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CHAPTERl 

INTRODUCTION 

1.1 Historical Background 

According to quantum theory, the physical properties of a system such as a solid 

can in principle be obtained from its wave function which, in a non-relativistic 

approximation, satisfies the Schrodinger wave equation. Observable quantities 

are then obtained by taking the expectation values of the corresponding 

operators in the state of the system. The wave function corresponding to a state 

depends on the coordinates of all composing particles. 

From this point of view, it should be sufficient to know the constituent 

elements of the system and the kind of interaction between them in order to 

deduce all the properties of the system. It is well-known that solving the 

Schrodinger equation for a many-particle system is impossible if interparticle 

interaction is completely accounted for. In fact, due to the interaction, we do not 

succeed in separating the Schrodinger equation into independent equations for 

each particle. Strictly speaking, it is only the system as a whole which can be 

considered an individual entity. In view of these considerations, it is surprising 

that one-particle schemes have appeared in which several physical properties of 

interacting many-electron systems could be adequately dealt with. 

Soon after its successful application in describing the energy spectrum of 

the hydrogen atom in 1926, the Schrodinger equation found application in 

clarifying the spectra of more complex atoms. In 1928, Hartree [1] suggested, on 

the basis of plausibility, that the behavior of each electron in a many-electron 

system may be described by means of a wave function satisfying a Schrodinger 

equation (Hartree equation) in which the effect of all other electrons as well as 

the charged nuclei are taken into account by means of a· classical electrostatic 

field. In 1930 both Fock [2] and Slater [3] suggested the use of many-electron 

wave functions of the determinant type in order to take proper account of the 

antisymmetry requirement for spin t particles. In combination with a variational 

principle, this led to the well-known Hartree-Fock equations [4,5]. Hartree-Fock 

equations distinguish themselves from Hartree equations by an extra non-
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classical term containing an exchange interaction energy. This term can be 

shown to have the effect of a repulsive potential preventing electrons of equal 

spin from approaching each other [6,7]. The problem with the Hartree or 

Hartree-Fock equations for real systems is that a priori knowledge of the one

electron wave functions or at least the electron density is essential. This problem 

was circumvented in the self-consistent field method, in which first some initial 

guess concerning the potential felt by an individual electron is made whereafter 

the problem is solved selfconsistently. 

Until two decades ago the activity of physicists involved in band 

structure calculations of solids was focused on the construction of appropriate 

"guess" potentials, so that a reliable band structure could be calculated without 

having to carry through the self-consistency procedure. The main reason for this 

kind of pragmatic approach should be found in the restricted computational 

possibilities. A full calculation within the Hartree-Fock scheme for a crystal is a 

task which is as yet unattainable; only in the last fifteen years have some 

Hartree-Fock kind of calculations been done in combination with the local-basis

function method (LBF) (8], the linear combination of atomic orbitals (LCAO) 

[9,10,11], the local-density approximation (LDA) [12] and the muffin-tin-orbital 

method [13], to name a few. 

In 1964, Hohenberg and Kohn (HK) [14] introduced a theorem which 

forms the foundation of what is now known as the density-functional theory 

(DFT). This theorem states that the total energy of a many-electron system in 

some external potential is the minimum value of an energy functional of the 

electron density, which apart from a classical electrostatic contribution due to 

the external potential, is a universal functional. The minimum value of this 

energy functional corresponds to the exact electron density of the system. The 

explicit form of the universal functional was, and still is, unknown. Nevertheless, 

Kohn and Sham in 1965 [15], proposed a reasonable Ansatz concerning the 

energy functional to derive one-electron wave equations similar to the HF 

equations. These equations are referred to as Kohn-Sham (KS) equations. In 

principle, the effective potential present in these equations is a non-local 

functional of the electron density, but in the local density approximation one 

assumes a local dependence on density. Due to the known and simple forms of 

the functionals in this approximation, the self-consistent calculation of the one

electron wave functions in the LDA scheme is equally simple as in the Hartree 
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scheme; it has the advantage, however, that both exchange and correlation 

effects have been taken into account. 

The KS-LDA one-electron scheme has proved its value in accurate 

calculation of ground-state properties of atoms and molecules [16], metals [17], 
semiconductors [18-20], surfaces [21] and defects [22]. However, the electron band 

structure in semiconductors as calculated in the KS scheme, shows energy gaps 

which are too small. The underestimation of gap energies is sometimes as large 

as fifty percent of the experimental values. This is completely in contrast with 

the result of HF calculations, which yield band gaps that are too large, the 

overestimation varying from two to five times the actual values [11-13,23-26]. 
Despite the lack of any theoretical justification as to the validity of assuming the 

eigenvalues of the KS equations to be the one-particle excitation spectrum of a 

many-electron system, the failure of LDA in correctly describing the energy gap 

structures in semiconductors was first thought to be a consequence of its local 

character. On the basis of successful applications in energy calculations for 

atoms and wide-gap insulators such as rare gas solids (Ne, Ar, etc.), Perdew and 

Zunger [27] suggested that a kind of correction potential, which they termed self

interaction correction (SIC), should be added to the LDA potential in order to 

achieve energy gap structures far better in agreement with experimental values. 

They have pointed out, however, that the self-interaction correction would not 

be the cure for all ills concerning the band gap structure. Beaten et al [28], 
reported a remarkable improvement in band gap and core levels of the 

semiconductor LiCl by application of the SIC method. To our knowledge, there 

are no reports on the application of SIC to other semiconductors. For 

completeness we mention that Perdew and Norman [29], after simplifying the 

self-interaction correction, were able to connect the latter with the real part of a 

self-energy function. It is this function that will play a central role in the present 

thesis. 

Another approximation beyond LDA, is what is known as weighted 

density approximation (WDA) [30,31]. This approximation essentially 

introduces some non-locality effects. Kerker [32], reported in this connection on a 

substantial improvement over LDA in the bandgap energy of silicon. However, 

Wang and Pickett [33] noted that the success of WDA in Kerker's calculation 

could be due to a questionable change of a prefactor in the Kohn-Sham exchange 

potential. Indeed, Perdew and Levy [34] refer to unpublished calculations on 
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silicon by von Barth and Car, in which only small improvement over LDA is 

obtained. Perdew and Levy [34], and at the same time, Sham and Schluter [35], 

concluded that at least a substantial fraction of the energy band 11error" in LDA 

must be found in the Kohn-Sham formalism itself. Sham and Schluter [35], 

derive an expression in which the LDA gap deficit in semiconductors is related 

to a discontinuity in the exchange-correlation potential-energy functional at the 

ground-state density. This discontinuity is peculiar for many-electron systems 

with an energy gap; it is completely disregarded in the LDA scheme. Sham 

[36,37] derives within the exact many-body theory, along with some 

assumptions, the above-mentioned expression for the gap-energy correction. 

In order to understand the role of the discontinuity in the exchange

correlation potential of a semiconductor, with respect to the energy-gap deficit, 

one should note that the gap energy is the difference in ground-state energy 

differences EN ,1-EN and EN-E:r;.1, where N+l, N and N-1 refer to the number of 

electrons in the semiconductor. By N we mean the number of electrons for which 

the electron system is fully charge compensated by the ionic background. It 

seems that LDA (or DFT) is unable to describe an (N+l)-electron system as a 

result of the discontinuous behavior of the exact exchange-eorrelation potential. 

A different view point is adopted by Gunnarsson and SchOnhamer [38,39], who 

argue that the gap discrepancy is mainly due to the approximate {local) nature 

of LDA rather than to the discontinuity in the exchange-correlation potential, 

which in their opinion is not substantial in general. However, the numerical 

calculations by Manghi et al [40] on bulk GaAs indicate that the gap energy in a 

non-local DFT framework still remains too small. 

In all of the above-mentioned approximation schemes, drastically 

different values for the energy gap are found, none of which coincide with 

experimental values. This leads one to believe that no self-eonsistent 

independent-particle scheme exists from which a reliable gap structure follows 

for all semiconductors. In other words, all these procedures of incorporating the 

mutual Coulomb interaction between electrons in an effective one-electron 

potential appear to be too rough as far as excitation properties are concerned. 

One therefore has to return to the original many-electron Hamiltonian and to 

reconsider the effect of the electron-electron interaction. 
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1.2 Green-Function Approach 

The treatment of many-body systems with mutual interaction between the 

particles is most conveniently given in terms of Green functions. More 

specifically, the gap structure in a semiconductor should follow from the 

properties of the one-electron Green function G(rt,r't '), where the latter is 

defined as the expectation value in the many-electron ground state of a time

ordered product of a creation operator for an electron at the space-time point r,t 

and an annihilation operator at r',t'. This Green function probes, in a way, what 

an additional electron or hole in the many-electron system experiences. As the 

behavior of an electron, when added to a system in the ground state, will largely 

reflect the excitation structure of the system, it follows that detailed knowledge 

of the one-electron Green function will reveal this structure. Aside from this 

rather phenomenological explanation, there exists a formal correspondence 

between the spectral structure of the one-particle Green function and the 

energies of all (N+1)- and (N-1)-particle states of a many-electron system. This 

correspondence is provided by the Lehmann representation [41]. 

Green functions were originally. introduced by the British (miller and) 

mathematical physicist George Green [42] in the context of the theory of 

electricity and magnetism. Nowadays, all functions satisfying an inhomogeneous 

(integro-) differential equation with a Dirac delta function as the source term, 

are called Green functions. In our case, this integro-differential equation, which 

is referred to as the equation of motion of the one-particle Green function, can be 

obtained directly from the defining relation of the Green function by application 

of the equation of motion for the above-mentioned creation and annihilation field 

operators. The occurrence of a complicated function in this equation of motion 

for G, which is referred to as the self-energy function M, hampers a 

straightforward solution of the one-particle Green function from its equation of 

motion. A general method of attack to this problem is offered by perturbation 

theory. Expansion of both G and M in terms of increasing powers of the 

Coulomb interaction can formally be given. In this connection use is made of a 

theorem due to Wick [43]. The various terms in the series can be uniquely 

represented by means of Feynman diagrams [44]. Incidentally we mention that, 

by introducing the one-particle Green function belonging to some unperturbed 

Hamiltonian, the equation of motion of G can be transposed into an integral 
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equation, the so-called Dyson equation [45], the iterated (formal) solution of 

which is just the above-mentioned perturbation series. An essential problem in 

using the perturbation expansion of G is that, due to the long range of bare 

Coulomb interaction, the term-by-term summation of the series may be 

questioned. 

In 1948, Feynman [46] formulated the laws of quantum mechanics by 

means of action principles, an idea (Lagrangian formulation of quantum 

mechanics) suggested earlier by Dirac [47]. A subsequent progress was made by 

Schwinger in 1951 [48], who introduced the so-called dynamical principle. This 

principle can be shown to be a differential form of Feynman's principle and, like 

the latter, gives an alternative formulation of quantum mechanics [49]. Using his 

dynamical principle, Schwinger in 1951 [50-54] derived an explicit relation for G 

in terms of some variational derivative. 

Martin and Schwinger, in 1959, presented a paper [55] in which they 

dealt with many-body systems from a unified non-perturbative point of view. 

This work has formed a solid basis for much theoretical work concerning many

electron systems. It was Hedin [56] who, by employing the ideas of Martin and 

Schwinger in combination with those of Hubbard concerning the dynamical 

screening processes in many-electron systems [57], introduced a new method of 

calculating the one-particle Green function and the corresponding self-energy 

function. It should be mentioned that the theory of Hedin does not employ the 

dynamical principle of Schwinger, but rather is based on the Hamilton 

formulation of quantum mechanics and utilizes the theory of linear response (for 

the formulation of Hedin's theory according to Schwinger's principle see [54]). In 

the formulation of Hedin the relationship between G and M is expressed in terms 

of four equations which, in combination with Dyson's equation, form the basis 

for the self-eonsistent solution of G and M. Utilizing Hedin's equations one can 

obtain a perturbation series for the self-energy function M with the dynamically 

screened interaction W as the perturbation function, rather than the bare 

Coulomb interaction. Due to screening effects, the screened interaction is 

substantially "weaker" than the bare interaction. Concerning the range of the 

interaction, it can be shown that in uniform systems, such as metals, the 

screened interaction is effectively of short range. As can be expected, in systems 

such as covalent semiconductors with strong charge inhomogeneity, the long 

range of interaction cannot completely be screened away. The first-order term in 
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the expansion of M in terms of W is written as a product of G and W and due to 

this it is referred to as the GW self-energy function of Hedin. 

Concerning· the existence or non-existence of one-particle excitations in a 

many-electron system, one can, using the formal hi-orthonormal representation 

of G [58], arrive at one-electron Schrodinger-like equations, the solutions of 

which, under some assumptions, can be viewed as one-particle excitation 

functions. The related particles are called quasi-particles; the Schrodinger-like 

equations are termed quasi-particle equations [59-61]. 

The first reported work on the quasi-particle band structure calculation 

of crystals (all of the calculations to be mentioned below are carried out within 

the GW approximation) is due to Strinati et al [62], who employ a minimal-basis 

tight-binding approach. Contrary to later workers in the field, these authors go 

beyond the so-called random phase approximation of the dielectric function (see 

below), but it appears that their calculated band gap for crystal silicon is too 

large. Wang and Pickett [33,63] obtain, using many simplifying approximations, 

the quasi-particle band structure of silicon which is very close to the 

experimentally established values. On account of the observation that their 

obtained corrections to the LDA band energies are clearly energy dependent, 

they conclude that the energy dependence of the self-energy function is crucial in 

band structure calculations. In 1985 Hybertsen and Louie (64,65] reported on 

successful 11 ab initio11 calculations of the quasi-particle band structures of silicon 

and diamond. Their calculated gap structures are in excellent agreement with 

experimental results. Although they called their calculations "first principles", 

the dynamically screened interaction employed by them was based on a plasmon

pole approximation of this interaction. Their justification for designating their 

calculations as "first principles" lies in the fact that the parameters in their 

plasmon-pole model are not adjustable but fixed by demanding that the inverse 
of their model dielectric function satisfies both the causality condition (Kramers

Kronig relation) and a so-called /sum rule. 

Subsequent numerical results are reported in a number of papers by 

Godby et al. The first in the series is a report on the quasi-particle band 

structure calculation of silicon (66]. Apart from excellent agreement with 

experimental values, they also justify numerically that the underestimation of 

the gap energy in semiconductors by LDA is to a large extent attributable to the 

discontinuity of the exact exchange-eorrelation potential. The second in the 
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series (67], gives a report on the success of (GW) quasi-particle band structure 

calculations in reproducing the band structures of GaAs and AlAs (there is, 

however, a discrepancy about the L conduction-band minimum in AlAs which is 

found to be 0.8±0.2 eV above the X minimum rather than 0.3 eV). In a 

subsequent paper [68], the authors show that more than eighty percent of the 

LDA bandgap deficits in Si, GaAs and AlAs are indeed due to the DFT method 

itself. Godby et al were the first to present rather accurate numerical results for 

quasi-particle energies using neither any adjustable parameter nor plasmon pole 

type of approximation. However, it can be shown that the self-energy function 

on which their calculations are based is in fact incomplete (69]. Surprisingly, 

their accurate results are obtained by using a simple truncated Taylor series 

based on the incomplete expression for M. Von der Linden and Horsch [37], 

making use of some generalized plasmon-pole model, also report on the ability of 

the GW scheme to give reliable quasi-particle band structures. 

In all of the above-mentioned papers two aspects concerning the 

screened interaction play an essential role in the correct calculation of the quasi

particle band structures: (i) its energy dependence, which should be properly 

incorporated (ii) its non-vanishing off-diagonal elements in the plane-wave 

representation, describing local-field effects, which should not be neglected. 

We recall that band structure calculation techniques in which electrons 

are assumed to feel an effective real-valued one-electron potential, invariably 

lead to gap structures which deviate more or less severely from the 

experimentally established structures. Indeed, there is growing evidence that no 

self--consistent independent-particle scheme exists from which a reliable gap 

structure follows for all semiconductors. One is forced therefore to consider the 

effect of electron-electron interaction anew. 

1.3 Outline 

This thesis deals with the Green-function approach to the determination of the 

electronic structure in semiconductors. Both from the point of view of the 

insufficiency of effective-potential methods to describe one-particle excitation 

energies and from the fact that most of the existing GW treatments, although 

very successful and promising, still suffer from questionable assumptions, we 
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conclude that a general investigation into the prospects of first-principles 

calculation of band structures of semiconductors within the Green-function 

formalism is worthwhile. We will focus to a large extent on the GW approach as 

this approach, according to growing evidence in the literature, is very likely 

successful in correct predictions of electronic excitation energies, even though no 

a priori proof has been given as yet. We will not contribute to the fundamental 

question whether the GW scheme is sufficient, but we will investigate whether 

and to what extent the GW scheme may be carried through without further 

approximations. 

In chapter 2, we present general aspects of the Green-function theory. 

The convenient use of Feynman diagrams leads to a systematic account of 

contributions to G and M to all orders in the electron-electron interaction. 

Presenting the material in this fashion leads in a natural way to the introduction 

of the dynamically screened interaction function W(rt,r't') (instead of the 

unscreened static Coulomb interaction function v( r-r') o( t-t ') =( 4?r£0 I r-r' I t 1 

xo(t-t')J and of the related polarization function P(rt,r't'). An important part of 

this material is given in appendix A, where we present the general principles of 
the diagrammatic expansions of the one-particle Green function and the self

energy function. New in this appendix is a diagrammatic derivation of the Hedin 
equations. The consequences of choosing an unperturbed Hamiltonian with a 
non-local potential are studied and new types of diagrams introduced. Also the 

concept of skeleton diagrams is completely .dealt with in connection with one
particle Green function. Appendix B contains an alternative derivation of 

Hedin's equations, which are rigorously rederived using a variational technique. 

One of the further aims of chapter 2 is to present the forms to which G 
and M reduce within various effective one-electron potential schemes, such as 

the Hartree (H), Hartree-Fock (HF) and local density functional (LDF) scheme. 

Also other possible effective-potential schemes will be discussed. By presenting 

matters in this way we gain insight into those contributions to G and M which 
are missing in each scheme. Crucial in our analysis in chapter 2 will be the 

observation that the functions G, M, Wand P can all be expressed in terms of 

so-called quasi-particle wave functions. These satisfy quasi-particle wave 

equations, in which the self-energy function M, as distinct from an effective 

potential Veff• plays an essential role. As M, unlike Veff• is a non-Hermitian 
operator, the quasi-particle eigenvalues are complex-valued. The real parts form 
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the excitation spectrum; while 2/'h times the imaginary parts are interpreted as 

the inverse lifetimes of quasi-particles (electrons or holes). All effective-potential 

schemes are based on approximate self-energy functions M(rt,r't') which are 

written in the factorized form A(r,r')o(t-t'), where A(r,r') is Hermitian. As 

mentioned before, effective-potential schemes generally lead to incorrect results 

for the energy spectrum. An important question therefore . concerns non

factorizable and/or non-Hermitian parts of the exact function M that are 

essential in obtaining the correct energy spectrum. The chapter ends by 

introducing both the GW approximation of the self-energy function and the 

bubble approximation of the polarization function. In the remaining chapters we 

invariably disregard all contributions to M which are of second and higher order 

inW. 

In chapter 3 we discuss the problems encountered in the direct 

evaluation of the GW self-energy function in the plane-wave representation. 

Subsequently, we introduce a contour-deformation procedure to avoid a number 

of computational difficulties. A thorough investigation of the GW self-energy 

function in the complex energy plane will be given. The last part of chapter 3 is 

devoted to some common and uncommon approximation schemes within GW. In 

addition to a formal presentation, we give the physical significance of each 

approximation and try to indicate the bounds of validity of each scheme. 

In chapter 4, our investigation of the GW self-energy function is 

continued by deriving general integral relations for the bubble polarization and 

screened interaction function. Various useful relations will be presented, based 

on space-group symmetry. We discuss the analytic linear tetrahedron method, 

especially suited to deal with singularities in the integrand of an integral over 

wave vectors, but we advocate in a separate paper (section 4.5) the use of a 

properly adjusted special-points method together with a new method by which 

the polarization function can be obtained by solving a Fredholm integral 

equation [70]. An important section deals with the difficulties encountered in 

calculating M, connected with the occurrence of singular functions in the 
integrand of the involved lBz k integration. 

In chapter 5 we present our final ex-pression for the plane-wave matrix 

elements of the self-energy function M. This expression is free of numerical 

intricacies, and the extent to which actual energy band calculations based on 

this expression are indeed achievable, is discussed. The general conclusion is that 
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a fully self-consistent ab initio calculation of quasi-particle band structures is not 

feasible at present. If one restricts oneself to a first-iteration step of the self

consistency procedure, the prospects are somewhat better. We show the 

feasibility of such a calculation within a fifteen-band model of a semiconductor. 

Our estimates for computation time given in chapter 5 are somewhat 

conservative as we have taken a normal computing system without vector and 

parallel computing facilities as our reference. For that reason a first-iteration

step calculation for a more realistic model is possibly also within reach. 
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CHAPTER2 

GREEN-FUNCTION APPROACH TO MANY-ELECTRON SYSTEMS 

2.0 Introduction 

In this chapter a general description is given of the Green-function approach to 

many-electron systems such as met in (semiconducting) crystals. In section 2.1 

we define the one-particle Green function G and show which integro-differential 

equation it satisfies. In section 2.2 we introduce the diagrammatic representation 

for the related self-energy function M. In this connection reference is made to 

two rather lengthy appendices A and B, in which the diagrammatic expansion 

and the general connection between M and G are discussed in full detail. 

Section 2.3 is devoted to a discussion on the connection between G and the 

excitation energies of the system. In section 2.4 we introduce the quasi-particle 

concept and show how the Green function G can approximately be expressed in 

terms of quasi-particle wave functions and energies. Section 2.5 is devoted to 

discussions of the Hartree, the Hartree-Fock, the Local Density Functional, the 

Slater Xa and GW approximation schemes. As the subsequent chapters 3, 4 and 

5 are exclusively devoted to the discussion of the GW scheme, we consider it 

worthwhile to clarify the latter's position in relation to the more commonly 

known one-electron effective-potential schemes. Section 2.6 introduces the 

bubble-approximation scheme for the polarization function. Use of the latter 

scheme implies a further approximation not conflicting with the GW scheme. 

2.1 General Aspects of the Green-Function Approach 

In describing the properties of a many-electron system it is most helpful to make 

use of operators that create or annihilate electrons at a given space-time point 

r,t. These operators are usually written ~t (rt) and i-<rt ). They fulfill the 

Heisenberg equations of motion [61,71] 

13 



. 
8¢(rt) • • 

ili --= [1/J(rt), H] I 

8t -
(2.1a) 

At 
. 8¢ (rt) 't . 
lli = 11/J (rt), H] I 

8t -
(2.lb) 

A 

where H is the Hamilton operator of the interacting N-electron system, which 

does not depend on time, and in which [ , ]. stands for the commutation 

operation. The formalism to be described below will be applied to crystalline 

materials, such as semiconductors; N represents the number of electrons for 

which the whole crystalline system is charge neutral. The operators ~t and ~ 
satisfy the usual equal-time anticommutation relations 

At t I A A I 

[¢ (rt),¢ (r t)]+ = [1/J(rt),?/J(r t)]+ = 0, (2.2a) 

[~t(rt), ~r't)]+ = o(r-r'). (2.2b) 

The above operators are defined in the so-<:alled Heisenberg picture, and 

as such time dependent. In this picture the state vector of the system is time 

independent and is indicated l111x>H· We may alternatively write operators and 

states in the Schrodinger picture, leading to (S stands for Schrodinger) 

(2.3a) 

A A 

~t(r) = e-iHt/li ~t(rt) eiHt/h, (2.3b) 

A A 

~r) = e-iHtth ~rt) eiHt/li. (2.3c) 

The Schrodinger operators ~t (r) a!ld ~r) will be used below in the expression 

for the time-independent operator H. 

The one-particle Green function is defined as, up to a numerical factor -i 

(i stands for the imaginary unit), the expectation value in the ground state 
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I'Px>H of the time-ordered product of operators ~t(r 1t 1) and ~r2t 2) at different 

space-time points [72,73], 

(2.4) 

where the arguments 1,2 are short-hand notations for the space-time points r 1t 1 

and r2t 2, respectively, and where .7{ ~1)~t (2)} equals either ~l)~t (2) or 

-~t (2)~1) depending on whether t 1>t2 or t 1<t2 (Sis the Fermion time-ordering 

operator). The function G owes its name Green function from the fact that it 

satisfies a (non-linear) Green-type equation, as will be shown below (see (2.7)). 

The total Hamiltonian H is given by 

A 

H = T + U + V, (2.5a) 

· T = Jd3r ~t(r) (- ~! v2
) ~r), c2.sb) 

U = Jd3r ~t(r) u(r) ~r), (2.5c) 

V = + J d3r d3r' ~t (r)~t (r') v(r-r') ~r')~r), (2.5d) 

where u(r) is the 11external11 potential energy (in a crystal u(r) is the potential 

energy due to the periodic array of nuclei), and v(r-r')=e2/(4?rf0 I r-r' I) is the 

electron-electron Coulomb potential energy with e the electron charge and Eo the 

vacuum permittivity. With the purpose of establishing a transparent scheme 

which allows ~rderly comparison of the various existing approximation methods, 

we will write H in a different way, as follows: 

(2.6a) 

A A A 

H0 = T + u + zl + znl• (2.6b) 

(2.6c) 

15 



where 

(2.6d) 

(2.6e) 

Here the real-valued functions z~r) and zn~r,r') may be arbitrarily chosen. They 

will later play a role as local and non-local one-electron effective potentials. The 

function zf..r) can, for instance, be taken equal to the well-known Hartree 

potential [74], the Slater Xa potential (7], the Kohn-Sham local potential [15], or 

whatsoever. Similarly, the function znf..r,r') can be taken equal to zero, the 

Hartree-Fock potential [75], or any other non-local potential. The idea is to bring 

first the formalism as far as possible with unspecified zl and znl and then to 

make specific choices for zl and znt 
By using (2.1a) it is straightforward (but tedious) to derive the 

following integro-differential equation for the function G(1,2): 

- Jd
3
r3dt3 [ o(tct3) {z~r1) o(rcr3) + znf..rl'r3)} 

+ 1\.M(r1t1, r3t 3)] G(r3t3,r2t2) = 1\. o(tct2) o(rcr2), (2.7) 

where the function M is defined through the relation 

(2.8) 

The function M is called the self-energy function or mass operator. It 

incorporates all interaction effects which have not yet effectively been taken into 
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account by the potentials zl and znt From (2.8) it is clear that M depends on zl 

and znt It is furthermore observed from (2. 7) that those contributions to 

M(r1t 1,r3t 3) which factorize with o(tct 3) or o(tct 3)o(rcr3) can equally well be 

accounted for through a simple redefinition of the functions znlrhr3) or zlr1). 

