0.2 and +0.2, using the sixth-order filter. The 
main change in these impulse responses is still a change in the scale of the time 
axis (as would be the case for isomorphy), but there is also a change in the depth 
of the negative phases with respect to the positive, which in fact can also be noted 
in the experimental data on impulse responses in Fig. 16 of Roufs and Blommaert 
(1981). 

7.5 Simulations of the model with parametric changes 

We start the simulations by taking the parameter values of the sixth-order linear 
filter F(s) for LT at 100 Td and subsequently calculating the poles according 
to ((15) to (18)) for several Jt factors. The response of the system can now be 
calculated to an arbitrary stimulus e(t). 

Threshold-versus-duration curves 

In Figure 5 the threshold-versus-duration curves for the system are plotted at 
100 Td, and for different f.£ values. This plot agrees with experimental data (e.g., 
Blommaert and Roufs, 1981). From Figure 5 we take two characteristic quanti
ties: the critical duration Tea (which is the duration e at the intercept of the two 
asymptotes for short and long duration) and the sensitivity factor F .. (which is the 
inverse of the amplitude e-1 for long durations; see Roufs (1974a) and Blommaert 
and Roufs (1987)). The critical duration T ... and the sensitivity factor F,. can 
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Figure 4: Normalized impulse response from sixth-order model for three dif· 
ferent multiplication factors p,. For p = 1 the impulse response stems from 
the.parameters of the sixth-order filter for subject LT at 100 Td for a 1 degree 
field without surround. For clarity, the curves for logp = 0 and 0.2 have been 
shifted upward over 1.5 and 3.0 units, respectively. 

thus be plotted as a function of the shift p of the parameters with respect to the 
100 Td level. From simulations like those in Figure 5 it can be shown that for 
logp E [-0.5,0.5] the relation between F4 and p. can be approximated as a linear 
one on a log-log basis, by 

(20) 

where k1 = -4.2 and 0 1 = -0.9. Both values (kh 0 1} are subject-dependent. 
Note that the value of k1 is close to the relation that is expected from a parameter 
shift for isomorphy (see Appendix). 

Figures 6A and 6B show experimental data of the sensitivity factor F.,. and the 
critical duration T ..... , respectively, as a function of the background level E (re-
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Figure 5: Threshold-versus-duration curves for the 100 Td level (p = 1) and 
for several parametric shifts p (see text). Subject LT, 1 degree field. 
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plot from Roufs, 1972). Tcm and Fm are experimentally obtained values according 
to the Graham and Kemp (1938) definition. In these definitions the dip in the 
threshold-versus-duration curves is not recognized (Roufs, 1974a). Therefore the 
values of Tcm and Fm will be estimated larger than Tea and F,. for the same ex
perimental data. Furthermore, if the transient system acts in accordance with the 

· suggested parameter shift, the difference between estimates of the critical dura
tion and the sensitivity according to these two definitions will be larger at higher 
background levels. Nevertheless, as a first-order approximation, we will regard 
the experimental data from Figures 6A and 6B as if they reflected Tea and F,., 
respectively. 

The experimental data can be approximated by 

logFm = k2log (1 + !) + C:, (21) 
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Figure 6: A. Experimental data on the sensitivity factor Fm as a. function 
of E. The continuous line is the sensitivity F,. according to the sixth-order 
model, using (22). B. Experimental data on the critical duration Tcm. versus 
the background level E. The continuous line gives the critical duration T00 as 
a function of the background intensity E, according to (22). Both figures are 
replots from Roufs (1972). Different symbols indicate different subjects. 

where k2 -0.91 (Roufs, 1972) and Eo ~ 1 'Td. The numerical value of Eo was 
taken l Td for convenience, but might be a value that depends on the subject. 
This relation (21) is an approximation of the experimental data of Figure 6A for 
not too large E (E < 1000 Td, see discussion). 

In order to have agreement between the experimental data and the simulated 



changes with background level 135 

model, and on the assumption that Fm is a suitable approximation of F0 , we find 
that the function p,(E) must obey the following relation: 

logp,=klog(l+ ~) +G, (22) 

where k k2/k1 = 0.22 and where G = -0.44 (which follows from the requirement 
that p, = 1 forE= 100 Td). This relation is shown in Figure 7. 

~ 
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~ .5 

:s. .. 
0 ... 
u 

0 cu -c 
0 :; 
u 
Q. -.5 :::: 
:; ·CD 0 2 4 
E 

background intensity E (log10 Td) 

Figure 7: The relation between the parameter shift p. and the background 
level E. Starting points are the 100 Td parameters of LT, 1 degree field 
(logp. = 0). 

