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CHAPTER1

INTRODUCTION

1.1 Historical Background

According to quantum theory, the physical properties of a system such as a solid
can in principle be obtained from its wave function which, in a non-relativistic
approximation, satisfies the Schrédinger wave equation. Observable quantities
are then obtained by taking the expectation values of the corresponding
operators in the state of the system. The wave function corresponding to a state
depends on the coordinates of all composing particles.

From this point of view, it should be sufficient to know the constituent
elements of the system and the kind of interaction between them in order to
deduce all the properties of the system. It is well-known that solving the
Schrodinger equation for a many-particle system is impossible if interparticle
interaction is completely accounted for. In fact, due to the interaction, we do not
succeed in separating the Schrédinger equation into independent equations for
each particle. Strictly speaking, it is only the system as a whole which can be
considered an individual entity. In view of these considerations, it is surprising
that one-particle schemes have appeared in which several physical properties of
interacting many-electron systems could be adequately dealt with.

Soon after its successful application in describing the energy spectrum of
the hydrogen atom in 1926, the Schrddinger equation found application in
clarifying the spectra of more complex atoms. In 1928, Hartree [1] suggested, on
the basis of plausibility, that the behavior of each electron in a many-electron
system may be described by means of a wave function satisfying a Schridinger
equation (Hartree equation) in which the effect of all other electrons as well as
the charged nuclei are taken into account by means of a classical electrostatic
field. In 1930 both Fock [2] and Slater [3] suggested the use of many-electron
wave functions of the determinant type in order to take proper account of the
antisymmetry requirement for spin 4 particles. In combination with a variational
principle, this led to the well-known Hartree-Fock equations [4,5]. Hartree-Fock
equations distinguish themselves from Hartree equations by an extra non-



classical term containing an exchange interaction emergy. This term can be
shown to have the effect of a repulsive potential preventing electrons of equal
spin from approaching each other [6,7]. The problem with the Hartree or
Hartree-Fock equations for real systems is that a priori knowledge of the one-
electron wave functions or at least the electron density is essential. This problem
was circumvented in the self-consistent field method, in which first some initial
guess concerning the potential felt by an individual electron is made whereaiter
the problem is solved selfconsistently.

Until two decades ago the activity of physicists involved in band
structure calculations of solids was focused on the construction of appropriate
"guess" potentials, so that a reliable band structure could be calculated without
having to carry through the self-consistency procedure. The main reason for this
kind of pragmatic approach should be found in the restricied computational
possibilities. A full calculation within the Hartree-Fock scheme for a crystal is a
task which is as yet unattainable; only in the last fifteen years have some
Hartree-Fock kind of calculations been done in combination with the local-basis-
function method (LBF) [8], the linear combination of atomic orbitals {LCAO)
[9,10,11], the local-density approximation (LDA) [12] and the muffin-tin-orbital
method [13], to name a few. ‘

In 1964, Hohenberg and Kohn (HK) [14] introduced a theorem which
forms the foundation of what is now known as the density-functional theory
(DFT). This theorem states that the total energy of a many-electron system in
some external potential is the minimum value of an energy functional of the
electron density, which apart from a classical electrostatic contribution due fo
the external potential, is a universal functional. The minimum value of this
energy functional corresponds to the ezact electron density of the system. The
explicit form of the universal functional was, and still is, unknown. Nevertheless,
Kohn and Sham in 1965 [15], proposed a reasonable Ansatz concerning the
energy functional to derive oneelectron wave equations similar to the HF
equations. These equations are referred to as Kohn-Sham (KS) equations. In
principle, the effective potential present in these equations is a non-local
functional of the electron density, but in the local density approximation one
assumes a local dependence on density. Due to the known and simple forms of
the functionals in this approximation, the self-consistent calculation of the one-
electron wave functions in the LDA scheme is equally simple as in the Hartree



scheme; it has the advantage, however, that both exchange and correlation
effects have been taken into account.

The KS-LDA one-electron scheme has proved its value in accurate
calculation of ground-state properties of atoms and molecules [16], metals [17],
semiconductors [18-20], surfaces [21] and defects [22]. However, the electron band
structure in semiconductors as calculated in the K8 scheme, shows energy gaps
which are too small. The underestimation of gap energies is sometimes as large
as fifty percent of the experimental values. This is completely in contrast with
the result of HF calculations, which yield band gaps that are too large, the
overestimation varying from two to five times the actual values [11-13,23-26].
Despite the lack of any theoretical justification as to the validity of assuming the
eigenvalues of the KS equations to be the one-particle excitation spectrum of a
many-electron system, the failure of LDA in correctly describing the energy gap
structures in semiconductors was first thought to be a consequence of its local
character. On the basis of successful applications in energy calculations for
atoms and wide-gap insulators such as rare gas solids (Ne, Ar, etc.), Perdew and
Zunger [27] suggested that a kind of correction potential, which they termed self-
interaction correction (SIC), should be added to the LDA potential in order to
achieve energy gap structures far better in agreement with experimental values.
They have pointed out, however, that the self-interaction correction would not
be the cure for all ills concerning the band gap structure. Heaten et al [28],
reported a remarkable improvement in band gap and core levels of the
semiconductor LiCl by application of the SIC method. To our knowledge, there
are no reports on the application of SIC to other semiconductors. For
completeness we mention that Perdew and Norman [29], after simplifying the
self-interaction correction, were able to connect the latier with the real part of a
self-energy function. It is this function that will play a central role in the present
thesis.

Another approximation beyond LDA, is what is known as weighted
density approximation (WDA) [30,31]. This approximation essentially
introduces some non-ocality effects. Kerker [32], reported in this connection on a
substantial improvement over LDA in the bandgap energy of silicon. However,
Wang and Pickett [33] noted that the success of WDA in Kerker’s calculation
could be due to a questionable change of a prefactor in the Kohn-Sham exchange
potential. Indeed, Perdew and Levy [34] refer to unpublished calculations on



silicon by von Barth and Car, in which only small improvement over LDA is
obtained. Perdew and Levy [34], and at the same time, Sham and Schliiter [35],
concluded that at least a substantial fraction of the energy band "error” in LDA
must be found in the Kohn-Sham formalism itself. Sham and Schliiter [35],
derive an expression in which the LDA gap deficit in semiconductors is related
to a discontinuity in the exchangecorrelation potential-energy functional at the
ground-state density. This discontinuity is peculiar for many-electron systems
with an energy gap; it is completely disregarded in the LDA scheme. Sham
[36,37) derives within the exact many-body theory, along with some
assumptions, the above-mentioned expression for the gap-energy correction.

In order to understand the role of the discontinuity in the exchange-
correlation potential of a semiconductor, with respect to the energy-gap deficit,
one should note that the gap energy is the difference in ground-state energy
differences Ey,~Ey and Ey—Ey.,, where N+1, N and N-1 refer to the number of
electrons in the semiconductor. By N we mean the number of electrons for which
the electron system is fully charge compensated by the ionic background. It
seems that LDA (or DFT) is unable to describe an (N-+1)-clectron system as a
result of the discontinuous behavior of the exact exchange-correlation potential,
A different view point is adopted by Gunnarsson and Schonhamer [38,39], who
argue that the gap discrepancy is mainly due to the approzimate (local) nature
of LDA rather than to the discontinuity in the exchange-correlation potential,
which in their opinion is nof substantial in general. However, the numerical
calculations by Manghi ef ol [40] on bulk GaAs indicate that the gap energy in a
non-local DFT framework still remains {00 small.

‘In all of the above-mentioned approximation schemes, drastically
different values for the energy gap are found, none of which coincide with
experimental values. This leads one to believe that no self-consistent
independent-particle scheme exists from which a reliable gap structure follows
for all semiconductors. In other words, all these procedures of incorporating the
mutval Coulomb interaction between electrons in an effective one-electron
potential appear to be too rough as far as ezcitetion properties are concerned.
One therefore has to return to the original many-eleciron Hamiltonian and to
reconsider the effect of the electron-electron interaction.



1.2 Green-Function Approach

The treatment of many-body systems with mutual interaction between the
particles is most conveniently given in terms of Green functions. More
specifically, the gap structure in a semiconductor should follow from the
properties of the one-electron Green function G(rt,r't’), where the latter is
defined as the expectation value in the many-electron ground state of a time-
ordered product of a creation operator for an electron at the space-time point r,t
and an annihilation operator at r',t'. This Green function probes, in a way, what
an additional electron or hole in the many-electron system experiences. As the
behavior of an electron, when added to a system in the ground state, will largely
reflect the excitation structure of the system, it follows that detailed knowledge
of the one-clectron Green function will reveal this structure. Aside from this
rather phenomenological explanation, there exists a formal correspondence
between the spectral structure of the ome-particle Green function and the
energies of all (N-+1)- and (N-1)-particle states of a many-electron system. This
correspondence is provided by the Lehmann representation [41].

Green functions were originally introduced by the British (miller and)
mathematical physicist George Green [42] in the context of the theory of
electricity and magnetism. Nowadays, all functions satisfying an inhomogeneous
(integro-) differential equation with a Dirac delta function as the source term,
are called Green functions. In our case, this integro-differential equation, which
is referred to as the equation of motion of the one-particle Green function, can be
obtained directly from the defining relation of the Green function by application
of the equation of motion for the above-mentioned creation and annihilation field
operators. The occurrence of a complicated function in this equation of motion
for G, which is referred to as the self-energy function M, hampers a
straightforward solution of the one-particle Green function from its equation of
motion. A general method of attack to this problem is offered by perturbation
theory. Expansion of both G and M in terms of increasing powers of the
Coulomb interaction can formally be given. In this connection use is made of a
theorem due to Wick [43]. The various terms in the series can be uniquely
represented by means of Feynman diagrams [44]. Incidentally we mention that,
by introducing the one-particle Green function belonging to some unperturbed
Hamiltonian, the equation of motion of G can be transposed into an integral



equation, the so-called Dyson equation [45], the iterated (formal) solution of
which is just the above-mentioned perturbation series. An essential problem in
using the perturbation expansion of G is that, due to the long range of bare
Coulomb interaction, the term-by-term summation of the series may be
questioned.

In 1948, Feynman [46] formulated the laws of quantum mechanics by
means of action principles, an idea (Lagrangian formulation of quantum
mechanics) suggested earlier by Dirac [47]. A subsequent progress was made by
Schwinger in 1951 [48], who introduced the so-called dynamical principle. This
principle can be shown to be a differential form of Feynman’s principle and, like
the latter, gives an alternative formulation of quantum mechanics [49]. Using his
dynamical principle, Schwinger in 1951 [50-54] derived an explicit relation for G
in terms of some variational derivative.

Martin and Schwinger, in 1959, presented a paper [55] in which they
dealt with many-body systems from a unified non-perturbative point of view.
This work has formed a solid basis for much theoretical work concerning many-
electron systems. It was Hedin [56] who, by employing the ideas of Martin and
Schwinger in combination with those of Hubbard concerning the dynamical
screening processes in many-electron systems [57], introduced a new method of
calculating the one-particle Green function and the corresponding self-energy
function. It should be mentioned that the theory of Hedin does not employ the
dynamical principle of Schwinger, but rather is based on the Hamilton
formulation of quantum mechanics and utilizes the theory of linear response (for
the formulation of Hedin’s theory according to Schwinger’s principle see [54]). In
the formulation of Hedin the relationship between G and M is expressed in terms
of four equations which, in combination with Dyson’s equation, form the basis
for the self-consistent solution of G and M. Utilizing Hedin’s equations one can
obtain a perturbation series for the self-energy function M with the dynamically
screened interaction W as the perturbation function, rather than the bare
Coulomb interaction. Due to screening effects, the screened interaction is
substantially "weaker" than the bare interaction. Concerning the range of the
interaction, it can be shown that in uniform systems, such as metals, the
screened interaction is effectively of short range. As can be expected, in systems
such as covalent semiconductors with strong charge inhomogeneity, the long
range of interaction cannot completely be screened away. The first-order term in



the expansion of M in terms of W is written as a product of G and W and due to
this it is referred to as the GW self-energy function of Hedin.

Concerning the existence or non-existence of one-particle excitations in a
many-electron system, one can, using the formal bi-orthonormal representation
of G [58], arrive at one-electron Schrddingerlike equations, the solutions of
which, under some assumptions, can be viewed as one-particle excitation
functions. The related particles are called quasi-particles; the Schrbdinger-like
equations are termed quasi-particle equations [59-61].

The first reported work on the quasi-particle band structure calculation
of crystals (all of the calculations to be mentioned below are carried out within
the GW approximation) is due to Strinati et a! [62], who employ a minimal-basis
tight-binding approach. Contrary to later workers in the field, these authors go
beyond the so-called random phase approximation of the dielectric function (see
below), but it appears that their calculated band gap for crystal silicon is too
large. Wang and Pickett [33,63] obtain, using many simplifying approximations,
the quasi-particle band structure of silicon which is very close to the
experimentally established values. On account of the observation that their
obtained corrections to the LDA band energies are clearly energy dependent,
they conclude that the energy dependence of the self-energy function is crucial in
band structure calculations. In 1985 Hybertsen and Louie [64,65] reported on
successful "ab initio" calculations of the quasi-particle band structures of silicon
and diamond. Their calculated gap structures are in excellent agreement with
experimental resuits. Although they called their calculations "first principles",
the dynamically screened interaction employed by them was based on a plasmon-
pole approximation of this interaction. Their justification for designating their
calculations as "first principles" lies in the fact that the parameters in their
plasmon-pole model are not adjustable but fixed by demanding that the inverse
of their model dielectric function satisfies both the causality condition (Kramers-
Kronig relation) and a so-called fsum rule.

Subsequent numerical results are reported in a number of papers by
Godby et al. The first in the series is a report on the quasi-particle band
structure calculation of silicon [66]. Apart from excellent agreement with
experimental values, they also justify numerically that the underestimation of
the gap energy in semiconductors by LDA is to a large extent attributable to the
discontinuity of the exact exchange-correlation potential. The second in the



series [67], gives a report on the success of (GW) quasi-particle band structure
calculations in reproducing the band structures of GaAs and AlAs (there is,
however, 3 discrepancy about the L conduction-band minimum in AlAs which is
found to be 0.8+0.2 eV above the X minimum rather than 0.3 eV). In a
subsequent paper [68], the authors show that more than eighty percent of the
LDA bandgap deficits in Si, GaAs and AlAs are indeed due to the DFT method
itself. Godby et al were the first to present rather accurate numerical results for
quasi-particle energies using neither any adjustable parameter nor plasmon pole
type of approximation. However, it can be shown that the self-energy function
on which their calculations are based is in fact incomplete [69]. Surprisingly,
their accurate results are obtained by using a simple truncated Taylor series
based on the incomplete expression for M. Von der Linden and Horsch [37],
making use of some generalized plasmon-pole model, also report on the ability of
the GW scheme to give reliable quasi-particle band structures.