Many approximation schemes exist in which M is put equal to zero, 

while certain choices for zl and znl are made. In such cases we refer to the 

solution of (2. 7) as the "unperturbed" Green function G0 , though by the choice 

of zl and znl the function G0 may already incorporate some electron-electron 

interaction effects. The equation for G0 reads 

From (2.7) and (2.9) we may obtain Dyson's equation 

G(1,2) = G0(1,2) + Jd(3)d(4) G0 (1,3) M(3,4) G(4,2), (2.10) 

or, symbolically, G=G 0 +G 0MG. The validity of (2.10) can easily be verified by 

substitution in (2. 7). Note that contrary to (2. 7), equation (2.9) is a linear 

equation. 

2.2 Diagrammatic Representation for M 

A central result of the general theory of many-electron systems is that the Green 

function G(1,2) is expressible as a sum of an infinite number of terms in 

increasing powers of the electron-electron Coulomb interaction [71, 73]. Each 

term corresponds to a multiple space-time integral of a specific series of products 

of functions G0 , v, zl and znt By identifying this expression for G with Dyson's 

expression (2.10), one can also extract a.n expansion for M in terms of functions 

G0 , v, zl and znt It is of great help to represent each contribution to M by 

means of a corresponding Feynman diagram. The natural ordering of these 
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diagrams is in accordance with increasing orders in v, z t and znt A well-known 

complication is that various contributing diagrams lead to divergent 

contributions. It is believed, however, that proper summation of the infinite 

series of diagrams leads to finite, meaningful results. The reader is referred to 

Appendix A where the expansions of G and M in terms of diagrams are 

explained in some detail, while furthermore a diagrammatic derivation is 

presented of a set of four coupled equations, the so-called Hedin equations 

[56,76], which, together with Dyson's equation (2.10) determine both G and M. 
A more rigorous derivation of Hedin's equations, in which no reference is made 

to divergent contributions, is given in Appendix B. 

The above process of expanding M (see Appendix A) leads to 

• 1 
ze(q) ~~ 'nl (r!'rzl 

M(1,2) = ./\./VV'- + 
2 

2 (al) 2 (a2) 

~f + ~--·--·-·-·--····'-·(} + 
" ..... \ 

J 
2 _ _..·,' 

(b) (c) 

:r~~~~n /l ! 3 

+ + \\'··~ -~'-) 
2 ..... / 

(d) (e) 

+ Al1 skeleton diagrams of higher order 

in the interaction v{i,j) = i .......................... j. 
(2.11) 

Here a skeleton diagram is defined by the requirement that none of the thick 

lines contains an internal M diagram itself. The calculational prescription is as 

follows: a thick line with an arrow directed from 2 to 1 represents G(1,2); a 

dotted line attached to 1 and 2 gives v(1,2)=v(r1-r2)o(t 1-t 2); diagram (a1) gives 

-n.-1z!r1)o(r1-r2)o(t 1-t2) while diagram (a2) gives -n.-1zn!rhr2)o(t 1-t2). 
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Sometimes, as in diagrams (b) and (c) of (2.11), the prescription leads to equal

time arguments in Green functions. In that case the prescription is to take 

G(r1 tl'r2ti) where ti=t1 +77, with TJ positive and infinitesimally small. Each 

closed loop consisting of thick lines gives rise to a factor -2 (see the end of 

appendix a). Furthermore, each diagram has an additional factor (i/li)n where n 

is the number of dotted lines. Finally one has to integrate over all internal space

time variables. 

Dyson's equation (2.10) is diagrammatically represented by means of 

l l 

+ 

(2.12) 

2 2 

where the thin line with an arrow denotes G0(1,2). Equations (2.11) and (2.12) 

are the basic equations necessary to find both G and Min terms of G0 • In order 

to complete the diagrammatic notions needed in what follows we also introduce 

the dynamically screened interaction function 

1 I ll I 
I j I 
I i 

j 

W(1,2) = I i 
l ! + 
l i 

(2.13) 
I I I 
I 

2 ! 2 I 

where the shaded insertion stands for all topologically allowed subdiagrams (see 

(A.12)) which together stand for the polarization function P(3,4). The 

introduction of W makes it possible to put together very specific subsets of M 

diagrams in (2.11) in a much more compact form. Unlike v(1,2), the function 

W(1,2) is no longer proportional to o(t 1-t 2); the function P(3,4) accounts for 

static as well as dynamic screening of the interaction function v(1,2). 
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2.3 General Connection Between the One-Particle Green Function and 

Excitation Energies o£ the Many-Electron System 

We start by mentioning that G(r1tl>r2t 2)=G(rt.r2;tct2). The Fourier transform 

of such a function F(1,2) with respect to t 1-t2 at frequency e/fL is given by 

If the function F(1,2) is continuous for all values of tct 2, the inverse relation 

reads 

In case the function F(1,2) has a finite discontinuity for some specific value of 

t 1-t2, the right-hand side of (2.15) is given the value [F(1 +,2)+F(1,2•)J/2 at 

t 1-t 2• Note that by construction (see (2.4)), G has such a discontinuity at 

tl-t2=0. 
By Fourier transforming the one-particle Green function according to 

(2.14), it can easily be shown [41,77,78] that 

(2.16) 

where '7 is an infinitesimally small positive quantity, and where 0(x)=O or 1 

depending on whether x<O or x>O. For semiconductors, J.L equals some energy in 
the energy-gap region of the system. Furthermore 

~ 

{ 

H(wN-1,sl'¢( r) I11'N)H • if es < J.L, 

fs(r) = ~ 
n<wN I '¢(r) I WN+1' s )H' if fs > J.L, 

(2.17a) 

(2.17b) 

in which {lwN-t,shls and {11l'N,:t,shh indicate the complete set of (N-1)- and 

(N+1)-particle eigenstates of H, with energy eigenvalues Ex-t,s and EN•t.s• 
respectively, and where 
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! EN -EN-1 s' 

's = ~+l,s - ~N' 
(2.18a) 

(2.18b) 

Ex being the ground-state energy of the N-electron system. The representation 

(2.16) is the well-known Lehmann representation [41]. In this thesis we shall 

refer to the functions fs(r) as the Lehmann amplitudes, while the quantities £5 

will be referred to as the Lehmann energies. From (2.16) we observe that the 

excitation energies of the system show up as singularities of G(r"r2;e) on the real 

energy axis. It should be noted that the Lehmann representation, although a 

correct representation, is of limited value in actual calculations as its evaluation 

requires complete knowledge of the many-electron wave functions of the 

interacting system. 

Consistent with our assumption concerning the existence of an energy 

gap, we will define the gap energy [79] as Eg:=(EN+t-EN)-(EN-EN.1) =EN.1+EN-1 

-2EN, where E1w are the (N±1)-particle groundstate energies. Note that these 

states are not charge neutral, as they refer to many-electron wave functions with 

one electron more or less than the charge neutral N-electron ground state. 

Actually, in semiconductors the quantity EN-EN-lis the smallest value one can 

choose for p, in (2.16); the largest value one can choose for p, is EN .cE1 . All 

values in between can be chosen as well. It remains to be shown in what sense 

the above-introduced gap can be related to the band-gap concept appearing in 

the conventional one-electron theory of energy band structures. This problem 

will be touched upon several times in the sequel. 

In the next section we will introduce another representation, which 

resembles the Lehmann representation but is more accessible for a practical 

approach. The resemblance with the Lehmann representation is striking and we 

again identify its singularities with certain excitation energies of the system, the 

so-called quasi-particle energies. 

2.4 Expressing Gin terms of Quasi-Particle Wave Functions 

Owing to the time independence of the Hamiltonian, we first note that the 

dependence of M(1,2) on time is, similar to G(1,2), via tct2• If we Fourier 
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transform (2. 7) with respect to t ct 2 we obtain 

We will first generally prove that the solution of this equation may be written as 

[58,59,61,80] 

(2.20) 

where 'Pn(r;e) and 'lfln(r;e) are solutions of 

(2.21) 

and 

2 
[E:(e) + k V

2
- u(r)- zt<r)] 1/ln(r;e)- Jd3r' znt<r,r') 1/ln(r';e) 

-'II. J d3r' Mt(r,r';t) 1/ln(r';e) = 0, (2.22) 

respectively. In (2.21) and (2.22) the eigenvalues En( e) are generally complex

valued. Here Mt is the Hermitian adjoint of M, that is, 

(2.23) 

Writing (2.21) and (2.22) in short-hand notation as (En( e)-..2'( e))!f'n=O 
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and (E:( t:)-.tt ( E))'l/ln=O, respectively, we easily obtain the following identities 

(2.24) 

where the scalar product ( , ) is defined by 

I 3 * (1/I,VJ) = d r .,P (r;t:) VJ(r;t:). (2.25) 

Equation (2.24) gives 

(2.26) 

implying 

(2.27) 

The case En(f)=Em(f) deserves additional attention in case of degeneracy. It can 
be proven [81] that the freedom in choice of functions IPn and 1/lm in case of 
degeneracy makes it possible to choose them such that all functions VJn and 1/lm 
are bi-orthonormal in the sense that 

. (2.28) 

Assuming completeness of the functions { VJn}m we may now write any function 
F(r) as 

(2.29) 

which, owing to (2.28), implies the closure relation 
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(2.30) 

. In order to prove that (2.20) is the solution of (2.19) we first substitute (2.20) in 

(2.19) and apply (2.21) whereafter the identity (2.30) is readily recognized and 

the proof is completed. 

It is easily observed, by taking the complex conjugate of (2.22), that the 
* functions ?Pn(r;E) satisfy an equation like (2.21) in which, however, M is replaced 

by Mt*. This leads us to the conclusion that, quite generally, in the above

considered case of degeneracy, one has to find (i.e., to construct), according to 
* (2.20), at each couple of energy levels En( E) and En( E) in equations (2.21) and 

(2.22), two sets of functions tpii) and ?Pij) with i,j=1,2, ... nh such that 

( ,pii),tpij))=o1,j. Here n1 is the number of linearly independent eigenfunctions of 

equation (2.21) at energy En(E), or, equivalently, the number of linearly 

independent eigenfunctions ?Pii) of equation (2.22) at energy E:(E). Only if the 

property M(rhr 2;E)= M(r2,r1;E) holds, which can indeed be shown for crystals 
- * with a Hamiltonian H as in {2.5), [62], V'n and ¢n are both solutions of the same 

equation {2.21). 

We now want to discuss the quasi-particle interpretation of G(r1,r2;E). 

We emphasize that (2.20}, although an exact representation of G, is not yet very 

useful in an actual numerical scheme. The expression as it stands asks for the 
* determination of functions V'm 'l/ln and En for all values of E, which is an 

enormous task. In the quasi-particle approximation we assume G in (2.20} to 

have simple poles En for which holds En=En( En)i the (possible) singularities due 
* to non-analyticity of V'n(r1;E), ¢n(r2;E} or En(E) will be discarded. The 

corresponding approximation to G is then obtained by putting 

(2.31) 

where 

(2.32) 

The set of complex energy values En defined through En=En( En) is interpreted as 
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the quasi-particle spectrum. The general believe is that the values of I Im( En) I 
are small with respect to IRe( En) I , such that the real parts of the poles En can 

be interpreted as single quasi-particle energies, provided that the following 

relations are satisfied: Im( En)>O when Re( En)<J.t and Im( En)<O when Re( En)> J.t, 

where J.t is the quantity defined in section 2.3. Loosely speaking, we can refer to J.t 

as the chemical potential separating the occupied quasi-particle states from the 

empty ones, i.e. the valence electrons from the conduction electrons. The 
* numerical advantage of (2.31) over (2.20) is that the functions I{Jm '1/Jn and En 

have to be determined at the above values En only. 

In the case of a crystal here considered, the self-energy function has the 

property 

(2.33) 

where R is any lattice vector belonging to the underlying Bravais lattice of the 

crystal. The solutions of (2.21) can therefore be chosen of the Bloch type, to be 

denoted by f{Jl,k(r;E); here k is a wave vector in the first Brillouin zone (lBz), 

and lis a band index. Owing to the time-inversion symmetry [82], it follows that 

if I{Jl,k is an eigenfunction at energy eigenvalue E, there exists also an 

eigenfunction f{Jl-k at the same eigenvalue [83]. Starting from the set of all , 
Bloch functions I{Jl,k at eigenvalue E, let us consider the dual set of functions '1/J 

* t* satisfying (2.22) at eigenvalue E . We note that due to M =M, the complex 

* * conjugate functions '1/J satisfy (2.21 ). The functions '1/J are therefore linear 

* combinations ofthe f{Jlk functions. As (I{Jlk'•I{J/.k}=O for any k'#-k (due to the , ' , 
Bloch property), it follows directly from the proof leading to (2.28) that 

* ( f{J l,-k•f{Jl,k) is necessarily different from zero. Assuming now the functions I{Jl,k 
and I{Jl,-k to be properly normalized, we rewrite the quasi-particle 
approximation (2.31) as 

where E~k)=E~k;E~k)). 
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The problem of determining the energy spectrum (more specifically the 

gap structure) in a semiconductor now consists of selfconsistently solving 

equations (2.21), (2.11) and (2.34). This is, however, as yet a formidable task. In 

the next section we will therefore discuss a number of simplifying approximation 

schemes, and in comparing these schemes, try to gain insight in the most 

promising schemes to approach the gap structure problem in a semiconductor. 

2.5 Approximation Schemes 

In comparing the various approximation schemes that have been (or may be) 

employed in order to describe or predict the electronic excitation structure of a 

given crystalline material, in particular the gap structure in a semiconductor, it 

will be clear from the considerations in the preceding sections that a given 

scheme is completely specified only (i) if the functions zf..r), znf..r,r') are given 

(this fixes the effective one-electron potential in (2.21)) and (ii) if a complete 

prescription is given how to calculate the function M(ri>r2;e) occurring in (2.21). 

The latter prescription for M may be obtained either by explicitly stating which 

diagrams are to be retained in (2.11), or by giving some analytical expression for 

M in terms of the functions z f! znl' G and v. 
It should be emphasized that those parts of M(r1or2;e) that are 

Hermitian (this means here real) and independent of e, may alternatively be 

represented in terms of functions z/r) or z~tr,r'). This follows directly from 

(2.21) by observing that such terms in M can be written either in the form 

n.-1z/r)6{r-r') or n.-1z~f..r,r'). This ambiguity is essential in our classification of 

existing approximation schemes: the various one-electron effective potentials 

that can be proposed, may as well be accounted for in terms of some M function. 

In approximation schemes such as the H, HF, Slater X a, LDF scheme, this 

function M, by construction, is Hermitian and independent of e. Conversely, in 

these cases the zl and znl functions can all be chosen such that M(1,2)=0. 

In the Hartree scheme the function zf..r) is chosen equal to 

(2.35) 
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It can easily be shown that the electron density p(r')=-2iG(r't,r't •), where the 

factor 2 originates from summation over spins (see the end of appendix A). The 

potential (2.35) is therefore easily recognized as the Coulomb potential due to all 

electrons. The choice (2.35) is such that theM diagrams (al) and (b) in (2.11) 

automatically cancel. The prescription in the Hartree scheme is furthermore to 

discard all other diagrams in (2.11). 

In the Hartree:-Fock scheme we take zl as in (2.35) and znl equal to 

(2.36) 

such that apart from the diagrams (al) and (b), also the diagrams (a2) and (c) 

in (2.11) compensate. All other diagrams in (2.11) are discarded. In fact, it is 

known that the selfconsistent G (see (2.34)) emerging from the HF scheme will 

be totally different from the one emerging from the H scheme, due to the extra 

exchange effects involved in diagram (c) of (2.11). 

A natural extension of the above diagrammatic approach would now be 

to investigate whether, or in how far, the contributions to M(1,2) originating 

from diagrams (d), (e), ... in (2.11) may also be, or may partially be, swallowed 

in terms of a more refined choice of either z/r1) or zn/I1h)· To this end we 
easily deduce that such M(1,2) contributions should have their (t 1-t 2) 

dependence entirely in a factor 8(tct2) (see the text following equation (2.11)). 

In order to investigate the possibility of existence of such a term, let us denote 

the contribution of all the diagrams (d), (e), ... ,occurring in (2.11) by M'(1,2). 

Considering the Fourier transform of M'(1,2) for I~: l-im, it can be easily shown 

that IM'(r11r2;e)I~I~:I"''Y, with 1>1. Therefore, owing to the fact that a 6-
function behavior of a function is the indication that its Fourier transform for 

large values of I~: I does approach a non-vanishing constant value, we conclude 

that M'(1,2) cannot contain a part with 8(t1-t2) time behavior. This means that 

any refinement of zl and znl in the above sense cannot lead to acceptable band 
structures for all energies, but at most for limited energy intervals. As this is the 

general objective in most (if not all) band structure calculations, the procedure 

of searching convenient zl and znl functions might very well be of value. 

The procedure of approximating M by an effective, possibly nonlocal, 

potential has been advocated by Pratt [84], but has not yet been systematically 
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investigated. I! the evidence persists that the E dependence of M is essential in 

obtaining correct bandstructures, the Pratt scheme will obviously be insufficient. 

An important point yet to be mentioned here is that the self-energy function 

M(r1,r2;e) is complex-valued outside some energy region around the midgap 

energy, as will be shown in chapter 3. Obviously no real effective potential, such 

as zl and znll can account for the imaginary part of the self-energy function, 

which causes the quasi-particles to have finite life-times . 

.In the LDF scheme the choice for z(} znl and M is as follows: 

(2.37) 

Here the exchange-correlation-energy functional E:xc[P] is approximated by the 

expression E:xc[P]=/d3r p(r)e:xc(p(r)), where a uniform-density expression for E:xc is 

used. The choice in (2.37) is such that the contribution of diagram (b) in (2.11) 

is compensated by a part of (a1), while diagram (a2) contributes zero. It is not 

at all clear, however, which set of M diagrams is compensated for by adding the 

extra exchange-correlation term to z~r1) in (2.37). The specific choice of this 

term is motivated by the Hohenberg-Kohn-Sham theory [14,15,85], which shows 

that the exact E:xc[P] leads to the exact groundstate electronic density if the 

selfconsistent Kohn-Sham procedure [15,85] is followed. As is well known, 

however, the excitation structure in a semiconductor following from the choice 

(2.37), is at variance with the experimental findings [19,20,86]. 

Also the Slater Xa method [7], in which some of the elements of HF and 

DF theory are brought together [15], and in which z~r1) is chosen equal to z~(r1) 
- 3ae2[3p(r1)/r]113/(87re0 ) with 2/3~~1, does not lead to correct excitation 

structures in semiconductors [87-90]. It therefore seems that none of the existing 

schemes in which the E dependence of M(r11r2;e) is neglected, leads to the correct 

gap structure. 

In the GW scheme, introduced by Hedin [56,76], the approximation is as 
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follows: (i) Take z~r1) as in the Hartree scheme, and take zn~r11r2)=0, hence 

the diagrams (a1), (a2) and (b) in (2.11) do not contribute toM. (ii) Take into 

account the contribution to M originating from all those diagrams in the 

expansion (2.11) which can be comprised in one renormalized diagram 

(2.38) 

where the dashed line has been defined in (2.13). It leads effectively to replacing 

in diagram (c) in (2.11) the bare Coulomb interaction function v(rrr2)c(trt2) 

by the screened interaction function W(1,2) of {2.13), (see also (A.15c) for this 

diagram). The thus-renormalized diagram (c) leads to the contribution 

M0 w{1,2)=(i/ft)G(1,2)W{1 +,2) which explains the name GW-approximation 

scheme. We will approximate W(1,2) by restricting the polarization insertion in 

(2.13) to the first term in the diagrammatic expansion given in (A.12). Because 

of its typical topological character this term is called the 11bubble11 

approximation term. This approximation will be discussed in the next section. 

The idea behind the GW scheme is that the function W(1,2) will turn 

out to be a much "weaker11 interaction function than v(1,2), such that all 

diagrams of higher order in W in the expansion {A.15) can be neglected [91]. 

Unlike v(1,2), the function W(1,2) does not factorize with c(t 1-t 2). Schemes in 

which only this factorized part is taken into account are not believed to lead to 

correct semiconductor excitation structures. On the contrary, the full time 

dependence plays an essential role [37,40,62,64-66,68]. 

The GW approach clearly anticipates the "weakness" of W(1,2), but 

there is no a priori proof that the function W(1,2) is indeed a much 11weaker11 

interaction function than v(1,2). Related to this, there is no a priori reason why 

the bubble approximation to the renormalized interaction should suffice. 

2.6 The Bubble Approximation 

In this scheme the polarization function is approximated by taking only the 
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zeroth-order term in the perturbation expansion of the polarization function in 

the screened interaction. In fact we have (see (A.l2)): 

P{1,2) • :~ • (2.39) 

Physically, this approximation describes the polarization effects due to the 

excitation of electron-hole pairs in the system. In this approximation the mutual 

interaction between the electrons and holes in the electron-hole pairs are 

missing. Calculation of the exact static polarization function within the 

framework of LDA, for material Si, has shown [92] that this bubble scheme 

actually underestimates the static polarization function by an amount of twelve 

percent, however there are strong indications [37,93] that reliable band structure 

results can be obtained within this bubble scheme. In view of (A.19) the vertex 

function r(i,jjk) reduces to 

r(i,jik) = o(i,j)O{i,k). (2.40) 

This scheme is also referred to as the Random Phase Approximation (RPA) 
scheme, a terminology which has originally been employed by Pines and Bohm 

in analyzing the behavior of interacting electrons in a dense electron gas [94-96]. 

Incidentally, we note that in case of a degenerate electron gas, the RPA 

approximation gives rise to a negative pair correlation function at small 
distances [97-100], the latter function is, however, non-negative by construction. 

The screened interaction function W(1,2) in this bubble scheme is formally given 
by 

W(1,2) = 

or [c£. (A.19), (B.35)] 
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W(l,2) = v(l,2) --{L J d(3)d(4) v(1,3)G(3,4)G(4,3+)W(4,2), 

(2.42) 

in which the additional factor 2 in front of the integral sign is due to the spin 

summation. 
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CHAPTER3 

PROPERTIES OF THE SELF-ENERGY FUNCTION IN THE GW SCHEME 

3.0 Introduction 

In this chapter various properties of the self-energy function M within the GW

approximation scheme are discussed. Section 3.1 deals with the relation between 

the plane-wave matrix elements of the function Mew(rbr2;e) on the one hand 

and the quasi-particle wave functions and energies on the other. In section 3.2 

we discuss the difficulties met when one intends to determine Mew, starting 

from the expression for Mew given in section 3.1 by directly performing the 

involved energy integration. In section 3.3 a contour-deformation procedure is 

outlined by means of which a number of these difficulties can be circumvented. 

Section 3.4 deals with the analytic continuation of Mew in the complex energy 

plane, while section 3.5 is devoted to (non-) Hermiticity properties of Mew. In 

section 3.6 a discussion is given of various approximations to the GW scheme. In 

this connection we pay special attention to the COHSEX scheme of Hedin [56] 

and the Plasmon-Pole scheme [64,65]. 

3.1 Relating the Self-Energy Function and the Quasi-Particle 

Excitation Structure in the GW Approximation 

The self-energy function M(1,2) in the GW approximation, given by equation 

(2.38), can easily be Fourier transformed with respect to t 1-t2, leading to [cf. 
(2.14)] 

(3.1) 

where 'fJ is a positive infinitesimally small quantity. The presence of the 

exponential function exp[-ie'TJ/li.] is a consequence of the 11+11 sign in the 
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argument of the screened interaction in the expression of MGW in the time 

domain (see the text following (2.38)). The functions G, W and M have the 

translational property [cf. (2.33)] 

(3.2) 

where R is a lattice vector. For that reason, any of these functions can be 

expressed as [101] 

where LK K'(k;E) is the Fourier transform of L with respect to r 1 and r2, 
I 

and where n is the volume of the crystal; k is a wave vector in the first Brillouin 

zone (1Bz); K and K'are reciprocal lattice vectors. The Fourier transform of 

(3.1) can thus be expressed as 

+m 
GW . i J dE' MG G'(k,E) = ~E E n::£ 

' IU£ k' K K' .<:'lriL 

' -m 

G (k' ') W (k k' ') -iE'rJ/'h. x K K' ,E-E G-K G'-K' - ,E e , 
I I 

(3.5) 

where G, G' are reciprocal lattice vectors. 

Now, suppose the matrix elements MG G'(k;E) have all been calculated. 
I 

In order to show then how these matrix elements are related to the excitation 

spectrum, we consider the eigenvalue equations (2.21) in which we set z!r) equal 

to z~(r) of (2.35). This leads to 
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which defines for each given e an equation for the set of Bloch functions 

{ IP.t,k(r;e)} and corresponding set of eigenenergies {E~k;e)} with l the band 

index and k in lBz. For e values at which MGW is non-Hermitian, the obtained 

set of functions will not be orthonormal, while the eigenvalues will generally be 

complex valued. We will return to this point in more detail in section 3.4. 

According to the general theory of chapter 2, the quasi-particle 

approximation consists of finding those values e such that e=E~k;e). If we from 

now on drop the argument e in E~k;e), the quasi-particle eigenfunctions are 

given by IP.t,k(r;E~k)) with E~k) the corresponding eigenvalue. If we expand 

IP.t,k(r;E~k)J in plane waves exp[i(k+G)·r]/Jfl, i.e. 

it is easily shown that for each given combination l, k the coefficients 

dl,k(G;Ejk)) fulfill the set of coupled equations 

2 [ k (k+G)
2

- E~k)] dl,k(G;E~k)) 

+ E [uaG' + z~(G-G') + li.Mgw a·(k;E~k))]dlk(G';E~k)) = 0.(3.8) 
G' I I I 

This system of equations may be diagonalized by standard means, leading to the 

quasi-particle spectrum E~k); the real part of E~k) defines the quasi-particle 

band structure within this scheme. Note, that in principle the equations (3.8) 

and (3.5) have to be solved self-consistently. There is growing evidence, however, 

that the first-iteration step in a self-consistency cycle suffices if one starts with 

LDA wave functions [64,65]. If so, the amount of work in finding energy band 
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structures is considerably reduced. 

3.2 Difficulties in the Calculation of the GW Self-Energy Function 

The calculation of Mg~ 0.(k,f) according to (3.5) involves two discrete 

summations over reciprocal lattice vectors, one energy integration along the 

whole real axis, and one k' summation over the set of wave vectors in 1Bz. Due 

to the dense distribution of k' vectors, the latter summation can equally well be 

pedormed as an integration over k', provided the density of k' points fl/(2n) 3 is 

taken into account. 