With relation (22) the model simulations of the sensitivity and critical duration 
as a function p, can be plotted as functions of the background level E. These are 
shown as the continuous lines in Figures 6A and 6B. 

The measured sensitivity and simulations of the model are in good agreement 
with the given choice of relation between p, and E (eq.(22)). In Fig. 6B the 
measured critical duration Tcm is plotted together with the simulated behaviour of 
Tw For low background levels there is a good agreement between these data. For 
higher background levels (10-1000 Td) the continuous line Teo takes on smaller 
values than (most of) the measured Tcm, which is also predicted in the model, 
since at these higher background levels a significant difference in these two values is 
caused by the fact that the dip in the threshold-versus-duration curve is increasing. 
Above 1000 Td the behaviour of Tea and that of Tcm do not agree, even if the 
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difference in definition of critical duration is taken into account. This is presumably 
due to the fact that at these background levels the system is unable to adapt the 
time constants of the system (e.g., Fig. 8 in Kelly, 1961), which means that we are 
extrapolating our predictions too far (see also the Discussion). 

De Lange 'curves 

A classic measurement in psychophysical vision research is the measurement of a 
De Lange curve, which is a plot of the reciprocal of the detection amplitude (or 
modulation depth) of a sinusoidal stimulus versus the frequency of the sinusoid. 
Some experimental data are shown in Figure SA (from Roufs, 1972}. In such 
De Lange curves the filter characteristics of the transient system are reflected. 
But, contrary to what is often assumed (Gorea and Tyler, 1986; Georgeson, 1987; 
Stork and Falk, 1987), the gain characteristics of the linear filter of the model 
(Figure 1) do not equal a De Lange curve. 

The reason for this is twofold. We assumed a two-channel model. The De Lange 
curve reflects the activity in both channels and is usually regarded as the envelope 
of the gain characteristics of the sustained as well as of the transient system (Roufs, 
1974a; Roufs and Blommaert, 1981). Since the sustained channel is low-tuned and 
the transient one high-tuned, we can only compare the high frequency side of the 
De Lange curve with the high frequency side of the gain characteristics of the 
transient channel. Secondly, since our model (Figure 1) includes a noise source N, 
the detection is not deterministic and the De Lange curve will reflect part of 
the stochastic behaviour. Experimentally, it is well known that the detection 
amplitude of a sinusoid depends on how long the sinusoid is presented to the 
observer (Roufs, 1974b; Roufs and Pellegrino van Stuyvenberg, 1976). 

At different background levels the stochastics are much the same. The Crozier 
coefficient, which is the ratio of the standard deviation u of the noise N and the 
threshold d, is constant over a large range of background levels (Roufs, 1974b). 
The reduction of the threshold amplitude as a consequence of the stochastic nature 
of the model should therefore be equal at different background levels, assuming 
that the same experimental conditions are used. 

Bearing the above remarks in mind, we can compare some actually measured 
De Lange curves (Figure SA, from Roufs, 1972) with the gain characteristics of 
the linear filter of the transient channel (Figure 8B). Unfortunately, we do not 
have the De Lange curves of subject LT for the same experimental conditions as 
the impulse responses. Furthermore, in the experiments that were performed to 
obtain Figure SA, an unlimited inspection time was used. This means we do not 
know how to account for the probability summation quantitatively at different 
frequencies. Nevertheless a qualitative comparison can be made. 

Similar to the threshold-versus duration curves we now look at the gain curves 
of the linear filter with varying J.' (Figure 8B), and from these we choose the cut-off 
frequency /c (frequency with a gain 0.3 log unit below the peak value) and the 



change~J with background level 137 

1~------r------. 

""" ':' 
"0 
t-

0 ... 
C) 

.!2 
'-' 

""" -..: 
C\1 ·-,_. 
::c 

c 
<a 
C) 

rooHz 

0 

-1 

-2 

.1 

.2 

llog,.Hz 10 100 

frequency (Hz) 

Figure 8: A. De Lange curves for two different subjects at different back
ground levels. Reprinted with permission from Vision Research 12, J.A.J. 
Roufs, Dynamic properties of vision.-1, copyright 1972, Pergamon Journals 
Ltd. B. Gain characteristic jH(j211' f) I of the linear filter L for the sixth-order 
model for several multiplication factors p, subject LT, 1 degree field (see text). 