In all of the above-mentioned papers two aspects concerning the
screened interaction play an essential role in the correct calculation of the quasi-
particle band structures: (i) its energy dependence, which should be properly
incorporated (ii) its non-vanishing off-diagonal elements in the plane-wave
representation, describing local-field effects, which should not be neglected.

We recall that band structure calculation techniques in which electrons
are assumed to feel an effective real-valued one-electron potential, invariably
lead to gap structures which deviate more or less severely from the
experimentally established structures. Indeed, there is growing evidence that no
self-consistent independent-particle scheme exists from which a reliable gap
structure follows for all semiconductors. One is forced therefore to consider the
effect of electron-electron interaction anew.

1.3 Outline

This thesis deals with the Green-function approach to the determination of the
electronic structure in semiconductors. Both from the point of view of the
insufficiency of effective-potential methods to describe one-particle excitation
energies and from the fact that most of the existing GW treatments, although
very successful and promising, still suffer from questionable assumptions, we



conclude that a general investigation into the prospects of first-principles
calculation of band  structures of semiconductors within the Green-function
formalism is worthwhile. We will focus to a large extent on the GW approach as
this approach, according to growing evidence in the literature, is very likely
successful in correct predictions of electronic excitation energies, even though no
a priori proof has been given as yet. We will not contribute to the fundamental
question whether the GW scheme is sufficient, but we will investigate whether
and to what extent the GW scheme may be carried through without further
approximations. :

In chapter 2, we present general aspects of the Green-function theory.
The convenient use of Feynman diagrams leads to a systematic account of
contributions to G and M to all orders in the electron-electron interaction.
Presenting the material in this fashion leads in a natural way to the introduction
of the dynamically screemed interaction function W(rt,r't') [instead of the
unscreened static Coulomb- interaction function v(r-r')é(t—t') =(47e,|r-1'|)?
x§(t-t')] and of the related polarization function P(rt,x’'t'). An important part of
this material is given in appendix A, where we present the general principles of
the diagrammatic expansions of the one-particle Green function and the self-
energy function. New in this appendix is a diagrammatic derivation of the Hedin
equations. The consequences of choosing an unperturbed Hamiltonian with a
non-local potential are studied and new types of diagrams introduced. Also the
concept of skeleton diagrams is completely dealt with in connection with one-
particle Green function. Appendix B contains an alternative derivation of
Hedin’s equations, which are rigorously rederived using a variational technique.

One of the further aims of chapter 2 is to present the forms to which G
and M reduce within various effective one-electron potential schemes, such as
the Hartree (H), Hartree-Fock (HF) and local density functional (LDF) scheme.
Also other possible effective-potential schemes will be discussed. By presenting
matters in this way we gain insight into those contributions to G and M which
are missing in each scheme. Crucial in our analysis in chapter 2 will be the
observation that the functions G, M, W and P can all be expressed in terms of
so-called quasi-particle wave functions. These satisfy quasi-particle wave
equations, in which the self-energy function M, as distinct from an effective
potential vy, plays an essential role. As M, unlike vy, is 2 non-Hermitian
operator, the quasi-particle eigenvalues are complex-valued. The real parts form



the excitation spectrum; while 2/h times the imaginary parts are interpreted as
the inverse lifetimes of quasi-particles (electrons or holes). All effective-potential
schemes are based on approximate self-energy functions M(rt,r't') which are
written in the factorized form A(r,r')é(t-t'), where A(r,r') is Hermitian. As
mentioned before, effective-potential schemes generally lead to incorrect results
for the energy spectrum. An important question therefore concerns non-
factorizable and/or non-Hermitian parts of the exact function M that are
essential in obtaining the correct energy spectrum. The chapter ends by
introducing both the GW approximation of the self-energy function and the
bubble approximation of the polarization function. In the remaining chapters we
invariably disregard all contributions to M which are of second and higher order
in W.

In chapter 3 we discuss the problems encountered in the direct
evaluation of the GW self-energy function in the plane-wave representation.
Subsequently, we introduce a contour-deformation procedure to avoid a number
of computational difficulties. A thorough investigation of the GW self-energy
function in the complex energy plane will be given. The last part of chapter 3 is
devoted to some common and uncommon approximation schemes within GW. In
addition to a formal presentation, we give the physical significance of each
approximation and try to indicate the bounds of validity of each scheme.

In chapter 4, our investigation of the GW self-energy function is
continued by deriving general integral relations for the bubble polarization and
screened interaction function. Various useful relations will be presented, based
on space-group symmetry. We discuss the analytic linear tetrahedron method,
especially suited to deal with singularities in the integrand of an integral over
wave vectors, but we advocate in a separate paper (section 4.5) the use of a
properly adjusted special-points method together with a new method by which
the polarization function can be obtained by solving a Fredholm integral
equation [70]. An important section deals with the difficulties encountered in
calculating M, connected with the occurrence of singular functions in the
integrand of the involved 1Bz k integration.

In chapter 5 we present our final expression for the plane-wave matrix
elements of the self-energy function M. This expression is free of numerical
intricacies, and the extent to which actual energy band calculations based on
this expression are indeed achievable, is discussed. The general conclusion is that

10



a fully self-consistent ab initio calculation of quasi-particle band structures is not
feasible at present. If one restricts oneself to a first-iteration step of the self-
consistency procedure, the prospects are somewhat better. We show the
feasibility of such a calculation within a fifteen-band model of 2 semiconductor.
Our estimates for computation time given in chapter 5 are somewhat
conservative as we have taken a normal computing system without vector and
parallel computing facilities as our reference. For that reason a first-iteration-
step calculation for a more realistic model is possibly also within reach.
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CHAPTER 2

GREEN-FUNCTION APPROACH TO MANY-ELECTRON SYSTEMS

2.0 Introduction

In this chapter a general description is given of the Green-function approach to
many-electron systems such as met in (semiconducting) crystals. In section 2.1
we define the one-particle Green function G and show which integro-differential
equation it satisfies. In section 2.2 we introduce the diagrammatic representation
for the related self-energy function M. In this connection reference is made to
two rather lengthy appendices A and B, in which the diagrammatic expansion
and the general connection between M and G are discussed in full detail.
Section 2.3 is devoted to a discussion on the conmection between G and the
excitation energies of the system. In section 2.4 we introduce the quasi-particle
concept and show how the Green function G can approximately be expressed in
terms of quasi-particle wave functions and energies. Section 2.5 is devoted to
discussions of the Hartree, the Hartree-Fock, the Local Density Functional, the
Slater Xa and GW approximation schemes. As the subsequent chapters 3, 4 and
5 are exclusively devoted to the discussion of the GW scheme, we consider it
worthwhile to clarify the latter’s position in relation to the more commonly
known one-electron effective-potential schemes. Section 2.6 introduces the
bubble-approximation scheme for the polarization function. Use of the latter
scheme implies a further approximation not conflicting with the GW scheme,

2.1 General Aspects of the Green-Function Approach

In describing the properties of a many-electron system it is most helpful to make
use of operators that create or annihilate electrons at a given space-time point
r,t. These operators are usually written ';b (zt) and ¥(rt). They fulfill the
Heisenberg equations of motion [61,71]

13
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) - .

in = [%(xt), H], (2.1a)
of(rt) . .
in = [¢l(s), B, (2.1)

where H is the Hamilton operator of the interacting N-electron system, which
does not depend on time, and in which [ , ]. stands for the commutation
operation. The formalism to be described below will be applied to crystalline
materials, such as semiconductors; N represents the number of electrons 1’0{
which the whole crystalline system is charge neutral. The operators @b}f and 9
satisfy the usual equal-time anticommutation relations

[ o], = )9, = o, (2.22)
[, ), = 8er). (2.2b)

The above operators are defined in the so-called Heisenberg picture, and
as such time dependent. In this picture the state vector of the system is time
independent and is indicated |¥x>y. We may alternatively write operators and
states in the Schrédinger picture, leading to (S stands for Schrddinger)

| Tp(t)>g = e BN g s (2.33)
() = B ghy) JHHUR, (2.3b)
{[1{:) = ¢ Ht/M 'c“p(rt) Bt/ (2.3c)

The Schrodinger operators ;&T(I) and 1})(:) will be used below in the expression
for the time-independent operator H.

The one-particle Green function is defined as, up to a numerical factor —i
(i stands for the imaginary unit), the expectation value in the ground state
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| ¥y>y of the time-ordered product of operators wf(rlt 1) and ¥(xqt,) at different
space-time points [72,73],

G(12) = =i y<¥y| T T} ¥, (24)

where the arguments 1,2 are short-hand_ notatlons for the space-time points rgt,

and ryt,, respectively, and where 5’{1[1(1)1/1 (2)} equals either «/)(1)1,!:1'(2) or

—a;bf(2)¢(l) depending on whether t;>t, or t;<t, ( Jis the Fermion time-ordering

operator). The function G owes its name Green function from the fact that it

satisfies a (non-inear) Green-type equation, as will be shown below (see (2.7)).
The total Hamiltonian H is given by

H=T+U+V, (2.52)
*ﬁWMm[hﬂwx (2:5%)

0 = o wl(w) @ vew), (2.5¢)
*=%ﬂfw%$mw6hwﬂ&n%x (2.54)

where u(r) is the "external" potential energy (in a crystal u(r) is the potential
energy due to the periodic array of nuclei), and v(r-r)=e?/(47rey|r-1'|) is the
electron-electron Coulomb potential energy with e the electron charge and ¢, the
vacuum permittivity. With the purpose of establishing a transparent scheme
which allows orderly comparison of the various existing approximation methods,
we will write H in a different way, as follows:

Hy=T+U+32,+2,, (2.6b)
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where

7,= Jd3r @) 2 40) o), (2.6d)
Z ;= Jd3x & 9 2 fr,0) 9. (2.6¢)

Here the real-valued functions z Z(r) and z [r,r') may be arbitrarily chosen. They
will later play a role as local and non-local one-electron effective potentials. The
function ze(r) can, for instance, be taken equal to the well-known Hariree
potential [74], the Slater Xa potential [7], the Kohn-Sham local potential [15], or
whatsoever. Similarly, the function znl(r,r‘) can be taken equal to zero, the
Hartree-Fock potential [75], or any other non-local potential. The idea is to bring
first the formalism as far as possible with unspecified 2y and Ly and then to
make specific choices for z 4 and Zp

By using (2.1a) it is straightforward (but tedious) to derive the
following integro-differential equation for the function G(1,2):

[ih.a +ﬁV2—u(r N G(r,8,,10t,)
El 9m "1 1/ 1*1%2%2

—Jd3r3dt3 [ 8ty tg) {zfr)) 6t 53) + 2, fr,,13)}

+ W M(rt,, :313)] GlrghaToty) = N &t t) Kr,T,), (2.7)

where the function M is defined through the relation
=it [43
=ik Jd radtg M(r t;,14t5) Glrgta,Tots). (2.8)

The function M is called the self-energy function or mass operator. If
incorporates all interaction effects which have not yet effectively been taken into
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account by the potentials z,and z , From (2.8) it is clear that M depends on z,
and z , It is furthermore observed from (2.7) that those contributions to
M(x;t,Tst3) which factorize with §(t—t;) or 8(t;—t;)&(r;—rs) can equally well be
accounted for through a simple redefinition of the functions z g(fnl'a) oI 2 l(rl)'

Many approximation schemes exist in which M is put equal to zero,
while certain choices for zy and z, ) are made. In such cases we refer to the
solution of (2.7) as the "unperturbed" Green function G°, though by the choice
of zy and Zy the function G° may already incorporate some electron-electron
interaction effects. The equation for G° reads

[iha +ﬁV2—u(r)-z r,)] GO(zr,t,,Tt,)
El 2m "1 1 l(l 1°1:°2°2

3
—Jd g 2 ft),5) GO(tgty tyty) = h &t —to) &(c;1,). (2.9)

From (2.7) and (2.9) we may obtain Dyson’s equation

G(1,2) = G°(1,2) + Jd(3)d(4) Go(1,3) M(34) G(42),  (2.10)

or, symbolically, G=G°+G°MG. The validity of (2.10) can easily be verified by
substitution in (2.7). Note that contrary to (2.7), equation (2.9) is a linear
equation.

2.2 Diagrammatic Representation for M

A central result of the general theory of many-electron systems is that the Green
function G(1,2) is expressible as a sum of an infinite number of terms in
increasing powers of the electron-electron Coulomb interaction [71,73]. Each
term corresponds to a multiple space-time integral of a specific series of products
of functions G, v, z ! and Zop By identifying this expression for G with Dyson’s
expression (2.10), one can also extract an expansion for M in terms of functions
Go, v, zy and z 0 It is of great help to represent each contribution to M by
means of a corresponding Feynman diagram. The natural ordering of these
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diagrams is in accordance with increasing orders in v, z ¢ and Zop A well-known
complication is that wvarious contribufing diagrams lead to divergent
contributions. It is believed, however, that proper summation of the infinite
series of diagrams leads to finite, meaningful results. The reader is referred to
Appendix A where the expansions of G and M in terms of diagrams are
explained in some detail, while furthermore a diagrammatic derivation is
presented of a set of four coupled equations, the so-called Hedin equations
[56,76], which, together with Dyson’s equation (2.10) determine both G and M.
A more rigorous derivation of Hedin’s equations, in which no reference is made
to divergent contributions, is given in Appendix B.
The above process of expanding M (see Appendix A) leads to
3 ’ 1l
) ot 1)
M(1,2) = @ = ANAN *
2 - (a1) 21 (a2)

(e)

* Al] skeleton diagrams of higher order

in the interaclion v{ij} =1 -~ .
(2.11)

Here a skeleton diagram is defined by the requirement that none of the thick
lines contains an internal M diagram itself. The calculational prescription is as
follows: a thick line with an arrow directed from 2 to 1 represents G(1,2); a
dotted line attached to 1 and 2 gives v(1,2)=v(r1,)8(t,~t,); diagram (al) gives
Wz fr)6(r1)é(tt,) while diagram  (a2) gives Nz Aruno)8(t o).
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Sometimes, as in diagrams (b) and (c) of (2.11), the prescription leads to equal-
time arguments in Green functions. In that case the prescription is to take
G(rltl,rzt{) where t{=t1+n, with 7 positive and infinitesimally small. Each -
closed loop consisting of thick lines gives rise 10 a factor -2 (see the end of
appendix a). Furthermore, each diagram has an additional factor (i/h)" where n
is the number of dotted lines. Finally one has to integrate over all internal space-
time variables.
Dyson’s equation (2.10) is diagrammatically represented by means of

1 1 1

(2.12)

2 2 2

where the thin line with an arrow denotes G°(1,2). Equations (2.11) and (2.12)
are the basic equations necessary to find both G and M in terms of G°. In order
to complete the diagrammatic notions needed in what follows we also introduce
the dynamically screened interaction function

¥ 1 15
! i
I H
. 5
W(1,2) = ; - . % (2.13)
! 5
2: 2 21

where the shaded insertion stands for all topologically allowed subdiagrams (see
(A.12)) which together stand for the polarization function P(3,4). The
introduction of W makes it possible to put together very specific subsets of M
diagrams in (2.11) in a much more compact form. Unlike v(1,2), the function
W(1,2) is no longer proportional to &(t,~t,); the function P(3,4) accounts for
static as well as dynamic screening of the interaction function v(1,2).
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2.3 General Connection Between the One-Particle Green Function and
Excitation Energies of the Many-Electron System

We start by mentioning that G(r,sts)=G(ry,f5t~t,). The Fourier transform
of such a function F(1,2) with respect to t,~t, at frequency e/his given by

F(ry p;6) = J d(t,t,) explie(t;~t) /N F(1,2). (2.14)

If the function F(1,2) is continuous for all values of t;~t,, the inverse relation
reads

F(1,2) = J o3E expl-ie(t,—ty) /M) Fry tp36). (2.15)

In case the function F(1,2) has a finite discontinuity for some specific value of
ty-t,, the right-hand side of (2.15) is given the value [F(1*,2)+F(1,2*)]/2 at
t-t,. Note that by construction (see (2.4)), G has such a discontinuity at
t~ty=0.