Let us enumerate the various difficulties encountered in the evaluation 

of Maw, and see how this will give us a guide-line to devise techniques which 

make the evaluation of M tractable. Firstly, from the fact that the quasi-particle 
energies, which are all real or at least almost real, constitute the pole-structure 

of the one-particle Green function, we observe that the Green-function part of 

the integrand on the right-hand side of (3.5) will show very large variations 

along the path of integration, i.e. the real axis. Also, the determination of the 

screened-interaction part of the integrand at real !' is not an easy task a priori 
as it involves the determination of the polarization function P and subsequent 

inversion of the the matrix E=1-vP (see (A.13) and (A.14)). The obtained 

functions W G-K,G'-K'(k-k';!') considered as functions of f, are expected to 
have a. resonant structure as well [102-106], but contrary to the one-particle 
Green functions GK K'(k';!-!'), their dependence on e' will be much smoother 

' [107-109]. Anyhow, pedorming the !'integration first is no promising procedure. 

Secondly, when discussing the possibility of performing the k' 
integration over lBz first, the prospects are even worse. Consider in this respect 

the analytic linear tetrahedron method [110,111] and several versions of the 
special-point method [112-114], both being well-known methods in this type of 

problems. None of these methods can directly be applied in evaluating the k' 
integration in (3.5). To illustrate this, let us for simplicity consider, instead of 

the exact Green-function matrix elements in (3.5), those of the one-particle 

Green function of some "unperturbed11 Hamiltonian, 
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in which sgn(x) = +1 or -1 depending on whether x>O or x<O. Here the earlier 

introduced di,k(K,E~k)) and E~k) have been reduced to di,k(K) and real
valued eigenvalues E~k), respectively. It is not unreasonable to consider (3.9), as 

in an actual calculation procedure we will anyhow start an iteration cycle with 

some G0 instead of G. 
After substitution of (3.9) in (3.5), the k' integration appears to be of 

the type 

g(k') 
h(k) = J d3k· /(k-k')----

1Bz E-E'-E l(k')±i'7 
(3.10) 

where a simplified notation has been used in which the symbols K, K', G, G', E, 

E' and l are suppressed except if they occur in the denominator. Let us for the 

time being naively assume that /(k-k'), considered as a function of k', is free 

from singularities (the function g(k') is harmless in this connection). Then we 

can use the standard relation 1/(x±i'l) = .9'(1/x) +hro(x), in which .9' stands for 
principal value, to obtain 

g{k') 
h{k) = .9'{J d

3
k' /{k-k') --.--1')} 

E-E -Et'-k 

(3.11) 

Although the first integral on the right-hand side of (3.11) is one in which the 
poles from the integrand are excluded, in the sense of the Cauchy principal-value 

concept, the integrand still shows significant variations [115) in lBz through the 

dependence of E i on k'. Therefore, an accurate evaluation of this integral requires 
the knowledge of the integrand at quite a large number of k' points within 1Bz, 
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whlch makes a numerical evaluation difficult. 

A more serious problem is due to the second integral on the right-hand 

side of (3.11). Here, the use of the commonly applied special-point methods is 

ruled out, for the integration is a two-dimensional one. Furthermore, the 

denominator I Vk'etk') I may have zeros- also called critical points or van Hove 

singularities (107-109]. The linear tetrahedron method can be applied here, albeit 

that due to the wild variations of the integrand and the occurrence of van Hove 

singularities accurate numerical results can be obtained only if the integrand is 

known at a large number of points on the surface of constant energy, etk') 
= e-e'. Thls will make the evaluation of the integral a very time-consuming 

procedure (116-119]. 

So far we have naively assumed that the function f(k-k') is regular. 

However, the actual situation is worse in that f(k-k') represents the screened 

interaction which, as we shall see in chapter 4, has at least a jk-k' l-1 singularity 

(120]. Thls kind of singularity is related to the remaining long range of the 

screened interaction in the spatial domain, whlch is a peculiarity of 

semiconductors and not of metals. The explanation is that in a semiconductor 

the density of valence electrons may be quite low in some regions in the 

primitive cell. Therefore the electron--electron interaction is not as effectively 

screened out as usually is the case in metals (120]. 

By the above considerations we come to the conclusion that a great deal 

of the above problems are due to the fact that we have to deal with an energy 

integration along the real axis. Hence, it turns out worthwhlle to investigate a 

method in whlch integration over real energies can be avoided. Thls can be 

achieved by the contour deformation to be discussed in the next section. Thls 

procedure is no remedy for handling the singularity problem in the above 

function f(k-k'). Thls will be discussed and resolved in chapter 4. 

3.3 Contour-Deformation Procedure 

The problems which will be encountered when evaluating expression (3.5) for the 

GW self--energy function MGW can to a large extent be circumvented by 

applying a contour-deformation procedure [66,68,69,121]. Before we will be able 

to deform the contour of the e' integration in (3.1) into the complex energy 
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plane, we first need to have analytic continuations [122,123] of the functions G 

and W occurring in the integrand. As far as G is concerned, it is most 

convenient to use the Lehmann representation (2.16), in which we let e assume 

complex values as well, as the analytic continuation of G(r11r2;e) in the complex 

e plane. 

In order to obtain the analytic continuation of the screened interaction 

W we employ the relation [d. (B.32)] 

(3.12) 

in which e·1 stands for the inverse of the Fourier transform of the time-ordered 

dielectric function. The function e·1 can be expressed in terms of the Fourier 

transform of the time-ordered density-density correlation function, D, [124-127], 

[cf.(B.44) and {B.47)], as 

(3.13) 

In the time domain D is defined by [ci.(B.44)) 

A A 

D(r1 tl'r2t2) = H('~~N 19{ p'(r1 t1)p'(r2t2)} I '~~N)H, (3.14) 

A 

in which p'(rt) represents the density-deviation operator 

It is not difficult, just as for the one-particle Green function, to obtain a 

Lehmann-type of representation for the density-density correlation function 

[125,127-129], which can be expressed as, 

in which 

1 } - I l 

e+e -i1] s 
(3.16) 
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. 
P~(r) = H('l!N I p'(rO) I 'liN,s)H, (3.17a) 

(3.17b) 

The factor 2 on the right-hand side of (3.16) is due to spin summation. Note 

that, in view of the definition (3.15), the s summation in (3.16) involves excited 
N-particle states only, i.e., there is no ground-state contribution. From (3.16) 

and (3.17) it is apparent that the analytic continuation of D, and thus W, is 

given by just the same expression as the one for real energies. 

As one observes from the Lehmann-type representation (3.16), the 

analytic continuation of the screened interactiqn is analytic in the whole 

complex energy plane, except possibly for real energy values outside the interval 

(-~g,~g), where ~g=min5{ e5 ';e5 ':f0}. Note that ~g is the lowest excitation energy 

of theN-particle system itself and therefore has to be identified with the lowest 

exciton energy. In an exact theory ~g should be distinguished from our earlier

defined gap energy Eg:::(EN•I-EN)-{EN-EN.1). In the thermodynamic limit, i.e. 
n .... ro, N-~m, N/0-~C, with C a constant, one may think of the excitation energies 

{e5}s of (2.18a,b) and {e5 '}s of (3.17b) to form dense sets of points on the real 

energy axis, implying that both the one-particle Green function and the screened 

interaction would possess two branch cuts [122,123] along the real energy axis. 

Substituting (3.12) in (3.1) and making use of (3.13) we obtain 

(3.18) 

where p(r 11r2) is the density matrix [130) given by 

(D 

= -2i J g;~ G(rpr2;e') exp[+ie''TI/iL), 1110, (3.19) -
40 



••• ++++++++ 
••• xxxxxx! 

I 

!xxxxkx ••• 
I I 

I E ;+++++ ••• 
< g>! 

Fig.l. Schematic representation of the complex E' plane. Indicated are the 
singular points of the integrand of (9.20}. The original integration path as 
well as the one to be employed in (9.21) are depicted. The + sign denotes a 
pole due to the one-particle Green function while x denotes a pole due to the 
density-density correlation function. 

and B is an auxiliary function, 

(3.20) 

The E dependence of M is through the function B. 

From the Lehmann (-type) representations of G and D it can 

immediately be seen that the integrand on the right-hand side of (3.20) may 

have singularities in each quadrant of the complex E' plane. The function 

D(r',r";E') has singularities in the second and fourth quadrant only, while 

G(r 11r2;E-E') may have, depending on E, singularities in each quadrant. A 

possible configuration of singularities for some given value of f is depicted in Fig. 

1. Here the positions of poles of D are independent of E; the G poles shift 

horizontally when f varies along the real axis. 
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We will deform the integration contour as follows: First we split the 

integration on the right-hand side of (3.20) into 'two integrals, one from minus 

infinity to zero, and the other one from zero to plus infinity. Then, the first 

integration range is extended with an integral along the negative imaginary axis 

and closed by a circle segment in the third quadrant as indicated in Fig.l. The 

second integration range is extended with an integral along the positive 

imaginary energy axis and closed, again by a circle segment, in the first 

quadrant as indicated. Concerning the behavior of the integrand for large values 

of e', we note that it shows an asymptotic behavior ?'(I e' l-3), as can be deduced 

from the Lehmann (-type) representations. Therefore, there will be no 

contribution to the integral along the circle segments. 

The integrals along the real axis can now be completely expressed in 

terms of residue contributions and an energy integral along the imaginary e' 

axis. Thus we obtain for (3.20) 

1 Jim ,D(r',r";e')} 
+ 2?il de , . 

. e-e -e 
-Im S 

(3.21) 

This result is now substituted in (3.18) in which the density matrix p(rl'r2) is 

expressed as [130] 

(3.22) 

We then end up with the following expression for the GW self-energy function 
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where 

{3.24) 

is the part of the electron~ectron interaction which corresponds to the screening 

effects. In obtaining {3.23), use has also been made of (3.12) and (3.13). We 

mention that in case e=e111 the integral on the right-hand side of (3.23) is to be 

considered as a Cauchy principal-value integral. Consistent with this we put 

0(0)=1/2. 

Note that, (3.23) has only a formal character, for the functions fs(r) 

defined by (2.17) are matrix elements between unknown many-electron wave 

functions, and as such not accessible to direct calculation. Therefore, for 

practical aims, one should work with an expression similar to (3.23), however 

obtained by substitution in (3.20) of the quasi-particle approximation (2.31) of 

the hi-orthonormal representation of G, rather than the exact Lehmann 

representation of G. In principle if one wants to attack the problem by following 

the required self-consistency scheme, starting from an unperturbed Hamiltonian, 

one has to use in each step of iteration, say m, the results of the foregoing step, 

m-1. In so doing one would employ in the mth iteration step the quasi-particle 

approximation of the Green function in which the quasi-particle wave functions 

and energies follow from the (m-1)st step. It is easily seen that in the mth step 
* of thls scheme, (3.23) looks like as -1\."1Ln gn~n(r1;~n)?/Jn(r2i~n){E>(p-Re{~n}) 

xv(rcr2)+ ... }, in which the symbols gm ~n' ?bn and ~n indicate that the 
approximate quantities pertain to the {m-1)st step of iteration. By choosing 

(2.34) rather than (2.31), making use of a plane-wave representation for the 

quasi-particle wave functions of the (m-1)st step, (see {3.7)), the Fourier 
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transform of(3.23) can be written as follows: 

Mgw G'(k;e) = -1Jr- E E FK x·(G,G',k,k';e), (3.25) 
I k'K,K' I 

in which 

FK,K'(G,G',k,k';e) = ~ gl,k-k' dl,k-k'(K) dl,-{k-k')(-K') 

1 { B(JL-Re{~ e(k-k')}) v G-K,G'-K'(k') 

+ 1 J i(J) de' "\'XTG-K,G'-K'(k';e') 

21ii -iro f-f '-~ l(k-k') 

-0( e-Re{~jk-k')} )B(Re{~ e(k-k')}-JL)] 

1 "W G-K,G'-K'(k';e-~jk-k')) }, (3.26) 

where the Fourier transform of the Coulomb interaction VK x·(k) is given by 
' 

b!cx·· 
' 

(3.27) 

In order to obtain a convenient notation, we have suppressed in (3.26) the 

energy
1 

arguments of the plane-wave coefficients dl,±(k-k')· In a first iteration 
step, in which some unperturbed G0 is used, rather than the general quasi

particle representation of G, it will be obvious that (3.26) reduces to a simple 

form in which the g factors equal to 1, and in which the energy eigenvalues are 
real. 
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By observing (3.25) and (3.26) we note that part of the problems 

enumerated in the previous section are indeed resolved by application of the 

contour deformation procedure of this section. As to the energy integration in 

(3.26), contrary to the real-axis E' integration of previous section, we have to do 

here with an integrand which is regula.rfor all E' on the path of integration (the 

imaginary E' axis), except for the point E'=E-~lk-k'). As the anticipated 

imaginary part of ~ lk-k') is much smaller than its real part and E is real, we 

note that this E' point is located very close to 0. Let (-i..:l,i..:l) be the E' interval 

in which .6. is somewhat larger than the largest absolute value of the imaginary 

part of the quasi-particle energies under consideration, we then have, in view of 

the varying l and k-k' values to be considered, still to take special measures to 

treat this region of integration. In section 4.6 this issue is discussed further, and 

a simple integration procedure for this region is proposed there. The main point 

to note is that the energy integration regions (-iro,-i..:l) and (i..:l,iro) are harmless. 

In this connection we also note that Tlv along the imaginary energy axis does not 

have any resonant structure at all, as will be pointed out in section 3.6. The s 

summation in (3.23), which in (3.25) and (3.26) has been replaced by a 

summation over l and k', still requires attention, but the k'-summation problem 

is much less troublesome, because of the absence of vanishing denominators in 
the E'-integration region. 

3.4 Analytical Properties of the GW Self-Energy Function 

In this section we will investigate the analytical properties of the self-energy 

function MGW as a function of the complex energy variable E. Thorough 

knowledge of the behavior of MGW in the complex f plane will turn out to be 

most helpful in discussing various numerical evaluation methods for MGW, 

[68,69]. 

We will start with expression (3.23) for real energy values f, and 

introduce two auxiliary functions, g5(z) and h5(z) of complex variable z, given by 
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(3.28) 

(3.29) 

in which we have suppressed the dependence of the functions h8 and g8 on the 

spatial variables. Note that for Re(z) within the gap region, i.e. 

EN-Ex.1<Re(z)<EN•cEx, the second term on the right-hand side of (3.29) 

always vanishes, implying that for each fs the functions h8 and g8 coincide, that 

is, 

We first want to discuss that the function g8(z) is discontinuous, and 

hence non-analytic, at the line Re(z)=E8• Let us therefore introduce the functions 

g~(z) and g;(z), 

(3.31) 

... 
For Re(z)=fs we will define the value of g;(z) by the corresponding limit 
procedure. As "W is both analytic (therefore differentiable) along the imaginary 

energy axis and behaves asymptotically like 0( I E' 1"2) for large values of Ill, it 
can be shown [132] that g t and g; are analytic in complex half-planes where 

they are defined [133,134]. Moreover, from the Plemelj relations [133,135], 

satisfied by these two functions, it follows that on the line Re(z)=fs 

This is precisely the magnitude of the discontinuity of g8(z) at z=fs+iy. 
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It can readily be verified that in the function h5(z) the discontinuity 

(3.32) in g5(z) is precisely canceled through the last term in (3.29) with 0 

functions. Therefore, using Riemann's principle [136] it follows that h5(z) is 

analytic across the line Re(z)=e5 as well as analytic in the entire z plane, except 

for singular points of W(r11r2;z-e5) itself. The analytical properties of W(r 11r2;z) 

were investigated in the previous section and from the results obtained there we 

conclude that h5(z) is analytic in the whole complex z plane except possibly on 

the lines {z=Hi77;e<(Ex-EN.1)-~g}, and {z=f-i1T,e>(E1hr-Ex)+~g}, depending 
on whether e8<p, or e5>p,, respectively. This follows directly by considering the 

possible pole positions of the function W(r12r2;z-e5) as a function of z. 

We will now consider the Taylor expansion of h5(z) around the mid

point 11 of the interval (Ex-Ex -r~g,Ex .r-Ex+~g), i.e., 

(3.33) 

where 11 is in fact the real midgap-energy value. It is then convenient to go over 

to the function hg{z), defined by 

(3.34) 

and consider the Taylor expansion of !i-s(z) around z=O. The simple relationship 

between the functions h5 at real z and the self-energy function (3.23) can be 

expressed as 

(3.35) 

where l(z) is the function of complex variable z defined as 

The singularities of h8(z) nearest to the ongm z=O are at ::l:z5 , where 

z5~Eg/2+~g• in which Egis the gap energy (see section 2.3) and ~g the exciton 

gap (see section 3.3). This means that the Taylor expansion of l(z) around the 
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origin has a radius of convergence equal to ~=Eg/2+~g' [69]. Note that this 

radius ~ is also the largest convergence radius one can have if the expansion is 

around some point on the real axis. This is due to the special choice of v such 

that z=O is symmetric with respect to the nearest singularities. 
The above-introduced l(z) is the analytic continuation of MGW into the 

complex energy plane. Hence a Taylor expansion ofl(z), i.e., 

ID n t; 
l(z) = E an z , (lzl < ~= Eg/2+Lg), 

n=O 
(3.37) 

is also a Taylor expansion of M0 w, i.e., 

(3.38) 

where [cf. (3.30), (3.34) and (3.36)] 

1 lfl(z) 

o:n = --;!" -;;;,n I z=O 

(3.39) 

The merit of (3.38) lies in the fact that, as long as we limit ourselves to 

I z I <Eg/2+~g• we do not have to evaluate pole contributions to (3.23) 
explicitly. The direct calculation of'* at such real energies and the execution of 

the corresponding s summation in the residue part are thus avoided [cf. (3.28) 

and (3.29)]. Furthermore, we may expect that only a few terms in the Taylor 

expansion need to be evaluated [68]. In Fig.2 some relevant information as to the 

analytical structure of M0 w(r"r2;£) in the complex *' plane, is schematically 
summarized. 

In actual calculations, especially in the first iteration cycle of a self-
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Fig.2. Schematic representation of the analytical structure ofMGW(rhr2;f) 
in the complex f plane. The sign x indicates a singular point of 
MGW(r11r 2;f). The quantity v is defined in (9.99} while ~ is defined in 
{9.97}. 

consistent calculation procedure, the starting values for mg, {EN-EN .1) and 

(Ex •1-E1) a.re usually different from the corresponding exact quantities. For 

instance, if the first iteration cycle is based on results for "non-interacting" 

particles, the values mg, (Ex-Ex •1) and (Ex .r-Ex) will be equal to fg1 fJi and 
*N +h respectively. Here Ej stands for the jth one-electron energy eigenvalue of 

the "unperturbed'' system while fg represents the (one-electron) energy gap, i.e., 

{3.40) 

which is nothing but the value to which the energy-gap value Eg=Ew •1+Ex .1 

-2Ex reduces in the unperturbed case. Here we have assumed that the one

electron eigenenergies are ordered according to the relation fj+t~fj· The above

defined radius of convergence ~, will now be equal to 3eg/2. Note that, 

depending on the choice of the unperturbed Hamiltonian, the quantity fg may 

substantially deviate from the exact energy gap Eg· For instance, it is well 

known that the LDA Hamiltonian in a semiconductor gives rise to an energy gap 

which is too small, the underestimation being sometimes about fifty percent of 
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the actual gap [19,20,86]. Contrary to this, Eg when calculated in the HF 

approximation may amount to about 2-5 times the exact energy gap 

[11,12,13,23-26]. 

3.5 Other Properties of the GW Self-Energy Function 

In this section we will investigate conditions under which the GW self-energy 

function M0 w(rllr2;e) is Hermitian, i.e. M0 w(r1h;e) = M0 w(r2,r1;e( This 

investigation is relevant, since non-Hermiticity of the self-energy function at real 

e directly leads to finite quasi-particle lifetimes. The reverse assertion, namely 

that the Hermiticity of MGW at real e guarantees the quasi-particle life-times to 

be infinite, is as yet an open question to which we come furtheron. It can 

generally be demonstrated that the exact self-energy function satisfies the 

symmetry relation M(rhr2;e)=M(r2,r1;e). As this relation is also satisfied by the 

GW self-energy function (this will incidentally be shown below), we have to find 

out under which conditions M0 w(rhr2;e) is a real function of real e. To this end 
* we consider (3.23). We first note that the function fs(rt)J5 (r2) can be chosen real 

[77]. As the bare Coulomb interaction is real (and symmetric) as well, we have 

only to concentrate on the second and the last term within the braces on the 

right-hand side of (3.23); to the former term we refer as the integral part and to 

the latter term as the residue part. 

As to the integral part, it follows directly from the real-valuedness of iD 

along the imaginary energy axis (see (3.12)-{3.17)), that 'W along the imaginary 

energy axis is real-valued. We remark in this connection that, just as 
* * fs(rt)j5 (r2), the function p5 '(r1)p5 ' (r2) can be chosen real too. Moreover, 'W and 

D are both even functions of energy. This, as well as the reality of 'W along the 

imaginary energy axis, results in the fact that for real values of e the 

contribution of the e' integral along the negative imaginary axis is the complex 

conjugate of one along the positive imaginary axis. Therefore, for real energies e 

the integral part is real. 

Apparently, if the self-energy function is to have a complex 

contribution, this can only be due to the residue part. To investigate this 

further, we substitute the right-hand side of (3.16) in (3.13); subsequently 

substitute the obtained expression in (3.12) and make use of (3.24) as well as the 
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standard relation 1/(x±i 11)= .9'(1/x)+hro(x), with .9' the principal value. We 

then obtain 

(3.41) 

with 

(3.42a) 

(3.42b) 

and 

(3.43) 

* Note that, as w5(r1)w8 (r2) can be chosen real [125] and is symmetric, the above-

mentioned symmetry property of M0 w, i.e. M0 W(r11r2;e)=M0 W(r2,r1;t'), is 

incidentally established. As we have e5'~~g• the implication is that 

~·(r11r2;e):O if e is in the energy range (-~g.~g)· Hence, for real e the residue 
part is always real as long as I e-e5 ' I<~ , [137 ,138]. 

It immediately follows that Ml8w(r 11r2;e) is real, and thus Hermitian, 

whenever Ex-Ex -c~g< e<Ex •1-Ex+ ~g· This result is fully consistent with and, 

in fact, can also be derived from, the Taylor expansion (3.38) by realizing that 

all Taylor coefficients an are real. Therefore, MGW has to be real for real e 
within the circle of convergence. 

The non-Hermiticity of MGW at real energies outside the above

mentioned region is closely related to the finite probability for quasi-particles at 

such energies to decay through the excitation of electron-hole pairs (via Coulomb 

interaction). On account of energy conservation such excitations are impossible 

if e lies in the interval (Ex-Ex -r~g• Ex +l-Ex-~ g), i.e., in the energy region 

where MGW is real. However, the implication of the Hermitian or non-Hermitian 
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character of M at real E with regard to the quasi-particle life-times is not 

immediately obvious: firstly, one has to solve the Schrodinger-like quasi-particle 

equations (3.8) in which MG G'(k;E) matrix elements play their role, leading to 

eigenvalues E!k;E); and seco~dly, one has to solve the equation El,k(E)=E. If we 

call E=E !k) the solution of this equation, there is quite generally a real part 

Re(E!k)), being the quasi-particle energy and an imaginary part Im(E!k)), 

7L/(2Im(Efk)) being the life-time [139]. A complex eigenvalue E!k;E) at real E 

directly implies the complexity of the solution E=E!k). However, if E!k;E) is 

real for real E (which is the case if M is Hermitian) it can not a priori be 

excluded that the solution of the equation Elk( E)=E is, nevertheless, complex. 
I 

Let us consider a consequence of the reality of MGW on a finite part of 

the real energy axis. As MGW is analytic (strictly speaking we mean the 

analytical continuation of Maw, i.e. the function l(z) defined in (3.36)) in parts 

of the half-planes Im(z)>O and Im(z)<O, while real-valued in the interval 

-Eg/2-mg<E-v <Eg/2+mg, with v=(EN .cEN_1)/2, we can conclude on the basis 

of the Riemann-Schwarz reflection principle [140] that MGW takes conjugate 

values for conjugate values of z, i.e. 

(3.44) 

This shows again that the Taylor coefficients in (3.39) are real valued. In 

general, the coefficients of Taylor expansions around complex conjugate points 

are to all orders complex conjugate of each other. 

From the above considerations, we know that the region of validity of 

the Taylor expansion of MGW (r 11r2;z) around z=v is directly related to the 

distance of the nearest singularity of the dynamically screened interaction to the 

origin, mg. The radius of convergence for MGW(r1h;E) was shown to be 

Eg/2+mg (see below (3.39)). On the other hand it is known that GW self-energy 

functions evaluated with a rather crude approximation of W, the Plasmon-Pole 

method, give rise to very satisfactory quasi-particle band structures [64,65,141]. 

This is in a way surprising since in the Plasmon-Pole (PP) model W has 

singularities, the plasmon poles, which are located at distances from the origin 

much larger than ~g. i.e., there is no such mg-related singularity in the plasmon

pole approximation of "W, \I{PP, at all. Hence, in the framework of a plasmon-
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pole model the circle of convergence for MGW is far more larger than in the 

exact theory. One may hope, therefore, that by truncating the Taylor series 

expansion of MGW around z=v, and extrapolating the thus-obtained polynomial 

outside the region of convergence, one may still obtain a good approximation for 

the self-energy. Indeed, Godby, Schluter and Sham have shown that this strategy 

works very well for several semiconductors [68]. However, one has to realize that, 

due to the reality of the Taylor coefficients, this approximation is not capable of 

describing an eventual non-Hermitian part of the self-energy function at real 

energies [69]. 

3.6 Some Approximation Methods within the GW Scheme 

In this section we will rubricate a number of common and uncommon 

approximations toM within the GW scheme. At first sight these approximations 

may seem to be based on mathematical manipulations rather than on physical 

considerations; however it can and will be argued that their merits have a 

physical content as well. We will distinguish two classes of approximations, 

namely the static and dynamic approximations. Static approximations for MGW 

have in common that they show no e dependence; dynamic approximations, on 
the other hand, show non-trivial dependence of MGW on e. 

In considering (3.23), we may as a first crude approximation, neglect all 

terms involving the function W. This yields about the simplest static 

approximation [69] toM one can think of [see also (3.18), (3.19) and (3.22)] 

(3.45) 

Here the superscript HF explicitly refers to the fact that in (3.45) a Hartree

Fock exchange-type approximation is recognized. We must admit, however, that 

(3.45) leads to the exact Hartree-Fock potential only if the functions {.fs(r)}s are 

the self-consistently obtained Hartree-Fock wave functions. 

We realize that the result (3.45) is simply to be expected on the basis of 
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the trivial fact that by neglecting "W, the screened interaction W becomes just 

equal to the bare Coulomb interaction, (see (2.13) and (3.24)), sothat diagram 

(2.38), representing MGw, goes over into the diagram (c) of (2.11), being the 

exchange part of the Hartree-Fock self-energy function. We have introduced 

(3.45) mainly for the sake of uniformity of presentation; we shall not expound 

the peculiarities of MHF further [7]. 