sensitivity S (the peak of the curve) as characteristic quantities. These are plotted 
in Figure 9A and 9B versus the background level E, according to (22), together 
with experimental data (replot from Roufs, 1972). The shapes of these curves are 
in nice agreement. The difference between the calculated and the experimental 
sensitivity S is about 0.4 log unit, which is about the difference one would expect 
from probability summation (Roufs and Pellegrino van Stuyvenberg, 1976; Roufs 
et al., 1984). The behaviour of the cut-off frequencies predicted from the model 
is in agreement with the experimental results, but the continuous line is slightly 
lower than the experimental data. This difference may be caused by the fact that 
the relation between p and E may not be as appropriate as it seems (given the 



138 chapter 7 

difference in definition of the sensitivities Fa and F.,.). 
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Figure 9: A. Experimental data on the sensitivity factor S versus the back
ground level E. The continuous line gives the sensitivity factorS as a function 
of the background intensity E, according to (22). B. Experimental data. on the 
cut-oft' frequency In as a function of the background level E. The continuous 
line gives the cut-oft' frequency In as a function of the background intensity, 
according to {22). 

The difference between the low-frequency parts of the gain characteristics and 
the De Lange curves of 1 degree fields without surround is larger than would be 
expected a.s an effect of probability summation. This is in agreement with the 
two-channel assumption: the sustained system determines the sensitivity for this 
frequency range. 
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In Figure 10 the value of the low-frequency asymptote predicted from the model 
is shown versus E, again using relation (22). For background levels between 1 and 
1000 Td the DC component is approximately inversely proportional to the back
ground level, as is shown by the dotted line in Figure 10. Around these background 
levels the modulation depth for low frequencies, given by m-1 H(O) E, is about 
6. 
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Figure 10: DC component of the gain characteristics of the linear filter of 
the transient system as a function of the background level E according to the 
sixth-order filter H(s). The dotted line gives the relation H(O) o: 1/ E. 

7.6 Discussion 

In this article a sixth-order linear filter is proposed for the transient channel of 
the visual system. The parameters of this filter can be estimated from an exper~ 
imentally obtained normalized impulse response. The sixth~rder filter describes 
the impulse response as a summation of damped sinusoids (8). In the previous 
sections we argued that by this choice the parameters of .the filter appear to change 
with background level according to a simple mathematical formulation. However, 
there may be other basic functions that perform as well as a description of the 
impulse responses. Furthermore, it does not rule out the possibility that other 
choices of basic functions can provide an equally neat description of changes of the 
parameters with background. 

Some of the parameters of the filter (7) at different background levels are ~ 
sumed to be independent of the background level, the others are assumed to have 
the same proportional shift going from one background level to another. This 
parameter shift is assumed to account for background levels somewhere between 
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1 and 1000 Td. For low background levels (beneath 1 Td) the system seems to 
be independent of the background level (for small excursions). There seems to 
be no adaptation to the stimulus (background), probably as a consequence of the 
fact that the limiting factors in detection are not governed by the stimulus co~
dition but by the internal noise (Shapley and Enroth-Cugell, 1984). Between 1 
and 1000 Td the system seems to adapt to the background by changing the time 
constants of the filter. The gain factor of the filter A· NF (see eq.(7)) is invariant. 
Above 1000 Td the system no longer changes, except for its sensitivity. This can 
be seen from the De Lange curves at high background levels; the high frequency 
asymptotes do not coincide any longer at high background levels. This is an effect 
for which the assumed model could account by postulating a saturation effect in 
the shift of the poles and zeros of the transfer function at these levels. This satu
ration effect in the shift of the poles should probably be attributed to the limited 
speed of transfer of information in and between neurons. A refinement of the 
model would consist in adapting the gain factor for backgrounds where the time 
constants (the poles and zeros) can no longer be adjusted. This would agree with 
Figure 6B, where it is shown that the critical duration seems to level off to some 
steady value, and also with Figures 8A ·and 6A, where it can be seen that there is 
still a steady drop in the sensitivity factors F and S. We did not incorporate this 
refinement because of a lack of experimental data for these high levels. 

The assumed parameter ·~?hift was evaluated by comparing the performance of 
the filter for block stimuli of variable duration with experimental data. The model 
could be made to agree with the experimental data by means of an adequate 
relation between the parameter shift t.t and the background level E. This derived 
relation is not quite accurate because the simulation and the experimental data 
essentially used different definitions for the sensitivity factor F and the critical 
duration Tc. But as a first order approximation this relation between the parameter 
shift and the background level should suffice. 

Comparison of the gain characteristics of the linear filter and De Lange curves 
showe<;l that the qualitative performance of the model agrees well· with the ex* 
perimental data. The quantitative difference can presumably be attributed to 
probability summation, but it is an effect that has to be evaluated by more careful 
experiments. Part of the difference might also be caused by the inaccuracy in the 
relation t.t(E). 

