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4 Chapter 1. Introduction

Due to the advancement of technology for data generation and data collection ter-
abytes of data are being generated daily in many organizations. With the rapid
increase in the volumes of data, it is important to have data mining techniques to
discover the hidden useful patterns from the large volumes of data.

Data mining refers to the extraction of knowledge from large amounts of data. It is
a process that finds important pieces of knowledge from huge amounts of raw data.
More precisely we define data mining as the use of sophisticated data analysis tools
to discover previously unknown, valid patterns and relationships in large data sets
[41].

Many people refer to data mining with slightly different terms such as knowledge
mining from databases, pattern analysis, data archeology, knowledge extraction
and knowledge discovery in databases (KDD). Alternatively, others view data min-
ing as a step in the process of knowledge discovery in databases. Data mining is
an interdisciplinary field which is closely related to database systems, statistics,
machine learning, visualization, and information science.

Data mining is a relatively new field that has received a lot attention in the last few
years from the research community. Many data mining techniques have been de-
veloped till now. These methods can be broadly classified into clustering (dividing
a given dataset into logical homogeneous groups), pattern mining (the discovery
of trends, or patterns in a given dataset) and classification (learning to predict class
of data objects based on already labeled examples). Clustering and pattern mining
are often referred to as unsupervised methods as they only require data, whereas
supervised methods, such as classification, require labeled data. Clustering is often
used in situations in which we have no idea about categories of the data objects and
we try to automatically assign the objects to groups on the basis of the similarity of
their characteristics. The second type of data mining technique, pattern mining, is
used for detecting patterns and associations in the given dataset. This technique is
again unsupervised in the sense that no target label is given. Instead, it aims at the
detection of unusual relations between attribute- values. In this thesis, we focus on
classification techniques only [40, 35, 84].

1.1 Classification

Databases are often rich of hidden information that can be used for intelligent de-
cision making. Classification is an important form of data analysis that can be
used to build models describing important data classes. Categorization of data
into different classes by classification helps us with a better understanding of the
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data. The goal of classification is to accurately predict the target class for each
data object with unknown class label. In the classification model learning process,
we start with a given data set with already known class labels. For example, a
classification model to classify loan applicants as low or high credit risk could be
developed based on observed data for many loan applicants over a period of time.
In addition to the credit rating history, the data may have some other useful in-
formation about the loan applicants such as employment history, postal code, age,
income, occupation, and weekly working hours. A classification model will select
the most important attributes to infer classification rules for future decision mak-
ing. In this loan application example, credit rating would be the target or class,
the other attributes would be the predictors or features, and the data for each loan
applicant would be considered as one data object. For instance in Figure 1.1, we
show a simple decision tree learnt from labeled historical data to classify future
loan applicants into high and low risk classes.

In the model building process, a classification algorithm finds relationships be-
tween the values of the predictors and the values of the target. For example, the
decision tree given in Figure 1.1 determines the credit risk category on the basis
of age, income and employment of loan applicants. Different classification algo-
rithms use different techniques for finding these relationships. The relationships
are summarized in a model, which can then be applied to label objects of which
the class assignments is unknown.

Typically the historical (given) data for learning a classification model is divided
into two data sets: one for building the model which is referred to as training set
and an other for testing the model which is referred to as test set. The performance
of a classifier is judged by its accuracy scores over the test set. Accuracy refers to
the percentage of correct predictions made by the model when compared with the
actual class labels in the test data.

Classification has many applications in business modeling, marketing, credit analy-
sis, and biomedical and drug response modeling. The desired accuracy scores vary
from one application to the other. For instance, 90% accuracy may be considered
very high in a credit rating application but may be very low in designing a model
to predict if one is suffering from cancer or not.

Many classification methods have been proposed by researchers in data mining,
machine learning, pattern recognition, and statistics [40]. We will focus on the
following data classification techniques: decision tree classifiers [68], bayesian
classifiers [29], and k-nearest-neighbor [29].

In this thesis we only focus on binary classification; the target attribute has only
two possible values; for example, high credit rating or low credit rating.
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Postal-code Age Employment Income Credit-history Credit-risk

A 30 No 15K Good High

B 35 Yes 50K Excellent Low

A 23 No — — High

C 40 Yes 25K Fair Low

— — — — — —

— — — — — —

Figure 1.1 A simple decision tree leant from the data set given in the
above table.

1.2 Discrimination-aware Classification

The word discrimination originates from the Latin word discriminare, which means
to distinguish between. Discrimination is usually studied in social sciences [42]
where it refers to the unfair treatment of individuals of a certain group based solely
on the basis of their affiliation with that particular group, category or class. Such
discriminatory attitude deprives the members of one group from the benefits and
opportunities which are accessible to other groups. Different forms of discrimina-
tion in employment, income, education, finance and in many other social activities
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may be based on age, gender, skin color, religion, race, language, culture, marital
status, economic condition etc. Such discriminatory practices are usually fueled
by stereotypes, an exaggerated or distorted belief about a group. Discrimination is
often socially, ethically and legally unacceptable and may lead to conflicts among
different groups.

Classifier construction is one of the most researched topics within the data min-
ing and machine learning communities. Literally thousands of algorithms have
been proposed. The quality of the learned models, however, depends critically on
the quality of the training data. No matter which classifier inducer is applied, if
the training data is incorrect, poor models will result. In this work, we use dis-
crimination in its social sense; we do not want our learnt models to make socially
discriminating future decisions. We study cases in which the input data is discrimi-
natory and we want to learn a discrimination-free classifier for future classification.
Now we discuss different scenarios where the discrimination-aware classification
paradigm is applicable:

Scenario 1: historical discrimination. Such cases occur naturally when, e.g., the
decision process leading to the labels was biased due to discrimination as illustrated
by the next example [19]: Throughout the years, an employment bureau recorded
various parameters of job candidates. Based on these parameters, the company
wants to learn a model for partially automating the match-making between a job
and a job candidate. A match is labeled as successful if the company hires the
applicant. It turns out, however, that the historical data is biased; for higher board
functions, Caucasian males are systematically being favored. A model learned
directly on this data will learn this discriminatory behavior and apply it over future
predictions. From an ethical and legal point of view it is of course unacceptable
that a model discriminating in this way is deployed.

Scenario 2: multiple data sources. Next to data generated by a deliberately bi-
ased process, discrimination in training data also appears naturally when data is
collected from different sources; e.g., surveys with subjective questions taken by
different enquirers (leading to an indirect discrimination based on the geographical
area covered by enquirers). We illustrate this kind of discrimination by this exam-
ple: A survey is being conducted by a team of researchers; each researcher visits
a number of regionally co-located hospitals and enquires some patients. The sur-
vey contains ambiguous questions (e.g., “Is the patient anxious?”, “Is the patient
suffering from delusions?”). Different enquirers will record answers to these ques-
tions in different ways. Generalizing directly from the training set consisting of
all surveys without taking into account these differences among the enquirers may
easily result in misleading findings. For example, if many surveys from hospitals
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in area A are supplied by an enquirer who more quickly than the others diagnoses
anxiety symptoms, faulty conclusions such as “Patients in area A suffer from anx-
iety symptoms more often than other patients” may emerge. In this example the
non-discrimination constraints are a useful tool to avoid over-fitting the classifier
to artifacts by requiring that the learned classifier does not correlate with the en-
quirer. Other similar cases could be: different scores given by different reviewers,
movie ratings of different persons, student grades given by different examiners etc.

Scenario 3: sensitive attribute as a proxy. In some cases the discrimination in
the input data appears when the sensitive attribute serves as a proxy of features that
are not present in the dataset. With respect to this last case, we quote [82]: “If
lenders think that race is a reliable proxy for factors they cannot easily observe
that affect credit risk, they may have an economic incentive to discriminate against
minorities. Thus, denying mortgage credit to a minority applicant on the basis of
minorities on average-but not for the individual in question-may be economically
rational. But it is still discrimination, and it is illegal.”

In all these cases it is desirable to have a means to “tell” the algorithm that it
should not discriminate on the basis of the sensitive attributes, e.g., sex, ethnicity.
Such attributes upon which we do not want the classifier to base its predictions,
we call sensitive attributes. So in Discrimination-aware Classification, we want
to learn non-discriminatory classification models from potentially biased historical
data such that they generate accurate predictions for future decision making, yet do
not discriminate with respect to a given sensitive attribute.

1.2.1 Research Question

Our research question may be stated as: “Is it possible to learn accurate classifiers
based upon discriminatory training data that do no discriminate in their predic-
tions?” It raises many sub-questions:

• How can we measure discrimination? (Sections 2.2 and 5.2)

• What is relationship between accuracy and discrimination? (Section 2.4)

• Can we solve the problem by just removing the sensitive attribute from the
training data? (Section 1.2.3)

• Can we learn discrimination-free classifiers by removing the discrimination
from the training data and then learning classifiers over it? (Chapter 3)

• Can we directly learn discrimination-free models from biased data? (Chapter
4)
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1.2.2 Motivation and Anti-discrimination Laws

There are many anti-discrimination laws that prohibit discrimination in housing,
employment, financing, insurance, wages etc on the basis of race, color, national
origin, religion, sex, familial status, and disability etc. We discuss some of these
laws here and show how they relate to our problem statement:

The Australian Sex Discrimination Act 1984 [1]: This act prohibits discrimi-
nation in work, education, services, accommodation, land, clubs on the grounds
of marital status, pregnancy or potential pregnancy, and family responsibilities.
This act defines sexual harassment and other discriminatory practices on different
grounds and declares them unlawful. The main objectives of this act are as follows:

(a) to give effect to certain provisions of the Convention on the Elimination of All
Forms of Discrimination Against Women; and

(b) to eliminate, so far as possible, discrimination against persons on the ground of
sex, marital status, pregnancy or potential pregnancy in the areas of work, accom-
modation, education, the provision of goods, facilities and services, the disposal
of land, the activities of clubs and the administration of Commonwealth laws and
programs; and

(ba) to eliminate, so far as possible, discrimination involving dismissal of employ-
ees on the ground of family responsibilities; and

(c) to eliminate, so far as possible, discrimination involving sexual harassment in
the workplace, in educational institutions and in other areas of public activity; and

(d) to promote recognition and acceptance within the community of the principle
of the equality of men and women.

Moreover, this law prohibits indirect and unintentional discrimination. In such
cases, it is the responsibility of the accused party to prove that his/her intention
was not to discriminate the aggrieved party. We further discuss such kind of dis-
crimination in Chapter 5 and refer it to as the conditional discrimination. The
importance to avoid from the indirect and unintentional discrimination is very well
illustrated from this part of the act: in a proceeding under this Act, the burden of
proving that an act does not constitute discrimination because of section 7B lies on
the person who did the act. Section 7B of this act describes indirect discrimination:
a person does not discriminate against another person by imposing, or proposing
to impose, a condition, requirement or practice that has, or is likely to have, the
disadvantaging effect mentioned in subsection 5(2), 6(2) or 7(2) if the condition,
requirement or practice is reasonable in the circumstances.

The US Equal Pay Act 1963 [9]: This act requires that men and women in the
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same workplace be given equal pay for equal work. The jobs need not to be identi-
cal, but they must be substantially equal. This law covers all forms of pay including
salary, overtime pay, bonuses, stock options, profit sharing and bonus plans, life in-
surance, vacation and holiday pay, cleaning or gasoline allowances, hotel accom-
modations, reimbursement for travel expenses, and benefits. If there is an inequal-
ity in wages between men and women, employers may not reduce the wages of
either sex to equalize their pay. The act describes it as follows: No employer hav-
ing employees subject to any provisions of this section shall discriminate, within
any establishment in which such employees are employed, between employees on
the basis of sex by paying wages to employees in such establishment at a rate less
than the rate at which he pays wages to employees of the opposite sex in such es-
tablishment for equal work on jobs the performance of which requires equal skill,
effort, and responsibility, and which are performed under similar working condi-
tions, except where such payment is made pursuant to (i) a seniority system; (ii) a
merit system; (iii) a system which measures earnings by quantity or quality of pro-
duction; or (iv) a differential based on any other factor other than sex: Provided,
that an employer who is paying a wage rate differential in violation of this subsec-
tion shall not, in order to comply with the provisions of this subsection, reduce the
wage rate of any employee.

This act aimed at abolishing wage disparity based on sex. According to the US Bu-
reau of Labor Statistics, women’s salaries vis-à-vis men’s have risen dramatically
since the enactment of this equal pay act, from 62% of men’s earnings in 1970
to 80% in 2004 [22]. This real world case illustrates our Scenario 1 (Section 1.2
where our historical data is discriminatory due to a biased data generation process
and we are supposed to build discrimination-free classifiers from it.

The US Equal Credit Opportunity Act 1974 [8]: This act declares unlawful for
any creditor to discriminate against any applicant, with respect to any aspect of
a credit transaction, on the basis of race, color, religion, national origin, sex or
marital status, or age [11].

European Council Directive 2004: Even though there is clear historical evidence
showing higher accident rates for male drivers, insurance companies are not al-
lowed to discriminate based on gender in many countries. We can illustrates this
prohibition by the following ruling of European Court of Justice [2]: The European
Court of Justice decided on March 1, 2011 that, from 21 December 2012, it will no
longer be legal under EU law to charge women less for insurance than men. The
verdict means that different priced premiums for men and women drivers will now
be considered to be in breach of the EU’s anti-discrimination rules. This ruling is
the implementation of European Council Directive 2004/113/EC of 13 December



1.2 Discrimination-aware Classification 11

2004 requiring the principle of equal treatment between men and women in the ac-
cess to and supply of goods and services (adopted unanimously by the EU Council
of Ministers). It prohibits direct and indirect sex discrimination outside of the labor
market.

All of the anti-discrimination laws prohibit discriminatory practices in future. It
means that our discrimination-aware classification paradigm clearly applies to these
situations. If we are interested to apply classification techniques, and our avail-
able historical data contains discrimination, it will be illegal to use traditional
classifiers without taking the discrimination aspect into account due to these anti-
discrimination laws.

1.2.3 Redlining

The problem of classification with non-discrimination constraints is not a trivial
one. The straightforward solution of removing the sensitive attribute from the
training-set does in most cases not solve this problem at all. Consider, for example,
the German Credit Dataset available in the UCI ML-repository [14]. This dataset
contains demographic information of people applying for loans and the outcome
of the scoring procedure. The rating in this dataset correlates with the age of the
applicant. Removing the age attribute from the data, however, does not remove the
age-discrimination, as many other attributes such as, e.g., own house, indicating if
the applicant is a home-owner, turn out to be good predictors for age. Similarly, re-
moving the sex and ethnicity for the job-matching example (Section 1.2 scenario 1)
or enquirer for the survey example (Section 1.2 scenario 2) from the training data
often does not solve the discrimination problem, as other attributes may be corre-
lated with the suppressed attributes. For example, area can be highly correlated
with enquirer. Blindly applying an out-of-the-box classifier on the medical-survey
data without the enquirer attribute may still lead to a model that discriminates in-
directly based on the locality of the hospital.

A parallel can be drawn with the practice of redlining: denying inhabitants of cer-
tain racially determined areas from services such as loans. It describes the practice
of marking a red line on a map to delineate the area where banks would not invest;
later the term was applied to discrimination against a particular group of people
(usually by race or sex) no matter the geography. During the heyday of redlining,
the areas most frequently discriminated against were black inner city neighbor-
hoods. Through at least the 1990s this practice meant that banks would often lend
to lower income whites but not to middle or upper income blacks1, i.e., the deci-

1Source: http://en.wikipedia.org/wiki/Redlining, March 7th, 2011
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Figure 1.2 A house owners’ loan corporation 1936 security map of
Philadelphia showing redlining of lower income neighbor-
hoods. Households and businesses in the red zones could not
get mortgages or business loans.

sions of banks were discriminatory towards black loan applicants. Figure 1.2 shows
a house owner loan corporation (HOLC) 1936 map2 which illustrates that instead
of directly using the ethnicity for loan decision making, different areas were used
for decision making. Certain areas which were mostly inhabited by low income
blacks and other such ethnic groups were marked in red over the map. Table 1.1
shows the description of different areas in the section J of the map. It shows that
even the house value of areas, with negro majority, was reasonably high but their
residential area was marked hazardous (red) on the map for loans. At the same
time, the neighborhoods with native whites were considered desirable or highly
desirable for the loans, even though the house values were not that high in their
areas. So it shows indirect discrimination towards colored people by using their
residential areas.

2Source: http://cml.upenn.edu/redlining/HOLC 1936.html, March 7th, 2011
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Table 1.1 Description of different areas shown in section J of the map of
Figure 1.2 and their impact over loan applications.

Area House value ($) Inhabitants Loan Category
Red 2000-10000 Negro (predominating) Hazardous

Yellow 2000-6000 Laborers and workers Def declining
Blue 3500-7000 White collar native whites Still desirable

Green 5000-8000 Good class native whites Best

Redlining and Real World Datasets: We further explore this impact of redlining
over some dataset which we use in our experiments. We observe that the removal of
the discriminatory attribute does not solve the problem of discrimination because
the learned model still discriminates due to the redlining effect. The discrimination
goes down only in those datasets where the sensitive attribute is weakly correlated
to other attributes in the data. We will discuss this effect in more detail later.

Figure 1.3 (a) gives the True Positive (TP) rate and Figure 1.3 (b) gives the True
Negative (TN) rate for both favored, e.g., male and deprived, e.g., female commu-
nities. Furthermore, in both figures we give the results of experiments when we
learn decision tree learners over the Adult Dataset [14] with and without using the
sensitive attribute.We calculate the TP rate for the favored community by

P (a classifier assigns positive label |positive, favored community) .

Similarly we calculate the TP rate for the deprived community and the TN rates for
the favored and deprived communities by replacing the positive class with negative
class. We make following important observation from Figure 1.3:

• We observe that the true positive rate for the favored community is higher
than that of the deprived community while the true negative rate for the fa-
vored community is lower than that of the deprived community. This differ-
ence is due to the effect of discrimination, the classifier learnt over discrim-
inatory data shows a biased attitude towards the deprived community and
tends to assign more negative class labels to them.

• We can observe from the results of these experiments that the deprived com-
munity gets more disadvantage than its actual share.

• Just the removal of sensitive attribute does not solve this problem and we will
have to use some sophisticated techniques to neutralize this discriminatory
effect.
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(b) True Negative (TN) rate comparison

Figure 1.3 TP rate for the favored community and TN rate for the de-
prived community are both higher; the removal of sensitive
attribute has a very little effect due to redlining effect.

1.3 Solutions

Our proposed solutions to the discrimination problem fall into two broad cate-
gories. First, we propose pre-processing methods to remove the discrimination
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from the training dataset. On this cleaned dataset then a classifier can be learned.
Our rationale for this approach is that, since the classifier is trained on discrimination-
free data, it is likely that its predictions will be (more) discrimination-free as well.
The empirical evaluation confirms this statement. In these preprocessing methods,
our first approach, called Massaging the data, is based on changing the class labels
in order to remove the discrimination from the training data. The second approach,
called Reweighing, is less intrusive as it does not change the class labels. Instead,
weights are assigned to the data objects to make the dataset discrimination-free.
Since reweighing requires the learner to be able to work with weighted tuples, we
also propose a third pre-processing method in which we re-sample the dataset in
such a way that the discrimination is removed. We refer to this approach as Sam-
pling.

Second, we propose solutions to the discrimination problem by directly pushing the
non-discrimination constraints into classification models and by post-processing
learned models. We propose two solutions to construct decision trees without dis-
crimination. The first solution is based on the adaptation of the splitting criterion
for tree construction to build a discrimination-aware decision tree. The second so-
lution is post-processing of decision trees with discrimination-aware pruning and
relabeling of tree leaves, for which an algorithm based upon a reduction to the
KNAPSACK [60] problem is given. It is shown to outperform the other discrim-
ination aware techniques by giving significantly lower discrimination scores and
maintaining high accuracy.

We further studied the discrimination-aware classification paradigm in the presence
of explanatory attributes that correlate with the sensitive attribute, e.g., decline
from the job may be explained by the low education level. In such a case, as we
show, not all discrimination can be considered bad, therefore we introduce a new
way of measuring discrimination, by explicitly splitting it up into explainable and
bad discrimination and only remove bad discrimination.

1.3.1 Validation

For the validation of our proposed method, we used the well-known data mining
tool Weka [39] which is an open source software issued under the GNU General
Public License [80]. Weka is a collection of machine learning algorithms for data
mining tasks. Different data mining methods for data pre-processing, classifica-
tion, regression, clustering, association rules, and visualization have been imple-
mented and added to Weka. For the fair comparison of our developed method to the
standard data mining techniques we have incorporated our proposed solutions for
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discrimination-aware classification problem into Weka. We refer to this version of
Weka with discrimination-aware classification methods as Discrimination-aware
Weka. It does not only give us an opportunity to fairly compare our developed
techniques to the standard ones but it also enables us to use our method in arbitrary
combination with the standard methods. In this way we explore how our methods
affect the performance of the current state-of-the-art methods when used both in
combination with or in isolation of the standard data mining techniques.

Experimental Set-up:

All reported empirical results in this thesis were obtained using 10-fold cross-
validation and reflect the true accuracy; that is, on unaltered data (no discrimi-
nation removal technique is applied). Figure 1.4 shows a detailed representation
of our experimental setup. We can observe in Figure 1.4 that we apply, in each iter-
ation of the cross-validation, our proposed discrimination removal methods only to
the folds for training and not to the test fold. We use this preprocessed training set
for learning a classifier or directly learn a non-discriminatory classification model
and evaluate this learnt classifier over the test fold of this iteration. The predic-
tions for the test-fold are stored. We repeat this process for all folds and append
all predictions on the test sets over all folds. Based on the predictions and the true
class we calculate the final accuracy and discrimination scores. It is also important
to notice that no parameter tuning was performed; all experiments were done in
Weka with their default parameter settings.

Datasets: In our experiments we used the Adult dataset and the Communities
and Crimes dataset which are available in the UCI ML-repository [14] and two
Dutch Census datasets of 1971 and 2001 [31, 32].