By Fourier transforming the one-particle Green function according to
(2.14), it can easily be shown [41,77,78] that

Oe—n)  O(wg) }

G(rl’r2;€) = h%-fs(tl)f:(r2) { €-e .19 + €-€.-1n (2.16)

where 7 is an infinitesimally small positive quantity, and where ©(x)=0 or 1
depending on whether x<0 or x>0. For semiconductors, y equals some energy in
the energy-gap region of the system. Furthermore

H(\I’N-l,sh(’( 1) ¥y if &<t (2.172)

£ = ]
g{¥y )| N1 ’ g if €& > b (2.17b)

in which {|Wy.;e)u}s and {|¥y,1¢)u}s indicate the complete set of (N-1)- and
(N+1)-particle eigenstates of H, with energy eigenvalues Ey., s and Ey,q,
respectively, and where
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Ex —EN-l, g’ if € <t (2.18&)
Enyis ~ By ifg> 0 (2.18b)

Ey being the ground-state energy of the N-electron system. The representation
(2.16) is the well-known Lehmann representation [41]. In this thesis we shall
refer to the functions f(r) as the Lehmann amplitudes, while the quantities ¢
will be referred to as the Lehmann energies. From (2.16) we observe that the
excitation energies of the system show up as singularities of G(r,,r5;¢€) on the real
energy axis. It should be noted that the Lehmann representation, although a
correct representation, is of limited value in actual calculations as its evaluation
requires complete knowledge of the many-electron wave functions of the
interacting system.

Consistent with our assumption concerning the existence of an energy
gap, we will define the gap energy [79] as E;=(Ey.,r~Ey)(Ex~Ex.1) =Ex.1+Ex
-2Ey, where Ey,, are the (N+£1)-particle groundstate energies. Note that these
states are not charge neutral, as they refer to many-electron wave functions with
one electron more or less than the charge neutral N-electron ground state.
Actually, in semiconductors the quantity Ex~Ey., is the smallest value one can
choose for 4 in (2.16); the largest value one can choose for p is Ey,~Ey. All
values in between can be chosen as well. It remains to be shown in what sense
the above-introduced gap can be related to the band-gap concept appearing in
the conventional one-electron theory of energy band structures. This problem
will be touched upon several times in the sequel.

In the next section we will introduce another representation, which
resembles the Lehmann representation but is more accessible for a practical
approach. The resemblance with the Lehmann representation is striking and we
again identify its singularities with certain excitation energies of the system, the
so-called quasi-particle energies. ‘

2.4 Expressing G in terms of Quasi-Particle Wave Functions

Owing to the time independence of the Hamiltonian, we first note that the
dependence of M(1,2) on time is, similar to G(1,2), via tt, If we Fourier
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transform (2.7) with respect to t~t, we obtain
n2 o2
[6 + 307 V7 —u(r;) —241,)] G(r;,195€)
3
—-Jd 15 2, A11:13) G(r3,195€)
3
- hjd 13 M(ry,155€) G(rg,Tgie) = b §(r;-15). (2.19)

We will first generally prove that the solution of this equation may be written as
[58,59,61,80]

Glryroi€) = ng Wn(ri);‘é;zge) , (2.20)

where g, (r;¢) and 9¥,(r;¢) are solutions of
) 3, N
[B_() + Ao V2o u(r) - 20)] o, (r3¢) -Jd r 2 {5 o (F56)

- EJ a3 M(z,r';e) o (') = 0, (2.21)
and

* 2
B (o) + %E V- u(x) - z£r)] ¥, (r;€) - Jd3r' 2, {r.1') ¥, (r';€)
- hj 3’ Mf(r,r';e) Y (r'e) =0, (2.22)

respectively. In (2.21) and (2.22) the eigenvalues E,(¢) are generally complex-
valued. Here M' is the Hermitian adjoint of M, that is,

M?(r,r’;e) = M(r’,r;e)*. (2.23)

Writing (2.21) and (2.22) in short-hand notation as (E,(€)—.#(¢€))g,=0
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and (E:(e)— .Zi‘-(f))’l/)n=0, respectively, we easily obtain the following identities
= (. =
= (L)Y, =Ep(e) (¥p,00)s (2.24)

where the scalar product (, ) is defined by

) = [ & ' @e) pize) )
Equation (2.24) gives

(B ()-E () (oo =0, (226
implying |

(Ppp0) =0, HE(#E (). (2.27)

The case E,(e)=E,(¢) deserves additional attention in case of degeneracy. It can
be proven [81] that the freedom in choice of functions ¢, and ¢, in case of
degeneracy makes it possible to choose them such that all functions ¢, and ¥,
are bi-orthonormal in the sense that '

(Vo) = O o - (2.28)

Assuming completeness of the functions {¢,},, we may now write any function
F(r) as '

F(r) = E a, ¢, (5e) (2.29)

which, owing to (2.28), implies the closure relation
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L py(5¢) ¥ (c6) = dzr). (2.30)

In order to prove that (2.20) is the solution of (2.19) we first substitute (2.20) in

(2.19) and apply (2.21) whereafter the identity (2.30) is readily recognized and
the proof is completed.

It is easily observed, by taking the complex conjugate of (2.22), that the
functions ¢:(r;e) satisfy an equation like (2.21) in which, however, M is replaced
by M' . This leads us to the conclusion that, quite generally, in the above-
considered case of degeneracy, one has to find (i.e., to construct), according to
(2.20), at each couple of energy levels En(e) and E,(¢) in equations (2.21) and
(2.22), two sets of functions <p,(,) and ¥, Q) with i,j=1,2, ... ny, such that
('qb(’),cpn")) =03 ;. Here n, is the number of linearly independent eigenfunctions of
equation (2. 21) at energy E,,(e), or, equivalently, the nunlber of linearly
independent eigenfunctions 1[),, of equation (2.22) at energy E,(¢). Only if the
property M(r;,ry¢)= M(1,r5¢€) holds, which can indeed be shown for crystals
with a Hamiltonian H as in (2.5), [62], ¢, and 4, are both solutions of the same
equation (2.21).

We now want to discuss the quasi-particle interpretation of G(ryrs;e).
We emphasize that (2.20), although an ezact representation of G, is not yet very
useful in an actual numerical scheine. The expression as it stands asks for the
determination of functions ¢,, ¥, and E, for all values of ¢, which is an
enormous task. In the quasi-particle approximation we assume G in (2.20) to
have simple poles ¢, for which holdf en=E(€,); the (possible) singularities due
to non-analyticity of ,(r;€), ¥a(r;e) or Ey(e) will be discarded. The
corresponding approximation to G is then obtained by putting

palegien) Yn(rgiey)

- ’
€ En

G(r),1p5€) 2 b % 8, (2.31)

where

| (2.32)

dEn(e) l ]—1.
de le=e

e
The set of complex energy values ¢, defined through e,=E(e,) is interpreted as
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the quasi-particle spectrum. The general believe is that the values of |Im(e,)|
are small with respect to |Re{e,)|, such that the real parts of the poles €, can
be interpreted as single quasi-particle energies, provided that the following
relations are satisfied: Im(e,)>0 when Re(e,)<y and Im(e,)<0 when Re(ey)> g,
where u is the quantity defined in section 2.3. Loosely speaking, we can refer to p
a8 the chemical potential separating the occupied guasi-particle states from the
empty ones, i.e. the valence electrons from the conduction electrons The
numerical advantage of (2.31) over (2.20) is that the functions ¢, % and E,
have 10 be determined at the above values ¢, only.

In the case of a crystal here considered, the self-energy function has the
property

M(r),1o;€) = M(r;+R,15+R;e), (2.33)

where R is any lattice vector belonging to the underlying Bravais lattice of the
crystal. The solutions of (2.21) can therefore be chosen of the Bloch type, to be
denoted by ¢ i(r:€); here k is a wave vector in the first Brillouin zone (1Bz),
and £is a band index. Owing to the timeinversion symmetry [82], it follows that
if " is an eigenfunction at energy eigenvalue E, there exists also an
eigenfunction 0rx at the same eigenvalue [83]. Starting from the set of all
Bloch functions " at eigenvalue E, let us consider the duel set of functions ¢

* *

satisfying (2.22) at eigenvalue E . We note that due to m! ‘=M, the complex
* *

conjugate functions ¢ satisfy (2.21). The functions ¥ are therefore linear

combinations of the Y1k functions. As (go LxYL, k} =0 for any k'#-k (due to the
Bloch property), it follows directly from the proof leading to (2.28) that

((,a 1% k> is necessarily different from zero. Assuming now the functions "
] ¥

and Ypx to be properly normalized, we rewrite the quasi-particle

approximation (2.31) as

) ‘Pg’k(rl;E[(k))‘Pe 1.k(r23E[(k))
G(ry,rq5€) = hlz,:k Bk - B , (2.34)

where E {k)=E (KE (k)).
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The problem of determining the energy spectrum (more specifically the
gap structure) in a semiconductor now consists of selfcomsistently solving
equations (2.21), (2.11) and (2.34). This is, however, as yet a formidable task. In
the next section we will therefore discuss a number of simplifying approximation
schemes, and in comparing these schemes, try to gain insight in the most
promising schemes to approach the gap structure problem in a semiconductor.

2.5 Approximation Schemes

In comparing the various approximation schemes that have been (or may be)
employed in order to describe or predict the electronic excitation structure of a
given crystalline material, in particular the gap structure in a semiconductor, it
will be clear from the considerations in the preceding sections that a given
scheme is completely specified only (i) if the functions zt(r), z, f(r,r') are given
(this fixes the effective one-electron potential in (2.21)) and (ii) if a complete
prescription is given how to calculate the function M(r,ry€) occurring in (2.21).
The latter prescription for M may be obtained either by explicitly stating which
diagrams are to be retained in (2.11), or by giving some analytical expression for
M in terms of the functions z o P G and v.

It should be emphasized that those parts of M(ry,r;e) that are
Hermitian (this means here real) and independent of ¢, may alternatively be
represented in terms of functions zé(r) or z]'le(r,r'). This follows directly from
(2.21) by observing that such terms in M can be written either in the form
h‘izé(r)é(r—r') or R‘Izl;l(r,r’). This ambiguity is essential in our classification of
existing approximation schemes: the various one-electron effective potentials
that can be proposed, may as well be accounted for in terms of some M function.
In approximation schemes such as the H, HF, Slater Xo, LDF scheme, this
function M, by construction, is Hermitian and independent of ¢. Conversely, in
these cases the z,and z  , functions can all be chosen such that M(1,2)=0.

In the Hartree scheme the function z{r) is chosen equal to

zfg (r)) =-2 J a3 v(r;r)G(r't,r't"). (2.35)
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It can easily be shown that the electron density p(r')=-2iG(r't,r't*), where the
factor 2 originates from summation over spins (see the end of appendix A). The
potential (2.35) is therefore easily recognized as the Coulomb potential due to all
electrons. The choice (2.35) is such that the M diagrams (al) and (b) in (2.11)
automatically cancel. The prescription in the Hariree scheme is furthermore to
discard all other diagrams in (2.11).

In the Hartree-Fock scheme we take z, as in (2.35) and z g €qual to

ZEE(IP%) =1 v(rl-rz) G(rlt:rzt*): (236)

such that apart from the diagrams (al) and (b), also the diagrams (a2) and (c)
in (2.11) compensate. All other diagrams in (2.11) are discarded. In fact, it is
known that the selfconsistent G (see (2.34)) emerging from the HF scheme will
be totally different from the one emerging from the H scheme, due to the extra
exchange effects involved in diagram (c) of (2.11).

A natural extension of the above diagrammatic approach would now be
to investigate whether, or in how far, the contributions to M(1,2) originating
from diagrams (d), (e),... in (2.11) may also be, or may partially be, swallowed
in terms of a more refined choice of either z g(fi) or z g(fhfz)- To this end we
easily deduce that such M(1,2) contributions should have their (is-t,)
dependence entirely in a factor §(ti—t,) (see the text following equation (2.11)).
In order to investigate the possibility of existence of such a term, let us denote
the contribution of all the diagrams (d), (e), ..., occurring in (2.11) by M'(1,2).
Considering the Fourier transform of M'(1,2) for |e|-m, it can be easily shown
that |M'(ry,r5€)|<| €| ™, with 9>1. Therefore, owing to the fact that a &
function behavior of a function is the indication that its Fourier transform for
large values of |¢| does approach a non-vanishing constant value, we conclude
that M'(1,2) cannot contain a part with §ts~t,) time behavior. This means that
any refinement of z ’ and y in the above sense cannot lead to acceptable band
structures for all energies, but at most for limited energy intervals. As this is the
general objective in most (if not all) band structure calculations, the procedure
of searching convenient z / and z nl functions might very well be of value.

The procedure of approximating M by an effective, possibly nonlocal,
potential has been advocated by Pratt [84], but has not yet been systematically
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investigated. If the evidence persists that the ¢ dependence of M is essential in
obtaining correct bandstructures, the Pratt scheme will obviously be insufficient.
An important point yet to be mentioned here is that the self-energy function
M(r,,15¢) is complex-valued outside some energy region around the midgap

energy, as will be shown in chapter 3. Obviously no real effective potential, such
Cas zy and 2 np €an account for the imaginary part of the self-energy function,
which causes the quasi-particles to have finite life-times.

In the LDF scheme the choice for z b Zng and M is as follows:

LDF(1:1) =-2i J a3 v(r;1') G(r't,r't?)