The proposed parameter shift is a convenient one since as far as the parameters 
change with background, they change by the same proportional amount. However, 
equally convenient parameter shifts (like isomorphy) cannot be ruled out on the 
basis of the experimental data used here (sensitivity factors, critical duration and 
cut-off frequency). On the other hand, the eXperimental data of Swanson et al. 
(1987) on threshold-versus-duration curves show more pronounced dips for higher 
background levels. This agrees with the suggested parameter shift (see Figure 5B), 
and argues against the isomorphy assumption. Also, the impulse response which 
Roufs and Blommaert (1981) measured at 2 Td seems to have less pronounced 
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negative phases than those at 1200 Td, which is also in agreement with our simu
lations (see Figure 4). The behaviour of the system was also tested for parameter 
shifts in which all poles were located on straight lines along the imaginary axes, 
i.e. (17) replaced by p3 (E) = a3 + j P3 p,(E). With an appropriate choice of p,(E) 
the behaviour is vastly similar to the one proposed earlier, and no preference for 
one or the other can be made on the now available data. 

As already argued, the low-frequency sides of the De Lange curves of 1 degree 
fields without surround do not agree with the gain characteristics of the linear 
filter of the transient system, presumably because of the interfering interaction 
of the sustained system at these frequencies. However, the simulation seems to 
agree with the experimental results of Kelly (1961) for edgeless fields. A possible 
explanation is that edgeless fields do effectively suppress the sustained system 
in such a manner that the De Lange curves of these fields reflect the transient 
channel only. However, there is a difference of about 0.4 log unit between these 
experimental results and our simulations. At these low frequencies it is not clear 
whether such a difference can be attributed to probability summation. 

The model considered here is a black box model only; a relation was found 
between the parameters of the model and the background level, but its actual 
(physiological) realization is still questionable. To obtain insight into possible 
mechanisms for realizing such parameter changes with background, it may be 
worth looking at electrical equivalents of sixth-order filters that can give this kind 
of behaviour. 

The potentials of an analysis ofthe behaviour of the transient system in a linear 
model described by poles and zeros are not fully explored in this paper. We will 
only briefly touch upon this by making two suggestions for interpretation of the 
estimated filters. 

The first interpretation is as follows. The sixth-order filter can be thought of 
as resulting from a cascade of filters. Suppose the sixth-order filter characteristics 
evolve from two filters in cascade, the first described by the pole pair (IJ2, pi) 
and the second by the other poles plus the zero z. It can be shown that the 
impulse response of the second filter resembles that of a filter that is matched to 
an incoming signal which is equivalent to the impulse response of the first filter. 
This means that this system is optimal for detection of fast changing input signals 
if the (main part of) noise that is introduced in the processing is white, additive 
and is introduced in between the two filters. The latter could be the case if the 
filter (Ph P2) is located in the retina and noise is introduced in the transmission of 
the responses from the retina to the cortex, and the second filter is the detection 
unit in the cortex. We hope to present such an analysis elsewhere. 

A second possible interpretation is to see the sixth-order linear filter as stem
ming from three parallel pathways, which act as linear filters, each characterized 
by one pole pair. The responses of these filters are then linearly combined. This 
scheme is reminiscent of the proposal made by Kelly (1962), who argued that the 
De Lange characteristic of edgeless fields are built up from three separate colour-
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sensitive pathways. Moreover, these three parallel filters would be most sensitive 
to (about) 7, 13 and 20 Hz at 1200 Td (namely IPII/2?r, IP2I/2?r and 1Psl/2?r, re
spectively), which is in reasonable agreement with the findings of Kelly {1962) at a 
background level of 850 Td. In that interpretation the pole pairs (p11 Pi), (p11 Pi) 
and (ps, Ps) would be associated with the blue-, green- and red-sensitive channels, 
respectively. But contrary to the arguments of Kelly (1962), our scheme would 
imply that each of the pathways is adaptable with respect to its time constants. 
This interpretation too needs careful consideration. 