Adult Dataset

The Adult dataset has 48 842 instances and contains demographic information of
people. The associated prediction task is to determine whether a person makes over
50K per year or not; i.e., income class High or Low will be predicted. We denote
income class High as a desired class and income class Low as not desired class.
Each data object is described by 14 attributes which include 8 categorical and 6
numerical attributes. We excluded the attribute fnlwgt from our experiments (as
suggested in the documentation of the dataset). This dataset is a collection of 51
(US) state samples and people with similar demographic characteristics get similar
values for this attribute fnlwgt in each state. This attribute is only useful if we work
with a sample from only one state because people from multiple states would have
inconsistent values for this attribute. The other attributes in the dataset include:
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Figure 1.4 10-fold cross-validation experimental setup.
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age, type of work, education, years of education, marital status, occupation, type
of relationship (husband, wife, not in family), sex, race, native country, capital gain,
capital loss and weekly working hours. We use Sex as discriminatory attribute. In
our sample of the dataset, 16 192 citizens have Sex = f and 32 650 have Sex = m.

Communities and Crimes Dataset

The Communities and Crimes dataset has 1 994 instances which give information
about different communities and crimes within the United States. Each instance is
described by 122 predictive attributes which are used to predict the total number
of violent crimes per 100K population while 5 non predictive attributes are also
given which can be used only for extra information. In our experiments we use
only predictive attributes which are numeric. We add a sensitive attribute Black to
divide the communities according to race and discretize the class attribute to divide
the data objects into major and minor violent communities.

Dutch Census Datasets

We also apply our proposed techniques to two Dutch census datasets of 1971 and
2001 [31, 32]. The Dutch Census 2001 dataset has 189 725 instances representing
aggregated groups of inhabitants of the Netherlands in 2001. The dataset is de-
scribed by 13 attributes namely sex, age, household position, household size, place
of previous residence, citizenship, country of birth, education level, economic sta-
tus (economically active or inactive), current economic activity, marital status,
weight and occupation. We removed the records of underage people, some middle
level professions and people with unknown professions, leaving 60 420 instances
for our experiments. We use the attribute occupation as a class attribute with val-
ues “high level” (prestigious) and “low level” professions. We use the attribute
sex as sensitive attribute. The Dutch 1971 Census dataset is comparable to the
Dutch 2001 census dataset and consists of 159 203 instances. It has the same fea-
tures except for the attribute place of previous residence which is not present in
the 1971 dataset, and an extra attribute religious denominations. After removing
the records of people under the age of 19 and records with missing values, 99 772
instances remained for our experiments. All the attributes are categorical except
weight (representing the size of the aggregated group) which we excluded from
our experiments.

All datasets and the source code of all implementations reported upon in this thesis
are available at https://sites.google.com/site/faisalkamiran/.
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1.3.2 Practical Relevance

A recently started collaboration with WODC (the study center of the Dutch Depart-
ment of Justice), and CBS (the Dutch Central Bureau for Statistics) is an important
source of motivation to study the problem of discrimination. These agencies sup-
port policy making on the basis of demographic and crime information they have.
Their interest emerges from the possibility of correlations between ethnicity and
criminality that can only be partially explained by other attributes due to data in-
completeness (e.g., latent factors). Learning models and classifiers directly on such
data could lead to discriminatory recommendations to the decision makers. Re-
moving the ethnicity attributes would not solve the problem due to the redlining
effect, but rather aggravate it, as the discrimination still would be present, only it
would be better hidden. In such situations our discrimination-aware data mining
paradigm clearly applies.

1.4 A Quick Overview of the Thesis

Figure 1.5 gives a quick overview of the organization of this thesis. In Chapter 2
we formally define the problem statement and make a theoretical analysis of the
trade-off between accuracy and discrimination.

In Chapter 3, we propose three data pre-processing techniques for the solution of
the discrimination problem. These solutions are empirically evaluated over real
world datasets. The discrimination-aware techniques discussed in this chapter are
published in: IEEE conference on computer, control and communication [46];
Benelux conference on artificial intelligence [47]; the annual machine learning
conference of Belgium and The Netherlands [48], and domain driven data mining
workshop of IEEE international conference on data mining [19].

In Chapter 4, we advances our solution to the discrimination problem by di-
rectly incorporating the non-discrimination constraints into the classification model
learning. In this chapter our solution to the problem is based on the modifying the
splitting criterion of a decision tree learner. We also introduce a decision tree leaf
relabeling approach to make an already built decision tree discrimination-free. We
draw a parallel between our leaf relabeling approach and the well-know combi-
natorial problem Knapsack. These methods are published in IEEE international
conference on data mining [49]. Later a detailed version is published as a technical
report at Eindhoven university of technology [50]

In Chapter 5 we extend our problem to the conditional non-discrimination problem.
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Figure 1.5 Thesis overview.

We discuss the discrimination problem from a different perspective. We introduce
that not all the discrimination is always bad. A part of the discrimination may
be acceptable in some situations. We refer to this acceptable discrimination as
explainable discrimination. We develop local variants of the global massaging and
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sampling methods to solve the conditional non-discrimination problem. This work
is accepted for publication in IEEE international conference on data mining [86].

In Chapter 6 we give a comprehensive overview of the related work of the discrim-
ination problem and Chapter 7 concludes the work and gives directions for further
research.
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In this chapter we give a formal description to the discrimination-aware classifica-
tion problem, introduce the important notations that we use through out this thesis,
and introduce methods to quantify the discrimination in a given dataset or in the
predictions of a classification model. We also give a discrimination model to unveil
the regions with high discrimination level and use this model to support the ratio-
nale of our proposed methods in the next chapters. Finally, we analytically study
the relationship of discrimination and accuracy.

2.1 Preliminaries

We assume a set of attributes A = {A1, . . . , An} and their respective domains
dom(Ai), i = 1, . . . , n have been given. A tuple X over the schema (A1, . . . , An)
is an element of dom(A1)×. . .×dom(An). We denote the value of X for attribute
Ai by X(Ai). A dataset over the schema (A1, . . . , An) is a finite set of such tuples
and a labeled dataset is a finite set of tuples over the schema (A1, . . . , An,Class).

We assume that a special attribute S ∈ A, called the sensitive attribute, and a spe-
cial value b ∈ dom(S ), called the deprived community have been given. The se-
mantics of the pair S , b is that it defines the discriminated community; for example,
S and b could be “ethnicity” and “Black” respectively. For reasons of simplicity
we will assume that the domain of S is binary; i.e., dom(S ) = {b, w}. Obviously,
we can easily transform a dataset with multiple attribute values for S into a binary
one by replacing all values v ∈ dom(S ) \ {b} with a new dedicated value w.

2.2 Discrimination Measurement

We define the discrimination in the following way:

Definition 1 (Discrimination in labeled dataset): Given a labeled dataset D, an
attribute S and a value b ∈ dom(S ). The discrimination in D w.r.t. the group
S = b, denoted discS=b(D), is defined as:

disc S=b(D) :=
|{X ∈ D | X(S ) = w,X(Class) = +}|

|{X ∈ D | X(S ) = w}|

− |{X ∈ D | X(S ) = b,X(Class) = +}|
|{X ∈ D | X(S ) = b}|

.

That is, the difference of the probability of being in the positive class between the
tuples having X(S ) = w in D and those having X(S ) = b in D.
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Table 2.1 Sample relation for the job-application example.

Sex Ethnicity
Highest
Degree

Job Type Class

m native h. school board +
m native univ. board +
m native h. school board +
m non-nat. h. school healthcare +
m non-nat. univ. healthcare -
f non-nat. univ. education -
f native h. school education -
f native none healthcare +
f non-nat. univ. education -
f native h. school board +

(When clear from the context we will omit S = b from the subscript.)

Definition 2 (Discrimination in classifier’s predictions): Given an unlabeled dataset
D, an attribute S and a value b ∈ dom(S ). The discrimination in the predictions
of a classifier C learnt over D w.r.t. the group S = b, denoted discS=b(D), is
defined as:

disc S=b(C,D) :=
|{X ∈ D | X(S ) = w,C(X) = +}|

|{X ∈ D | X(S ) = w}|

− |{X ∈ D | X(S ) = b, C(X) = +}|
|{X ∈ D | X(S ) = b}|

where C(X) denotes the prediction of the classifier C for a data object X . The dis-
crimination in classifiers’s predictions is the difference of the probability of being
assigned the positive class by the classifier between the tuples having X(S ) = w
in D and those having X(S ) = b in D. (When clear from the context we will omit
S = b from the subscript.)

Example 1 In Table 2.1, an example dataset is given. This dataset contains the
Sex, Ethnicity, and Highest Degree of 10 job applicants, the Job Type they applied
for and the Class defining the outcome of the selection procedure. In this dataset,
the discrimination w.r.t. the attribute Sex and Class is: discSex=f (D) := 4

5−
2
5 =
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40% . It means that in the dataset, a female is, in absolute numbers, 40% less likely
to have a job than a male.

Example 2 Now we use our discrimination measure to calculate the discrimina-
tion in the Adult dataset discussed in Section 1.3.1 of Chapter 1. In the Adult
dataset the associated prediction task is to determine whether a person makes over
50K per year or not; i.e., income class High or Low will be predicted. We denote
income class High as + and income class Low as −. We use the attribute Sex as
sensitive attribute. If we apply discrimination to calculate the bias toward females
for + class, we the discrimination is as high as 19.45%:

P (X(Class) = + |X(Sex ) = m)−P (X(Class) = + |X(Sex ) = f) = 19.45%

2.2.1 Motivation for the Discrimination Measure

Our way of measuring discrimination as the difference in positive class probability
between the two groups represents a choice rather than a universal truth. Suppose
we have data on employees that applied for jobs and whether or not they got the
job, and we want to test if there is gender discrimination. Therefore, we consider
the proportion of men that were hired versus the proportion of women that were
hired. A statistically significant difference in these proportions would indicate dis-
crimination. Let us indicate the true (resp. observed) proportion of males that were
hired as m1 (x1), and the proportion for the females as m2 (x2). Notice that our
discrimination measure equals x1 − x2. The standard statistical approach for test-
ing if females are discriminated would be to test if a one-sided test null hypothesis
h0 : m2 ≥ m1 can be rejected. If the hypothesis gets rejected, the probabil-
ity is high that there is discrimination. Many different statistical tests could be
used in this example; popular tests that apply are the two-sample t-test or the two-
proportion Z-test. Besides trying to refute the null hypothesis h0, we could also
go for a test of independence between the attributes gender and class with, e.g.,
the χ2-test or the G-test. Unfortunately there is no single best test; depending on
the situation (usually depending on the absence or presence of abundant data or
of the proportions taking extreme values) one test may be preferable over another.
Here we can reasonably assume, since we are working in a data mining context,
that sufficient data is available. We also assume that none of the proportions takes
extreme values. As such, the choice of test is not that important, as long as we
restrict ourselves to one test. The test statistic that would be used for a two-sample
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t-test (assuming unknown and potentially different variances) is:

x1 − x2√
s21
n1

+
s22
n2

=
discgender=f√

s21
n1

+
s22
n2

,

where s1 and s2 denote the empirical standard deviations for the acceptance of the
two groups and n1 and n2 denote the respective size of the groups. The statistical
test, however, only tells us if there is discrimination, but does not indicate the
severity of discrimination. For instance, if we calculate information gain between
sex and job decisions. It will just tell us whether the decision making is dependent
over the sex of the applicants or not. It will not quantify that how much dependency
of decision making over sex is due to discrimination. In this respect notice that the
test statistic for the hypothesis h0 : m1 −m2 = d0 is:

x1 − x2 − d0√
s21
n1

+
s22
n2

.

As this example shows, it is not unreasonable to take the difference between pro-
portions as a measure for the severity of discrimination. Nevertheless, we want to
emphasize that similar arguments can be found for defining the discrimination as
a ratio, or for using measures based on mutual information gain between sensitive
attribute and class or entropy-based measures (such as the G-test). In our work we
made the choice for the difference in proportions because, statistically speaking, it
makes sense, and it has the advantage of having a clear and intuitive meaning of
expressing the magnitude of the observed discrimination.

2.3 Discrimination-aware Classification

The problem we study in the thesis is now as follows:

Problem 1 Classifier with non-discrimination constraint: Given a labeled dataset
D, an attribute S , and a value b ∈ dom(S ), learn a classifier C such that:

(a) the accuracy of C for future predictions is high; and

(b) the discrimination of new examples classified by C is low.

Clearly there will be a trade-off between the accuracy and the discrimination of
the classifier. In general, lowering the discrimination will result in lowering the
accuracy and vice versa. This trade-off is further elaborated upon in the Section
2.4.
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2.3.1 Discrimination Model

In this section we discuss how the discrimination affects the decision making and
which regions or objects are the most vulnerable from the discriminatory effect.
For this purpose, we analyse the discrimination problem in relation to experimental
findings in social sciences reported in [42] we assume that discrimination happens
in the following way. The historical data originates from human decision making,
which can be considered as a classifier C. That classifier consists of three main
parts:

1. a function from attributes to a score r = f(X ′), where X ′ = X \ {S}, i.e.,
X ′ does not include the sensitive attribute;

2. a discrimination bias function B(S ) =

{
d if S = w
−d if S = b

;

3. the final decision making function y = C (f(X ′) +B(S )).

According to this model a decision is made in the following way. First the quali-
fications of a candidate are evaluated based on attributes in X ′ and a preliminary
score is obtained r = f(X ′). The qualifications are evaluated objectively. Then
the discrimination bias is introduced by looking at the gender of a candidate and
either adding or subtracting a fixed bias from the qualification score, to obtain
r∗ = f(X ′) + B(s) = f(X ′)± d. The final decision is made by C(r∗). Decision
making can have two major forms: online and offline. With the offline decision
the candidates are ranked based on their scores r∗, and n candidates that have the
highest scores are accepted. With the online decision an acceptance threshold t is
set, the incoming candidates that have the score r∗ > t are accepted.

This discrimination model has two important implications. First, the decision bias
is more likely to influence the individuals that are close to the decision boundary
according to their score r. If an individual is far from the decision boundary, then
adding or subtracting the discriminatory bias d does not influence the final deci-
sion. This observation is consistent with experimental findings how discrimination
happens in practice [42].

Second, there might be attributes within X that are correlated with the sensitive
attribute S . These attributes will affect the initial score r. When observing the
decisions it would seem due to correlation that the decision is using S , i.e., B(S )
will already be present in the initial score r.
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2.3.2 Assumptions

In this thesis we are making two strong assumptions:

A1 We are implicitly assuming that the primary intention is learning the most ac-
curate classifier for which the discrimination is close to 0. When we assume
the labels result from a biased process, insisting on high accuracy may be
debatable. Nevertheless, any alternative would imply making assumptions
on which objects are more likely to have been mislabeled. Such assumptions
would introduce an unacceptable bias in the evaluation of the algorithms to-
wards favoring those that are based on these assumptions. In the case where
the labels are correct, yet the discrimination comes from the sensitive at-
tribute being a proxy for absent features, optimizing accuracy is clearly the
right thing to do.

A2 Ideally the learned classifier should not use the attribute S to make its predic-
tions. However, we show in our experiments that our proposed discrimination-
aware methods give promising results with and without using the sensitive
attribute.

2.4 Theoretical Analysis of the Accuracy - Discrimination
Trade-Off

Before going to solutions, we first theoretically study the trade-off between dis-
crimination and accuracy in a general setting.

Definition 3 Let C and C ′ be two classifiers. We say that C dominates C ′ if the
accuracy of C is larger than or equal to the accuracy of C ′, and the discrimination
of C is at most as high as the discrimination of C ′. C strictly dominates C ′ if one
of these inequalities is strict.

Given a set of classifiers C, we call a classifier C ∈ C optimal w.r.t. discrimination
and accuracy (DA-optimal) in C if there is no other classifier in C that strictly
dominates C.

For reasons of simplicity, in our theoretical exposition we assume that a dataset D
is given against which discrimination and accuracy of all classifiers is measured.
This assumption is not limiting our theoretical results since all our results still
obtain when the cardinality of D is infinite; i.e., we can think of D as a perfect
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description of the true underlying probability distribution. We will use Call to de-
note the set of all classifiers and C∗

all to denote the set of all classifiers C such that
P (X(Class) = +|X ∈ D) = P (C(X) = +|X ∈ D); i.e., all classifiers that
have the same overall probability of assigning the positive label as observed in D.

2.4.1 Perfect Classifiers

We first study the trade-off between accuracy and discrimination if we have per-
fect knowledge about the probability distribution; i.e., we have a perfect classifier
CPerf for D; that is, CPerf (X) = X(Class) for all X ∈ D. This perfect classifier
is clearly DA-optimal in Call and C∗

all as no other classifier has the same accuracy
of 100%. Our first theorem will explain what is the most optimal way to change
this classifier to get other classifiers that are no longer as accurate, but that are
DA-optimal because of their decreased discrimination. The rate at which these
DA-optimal classifiers have to trade in accuracy to reduce discrimination is what
we understand as the accuracy-discrimination trade-off.

Let Db and Dw be defined as follows:

Db := {X ∈ D | X(S ) = b}
Dw := {X ∈ D | X(S ) = w}

and let db and dw be respectively |Db| and |Dw|. d denotes |D|. The following
theorem gives us some insight in the trade-off between accuracy and discrimination
in perfect classifiers, namely those that are DA-optimal in the set of all classifiers,
and those that are DA-optimal in the set of all classifiers that does not change the
class distribution:

Theorem 1 A classifier C is DA-optimal in Call iff

acc(CPerf )− acc(C) =
min(db, dw)

d
(disc(CPerf )− disc(C))

A classifier C is DA-optimal in C∗
all iff

acc(CPerf )− acc(C) = 2
db
d

dw
d
(disc(CPerf )− disc(C))

Let C be a DA-optimal classifier. We denote the number of true negatives, true
positives, false positives and false negatives of C by respectively tn , tp, fp, and
fn; e.g., tp = |{X ∈ D | X(Class) = C(X) = +}|. tpb denotes the number of
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true positives that have S = b. tpb, fpb, . . . , and fnw are defined similarly. With
these conventions, we can express the accuracy and discrimination of C as follows:

acc(C) =
tp + tn

d
=

tpb + tnb + tpw + tnw

d

disc(C) =
tpw + fpw

dw
− tpb + fpb

db

Let nb denote the number of objects X in D with X(Class) = − and X(S ) = b.
Similarly we define pb, nw, and pw Notice that acc(C) and disc(C) only depend
on tpb, fpb, tpw, fpw. The other quantities are determined by these four; e.g.,
tnb = nb − fpb. Furthermore, for every choice of tpb ∈ [0, pb], fpb ∈ [0, nb],
tpw ∈ [0, pw], fpw ∈ [0, nw], there is a classifier in C that corresponds to this
choice. Therefore, if C is DA-optimal in C, disc(C) must be equal to the solution
of the following integer optimization problem:

Minimize
tpw + fpw

dw
− tpb + fpb

db

in function of the integer variables tpb, fpb, tpw, fpw, subject to the
following constraints:

tpb + (nb − fpb) + tpw + (nw − fpw)

d
= acc(C)

0 ≤ tpb ≤ pb
0 ≤ fpb ≤ nb

0 ≤ tpw ≤ pw
0 ≤ fpw ≤ nw

In the case of C∗, additionally the constraint

tpb + fpb + tpw + fpw = p

needs to be added, where p denotes |{X ∈ D | X(Class) = +}|.
In both cases; i.e., C and C∗, any DA-optimal classifier will have fpw = 0 and
tpb = pb. For the case C this is clear as decreasing fpw and increasing tpb both
decrease disc(C) and increase acc(C). For C∗, we split into two cases:

• Case 1: [pb − tpb > fpw]

The following solution strictly dominates C, unless fpw = 0 and tpb = pb:{
tp ′b = pb tp ′w = tpw
fp′b = fpb + tpb + fpw − pb fp′w = 0
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This solution satisfies all inequalities and has a lower discrimination and
higher accuracy.

• Case 2: [pb − tpb ≤ fpw]

The following solution strictly dominates C, unless fpw = 0 and tpb = pb:{
tp ′b = pb tp ′w = tpb + tpw + fpw − pb
fp′b = fpb fp′w = 0

Again, this solution satisfies all inequalities and has a lower discrimination
and higher accuracy.

Hence, we get the following formulas for the difference in accuracy and discrimi-
nation between C and CPerf :

1− acc(C) =
fpb + fnw

d

disc(CPerf )− disc(C) =
fnw

dw
+

fpb
db

The extra condition for C∗ becomes:

fpb = fnw .

From these equalities the theorem now easily follows. 2

As was claimed before, there is a trade-off between the accuracy of the DA-optimal
classifiers and their discrimination. This trade-off is linear; lowering the discrimi-
nation level by 1% results in an accuracy decrease of min(db, dw)% and an accu-
racy decrease of 2dbdw% if the class distribution needs to be maintained. These
DA-optimal classifiers can be constructed from the perfect classifier.

2.4.2 Imperfect Classifiers

In the last theorem we assumed a perfect classifier. In most cases, however, we
will only have an imperfect classifier at our disposal. We will now assume that we
have such an imperfect classifier C of which we want to reduce its discrimination
by randomly changing some of its predictions. The probability with which we will
change a prediction of an instance X , will depend on X(S ) and X(Class) only.
We will denote these four probabilities by pb+, pb−, pw+, and pw−. The resulting
classifier is denoted C[pb+, pb−, pw+, pw−]; i.e., C[pb+, pb−, pw+, pw−](X) equals
C(X) with probability pX(S)C(X). Notice that the accuracy and discrimination of
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this random classifier in fact represents the expected accuracy and discrimination
of all deterministic classifiers with pb+, pb−, pw+, pw− correspondence with C. We
will denote the class of all classifiers that can be derived from C in this way by CC .
C∗
C will denote all classifiers C ′ in CC for which it holds that P (C ′(X) = +) =

P (C(X) = +) The following theorem characterizes the DA-optimal classifiers of
CC and of C∗

C .

Theorem 2 The classifier C ′ is DA-optimal in CC iff

E[acc(C)− acc(C ′)] = (2acc(C)− 1)
min(db, dw)

d
(disc(C)− disc(C ′))

A classifier C is DA-optimal in C∗
C iff

E[acc(C)− acc(C ′)] = 2(2acc(C)− 1)
db
d

dw
d
(disc(C)− disc(C ′))

E[.] denotes here the expected value over all databases D on which C has accuracy
acc(C) and discrimination disc(C).