§E,,
+ 5 ,p—p(xl)- 2iG(x,t,r;t%)

z  ATpT) =0; M(1,2) = 0. (2.37)

Here the exchange-correlation-energy functional E,[p] is approximated by the
expression Ex[p]=/d% p(r)ex(o(x)), where a uniform-density expression for e is
used. The choice in (2.37) is such that the contribution of diagram (b) in (2.11)
is compensated by a part of (al), while diagram (a2) contributes zero. It is not
at all clear, however, which set of M diagrams is compensated for by adding the
exira exchange-correlation term to Zg(l'l) in (2.37). The specific choice of this
term is motivated by the Hohenberg-Kohn-Sham theory [14,15,85], which shows
that the exact E,[p] leads to the exact groundstate electronic density if the
selfconsistent Kohn-Sham procedure [15,85] is followed. As is well known,
however, the ezcifation structure in a semiconductor following from the choice
(2.37), is at variance with the experimental findings [19,20,86].

Also the Slater Xa method (7], in which some of the elements of HF and

DF theory are brought together [15], and in which z Z(rl) is chosen equal to zlg(r,)
- 30e?[3p(x,)/7]V3/(87¢,) with 2/3<a<l, does not lead to correct excitation
structures in semiconductors [87-90]. It therefore seems that none of the existing
schemes in which the ¢ dependence of M(x,,15;¢) is neglected, leads to the correct
gap structure.

In the GW scheme, introduced by Hedin [56,76], the approximation is as
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follows: (i) Take zf(rl) as in the Hartree scheme, and take z_(r),r,)=0, hence
the diagrams (al), (a2) and (b) in (2.11) do not contribute to M. (ii) Take into
account the contribution to M originating from all those diagrams in the
expansion (2.11) which can be comprised in one renormalized diagram

MEW(12) = L (2.38)

where the dashed line has been defined in (2.13). It leads effectively to replacing
in diagram (c) in (2.11) the bare Coulomb interaction function v(ror;)8(t~t,)
by the screened interaction function W(1,2) of (2.13), (see also (A.15¢) for this
diagram). The thusrenormalized diagram (c) leads to the contribution

MGW(1,2)=(i/h)G(1,2)W(1“,2) which explains the name GW-approximation
.scheme. We will approximate W(1,2) by restricting the polarization insertion in
(2.13) to the first term in the diagrammatic expansion given in (A.12). Because
of its typical topological character this term is called the “bubble"
approximation term. This approximation will be discussed in the next section.

The idea behind the GW scheme is that the function W(1,2) will turn
out to be a much "weaker" interaction function than v(1,2), such that all
diagrams of higher order in W in the expansion (A.15) can be neglected [91].
Unlike v(1,2), the function W(1,2) does not factorize with &t;~t,). Schemes in
which only this factorized part is taken into account are not believed to lead to
correct semiconductor excitation structures. On the cohtra,ry, the full time
dependence plays an essential role [37,40,62,64-66,68].

The GW approach clearly anticipates the "weakness" of W(1,2), but
there is no a priori proof that the function W(1,2) is indeed a much "weaker"
interaction function than v(1,2). Related to this, there is no a priori reason why
the bubble approximation {o the renormalized interaction should suffice.

2.6 The Bubble Approximation

In this scheme the polarization function is approximated by taking only the
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zeroth-order term in the perturbation expansion of the polarization function in
the screened interaction. In fact we have (see (A.12)):

P(1,2) ~ : (2.39)

Physically, this approximation describes the polarization effects due to the
excitation of electron-hole pairs in the system. In this approximation the mutual
interaction between the electrons and holes in the electron-hole pairs are
missing. Calculation of the exact static polarization function within the
framework of LDA, for material Si, has shown [92] that this bubble scheme
actually underestimates the static polarization function by an amount of twelve
percent, however there are strong indications [37,93] that reliable band structure
results can be obtained within this bubble scheme. In view of (A.19) the vertex
function I'(i,j;k) reduces to

P(i,jk) = 8(1,)&(1,k). (2.40)

This scheme is also referred to as the Random Phase Approximation (RPA)
scheme, a terminology which has originally been employed by Pines and Bohm
in analyzing the behavior of interacting electrons in a dense electron gas [94-96].
Incidentally, we note that in case of a degenerate electron gas, the RPA
approximation gives rise to a negative pair correlation function at small
distances [97-100], the latter function is, however, non-negative by construction.
The screened interaction function W(1,2) in this bubble scheme is formally given
by :

1 1,

i3

i
|
w2 = | »@' (2.41)
i .
| |

i
2 2,

or [cf. (A.19), (B.35)]
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W(L2) = v(1,2) - - [ d(3)d(4) v(13)6(3,6(4 3T IW(4,2),
(2.42)

in which the additional factor 2 in front of the integral sign is due to the spin
summation.
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CHAPTER 3

PROPERTIES OF THE SELF-ENERGY FUNCTION IN THE GW SCHEME

3.0 Imtroduction

In this chapter various properties of the self-energy function M within the GW-
approximation scheme are discussed. Section 3.1 deals with the relation beiween
the plane-wave matrix elements of the function MGW(r,,rz;e) on the one hand
and the quasi-particle wave functions and energies on the other. In section 3.2
we discuss the difficulties met when one intends to determine MGW, starting
from the expression for MEW given in section 3.1 by directly performing the
involved energy integration. In section 3.3 a contour-deformation procedure is
outlined by means of which a number of these difficulties can be circumvented.
Section 3.4 deals with the analytic continuation of MW in the complex energy
plane, while section 3.5 is devoted to (non-) Hermiticity properties of ME¥. In
section 3.6 a discussion is given of various approximations to the GW scheme. In
this connection we pay special attention to the COHSEX scheme of Hedin [56]
and the Plasmon-Pole scheme [64,65]. ‘

3.1 Relating the Self-Energy Function and the Quasi-Particle
Excitation Structure in the GW Approximation

The self-energy function M(1,2) in the GW approximation, given by equation
(2.38), can easily be Fourier transformed with respect to t;~t,, leading to [cf.
(2.14)]

: rto ' s 7
MGw(rl,rz;e) = %-[ %%ﬁ G(ry Tgre—€’) W(rl,rz;e')e_le n/ 3 (3.1)
i+]

where 7 is a positive infinitesimally small quantity. The presence of the
exponential function exp[-ie'n/fh] is a comsequence of the "+" sign in the
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argument of the screened interaction in the expression of MW in the time

domain (see the text following (2.38)). The functions G, W and M have the
translational property [cf. (2.33)]

L(r; ryi€) = L(r; +R,15+R;e), (3.2)

where R is a lattice vector. For that reason, any of these functions can be
expressed as [101]

v i(k+K)r ~i(k+
L(rl,rz, = Z Z e( ) ILK,K( ,6)6 ( ) 27 (33)

where LK,K'(k;e) is the Fourier transform of L with respect to ry and 1y,

5 [ e, i) i(k+K) 1,

LK g(ke) = L(r;rpie) € , (34)

and where ( is the volume of the crystal; k is a wave vector in the first Brillouin
zone (1Bz); K and K'are reciprocal lattice vectors. The Fourier transform of
(3.1) can thus be expressed as

+o
GW de’
MEW (ke L L j
¢,glke= ”m“k Ko ) oW
Gy K€)W g o ger(kek'e cien/h (3.5)

where G, G' are reciprocal lattice vectors.

Now, suppose the matrix elements MG}G‘(]‘;G) have all been calculated.
In order to show then how these matrix elements are related to the excitation
spectrum, we consider the eigenvalue equations (2.21) in which we set 2 L{r) equal

to 2(r) of (2.35). This leads to
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n? 2 H
[-— o V1 +uley) +2,(r) - Eék;e)} ‘pl,k(rl;e)

i(k'+G)-r -(k'+G)-r
h J 3 i( 14GW 3
+ d°r e M (k';e)e 01 (Tas€)
g 3 kl G, Gi G 3 G &k 3
=0, (3.6)

which defines for each given ¢ an equation for the set of Bloch functions
{gol’k(r;e)} and corresponding set of eigenenergies {E/k;e)} with £ the band

index and k in 1Bz. For ¢ values at which MGV is non-Hermitian, the obtained
set of functions will not be orthonormal, while the eigenvalues will generally be
complex valued. We will return to this point in more detail in section 3.4,

According to the general theory of chapter 2, the quasi-particle
approximation consists of finding those values ¢ such that e=E£(k;e). If we from
now on drop the argument ¢ in E Z(k;e), the quasi-particle eigenfunctions are
given by <p£,k(r;E€(k)) with El(k) the corresponding eigenvalue. If we expand
‘pé,k(r;E AX)) in plane waves expli(k+G)-1]//, i.e.

oy (5EAR) = i 4y (GEAK)EHE) S - (37)

it is easily shown that for each given combination ¢ k the coefficients
dy 1 (G:E l(k)) fulfill the set of coupled equations

B2 2
[ b (x+G)?-E e(k)] 4 (GEAX))
+Y [uG’G‘ +25(G-6) +1 M%‘T’G.(k;Et(k))] 4GB LK) = 0.(3.8)

This system of equations may be diagonalized by standard means, leading to the
quasi-particle spectrum Eé(k); the real part of E t(k) defines the quasi-particle
band structure within this scheme. Note, that in principle the equations (3.8)
and (3.5) have to be solved selfconsistently. There is growing evidence, however,
that the first-iteration step in a self-consistency cycle suffices if one starts with
LDA wave functions [64,65]. If so, the amount of work in finding energy band
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structures is considerably reduced.

3.2 Difficulties in the Calculation of the GW Self-Energy Function

The calculation of M g'(k:€) according to (3.5) involves two discrete
summations over recxprocal lattice vectors, one energy integration along the
whole real axis, and one k' summation over the set of wave vectors in 1Bz. Due
to the dense distribution of k' vectors, the latter summation can equally well be
performed as an integration over k', provided the density of k' points /(27)3 is
taken into account.

Let us enumerate the various difficulties encountered in the evaluation

of MGW, and see how this will give us a guideline to devise techniques which
make the evaluation of M tractable. Firstly, from the fact that the quasi-particle
energies, which are all real or at least almost real, constitute the pole-structure
of the one-particle Green function, we observe that the Green-function part of
the integrand on the right-hand side of (3.5) will show very large variations
along the path of integration, i.e. the real axis. Also, the determination of the
screened-interaction part of the integrand at real ¢’ is not an easy task a priori
as it involves the determination of the polarization function P and subsequent
inversion of the the matrix €=1-vP (see (A.13) and (A.14)). The obtained
functions Wcux,c'-»x'(k'k';f') considered as functions of ¢' are expected to
have a resonani structure as well [102-106], but contrary to the one-particle
Green functions GK K' (k';e—¢"), their dependence on ¢ will be much smoother
[107-109]. Anyhow, performmg the ¢ integration first is no promising procedure.

Secondly, when discussing the possibility of performing the k'
integration over 1Bz first, the prospects are even worse. Consider in this respect
the analytic linear tetrahedron method [110,111] and several versions of the
special-point method [112-114], both being well-known methods in this type of
problems. None of these methods can directly be applied in evaluating the k'
integration in (3.5). To illustrate this, let us for simplicity consider, instead of
the exact Green-function matrix elements in (3.5), those of the one-particle
Green function of some "unperturbed" Hamiltonian,
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Gg (ki) =hE el 4y, (K) (3.9)

£ e—efk)—insgn(p—efk)) ’

in which sgn(x) = +1 or -1 depending on whether x>0 or x<0. Here the earlier
introduced dl,k(K’Ettk)) and E/k) have been reduced to dl,k(K)‘ and real-
valued eigenvalues ¢ l(k)’ respectively. It is not unreasonable to consider (3.9), as.
in an actual calculation procedure we will anyhow start an iteration cycle with
some G° instead of G.

After substitution of (3.9) in (3.5), the k' integration appears to be of
the type

h(k) _=.J %K' f(k-k') k) (3.10)

1Bz e—¢'~¢,(k')tin

where a simplified notation has been used in which the symbols K, X', G, G/, ¢,
¢ and £ are suppressed except if they occur in the denominator. Let us for the
time being nadvely assume that f(k-k'), considered as a function of k', is free
from singularities (the function g(k') is harmless in this connection). Then we
can use the standard relation 1/(x=in) = 2(1/x) sirf(x), in which £ stands for
principal value, to obtain

g(k’)

_ PO
Mw—ﬂqdkf&k)—:Z;E?
(x)
sin| aB flek) — ' 3.11
in | % £ e (3.11)

efk)=e—¢’

Although the first integral on the right-hand side of (3.11) is one in which the
poles from the integrand are excluded, in the sense of the Cauchy principal-value
concept, the integrand still shows significant variations [115] in 1Bz through the
dependence of ¢ 408 k'. Therefore, an accurate evaluation of this integral requires
the knowledge of the integrand at quite a large number of k' points within 1Bz,
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which makes a numerical evaluation difficult.

A more serious problem is due to the second integral on the right-hand
side of (3.11). Here, the use of the commonly applied special-point methods is
ruled out, for the integration is a two-dimensional ome. Furthermore, the
denominator |Vy.€(k’)| may have zeros - also called critical points or van Hove
singularities [107-109]. The linear tetrahedron method can be applied here, albeit
that due to the wild variations of the integrand and the occurrence of van Hove
singularities accurate numerical results can be obtained only if the integrand is
known at a large number of points on the surface of constant energy, ee(k')
=¢—¢. This will make the evaluation of the integral a very time-consuming
procedure [116-119].

So far we have naively assumed that the function f(k-k') is regular.
However, the actual situation is worse in that f(k-k') represents the screened
interaction which, as we shall see in chapter 4, has at least a |k-k'| ! singularity
[120]. This kind of singularity is related to the remaining long range of the
screened interaction in the spatial domain, which is a peculiarity of
semiconductors and not of metals. The explanation is that in a semiconductor
the density of valence electrons may be quite low in some regions in the
primitive cell. Therefore the electron-electron interaction is not as effectively
screened out as usually is the case in metals [120].

By the above considerations we come to the conclusion that a great deal
of the above problems are due to the fact that we have to deal with an energy
integration along the real axis. Hence, it turns out worthwhile to investigate a
method in which integration over real energies can be avoided. This can be
achieved by the contour deformation t{o be discussed in the next section. This
procedure is no remedy for handling the singularity problem in the above
function f(k-k'). This will be discussed and resolved in chapter 4.

3.3 Contour-Deformation Procedure

The problems which will be encountered when evaluating expression (3.5) for the
GW self-energy function MY can to a large extent be circumvented by
applying a contour-deformation procedure [66,68,69,121]. Before we will be able
to deform the contour of the ¢ integration in (3.1) into the complex energy

38



plane, we first need to have analytic continuations [122,123] of the functions G
and W occurring in the integrand. As far as G is concerned, it is most
_ convenient to use the Lehmann representation (2.16), in which we let ¢ assume
complex values as well, as the analytic continuation of G(r,,15¢) in the complex
¢ plane.

