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2 1.1 Introduction

1.1 Introduction

In this thesis we present techniques for the visualization of uncertainty in 3-
dimensional reconstructions of white matter pathways in the human brain. In
this chapter we will start by outlining the main research problems which these
techniques attempt to address.

Recent advances in medical imaging have led to a wealth of new information
about the anatomy and function of the human body. These developments are
especially noticeable in medical imaging of the brain. The brain remains one of
most mysterious organs of the human body and even though significant progress
has been made in revealing and understanding brain function on the basis of med-
ical imaging we are still far removed from a complete understanding. Part of the
research problem lies in identifying and delineating specific functional regions in
various locations of the brain. Another part lies in investigating how these func-
tional regions interconnect to form complex brain networks. These are commonly
considered to be the basis of the brain’s phenomenal processing capabilities. A
large part of these networks, especially the long range connections, are formed by
brain white matter which consists of myelinated axons extending from brain cells
or neurons in the brain gray matter. One of the most promising medical imaging
technologies currently available for the analysis of brain white matter connections
is Diffusion Tensor Imaging, commonly abbreviated as DTI. It is an imaging tech-
nique based on magnetic resonance imaging (MRI) which allows quantification of
local fiber orientation in living tissues through measurements of water diffusion.
The orientational information captured by DTI in each point of the tissue can be
used to reconstruct fiber pathways in three dimensions through a procedure com-
monly called fiber tracking. Visualization of these pathways offers unique insight
into the 3D layout of white matter fiber bundles and provides great potential for
both neuro-scientific research and clinical applications such as neurology, neuro-
radiology and neurosurgery. For example, fiber tracking allows neurosurgeons to
assess the spatial relation between a brain tumor and surrounding critical fiber
bundles. This provides useful information for planning the angle of approach
toward the tumor during resection.

1.2 Problem background

Despite the many advantages of complex imaging technologies such as DTI, there
is also a downside. The amount and complexity of the generated image data
poses considerable challenges for analysis and interpretation. For example, MRI
is one of the most flexible and versatile imaging technologies available today. As
already explained above, it allows the characterization of tissue structure through
water diffusion but can also measure brain function, cell metabolism, blood flow,
blood perfusion and many other properties. However, this wealth of information
is not immediately available to the end user. It needs to be extracted from the
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potentially thousands of raw images through a complex pipeline of mathematical
modeling, analysis and visualization. As a consequence, a direct link between
what is being measured and what is being visualized is no longer present. The
processing pipeline behaves like a black box whose inner workings remain hidden
from the user and which makes reliable interpretation of the output difficult or
even impossible. To make matters worse, this black box can be a major source of
errors and uncertainties itself.

DTI and fiber tracking are a prime example of this problem. The 3-dimensional
insight they provide has great advantage over 2-dimensional representations such
as provided by conventional MR imaging. However, the DTI imaging and pro-
cessing pipeline, of which fiber tracking is one of the final stages, can be subject to
considerable error and uncertainty. This pipeline is necessary in order to extract
useful information from the high-dimensional image data. However, the errors
and uncertainties arising from the different pipeline stages can lead to unpre-
dictable variations in the final output. Since the main purpose of fiber tracking
is to increase our knowledge about brain function or to use it as a clinical tool, it
is essential that we try to characterize and quantify the errors and uncertainties
as completely as possible and visually communicate their effect to the user.

This is not a trivial matter though. Uncertainty can arise for an almost infinite
number of reasons. Measuring devices may suffer from noise and bias, have limited
resolution or may be incorrectly configured. If the measured data is too complex
to handle, it may have to be simplified using mathematical models. However,
selecting the best model may be difficult and many models over-simplify the data
thereby ignoring important characteristics or even producing incorrect results.
Further processing may be required to extract additional features of interest from
the data or the model. However, the selected features may give an incomplete or
even incorrect representation of the phenomenon of interest. They may also be
highly sensitive to parameter settings and errors occurring earlier in the pipeline.
In medical applications additional uncertainties arise. For example, tissue pathol-
ogy may disturb the measured signal in unexpected ways. Furthermore, there may
be lack of knowledge about the true relation between tissue properties and the
measured signal. As we will see in Chapter 4, when we discuss errors and un-
certainties in more detail, this lack of knowledge is also present in DTI and fiber
tracking.

Basically, the list of potential sources of uncertainty is endless. The more you
zoom in on details of the pipeline, the more elements you will find that can po-
tentially give rise to errors and uncertainties. This observation also illustrates
several limitations and constraints for analysis and visualization. A large part of
the uncertainties arising from the DTI processing pipeline cannot be quantified
or represented in a way that allows their analysis and visualization. For example,
it is very difficult to determine the exact error introduced by measuring a certain
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property at the millimeter scale while the phenomenon of interest takes place at
the micrometer scale. In DTI there is also no established ground truth against
which to validate measurement and post-processing results. Fiber tracking can
only be validated through indirect methods that have considerable limitations of
their own. For example, one can create phantoms that mimick brain white matter
using artificial materials and place these phantoms inside a DTI scanner. How-
ever, such phantoms are always limited in their ability to capture the complex
physiology of real, living brain tissue. Other methods, such as chemical tracers,
can highlight selected fibers very accurately but are invasive, highly toxic and can-
not reveal more than a few, microscopically thin, fibers at a time. Validation can
also be done on the basis of anatomical knowledge, for example, in neurosurgery.
This can be problematic, however, in the presence of tissue pathology, such as
brain tumors, which can distort or otherwise affect the anatomy in unexpected
ways.

Without good validation it is difficult to make definitive statements about the
accuracy of fiber tracking. This should be kept clearly in mind in the remainder
of this thesis as well. Accuracy is defined as the extent to which a measured value
matches the true value. In the context of DTI, it refers to the correspondence
between the pathways reconstructed with fiber tracking and the underlying white
matter anatomy. As explained above, it is very difficult to establish accuracy with-
out validation against a gold standard. For this reason, most methods currently
available for the analysis of DTI uncertainty focus on precision or reproducibility.
This refers to the extent in which repeated measurements or calculations produce
similar output results. For example, a wide range of probabilistic fiber tracking
algorithms has been proposed that attempt to describe the reproducibility of fiber
tracking as affected by image noise.

Despite the fact that existing methods for uncertainty analysis leave many sources
of uncertainty unexplored, they can still provide very useful information, espe-
cially for users who are less familiar with the underlying technology and its lim-
itations. For example, neurosurgeons primarily consider fiber tracking to be a
visualization tool which can potentially assist clinical decision-making. They can-
not be expected to have detailed knowledge about DTI-specific image artifacts,
model differences and limitations, tracking errors, parameter settings or render-
ing techniques. Uncertainty visualization can help such users to become aware of
these issues. Unfortunately, most tracking algorithms commonly used in clinical
settings do not calculate nor visualize uncertainty in any way. Fiber pathways
are all visualized as equally reliable, even though some may be false positives that
have no correspondence to the underlying anatomy. Similarly, fiber pathways may
be missing in the visualization while in reality they do exist. Such false negatives
can be caused by imaging or processing errors and pose a considerable problem for
neurosurgical planning because they can be easily mistaken for tissue pathology
effects.
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1.3 Challenges

In the previous paragraphs we have described the central problem of uncertainty
in fiber tracking. We have also explained that, if fiber tracking is to be used
for scientific research or clinical decision-making, it is important to visually com-
municate the uncertainty to the user. Finally, we pointed out that there are
fundamental limitations to what we can achieve in terms of quantifying and rep-
resenting uncertainty. Since this thesis deals primarily with visualization, we rely
on existing methods for uncertainty analysis. Here, we will describe the main
challenges related to uncertainty visualization and how these apply to DTI and
fiber tracking.

The first challenge is related to data complexity. DTI data is high-dimensional,
potentially consisting of dozens of measured values for each voxel. By means of
mathematical modeling data dimensionality can be significantly reduced but the
result is still difficult to visualize and has kept many researchers busy over the last
few years. Adding uncertainty information, even as a simple scalar value, further
complicates this problem and can easily lead to visual clutter and information
overload. The second challenge of uncertainty visualization is finding strategies
for evaluating its effectiveness. There are different goals involved when consider-
ing this. For example, one could evaluate whether awareness of the presence of
uncertainty is useful to the user. In some cases, users may suspect reliability issues
but under- or overestimate the magnitude of the problem. In other cases, users
may have been completely unaware of the presence of uncertainty. Another goal
would be to show that visualizing uncertainty actually affects and even improves
decision-making, that is, leads to better outcomes as compared to decisions made
without taking uncertainty into account. As we will see in later chapters, this is
a very difficult thing to do, especially since surgical decision-making is affected
by many factors. It is far from trivial to prove that showing uncertainty in fiber
tracking is the main factor responsible for a change in decision. In this thesis we
will primarily focus on eliciting an awareness of uncertainty in the user and eval-
uating whether this provides useful information. To accomplish this we develop
several visualization tools for this purpose and discuss the output of these tools
extensively with clinical experts.

1.4 Thesis outline

In this section we provide a short overview of our contributions. We start the main
body of this thesis with two background chapters. Chapter 2 presents a medical
overview of brain anatomy and the main applications for fiber tracking discussed
in this thesis. Chapter 3 focuses on the general principles behind diffusion ten-
sor imaging and fiber tracking which can help readers less familiar with these
topics to follow the remaining chapters. In Chapter 4 we provide an overview
of research performed in uncertainty analysis for DTI and fiber tracking. The
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first part focuses on the different sources of uncertainty in the DTI processing
pipeline. The second part discusses probabilistic fiber tracking methods which
serve as a basis for many of the uncertainty visualization techniques presented
in later chapters. In Chapter 5 we present an overview of related work in the
field of uncertainty visualization. Our first contribution for visualizing parameter
sensitivity in fiber tracking algorithms is presented in Chapter 6. Next, we pro-
ceed with an approach to visualize pathway confidence intervals on the basis of
probabilistic fiber tracking in Chapter 7. Chapter 8 presents a general framework
for the interactive exploration of distances between objects with uncertain spatial
extent. We apply this framework in the context of neurosurgical planning where
distances are assessed between a brain tumor and surrounding white matter tracts
calculated from probabilistic fiber tracking. In Chapter 9 we present a number
of clinical cases involving brain tumor patients and discuss both the benefits and
limitations of uncertainty visualization in neurosurgical settings. We conclude our
thesis with Chapter 10 where we discuss our contributions in a wider context and
present suggestions for future work.



Change is good. You go first.

- Dilbert
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2.1 Introduction

Visualization research typically operates on the boundary of multiple application
domains and fields of expertise. This is primarily what makes visualization inter-
esting, but it can also make it difficult because we have to know something, at
least at a basic level, about all the application domains involved. In this thesis we
present visualization techniques for fiber tracking based on diffusion tensor imag-
ing and we apply these techniques in the context of brain connectivity research and
neurosurgical planning. The primary interest of both these application domains is
the living human brain. For this reason, we present a comprehensive overview of
brain anatomy in this chapter. We also describe shortly what brain connectivity
research and neurosurgical planning involve and how DTI fiber tracking is used
in these domains.

Figure 2.1: (a) Gray and white matter in cell-stained slice
(http://www.brainmuseum.org). (b) Architecture of a neuron (Quasar Jarosz,
http://en.wikipedia.org).

2.2 Brain anatomy

The brain is the center of the nervous system and the most complex organ in the
human body. It consists of billions of neurons, which are electrically excitable cells
that interconnect in complex networks through electrical and chemical signaling.
A typical neuron possesses a cell body and dendrites (Figure 2.1(b)) which are
thin branches extending from the cell body and connecting to hundreds of other
neurons. The collection of neuron cell bodies and interconnecting dendrites forms
a dense network and is generally called gray matter (Figure 2.1(a)). Besides
dendrites, each neuron also has a single axon which is a special extension of the
cell body transporting electrical signals across large distances to remote parts of
the body. Axons are encapsulated by a myelin sheath whose primary function is
to speed up signal transmission. The collection of myelinated axons is generally
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called white matter and is responsible for the transfer of information between
different gray matter regions (Figure 2.1(a)).

2.2.1 Gray matter

Gray matter is primarily located on the outer surface of the brain, called the
cerebral cortex, where it forms a layer of neuronal tissue. This layer is intricately
folded in order to obtain a maximum surface area inside the confined space of
the skull (Figure 2.2(a)). The folds, or valleys, themselves are called sulci (singu-
lar: sulcus) while the smooth areas between folds are called gyri (singular: gyrus).
The pattern of gyri and sulci shows striking similarities between different subjects
which allows them to be classified and named (Figure 2.2(b)). The cerebral cortex
is commonly subdivided into four lobes: frontal, occipital, parietal and tempo-
ral (Figure 2.2(a)). Gray matter is commonly associated with the ’processing’
functions of the brain, such as memory, language, motor and vision.

Figure 2.2: (a) Four major cortical lobes. (b) Major gyri and sulci.

2.2.2 White matter

White matter bundles interconnect different gray matter regions and are also
associated with specific brain functions. For the purpose of this thesis we limit
ourselves to a description of only the major white matter bundles. Because these
bundles are also discussed in the following chapters we consider them to be most
relevant. Three different types of white matter bundles can be found in the brain:

• Projection fibers - These mostly run vertically and interconnect functional
regions in the cerebral cortex with the rest of the body (Figurer 2.3(a)).

• Association fibers - These interconnect cortical regions within the same
hemisphere (Figure 2.3(b)).

• Commissural fibers - These interconnect the two brain hemispheres (Fig-
ure 2.3(c)).
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Figure 2.3: (a) Projection fibers. (b) Association fibers. (c) Commissural fibers. Images
adapted from Williams et al. [167].

The three bundle types can be further subdivided into specific bundles that are
anatomically distinguishable in shape. A single, identifiable fiber bundle, however,
can serve multiple brain functions. A clear example is the cortico-spinal tract
(see details below) which transports information from a wide area in the cortex
down the spinal cord to the rest of the body. Only the fibers originating from
the primary motor cortex are involved in specific motor functions, e.g. hand
movement. Below, we will describe three major fiber bundles to which we will
refer in the following chapters. These are illustrated and highlighted in blue in
Figure 2.3. Many more exist and for a complete overview we refer the reader to
the white matter atlas published by Oishi et al. [115].

• Corticospinal tract - The cortico-spinal tract (CST) is the collection of
myelinated axons that run between cerebral cortex and the spinal cord.
It consists mostly of axons involved with motor function, but especially
the fibers originating from the primary motor cortex are of neurosurgical
interest. Damage to these fibers can result in permanent functional deficits
(Figure 2.3(a)). The primary motor cortex is located in the precentral gyrus,
just anterior to the central sulcus in the frontal lobe (Figure 2.2(a)).

• Arcuate fasciculus - The arcuate fasciculus is the fiber bundle connecting
the posterior part of the temporo-parietal lobe with the frontal cortex. Re-
cently, it is considered to be part of the superior longitudinal fasciculus, a
larger complex of fiber bundles involved with a wide range of brain functions
(Figure 2.3(b)). For neurosurgical purposes, however, the arcuate fasciculus
has specific interest because of its involvement with language function.

• Corpus callosum - The corpus callosum is the largest white matter struc-
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ture in the brain and belongs to the category of commissural fibers. It
primarily facilitates communication between the two cerebral hemispheres
(Figure 2.3(c)). Its posterior part is called the splenium, its anterior part
the genus.

2.3 Applications for fiber tracking

The ability to visualize the 3D layout of fibrous tissues offers great potential for
various application domains, especially those involving neuronal tissue such as en-
countered in brain white matter. In this section, we will provide a comprehensive
overview of two such applications: brain connectivity research and neurosurgery.
We will discuss (1) their main goals, (2) how fiber tracking can be used to reach
those goals and (3) how uncertainties in the fiber tracking output affect this pro-
cess.

2.3.1 Brain connectivity research

The primary goal of brain connectivity research is to map out structural net-
works of brain connections in as much detail as possible. This is considered to
be essential for understanding brain function. Diffusion tensor imaging and fiber
tracking can play an important role in this research, along with other methods for
studying brain connections such as chemical tract tracing, optical imaging and
basic histology. An example of fiber tracking used for brain connectivity research
is presented by Hagmann et al. [57] who subdivided the white matter/gray mat-
ter interface into 500-4000 equally sized regions of interest (ROI’s). Based on
whole-brain fiber tracking they constructed weighted networks of interconnected
cortical ROI’s (Figure 2.4(b)). Another example is Track Density Imaging, orig-
inally proposed by Calamante et al. [28], a DTI-based imaging technique which
uses the global information obtained from millions of fiber tracts reconstructed
with whole-brain fiber tracking to create images of white matter structures at a
resolution far beyond that of the acquired images (Figure 2.4(a)).

As we will see in Chapter 4 on DTI uncertainty, fiber tracking cannot provide the
same confidence in the existence of a brain connection as, for example, chemical
tract tracing. However, using probabilistic fiber tracking (Chapter 4) it is possible
to make statements about the reproducibility of the tracking results. Also, unlike
chemical tracing, fiber tracking can be done in-vivo and for large sets of voxels
simultaneously. For this reason, a large part of brain connectivity research consists
in combining different sources of connectivity information and cross-validating the
results of fiber tracking with alternative tract reconstruction methods [12].
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Figure 2.4: (a) Fiber tracts constructed from Track Density Imaging [28]. (b) Construc-
tion of brain network on the basis of whole-brain fiber tracking and a 500-4000 ROI
white-gray matter parcellation [57].

2.3.2 Neurosurgical planning

The ability of DTI and fiber tracking to non-invasively reveal anatomical connec-
tions in brain white matter also offers great potential for neurosurgical planning.
By highlighting functionally relevant fiber pathways in 3-dimensions neurosur-
geons are able to improve preoperative patient evaluation, surgical planning, in-
traoperative navigation and patient outcome [6]. Such information cannot be
easily obtained from conventional MR imaging because it represents brain white
matter as a homogeneous mass without details about individual fiber bundles.

Despite these advantages, a reliable interpretation of fiber tracking results in neu-
rosurgical settings can be difficult. The main reason is the presence of pathological
tissues, such as a brain tumor. These may not only affect the behavior of water
diffusion, which is the basic property being measured by DTI, but also affect the
underlying fiber structure itself. For example, a brain tumor may exert varying
effects on fiber bundles, such as displacement, infiltration or disruption. Further-
more, certain tumor types are surrounded by a layer of fluid, called edema, which
can cause fiber tracking algorithms to fail, even though the underlying fiber struc-
ture is intact. In Chapter 4 we will discuss probabilistic fiber tracking algorithms
which attempt to deal with such problems.

Brain tumors

An important part of neurosurgery is dedicated to the resection of brain tumors.
In the following chapters we will regularly refer to the planning of such procedures.
Here, we give a short overview of the different tumor grades as defined by the
World Health Organization (WHO). Tumor grades are based on the microscopic
appearance of tumor cells. The less these cells look like normal, differentiated
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cells, the more aggressive the tumor is likely to be. The grades are defined as
follows:

• Grade I - Well-differentiated (low grade)

• Grade II - Moderately differentiated (medium grade)

• Grade III - Poorly differentiated (high grade)

• Grade IV - Undifferentiated (high grade)

In Chapter 9 we will describe five clinical cases of brain tumor patients. Most of
these have a low-to-medium-grade glioma (WHO-I/II). These are slow-growing
tumors with a relatively good prognosis (10+ years) if the tumor can be resected
as completely as possible. For this, tumor tissue may need to be resected beyond
the boundaries visible on the medical images. The benefits of advanced techniques
such as DTI and functional MRI are particularly appreciated here because they
assist the neurosurgeon in finding the exact boundaries of functionally critical
brain regions and white matter bundles. This is especially important for low-
grade glioma patients because their functional anatomy may be altered. Due
to the slow growth of these tumors, the brain has time to reorganize and move
certain brain functions elsewhere.

Figure 2.5: (a) 3D multimodal visualization using GPU-based volume rendering [19].
(b,c) Two endoscopic visualizations of the nasal cavity as accessed in pituitary tumor
resection [112].

Visualization strategies for neurosurgical planning

Neurosurgical procedures are often complex and associated with considerable
risks. The margin for error is small and obtaining a good view of the target
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lesion and surrounding brain structures is difficult on the basis of 2D imaging
alone. For this reason, neurosurgical planning has received wide interest in past
visualization research. As the following chapters will show, we apply and evaluate
our visualization techniques also in neurosurgical settings. We will give a short
overview of related work in this area here.

Neurosurgery typically involves multiple imaging modalities such as structural
MRI, CT, functional MRI and DTI. Combining datasets from these modalities in a
single 3D visualization is challenging and several solutions have been proposed for
it, some using CPU-based methods [141] and others GPU-accelerated techniques
[19]. Different systems often focus on different aspects. Some focus on specific
neurosurgical procedures such as endoscopic pituitary tumor resections [112] (see
Figure 2.5). Others propose more general visualization systems for neurosurgical
purposes, combining anatomical MRI, functional MRI and DTI in a single view
[19, 21, 51, 86]. Still other systems address the general problem of rendering
multiple volumetric datasets without explicitly focusing on a neurosurgical context
[137, 136, 25]. Most of these neurosurgically-oriented systems rely on deterministic
fiber tracking. An explicit indication of errors and uncertainty in these systems
is not common yet.

2.4 Conclusions

In the previous sections we have provided a short overview of basic medical back-
ground information relevant to the remainder of this thesis. We will now proceed
with a more technical background chapter explaining the basic principles of dif-
fusion tensor imaging and fiber tracking.



Let’s form proactive synergy restructuring teams.
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3Technical background
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3.1 Introduction

In the previous chapter we introduced the reader to basic medical background
related to brain anatomy and two applications for DTI and fiber tracking that
are of particular interest to this thesis: brain connectivity research and the neu-
rosurgical planning of brain tumor resections. In this chapter we provide more
technical background as we discuss the general principles behind diffusion tensor
imaging, fiber tracking and ’traditional’ visualization strategies that are currently
used in this area. We will limit ourselves primarily to deterministic fiber tracking
algorithms which, given the same input, always produce the same output. In
chapter 4 we discuss another class of tracking algorithms, called probabilistic fiber
tracking, which form the basis of many visualizations presented in this thesis.

3.2 Characteristics of diffusion

Diffusion is an essential transport mechanism in living organisms. For example,
transport of metabolites into cells is mainly facilitated by means of diffusion.
Diffusion is the process of thermally-driven, random movement of molecules over
time, also called Brownian motion. The diffusion process is commonly described
by Fick’s Law of Diffusion:

∂

∂t
P (r, t) = D∇2P (r, t) (3.1)

In this equation, P (r, t) is a probability density function (PDF) describing the
probability that a molecule is displaced by a vector r in time t. The coefficient D
is the diffusion coefficient (m2/s), and depends on molecule type and properties
of the medium. ∇2 is the Laplacian. If diffusion is unrestricted in 3D space, D is
a scalar constant and Eq. (3.1) is solved by a 3D Gaussian distribution:

P (r, t) =
1√

(4πDt)3
exp

(
−r2

4Dt

)
(3.2)

In the next paragraph we will describe how measurements of water diffusion can
be used to extract information about tissue physiology and structure. We will pay
special attention to the possibilities of deriving orientational information in fibrous
tissues such as the myelinated axons encountered in the brain white matter.

Unrestricted, apparent and anisotropic diffusion

In free, unrestricted fluids the diffusion coefficient D is a scalar constant. In
pure water at body temperature (37 degrees Celcius) the diffusion coefficient is
3×10−3 mm2s−1 (Figure 3.1(a)). In tissues, however, water diffusion is restricted
by physical barriers such as cell membranes, cytoskeletal structures and macro-
molecules. In this case, the diffusion coefficient becomes time-dependent and can
be described as D(t). If the observation time t is small, the diffusing molecules
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will not have encountered any barriers yet and D(t) = D. If the observation time
is large, molecules will have encountered barriers and their movement is restricted
(Figure 3.1(b)). In this case, D(t) < D. The reduced diffusion coefficient is com-
monly called the apparent diffusion coefficient or ADC [90, 144] and can be used
to detect the presence of physical barriers in tissue.

Figure 3.1: (a) Isotropic diffusion without physical barriers. (b) Restricted isotropic dif-
fusion without preferred orientation. (c) Restricted anisotropic diffusion with preferred
orientation.

In fibrous tissues, water diffusion shows orientational behavior. For example,
in brain white matter, diffusion of water molecules along the fibers will be less
restricted than perpendicular to the fibers. In the next paragraphs we will ex-
plain how diffusion tensor MRI can make use of this orientational behavior to
reconstruct local fiber orientations in tissues.

3.3 Diffusion tensor MRI

Diffusion tensor MRI, or diffusion tensor imaging (DTI), is an imaging technique
based on magnetic resonance (MR) that allows measurement of diffusion in living
tissues. One of the first MR pulse sequences that allowed to do this was proposed
by Stejskal and Tanner [144] in 1965. They proposed the pulse gradient spin
echo sequence that, apart from the standard magnetic gradients used for spatial
encoding of the image, applies additional magnetic gradients to measure diffusion
along multiple gradient directions gi, (i ∈ 1, ..., N). Stejskal and Tanner derived
the following relation between diffusion and the measured MR signal S(gi), based
on exponential signal decay and a Gaussian diffusion distribution:

S(gi) = S0 exp(−b Di) (3.3)

where S0 is the T2-weighted MR signal without diffusion-weighting, b is an MR
acquisition parameter, called b-value, which depends on gradient strength and
diffusion time t. Di is the apparent diffusion coefficient (ADC) along gradient
direction gi. It should be noted that this formulation assumes exponential signal
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decay and Gaussian-distributed diffusion. In practice, this requires a b-value
< 2000 s/mm2.