As a second approximation to MGW we replace the screening-<:orrection 

functions "W on the right-hand side of (3.23) by the static function "W(r11r2;0). 

After evaluating the remaining integral and employing the relation (3.24) we 

arrive at an expression which is known in the literature as the COHSEX 

(COulomb-Hole with Screened EXchange) approximation [56,143]. We have 

where in the last step the closure relation 

(3.47) 

has been used. Equation (3.4 7) can readily be verified by making use of the 

equal-time anti-<:ommutation relation (2.2b ). 

The name COHSEX is very indicative of the physical content of the 

above-described approximation; COH refers to the contribution of the second 

term on the right-hand side of (3.46), whereas SEX refers to the first term. The 

reason why the latter contribution is called SEX is the following: By comparing 

this contribution with MHF, we see that we have to do with an EXchange 

contribution (EX) in which, however, the role of the bare Coulomb interaction is 

now played by the Screened interaction (S). The reason for referring to the 

second term as COulomb-Hole contribution, stems from the fact that each 

electron, by means of its Coulombic repulsion, lowers the charge density due to 
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other electrons in its immediate vicinity. In other words, the electron in question 

creates a sort of hole surrounding itself. This phenomenon, which is completely 

absent in case of non-interacting particles, is known as polarization. The 

deviation of the charge density with respect to that of a non-interacting system, 

which in all other aspects is identical with the interacting system, is called the 

polarization charge density. This polarization charge will induce some force 

acting on the electrons themselves, modifying their motion in the crystal. Let us 

make this plausible by repeating and extending a reasoning due to Hedin [56]. 

Consider a. classical. electron at r. If the electrons in the system were 

non-interacting, then the potential energy of the electron at r, as a result of the 

presence of another electron at r', would be v(r-,.r'). However, because of 

polarization effects in the interacting system, the latter energy, in a static 
approximation, is equal to W(r,r';O). The difference between these two energies, 

i.e. 'W(r,r';O), see (3.24), is thus the induced potential energy of the electron in 

question. The corresponding force exerted on the electron, equals -V r'W(r,r';O), 

where the gradient operator acts on the r variable only. Now the induced for~ 
exerted on the electron at r, as a result of its own interaction with other 

electrons is given by 

.5"= -l~m Vr'W(r,r';O). 
r -1r 

(3.48) 

This can also be written, because of the symmetry property 'W(r,r';li) 

='W(r',r;£), as 

(3.49) 

Hence, the part of the potential energy of a particle due to its own presence in a 

polarizable surrounding is equal to 1 'W(r,r;O). This explains the second 

contribution to the self-energy on the right-hand side of (3.46). In COHSEX the 

energy dependence of the screened interaction is completely neglected. This 

makes COHSEX less useful for actual calculations in semiconductors. The band 
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gap energies in semiconductors calculated within the framework of this 

approximation generally deviate substantially from the experimental values 

[64,65,141]. Apparently, dynamical screening effects have to be taken into 

account in order to obtain acceptable results for excitation properties. 

The third approximation method we introduce here, does take account, 

in a way, of dynamical screening effects. In this method it is assumed that the 

plane-wave matrix elements of \1.1 have the following form [64,65,141]: 

(3.50) 

in which the points f=±eK,K'(k)'~'i17, with eK,K'(k)>O (:Z~g) and 17.!.0, are the 

s~alled plasmon poles (see the discussion of the last section concerning the 

plasmon poles); the function WK K'(k;O) is assumed to be exact. The function 
> 

wpp(rl,r2;f) can readily be obtained by using the relation (3.3). 

As we observe, expression (3.50) is strongly motivated by the plane

wave representation of the exact relation (3.41), (see also (3.42)), however, 
contrary to the plane-wave representation of the latter relation, the above 

expression consists of two terms only (notice that the s summations in (3.42a) 

and (3.42b) are maintained after Fourier transformation). Although by this 

oversimplification the fine structure of WK K'(k;f) as a function of energy is 
' 

completely neglected, it turns out that \V~P K'(k;f) is able to describe some 
I 

global features of the exact function, specifically for energies not too close to the 
""• PP -i'/,PP poles, very well [65]. Note that vvK K'(k;O), and equally well vv (rbr2;0), are , 

exact by construction. Moreover, \VPP is, just as the exact function, an even 

function of energy. The asymptotic behavior of \1.1 for large values of 1 f I, namely 

t?( If 1"2), is correctly described by wpp as well. Note that since \1.1 K K'(k;O) is 
I 

real-valued, the imaginary part of "W~P K'(k;f) is easily seen to consist of two o 
I 

functions if it is assumed that eK K'(k) is real; the o functions are symmetrically 
I 

located with respect to the origin. 
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The behavior of 'W~P K'(k;E) is governed by two "parameters", namely 
' 

'W K K'(k;O) and eK K'(k); the former is the exact value, which is to be 
' ' 

evaluated directly from 'W•s defining equation, while the latter can be solved, for 

instance, by equating the right-hand side of (3.50) and the exact function 

'WK K'(k;E') at some energy E' not equal to zero. As the behavior of 
' 

'WK K'(k;E') is not exactly described by 'W~P K'(k;E'), the value of eK K'(k) to 
' ' ' 

be obtained in this way, does depend on the value of E'. To circumvent this 

ambiguity, one can employ one of the existing sum rules fixing the value of 

eK K'(k). A commonly used sum rule in this connection is the so-called f sum 
' 

rule [64,65,141,144-148] which follows from gauge-invariance requirements of the 

employed theory [148]. 

It is obvious that the expression for the analytic continuation of '\)\TPP 

into the complex energy plane is the same as the one for real energies. At purely 

imaginary energy values i E ( E real) we have 

(3.51) 

From this expression we observe that 'W ~P K'(k;iE) is a very smooth function of 
' 

E. Numerical calculations of 'W within the framework of the bubble 

approximation, described in this thesis, show that the thus-obtained 

'WK K'(k;iE) functions agree surprisingly well [70] with the simple expressions 
' 

(3.51). Because of the apparent lack of structure in 'W along the imaginary 

energy axis, and due to the fact that a reliable evaluation of the "exact" 'W 

along the imaginary energy axis, e.g. within bubble scheme, is a relatively simple 

task, we propose to obtain eK K'(k) as the solution of 
' 

(3.52) 

which is an alternative for using the above-mentioned /sum rule. 

Now, as to the self-energy function, substitution of (3.51) in (3.23), and 
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evaluation of the e' integral by, e.g., using Cauchy's residue theorem [123], leads 

to 

+ 1 [E E ei(k+K)·rl e (e,e .(k)) W ·(k;O) e-i(k+K')·r2] --n- k K K' s K,K K,K , 

in which 

(3.54) 

We remark that, due to the fact that the function WPP can approximate W 

much better along the imaginary energy axis than along the real axis, an 

alternative to (3.53) would be to replace W by WPP only in the integral along 

the imaginary axis in (3.23) and not in the residue te~m. 

In the previous section we discussed the possibility of Taylor expanding 

the GW self-energy function around e=v and employing a truncated Taylor 

series as an extrapolation polynomial for all energies. In this connection, we 

would like to mention here that the evaluation of the first few Taylor coefficients 
can be greatly facilitated if one uses MPP(r11r2;e). 

The last approximation method that we would like to discuss in this 

section is a mixture of a dynamic and a static approximation. It consists of 

replacing W(rhr2;£-E5) in the residue term of (3.23) by its static value 

W(r11r 2;0). This method will be referred to as the Static-Pole Approximation 
(SPA). In this method one might also consider the possibility of replacing W 

along the imaginary energy axis by its plasmon-pole approximation WPP, but in 

principle the exact evaluation of the integral term in (3.23) is assumed. Despite 
the approximate nature of MSPA, it yields exact results for energies e within the 

gap, i.e., satisfying EN-E:rH<E<EN•rEN, {see {3.30)). The justification for using 
MSPA outside the latter energy interval follows from the fact that in view of the 
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factor [8(e5-f)8(tt-e5)-0(e-e5)8(e5-J.t)]=:8(J.t-f5)-B(e-E5), for energies not far 
from the gap region the arguments of the contributing functions W(rt>r2;e-e5), 

for all s, are close to zero. As W is an even function of energy, the deviations of 

W(r11r2;e-e5) with respect to W(rhr2;0) will be of second order in e-e5• 
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CHAPTER4 

TOWARDS ACTUAL CALCULATION OF THE GW SELF-ENERGY 

FUNCTION IN THE QUASI-PARTICLE APPROXIMATION 

4.0 Introduction 

This chapter starts with a closer examination of the bubble polarization function 

P, as the determination of this function is crucial for the determination of the 

self-energy function M0 W. In section 4.1 we first derive Kramers-Kronig (KK) 

type of relations for P in the bubble approximation, relations that are shown to 

hold as well for the exact screening-interaction function 'W=W-v. The 

importance of these KK relations lies in the possibility they offer to obtain the 

function P at real energy values by means of its determination at purely 

imaginary energy values (which is much less cumbersome). In section 4.2 we 

derive an explicit expression for plane-wave matrix elements PK K'(q;E) in the 
I 

quasi-particle approximation scheme introduced in chapter 2. In the framework 

of an iteration procedure for the determination of M0w, the obtained expression 

for P is useful in each iteration step, in the sense that the involved energies and 

wave-function coefficients refer to the solution of the quasi-particle wave 

equations in some intermediate step. In section 4.3 we present a number of 

symmetry properties that may reduce the computational work of obtaining P. In 

section 4.4 we outline details of the (linear) analytic tetrahedron method, a 

method that can be used in performing the necessary 1Bz integration in the 

expression of P. Though a special-point technique or, alternatively, a technique 

based on the KK relations obtained in 4.1, is to be preferred, both methods being 

less time-consuming, the analytic tetrahedron method is nevertheless 

advantageous, as it offers the possibility to check the accuracy of these methods. 

In section 4.5 we present a novel way of calculating of P 0 0( q-~0; E) in which use 
' 

is made of both the special-point and the KK technique. Section 4.6 is devoted 

to the discussion of some important calculational aspects in the determination of 

M0 w. A general discussion is devoted in this connection to the q-tO behavior of 

PK K'(q;e) and WK K'(q;e) and measures are discussed which have to be taken 
l l 
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to perform the involved lBz integrations in the process of determining M0 w. 
These ;measnres are necessary in order to cope, in numerical evaluations, with 

the singular behavior of matrix elements WK K'(q;E) at q::O; . , 

4.1 Integral Relations for the Bubble Polarization and Screened Interaction 

Function 

At the end of chapter 2 we introduced the bubble approximation of the 

polarization function. As we will extensively make use of this approximation in 

the next sections, the present section will be devoted to a further discussion of 

the bubble polarization. 

By referring to (2.39), we can write [cf. (2.42) and (A.l3)] 

P(1,2) =-+ G(1,2•)G(2,1), (4.1) 

which after Fourier transformation can be written as (see (2.14)) 

(4.2) 

in which 770 >0 is infinitesimally small. By making use of the Lehmann 

representation {2.16), P(rhr2;e) can be written 

(4.3) 

in which 

{4.4) 
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and 

(4.5) 

* By choosing the combination fs(r1)fs (r2) to be real-valued [149], As,s•(rhr2) 

becomes real-valued and we have the following identities 

(4.6) 

Inspection of ( 4.4) reveals that the exponential exp[i1]0 f'/fl.] can as well 

be replaced by 1. By deforming the contour of integration in ( 4.4) into the 

complex E' plane and making use of the Cauchy residue theorem we obtain 

E>( f s -J')E>(t'-fs•) 
Is s •( f) = ---=------=;._ 

' E+E8 •-f8 +i 17 

E>(J'-f
5

)E>( £
8
·-M) 

E+Es•-Es-i'1 

E>(J'-Es•)- E>{Jrfs) 
-----~~----~---

f + fs, - E
8 

+ i 17sgn( e) 

The bubble polarization function can thus be expressed as 

(4.7) 

From ( 4.8) and ( 4.6) it can be deduced that the bubble polarization function 

satisfies the following symmetry relations 

(4.9) 

~ 
Let us define E~{ ... } as being the summation over those terms for 

which fs~l'· If we then introduce the function p(rt>r2;e) by 
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( 4.10) 

it can, by using (4.6), readily be shown that 

(4.11) 

Obviously, only those functions A8 ,8 '(r1h) have to be evaluated for which 

Es>tt and t.s' <p,. Note that, the singularities of the analytic continuation of 

p(r1,r2;t.) in the complex f. plane lay all in the lower half plane. Therefore 

p(r1,r2;t.) is the Fourier transform of a causal function, which is known as the 

causal polarization of Adler and Wiser [101,150]. Making use of (2.15), it can be 

readily verified that this function in the time domain is identically vanishing for 

tct 2<0. It therefore immediately follows that the real and imaginary parts of 

p=p'+ip" satisfy the Kramers-Kronig (KK) relations [151] 

(4.12a) 

{4.12b) 

The functions p' and p" can be written as 

{4.13a) 

(4.13b) 

where it is understood that the involved .9 and c "functions" stand for 

(4.14a) 
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.:("').,. 7J/1r "lO 
fl ~ 2 2 1 'I 1 

f +11 
(4.14b) 

Equations (4.14) will be used in order to define analytic continuations of 

p'(rhr2;e) and p"(r11r2;f) into the complex f plane. Note incidentally, that the 

explicit representations (4.14) can also be used for defining generalized Kramers

Kronig relations between two constituent parts of, more generally, a causal 

function, in which, unlike (4.13) these parts are not the real and imaginary 

parts. Such situations may indeed occur; as an example of such a function, one 

may think, e.g., of one of the Fourier components with respect to r 1 and r 2 of the 

function p(r11r2;e) in (4.10). This point was noted first by Johnson [145]. 

From (4.13b) we conclude that p"(r11r 2;e) is identically vanishing for 

energy values satisfying f<Eg. Consequently, (4.12a) reduces to 

(4.15) 

For the same reason p•(r11r2;-e') vanishes on the integration interval in (4.15), 

so that in view of (4.11) we can replace p• in (4.15) by p• of the bubble 

polarization function, or 

( 4.16) 

Using (4.14a), the analytic continuation of (4.16) for purely imaginary energy 

can be written 

(4.17) 

In view of ( 4.11) we then obtain immediately 
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(4.18) 

where the last equality follows from the fact that the analytic continuation of P" 

along the imaginary energy axis vanishes identically. This relation is of practical 

significance in view of the following considerations: First of all we note that 

because of absence of vanishing denominators, the direct evaluation of the 

polarization function along the imaginary energy axis will be much simpler than 

along the real energy axis. Let us therefore suppose that P(rhr2;iE) has been 

calculated. Then, relation ( 4.18) can be considered as a Fredholm integral 

equation of the first kinq. [152], the solution of which gives the imaginary part of 

the polarization function, P", or p", along the real energy axis. Subsequent 

application of (4.15) results in the values of p', or P', for all real energy values. 

This procedure will facilitate the determination of the polarization function 

along the real energy axis enormously, as will be discussed in more detail in 

section 4.5. 

In the remainder of this section we will be concerned with the screened 

interaction function \lv. We will derive integral relations for \lv which are similar 

to the above-derived relations for the bubble polarization function. A noticeable 

difference, however, is that the relations to be derived pertain to the exact 

screened interaction function and not necessarily as in the case of P, to some 

special approximation of \lv. Let us therefore consider the exact screened 

interaction function W and particularly the screening-correction part of it, i.e., 

\lv(r!Jr2;E)=W(rhr2;E)-v(r1-r2). From (3.41) and (3.42) we deduce that \lv can be 

written as 

(4.19) 

in which 

(4.20) 
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As w(rl>r2;t:) is causal, we have the KK relations 

(4.21a) 

(4.21b) 

in which the primed functions are defined as 

(4.22) 

(4.23) 

* The functions w8(r1)w8 (r2) can be chosen real [153], just as the earlier functions 
* * fs(rt)/s (r2)· Reality of Ws(rt)Ws (r2) implies that w· and w· are the real and 

imaginary parts of W. The same remarks as made below (4.14) can be made 

here. 

As in the case of the bubble polarization function, we can, making use of 

(4.14a), (4.19) and (4.21a), obtain 

W(r1,r2;i£) = :_ J mde' £ w"(r1,r2;£'), (4.24) 
n ""\1) £2+e'2 

which, similar to ( 4.18), can again be considered as a Fredholm integral equation 

ofthe first kind for the "unknown" function w"(rhr2;e) along the real £
1 axis. 

We should add an important remark here concerning the calculation of 

W along these lines at real energies in the framework of some effective-potential 

approximation. In such a scheme, one could directly use ( 4.19) and ( 4.20), in 

which the functions w8 are calculated from independent-particle density 

deviation functions (see (3.17) and (3.43)), to obtain an approximation for W. 

However, it can be shown that this approximation leads precisely to 
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W=(l+vP)v, where P is the bubble polarization function, approximated by 

using the corresponding independent-particle wave functions in the Green 

functions G. On the other hand, if one calculates W via W=e-1v with E=1-vP, 

we have in fact the formal relationship W=(l+vP +vPvP+ ... )v. Thus, the 

former calculation is just the first-order approximation of the latter one. Both 

results are approximate W functions; one cannot draw conclusions concerning 

the superiority of the one above the other a priori. Results obtained by inverting 

(1-vP) are believed to be much more reliable [154-156]. Apparently, only the 

complete series is capable of producing the collective excitations of the systems 

(plasmons). 

In short, we have introduced two pairs of KK relations, one for p', p" 

and the other for w',w". The function p=p'+ip" concerns the bubble 

approximation of the dielectric function while w=w' +iw" is related to the exact 
screened interaction function. Whether the exact polarization function can also 

be related to a function similar to p, say /t• whose real and imaginary part 

satisfy KK relations, has not been investigated here. We mention in this 

connection that according to Kirzhnitz [157,158], and Dolgov and Maksimov 

[158], the exact function ;'t(r~or2;f), contrary to the one in (4.11) and contrary to 

the exact w(rbr2;e) function may in general not be causal. 

4.2 Quasi-Particle Approximation of the Bubble Polarization Function 

If in the expression (4.3) for P(rt>r2;f) in the bubble approximation, the quasi

particle approximation for the function G, as given in (2.34), had been used 

instead of the Lehmann representation, it is straightforward to show that the 

expression for the function p(rhr2;E) as given in (4.10) would change into 

in which ~lv(k') and ~lc(k) are the generally complex-valued valence- and 

conduction-band energies, respectively (see (2.34)), and 
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( 4.26) 

where the quasi-particle wave function ~l,k(r;:m,t{k)) have been given in short

hand notation (see (2.34) and below it). Moreover (see (2.32)) 

(4.27) 

The vectors k, k' occurring in (4.25) are vectors in lBz. We remark that by 

definition (see chapter 2, the text between (2.32) and (2.33)) the imaginary part 

of :mlv(k) is positive and that of :ml (k) negative so that Im{:mlv(k')-:mlc(k)}>O. 
This is consistent with i77 in the denominator of (4.25) which in case of real 

energies guarantees the proper position of the poles of pin the complex e: plane. 

Real energies show up if ~l,k functions in (4.26) are the solutions of an 

approximate quasi-particle equation (2.21) with a Hermitian self-energy function 

M. 
Starting from the general expression ( 4.25) we want to arrive at plane

wave matrix elements pK K'(q;t). The reason is that from this the matrix 
' elements of the dielectric matrix E=l-vP can be constructed. Subsequent 

inversion of E (see (A.14)) leads to matrix elements WK K'(q;e) needed in the , 
evaluation of Mgw 0 .(k;e). According to (4.26) and (3.4), we need the Fourier 

! 

transform: 

in which 
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( k' k' l' l) r d3 N ( ) -iK. r N ( ) aK- , +q; , = fl r ul',-k' r e ul,k'+q r 

(4.29) 

Here ul k(r) represents the periodic part of the Bloch function ~l k(r), i.e. 
l l 

"' ( ) ik·r"' ( ) rplk r = e ulk r. 
l ) 

(4.30) 

The plane-wave coefficients d l,k( G) have been introduced in (3. 7). The 
reciprocal lattice vector K0 in (4.28) is added to ensure that k'+q+K0 lays in 

lBz. In deriving (4.28) use has been made of ul,k+Ko (r) = exp{-iK0 ·r) ul,k(r). 
We note that only if the self-energy function is Hermitian, the Bloch functions 

* have the property that lf'£-k{r) = rp l k(r), so that only in that case we have 
* l l 

d.e,-k(-G) = dl,k(G) and the related property a_K'{k',-k'-q;l,l') 

* =aK.( -k' ,k' +q;l,l'). 

Substitution of the right-hand side of (4.28) in the expression for the 
Fourier transform of p(rhr2;e), and performing the k summation {after which k' 

is changed to k), we arrive at 

{4.31) 

in which use has been made of the periodicity properties ~~k+q+K0)=~Jk+q) 

and gl,k+q+Ko= gl,k+q' In case of a Hermitian self-energy function, e.g. if we 
are dealing with the first iteration cycle of some self-consistent calculation 
scheme, equation {4.31) may be written 
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* aK(-k,k+q; lv,lc)aK~ ( -k,k+q;lv,lc) 

e + el(k)- e l(k+q) + i1] 
v c 

(4.32) 

in which the eigenvalues ee., and elc are real and the g factors are equal to unity. 

The plane-wave representation of the dielectric function can now be 

written 

(4.33) 

where vK K'(q) is given by (3.27) and where PK K'(q;e) is the Fourier 
' ' transform of P(rt.r2;e), i.e. 

(4.34) 

4.3 Exploitation of Symmetry Properties 

This section is devoted to symmetry properties which may help to facilitate the 

actual calculation of matrix elements PK K'(q;e) of P(rt.r2;e). First we remark 
' that P(r1,r2;e) is invariant under the operations of the space group [159-162] of 

the system. This implies 

where the 3x3 matrix !JJ denotes the matrix representation of the point-group 

part of the operation { ~ j I R}, Tj is the accompanying non-primitive translation 

(if any) and R denotes a lattice translation. By going over to integration 

variables r 1'=/Jjr1+rj+R and r2'=/Jjr2+rj+R in the expression PK,K'(q;e), as 
given in (3.4), it is straightforward to find 

(4.36) 
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in which Tj belongs to the operation /Jj -l. This relation is of great practical 

importance for cases in which the wave vector q is a symmetry point, i.e. a point 

for which holds /Jjq=q, for (some of) the point-group operations in { ~ j I R}. It 

is then obvious that quite a number of P-matrix elements can directly be 

obtained just by multiplication of some other matrix elements by a simple phase 

factor. In cases in which /Jjq=q+K0 , where K0 is some reciprocal lattice vector, 

it is helpful to realize that PK K'(q+K0 ;E)=PK+K K'+K (q;E). 
' 0> 0 

Secondly, in view of the expression (4.31) for the function pK K'(q;E), 
' being a summation (integration) over the wave vector k, we may investigate the 

transformation properties with respect to point-group operations of the functions 

occurring in the (integrand) summand. To this end we first rewrite ( 4.31) as 

aK(-QJ·k,gJ·k+q; l , lc) a K'(QJ·k, -QJ·k-q;l ,l) -- v -- - vc 

f + ~igjk) - ~tgjk+q) + i 77 
v c 

(4.37) 

where ,jL is the point group leaving the underlying Bravais lattice invariant, the 
so-<:alled lattice point group. Here IBz is the irreducible wedge of 1Bz. It is that 

part of 1Bz which by application of all point-group operations of the underlying 

lattice fills 1Bz without producing overlapping parts and without leaving voids. 

In (4.37) we have replaced Lk( ... ) by l1/87r3jd3k( ... ). We have generally 

(4.38) 

g, a·k+K = gl k' ..,=l 0 ' 
(4.39) 

for all gjE,fL· As far as the transformation properties of the functions aK and 

a -K' is concerned, we may make use of the relation [20] 

( 4.40) 
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for all elements fi.j occurring in the space group of the system. A closely related 

property reads [160] 

(4.41) 

Let us, from now on, for simplicity assume that the point-group element fi.j just 

make up the lattice point group .fL· This is not generally the case, but it holds 

for the important example of the semiconductor Si, which has diamond 

structure, and .fL=Oh· Thus identifying the point-group operations gj and fi.j• 
we may now consider the expression 

and conclude from (4.41) that it is always possible to rewrite the right-hand side 

of (4.42) in terms of oik' coefficients in which the occurring k' lay all in IBz. As 
' a matter of course a number of phase factors will be generated in this way, 

containing wave vectors in the whole lBz, but from a computational point of 

view this poses no problem at all. The important point to note is, that it is 

possible to rewrite the integrand in ( 4.37) in such a way that occurring 

quantities, such as oi,k'(G), m/k') or gi,k' all have their k' in IBz. The 
advantage is obvious: the dense packing of those k' points in IBz makes possible 

to calculate oi k'• m/k') and gi k' in a few points in IBz only and then make use 
' ' of some interpolation procedure. 

4.4 The Analytic Linear Tetrahedron Method 

In the previous section we have discussed a number of essential properties of the 

polarization function in the bubble approximation. In the present section we will 

discuss a Brillouin-zone integration technique which can be used in an actual 

calculation of P. The advantage of the method to be presented is that it can 

deal, without any problem, with the singularities of the integrand in (4.37) as a 
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function of k. In fact, the well-known alternative method of special point 

integration is argued to be less adequate if not inadequate [115] due to this 

singular behavior of the integrand. Nevertheless, the special-point method need 

not to be rejected completely, for it will be demonstrated in section 4.5 how such 

a method can successfully be used in a direct calculation. 

The analytic linear tetrahedron method [110,111] to be discussed here is 

specially suited to deal with the singularities in the integrand. We present for 

the first time some intermediate formulas in sufficient detail to be helpful when 

using this method. This section is rather technical and lengthy while containing 

many details of less interest to the general reader who may skip the remainder of 

this section and jump to section 4.5 without loosing the general line. 

In order to describe the analytic linear tetrahedron method, we start 

from the quasi-particle expression (4.37) for the quantity pK K'(q;c:). We notice , 
that in an independent particle approximation (i.e., in a first iteration step) the 

energies in the denominator become real, implying possible singularities of the 

integrand as a function of k for real energy E exceeding the gap energy. As the 

tetrahedron method can successfully deal with the singularities, we will consider 

( 4.37) in the case of real energies. 