In order to obtain the analytic continuation of the screened interaction
W we employ the relation [cf. (B.32)]

‘ H "1 ’ &
W(ry,Tgie) = J. e (rps5€)v(r'-1,), (3.12)

in which €1 stands for the inverse of the Fourier transform of the time-ordered
dielectric function. The function € can be expressed in terms of the Fourier
transform of the time-ordered density-density correlation function, AD, [124-127],
[cf.(B.44) and (B.47)], as

E-l(rl,r2;e) = §(r,,1,) - _;‘_.l- & v(r;~1')D(r',15¢).

3.13
In the time domain D is defined by [cf.(B.44)] o)
D(1;t,,55to) = (¥ 1 ;’(Iltl);'(f2t2)}|\I’N)H, (3.14)
in which ;;’(rt) represents the density-deviation operator -
p'(st) = PHrt)rt) - (g [ 9T ) et) |0 ) (3.15)

It is not difficult, just as for the one-particle Green function, to obtain a
Lehmann-type of representation for the density-density correlation function
[125,127-129], which can be expressed as,

o
Diayrye) = 2L pifry)ey (1) [—E—-—L—],  (3.19)
s e—ss-{-i:;z , E+6s-i1}

in which
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(E) = Oy (0 Oy O (3.17)

eé = EN,S - EN 2 0. (3.17b)
The factor 2 on the right-hand side of (3.16) is due to spin summation. Note
that, in view of the definition (3.15), the s summation in (3.16) involves ezcited
N-particle states only, i.e., there is no ground-state contribution. From (3.186)
and (8.17) it is apparent that the analytic continuation of D, and thus W, is
given by just the same expression as the one for real energies.

As one observes from the Lehmann-type representation (3.16), the
analytic continuation of the screened interaction is analytic in the whole
complex energy plane, except possibly for real energy values outside the interval
(-Bg.E;), where E;=min{e,’;¢,'#0}. Note that B is the lowest excitation energy
of the N-particle system itself and therefore has to be identified with the lowest
ezciton energy. In an exact theory Eg should be distinguished from our earlier-
defined gap energy E =(Ey.,~Ey)~(Ex—Ey.;). In the thermodynamic limit, i.e.
§l-o0, N-o, N/Q-C, with C a constant, one may think of the excitation energies
{es}s of (2.18a,b) and {¢'}s of (3.17b) to form dense sets of points on the real
energy axis, implying that both the one-particle Green function and the screened
interaction would possess two branch cuts [122,123] along the real energy axis.

Substituting (3.12) in (3.1) and making use of (3.13) we obtain

| G -, : ’ . i
M W(rl,rz;e) =yt {~%~ p(ry.tg) v(ry1p) +1i J a3rad v(r;-1')
v E(ry,rgrre) v(r'-—r2)}, (3.18)
where p(1,,r,) is the density matrix [130] given by
= -9i +
plry 1) = —-21G(r1t,r2t )
w

« d ! H =t
= -2 J —ﬁﬁ G(xy,ry;¢) exp[+ie'n/h], 10, (3.19)

-
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Fig.1. Schematic representation of the complez €' plane. Indicated are the
singular points of the integrand of (5.20). The original integration path as
well as the one to be employed in (8.21) are depicted. The + sign denotes a
pole due to the one-particle Green function while x denotes a pole due to the
density-density correlation function.

and Z is an auxiliary function,

(] : "
E(rl,r2;r',r';e) = —ih-lj —g—:—rﬁ- G(rl,r2;e—e')D(r',r';e' . (3.20)

o

The ¢ dependence of M is through the function =.

From the Lehmann (-type) representations of G and D it can
immediately be seen that the integrand on the right-hand side of (3.20) may
have singularities in each quadrant of the complex ¢' plane. The function
D(r',r";e') has singularities in the second and fourth quadrant only, while
G(ry,r5;e~¢') may have, depending on ¢, singularities in each quadrant. A
possible configuration of singularities for some given value of ¢ is depicted in Fig.
1. Here the positions of poles of D are independent of ¢; the G poles shift
horizontally when e varies along the real axis.
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We will deform the integration contour as follows: First we split the
integration on the right-hand side of (3.20) into two integrals, one from minus
infinity to zero, and the other one from zero to plus infinity. Then, the first
integration range is extended with an integral along the negative imaginary axis
and closed by a circle segment in the third quadrant as indicated in Fig.1. The
second integration range is extended with an integral along the positive
imaginary energy axis and closed, again by a circle segment, in the first
quadrant as indicated. Concerning the behavior of the integrand for large values
of ¢, we note that it shows an asymptotic behavior #(|¢’'|?), as can be deduced
from the Lehmann (~type) representations. Therefore, there will be no
contribution to the integral along the circle segments.

The integrals along the real axis can now be completely expressed in
terms of residue contributions and an energy integral along the imaginary ¢’
axis. Thus we obtain for (3.20)

2y '3 = L iep)f o)
¢ {10060 (m¢)-8(e-e )0 (e-w)) D(r's"se-e)

iw roE
D(r',r";¢)
L[ ae 2T

+ 5 (3.21)

'
Y €€ '*Gs

This result is now substituted in (3.18) in which the density matrix p(r;,z,) is
expressed as [130]

plrprg) = 2 £ 0(e) () (). (3.22)

We then end up with the following expression for the GW self-energy function
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MW ryie) = 470 §f;(‘1)f:(’2)

o W(r,,1,;¢)
x {@(ﬂ—Es) v(r,-1,) + 2%_1—.[ de'— 1727

=lm G-E’”es
+ [0(e~)O (e, e=¢,)O(e )] W(rl,rz;e—es)}, (3.23)
where
W(ry,Tose) = W(r,Toi€) = v(1yT5) (3.24)

is the part of the electron-electron interaction which corresponds to the screening
effects. In obtaining (3.23), use has also been made of (3.12) and (3.13). We
mention that in case e=¢g, the integral on the right-hand side of (3.23) is to be
considered as a Cauchy principal-value integral. Consistent with this we put
6(0)=1/2.

Note that, (3.23) has only a formal character, for the functions f(r)
defined by (2.17) are matrix elements between unknown many-electron wave
functions, and as such not accessible to direct calculation. Therefore, for
practical aims, one should work with an expression similar to (3.23), however
obtained by substitution in (3.20) of the quasi-particle approximation (2.31) of
the bi-orthonormal representation of G, rather than the exact Lehmann
representation of G. In principle if one wants to attack the problem by following
the required self-consistency scheme, starting from an unperturbed Hamiltonian,
one has to use in each step of iteration, say m, the results of the foregoing step,
m-1. In 50 doing one would employ in the mth iteration step the quasi-particle
approximation of the Green function in which the quasi-particle wave functions
and energies follow from the (m~1)st step. It is easily seen that in the mth step
of this scheme, (3.23) looks like as ~h"1}L, gn'én(rl;ﬁn)%:(rz;En){@(p—Re{En})
xv(r;-1,)+ ...}, in which the symbols g,, @, ¥, and E, indicate that the
approximate quantities pertain to the (m-1)st step of iteration. By choosing
(2.34) rather than (2.31), making use of a plane-wave representation for the
quasi-particle wave functions of the (m-1)st step, (see (3.7)), the Fourier
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transform of (3.23) can be written as follows:

MG (ki) = % L FRRGERE), (329

in which

FK’K-(G,G’,k,k';e) = % B¢ kX' agzk_k'(K) ag’_(k;k')(‘K')

« {o0rRe(E (x) vg g g (K)

1 Ii“’ 1 Vox,g-x (K€
~im e—e'-B (k)

+ [@(Re{ﬁt(k-k’}}fe)@(p—Re{Ez(k—k’)})

~O(e-Re{B (kK')})0 (Re{ {k-k')}-1)]

x WG_K,G._K.(k';e—Eé(k—k‘))}, (3.26)

where the Fourier transform of the Coulomb interaction VK K’(k) is given by
H

2

In order to obtain a convenient notation, we have suppressed in (3.26) the

energy, arguments of the plane-wave coefficients d £, (k') In a first iteration
step, in which some unperturbed G° is used, rather than the general quasi-
particle representation of G, it will be obvious that (3.26) reduces to a simple

form in which the g factors equal to 1, and in which the energy eigenvalues are
real.
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By observing (3.25) and (3.26) we note that part of the problems
enumerated in the previous section are indeed resclved by application of the
contour deformation procedure of this section. As to the energy integration in
(3.26), contrary to the real-axis ¢’ integration of previous section, we have to do
here with an integrand which is regular for all ¢’ on the path of integration (the

imaginary €' axis), except for the point e'=e—E£(k-k’). As the anticipated

imaginary part of Ee(k~k') is much smaller than its real part and ¢ is real, we
note that this €' point is located very close to 0. Let (HA,iA) be the ¢ interval
in which A is somewhat larger than the largest absolute value of the imaginary
part of the quasi-particle energies under consideration, we then have, in view of
the varying £ and k-k’ values to be considered, still to take special measures to
treat this region of integration. In section 4.6 this issue is discussed further, and
a simple integration procedure for this region is proposed there. The main point
to note is that the energy integration regions (~im,-iA) and (iA,iw) are harmless.

In this connection we also note that W along the imaginary energy axis does not
have any resonant structure at all, as will be pointed out in section 3.6. The s
summation in (3.23), which in (3.25) and (3.26) has been replaced by a
summation over £ and k', still requires attention, but the k'-summation problem
is much less troublesome, because of the absence of vanishing denominators in
the ¢'-integration region.

3.4 Analytical Properties of the GW Self-Energy Function

In this section we will investigate the ana.lytical properties of the self-energy
function M®W as a function of the complex energy variable ¢. Thorough
knowledge of the behavior of MW in the complex ¢ plane will turn out to be
most helpful in discussing various numerical evaluation methods for MGW,
[68,69).

We will start with expression (3.23) for real energy values ¢, and
introduce two auxiliary functions, g¢(z) and hy(z) of complex variable z, given by
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oyl W(rl,r re')
gs(z} T 2m J’—im de z-e'—es ' (3.28)
hy(a) = gy(2) + [0(eRe(2)) (e )-O(Re(z)-¢ )O( e~}
x W(rl,rz;z—-es), (3.29)

in which we have suppressed the dependence of the functions hy and g5 on the
spatial variables. Note that for Re(z) within the gap region, i.e.
Ey~Ey.;<Re(z)<Ey,~Ey, the second term on the right-hand side of (3.29)
always vanishes, implying that for each ¢; the functions hg and gg coincide, that
is,

h(z) = g(z) , if Ex-Ey_;<Re(z)<Ey +1 BN (3.30)
We first want to discuss that the function gg(z) is discontinuous, and

hence non-analytic, at the line Re(z)=¢,. Let us therefore introduce the functions
g:(z) and g2(2),

+ 1w W(rg,tgie)
g (2) = ?ﬁj Cde — P2 T Re(r) 3¢, (3.31)
-l Z~£ —~€

For Re(z)=¢; we will define the value of g:(z) by the corresponding limit
procedure. As W is both analytic (therefore differentiable) along the imaginary
energy axis and behaves asymptotically like (| ¢'|2) for large values of |€'|, it
can be shown [132] that g'i‘ and g are analytic in complex half-planes where
they are defined [133,134]. Moreover, from the Plemelj relations [133,135],
satisfied by these two functions, it follows that on the line Re(z)=¢,

83 (e5+y) =~ g(egHy) = Wirpxyiiy), yek. (3.32)

This is precisely the magnitude of the discontinuity of g¢(z) at z=¢5+iy.
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It can readily be verified that in the function hg(z) the discontinuity
(3.32) in gy(2z) is precisely canceled through the last term in (3.29) with ©
functions. Therefore, using Riemann’s principle {136] it follows that hg(z) is
analytic across the line Re(z)=¢, as well as analytic in the entire z plane, except
for singular points of W(r,,ry;z—¢;) itself. The analytical properties of W(r,,ry;z)
were investigated in the previous section and from the results obtained there we
conclude that hg(z) is analytic in the whole complex z plane except possibly on
the lines {z=e+in;e<(Ex~Ey.1)-Eg}, and {z=e-iz;e>(Ey,-Ey)+E,}, depending
on whether e;<p or e;>u, respectively. This follows directly by considering the
possible pole positions of the function W(r,,ryz—¢,) as a function of z.

We will now consider the Taylor expansion of hy(z) around the mid-
point v of the interval (Eg-Ey.~Eg.Ex.Ex+E), ie.,

v = (By, - Eyy)/2 | (3.33)

where » is in fact the real midgap-energy value. If is then convenient to go over
to the function By(z), defined by

B (2) = hy(z+v), (3.34)

and consider the Taylor expansion of fig(z) around z=0. The simple relationship
between the functions B at real z and the self-energy function (3.23) can be
expressed as '

I’.{{C’:W(r1 Toie+v) =1(e), (3.35)

where 1(z) is the function of complex variable z defined as

1(z) = - L LA () {O(me V(s ) + B (@)}, (3.36)

The singularities of By(z) nearest to the origin z=0 are at =z, where
252Eg/2+E;, in which Ey is the gap energy (see section 2.3) and g the exciton
gap (see section 3.3). This means that the Taylor expansion of 1(z) around the
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origin has a radius of convergence equal to $=Eg/2+ﬁg, [69]. Note that this
radius & is also the largest convergence radius one can have if the expansion is
around some point on the real axis. This is due to the special choice of v such
that z=0 is symmetzic with respect to the nearest singularities.

The above-introduced 1(z) is the analytic continuation of MW into the
complex energy plane. Hence a Taylor expansion of 1(z), i.e., .

(z) = 5:;:0 a2 (lz] < 2=E /248, (3.37)

is also a Taylor expansion of MGW, ie.,
@
MGW(rl,r2;z+u) =n§0 a &, |z < & (3.38)

where [cf. (3.30), (3.34) and (3.36)]

8*1(z
. L 1(2)

1T a8 =0

&

n! oz°

|~

{—h_l zs: fs(rl)f:(r2) [@(”‘ﬁs)v(?lwr2) + gs(z+u)]} |z=0‘

(3.39)

The merit of (3.38) lies in the fact that, as long as we limit ourselves to
[z]<Eg/2+E;, we do not have to evaluate pole contributions to (3.23)
explicitly. The direct calculation of W at such real energies and the execution of
the corresponding s summation in the residue part are thus avoided [cf. (3.28)
and (3.29)]. Furthermore, we may expect that only a few terms in the Taylor
expansion need to be evaluated [68]. In Fig.2 some relevant information as to the
analytical structure of MGW(rl,rz;e) in the complex € plane, is schematically
summarized.