Figure 3.2: Shapes of the 2nd-order tensor: (a) spherical or isotropic, (b) planar and (c)
ellipsoidal or linear.

3.3.1 Mathematical description of diffusion

As explained earlier, apparent diffusion is measured along a given gradient direc-
tion gi. The 3D shape of water diffusion can be probed by measuring diffusion in
many different gradient directions. In this thesis we will commonly refer to the
3D shape of diffusion as the diffusion profile.

In DTI, it is assumed that water diffusion in each voxel can be described by a
3D Gaussian distribution. A second-order tensor can be used to model such a
distribution. This model can describe spherical (isotropic), planar and ellipsoid
shaped diffusion profiles, as illustrated in Figure 3.2. The diffusion tensor D is
a symmetric, positive definite (all eigenvalues ≥ 0) tensor represented by a 3× 3
matrix whose scalar elements are denoted by Dij as follows:

D =

 D11 D12 D13

D12 D22 D23

D13 D23 D33

 (3.4)

3.3.2 Fitting the diffusion tensor

Based on the tensor representation of diffusion in each voxel, we can now rewrite
Equation (3.3) to incorporate the diffusion tensor as follows:

S(gi) = S0 exp
(
−b gTi D gi

)
(3.5)

where Di = (gTi D gi) is the ADC value in direction gi and D is the diffusion
tensor. Since the diffusion tensor is symmetric we need at least 6 diffusion mea-
surements S(gi) in each voxel to reconstruct it. To estimate the diffusion tensor
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D, we can take N instances of Eq. (3.5), one for each gradient direction gi, and
rewrite them in matrix form as follows:

s = B d (3.6)

where s is a vector containing the signal values for each gradient direction, B
is the B-matrix containing direction-dependent b-value information, and d is a
vector containing the 6 unique values of the diffusion tensor. If N = 6, Equation
(3.6) has the exact solution d = s B−1. To reduce noise effects, however, DTI
scans commonly apply gradients in more than 6 directions. In this case, solving
the matrix equation becomes a least-squares problem:

d′ = (BTB)−1BT s (3.7)

3.3.3 Tensor eigenanalysis

As described in earlier sections, measurement of the 3D shape of water diffusion
in living tissues can provide information about the underlying tissue structure.
In pure water, or when tissue structure is randomly oriented in a voxel, the dif-
fusion tensor will have spherical shape, what we call isotropic diffusion. In voxels
where tissue structure has a single preferred orientation, e.g., in muscle tissue or
certain fiber bundles of the brain white matter, the diffusion tensor will have an
elongated, ellipsoid shape. In the living brain, more complex fiber configurations
arise as well, such as crossing, kissing, bending and diverging fibers. Unfortu-
nately, the 2nd-order diffusion tensor cannot distinguish between such complex
configurations and will tend to a disk-like or planar shape for all such configura-
tions. The different shapes are illustrated in Figure 3.2. Another thing to bear in
mind is that the diffusion tensor only specifies an orientation, not a direction.

From the above, it is clear that tensor shape is a meaningful property. For the
purpose of analysis of diffusion tensor data, several geometric measures exist to
quantify tensor shape [164] and many of them rely on tensor eigenanalysis. This
involves finding eigenvectors e1, e2, e3 and eigenvalues λ1 ≥ λ2 ≥ λ3 such that the
following equation is satisfied:

D ei = λi ei , i ∈ {1, 2, 3} and ei 6= 0, λi ≥ 0 (3.8)

where D is the diffusion tensor. Since the null vector is not allowed, Equation
(3.8) can be rewritten as (D − λi I)ei = 0, where I is the identity tensor. This
implies that the matrix D − λi I is singular and its determinant is zero. Each
eigenvalue λi can then be calculated from:

det(D− λi I) = 0 (3.9)

Given the eigenvalues, each eigenvector ei can be calculated by solving:
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(D− λi I )ei = 0 (3.10)

When diffusion anisotropy is linear, we have λ1 >> λ2 ≈ λ3, and the main
diffusion direction is clearly defined by the largest eigenvector λ1, which is com-
monly called the main eigenvector or MEV. In case of planar anisotropy, we have
λ1 ≈ λ2 >> λ3 and there is no main diffusion direction.

3.3.4 Tensor shape and anisotropy measures

As explained in the previous paragraphs, the 3D tensor shape can provide useful
information about the underlying tissue structure. However, the second-order
tensor is a 6-dimensional object which is difficult to present in a quantitative
manner to a user. For this reason, several shape metrics have been proposed that
simplify the tensor to a single scalar value. One of the most popular metrics
is fractional anisotropy or FA. This metric describes the normalized variance of
tensor eigenvalues [7] and is defined as follows:

FA = 1√
2

√
(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2√

λ1+λ2+λ3

=
√
3√
2

|D− 1
3 tr(D) I|
|D|

(3.11)

where I is the identity tensor and tr(D) is the tensor trace. An additional advan-
tage of this measure is that it can be calculated using only the tensor trace and
determinant (as indicated in the 2nd equation), without explicitly calculating the
eigenvalues first. Westin et al. [164] proposed additional anisotropy measures to
distinguish between linear, planar and spherical diffusion:

CL = λ1−λ2

λ1+λ2+λ3

CP = 2(λ2−λ3)
λ1+λ2+λ3

CS = 3λ3

λ1+λ2+λ3

(3.12)

Each of these measures has a range between [0, 1] and CL +CP +CS = 1. Other
measures, such as mean diffusivity (MD = tr(D)/3 = (λ1 + λ2 + λ3)/3) do not
describe the shape of diffusion but only its magnitude. For a more complete
overview of anisotropy measures we refer the reader to Vilanova et al. [156].
It should be noted, that with a planar or disk-like diffusion profile, fractional
anisotropy will remain high. This can have unexpected effects when performing
deterministic fiber tracking on the basis of FA thresholds, as will be explained in
Section 3.4.

3.4 Fiber tracking

One of the most exciting benefits DTI has to offer for the analysis and under-
standing of brain white matter, is the reconstruction of 3D pathways by means
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Figure 3.3: (a) Conceptual overview of fiber tracking as tracing pathways through a
diffusion tensor field. (b) Mathematical representation of fiber tracking where pathway
location is parameterized by a vector r which is a function of length s along the pathway.
The tangent t(s1) represents the local fiber orientation estimated from the local diffusion
tensor.

of fiber tracking. It involves tracing 3D paths through the diffusion tensor field.
Fiber tracking algorithms can be subdivided into two general classes: determinis-
tic and probabilistic ones. Deterministic algorithms, given the same input, always
produce the same output. Probabilistic algorithms, on the other hand, introduce
an element of randomness into the tracking process in order to simulate the ef-
fects of data noise on the resulting pathways. Because they play a special role in
this thesis, we defer a discussion of probabilistic algorithms until Chapter 4. In
this section, we focus primarily on streamline tracing, one of the most common
and widely used deterministic tracking algorithms available. Other deterministic
algorithms exist, such as the Tensor Deflection (TEND) algorithm [89, 162], but
a thorough discussion of these is outside the scope of this thesis.

Streamline tracing was originally designed to trace pathways through vector fields.
In case of 2nd-order diffusion tensor fields, it is used to trace paths following local
tensor main eigenvectors. Mathematically, a streamline can be represented by a
3D space-curve. The equation describing this curve is based on the fact that the
tangent to the streamline must be parallel with the underlying fiber orientation,
as estimated by the tensor MEV. Location on the streamline r is a function of
the arc length s (the distance along the streamline measured from the starting
point). The evolution of the streamline is described by the following differential
equation:
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dr(s)

ds
= e1(r(s)) (3.13)

where e1(r(s)) is the tensor MEV at position r(s) [12]. This equation is solved
by the following integral:

r(s) =

∫ s

0

e1(x) dx (3.14)

It should be noted that e1 only specifies an orientation and not a (signed) di-
rection. Implementation of streamline techniques requires 3 basic elements: (1)
definition of seed points, (2) path integration and (3) definition of stopping crite-
ria.

1. Seed points - These define the initial conditions for solving the streamline
integration and represent the 3D points where streamline tracing should
start. They are commonly defined by the user but they can also be generated
automatically, e.g., by placing a seed point in each non-empty voxel (whole-
brain seeding). User-defined seeds are specified by 2D or 3D regions of
interest (ROI) whose interior is sampled to generate a set of seed points.
These can be evenly spaced [155] or randomly positioned.

2. Numerical integration - Several numerical schemes exist to implement
Equation (3.14), using Euler forward, 2nd- or 4th-order Runge-Kutta inter-
polation.

3. Stopping criteria - These prevent the algorithm from tracing into regions
where the vector field is not reliably defined. In DTI, this can occur in
areas of planar or isotropic diffusion, such as brain gray matter. In this
case, calculations of the main eigenvector e1 are not well-defined and depend
largely on noise and round-off errors. Stopping criteria are usually based on
some anisotropy measure such as FA or CL. In many cases, thresholds on
maximum pathway curvature are also used.

3.4.1 Resolving multiple fiber orientations

In the previous paragraphs we have focused primarily on the diffusion tensor
model. It is the most widely used model in clinical settings. A disadvantage of
this model is its inability to describe voxels with multiple fiber populations (Figure
3.4). To accurately capture the diffusion profile arising from such complex fiber
configurations, many more gradient directions are required (> 100). Such imaging
techniques are collectively called High Angular Resolution Diffusion Imaging, or
HARDI, and were first introduced by Tuch et al. [151].

Whereas DTI reconstructs a Gaussian distribution function for each voxel, HARDI
reconstructs more complex distribution functions, such as illustrated in Figure
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Figure 3.4: Examples of voxels containing complex fiber structures and which are rep-
resented by a planar diffusion tensor (blue circle): (a) kissing, (b) splitting, (c) crossing
and (d) bending.

3.8(a) and (b). The angular portions of these functions are conveniently de-
scribed by spherical harmonics (SH). For this reason, they have been widely used
in the literature to model the apparent diffusion coefficient [3, 40, 119, 41, 68].
Despite the advantages of HARDI, it requires hundreds of diffusion measurements
per voxel as well as complex post-processing steps. Until now, this makes it less
practical for clinical settings. In this thesis we will primarily focus on DTI.

3.5 Visualization strategies

In the previous sections we have described the basic concepts behind diffusion
tensor analysis and fiber tracking. This discussion is mainly concerned with data,
such as tensors or pathways consisting of connected points. In this section we
present a short overview of techniques for visualizing this data on graphical display
devices. We will start with visualization techniques for tensor data, after which
we proceeed with tensor-derived scalar measures. We conclude the discussion with
strategies for visualizing the fiber pathways generated by fiber tracking.

3.5.1 Tensor data

Second-order diffusion tensors are complex, 6-dimensional objects. One of the
few methods to display them without loss of information, is glyph visualization.
Glyphs are compact graphical objects located at specific points in space which
use a combination of color, size, shape and texture to encode properties in the un-
derlying data. Pierpaoli and Basser [125] first introduced ellipsoid-shaped glyphs
to visualize 2nd-order tensors obtained from DTI. They used glyph size to encode
mean diffusivity, while the long axis of the ellipsoid corresponds to the direction of
the tensor MEV. Several extensions of this idea have since been proposed [87, 79].
An example are superquadrics which are a family of shapes defined by similar
formulas as ellipsoids except for using arbitary powers instead of squares. Box-
shaped glyphs, ellipsoids and superquadrics are illustrated in Figure 3.5.
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Figure 3.5: Examples of tensor glyph shapes: (a) boxes, (b) ellipsoids and (c) su-
perquadrics.

Tensor glyphs have several disadvantages. Usually, a glyph is placed in each
data point. If many data points are shown the density of glyphs will lead to
cluttered visualizations and make it difficult to distinguish between the different
visual properties of each glyph. Also, glyphs can only represent local information
at discrete data points which makes it difficult to infer global information from
them.

3.5.2 Tensor eigenvectors

As explained earlier, the tensor MEV is an estimate of the main diffusion direc-
tion and the underlying fiber orientation. A popular approach to visualize fiber
orientation in 2D maps is to convert the tensor MEV e1 to an RGB color. This
can be done as follows:

R = |e1 · x|
G = |e1 · y|
B = |e1 · z|

(3.15)

where (x,y, z) defines the coordinate frame of the acquired dataset. To reduce
the visual prominence of isotropic regions, color saturation or opacity can be
modulated on the basis of a tensor scalar measure, such as FA. It should be
noted that manipulation of color saturation is best performed in HSV space (hue,
saturation, value) instead of RGB space.

3.5.3 Tensor-based scalar measures

As explained earlier, tensor-derived scalar measures often allow for easier inter-
pretation of the data. Since these measures are scalar-valued, standard techniques
for 2D and 3D scalar field visualization can be used. Figure 3.6(a) and (b) show
examples of such scalar maps for mean diffusivity (MD) and fractional anisotropy
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(FA). Figure 3.6(c) illustrates how multiple scalar measures can be incorporated
into a single 2D image by assigning different colors to different measures.

Figure 3.6: Scalar maps of (a) mean diffusivity, (b) fractional anisotropy and (c) com-
bination of CL (green) and CP (magenta) (see also Equation (3.12).

Scalar fields can also be visualized in 3D using standard volume rendering tech-
niques. Using iso-surface raycasting it is possible to visualize 3D surfaces of equal
anisotropy, possibly color-coded on the basis of the underlying main eigenvector
orientation [80]. Another approach was suggested by Wenger et al. [163] who use
volumetric line integral convolution (LIC) to create a 3D texture of thread-like
structures on the basis of tensor MEV’s. This 3D texture is then visualized using
direct volume rendering. An additional 3D texture with the same, but thicker,
thread structures is used to create halos around the threads in the first volume.
This provides an impression of shadowing and allows the threads to be better
distinguishable.

3.5.4 Deterministic fiber pathways

The output of fiber tracking is generally represented as 3D pathways consisting
of connected points. Many different visualization strategies exist for such data.
First, we can distinguish between different shapes used to represent each path,
such as streamlines or streamtubes. Streamlines are the simplest approach but,
since they have undefined surface normals, it is not possible to perform standard
illumination calculations on them. As a result their 3D shape and orientation
can be difficult to perceive. Streamtubes do allow straightforward illumination
techniques because they have well-defined surface normals. An example of a
streamtube visualization for standard fiber tracking is given in Figure 3.7(a).
Figure 3.7(b) shows streamtubes where the radius depends on some underlying
data property, such as fractional anisotropy. Hyperstreamlines are an extension
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of streamtubes which are specifically tailored for 2nd-order tensor fields [39, 172].
Hyperstreamlines have varying cross-sections depending on the local tensor eigen-
vectors and -values.

Figure 3.7: (a) Corpus callosum represented by streamtubes color-coded with main eigen-
vector orientation. (b) Streamtubes with fractional anisotropy encoded in streamtube
radius.

Apart from a distinction between different shapes used to represent fiber path-
ways, there also exist different approaches for rendering these shapes. A common
technique used to improve the orientational nature of pathways is to encode lo-
cal (x, y, z) orientation with RGB colors. Figure 3.7(a) provides an example of
this. Such RGB coloring can be applied to streamlines, streamtubes and hyper-
streamlines. Because of undefined surface normals, streamlines cannot be easily
illuminated to improve their depth perception. Even so, they are light-weight
graphics primitives which can be rendered in great numbers without serious per-
formance issues. This is more problematic with streamtubes or hyperstreamlines
whose geometry is much more complex. To overcome the illumination problems
of streamlines, Peeters et al. [124] propose an alternative method to calculate
normals perpendicular to the local streamline direction. Using GPU-acceleration
techniques this allows them to interactively apply hair-like rendering effects which
significantly improve spatial depth perception.

3.5.5 HARDI visualization

HARDI data can be visualized using glyphs. However, the complex shape of the
corresponding diffusion profile makes standard geometry-driven rendering unsuit-
able in terms of performance. Peeters et al. [123] proposed a GPU-accelerated
ray casting method which allows rendering of glyphs defined by spherical har-
monics at interactive framerates. Figure 3.8(a) and (b) illustate examples of this
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approach. This method can also be used to render DTI tensor glyphs such as
described in Section 3.5.1.

3.6 Conclusions

In the previous sections we have discussed the basic principles of diffusion tensor
imaging and fiber tracking. We also gave an overview of the ’traditional’ meth-
ods of visualizing DTI data and fiber tracking results. These techniques do not
take errors and uncertainty into account however. In the next chapter we will
address these issues in more detail and discuss existing methods for the analysis
of uncertainty in DTI and fiber tracking.
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Figure 3.8: (a) Fused visualization of streamlines and glyphs where 2nd-order tensor
glyphs are rendered in regions of linear anisotropy and HARDI glyphs are rendered in
regions of complex fiber architecture. (b) Another example of combining streamlines
with HARDI glyphs [129].



The creator of the universe works in mysterious ways. But he uses a base ten counting system

and likes round numbers.

- Dilbert

4Uncertainty analysis in DTI and fiber tracking
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4.1 Introduction

In this thesis we deal primarily with the visualization of uncertainty. This means
that we have to rely on existing methods for the analysis of uncertainty in DTI and
fiber tracking. This has been an active area of research ever since DTI and fiber
tracking became popular. The purpose of this chapter is to provide an overview
of such analysis methods. The first part of this chapter describes the different
sources of uncertainty present in the DTI imaging and processing pipeline. This
overview will serve as a basis for further discussion of uncertainty in this thesis.
In the second part of this chapter we discuss probabilistic fiber tracking methods.
These methods attempt to simulate the effects of image noise on the tracking
output by incorporating an element of randomness in the tracking process. Many
such algorithms have been proposed and we will provide an overview of the main
types. As will become clear from this chapter, not all sources of uncertainty can
be quantified in a manner that allows their analysis and visualization. As a result,
many sources of error and uncertainty remain unexplored.

4.2 Definition of uncertainty

Before we continue, we should more precisely explain what we mean with ’un-
certainty’. The term is rather vague and has different meanings in different
application domains. It can apply to predictions of future events, to physical
measurements already made or simply to the unknown. In this thesis we do not
wish to add to the confusion and introduce completely new definitions. We simply
consider uncertainty as a state of ignorance about the true outcome of a measure-
ment or computational process. For example, DTI and fiber tracking are used
to make inferences about white matter pathways on the basis of physical mea-
surements of water diffusion. Uncertainty arises from our ignorance about the
true outcome of fiber tracking, that is, the difference between the reconstructed
fiber pathways and the underlying white matter anatomy. In this definition, un-
certainty arises as a consequence or result of something else, which we will call
sources of uncertainty. Examples of sources of uncertainty are image noise, mag-
netic distortions, partial volume effect and model errors. These and more will be
discussed in detail in the next sections.

4.3 The DTI uncertainty pipeline

In order to discuss the different sources of uncertainty affecting the output of
fiber tracking we propose a 4-stage pipeline, which we call the DTI uncertainty
pipeline. This pipeline consists of 4 stages, each responsible for a specific function.
The four stages are (1) image acquisition, (2) diffusion modeling, (3) fiber track-
ing and (4) visualization. A diagram of the uncertainty pipeline is illustrated in
Figure 4.1. Besides performing its intended function, each stage is also a source
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of potential errors and uncertainties.

Figure 4.1: The DTI uncertainty pipeline consisting of four stages: (1) image acquisition,
(2) diffusion modeling, (3) fiber tracking and (4) visualization.

Before we discuss the individual stages and the associated uncertainties, we need
to say something about the input of the DTI uncertainty pipeline: the diffusion
signal. Even though this does not constitute a ’processing’ stage in any sense,
there is a fundamental type of uncertainty associated with the interpretation of
this signal. As explained earlier, the primary goal of fiber tracking is to gain
insight into the 3D layout of brain white matter. What is being measured with
DTI, however, is diffusion of water. The presence and orientation of white matter
fibers is merely inferred on the basis of anisotropic diffusion of water molecules.
Even though the correspondence between diffusion and fiber orientation has been
validated to a certain extent in muscle tissue [154, 153], spinal cord tissue [29, 103]
and phantom studies [98, 150], the exact physiological basis of diffusion anisotropy
and its relation to fiber orientation remains a topic of debate. Different compo-
nents of the white matter axons contribute to diffusion anisotropy, such as the
cytoskeletal lattice of neurofilaments and microtubules, axonal membranes and
myelin. However, there is still much debate about the individual contributions of
these components to the overall diffusion signal measured in each voxel [9].

We will now proceed with a discussion of the different pipeline stages and the
uncertainties affecting their outputs.

4.3.1 Image acquisition

DTI is based on magnetic resonance and, for this reason, suffers from many of the
same image artifacts. However, typical DTI pulse sequences take more time, are
much more complex and involve strong magnetic gradients that are constantly
being switched on and off. This enhances typical MRI artifacts and gives rise to
additional, DTI-specific artifacts. We will not provide an exhaustive list of these
artifacts but instead focus on those that have been investigated in the context of
fiber tracking and visualization of its output.

Noise - The relatively long duration of DTI pulse sequences results in increased
signal loss and decreased signal-to-noise ratio (SNR). The effect of noise on fiber
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tracking output has been widely investigated in the neuro-imaging literature
[88, 4, 65, 150] and has given rise to a wide range of probabilistic tracking al-
gorithms that attempt to take image noise into account [11, 50, 122]. We will
defer an extensive discussion of probabilistic tracking methods to Section 4.4.

Partial volume effect - Partial volume effect, or PVE, results in loss of informa-
tion and detail due to averaging of tissue properties inside a single image voxel. It
leads to contamination of the diffusion measurement, especially in voxels located
at the boundary of two or more tissue types, e.g., white matter and cerebral spinal
fluid. Due to the low image resolution of DTI, PVE is generally more pronounced
than in conventional MRI. The effect of PVE on deterministic fiber tracking has
been investigated by a number of authors [59, 72, 158].

Motion artifacts - With the growing trend to increase the number of gradient
directions in DTI, acquisition time increases as well. This makes it more likely
that subjects move during the scan which results in mis-alignment of the images.
Fortunately, mis-alignments involve only rigid-body transformations and can be
corrected easily using image registration. However, care should be taken to also
re-align the gradient encoding vectors (stored in the B-matrix) before calculating
the tensor and performing fiber tracking [92].

Magnetic distortions - The quality of spatial encoding of MR images relies on
the homogeneity of the static magnetic field. However, differences in magnetic
susceptibility between adjacent tissues types can cause disturbances in the mag-
netic field and thereby result in image distortions. These can be quite severe, for
example wherever brain tissue is close to air-filled cavities in the head. Suscepti-
bility artifacts can be corrected to some extent but this is not common practice
and the correction algorithms can introduce biases of their own [72]. The effect
of susceptibility distortion on fiber tracking, in some cases, may result in fibers
ending up in the wrong sulci [5, 91]. Eddy currents are another source of image
distortion but these can be easily corrected on a slice-by-slice basis.

Scanner settings - DTI pulse sequences are configured on the basis of many pa-
rameters, such as number of gradient directions, b-value, number of non-diffusion-
weighted images, etcetera. In principle, these settings are fixed between different
scan sessions. However, the effect of changes in these parameters (e.g., when
comparing data between different institutions) can be difficult to predict. Also,
some drift in these parameters can be expected due to warming up of the scanner.
Especially the choice of the b-value can have a large impact on the resulting data.
It is defined as follows:

b = γ2 G2 δ2
(

∆− δ

3

)
(4.1)

where γ is the gyro-magnetic ratio of water, G is the gradient amplitude, δ is the
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gradient pulse duration and ∆ is the time between consecutive gradient pulses.
Pulse duration also determines the diffusion time. For short durations, molecules
will not have had time to run into physical barriers. The measured diffusion
profile will therefore be isotropic. Conversely, long durations lead to increasing
numbers of molecules hitting physical barriers. This results in more pronounced
diffusion anisotropy in fibrous tissues.

Figure 4.2: Diffusion profiles for single-orientation fibers (top row) and crossing fibers
(bottom row). Crossing fiber populations are incorrectly described by the 2nd-order
tensor model. As a result, the direction of main diffusion as predicted by this model
does not correspond with either fiber population.

4.3.2 Diffusion modeling

DTI can only measure diffusion in a single direction at a time. To determine the
direction of greatest diffusion, many measurements have to be performed for each
voxel along many different gradient directions. To deal with such high-dimensional
data mathematical models are fitted to the data in each voxel. This reduces the
set of data values to its essential characteristics. In DTI a 2nd-order tensor model
is used for this purpose. However, this model can describe only a single average
fiber orientation per voxel. If fibers are crossing or diverging inside a given voxel,
the 2nd-order tensor model will be incorrect and result in unreliable results. This
is illustrated in Figure 4.2. Even if the tensor model is correct, variations can
arise from the fitting procedure. Ordinary least squares fitting is most commonly
applied but other regression procedures exist that give slightly different results
[83, 84].
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4.3.3 Fiber tracking

As explained in Chapter 3, fiber tracking involves the integration of voxel-wise
fiber orientations into a pathway that connects different brain regions [12]. Several
methods to implement this exist but the most popular and widely used method
remains streamline tracing. Each streamline is described by a differential equation
that allows calculation of a position on the streamline by integrating all previous
position changes. However, the iterative nature of the numerical solvers, makes
streamline tracing highly sensitive to local errors in the underlying vector field,
which in case of DTI is the tensor MEV. As tracking proceeds away from the
starting point, directional errors accumulate. As explained in Chapter 3, each
fiber tracking algorithm consists of 4 basic elements: (1) numerical integration,
(2) interpolation, (3) stopping criteria and (4) seeding and filtering. The purpose
of these elements have already been described earlier. Here, we will focus on the
uncertainties arising from them.