We assume, without loss of generality, that acc(C) ≥ 0.5; if this is not the case,
we switch all predictions of C to obtain a new classifier with an accuracy of 1 −
acc(C). Let now C ′ be any classifier with corr(C,C ′) = γ; i.e., C and C ′ agree
(correspond) on a fraction γ of the dataset D. Then, the expected value for the
accuracy of C ′ can be computed as follows:

E[acc(C ′)] = [P (C(X) = C ′(X))× P (C(X) = X(Class))

+ P (C(X) ̸= C ′(X))× P (C(X) ̸= X(Class))]

= corr(C,C ′)acc(C) + (1− corr(C,C ′))(1− acc(C))

= corr(C,C ′)(2acc(C)− 1) + (1− acc(C))

Notice that in the given derivation we assume that agreement of C and C ′ on an
instance X is independent from correctness of the prediction of C for X . The clas-
sifiers C[pb+, pb−, pw+, pw−] indeed satisfy this condition. As such, the expected
accuracy of the classifiers in CC and C∗

C only depend on their correspondence with
C, and the higher the correspondence, the higher the accuracy. Furthermore,

E[acc(C)− acc(C ′)] = (2acc(C)− 1)(1− corr(C,C ′))

On the other hand, we can use Theorem 1 to find the relation between the maximal
correspondence with C and the discrimination of the classifier C ′; the maximal
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Figure 2.1 Trade-off between accuracy and discrimination (dependence)
for the DA-optimal classifiers in CR and CC .

reduction in discrimination linked to the minimal reduction in correspondence is
as follows:

min
C′∈CC ,disc(C′)=δ

(1− corr(C,C ′)) =
min(db, dw)

d
(disc(C)− δ)

and for C∗
C ,

min
C′∈C∗

C ,disc(C′)=δ
(1− corr(C,C ′)) = 2

db
d

dw
d
(disc(C)− δ)

Combining these two facts, leads directly to the theorem. 2

Again we see a linear trade-off. This linear trade-off could be interpreted as bad
news: no matter what we do, we will always have to trade in accuracy proportional
to the decrease in discrimination we want to achieve. Especially when the classes
are balanced this is a high price to pay.

Classifiers based on rankers. On the bright side, however, most classification
models actually provide a score or probability for each tuple for being in the posi-
tive class instead of only giving the class label. Such a scoring classifier, called a
ranker, actually ranks the objects according to its assessment of the probability that
the object is in the positive class. The score allows us for a more careful choice of
objects of which to change the prediction: instead of using a uniform chance for all
tuples with the same predicted class and S -value, the score can be used as follows.
Suppose we have such a scoring classifier R that assigns to all objects a score. We
can dynamically set different cut-off cb and cw for respectively tuples with S = b
and S = w to obtain the classifier R(cb, cw) that will predict + for a tuple X if
X(S ) = b and R(X) ≥ cb and if X(S ) = w and R(X) ≥ cw. Otherwise −
is predicted. We denote the class of all classifiers R(cb, cw) by CR. Pseudocode
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for CR is given in Algorithm 1. Intuitively one expects that slight changes to the
discrimination will only incur minimal changes to the accuracy, as the tuples that
are being changed are the least certain ones and hence sometimes a change will
actually result in a better accuracy. The decrease in accuracy will thus no longer
be linear in the change in discrimination, but its rate will increase as the change
in discrimination increases, until in the end it becomes linear again, because the
tuples we change will become increasingly more certain leading to a case similar
to that of the perfect classifier. A full analytical exposition of this case, however,
is far beyond the scope of this thesis. Instead we tested this trade-off empirically.
The results of this study are shown in Figure 2.1. In this figure the DA-optimal
classifiers in the classes CR (curves) and C (straight line) are shown for the Adult
dataset, given in Section 1.3.1 of Chapter 1. The three classifiers are a Decision
Tree (J48), an instance based classification model with three neighbors (IBk), and a
Naive Bayesian Classifier (NBS). The ranking versions are obtained from respec-
tively the (training) class distribution in the leaves, a distance-weighted average
of the labels of the 3 nearest neighbors, and the posterior probability score. The
classifiers based on the scores perform considerably better than those based on the
classifier only.

Algorithm 1: CR
Input: (X, cb, cw,R)
Output: X(Class)

1: if X(S ) = b and R(X) ≥ cb then
2: return +
3: else
4: return −
5: end if
6: if X(S ) = w and R(X) ≥ cw then
7: return +
8: else
9: return −

10: end if

Conclusion. In this section the accuracy-discrimination trade-off is clearly illus-
trated. It is theoretically shown that if we rely on classifiers, and not on rankers,
the best we can hope for is a linear trade-off between accuracy and discrimination.
For important classes of classifiers the DA-optimal classifiers were explicitly con-
structed. Notice, however, that the theoretical solutions proposed in this section
violate our assumption A2; the classifiers C[pb+, pb−, pw+, pw−] and R(cb, cw)
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heavily use the attribute S to make their predictions. Therefore these optimal solu-
tions are not suitable for our purposes.



Chapter 3

Data Pre-processing Techniques
for Classification without
Discrimination

37
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In the previous chapter, we have formally described that the Discrimination-Aware
Classification Problem is applied to a given situation in which our training data
contains discrimination (e.g., gender or racial) and we are supposed to learn a clas-
sifier that optimizes accuracy, but does not discriminate in its predictions on the
test data. Such situations occur naturally as artifacts of the data collection process
when the training data is collected from different sources with different labeling
criteria, when the data is generated by a biased decision process, or when the sen-
sitive attribute serves as a proxy for unobserved features. In many situations, a
classifier that detects and uses the racial or gender discrimination is undesirable for
legal reasons.

3.1 Discrimination-aware Techniques

In this section we propose three solutions to learn a non-discriminating classifier
that uses the attribute S only during learning not at prediction time. All solutions
are based on removing the discrimination from the training dataset. Then a clas-
sifier can be learned on this cleaned dataset. Our rationale for this approach is
that, since the classifier is trained on discrimination-free data, it is likely that its
predictions will be (more) discrimination-free as well. The empirical evaluation
in Section 3.2 will confirm this statement. The first approach we present, called
Massaging the data, is based on changing the class labels in order to remove the
discrimination from the training data. A preliminary version of this approach was
presented in [46]. The second approach is less intrusive as it does not change the
class labels. Instead, weights are assigned to the data objects to make the dataset
discrimination-free. This approach will be called Reweighing. Since reweighing
requires the learner to be able to work with weighted tuples, we propose another
solution without this requirement, in which we re-sample the dataset in such a way
that the discrimination is removed. We will refer to this approach as Sampling.
Two ways of sampling will be presented and tested.

3.1.1 Massaging

In Massaging, we will change the labels of some objects X with X(S ) = b from
− to +, and the same number of objects with X(S ) = w from + to −. In this way
the discrimination decreases, yet the overall class distribution is maintained. From
the proof of Theorem 1 we know that this strategy reduces the discrimination to
the desirable level with the least number of changes to the dataset while keeping
the overall class distribution fixed. The set pr of objects X with X(S ) = b and
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X(Class) = − will be called the promotion candidates and the set dem of objects
X with X(S ) = w and X(Class) = + will be called the demotion candidates.

We will not randomly pick promotion and demotion candidates to relabel. Instead
we use the rationale of our discrimination model given in Section 2.3.1 of Chapter 2
that the data objects close to the decision boundary are more vulnerable to the effect
of discrimination and will select these objects to relabel. For this purpose we learn
a ranker R on the training data for ranking the object according to their positive
class probability. We assume that higher scores indicate a higher chance to be in
the positive class. With this ranker, the promotion candidates are sorted according
to descending score by R and the demotion candidates according to ascending
score. When selecting promotion and demotion candidates, first the top elements
will be chosen. In this way, the objects closest to the decision border are selected
first to be relabeled, leading to a minimal effect on the accuracy. This modification
of the training data is continued until the discrimination becomes zero. The number
M of pairs needed to be modified to make a dataset D discrimination-free can be
calculated as follows. If we modify M pairs, the resulting discrimination will be:

pw −M

|Dw|
−pb +M

|Db|
= disc(D)−M

(
1

|Db|
+

1

|Dw|

)
= disc(D)−

(
M

|D|
|Dw||Db|

)
To reach zero discrimination, we hence have to make:

M =
disc(D)× |Db| × |Dw|

|D|

modifications. Recall that Db and Dw denote the objects in D with S = b and S =
w respectively, and pb and pw are the number of positive objects with respectively
S = b and S = w. If the resultant number M is not a whole number, we round
it up, which will result a slight negative discrimination. We relabel the M top
elements from both the promotion and demotion lists.

Example 3 Consider again the dataset D given in Table 2.1. We want to learn a
classifier to predict the class labels of data objects for which the predictions are
non-discriminatory towards Sex = f . In this example we rank the objects by their
positive class probability given by a Naive Bayes classification model. In Table
3.1 the positive class probabilities as given by this ranker are added to the table
for reference (calculated using the “NBS” classifier of Weka). In the second step,
we arrange the data separately for female applicant with class − in descending
order and for male applicants with class + in ascending order with respect to their
positive class probability. The ordered promotion and demotion candidates are
given in Table 3.2.



40 Chapter 3. Discrimination-aware Pre-processing Techniques

Table 3.1 Sample job-application relation with positive class probabil-
ity.

Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

m native h. school board + 98%
m native univ. board + 89%
m native h. school board + 98%
m non-nat. h. school healthcare + 69%
m non-nat. univ. healthcare - 30%
f non-nat. univ. education - 2%
f native h. school education - 40%
f native none healthcare + 76%
f non-nat. univ. education - 2%
f native h. school board + 93%

Table 3.2 Promotion candidates (negative objects with Sex = f in
descending order) and demotion candidates (positive objects
with Sex = m in ascending order)

Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

f native h. school education - 40%
f non-nat. univ. education - 2%
f non-nat. univ. education - 2%

Sex Ethnicity
Highest
Degree

Job Type Cl. Prob

m non-nat. h. school healthcare + 69%
m native univ. board + 89%
m native h. school board + 98%
m native h. school board + 98%

The number M of labels of promotion and demotion candidates we need to change
equals:

M =
disc(D)× |Dfemale | × |Dmale |

|D|
=

40%× 5× 5

10
= 1
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So, relabeling one promotion candidates and one demotion candidates list makes
the data discrimination-free. Hence, we will relabel the top promotion candidate;
i.e., the highest scoring female with a negative label, and the top demotion candi-
date; i.e., the lowest scoring male with a positive label. After the labels for these
instances are changed, the discrimination will decrease from 40% to 0%. the re-
sulting dataset will be used as a training set for classifier induction. 2

Algorithm. The pseudo-code of our algorithm is given in Algorithm 2 and Algo-
rithm 3. Algorithm 2 describes changing the class labels and classifier learning,
and Algorithm 3 the sorting of the promotion and demotion lists.

Algorithm 2: Learn Classifier on Massaged Data
Input: Labeled dataset D, sensitive attribute S and value b, desired class +
Output: Classifier C, learned on D

1: (pr , dem) := Rank(D,S , b,+)

2: M :=
discS=b(D)× |{X ∈ D | X(S ) = b}| × {X ∈ D | X(S ) = w}

|D|
3: Select the top-M of pr
4: Change the class label of the M selected objects to +
5: Select the top-M objects of dem
6: Change the class label of the M selected objects to −
7: Train a classifier C on the modified D
8: return C

Algorithm 3: Rank
Input: Labeled dataset D, Sensitive attribute S and value b, desired class +
Output: Ordered promotion list pr and demotion list dem

1: Learn a ranker R for prediction + using D as training data
2: pr := {X ∈ D | X(S ) = b,X(Class) ̸= +}
3: dem := {X ∈ D | X(S ) = w,X(Class) = +}
4: Order pr descending w.r.t. the scores by R
5: Order dem ascending w.r.t. the scores by R
6: return (pr , dem)

3.1.2 Reweighing

The Massaging approach is rather intrusive as it changes the labels of the objects.
Our second approach does not have this disadvantage. Instead of relabeling the
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objects, different weights will be attached to them. For example, objects with
X(S ) = b and X(Class) = + will get higher weights than objects with X(S ) = b
and X(Class) = − and objects with X(S ) = w and X(Class) = + will get lower
weights than objects with X(S ) = w and X(Class) = −. We will refer to this
method as Reweighing. Again we assume that we want to reduce the discrimination
to 0% while maintaining the overall positive class probability. We now discuss the
idea behind the weight calculation.

If the dataset D is unbiased; i.e., S and Class are statistically independent, the
expected probability Pexp(b ∧+) would be:

Pexp(b ∧+) :=
|X(S ) = b|

|D|
× |X(Class) = +|

|D|
.

In reality, however, the observed probability in D,

Pobs(b ∧+) :=
|X(S ) = b ∧X(Class) = +|

|D|

might be different. If the expected probability is higher than the observed proba-
bility value, it shows the bias towards class − for those objects X with X(S ) = b.

To compensate for the bias, we will assign lower weights to objects that have been
deprived or favored. Every object X will be assigned weight:

W (X) :=
Pexp(S = X(S ) ∧ Class = X(Class))

Pobs(S = X(S ) ∧ Class = X(Class))
;

i.e., the weight of an object will be the expected probability to see an instance with
its sensitive attribute value and class given independence divided by its observed
probability.

In this way we assign a weight to every tuple according to its S - and Class-values.
We will call the dataset D with the added weights, DW . It is easy to see that
DW is unbiased; i.e., if we multiply the frequency of every object by its weight,
the discrimination would be 0%. On this balanced dataset the discrimination-free
classifier is learned.

Example 4 Consider again the dataset in Table 2.1. The weight for each data
object is computed according to its S - and Class-value. We calculate the weight
of a data object with X(S ) = f and X(Class) + as follows. We know that 50%
objects have X(S ) = f and 60% objects have Class-value +, so the expected
probability of the object should be:

Pexp(Sex = f | X(Class) = +) = 0 .5 × 0 .6
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Table 3.3 Sample job-application relation with weights.

Sex Ethnicity
Highest
Degree

Job Type Cl. Weight

m native h. school board + 0.75
m native univ. board + 0.75
m native h. school board + 0.75
m non-nat. h. school healthcare + 0.75
m non-nat. univ. healthcare - 2
f non-nat. univ. education - 0.67
f native h. school education - 0.67
f native none healthcare + 1.5
f non-nat. univ. education - 0.67
f native h. school board + 1.5

but its actually observed probability is 20%. So the weight W (X) will be:

W (X) =
0.5× 0.6

0.2
= 1.5 .

Similarly the weights of all other combinations is as follows:

W (X) :=


1.5 if X(Sex ) = f and X(Class) = +

0.67 if X(Sex ) = f and X(Class) = −
0.75 if X(Sex ) = m and X(Class) = +

2 if X(Sex ) = m and X(Class) = −

The weight of each data object of the Table 2.1 is given in Table 3.3.

Algorithm.

The pseudocode of the algorithm describing our Reweighing approach is given in
Algorithm 4.

3.1.3 Sampling

Since not all classifier learners can directly incorporate weights in their learning
process, we also propose a Sampling approach. The dataset with weights is trans-
formed by sampling into a normal dataset which can be used by all algorithms.
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Algorithm 4: Reweighing
Input: (D,S , Class)
Output: Classifier learned on reweighted D

1: for s ∈ {b, w} do
2: for c ∈ {−,+} do

3: Let W (s, c) :=
|{X ∈ D | X(S ) = s}| × |{X ∈ D | X(Class) = c}|
|D| × |{X ∈ D | X(Class) = c and X(S ) = s}|

4: end for
5: end for
6: DW := {}
7: for X in D do
8: Add (X,W (X(S ), X(Class))) to DW

9: end for
10: Train a classifier C on training set DW , taking onto account the weights
11: return Classifier C

By sampling the objects with replacement according to the weights, we make the
given dataset discrimination-free.

We partition the dataset into four groups: DP (Deprived community with Positive
class labels), DN (Deprived community with Negative class labels), FP (F avored
community with Positive class labels), and FN (F avored community with Negative
class labels):

DP := {X ∈ D | X(S ) = b ∧X(Class) = +}
DN := {X ∈ D | X(S ) = b ∧X(Class) = −}
FP := {X ∈ D | X(S ) = w ∧X(Class) = +}
FN := {X ∈ D | X(S ) = w ∧X(Class) = −}.

Consider Figure 3.1, representing a dataset with 40 data points. The data points
in the positive class are represented by +, the data points of the negative class by
−. The projection on the horizontal axis represents the probability of each data
object to be in the positive class: the more to the right is the point, the higher its
positive class probability. This probability comes, e.g., from a ranker we learned
on the training data. This probability will only be of interest for our second sam-
pling method, the preferential sampling, and can for the moment being be ignored.
The data points plotted in the upper half of the graph, respectively the lower half,
represent the deprived, respectively the favored community. In the case of discrim-
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Figure 3.1 A figure with 40 data points to show the sampling method.

ination, the relative size of DN versus DP will be larger than the relative size of FN
versus FP.

Similar as in Reweighing, we compute for each of the groups FN, FP, DP, and DN
their expected sizes if the given dataset would have been non-discriminatory, as
shown in the following table:

Sample Size DP DN FP FN
Actual 8 12 12 8

Expected 10 10 10 10

This time, however, the ratio between the expected group size and the observed
group size will not be used as a weight to be added to the individual objects, but
instead we will sample each of the groups separately, until its expected group size
is reached. For the groups FP and DN this means that they will be under-sampled
(the objects in those groups have a weight of less than 1), whereas the other groups
FN and DP will be over-sampled.

Uniform Sampling

As the name already suggests, in US all the data objects of the same group have
the same chance of being duplicated or skipped; if we need to sample n objects
from a group P , US will apply uniform sampling with replacement. In Figure 3.2 a
possible re-sampling of the dataset is given; the bold elements are duplicated while
the encircled objects are removed. Algorithm 5 gives a formal description of the
US method.



46 Chapter 3. Discrimination-aware Pre-processing Techniques

Figure 3.2 Pictorial representation of the Uniform Sampling scheme. The
re-substituted data points are in bold while the encircled ones
are skipped.

Algorithm 5: Uniform Sampling
Input: (D,S , Class)
Output: Classifier C learned on resampled D

1: for s ∈ {b, w} do
2: for c ∈ {−,+} do

3: Let W (s, c) :=
|{X ∈ D | X(S ) = s}| × |{X ∈ D | X(Class) = c}|
|D| × |{X ∈ D | X(Class) = c and X(S ) = s}|

4: end for
5: end for
6: Sample uniformly ⌊W (b,+)× |DP |⌋ objects from DP;
7: Sample uniformly ⌊W (w,+)× |FP |⌋ objects from FP;
8: Sample uniformly ⌊W (b,−)× |DN |⌋ objects from DN;
9: Sample uniformly ⌊W (w,−)× |FN |⌋ objects from FN;

10: Let DUS be the set of all samples generated in steps 6 to 9
11: return Classifier C learned on DUS

Preferential Sampling

In Preferential Sampling (PS) we again use the intuition of our discrimination
model given in Section 2.3.1 of Chapter 2 that data objects close to the decision
boundary are more prone to have been discriminated or favored due to discrim-
ination in the dataset and give preference to them for sampling. To identify the
borderline objects, PS starts by learning a ranker on the training data. PS uses this
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Figure 3.3 Pictorial representation of Preferential Sampling scheme. The
re-substituted data points are in bold while the encircled ones
are skipped.

ranker to sort the data objects of DP and FP in ascending order, and the objects
of DN and FN in descending order w.r.t. the positive class probability. Such ar-
rangement of data objects makes sure that the higher up in the ranking an element
occurs, the closer it is to the boundary.

PS starts from the original training dataset and iteratively duplicates (for the groups
DP and FN) and removes objects (for the groups DN and FP) in the following way:

• Decreasing the size of a group is always done by removing the data objects
closest to the boundary; i.e., the top elements in the ranked list.

• Increasing the sample size is done by duplication of the data object closest
to the boundary. When an object has been duplicated, it is moved, together
with its duplicate, to the bottom of the ranking. We repeat this procedure
until the desired number of objects is obtained.

In most cases, only a few data objects have to be duplicated or removed. The exact
algorithm is given in Algorithm 6.
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Algorithm 6: Preferential Sampling
Input: (D,S , Class)
Output: Classifier C learned on resampled D

1: for s ∈ {b, w} do
2: for c ∈ {−,+} do

3: Let W (s, c) :=
|{X ∈ D | X(S ) = s}| × |{X ∈ D | X(Class) = c}|
|D| × |{X ∈ D | X(Class) = c and X(S ) = s}|

4: end for
5: end for
6: Learn a ranker R for predicting + using D as training set
7: DPS := {}
8: Add ⌊W (b,+)⌋ copies of DP to DPS

9: Add ⌊W (b,+)− ⌊W (b,+)⌋ × |DP |⌋ lowest ranked elements of DP to DPS

10: Add ⌊W (b,−)× |DN |⌋ lowest ranked elements of DN to DPS

11: Add ⌊W (w,+)× |FP |⌋ highest ranked elements of FP to DPS

12: Add ⌊W (w,−)⌋ copies of FN to DPS

13: Add ⌊W (w,−)− ⌊W (b,−)⌋ × |FN |⌋ highest ranked elements of FN to
DPS

14: return Classifier C learned on DPS

3.2 Experiments

All preprocessing methods introduced in the chapter have been implemented and
tested. We compare the following algorithms:

1. The preprocessing techniques introduced in the chapter:

(a) The Massaging approach with different rankers. We consider five dif-
ferent rankers: one based on a Naı̈ve Bayes classifier (M NBS), one
based on decision tree learner (M J48) and three based on a near-
est neighbor classifier for respectively 1, 3 and 7 neighbors (M IBk1,
M IBk3, and M IBk7). These rankers are used to relabel the dataset to
make it discrimination-free.

(b) Reweighing (RW) and Uniform Sampling (US); these methods are
parameter-free as they do not rely on a ranker.

(c) Preferential Sampling (PS) with a rankers based on a Naı̈ve Bayes
classifier.

This gives a total of 8 preprocessing methods to clean away the discrimina-
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tion of the input data. On the cleaned data, different base classifiers were
trained: a Naı̈ve Bayes Classifier (NBS), two nearest neighbor classifiers
with respectively 1 and 7 neighbors (IBk1 and IBk7), and a decision tree
learner: the Weka implementation of the C4.5 classifier (J48). This gives
a total of 8 × 4 = 32 combinations. Many more combinations have been
tested (including, e.g., Adaboost) but we restricted ourselves to the choices
above as they present a good summary of the obtained results; for the other
classifiers similar results were obtained.