In actual calculations, especially in the first iteration cycle of a self-
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Fig.2. Schematic representation of the analytical structure of MGW(r,,rz; €)
in the complez ¢ plane. The sign x indicates a singular point of

1;4G3“;(qu2§f)- The quantity v is defined in (8.38) while R is defined in
3.37).

consistent calculation procedure, the starting values for g, (Ey-Ey.) and
(Ex.~Ey) are usually different from the corresponding exact quantities. For
instance, if the first iteration cycle is based on results for "non-interacting"
particles, the values By, (Ey-Ey.;) and (Ey,~Ey) will be equal to ¢, ey and
#y.1, Tespectively. Here ¢; stands for the jth one-electron energy eigenvalue of
the "unperturbed" system while € represents the (one-electron) energy gap, i.e.,

€= ENp1” N (3.40)

which is nothing but the value to which the energy-gap value Eg=Ey,;+Ey.
—2Ey reduces in the unperturbed case. Here we have assumed thai the one-
electron eigenenergies are ordered according to the relation e;,;2¢;. The above-
defined radius of convergence £, will now be equal to 3¢,/2. Note that,
depending on the choice of the unperturbed Hamiltonian, the quantity e, may
substantially deviate from the exact energy gap E,. For instance, it is well
known that the LDA Hamiltonian in a semiconductor gives rise to an energy gap
which is too small, the underestimation being sometimes about fifty percent of
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the actual gap [19,20,86]. Contrary to this, ¢; when calculated in the HF
approximation may amount to about 2-56 times the exact energy gap
[11,12,13,23-26].

3.5 Other Properties of the GW Self-Energy Function

In this sectlon we will investigate COIld.lthnS under which the GW self—energy
function MC W(r,r5¢) is Hermitian, i.e. MC (rl,rz,e) (r,,rl,e) This
investigation is relevant, since non-Hermiticity of the self—energy function at real
¢ directly leads to finite quasi-particle lifetimes. The reverse assertion, namely
that the Hermiticity of MY at real ¢ guarantees the quasi-particle life-times to
be infinite, is as yet an open question to which we come furtheron. It can
generally be demonstrated that the exact self-energy function satisfies the
symmetry relation M(r;,I5;€)=M(ryry;¢). As this relation is also satisfied by the
GW self-energy function (this will incidentally be shown below), we have to find
out under which conditions M (rl,rz,e) is a real functlon of real ¢. To this end
we consider (3.23). We first note that the function f(r;) fs (z5) can be chosen real
[77]. As the bare Coulomb interaction is real (and symmetric) as well, we have
only to concentrate on the second and the last term within the braces on the
right-hand side of (3.23); to the former term we refer as the integral part and to
the latter term as the residue part.

As to the integral part, it follows directly from the real-valuedness of iD
along the imaginary energy axis (see (3.12)«(3.17)), that W along the imaginary
energy:'= axis is real-valued. We remark in this connection that, just as
LA (xa), the function pg'(r,)ps’ (r2) can be chosen real too. Moreover, W and
D are both even functions of energy. This, as well as the reality of W along the
imaginary energy axis, results in the fact that for real values of ¢ the
contribution of the ¢’ integral along the negative imaginary axis is the complex
conjugate of one along the positive imaginary axis. Therefore, for real energies ¢
the integral partis real.

Apparently, if the self-energy function is to have a complex
contribution, this can only be due to the residue part. To investigate this
further, we substitute the right-hand side of (3.16) in (3.13); subsequently
substitute the obtained expression in (3.12) and make use of (3.24) as well as the
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standard relation 1/(x+in)=P(1/x)siré(x), with P the principal value. We
then obtain

W(rl,rz;e) = W'(rl,r2;f) +i W’(rl,rz;s), (3.41)
with
Wiy =2 #{ - wmw(sy),  (3.420)
172 s 5-5; e+ ; 5V1/78V2
W'(x),1g5€) = —Es‘r)g, {8e-eg) + dete)} ws(rl)w:(r2), (3.42b)
and

wy(1) = J a3 v(r-1")pg(r'). (3.43)

Note that, as ws(rl)ws*(rg) can be chosen real [125] and is symmetric, the above-
mentioned symmetry property of MGW, ie. MGW(rbrg; e)=MGW(r2,rl; €), is
incidentally established. As we have es'zﬁg, the implication is that
W'(ryr2€)=0 if € is in the energy range (-Eg,E;). Hence, for real ¢ the residue
partis always real as long as | e—¢;' | <E,, [137,138].

It immediately follows that M%W(rl,rz;e) is real, and thus Hermitian,
whenever Ey-Ey_-B;<e<Ey,Ey+E,. This result is fully consistent with and,
in fact, can also be derived from, the Taylor expansion (3.38) by realizing that
all Taylor coefficients @, are real. Therefore, MY has to be real for real ¢
within the circle of convergence. ‘ '

The non-Hermiticity of MEY 4t real energies outside the above-
mentioned region is closely related to the finite probability for quasi-particles at
such energies to decay through the excitation of electron-hole pairs (via Coulomb
interaction). On account of energy conservation such excitations are impossible

if € lies in the interval (Ey-Ey.r-Eg Ey.-Eyx-Eg), ie., in the energy region

where MCW is real. However, the implication of the Hermitian or non-Hermitian
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character of M at real ¢ with regard to the quasi-particle life-times is not
immediately obvious: firstly, one has to solve the Schrodinger-like quasi-particle
equations (3.8) in which MG g'(ki€) matrix elements play their role, leading to
eigenvalues E Z(k €); and secondly, one has to solve the equation E l,k(f)_f If we
call e_El(k) the solution of this equation, there is quite generally a real part
Re(E(k)), being the quasi-particle energy and an imaginary part Im(E [k)),
- /(2Im(E {k)) being the life-time [139]. A complex eigenvalue Efk;e) at real ¢
directly implies the complexity of the solution e=E£(k). However, if El(k;e) is
real for real e (which is the case if M is Hermitian) it can not a priori be
excluded that the solution of the equation E Z,k(€)=f is, nevertheless, complex.

Let us consider a consequence of the reality of MY on a finite part of

the real energy axis. As MCW s analytic (strictly speaking we mean the
analytical continuation of MGV, i.e. the function 1(z) defined in (3.36)) in parts
of the half-planes Im(z)>0 and Im(z)<0, while real-valued in the interval

-E,/2-B;<ev <Eg/2+B;, with v=(Ey,—Ey.1)/2, we can conclude on the basis
of the Riemann-Schwarz reflection principle [140] that MW takes conjugate
values for conjugate values of z, i.e.

GW * GW *
M= (rtyz ) = M7 7 (x,1hiz) (3.44)

This shows again that the Taylor coefficients in (3.39) are real valued. In
general, the coefficients of Taylor expansions around complex conjugate points
are to all orders complex conjugate of each other.

From the above considerations, we know that the region of validity of
the Taylor expansion of MGw(rl,r2;z) around z=v is directly related to the
distance of the nearest singularity of the dynamically screened interaction to the
origin, Eg. The radius of convergence for MGw(r,,r2;e) was shown to be
Eg/2+Eg (see below (3.39)). On the other hand it is known that GW self-energy
functions evaluated with a rather crude approximation of W, the Plasmon-Pole
method, give rise to very satisfactory quasi-particle band structures [64,65,141].
This is in a way surprising since in the Plasmon-Pole (PP) model W has
singularities, the plasmon poles, which are located at distances from the origin
much larger than Eg, i.e., there is no such Eg-related singularity in the plasmon-
pole approximation of W, WPP, at all. Hence, in the framework of a plasmon-
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pole model the circle of convergence for MEW is far more larger than in the

exact theory. One may hope, therefore, that by truncating the Taylor series
expansion of MC®Y around z=v, and extrapolating the thus-obtained polynomial
outside the region of convergence, one may still obtain a good approximation for
the self-energy. Indeed, Godby, Schliiter and Sham have shown that this strategy
works very well for several semiconductors [68]. However, one has to realize that,
due to the reality of the Taylor coefficients, this approximation is not capable of
describing an eventual non-Hermitian part of the self-energy function at real
energies [69].

3.6 Some Approximation Methods within the GW Scheme

In this section we will rubricate a number of common and uncommon
approximations to M within the GW scheme. At first sight these approximations
may seem to be based on mathematical manipulations rather than on physical
considerations; however it can and will be argued that their merits have a
physical content as well. We will distinguish two classes of approximations,
namely the sfatic and dynemic approximations. Static approximations for MCW
have in common that they show no ¢ dependence; dynamic approximations, on
the other hand, show non-trivial dependence of MCW on .

In considering (3.23), we may as a first crude approximation, neglect all
terms involving the function W. This yields about the simplest static
approximation [69] to M one can think of [see also (3.18), (3.19) and (3.22))

MEF (e r) = 7 v(r,1,) L 0(xg) Lei,)
=i v(r;1p) Glry eyt ™). (3.45)

Here the superscript HF explicitly refers to the fact that in (3.45) a Hartree-
Fock exchange-type approximation is recognized. We must admit, however, that
(3.45) leads to the exact Hartree-Fock potential only if the functions {f(r)}; are
the selfconsistently obtained Hartree-Fock wave {unctions.

We realize that the result (3.45) is simply to be expected on the basis of
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the trivial fact that by neglecting W, the screened interaction W becomes just
equal to the bare Coulomb interaction, (see (2.13) and (3.24)), so that diagram
(2.38), representing MW, goes over into the diagram (c) of (2.11), being the
exchange part of the Hartree-Fock self-energy function. We have introduced
(3.45) mainly for the sake of uniformity of presentation; we shall not expound
the peculiarities of MEF further [7].

As a second approximation to MEW we replace the screening—correction
functions W on the right-hand side of (3.23) by the static function W(r,,r5;0).
After evaluating the remaining integral and employing the relation (3.24) we
arrive at an expression which is known in the literature as the COHSEX
(COulomb-Hole with Screened EXchange) approximation [56,143]. We have

MCOHSEX(rl,rz; €) = hL Zs: {O(p—¢;) W(r,r5;0) ——-%— W(r;19:0)}

FIONACS
= ih W(r;,15;0) G(rlt,r2t+) + _%ﬁ,— W(rl,r i0) 8(r;—1,), (3.46)

where in the last step the closure relation

)s:fs(rl)f:(rz) = 8(s,1,), (3.47)

has been used. Equation (3.47) can readily be verified by making use of the
equal-time anti-commutation relation (2.2b).

The name COHSEX is very indicative of the physical content of the
above-described approximation; COH refers to the contribution of the second
term on the right-hand side of (3.46), whereas SEX refers to the first term. The
reason why the latter contribution is called SEX is the following: By comparing
this contribution with MHF, we see that we have to do with an EXchange
contribution (EX) in which, however, the role of the bare Coulomb interaction is
now played by the Screened interaction (S). The reason for referring to the
second term as COulomb-Hole contribution, stems from the fact that each
electron, by means of its Coulombic repulsion, lowers the charge density due to

54



other electrons in its immediate vicinity. In other words, the electron in question
creates a sort of hole surrounding itself. This phenomenon, which is completely
absent in case of non-interacting particles, is known as polarization. The
deviation of the charge density with respect to that of a non-interacting system,
which in all other aspects is identical with the interacting system, is called the
polarization charge density. This polarization charge will induce some force
acting on the electrons themselves, modifying their motion in the crystal. Let us
make this plausible by repeating and extending a reasoning due to Hedin [56].

Consider a classical electron at r. If the electrons in the system were
non-interacting, then the potential energy of the electron at x, as a result of the
presence of another electron at r', would be v(r-r'). However, because of
polarization effects in the interacting system, the latter energy, in a static
approximation, is equal to W(r,x’;0). The difference between these two energies,
i.e. W(r,r';0), see (3.24), is thus the induced potential energy of the electron in
question. The corresponding force exerted on the electron, equals —VIW(r,r';G),

where the gradient operator acts on the r variable only. Now the induced force
exerted on the electron at r, as a result of its own interaction with other
electrons is given by ‘ '

F=-lim V W(xrx'0). © (3.48)
rar T

This can also be written, because of the symmetry property W(r,r';e)

=W(r'5;¢), as

== lim {7, W(ex'0) + 9,050}

= -1V W(x50). (3.49)

Hence, the part of the potential energy of a particle due to its own presence in a
polarizable surrounding is equal to 4 W(r,r;0). This explains the second
contribution to the self-energy on the right-hand side of (3.46). In COHSEX the
energy dependence of the screened interaction is completely neglected. This
makes COHSEX less useful for actual calculations in semiconductors. The band
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gap energies in semiconductors calculated within the framework of this
approximation generally deviate substantially from the experimental values
[64,65,141]. Apparently, dynamical screening effects have to be taken into
account in order to obtain acceptable results for excitation properties.

The third approximation method we introduce here, does take account,
in a way, of dynaemical screening effects. In this method it is assumed that the
plane-wave matrix elements of W have the following form [64,65,141]:

WEK.(k;E) = e x(K) Wi 1¢:(50)

S S W PR
€ - eK,K’(k) + 17 €+ eK,K'(k) -1

in which the points e=:1:eK,K:(k)¢in, with eK,K'(k)>0 (zE;) and 7l0, are the
so-called plasmon poles (see the discussion of the last section concerning the
plasmon poles); the function WK,K'(]‘;D) is assumed to be ezact. The function
pr(rl,rz;f) can readily be obtained by using the relation (3.3).

As we observe, expression (3.50) is strongly motivated by the plane-
wave representation of the exact relation (3.41), (see also (3.42)), however,
contrary to the plane-wave representation of the latter relation, the above
expression consists of two terms only (notice that the s summations in (3.42a)

and (3.42b) are maintained after Fourier transformation). Although by this
oversimplification the fine structure of WK g'(kie) as a function of energy is

completely neglected, it turns out that W;{PK:(IK;E) is able to describe some
b

global features of the exact function, specifically for energies not too close to the
poles, very well [65]. Note that WIP{I:K’(k;O)’ and equally well pr(xl,rg;t}), are

exact by construction. Moreover, wrr is, just as the exact function, an even

function of energy. The asymptotic behavior of W for large values of | ¢|, namely

o(| €|, is correctly described by W™ as well. Note that since WK g'(ki0) is
bl

real-valued, the imaginary part of WépK.(k;e) is easily seen to consist of two §
3
functions if it is assumed that ek K.(k) is real; the § functions are symmetrically
¥

located with respect to the origin.
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The behavior of ngK.(k;e) is governed by two "parameters”, namely
Wk g/(k0) and ey gi(k); the former is the ezact value, which is to be

evaluated directly from W*s defining equation, while the latter can be solved, for
instance, by equating the right-hand side of (3.50) and the exact function
Wi g(ki€) at some emergy ¢ not equal to zero. As the behavior of

WK,K,(k;e’) is not exactly described by WII:K.(k;e'), the value of eK,K'(k) to

be obtained in this way, does depend on the value of ¢'. To circumvent this

ambiguity, one can employ one of the existing sum rules fixing the value of

eg K'(k)' A commonly used sum rule in this connection is the so-called fsum
)

rule [64,65,141,144-148] which follows from gauge-invariance requirements of the
employed theory [148].