As the evaluation of iy, lr; and g summations are trivial, we shall only 

deal with the k integral over IBz. By making use of the relation 

1/(x±i'11)=.9>(1/x):~i.?r6(x) we write the contribution of the IBz integral as 

follows: 

in which 

I( e)= I'( e)+ i I•( e), 

I'( e) = .9>( f d3k N( k) 

lBz e-D(k) 

r(c:) = -1r r d3k N(k) 6(E-D{k)), 
lBz 

in which we have introduced the short-hand notations 
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(3.45) 



We will now consider the evaluation of I'( E). Let IBz be subdivided into 

Nt small tetrahedrons 8j, with j= 1,2, ... , Nt. The number Nt is chosen such 

that the variations of N(k) and .D(k) within each tetrahedron are not 

substantial. We then replace N(k) by a constant equal to its value at some point 

kj in 8j, e.g. the center of mass of 8j, and Dj(k) by a linear function of k, i.e., 

( 4.48) 

The function Dj in (4.48) is an approximation to D in (4.47) within the jth 

tetrahedron. In the present approximation I' (f) reads 

( 4.49) 

Thus, each tetrahedron introduces four unknown quantities, the constant aj and 

three coordinates of the vector b j. Knowledge of the exact D(k) of ( 4.4 7) at the 

four vertices of each tetrahedron is sufficient to calculate the values of these 
quantities uniquely. This is one of the advantages of the analytic linear 

tetrahedron method as compared to other analytic linear methods [164] in which 

IBz is subdivided in elements such as cubes [165), triangular [166,167} or 

rectangular [167,168} prisms. In the latter methods there is some redundancy in 

the number of known quantities. As a consequence, in the latter methods, the 

interpolated function D is not a continuous function through IBz, introducing 

undesirable boundary effects. Moreover, not all IBz's can be composed by means 

of, e.g., cubes, contrary to tetrahedrons which can build up any IBz. 

An obvious advantage of the linear tetrahedron method is that each 

integral in (4.49) can be evaluated analytically. However, although the 

integration is straightforward in principle, it is a tedious one in practice. In the 

sequel we will sketch the procedure to accomplish the analytic integration, give 

some intermediate formulas and present the final results. In view of its rather 

75 



technical and lengthy character, the reader may decide to skip this part and 

proceed directly to section 4.5. On the other hand, the formulas presented here 

may prove useful to potential further users of the analytic linear tetrahedron 

method. 

We first define an orthonormal coordinate system {ix' ,iy' ,iz'}, (not 

necessarily a right-handed system), with respect to which the vertices of the jth 

tetrahedron have the following form: 

k, = (0,0,0), 

k2 = (x1' ,0,0), 

ka = (x2',y2',0), 

k4 = (xa',ya',za'), 

( 4.50a) 

(4.50b) 

(4.50c) 

(4.50d) 

and in which the coordinates are all positive. In what follows we shall drop the 

subscript j in Dj, aj and bj; there will be no confusion in doing so. If we then 

consider D(ki)'s, i=1,2,3,4, as known quantities, and write ( 4.48) in terms of the 

coordinates of the involved vectors with respect to the basis {ix',iy',iz'}, we 

obtain a triangular system of four linear equations. After solution of this system 

of equations, we obtain (primed quantities refer to the basis {i;,iy',iz'}) 

a'= D(k1), 

b; = ( D(k2)-D(k1)) /x1', 

by'= (D(ka)-D(k1))/y2'+(D(k1)-D(k2))x2'/(x1'y2'), 

bz' = (D(k4)-D(k1))/z3' +(D(k1)-D(k2) )xa' /(x1'za') 

+ ( D(k,)-D(ka) )y a'/ (y 2'za')+(D(k2)-D(k,) )x2'Y a' /(x,'y 2'za '). 

( 4.51a) 

(4.51b) 

(4.51c) 

(4.51d) 

As the transformation from kin the original coordinate system {ilOiy,iz} to k' in 

the above primed coordinate system consists in general of a translation and an 

orthogonal rotation we have dak=dak'. In the primed system the region of 

integration .6.j is defined by the following inequalities: 
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eb')<x' < e2(z'), 

vb')<y' < vb')+y 2'(x' -e 1(z')) /x2', 

O<z'<za', 

and 



in which 

e2(z')<x' <ea(z'), 

v1(z')<y' <v2(z')+y2'(x'-e2(z'))/(x2'-xl'), 

0<z'<z3', (4.52) 

( 4.53) 

The evaluation of a k integral over /lj in (4.49) is now a trivial, but tedious, 

task. The three basic integral expressions 

I dx/(px+q) = (1/p)lnlpx+qj, 

I dxlnjpx+ql = {1/p)(px+q){lnjpx+qj-1}, 

I dx (px+q)lnjpx+ql = {1/2p)(px+q)2{lnjpx+qj-1/2}, (4.54) 

are to be used in this connection. In giving the final result for the principal-value 

integral over /lj, we must distinguish between five situations: 

{ 
( e-D(k 1) ) 2 e-D(k4) 

=30j lnl I 
(D{k1)-D{k2))(D{k1) -D{k3))(D{kt)-D(k4)) e-D{k 1) 

( f-D{k 2) )2 f-D(k4) 
+ ~~ I 

(D{k2)-D{k1))(D{k2) -D{k3))(D{k2)-D{k4)) f-D{k2) 

(f-D{ka)P f-D{k4) } 
+ lnl I , 

(D(kt)-D{ka))(D(k2) -D{k3))(D{ka)-D(k4)) f-D{ka) 
(4.55) 
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in which flj=x1'Y2'z3' /6 is the volume of the jth tetrahedron. 

(4.56) 

The contribution of the integral in (4.56) should be neglected in case D=E. This 

rather rare situation is just a consequence of our crude assumption made in 

(4.48). As can be verified, using (4.51a)-(4.51d), the occurrence of this situation, 

according to ( 4.48), would imply Dj(k)=E, kEAj, which cannot actually be the 

case. 

{ 
( E-D(k4) )2 E-D 

=30j lni---
(D(k4)-D)3 E-D(k4) 

+ 
3( f-D(k4))2/2+ ( E-D) 2 I 2-2( f-D)( f-D(k4))}· 

(4.57) 
( D(k4)-D)3 

In case D=t, we neglect the contribution of the integral in (4.57). The 

occurrence of D=E in this situation is again attributable to the crude assumption 

made in ( 4.48). 

78 



{ 
2( E-D') (E-D") E-D' 2 E-D I -D" } 

=30J· lnl--1 +----
(D'-D") 3 E-D" (D'-D") 2 

(4.58) 

(v) D(k1)=D(k2)::D, D(k3)fD, D(k4)fD 

{ 
(E-D(k 3))l E-D(k 3) 

=3~ ~I I 
(D-D(k3)) 2(D(k4)-D(k3)) E-D 

( E-D(k4))2 E-D(k4) 
+ lnl I 

(D-D(k4)) 2 (D(k3)-D(k4)) E-D 

(E-D) } 
(4.59) 

The relations needed for other possible orderings of D(k1)•s, than considered 

above, are easily deducible from the relations given in (iii)-{v), by just renaming 

the D(ki) quantities. 

It is obvious that the convergence of (4.49) for increasing number Nt of 

tetrahedrons is dependent on both the smoothness of N(k) in IBz and the fact in 

how far the expansion of D(k), ( 4.48), is valid. 

We will now discuss the evaluation of I"(E). We rewrite {4.45) as 

follows: 

Nt 1 J 2 
:: -1r 1;: TOT d k (c + d·k), 

J ~j 
(4.60) 
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in which use has been made of both the approximate relation ( 4.48) and 

N(k) ~ c + d·k. ( 4.61) 

Here <#'j denotes the part of the surface of constant energy difference D(k)=!, 

which lies within the jth tetrahedron. If it exists, this surface can be regarded, 

consistent with (4.48), as a plane surface. Note that in (4.61) we propose to use 

an expression for N(k) which is linear in k. This deviates from our earlier choice 

made in obtaining I'(!) of ( 4.49), in which N(k) was put equal to its value at 

some arbitrary point within the tetrahedron. The reason is just the fact that in 

the present case the contribution of this term to I"(!) can be relatively easily 

evaluated analytically. In what follows we will choose the labeling of the k1 

vectors in such a way that 

(4.62) 

Concerning the geometrical forms the surface &'j can assume, we have (i) if 

D(k1)<!<D{k2) or D(k3)<e<D(k4), then &'j is a triangle; and (ii) if 

D(k2)<e<D(k3), then &'j is a tetragon. In the two cases where !<D(k1) and 

!>D{k4), there are no intersections of the surface of constant energy difference 

and the tetrahedron Aj at all. Consequently, in the latter cases, the jth 

tetrahedron has no contribution to I"(!). We note incidentally that, in case &'j 

is a tetragon, the contribution of the surface integral on the right-hand side of 

( 4.60) is most easily calculated analytically if one considers the latter 

contribution as being the difference of two surface integrals each over two 

triangles. 

By introducing a new basis {ix',iy',iz'}, in which &'j lies in the {ix',iy'} 

plane, such that one of the sides of &'j lies along the ix' axis, one obtains after 

some algebra 

{4.63) 
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in which Sj denotes the area. of the plane surface &'j, 

{ 

/~> D{kt)S!SD{k2), 

si = /t-/2• D{k2Js f$D{k,), 

f,, D{ks)SeSD{k4), 

and in which ,.. stands for the vector of the center of gravity of &'j, 

{ 

"11 D{kt)SeSD{k2), 

"= ("t/t-~/2)/(/t-/2), D{k2)S!SD{ka), 

,..,, D{k8)$£$D{k4), 

where 

The functions ft, are defined as 

(4.64) 

(4.65) 

Oilbl . (£-D{kt))2 

/t = -- , (4.67a) 
2 {D{k2)-D{kt))(D{k3 ) -D{kt))(D{k,)-D{kt)) 

Oilbl (!-D{k 2))2 
/2 = -- , (4.67b) 

2 {D{k2)-D{k1))(D{k3 ) -D{k2))(D(k4)-D{k2)) 

Oilbl (£-D{k4))2 

/4 = -- . (4.67c) 
2 (D{k,)-D{k1))( D{k4 ) -D{k2))( D{k,)-D{k3)) 

Note that the last expression in (4.63) would also have been obtained if we had 

replaced N(k) over aj by the constant value N(I'O). 
By the above relations one can straightforwardly calculate the bubble 

(RPA) polarization function within the framework of (analytic) linear 

tetrahedron method. 
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Fig.1. Real and imaginary parts of the dielectric response function Eo 0{q;e}, 
with ~0, as a function of energy. IBz has been subdivided into 8 tetraliedrons 
and the contributions of 10 bands have been incorporated. The marks o 
(indicating the real part}, and o indicate calculated values while the straight 
lines connecting them are merely a guide to the eye. 

As an illustration of the above method we present in Fig. 1 numerical 

results concerning the real and imaginary parts of the dielectric-matrix element 

Eo 0(q;e), with q-+0, obtained within a simplified model of the semiconductor 
' silicon, the description of which is given in section 4.5. The results given in Fig. 

1 are far from being converged. From Fig. 2 it is observed that convergence in 

obtaining P 0 0( q;O), with q-+0, may be reached if the number of tetrahedrons is 
' at least 500, say. This implies the use of a large storage capacity, while the 

computation time for obtaining this matrix element is excessively large. In the 

next section two alternative methods are discussed which do not suffer from 

these inconveniences. Nevertheless, the analytic linear tetrahedron method has 

its value as a reference method. 
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10 100 1000 

Fig.2. Convergence behavior of P 0 0{q,'OJ, with q .... o, with regard to the 
increasing number of tetrahedron subdivisions of IBz. The marked points 
indicate the calculated P0 0{q,'O) values (arbitrary units) obtained by 
subdividing IBz into N t= 8,' 92, 64, 256, 512 and 768 tetrahedrons. The 
straight lines connecting the marked points are guides to the eye. As in the 
case of Fig.1, the contributions of only 10 bands have been incorporated. 

4.5 Numerical Determination of the Bubble Polarization Function (RP A) a.t 
Real Energies 

The present section is an integral reprint of an article which ha.s been published 

in Solid State Communication, Vol. 67, No. 1, pp. 7-11, (1988). The article 

describes a method to deal with the lBz integration for obtaining the 
polarization function at real energies. In this approach we use a special-point 

method, despite the singular character of the integrand. Therefore, the method 

to be presented in the article is a surprising alternative to the analytic linear 

tetrahedron method of the previous section, that is to say, surprising in the light 
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of certain remarks [115] which seem to claim that the special-point method 

cannot be used for a direct evaluation of P at real energies. Moreover, this 

section demonstrates the practical use of the integral relations established in 
section 4.1. 
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A NOVEL METHOD OF CALCULATING THE RP A DIELECTRIC 

FUNCTION FOR A SEMICONDUCTOR 

AT REAL ENERGIES 

B. Farid, D. Lenstra and W. van Haeringen, 

Department of Physics, Eindhoven University of Technology, 

P.O.Box 513, 5600MB Eindhoven, The Netherlands 

(Received 20 april 1988 by M. Balkanski) 

We demonstrate a novel method for direct calculation of the RPA dielectric 
function for a semiconductor at real energies based on a special point integration 
procedure. The method is relevant in the context of model-free ab initio 
calculations of dielectric properties and self--energies in semiconductors. 

Calculation of the dielectric function for a semiconductor at real energies, even 

in the Random Phase Approximation (RPA), is known to be cumbersome at 

energies exceeding the· energy gap. The reason is the occurrence of vanishing 

energy denominators which hampers the execution of the involved k integration 

over the first Brillouin zone (1BZ). Direct calculation is nevertheless possible by 

applying some properly adjusted tetrahedron method 1•2, but such a procedure1 

asks for a fine mesh of k points and is therefore very time consuming. It has been 
argued 3 in this connection that special-point methods4,s.s can not be used to 

evaluate the dielectric function at given real energies. Clearly, the reason for 

such remarks is the presence of singularities in the integrand. 

In the present paper we will show how special-point methods can 

nevertheless successfully be used in direct calculations of the various matrix 

elements of the dielectric response function at real energies. Our method is based 

on two observations: Firstly, we note that the polarization function P at real 

energy can be written P'+iP", in which P' and P" fulfill Kramers-Kronig type of 

relations and in which P 11 is a continuous function of real energy7•8, to be 

expressed as a k integration over 1BZ of weighted 6 functions with energy 

arguments. Secondly, we note that in any discretization method for evaluating 

this k integral, it is fully consistent to replace each 6 function by a Lorentzian 
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with width roughly inversely proportional to the number of sampling points in 

1BZ. 

The method proposed, to be outlined and demonstrated below, by its 

simplicity, brings us a step closer to the model-free ab initio calculation of the 

self-energy in semiconductors. By using our method, the use of, e.g., plasmon

pole models 9 can be avoided. We will confront the present special-point direct 

calculation of the above P" at real energy with the directly related special-point 

calculation of the polarization function P at imaginary energies. This 

confrontation is of interest as P" at real energy can also be determined by using 

a method for solving a Fredholm integral equation of the first kind 10 in which 

both the function P" at real energy and the function P at imaginary energy 

occur. 

In RP A the matrix elements of the polarization function u in a plane

wave basis can easily be shown to be expressible as 

(1) 

where 

(2) 

Here k denotes a wave vector in 1BZ, K and K' are reciprocal lattice vectors; lv 

and lc are valence- and conduction-band indices; e1v(k) and e1c(k) are band 

energies; k0 is the wave vector (in 1BZ) for which the matrix elements are to be 

determined. The numerators A are energy independent and can be completely 

given in terms of the plane-wave coefficients of the electron wave functions; 

these numerators are generally complex-valued except for K = K' when they are 

real. The real quantity 111 is supposed to be infinitesimally small and positive. It 

is easily seen from (2) that numerical problems due to vanishing denominators 

may arise if one performs the k integration in case e is larger than Eg(k0 ) = 
rnin[Eic(k+ko)-e1v(k)]. The dielectric matrix element, related to (1) reads 11 

(3) 
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The analytic continuation of (1) to purely imaginary energy e-=ie-1 can be 

written 

(4) 

As the right-hand side of (4) has no vanishing denominators (they are all larger 

than ( fg(k0)) 2), we may consider the possibility of calculating ( 4) at given e 1 by 

performing the k integration using a special-point method. We will come to this 

furtheron. Let us first discuss the possibility of a direct evaluation of P at real 
energies. 

For real energies, it makes sense to split the polarization into two 

contributions, using 1/(x+i17)=.9(1/x)-id(x), where .91 stands for principal 

value. We may then write 

(5a) 

with 

(5b) 

and 

It can directly be deduced from (4) and (5c) that the various matrix elements of 

P(k0;if1) and P"(k0 ;f) are related by 

(6) 
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In an attempt to evaluate the right-hand side of (5c) with a special-point 

method, we first replace all o functions by Lorentzians with the same width 7], 

i.e. 

o(e-e)-- n/1r 
(e-'f)2 + 172 

(7) 

where it is noted that this replacement should lead to the original function P", 

strictly speaking, only when 7]!0, but that in practice it will be a good 

approximation for a finite value of 17 as well. After the substitution of (7) in (5c) 

there is no problem in performing the k integration by making use of the special

point integration procedure. This means that the actual quantity to be 

calculated reads: 

(8) 

Here, a denotes all point-group operations of the crystal lattice with No. the 

number of such operations; {ks;s=l, ... ,n} is the set of special points to be 

considered in one irreducible wedge of lBZ, and {w8} are the appropriate 

weighting factors. The numerical value for 17 should of course be consistent with 

the number of special points, that is, it should lead to sufficiently smooth 
dependence of pu<n> on e. 

In what follows we will also consider the K,K' elements of p<nl(k0 ;ie1) 

which, according to (6) are related to the K,K' elements of P"<nl(k0 ;e) of (8) by 

(9) 

To demonstrate our method, we have used a simplified model for the 

semiconductor Si with a (very small) energy cutoff of 2.57 Ry. Depending on the 

88 



Bloch-wave vector k, this leads to only 15-22 plane waves in the expansion of the 

one-electron wave functions. The effective one-electron potential is borrowed 

from an earlier well-converged self-consistent calculation scheme12 for Si with an 

energy cutoff of 11.5 Ry. The resulting model band structure has an indirect 

bandgap of 0.023 Ry, a direct bandgap of 0.237 Ry 1 and is qualitatively similar 

to the real Si bandstructure. 

A series of numerical results obtained for Im e00(k0;e) along the real e 

axis and evaluated with the use of (8) is given in Fig. 1. The number of 

Monkhorst-Pack5 (MP) special points varies from 10 to 60. The value of 1J in 

each case was determined as follows: A rough estimate tells us that 

approximately a number of 4 l 11 l qs/2 Lorentzians cover the energy interval 

of about 2 Ry, where q = 2,4,6,8,10,12,14,16,. .. depending on whether we have n 

=1,2,6,10,19,28,44,60, ... special points13. Here, the numbers 4 and 11 are the 

number of valence and conduction bands taken into account. It is important to 

realize that quite a large number of k points lead to identical 6 peaks for 

symmetry reasons, while only a few combinations of valence and conduction 

bands contribute significantly to the 6 peak distribution pattern. We therefore 

come to the rough estimate of effectively q3f2 Lorentzians covering 2 Ry, 

implying for the width 1J of each Lorentzian 

1J > 4fq3 [Ry]. (10) 

The 1J values chosen in Fig. 1 are 3.62 times larger than the minimum value 

implied by (10). Moreover, we have verified that the resulting curves are hardly 

sensitive to variations in the 1J values. Concerning the fine structures, one really 

needs to go as far as to 60 special points, but for global purposes (e.g. 1 

presumably in quasi-particle band structure calculations9) as few as 10 special 

points may already be good enough. 

In view of the Fredholm integral equation (6) or (9), we may also 

consider a completely different way of calculating P" at real energies by first 

calculating P along the imaginary axis with the use of the special-point method 

and after that solving the integral equation. Fig. 2 displays the dielectric matrix 

elements e00(k0;ie1) for n = 10,19,28,44 and 60 MP special points. We have 

observed that convergent results are hardest to obtain at e1=0; from Table I it 

can be seen that convergence is already reached at 19 special points. 
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Fig.l. Numerical results for the imaginary part of the dielectric function for 
real energies obtained by a direct special-point calculation as described in the 
text. The five different curves correspond to five different numbers of MP 
special points as indicated. 

Table I 

Convergence of the static dielectric constant e ~~)(k0-+0;0}. We take 
ko =2w/a(1.25x10-3,0,0} while n is the number of MP special points used in the 
calculation. 

n 1 2 6 10 19 28 44 60 

18.20 1 14.00 12.66 12.07 12.07 11.94 11.97 
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Fig.2. Special-point calculations of the dielectric function for imaginary 
energies. Each curve is calculated using the indicated number of MP special 
points. 

Using the functions of Fig. 2 as input functions, an algorithm due to te 

RieJe14, making use ofthe regularization method of Phillips 15 and Tihonovt6, was 

employed to solve the integral equation for P ". The resulting functions Im 

e00(ko-+0;E) are given in Fig. 3 for the various numbers of special points used to 

calculate P 00(iE1). It is a well-known fact that integral equations of the type (6) 
or (9) are difficult to solve. Indeed, we observed that minor changes in P(iE1) can 

lead to enormous variations in P"( E). Sensible results could only be obtained 

through the use of the regularization procedure that is employed in te Riele's 

proceduret4,15,t6,t7. As can be seen by comparing Figs. 3 and 1, this 

regularization washes out fine-structure details. In this connection we also 

mention that, since we know that P"(k0;E):O, if IE I< Eg(ko), the lower boundary 

of the integral is set equal to Eg(ko). This is in agreement with the 
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Fig.3. Numerical results for the imaginary part of the dielectric function for 
real energies obtained by solving the integral equation {6) for P" 00(k0-~0,e) 
using the respective input fti,nctions of Fig. 2 at 61 equidistant points 
covering the interval {0,2i}. In applying te Riele 's procedure14 the 
regularization parameter is 0.5 • 10-9 for all curves, while the linear 
functional L is chosen to be the identity functional. 

general rule that in solving the integral equations of the first kind as much a 
priori information about the solution should be used as possible. Global 

properties can be obtained reasonably well in this way for as few as 10 special 

points. This is also illustrated in Table II, where the first four moments of 

e"00(ko-~O;e) = (-e2/e0 lkoi 2)P"00(k0;e),lkol -1 0, e > 0, are given as resulting 
from calculations within the framework of the above-described two methods and 

for various special point numbers. The zeroth moment, S, is just the area under 
.., 

the curve, S = ! de E"oo(k0-~0,e), while the first moment, p., is the mean value, p. 
.., 

= s-1! de e e"00(k0-~0;e). All higher order moments are chosen to be central 
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Table II 

The first four moments of the imaginary part of the dielectric function 
e00(k0-+0;t") for positive energies calcv.lated in three different ways. In each 
column three numbers are presented. The first number is obtained by 
approximating the expressions {11), {12} or {13} by sums over special points, 
without the introduction of Lorentzians. The second number is obtained from the 
functions displayed in Fig. 1, i.e. it is obtained within the method in which the 
delta functions are smeared out to Lorentzians; the third number is obtained from 
the curves in Fig. 3, which are results of the integral-equation method. 

n 10 19 28 44 60 

6.13 5.94 5.94 5.91 5.92 

s 5.79 5.78 5.85 5.86 5.82 

6.23 6.04 6.05 6.02 6.02 

n 10 19 28 44 60 

.029 .029 .029 .029 .029 
1(2) .041 .036 .032 .031 .031 

.030 .031 .034 .036 .037 

n 10 19 28 44 60 

.374 .381 .381 .383 .382 

p .395 .394 .391 .391 .391 

. 381 . 388 . 389 .392 .392 

n 10 19 28 

.016 .016 .016 . 
(3) I .022 .019 .018 .017 .017 

.012 .016 .022 .023 .024 

co 
moments, J!nl =S-1 ! df(E-p)n E"oo(k0-t0;f). The various moments may as well 

be determined from (5c) directly, i.e. from 

(11) 

(12) 

where it is noted that the expressions (11), {12) and (13) can be evaluated by 
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replacing the 1BZ integrations by sums over special pbints; in doing so there is 

no need to introduce Lorentzians of with 11· The moments calculated from (11), 

(12) and (13) for various MP special-point sets are also given in Table II. 

Comparison of these data with the others gives a rough idea of the global error 

introduced by the above methods. 

In conclusion, we have outlined and demonstrated a novel method for 

direct calculation of the RP A dielectric function in a semiconductor at real 

energies using a special-point Brillouin-zone integration procedure. Fine

structure details such as the positions of sharp resonances can only be predicted 

accurately using in the order of 44 MP special points at least. Global properties 

can be obtained reasonably well by as few as 10 special points. 
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4.6 Back to MGW 

In the preceding sections we have discussed a number of ingredients necessary 

for the calculation of the GW self-energy function. In this section we deal with 

some computational aspects of an actual calculation. 

The invariance of the self-energy function on application of space-group 

operations {~I R}, i.e. 

{4.68) 

leads, in a. similar way as in the case of the polarization function P, to the 

symmetry relation 

By means of this relation it is possible to obtain those M matrix: elements, for 

which the reciprocal-lattice-vector indices are related to each other through the 

point-group operations of the group of the wave vector k, in a very economic 
manner. 

According to (3.25) and (3.26) we can express MGW in terms of three 

terms, i.e., 

in which MGv is a Hartree-Fock type of contribution involving the bare Coulomb 

interaction v, Mint is an integral over imaginary energy involving the screened

interaction correction "\\v and MRes is the residue contribution, also involving \IY. 
Each term in ( 4. 70) contains a Brillouin-zone integration f IBzd 3k'( ... ), the 

evaluation of which requires special care because of the possible occurrence of 

singularities at k'=O. 

The discussion of the typical problems encountered in the lBz 

integrations and the proposed strategy for solving them can best be given by 
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concentrating on the Mint term in ( 4. 70). 

We write 

Mb n b·(k;e) = -1 fl de' 
• (21r) 4tt. Jo 

• J d3k' E "W G-K G'-K'(k';ie')~ K'(k-k';e,ie'), (4.71) 
K K' ' ' 1Bz ' 

in which the function ~ K'(k-k';e,ie') is given by 
' 

1 { 
1 + 1 

}· (4.72) 
e + ie' - t:/k-k') e - ie' - t:/k-k') 

We will be concerned with the possibly singular behavior of the matrix elements 

of "W near k'=O as this complicates the determination of the 1Bz integration 

over k'. This behavior is directly related to the polarization matrix and the bare 

Coulomb-interaction matrix, through the sequence of (symbolic) relations 

"W=W-v; W=e-1v and E=l-vP. AsP is regular in the direct vicinity ofk'=O, we 

can generally express PK K'(k';ie) around k'=O as 
' 

= A(K,K';ie) + k'·B(K,K';ie) + k'·~(K,K';ie)·k' + O{lk'l 3). 

(4.73) 

For each given combination of K, K' and e the scalar A, the vector B and the 

tensor ~ are independent of k'. Explicit expressions for these quantities can be 

derived by means of a straightforward perturbation technique relating Bloch 

functions ~l,k+k'(r), with k'-..o, to functions ~l,k(r). As this procedure is rather 
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lengthy, complicated and cumbersome, we will not go through it here, but rather 

present the general results to the extent in which they are essentially needed in 

the sequel. A separate further publication on this topic including many details of 

the derivation is anticipated. 

