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Delaunay triangulations on the word RAM:

Towards a practical worst-case optimal algorithm∗

Okke Schrijvers Frits van Bommel Kevin Buchin

Abstract

The Delaunay triangulation of n points in the plane
can be constructed in o(n log n) time when the coordi-
nates of the points are integers from a restricted range.
However, algorithms that are known to achieve such
running times had not been implemented so far. We
explore ways to obtain a practical algorithm for De-
launay triangulations in the plane that runs in linear
time for small integers. For this, we first implement
and evaluate variants of an algorithm, BrioDC, that is
known to achieve this bound. We find that our imple-
mentations of these algorithms are competitive with
fast existing algorithms. Secondly, we implement and
evaluate variants of an algorithm, BRIO, that runs
fast in experiments. Our variants aim to avoid bad
worst-case behavior and our squarified orders indeed
provide faster point location.

1 Introduction

In general, constructing the Delaunay triangulation
(DT) of n points in the plane takes Ω(n log n) time.
However, if the coordinates of the points are integers
from a restricted range [0, U) this bound no longer
holds. Nonetheless, for a long time no algorithms that
beat this bound were known. The breakthrough came
in 2006, when Chan and Pǎtraşcu [8] presented an
algorithm running in O(n log n/ log log n) time, and

later improved this bound to n2O(
√
log logn) [9]. The

best asymptotic running time to hope for is the time
for sorting integers in the range [0, U). A randomized
and a deterministic algorithm achieving this running
time in a suitable model were given by Buchin and
Mulzer [5] and Löffler and Mulzer [14], respectively.

For small integers the latter two algorithms run in
linear time, since we can sort integers with U = nO(1)

in this time using radix sort. Radix sort is not only
fast in theory but also runs fast in experiments. In
contrast, all of the above algorithms for DTs have
been only of theoretical interest so far and none of
them had been implemented. Many incremental al-
gorithms for DTs like the algorithm by Su and Drys-
dale [17] use an orthogonal data structure for point lo-
cation and concepts related to integer sorting to com-
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pute these data structures fast. Such algorithms typ-
ically run fast in experiments and on random points
but have a quadratic worst-case performance.

The goal of our work is to explore ways to obtain
a practical algorithm for DTs in the plane that runs
in linear time for small integers. Our approach to
this is two-fold. First, we implement and evaluate
variants of one of the DT algorithms that has the same
asymptotic running time as sorting, namely from [5].
Secondly, we consider an algorithm (namely from [1])
and implement and evaluate variants of it, which aim
to avoid typical reasons for bad worst-case behavior.

We focus on incremental constructions, more specif-
ically, incremental constructions con BRIO [1], where
BRIO stands for biased randomized insertion order.
The points are inserted in random rounds of increas-
ing size and within each round the order of the points
can be chosen freely. Amenta, Choi and Rote [1]
prove that the expected running time of an incremen-
tal construction using such an order is asymptotically
bounded by the expected running time of a random-
ized incremental construction, that is, O(n log n) if an
optimal point location data structure is used1.

There are various implementations of variants of
this algorithm [1, 3, 10, 13, 18]. Most of these vari-
ants actually do not use an additional point location
data structure and most sort the points of a round
along a space-filling curve (SFC). Such variants run
in O(n logU) expected time [4]2, which for small inte-
gers is again O(n log n). In experiments these variants
mostly seem to run in linear time, but unfortunately
there are point sets for which this bound is tight [4].
Thus if we want an algorithm with a better worst-case
performance, we will need to choose a different order.

One weakness of orders based on SFCs seems to be
that the construction process does not adapt to the
point distribution. In contrast, the CGAL Hilbert
curve order [10]3 does. However, this order is likely
to introduce some large jumps, that is, large distances
between consecutive points in the order. We propose
several new orders that overcome this problem and
still adapt well to the point distribution. For the

1They actually prove a corresponding result in 3d, but their
analysis can be extended to two-dimensional DTs (and other
configuration spaces) as shown in [3].

2In [4] this bound is formulated in terms of the spread of
the point set.

3CGAL now also provides a regular Hilbert curve order.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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purpose of comparison we also implemented various
traditional SFC orders.
The algorithm by Buchin and Mulzer [5] uses an ex-

tension of BRIOs that uses nearest neighbor graphs
(NNGs) to find a suitable order. While this algo-
rithm does run in linear time in our experiments, the
constant factor in the running time is large. The
large constant is due to the worst-case optimal NNG
construction. Therefore, we implement an additional
variant of this algorithm, where we use several steps
that are non-optimal but simpler.

2 Algorithms

In this section we discuss several variants of BRIO
and BrioDC algorithms that we implemented.

2.1 BRIO

The difference between a regular random incremental
construction (RIC) algorithm and BRIO, is that with
BRIO the points are inserted in log2 n rounds. First,
points are added to the final round with independent
probability 1/2. Then the remaining points are added
with probability 1/2 to the second-to-last round and
this process continues until we reach the first round
and all remaining points are added. Within a round
the insertion order can be chosen freely, and often is
chosen as an SFC order. By sorting points in this way,
the next point to be inserted is likely to be close to
the previous point, hopefully resulting in faster point
location.