The suggested parameter shift, along with the assumption of coinciding high
frequency asymptotes, has an almost equal common low-frequency modulation 
over different background levels. Alternatively, the suggested parameter shift, 
along with the assumption of a constant low-frequency modulation depth, will 
give (almost) coinciding high-frequency asymptotes. The latter can be realized by 
a feedback mechanism which tries to achieve a constant DC response. This leads 
to a model for the transient visual system described by a closed-loop adaptive 
filter. This is an attractive possibility since it would imply that we do not need 
an independent mechanism to measure the background level E in order to set the 
parameters of the transient system (see Figure 1). Also, the artificial difference 
between background level E and the variation on this background e:(t) is cancelled, 
as shown in Figure 11. The output of filter H(s) is the input of a lowpass filter 
with cut-off frequency fc somewhere below z/2?r. The output of this lowpass filter 
is a measure of the lowpass component of the output of filter H(s). This signal 
can be compared with some reference level, and, depending on the output of the 
comparator, the parameters can be adjusted to higher or lower values. How fast 
this adaptive process is depends to a great extent on the cut-off frequency of the 
lowpass filter. H this cut-off frequency/. is about equal to zj21r, then this scheme 
(Figure 11) refiects a very fast adaptive mechanism. 

H such a closed-loop adaptive filter exists in the transient system, then it is 
also dear why there is a separate mechanism, the sustained system, to process low 
temporal frequencies:. the suggested adaptive filter is inherently unable to give 
information about the low temporal frequencies. 

An interesting device for further research is the closed-loop adaptive filter. For 
instance, if we were to extrapolate the model to account for suprathreshold experi· 
ments by replacing the threshold device by a memory less compressive nonlinearity 
(Roufs and Pellegrino van Stuyvenberg, 1979) we would undoubtedly predict the 
Broca-Sulzer phenomenon (this being inherently present in the impulse response; 
see de Ridder, 1987). Also, it is possible that the adaptive model can account for 
the shift in the Broca-Sulzer effect at low background levels, and for its stationary 
behaviour (independent of flash luminance) at higher background levels, as was 
found in the brightness-matching experiments reported by de Ridder (1987). 

In conclusion we state that sixth-order lirtear filters can explain subthreshold 
measurements of impulse responses, threshold-versus-duration curves and De Lange 
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Figure 11: A, closed loop adaptive filter as a model for the transient visual 
system. The model consists of a sixth-order linear filter H(s), a lowpass 
filter B( s) and a comparator C. The output of the lowpass filter is a measure of 
the low frequency component of the signal r(t). The output of the comparator 
is used to adjust the parameters of H(s). 

data (with respect to the high-frequency side), for stimuli of larger extension 
(~ 1 degree in diameter). All these data are associated with the transient visual 
system. At different background levels the system is able to change its parameters 
(time constants), which change can be described in a very simple way. Further
more, this behaviour seems congruent with a closed-loop adaptive filter, where 
the steady output is used as a control signal. This adaptive filter might be able 
to give interpretations of various experimental psychophysical data that have not 
been discussed here, and may provide a link with physiological research. 
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Appendix. Changes of parameters for isomorphic impulse 
responses 

Roufs (1971a) and Roufs and Blommaert (1981) suggested that impulse responses 
of the transient system at different levels are isomorphic. Using the sixth-order 
filter H(s) as a model for the transient system the parametric shift p,(E) would be 
Pi(E) = PiP.(E), where i = 1,2,3, z(E) = zp,(E), A= A andNF = NFp,- 5 (E), 
where p, is a multiplication factor depending on the background level E, and 
where p1, p2, p3, z, A and NF are the parameters of the sixth-order filter for 
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which p,(E) 1. Further this would mean that Fa <X p,-6 , Tea <X p,-1 , S <X ,.,-sand 
ft. ex: p,1• Similar to {22) we now obtain 

log p, = k log ( 1 + ! ) + G 

where k = 0.91/5, G = 0.36 (subject LT) and (for convenience) Eo 1 Td. Since 
the numerical values (k, G) in this relation are close to the ones for the proposed 
non-isomorphic shift, figures of sensitivity factors, critical duration and cut-off 
frequency versus the background E will have a close resemblance to Figures 6 and 
9. 
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Symbols used 

This list gives the important symbols and notations (usually occuring in more 
than one chapter). All other symbols are restricted to one chapter only, and its 
definition can be found there. 