The first important result of the analysis is that we have to distinguish 

between the 11 head'1 element, i.e., the matrix element with K=K'=O; the "wing" 

elements, i.e., those with K=O and K'#O or K#O and K'=O, and the "body" 

elements for which both K and K'#O. One finds the general results 

Head element : A(O,O;iE) = 0; B(O,O;iE) = 0, 

(4.74) 

Wing elements: A(O,K';iE) = A(K,O;iE) = 0. 

This implies that the head and wing elements of PK K'(k';iE) vanish for k'-+0, 
' the head element quadratically and the wing elements linearly. This typical 

behavior of P, combined with the singular behavior of v0 0(k') for k'-+0, i.e., 
' 

v0 0(k') = e2/(E0 Jk'J 2), determines the behavior of'WK K'(k';E) near k'-+0. It is 
' ' straightforward, by employing an algebraic method of matrix inversion, the so-

called method of 11inversion by partitioning" [120,169], to arrive at the following 

formal expression for the elements of 'W: 

A 

"-- o , k' ·F(K,K';iE) 
+ 1 { VK,O O,K + (1 "-- 6 )} (4 75) 

k'·R(iE)·k' Jk'J2 Jk'J -VK,O O,K' ' . 

. 
where WK,K'(k';iE) = £(1) for k'-+0, and where explicit expressions can be given 

for the tensor R and the vector F in terms of the quantities A, B and Q 
introduced in (4.73). In fact (4.75) can be considered as the defining relation 

A A 

for the regular function WK K'(k';iE). In (4.75) k stands for k/JkJ. It can be 
' deduced from the explicit expressions, that for a cubic crystal R is a multiple of 

the unit tensor of rank three. Quite generally, the tensor R and the vector F 
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ay be obtained in an actual calculation by evaluating the inverse of the dielectric 

matrix in few 11 suitable11 k' points, with k'-+0, so that the components of~ and F 

follow from the solution of a linear system of equations. By 11 suitable11 k' points 

we mean that these points should not lead to a dependent system of equations. 

Note incidentally, that the direct evaluation of the inverse of the dielectric 

matrix in many k' points may generally be avoided by employing the symmetry 

relation ( 4.36) which holds also for the inverse of the dielectric matrix. 

From ( 4. 75) we deduce that the head element of W has a 1/ lk' 1
2 

singularity, the wing elements have 1/ I k' I singularities and the body elements 

have no singularities at k'=O. Furthermore, the singularities, except the one in 

the bare Coulomb-term o0 0v0 0(k'), have anisotropic character, i.e., their 
' , 

strength depends on the orientation of k'-+0. 

We want to stress that the singularities of W, as expressed in (4.75), can 

be integrated and pose no fundamental problem but only numerical 

inconvenience. The first inconvenience is that we have to split off the singular 

parts of the integrand such that the integration of these parts can be performed 

without any problem. This can be done, as will be discussed below, in an elegant 

way in which (time-consuming) evaluations of W and d{ can be avoided. The 

second inconvenience has to do with the e' dependence of the integrand in ( 4. 71). 

The integrand may have singularities, depending also on the value of e, for 

certain values of e' in the interval [O,A], where A is somewhat larger than the 

largest imaginary part of all quasi-particle energies taken into account. These 

singularities, as a function of e', may occur for energies e satisfying 

IRe( e)-ILl> 'fg/2 where 'fg:mink{Re(~lc(k)-~lv(k))} and Jl=maxk{Re(~lv(k))} 

+ 'fg/2. In the special case where all one-particle energies are real, e.g., in the 

first iteration step, these singularities only occur at e'=O. We have demonstrated 

in chapter 3 that Mint will have a discontinuity in each such case which is 

compensated precisely, for that matter, by the discontinuity in MRes. 

In view of these inconveniences, the general strategy in performing the 

integrations in ( 4. 71) can be as follows: Split the e' integration into two parts, 

an integral from e'=O to A and an integral from e'=A to infinity. The former is 

performed analytically before the Bz integration is done by, e.g., approximating 
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\1.1 by its value at ~:'=0. Since 1:::. is usually small and \V(ie') is very smooth (note 

moreover that \1.1 is an even function of energy), this will give an excellent 

approximation. The subsequent Bz integration of the resulting function can be 

carried out in the same spirit as the general approach for the remaining e' 

integral, which will be discussed in the sequel. 

We will now consider the second part of the~:' integration in (4.71), i.e., 

the integral from e'=!:::. tom. In this part we perform the Bz integration first and 

after that the e' integration. As we anticipate smooth e' dependence of the 

integrand after Bz integration, we need to calculate the integrand at a very 

restricted number of e' values only, in order to perform the e' integral. 

Let us concentrate on a Brillouin-zone integration in (4.71), i.e., 

in which di}c K'(k-k';e,ie') is a regular function of k-k'. We write 
I 

di}c K'(k-k';e,ie') in the form 
' 

in which aK,K'= Hg_,K'(k;e,ie') and ~.K·=-VkHg_,K·(k;e,ie'). By 

construction, the function I~ K'(k,k';e,ie') I approaches zero for k' ... o, as I k'l 2• 
I 

The scalar aK K' and the three components of the vector PK K' can be easily 
I I 

determined numerically by solving a 4•4 linear system of equations, obtained by 

first calculating Hg_ K'(k-kj;e,ie') at four vertices of a regular tetrahedron of 
I 

small dimensions (so that the effect of higher~rder terms will be negligible) 

centered at k, and then equating the thus~btained values with 

aK K'+PK K'·k/, j=1,2,3,4. 
I I 

We substitute (4.77) in (4.76) and obtain 

I= aK,K' J d3k' \1.1 G-K,G'-K'(k';ie') 
lBz 

99 



+I d
3
k' \If G-K G'-K'(k';ie') ~ K'(k,k';e,ie'). (4.78) 

I l 

1Bz 

The last integral on the right-hand side of (4.78) poses no problem at all, since 

the I k'l 2 behavior of I J6K K'(k1k';e,ie') I 1 for k'-10 makes the whole integrand 
' regular in 1Bz. This integral can be performed by the method of special points. 

The same can be said of the first integral for all body elements, and the second 

integral for both body and wing elements. Hence, the only integrals which 

require closer examination are (we present below only the integral of one type of 

wing elements, since the wing elements of the other type can be treated 

identically): 

11 = I d3k' \If o,o(k';ie'), 
1Bz 

12 =I d
3
k' \If O,G'-K'(k';ie'), 

lBz 

13 = I d
3
k' k' \If o,~(k';ie'). 

1Bz 

( 4.79a) 

(4.79b) 

(4.79c) 

We mention that for crystals with inversion symmetry, such as silicon, the 

property \1-10 0(k';it')=\1-10 0(-k';ie') holds so that 13 vanishes. After substitution 
' ' 

of the form (4.75) for \If G-K G'-K'(k';ie) in (4.79a,b,c) we can write 
' 
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I~=~I dak'--1-+I dak' 1 __ 1_ 
fo lk'l2 k' D(' ') k' lk' j2 1Bz 1Bz · = 1 £ • 

+ I d
3
k' w o,o(k' ;ie'), 

1Bz 
(4.80a) 



k' • F(O, G'-K';ie') 

jk'l 

+ J d3
k' W O,G'-K.(k';ie'), 

1Bz 

+ J d3k' k' w o,o(k';il). 
lBz 

A 

(4.80b) 

(4.80c) 

None of the integrals involving W pose any problem and therefore they all can 

be evaluated with the aid of special-point methods. The first integral in (4.80b) 

and the first two integrals in (4.80c) are seen to vanish because they have 

antisymmetric integrands. Hence, the remaining integrals to be discussed are the 
first and second ones on the right-hand side of (4.80a). As the first of these 

integrals is a special case of the second one, we will only consider the second 
integral in (4.80a) and write it into the form 

J
'lf J21f = 0 de sin(e) 0 dtp Kf..e,tp)ju(e,rp). (4.81) 

Here Kf..e,rp) is the length of the k' vector located on Bz surface in the polar 
A A 

directions e, rp and u(e,rp)=k·~(ie')·k'. In the specific case of a. cubic crystal 
the tensor ~(ie') is a multiple of the unit tensor of rank three, so that the 

integrand in I4 is simply proportional to 1/lk'j 2• The integral (4.81) involves a 
finite integration region as well as well-behaving integrand, free from 
singularities. Hence, the numerical execution of this integral should not pose any 

problem at all. In our final expression for Mg~ o·{k;e), to be presented in 

101 



chapter 5, some of the contributing terms will still contain Bz integrals over 

singular functions. However, in all these cases the integrands, though singular, 

are antisymmetric in the integration variable k', such that these singular parts 

in fact do not contribute. The use of, e.g., a special-point integration technique 

in these cases is perfectly suited to deal with such integrals, as it leads to zero 

contribution to them. This concludes our brief and global discussion of the 

typical problems in the Bz integration present in (4.71). In chapter 5 we will 

discuss the feasibility of calculation of Mgw G'(k;t:), starting from expression 
' (3.25) and (3.26), in which, however, we have carried through a number of 

rearrangements in order to cope, numerically, with the above-mentioned 

singularities. 
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CHAPTERS 

CALCULATIONAL PROSPECTS 

5.0 Introduction 

In this chapter we discuss the question whether a GW-bubble calculation of the 

energy bands in semiconductors is indeed achievable without any further 
approximation. The main obstacle in such a calculation is the determination of 

the self-energy function, which, strictly spoken, has to be performed in a self

consistent way. However, even the first iteration cycle in such a procedure is 

already an enormous task. We claim to be close to the achievement of 

calculating MGW and the energy band structure in the first iteration step. 
Subsequent iteration steps do not pose principally new problems, but will lead to 

an enormous increase of computation time. Fortunately, however, calculations 

based on a plasmon-pole model [64,65] strongly suggest that a first iteration 

cycle is sufficient. Though this phenomenon is not yet fully understood, we 

consider it as realistic to anticipate its correctness. In view of this we will focus 

in what follows on the feasibility of an actual calculation of the GW self-energy 

matrix elements in the first iteration step, starting from our final expressions for 

Mgw G'(k;f) to be given below. The particular form in which the matrix 
' elements will be written makes it indeed possible to judge the feasibility of their 

numerical evaluation. However, there is also a price paid for that: We had to 

decompose the self-energy expression into no less than 32 different contributions, 

many of which need special attention and care. 

Thus, the organization of matters in the present chapter has an 

advantage, but also a disadvantage. To start with the latter, the lengthy 

formulas of section 5.1 will certainly cause a lot of discomfort to those readers 

who are not interested in all the little details. We encourage these readers to 

jump directly to section 5.2 for the discussion of computational aspects. On the 

other hand, the advantage is that complete expressions for Mow matrix 

elements are now for the first time available, in which all singularities, 

peculiarities. and, from the computational point of view, less attractive 
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properties are unraveled and fully exposed. Thls expression will make the 

discussion of feasibility as realistic as possible and, hopefully, it will serve as a 

convenient starting point for further attempts towards ab initio band-structure 

calculations. 

5.1 Basic Expressions 

Starting from expressions (3.25) and (3.26) for Mgw G'(k;c) and taking account 
I 

of all intricacies such as the singular behavior of v0 0(k') for k'-+0, the singular 
' 

behavior of the head and wing elements of W'K K'(k';c) for k'-+0 and the 
I 

singularity in the imaginary energy range (O,iA) of the energy-dependent 

integrand in the expression for Mb n ~~(k; f), we finally come to an expression for 
1 

Mgw G'(k;e) in which matters have been organized in such a way that all 
I 

occurring Bz integrations and summations over reciprocal lattice vectors and 

energy bands can be done numerically. We write MGv, Mint and MRes (see 

( 4. 70)) as follows: 

(5.1) 

(5.3) 

where all contributing terms on the right-hand side can be calculated with the 

aid of simple algorithms. In below we indicate lBz integrals with regular 
integrands by boldface integral signs. Also, 1Bz integrals in which integrands 

occur with singular parts (which parts, in view of our analysis given in section 

4.6 can be shown not to contribute) are indicated with boldface integral signs. 
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The reason why we mark these integrals in a special way is that they can all be 

performed in a relatively simple and inexpensive way, for instance by using a 

special-point method [112-114]. The remaining lBz integrals do have 

singularities, but can, in view of our considerations in section 4.6, be done as 

well in a relatively simple way. We will first give expressions for the functions 

~~b·(k), ~~G~(k;e-,.1), .ACG~a~(k;e-,e-') and ~~G~(k;e-), whereafter the 
respective symbols and functions occurring in them will be defined: 

~~tr<k> = ,a,a·<k> I d3
k' v0,0(k-k'), (5.6) 

lBz 

~~b·(k) = [Vkfa,a·(k)l-J d
3
k' (k'-k)v0,0(k-k'), (5.7) 

lBz 

"'G~~~{k;e-,&) ~I d
3
k' T3~6(k';o).!la~ a·(k,k';e-), (5.10) 

lBz 
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.ACG~&),(k;£,A) ~- .Jircf, G'(k;£)J d
3
k' v0,0(k'), (5.13) 

lBz 

u•( 2'(k· ') -J d3k'WA (O)(k'·' ')"" (k k'· . ') -G,Gi ,t:,t: - 0,0 ,H "'e>G,G' - ,e,It: , (5.15) . 

1Bz 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

x \!vK K'(k';e-~!k-k'))}, 
' 

(5.20) 

(5.21) 
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(5.22) 

I i ~~6(k'j£-~t<k-k'))}, (5.23) 

~<~}(k;e) = E J d3k' { sick-k';p,e)n~ G'-K'(k,k') 
' K'j;O lBz ' 