2. Two baseline approaches:

(a) An out-of-the-box classifier not taking any anti-discrimination mea-
sures into account in any way (labeled “No” to reflect no preprocessing
was used); we compare to this baseline to see what is the net benefit
w.r.t. discrimination-reduction of our proposed methods and how much
accuracy we have to trade in for that reduction.

(b) We remove the sensitive attribute and its most correlated attributes
before learning (“No SA” for No Sex Attribute). In this way we get as
many baseline classifiers, depending on how many of the correlated
attributes we remove. The continuous lines in the figures show these
baseline results.

We analyze our proposed algorithms in two scenarios:

• S is part of the training set, but cannot be used during prediction. In these
experiments we only use the information about S for evaluating the discrim-
ination measurement, but S is not considered for prediction. Notice that this
set-up respects all our assumptions.

• S is part of the training set and can be used at prediction time. This set-
up actually violates our assumption (A2) that S should not be used during
prediction but has been added for reference.

Experimental set-up. In our experiments we use apply our proposed methods on
the Adult dataset, on the Communities and Crimes dataset, on the two Dutch
census datasets of 1971 and 2001 [31, 32] and use the same experimental set-up
as discussed in Section 1.3.1 of Chapter 1.
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3.2.1 Redlining

Our first experiment concerns the redlining effect. For all datasets we show in Ta-
ble 3.4 the discrimination of a classifier learned on unaltered training data, with
and without the sensitive attribute. The results clearly motivate our work: classi-
fiers learned on biased data produce biased classifiers, even if the sensitive attribute
is removed during training.

Table 3.4 Discrimination scores of classifiers trained on discriminatory
data; with and without the sensitive attribute. The results
clearly confirm the existence of a redlining effect.

Dataset With S Without S
German Credit 11.09% 9.32%

Adult 16.48% 16.65%
Communities and Crimes 40.14% 38.07%

Dutch 2001 Census 34.91% 17.92%

3.2.2 Adult Dataset

In Figures 3.4(a) and 3.4(b), respectively the discrimination and accuracy results
for all algorithms under comparison are given. On the X-axis are the names of the
data preprocessing techniques used to make the training dataset discrimination-
free. The resultant discrimination has been given on the Y-axis of Figure 3.4(a)
and the accuracy on the Y-axis of Figure 3.4(b). We observe that the classifiers
learned on the preprocessed data produce less discriminatory results as compared
to the baseline algorithms; in Figure 3.4(a) we see that IBk7 classifies the future
data objects with 17.93% discrimination which is lowered only slightly if the Sex
attribute is removed. If Preferential Sampling is applied, however, the discrimi-
nation goes down to 0.11%. On the other hand, We observe in Figure 3.4(b) that
the loss in accuracy is modest in comparison with the large reduction in discrimi-
nation. The discrimination always goes down when we apply our classifiers with
non-discrimination constraints, while accuracy remains at a high level. In these
experiments, we omitted S from our training and test datasets.

Figures 3.5(a) and 3.5(b) represent the results of the same experiment, except that
this time S can be used at prediction time. These two experiments produce very
similar results. We observe that the combination of J48 as base learner and Naive
Bayes as a ranker for Massaging produces promising results. IBk as a ranker for
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Figure 3.4 The results of 10-fold CV for the Adult dataset when S is
used in the learning phase but not for prediction.
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Figure 3.5 The results of 10-fold CV for the Adult dataset when S is
used for both learning and prediction.

the Massaging filter is also one of the best choices. PS gives excellent results
when it is used with unstable classifiers, e.g., J48. When PS is used with J48,
the discrimination level decreases from 16.48% to 3.32% while the accuracy level
decreases from 86.05% to 84.3%. Figure 3.5(b) shows the resultant accuracy for
all these method. We find that the Reweighing approach and some combinations of
the Massaging approach maintain a high accuracy level while the accuracy drops
to some extent with other combinations of Massaging. Clearly, the choice of base
learner and ranker (for Massaging) plays a very important role in discrimination-
free classification.

Figure 3.6(a) represents a graphical representation of the experiments when the
attribute Sex is not used at prediction time. Figure 3.6(b) shows the results of
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the experiments when Sex is used at prediction time. Each pictogram in these
figures represents a particular combination of a classification algorithm (shown by
the outer symbol) and a preprocessing technique (shown by the inner symbol). For
Massaging, the inner symbol represents the ranker that was used. On the X-axis we
see the discrimination and on the Y-axis, the accuracy. Thus, we can see the trade-
off between accuracy and discrimination for each combination. The closer we are
to the top left corner the higher accuracy and the lower discrimination we obtain.
The three lines in the figure represent three classifiers (J48, NBS and IBk3 from the
top to bottom) learned on the original dataset (the most top-right point in each line,
denoted with With SA symbol), the original dataset with the Sex attribute removed
(denoted with No SA symbol), the original dataset with the Sex attribute and the
one (two, three, and so on) most correlated attribute(s) removed (that typically
correspond to the further decrease in both accuracy and discrimination).

Figures 3.6(a) and 3.6(b) offer a good overview that allows us to quickly as-
sess which of the combinations are DA-optimal (discrimination-accuracy-optimal)
among the classifiers learned in our experiments. We observe that the top left area
in the figure is occupied by the data points corresponding to the performance of
Massaging and PS approaches. The Reweighing and US approaches fall behind
Massaging but also show reasonable performance. From Figures 3.6(a) and 3.6(b)
we can see that our approaches compare favorably to the baselines in the sense that
almost all combinations dominate the baseline solutions.

3.2.3 Dutch Census Datasets

We repeated all the experiments over the Dutch 2001 Census dataset. The results
of these experiments are shown in the Figure 3.7. We observe that our proposed
discrimination-aware classification methods outperform the traditional classifica-
tion method w.r.t. accuracy discrimination trade-off. Figure 3.7 shows that our
proposed methods classify the unseen data objects with low discrimination and
high accuracy. The discrimination is lowered from 38% to almost 0% at the cost
of a very little accuracy. All the methods we tried in our experiments give excel-
lent results w.r.t. accuracy-discrimination trade-off on this dataset when applied
in combination with discrimination-aware techniques and clearly outperform the
baseline approaches.
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Figure 3.6 Accuracy-discrimination trade-off comparison for the Adult
dataset. Outer and inner symbol of each data point shows
the corresponding base learner and preprocessing technique
respectively. Three lines represent the baselines for three clas-
sifiers J48, NBS, IBK3 (top to bottom).

3.2.4 Communities and Crimes Dataset

We repeated the same experiment over the Communities and Crimes dataset and
found similar results. Figure 3.8 gives an overview of the results. We observe that
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Figure 3.7 Accuracy-discrimination trade-off comparison for the Dutch
2001 Census dataset. Outer and inner symbol of each data
point shows the corresponding base learner and preprocess-
ing technique respectively. Three lines represent the baselines
for three classifiers J48, IBK3, NBS (top to bottom).

our proposed solutions outperform the baseline approaches. Naive Bayes works
extremely well on this dataset. When we remove discrimination from the training
data, the effect is transferred to future classification in case of unstable classifiers
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Figure 3.8 Accuracy-discrimination trade-off comparison over the Com-
munities and Crimes dataset. (Outer and inner symbol of
each data point shows the corresponding base learner and
preprocessing technique respectively. Three lines represent
the baselines for three classifiers NBS, J48, IBK3 (top to bot-
tom).

and both the discrimination level and the accuracy goes down more than for a stable
(noise-resistent) classifier.
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3.2.5 How to Choose Ranker and Classifier for Massaging

From the different experiments, we make the following observation: if minimal
discrimination is the first priority, an unstable classifier; i.e., a classifier more sen-
sitive to noise, as base learner is the better option and if the high accuracy is the
main concern, a stable classifier might be more suitable. To substantiate this hy-
pothesis further, we conducted additional experiments where we used a k-nearest
neighbor classifier. This classifier has the advantage that we can influence its sta-
bility with the parameter k: the higher k, the more stable it becomes. Figure 3.9
represent the results of the experiments with IBk as base learner and NBS as ranker
for the Massaging approach. We changed the value of k for IBk from 1 to 19 (only
odd values) to change its stability as a base classifier. We observe that the resultant
discrimination and accuracy increase both with increasing k, which supports our
claim.
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Figure 3.9 Accuracy and discrimination comparison with NBS as a
ranker and IBk as a base learner with different values of k.

3.2.6 Sanity Check

In our current setting of the discrimination problem, we assume that our training
set is discriminatory while our future test set is expected to be non-discriminatory.
Unfortunately, this ideal scenario is not readily available for experiments but in
this chapter we try to mimic this scenario by using the Dutch 1971 census data as



3.2 Experiments 57

Table 3.5 Detail of working and not working males and females in the
Dutch 1971 Census dataset.

Job=Yes (+) Job=No (-)
Male 38387 (79.78%) 9727 (20.22%) 48114

Female 10912 (21.12%) 40746 (78.88%) 51658
Disc = 79.78 - 21.12 = 58.66%

Table 3.6 Detail of working and not working males and females in the
Dutch 2001 Census dataset.

Job=Yes (+) Job=No (-)
Male 52885 (75.57%) 17097 (24.43%) 69982

Female 37893 (51.24%) 36063 (48.768%) 73956
Disc = 75.57 - 51.24 = 24.23%

a training set and the Dutch 2001 census data as a test set. In our experiments, we
use the attribute economic status as class attribute because this attribute uses similar
codes for both the 1971 and the 2001 dataset. This attribute determines whether
a person has a job or not; i.e., is economically active or not. We remove some
attributes like current economic activity and occupation from the experiments to
make both datasets consistent w.r.t. codings. Tables 3.5 and 3.6 show that in Dutch
1971 Census data, the percentage of unemployment among females is much higher
than in the Dutch 2001 Census data. This difference shows that the gender-related
inequality in access to the job market reduced from the 70s to 2001.

If we now learn a traditional classifiers over the 1971 data and test it over the 2001
data without taking the discrimination aspect into account, it will classify the future
data with low accuracy and high discrimination. In contrast, our discrimination-
aware classification methods classify the future data objects with low discrimina-
tion and maintain a significantly high level of accuracy. However, we also observe
that the Massaging method with some rankers overshoots the discrimination and
results in low accuracy scores. One reason for this low accuracy scores is that our
test set is not completely discrimination-free. In future we plan to repeat these ex-
periments over the unbiased test set for further exploration. We are also interested
to propose discrimination-aware methods that reduce the discrimination level to a
desired level only, not more than that. It is important to notice in these experiments
that when the test set is discriminatory, our prosed methods always lose accuracy
but in this case, when the test set is relatively less discriminatory, it is not always
the case and many times our methods affect the accuracy positively.
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Figure 3.10 Accuracy and discrimination comparison when we use dis-
criminatory training set (the Dutch 1971 census dataset) and
non-discriminatory test set (the Dutch 2001 Census dataset).
Three lines represent the baselines for three classifiers NBS,
J48, IBK3 (top to bottom).

3.2.7 Conclusions of the Experiments

From the results of our experiments we draw the following conclusions:

1. Our proposed methods give comparable accuracy and low discrimination
scores on average when applied to non-discriminatory test data.

2. Just removing the sensitive attribute from the dataset is not enough to ensure
discrimination-aware classification due to redlining effect.

3. All the proposed methods consistently outperform the baseline methods w.r.t.
the accuracy-discrimination trade-off.

4. Our proposed preprocessing methods for discrimination-aware classification
can be combined with any classifier. The effect of this preprocessing is better
captured when training unstable classifiers.

3.3 Conclusion

In this chapter we presented the classification with non-discriminatory constraints
problem. Three approaches towards the problem were proposed: Massaging, Reweigh-
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ing and Sampling the dataset. All approaches remove the discrimination from the
training data and subsequently a classifier is learned on this unbiased data. Experi-
mental evaluation shows that indeed this approach allows for removing discrimina-
tion from the dataset more efficiently than simple methods such as, e.g., removing
the sensitive attribute from the training data. We also empirically show that when
the test set is non- (or less) discriminatory, our proposed methods do not always
influence the accuracy negatively.



60 Chapter 3. Discrimination-aware Pre-processing Techniques



Chapter 4

Discrimination-aware Decision
Tree Learning

61



62 Chapter 4 Discrimination-aware Decision Tree Learning

In the previous chapter we proposed three solutions to the discrimination-aware
classification problem based on modifying the input data. We propose two so-
lutions to construct decision trees without discrimination. The first solution is
based upon the adaptation of the splitting criterion in the decision tree learner
and the second approach is based upon the post-processing of decision tree with
discrimination-aware pruning and relabeling of tree leaves. Before going into the
details of our proposed solutions to the discrimination problem we revise decision
tree learning.

4.1 Decision Tree

A decision tree is a flow-chart like structure which is fairly easy to interpret and
allows for easy identification of significant variables. Each internal node (non-leaf
node) in a decision tree denotes a test on an attribute. We refer to this attribute as
test attribute and is denoted by test att. Each branch represents an outcome of the
test and corresponds to a value of the test attribute. In case of numeric attributes,
we split the whole range of values at certain point and each branch corresponds
to the one range of values. Each leaf node of the tree is labeled with a certain
class label. The topmost node in a tree is the root node. Learned trees can also be
represented as sets of if-then-else rules to improve human readability.

Decision trees classify future data objects by sorting them down the tree from the
root to some leaf node. An instance is classified by starting at the root node of
the tree, testing the attribute specified by this node, then moving down the tree
branch corresponding to the value of the attribute in the given data object. This
process is then repeated for the subtree rooted at the new node and continues up to
the leaves. Each leaf is labeled with the majority class of its data objects and any
future instance ending on this leaf will get the class label of this leaf.

Figure 4.1 gives a simple decision tree built over the dataset given in the same
figure. This tree assigns accept (+) or reject (-) class to job applicants based upon
their features. If we want to use this decision tree to classify a new job applicant, it
will first check the job type of the application. If the job type is board, the applicant
will be assigned the positive class and if the job type is education the applicant will
be assigned the negative class label. The applicants, who have applied for health
care jobs, need further evaluation on the basis of their highest degree attribute to
get a class label.

The core decision tree algorithms ID3 (Iterative Dichotomiser) [68] and C4.5 (a
successor of ID3) [69] use a top-down recursive divide-and-conquer approach through
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Sex Ethnicity
Highest
Degree

Job Type Class

m native h. school board +
m native univ. board +
m native h. school board +
m non-nat. h. school healthcare +
m non-nat. univ. healthcare -
f non-nat. univ. education -
f native h. school education -
f native none healthcare +
f non-nat. univ. education -
f native h. school board +

Figure 4.1 A simple decision tree leant from the data set given in the
above table.

the space of all sub-trees. Later on many extensions to these basic algorithms have
been proposed. In this chapter, however, we work with C4.5 and do experiments
with its Weka implementation (known as J48). Decision tree inducers start with
a training set of tuples and their associated class labels. The training set is recur-
sively partitioned into smaller subsets as the tree is being built. The pseudocode of
a basic decision tree algorithm is given in Algorithm 7.

Decision trees are very popular classification models in data mining and machine
learning because they require only modest resources to learn and fast in perfor-
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Algorithm 7: Decision Tree Induction

1 Parameters: Split evaluator gain
Input: Dataset D over {A1, . . . , An,Class}.
Output: Decision Tree DT

1: Create a node N
2: if pure(D) is empty then
3: return N as a leaf labeled with majority class of D
4: else
5: Select test att s.t. gain(test att , test) is maximized
6: Label node N with test att
7: for Each outcome i of test(test att) do
8: Grow a branch from node N for the condition test(test att) = i
9: Let Di be the set of examples X in D for which test(X.test att) = i

holds
10: Attach the node returned by Decision Tree(Di) at the end of the branch
11: end for
12: end if

mance. Decision trees are also robust to noisy data, errors in the attribute values,
and errors in class labels of historical data objects. Classification methods have
been successfully applied to a broad range of tasks, e.g., to diagnose medical cases,
credit risk analysis, astronomy [62, 40].

4.1.1 Split Criteria

In decision trees construction, the most important question is which attribute should
be selected as a test attribute. The splitting criterion is a heuristic for selecting the
test attribute that “best” separates a given data partition, D, of labeled data objects
into different classes. Our main intention is to divide the dataset, D, into smaller
pure partitions, i.e., most of the data object in each data partition should belong to
the same class. For this purpose there are many splitting criteria to select the best
attribute to split the decision trees into subtrees or leaves, e.g., information gain,
gain ratio, gini index.

We only discuss information gain in detail, for other splitting criteria the reader is
referred to [40]. We revise some of the formal notation given in Chapter 2. We refer
the dataset, D, as a data partition. Suppose the class attribute Class has k distinct
values defining k distinct classes, c1, c2, . . . , ck. Let Dci be the set of tuples of
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class Class i in D. Let |D| and |Dci| denote the number of tuples in D and Dci,
respectively.

Information Gain

In this section we discuss information gain as the test attribute selection measure.
We select an attribute with the highest information gain as the test attribute. We
start building a decision tree from the root node. At the root node our data partition
equal to the whole training data and our attribute list consists all the attributes in D.
In every iteration of the algorithm, we want to select the test attribute for node N
that minimizes the information needed to classify the data objects in the resulting
data partitions (line 5 of Algorithm 7). The information required to classify a data
object in D is:

InfoClass(D) :=
k∑

i=1

−Pi log2 Pi , (4.1)

where Pi is the probability that a given data object in D belongs to class Class i
and is estimated by |Dci|

|D| . Equation 4.1 gives the average amount of information
required to classify a data object in data partition D, also known as the entropy of
D.

Now, we calculate the amount of information needed to classify a data object if we
split our data D into smaller partitions according to the values of an attribute F . Let
the attribute F has v distinct values, f1, f2, . . . , fv. We make a separate partition of
D for each value of F , i.e., D is partitioned into v subsets, D1, D2, . . . , Dv, where
Dj contains those tuples in D that have outcome fj of F . Ideally each smaller
partition should be pure, i.e., all data objects in this partition belong to one class. If
these smaller partitions are still not pure, it mean that we are still in need of more
information to arrive at an exact classification, i.e. to make every partition pure.
We calculate this information in the following way:

InfoClass
F (D) :=

v∑
j=1

|Dj |
|D|

× InfoClass(Dj) . (4.2)

The term |Dj |
|D| acts as the weight of the jth partition. InfoClass

F (D) is the expected
information required to classify a tuple from D based on the partitioning by F .
The smaller the expected information (still) required, the greater the purity of the
partitions. Information gain is defined as the difference between the original in-
formation requirement (i.e., based on just the proportion of classes) and the new
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requirement (i.e., obtained after partitioning by F ). That is,

IGC (F ) = InfoClass(D)− InfoClass
F (D) (4.3)

IGC (F ) gives us the expected reduction in the information requirement by parti-
tioning the data w.r.t. the values of F . It is important to notice that we denote this
gain by IGC (information gain for class attribute) because in the next sections we
also use IGS where we want to make our data partitions pure w.r.t. the sensitive
attributes. We calculate IGS for an attribute F in the following way:

IGS (F ) = InfoS (D)− InfoSF (D) . (4.4)

We select the attribute with the highest information gain as the test attribute at node
N [40].

Example 5 Let us select the best attribute from the data set given in Figure 4.1.
We first use Equation (4.1) to compute the expected information needed to classify
a tuple in D:

InfoClass(D) := − 5

10
log2

5

10
− 5

10
log2

5

10
= 1 .

Next, we need to compute the expected information requirement for each attribute.
Lets start with the attribute Job Type. The attribute Job Type has three values;
board, health care, and education. If we partition our data w.r.t. to the values of
the Job Type attribute, the board partition consists of 3 + class objects (it is pure),
the education partition has 3 − class data objects (it is also pure), and the health
care partition has 2 + class objects and one − class objects (not fully pure). We
use the formula given in Equation 4.2 to calculate how much more information
will be required to achieve an exact classification if we partition our data over the
attribute Job Type. The average amount of information will be:

InfoClass
Job Type(D) =

4

10
× (−4

4
log2

4

4
)

+
3

10
× (−3

3
log2

3

3
)

+
3

10
× (−1

3
log2

1

3
− 2

3
log2

2

3
)

= 0 + 0 + 0.305 = 0.305

So, the gain in information from this partitioning would be

IGC (Job Type) = InfoClass(D)− InfoClass
Job Type(D)

= 1− 0.305 = 0.695
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Similarly, we can compute IGC (H.Degree) = 0.285, IGC (Ethnicity) = 0.256,
and IGC (Sex) = 0.125. As the attribute Job Type has the highest information
gain, it is selected as the test attribute. The root node is labeled with this attribute
and three branches w.r.t. the values of this attribute are grown. As the board
partition and the education partition are pure, we assign class labels to these nodes
and convert these nodes to leaves of the trees with certain class labels. The same
procedure is repeated at the resultant node for the value health care. For this
partition, the attribute Highest Degree has the highest information gain and is
selected as the test attribute. In this way, we get a final tree as shown in Figure 4.1
[62, 40].

4.1.2 Pruning

Most of the decision tree learning algorithms continue to grow branches of the tree
to make every leaf as pure as possible. This greedy approach leads to difficulties
when the training data is noisy or too small to produce a representative sample of
the true target class. In either of these cases, we end up with the trees that overfit
the training examples. Tree pruning methods address this problem of overfitting the
data. Pruned trees are smaller, less complex and, thus, easier to comprehend. They
are usually faster and better at correctly classifying the test data than unpruned
trees.

Figure 4.2 A pruned decision tree

Tree pruning has two types; prepruning and postpruning. In the prepruning ap-
proach, we prune a tree by stoping its construction early. We do not grow the
branches of the tree further from a node, if the further partitioning falls below a
certain threshold. Different measures, e.g., information gain are used to assess this
threshold which is often hard to choose. In this case the node becomes a leaf and
labeled with the majority class of its instances. In postpruning, we first grow a
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full tree and then convert some of its branches into leaves. In practice this pruning
method is more successful and more frequently used. For both pruning methods it
is very important to decide the most optimal size of the tree. There are different
techniques to determine the optimal size of the tree, e.g.; use a separate set of ex-
amples, called validation set, to evaluate the utility of post-pruning nodes from the
tree. Figure 4.2 shows a pruned tree when apply pruning to the decision tree given
in Figure 4.1 [62, 40].