Mathematical operations: 

e expected value 
1 Fourier transform 
)I Hankel transform 
C Laplace transform 

List of symbols: 

e 
{} 

IJ; 
tJ; 
1-' 
u 
¢(!) 
\II 
\11.,11 
w 
w.,,w11 

real part of pole p; 
imaginary part of pole p; 
parameter in the Weibull distribution 
amplitude of a stimulus (mostly indexed) 
duration of a rectangular pulse 
i-th estimated parameter 
true value of the i-th parameter 
multiplication factor 
standard deviation (indexed) 
phase spectrum 
objective function of the optimization process 
cross-correlation of the functions x and y 
. temporal angular frequency 
spatial angular frequencies 
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List of symbols (cont.): 

A 
d 
D 
E 
I 
J. 
F,.,F.,. 
H(s) 
j; 
Jo 
M 
n 
n(t) 
N 
NF 
p; 
q 
r(t) 
Rt 

T.,T.,. 
u; 
u: 
w 
Y(s) 

·Z; 

Z(s) 

amPlification factor 
(internal) threshold level 
diameter of a disc 
background intensity 
temporal frequency 
cut-off frequency 
sensitivity factors (from threshold-versus-duration curves} 
transfer function of a linear filter 
i-th zero-crossing of the Besselfunction J0 

Besselfunction (zeroth order, first kind) 
number of samples 
order of a linear filter 
noise signal 
number of free variables in the optimization process 
norm factor 
i-th pole of the transfer function 
proportionality factor in the perturbation experiments 
response of some linear filter 
residual (belonging to pole p,) 
complex variable in the Laplace domain 
measured variance 
variance estimated from the regression 
sensitivity factor (from a De Lange curve) 
time variable 
i-th sampling moment 
time delay between the onset of an impulse and the occurence of 
the extremum of the impulse response 
critical duration 
amplitude normalized impulse response 
amplitude normalized step response 
spatial angular frequency 
admittance 
zeros of a transfer function 
impedance 
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Summary 

The research presented in this thesis concerns the dynamic and spatial properties 
of the human visual system for threshold excitations around a steady background 
level. In agreement with current ideas about the behaviour of this system the point 
of view is adopted that the system processes stimuli in different parallel pathways. 
The research was concentrated on one of these pathways: the transient channel. 
The aim of this thesis is to provide a simple and accurate model for the behaviour 
of this system. 

First of all, this calls for a discussion (Chapter 1) which stimuli are considered 
to be mediated by this channel, and thus which experimental data can be used for 
modelling. An important issue for modelling is the linearity or nonlinearity of the 
processing. Arguments are presented why it is hard to distinguish certain nonlinear 
models from the linear ones on the basis of the available experimental material 
(Chapter 2). Nevertheless, it is shown that a statistical test can be performed on 
the data from perturbation experiments. This test reveals that the (nonlinear) 
Rashbass model can be rejected as a candidate for a model of the transient visual 
system and supports the linearity assumption for this channel (Chapter 2). 

The foregoing provided a basis for using data from threshold measurements to 
estimate linear models. The next thing to do is to make a choice for a specific linear 
model. Several models are considered in this thesis. All of these were parametrized 
from subthreshold measurements of the impulse response of the transient channel. 
Test on the models were made by prediction of threshold-versus-duration curves 
and by comparison of predicted gain characteristics to experimental data on the 
sensitivity of the visual system to sinusoidal stimuli. 

The first linear model presented in an explicit form is mainly based on the 
functional argument that the system performs a noise suppression with respect 
to its internally generated noise. The model is a chain of filters according to the 
matched filter principle (Chapter 3). The model agrees with the experimental 
data although some refinements are required. 

A fourth-order linear filter is also presented as a model for the transient channel. 
Since this model has more degrees of freedom than the one discussed previously it 
marks a more general approach. Unfortunately, since there are more parameters 
and since the number of samples of experimental data is rather limited, special care 
has to be taken to ensure a well-defined estimation procedure of the parameters 
of this model. The technique of this process is described in Chapter 4. 

The results obtained by' the above mentioned estimation procedure are pre
sented in detail in Chapter 5. A comparison of estimated parameters over different 
experimental conditions (subject, background level, and field size) is performed. 
This comparison shows that the estimated model is (virtually) subject indepen
dent, whereas both variation of background level and variation of field size reveal 
systematic shifts in the estimated parameters. 

The changes in the estimated parameters of the fourth-order model with varia-
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tion in field size are shown to be consistent with a model containing a membrane 
exists (Chapter 6). The membrane behaves as a spatiotemporal operator. In this 
way all models as were estimated at the same background level but for different 
field sizes are incorporated into one larger model. This model can be completely 
parametrized from the earlier estimates of fourth-order temporal filters. This 
means that starting from purely temporal modelling of the transient channel, a 
quantitative estimate is derived for the spatial properties of this channel. 