2.1.1 Existing SFCs

There is a plethora of SFCs in the literature and in our
experiments, we have used the Peano, Sierpiński and
Hilbert curves. In addition, CGAL provides an SFC
that is similar to the Hilbert order, but first creates a
vertical split on the horizontal median, and then for
each half a horizontal split on their vertical medians.
The quadrants are handled in Hilbert order, see Fig-
ure 1a. Note that if the two vertical medians differ
substantially, the jump from the upper left to upper
right quadrant can be large.

2.1.2 New SFCs

We propose several new SFCs that aim at provid-
ing a good mapping between 1-dimensional and d-
dimensional space, i.e. no jumps should occur and the
total summed distance between consecutive points in
the order should be small.

Adaptive Hilbert order. We split the point set by
the horizontal and vertical median, as a compromise
between the original and CGAL Hilbert orders. This
should distribute the points over all quadrants better

(a) CGAL (b) Adaptive (c) HilbertYX

Figure 1: Variants of the Hilbert SFC.

(a) Wide (b) Tall

Figure 2: Squarified Hilbert SFC.

than the original Hilbert order, and remove the jump
that was seen in CGAL Hilbert, see Figure 1b.

Hilbert YX. As a variant on the CGAL Hilbert order,
if we first split on the vertical median, and then on the
two horizonal medians, no jump occurs when going
from one quadrant to another, see Figure 1c.

Squarified Hilbert and Peano orders. If the smallest
enclosing bounding box of the point set has large as-
pect ratio, fitting an SFC will either leave part of the
domain unused, or stretch one axis. We prevent this
from happening by splitting the point set into subsets
that have a well-fitting square bounding box, and join-
ing the SFCs over these point sets. This is achieved
by either placing multiple curves next to each other,
as in Figure 2a, or using more than four subproblems,
as in Figure 2b. The bounding box is recomputed for
each subproblem, so the individual subproblems may
end up being split in a similar way. Squarifying can
also be combined with the adaptive orders.

2.1.3 Implementation

BRIO was implemented in C++ and uses CGAL 3.6.1
to generate the DT after the rounds have been de-
termined. It provides a means to sort a point set
according to the SFCs defined in Section 2.1.2. We
use CGAL for this part of the experiments to ob-
tain a direct comparison to the CGAL Hilbert or-
der, for which we use the original implementation:
hilbert_sort_2. The code of CGAL was slightly
modified in order to gather metrics.

2.2 BrioDC

BrioDC [5], or BRIO with Dependent Choices, re-
duces the problem of constructing the DT of a
point set P to constructing nearest-neighbor graphs
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(NNGs). Let NNG≤r be the NNG of the points from
the first r rounds. Where BRIO assigns points to
a round with equal probabilities, BrioDC makes sure
that for every point p that is allocated to round r > 1,
at least one point q in the connected component of
NNG≤r is added in an earlier round. We can use the
location of q to quickly locate the triangle in which
point p should be inserted.

2.2.1 Variations

We use two different algorithms for constructing near-
est neighbor graphs.

Linear-time algorithm. In order to find the NNG of
a point set, we use a series of intermediate data struc-
tures. We start by sorting the point in z-order [15]
using radix sort, and from this we generate a com-
pressed quadtree using the approach of Chan [7]. The
compressed quadtree can be used to find the well-
separated pair decomposition (WSPD) from which we
can compute the NNG using the linear time algorithm
of Callahan and Kosaraju [6].

O(n logU)-time algorithm. Although each of the
steps in the previous paragraph are done in linear
time, the constants in the computation are quite high,
so alternatively we have used straightforward imple-
mentations that run in near-linear time. The com-
pressed quadtree can be constructed top-down and
compressed in O(n logU) time. For computing the
NNG from the WSPD, we use the simpler approach
by Har-Peled [12] that runs in O(n(log n + logU)).
Since log n is bounded by logU , this can be simplified
to O(n logU).

2.2.2 Implementation

We have implemented the BrioDC algorithm in C++.
For the base case of the DT and for the incremental in-
sertion of points into the triangulation we use the Tri-
angle library4 [16] version 1.6. In Triangles implemen-
tation of an incremental construction of DTs, when-
ever a point is inserted into the triangulation, Triangle
searches for the triangle containing that point. It is
possible to supply a guiding triangle, which serves as
a start point for the point location query. In each
round we use the NNG to supply an appropriate tri-
angle. Other than the modifications to gather the
metrics, we have made no changes to the library.

3 Results

We have tested all algorithms on point sets with dif-
ferent distributions; namely uniform (in a square),
checkers, bivariate normal with independent coor-
dinates, Kuzmin and line singularity distributions.
Checkers is a distribution on a checkers board where

4http://www.cs.cmu.edu/~quake/triangle.html
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Figure 3: The runtime per point for the different al-
gorithms over all distributions.

the 1/8 of the points are distributed uniformly on
white squares and 7/8 of the points are distributed
uniformly on black squares. The Kuzmin and line sin-
gularity distributions are described by Blelloch et al.
[2]. For each distribution and n we run 10 tests on dif-
ferent datasets and report the average of the results.
We focus on the running time for the comparison of
the algorithms.