It is obvious that the expression for the analytic continuation of WPP
into the complex energy plane is the same as the one for real energies. At purely
imaginary energy values ie (e real) we have

Wt i(kie) = W 1o(k:0) el'zﬁK'(k) (3.51)
K, K\ = W g €2+e;z(,Kl(k)' 24)

From this expression we observe that ngK.(k;ie) is a very smooth function of
H

e. Numerical calculations of W within the framework of the bubble
approximation, described in this thesis, show that the thus-obtained
WK,K'(k;ie) functions agree surprisingly well [70] with the simple expressions

(3.51). Because of the apparent lack of structure in W along the imaginary
energy axis, and due to the fact that a reliable evaluation of the "exact" W
along the imaginary energy axis, e.g. within bubble scheme, is a relatively simple
task, we propose to obtain eK,K'(k) as the solution of

WK,K,(k;ieK’K.(k)) =1/2 WK’K,(k;O), (3.52)

which is an alternative for using the above-mentioned fsum rule.
Now, as to the self-energy function, substitution of (3.51) in (3.23), and
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evaluation of the ¢ integral by, e.g., using Cauchy’s residue theorem [123], leads
to '

MPP(ey i) = 471 T 4lep) () {00¢,) v(ryry)

+ —51)—- [% K?K'el(k+K).r1 §s(€;eK’K'(k)) WK’K‘(k;O) e“i(k""‘Kl)-l'z]

+ [O(e~€)O(u~c,) — O e )O (e )] pr(rl’IQ;E-cs)}’ (3.53)

in which

€ = 8/2 . .
lee) € — €+ e sgn(Re(e)~¢ ) (3:54)

We remark that, due to the fact that the function WPP can approximate W
much better along the imaginary energy axis than along the real axis, an
alternative to (3.53) would be to replace W by WPP only in the integral along
the imaginary axis in (3.23) and not in the residue term.

In the previous section we discussed the possibility of Taylor expanding
the GW self-energy function around ¢=v and employing a iruncated Taylor
series as an extrapolation polynomial for all energies. In this connection, we
would like to mention here that the evaluation of the first few Taylor coefficients
can be greatly facilitated if one uses MPP(r,,r,:¢).

The last approximation method that we would like to discuss in this
section is a mixture of 2 dynamic and a static approximation. It consists of
replacing W(ryrye~¢) in the residue term of (3.23) by its static value
W(r,,15;0). This method will be referred to as the Static-Pole Approximation
(SPA). In this method one might also consider the possibility of replacing W
along the imaginary energy axis by its plasmon-pole approximation WPP, but in
principle the exact evaluation of the integral term in (3.23) is assumed. Despite
‘the approximate nature of MSPA, it yields exact results for energies € within the
gap, i.e., satisfying Ey-Ey.;<e<Ey,Ey, (see (3.30)). The justification for using
MSP4 Gutside the latter energy interval follows from the fact that in view of the
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factor [O(es—€)O(u—e5)-O(e—¢5)0(e5—1)|=0(p~e5)-O(e—¢;), for energies not far
from the gap region the arguments of the contributing functions W(r,,rp;e-¢),
for all s, are close to zero. As W is an even function of energy, the deviations of
W(ry,15e—€,) with respect to W(ry,r50) will be of second order in e-¢;.
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CHAPTER 4

TOWARDS ACTUAL CALCULATION OF THE GW SELF-ENERGY
FUNCTION IN THE QUASI-PARTICLE APPROXIMATION

4.0 Introduction

This chapter starts with a closer examination of the bubble polarization function
P, as the determination of this function is crucial for the determination of the
self-energy function MW, In section 4.1 we first derive Kramers-Kronig (KX)
type of relations for P in the bubble approximation, relations that are shown to
hold as well for the ezact screening-interaction function W=W-v. The
importance of these KX relations lies in the possibility they offer to obtain the
function P at real emergy values by means of its determination at purely
imaginary energy values (which is much less cumbersome). In section 4.2 we
derive an explicit expression for plane-wave matrix elements PK’K,(q;e) in the

quasi-particle approximation scheme introduced in chapter 2. In the framework
of an iteration procedure for the determination of MGW, the obtained expression
for P is useful in each iteration step, in the sense that the involved energies and
wave-function coefficients refer to the solution of the quasi-particle wave
equations in some intermediate step. In section 4.3 we present a number of
symmetry properties that may reduce the computational work of obtaining P. In
section 4.4 we outline details of the (linear) analytic tetrahedron method, a
method that can be used in performing the necessary 1Bz integration in the
expression of P. Though a special-point technique or, alternatively, a technique
based on the KK relations obtained in 4.1, is to be preferred, both methods being
less time-consuming, the analytic tetrahedron method is nevertheless
advantageous, as it offers the possibility to check the accuracy of these methods.
In section 4.5 we present a novel way of calculating of PO,O(q-rO;e) in which use

is made of both the special-point and the KK technique. Section 4.6 is devoted
to the discussion of some important calculational aspects in the determination of
MEY. A general discussion is devoted in this connection to the q+0 behavior of
PK’Ks(q; €) and WK,K’(q} ¢) and measures are discussed which have to be taken
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to perform the involved 1Bz integrations in the process of determining MCV,
These measures are necessary in order to cope, in numerical evaluations, with
the singular behavior of matrix elements WK g (@e) at g=0. -

¥

4.1 Integral Relations for the Bubble Polarization and Screened Interaction
Function

At the end of chapter 2 we introduced the bubble approximation of the
polarization function. As we will extensively make use of this approximation in
the next sections, the present section will be devoted to a further discussion of
the bubble polarization.

By referring to (2.39), we can write [cf. (2.42) and (A.13)]

P(1,2) = —%i—G(l,2*)G(2,1), (4.1)

which after Fourier transformation can be written as (see (2.14))

2i [ ®de’ . v imE
P(r ,rz;e) =- —{— J-m 2_;7; G(rl,rz;e )G(rz,rl;e —¢)e'TTo¢ /h .

(4.2)

in which 9,>0 is infinitesimally small. By making use of the Lehmann
representation (2.16), P(x,r4;¢) can be written

P(ry,1p5€) = 2825, Is’s.(e) As,s'(ll’r2)’ (4.3)
*

in which

O(eg-n) . @(ﬁ-fs)}

1 (7%,
I (e = T’J de {
5,8 ) g e’—es+in e'—es—in

l{ @(53"#) + @(ﬂ‘fs‘) }ej%g/h

(4.4)
e'—e—ss:-i-i ] e’—e—es -in
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and
A g(ryimy) = LA () (ry) (4.5)

. ,
By choosing the combination f(r,)fs (rs) to be real-valued [149], A;si(TyTs)

becomes real-valued and we have the following identities
As, g(Tprg) = As,s'(r2’rl) = As',s(r15r2)" (4.6)
Inspection of (4.4) reveals that the exponential explinye’/k] can as well

be replaced by 1. By deforming the contour of integration in (4.4) into the
complex €' plane and making use of the Cauchy residue theorem we obtain

Is s:(e) _ @(fs—u)@(ﬁ_fs’) _ @(ﬂ-*es)@(es,..ﬂ)

, ‘ . e
eteg—e+in eteg—ein

O(key) - Blu-s,)
€ + € - € + insgn(e) .

(4.7)

The bubble polarization function can thus be expressed as

S(p-e ) - O(u—e
P(r),rp;€) = 2 r (beg) - Olsy)
5,8 € + €g - € + insgn(e)

Ay (48)

From (4.8) and (4.6) it can be deduced that the bubble polarization function
satisfies the following symmetry relations

P(r; rpi€) = P(ry,1y;€) = P(r;,I95-¢). (4.9)

]
Let us define Zf{...} as being the summation over those terms for
which €;p. If we then introduce the function p(ry,r5€) by
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A ofr,1,)
P(rlwrgif)k= 2 Z> 2$ i FL I U 2 ) (4.10)
§ S £+es.—es+1n

it can, by using (4.6), readily be shown that
P(rl,r_ 1€) = p(rl,rz;g). + p(r, ,r2;-£). o o (4n1)

Obviously, only those functions Ag ¢'(r;,r;) have to be evaluated for which

es>p and €' <p. Note that, the singularities of the analytic continuation of
p(ry,rye€) in the complex e plane lay all in the lower half plane. Therefore
p(ry,145€) is the Fourier transform of a causal function, which is known as the
causal polarization of Adler and Wiser [101,150]. Making use of (2.15), it can be
readily verified that this function in the time domain is identically vanishing for
t~t,<0. It therefore immediat'ely follows that the real and imaginary parts of
p=p'+ip” satisfy the Kramers-Kronig (KK) relations [151}

_ ® P (ry,105€")
P'(1y:Tg56) = % ‘?J de’ ——i—, (4.12a)
- €-¢€
P'(ryToi€)
prptye) = 4 ge 2020 (4.12b)
€-¢

. The functions p’ and p” can be written as

' > < 1
P (1'1,1'2;6) =2 § % , y(-ﬁ_ﬁ) AS,S'(rl’r2)’ (4133-)
P(ry,Igie) = -—27r§> %? et+ege,) As,s'(rl’r2)' (4.13b)

where it is understood that the involved .2 and 6 "functions® stand for

(—) - 7 1l0, (4.14a)
+7}‘



8(€) » —L T, nlo, (4.14b)
€ +n .

Equations (4.14) will be used in order to define analytic continuations of
p'(ry,I5¢€) and p'(ry,ry€) into the complex e plane. Note incidentally, that the
explicit representations (4.14) can also be used for defining generalized Kramers-
Kronig relations between two constituent parts of, more gemerally, a causal
function, in which, unlike (4.13) these parts are not the real and imaginary
parts. Such situations may indeed occur; as an example of such a function, one
may think, e.g., of one of the Fourier components with respect {o r; and r, of the
function p(r;,r5e€) in (4.10). This point was noted first by Johnson [145].

From (‘4.13b) we conclude that p“(ry,r;e) is identically vanishing for

energy values satisfying e<Eg. Consequently, (4.12a) reduces to

. -1 o P(ryrpe)
p(r,r;e)=—-——5”J de’ ————— .

(4.15)

For the same reason p"(ry,ry—¢') vanishes on the integration interval in (4.15),
so that in view of (4.11) we can replace p” in' (4.15) by P" of the bubble
polarization function, or
’ _ o P(r,r5€)
P (rl,rz;e) = —_}—r- .?J' de! —— 1727
Eg

' (4.16)
€~ €

Using (4.14a), the analytic continuation of (4.16) for purely imaginary energy
can be written

_ © P*(x,,0,;€)
p'(rl,rz;ie) = —i,—-J. de —— 1727
Eg ie - ¢

(4.17)

In view of (4.11) we then obtain immediately
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[ . 2 @ ' E' n '
P'(x ,r'1e)=—J de' ———— P"(r,,15;¢")
172! s Eg 62 +E'2 172

= P(rl,r2;ie), (4.18)

where the last equality follows from the fact that the analytic continuation of P*
along the imaginary energy axis vanishes identically. This relation is of practical
significance in view of the following considerations: First of all we note that
because of absence of vanishing denominators, the direct evaluation of the
polarization function along the imaginary energy axis will be much simpler than
along the real energy axis. Let us therefore suppose that P(rryie) has been
calculated. Then, relation (4.18) can be considered as a Fredholm integral
equation of the first kind [152], the solution of which gives the imaginary part of
the polarization function, P", or p’, along the real energy axis. Subsequent
application of (4.15) results in the values of p’, or P’, for all real energy values.
This procedure will facilitate the determination of the polarization function
along the real energy axis enormously, as will be discussed in more detail in
section 4.5.

In the remainder of this section we will be concerned with the screened
interaction function W. We will derive integral relations for W which are similar
to the above-derived relations for the bubble polarization function. A noticeable
difference, however, is that the relations to be derived pertain to the ezact
screened interaction function and not necessarily as in the case of P, to some
special approximation of W. Let us therefore consider the exact screened
interaction function W and particularly the screening-correction part of it, i.e.,
W(ry,15€)=W(r,,r5€)~v(r,~1,). From (3.41) and (3.42) we deduce that W can be
written as

W(rl,r2;e) = Vv(rl,r2;e) + Vv(rl,r2;—e), (4.19)
in which
~ 1 *
W(ry Lyi€) =2 L ———— w () wy(ry). (4.20)
] e—-es+1n
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As w(ry,I5€) is causal, we have the KX relations

~ - L \':'"(I e ‘é‘)

W'(1y,Ig5€) = ""11?“ .F’J- de’ -———L—2—i—-——, (4.21a)
-o €-¢

. ® W'(ry,T0i€)

W(ry,Tgi€) = —}r—- .9'[ de’ -———1—%:———- , (4.21b)
o €-

in which the primed functions are defined as

fif’(rl,r2;e) =2 28:, 2 e—l-e' ) ws(rl)w:(r2), (4.22)
8

W(1y,Tg5¢) = ~27r§ 5(5-—&;) ws(rl)w:(rg). (4.23)

*

The fufctions wy(r)ws (r;) can l)e chosen real [153], just as the earlier functions
f(x)f (1;). Reality of wy(r,)w; (r,) implies that W’ and W" are the real and
imaginary parts of W. The same remarks as made below (4.14) can be made
here. ’

As in the case of the bubble polarization function, we can, making use of
(4.14a), (4.19) and (4.21a), obtain

s 2 o + € ! ~oy 1
W(rl,r2;ls)k = —?r—J. de¢’ 5w (rl,rz;e ), (4.24)
-0 €+e

which, similar to (4.18), can again be considered as a Fredholm integral equation
of the first kind for the "unknown" function W"(r,,r,;¢) along the real ¢ axis.

We should add an important remark here concerning the calculation of
W along these lines at real energies in the framework of some effective-potential
approximation. In such a scheme, one could directly use (4.19) and (4.20), in
which the functions wg are calculated from independent-particle density
deviation functions (see (3.17) and (3.43)), to obtain an approximation for W.
However, it can be shown that this approximation leads precisely to
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W=(14+vP)v, where P is the bubble polarization function, approximated by
using the corresponding independent-particle wave functions in the Green
functions G. On the other hand, if one calculates W via W=¢"lv with e=1-vP,
we have in fact the formal relationship W=(1+vP +vPvP+ ..)v. Thus, the
former calculation is just the first-order approximation of the latter one. Both
results are approximate W functions; one cannot draw conclusions concerning
the superiority of the one above the other ¢ priori. Results obtained by inverting
(1-vP) are believed to be much more reliable [154-156]. Apparently, only the
complete series is capable of producing the collective excitations of the systems
(plasmons). k

In short, we have introduced two pairs of KX relations, one for p’, p’
and the other for W',w". The function p=p'+ip” concerns the bubble
approzimation of the dielectric function while W=w'+iw" is related to the ezact
screened interaction function. Whether the erac! polarization function can also
be related to a function similar to p, say 4, whose real and imaginary part
satisfy KK relations, has not been investigated here. We mention in this
connection that according to Kirzhnitz [157,158], and Dolgov and Maksimov
[158], the ezact function s5(r;,rye€), contrary to the onein (4.11) and contrary to
the ezact W(r;,I,;¢) function may in general not be causal.