Numerical integration - Numerical integration in fiber tracking can be imple-
mented in different ways, such as Euler forward integration [110] and 2nd- or
4th-order Runge-Kutta integration [8]. The quality and smoothness of pathways
also depends on the integration step size [150]. TEND, or tensor deflection, uses
the full diffusion tensor to guide the direction of step vectors. If the tensor is
planar or isotropic, tracking proceeds in a straight line [89]. This method may be
less sensitive to noise and will therefore result in slightly different pathways.

Interpolation - Also, when calculating the next integration step vector, some
form of interpolation is needed when the current position lies in between data
points. Different options will lead to different results, e.g., nearest-neighbor, lin-
ear [110] or higher-order interpolation [8, 2] of (1) the main eigenvector [110] or
(2) the tensor itself [8, 2]. The different choices that can be made for any given
implementation of fiber tracking can result in considerable overall differences be-
tween the output of different algorithms, even if the starting conditions (data,
thresholds, seed points) are kept constant. The variability may have a negative
effect on the confidence users have in the reliability of fiber tracking, especially in
risk-related situations such as neurosurgery [27]

Stopping criteria - Another major source of variation, between different users
or different sessions, are parameter settings such as stopping criteria. Many fiber
tracking algorithms are highly sensitive to small changes in the associated thresh-
olds, meaning that a small change in threshold value can lead to a large change
in pathway length [150]. We discuss this issue in more detail in Chapter 6 where
we present techniques for visualizing the effect of parameter changes on the fiber
tracking result.

Seeding and filtering - Seed points define the initial conditions for numeri-
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cal integration. In most cases, seeding has to be done manually by the user,
thereby introducing user bias. Bias can be reduced by detailed written instruc-
tions [33, 159] or combining seed regions with filter regions in different Boolean
combinations (AND, OR, NOT) [65, 60]. The purpose of seeding and filtering is to
extract specific fiber bundles, e.g., the motor part of the corticospinal tract (CST)
or the optic radiation. An alternative approach could be to generate pathways
on the basis of whole-brain seeding and apply a pathway clustering algorithm to
selectively subdivide the total set of pathways into subsets that, hopefully, rep-
resent anatomically recognizable fiber bundles [157, 26]. A similar result might
be achieved by using a pre-classified white matter atlas and warping the current
dataset to it in order to find out which pathways belong to which bundle [114].

Figure 4.3: GPU-based streamline illumination and shadowing [123]. (a) Hair-like il-
lumination of muscle fibers in an ex-vivo heart. (b) Similar illumination, now with
shadowing applied to improve depth perception of individual fibers.

4.3.4 Visualization

Even though we use visualization techniques to show uncertainty, it can be a
source of errors and uncertainty itself. For example, the pathways calculated
from fiber tracking may be simplified (by removing vertices) for the purpose of
rendering performance. Also, different lighting models can be chosen to render
fiber pathways. Lighting (and shadowing) plays an important role in depth per-
ception. Many existing fiber tracking tools do not apply lighting to the fiber
pathways or rely on very simple lighting models. Photo-realistic rendering at-
tempts to simulate real-world lighting as closely as possible but the algorithms
involved are computationally expensive and often not suitable for rendering at
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interactive framerates. One counter-example is the work proposed by Peeters et
al. [123] who present a GPU-based rendering algorithm for applying lighting and
shadowing to streamlines. An example rendering is illustrated in Figure 4.3.

4.4 Probabilistic fiber tracking

As explained in the beginning of this chapter, we rely on existing methods for the
quantification and characterization of selected sources of uncertainty. Probabilis-
tic fiber tracking algorithms address a widely investigated source of uncertainty,
namely image noise. In this section we give a brief overview of such algorithms.
Whereas deterministic algorithms typically produce a single estimate of orienta-
tion for each fiber population in a voxel, probabilistic algorithms derive a distri-
bution of fiber orientations in each voxel based on an estimation of noise. For
multiple fiber populations, each with a different average orientation, such a dis-
tribution can be multimodal. Probabilistic tracking algorithms can roughly be
subdivided into the following categories:

• Tensor-derived uncertainty

• Bootstrapping

• Bayesian modeling

4.4.1 Tensor-derived uncertainty

Tensor-based approaches rely on a single DTI scan and calculate a 2nd-order dif-
fusion tensor for each voxel. Anisotropy and tensor shape properties are then used
to derive probability distribution functions (PDF’s). One of the earlier methods
was proposed by Koch et al. [85] and relied on Monte Carlo random walks, where
fiber tracking proceeds from voxel to (neighboring) voxel without interpolation.
The probability of choosing a particular neighboring voxel depends on the angle
between the tensor main eigenvector in the initial voxel and the vector connecting
the initial voxel with the neighboring voxel. Another approach for determining
step vectors along a fiber pathway is to assume the main eigenvector in each voxel
to be a correct average but perturb its direction based on the linear anisotropy
of the underlying tensor [20, 122]. Monte Carlo random walks have also been
used to simulate random particle movement [58]. To determine each step along
the particle’s path, a random unit vector is selected from a uniformly distributed
orientation distribution function (ODF) and multiplied by the underlying diffu-
sion tensor. This approach is similar to the tensor deflection method proposed by
Lazar et al. [89].

4.4.2 Bootstrapping

A disadvantage of the tensor-shaped methods is that they are biased toward the
tensor originally fitted to the data. The tensor MEV is taken to be a correct aver-
age and uncertainty arises only from variations in orientation about the MEV. A
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Figure 4.4: Example of bootstrap method: three datasets are acquired and used to
generate a large number of bootstrap datasets which consist of random slice selections
with replacement from the original datasets. For each bootstrap dataset a tensor dataset
is created. In each voxel a cone of uncertainty can be derived on the basis of main
eigenvector variations across all bootstrap tensors for that voxel [12].

better, and less biased, approach to characterize uncertainty due to noise would
be to repeat the measurement many times. However, due to time constraints,
diffusion MRI does not allow acquisition of the hundreds of datasets that would
be required for a robust estimation of uncertainty. Bootstrapping is a well-known
technique in statistics to estimate the distribution of a given statistic on the basis
of only a small set of samples. In DTI, bootstrapping has been used to characterize
uncertainty in various tensor scalar measures [120] as well as fiber orientation [70].

Regular bootstrap - The general principle of DTI bootstrapping is illustrated
in Figure 4.4. Based on a small set of image acquisitions, a large set of bootstrap
data sets is created by randomly selecting slices, with replacement, from the orig-
inal datasets. For this, consider a single DTI dataset consisting of N diffusion
measurements per voxel V , one measurement per gradient direction. Bootstrap-
ping involves repeating the diffusion-weighted image (DWI) scan M times thereby
resulting in M realizations V ∗i (0 < i ≤M) for each original voxel V . We can now
construct a new voxel W by, for each gradient direction gj (1 < j ≤ N), randomly
selecting a voxel V ∗i , with replacement, and taking the value corresponding to gj .
The new voxel can be used to re-fit the diffusion model (whether 2nd-order tensor
or high-order, multi-fiber models). Assuming a 2nd-order tensor model, repeating
this procedure many times allows us to approximate the distribution of tensors
at each voxel position.

Wild bootstrap - Regular bootstrapping provides an intuitive way to estimate
uncertainty in diffusion tensors. However, it requires at least 4 to 5 repeats of
the DWI scan. In clinical settings, this can take too much time, especially with
current trends for using medium to high angular resolution imaging (e.g. > 32



38 4.4 Probabilistic fiber tracking

Figure 4.5: Wild Bootstrap: In the ideal case we have a perfect model fit. In practice,
the fit is imperfect leading to model residuals (differences between measured and model-
predicted signals). Residuals are randomly flipped, after which the tensor model is fitted
again. This process is repeated many times to obtain a large collection of tensor datasets
[71].

directions). Wild bootstrapping requires only a single DTI scan at the expense
of certain simplifying assumptions [71, 165]. The general principle behind Wild
Bootstrapping is illustrated in Figure 4.5. It works as follows: a given voxel V
consists of N diffusion measurements. As explained in Chapter 3, the vector d′

containing the 6 unique elements of the diffusion tensor D can be estimated (using
ordinary least squares optimization) as follows:

d′ = (BTB)−1BT s (4.2)

where B is the B-matrix. Once we have d′ we can compute the model-predicted
signal values s′ = B d′ and subtract these from the original signal values s to
obtain a vector r = (s′ − s) of residuals. The Wild bootstrap procedure involves
repeating the estimation of d′ in each voxel multiple times as follows:

d′ = (BTB)−1BT (s + q(r)) (4.3)

where the function q randomly multiplies each separate residual of r by 1 or -1.
By perturbing residuals randomly each tensor fit will be slightly different from the
previous one. The end result of applying the Wild Bootstrap procedure K times
for all voxels in the original dataset, is a set of K tensor volumes. Conceptually,
this amounts to having a dataset where each voxel contains a distribution of
tensors. The uncertainty in anisotropy and main eigenvector direction predicted
by Wild bootstrap data has been found to be very similar to the original, regular
bootstrap method [71]. It should be noted that residuals are flipped for each
gradient direction independently. They are not exchanged between directions
because tensor fitting is done, not directly on the diffusion signal, but on the
log-transformed diffusion signal. This causes variations in the diffusion signal due
to noise to become dependent on direction.
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4.4.3 Bayesian modeling

Bootstrapping methods do not require an explicit mathematical formulation of
uncertainty. They also require minimal assumptions regarding the estimation of
uncertainty. Bayesian methods, on the other hand, provide a formal framework
for modeling uncertainty, defining prior assumptions and predicting error propa-
gation. Bayes’s Theorem states that the posterior probability distribution of the
model parameters Θ, given the data D and the model M , is defined as follows:

P (Θ|D,M) =
P (D|Θ,M) P (Θ|M)

P (D|M)
(4.4)

A possible disadvantage of Bayesian methods is that they rely on assumptions
about the prior and likelihood distributions of model parameters and noise in the
data. Bootstrapping methods are less dependent on such assumptions. Even so,
the explicit mathematical formulation of assumptions as separate PDF’s allows
them to be changed and updated as knowledge about the underlying processes in-
creases. Together with the wide range of techniques for solving Bayesian problems,
this has made Bayesian inference a popular approach for developing probabilistic
fiber tracking algorithms. Different diffusion models have been proposed in this
context such as the ’ball-and-stick’ model [11], tensor [11, 50, 74], and models
supporting multiple fiber orientations per voxel [13, 66, 64].

Figure 4.6: Optic radiation: (a) Cranial-to-caudal view indicating Meyer’s Loop and
visual cortex. (b) Side view of optic radiation.
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4.4.4 Hybrid methods - ConTrack

Not all probabilistic fiber tracking methods can be easily classified according to
the categorization used in the previous examples. Some algorithms combine ele-
ments of Bayesian inference and bootstrapping, such as the ConTrack algorithm
proposed by Sherbondy et al. [142]. This algorithm is specifically designed to
reconstruct pathways that are known to exist and therefore relies on at least two
regions of interest. The main difference between ConTrack and other probabilistic
fiber tracking methods is its separation of (1) pathway sampling and (2) pathway
scoring. Most algorithms combine these two steps. They tend to ignore pathways
evolving in unlikely directions, even though such pathways may be perfectly valid
anatomically. This can occur, for example, in the optic radiation. This bundle
runs between the geniculate nucleus in the mid-brain towards the visual cortex
at the back of the head. However, it does this by first running in lateral-anterior
direction and then sharply bending back to continue its path posteriorly. The
sharply bending part of the optic radiation is commonly called Meyer’s Loop.
Many tracking algorithms, even probabilistic ones, have problems reconstructing
Meyer’s Loop [13, 64, 66]. The optic radiation, including Meyer’s Loop, is illus-
trated in Figure 4.6. The main problem ConTrack tries to address is the failure
of many probabilistic algorithms to reconstruct certain fiber pathways that are
known to exist.

Pathway sampling - ConTrack performs pathway sampling by generating a
large set of potential pathways that have end-points in two ROIs. The directions
in which these pathways are allowed to evolve is only loosely constrained. This
allows pathways to be sampled which would otherwise have been ignored.

Pathway scoring - Pathway scoring involves computing a confidence value for
each pathway sample based on its anatomical validity. A pathway score Q(s) is
defined as:

Q(s) = q(D|s) q(s) (4.5)

where s is the pathway and D the data values encountered along the pathway. The
data-dependent part of the score determines how well the pathway is supported
by the diffusion tensors encountered along its length. For a pathway consisting of
N nodes, it can be computed as follows:

q(D|s) =
N∏
i=1

q(Di|ti) (4.6)

where Di and ti are the diffusion tensor and tangent vector at node i. The
term q(Di|ti) is computed using a Bingham distribution [35]. For details we
refer the reader to Sherbondy et al. [142]. The data-independent part of the
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score represents prior knowledge about the shape of neuronal connections and is
defined as follows:”

q(s) = qend(s1) qend(sN )
N−1∏
i=2

qcurve(Θi) qlength(si) (4.7)

where qend(si) returns 1 if si is inside a ROI, and zero otherwise. The function
qlength(si) returns a non-zero value if si is in white matter, and zero otherwise.
The function qcurve(Θi) returns a score depending on the angle of the pathway
as it enters and exits a given node. Again, for details we refer the reader to
Sherbondy et al. [142].

4.5 Visualization strategies

In the previous chapter we presented a number of ’traditional’ approaches for the
visualization of DTI tensor data and deterministic fiber tracking. Visualization
of the output of probabilistic fiber tracking has received less attention. It is also
more difficult because of the large quantity of fiber pathways potentially gener-
ated by such methods. Direct visualization of these pathways using, for example,
streamlines is mostly ineffective because of the resulting visual clutter. Currently,
the most popular method to visualize probabilistic tracking results is to create 3D
scalar maps, similar to those described in Section 3.5.3 of the previous chapter.
Each voxel stores a fiber density depending on how many fiber pathways inter-
sect it. This provides an indication of the likelihood or probability of each voxel
being part of the fiber bundle of interest. These 3D probability maps can then be
visualized as 2D color-coded maps or using volume rendering such as illustrated
in Figure 4.7.

Even though 2D and 3D fiber density maps are the most popular way to present
probabilistic tracking results, they do not provide insight into the 3D layout of
fiber pathways and variations in their shape due to uncertainty. The visualization
techniques presented in Chapters 6, 7 and 8 are specifically designed to deal with
this issue. However, before we proceed with these chapters, we will first present
an overview of existing research in uncertainty visualization in the next chapter.

4.6 Conclusions

In the previous sections we have described the different sources of uncertainty
arising from the DTI acquisition and processing pipeline. We also outlined exist-
ing methods for characterizing uncertainty, especially probabilistic fiber tracking
methods which attempt to describe the effects of image noise on the fiber tracking
output. In the next chapter we will focus on visualization of these uncertain-
ties.
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Figure 4.7: Color-coded scalar probability maps based on probabilistic fiber tracking
[105].



63% of all statistics are made up... including this one.

- Dilbert

5Uncertainty visualization
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5.1 Introduction

In the previous chapter we have given an overview of uncertainty analysis in DTI
and fiber tracking. In this chapter we focus on the visualization of uncertainty
and previous work done in this area.

Different ways exist to classify uncertainty visualization techniques. As explained
in Chapter 1, uncertainty can arise from a wide variety of sources, only some of
which can be characterized in a quantifiable manner. Such quantifiable measures
of uncertainty are standard deviations, percentiles, min/max ranges, errors, confi-
dence intervals or complete distributions [121]. Other descriptions of uncertainty
are not easily quantified nor measured such as the quality of the data source, the
degree of subjective influence in the data recording process or the logical consis-
tency between relations present in the data [54, 102]. As explained in Chapter 1,
the lack of knowledge about the true relation between the measured signal (water
diffusion) and the physical phenomenon of interest (fiber orientation) is also a
source of uncertainty that is difficult to characterize.

Data visualization allows us to analyze large quantities of data by presenting in a
way that makes optimal use of the pattern recognition capabilities of the human
visual system. This means the data, or measures of its uncertainty, has to be
recorded or transformed to a format that allows mapping to visual properties, e.g.
color, shape, size or texture. Without such a visual mapping, visualization itself
is not possible. For this reason, in our discussion of related work in uncertainty
visualization we always consider three aspects which each technique needs to take
into account:

• Characterization - Uncertainty has to be described in some way, by mea-
surements or models which reflect prior knowledge about the phenomenon of
interest. For example, uncertainty about temperature in a specific location
could be described by a probability distribution derived from repeated mea-
surements. Or, temperature variations are assumed to follow a Gaussian-
distributed pattern and measurements are performed to estimate its mean
and standard deviation.

• Representation - Once uncertainty has been characterized, we have to
decide which features of this description we wish to visualize. For exam-
ple, given a Gaussian model for temperature variations we may select the
standard deviation as our representation of uncertainty. Or, we determine
a 95% confidence interval and use it as a quantitative measure.

• Visualization - After choosing how we quantify uncertainty, we can decide
how to visualize it. For example, information about the range of temper-
atures at different locations in a certain land area can be visualized using
color mapping or iso-contours.

In the following sections we will present an overview of uncertainty visualization
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techniques. Choosing a good classification for this is not straightforward because,
as explained earlier, uncertainty arises in many different forms. Several authors
have proposed classification schemes for uncertainty visualization. For example,
Pang et al. [121] classify techniques on the basis of what they change in the
display, such as adding glyphs, adding continuous geometry (lines and surfaces),
modifying geometry, modifying visual attributes, animation and sound. Griethe
and Schumann [54] propose a similar classification but add interactive manipula-
tion (e.g., of parameter settings) as a means of visualizing/exploring uncertainty.
In the following, we propose a classification on the basis of the following categories:

1. Value - This represents uncertainty about measured or calculated data
values. This category can be further subdivided according to data type,
e.g., scalars, vectors, tensors and multivariate data.

2. Location - This represents uncertainty about the location where data values
or objects exist. This can refer to the position of individual objects such
as particles or it can refer to surfaces, such as reconstructed from height
measurements.

3. Parameter - This represents uncertainty about the effect of variations in
parameter values of models or computational algorithms.

5.2 Value uncertainty

Value uncertainty has received the most attention in the visualization research
community. In many cases, data values are obtained from physical measurements.
Modern data acquisition techniques allow the collection of enormous quantities
of data and hardware performance often allows many repeated measurements
in order to characterize uncertainty. We can distinguish between different data
types, such as scalars, vectors, tensors and multivariate data. We will shortly
describe different approaches for visualizing uncertainty for these different types.

5.2.1 Scalars

Scalar data is the most common type of data available from physical measure-
ments. For example, Djurcilov et al. [42] use volume rendering to visualize 3D
measurements of water temperature and salinity in ocean data. Uncertainty is
characterized using Monte Carlo simulations based on ocean models and rep-
resented as a scalar-valued variance. Visualization was done using 1D and 2D
transfer functions mapping combinations of data values and uncertainties to color
and opacity. Cedilnik et al. [31] propose a general method for visualizing nor-
malized, scalar representations of uncertainty in 2D scalar maps. To visualize
uncertainty they overlay the 2D map with grid lines and apply varying levels of
distortion to the grid lines based on the uncertainty of the underlying data values
(Figure 5.1(b) and (c)). Uncertainty in scalar data can also be represented more
fully, for example by means of probability density functions (PDFs). Visualization
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Figure 5.1: (a) Scalar uncertainty described by PDF features [77]. (b,c) Scalar-valued
uncertainty used to introduce disturbances in grid lines such as (b) distortion and (c)
noise [31].

of such PDF’s can be accomplished with different types of graphs and plots, such
as encountered in traditional exploratory data analyis [152] or extensions thereof
[128, 16, 47, 166, 62]. A disadvantage of these techniques is the amount of screen
space they require. Unless the data is very sparse, they do not easily translate to
2D or 3D maps without visual clutter and occlusion. A solution to this problem
can be to reduce the PDF to a limited set of features, such as the mean or stan-
dard deviation. Kao et al. [77] take this approach to visualize such PDF features
in 2D geographic maps, such as mean, standard deviation, interquartile distance
and mean-median differences (Figure 5.1(a)). In some cases, the distribution of a
scalar value may be unknown but a min/max range may be available. Olston et
al. [116] propose specific visualization techniques for such bounded uncertainty.

5.2.2 Vectors

Vector fields are common in many application domains such as physics, weather
prediction and oceanography. Even though vectors can represent any N -tuple
of data values, they mostly represent directional information. Chapter 3 already
mentioned that vector fields play an important role in DTI and fiber tracking.
DTI data is initially represented as a 2nd-order tensor field but fiber tracking is
mostly performed on the field of tensor main eigenvectors. We can distinguish
different graphics primitives used for the visualization of vector field uncertainty:
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Figure 5.2: Uncertainty arising from different streamline tracing algorithms. (a) Line
segments. (b) Barbell glyphs [95]. (c) GPU-based texture cross-advection [24].

Streamlines - The shape of the streamlines derived from streamline tracing de-
pends on several factors. In Chapter 4 we already indicated that the numerical
integration scheme and integration step size can be a source of streamline vari-
ation. Lodha et al. [95] investigated precisely this issue and propose various
visualization strategies, such as barbell glyphs, ribbons and animations, to high-
light streamline variations as a result of different tracing algorithms (Figure 5.2(a,
b)). In Chapter 6 we will discuss how user-defined parameters can have similar
effects. Another approach for streamline-based vector visualization is proposed
by Boller et al. [23] who calculate trajectories of air flow by interpolating points
inside so-called hypercubes (3D + time). Uncertainty is represented by the dis-
tance between each trajectory and an estimated worst-case trajectory in each
hypercube. Visualization of uncertainty is done by mapping distance to stream-
line thickness.

Glyphs - Streamlines provide global information about vector fields at the ex-
pense of computational biases and errors. Alternatively, glyphs represent data
values directly but only locally. This approach was taken by Wittenbrink et al.
[168] who use glyphs to visually encode uncertainty in the direction and magni-
tude of wind velocities captured by repeated radar measurements. Uncertainty
is represented as standard deviations or min/max ranges. The authors propose
various glyph designs encoding different data values and uncertainties (Figure
5.3(a)). Although not explicitly designed for vector field uncertainty, Hlawatsch
et al. [63] propose Flow Radar Glyphs that show directional changes in a local
vector value over time (Figure 5.3(b)).

Texture-based approaches - Another common approach to visualize vector
fields is to use texture advection such as proposed by Botchen et al. [24]. They
investigate particle movement captured by particle image velocimetry. Directional
uncertainty of the particles is captured by multiple measurements and represented
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Figure 5.3: (a) Uncertainty glyphs [168]. (b) Flow Radar Glyph for representing time-
varying changes of vector directions [63]. (c) Uncertainty cones [70].

as the root mean square of these measurements. Short streaklines are shown that
are aligned with the average direction of particle movement. The root mean
square is used to apply Gaussian cross advection to each streakline. Osorio et al.
[117] propose a variation of line integral convolution (LIC) describing uncertainty
for flow fields in both direction and magnitude. The LIC itself is derived from
the mean vector in each location while uncertainty is represented by the standard
deviation and visually encoded by color, blur and fog-like effects.

5.2.3 Tensors

Tensor data has received very little attention in uncertainty visualization research.
In Chapter 3 we saw that 2nd-order diffusion tensors can be visualized using
locally positioned glyphs. However, these do not provide global information about
the tensor field. As explained in Chapter 4, different methods exist to capture
uncertainty in the tensor field, such as bootstrapping [165, 71]. These methods
result in a type of distribution of tensors in each data point. Visualization of this
information has been limited to variations in each tensor’s main eigenvector, for
example, by means of uncertainty cones (Figure 5.3(c)) [70].

5.2.4 Multivariate data

Multivariate data are becoming increasingly common. It is defined as data where
each data point contains not a single variable (scalar, vector or tensor) but mul-
tiple variables, possibly of different type. For example, each data point in a 3D
dataset could store both temperature and pressure (both scalars), or temperature
and ocean current (a scalar and a vector). Each variable may be associated with
uncertainty represented by a single scalar, a full PDF or selected PDF features.
For example, to visualize bivariate data distributions, bivariate box plots have
been proposed by various authors as an extension to traditional techniques in
exploratory data analysis [10, 140, 149, 53]. If more than two variables need to



5.2 Value uncertainty 49

Figure 5.4: (a) Parallel coordinate plot [49]. (b) Scatterplot matrix and (c) star glyphs
with uncertainty encoding [170].

be analyzed, other strategies are needed. Feng et al. [49] use a combination of
parallel coordinate (PC) plots and scatterplots to visualize correlations between
multiple variables. For scatterplots, each variable’s uncertainty is determined by
calculating a 2D PDF based on kernel density estimates. The scatterplot is ren-
dered by linking probability to the level of blurring. A similar approach is taken
with PC plots. The authors apply their visualization method to the analysis of
tumor tissue on the basis of MR spectroscopy. Love et al. [100] do not explicitly
mention uncertainty but suggest a number of approaches to deal with spatially
varying PDF data in a general way (Figure 5.4(a)). They propose (1) parametric
methods if the PDF can be appropriately parameterized, (2) PDF shape descrip-
tors or (3) PDF operators that allow traditional algorithms to be re-defined in
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terms of PDF data, such as color mapping, contouring and streamline and pathline
tracing. Xie et al. [170] propose two methods for visualizing multivariate datasets
together with scalar-valued uncertainty measures for each variable. First, they
extend the dataset with additional variables representing the uncertainty and use
PC plots, scatter plot matrices and star glyphs to visualize and explore relations
between the dataset variables (Figure 5.4(c)). Second, based on the same visual-
ization techniques, they encode uncertainty information as visual properties, such
as color and opacity.