4.2 Discrimination-Aware Tree Construction

In discrimination-aware classification we are not only concerned with accuracy,
but also with discrimination. Therefore, we will change the iterative refinement
process by also taking into account the influence of newly introduced split on the
discrimination of the resulting tree.

Figure 4.3 A pruned decision tree with the details of + and − objects
in each leaf. The data objects with Sex = f are encircled.
The instance shown in gray color represent the misclassified
instances. Acc=90% Disc=60%

Our first solution is changing the attribute selection criterion as in step 5 of Algo-
rithm 7. To measure the influence of the split on the discrimination, we use the
same information gain, but now w.r.t. the sensitive attribute S instead of the class
Class and denote it by IGS. IGS selects the attribute as the test attribute with
the highest information gain (w.r.t. the sensitive attribute) to partition the data into
smaller pure (w.r.t. the sensitive attribute) data partitions. We define the IGS in
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Equation 4.4 in the following way:

IGS (F ) = InfoS (D)− InfoSF (D) .

InfoS (D) and InfoSF (D) are calculated in a similar way as given in Equation 4.1
and 4.2 except now our objective is to make the smaller partitions of D pure w.r.t.
the sensitive attribute. IGS (F ) gives us the expected reduction in the information
requirement by partitioning the data w.r.t. the value of F .

Example 6 Before going into the details of our proposed discrimination-aware
criteria, we calculate the resultant accuracy and discrimination of the decision
tree, constructed in our running example, using the traditional splitting criterion
(IGC). Figure 4.3 shows a pruned tree constructed over the dataset given in Figure
4.1 using the splitting criterion. This tree has three leaves l1, l2, l3 where leaves l1
and l2 are labeled with + class and leave l3 is labeled with − class. When we test
this leaned tree over the dataset given in Figure 4.1, it makes only one error in leaf
l2 and classifies a male applicant with − class to + class. Its accuracy is 90%.
Now we calculate the discrimination in the prediction of this tree. It classifies all
the male applicants into the positive class while it assigns the positive class to only
two female applicants. It means that the discrimination is 60%. Even though this
tree has a high accuracy but it is not a desirable classification model due to its
high discrimination. It is important to mention here that in this example we use
the same dataset for training and testing the decision tree just for the purpose of
easy explanation. In our experiments, however, we train our decision tree on the
training data and test it on unseen test data. All the reported discrimination and
accuracy scores are over unseen test data.

Based on these two measures IGC and IGS, we introduce two alternative criteria
for determining the best split:

IGC-IGS: We only allow for a split if causes to reduce the discrimination, i.e.,
we select an attribute which is homogeneous w.r.t. class attribute but heterogenous
w.r.t. the sensitive attribute. For this purpose, we subtract the gain in discrimination
from the gain in accuracy. We further explain the impact of this discrimination-
aware splitting criterion by using our running example of job application data.

Example 7 Table 4.1 gives the information gain values for attributes. Figure 4.4
shows a decision tree built using IGC-IGS splitting criterion. When we use IGC-
IGS as splitting criterion, the attribute Ethnicity is selected as the test attribute
because it has the highest value for IGC-IGS criterion, as given in Table 4.1. This
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Table 4.1 Information gain values by using different split criteria. The
value in bold shows the corresponding attribute as the test at-
tribute for the corresponding split criterion.

Attribute IGC IGS IGC-IGS IGC/IGS
Job Type 0.695 0.5 0.195 1.39
H. Degree 0.285 0.115 0.17 2.47826087
Ethnicity 0.256 0.0001 0.2559 2560

tree has 80% accuracy and 0% discrimination. It means the with a loss of a little
accuracy, our decision tree becomes discrimination-free. The decision tree given
in Figure 4.4 supports our intention to use IGC-IGS as a splitting criterion that we
want to make the leaves of the learnt tree pure w.r.t. the class attribute and impure
w.r.t. the sensitive attribute. Both leaves of the tree have the same number of male
and female applicants.

Figure 4.4 A pruned decision tree with the details of + and − objects
in each leaf. The data objects with Sex = f are encircled.
The instances shown in gray color represent the misclassified
instances. Acc=80% Disc=0%

IGC/IGS: We make a trade-off between accuracy and discrimination by dividing
the gain in accuracy by the gain in discrimination. This splitting criterion also
aims to make the decision trees pure w.r.t. to class attribute and impute w.r.t. the
sensitive attribute.

When we use this splitting criterion to learn a decision tree in our running job
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applicants example, we get the same tree as shown in Figure 4.4. However, the
decision tree learnt by IGC/IGS is not always similar to one that uses IGC-IGS as
splitting criterion.

As we show in our experiments that these discrimination-aware splitting criteria
reduce the discrimination from the learnt classifiers to some extent but do not make
the classifiers entirely discrimination-free. For this purpose we introduce a decision
tree leaf relabeling approach in the next section.

4.3 Relabeling

In this section we discuss our second solution to the discrimination problem which
is based the relabeling of some leaves of the learned tree. In relabeling we as-
sume that a tree is given and the goal is to reduce the discrimination of the tree by
changing the class labels of some of the leaves. Let T be a decision tree with n
leaves. Such a decision tree partitions the example space into n non-overlapping
regions. See Figure 4.5 for an example; in this figure (top) a decision tree with 6
leaves is given, labeled l1 to l6. The lower part of the figure shows the partition-
ing induced by the decision tree. When a new example needs to be classified by
the decision tree, it is given the majority class label of the region it falls into; i.e.,
the leaves are labeled with the majority class of their corresponding region. The
relabeling technique, however, will now change this strategy of assigning the label
of the majority class. Instead, we try to relabel the leaves of the decision tree in
such a way that the discrimination decreases while trading in as little accuracy as
possible. For example, in the tree we can compute the influence of relabeling a
leaf on the accuracy and discrimination of the tree on a dataset D as follows. Let
the joint distributions of the class attribute Class and the sensitive attribute S for
respectively the whole dataset and for the region corresponding to the leaf be given
by the following contingency table (For the dataset additionally the frequencies
have been split up according to the predicted labels by the tree):

Dataset
Class → − +
Pred. → −/+ −/+

S = b U1/U2 V1/V2 F

S = w W1/W2 X1/X2 M

N1/N2 P1/P2 1

Leaf l1
− +

S = b u v f

S = w w x m

n p a

Hence, e.g., a fraction a of the examples end up in the leaf we are considering for
change, of which n are in the negative class and p in the positive. Notice that for
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Figure 4.5 Decision tree with the partitioning induced by it. The + and
− symbols in the partitioning denote the examples that were
used to learn the tree. Encircled examples have S = b. The
grey background denotes regions where the majority class is
−.

the leaf we do not need to split up u, v, w, and x since all examples in a leaf are
assigned to the same class by the tree.

With these tables it is now easy to get the following formulas for the accuracy and
discrimination of the decision tree, denoted by accT and discT respectively, before
the label of the leaf l is changed:

accT = N1 + P2

discT =
W2 +X2

M
− U2 + V2

F
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We will now study what will be the influence of relabeling one of the leaves. The
effect of relabeling the leaf now depends on the majority class of the leaf; on the
one hand, if p > n, the label of the leaf changes from + to − and the effect on
accuracy and discrimination is expressed by:

∆accl = n− p

∆discl =
u+ v

f
− w + x

m

on the other hand, if p < n, the label of the leaf changes from − to + and the effect
on accuracy and discrimination is expressed by:

∆accl = p− n

∆discl = −u+ v

f
+

w + x

m

Notice that relabeling leaf l does not influence the effect of the other leaves because
every leaf in a learned decision tree is independent of other leaves in the tree and
that ∆accl is always negative or zero.

Example 8 Consider the dataset and tree given in Figure 4.5. The contingency
tables for the dataset and leaf l3 are as follows:

Dataset
Class → − +
Pred. → −/+ −/+

S = b 5
20/

1
20

1
20/

3
20

1
2

S = w 3
20/

1
20

1
20/

5
20

1
2

8
20/

2
20

2
20/

8
20 1

Leaf l3
− +

S = b 1
20

1
20

2
20

S = w 1
20 0 1

20
2
20

1
20

3
20

The effect of changing the label of node l3 from − to + hence is: ∆accl = − 1
20

and ∆discl = − 1
10 .

The central problem is to select exactly this set of leaves that is optimal w.r.t. reduc-
ing the discrimination with minimal loss in accuracy, as expressed in the following
Optimal relabeling problem (RELAB):

Problem 2 (RELAB) Given a decision tree T , a bound ϵ ∈ [0, 1], and for every
leaf l of T , ∆accl and ∆discl, find a subset L of the set of all leaves L satisfying

rem disc(L) := discT +
∑
l∈L

∆discl ≤ ϵ
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that minimizes
lost acc(L) := −

∑
l∈L

∆accl .

We will now show that the RELAB problem is actually equivalent to the following
well-known combinatorial optimization problem:

Problem 3 (KNAPSACK) Let a set of items I, an integer bound K, and for every
item i ∈ I, a weight w(i) and a profit p(i) > 0 be given. Find a subset I ⊆ I
subject to

∑
i∈I w(i) ≤ K that maximizes

∑
i∈I p(i).

The following theorem makes the connection between the two problems explicit.

Theorem 3 Let T be a decision tree, and ϵ ∈ [0, 1] and for every leaf l of T , ∆accl
and ∆discl have been given.

The RELAB problem with this input is equivalent to the KNAPSACK problem with
the following inputs:

• I = { l ∈ L | ∆discl < 0 }

• w(l) = −α∆discl for all l ∈ I

• p(l) = −α∆accl for all l ∈ I

• K = α
(∑

l∈I discl − discT + ϵ
)

Where α is the smallest number such that all w(l), p(l), and K are integers.

Any optimal solution L to the RELAB problem corresponds to a solution I = I \L
for the KNAPSACK problem and vice versa.

Proof. Let L be an optimal solution to the RELAB problem. Suppose l ∈ L has
∆discl ≥ 0. Then, rem disc(L \ {l}) ≤ rem disc(L) ≤ ϵ, and, since ∆accl is
always negative, lost acc(L \ {l}) ≤ lost acc(L). Hence, there will always be
an optimal solution for RELAB with L ⊆ I. The equivalence of the problems
follows easily from multiplying the expressions for rem disc and lost acc with α
and rewriting them, using

∑
l∈I w(l) =

∑
l∈Lw(l) +

∑
l∈I w(l) for I = I \L. 2

From this equivalence we can now derive many properties regarding the intractabil-
ity of the problem, approximations, and guarantees on the approximation. Based on
the connection with the KNAPSACK problem, the greedy Algorithm 8 is proposed
for approximating the most optimal relabeling. The following corollary gives some
computational properties of the RELAB problem and a guarantee for the greedy al-
gorithm.
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Algorithm 8: Relabel
Input: Tree T with leaves L, ∆acc(l),∆disc(l) for every l ∈ L, ϵ ∈ [0, 1]
Output: Set of leaves L to relabel

1: I := { l ∈ L | ∆discl < 0 }
2: L := {}
3: while rem disc(L) > ϵ do
4: best l := argmaxl∈I\L(discl/accl)
5: L := L ∪ {l}
6: end while
7: return L

Corollary 1

1. RELAB is NP-complete.

2. RELAB allows for a fully polynomial approximation scheme (FPTAS) [15].

3. An optimal solution to RELAB can be found with a dynamic programming
approach in time O(|D|3|I|) 1

4. The difference in accuracy of the optimal solution and the accuracy of the
tree given by Algorithm 8 is at most rem disc(L)−ϵ

∆discl
∆accl where l is the last

leaf that was added to L by Algorithm 8.

Proof. Membership in NP follows from the reduction of RELAB to KNAPSACK.
Completeness, on the other hand follows from a reduction from PARTITION to
RELAB. Given a multiset {i1, . . . , in} of positive integers, the PARTITION prob-
lem is to divide this set into two subsets that sum up to the same number. Let
N = i1 + . . . + in. Consider a database D with 3N tuples and a decision tree
T with the following leafs: T has 2 big leafs with N tuples with S = b and
Class = −, and n leafs with respectively i1, . . . , in tuples, all with S = w and
Class = +. The accuracy of the tree is 100%. It is easy to create such an example.
The discrimination of the tree T equals 100% − 50% = 50%. Changing one of
the big leafs will lead to a drop in accuracy of 1/3 and a drop in discrimination
of 50%, to 0%. Changing the jth positive leaf will lead to a drop in accuracy of
ij/3N and a drop in discrimination of ij/N . The partition problem has a solution
if and only if the optimal solution to the RELAB problem for the tree T with ϵ = 0
has lost acc = 1/6.

1Notice that this bound is not inconsistent with the NP-completeness of Relab, as RELAB does
not take the dataset D as input, but only the ∆’s.
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Point 2 follows directly from the reduction of RELAB to KNAPSACK. 3 follows
from the fact that α is at most |D|(|D|S )(|D|S ) ≤ |D|3 and the well known
dynamic programming solution for KNAPSACK in time O(K|I|). 4 follows
from the relation between KNAPSACK and the so-called fractional KNAPSACK-
problem [15]. The difference between the optimal solution and the greedy solution
of Algorithm 8 is bounded above by the accuracy loss contributed by the part of l
that overshoots the bound ϵ. This “overshoot” is ϵ−rem disc(L)

∆discl
. The accuracy loss

contributed by this overshoot is then obtained by multiplying this fraction with
−∆accl. 2

The most important result in this corollary is with no doubt that the greedy Al-
gorithm 8 approximates the optimal solution to the RELAB problem very well. In
this algorithm, in every step we select the leaf that has the least loss in accuracy per
unit of discrimination that is removed. This procedure is continued until the bound
ϵ has been reached. The difference with the optimal solution is proportional to the
accuracy loss that corresponds to the fraction of discrimination that is removed too
much.

Example 9 Consider again the example decision tree and data distribution given
in Figure 4.5. The discrimination of the decision tree is 20%. Suppose we want to
reduce the discrimination to 5%. The ∆’s and their ratio are as follows:

Node ∆acc ∆disc ∆disc
∆acc

l1 −15% −10% 2/3
l2 −15% −10% 2/3
l3 −5% −10% 2
l4 −10% −20% 2
l5 −10% 0% 0
l6 −5% 10% −2

The reduction algorithm will hence first pick l3 or l4, then l1 or l2, but never l5 or
l6. In this example we relabel leaf l3 to make the decision tree discrimination-free,
as shown in Figure 4.6. After relabeling of leaf l3, as the leaf l3 and l4 have same
labels, they are merged to make a single leaf.

Optimal Relabeling With IGC+IGS Split: We introduce a new splitting criterion
in which we add up the accuracy gain and the discrimination gain. It means that
we want to construct a homogeneous tree w.r.t. both accuracy and the sensitive
attribute. Our rationale behind this splitting criterion is that it leads to pure leaves
w.r.t. the class attribute to achieve high accuracy and pure leaves w.r.t. the sensitive
attribute which enable us make minimal changes when we relabel a the decision
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Figure 4.6 A decision tree after Relab. The leaf l3 is relabeled and leaves
l3 and l4 are merged.

tree leaves to make the decision tree discrimination-free. So IGC+IGS will lead
to good results in combination with the relabeling technique as we show in our
experiments.

4.4 Experiments

Datasets: We apply our proposed solutions on the Adult dataset, the Commu-
nities dataset, and two Dutch census datasets of 1971 and 2001 given in Section
1.3.1 of Chapter 1.

In this section we show the results of experiments with the new discrimination-
aware splitting criteria and the leaf relabeling for decision trees. We observe that
the discrimination-aware splitting criteria by themselves do not lead to significant
improvements w.r.t. lowering discrimination, as shown in Figure 4.7. Figure 4.7
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Figure 4.7 Results of the experiments when decision trees are learnt by
using different splitting criteria in-combination with and with-
out leaf relabeling. The continuous line shows baseline.

shows the results when we learn a decision tree with modified split criteria, the
discrimination level does not go down that much. For split criterion IGC-IGS (la-
bel IGC-IGS), the discrimination level goes down but not up to the desired level
(0%), in combination with relabeling, however, both IGC-IGS and IGC/IGS (label
IGC/IGS) reduce the discrimination to 0% but at the cost of a lot of accuracy. The
new splitting criteria IGC+IGS is an exception: sometimes, when used in combi-
nation with leaf relabeling, it outperforms the leaf relabeling with original decision
tree split criterion IGC. IGC+IGS in combination with relabeling outperforms other
splitting criteria because this criterion tries to make tree leaves homogeneous w.r.t.
both class attribute and the sensitive attribute. The more homogeneous w.r.t. the
sensitive attribute the leaves are, the less number of leaves we will have to relabel to
remove the discrimination from the decision tree. So the use of this criterion with
leaf relabeling reduces the discrimination by making the minimal possible changes
in our decision tree. For the relabeling approach, however, the results are very en-
couraging, even when the relabeling is applied with normal splitting criterion IGC.
In the rest of the experiments, we only discuss the results of relabeling approach
with IGC and IGC+IGS splitting criteria in more detail.

We compare the following techniques (between brackets their short name):

1. The baseline solutions (Baseline) that consist of removing S and its k most
correlated attributes from the training dataset before learning a decision tree,
for k = 0, 1, . . . , n. In the graphs this baseline will be represented by a black
continuous line connecting the performance figures for increasing k.

2. We also present a comparison to the previous state-of-the-art techniques,
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Figure 4.8 Accuracy-discrimination trade-off for different values of ep-
silon ϵ ∈ [0, 1] is plotted. We change the value of epsilon from
the baseline discrimination in the dataset (top right points of
lines) to the zero level (bottom left points of these lines).
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shown in Table 4.2, which includes discrimination-aware Naive Bayesian
approaches [20], and the pre-processing methods Massaging and Reweigh-
ing, given in Chapter 3, that are based on cleaning away the discrimination
from the input data before a traditional learner is applied.

3. From the proposed methodes we show the relabeling approach in combina-
tion with normal decision tree splitting criteria (IGC Relab) and with new
splitting criteria IGC+IGS (IGC+IGS Relab).

4. Finally we also show some hybrid combinations of the old and new methods;
we present the results of experiments where we first applied the Reweighing
technique on the training data to learn a tree with low discrimination (either
with the normal or the new splitting criterion). On this tree we then apply
relabeling to remove the last bit of discrimination from it (RW IGC Relab
and RW IGC+IGS Relab). The other combinations led to similar results and
are omitted from the comparison.

4.4.1 Testing the Proposed Solutions

The reported figures are the averages of a 10-fold cross-validation experiment. In
each experiment, we use the training data to learn and relabel our decision tree,
and test it over unseen test data. Every point represents the performance of one
learned decision tree on original test data excluding the sensitive attribute from
it. Every point in the graphs corresponds to the discrimination (horizontal axis)
and the accuracy (vertical axis) of a classifier produced by one particular combi-
nation of techniques. Ideally, points should be close to the top-left corner. The
comparisons show clearly that relabeling succeeds in lowering the discrimination
much further than the baseline approach. Figure 4.8 shows a comparison of our
discrimination-aware techniques with the baseline approach over three different
datasets. We observe that the discrimination goes down by removing the sensi-
tive attribute and its correlated attribute but its impact over the accuracy is very
severe. On the other hand the discrimination-aware methods classify the unseen
data objects with minimum discrimination and high accuracy for all values of ϵ.
We also ran our proposed methods with both Massaging and Reweighing but we
only present the results with Reweighing because both show similar behavior in
our experiments.
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(b) Dutch 2001 Census data is used as test set.

Figure 4.9 The results of experiments when Dutch 1971 Census dataset
is used as train set while the test set is different for both plots.

4.4.2 Sanity Check

It is very important to notice here that we measure the accuracy score here over the
discriminatory data but ideally we expect non-discriminatory test data. If our test
set is non-discriminatory, we expect our discrimination-aware methods to outper-
form the traditional method w.r.t. both accuracy and discrimination. To validate
this claim, we use the same experimental setup in our experiments as discussed in
Section 3.2.6 of Chapter 3. Now if we learn a traditional classifier over 1971 data
and test it over the same dataset using 10-fold cross validation method, it will give
excellent performance as shown in Figure 4.9 (a). When we apply this classifier to
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2001 data without taking the discrimination aspect into account, it performs very
poorly and accuracy level goes down from 89.6% (when tested on 71 data; Figure
4.9 (a)) to 73.09% (when tested on 2001 data; Figure 4.9 (b)). Figure 4.9 makes it
very obvious that our discrimination-aware technique not only classify the future
data without discrimination but they also work more accurately than the traditional
classification methods when tested over non-discriminatory data. In Figure 4.9 (b),
we only show the results of IGC Relab because other proposed methods also give
similar results. Figure 4.9 (b) shows that if we change the value of ϵ from 0 to 0.04
the accuracy level increases significantly from 74.62% to 77.11%. We get the max-
imum accuracy at ϵ = 0.04 because the Dutch 2001 Census data is not completely
discrimination-free.

In order to assess the statistical relevance of the results, in Table 4.2 the exact accu-
racy and discrimination figures together with their standard deviations have been
given. As can be seen, the deviations are in general much smaller than the dif-
ferences between the points. Table 4.2 also gives a comparison of our proposed
methods with the other state-of-the-art methods on the Adult dataset. We select the
best results of the competitive methods to compare with. We observe that our pro-
posed method outperform the others approaches w.r.t. the accuracy-discrimination
trade off.

From the results of our experiments we draw the following conclusions:

1. Our proposed methods give high accuracy and low discrimination scores
when applied to non-discriminatory test data. In this scenario, our methods
are the best choice, even if we are only concerned with accuracy.

2. The improvement in discrimination reduction with the relabeling method
is very satisfying. The relabeling reduces discrimination to almost 0% in
almost all cases if we decrease the value of ϵ to 0.

3. The relabeling methods outperform the baseline in almost all cases. As such
it is fair to say that the straightforward solution is not satisfactory and the use
of dedicated discrimination-aware techniques is justified.