(5.24) 

~~~l(k;e) 

=-K'~0[Vkh~,G'-K'(k)]· J d3k'k' sl(k-k';p,e)i~~k·(k';E-~t<k-k')), 
r lBz 

(5.26) 

-4~~l(k;e) =-J d3k' sl(k-k';p,e)n~,G·(k,k')v0,0(k'), (5.27) 
lBz 

4!~l(k;e) = J d3k' sl(k-k';p,e)h~,G·(k-k')W~~6ck';e-~t<k-k')), 
lBz 

(5.28) 
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.,{(~~ b 9)(k; e) =I d3k· s- e(k-k';JL,e)n~.a·<k,k')'T~~6<k';f-tt<k-k')). 
lBz 

(5.29) 

Jt~~bP(k;e) = h~,a·(k) I d3k' s-l(k-k';JL,f)'T~~b(k';e-tt<k-k')),(5.30) 
lBz 

Jt~~ b~){k; e) =- h~,a·(k) J d3k' s- l(k-k';JL,e)v0,0(k'), (5.34) 
lBz 

Jt~ ~ b ~ > {k; e) = [Vkh~,a·(k)] ·I d3k' s- l(k-k';JL,e)k'v0,0(k'). (5.35) 
lBz 

In the above expressions E' denotes summation over all K, K' except K=O and 

K'=O, while E" stands for summation over all K and K' except K=O or K'=O. 

The functions occurring in the 32 expressions (5.4)-(5.35) are given by 
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!::.. 
XG-!::.. K G'-K'(k-k';e) = J de' d'G'G-K G'-K'(k-k';e,ie') 

' 0 ' 

= 2 I: h~K G' K'(k-k') arctan{ !::.. }. (5.40) 
l. ' - E- E!k-k') 

I { 
1 + 1 } (5.41) 

e + ie' - E!k-k') e - ie' - E!k-k') ' 

arctan(z) =+arctan( 2x . ) + +ln( X
2
+(y+1)

2 
), 

1-x2-y2 x2+(y-1)2 

with z=x+iy, x,yeiR, z2f:-1 and -7!/2<arctan( 2x )<;.r/2, (5.42) 
1-xLy2 

(5.43) 

"fK( aK), (k'; i e') = 1 
' k'·~(ie')·k' 

6 o k'·F(K,K';ie') 
I { K, 0 O,K' + Q (1- OK 000 K')}, (5.44) 

lk' 12 
I k' I ' ' 

Wi_ 0 f<:.(k';ie') = '«TK K'(k';ie') + oK K' vK' K'(k')- "f t at·(k';ie'), 
' , , ' ' (5.45) 
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+ [Vk~ K'(k;e,ie')]·k', 
' 

(5.46) 

(5.47) 

(5.48) 

This concludes our complete listing of all expressions for the 32 contributions to 

Maw. In the next section we will discuss matters concerning the required 

computation time and storage capacity. 

5.2 Computational Aspects 

All expressions (5.4)-{5.35) contain a k' integration over lBz. Apart from the 

bold-faced integrals, which can best be performed by means of a special-point 

method [112-114], there are also lBz integrals with singular integrands. In these 

latter cases we propose, in accordance with our analysis in section 4.6, to exclude 

a small sphere or (regular) polyhedron around the singularity point and integrate 

analytically in this region. The integration over the remaining part of lBz can 

then be carried out by means of a simple integration method. Namely, in all 

these cases matters have been organized in such a way that the evaluation of the 

integrands is relatively inexpensive. An exception is the case of the singular-type 

integrals (5.30)-{5.35) in which the evaluation of the integrands involves the 

determination of band energies at many points in lBz. This happens to be rather 

expensive, but can be avoided by using a band-structure-interpolation procedure 

such as that of Slater and Koster (170,171), or a procedure based on the 

expansion of energy bands in terms of symmetrized plane waves [114,172). In the 

latter case the expansion coefficients may be obtained either by fitting to 

calculated band energies in a restricted number of points in 1Bz or by utilizing 

the orthonormality property of the symmetrized plane waves so that each 
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expansion coefficient may be written as a Bz integral of the product of the 

energy band with the corresponding symmetrized plane wave. Such integrals can 

be evaluated by means of a special-point method. We mention, however, that 

although the latter method is advocated by Monkhorst and Pack [114], 

Schuurmans et al [172] are less positive as to the usefulness of symmetrized plane 

waves for expanding energy bands in general. 

Quite generally, the evaluation of (5.4)-(5.35) anyhow requires the 

determination of wave-function coefficients Ctlk"(K) and energy eigenvalues 
I 

f5.e(k") in quite a number of k" points in lBz. Furthermore, a number of 

summations over K and K' has to be performed. The :first requirement, however, 

is the evaluation of the integrands (summands) in the respective expressions 

(5.4)-(5.35). Some of these integrands contain functions which do not depend on 

the variables k and £ occurring in Mg~ G'(k;£). As an example, consider the 

function WK K'(k';i£') in (5.14), which can be determined once and for all in a 
' number of (special) k' points and a number of i£' points on the imaginary energy 

axis and subsequently stored. This will result in a substantial reduction of the 

computation time when calculating quasi-particle band structures as this implies 

the evaluation of the self-€D.ergy function Mgw G'(k;E) in various k and E points. 
' 

As will be shown later on, the determination of W is rather costly and therefore 

a repeated evaluation of this function should be avoided. In this respect the 

function W occurring in (5.20) deserves special attention. It depends on k', but 

also on k and E via the energy argument E-15-e(k-k'). We propose in this case to 

calculate WK K'(k';E1) values at a limited number of :fixed mesh points {E;} 
' 

and to use interpolated W quantities between these E;'s in the actual calculation 
of (5.20). 

Examination of the integrands (summands) in (5.4)-(5.35) reveals that 

quite a number of functions occurring in the integrands do depend on k and £. 

Varying these quantities generally requires repeated evaluations of these 

functions. Taking account of all the above considerations it is now in principle 

possible to estimate the feasibility of actually calculating MGW in terms of the 

computation time required for the first iteration cycle. 

111 



Let us assume that all required <il,gjks(K), <il,k-gjks(K), ~jgjks) and 

~jk-gjks) values have been evaluated and stored, where kg, s=1,2, ... , Nsp• are 

special points while gj, j=1,2, ... , Nm are operations of the underlying lattice 

point group. In general, if k is a non-symmetric point, the number of k-gjks 

points will grow rapidly at increasing number of special points k5• For instance, 

if gj denotes the elements of the lattice point group of a cubic lattice, and the 

number of Monkhorst-Pack (MP) special points is equal to 2, we have 32 points 

k-gjks· At 10 MP special points this number is even 256, etc. Furthermore, it 

will be assumed that functions not depending on k and e (we consider 

'WK,K'(gjkg;e-~jk-gjks)) as belonging to this category because of the above
proposed interpolation procedure) have been calculated and stored. In this 

respect we assume in fact to have sufficient storage capacity at our disposal. 

Without this facility, computation times will certainly grow beyond practical 

limits but on the new-generation type computing systems the storage capacity 

should not pose any principle problem. 

With these assumptions we will now estimate the time required for the 

determination of Mg~ G'(k;e) for one combination of k, e, G and G'. Note in 

this connection that determination of the whole MGW matrix at k and e requires 

the knowledge of N~w such matrix elements, where Npw is the number of plane 

waves taken into account. If, however, k has some symmetry, the determination 

of the whole MGW matrix may require appreciably less than N~w times the 

computation time for one Mgw G'(k;e) matrix element. This remark is based on 
' expression (4.69). Subsequently, we have of course to pay attention to the 

computation time required for the above-discussed stored quantities <1, ~. 

'WK,K'(gjkg;ie') and 'WK,K'(gjkg;E1). 

It is not difficult to see that the most time-consuming contributions to 

Mgw G'(k;e) originate from (5.8), (5.14) and (5.20). The reason is that these 
' terms contain a summation both over K and K', which is at least one summation 

more than involved in the remaining contributions. In a calculation with the 

number of plane waves of the order of hundred, the computation time will be 

almost completely determined by these three contributions. Though (5.4) 
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Table I 

Estimate performance of the Burroughs B7900 system 

name 

assignmen 
summation/subtraction 
multiplication 
division 
standard functions 
comparison 

symbol required time x 106 s 

1.0 
1.5 
2.0 
3.5 

45.0 
1.0 

contains only one summation over K, we will nevertheless deal with its 

computation time, as it may be of interest for a Hartree-Fock self-consistent-field 

calculation; (5.5)-( 5. 7) are not considered in this respect as they contain no K 

summation at all. 

In Table I times are given for elementary operations such as 

approximately valid for a Burroughs B7900 computing system, which we will 

take as our reference. Our aim is to express the evaluation time for Mgw a·(k;e) , 
quite generally in terms of these elementary times r 1-r6• Let us denote the 

minimum computation time required to evaluate a function f at fixed values of 

its arguments, subscripts. and superscripts by T{f}. Let furthermore Nu be the 

number of operations in the lattice point group; Lv (Lc) the number of valence 

(conduction) bands; L the total number of bands; Nsp the number of special 

points and N mz the number of distinct points in lBz equivalent to the points in 

a given special point set. According to our best estimates we can write: 

(5.49) 

(5.50) 
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(5.51) 

(5.52) 

in which 

In (5.49)-{5.52) by the symbol ""'" we mean that the relations are asymptotic 
ones, in the sense that they are to be used (only) for Npw of the order of ten or 

larger (in (5.49) 'S means asymptotically smaller). Assuming Ne energy mesh 

points if' needed for the evaluation of the integral running from D. to (I) and 

assuming Nl bands in the [summation for M~:a·(k;£), we come to the estimate 
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(5.58) 

For determining the whole MGW (k;t:) matrix, requiring the determination of 

NpwxNpw matrix elements, the following estimate holds (note that by 

suppressing the subscripts of a matrix in T{.}, the computation time of the 

whole matrix is meant): 

GW 2 GW 
T{M (k;t:)} N ak Npw T{Ma a·(k;t:)} 

I 

- ak N IBz ~w [ T{ .%f. K'(k;t:)} + T{ ~,K'(k;t:,it:')} + T{~,K·(k)}], 

(5.59) 

in which the quantity ak, O<ak~l, takes account of the fact that for symmetric 

k vectors, according to (4.69), only a part of the self-energy matrix elements 

need to be evaluated directly. In case k is a non-symmetric point, ak equals 

unity. Note that the second term on the right-hand side of (5.59) accounts for 

the fact that the matrices .Jill. , ,R and hi are to be evaluated only once (see 

(5.50)-{5.52)). Using, as an example, Nn=48, Nsp=2, Nmz=32, Npw=15, 1=10, 

Lv=4, Ne=lO and Nt=3 we obtain 

GW . T{MG a·(k,t:)} "'57.8 s. , (5.60) 

Determination of the whole MGW(k;t:) matrix then requires for a non-symmetric 

wave vector k about 9.02x103 s, which is about 2.5 hours. If, however, k is 

chosen to be a symmetric point, this time will be enormously reduced. 

Let us now consider the computation times involved in the evaluation of 

«rK,K'(gjksjEi), again as above in the first iteration step. First we deal v.rith 
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the times involved in the evaluation of dl
1
q{K) and ~~q), with q some point in 

1Bz such as gjks or k-gjk5• These quantities are obtained by the solution of an 

eigenvalue problem in which use has been made of ab initio norm conserving 

pseudopotentials such as given in Ref. [173). As is well-known, the latter 

procedure for an Npw•Npw system of equations1 takes approximately T7N~w s per 
q point [174). The parameter 1'7 which, among other things 1 depends on the 

computing capacity of a system, is taken equal to 0.4a10"4 s in our reference 

system. In view of the relatively large number of k-gjks points involved, it is 

necessary to do these evaluations in many points in 1Bz which is very time 

consuming. Incidentally, the calculation of a and ~ quantities in a higher

iteration step will also require the computation of MGW(k-gjks;£) at all these 

k-gjks points. As according to the above estimates the determination of the 

MGW matrix takes at least 2.5 hours (see below (5.60)), it is clear that it will be 

problematic to reach self-consistency. 

As a last estimate let us consider the computation time involved in the 

evaluation of an Npw•Npw screened-interaction matrix at an imaginary energy, 

i.e. T{W(k";ie')}. This time will be representative for T{W(k";Ei)} as well. We 

start by dealing with T{PK K'(k";ie')}. Making use of a special-point method 
I 

and assuming the precalculation of all required terms of the kind (see {4.37)): 

we obtain the following result: 

(5.61) 

If the wave vector k• is a general point in lBz, all elements of the polarization 
matrix have to be calculated independently, so that the computation time of an 

Npw•Npw polarization matrix amounts to (note that in the first iteration cycle 
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the polarization function along the imaginary axis is Hermitian): 

(5.62) 

According to the relation W=(l-vP)-1v and the fact that the involved 

computation time in a matrix inversion procedure amounts asymptotically to 

r8 xN~w• [175], with r8~0.4x 10-4, we obtain 

(5.63) 

If we use the parameters employed in the calculation of (5.60) and choose 

Npw=15, we obtain 

T{W(k";iE')},. 17.4 s. (5.64) 

As it is necessary to compute W at Nsp special points k" and at Ne energy points 

along the imaginary energy axis, the latter computation time will be enhanced 

by a factor NexNsp· Assuming the screened interaction to be a. smooth function 

along the imaginary energy axis we expect that Ne~lO will be sufficient, in 
general. 

In conclusion, we have shown that a. first-principles calculation of the 

three most time consuming contributions to the 15xl5 MGW(k;t:) matrix in the 

first iteration cycle of a. self-consistency procedure at one non-symmetric k point 

and at one t: value takes about 2.5 hours. Taking into account the time required 

to calculate the remaining 29 contributions, we estimate the total evaluation 

time of MGW (k;t) to be about 5 hours. There is however additional computing 

time to be taken into account because of the necessary determinations of C!, ~ 
and W functions. In view of thls we estimate the total evaluation time of 
MGW(k;t) a.t a non-symmetric k point to be about 5.25 hours. In giving this 

estimate, we took Nsp=2, however, whlch might be too optimistic in view of 

required accuracy. On the other hand, if we consider symmetric k points, for 
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instance in the (1,0,0) or (1,1,1) direction, the computation time will 

significantly reduce. Let this reduction be in the order of ten. As we will need 

M0 w(k;e) at a given kin about twenty to thirty ~values, in order to be able to 

solve the quasi-particle equations [62], we estimate that the evaluation of one set 

of energy values ~ik) at one such symmetric k point will take about 14 hours. 

This indicates that a. first-iteration-cycle determination of the band structure is 

within reach for a system in which we restrict ourselves to fifteen plane waves. It 

indicates also that extension to more plane waves is only possible at this 

moment if further refinements in our calculation procedure can be carried 

through, among which, for instance, parallel computing. Extension to a self

consistent way of determining energy band structures is not yet within reach, 

unless the above-used 1'1-1'8 values reduce dramatically, or unless actual first

iteration-cycle calculation indicate that the obtained Mg~ a·(k;~) matrix 

elements appear to show little structure ink. We repeat, however, that pursuing 

self-consistency may not be necessary at all [64,65]. 

We find ourselves in the unfavorable position of not being able to 

produce numerical results for the self-energy function or the quasi-particle band 

structure, not even in a first iteration step within the GW approximation. 

However, several partial results have been obtained and progress is still being 

made. Moreover, valuable preparatory work has been done and presented, while 

a fairly complete exposition has been given in the present chapter of the way in 

which the GW self-energy function is to be calculated. Without the claim of 

having foreseen all practical problems or presenting the ultimate strategy for 

finishing the work, we are convinced that all basic difficulties have been 

recognized and strategies for tackling them have been proposed. 
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APPENDIX A 

DIAGRAMMATIC APPROACH TO THE CALCULATION OF THE 

ONE-PARTICLE GREEN AND SELF-ENERGY FUNCTION 

This appendix summarizes the main features of the representation of the one

particle Green function G and the related self-energy function M for an 

interacting many-particle system in terms of diagrams [176-179). The method 

accounts for all perturbation-expansion terms when expanding the full Green 

function G in terms of the interaction part of the Hamiltonian. The 

diagrammatic technique, originally due to Feynman, enables one to obtain the 

whole perturbation series merely on the basis of topological properties of 

diagrams. The new aspects in this appendix are the inclusion of the z[ [57 ,180] 

and zn[interaction terms and the diagrammatic derivation of Hedin's equations 

[56,181]. Note that, although we are interested in the behavior of particles with 

spin, the material in this appendix mainly deals with spinless particles. We have 

chosen to do so because the results for particles without spin can be 

straightforwardly modified to cover the case of particles with spin. Thus, 

unnecessary complicated notational work is avoided. The above-mentioned 

modifications will be discussed at the end of this appendix. 

We first note that the solution of Dyson's equation (2.10) can 

symbolically be written 

(A.l) 

By introducing the function :M: defined by 

we can, making use of the right-hand side of (A.1), express the Green function as 
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l l l l l l l l 

+ + 

2 2 2 2 2 2 2 

(2.10) (A.l) 

3 
l l l 

3 
3 :' .. ~· z. + .... , + 

4 

4 
2 2 2 

4 

(A.2) (A.3) 

Fig. Al. The diagrammatic notations of equations {2.10}, {A.l), {A.2) and 
{A.9). 

G = GO + GO~GO .. (A.3) 

The function ~ is usually called the improper self-energy, contrary to M which 

often is referred to as the proper self-energy. 
In Fig. A1 a diagrammatic notation of equations (2.10), (A.1) (A.2) and 

(A.3) are given. It should be realized that these diagrammatic equations are 

nothing but formal visualizations of the respective equations and do not at this 

stage contribute to solving G and Min terms of G0 , v, zl and znt 

The important point is now that the general theory [176-179] shows that 

G can be written in the form of a perturbation series in the interaction, each 

term being a multiple space-time integral of products of unperturbed Green 

functions G0 , interaction functions v(1,2)=v(r,-r2)6(tct2), zlr,), znl1,2) 

=znlr1,rz)6(t1-t 2), and a numerical factor to be specified below. Among all 
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possible products of the functions G0 , v, zl and znl only those products are 

allowed which do not fall apart into factors depending on disjoint subsets of the 

space-time variables; these allowed terms are called linked or connected. Of most 

practical importance is the fact that each term of this perturbation series can 

uniquely be represented by diagrams which are commonly referred to as 

Feynman diagrams. 
In a Feynman diagram, different types of functions are represented by 

different types of lines, whereas the arguments of the functions, being space-time 

points, are symbolized by points accompanied by a unique number, j say, 

representing the space-time point rjtj. 

A direct consequence of the specific kind of terms, allowed in the 

perturbation series of G, is the restriction of the diagrams to linked or connected 

ones. A connected or linked diagram is a diagram which does not consist. of 

separate parts. A diagram representing a term with n interactions, either of the 

kind v, zlor znlis called a diagram of nth order. 
The prescription of drawing an nth-order diagram involving 1 v

interactions, m zntnteractions and (n-1-m) zrnteractions is as follows: 

(i) Mark two points 1 and 2 on the paper. These two points specify the 

space-time points in the function G(r1t 11r2t 2). We shall refer to these 

points as external points, as opposed to the other points in the diagram 
which are referred to a.s internal points. 

(ii) Mark l+m pairs of internal points (vertices) on the paper and label them 

3, 3'; 4, 4'; ... , (l+m+2), (l+m+2)'. Join the pairs of points (j,j'), 
j=3,4, ... ,1+2, j'=3',4', ... (1+2)' by v-interaction lines (dotted lines 

··-··-·-·-···· ) and the pairs of points (j,j'), j=l+3, 1+4, ... , (l+m+2), 

j' =(1+3)' ,(1+4)' 1 •••1 (l+m+2)' by zncinteractiOn lineS (thick wiggled 

lines ..llt.IIN- ). Mark (n-1-m) additional points l+m+3, l+m+4, ... , 
n+2 and join to each one a zcinteraction line (thin wiggled line 

.1\JV\1'- ). 

(iii) Draw directed lines, the so-called particle-lines, (thin lines 

j i), representing unperturbed Green functions G0 (i,j), such 

that each of the internal points connected with a v- or zcinteraction line 

has precisely one particle line entering and one leaving. To the points 

connected with a zncinteraction line only one directed line should be 
attached; it is either entering or leaving. 
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1~ 3 3 I 1) 3 3 I :. -~-~~-_I)~ :. U_~ 
2 4 4 1 2 4 4 1 

(a) (b) 

Fig. A2. Examples of two 4th-order Feynman diagrams. {a) A linked or 
connected diagram. (6) An unlinked or disconnected diagram. 

As an example, consider Fig.A2 representing two 4th-order diagrams containing 

all three kinds of interaction v, zl and znt 
In considering the diagrams, we may restrict ourselves to the collection 

of topologically inequivalent diagrams. Topologically equivalent diagrams, which 

can readily be shown to have the same contribution [176], are accounted for by 

just calculating the contribution of one of them and multiplying this 

contribution by the number of equivalent diagrams. Two diagrams are said to be 

topologically equivalent if they can be transformed into one another, irrespective 

of the indices of the internal vertices, by continuous deformations. The latter 

consist of all kinds of rotations, either of the whole or a part of the diagram, 

stretchings, shortenings, etc., provided that none of the lines is cut. For instance, 

the diagrams in Fig.A3 are all topologically equivalent. 

We call a representative of a class of topologically equivalent diagrams, 
the topological structure of the corresponding class. The linked topological 

structures contributing toG, up to the second order, are given in Fig. A4. 

The prescription of calculating the contribution of a given topological structure 

of nth order, with I v-interaction lines, m znflines and (n-1-m) zflines is given 
below: 

(i) Assign to each v line connecting j and j', v(j,j'); to each znlline between 

j and j', -znt(j,j') and to each zlline attached to j, -ztrj)· Each particle 
line directed from j' to j is to be identified with G0(j,j'); in the case j::j', 

it bas to be assumed that t/=t/=tj+77 with 11 an infinitesimal small 
positive number. The latter is meant to guarantee the correct ordering 

of the field operators in the defining relation of G0 • 
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(a) (b) (c) (d) 

Fig. A3. Four 2nd-order diagrams which are topologically equivalent with 
each other. 

{ii) Multiply the contribution o£ all lines in the diagram, and subsequently 

integrate over all internal variables j,j'. 
(iii) Multiply the result obtained in (ii) by a £actor (-i)(-i/t..)n 

"(i)n+l•l(-1)F={-1)Filfr..n. Here F is the number o£ closed loops in the 

diagram. For example, F•s in the diagrams (b3),{ c3) and ( c4) o£ Fig. A4 

are 0, 1 and 2, respectively. 

As an example, we write down the contribution to G o£ the topological 

structures {b 1) and (b2) 

{A.4) 

: t-'o = (-1 ~h-1 J d(3)d(4) G'(1,3)v(3,4)G'(4,4+)G'(3,2) 

= -ib.-1 Jd(3)d3r 4 G0(1,3)v{r3-r4)G0(r4t 3,r4tt)G0(3,2). (A.5) 

We are now able to obtain Gin terms o£ G0 , v, zl and znl' in the form 
o£ a diagrammatic expression, 

+ • • • • (A.6) 
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t ~ t---o t) l 
(al) (bl) (b2) (b3} (b4) 

(~ t-6- t-·Q} t-o-o cto 
(cl) (c2) (c3) (c4) (c5) 

t:D ~ }o t? t:g 
(c6) (c7) (c8) (c9) (clO) 

p ~t~ f~) (~ 
(ell) (cl2} (c13) (c14) (ct5) 

t) . 1--·····0 ~ . t ($ 1'·.\ 
I·······O f) ~ ··----·~ l/ f) (cl~) (c18) rc19) ~ 

(c21) (c22) (c23) (c24) 

Fig. A4. All linked topological structures contributing to G, up to the second 
order; {aJ is a zeroth-order structurej (bJ-(bJ are 1st-order structuresj 
( cJ-1 c~.4) are 2nd:-order structures. 



By identifjing this expression for G with the expression (A.1), one can 

extract an expansion for Min terms of functions G0 , v, zl and znt To this end, 

let us consider a diagram contributing to G with external lines left out, i.e. 

without the particle .lines entering vertex 1 and leaving vertex 2. From (A.3) we 

deduce that this diagram is an ~ diagram; only if it cannot be split up into 

separate diagrams by cutting a single particle-line, it is an M diagram as well 

(cf. (A.1)). In the former case we call this diagram an improper diagram whereas 

in the latter case a proper diagram. The collection of all proper diagrams to be 

obtained in this way, i.e. by leaving out the external lines, gives the complete 

proper self-energy function. As an example take the diagrams and 

,...., • ._, .< ...... .., • The first one is proper and contributes to M while the 

second one is improper; both diagrams contribute to ~. 

Let us now introduce the concept of a skeleton M diagram [182]. Such a 

diagram is defined by demanding that it is an M diagram with the restriction 

that it does not contain any internal M diagram. For example is 

a skeleton diagram, whereas ..... :::"'("~•.:-:. is not, for this contains .. -·-··;,:--·· . .., . It 

will be clear that all diagrams for M may be obtained by drawing all skeleton M 

diagrams and then inserting all possible M parts. This is equivalent with 

[182,183]: 

M ={Contribution of all possible. skeleton M diagrams 

with G0 replaced by G}. (A.7) 

Equation (A.7) is actually an implicit equation forM since G also contains M. 

In considering the skeleton M diagrams we notice that the two first-

order diagrams "''W" and ......... ()-- are special ones, as they 

represent the only local contributions to M·. As the self-energy function, 

introduced in (2;10), is by definition a two-point function, it turns out that in 

these two cases the contributions are to be expressed with the help of 6 functions 

[cf. (A.4) and (A.5)]: 

(A.8) 
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~ ~ ··-·-·-···· .. (} {) f:~·f} 
(al) (a2) (a3} (a4) (bl) 

t
" I" \ ( .~/ 

\.\ 
... / 

(c2) 

q--f} 
(c5) 

/f·-·-·-f} f-····~--. t-·-·~·- t••····0···· f-·~ ( ............. . ..... ........ ········· ~ 

'\.... ·-~----- ----······ ·-········· ~-.:..cr 
(c6) (c7) (c8) (c9) (clO) 

Fig. A5. All skeleton M structures up to the third order in interactions. (aJ
(a~) are 1st-order structures. (bJ, (b~ are 2nd-order and (cJ-(c10} are 9rd
oriler structures. 

Also the first order skeleton diagrams involving the non-local interaction znl is 

special and leads to theM contribution 

(A.lO) 

Note that a thick line in (A.9) represents a G function. 

In Fig.A5 the set of skeleton M structures, with full Green functions, up 

to the third order are presented. 

The prescription of calculating the contributions of the skeleton 
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diagrams of order n> 1 is: 

(i) Assign to each v line connecting j and j', v(j,j'), and to each thick line 

j' ) j directed from j' to j , G(j,j'). 

(ii) Multiply the contributions of all lines in the diagram, and subsequently 

integrate over all internal space-time variables, except the ones 

connected with only one particle-line. 

(iii) Multiply the results obtained in (ii) by the factor (-i)(-i/tt)n 

><{i)2n+l(-1l = (-1l(i/tt)n; F being, as before, the number of closed 

particle loops in the diagram. 

In this way we have a. prescription at our disposal giving the self-energy 

function M in terms of the Green function G and the known functions v, z l and 

znt 

We now want to show (diagrammatically) that the contribution to M 

due to all diagrams (but the first three diagrams in Fig.A5) can also be 

expressed in a. closed analytical form, in terms of G and v. The resulting 

expression, however, has to be supplemented with three additional equations, as 

it turns out to be helpful to introduce three additional functions, i.e. a screened 

interaction function W, a polarization function P and a vertex function r. The 

resulting equations are known as Hedin's equations [56]. A direct derivation of 

the above-mentioned equations, making use of a. non-perturbative method, will 
be given in Appendix B. 

We first introduce the dynamically screened interaction function 

W(1,2), (dashed interaction line) by means of the equation [56,57,181,184] 

1t 1 1 : 
I l 
I I 3 I 
I + ... (A.ll) I 
I 
I I 4 
I I 

2: 2 2! 

where 
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3 

P(3,4) = + --0-' 
4 

(zeroth order in W) 

(first order in W) 

+~+Q) ---

0 QQ 
+ + l .. l + i i (second order in W} 

~Q 
+ (higher order in W}. 

(A.12) 

In analogy with Dyson's equation for the one-particle Green function, we may 

now write this as 

W(1,2) = v(1,2) + Jd(3)d(4) v(1,3)P(3,4)W(4,2), (A.13) 

or symbolically W=v+vPW. The function P(i,j) is called polarization function. 

An alternative way of writing (A.13) is 

W(1,2) = J d(3) e-1(1,3)v(3,2), (A.14) 

thus introducing the inverse dielectric screening function e·1• 

It is now possible to express the self-energy function M completely in 

terms of the contributions of zl! znt• Hartree potential and a series of skeleton 
diagrams in which the dotted v lines have been replaced by dashed W lines. Up 

to the third order in W we now have [61] 
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zt(rv :t('1''2). 1 

·~-·-····-·······(} M(1,2) = -'\fV\1'- + 
2 

(al) (a2) (b) 

+ I ' ) (c) 
(first order in W) 

I \ r \ 

+ / I 
{second order in W} I I 

\ I 

\ ; (d) 

l l I 
\ \ 

'.\ ', \ 
\ 

r 'I r I 
+ I ~~~ + " I + I r I l II / I ., 1 I II " , I I / I' 

\. 2 I "' \. 2 ' 2 

'1 r~~o · r~~~ I r ., 

+ IV, \ + 
" I I ' I 
I .-' 
\. 2 2 ,....,.."""' ·2 .. --

(third orde! in W) 

+ (higher order in W}. (A.15) 

Note incidentally, that the third diagram in (A.15) representing the Hartree 

potential still contains an unscreened interaction line. 

It is observed from (A.15) that all diagrams, except the first three ones, 

can formally be represented by a single diagram with a vertex part: 

M'(1,2) = M(1,2) - 1 
-vvv---

2 :~- ~-····--~·0 
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lf\ 
- :~' 

= idd(3)d(4) W(1+,3)G(1,4)r(4,2;3), 

where the vertex part, accorcling to (A.l5), is formally represented by 

42~. 3 r(4,2;3) .. ~ 

4 
• 3 

2 

4I> + i 3 

21 

+ 

(zeroth order in W) 

(first order in W} 

4[>1 

I 3 I I 
I 

2 I 

(second order in W} 

(higher order in W). 

(A.16) 

(A.17) 

The plus sign of the argument of W on the right-hand side of (A.16) has its 

origin in the fact that otherwise the contribution of the first-order cliagram 
"~-- .... , due to the instantaneous time behavior of the bare Coulomb 

interaction, contained in W, would not be specified. 

From the cliagrammatic structure of the vertex part r in (A.17) it is 

straightforward to obtain the corresponcling analytical expression for the vertex 

function: The zeroth-order contribution to r(4,2;3) is clearly equal to 
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8(4,2)6(4,3) as can be deduced from the M diagram in (A.l5) contributing to 

first order in W. As far as the higher-order contributions to r( 4,2;3) are 

concerned, it should be realized that the structure of the vertex diagrams in 

(A.l7), with the exception of the zeroth-order diagrams in W, is such that each 

r diagram can be obtained by starting from any skeleton diagram contributing 

toM', in which, however, one internal line representing G(k,l) is replaced by two 

particle lines representing G(k,i), G(j,l), and a diagram contributing to r(i,j;3). 

Note that this replacement has to take place in the polarization parts, 

contributing to dashed interaction lines, as well. The elimination from an 

M'(4,2) diagram of subsequently all internal particle lines representing the 

functions G(k,l) is in fact equivalent with taking the junctional derivative 
[54,185] 5.M'(4,2)/ OG{k.l). Therefore, taking the above structural property of the 

vertex part r into account, we conclude to the analytical expression 

r(4,2;3) = 8(4,2) 6(4,3) + Jd(i)d(j)d(k)d(l) fti(&:i)> 

" G(k,i)G(j,l)r{i,j;3). (A.l8) 

Until now, the polarization function P(l,2) is the only function which 

has not yet been given in analytical form. In view of our above definition (A.l7) 

of r it is straightforward, however, to conclude to 

P(1,2) = - k J d(i)d(j) G(1,i)G(j,1 +)r(i,j;2). (A.19) 

This completes our attempt to write M', and therefore M, in closed analytical 

form. We succeeded in doing so by means of equations (A.13), (A.16), (A.18) 

and (A.19) which are Hedin's equations. 

Thus far, we have dealt with spinless particles. We will now discuss the 

required modifications of the above results, if particles with spin are dealt with. 

As stated earlier, the above-presented prescriptions are easily carried over to the 

case of particles with spin. In fact the scalar functions we have been dealing with 