5.3 Location uncertainty

In the previous section we have discussed uncertainty in data value. However,
measurements of spatial properties such as size, shape, and position are also sub-
ject to uncertainty. We summarize these as data location uncertainties. There
are many application domains where uncertainties of location play a role, such
as particle movement, star positions in astrophysics and surface reconstructions.
The two most common primitives for which visualizations of position uncertainty
have been investigated are (1) points and (2) surfaces.

Points - Lodha et al. [94] investigated particles moving at a constant speed.
They describe uncertainty in terms of PDFs on position, direction and speed. To
encode uncertainty in the rendering of each particle three methods are proposed.
A particle is rendered as (1) a spherical glyph where the radius scales with prob-
ability or (2) as a point cloud where the cloud density and opacity depends on
probability. The last method, uses a combination of color and transparency to
encode uncertainty. Li et al. [93] focus on position uncertainty of stars in large-
scale astrophysics data. The 3D position of stars is determined by standard polar
coordinates, which can be measured very accurately, and distance, for which the
parallax method can be used. For both an error can be estimated which provides
a measure of uncertainty. Position uncertainty is visualized using either line seg-
ments along the line of sight (which ignore polar coordinate errors) or ellipsoid
shapes which incorporate uncertainty both in distance as well as polar coordinates
(Figure 5.5(b)).

Surfaces - Besides particle position uncertainty, Lodha et al. [96] also investi-
gated variations in the output of surface reconstruction methods caused by dif-
ferent interpolation schemes. They present a wide range of techniques to high-
light differences between two surfaces, such as texture mapping, bump mapping,
pseudo-coloring, glyphs, transparency, animation, or plain side-by-side compari-
son [96]. Ehlschlaeger et al. [45] investigate landscape elevation data and propose
the use of animation to highlight uncertainty in the corresponding height mea-
surements. Multiple realizations of the elevation data are obtained by means of
stochastic modeling.
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Figure 5.5: (a) 3D uncertainty isocontours of fuel density as it gets injected into the
combustion chamber of an engine [126]. (b) Uncertainty in star positions [93]. (c)
Point-based rendering of uncertainty in surface reconstruction of tumor tissue where
color indicates the tumor age [55].

Once a probabilistic model of a landscape has been calculated, several scenarios
can be investigated such as which land parts run the risk of flooding when sea levels
rise. Grigoryan et al. [55] present a method for rendering surfaces using point
primitives instead of polygons. Surface uncertainty is encoded by displacing point
primitives along the surface normal. For highly uncertain surfaces this results in
fuzzy point clouds that intuitively convey the underlying uncertainty while leaving
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the use of color open for other data properties (Figure 5.5(c)). Joseph et al. [73]
present a system, called UISURF, for comparative visualization of isosurfaces
calculated using different algorithms and parameters. Uncertainty, in this case,
is defined by the level of difference between two algorithms and visualized using
different techniques, such as wireframe overlays, pseudo-coloring, transparency
and box glyphs. Pothkow et al. [126] propose mathematical formulations of
uncertain equivalents of 2D and 3D isocontours based on traditional probability
theory and statistics. They apply these, among others, to fuel density fields during
injection into an engine combustion chamber (Figure 5.5(a)). In a follow-up study
[127], they apply their probabilistic formulation of isocontours to the Marching
Cubes algorithm [97]. Rhodes et al. [134] address the problem of visualizing
isosurfaces in very large datasets. A common method to increase interactivity
is to create lower resolution versions of the dataset. However, this can result
in unacceptable errors and information loss. The authors propose a method to
calculate differences between high resolution and low resolution isosurfaces and
visualize these differences together with the low resolution rendering. This allows
assessment of which areas in the dataset are particularly sensitive to resolution
reduction.

5.4 Parameter uncertainty

In order to deal with the complexity of many real-world phenomena, scientists
and engineers often rely on models and transformations that simplify a given
phenomenon to its essential characteristics. These models typically depend on
input parameters that modify the model’s behavior, sometimes in unexpected
ways. Parameter uncertainty means that the reliability or stability of the model
with respect to variations in parameter settings is unknown. If the model exhibits
non-linear behavior, small perturbations in the input values or the parameter
settings can give rise to large changes in the model’s output values. In Chapter
6 we present work of our own in this area where we look at the sensitivity of
anisotropy and curvature thresholds on the output of streamline tracing in DTI.
Parameter sensitivity can also be investigated in other contexts. For example,
Hadwiger et al. [56] propose a visualization framework for exploring different
parameter settings in image segmentation for the purpose of feature detection in
industrial CT. Berger et al. [17] proposed a system for the visual analysis and
exploration of the parameter and output space in the context of car engine design.
Users can select regions of parameter space and interactively see to which region
in the space of output values this selection maps. Viceversa, the user can select
desired output values and find out which parameter combinations are responsible
for these output values (Figure 5.6(b)). Correa et al. [37] present a general
framework for exploring the propagation of data uncertainty, modeled by a given
distribution model, through the different stages of the visual analytics pipeline
(Figure 5.6(a)). Also in medical volume rendering parameters play an important
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role.

Figure 5.6: (a) Scatterplot indicating sensitivities for multiple parameters in each data
point [37]. (b) Variations in input parameters X related to variations in output param-
eters Y [17].

Transfer functions (TF) are commonly used to highlight different tissue types.
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However, finding good TF settings is very time consuming and unintuitive, some-
times leading to rendering artifacts which may be confused with real pathology.
Lundstroem et al. [101] propose a method to find and explore such artifactual TF
settings using animation. Malik et al. [104] present a comparative visualization
system that allows the comparison of industrial 3D CT series acquired with vary-
ing acquisition parameters. They specifically focus on dimensional measurements
for the purpose of detecting manufacturing artifacts in of the object of interest.

5.5 Conclusions

In the previous sections we have provided a comprehensive overview of previ-
ous work in uncertainty visualization research. We have attempted to structure
the discussion by categorizing work on the basis of value uncertainty, location
uncertainty and parameter uncertainty. As will be clear from this chapter, the
visualization of uncertainty in the context of neuro-imaging has not received much
attention so far. This is, of course, the main topic of this thesis and in the next
chapter we will start with our first major contribution, the visualization of pa-
rameter sensitivity in deterministic fiber tracking algorithms.
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6.1 Introduction

Chapter 4 has provided a detailed overview of the different sources of uncertainty oc-
curring in the DTI processing pipeline. In this chapter we take a look at the effect of
user-defined parameters on the visual output of deterministic fiber tracking. Specifically,
we look at the sensitivity of the fiber tracking algorithm with respect to stopping crite-
ria, that is, the threshold values that determine when fiber tracking should terminate.
The two most commonly used stopping criteria are the anisotropy threshold and the
curvature threshold. As already explained in Chapter 3, different types of anisotropy
threshold exist such as fractional (FA) and linear anisotropy (CL).

In many cases, a fixed set of thresholds is selected and re-used for different patient
datasets. The threshold values are usually based on experience or empirical measure-
ments of known anatomy. However, such measurements are not patient-specific. Fur-
thermore, a small change in the threshold values can lead to very different output results.
The user remains completely unaware of such effects and is therefore likely to either un-
derestimate or overestimate the tracking results. Little or no effort is spent on evaluating
the stability of the threshold values or what the effect of threshold variations is on tract-
specific features, such as average fiber length or tract volume. Such features play an
important role in group studies where they provide quantitative measures for compari-
son [38]. If one is planning to draw conclusions based on such quantitative features, it is
important to know whether the feature is sensitive to threshold variations or not. This
has also been recently confirmed in a clinical trial by Taoka et al. [145].

Figure 6.1: Pipeline overview: (1) The pre-computation stage consists of two steps:
Zero-threshold fiber tracking computes stopping criteria along streamlines. Tract feature
calculation involves computing a quantitative metric for a discrete grid of sample points
on the continuous parameter space. The feature values are stored in a feature map.
(2) The exploration stage consists of tools and views to (i) investigate variations in the
stopping criteria along the fibers and (ii) how these variations affect tract features such
as the average fiber length. Selected threshold combinations can be picked in both 2D
maps and a 3D fiber view. Picking operations and manipulation of regions-of-interest
are linked between the different views.

In this chapter, we have selected standard streamline tracing [110, 8] based on the FACT
algorithm with 2nd-order Runge-Kutta integration. It is fast, simple to implement and
the most widely used method for diffusion tensor imaging. Our visualization method is
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not limited to this particular fiber tracking algorithm. The requirements we place on
the algorithm are (1) that it makes use of stopping thresholds and (2) that variations
in threshold values affect only streamline length. It should not affect streamline shape.
With existing fiber tracking tools, investigating how different threshold values in the
stopping criteria affect the output results would require manually trying out many dif-
ferent threshold combinations. This is a very time-consuming process that may have to
be repeated for every new dataset. Even if parameter values can be modified interac-
tively, it would still leave the user wandering around blindly in an unknown parameter
space. Furthermore, just seeing how a single parameter combination affects the output,
is not sufficient. To give true insight into the algorithm’s behavior across a range of
threshold combinations, requires specific visualization techniques. To deal with these
issues, we propose a visual exploration tool that allows users to investigate the behavior
and sensitivity of DTI fiber tracking for stopping criteria. This tool relies on a combi-
nation of 3D and 2D views linked together by means of point selections and brushing
techniques, similar to Doleisch et al. [43]. We will show that our tool can assist users
to gain more insight into the sensitivity of the algorithm for these criteria. This should
result in more reliable output results and an improved ability to compare groups of pa-
tients based on quantitative tract features. We also present a small user evaluation based
on the experiences of three domain experts who use DTI fiber tracking on a regular basis
in their own research.

6.2 Processing pipeline overview

An overview of our processing and exploration pipeline is illustrated in Figure 6.1. The
pipeline consists of two main stages: (1) an unattended pre-computation stage, and (2)
an exploration stage where the user visually explores the results of the pre-computation
stage. The pre-computation stage (Section 6.3) consists of generating streamlines for the
full space of threshold values. We explain how these results can be computed in a fast
and simple manner. We also compute a number of quantitative tract features on a grid
of sample points in the threshold space. This results in a feature map that allows the
user to see the effect of threshold variations on such features. Finally, the exploration
stage (Section 6.4) provides a number of views and interaction tools to visually explore
threshold variations and their effect on tract features.

6.3 Pre-computation

The pre-computation stage generates the information to interactively explore the thresh-
old variations in fiber tracking. The only user-defined settings required at startup are
the geometry of the seed region and which anisotropy measure to use (fractional, linear,
etc.). However, our approach is not restricted to the use of seed regions. It is possible to
perform whole-brain fiber tracking and then select a subset of fibers to be investigated
[1, 22].

6.3.1 Zero-threshold fiber tracking

The basis for our exploration pipeline is the theoretical set of fiber bundles or fiber
tracts resulting from streamline tracing with all possible combinations of threshold val-
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ues. Once we have this set of tracts, we can visualize them interactively, compute tract
features and show how the feature values change as we modify threshold values.

Figure 6.2: Anisotropy threshold profile along single example fiber starting from the fiber
seed point on the far left. The yellow circles indicate a variation of tensor anisotropy
along the fiber. The red triangles indicate the anisotropy threshold that is stored for
each point. As can be seen, the anisotropy itself does not need to be monotonically
decreasing. The threshold value is always monotonically decreasing. The same holds for
streamline curvature and curvature threshold.

A fast and simple way to obtain the required tracking results for the whole space of
threshold combinations is to perform so-called zero-threshold streamline tracing, mean-
ing that we allow tracing to proceed in an uninhibited manner without thresholds. We
do this only once for a given seed region and this results in a collection of streamlines
with maximum length and maximum curvature, the so-called zero-threshold tract. While
performing zero-threshold tracing, we inspect the local tensor anisotropy and curvature
in each streamline point and store, as additional point attributes, the combination of
threshold values that would have terminated tracing at this point. This approach works
because the thresholds we are considering only affect streamline length, not shape. Fig-
ure 6.2 illustrates the concept of zero-threshold tracking for the anisotropy threshold.
As can be seen in the graph the anisotropy along the fiber is not always monotonically
decreasing. The anisotropy threshold on the other hand, by definition, is always mono-
tonically decreasing. After all, once the anisotropy drops below the threshold, streamline
tracing terminates regardless of whether there are higher anisotropy values further along
the fiber. Since we define curvature as the dot product between two subsequent step vec-
tors, the same reasoning holds for the curvature threshold. To visualize specific output
results for a given threshold combination we apply a simple filtering procedure on the
streamline points of the zero-threshold tract. Streamline points with threshold values
above the selected threshold combination are simply discarded.
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6.3.2 Calculation of quantitative tract features

DTI fiber tracking is most widely used in population studies that require statistics to
show abnormalities in either brain or muscle tissue (e.g., in the heart). To be able
to quantitatively compare fiber tracking results between patients and healthy controls,
users often define so-called tract features (also called tract metrics) that compute some
property of a given fiber tract or muscle. Examples are total and average fiber length [38].
A general problem of such quantitative features is their dependence on fiber tracking
parameters such as the stopping criteria. It is important to check whether a particular
tract feature remains stable for any threshold variations, and if so, for which regions of
the threshold space this holds. The anisotropy and curvature threshold combinations
we are considering in this chapter span a continuous 2D space. Obviously we cannot
compute a tract feature for each point in this space since there are infinitely many of
them. We can however define a regular grid of sample points and compute tract features
for those. We call such a grid of computed feature values a feature map and it allows us
to visualize how a given tract feature varies as a function of threshold combination. In
the following paragraphs, we will discuss a number of tract features that we implemented
in our tool. This list is by no means complete since many different, application-specific
tract features can be defined. In principle, our tool can be extended with any scalar-
valued tract feature that can subsequently be analyzed for stability.

Total, Average and Standard Deviation Fiber Length These tract features are
the most widely used. Correia et al. [38] define as many as nine different tract features
based on fiber length, each tuned for specific white matter conditions. For example, old
age is generally accompanied by a significant reduction in both total and average fiber
length. In conditions where fiber anisotropy is interrupted by multiple lesions, the total
fiber length may not differ from a healthy person. The average fiber length however may
reveal this condition quite clearly.

Average Fiber Density per Voxel We compute this feature by counting, for each
non-empty voxel, the number of streamlines intersecting that voxel. The total count is
then divided by the number of non-empty voxels to obtain the average fiber density. Of
course, this feature depends on both dataset resolution and seed point density. However,
this is not problematic, because for analyzing feature stability we are only looking for
changes (or lack thereof) in a single dataset. In certain compact and elongated fiber
tracts (such as the cingula or optic radiations) the streamlines remain closely packed
together. If at some threshold values the streamlines start running off in random direc-
tions we expect the average fiber density per voxel to drop.

Tract Volume This is another popular tract feature whose reduction can point to neu-
rodegenerative diseases such as Alzheimer’s. In studies of muscle tissue, tract volume
can be used, together with average fiber length, to create models of specific muscles for
biomechanical simulations. Tract volume can be computed by taking the volume of a
single voxel and multiplying this by the total number of non-empty voxels. It is also
possible to take the fiber density of each voxel into account as a weighting factor.

Mean of End-Point Distances We derived this feature from the area of fiber cluster-
ing. In fiber clustering one starts with a single fiber and tries to find neighboring fibers
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that look similar according to some similarity measure. In this case, we already have
a cluster (a single fiber tracking result) and we wish to compute the average similar-
ity between its streamlines. The average of end-point distances is a similarity measure
adapted from Moberts et al. [109]. Fibers are considered to be similar if they have end-
points that lie close together. This reflects the fact that fibers from the same anatomical
structure connect the same areas of the brain. The end point distance dE between fibers
Fi and Fj is defined as,

dE = min(d1, d2) (6.1)

where,

d1 = ||Fi,1 − Fj,1||+ ||Fi,end − Fj,end|| (6.2)

d2 = ||Fi,1 − Fj,end||+ ||Fi,end − Fj,1|| (6.3)

Here, Fi,1 and Fi,end refer to the first and last points on fiber Fi. The end-point distances
are computed for each fiber pair and averaged for the given tract. This is then repeated
for all threshold combinations.

Figure 6.3: Histogram of continuously varying anisotropy thresholds along single fiber.
The peak between [0.4− 0.6] corresponds to a sudden jump in fiber length indicating a
possibly critical threshold value.

6.3.3 Cumulative Histograms

In addition to the feature map we also provide a number of histogram views as an alter-
native way to show the variation of threshold values along streamlines and the stability
of tract features within the threshold space. To make it easier to detect stable regions,
the histograms can be viewed as cumulative distributions.

Threshold histograms If we consider the zero-threshold tract that was computed in
the pre-computation step (Section 6.3), we can create a two-dimensional threshold his-
togram by subdividing the threshold space into bins. We can then assign each streamline
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point in the zero-threshold tract to its corresponding bin according to the threshold val-
ues stored at this point. Technically, the 2D histogram is not the same as a feature
map but we can use the feature map view to display this 2D histogram. We can also
compute a histogream for each threshold separately. This is illustrated in Figure 6.3
for the anisotropy threshold. A peak in the histogram corresponds to a sudden jump
in overall fiber length, possibly pointing to a critical combination of threshold values.
An alternative approach to obtain a 2D histogram is to normalize the individual 1D
histograms combining them to form a 2D joint probablility distribution. This would as-
sume however that anisotropy and curvature are independent variables, which need not
be the case. As Figure 6.4 illustrates it is quite reasonable to believe that the average
anisotropy in a voxel depends on the average curvature of fibers.

Feature histogram The feature histogram provides an alternative view on the distri-
bution of feature values in the threshold space. The user can choose whether to show a
normal histogram or the cumulative distribution. As explained in Section 6.3.2 this can
help detect stable regions where threshold changes have little effect.

Figure 6.4: Example of possible correlation between curvature and anisotropy. High
curvature inside a voxel averages anisotropies with different orientations, which may
result in a measurement with (near) isotropic diffusion. Zero curvature in a voxel with
the identical anisotropy values results in greater average anisotropy.

6.4 Exploration of thresholds and tract features

After the pre-computation stage has finished the user can start to interactively explore
threshold variations and their effect on different tract features. For this purpose, we
provide a 3D view for displaying streamline output, 2D plots capturing the threshold
space and allowing the user to select and manipulate threshold ranges interactively, and
quantitative histograms for detecting stable regions in the feature map. The different
elements of our tool’s user interface (shown in Figure 6.5) are described in the following
paragraphs.

3D viewing and interaction: In the upper-left of Figure 6.5 the 3D view is shown
where the different tracking results can be visualized. The fibers can be represented
either by streamlines or streamtubes. Each vertex on the streamline or streamtube is
associated with a set of threshold values calculated in that vertex and which are stored
as 2D texture coordinates. This allows us to use 2D texture mapping to apply different
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Figure 6.5: (a) Main viewports of our exploration tool. 3D visualization of fiber tract
together with anatomical context and axial fractional anisotropy slice. (b) Color map
view used for selecting individual threshold combinations and definition of color detail
regions. (c) Cumulative histograms of both threshold and feature values. (d) Feature
map view showing changes in quantitative tract features as a function of threshold
combination at discrete sample points of the parameter space.

color maps to the fibers. We also provide the option to map one threshold parameter
(e.g., curvature threshold) to the radius of a streamtube and the other to color. If the
user finds color transitions on the fibers that may point to interesting threshold changes,
he or she can pick specific points on the fiber and see in the color map view (described
next) what the exact threshold value is in that location.

Color map view: Although this view is also used to display the color map that is
currently active, it is primarily meant as an interaction tool. It allows the user to pick
points in the 2D threshold space and immediately see what the fiber tracking result
would be in the 3D view. In this case, the color map is applied to the full range of
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Figure 6.6: Relation between region-of-interest (ROI) selection and application of color
map to subrange of threshold values. The streamlines displayed in the 3D view corre-
spond to the lower-left corner point of the ROI. The color mapping along the streamlines
would show how they shorten due to increasing threshold values.

threshold values ([0, 1]× [0, 1]). For example, an anisotropy threshold of zero is mapped
to a red color, while an anisotropy threshold of one is mapped to a blue color with inter-
mediate values going through white. However, if the user wishes to study variations in
the local Region-Of-Interest (ROI) surrounding a given threshold combination, the color
map should be applied to this region only. Figure 6.6 shows the relation between ROI
selection and fiber coloring/geometry. The color map view allows the user to specify
such a ROI, and move/resize it interactively with immediate updates in the 3D view.
Figure 6.7 illustrates how ROI coloring improves the distinction between threshold vari-
ations along the fibers.

1D and 2D color maps: We support a number of uni- and bivariate color maps to
highlight threshold variations along the fibers, either to show the anisotropy threshold,
curvature threshold or both. There has been a substantial amount of research in the
area of uni- and bivariate color mapping [143, 133]. Figure 6.9 shows the different color
maps we support. Gray scales are well suited for detecting subtle changes in value
and preserves the order of data values. For this reason we use it primarily to highlight
tract feature values. Double-ended color scales specifically highlight low, medium and
high values which make them effective for visualizing threshold variations. This is quite
effective in combination with defining a ROI in the color map view because the ROI
focusses the center and extrema of the color scale to a smaller threshold range. The
2D complementary color scale is defined by colors that lie on opposite sides of the hue
circle. For example, one variable X of range [Xmax −Xmin] is mapped to brightness of
green. Another variable Y of range [Ymax − Ymin] is mapped to brightness of the com-
plementary color, which is purple [48]. The contribution of both variables is obtained
by adding the colors in RGB space. This color scale highlights the absence or presence
of correlations between two variables [143, 133]. As explained in Section 6.3.2 there may
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exist a correlation between curvature and anisotropy. However, when we applied this
color scale to the fibers this correlation was not visually detectable.

Figure 6.7: (a) Color scale mapped to full threshold domain [0, 1]. (b) Color scale
mapped to threshold region-of-interest [0.3, 0.7]. This highlights threshold variations
along the fibers with full color detail.

Two color scales remain, namely the 1D hue color scale and the 2D hue-saturation color
scale. Despite its limitations, hue remains one of the most popular and widely used
color scales. It is difficult to interpret without the use of a color legend and the scale
introduces discontinuities that may not be present in the data itself. Nevertheless, we
include it for completeness. The 2D hue-saturation scale suffers from similar drawbacks,
even though the problem is somewhat alleviated if we link hue to curvature threshold
(which varies much less than the anisotropy threshold). The saturation scale has similar
properties as the gray scale but when combined with hue it loses contrast and is less
effective for detecting changes.

Feature view: When DTI fiber tracking is applied in comparative studies of white
matter between patients, quantitative tract features are often used. It is important to
verify whether a given tract feature is sensitive to threshold variations or not. The fea-
ture map view can be used specifically for this purpose. As mentioned previously each
point in the threshold space corresponds to a single fiber tracking result. Section 6.3
discussed the different features that can be computed for such a tract. Obviously, we
cannot compute a tract feature for each point in the threshold space because there are
infinitely many of them. However, we can sample the space on a rectilinear grid and
compute a tract feature for each sample point. We can then display the feature values
as a 2D image where each sample point is represented by a pixel. We call this image
the feature map and by using gray scale coloring we can highlight subtle changes in the
tract feature values as a function of threshold combination. The user can select different
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features from a pull-down menu. We decided not to merge the feature map view with the
color map view because the feature map itself would lose too much gray value contrast
when combined with the RGB/HSV color maps. Instead, we provide the feature map
as a separate view that can be overlaid with a user-defined opacity on top of the color
map ROI.

Figure 6.8: Cumulative feature histogram (indicated by red line) for mean fiber density
per voxel. The white arrows indicate areas where the tract feature is relatively stable
for threshold variations.

Histogram views: We provide several histograms as an alternative way of displaying
threshold sensitivity. The threshold histograms were already discussed in Section 6.3,
except here they are visualized as separate 1D histograms. They can be converted to
cumulative histograms, which makes it easier to detect flat (and therefore stable) regions
in the threshold space. We also show a feature histogram which is simply a histogram
constructed from the list of feature values computed on the grid sample points described
in the previous paragraph. The feature histogram shows the currently selected feature.

Figure 6.9: 1D color maps: (a) gray scale, (b) red-white-blue, (c) hue. 2D color maps:
(d) Hue-saturation, (e) green-purple complementary colors.

6.5 Results and discussion

In this section we present a number of visualizations that were created for three clinical
DTI datasets. The first dataset represents a healthy human brain (Siemens 3 Tesla, voxel
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dimensions 1×1×1 mm3, resolution 231×172×131, 72 directions). The second dataset
also represents a healthy human brain (Philips 3 Tesla, voxel dimensions 2× 2× 2 mm3,
resolution 128×128×66, 32 directions). The third dataset represents muscle tissue of a
right human forearm (Philips 3 Tesla, voxel dimensions 1.79× 1.79× 6 mm3, resolution
112× 112× 54, 15 directions). Figure 6.10 illustrates how our visualization method can
help find critical threshold variations along the streamlines. One can see a clear white
band running across a group of neighboring streamlines (indicated by the white arrow).
The colors show a sharp transition from blue through white to red corresponding to a
sudden drop in the fractional anisotropy threshold. If this drop was purely caused by
noise it would be unlikely to form such a regular, localized band pattern across multiple
streamlines. Another phenomenon which our approach can help identify is crossing fiber
structures. Figure 6.11 illustrates how a sudden drop in curvature threshold can result
in the tracking of erroneous fiber tracts such as the cingulum, which runs along the
’gutter’ of the corpus callosum complex. Such a region may contain more disk-shaped
tensors where the main diffusion direction is not well-defined (λ1 ≈ λ2). In this case,
fiber tracking becomes very sensitive to noise and can start tracing the wrong tract.
Using our tool, one can see exactly the point at which this wrong turn occurs. If this
location is picked with the mouse, the exact threshold values will be indicated in the
color map.