4. Our methods significantly improve the current stat-of-the-art techniques w.r.t.
the accuracy-discrimination trade off.
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Table 4.2 The results of experiments over the Adult dataset with their
standard deviations. (ϵ = 0.01)

Method Disc (%) Acc (%)
IGC Relab 0.31± 1.10 81.10± 0.47

IGC+IGS Relab 0.90± 1.50 84.00± 0.46

RW IGC Relab 0.59± 1.17 81.66± 0.60

RW IGC+IGS Relab 0.63± 1.29 82.27± 0.67

Massaging 6.59± 0.78 83.82± 0.22

Reweighing 7.04± 0.74 84.84± 0.38

Naive Bayesian Approach 0.10 80.10

4.5 Conclusion

In this chapter we have presented the construction of a decision tree classifier with-
out discrimination. This is a different approach of addressing the discrimination-
aware classification problem. The discrimination-aware techniques introduced in
Chapter 3 are focused on “removing” discrimination from the training data and
thus can be considered as “preprocessors”. In this chapter on the contrary, we
propose the construction of decision trees with non-discrimination constraints. Es-
pecially relabeling, for which an algorithm based on the KNAPSACK problem is
proposed, showed promising results in an experimental evaluation. It is shown that
the discrimination-aware decision trees outperform the other discrimination-aware
techniques by giving much lower discrimination scores and maintaining the accu-
racy high. Moreover, it is shown that if we are only concerned with accuracy, our
method is the best choice when the training set is discriminatory and the test set
is non-discriminatory. All methods have in common that to some extent accuracy
must be traded-off for lowering the discrimination. This trade-off was studied and
confirmed theoretically in Chapter 2.
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The discrimination-aware classification techniques discussed in Chapters 3 and 4
aim at removing all discrimination and do not take into account the fact that a part
of the discrimination may be explainable by other attributes. For instance in the
Adult dataset [14] one can observe that females have a lower annual income than
males on average. However, one can also observe that females work fewer hours
per week on average; see Table 5.1.

Table 5.1 Summary statistics of the Adult dataset
hours per week annual income (K$)

female 36.4 10.9
male 42.4 30.4
all data 40.4 23.9

Assume the task is to build a classifier to determine a salary, given an individual.
The previous works would correct the decision making in such a way that males
and females would get on average the same income, say 20 K$, leading to a re-
verse discrimination as it would result in male employees being assigned a lower
salary than female employees for the same amount of working hours. Making the
probabilities of acceptance equal for both would lead to favoring the group which
is being deprived. In many real world cases, if the difference in the decision can be
justified, it is not considered as bad discrimination.

In this chapter, we show that some of the differences in decisions across the sen-
sitive groups can be explainable and hence tolerable. We take a step forward in
designing discrimination-free classifiers and extend our discrimination problem
setting. We argue that only the part of the discrimination which is not explain-
able by other characteristics should be removed. We observe that in such cases, the
previously discussed discrimination-aware classification techniques tend to remove
all the discrimination by ignoring the explainable part of the discrimination.

Therefore, in this chapter we analytically quantify how much of the difference
in the decision making across the sensitive groups is objectively explainable, and
how much is not. We aim at removing discrimination, but only if it is not explained
by other attributes. We refer to the discrimination-aware classification under this
condition as conditional discrimination-aware classification. With our analytical
results we develop two new techniques for handling the unexplainable discrimi-
nation when one of the attributes is considered to be an explanatory attribute for
the discrimination. Our proposed techniques are based on pre-processing the data
before training a classifier so that only the discrimination that is not explainable is
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removed. These two techniques are called local massaging and local preferential
sampling. Finally we give an experimental evaluation which demonstrates that the
new techniques remove exactly the bad discrimination, allowing the differences in
decisions to be present as long as they are explainable.

5.1 Formal Setting

In general there is no objective truth which attribute is more reasonable to use as the
explanation for the discrimination. Some attributes, such as relationships (‘wife’
or ‘husband’) are not a good explanation for low income if we want to remove
the gender-discrimination, but for others it is situation-dependent. For instance,
in many cases, high or low education is an appropriate reason to have different
acceptance rates between ethnic groups. We assume that the convention of which
attributes can be used as an explanation is given externally by law or by domain
experts. We refer to such attributes as the explanatory attributes.

In this chapter we assume there is only one explanatory attribute E ∈ A that is
correlated with the sensitive attribute S , and at the same time gives objective infor-
mation about the Class . Both relations can be measured in the data, for instance,
as the information gain about S given E , and about Class given E .

In the discrimination-aware classification techniques discussed in the previous chap-
ters, the discrimination was considered to be present if the probabilities of accep-
tance for the favored community w and the deprived community b were not equal,
i.e., P (X(Class) = +|X(S ) = w) ̸= P (X(Class) = +|X(S ) = b). Discrimi-
nation was measured as the difference between the two probabilities

Dall = P (X(Class) = +|X(S ) = w)− P (X(Class) = +|X(S ) = b).

All the difference in acceptance between the two groups was considered undesir-
able. In this chapter, however, we argue that some of the difference may be objec-
tively explainable by the explanatory attribute. Thus we can describe the difference
in the probabilities as a sum of the explainable and bad discrimination

Dall = Dexplainable +Dbad. (5.1)

In this study we are interested to remove and thus measure Dbad, which from Eq.
(5.1) is

Dbad = Dall −Dexplainable. (5.2)

For that we need to find an expression for Dexplainable. We will follow that same
formal notations as given in Chapter 2. Additionally, in this chapter we make
following assumptions.
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1. The sensitive and explanatory attributes are nominated externally by law or
a domain expert;

2. The explanatory attribute is not independent from the sensitive attribute and
at the same time gives objective information about the class label;

3. The bad discrimination contained in the historical data is due to direct dis-
crimination based on the sensitive attribute. It means no redlining (hidden
discrimination) in the historical data; however, redlining may be introduced
as a result of training a classifier on this data.

5.2 Explainable and Bad Discrimination

To illustrate the difference between the explainable and bad discrimination, con-
sider a toy example about the admission procedure of a fictitious university1. Gen-
der is the sensitive attribute; male (m) and female (f) are the sensitive groups,
against which discrimination may occur. There are two programs: medicine (med)
and computer science (cs) with potentially different acceptance standards. Program
is considered to be the explanatory attribute. In this example, we assume that the
differences in acceptance statistics between male and female that can be attributed
to different participation grades into the programs are acceptable. All applicants
take a test for which their score is recorded (test). The acceptance (+) decision is
made personally for each candidate during the final interview. Figure 5.1 shows
the setting.

There are four relations between variables in this example. Relation (1) shows that
the final decision whether to accept partially depends on the test score. Notice that
the test scores are assumed to be independent from gender or program. Relation (2)
shows that the probability of acceptance depends on the program. For example, the
competition to medicine may be higher, thus less applicants are accepted in total.
Relation (3) shows that the choice of program depends on gender. For instance,
the larger part of the female candidates may apply to medicine, while more males
apply to computer science. Relation (4) shows that acceptance also depends on
gender, which is a bias in the decision making that is clearly a case of bad discrim-
ination. Now we discuss different examples, where some of these dependencies are
not present, to illustrate the effect of combinations of bad discrimination and ex-
plainable discrimination. In some cases, one kind of discrimination persists while
in other both exist together.

1This example does not express our belief how the admission procedures is modeled. We use it
for the purpose of illustration only.
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Figure 5.1 Toy example. Tables show the probability distribution of each
attribute.

5.2.1 How Much Discrimination is Explainable?

We will now discuss a couple of scenarios to show the different combinations of
bad and explainable discrimination. In our first scenario we give an example to
show that all the discrimination is explainable while in our second scenario we
give an example to show a case with both explainable and bad discrimination.

Only explainable discrimination (Example 1): Assume there are 2000 appli-
cants, 1000 males and 1000 females. Each program receives the same number
of applicants, but medicine is more popular among females. Assume further that
medicine is more competitive. The situation is described in Table 5.2. Within
each program males and females are treated equally. But when we count the final
scores, it appears that 36% of males were accepted, but only 24% of females. The
difference is explained by the fact that more females applied to the more compet-
itive program. Thus, there is no bad discrimination. Such a case is reported in

Table 5.2 No bad discrimination.
medicine computer

female male female male
number of applicants 800 200 200 800
acceptance rate 20% 20% 40% 40%
accepted (+) 160 40 80 320

the Berkely study [17]. Examination of aggregate data on graduate admissions to
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the University of California, Berkeley, for fall 1973 shows a clear but misleading
pattern of bias against female applicants. Apparently there is 9% discrimination
(DAll) towards female applicants, i.e., overall 44% of males and 35% of female
applicants are admitted. However, the examination of pooled data w.r.t. different
departments, shows that there is a small but statistically significant bias in favor of
females. It means that the overall low admission rate for females is explainable by
their tendency to apply to graduate departments that were more difficult for appli-
cants of either sex to enter. The case concluded that there was no discrimination.

Both explainable and bad discrimination (Example 2): Assume a similar sit-
uation, but now there is a bias in the decision making favoring males, as shown
in Table 5.3. The programs obviously have different aggregated acceptance rates,
medicine 17% and computer science 43%. It appears that in total 19% of females
and 41% of males are accepted. We want to know which part of this difference is
explainable by program, and which part is due to bad discrimination.

Table 5.3 Bad discrimination is present.
medicine computer

female male female male
number of applicants 800 200 200 800
acceptance rate 15% 25% 35% 45%
accepted (+) 120 50 70 360

First we need to settle what would have been the correct acceptance rates P ⋆(+|med)
and P ⋆(+|cs) within each program ei if both genders would have been treated
equally. Then we can find which part of the difference between the genders is
explainable, and treat the remaining part as bad discrimination that needs to be re-
moved. Finding the correct acceptance rates, however, is challenging, as there is
no unique way to do it. One can only assume what would have happened if there
was no gender bias in acceptance decisions. Would all the acceptance rate have
been as the ones for males now, or all as for females? Or an average of the two?

In this study we refer to the discrimination model given in Section 2.3.1 of Chapter
2 to find the correct acceptance rates. Under this model, it is reasonable to assume
that roughly the same fraction of men would benefit from the bias (those that are at
most d below the acceptance threshold), as there are females that have a disadvan-
tage due to the bias (those that are at most d above the threshold), because within
the programs, males and females are assumed to be equally capable. Under this
assumption we should take the average of the acceptance probability of males and
females, resulting in 20% for medicine and 40% for CS. In contrast, if we would fix
the number of positive labels in the groups to the number observed in the discrim-
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inatory data, we would get 170/1000 = 17% for medicine and 440/1000 = 44%
for computer science. Following the rationale of the discrimination model of Sec-
tion 2.3.1 of Chapter 2, however, these numbers are skewed and would result in
programs mainly populated by females to be perceived as being more selective,
leading to redlining. It means that it would transfer the discrimination from gender
to program; program with lots of females would receive an overall lower accep-
tance rate.

Thus we assume that the acceptance thresholds would have been fixed as the av-
erage of the historical acceptance thresholds for males and females. This choice
is motivated by the case that the candidates come one by one, and that any of the
candidates that is sufficiently qualified would get a position, or salary level, or
loan. Hence, there is no resource constraint and we can assume that the number of
positive outputs only depends on which instances qualify.

An alternative scenario would be to assume that all the candidates come in batch
within a deadline. Then the candidates are ranked and a fixed number of the best
candidates are offered a position. Whether to keep the number of accepted persons
fixed or to keep the acceptance threshold fixed depends on the application domain.
For instance, in case of scholarships, job application, university acceptance fix-
ing the number of persons may be more reasonable, since the applicants come in
batch at the deadline. In case of deciding to grant a credit or what salary level
to apply, fixing the threshold makes more sense (accept all individuals that pass
qualification requirements), since the individuals come one by one. We argue that
the choice of acceptance scenario is situation dependent and hence not part of the
non-discrimination techniques’ design.

Table 5.4 illustrates the calculation of the explainable part for the discrimination
toward females as given in Table 5.3. We find the correct acceptance rate within
each program as the average of male and female acceptance rates. To find the
correct acceptance rate we first need to find the acceptance thresholds, i.e., the
rates at which males and females are accepted if they apply for the programs at the
same rates. Then we take an average of the two. We illustrate the calculation in
Table 5.4. With the new rates we get the same situation as in the Example 1, where
36% of the male and 24% of the female were accepted. Thus, Dexplainable =
36%− 24% = 12%. Therefore we get Dall = 41%− 19% = 22%. From Eq.(5.2)
we get
Dbad = Dall − Dexplainable = 22% − 12% = 10%. Thus, there is 10% of bad
discrimination in the data.

The explainable discrimination is the difference between acceptance of males and
females, if every individual with value ei in the explanatory attribute would have
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Table 5.4 Calculating the explainable difference
medicine computer

female male female male
number of applicants 800 200 200 800
acceptance rate (Example 2) 15% 25% 35% 45%
corrected acceptance rate 20% 40%
accepted explainable 160 40 80 320

the same chance

P ⋆(+|ei) :=
P (+|ei,m) + P (+|ei, f)

2
(5.3)

to be accepted, independent of the gender:

Dexplainable =

k∑
i=1

P (ei|m)P ⋆(+|ei)−
k∑

i=1

P (ei|f)P ⋆(+|ei)

=

k∑
i=1

(P (ei|m)− P (ei|f))P ⋆(+|ei) (5.4)

where we assume dom(E ) = e1, . . . , ek, P (ei|m) and P (ei|f) are observed from
data, and P ⋆

c (+|ei) is calculated as in Eq.(5.3).

The bad discrimination can thus be computed as the difference between Dall =
P (+|m)− P (+|f) and Dexplainable:

Dbad = (P (+|m) − P (+|f)) −
k∑

i=1

(P (ei|m)− P (ei|f))P ⋆(+|ei) (5.5)

5.2.2 Illustration of the Redlining Effect

Now that we formalized what is bad and explainable discrimination, our next step
is to analyze under what circumstances a trained classifier risks to capture bad
discrimination. The effect of redlining over discrimination-aware classification is
already discussed in Chapters 3 and 4 in quite detail. In this section however, we
further explore it with reference to conditional discrimination-aware classification.
We continue to assume that there is one explanatory attribute, which is correlated
with the sensitive attribute. We measure Dbad as defined in Eq.(5.2).

For our analysis we use synthetic data based on our toy example introduced in Fig-
ure 5.1. We generate 10 000 male and 10 000 female instances. The (integer) test
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scores T ∈ [1, 100] are assigned uniformly for any individual. In all experiments
all probabilities in the Belief network (given in Figure 5.1) are fixed, except for the
probabilities P (ei|S ): for α ∈ [0, 1], we will generate data with: P (med|f) = α,
P (cs|f) = 1 − α, P (med|m) = 1 − α, and P (cs|m) = α. In this way we can
study the influence of the strength of the relationship between gender and program
on the discrimination, while the total number of people applying for med (resp.
cs) remains the same. The farther away α is from 0.5, the stronger the depen-
dency between the explainable and sensitive attribute becomes. Hence, the closer
P (med|f) will be to 0.5, the less explainable discrimination there will be. The
probability of acceptance is varied in the three experiments; in the first one it de-
pends on program only (all discrimination is explainable), in the second experiment
it depends on gender only (all discrimination is bad), while in the third experiment
it depends on both (discrimination is partly explainable and partially bad). For all
experiments, we plot the all-discrimination and the bad discrimination in function
of α = p(med|f), as well as for a classifier learned on this data after gender was
removed. These experiments show that our discrimination measure is in-line with
the intuition, and that removing gender from the training data does not necessarily
remove the bad discrimination, because of the redlining effect.

Case I: no bad discrimination, everything is explainable. Several observations
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Figure 5.2 Case I: no bad discrimination. All the discrimination is ex-
plainable by the different choice of program by males and fe-
males.

can be made from the plots. Since the label in the historical data does not depend
on the gender, there is no discrimination problem in the learned classifier. The
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probabilities of accepting a male and a female are different if gender and program
is strongly correlated, but all the difference is explainable. The probabilities of
accepting a male and a female are equal if the choices of programs are the same
for both genders, i.e., P (med|f) = P (med|m) = P (med) = 0.5.

Figure 5.2 illustrates the situation when all difference in acceptance is explainable
by program. It corresponds to Example 1 in Table 5.2. We plot discrimination
as a function of P (med|f), which determines how strongly the sensitive attribute
(gender) is related with the explanatory attribute (program). We fix P (med|m) =
1− P (med|f) to keep the same number of applicants.

First we plot all discrimination Dall and bad discrimination Dbad in the testing data
with the original labels. In addition, we plot the resulting discriminations with the
predicted labels by a decision tree. A decision tree is learned on the training data
from which gender has been removed. Thus, the training data includes only the
program and the test score.

Case II: only bad discrimination, program does not explain the label. Fig-
ure 5.3 illustrates an opposite case of the first one. Here all discrimination is bad,
therefore in the plots Dall and Dbad are the same. In this case there is no direct re-
lation between program and label. However, when the gender attribute is removed,
the learned decision tree captures the discriminatory decisions indirectly through
program; i.e., the redlining effect appears. The effect is strong when gender and
program are strongly correlated. There is no redlining (Dbad = 0) if program and
gender are independent, i.e., P (med|f) = P (med|m) = P (med) = 0.5.
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Figure 5.3 Case II: only bad discrimination. The acceptance depends on
the gender of candidates.

Notice that in this extreme case the classifier can be easily made discrimination-
free by removing both gender and program from the input space, without losing
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any useful information.

Case III: explanatory and bad discrimination. Figure 5.4 illustrates the sit-
uation when explanatory discrimination and bad discrimination are together. It
corresponds to Example 2 in Table 5.3. The data contains 10% discrimination in
the decision (red line), while the probability of accepting a male or a female vary
depending on the application ratios by each gender.
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Figure 5.4 Case III: explanatory and bad discrimination together. The
acceptance partially depends on the gender of candidates.

The learned decision tree shows interesting results. The actual bad discrimination
captured by the tree is the same as in Case II (red line). The overall probabilities of
acceptance differ (green line) due to the direct relation between program and label.
The figure with the decision tree results actually illustrates the Simpson’s paradox
[79], in which a relation present in different groups is reversed when the groups
are combined. We can see that if very few females apply to medicine (p(med|f)
is close to zero), which is more competitive program, then Dall (green line) in-
dicates that females are favored, while in fact they are deprived, as 10% of bad
discrimination is present (red line).

To sum up, the experiments with simulated data demonstrate the following effects:

• removing the sensitive attribute does not remove discrimination if the sensi-
tive attribute is correlated with other attributes (Cases II and III);

• if the input attribute is at the same time correlated with the sensitive attribute
and the class label and is nominated as explainable, not all difference in
probabilities of acceptance is bad, some difference is explainable; removing
all the difference in such case would result in reverse discrimination;

• Case III shows that there is a need for advanced training strategies to re-
move discrimination, and at the same time to leave the objective information,
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which could be captured by one and the same variable.

5.3 How to Remove Bad Discrimination When Training a
Classifier?

Removing the sensitive attribute only works if no other attribute is correlated with
the sensitive attribute. In real life scenarios, however, this condition does not hold
and more involved strategies to remove discrimination are required.

In order to ensure that the built classifier is discrimination-free, one needs to control
both

1. Pc(+|ei,m) = Pc(+|ei, f),where Pc is the probability assigned by the clas-
sifier, and

2. Pc(+|ei) = P ⋆(+|ei), where P ⋆(+|ei) is defined in Eq. 5.3. This means
that the prediction is consistent with the original distribution of the data.

Recall that, as we discussed before, the first condition in isolation is insufficient
due to the redlining effect; a classifier that only takes this condition into account
would under-estimate the positive class probability of a group in which females are
over-represented.

We distinguish two main strategies that could make classifiers free from bad dis-
crimination. The first strategy is to remove the relation between the sensitive at-
tribute and the class label from the training data, which is the source of the bad dis-
crimination (relation (1) in Figure 5.5). Note that removing the relation is not the
same as removing the sensitive attribute itself, it means making P (+|med, f) =
P (+|med,m) = P ⋆(+|med). We can do that, for instance, by modifying the
original labels of the training data.

There is an alternative. The data can be split into smaller groups based on the ex-
planatory attribute. Then individual classifiers can be trained for each of the group.
It would remove the relation between the sensitive and the explanatory attributes.
It would also require to correct the training labels in each groups, otherwise the
redlining effect will manifest. In addition, it would significantly reduce the data
available for training a classifier, which is undesirable.

In this section we concentrate on the first type of strategy, which is simpler than
the second type and do not have the drawbacks of the third type.



5.3 How to Remove Bad Discrimination When Training a Classifier? 97

Figure 5.5 To remove bad discrimination (due to gender) remove the re-
lation 1 or remove the relation 2.

Hence, we aim to modify the labels of the training data so that the outputs of the
trained classifiers would satisfy Pc(+|ei, f) = Pc(+|ei,m) = P ⋆(+|ei). The
first design choice is to fix the desired probabilities of acceptance Pc(+|ei), which
would have been correct. In this study we choose P ⋆

c (+|ei) to be the average
of male and female acceptance rates, Eq. (5.3). After finding P ⋆(+|ei) for all
ei ∈ E , the remaining part is to modify the training data so that P ′(+|ei, f) =
P ′(+|ei,m) = P ⋆(+|ei). (P ′ denotes the probability in the modified data). In this
work we propose two techniques: local massaging and local preferential sampling.
‘Local’ emphasizes the contrast with previous works given in Chapter 3 that used
global modification and thus risked overshooting.

Local Massaging

In local massaging, for every partition in the training data induced by the explana-
tory attribute, we will change labels until P ′(+|m, ei) and P ′(+|f, ei) both be-
come equal to P ⋆(+|ei). The massaging technique changes the values of labels of
the selected instances. To this end, massaging selects the instances that are close to
the decision boundary and switches their labels. For the selection of instances close
to boundaries, we learn a ranker on each partition to order the instances according
to their probability of acceptance. This choice is motivated by the discrimination
model, presented in Section 2.3.1 of Chapter 2, which implies that discrimination
is worse for objects closer to the decision boundary. In the admission example this
implies that in both the medicine and the cs group, we change the labels of nega-
tively classified females and positively classified males that are the closest to the
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boundary until P ′ becomes as desired. This technique is the local variant of the
massaging technique proposed in Chapter 3.

Suppose females have been discriminated and this discrimination is reflected in the
historical data. The massaging technique will select a number of females that were
almost accepted, and switch their labels to positive. It would also select a number
of males that were most likely to be rejected, but have not been rejected, and switch
their label to negative.