The fourth-order linear filters (and thus the membrane model) show a fall
off in the gain characteristic that is considered too small. Therefore sixth-order 
filters were taken as a model and estimated for one degree fields at two different 
background levels (Chapter 7). As was the case. for the fourth-order filters, the 
parameters of the sixth-order changed systematically with background. These 
shifts in the parameters are consistent with a closed-loop adaptive filter. The 
properties of such a filter were tested for arbitrary background levels and showed 
a good agreement with experimental data on Hashed and sinusoidal stimuli. In 
this way all the estimated linear models at different background levels but for the 
same field size were shown to be compatible with one highly nonlinear model. 

All models, the matched-filter model, the membrane model, and the adaptive 
filter, provide more integrated views on the operation of the transient visual sys
tem. An important advantage of these models is furthermore that they are fully 
quantitatively specified. As is discussed in the last two Chapters of this thesis it is 
hoped that these models can be integrated and extended to obtain further insight 
into the processing of visual stimuli by the human eye. 
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Samenvatting 

Het onderzoek in dit proefschrift betreft de dynamische en spa.tiale eigenscha.ppen 
van het menselijk visuele syteem voor drempelexcitaties rond een vast achter
grondnivo. In overeenstemming met de huidige ideeen omtrent bet gedrag van dit 
systeem is het standpunt ingenomen dat de verwerking in het systeem gebeurt 
middels verschillende parallelle processen. Het onderzoek is beperkt tot een van 
deze processen: de verwerking van stimuli door het transiente kanaal. De be
doeling van dit proefschrift is om simpele en adequate modellen te genereren ter 
beschrijving van dit proces. 

Daartoe wordt allereerst bediscussieerd (Chapter 1) welke stimuli door dit 
kana.a.) verwerkt worden, en dus welke experimentele gegevens geschikt zijn ter 
modellering. Een belangrijk aspect betreffende dit kana.a.l is de (niet-)linea.iriteit 
van de verwerking. Er wordt aangetoond dat op grond van voorhanden zijnde 
meetgegevens het principieel moeilijk is om te discrimineren tussen bepaalde niet
lineaire modellen en de klasse van lineaire modellen. Desalnietemin bleek bet 
mogelijk een statistische toets uit te voeren voor meetgegevens met de storing
stechniek. Deze toets wijst het (niet-lineaire) Rashbass model af, en ondersteunt 
de lineairiteits-hypothese voor het transiente kana.al (Chapter 2). 

Op grond van het voorgaande is gekozen voor het gebruik van meetgegevens van 
drempelexcita.ties om linea.ire modellen te schatten. Het lineaire model dient dan 
gekozen te worden. Verschillende modellen worden beschouwd in dit proefschrift. 
Aile modellen werden geparametriseerd op grond van onderdrempelige metingen 
van de impulsresponsie van het transiente kana.al. De modellen zijn getest met be
trekking hun predictieve wa.arde voor drempel tegen pulsduur kara.kteristieken en 
door vergelijking van de voorspelde amplitude-karakteristieken met experimentele 
gegevens van de gevoeligheid van het systeem voor sinusoidale stimuli. 

Het eerste expliciet geformuleerde lineaire model is voornamelijk gebaseerd op 
bet functionele veronderstelling dat het systeem een optimale signaal-ruis ver
houding heeft; invloeden van intern optredende ruis worden door het systeem zelf 
zoveel mogelijk onderdrukt. Het model bestaat uit een cascade van filters volgens 
bet matched-filter principe (Chapter 3). Het model voldoet aan de experimentele 
gegevens, maar behoeft enige verfijningen. 

Tevens is een vierde orde filter gebruikt als model voor bet transiente kana.al 
(Chapter 4). Da.ar dit model meer vrijheidsgraden bezit dan bet voorgaande, heeft 
dit model de kenmerken van een meer algemene aanpa.k. Ongelukkigerwijs Ievert 
een groter aantal vrijheidsgraden extra problemen in een schattingsproces, vooral 
omdat er slechts een zeer beperkt aantal meetgegevens van de impulsresponsie 
beschikba.ar zijn. Da.arom is er extra aandacht besteed om een goed gedefinieerde 
optimalisatieprocedure voor dit doel te ontwikkelen. Deze techniek ls beschreven 
in Chapter 4. 

De resultaten verkregen met de bovengenoemde techniek worden gepresenteerd 
in Chapter 5. De geschatte parameters zijn vergeleken over de verschillende exper-
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imentele condities (proefpersoon, achtergrondnivo, en grootte van de stimulus). 
Deze vergelijking toont aan dat bet gescbatte model (praktiscb) proefpersoon
ona.fbankelijk is, en dat de geschatte parameters systematisch verschuiven met 
zowel a.chtergrondnivo als stimulusgrootte. 