To further evaluate the added value of our visualization approach, we have asked three
expert users to give feedback on the practical utility of our tool using these three datasets.
All of them use DTI fiber tracking on a regular basis albeit for quite different research
purposes. We performed the evaluation by first demonstrating the tool to the user. We
then let the user work with the tool him or herself. After this, we presented the user
with a list of questions designed to obtain structured feedback about the practical utility
of our tool and parameter sensitivity visualization in general.

6.5.1 Brain development in premature neonates

Our first user is a clinical physician who uses DTI fiber tracking to study the effect of
hypoxic ischemia on white matter development in premature neonates. To show the dif-
ference between neonates with white matter deficiencies and healthy controls, this user
employs quantitative tract-based features. However, because such features are highly
dependent on stopping criteria, this has been problematic. In the past, the user in-
vestigated the sensitivity of stopping criteria on certain tract features by repeatedly
performing fiber tracking with different combinations of thresholds. With existing DTI
tools this is extremely time-consuming, so the possibility to show this information in
a single feature map of our tool was very much appreciated. Especially regions of the
feature map that are relatively constant are of particular interest because they point to
subranges of the threshold space where the feature is relatively stable and can be safely
used for inter-subject comparison.

Typical tract features the user is interested in are tract volume and average fiber length.
These are available in our tool. We briefly discussed the average fiber density per voxel
feature. The user is not employing this feature at the moment but thought that it
could be combined with tract volume by weighting each voxel’s contribution with its
fiber density. Some features that the user suggested to be included are the average
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Figure 6.10: Effect of small variations in anisotropy threshold on fiber tracts of the
corona radiata (running from the brainstem towards the brain cortex). If fractional
anisotropy is increased from (a) 0.30 to (b) 0.32 the red tract parts (indicated by the
white arrow) completely disappear. The cut-off point is already visible in (a) in the
white regions of the fibers (indicated by the white arrow).

anisotropy (either fractional or linear) along the fiber tract and the average apparent
diffusion coefficient (ADC). We do not support these features at the moment but they
can be easily included. Because so many different, application-specific tract features are
available [38], we did not provide a complete list.

6.5.2 Muscle tissue

The second user is a researcher who uses DTI and fiber tracking methods to investigate
injury and repair of muscle tissue. With DTI it is possible to detect subtle tissue differ-
ences that are not visible on normal MR. After demonstrating our visualization tool, we
let the user interact with one of his own datasets. Showing DTI-based parameters along
the streamlines is a feature that is completely missing in the tools the user is currently
working with. He encouraged us to extend the number of parameters that can be shown
along the streamlines (now we show only anisotropy and curvature thresholds) but even
with just the anisotropy color coding he saw, for the first time in 3D, transitions from
muscle tissue to connective tissue (tendons). Figure 6.12 illustrates these transitions
(red = connective tissue, white = muscle, blue = bone attachment) for a selected set of
muscles in the forearm.

We also discussed the various tract features with this user. He is particularly interested
in tract volume and average fiber length because these, together with the attachment
angle between muscle and bone, are sufficient to model the muscle for biomechanical sim-
ulations. However, since these features are highly dependent on user-defined stopping
criteria, it is difficult to find values that are reproducible. Our visualization method was
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Figure 6.11: (a) Reconstruction of the corpus callosum with unintended tracing of the
cingulum (indicated by yellow arrows). (b) Close-up of area where unintended tracing
originates. Color variations (blue to red with narrow band of white) show the sud-
den drop in curvature threshold which seems to be responsible for the deviation of the
pathway into the cingulum.

considered to be very useful for visualizing the variation of feature values as a function
of stopping thresholds. Another feature which the user found interesting is the mean
of end-point distances. Muscle fibers have a strongly parallel orientation. As long as
the fiber tracking output contains only muscle fibers, this feature is expected to remain
relatively constant. However, when muscle fibers converge to form connective tissue the
streamline end-points are expected to come closer together, resulting in a decrease of the
mean of end-point distances. If the goal is to segment only muscle fibers, this can help to
find the exact thresholds where muscle fibers move into connective tissue. The threshold
histogram provides similar information because the anisotropy threshold of connective
tissue is generally lower than muscle tissue. As soon as many connective fibers are being
traced by the algorithm, a sudden jump in fiber length is expected which results in a
peak in the threshold histogram. The average fiber density per voxel is expected to
increase as muscle fibers converge to form more dense tendon fibers.

The overall feedback from this user was very positive because our tool directly showed
tissue transitions in 3D that had not been seen previously. The tract features we provided
are by no means complete but the general approach of showing the behavior of any tract-
based feature as a function of threshold was considered very useful, especially for group
studies. Tract features are highly dependent on user settings however, which is why some
people are reluctant to use them. Our user also strongly encouraged us to extend the
parameter-space concept to other tensor-based properties such as the apparent diffusion
coefficient and the tensor’s main eigenvalue.
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Figure 6.12: Fiber tracking of muscle in a human forearm. The elbow is located in the
top-right corner, the hand is located in the bottom-left corner, palm facing upward. Red
colored tissue corresponds to tendons running towards the hand. White colored tissue
is muscle. The blueish colorations indicate attachment of muscle to bone.

Figure 6.13: Four example feature maps (anisotropy on vertical axis, curvature on hor-
izontal axis). Average fiber length shows gradual increase as both the anisotropy and
curvature thresholds become lower, indicating a strong dependency on these thresholds.
Standard deviation of fiber length has a region of constant value (yellow box) where
at least the anisotropy threshold seems to have little effect. Average fiber density per
voxel has two regions that are relatively stable (yellow boxes). The tract volume feature
also shows a significant dependence on anisotropy threshold variation. The color legends
indicate the min/max range and unit of measurement for each feature.

6.5.3 Brain connectivity

The third and last user is a researcher involved in the study of brain connectivity who uses
DTI fiber tracking together with functional MR to investigate a patient with Landau-
Kleffner syndrome. This patient acquired aphasia (loss of receptive and expressive lan-
guage skills) due to epileptic seizures in the temporal lobe during early childhood. After
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more than 15 years of intensive training in sign language she is able to communicate
quite well, although she has trouble understanding people without actually seeing them.
The goal is to investigate whether she has formed brain connections that are not present
in healthy controls. Especially connections between the remaining language areas and
the motor area dealing with hand coordination are of interest. The main problem when
using DTI fiber tracking for this type of research is finding threshold values that are
sufficiently low to confirm a suspected connection between two regions of interest, but
are also sufficiently high to be plausible. Our visualization was considered very useful
in helping to make a more reliable choice of threshold values. As with the second user,
this user suggested to extend the parameter-space concept to include parameters that
describe tensor shape. For example, it would have been interesting to show the linear
anisotropy threshold on one axis and the fractional anisotropy threshold on the other
axis. Using 2D color coding along the streamlines, one could then see where the tensor
shape suddenly changes from linear to planar or vice versa. If this occurs at regular
positions across multiple streamlines, this might point to true tissue changes (e.g., fiber
crossing) instead of just noise. This user was rather sceptical about using tract-based
features because of their sensitivity to user-defined parameters. We showed how our vi-
sualization method can be used to investigate how stable a tract feature really is within
the range of threshold values relevant for the user’s application. He agreed that our
approach would encourage the use of quantitative tract features more often. They can
provide additional information for showing that certain brain connections only exist in
patients and not in healthy controls.

6.6 Conclusions

In the previous sections we have presented a tool for the visual exploration of parameter
sensitivity in fiber tracking. We also allow users to investigate the behavior of certain
tract-based features. In the next chapter we proceed with our second major contri-
bution, the visualization of fiber confidence intervals on the basis of probabilistic fiber
tracking.



I respectfully decline the invitation to join your hallucination.

- Dilbert

7Illustrative confidence intervals

This chapter is based on:

“Illustrative Uncertainty Visualization of DTI Fiber Pathways.” Ralph Brecheisen, Bram Platel,
Bart ter Haar Romeny, and Anna Vilanova. In The Visual Computer (2012), conditional accept.
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7.1 Introduction

In the previous chapter we looked at techniques for visualizing and exploring parameter
sensitivity in deterministic fiber tracking. In this chapter we focus on two, slightly re-
lated, sources of uncertainty which are potentially responsible for many false positives
and random variations in pathways reconstructed with fiber tracking. These are image
noise and model errors. These sources of uncertainty have been discussed in detail in
Chapter 4. The two are related because noise and round-off errors can affect tensor
eigenanalysis such that the two largest eigenvectors are arbitrarily ranked. This can
result in random fiber orientation estimates which manifest themselves as a variation
in pathway trajectories during fiber tracking. In regions where the diffusion model is
incorrect, noise effects will be particularly noticeable and fiber pathways will tend to
spread out in random directions.

Existing visualizations of DTI fiber tracking largely ignore the effects of noise and model
errors. This gives an impression of certainty that can be misleading. This is unacceptable
in applications such as neurosurgery, where fiber tracking may be used for surgical risk
assessment and decision-making. If false positives or false negatives in the fiber track-
ing output are not correctly identified this can result in sub-optimal tumor resection
or damage to healthy brain tissue. To deal with risks of healthy tissue damage neu-
rosurgeons may take into account safety margins around critical brain structures [161].
However, such safety margins are mostly fixed and have no relation to the uncertainty in
the underlying data. Furthermore, safety margins enclose only one out of many possible
fiber configurations. Figure 7.1 illustrates that, due to noise and modelling errors, there
are many such configurations possible, each one slightly different. It is clear from this
example that a fixed safety margin may not adequately cover the possible variations in
fiber shape.

With the visualization framework described in this chapter we attempt to visually com-
municate to the neurosurgeons that the fiber tracking algorithm they use may produce
a sub-optimal reconstruction of the tracts of interest. We are specifically focusing on
variations such as captured by probabilistic tracking algorithms. However, intuitively
showing such information is not a trivial task. Even without considering uncertainty,
diffusion tensor data presents considerable visualization challenges. For this reason, each
tensor is often reduced to a single vector describing the principal direction of diffusion.
Streamline visualization can then be used to show pathways through the tensor field.
This gives a good impression of the global structure of fiber tracts. However, if there
are too many streamlines this approach can lead to highly cluttered visualizations, such
as illustrated in Figure 7.1(b). Probabilistic fiber tracking algorithms generally sample
thousands of potential pathways in order to compute connection probabilities between
different regions of the brain. In that case, it is no longer feasible, nor informative, to
render each individual streamline.

To deal with this issue, we propose Illustrative Confidence Intervals, a rendering tech-
nique based on illustrative silhouettes and outlines that provides information about the
variation in fiber pathways while at the same time reducing the visual clutter associated
with standard streamline visualizations. We define a silhouette to be the interior area
of an object’s shape when projected to the viewing plane. An outline is defined as the
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Figure 7.1: (a) Single fiber obtained from the original tensor volume. The yellow sil-
houette represents a fixed safety margin. (b) 100 variations of the same fiber based on
the Wild Bootstrap method [71] with the same safety margin. It is clear that the safety
margin does not cover the possible variations in the tensor data

border of a silhouette. Our method is based on the work by Otten et al. [118] but, as
will be clear from Section 7.3, we extend this work in several ways. We use silhouettes
and outlines to visualize variations in the output of probabilistic fiber tracking algo-
rithms. Furthermore, we provide several interaction widgets that allow the specification
of different fiber confidence intervals and visual styles for each interval. Employing a fo-
cus+context uncertainty lens the user can highlight uncertainty only in a specific region
of interest, while the remaining view is rendered in a traditional manner.

Our framework does not depend on a specific algorithm to compute the variation in fiber
pathways. It only requires a set of fibers, each associated with a so-called confidence
value. A confidence value is a scalar-valued measure which represents the reproducibility
of a given fiber pathway as calculated on the basis of probabilistic fiber tracking. It can
be computed in different ways depending on the application. Our framework does not
depend on a specific choice of confidence value and to demonstrate the flexibility of our
approach we have selected two such measures, (1) based on fiber distance and (2) based
on the connection probability between different brain regions.

We conclude this chapter with an informal user evaluation based on both live and video
demonstrations, questionnaires and interviews with three neurosurgeons. For a short
overview of existing visualization systems focused on neurosurgical applications we refer
the reader to Chapter 2. Many of these systems provide extensive support to the neu-
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rosurgical workflow but mostly do not take uncertainty into account. The techniques
presented in this chapter can serve as a useful extension to fill this gap.

7.2 Computing fiber confidence

The visualization framework we propose requires a set of fibers (represented by stream-
lines) where each fiber is associated with a confidence value. Figure 7.2 gives an overview
of the processing pipeline to compute fiber confidence from a set of diffusion-weighted
images. Confidence values are stored in a table, normalized and sorted from high (1.0)
to low (0.0) confidence. How we use the table to visualize fiber confidence intervals is
described in the next section. As explained in Chapter 4, different algorithms exist to
do probabilistic fiber tracking. All of these algorithms generate a large set of fiber path-
ways but, except for the ConTrack algorithm [142], none of them explicitly compute a
confidence value for each fiber. For this reason, we compute such confidence values as a
post-processing step after probabilistic fiber tracking. In this chapter, we use both the
ConTrack algorithm as well as the Wild Bootstrap method [71] combined with a fiber
distance measure. Details about the Wild Bootstrap and ConTrack algorithms can be
found in Chapter 4.

7.2.1 Computing fiber distances

In this section we describe how to calculate fiber confidence values on the basis of
Wild Bootstrap fiber tracking. For a given set of seed points, the end result of N
repetitions of the Wild Bootstrap method is a set of N fiber pathways for each seed
point. Each fiber pathway describes a single possible outcome of fiber tracking and
the total set represents pathway variations originating from that seed point. We can
consider each seed point independently because we do not change the seed region. To
be able to assign a confidence value to each fiber we assume that the distribution of
fibers in each seed point is uni-modal. In that case, we can choose a distance measure
between pairs of fibers and use it to define a ’mean’ fiber which is most central, given
the distance measure, in the set of fibers at each seed point. We subsequently use each
fiber’s distance to the mean fiber as a representation of confidence. A confidence interval
can then be expressed as: (1) a percentage (e.g., 50%) of the most confident fibers or (2)
all fibers with a confidence higher than a given threshold confidence (e.g., 0.95). Which
option is most appropriate depends on the user task and the distribution of confidence
values in the total set of fibers. Our framework supports both options. Fiber distance
measures have been extensively described in earlier work on fiber clustering [109] and
comparison of fiber tracking algorithms [69]. The choice of distance measure is entirely
dependent on the application within which it is used. Each measure has its advantages
and disadvantages. For this reason, our framework is not dependent on the particular
choice of distance measure in any way. To demonstrate its flexibility in this respect,
we implemented two widely used measures: (1) the Minimum End-Point Distance and
(2) the Mean of Closest-Point Distances [109, 36]. The minimum end-point distance dE
between two fibers Fi and Fj is defined as follows,

dE(Fi, Fj) = min(d1, d2) (7.1)

where,
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Figure 7.2: Pipeline for computing fiber confidence using (1) Wild Bootstrap and (2)
ConTrack. The Wild Bootstrap method generates a large collection of unlabeled fibers
which are assigned a confidence value by means of a fiber distance metric. The fibers
produced by ConTrack already have a confidence value assigned to them.

d1 = ||Fi,1 − Fj,1||+ ||Fi,end − Fj,end|| (7.2)

d2 = ||Fi,1 − Fj,end||+ ||Fi,end − Fj,1|| (7.3)

where Fi,1 and Fi,end refer to the first and last points on fiber Fi. The mean of closest-
point distances dM is defined as follows,

dM (Fi, Fj) = mean(dm(Fi, Fj), dm(Fj , Fi)) (7.4)

where, given that pr and ps are the points on each fiber,
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dm(Fi, Fj) = mean min
pr∈Fi,ps∈Fj

||pr − ps|| (7.5)

Given the assumptions described previously, we define, for each seed point, the mean
fiber to be the fiber with the smallest sum of distances to all other fibers at that seed
point. This definition will result in an existing fiber and, given the chosen distance mea-
sure, this will be the most central fiber of the set. Our approach is similar to O’Donnell
et al. [113] in that they also select an existing fiber instead of trying to compute an
exact center line. The latter approach has been attempted in previous work [71, 46, 32],
however, this can lead to ill-defined results when streamlines strongly diverge or even
turn back on themselves. Merhof et al. [107] circumvent this problem by reverting to
a smoothed, voxel-based representation of the fibers which allows them to generate a
tight fitting surface mesh around the tracts. However, their approach does not take
uncertainty into account.

Our definition of fiber distance assumes a uni-modal distribution of fibers originating
from a seed point. Although this may be a valid assumption for some fiber tracts, it may
be incorrect for others. In that case a different approach to compute fiber confidence
must be chosen. Our framework allows easy integration of alternative methods. One
such method will be described in the next section.

Figure 7.3: Pipeline for visualizing our illustrative confidence intervals

7.3 Visualization of fiber confidence

In the current work we have chosen to describe the uncertainty in fiber pathways in
terms of discrete confidence intervals and represent the fibers in each interval by means
of silhouettes and outlines. Confidence intervals provide a high-level overview of the dis-
tribution of fibers in the set, similar to confidence intervals used in descriptive statistics.
Detail is lost by aggregating multiple fibers in a single interval but if multiple confidence
intervals are shown, which our framework allows, the user can obtain a good impression
of which parts of the fiber tract are most reliable or reproducible and which parts are
highly variable. Showing the fibers by means of streamlines, even if each confidence
interval would be colored differently, will result in a large amount of visual clutter. Also,
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users are often not interested in individual fibers but rather in fiber bundles. A silhou-
ette and outline representation fulfils these requirements by reducing visual clutter while
preserving the overall shape of the fiber bundle. As explained before, we define a silhou-
ette as the interior area of an object’s shape when projected to the viewing plane. An
outline is defined as the border of a silhouette. Otten et al. [118] presented an approach
to render silhouettes and outlines for sets of clustered fibers using a GPU-accelerated
algorithm. We extend this approach in the following ways:

• Extending the set of visual styles (e.g., transparency, color schemes, blurring, etc.)

• Making each visual style adaptive to interval confidence

• Combining an arbitrary number of confidence intervals in multiple render passes

• Adding anatomical context by means of 3D orthogonal slices, volume rendering
and surface models (e.g., tumor, brain ventricles and cortical surface) and other
types of streamline visualizations

Figure 7.3 gives an overview of the different stages in our visualization pipeline.

7.3.1 Generating silhouettes and outlines

To create a silhouette and outline representation we render the streamlines directly into
an off-screen buffer image. Next, we apply a dilation operator to each non-empty pixel
of the streamline image. The dilation operator is based on a circular structuring element
with a user-defined silhouette radius Rs. This widens the area covered by the streamlines
and closes holes between neighbouring streamlines. A second, larger structuring element
with a user-defined outline radius Ro is used to add an outline of a given thickness to
the silhouette. The general mechanism is illustrated in Figure 7.4.

Figure 7.4: Creating a silhouette and outline. Blue pixels represent the added silhouette.
Black pixels represent the added outline.

7.3.2 Rendering confidence intervals

To visualize the illustrative confidence intervals we transfer the streamlines and asso-
ciated confidence table to our rendering pipeline (see Figure 7.3). We then specify a
confidence interval ∆ = [a, b], where [a, b] ⊆ [0, 1], to control which streamlines are ren-
dered to the screen as silhouettes and outlines. If the confidence interval is [0, 1] we
render all streamlines at once and the resulting silhouette represents all possible varia-
tions of streamlines. If we have N intervals, then each interval ∆i where 0 ≤ i < N , can
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be rendered with a different visual style. Figure 7.3 illustrates the different steps in our
visualization pipeline. For each interval ∆i these steps are executed as follows:

Step 1: We start with the interval of highest confidence, that is ∆N−1 and render the
corresponding streamlines to a color buffer CSTR and depth buffer DSTR using OpenGL
framebuffer objects. Depth testing is set to GL LESS.

Step 2: In this step, stencil testing is enabled (function: (GL EQUAL,0,1), operation:
GL INCR) to ensure that subsequent intervals (with lower confidence) do not overwrite
the current one (with higher confidence). We could have solved this by setting the depth
test to GL ALWAYS and rendering the low confidence intervals first. However, reduc-
ing the opacity of a given silhouette would then result in unwanted color mixing of the
different intervals. If the opacity is reduced, we want to see the anatomy lying behind it
and not other confidence intervals. The buffers CSTR and DSTR from the previous step
are passed to a GPU shader program that creates the silhouette and outline represen-
tation described previously. The output result of the shader program is written to the
color buffer CSILH and depth buffer DSILH . In this step the visual style parameters are
applied (see also Section 7.3.3).

Step 3 (Optional): This step is only performed if silhouette blurring is enabled. This
allows the user to show intervals of lower confidence with increased blurring. The stencil
test is now performed at this step instead of Step 2. The buffers CSILH and DSILH

from Step 2 are passed to a second GPU shader program that applies Gaussian blurring
to the color buffer. The shader program takes a blurring radius and brightness offset
as parameters (see also Section 7.3.3). The brightness offset allows the user to adjust
brightness in case it is too low after the blurring operation.

7.3.3 Confidence histogram widget

Depending on the distribution of confidence values within the fiber set, the user may
wish to choose the confidence intervals differently. To make this possible we introduce
the confidence histogram widget that shows a histogram of confidence values and allows
the user to define and manipulate confidence intervals graphically. Additionally, it is
possible to identify deviations from a uni-modal distribution in the fibers. In Section 7.2
we explained how we use distance to compute fiber confidence. This approach assumes
that the distribution of fibers originating from a seed point is uni-modal. If this is not
the case and the fibers split up into two, equally-sized bundles, the mean fiber may be
assigned randomly to one or the other bundle. All fibers not in the same bundle as the
mean fiber will have a larger distance and are therefore assigned a lower confidence. In
that case, the histogram is likely to show two peaks. Figure 7.5(a) illustrates an exam-
ple histogram computed from output scores of the ConTrack algorithm. The confidence
intervals are displayed as a set of semi-transparent rectangles overlaid on top of the
histogram. Each rectangle represents an interval. Rectangle colors map to silhouette or
outline colors, depending on the current selection mode. Rectangle width maps to in-
terval width. Rectangle height maps to a selected visual property value, such as opacity
or blurring radius. The full list of visual properties available in our framework is given
in Table 7.1.
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Figure 7.5: (a) Confidence Histogram Widget with confidence values increasing from
left to right. White arrows indicate possible manipulation directions. Selected active
property is ’Opacity’. (b) Corresponding confidence intervals of optic radiation fibers
looping around ventricles.

Visual properties can be set for each confidence interval separately or they can be as-
signed automatically through a number of pre-sets. For example, the user can assign a
number of standard color scales to the different intervals, such as warm to cool, light
to dark or decreasing saturation. Scalar properties such as opacity can be assigned in
a staircase or inverted staircase pattern. Intervals can be automatically subdivided in
equal widths, e.g. [0, 1

2
] and [ 1

2
, 1]. Alternatively, a subdivision can be selected where

each interval contains the same number of fibers. These two options reflect the two
different perspectives we discussed in Section 7.2.1 where a confidence interval can be
expressed as either (1) a percentage of the most confident fibers or (2) all fibers with
a confidence between a certain range. As explained previously, which option is most
appropriate depends on the user task.

Finally, the confidence histogram widget allows saving and loading of visual styles. From
a practical point of view we do not expect the neurosurgeon to set these visual properties
each time he or she uses the tool. Automatic pre-sets, saving and loading of visual prop-
erties are specifically designed to make this process easier and less repetitive. However
to be able to properly evaluate the benefits and drawbacks of many different visual styles
(as described in Section 7.4.2) we also provide low-level control of these properties.

7.3.4 Uncertainty lens

Uncertainty in DTI fiber tracking algorithms is an important issue in neurosurgical ap-
plications. However, some fiber tracts can be more reliably reconstructed than others,
even with deterministic approaches. Also, not all regions of the brain are affected by
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Table 7.1: User-adjustable properties

Property Description

Color Color of inner silhouette area
Outline color Color of silhouette outline
Opacity Opacity of inner silhoutte area
Outline opacity Opacity of silhouette outline
Outline thickness Thickness in pixels of silhouette

outline
Dilation Half-width in pixels of silhouette
Blurring Blurring enabled/disabled
Blurring radius Gaussian blurring kernel (2σ)
Blurring brightness Scaling factor to adjust brightness

of blurred regions

the surgical approach. In such regions, showing uncertainty may be unnecessary or even
confusing. For this reason, we provide the Uncertainty Lens as a Focus+Context ap-
proach to show uncertainty only within a user-defined region-of-interest (ROI). Outside
the lens standard streamline visualization can be used. For example, the surgeon can
place the uncertainty lens over the tumor and its immediate surroundings and see the
fiber variations due to the uncertainty within a relevant context. If necessary, the user
can interactively move and resize the uncertainty lens. Figure 7.6(c) gives an example
visualization.

7.4 Results and discussion

Figure 7.6 illustrates uncertainty visualizations created with our framework. Figure
7.6(a) depicts a transversal view of the optic radiation (running from the thalamus to
the visual cortex) with brain ventricles rendered using DVR. Figure 7.6(b) provides a
sagittal view of the corticospinal tract surrounding a tumor. Figure 7.6(c) illustrates our
Uncertainty Lens together with a standard streamtube visualization, tumor and semi-
transparent cortical surface. Figures 7.6(d-i) illustrate a close-up of the optic radiation
with most of the visual styles we support (warm-to-cool outlines, warm-to-cool surfaces,
decreasing opacity, light-to-dark, increasing dilation, increasing blur).