until now, such as the one-particle Green functions, the self-energy function, etc., 

become operators in the spinor space. As a consequence, the ordinary 

multiplications of the functions, as described in the prescriptions for evaluating 
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the one-particle Green and the self-energy function, become matrix 

multiplications. Therefore, in addition to the space-time integrations over the 

coordinates of the internal vertices of diagrams, a summation should be carried 

out over all of the internal spin indices. In the simplest case, in which the 

interparticle interaction is spin independent, all of the above-mentioned matrices 

become multiples of a unit tensor of appropriate rank. For instance, for the one

particle Green function we have Ga.j3(1,2)=6aJ3G(1,2), in which a and {3 are spin 

indices and G{1,2)::Ga,a(1,2), for all a. Note, that for electrons a assumes the 

values :t:!. The spin summations can be carried out directly, resulting in an 

enhancement of the contributions of diagrams containing closed loops, as 

compared to the case of spinless particles, while the contributions of other kind 

of diagrams remain unchanged. For particles with spin s, the above-mentioned 

enhancement factor is (2s+l)F, in which F denotes the number of closed loops in 

the diagram under consideration. For electrons, the latter factor is equal to 2F, 

which has been carried through in the main text. 
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APPENDIXB 

LINEAR-RESPONSE APPROACH TO THE DETERMINATION OF 

THE ONE-PARTICLE GREEN FUNCTION 

AND THE CORRESPONDING SELF-ENERGY FUNCTION 

In this appendix we reformulate Hedin's derivation [56] of the general 

relationship between the one-particle Green function G and the corresponding 

self-energy function M for an interacting system of electrons such as met in, e.g., 

a metal or a semiconductor. This relationship is commonly expressed in terms of 

the four equations (A.13), (A.16), (A.18) and (A.19) which in fact give M as a 
'( 

functional of G. We call these four equations Hedin's equations. In order to fix 

both G an M, these four equations are to be supplemented by either the Green 

function equation (2. 7) or Dyson's equation (2.10). Hedin's derivation is based 

on linear response theory and falls back on an earlier treatment by Martin and 

Schwinger [55]. The advantage over the diagrammatic derivation given in 

appendix A is its non-perturbative character, in the sense that no use is made of 

series expansions in terms of the bare Coulomb interaction function v. This 

advantage is indeed important, as it is well-known that the indi'Vidual terms in a 

series expansion in v turn out to suffer from divergencies [186]. Such divergencies 

are believed not to show up if G and M are expressed in terms of a screened 
interaction function W which appears the natural function to choose if linear 

response theory is applied. 

Hedin's equations together with Dyson's equation (2.10) directly lead to 

the diagrammatic representation of M given in (A.15) involving (dashed) 

screened interaction lines. As mentioned above there are no indications that the 

individual terms in this series expansion in W suffer from divergencies, which is 

therefore an obvious advantage over the similar diagrammatic expansion of M 

given in Fig. A5. Still there is no a priori proof that the expansion (A.15) in 

terms of W converges [91]. In this thesis, however, we strongly suggest this to be 

the case; we even approximate the expression by its very first term (the GW 

term). Though Hedin's derivation as given in his paper [56] is certainly correct, a 

number of intermediate steps are not explicitly commented on. In view of this, 

we considered it worthwhile to present our (rather lengthy) reformulation of 
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Hedin's derivation of the expressions relating G and M. 

We start by introducing an auxiliary time-dependent scalar and local 

potential ¢(r,t) acting on the system under consideration. By studying the 

response of the systems on variations of ¢, we will be able to establish the 

relation between G and M. We may think of¢ as being the potential associated 

with an external (longitudinal) electric field which polarizes the system. The 

potential ¢(r,t) will be assumed to vanish outside the time interval (-T0 ,T0 ) 

where T 0 may have any fixed positive value. 

In accordance with (2.5), we write the Hamiltonian of the system as 

H¢Ct) =I dar ~t(r){ 2!2 
V2 + u(r) + ¢(r,t) 

+ 1/2 I dar' ~t(r') v(r-r') ~r')}~r), (B.l) 

where ~t and ~ are Schrodinger creation and annihilation field operators 

~ulfilling the anticommutation relations (2.2) and where the time dependence of 

H¢ is entirely through the additional time dependent ¢(r,t). Note that, due to 

the presence of ¢(r,t), the Schrodinger and Heisenberg representations of th~ 

Hamiltonian will be different, unlike the situation with ¢=:0, in which case H 
represents a constant of motion. In (B.l), the Hamiltonian is given in the 
Schrodinger representation. 

The time evolution of state vectors is given by the SchrOdinger equation 

(B.2) 

which, after introducing the unitary time-evolution operator A¢(t,t') through 

(B.a) 

can also be expressed as 

(B.4a) 

Ia4 



and 

(B.4b) 

~ 

It can be verified that A¢ satisfies the following relations: 

(B.5a) 

~ ~ ~ 

A¢<t,t')A¢<t',t") = A¢<t,t"), (B.5b) 

{B.5c) 

Heisenberg (i.e., time independent) state vectors will be introduced by 

means of the relation 

~ 

lllt ¢)H = A¢<-T0 ,t) lllt ¢(t)) 5, (B.6) 

implying that in view of (B.5c) the Heisenberg and Schrodinger states coincide 

at t=-T0 • ~ 

Let 0 bE!. a time-independent Schrodinger operator. The Heisenberg 

representation of 0 is given by 

~ ~ 

0 ¢(t) = A¢<-T0 ,t) 0 A¢<t,-T0 ). (B.7) 

~ 

By using (B.4) we readily find that operator 0 ¢(t) satisfies the Heisenberg 

equation of motion 

(B.S) 

where ir¢(t) is obtained from (B.l) by replacing ~t(r) and ~r) by their 
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Heisenberg versions ~~(rt) and ~¢(rt). 
We now introduce a one-particle Green function which we want to 

coincide with G(rt,r't') of (2.4) if ¢=.0. The function 

obviously reduces to (2.4) for ¢=.0. As we will show, it also satisfies a Green

function type of equation of precisely the same form as G(rt,r't') in case of 

vanishing ¢. In _order to derive the ~quation of motion for G ¢' we depart from 

(B.S) in which 0 ¢<t) is replaced by 'I/J¢<rt), use the anticommutation ru1es (2.2), 

which are valid for the Heisenberg field operators at equal times, and mu1tiply 

the members of the obtained equation on the right by ~~(r't'). Subsequent 

applications of the time-ordering operator then leads to 

-i[itt~ + ~ V2 - u(r)- ¢(r,t)] sr{~<fo(rt)~~(r't')} 

+ iJ d3r"dt" v(rt+,r"t") .'1{~~(r"t"•)~¢<r"t")~<fo(rt)~~(r't')} 

= 0. 6(r-r')6{t-t'). (B.10) 

In obtaining {B.lO) we have also used OO(t)/8t=6(t); the superscript "+" 
occurring in (B.lO) over the time symbols are introduced to guarantee the 
correct order of operators. 

In order to obtain the equation of motion for G ¢' we will first prove the 

important identity: 

~ [A¢<T0,-T0)9'{~¢<1)~~(2)}] 

= =k- A¢<T0 ,-T0 )9'{ ~~(3•)~¢<3)~¢(1)~~(2)}, {B.ll) 
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where the symbol 6/6¢1(3) stands for the functional derivative with respect to 

¢(3). The functional derivation 5F .p/6¢1(1) of a functional F ¢1 is defined by 

means of the implicit relation 

(B.12) 

where /(1) is an arbitrary, but smooth and integrable function. For a short 

introduction to the theory of functional derivative as well as for a compendium 

of useful differentiation rules the reader is referred to the literature [54,185,186]. 

Let us, however, consider a simple example in which F .p=/d(1) 4(1)¢(1). By 

applying (B.12) we obtain 

= ~ ~ + U d(1) 4(1)[</1(1)+71/(1)]-J d(1) 4(1)¢(1) J 

= J d(1) 4(1)/(1). 

As this relation holds for every suitable/, we conclude that 5F ¢f6<P(l) = 4(1). In 

the same manner one obtains 6¢1(1)/6</1(2)=6(1,2). 

The equation which results if in (B.4a) ¢1 is varied by an infinitesimal 

amount 6¢ reads 

It can easily be verified by substitution that the solution to (B.13) is given by 

which by using (B.1) can be written 
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,. {J d3rs ~t (ra)l c¢(ra,ta)J.¢<rs)} A ¢<ta,t') 

= -+ J d(3) {0(t-t3)0(t 3-t')-9(t'-t3)0(t3-t)} 

,. A¢< t,t s)~ t (ra).¢<ra)A ¢< t a. n c¢(3), . (B.15) 

so that using (B.5) and (B.7), we obtain for the functional derivative (note that 

we change variables: t..;tll t'..;t 2) 

(B.16) 

This general relation is used, together with the general expression (B. 7) for 

Heisenberg operators, to establish the relation 

A similar relation for ~~(1) can be obtained by taking the Hermitian 

conjugation of (B.17). If we now consider the left-hand side of (B.ll) in which 

A¢(T0,-T0)~¢(1)~~(2) has to be differentiated with respect to ¢(3), it is, using 

the chain ru1e of differentiation [54,187] together with (B.16) and (B.17), an easy 

task to obtain the identity (B.ll). ~ 

We proceed by multiplying (B.10) on the left by A¢<T0 ,-T0 ) and by 

taking the expectation value of the equation in the ground state I '~~N)H. Using 

the definition (B.9), we straightforwardly arrive at 
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• 8 1i. 2 2 
n<'liN 1A¢(To,-To) I 'l!N)R [ili. Ott+ -rni v 1 - u(rt)- ¢(1)] G q,{1,2) 

-i1i. J d(3) v(P,3) ~ {n('~'NIAq,(T0,-T0) I'~'N)H G¢(1,2)} 

. 
= 1i.n('l1NIAq,{To,-T0 )I'l1N)R 6(1,2). (B.18) 

The functional derivative occurring in (B.18) can be shown, again using (B.16), 

to equal 

where the first term on the right-hand side explicitly takes apart the 

contribution which factorizes with G ¢(1,2). As the explicit external-potential 

term ¢(1)G q,{1,2) on the left-hand side of (B.18) is precisely of the same form, it 

is natural to introduce a one-electron response potential function in the following 

way: 

such that the equation of motion for G q,{1,2) reduces to the form 

-ili. J d(3) v(1+,3) ~ Gq,{1,2) = 1i. 6(1,2). (B.21) 

Note that, 11 q,{l) reduces to the well-known Hartree potential if ¢=.0. This 

implies that the local (Hartree) part of the interaction is now accounted for in 

11 ¢(1). In accordance with the procedure followed in (2.8), we finally define a 

self-energy function M ¢ through the relation 
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J d{3) M¢(1,3)G l3,2) = i I d(3) v(1 +,3) ~ G l1,2), (B.22) 

such that (B.21) is alternatively written 

(B.23) 

Note that for ¢r:=O, the above M¢ coincides with theM' of (A.16), being equal to 

the M of (A.15) without the first three diagrams. In the main text we reserved 

the notation M, without prime, to generally indicate the self--energy including zf! 

znl and Hartree contributions. 

In accordance with the procedure followed in section 2.1 we may also 

introduce the unperturbed Green function G ¢• fulfilling the equation 

It can then again be shown (see the main text below (2.9)), that Gt/J fulfills an 

inhomogeneous integral equation of the second kind (Dyson's equation) 

which is symbolically written 

(B.26) 

The functional derivative occurring in (B.22), can alternatively be written 

oG {1,2) I oG- 1(4,5) 
0 $(3) = - d{ 4)d(5) G l1,4) ~¢(3) G l5,2), (B.27) 

which straightforwardly follows from the definition of the inverse of a two-point 

functional, being given by 
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J d{3) F ¢<1,3)F J/(3,2) = J d{3) F ¢ 1(1,3) F ¢(3,2) = 6{1,2), (B.28) 

or symbolically F ¢F¢1=F¢1F ¢=1. Namely, taking the functional derivative of 

{B.28) with respect to¢ directly leads to 6F¢f6¢ = -F¢{6F¢lf6¢}F¢ which 
proves (B.27). Substitution of (B.27) in (B.22) and subsequent "multiplication" 

of the resulting equation on the right by G ¢1 yields 

. 6G • 1(4,2) 
M~(1,2) = -iJ d(3)d(4) v(1 *,3)G ¢<1,4) ~~3) . (B.29) 

The final step in deriving Hedin's equations will now be to eliminate the 

functional derivative of G¢1 with respect to¢ and to replace it by an expression 

involving a functional derivative of M ~ with respect to G ¢· To this end, we first 

introduce the inverse of a dielectric response function [188,189): 

(B.30) 

.. being the 11 ratio11 of the variation of the response function v ¢(1) and that of the 

stimulating function ¢(2). In view of the definition of v ¢ in (B.20), we can 
express e·1 as 

6G (3,3+) 
E¢1(1,2) = 6(1,2) -i J d(3) v(1 +,3) ~¢(2) 

where the last equality is due to (B.27). The leading idea in all this is that two 

electrons in the system will not interact with each other via the bare Coulomb 

interaction v but rather via the modified (screened) interaction: 

W ¢(1,2) = J d(3) E¢1(1,3)v(3,2) 

= v(1,2) + i J d(3)d( 4)d(5)d(6) v(1 +,4)G ¢( 4,5) 
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8G- t(s,6•) 
" ~¢(a) G if>(6,4 +)v(3,2). (B.32) 

Using the chain rule of differentiation 

a I o;$~~~ 8 ~= d(2) ?I' (B.33) 

and introducing a polarization function P if> by means of 

(B.34) 

we straightforwardly rewrite (B.32) in the form 

W if>(1,2) = v(1,2) +I d(3)d(4) v(l +,3)Pl3,4)W l4,2), (B.35) 

which is one of Hedin's equations (originally due to Hubbard [57]). If we define 

the so-called vertex function r if> by means of 

(B.36) 

equation (B.34) can also be written in the form (we change names of variables) 

which is another equation of Hedin. Application of the chain rule (B.33) and use 

of (B.30), (B.32) and (B.36), when applied to (B.29) gives 
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what is again one of Hedin's equations. 

Finally, we derive an equation for r ¢in terms of a functional derivative 

of M' with respect to G. This is achieved by first multiplying (B.23) on the right 

by G¢1(2,3) and integrating with respect to 2. This gives 

h G ¢;1(1,3) = [ih ftt + ;~ V1
2 - u(r1)- v ¢(1)] 6{1,3)-11. M¢(1,3). 

(B.39) 

Differentiating this equation with respect to v ¢(2) gives (use (B.36)) 

6M¢(1,3) 
r ¢(1,3;2) = 6{1,3)5(1,2) + 11. 6 "¢(2) 

By applying the chain rule of differentiation for a two-point function: 

and by writing in accordance with (B.27) and (B.36): 

60¢(4,5) J 5G;p1(6,7) 
h 6 v ¢<2J =- d(6)d(7) G ¢(4,6) h 0 v ¢l2J G ¢(7,5) 

(B.40) 

(B.41) 

= J d( 6)d(7) G ¢( 4,6)r ¢<6, 7;2)G ¢<7 ,5), (B.42) 

we may rewrite (B.40) in the form 

J 
6M¢(1,3) 

r ¢<1,3;2) = 6{1,3)6{1,2) + d(4)d(5)d(7) bG ¢<4,5) 

x o¢(4,6)G¢<7,5)r ¢<6,7;2), (B.43) 

which is the last one of the Hedin equations. 

The above-derived Hedin equations, (B.35), (B.37), (B.38) and (B.43) 
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indeed coincide for ¢:=0 with equations (A.13), (A.19), (A.16) and (A.18), 

respectively; they can as such be taken as the expressions generating the 

diagrammatic expansions for M', r and P in terms of W, as given in (A.15), 

(A.17) and (A.12). If subsequently M', rand Pare all approximated by taking 

only the lowest-order expansion term in W, i.e., the zeroth-order term for P and 

r, and the first-order term for M', we obtain the so-called bubble GW scheme, 

adopted in this thesis. It remains to be shown, however, whether this simplifying 

procedure, adopted by many authors [37,62-{iS], is a valid procedure indeed. 

Until now its 11 justification11 is merely based on a few preliminary apparent 

successes in predicting energy band structures of some semiconducting 

crystalline materials [37,62-{iS]. 

To conclude this appendix, it is useful, in view of its application in 

chapter 3, to introduce the time-ordered density--density correlation function 

[153], (cf. (B.9)): 

. 
where p ~(1) stands for the density--deviation (Heisenberg) operator 

(B.45) 

It can be verified, using (B.ll) and (B.17) and differentiating by parts, that 

6G~(1,1•) 1 
¢(2) = T D ¢<1,2). (B.46) 

This enables us to rewrite the first line of (B.31) in the form 

EJ/(1,2) = 6{1,2) -{-J d(3) v(1 •,3)D ¢(3,2). (B.47) 
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Equation (B.47) expresses the well-known simple relationship between the 
inverse dielectric function and the density-density correlation function. This 
relationship is used for ¢:0, in chapter 3. 
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SUMMARY 

The central theme in this thesis is the ab initio calculation of electron energies in 

a semiconductor. The fact that the commonly used effective-potential methods, 

such as the Hartree, Hartree-Fock and Kohn-Sham (local) density functional 

methods invariably lead to wrong predictions, indicates that there is a serious 

problem. Indeed, these methods do not seem to take into account the effect of 

electron-electron interaction in a proper way. Therefore, we return to the 

rigorous theory and reconsider the incorporation of the mutual electron 

interaction. 

Our framework is the theory of Green functions. In this theory the 

Fourier transform with respect to time of the one-particle Green function G 

plays an essential role. It can formally be shown that the excitation energies of a 

system show up as the singularities of this function in the energy domain. We 

introduce a representation of G in terms of wave functions which satisfy 

Schrodinger-like wave equations and thus can be thought of as representing 

particle-like entities. These entities are referred to as quasi-particles and their 
11energies11

, being the simple poles in the above-mentioned representation, are 

given by the corresponding eigenvalues in the equations. 

A crucial role in our considerations is played by the self-energy function 
M, which relates the one-particle Green function of an unperturbed system to 

that of the interacting system through the Dyson equation and which acts as an 

energy-dependent non-local potential in the above-mentioned quasi-particle wave 

equations. The non-Hermiticity of this function gives rise to complex-valued 

quasi-particle 11energies", that is, to quasi-particles with finite lifetimes. 

Each effective-potential method can uniquely be characterized in terms 

of its corresponding approximated Hermitian self-energy function. In this thesis 

we concentrate on a more general non-Hermitian approximation of M, which is 

called the GW self-energy function. In view of its recent successes in energy band 

calculations of semiconductors, the study of the GW scheme takes a central 

position in this thesis. We have, among other things, thoroughly investigated the 

analytic behavior of the GW self-energy function in the complex energy plane, 

enabling us to justify a Taylor-series expansion of M, which will very likely 

facilitate its numerical evaluation. Moreover, a number of further 
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approximations within the framework of GW are discussed which may be of 

practical relevance in actual calculations. 

As the name suggests, the self-energy function in the GW scheme asks 

for the determination of both the one-particle Green function G of the 

interacting system and the dynamically screened Coulomb interaction function 

W. The latter function, in contrast to the bare Coulomb interaction, takes 

account of the polarization effects in the interacting system. These effects are 

described by means of the polarization function P whose study in this thesis is 

restricted to the simplest approximation, namely the so-called bubble 

approximation. In this approximation one assumes no interaction between the 

members of excited electron-hole pairs. Besides the presentation of a number of 

general expressions and properties concerning both the bubble polarization 

function and the exact screened interaction function, two new methods for the 
determination of P are introduced and numerically tested. These methods 

substantially facilitate the numerical evaluation of P and W at real energies. 

It is well-known that the bare Coulomb interaction, due to its long 

range, is responsible for many inconveniences in the treatment of interacting 

systems. In our case, the bare Coulomb interaction gives rise to singular 

behavior in the wave-vector dependence of a number of plane-wave matrix 

elements of the dynamically screened interaction matrix. As the evaluation of M 

involves a Brillouin zone integration of an expression containing these matrix 

elements, a number of precautionary measures must be taken in order to make 

numerical integration possible. Based on a thorough analysis of these matrix 

elements, we propose a decomposition of the expression for the self-energy 

function in such a way that the above-mentioned Brillouin zone integration can 

be performed numerically, either by a special-point method or by some more 

common numerical method. 

Finally, we give an analysis of the numerical feasibility of the proposed 

calculation strategy. We conclude that an evaluation of M and the related quasi

particle spectrum within a GW scheme, in which no further approximations are 

carried through, is very time consuming. There will be no problem in this 

evaluation if we restrict ourselves to the first iteration step of the required self

consistency procedure, at least if the number of plane waves in which the quasi

particle wave functions are expanded is not too large. Subsequent iteration steps 

can only be carried out if it turns out that M depends smoothly on its wave-
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vector argument. This conclusion is based on the computing power of an 

ordinary computing system without facilities for vector and parallel computing. 

The prospects are much better if such facilities can be used. It is a lucky 

circumstance in this connection that recent studies on simplified GW schemes 

seem to indicate that there is no need to go beyond the first iteration step. In 

view of all this, we conclude that an ab initio ( GW) calculation of electron 

energies in a semiconductor is indeed within reach. 
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SAMENV A 'ITIN G 

Bet centrale thema in dit proefschrift is het model-vrij berekenen van elektron

energieen in halfgeleiders. Bet feit dat de gangbare effectieve-potentiaal 

methoden, zoals die volgens Bartree en Bartree-Fock, alsmede de methode van 

de (locale) dichtheidsfunctionaal volgens Kohnen Sham, zonder uitzondering tot 

foutieve voorspellingen leiden, laat zien dat hier sprake is van een ernstig 

probleem. Inderdaad blijkt geen van deze methoden het effect van de 

wisselwerking tussen elektronen op behoorlijke wijze in rekening te berengen. 

Derhalve keren wij terug naar de rigoureuze theorie ten einde het in rekening 

brengen van deze wisselwerking opnieuw te bezien. 

Ons raamwerk is de theorie van de Green-functies. In deze theorie speelt 

de naar de tijd Fourier-getransformeerde eendeeltje Greense functie G een 

essentiel.e rol. Bet kan formeel worden aangetoond dat de excitatie-energieen van 

een systeem zich manifesteren als singulariteiten van deze functie in het energie

domein. Wij introduceren een representatie van G in termen van golffuncties die 

aan vergelijkingen van het Schrodinger-type voldoen en derhalve deeltjesachtige 

entiteiten geacht kunnen worden te representeren. Naar deze entiteiten wordt 

verwezen als quasi-deeltjes, en hun "energieen", zijnde de enkelvoudige polen van 

de bovengenoemde representatie, zijn de betreffende eigenwaarden van de 

vergelijkingen. 

Een cruciale rol in onze beschouwingen wordt gespeeld door de 

zelfenergie-functie M die de eendeeltje Green-functie van een ongestoord systeem 

met die van het wisselwerkend systeem, via de vergelijking van Dyson, aan 

elkaar relateert en als een energie-afhankeliJ"ke, niet-lokale potentiaal in de 

bovengenoemde quasideeltjes-golfvergeliJ"kingen voorkomt. De niet-Bermiticiteit 

van deze functie geeft aanleiding tot complexwaa.rdige "energieen", dat wil 

zeggen, tot quasideeltjes met eindige levensduur. 

Elke effectieve-potentiaal methode kan op unieke wijze worden 

gekarakteriseerd in termen van een daaraan gerelateerde Bermitische zelfenergie

functie. In dit proefschrift concentreren wij ons op een meer algemene, niet

Bermitische benadering van M, die de GW-zelfenergie-functie wordt genoemd. In 

het licht van recente successen die zijn behaald in de bandstructuurberekeningen 

van halfgeleiders, krijgt de benadering van het GW-schema een centrale plaats in 
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dit proefschrift. Wij hebben ondermeer een grondige studie gemaakt van het 

analytische gedrag van de GW...zelfenergie in het complexe energie-vlak, 

waardoor het nu mogelijk is om een Taylor-ontwikkeling van M te 

rechtvaardigen, die wellicht de berekening van M aanzienlijk zal 

vergemakelijken. Tevens worden een aantal verdere benaderingen binnen het 

raamwerk van GW besproken die van praktisch nut kunnen zijn in een 

daadwerkeliJ"ke berekening. 

Zoals de naam suggereert, vraagt de zelfenergie-functie in het GW

schema om de berekening van zowel de eendeeltje Green-functie G van het 

wisselwerkende systeem als van de dynamisch afgeschermde Coulomb-interactie 

W. De laatstgenoemde functie houdt, in tegenstelling tot de niet-afgeschermde 

Coulomb-interactie, rekening met de polarisatie-effecten in het wisselwerkende 

systeem. Deze effecten worden beschreven door middel van de polarisatie-functie 

P, waarvan de studie in dit proefschrift wordt beperkt tot de meest eenvoudige 

benadering, de zogenaamde "bubble"-benadering. In deze benadering 

veronderstelt men dat bij elektron-gat paar-creatie geen wisselwerking optreedt 

tussen het elektron en het gat. Naast de presentatie van een aantal algemene 

uitdrukkingen en eigenschappen van zowel de 11bubble11-polarisatie-functie als 

van de exacte afgeschermde interactie-functie, worden twee nieuwe methoden ter 

berekening van P geintroduceerd en op numerieke wijze getoetst. Deze methoden 

vergemakkeliJ"ken het berekenen van P en W voor reele energieen. 

Ret is bekend dat de naakte Coulomb-interactie, vanwege haar lange 

dracht, verantwoordelijk is voor veel ongemak in de behandeling van 

wisselwerkende systemen. In ons geval geeft de naakte Coulomb-interactie 

aanleiding tot singulier gedrag in de golfvector-aihankelijkheid van een aantal 

vlakke-golf-matrixelementen van de dynarnisch afgeschermde interactie. Daar bij 

de berekening van M een Brillouin...zone-integratie moet worden uitgevoerd van 

een uitdrukking die deze matrixelementen bevat, dient een aantal 

voorzorgsmaatregelen genomen te worden om numerieke integratie mogelijk te 

maken. Uitgaande van een grondige analyse van deze matrixelementen, stellen 

wij een zodanige decompositie van de zelfenergie-uitdrukking voor, dat de 

bovengenoemde Brillouin-zone-integratie toch op numerieke wijze uitgevoerd kan 

worden, met behulp van hetzij een speciale-punten methode, hetzij een meer 

gewone methode. 

Tot slot geven wij een analyse van de numerieke haalbaarheid van de 
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voorgestelde rekenkundige strategie. Geconcludeerd wordt . dat een berekening 

van M en het daaraan gerelateerde quasideeltjes;;pectrum binnen het GW

raamwerk zonder verdere benaderingen zeer tijdrovend is. Er zullen zich geen 

problemen voordoen zolang we ons beperken tot de eerste iteratiestap van de 

vereiste zelfconsistente-procedure, ten minste, als het aantal vlakke golven 

waarin de quasideeltjes-golffuncties worden ontwikkeld Diet te groot is. De 

iteratiestappen die daarna volgen, kunnen aileen worden uitgevoerd als zal 

blijken dat M op voldoend vloeiende wijze van haar golfvectorargument afhangt. 

Deze conclusie is gebaseerd op het rekenvermogen van een normale computer die 

Diet geschikt is voor vectoriele of parallelle berekeningen. De vooruitzichten 

worden beter als dergeliJ'ke opties wei aanwezig zijn. Het is een gelukkige 

omstandigheid dat recente studies in het kader van vereenvoudigde GW-schemas 

erop lijken te wijzen dat het Diet nodig is verder te gaan dan de eerste 

iteratiestap. In het Iicht hiervan concluderen wij dat een modelvrije GW

berekening van elektron-energieen in een halfgeleider wel degelijk binnen bereik 

ligt. 
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1. Het door Hubbard aangegeven voorschrift om uitgaande van een expressie 

behorende bij een polarisatie-diagram de bijdrage van het daaraan 

geassocieerde "exchange conjugate" diagram te bepalen, schendt de wet van 

behoud van impuls. Voorts is onduidelijk op welke manier hij de 

"gemiddelde interactie" voor processen rondom het Fermi oppervlak 

uitrekent. 

J. Hubbard, Proc. Roy. Soc. A243, 336 (1958). 

2. Semi~mpirische clusterberekeningen [1,2] leveren geen wezenlijke bijdrage 

tot de studie van defecten in halfgeleiders. 

[1] P. Deak, L.C. Snyder, R. Singh and J. Corbett, Phys. Rev. B36, 9612 (1987). 
[2) P. Deak and L.C. Snyder, Phys. Rev. B36, 9619 {1987). 

3. De door Godby, Schluter en Sham [1] afgeleide uitdrukking voor de zelf

energie-functie is onvolledig [2]. De invloed van de weggelaten term op de 

bandstructuur van quasi-deeltjes is onduidelijk en dient nader onderzocht te 

worden. 

[1] R.W. Godby, M. Schluter and L.J. Sham, Phys. Rev. B37, 10159 (1988). 
(2] Dit proefschrift, hoofdstuk 3. 

4. De door Mattuck aangegeven diagrammatische ontwikkeling ter bepaling 

van de zelf~nergiefunctie behorend bij een systeem wisselwerkende deeltjes 

bevat een principiele onjuistheid met als gevolg dat er te veel diagrammen 
in rekening worden gebracht. 

R. D. Mattuck, A Guide to Feynman Diagram8 in tlte Many-Body Problem, McGraw
Hill, New York, 1967, pp. 170-172. 

5. De veelgebruikte benaming 11Random Phase Approximation", afgekort 

RP A, van Pines en Bohm [1,2], die een bepaalde benadering van de 

polarisatie-iunctie van uniforme elektron-gassen voorstelt, is misleidend als 

het om kristallen gaat. Het is dan beter om in plaats van de bovengenoemde 

benarning de aanduiding "Bubble Approximation" te gebruiken. 

[1] D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952). 
[2] J.M, Ziman, Elements of Advanced Quantum Theo'7f, Ca.mbridge University 

Press, Ca.mbridge, 1969, pp. 158-162. 
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6. De door Gygi en Baldereschi [1] voorgestelde methode ter bepaling van de 

zelf-€nergiefunctie met behulp van "speciale punten11 doet geen recht aan 

het anisotrope karakter van bepaalde integranden in integralen over de 

Brillouin-zone. Het is goed mogelijk de methode in dit opzicht aan te passen 

[2]. 

[1) E. Gygi and A. Baldereschi, Phya. Rev. B34, 4405 (1986). 
[2) Dit proefschrift, hoofdstukken 4 en 5. 

7. De door Pratt voorgestelde methode om tot de juiste bandstructuur van 

halfgeleiders te komen met behulp van een effectieve potentiaal, berust op 

een onjuiste veronderstelling. 

G.W. Pratt, Jr., Phys. Rev. 118, 462 (1960). 

8. De bevindingen van Hawrylak, Eliasson en Quinn aangaande het 

kwalitatieve gedrag van de zelf-€nergie, de effectieve massa en de levensduur 

van quasi-deeltjes in een gelaagde structuur zijn pas dan interessant als kan 

worden aangetoond dat deze bevindingen niet een gevolg zijn van de door 

hen veronderstelde, maar niet gerechtvaardigde, wisselwerking tussen de 

deeltjes. 

P. Hawrylak, G. Elia.sson and J.J. Quinn, Phya. Rev. B37, 10187 (1987). 

9. Beschouw een in een richting (y-richting) oneindig uitgestrekte starre plaat 

ter breedte 2a (in de x-richting), trillend met frequentie wen amplitude vP1 
op een lokaal reagerende, instantane, tijdinvariante, lineaire, isotrope, 

homogene vloeistof met massadichtheid p en compressiemodulus ,... Het 

drukprofiel onder de plaat laat zich dan verrassend nauwkeurig beschrijven 

door p(x;w)=C(ka)iwpavp1(1-x2fa2)112 waarin C(ka) een bekende functie is 

van ka, k=wJiifit en ide imaginaire eenheid voorstelt, als tenminste voldaan 

is aan de eis ka< 1. 

10. Het door W. Oevel gesuggereerde verband tussen hoekvariabelen en 

zogenaamde "master symmetries" is in de meeste van zijn voorbeelden niet 

aanwezig. 

2 

W. Oevel, Topic1 in Soliton Theory and Ezactl'll Solvable Nonlinear Equo.tion1, World 
Sdentifk Pub!., Singapore, 1987, pp. 108-124. 



11. In tegenstelling tot wat algemeen werd aangenomen [1], kan de dynamische 

dielectrische functie van een halfgeleider met success worden berekend door 

gebruik te maken van de "speciale punten"-methode [2]. 

(1] A. Balderesc:hi and E. Tosatti, Phys. Rev. B17, 4710 (1978). 
(2] Dit proefschrift, hoofdstuk 4. 

12. De uitdrukking voor het verschil tussen de exacte bandsprong in een 

halfgeleider en het in de LDA methode daarvoor te verkrijgen resultaat kan 

eenvoudig worden bepaald door gebruik te maken van Brillouin-Wigner of 

R.ayleigh-Schrodinger storingstheorie [1,2]. Dit maakt (een deel van) een 

aantal bestaande, dikwijls langdradige, artikelen (3-5] in feite overbodig. 

[1] 

[2) 
[3) 
[4) 

[5) 

N.H. March, W.H. Young and S. Sampanthar, The Many-Body Problem in 
Quantum Mechanics, Cambridge University Press, Cambridge, 1967, pp.16-19. 
W. von der Linden, and P. Horsch, Phys. Rev. B37, 8351 (1988). 
L.J. Sham, Phys. Rev. B32, 3876 (1985). 
W. Hanke, N. Meskini and H. Weiler, Electronic Structure, Dynamic1, and 
Quantum Structural Propertie. of Condensed Matter, Plenum Press, New York, 
1985, pp. 113-156. 
B. Farid, D. Lenstra and W. van Haeringen, Derivation of an Ezpru1ion for the 
Energy Gap in e Semiconductor, Technische Universiteit Eindhoven, Faculteit 
der Technische Natuurkunde, Internal Report 1986-4. 

13. Door een deel van de opvoeding van kinderen door grootouders te Iaten 

verzorgen, wordt Diet aileen geprofiteerd van een opvoedkundig voordeel, 

maar worden tevens de gelijke kansen op maatschappelijke ontplooiing van 

man en vrouw bevorderd. 

14. Het "sport"-onderdeel boksen dient uit de lijst van officiele sporten 

verwijderd te worden. 
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