Our new local massaging uses the same principles as the massaging technique of
Chapter 3. However, local massaging works on the partitioned data, within each
program separately. In addition, it also modifies and controls the number of ac-
cepted males and females according to Eq. (5.3), to ensure no redlining. A proce-
dure for local massaging is illustrated in Figure 5.6 and the pseudo-code is given
in Algorithm 9.

Figure 5.6 Local massaging.

Local Preferential Sampling

The preferential sampling technique, discussed in Section 3.1.3 of Chapter 3, does
not modify the training instances or labels. Instead it modifies the composition of
the training set. It deletes and duplicates training instances so that the labels of new
training set contain no discrimination and satisfy the criteria in Eq. (5.3).

Our new local preferential sampling applies the same principles of preferential
sampling but now locally to partitions of the data. It modifies and controls the
number of accepted male and female according to Eq. (5.3), to ensure no redlin-
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Algorithm 9: Local massaging
Input : dataset (X,S ,E ,Class)
Output: modified labels ˆClass

1 PARTITION (X,E ) (Algorithm 10);
2 for each partition X(i) do
3 learn a ranker Hi : X

(i) → Class(i);
4 rank males using Hi;
5 relabel DELTA (male) males that are the closest to the decision

boundary from + to − (Algorithm 11);
6 rank females using Hi;
7 relabel DELTA (female) females that are the closest to the decision

boundary from − to +
8 end

Figure 5.7 Local preferential sampling.

ing. The procedure for local preferential sampling is presented in Figure 5.7 and
summarized in Algorithm 12.

Algorithm 10: subroutine PARTITION(X,E )

1 find all unique values of E : {E1,E2, . . . ,Ek};
2 for i = 1 to k do
3 make a group X(i) = {X : E = ei};
4 end

5.4 Experiments

In this section we compare the performance of the proposed local discrimination
handling techniques with their global counterparts. The objective is to minimize
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Algorithm 11: subroutine DELTA(gender)

1 return Gi|P (+|ei,gender)− P ⋆(+|ei)|,
2 where P ⋆(+|ei) comes from (Eq. (5.3)),
3 Gi is the number of gender people in X(i);

Algorithm 12: Local preferential sampling
Input : dataset (X,S ,E ,Class)
output: resampled dataset (a list of instances)

1 PARTITION (X,E );
2 for each partition X(i) do
3 learn a ranker Hi : X

(i) → Class(i);
4 rank males using Hi;
5 delete 1

2DELTA (male) males + that are the closest to the decision
boundary;

6 duplicate 1
2DELTA (male) males − that are the closest to the

decision boundary;
7 rank females using Hi;
8 delete 1

2DELTA (female) females − that are the closest to the
decision boundary;

9 duplicate 1
2DELTA (female) females + that are the closest to the

decision boundary;
10 end
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(the absolute value of) bad discrimination while keeping accuracy as high as pos-
sible. It is important not to overshoot and end up with reverse discrimination. The
experiments have the following goals:

1. present a motivation for conditional discrimination-aware classification re-
search,

2. explore how well the proposed techniques remove bad discrimination as
compared to the existing techniques for global non-discrimination, and

3. analyze the effects of removing discrimination on the final classification ac-
curacy.

We explore the performance of the methods that aim to remove the relation between
the sensitive attribute and the class attribute. We test local massaging and local
preferential sampling.

5.4.1 Data

In our experiments we apply our proposed methods on the Adult dataset discussed
in Section 1.3.1 of Chapter 1. Some instances from the Adult dataset with missing
values of explanatory attributes are removed and the Adult dataset we use in our
experiments consists of 47, 696 instances, which are described by 13 attributes and
a class label. Originally 6 of the 13 attributes were numeric attributes, which we
discretized. Gender is the sensitive attribute, income is the label. We repeat the
experiment several times, where any of the other attributes in turn is selected as
explanatory. Figure 5.8 (top) shows the discrimination in the dataset. The blue line
shows Dall, while the red line shows Dbad. The horizontal axis denotes the index
of the explanatory attribute.

We observe the following from the plots. First, there are several attributes that
are not strongly correlated with gender, such as workclass, education, occupation,
race, capital loss, native country. This implies that picking any of those attributes as
explanatory will not change the situation w.r.t. discrimination much. For instance,
we know from biology that race and gender are independent. Thus, race cannot
explain gender discrimination; the discrimination is either bad or it is due to some
other attributes. Indeed, we see that all discrimination with race (attribute #7) as
explanatory attribute is bad.

On the other hand, it can be seen that the relationship attribute explains a lot of Dall.
Whether relationship is an acceptable argument to justify differences in income is
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Figure 5.8 Discrimination in the datasets.

a question for lawyers to answer. In this case it is unlikely since this attribute
contains values ‘wife’, ‘husband’ which clearly capture gender information. From
a data mining perspective, if we treat it as acceptable, a lot of the difference is
explained by this attribute.
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Age, and working hours per week are other examples of explanatory attributes.
They justify some of the discrimination. Intuitively, these reasons are perfectly
valid for having different income, so it does make sense.

The Dutch Census dataset of 2001, given in 1.3.1 of Chapter 1, represents aggre-
gated groups of inhabitants of the Netherlands in 2001. We formulated a binary
classification task to classify the individuals into ‘high income’ (prestigious) and
‘low income’ professions, using occupation as the class label. Individuals are de-
scribed by 11 categorical attributes (including gender). We remove the records
of under-aged people, several professions in the middle level and people with un-
known professions, leaving 60 420 instances. Gender is the sensitive attribute.

Figure 5.8 (bottom) presents the discrimination contained in the data. The differ-
ence is much less apparent than in the Adult data. This means that in many cases
the other attributes are not that strongly correlated with the sensitive attribute. Just
removing the sensitive attribute should therefore perform reasonably well. Never-
theless, education level, age and economic activity (i.e., economic status) present
cases for conditional non-discrimination, thus we explore this dataset in our exper-
iments.

5.4.2 Motivation for Experiments

To give a motivation for our approaches we illustrate that the discrimination-aware
techniques discussed in chapters 3 and 4 do not solve the conditional non discrim-
ination problem.

Removing the Sensitive Attribute

First we test the following baseline approach. We explore what happens if the
sensitive attribute is removed from the training data. We learn a decision tree with
the J48 classifier (Weka implementation) on all the data except the gender attribute.
Figure 5.9 shows the resulting discriminations, when the tree is tested using 10-fold
cross validation.

The redlining effect is clearly present, especially in the Adult data. Even though
the sensitive attribute is removed, the bad discrimination is still present.
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Figure 5.9 The discrimination w.r.t. different explanatory attribute when
we learn a decision after removing the sensitive attribute from
the dataset.

Global Techniques

Next we show to what extent two global techniques, discussed in Chapter 3, re-
move bad discrimination. Global massaging modifies the labels of the training
data to make the probabilities of acceptance equal for the two sensitive groups.
Global preferential sampling, samples the training data so that non-discrimination
constraints for the label distribution are satisfied. Both methods aim at making Dall

equal to 0, which is not the same as removing Dbad and will actually reverse the
discrimination, as is illustrated in Figure 5.10. The global techniques do not take
into account, that the distributions of the sensitive groups may differ and thus some
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of the differences in probabilities are explainable.
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Figure 5.10 Discrimination when we make our training set discrimination-
free with the global discrimination-aware techniques.

As expected, the massaging and preferential sampling techniques work well for
removing all discrimination. For the Adult data, Dall = 0 after massaging. But, if
we treat ‘marital status’ as the explanatory attribute, the result is a reverse bad dis-
crimination. The same, but on a smaller scale, holds for several other explanatory
attributes; especially for ‘hours per week’ and ‘age’. On the Dutch Census data,
both techniques overshoot if conditioned on ‘education level’.

The results show that a reverse bad discrimination is introduced when global dis-
crimination handling techniques are applied, illustrating the need for local meth-
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ods.

When are the Local Techniques Essential?

Existing techniques fail mostly when the difference between Dall and Dbad in the
data is large. For instance, the Adult data in Figure 5.8 shows sharp negative peaks
when ‘marital status’ or ‘relationship’ are the explanatory attributes. In these cases,
specific techniques for handling conditional discrimination are essential.

A big difference between Dall and Dbad implies that a large part of the difference
in decision outcome for the sensitive attribute is due to the explanatory attribute.
We quantify the dependencies between class on the one hand, and sensitive and
explanatory attributes on the other hand by the following information gains:

IGC (E ) = InfoClass(D)− InfoClass
E (D), and

IGS (E ) = InfoS (D)− InfoSE (D).

IGC (E ) and IGS (E ) represent the information gain, given in Section 4.1.1 of
Chapter 4, for the class attribute and the sensitive attribute w.r.t. the values of E
respectively. The information gains for the Adult and the Dutch census datasets are
plotted in Figure 5.11. The figure confirms the intuition that the stronger the rela-
tion with the explanatory attribute (higher information gain) the larger the share of
the total discrimination that is explainable. See Figure 5.8 for the discriminations.

5.4.3 Non-discrimination Using Local Techniques

We analyze how the proposed local strategies handle discrimination. We expect
them to remove exactly the bad discrimination and nothing more. We test the
performance with decision trees (J48) via 10-fold cross validation.

Figure 5.12 shows the resulting discrimination after applying local massaging and
local preferential sampling. Both local techniques perform well on the Adult data.
Bad discrimination is reduced to nearly zero, except for relationship as explanatory
attribute when massaging is applied to the Adult dataset. Our techniques do not
produce reverse discrimination as in the case of global massaging.

In the case of the Dutch census dataset, the proposed solutions do not perform
that well, as the sensitive attribute is not very strongly correlated with any other
attribute in the dataset, because local techniques are primarily designed to handle
high correlations with the sensitive attribute that make redlining possible.
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Figure 5.11 Relations between sensitive, explanatory attributes and labels.

We emphasize that in a case where the base classifier can also serve as an accurate
ranker, there is a simpler local approach to use our discrimination measure. Differ-
ent rankers can be learned for males and females and used directly for classification
simply setting the thresholds to p⋆(+|ei) as in Eq. (5.3).

5.4.4 Accuracy with the Local Techniques

When classifiers become discrimination-free, they may lose some accuracy, as
measured on the historical data. Let us look at the resulting accuracies, when lo-
cal massaging and local preferential sampling techniques are applied. Figure 5.13
presents the testing accuracy of a decision tree (J48) when all the attributes are
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Figure 5.12 Discrimination when we make our training set discrimination-
free with the local discrimination-aware techniques and then
learn a decision tree over it.

used, and the results of our local techniques. The accuracy of the local techniques
decreases as the testing is done on the data that contains discrimination. Never-
theless, the absolute accuracy remains high; it drops only by 5% at most. Our ex-
periments demonstrate that the local massaging and the local preferential sampling
classify future data with reasonable accuracy and maintain low discrimination.
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Figure 5.13 Accuracy when we make our training set discrimination-free
with the local discrimination-aware techniques and then learn
a decision tree over it.

5.5 Conclusion

In this chapter we considered the discrimination-aware classification paradigm in
the presence of an explanatory attribute that is correlated with the sensitive at-
tribute. In such a case, as we showed, not all discrimination can be considered
bad and the previous techniques tend to overshoot and start reverse discrimination.
Therefore, we introduced a new way of measuring discrimination, by explicitly
splitting it up into explainable and bad discrimination. Local variants of the re-
labeling and preferential sampling were introduced and experimentally evaluated.
The experiments demonstrated the usefulness of the new local techniques, espe-
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cially in cases when the sensitive attribute is highly correlated with the explanatory
attribute.
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Since the American Civil War the term discrimination evolved in American English
usage as an understanding of prejudicial treatment of an individual based solely on
their race, later generalized as membership in a certain socially undesirable group
or social category [37]. The concept of discrimination is relatively new in data
mining but it has been studied in social sciences for a long time. We broadly
categorize the related work of the discrimination-aware classification problem into
the related works in social sciences and the related works in data mining.

6.1 Social Sciences

The term social sciences is commonly used to refer the disciplines that study dif-
ferent aspects of society. It includes criminology, economics, law, sociology, ed-
ucation, geography, archaeology, business administration, linguistics, political sci-
ence, communication, history, and psychology. The problem of discrimination is
pervasive in almost every society for a long time. The general forms of discrimi-
nation: racism, sexism, ableism, ageism, casteism, classism, colorism, linguicism,
and rankism are referred to the social discrimination on the basis of race, gender,
disabilities, age, caste, social class, skin or eye color, language, and rank of a per-
son respectively.

Here we discuss the most important types of social discrimination. The term racism
[81] often refers to the belief that one group of people with a particular biological
make up or race is superior to other groups with different biological make ups. This
racial discrimination has existed throughout the human history. It has continued to
persist both in westen and eastern societies. Joe R. Feagin, a U.S. sociologist and
social theorist, argues that the United States can be characterized as a “total racist
society” [36]. He gives a comprehensive overview of the racial discriminatory
practices in the United Stated. He argues that every major sector of the US society,
e.g., economy, politics, law, and education, is still under the control of white elites
who generally make the most important decisions. Discriminatory practices often
lead to inter-groups conflicts and anti-discrimination movements. Joe R. Feagin
further discusses that the civil rights movements of 1950’s and 1960’s forced the
elite class whites to make modest changes in the racist system and to introduce anti-
discrimination laws. However, he argues that in spite of these anti-discriminatory
regulation, white males are still mostly holding top positions. It is not only the US
where the racial discrimination used to persist; racial discrimination has existed in
almost every other society as well. As Joe R. Feagin claims that the discriminatory
practices are being diminished with passage of time to some extent due to anti-
discrimination movements. This observation is inline with our research problem
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where we want to integrate anti-discrimination constraints into the technological
solution to make future decision making discrimination-free to match the future
trends in society.

The term sexism [55] refers to the practice of social discrimination on the basis of
sex or gender. Sexism stems from a concept that men and women are being identi-
fied with particular occupations. Women are often restricted to certain profession.
Women are often victims of rape, domestic violence, prostitution, and income dis-
parity. Moreover, in some cultures females are brought up in such a way that they
accept the superiority of males. For example, according to different UNICEF sur-
veys, the percentage of women aged between 15 and 49 who thought that a husband
is justified in hitting or beating his wife under certain circumstances, was 90% in
Jordan, 85.6% in Guinea, 85.4% in Zambia, 85% in Sierra Leone, 81.2% in Laos,
and 81% in Ethiopia [5]. These facts show that gender discrimination is happening
in many cultures and that with the advancement of technology it is important to
explore it in the modern technological fields to eradicate the discriminatory prac-
tices from society. A lot of work has already been done to overcome this unfair
treatment towards women but there is still a lot to do.

6.1.1 Definition of Discrimination in the Legal Domain

In this section we discuss the most important related works of the discrimination
problem from legal domain. There are many civil right laws to prohibit the practice
of discrimination. The United Nations use the definition of racial discrimination
laid out in the International Convention on the Elimination of All Forms of Racial
Discrimination [78], adopted in 1966: any distinction, exclusion, restriction or
preference based on race, color, descent, or national or ethnic origin which has the
purpose or effect of nullifying or impairing the recognition, enjoyment or exercise,
on an equal footing, of human rights and fundamental freedoms in the political,
economic, social, cultural or any other field of public life.(Part 1 of Article 1).

In the United States there are many anti-discrimination laws [11] to prevent the
discriminatory practices from the society, e.g., the equal credit opportunity act [8],
equal pay act [9], the civil rights act [7], and the fair housing act [10].

The US equal pay act aims at the eradication of social discrimination in employ-
ment. These parts of the law emphasise the equality of employees : No employer
having employees subject to any provisions of this section [section 206 of title 29
of the United States Code] shall discriminate, within any establishment in which
such employees are employed, between employees on the basis of sex by paying
wages to employees in such establishment at a rate less than the rate at which he
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pays wages to employees of the opposite sex in such establishment for equal work
on jobs[...] the performance of which requires equal skill, effort, and responsi-
bility, and which are performed under similar working conditions, except where
such payment is made pursuant to (i) a seniority system; (ii) a merit system; (iii)
a system which measures earnings by quantity or quality of production; or (iv) a
differential based on any other factor other than sex [9].

Similarly in the European Union [4, 34] and the UK [6] there are many laws which
prohibit discrimination and ensure the equal treatment to the people. In addition
to the anti-discrimination laws, there are many organization which are working to
protect the civil rights of citizens. For instance, the European Network Against
Racism (ENAR) [3] is a network of European NGOs working to combat racism in
all EU member states and represents more than 700 NGOs throughout the Euro-
pean Union. ENAR is fighting against racism, racial discrimination, xenophobia
and related intolerance, to promote equality of treatment between European Union
citizens and third country nationals, and to link local/regional/national initiatives
with European Union initiatives.

On the research side, the author of [26] is a legal expert and argues that charac-
teristics of group profiles may strongly influence the achievements of individuals
when their abilities are judged by the group characteristics. He proposes to de-
velop new ethical, legal, and technological standards that adequately recognize the
possible harmful consequences of group profiles on individual achievements. The
authors of [42, 45, 57] argue that though there are many anti-discrimination laws,
the discriminatory practices are still pervasive in the form of stereotyping and un-
conscious biases on the basis of sensitive attributes, such as race and gender.

6.1.2 Economic Discrimination

In this section we present an overview of the different works in the economic do-
main to explore and discourage the discriminatory practices in society which will
emphasize the need to study the discrimination problem more elaborately.

Discrimination in economics includes the biased treatment of individuals of certain
groups in employment, wages, access to market, and access to services and goods.
The term economic discrimination was first used in the British Railway Clauses
Consolidation Act of 1845 to prohibit a common carrier from charging one per-
son more for carrying freight than was charged to another customer for the same
service. In 19th century English and American common law, discrimination was
meant to indicate improper distinctions in economic transactions. For example,
discrimination occurred if a hotelier refused to give rooms to a patron [12].



6.1 Social Sciences 115

The authors of [63, 56] give an excellent review and existing evidence of the dis-
crimination in mortgage lending and claim that minorities are more than twice as
likely to be denied a mortgage as whites. The authors of [82] conclude in their
study that minority home buyers in the United States are discriminated by mort-
gage lending institutions. They argue that discrimination is not only present at the
time of approval or rejection of loan but also focused on the advertising, outreach,
the referral stage and on the loan administration stage. They prove their claim of
unequal treatment of minorities and whites by statistical analysis of data assembled
by the Federal Reserve Bank of Boston. The authors of [71] analyze loan-approval
and loan-performance data and devise tests for detecting discrimination in the con-
temporary mortgage market. They provide an in-depth review of the 1996 Boston
Fed Study and its critics, along with new evidence that the minority-white loan-
approval disparities in the Boston data represent discrimination. Their analysis also
reveals several major weaknesses in the current fair-lending enforcement system,
e.g., insulation of some discriminating lenders from investigation. They devise new
procedures to overcome these weaknesses and show how the procedures can also
be applied to discrimination in loan-pricing and credit-scoring.

Gary S. Becker [16] gives a detailed overview of the forces that determine dis-
crimination in the market place, employer and employee discrimination, consumer
discrimination, and changes in the discrimination over time in his book The Eco-
nomics of Discrimination [16]. He develops a useful model for analyzing the eco-
nomic effects of discrimination. He treats negro and white sectors of the United
States as if they were separate countries in an international trade model and he as-
sumes that the white sector owns a higher ratio of capital to labor than the negro
sector does. The discrimination affects the dealings of negroes and whites in a sim-
ilar way as tariff barriers impede trade between two countries. Gary S. Becher’s
work got a lot of attention from the research community and resulted in many crit-
ical reviews [27, 70, 54, 25, 76] on this book which proposed new directions to
study the economic discrimination.

The economic discrimination has many negative impacts over the development of
society. It often leads to conflicts among different social groups, poverty, and un-
employment. Harry Gilman discusses the effects of economic discrimination on
unemployment [38]. He examines the difference in the levels of unemployment
rates between white and nonwhite experienced male workers in the United States.
He presents unemployment figures to support his claims. Messner [61] presents
the effects of economic discrimination against social groups on national rates of
homicide. He proposes that countries with high discrimination will exhibit com-
paratively high levels of homicide, and that the effects of discrimination will ex-
ceed those of income inequality. The author uses INTERPOL and the World Health
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Organization homicide data to support his claim.

The economic condition is very important for every individual. If the someone
is discriminated in economically, it affects the overall growth of that individual
or the whole community very badly. For instance, if people from a certain ethnic
group are restricted to low profile jobs, it will affect the health and education of that
community and their offspring. The community will be deprived of the facilities
which are accessible to other citizens. Such kind of economic disparity among
different groups will lead to social problems, such as unemployment, crimes, and
anti-discrimination movements.

6.2 Data Mining

In this section we discuss the related work in discrimination-aware data mining
itself, cost-sensitive classification, constraint-based classification, and sampling
techniques for unbalanced datasets.

6.2.1 Discrimination-aware Data Mining

In Discrimination-Aware Data Mining, two main research directions can be dis-
tinguished: the detection of discrimination [64, 66, 73, 65, 74, 58, 72] and the
direction followed in this thesis, namely learning discrimination-free classifiers if
the data is discriminatory.

The authors of [64, 72, 66] introduce similar concepts of discrimination and unde-
sirable dependencies between the class and some sensitive attributes in data min-
ing as we do. These works, however, concentrate on identifying the discriminatory
rules that are present in a dataset rather than on learning a classifier that avoids this
discrimination in future predictions. A central notion in their work on identifying
discriminatory rules is that of the context of the discrimination. That is, specific
regions in the data are identified in which the discrimination is particularly high.
We further explain the concept of context of discrimination with an example. For
instance the probability that a person living in New York or with black ethnicity
would get a loan is reasonably high, however, when a black applicant from a cer-
tain neighborhood in New York applies for the loan, there is a little chace for the
acceptance. It means that the bias towards to the black people for loan denial is
considerably high in this context, i.e., when they come from this certain neighbor-
hood. This work also focuses on the case where the discriminatory attribute is not
present in the dataset and background knowledge for the identification of discrim-
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inatory guidelines has to be used. The authors of [73] give an implementation of
the techniques of [64, 72] to provide guidance in the legal issues about discrim-
ination hidden in data, and through several legally-grounded analyses to unveil
discriminatory situations. The works on discrimination-aware classification, how-
ever, assumes that the discriminatory data is given and the task is to construct a
discrimination-free classifier. As such our work can be seen as an orthogonal to
the detection of discrimination work.