7.4.1 Datasets and performance

These visualizations were created with datasets from three suppliers. Kempenhaeghe
Epilepsy Center, Heeze, NL: DTI (112× 112× 60, 2× 2× 2mm3, b-value 1000, 30
grad. dirs.). St. Elisabeth hospital, Tilburg, NL: DTI (128×128×60, 1.75×1.75×2
mm3, b-value 800, 30 grad. dirs.), T1 MRI (288×288×175, 1×1×1mm3). VisContest
2010: DTI (128× 128× 72, 1.8× 1.8× 1.8mm3, b-value 1000, 30 grad. dirs.), T1 MRI
(512 × 512 × 176, 0.488 × 0.488 × 1mm3). We measured the framerate performance of
our rendering pipeline using a GeForce 8800 GTX graphics card from NVIDIA and a
screensize of 720 × 760 pixels: Figure 7.6(a) = 6.6 fps, Figure 7.6(b) = 10.2 fps and
Figure 7.6(c) = 17.5 fps.
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Figure 7.6: (a) Optic radiation, (b) pyramidal tract with tumor, (c) uncertainty lens, (d-
i) different visual styles applied to optic radiation (warm-to-cool outlines, warm-to-cool
surfaces, decreasing opacity, light-to-dark, increasing dilation, increasing blur).
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7.4.2 User evaluation

To evaluate our visualization approach we conducted an informal user study with three
neurosurgeons. First, we wanted to know their general opinion about the need and
benefits of uncertainty visualization for their work. Second, we wanted to evaluate the
specific rendering options that our visualization framework provides. We presented the
neurosurgeons with a set of screen-shots, videos and live demonstrations. Furthermore,
we asked them to fill out a questionnaire with respect to the visual material. Three
clinical scenarios were presented: (1) anterior temporal lobe resection (ATLR) for the
treatment of focal epilepsy, (2) resection of a low-grade glioma close to motor cortex and
(3) resection of an intra-cerebral metastasis with surrounding edema (fluid), also close
to motor cortex. For each scenario we showed a standard fiber visualization (stream
tubes) and our illustrative confidence intervals. We used three intervals each containing
10%, 25% and 100% of the most confident fibers. Table 7.2 shows the general opinion
of the neurosurgeons on the questions listed below. Table 7.3 shows the specific ratings
for each question. Ratings are given on a [1− 5] Likert scale where 1 means either ’not
useful at all’ or ’low’ and and 5 means ’highly useful’ or ’high’, depending on the context
of the question.

Q1.1 What is the risk of a visual field deficit in anterior temporal lobe resection?
Q1.2 How important is uncertainty visualization for anterior temporal lobe resections?
Q1.3 What is the risk of resecting this particular low-grade glioma?
Q1.4 How important is uncertainty visualization for low-grade glioma resection?
Q1.5 What is the risk of resecting this particular intracerebral metastasis?
Q1.6 To what extent would you discuss the uncertainty with the patient?

Table 7.2: General opinion about DTI uncertainty visualization. Ranking of visual styles
rating is done on a [1− 5] Likert scale.

User A User B User C

Q1.1 2 2 2
Q1.2 4 4 3
Q1.3 4 1 1
Q1.4 4 4 5
Q1.5 2 2 2
Q1.6 5 4 4

Q2.1 To what extent does the standard fiber visualization give you more confidence in
assessing risk of anterior temporal lobe resections?
Q2.2 To what extent does the standard visualization give more confidence in assessing
risk of resecting the given low-grade glioma?
Q2.3 To what extent does the standard visualization give more confidence in assessing
risk of resecting the given intracerebral metastasis?
Q2.4 Which two visual styles do you prefer?
Q2.5 Does our representation of uncertainty give you more confidence?
Q2.6 How useful is it to show uncertainty only in a selected ROI?
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Q2.7 What is the overall rating of the potential use of our visualization?

The standard fiber visualization was considered somewhat helpful for scenario 1 and 2.
It gives at least a rough indication of the location of the fiber tract. For scenario 3
all users gave a low rating because fibers seemed to be missing inside the edema that,
in their opinion, should have been present. This is caused by a failure of the fiber
tracking algorithm to trace into low anisotropy regions such as edematous fluid. We
presented the users with different visual styles for the illustrative silhouettes and asked
them which style or combination of styles most clearly communicated the different levels
of confidence. Initially, two out of three users rated decreasing opacity (with decreasing
confidence) to be most intuitive. Light-to-dark, non-gray coloring came second. After
they finished the questionnaire we discussed this first choice with the users and explained
that reducing opacity actually removes information instead of showing it. They agreed
but indicated that they selected decreasing opacity mainly because it prevents occlusion
of the underlying anatomical slices (which is important for context). After some dis-
cussion, they proposed that a combination of light-to-dark coloring and a reduced, but
fixed, opacity would be a good alternative for representing fiber confidence. The third
user, interestingly, preferred equal colors for all intervals but with decreasing outline
thickness (going from fat to thin to zero). All other visual styles (silhouette dilation,
blurring and warm-to-cool colors) were less appealing to the users. Our Focus+Context
uncertainty lens was considered to be useful. The initial uncertainty visualization (with-
out uncertainty lens) looked rather intimidating to them. The lens reduces visual clutter
and allows attention to be focused on the tumor and its immediate surroundings. Also,
the fully opaque visual styles were considered to be much more acceptable this way.

Table 7.3: Opinions about the proposed uncertainty visualization. Except for the rank-
ing of visual styles rating is done on a [1 − 5] Likert scale. Scores are averages over all
the three scenarios.

User A User B User C

Q2.1 4 2 3
Q2.2 3 2 2
Q2.3 1 1 1
Q2.4 Opacity Outline Opacity

Lightness - Lightness
Q2.5 4 4 4
Q2.6 4 4 3
Q2.7 4 4 4

7.4.3 General discussion

As noted in the user evaluation, the neurosurgeons were skeptical about the fiber track-
ing results for the intra-cerebral metastasis. The edematous fluid surrounding the tumor
causes the tracking algorithm to prematurely terminate thereby resulting in false nega-
tives. Our particular implementation of the Wild Bootstrap method will also suffer from
such false negatives (failing to show something that is actually there) because it uses
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the same fiber tracking algorithm with the same termination criteria. If diffusion in a
voxel, because of edematous fluid, is almost isotropic, the tensor model will fit the data
well and have very small residuals. Random perturbation of the residuals will not result
in large shape variations, so on average the tensors will remain isotropic. Because the
Wild Bootstrap method uses the same thresholds as standard streamline tracing, none
of the generated streamlines will get past these isotropic tensors. With crossing fibers
however, the tensor can become disk-like while the underlying diffusion profile might
actually be cross-shaped. In this case, the fractional anisotropy of the tensor remains
high which may cause standard algorithms to continue tracking even though the model
fit is bad (large residuals). The Wild Bootstrap will expose this problem by showing a
large amount of variation in fiber pathways originating from the crossing fiber region.
This indicates that the standard tracking algorithm may be generating random results.
In order to deal with false negatives, alternative methods for probabilistic fiber tracking
can be used. These are often based on Monte Carlo sampling of pathways and less de-
pendent on stopping criteria [50, 11]. Even in regions of low anisotropy these algorithms
can detect the presence of fiber pathways.

In this chapter we have applied the Wild Bootstrap approach using the 2nd-order tensor
model and deterministic streamline tracing. However, these choices are not specific to
the Wild Bootstrap. It is a general technique that can be applied to any model that
tries to fit data and results in non-zero residuals. Even with higher-order models that
are able to detect crossing fibers, you can still use the Wild Bootstrap to investigate the
sensitivity of these models to noise in the data. Our choice to use streamline tracing
is also not the only choice. Other fiber tracking algorithms, such as tensor deflection
(TEND) [89], can be used in combination with the Wild Bootstrap as well.

With respect to the computation of confidence based on fiber distance we wish to point
out that the choice of distance measure may have a large effect on the confidence inter-
vals. As Jiao et al. [69] point out distance measures that are based on averages, such as
the mean of closest-point distances, may over- or under-estimate the true distance due
to streamline discretization problems or complex streamline configurations. The closest
end-points distance may surely over-simplify the situation. However, for certain cases
it may provide relevant information. For example, if apriori knowledge is available that
fibers start and end in the same anatomical regions, they could still be considered ’close’
even though they may take wildly different routes to get to their destination. In general
we regard distance measures to be application-specific without any particular measure
being the best one for all situations.

The user evaluation, although not conclusive, has provided us with useful information.
Whether DTI fiber tracking, and therefore DTI uncertainty, is relevant for neurosurgical
planning depends on many factors, such as tumor type. High-grade gliomas have a bad
prognosis and are commonly associated with functional deficits in the patient. If there is
any risk of additional damage due to resection, tumor tissue is simply left in place. Low-
grade gliomas, on the other hand, have a relatively good prognosis. The tumor grows
slowly allowing brain functions to reorganize if they get invaded (brain plasticity). In
these cases neurosurgeons are willing to use all the information available in order to
maximize resection while at the same time minimizing damage to healthy tissue. DTI
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fiber tracking and uncertainty visualization are especially relevant here. For anterior
temporal lobe resections DTI uncertainty information is important because part of the
optic radiation, Meyer’s Loop, is often damaged during the procedure, resulting in a
partial loss of vision. The extent of Meyer’s Loop varies significantly between patients
(between 3 and 6 cm’s from the temporal pole). This makes it difficult to predict in
advance whether visual defects will result or not. Meyer’s Loop however is a difficult
fiber tract to reconstruct due to strong curvature and proximity to other fiber tracts
(resulting in partial volume effects at the tract boundaries). Uncertainty visualization
can provide helpful information in this case.

7.5 Conclusions

In the previous sections we have presented a novel method for visualizing the output of
probabilistic fiber tracking in the form of fiber confidence intervals. Our method is based
on an illustrative rendering algorithm using silhouettes and outlines to reduce the visual
clutter commonly associated with the large numbers of fibers produced by probabilistic
tracking algorithms. In the next chapter we will present our third major contribution,
the exploration of distances between objects of varying shape such as white matter fibers
reconstructed from probabilistic tracking.
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If you have trouble sounding condescending, find a Unix user to show you how it’s done.

- Dilbert

8Distance measurements

This chapter is based on:

“Visualization of the Effects of DTI Uncertainty on Distance Measurements in Neurosurgical
Planning.” Ralph Brecheisen, Bram Platel, Bart ter Haar Romeny, and Anna Vilanova. Sub-
mitted for publication.
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8.1 Introduction

The previous chapter presented techniques for the visualization of the effects of noise
and model errors calculated from probabilistic fiber tracking algorithms. Such algo-
rithms effectively reconstruct white matter fiber bundles whose spatial extent is defined
in a probabilistic manner. Even though most existing visualizations of probabilistic
fiber tracking are based on 3D scalar-valued fiber density maps, we have shown that
it is feasible to work with the fiber pathways directly and render them as illustrative
confidence intervals. However, since these confidence intervals are based on image-space
rendering they are less suitable for calculating 3D distances. Scalar density fields have
the advantage that they allow the reconstruction of 3D isosurfaces. Using GPU-based
raycasting techniques these isosurfaces can be interactively changed. In case of scalar
fields resulting from probabilistic fiber tracking, the isosurfaces represent different confi-
dence levels in the spatial extent of the fibers. This representation allows an interesting
feature which has received very little attention so far, namely distance measurements
between volumetric objects with uncertain, or spatially varying, extents. For example,
when volumetric objects are considered at different confidence levels, associated with dif-
ferent isosurfaces, not only the magnitude of the minimal distance between the objects
may change but also the location where a minimal distance occurs. This is illustrated
in Figure 8.1.

In neurosurgical planning it is very common to perform measurements or visual as-
sessments of distance, for example between a tumor and surrounding brain structures.
Minimal distances between such objects are an important factor in the assessment of
surgical risk. Normally, distance assessments are performed on the basis of 2D anatom-
ical images and knowledge of classical functional anatomy. If the target is judged to
be close to critical areas the neurosurgeon can refine judgement by means of additional
functional neuroimaging techniques such as functional MRI (f-MRI) and DTI. Although
these non-invasive techniques give promising results, the gold standard remains electro-
cortical stimulation mapping (ESM). This is an invasive surgical technique where small
electrical currents are applied at different locations in the brain (e.g. on the cortical
surface or inside the resection cavity) while the patient is monitored. For instance, stim-
ulating the primary motor cortex can induce muscular contractions. ESM also has a
number of drawbacks. It requires a surgical procedure and may cause epileptic seizures
[15]. Furthermore, it only allows probing the white matter at a limited number of loca-
tions. This makes it difficult to mentally visualize the shape of fiber tracts. Also, the
elicited response of the patient is dependent on the individual current applied [81] and
allows only a rough estimate of distance between electrode tip and the involved fiber
tracts [76]. Incorporating quantitative distance measurements in the preoperative plan-
ning can complement the ESM procedure and make it more efficient because locations
of minimal distance are known beforehand [14].

In this chapter we present a general visualization framework that allows the exploration
of distances between volumetric objects while taking the uncertainty in their spatial
extent into account. Existing approaches for measuring and visualizing 3D distances do
not take uncertainty into account. Neither do they allow the user to interactively explore
the effects of uncertainty on such measurements. In this chapter, we propose a distance
analysis framework that offers a number of visualization and interaction features that
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deal with these issues. Our main contribution is the incorporation of uncertainty in
the exploration of distances between 3D objects. To allow interactive exploration we
implemented a fast, GPU-based algorithm for computing distance transforms on large
volumes. We provide an integrated user interface that combines 2D and 3D views by
means of brushing and linking.

We will start this chapter with an analysis of specific clinical questions and requirements
with respect to distance measurements in neurosurgical practice. We then proceed with
an explanation of the computational features of our framework, followed by visualiza-
tion features such as minimal distance graph, tumor distance map and assisted camera
positioning.

Figure 8.1: (a) Distance relation between lookup object Ωlookup and reference object
Ωref . The point of minimal distance Pmin is highlighted in yellow. (b) If the reference
object Ωref changes shape as indicated, the point of minimal distance Pmin moves to a
different location.

8.2 Related work

For related work on fiber tracking, the characterization of fiber uncertainty and visu-
alization systems for neurosurgical planning, we refer the reader to Chapters 2 and 4.
Here, we provide a short overview of work done in the area of quantitative measurements.
Quantitative analysis of 3D spatial relations is an important task in both diagnostic and
surgical practice. Preim et al. [130] propose a number of 3D measurement widgets
and discuss strategies for interacting with these widgets using a mouse and keyboard.
Reitinger et al. [131] propose an immersive virtual reality environment where 3D mea-
surements can be performed using hand and arm movements. Both approaches rely
on manual positioning of the measurement widgets in 3D space which can introduce a
considerable amount of error and variation between users. Roessling et al. [138] address
this issue by proposing an automatic algorithm for computing distances between pre-
segmented objects. The framework is based on the construction of a spatial search tree
which hierarchically decomposes the mesh surfaces into subsets of geometric primitives.
It is highly flexible and can be used for a variety of multi-object configurations. It does
not, however, support real-time changes in the spatial extent of objects.
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8.3 Clinical questions and requirements

To understand how distance measurements impact surgical risk assessment we presented
the neurosurgeons with a set of problem scenarios [139] describing potential ways of
working with our software tool. Based on their feedback regarding feasibility and clinical
relevance we defined a set of questions that the tool should help to answer.

Q1 Which tumor parts are close to surrounding critical structures?

Q2 What is the magnitude and location of minimal distance to these structures?

Q3 What is the effect of fiber uncertainty on the distance measurement?

Q4 What is the effect of variations in tumor segmentation?

Our framework provides the following set of features for answering these questions:

• Real-time feature transform (Q3, Q4) Allows interactive exploration of the
effect of object uncertainty on distance measurements (Section 8.5).

• Minimal distance graph (Q3, Q4) Shows minimal distance as a function of
object uncertainty (Section 8.6.1).

• 3D distance arrow (Q2) Shows magnitude and location of distances in the 3D
scene (Section 8.6.1).

• 3D tumor distance map (Q1, Q2) Shows distances on the 3D tumor surface
using different color maps (Section 8.6.2).

• 2D tumor distance map (Q1, Q2, Q3) Shows distances on the tumor surface
unfolded to a 2D map (Section 8.6.2).

• Automatic camera positioning (Q1, Q2) Selecting a point in the 2D tumor dis-
tance map automatically re-orients the camera in 3D such that the corresponding
point on the 3D tumor surface is brought to the front (Section 8.6.3).

8.4 Pre-processing pipeline

Our computation pipeline starts with a pre-processing stage that is specific for the ap-
plication domain. It involves tumor segmentation, fiber tractography and, if necessary,
conversion of fiber pathways to a scalar reproducibility map. We define this term as
follows. Fiber tract uncertainty can be expressed in different ways depending on the
computational method used. Even though the term probability is often used, we prefer
the term reproducibility because it better describes what is actually being computed. We
distinguish two types of tractography methods: voxel-centric and fiber-centric. Voxel-
centric methods are the most common approach and assign a reproducibility value to
each voxel describing how often this voxel is found to be connected to the seed region.
They do not explain how or by which pathway a voxel is connected. Fiber-centric meth-
ods assign a reproducibility value to complete pathways thereby describing how often
a pathway interconnects the seed and target regions. An example is the ConTrack al-
gorithm explained in Chapter 4 [142]. Our choice of volumetric input format allows
us to support data obtained from both voxel- and fiber-centric methods. It also allows
us to explore fiber uncertainty by visualizing different iso-surfaces in the scalar map.
The tumor is represented by a single binary map or multiple binary maps (e.g. seg-
mentations obtained from multiple users or image modalities). The remainder of the
pipeline is independent of the particular application and interactively computes distance
information between a given pair of volumetric objects, provided they are represented
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as reproducibility maps.

To characterize fiber uncertainty we tested three well-known probabilistic tractography
algorithms. The PICo [122] and Wild Bootstrap [71] algorithms are voxel-centric ap-
proaches. Their output is a scalar map with values that can be directly interpreted as
reproducibilities and loaded into our framework without conversion. As mentioned ear-
lier, the ConTrack algorithm [142] is a fiber-centric method. It generates fiber pathway
geometry and requires conversion to a reproducibility map. This is done as follows:

Algorithm 1 Generate fiber-centric reproducibility map

initVoxelValuesToZero()
for all fibers F with reproducibility RF do

for all voxels V along fiber F and with reproducibility RV do
if RF > RV then
RV = RF

end if
end for

end for

Once datasets are loaded as reproducibility maps, we can explore variations in the
objects’ spatial extent by visualizing iso-surfaces for different reproducibility thresholds.

8.5 Real-time feature transforms

Let U : R3 → R be a function representing an uncertainty volume. For a given threshold
T , let Ω(T ) = {P ∈ R3|U(P) > T} be an object of interest. A well-established approach
to obtain distance information surrounding an object Ω(T ) is the Euclidian distance
transform DTΩ(T ) : R3 → R+ defined as:

DTΩ(T )(P) = min
Q∈Ω(T )

‖P−Q‖ (8.1)

An extension of the distance transform is the so-called feature transform FTΩ(T ) : R3 →
P(∂Ω(T )), where P(∂Ω(T )) represents the (power) set of points on the boundary of
Ω(T ) and is defined as:

FTΩ(T )(P) = {Q ∈ ∂Ω(T )|‖P−Q‖ = DTΩ(T )(P)} = arg min
Q∈∂Ω(T )

‖P−Q‖ (8.2)

On a voxel grid, DTΩ(T ) gives the distance from each voxel P in a dataset to the nearest
voxel Q of the surface ∂Ω(T ) of some object Ω(T ). FTΩ(T ) gives the set of surface
voxels Q closest to each voxel P, also called the features of P. The one-point feature
transform FT1

Ω(T ) : R3 → ∂Ω(T ) is a simplification of the feature transform in Eqn. 8.2

where a single feature is recorded per point. In the following, we shall use FT1
Ω(T ) since

it gives us both the identity of feature points, which we need, and also the distance to
these feature points. Furthermore, it is faster to compute and requires less memory than
the full feature transform FTΩ(T ).
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Figure 8.2: (a) Tumor with warm-to-cool distance coloring and fibers visualized as
streamtubes (yellow) and a 20% reproducibility surface. (b) Tumor with grayscale dis-
tance color and highlighted risk area (red). Fibers are visualized as streamlines (yellow)
and a 50% reproducibility surface. (c,e) Minimal distance graph and tumor distance
map for tumor displayed in (a). (d,f) Minimal distance graph and tumor distance map
for tumor displayed in (b).

After pre-processing our framework takes two inputs: (1) a reference object Ωref (Tref ),
abbreviated Ωref , for which the feature transform is computed, and (2) a lookup object
Ωlookup(Tlookup), abbreviated Ωlookup, for which we look up feature points in Ωref .
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Figure 8.3: (a) Minimal distance graph showing minimal distance as a function of re-
producibility. (b) Sinusoidally projected tumor distance map. (c) Repositioning camera
view from u0 to v in incremental steps.

Distance and (one-point) feature transforms can be computed using several algorithms.
On the CPU, we refer to the Augmented Fast Marching Method (AFMM) [147], the
scanline-based algorithm of Meijster et al. [106], the raster scanning method of Mullikin
et al. [111], the Euclidean tolerance feature transform [132], the graph-searching method
of Lotufo et al. [99] and the recent Euclidian scanning algorithm of Wang and Tan [160].
Although these methods have low computational complexity (typically O(N logN) and
at best O(N) [106] for N lookup voxels), they are still too slow for our purposes. We
need interactive, on-the-fly recomputation of these transforms in order to allow the user
to explore distances to objects with changing spatial extent. For this reason we use a
GPU-based algorithm proposed by Telea et al. [146], which extends the exact Euclidean
distance transform method of Cao et al. [30] to compute one-point feature transforms
of voxel objects. To speed up computation, this implementation uses only the voxels
representing the boundary ∂Ω(T ) rather than all voxels in Ω(T ) itself. Boundary voxels
are those voxels having at least one background neighbor voxel, using 6-connectivity.
This results in closed voxel boundaries, i.e., it guarantees that the centers of lookup
voxels can never be closer to interior (non-boundary) voxels of Ω(T ) than to boundary
voxels. In that case, the computed distance and feature transforms are identical to the
more expensive approach where we would consider all voxels in ΩT . Note that this
assumes non-intersecting objects. The boundary voxels in both Ωlookup and Ωref are
selected based on reproducibility iso-surfaces defined by thresholds Tlookup and Tref . In
the neurosurgical setting we are considering in this chapter, we use the tumor as lookup
object Ωlookup and the fibers as reference object Ωref . This decision is based on question
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Q1 described in Section 8.3, which requires that we show parts of the tumor that are
close to the fibers. This makes sense because it is the tumor that is being resected.
We therefore show distances on the tumor surface which implies that we compute the
feature transform on the fibers.

8.6 Visualization tools

This section introduces the main visualization tools included in the framework. These
are (1) the minimal distance, (2) the tumor distance map, (3) assisted camera positioning
and (4) additional interaction features.

8.6.1 Minimal distance graph

The ability to compute feature transforms in real-time allows the user to interactively
explore the effects of fiber (or tumor) uncertainty on minimal distance (question Q3 and
Q4). For this purpose we propose the Minimal Distance Graph which shows minimal
distance as a function of reproducibility. An example is illustrated in Figure 8.3A. The
graph is constructed by sampling the range of reproducibility values at regular intervals.
For each sample, we compute:

Pmin(Ωref ) = arg min
P∈∂Ωlookup

‖FT1
Ωref

(P)−P‖ (8.3)

where Pmin is the point on ∂Ωlookup where a minimal distance to ∂Ωref occurs. The
minimal distance itself is computed from:

Dmin(Pmin) = ‖FT1
Ωref

(Pmin)−Pmin‖ (8.4)

The graph is constructed from a fixed number of sampled reproducibility thresholds Tref .
To query thresholds that lie between samples, the user can select a point anywhere on
the horizontal reproducibility axis. This will trigger re-execution of the computation
pipeline. The recomputed minimal distance is displayed as a label on the graph curve.
A distance arrow in shown in 3D with end-points corresponding to Pmin and its corre-
sponding feature point. Point selection also triggers recomputation of the tumor distance
map described in the next section.

8.6.2 Tumor distance map

One of the aims of our distance analysis framework is to show which parts of the tu-
mor, represented by Ωlookup, are closest to the surrounding fibers, represented by Ωref .
To do this, we compute distance information across the object surface ∂Ωlookup. We
have chosen to represent Ωlookup as a 3D mesh and apply the distance information as
a color-coded 2D texture. For this, the texture has to be parametrized with texture
coordinates (u, v). We assume that ∂Ωlookup has a star convex shape, meaning each
point on ∂Ωlookup has a one-to-one mapping to a unit sphere positioned at its center of
gravity Pcenter (see Figure 8.1).

Based on the 2D texture we can easily highlight areas where distance values are below a
pre-defined threshold. The resulting areas are called risk areas because they show, at a
single glance, which parts of the tumor surface are closest to the fibers. The pre-defined
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threshold, called the risk distance, is a user-defined parameter. For example, the neuro-
surgeon may wish to see which areas of the tumor are at a distance of 10.0 mm or less
from any surrounding fibers.