The experiments were performed on a 64-bit 16 core
Intel Xeon L5520 server running Linux (2.6.35) oper-
ating system with 11.7 gigabytes of RAM. Only 1 core
was used for the experiments.

We first compare the various insertion orders for in-
cremental constructions con BRIO using the running
time per point in microseconds for n = 222 over all dis-
tributions. The squarified and original Hilbert orders
perform best. In general, the squarified orders (Squar-
ified Hilbert 1.57, Squarified Peano 1.58) are slightly
slower than the original orders (Hilbert 1.51, Peano
1.57, Sierpiński 1.52). This can be attributed to
the higher construction time. Most remaining orders
are slower by 25-80% (Adaptive Hilbert 2.01, Adap-
tive Peano 2.17, HilbertYX 1.95, CGAL Hilbert 1.89,
Squarified Adaptive Hilbert 2.71, Squarified Adaptive
Peano 2.78), but this drops to 13-25% if we exclude
the line distribution (for which all adaptive curves
perform poorly).

Next, we compare our algorithms with existing
ones. The BRIO orders fall into two categories and
the orders in a category have similar running time.
Therefore, from the original and squarified orders we
only show Squarified Hilbert and from the Adaptive
orders we show CGAL Hilbert. Figure 3 shows the
running time per point of the algorithms over all dis-
tributions on a log-log-scale. Table 1 shows the run-
ning times for the different distributions and input
size 220, 221 and 222. For all algorithms based on
con BRIO (including BrioDC) we would expect a con-
stant, or nearly constant running time per point. This
seems to be indeed the case, although it increases
very slightly with the input size. The running time of
the near-linear O(n logU) implementation of BrioDC
is lower than the linear time implementation, but it
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Input Size DCLin DCLog TrInc D&C CHil SqHil Hil

Uniform

2
20

25.56 21.70 35.73 3.06 1.58 1.51 1.46

2
21

26.71 24.43 50.46 3.39 1.61 1.53 1.48

2
22

28.36 26.01 74.79 3.98 1.64 1.56 1.50

Normal

2
20

25.57 22.96 30.66 3.06 1.60 1.52 1.47

2
21

27.33 25.49 41.30 3.34 1.65 1.55 1.49

2
22

27.95 27.02 68.21 3.97 1.65 1.55 1.49

Kuzmin

2
20

25.25 23.81 34.27 3.17 1.63 1.55 1.48

2
21

29.02 28.09 49.14 3.53 1.67 1.58 1.51

2
22

28.75 27.69 70.31 3.98 1.68 1.59 1.51

Checkers

2
20

25.39 22.25 43.65 3.23 1.57 1.50 1.44

2
21

27.58 26.45 59.91 3.58 1.61 1.51 1.46

2
22

27.07 25.14 74.19 3.94 1.62 1.53 1.47

Line

2
20

26.85 24.86 59.75 4.22 2.76 1.56 1.51

2
21

27.13 23.83 76.19 4.49 2.82 1.59 1.53

2
22

27.19 25.65 97.93 4.86 2.87 1.60 1.54

Table 1: The runtime per point in microseconds
for BrioDC linear (DCLin) and O(n logU) (DCLog),
Triangle incremental (TrInc) and divide-and-conquer
(D&C), CGAL Hilbert (CHil), Squarified Hilbert
(SqHil) and Hilbert (Hil).

grows faster. For 219 and more points, BrioDC is
faster than the incremental construction algorithm of
Triangle. For 222 points BrioDC is only a factor 5.5-7
slower than the divide-and-conquer algorithm of Tri-
angle. Other commonly used O(n log n)-time algo-
rithms come within a factor of 1.5 to 10 of this run-
ning time [11]. BrioDC is competitive with these al-
gorithms, and the 5.5-7 factor will decrease further
with increasing input sizes. The fastest algorithms
in our experiments are the algorithms using a BRIO.
The Hilbert order, the squarified Hilbert order and
BrioDC show little dependency on the input distribu-
tion. Triangle’s incremental and divide-and-conquer
algorithms, and CGAL Hilbert show a large depen-
dency and considerably slow down for the line distri-
bution.

We have also measured the cost of point location,
updating the triangulation and the running time of
the individual parts of BrioDC. Point location cost
is reduced by approximately 3% by using squarified
orders compared to the original Hilbert order. The
cost for updating the triangulation is similar for all
approaches. For BrioDC, about 84% of the running
time is spent on computing the NNGs (18% for the
quadtree, 29% for the WSPD, and 37% for the NNG
from the WSPD).

Summarizing, we have successfully shown the prac-
ticality of an O(n)-time algorithm for computing the
Delaunay triangulation of points with bounded in-
teger coordinates, as well as improved heuristics on
non-optimal but faster algorithms. While currently
BrioDC is still outperformed by O(n log n)-time algo-
rithms, our implementation is competitive and could
be improved upon with a faster NNG algorithm.
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