The authors of [65, 74] present a reference model for finding evidence of discrim-
ination in datasets of historical decision records in socially sensitive tasks, e.g.,
access to credit, mortgage, insurance, labor market and other benefits. In their ref-
erence model, they assume the decision support system as a black box which takes
a case consisting of attribute-value pairs, e.g., application data as input and pro-
vides its decision label. After extracting the frequent classification rules from the
historical decisions made by the automated decision support system and then they
use key legal concepts to unveil the discriminatory classification patterns. They
formally describe the process of direct and indirect discrimination discovery in a
rule-based framework, by modeling protected-by-law groups, such as minorities or
disadvantaged segments, and contexts where discrimination occurs. They establish
an excellent connection of the discrimination problem with the legal domain and
propose a detailed range of discrimination measures to encompass different notions
of discrimination from the judicial literature. Their work mainly aims to support
the anti-discrimination analysts to discover direct and indirect discriminatory pat-
terns.

The authors of [58] propose a variant of k-NN classification for the discovery of
discriminated objects. They consider a data object as discriminated if there exist
a significant difference of treatment among its neighbors belonging to a protected-
by-law group (deprived) and its neighbors not belonging to it (favored). They also
propose a discrimination prevention method by changing the class labels of these
discriminated objects. This discrimination prevention method is very close to our
Massaging technique (given in Section 3.1.1 of Chapter 3) but also differs at some
key points. For example, the authors of [58] change the labels of all data object
which are suspected to be discriminated while our Massaging approach modify the
class labels of only selected data objects (the ones close to the decision boundary)
to make the training set impartial.

The work of [77] also aims at finding interesting subsets of a classified example
set that deviates from the overall distribution. Furthermore, similar in nature to
our proposal is the work on anonymity [75]. Although the goal there is different,
namely removing data that allows for the identification of individuals, the mech-
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anism is the same: before the data is released for mining, it is sanitized and the
altered dataset is released.

6.2.2 Constraint Based Classification

In Constraint-Based Classification, next to a training dataset also some constraints
on the model have been given. Only those models that satisfy the constraints are
considered in model selection. Similarly in discrimination-aware classification we
insert a non-discrimination constraint in the classifier construction phase and want
our learnt model to satisfy this non-discrimination constraint.

For example, when learning a decision tree, an upper bound on the number of
nodes in the tree can be imposed. Our proposed classification problem with non-
discrimination constraints clearly fits into this framework. Most existing work on
constraint based classification, however, imposes purely syntactic constraints lim-
iting, e.g., model complexity [51]. The difference with our work is that for the
syntactic constraints, the satisfaction does not depend on the data itself, but only
on the model and most research concentrates on efficiently listing the subset of
models that satisfy the constraints. In our case, however, satisfaction of the con-
straints depends on the data itself and hence requires a different approach.

One noteworthy exception is monotone classification [30, 53]. In monotone clas-
sification, next to the normal labeled training data, additionally a function is given
for which the predictions should be monotone. An example of such a constraint
could be that when assigning a loan based on a number of scores, the assigned
label should be monotone in the scores; e.g., if one person gets assigned the loan,
and another person scores higher while all other fields are equal to the first person,
then the second person should receive the loan as well. Whereas the discrimination
criterium is global, the monotonicity criterium is local in the sense that it can be
checked by looking at pairs of tuples only. Also, in many cases, the monotonicity
can and will be checked syntactically. The authors of [67] survey the methods that
have been so far proposed for generating decision trees that satisfy monotonicity
constraints. They made a distinction between methods that work only for monotone
datasets and methods that work for monotone and non-monotone datasets alike.

6.2.3 Cost-sensitive Learning

Most of the classification algorithms assume that all errors have the same cost.
In most of data mining applications, however, the reality is different. In Cost-
Sensitive and Utility-Bases learning [21, 33, 59], it is assumed that not all types of
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prediction errors are equal and not all examples are as important. For example, if
the classification task is to predict if an e-mail is spam, the cost of a false positive;
i.e., wrongly filtering out a righteous e-mail as spam, is many times higher than
the cost of a false negative; i.e., letting through a spam e-mail. The type of error
(false positive versus false negative) determines the cost. Sometimes costs can also
depend on individual examples. In cost-sensitive learning the goal is no longer to
optimize the accuracy of the prediction, but rather the total cost.

The relation with discrimination-aware classification is best illustrated with an ex-
ample: consider again the case of the females being discriminated when applying
for a job. One approach to better balance the predictions of the classifier is to arti-
ficially assign a higher cost to miss-classifying a successful female, than to miss-
classifying a successful male. In this way, the learning process will be biased to-
wards classifiers that are “optimistic”towards female applicants and “pessimistic”
towards male applicants.

The realization that cost-sensitive learning techniques are required in the real-world
KDD applications led to substantial research work. Turney [83] provides an online
bibliography on cost-sensitive learning. Domingos [28] proposes a method named
MetaCost for making classifiers cost-sensitive by wrapping a cost minimizing pro-
cedure around them. MetaCost assumes that costs of misclassifying the examples
are known in advance and are the same for all the examples. It is based on relabel-
ing the training examples with their estimated minimal-cost classes, and applying
the error-based learner to the new training set. It estimates probabilities with bag-
ging and uses a variant of Breimans [18] bagging as the ensemble method. This
variant differs from bagging in that the number of examples in each sample may
be smaller than the training set size. MetaCost uses the estimated probabilities and
known costs of misclassifying the training examples to re-label the training data.
This re-labeled data is used to yield a classifier for future cost-sensitive classifica-
tion.

MetaCost has some similarity with our Massaging technique, given in Chapter 3,
with respect to re-labeling the training data but MetaCost aims at the identification
of the rarest class examples only and does not address the discrimination problem.
MetaCost gives the idea of uniform misclassification cost for each example how-
ever Massaging introduces the idea that misclassifying cost can be uniform for a
certain subgroup, e.g., discriminated community, but can not be uniform for all
the training examples. Zadrozny et al. [85] also ratifies the idea of non-uniform
misclassifying for each example.

We observe that the above mentioned cost-sensitive procedures emphasize the
identification of the minority (usually the more interesting) class and do not ad-
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dress the problem of discrimination between class and some other attribute. In the
discrimination problem, the deprived community may not be the minority but still
may be discriminated. For example, in the German Credit dataset the foreign work-
ers are a deprived community but their percentage is more than 90% of the whole
dataset. The discrimination is always w.r.t. a certain class, e.g., loan approval for a
particular community, e.g., an ethnic minority. It does not only focus on correctly
identifying the instances of a certain class but also tries to identity the instances
of the desired class after removing the discrimination to make the future decisions
impartial.

6.2.4 Sampling

Sampling is the process of selecting units or subsets from a population so that by
analyzing the sample we may produce some knowledge about the whole popula-
tion. Methods to deal with the class imbalance problem usually analyze samples
instead of the whole population to make the task of analysis easier and more re-
warding. There are many types of sampling but we use uniform random sampling
with replacement and introduce a novel sampling approach namely Preferential
Sampling, given in Chapter 3. In uniform random sampling, each object in the
population has same probability to be selected in the sample. In Preferential Sam-
pling, however, some objects have higher chance of being selected. There are many
research works on sampling but none of them address the discrimination problem,
however, there are some works which have some connection to our Reweighing
and Sampling methods.

In data mining, differences in prior class probabilities or class imbalances have
been reported to hinder the performance of learned classifiers, e.g., decision trees
[44, 43]. If the given dataset is imbalanced, we will have to either over-sample
the minority class instances or under-sample the majority class instances. Both
over-sampling and under-sampling have some disadvantages. [28] describes some
limitation of these sampling methods and claims: that sampling methods may dis-
tort the distribution of training examples which may have a bad impact on the
performance of some algorithms; they may reduce the amount of data available for
learning, if stratification is applied by under-sampling; and they may increase the
learning time, if stratification is done by over-sampling. The Reweighing scheme is
a novel approach to over-sample the discriminated community and under-represent
the favored community. The advantage of under-sampling by Reweighing is that it
does not lose any piece of information. Rather, it assigns a weight to each train-
ing example of favored community to reduce its representation to a required level.
Similarly it increased the representation of discriminated community by systemat-
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ically calculating the weights of its training examples to over-sample it.

In [23], a synthetic minority over-sampling technique (SMOTE) for two-class prob-
lems that over-sampled the minority class by creating synthetic examples rather
than replicating examples is proposed. Chawla et al. [24] also utilize a wrap-
per approach to determine the percentage of minority class examples to be added
to the training set and the percentage to under-sample the majority class exam-
ples [52]. These sampling methods show some similarity with our Reweighing
and Sampling techniques; by increasing the number of samples in one group (the
minority class/the deprived community members with a positive label), we try to
increase the importance of this group such that the classifier learned on the re-
sampled dataset is forced to spend more attention to this group. Making an error
on this group will hence be reflected in more severe penalties than in the original
dataset, leading to a desired bias towards more easily assigning the minority class
label or the positive label to the discriminated group, respectively.

6.3 Conclusion

The anti-discrimination works in social sciences, discussed in Section 6.1, pro-
vide a solid basis for discrimination-aware classification. All above discussed anti-
discrimination laws require that there should not be discriminatory practices on
the basis of sensitive characteristics of people. With the rapid technological ad-
vancement, it is imperative to push these non-discrimination constraints within the
automated models. These discrimination-aware automated procedures will help
the practitioners to prove the discriminatory practices in the court of law while at
the same time , help companies to stay away from the discrimination accusations.
Our discrimination-aware classification can be considered as a counter part of these
anti-discrimination works in social sciences.

Almost every financial institution uses automated procedures to select the best
customers. In our discrimination-aware classification framework, we argue that
the automated procedures should make the best choices without violating anti-
discrimination laws. Such violation may impose heavy fines on the financial in-
stitution by some court of law. For instance, recently L’Orėal, the French cosmet-
ics giant, has been found guilty of racial discrimination by barring black, arabian
and asian women from selling its shampoo. France’s highest court ruled that the
group had broken the law by seeking an exclusively white sales team to promote
Fructis Style, a hair product made by Garnier, L’Orėal’s beauty division. The case
hinged on a fax stipulating that Garnier’s hostesses should be BBR, which stands
for ”bleu, blanc, rouge” the colors of the French flag. Sent by Districom, a divi-
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sion of Adecco, the temporary recruitment agency, the fax also said that Garnier’s
hostesses should be aged 18 to 22 and wear size 38 to 42 clothes (British sizes 8
to 12). [..] The court upheld fines to L’Orėal and Adecco of 30,000 euros already
handed down by the Paris Appeal Court [13].

We can conclude that the problem of discrimination is studied well in social sci-
ences but little research work has been done to incorporate this important social
problem in technological solutions.
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7.1 Conclusion

To conclude, we believe that discrimination-aware classification is a new and excit-
ing area of research addressing a societally relevant problem. It already received a
lot of attention in social sciences and in the legal domain [8, 9]. In many countries,
several types of discrimination, such as those based on gender, race, sexual prefer-
ence, and religion are forbidden by law. When humans make subjective decisions,
inevitably individual discrimination cases may occur. Such cases can be brought
to court for in depth analysis of circumstances. But not only humans can discrim-
inate. Nowadays more and more decisions in lending, recruitment, grant or study
applications are partially being automated based on models fitted on historical data.
These discriminatory classification models are worse than the individual cases of
discrimination because they become structural and systematic, backed up by mis-
leading statistics in the case of redlining. Regulatory authorities and researchers
put a lot of effort to monitor, analyze and ensure non discriminatory decision mak-
ing in mortgage lending [63,70], recruitment, wages. It is also very important to
take the discrimination perspective into account while automating the daily life
procedures otherwise it could lead to serious consequences, e.g., heavy fines, legal
penalties etc. It is in the best interest of the decision makers (e.g. banks, consul-
tancies, universities) to be able to build discrimination-free classifiers even if the
historical data is discriminatory.

In this thesis, we have studied the discrimination problem with respect to the data
mining perspective. This work can be seen as a logical following step of the work
of Dino et al. [64, 66, 73, 65, 74, 58, 72], as shown in Figure 7.1, who con-
centrated on the detection of discrimination from a given dataset. We have intro-
duced methods to quantify the discrimination in a given dataset or in prediction
of a classification model. We theoretically studied the effect of non-discrimination
over accuracy of classifiers. We have proposed discrimination-aware classification
methods to make future automated decision making as discrimination-free as pos-
sible. Our proposed solutions to the discrimination problem fall into three broad
categories. First, we propose pre-processing methods (Chapter 3) to remove the
discrimination from the training dataset. Second, we propose solutions to the dis-
crimination problem by directly pushing the non-discrimination constraints into
classification models and post-processing of built models (Chapter 4). Figure 7.2
gives us a comparison of the results of decision trees learnt after applying our
proposed discrimination-aware preprocessing techniques on the training data (la-
bel Preprocess methods), learnt with discrimination-aware splitting criteria (label
SplitCrit DT), learnt with leaf relabeling approach (label Relab DT) and learnt
without any discrimination-aware technique (label Ordinary DT). We can conclude
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Figure 7.1 Conclusions

from the results shown in Figure 7.2 that our proposed discrimination-aware tech-
niques reduce discrimination significantly by maintaining a high accuracy as com-
pared to the ordinary methods. Moreover, the decision trees with leaf relabeling
approach have an advantage over other methods that it reduces the discrimination
to 0%.

Third, we further study the discrimination-aware classification paradigm in the
presence of explanatory attributes that are correlated with the sensitive attribute,
e.g., low income may be explained by the low education level. In such a case,
as we show, not all discrimination can be considered bad, therefore we explic-
itly split the discrimination into explainable and bad discrimination. Our proposed
methods in this category only remove the bad discrimination. The experimental
evaluation over real world datasets, as shown in Figure 7.3, shows that our pro-
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Figure 7.2 Comparison of techniques proposed in Chapter 3 (label Pre-
process methods) and Chapter 4 (label SplitCrit DT and Re-
lab DT) over the Adult dataset [14].

posed discrimination-aware classification methods classify the future data objects
with significantly low discrimination and high accuracy.

7.2 Future Work

According to the best of our knowledge, this thesis is the first step towards discrimination-
free classifiers construction. In this thesis, we have restricted our work to one bi-
nary sensitive attribute and a binary class attribute. In future, we plan to work with
arbitrary type of sensitive attributes, i.e., numerical, nominal. We also plan to use
multiple attributes as sensitive attribute, e.g., simultaneous use of gender, religion
and race as sensitive attributes. We plan to extend binary discrimination-aware
classification problem to multi-class discrimination-aware classification problem
or prediction problem.

In this conditional discrimination-aware study we considered that only one attribute
at a time can be explanatory, which is a simplified scenario. In reality there may
be more than one explanatory attribute. A direct extension of our work is instead
of treating one attribute as explanatory to treat clusters of instances as explanatory.
Our new approach of quantifying discrimination is directly applicable to such a
case. The main challenge is how to logically partition the data in an unsupervised
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Figure 7.3 Comparison of techniques proposed in Chapter 5 (label Local
Massaging and Local Sampling) with ordinary methods (label
Ordinary) over the Adult dataset [14].

way.

A promising direction could be to extend the work [58] where discriminated in-
stances are identified by finding discrepancies in labeling with its k nearest neigh-
bors in the other community. For the definition of the distance function we could
incorporate the neutrality of certain attributes such as “Number of car crashes in
the past” by, e.g., giving them a higher weight. We would like to develop methods
with full control over discrimination to guarantee the discrimination-free classifiers
which can directly be used in legal domain and economic domain.

We would like to develop a plug-in for discrimination-aware classification methods
into other data mining tools like KNIME.

In future, we plan to validate our methods over more real world scenarios. In this
regards we plan to continue our collaboration with the Dutch Central Bureau of
statistics.
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Summary

Classifier construction is one of the most researched topics within the data mining
and machine learning communities. Literally thousands of algorithms have been
proposed. The quality of the learned models, however, depends critically on the
quality of the training data. No matter which classifier inducer is applied, if the
training data is incorrect, poor models will result. In this thesis, we study cases
in which the input data is discriminatory and we are supposed to learn a classifier
that optimizes accuracy, but does not discriminate in its predictions. Such situa-
tions occur naturally as artifacts of the data collection process when the training
data is collected from different sources with different labeling criteria, when the
data is generated by a biased decision process, or when the sensitive attribute, e.g.,
gender serves as a proxy for unobserved features. In many situations, a classifier
that detects and uses the racial or gender discrimination is undesirable for legal rea-
sons. The concept of discrimination is illustrated by the next example: Throughout
the years, an employment bureau recorded various parameters of job candidates.
Based on these parameters, the company wants to learn a model for partially au-
tomating the matchmaking between a job and a job candidate. A match is labeled
as successful if the company hires the applicant. It turns out, however, that the
historical data is biased; for higher board functions, Caucasian males are sys-
tematically being favored. A model learned directly on this data will learn this
discriminatory behavior and apply it over future predictions. From an ethical and
legal point of view it is of course unacceptable that a model discriminating in this
way is deployed.
Our proposed solutions to the discrimination problem fall into two broad cate-
gories. First, we propose pre-processing methods to remove the discrimination
from the training dataset. Second, we propose solutions to the discrimination prob-
lem by directly pushing the non-discrimination constraints into classification mod-
els and post-processing of built models.
We further studied the discrimination-aware classification paradigm in the presence
of explanatory attributes that were correlated with the sensitive attribute, e.g., low
income may be explained by the low education level. In such a case, as we show,
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not all discrimination can be considered bad. Therefore, we introduce a new way
of measuring discrimination, by explicitly splitting it up into explainable and bad
discrimination and propose methods to remove the bad discrimination only.
We tried our discrimination-aware methods over real world data sets. We observed
in our experiments that our methods show promising results and clearly outperform
the traditional classification model w.r.t. accuracy discrimination trade-off. To
conclude, we believe that discrimination-aware classification is a new and exciting
area of research addressing a societally relevant problem.



Samenvatting

Het automatisch ontwerpen van beslissingsmodellen is een van de meest onder-
zochte onderwerpen in de data mining en machine learning onderzoeksgebieden.
Letterlijk duizenden algoritmes werden reeds voorgesteld voor dit belangrijke prob-
leem. De kwaliteit van deze modellen hangt kritisch af van de kwaliteit van de
invoerdata. Indien de invoerdata niet correct of onvolledig zijn zal een zwak model
geleerd worden, ongeacht welk algoritme gebruikt wordt. In dit proefschrift beschri-
jven we onderzoek waarbij we veronderstellen dat de invoerdata discriminatie be-
vatten, maar waarbij desondanks het uiteindelijke doel een neutraal beslissingsmodel
dat niet discrimineert in haar voorspellingen is. Situaties waar dit aan de orde
is, komen vaak voor de realiteit; bijvoorbeeld wanneer de data uit verschillende
bronnen komen waarbij verschillende criteria gehanteerd werden, wanneer de data
gegenereerd werden in een discriminerende omgeving, of wanneer er een sensi-
tief attribuut is, zoals, bijvoorbeeld, geslacht of etniciteit, dat een zogenaamde
proxy is voor andere, niet-geobserveerde attributen. Een leeralgoritme zal onver-
mijdelijk deze discriminerende wetmatigheden oppikken en rechtstreeks of on-
rechtstreeks gebruiken bij zijn voorspellingen. Dit is uiteraard vaak onaanvaard-
baar vanuit legaal en ethisch perspectief. Beschouw bijvoorbeeld volgende situati-
eschets: doorheen de jaren heeft een rekruteringsbedrijf van al haar sollicitanten
allerlei gegevens zoals woonplaats, huidige functie, geslacht, etniciteit, opleiding
en leeftijd geregistreerd. Ook van de verschillende vacatures werden de gegevens
bewaard, zoals het bedrijf, de sector, de beroepscategorie, het vereiste diploma
en de werklocatie. Bovendien werden succesvolle koppelingen geregistreerd; dit
is, welke sollicitanten voor welke vacatures werden uitgenodigd voor een sollic-
itatiegesprek. Op basis van deze gegevens wil het bedrijf nu deze koppeling van
geschikte kandidaten aan vacatures gedeeltelijk automatiseren. Al snel, echter, bli-
jkt dat de historische data die het rekruteringsbedrijf verzamelde een belangrijke
bias bevat: voor hogere kaderfuncties werden blanke mannen systematisch bevo-
ordeeld. Een beslissingsmodel geleerd op deze data zal dit verband oppikken en
actief exploiteren in haar toekomstige voorspellingen, en aldus vrouwen en gek-
leurde sollicitanten discrimineren. Uiteraard is het gebruik van zulk een voor-
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spellingsmodel illegaal en ethisch onaanvaardbaar.
Dit proefschrift beschrijft daarom de ontwikkeling van computationele methodes
om in zulke situaties toch accurate en discriminatievrije beslissingsmodellen te
leren. Onze methodes vallen uiteen in twee grote categorieën. Ten eerste beschouwen
we preprocessing methodes om de discriminatie rechtstreeks uit de invoerdata te
verwijderen alvorens het leeralgoritme uit te voeren. Daarnaast stellen we ook
oplossingen voor die het discriminatieprobleem aanpakken door antidiscriminatie
beperkingen diep in de algoritmes in te bouwen en de geleerde modellen nadien
verder aan te passen in een postprocessing fase. Verder werd het paradigma van
discriminatievrij leren van beslissingsmodellen uitgebreid naar situaties waarin de
discriminatie gedeeltelijk verklaard kan worden door zogenaamde verklarende at-
tributen die gecorreleerd zijn met de sensitieve attributen; bijvoorbeeld, een laag
inkomen kan verklaard worden door een laag opleidingsniveau. In zulk een situ-
atie kunnen we niet alle discriminatie als slecht oormerken. Daarom introduceren
we nieuwe manieren om discriminatie te meten waarbij we die expliciet opsplit-
sen in slechte en verklaarbare discriminatie en stellen we verschillende methodes
voor om enkel de slechte discriminatie te verwijderen. Al onze methodes werden
toegepast op echte databestanden. Onze experimenten tonen veelbelovende resul-
taten en presteren duidelijk beter dan de traditionele leermethodes met betrekking
tot discriminatie en accuratesse.
Wij zijn er van overtuigd dat het werk gepresenteerd in dit proefschrift de start
kan zijn van een nieuw en opwindend onderzoeksgebied op een sociaal en ethisch
bijzonder relevant thema.
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