De verschuiving in de gescha.tte modelpa.rameters als functie van de stimulus
grootte ka.n verta.a.ld worden naar een model met een membraan (Chapter 6). 
Kenmerk van het membraan is dat bet zicb gedraagt als een systeem wa.arin 
ruimtelijke en temporele eigenscbappen gekoppeld optreden. Op deze manier zijn 
de geschatte modellen van verscbillende veldgroottes maar bij hetzelfde a.chter
grondnivo geintegreerd in een enkel groter model. Dit membraan model kan 
volledig geparametriseerd worden op grond va~ de eerder uitgevoerde schattin
gen van vierde orde filters. Dit houdt tevens in dat uit puur temporele analyses 
het spatiale gedrag van het transiente kanaal bepaald kan worden. 

De vieide orde modellen (en dus ook het membraan model) geven een boogfre
quent afval die in vergelijking met experimenteel materiaal te laag is. Daarom zijn 
ook zesde orde filters geschat als model voorhet temporele gedrag van 1° velden. 
Gegevens met betrekking tot twee verscbillende achtergrondnivo's waren beschik
baar. Ook hier blijkt, net als bij de vierde orde modellen, dat de geschatte param
eters systema.tisch met nivo meevarieren. De vastgestelde parameterverschuiving 
komt overeen met de ka.rakteristieken van een adaptief filter. De eigenscbappen van 
zo'n filter zijn bepaald voor willekeurige achtergrondnivo's en komen overeen met 
experimentele gegevens betreffende pulsvormige en sinusoldale stimuli. Op deze 
manier is aangetoond dat het gedrag van bet tra.nsiente ka.na.al op verschillende 
achtergrondnivo's maar voor dezelfde veldgrootte overeenkomt met bet gedrag van 
een hogelijk niet-lineair filter. 

Aile beschouwde modellen, het matched-filter model, het membraan model, en 
het adaptieve filter, geven een meer gelntegreerde kijk op de werking van het 
transiente kanaal. Het belang van bet onderzoek ligt mede in het feit dat deze 
modellen volledig quantitatief gespecificeerd zijn. Zoals besproken in de laatste 
twee hoofdstukken van dit proefschrift hoopt de schrijver dat de gepresenteerde 
modellen gelntegreerd en nog uitgebreid kunnen worden om zodoende het inzicht in 
de verwerking van visuele excitaties door het menselijke oog verder te vergrootten. 
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Stellingen 

Het idee dat proefschriften aileen bewijzen wat iedereen al wist getuigt 
op zijn minst van een onterechte ontkenning dat quantitatieve analyses 
nieuwe en verbeterde inzichten kunnen genereren. 
J. Blokker (1980) Mij hebben ze niet. 
Amsterdam: De Harmonie. 

II 

Tussen een De lange karakteristiek en een amplitude-overdracht grafiek 
van een lineair model voor het visuele systeem bestaat ten gevolge van 
ruis en de aanwezigheid van meerdere niet-lineair samenwerkende kanalen. 
een verschil dat niet genoegzaam onderkend wordt. 
Dit proefschrift. 

Ill 

Het gegeven dat de menselijke visuele detectie van eenvoudige visuele 
stimuli veelal gemodelleerd wordt met passieve filters betekent niet dat de 
werkelijke optredende verwerking een passieve zaak is. 
A.B. Watson (1986) Temporal sensitivity. 

In: Handbook of Perception and Human Performance. Vol. I. 
Sensory Processes and Perception. 
Eds. K.R. Boff, L. Kaufman and J.P. Thomas. 
New York: Wiley. 

IV 

Door het begrip "artificieel" aan •· intelligentie" te koppelen is er begrips~ 
matig geen vooruitgang geboekt op de inhoud van deze laatste term. 
P. Vroon (1980) Intelligentie. 
Ba.a.rn: Ambo. 



v 

De onbekendheid van de holografie gekoppeld aan haar illusoir karakter 
belemmert de ontwikkeling van de mogelijkheden van dit medium op het 
kunstzinnige vlak. 
G. Saxby (1988) Practical Holography. 
London: Prentice Hall. 

VI 

Door een omschrijving van de criteria waaraan stellingen dienen te voldoen 
zoals in artikel 17,1id 4 van het promotieregelement 1987 der TUE. bestaat 
het gevaar dat provocerende stellingen onverdedigbaar verklaard worden. 
Promotieregelement 1987. 
Technische Universiteit Eindhoven. 

VII 

Aile stellingen die op zic::hzelf terugslaan dienen bij promoties geweerd te 
worden. 

Bert den Brinker 

Eindhoven. 17 maart 1988. 