To create the 2D texture, we compute a distance map which stores closest-point distances
from ∂Ωlookup (the tumor) to ∂Ωref (the fibers). This requires a function Q : R2 →
R2 which transforms map coordinates (u, v) to coordinates (θ, φ) on the unit sphere.
Applying the 2D texture to the 3D mesh requires only a trivial mapping θ = u and
φ = v. For each coordinate (θ, φ), we start at Pcenter and perform ray-casting along a
ray R(λ) = Pcenter + λ s(θ, φ) where

s(θ, φ) =

cos θ sinφ
sin θ sinφ

cosφ

 (8.5)

and λ is the ray-casting step size. We follow the ray in direction s until we find a point
P ∈ ∂Ωlookup. This is illustrated in Figure 8.1. We then calculate its distance D to
∂Ωref based on the feature transform FT1

Ωref
(P) and store the distance in the distance

map at position (u, v). This procedure is repeated for all points in the distance map and
is sufficiently fast to allow interactive recalculation of the map for different thresholds
Tref selected by the user.

The computed 2D texture can be color-coded in various ways (see Section 8.6.4) and,
when applied to the 3D mesh of Ωlookup, can provide distance information in 3D between
different areas on the tumor and the fibers. However, manipulating the camera view to
search for specific points of interest on the tumor surface (e.g., point of minimal distance)
may become tedious. To allow inspection of the complete tumor surface at a single
glance, without the need for view-point manipulation, we also provide an unfolded, 2D
display of the tumor distance map. This idea is similar to the tumor map proposed by
Rieder et al. [135] who use it to show tumor coagulation zones after radio-frequency
ablation. However, thanks to the GPU-based feature transform, our distance map can
be interactively updated as the spatial extent of the object changes. When projecting
the 3D tumor surface to a 2D plane care should be taken to preserve area as much as
possible. The initial mapping (θ = u, φ = v) will lead to severe area distortions when
displayed as a 2D image. We have chosen a sinusoidal mapping for its computational
efficiency but other mappings, such as the Mollweide projection [82] are also possible.
The sinusoidal mapping is defined as follows:

φ = v + ∆φ (8.6)

θ = u cos−1(v) + ∆θ (8.7)

where ∆φ and ∆θ are angular offsets used to rotate the distance map such that the
point of minimal distance (and its surrounding risk area) is placed in the center of the
map where distortions are minimal. Even with a sinusoidal mapping distortions near
the top and bottom of the map are inevitable. This issue is not specifically addressed
in Rieder et al. [135]. The angular offsets are obtained by first computing:
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w = Pmin −Pcenter (8.8)

wN = w/||w|| (8.9)

where wN = [xN yN zN ]T is the normalized vector originating from Pcenter and pointing
towards Pmin (already computed for the 3D map). ∆θ and ∆φ define angles between
wN and the vector (0, 0, 1) corresponding to the center of the distance map at (θ = 0, φ =
0). The offsets are computed by applying a standard Cartesian-to-spherical coordinate
transformation on vector wN :

∆θ =

{
tan−1 yN

xN
if xN 6= 0

0 if xN = 0
(8.10)

∆φ = cos−1 zN (8.11)

The star convexity assumption of the tumor allows a further speed-up in ray casting. We
can pre-compute its minimum radius Rmin and start ray casting at a distance Rmin − ε
from Pcenter, where ε is a small offset to handle round-off errors in case the iso-surface
lies exactly at distance Rmin. We use a relatively large step size and iterative step-size
refinement [56] to obtain an accurate estimation of the iso-surface.

8.6.3 Assisted camera positioning

The tumor distance map provides an overview of the full tumor surface at a single glance.
This feature comes at the cost of reduced spatial awareness in 3D. For this reason the
2D distance map and 3D view are linked by means of point selections. Clicking a point
in the tumor distance map can, if enabled, automatically update the 3D camera position
such that the corresponding point Puser on the 3D tumor surface is oriented towards the
user. Due to possible irregularities in the tumor surface reconstruction we have chosen
not to align the camera view vector with the tumor surface normal but, instead, align it
with the vector Puser−Pcenter. To allow the user to follow the change in view-point, we
apply a speed-adjustable animation that smoothly interpolates the camera view vector
using quaternion rotation. Figure 8.3(c) illustrates the setup. Initially, the camera is
looking down a vector u0. It should be rotated such that it looks down a vector v. In
the following, u0 and v are assumed to be quaternion vectors. Rotation takes place in
small angular increments α about the axis represented by w = u0 × v . A rotation of
angle α about w is represented by the quaternion function:

q(α) = cos
α

2
+ w sin

α

2
(8.12)

We define a function F that uses q(α) to rotate quaternion vector ui to ui+1 over an
angle α as follows:

ui+1 = F(ui) = q(α) ui q−1(α) (8.13)

where 0 ≤ i < N , uN−1 = v and q−1 is the complex conjugate of q. The speed of the
animation can be controlled by adjusting the angular increment α.



8.6 Visualization tools 97

Figure 8.4: Distance analyses performed on different segmentations of the same tumor.
Tumor segmented from MRI (A). Tumor segmented from DTI (B).

8.6.4 Additional exploration features

Besides the visualization of distances across the tumor surface, our tumor distance map
provides a number of other features discussed below.

Point selection - The tumor distance map can be used directly for exploration of dis-
tances. The minimal distance is highlighted by a cross-hair and corresponding label
indicating its magnitude (see tumor distance map Figure 8.2(c,d)). The user can click
on the map to query distance values at different positions on the tumor surface. The
selected point is highlighted on the map as well as in 3D using a spherical glyph. The
principle of linking selections in a 2D map to a 3D view is similar to work done by
Termeer et al. [148].

User-adjustable risk areas - The user can interactively change risk distance and see
how it affects the size and shape of risk areas in both the 2D and 3D tumor distance
maps. Because distance maps can be recomputed in real-time, the user can also keep the
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risk distance fixed and see how the risk area changes size and shape due to changes in
fiber probability iso-value. Figure 8.2(b,f) shows an example of a risk area highlighted
on both the tumor distance map and 3D tumor mesh.

Distance contours - The tumor distance map, both in 2D and 3D, can be displayed
as a contour map where distances inside a given interval are mapped to a single color.
This makes it easier to quantify different surface areas with small, medium and large
distances. This is also illustrated in Figure 8.2(b,f).

Color mapping - Using gray values to encode distances may interfere with the CT or
MR images that are used for anatomical context (e.g. in Figure 8.2(b)). In that case,
the user may prefer to encode distances using a different color scale. We implemented
a warm-to-cool color map for this purpose where warm colors are associated with short
distances and cool colors with long distances (see Figure 8.2(a)).

8.7 Results and discussion

Tumor segmentation was performed using ITK-SNAP [171] on the 1 mm3 T1-weighted
MRI dataset, resulting in a binary mask. Using FSL [67] we calculated the affine trans-
formation from the MRI coordinate frame to the DTI coordinate frame. The tumor
binary mask was transformed and resampled to the DTI coordinate frame. The MRI
dataset was loaded as a 3D texture into our visualization tool without resampling. The
3D texture bounding box was scaled, rotated and translated based on the calculated
transformation.

DTI fiber tractography was performed on the motor part of the corticospinal tract (m-
CST) and the arcuate fasciculus (AF) which is associated with language. These tracts
are of main interest to the neurosurgeons, especially the AF when the tumor is located
in the language-dominant hemisphere. For the voxel-centric tractography algorithms
we used ITK-SNAP to create seed regions. For the fiber-centric ConTrack algorithm
we used the VistaSoft package [142]. We followed the steps described by Wakana et
al. [159] to define the position and shape of seed regions. MRI and DTI datasets were
acquired using a Philips Integra 3T scanner. DTI data dimensions are 128 × 128 × 60,
voxel dimensions are 1.75× 1.75× 2 mm.

Performance

The CUDA-based distance/feature transform computation required to find closest tu-
mor points to given fibers requires 8 bytes GPU RAM per voxel, i.e. 128 MB for 2563

volumes and 1 GB for 5123 volumes, which fits current high-end graphics cards. The
speed of the algorithm is roughly linear with the voxel volume size (number of lookup
points), since the number of reference voxels is kept small by considering only surface
voxels of the reference shapes (see Sec. 8.5). Performance figures are given in Table 8.1,
for several volume sizes, on three different NVIDIA GPU configurations, under Linux,
and also Mac OS X for the GT 330M.

The implementation of the distance/feature transform is optimized for power-of-two vol-
umes. Performance is almost constant regardless of the number of fiber voxels, and is
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Volume GRAM DT/FT (GT 330M) DT/FT (GTX 280) DT/FT (C1060)
(voxels) (MB) (sec.) (sec.) (sec.)

128x128x128 16 0.07 0.04 0.05

256x256x256 128 0.40 0.28 0.30

512x512x512 1024 n/a 2.10 2.20

Table 8.1: DT/FT performance for various volumes and GPU configurations.

roughly linear in the number of voxels of the embedding space, i.e., independent of the
actual number of reference voxels where we are interested to evaluate the distance to vox-
els. For the GT 330M GPU, volumes of 5123 have not been treated, as our configuration
for this card had only 512 MB graphics RAM. CPU-based optimized distance/feature
transforms, such as the AFMM [147] or the Euclidean TFT [132], are tens of times slower
due to the lack of parallelization and the fact that the number of lookup points is large,
i.e., the entire volume minus the relatively thin fiber structures. For completeness, note
that in applications involving considerably fewer lookup points, e.g., one is interested in
feature-and-distance values only within a thin narrow band around a reference shape,
fast-marching methods such the AFMM are faster than GPU-based methods, as the
GPU-to-CPU transfer overheads dominate computational costs.

The preliminary results of our work suggest that interactive visualization of distances
between objects with uncertain spatial extent can help to answer relevant clinical ques-
tions. This information would be difficult, or even impossible, to obtain solely by means
of a visual inspection of 2D images. Neither can existing approaches for 3D distance
analysis provide information about the reliability of the distance measurements due to
uncertainty.

The uncertainty in a given object’s spatial extent can be characterized in many different
ways. Our main focus has been on white matter pathways and the reproducibility with
which they can be reconstructed by various probabilistic tractography algorithms. This
reproducibility largely depends on sensitivity to data noise and is modelled in different
ways by different algorithms. The PICo method models noise explicitly while the Wild
Bootstrap method does not. ConTrack internally also uses a Wild Bootstrap approach
to estimate certain parameters. We have shown that our framework is not dependent on
any particular tractography method. It only requires that the output data is presented
in a simple volumetric format which we have labeled the reproducibility map. Each voxel
is assigned a reproducibility value depending on how often it is classified as being part
of the object of interest (i.e., the fiber tract) after a certain number of iterations of the
algorithm.

The distinction between voxel-centric and fiber-centric methods may be helpful when
considering the application domain. We have illustrated the use of our distance analysis
framework in a neurosurgical context. Discussions with the neurosurgeons led to the
conclusion that voxel-centric approaches may be less suitable for neurosurgical purposes.
First, voxel-centric algorithms can tell you how reproducibly a voxel is connected to the
seed region but not how or through which pathways. Second, the shape of the iso-surface
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is likely to be different from what a neurosurgeon expects based on knowledge of white
matter anatomy (see Figure 8.2(b) and (c)). Third, due to the sampling strategy of
voxel-centric algorithms, voxel reproducibilities always decrease with distance from

Figure 8.5: (a) Grade II glioma in left temporal lobe touching language tracts (green).
Motor tracts are indicated in blue. (b) Fiber-centric reproducibility surface. (c) Stream-
lines corresponding to fiber-centric reproducibility surface.
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the seed region. This may not be a realistic representation of fiber uncertainty, espe-
cially if it is known from physical examinations that fiber tracts are present and intact.
For all these reasons, a voxel-centric representation of uncertainty may not be the best
choice in a neurosurgical setting. A fiber-centric algorithm, on the other hand, assigns
reproducibility values to complete pathways instead of single voxels, thereby preserving
pathway information. Iso-surfaces generated from its output represent all voxels inter-
sected by pathways with the same reproducibility. For this reason, the iso-surface shape
will more closely resemble the shape of the underlying pathways (see Figure 8.5(b) and
(c)).

8.8 Conclusions

In the previous sections we have presented a framework for the interactive exploration
of distances between volumetric objects of uncertain spatial extent. This framework is
particularly useful in a neurosurgical context where distances are an important concept
for surgical planning and decision-making. In the next chapter we do not introduce novel
visualization techniques but, instead, focus even more on the neurosurgical context by
applying the techniques presented in this and previous chapters to 5 real-world, clinical
cases of patients with brain tumors.
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No one believes forecasts, but we all want to hear them.

- Dilbert

9Applications in neurosurgical planning
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9.1 Introduction

In Chapter 2 we mentioned that DTI and fiber tracking are of great interest for neu-
rosurgical applications, such as planning and intra-operative navigation. The ability to
non-invasively reconstruct the 3D layout of brain white matter is especially useful for
the planning of tumor resections involving critical brain areas [169, 34, 61]. Such infor-
mation is not adequately provided by conventional imaging such as contrast-enhanced
T1, T2 or FLAIR imaging [34]. 3D visualization of fiber tracts allows neurosurgeons to
preoperatively evaluate optimal access trajectories toward the lesion. It can also assist in
decision-making. For example, if the tumor is suspected to be close to critical fiber tracts
the neurosurgeon can use fiber tracking results to decide whether or not to use intra-
operative stimulation mapping [78, 44]. If a tumor shows infiltration of important fiber
tracts that are still functionally intact, a complete resection may not be possible which
is important information to convey during patient counseling. Even if intra-operative
stimulation is decided upon, fiber tracking can still point out the 3D locations where
stimulation is applied most effectively and thereby help to make the overall procedure
more efficient [52].

As can be assessed from the multi-stage DTI processing pipeline described in Chapter 4,
the output of fiber tracking can be subject to a wide range of sources of uncertainty.
There is also substantial clinical evidence for the reliability issues of standard fiber
tracking methods. These issues have been reported by several authors [34, 81, 27]. Also,
there have been numerous attempts to clinically validate fiber tracking results on the
basis of intra-operative navigation and electrical stimulation mapping [75, 18, 15, 108].
The sensitivity of fiber tracking to user-defined parameters, such as stopping criteria
and seed point placement, has also been investigated [159, 33, 60].

Figure 9.1: Fixed-distance, visual safety margin (image courtesy of Florian Weiler,
Fraunhofer MeVis, Bremen) (a). Single seed point and fiber calculated using deter-
ministic fiber tracking (b). Fiber pathway variations for a single seed point calculated
using Wild Bootstrap fiber tracking [71] (c).
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Figure 9.2: Patient 1. Deterministic fibers with fixed safety margin (a-c). Deterministic
fibers (red) and probabilistic fibers (green) (d-e). Deterministic fibers with uncertainty-
driven safety margin (f).
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In the previous chapters, we have shown that the visualization techniques described
have potential applications in neurosurgical settings. In Chapter 7 we performed an
informal user study to evaluate the usefulness of our visualizations for neurosurgeons.
Chapter 8 focused on distance measurements, which form an important part of the
neurosurgical planning routine. The visualization techniques presented in these chap-
ters rely on the output of probabilistic fiber tracking algorithms in order to capture
fiber pathway variations due to noise and model errors. However, this seems to suggest
that such tracking algorithms are commonly available to neurosurgeons, which they are
not. Neurosurgeons typically work with commercially available viewing stations. The
fiber tracking algorithms implemented in these systems are mostly of a deterministic
nature and, therefore, provide support for neither the characterization and representa-
tion of uncertainty, nor its visualization. It is left entirely up to the user to estimate
the reliability of what is being presented. In some cases, the user has the option to
illustrate this estimation by defining a visual safety margin (Figure 9.1(a)) at a fixed
distance to the tracked fiber bundle [161]. However, this does not hide the fact that
the system itself provides no information whatsoever about reliability issues. The safety
margins only visualize the opinion of the user and have no relation to the underly-
ing data or the tracking algorithm. Figures 9.1(b) and (c) clearly demonstrate that a
fixed, user-defined safety margin may not adequately capture the possible variations in
fiber pathways predicted by probabilistic tracking algorithms [71, 50, 122]. Similarly,
the differences between deterministic tracking algorithms, as compared by Buergel et
al. [27], cannot be captured by simply taking one of the tracking results and expanding
it with a fixed safety margin (unless the safety margin is too large to be of practical use).

In this chapter we apply the visualization techniques presented in Chapter 6 and 8 to five
clinical cases. To provide the neurosurgeon with a clear comparison of the differences
between deterministic and probabilistic algorithms we render deterministic fiber tracts
in the traditional manner, e.g. using streamtubes such as described in Chapter 3, while
the probabilistic tracking information is represented as illustrative confidence intervals
(Chapter 7) or reproducibility iso-surfaces (Chapter 8). We call these probabilistic
boundaries uncertainty-driven safety margins which are calculated from probabilistic
fiber tracking and represent uncertainty in the spatial extent of fiber pathways due to
image noise and DTI model errors. We combine the uncertainty-driven safety margins
with real-time calculation of distance information between tumor and surrounding fiber
tracts.

9.2 Pre-processing steps

In this section we will shortly describe the image acquisition and post-processing steps
taken to create the visualizations described in the next section.

• Image acquisition - All images were acquired using a Philips Achieva 3T scanner
(Philips Healthcare, The Netherlands) with a 8-channel head coil. T1-weighted
images were acquired at 288 x 233 pixels, 176 slices and 1 mm3 voxels. Diffusion-
weighted images were acquired using single-shot EPI at 128 x 128 pixels, 60 slices,
1.75 x 1.75 x 2 mm voxels, 30 gradient directions and a b-value of 1000 s/mm2.

• Image registration - The T1-weighted images were aligned with the DTI images
using a rigid-body transformation calculated with the FLIRT tool of the FSL
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package [67].

• Tumor segmentation - Tumors were segmented from the T1-weighted images
using ITK-SNAP, a general purpose, open-source image segmentation tool [171].
The segmented tumor data was subsequently aligned with the DTI data using the
previously calculated rigid-body transformation.

• Fiber tracking - Deterministic fiber tracking (FACT algorithm, 2nd-order Runge-
Kutta integration) was performed on diffusion tensor data calculated from the
original diffusion-weighted images. Probabilistic fiber tracking was performed
using the Wild Bootstrap method (for details on both tracking algorithms see
Chapter 4). We reconstructed two major fiber bundles for each clinical case: (1)
the corticospinal tract associated with motor function and (2) the arcuate fascicle
associated with language function (see also Chapter 2). Seed and target regions
were defined according to the recipes recommended by Wakana et al. [159].

9.3 Clinical cases

In the following paragraphs we will shortly provide a description of each patient’s med-
ical background and present visualization results emphasizing the tumor, fiber tracts,
safety margins and distance information. For an overview of tumor grades we refer the
reader to Chapter 2.

Patient 1 - Patient 1 is a 48-year old male who presented with focal sensomotoric
seizures of short duration, multiple times per week and starting a year earlier. The pa-
tient had no neurological deficits. The tumor was diagnosed to be a high-grade glioma
(WHO-III), located in the right gyrus cingulus and subcortically underneath the senso-
motor region. Figure 9.2 shows images from the investigation of patient 1. The tumor
is located in the right cingulate gyrus underneath the sensomotor cortex. Given the
patient’s history of focal sensomotor seizures, special attention was given to fibers of
the corticospinal tract (CST). We loaded pathways reconstructed using deterministic
FT and visualized them using stream tubes. The fibers are surrounded by a fixed, user-
defined safety margin (Figure 9.2(a), (b) and (c)) to illustrate what the visualization
would look like when using existing, commercial viewing stations. Figure 9.2(d) and (e)
show the deterministic pathways (red) together with pathways calculated using the Wild
Bootstrap method, a well-known probabilistic tracking algorithm proposed by Jones et
al [71]. As can be seen the fixed safety margin does not correctly capture the pathway
uncertainty predicted by the probabilistic algorithm. Figure 9.2(f) illustrates the proba-
bilistic pathways again, now visualized using our uncertainty-driven safety margins with
a semi-transparent surface style.

Patient 2 - Patient 2 is a 41-year-old male who presented with a single generalized
seizure without neurological deficits. The tumor was diagnosed to be a low-grade glioma
(WHO-II), located in the left premotor area (F1) of the gyrus frontalis superior. Figure
9.3 shows images from the investigation of patient 2. The tumor is located left premotor
area of the gyrus frontalis superior. Given the patient’s history of a single seizure and
the location of the tumor as visible on the anatomical MR images, primary attention
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Figure 9.3: Patient 2. Deterministic fibers with fixed safety margin (a). Compar-
ison fixed safety margin and probabilistic fiber extent (b). Deterministic fibers and
uncertainty-driven safety margin (c). Different visual styles for uncertainty-driven safety
margin (d-f).
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Figure 9.4: Patient 3. Deterministic fibers and fixed safety margin (a). Comparison
fixed safety margin and probabilistic fibers (b). Deterministic fibers and uncertainty-
driven safety margin (c). Idem with tumor distance map (d). Different visual styles for
uncertainty-driven safety margin (e-f).
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was given to the CST. Figure 9.3(a) shows the output of deterministic FT together
with a fixed safety margin. Figure 9.3(b) shows the fixed safety margin in combination
with a streamline representation of the probabilistic pathways in order to highlight the
difference in shape. Figure 9.3(c) provides an example of automatic calculation of 3D
distances between tumor and our uncertainty-driven safety margin calculated from the
probabilistic pathways. The tumor surface is color-coded based on distance to the fiber
pathways. Warm orange colors represent small distances, cold blue colors represent large
distances. The bright red areas on the tumor indicate those locations where the tumor
lies within 15 mm’s of the fiber pathways. The point of minimal distance is indicated
by the double-headed arrow and is 12.4 mm. Figure 9.3(d), (e) and (f) show examples
of uncertainty-driven safety margins with a silhouette and outline style. This particular
visual style allows visualization of multiple boundaries, each representing pathways of
a given confidence interval. Figure 9.3(d) shows the spatial extent of the 50% most
reproducible pathways (blue) and the 50% least reproducible pathways (green). Figure
9.3(e) and 9.3(f) provide examples of alternative ways to render each confidence inter-
val. For example, in Figure 9.3(e) silhouette boundaries are blurred with decreasing
confidence while in Figure 9.3(f) this is done by increasing the coarseness of the checker-
board pattern inside the silhouette. The blue checkered region represents 25% of the
most confident pathways.

Patient 3 - Patient 3 is a 31-year-old male who presented with multiple seizures with-
out neurological deficits. The tumor was diagnosed to be a low-grade glioma (WHO-II),
located in the right premotor area (F1) of the gyrus frontalis superior. Figure 9.4 shows
images from the investigation of patient 3. The tumor is located in the right premotor
area of the gyrus frontalis superior. Given the patient’s history of multiple seizures, the
primary focus was on the CST. Figure 9.4(a) shows these tracts as reconstructed using
deterministic FT. Again, a fixed safety margin is shown as would be possible in exist-
ing, commercial DTI analysis systems. Figure 9.4(b) and (c) show pathway information
calculated from the probabilistic Wild Bootstrap algorithm, both as streamlines (Figure
9.4(b)) and as an uncertainty-driven safety margin with semi-transparent surface style
(Figure 9.4(c)). The difference with the fixed safety margin is again noticeable. Figure
9.4(d) illustrates distance information projected on the tumor surface. The bright red
areas, again, highlight points on the tumor within 15 mm of the uncertainty-driven safety
margin. Figure 9.4(e) and (f) show alternative examples of the silhouette representation
of our safety margins.

Patient 4 - Patient 4 is a 39-year-old male who presented with multiple complex partial
seizures. The patient suffered from memory loss and mild speech problems. The tumor
was diagnosed to be a low-grade glioma (WHO-II), located in the right temporal lobe.
Figure 9.5 shows images from the investigation of patient 4. The tumor is located in
the right temporal lobe. Figure 9.5(e) clearly shows it pushing against the CST. Given
the combination of complex partial seizures and language problems, both the CST and
arcuate fasciculus (AF) were considered. Figure 9.5(a) shows a reconstruction of the lan-
guage pathways based on deterministic FT together with a fixed safety margin. Figure
9.5(b) and (c) show the result of probabilistic fiber tracking. In Figure 9.5(d) distance
information was calculated between the tumor surface and surrounding AF. The bright
red areas indicate locations on the tumor where the distance < 15 mm. The minimal
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distance was calculated to be 2.7mm. Figure 9.5(e) shows the interaction of the tumor
with CST. The distance color-coding on the tumor surface was calculated with respect
to the CST. The point of minimal distance (3.5 mm) is visible in the bottom left part
of the tumor. Figure 9.5(f) and (g) show uncertainty-driven safety margins surrounding
the AF. Figure 9.5(h) and (i) show similar visualizations for the CST.

Patient 5 - Patient 5 is a 37-year-old male who presented with a single seizure and mild
speech problems. The tumor was diagnosed to be a low-grade glioma (WHO-II), located
in the right temporal lobe.Figure 9.6 shows images from the investigation of patient 5.
The tumor is located in the right temporal lobe. Given the patient’s history of a single
seizure and speech problems, both the CST and AF were considered. Deterministic
FT results are illustrated in Figure 9.6(a). Figure 9.6(b) shows the CST with a fixed
safety margin. Compared to patient 4, there is little or no distortion of fiber geometry.
Distance calculations performed between tumor and CST result in a minimal distance
of 8.2 mm based on the uncertainty-driven safety margin calculated from probabilistic
fiber tracking. The results are shown in Figure 9.6(c). Figure 9.6(a), (d), (e) and (f)
indicate that the tumor is close to the AF. Distance calculations between tumor and the
uncertainty-driven safety margin result in a minimal distance of 0 mm. Figure 9.6(e)
and (f) show examples of our safety margins using silhouette-based confidence intervals.

9.4 Discussion

In the previous section we have shown that the visualization techniques proposed in ear-
lier chapters can be usefully applied to real clinical cases. We have presented five such
cases involving patients with brain tumors. Techniques such as illustrative confidence
intervals (Chapter 7) and reproducibility isosurfaces (Chapter 8) can serve as a type of
uncertainty-driven safety margin surrounding fiber pathways created using deterministic
streamline tracing. The advantage of combining probabilistic and deterministic tracking
in this way, is that it allows the user to compare the two methods and see in which loca-
tions their outputs coincide and in which locations their outputs deviate. Probabilistic
tracking methods are able to detect reproducible pathways in low-anisotropy regions
where deterministic algorithms would just produce random results. To prevent such
false positives they rely on strict anisotropy and curvature thresholds. However, this
can potentially ignore true positives and considerably reduce the spatial extent of the
visualized fiber bundle because only a limited number of pathways actually reach their
destination. This is one of the reasons behind the limitations reported by Kinoshita et
al. [81]. This phenomenon can also be seen when comparing Figure 9.2(b) with 9.2(d) of
patient 1, Figure 9.3(a) with 9.3(b) of patient 2 and Figure 9.4(a) with 9.4(b) of patient 3.

Differences between deterministic and probabilistic output results are not always large.
In patient 4 the tumor is located in the lower, temporal part of the brain. It is very
large and pushes the corticospinal tracts to the contra-lateral side. We experimented
with placing seed points both in the cerebral peduncle and the cortex but found no sig-
nificant difference in the resulting set of pathways. As can be seen in Figure 9.5(e), the
deterministic pathways (red) and the probabilistic surface hull (blue) are quite similar,
especially in the area closest to the tumor.
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Figure 9.5: Patient 4. Deterministic fibers, uncertainty-driven safety margin and tu-
mor distance map (a). Tumor distance map with deterministic motor fibers (red),
uncertainty-driven safety margin (blue) and deterministic language fibers (green) (e).
Idem with different visual styles for uncertainty-driven safety margins (c-f).
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Figure 9.6: Patient 5. Deterministic language (blue) and motor fibers (red) (a). Deter-
ministic motor fibers with fixed safety margin (b). Deterministic fibers with uncertainty-
driven safety margin and tumor distance map (c). Idem for language fibers (d). Different
visual styles and viewpoints (e-f).
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The informative power of the visualizations presented in this chapter is primarily achieved
by combining deterministic tracking results with the uncertainty-driven safety margins.
In this respect, these visualizations are complementary. The combination of determinis-
tic and probabilistic methods also has some educational value, especially for users who
have less experience with fiber tracking and its interpretation. Our visualization method
allows easy comparison between deterministic and probabilistic results. The safety mar-
gins are not fixed but adapt themselves to changes in confidence along a given fiber
bundle as well as between different fiber bundles. This allows the clinical user to dis-
cover, in an intuitive manner, how the performance of a fiber tracking algorithm depends
on the region of the brain where it is applied.

Despite the advantages of probabilistic fiber tracking, there are also limits to the inter-
pretation of its output and its subsequent visualization. In this thesis we have primarily
discussed uncertainty in terms of reproducibility, meaning how similar fiber pathways are
when tracking is repeated many times. This does not mean, however, that the pathways
always represent the underlying anatomy accurately. As pointed out before, a gold stan-
dard for validation of the tracking results is lacking. Furthermore, these algorithms can
also suffer from image artifacts, model errors, incorrect seed and target regions or tissue
pathology effects. Still, when deterministic tracking fails for some reason, probabilistic
methods may be the only way to detect reproducible fiber structures.

9.5 Conclusions

In this chapter we have presented 5 clinical cases of patients with brain tumors and have
shown that the visualization techniques presented in this thesis can provide interesting
and useful information for neurosurgical planning. This chapter represents the final main
contribution of this thesis. In the next chapter we will summarize our contributions and
provide suggestions for future work.



Large corporations welcome innovation and individualism in the same way the dinosaurs

welcomed large meteors.

- Dilbert

10General discussion
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10.1 Introduction

In the previous chapters we have presented several techniques for the visualization and
exploration of uncertainty in fiber tracking on the basis of diffusion tensor imaging. In
the following paragraphs we will briefly recapitulate our main contributions and high-
light the potential added value for neuro-scientific and neurosurgical purposes.

Our first contribution was presented in Chapter 6 and attempts to address the problem
of parameter sensitivity in deterministic fiber tracking. We have focused on visualiza-
tion techniques that highlight stability problems in the stopping criteria. An important
aspect of finding stable threshold values for these stopping criteria is the ability to
interactively change them and see how the fiber tracking output reacts. With GPU-
acceleration interactively changing tracking parameters becomes easier, but this still
allows only visualization of individual thresholds at a time. The zero-threshold tracking
and color-coding we propose in Chapter 6 allows to view pathways across a range of
such threshold values. One of the advantages of our technique is that it directly shows
which parts of a traced fiber bundle are likely to be included or excluded for a range of
threshold values. This could serve as a first visual check in neurosurgical settings where
false negatives may be the result of either tissue pathology (e.g., perifocal edema) or an
overly strict anisotropy threshold.

In Chapter 7 we presented a visualization technique for showing the effects of image noise
on fiber pathways. Uncertainty in this context is commonly characterized by means of
probabilistic tracking methods. However, visualization of their output is mostly limited
to 2D fiber density maps which do not show the 3-dimensional layout of the fibers and
their associated uncertainty. We have proposed illustrative rendering techniques, based
on silhouettes and outlines, to render the large numbers of fiber pathways resulting from
probabilistic tracking. These techniques simplify the dense collection of streamlines to
their essential shape characteristics. This reduces visual clutter and maintains a sense
of 3D shape and extent.

Chapter 8 presents a first attempt to integrate uncertainty visualization of fiber pathways
in a practical task common in neurosurgical settings: the measurement of distances. Dis-
tance is a very important concept in surgical planning since it directly impacts decision-
making. A tumor that is close to critical brain regions or fibers may require resection
under the guidance of electrical stimulation. A tumor that is far from such structures,
may not require such measures. However, the assessment whether distances are large
or small, depends on the spatial extent of the objects involved, in this case the tumor
and surrounding fiber tracts. This is difficult to do on the basis of 2D images, which is
current practice, but becomes virtually impossible if uncertainty in the spatial extent of
the object has to be taken into account. The exploration framework which we propose
in Chapter 7 allows (1) visualization of distance in 3D and (2) interactive exploration
of distances with changing object shape. Furthermore, we provide several tools, such as
the tumor distance map, that present the distance information in a clinically relevant
way.

Chapter 9 attempts to apply the visualization and distance analysis techniques presented
in Chapters 7 and 8 to a set of real-world clinical datasets. The discussion presented
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in this chapter focuses more on the clinical benefits of probabilistic fiber tracking and
its visualization. We propose to use our visualizations as an alternative for the fixed-
distance safety margin commonly featured in commercial fiber tracking systems. We
show that fixed margins do not adequately capture the potential reliability issues in
fiber tracking output. The visualizations shown in this chapter can, for this reason, be
considered to be a type of uncertainty-driven safety margins where the spatial extent of
the margin actually reflects uncertainty derived from the underlying data.

10.2 Remaining challenges and future outlook

DTI and fiber tracking are promising tools that can bring a wealth of information about
brain connectivity and function. However, in order to correctly interpret the output
they also require detailed knowledge of (1) the technical details and (2) the underlying
white matter anatomy. Depending on the type of user a different balance between these
two factors exist. For example, neuroscientists may be looking for previously unknown
brain connections and, therefore, cannot always rely on anatomical knowledge. However,
they mostly have detailed knowledge of image acquisition and post-processing methods,
including their limitations, which can help them to assess the reliability of the output.
Given the wide range of tracking algorithms to choose from, uncertainty visualization
can play a useful role in the comparison of such algorithms. For example, our illus-
trative confidence intervals could be used to visualize the outputs of multiple tracking
algorithms where overlap between the resulting fiber sets (i.e., where the algorithms
agree) represents a higher confidence.

In neurosurgery, the added value of uncertainty visualization is more difficult to as-
sess. Fiber tracking forms only a single part in the overall investigative procedure. The
primary goal is to improve patient outcome but this is dependent on a wide range of
factors, many of them not related to imaging. Patient history, physical fitness, type of
lesion, medication, intra-operative navigation and surgical expertise may have a larger
impact on clinical decision-making than fiber tracking. Even if fiber tracking would be
used routinely, it would be difficult to establish its exact contribution to patient out-
come as compared to the contribution of other factors. Given the wide range of issues
neurosurgeons have to deal with when planning and executing surgical procedures, it
is understandable that they have less opportunity to familiarize themselves with the
technical details of DTI and fiber tracking. On the other hand, they can rely on ex-
tensive knowledge of structural and functional anatomy to assess the accuracy of the
fiber tracking results. In many cases, deterministic fiber tracking suffices to provide the
neurosurgeon with confirmation of the spatial layout of fiber bundles and their distance
to the target lesion. A problem, and opportunity, arises when standard fiber tracking
methods fail, for example, when edematous fluid surrounding a tumor lowers diffusion
anisotropy to such an extent that deterministic tracking fails to reconstruct fibers be-
tween brain regions that are known to be connected. This may have been determined on
the basis of a physical examination. If, as a consequence, it cannot be assessed on which
side fibers pass the tumor, this can be problematic for planning the angle of approach
toward the tumor. In such cases, probabilistic tracking methods may have a better
chance of detecting reproducible fiber structures in such areas. A similar scenario was
described in a book chapter by Bartsch et al. [6] and provides an excellent opportunity
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for uncertainty visualization techniques, such as the fiber confidence intervals and dis-
tance exploration methods we presented in this thesis.

This brings us to a future outlook for uncertainty visualization on the basis of DTI and
fiber tracking. As will be clear, much remains to be done in this area, especially for
neurosurgical applications where the benefits of uncertainty visualization require careful
selection of relevant clinical cases. A very interesting line of research which could be pur-
sued in the near future is to find previous clinical cases with complex pathology, where
deterministic fiber tracking methods either failed, or would be expected to fail if they
had been applied. Probabilistic tracking methods may still result in useful information
and it would be interesting to evaluate the effectiveness of our uncertainty visualization
techniques as compared to standard methods for probabilistic fiber tracking, such as 2D
fiber density maps. This is more difficult to do with cases that are relatively straight-
forward.

Another interesting challenge in neurosurgical applications would be to combine our fiber
tracking visualization with uncertainty in the spatial extent of the tumor. The distance
exploration framework which we presented in Chapter 8 allows both objects of interest
to have varying shapes. However, it is far from trivial to create a useful probabilistic
segmentation of tumor tissue. It might be interesting to combine the 3D uncertainty
visualization of the white matter fibers with a 2D visualization of the anatomical im-
ages. The latter gives the best, unprocessed representation of the tumor boundaries,
e.g., as captured by T2-weighted, FLAIR or contrast-enhanced T1-weigted MRI. Also,
a combination of 2D and 3D visualizations may be easier to adopt since neurosurgeons
are already familiar with 2D imaging. Another requirement in this area would be to
develop a user interface for the software that is easy-to-use for the neurosurgeons. This
allows them to work with the visualization tools themselves and is likely to improve the
quality of their feedback.

Many interesting challenges and opportunities also remain in the area of neuroscientific
research, especially brain connectivity studies. Our visualization techniques are quite
suitable for visual comparison of information obtained from large groups of individuals.
For example, fiber tracking results from such a large group could be collated into a
probabilistic fiber atlas which could subsequently be visualized using different confidence
intervals as described in Chapter 7. Another area where uncertainty visualization can
play a role is in the development of new fiber tracking algorithms. Our techniques
provide an intuitive way to visually assess the pathway output of such algorithms and
compare it to established approaches.

Final thoughts

To conclude this thesis, we point out that uncertainty visualization is a highly interesting
but also a very tough subject. Intuitively, it makes sense to show uncertainty in the
data. Data is always measured, processed and visualized for a specific purpose, be
it exploration, problem solving, decision-making or communication. In all cases, the
essence is to get at the truth about the phenomenon being measured. This will allow
you to increase your knowledge about it and use this knowledge to make better decisions.
However, all measurements and processing methods are subject to errors, assumptions
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and biases which can have unpredictable effects on the data being investigated. If such
issues can be characterized in some way, it makes sense to visually communicate them
to the user. However, as we already pointed out in the introduction of this thesis, many
sources of uncertainty remain hidden and cannot be easily characterized or quantified.
This raises a number of critical and understandable questions, such as ’How valuable is a
visualization that shows only part of the uncertainty and not all of it?’, or ’How valuable
is a visualization that shows uncertainty of a kind I do not understand?’. Again, we come
back to the experience and background knowledge of the user. Some users realize that
they are seeing only part of the uncertainty, but still appreciate and understand the
visualization of those uncertainties that can be quantified. Other users may not fully
understand the source of uncertainty and find its visualization confusing. It is likely that
the latter scenario applies to a much larger group of users, especially in non-scientific
settings. In the opinion of the author, this is where the main challenge of uncertainty
visualization lies: in finding approaches to communicate uncertainty in an accessible and
meaningful way to ’lay’ people who use visualization only as a tool for problem solving
and decision-making.
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Summary

Diffusion tensor imaging (DTI) is an imaging technique based on magnetic resonance
that describes, in each point of the tissue, the distribution of diffusing water molecules.
The distribution is mathematically modelled using a second-order tensor. In fibrous
tissues the diffusion tensor will have an elongated, ellipsoid shape whose main axis is
assumed to be aligned with the underlying fiber structure. Fiber tractography traces
paths through the tensor field by following each tensor’s main direction thereby resulting
in a three-dimensional reconstruction of the fibers. This is particularly interesting for
the exploration and visualization of neuronal connections in brain white matter and has
great potential for applications in neuroscience and neurosurgery.

DTI and fiber tractography are unique in that they provide insight into white matter
structures in vivo and non-invasively. However, despite these capabilities the application
of DTI and fiber tractography in clinical practice remains limited. The image acquisi-
tion and post-processing pipeline is complex and consists of many stages. At each stage
errors and uncertainties are introduced due to image noise, magnetic distortions, par-
tial volume effects, scanner settings, diffusion model assumptions and user parameters.
These uncertainties are propagated through the pipeline and possibly enhanced in sub-
sequent stages thereby leading to potentially unreliable results in the final tractography
output. To the user the processing pipeline behaves like a black box whose internal de-
tails remain hidden and whose quality of output cannot be reliably assessed. Contrary
to standard CT and MR images it is not possible to look at the ”raw” diffusion-weighted
images. Without further processing the images are practically meaningless. This means
the user either has to accept (and trust) the processing output or refrain from using
fiber tracking all together.

In this thesis we assume that the user has certain reservations about the quality of the
tractography output. Unfortunately, there is no gold standard against which the output
of tractography can be validated. Consequently, we cannot make definitive statements
about the ”true” certainty or uncertainty of fiber reconstructions. We can, however,
discuss tractography output in terms of stability and reproducibility. The output of
tractography algorithms can be subject to large variations. In this thesis we present
a number of visualization strategies that make these variations visible to the user and
allow a better assessment of the reliability of fiber reconstructions obtained from any
given tractography algorithm.
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Samenvatting (summary in Dutch)

Diffusie tensor imaging (DTI) is een beeldvormingstechniek gebaseerd op magnetische
resonantie (MR) welke, in ieder punt van het weefsel, de diffusie van water moleculen
beschrijft. De distributie van diffunderende water moleculen wordt wiskundig gemod-
elleerd met behulp van een tweede-orde tensor. In vezelachtige weefsels zal de diffusie
tensor een uitgerekte, ellipsoide vorm hebben waarvan aangenomen wordt dat de lange
as parallel loopt aan de richting van de onderliggende vezelstructuur. Vezeltraktografie,
of kortweg traktografie, reconstrueert de 3-dimensionale geometrie van vezelbanen door
in ieder punt de lokale richting van het tensorveld te volgen. Dit is vooral interessant
voor het exploreren en visualiseren van neuronale verbindingen in de witte stof van het
brein en daarmee van groot potentieel nut voor toepassingen binnen de neurowetenschap
en de neurochirugie.

DTI en traktografie zijn uniek in zoverre dat ze op niet-invasieve wijze, en in-vivo,
inzicht verschaffen in de 3-dimensionale geometrie van witte stof structuren. Echter,
ondanks deze mogelijkheden blijft de toepassing van DTI en traktografie in de klinis-
che praktijk beperkt. De beeldacquisitie en -verwerkingspijplijn van DTI is complex
en bestaat uit vele stappen. Bij iedere stap worden fouten en onzekerheden geintro-
duceerd, bijvoorbeeld door beeldruis, magnetische vervorming, partiele volume-effecten,
foutieve modelaannames en variabele scanner- en gebruikersinstellingen. Deze onzek-
erheden propageren door de beeldacquisitie- en verwerkingspijplijn en worden mogelijk
versterkt na iedere bewerkingsstap. Dit leidt potentieel tot een aanzienlijke onzekerheid
in het uiteindelijke resultaat van de traktografie. Voor de gebruiker fungeert de pijplijn
als een zwarte doos waarvan de interne werking verborgen blijft en de kwaliteit van
het uitgangsresultaat niet betrouwbaar ingeschat kan worden. In tegenstelling tot CT
en standaard MRI beelden, is het niet mogelijk om de ruwe diffusie-gewogen beelden
te inspecteren. Het aantal beelden is te groot en zonder verdere beeldverwerking zijn
de beelden praktisch onbegrijpelijk. Dit betekent dat de gebruiker, hetzij het bewerkte
eindresultaat moet vertrouwen of geheel moet afzien van het gebruik van traktografie.

In dit proefschrift nemen we aan dat de gebruiker enige twijfels heeft over de kwaliteit
van het traktografieresultaat. Helaas bestaat er geen alom geaccepteerde gouden stan-
daard waartegen het resultaat gevalideerd kan worden. Om die reden kunnen we geen
absolute uitspraken doen over de accuraatheid van de vezelreconstructies. Echter, we
kunnen het traktografieresultaat wel beschouwen in termen van stabiliteit en repro-
duceerbaarheid. Er zijn vele bronnen van variatie aanwezig in de DTI beeldacquisitie-
en verwerkingspijplijn. In dit proefschrift presenteren we visualizatietechnieken die deze
variaties en onzekerheden zichtbaar maken voor de gebruiker. Hiermee kan een betere
inschatting gemaakt worden van de betrouwbaarheid van vezelreconstructies zoals deze
door een verscheidenheid aan traktografiealgoritmes geproduceerd worden.



136



137

List of publications

Refereed journals

• R. Brecheisen, B. Platel, B.M. ter Haar Romeny, A. Vilanova. Illustrative
Uncertainty Visualization of DTI Fiber Pathways. In The Visual Computer, to
appear, 2012.

• R. Brecheisen, B. Platel, A. Vilanova, B.M. ter Haar Romeny. Parameter Sensi-
tivity Visualization in DTI Fiber Tracking. In IEEE Transactions on Visualization
and Computer Graphics, pages 1441–48, 2009.

Refereed conference proceedings

• R. Brecheisen, A. Vilanova, B. Platel, B.M. ter Haar Romeny. Flexible GPU-
Based Multi-Volume Ray-Casting. In Proceedings of Vision, Modeling, and Visu-
alization (VMV), pages 1–6, Konstanz, Germany, 2008.

• R. Brecheisen, A. Vilanova, B. Platel, B.M. ter Haar Romeny. Hardware-
Accelerated 3D Multimodal Visualization Techniques for Tumor Resection in Neu-
rosurgery. In Proceedings of Computer Assisted Radiology and Surgery (CARS),
Barcelona, Spain, 2008.

Refereed abstracts

• R. Brecheisen, A. Vilanova, B. Platel, B.M. ter Haar Romeny. Visualizing Pa-
rameter Variations and Their Effect on Quantitative Tract Metrics in Diffusion
Tensor Tractography. In Proceedings of the 2nd Annual Meeting of the Interna-
tional Society of Magnetic Resonance in Medicine (ISMRM), Utrecht, Nether-
lands, 2010.

Conference posters

• R. Brecheisen, B. Platel, B.M. ter Haar Romeny, A. Vilanova. Illustrative Un-
certainty Visualization in DTI Fiber Tracking. IEEE Symposium on Visualization
(EuroVis), Bergen, Norway, 2011.

• R. Brecheisen, B. Platel, B.M. ter Haar Romeny, A. Vilanova. Illustrative
Confidence Intervals for Visualizing DTI Uncertainty. Biomedical Engineering
(BME) Research Day, Eindhoven, Netherlands, 2011 (2nd poster prize).

• R. Brecheisen, Parameter Sensitivity Visualization for DTI. 2nd Annual Meet-
ing of the International Society of Magnetic Resonance in Medicine (ISMRM),
Utrecht, Netherlands, 2010.

• R. Brecheisen, Visualizing Parameter Sensitivity in DTI Fiber Tracking. Biomed-
ical Engineering (BME) Research Day, Eindhoven, Netherlands, 2009.

Submitted / under revision

• R. Brecheisen, B. Platel, A.C. Telea, G.J. Rutten, P.L. Kubben, B.M. ter Haar
Romeny, A. Vilanova. Visualization of the Effects of DTI Uncertainty on Distance



138 List of publications

Measurements in Neurosurgical Planning. Submitted to IEEE Transactions on
Visualization and Computer Graphics, 2012



139

Acknowledgements

Many people have contributed to the realization of this thesis, either in a direct and
undeniable way or indirectly through interesting and fruitful discussions. Special thanks
go to my promotor Bart ter Haar Romeny and co-promotors Anna Vilanova and Bram
Platel. But I also thank, in random order, Roy van Pelt, Luc Florack, Geert-Jan Rut-
ten, Pieter Kubben, Remco Duits, Erik Franken, Bart Janssen, Vesna Prckovska, Paulo
Rodrigues, Tim Peeters, Neda Sepasian, Alessandro Becciu, Pauly Ossenblok, Alexan-
dru Telea, Meister Edi Groeller, Bernhard Preim, Veerle Visser-Vandewalle, Jack van
Wijk, Ellen Brunenberg, Marieke Heisen, Hans van Assen, Frans Kanters, Evgeniya
Balmashnova, Andrea Fuster, Rocco Gasteiger, Alexandra Baer, Mathias Neugebauer,
Steffen Oeltze, Martin Haidacher, Markus Hadwiger, Johanna Beyer and Maurice Ter-
meer. Less for research-related topics, but all the more so for fun and pleasure, I thank
Bart Rienties, Joost Mulders and my good friend and business partner (hopefully for a
long time to come) Roland Beuker. Thanks also to Jos, Lucie and Laurens Coolsen for
many happy moments during the last years.

For helping me conclude the final phase of my PhD and standing by my side at the
public defense, I thank my two ’paranimfen’, Leo van Lippen and Wilco Kroon.

If you think to yourself ”who designed this nice thesis cover?”. Well, the credits for that
all go to my sister, Kim. Thanks very much for taking the trouble to help me out with
this. I’d also like to thank her husband Arjen Rauwerdink and, of course, the children
Jon and Fen. I really love being their uncle :)

I’d also like to thank my girlfriend Marielle Coolsen for her support during my study
years and my PhD. Marielle, I’m really happy to be with you. As they say, opposites
attract and this seems to work incredibly well for us.

And finally, last but not least, the two people who are absolutely at the top of my list
to thank from the bottom of my heart: my parents, Frans and Ivonne. Without you I
would never have taken the step to go back to the university and start a PhD. Having
a 30-year old son moving back into your house must have taken some getting used to.
Still, you always thought that I should do what I enjoy most and I have done exactly
that. It has made me a very happy man also because my choice to go back to school
resulted directly in meeting the love of my life, Marielle Coolsen. I sincerely hope that,
when the time comes, I can be as open-minded and supportive to my children as you
have been with me.



140



141

Biography

Ralph Brecheisen was born on the 16th of July 1973 in Eersel, the Netherlands. He
completed VWO (preparatory scientific education) in 1992 at the Rythovius College in
Eersel, the Netherlands. After receiving his propedeuse (first-year) diploma in 1993 at
the Hogere Zeevaartschool (Nautical Officer School) in Vlissingen, he switched to Me-
chanical Engineering and received his bachelor degree at Fontys Hogescholen in Eind-
hoven. He continued with a post-bachelor study in Computer Science, also at Fontys
Eindhoven, after which he worked as a software engineer for six years at various compa-
nies such as Thales B.V. in Hengelo, UPAY Systems in Zwolle, ICT Embedded Software
in Eindhoven and Philips Healthcare in Best.

In 2003, Ralph decided to go back to school and started a study in Biomedical Engi-
neering at Eindhoven University of Technology. He graduated cum laude in 2007 and
continued with a PhD project in medical visualization from 2008 until 2012. The current
thesis is the end result of this fruitful period. Ralph is currently working as a part-time
software developer in the Mathematics department of Eindhoven University of Technol-
ogy. In his spare time, he runs a software company with friend and business partner
Roland Beuker, developing cloud applications for small-to-medium businesses.


	Contents
	1. Introduction
	2. Medical background
	3. Technical background
	4. Uncertainty analysis in DTI and fiber tracking
	5. Uncertainty visualization
	6. Parameter sensitivity
	7. Illustrative confidence intervals
	8. Distance measurements
	9. Applications in neurosurgical planning
	10. General discussion
	Bibliography
	Summary
	Samenvatting
	List of publications
	Acknowledgements
	Biography