4.2 Quasi-Particle Approximation of the Bubble Polarization Function

If in the expression (4.3) for P(r,,r;¢) in the bubble approximation, the quasi-
particle approximation for the function G, as given in (2.34), had been used
instead of the Lehmann representation, it is straightforward to show that the
expression for the function p(r;,ry€) as given in (4.10) would change into

Ag ¢ .k Y (’1"2)

pry,ry€) = 2 E i , (425
1729 Z ‘ ok f K e+E££k )»Ezgk)hn (425)

in which B lv(k’) and Elc(k) are the generally complex-valued valence- and
conduction-band energies, respectively (see (2.34)), and
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Ay rx £(TpT)
= %z}k(rl)zb[,_k(r2)?0£’ ,k:(l'z)%la ’_k:(rl), (426)

where the quasi-particle wave function @ k(r;Eék)) have been given in short-
hand notation (see (2.34) and below it). Moreover (see (2.32))

N 3Eg(k§f) -1
gl}k = [1 ——T l =E£(k):l * (4.27)

The vectors k, k' occuriing in (4.25) are vectors in 1Bz. We remark that by
definition (see chapter 2, the text between (2.32) and (2.33)) the imaginary part

of Etv(k) is positive and that of B, (k) negative so that Im{E, (k')}-E, (k)}>0.
This is consistent with iz in the éenomma,tor of (4.25) which in casg of real
energies guarantees the proper position of the poles of p in the complex ¢ plane.

Real energies show up if l‘;l,k functions in (4.26) are the solutions of an
approximate quasi-particle equation (2.21) with a Hermitian self-energy function
M.

Starting from the general expression (4.25) we want to arrive at plane-
wave matrix elemenis pK’K;(q;e). The reason is that from this the matrix
elements of the dielectric matrix €=1-vP can be constructied. Subsequent
inversion of € (see (A.14)) leads to matrix elements WK,K'(q;"’) needed in the

evaluation of M3" x(kie). According to (4.26) and (3.4), we need the Fourier
transform: ' '
1 3 3 -] K). ; X9.
T.[ 4’1y d'ry € HatK)-ny A g Fpm) Atz
1 Vs s
= 5k,k’ +a+K, ag(k' K +q;l,0) a_g (k' -k'—q;f0), (4.28)

in which
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2 i 7 3 ~N —'K- ~
ap (X k'+q;f f) = KL d’r ul,,“k.(r) et ul,k'—{»q(r)
s(}j} a[,_k,(_c) E{l’k. +q(K+G)- (4.29)
Here U ! k(r) represents the periodic part of the Bloch function Zéf k(:), ie.

by(s) = ek T (0 (4.30)

The plane-wave coefficients d Qk(G) have been introduced in (3.7). The
reciprocal lattice vector K in (4.28) is added to ensure that k'+q+XK, lays in

1Bz. In deriving (4.28) use has been made of Ez,k Lk (1) = exp(-iK,-1) Uy 1 (D).
1} ]
We note that only if the self-energy function is Hermitian, the Bloch functions

*
have the property that ¢, _ (r) = ®y k(r), so that only in that case we have
H 3
*
d{,—k(“G) = d,y(G) and the related property a_g(k'-k'—q;4f)
% 3
=aKs(—k',k’+q;£,Z').
Substitution of the right-hand side of (4.28) in the expression for the

Fourier transform of p(r,rye¢), and performing the k summation (after which k’
is changed to k), we arrive at

Y 2 ~ ~
k(@)=L L, & k& xiq
vie

. a’K("ksk"“ q; éV’ lc)a_K’(k » ‘k”Q;tvsfc)
e +E,(k) - Bfktq) +in
v C

(4.31)

in which use has been made of the periodicity properties Et(k—kq-l-Ka):-Ee(k-{-q)

and g Lk+q+K,= B k+q In case of a Hermitian self-energy function, e.g. if we
are dealing with the first iteration cycle of some self-consistent calculation
scheme, equation (4.31) may be written
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k3
ag(-kk+q;¢ ¢ Jag.(—kk+q;¢ ,¢)
K 3
Pk k(39 =51 et —

: (4.32)
k £t €+ ~e££k)— e££k+q) + ip

in which the eigenvalues ¢ ¢, and ¢, arereal and the g factors are equal to unity.
The plane-wave representation of the dielectric function can now be
written \

EK,K'(q; €) = 6K,K' —VK’K(q)PK’K,(q;f), (4.33)

where VKK(q) is given by (3.27) and where PKK(q,e) is the Fourier
transform of P(x;,r5¢), e

PK)K'(QK) = pK,K'(q; €) + PK,K‘(‘B“E)' (4.34)

4.3 Exploitation of Symmetry Properties

This section is devoted to symmetry properties which may help to facilitate the
actual calculation of matrix elements PK K (q;e) of P(ry,15¢). First we remark
that P(r;r,¢) is invariant under the operatlons of the space group [159-162] of
the system. This implies

{ #;|R} P(x;,r5;6) = P(8j7,+7+R, fitg+7+R) = P(r;,Toi¢). (4.35)

where the 3x3 matrix f§; denotes the matrix representation of the point-group
part of the operation { £;|R}, ; is the accompanying non-primitive translation
(if any) and R denotes a lattice translation. By going over to integration
variables r;'=f;r+7+R and 1,'=g;T,+7;+R in the expression PK’Ke(q;e), as
given in (3.4), it is straightforward to find

PK’K*(éjQ;S) = iéj-x(K-K').?j ng'lK,ﬁj"K'(q;é)’ (4.36)
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in which "7-1- belongs to the operation §;!. This relation is of great practical
importance for cases in which the wave vector q is a symmetry point, i.e. a point
for which holds g;q=q, for (some of) the point-group operations in { Z;|R}. It
is then obvious that quite a number of P-matrix elements can directly be
obtained just by multiplication of some other matrix elements by a simple phase
factor. In cases in which g;q9=q+K,, where K, is some reciprocal lattice vector,
it is helpful to realize that PK,K'(‘H'KO;5)=PK+K°,K’+K°(Q;‘)'

Secondly, in view of the expression (4.31) for the function pK’K'(q; €),
being a summation (integration) over the wave vector k, we may investigate the
transformation properties with respect to point-group operations of the functions
occurring in the (integrand) summand. To this end we first rewrite (4.31) as

1 3
PK’K'(q;f) =3 ) L J d’k 8¢ o:k8 ak+

ag(-gikaik+q; £, £4.) a_g(aik, —gik-q;4,¢,)
€ + Eégjk) - Elc(;_c_;jk+q) + in

o (437)

where g is the point group leaving the underlying Bravais lattice invariant, the
so-called lattice point group. Here IBz is the irreducible wedge of 1Bz. It is that
part of 1Bz which by application of all point-group operations of the underlying
lattice fills 1Bz without producing overlapping parts and without leaving voids.
In (4.37) we have replaced Y ;(...) by Q/873/d%k(...). We have generally

Efak+K,) = E[X), ' (4.38)

Bl ak+K, = Bk (4.39)

for all g;e 1. As far as the transformation properties of the functions ag and
a_y is concerned, we may make use of the relation [20]

& '{bl,k(r) = %,ﬁj"k(r)’ (4.40)
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for all elements G; occurring in the space group of the system. A closely related
property reads [160]

az’ﬁjk(G) = i(k+éj"(})o";'j az’k(gj’ig)_ . (4.41)

Let us, from now on, for simplicity assume that the point-group element g; just
make up the lattice point group ¢p. This is not generally the case, but it holds
for the important example of the semicomductor 8i, which has diamond
structure, and _,fL=0h- Thus identifying the point-group operations g; and g;,
we may now consider the expression

ag(-gik,ak+qbl) = g at,_gjk(.c)a% it K+G),  (442)

and conclude from (4.41) that it is always possible to rewrite the right-hand side

of (4.42) in terms of d ¢’ Coefficients in which the occurring k' lay all in IBz. As
a matter of course a number of phase factors will be generated in this way,
containing wave vectors in the whole 1Bz, but from a computational point of
view this poses no problem at all. The important point to note is, that it is
possible to rewrite the integrand in (4.37) in such a way that occurring

quantities, such as aw(G), B/k) or §,, all have their k' in IBz. The
Y
advantage is obvious: the dense packing of those k' points in IBz makes possible

to calculate d LK El(k’) and g ¢’ i a few points in IBz only and then make use
of some interpolation procedu:ef

4.4 The Analytic Linear Tetrahedron Method

In the previous section we have discussed a number of essential properties of the
polarization function in the bubble approximation. In the present section we will
discuss a Brillouin-zone integration technique which can be used in an actual
calculation of P. The advantage of the method to be presented is that it can
deal, without any problem, with the singularities of the integrand in (4.37) as a
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function of k. In fact, the well-known alternative method of special point
integration is argued to be less adequate if not inadequate [115] due to this
singular behavior of the integrand. Nevertheless, the special-point method need
not to be rejected completely, for it will be demonstrated in section 4.5 how such
a method can successfully be used in a direct calculation.

The analytic linear tetrahedron method [110,111] to be discussed here is
specially suited to deal with the singularities in the integrand. We present for
the first {ime some intermediate formulas in sufficient detail to be helpful when
using this method. This section is rather technical and lengthy while containing
many details of less interest to the general reader who may skip the remainder of
this section and jump to section 4.5 without loosing the general line.

In order to describe the analytic linear tetrahedron method, we start
from the quasi-particle expression (4.37) for the quantity pK)K,(q;e). We notice
that in an independent particle approximation (i.e., in a first iteration step) the
energies in the denominator become real, implying possible singularities of the
integrand as a function of k for real energy ¢ exceeding the gap energy. As the
tetrahedron method can successfully deal with the singularities, we will consider
(4.37) in the case of real energies.

As the evaluation of £, {, and g summations are trivial, we shall only
deal with the %k integral over IBz. By making use of the relation

1/(xin)=2(1/x)sinb(x) we write the contribution of the IBz integral as
follows:

I(e) =I'(e) +i1'(e), (4.43)
in which
vy 3. N(k)
I'(e) = 9(!Bzd k o ), (4.44)
(e) = —xl 4%k Mk) §eD(X)), (3.45)
Bz

in which we have introduced the short-hand notations
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N(K) = ag(~ak, @k+;l, ) ag(~ak, ak+ait, L), (4.46)
D(k) = ¢ gk+q) ~ ¢,(k). (4.47)
c év

We will now consider the evaluation of I'(¢). Let IBz be subdivided into
N small tetrahedrons Aj, with j= 1,2, ..., N;. The number N, is chosen such
that the variations of Mk) and D(k) within each tetrahedron are not
substantial. We then replace N(k) by a constant equal to its value at some point
k; in Aj, e.g. the center of mass of A;, and Dj(k) by a linear function of k, i.e.,

Dy(k) = 3; + bk, (4.48)

The function D; in (4.48) is an approximation to D in (4.47) within the jth
tetrahedron. In the present approximation I'(¢) reads

1‘@):?}c NE) 2| Pr—L (4.49)
1A () bk

Thus, each tetrahedron introduces four unknown quantities, the constant a; and
three coordinates of the vector b;. Knowledge of the exact D(k) of (4.47) at the
four vertices of each ietrahedron is sufficient to calculate the values of these
quantities uniquely. This is ome of the advantages of the analytic linear
tetrahedron method as compared to other analytic linear methods [164] in which
IBz is subdivided in elements such as cubes [165], triangular [166,167] or
rectangular {167,168] prisms. In the latter methods there is some redundancy in
the number of known quantities. As a consequence, in the latter methods, the
interpolated function D is not a continuous function through IBz, introducing
undesirable boundary effects. Moreover, not all IB2’s can be composed by means
of, e.g., cubes, contrary o tetrahedrons which can build up any IBz.

An obvious advantage of the linear tetrahedron method is that each
integral in (4.49) can be evaluated analytically. However, although the
integration is straightforward in principle, it is a tedious one in practice. In the
sequel we will sketch the procedure to accomplish the analytic integration, give
some intermediate formulas and present the final results. In view of its rather
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technical and lengthy character, the reader may decide to skip this part and
proceed directly to section 4.5. On the other hand, the formulas presented here
may prove useful to potential further users of the analytic linear tetrahedron
method.

We first define an orthonormal coordinate system {iy,iy'i,'}, (not
necessarily a right-handed system), with respect to which the vertices of the jth
tetrahedron have the following form:

k, = (0,0,0), (4.502)
k, = (x1,0,0), (4.50b)
k; = (le,yzl,O), (4.50¢)
ke = (x3',¥3,23 ), (4.504)

and in which the coordinates are all positive. In what follows we shall drop the
subscript j in Dj, a; and bj; there will be no confusion in doing so. If we then
consider D(k;)’s, i=1,2,3,4, as known quantities, and write (4.48) in terms of the
coordinates of the involved vectors with respect to the basis {iy,i,’i,}, we
obtain a triangular system of four linear equations. After solution of this system
of equations, we obtain (primed quantities refer to the basis {i,,iy,i,'})

a’ = D(k), (4.51a)
by = (D(ko)-D(ky))/x1', (4.51b)
by' = (D(k3)-D(ky))/y5 +(D(k))-D(ks))x5 [ (x1'y2), (4.51c)
b," = (D(kg)-D(k,))/z5'+(D(k)-D(k;))x5'/ (125 )
+ (D(kr)-D(ks))ys'/ (223 )+ (D(ka)-D(ky))x2 ys [ (x1'y2'25').  (4.51d)

As the transformation from k in the original coordinate system {ipiy,i,} to k' in
the above primed coordinate system consists in general of a translation and an
orthogonal rotation we have d’%k=d%k’. In the primed system the region of
integration A; is defined by the following inequalities:

€i(z')<x'<€y(2"),
v(2')<y'<vy(z')+y, (x'~€(2)) /%2,
0<z'<zy’,
and
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Eafz)<x'<&4(2),
v(z)<y' <wyz )4y7 (x'=€2(2)) [ (x2'xy),
0<z'<zy, » (4.52)
in which
€z) = (x5'/25)2’
¢x(2') = x5 + (xg'-xy)2'[z4,
£3(2') = x,'+ (x3'-x,)z'[z4,
vy(z") = (ys'/23')2',
v(z) = yo'+ (¥s'-y2 )z (23, (4.53)

The evaluation of a k integral over A; in (4.49) is now a trivial, but tedious,
task. The three basic integral expressions

| ax/(px+d) = (1/p)n| pxtal,
[ ax et ol = /p)(px+ in | pegl-1},
[ ax (et ginlpetal = (1/29) ot 0l pxral-1/2},  (45)

are to be used in this connection. In giving the final result for the principal-value
integral over A;, we must distinguish between five situations:

(l) D(ki)¢D(kj)> iaj=1:2:3;4) 1#3

o ad—1
. (e-a)-b-k
J

(e-D(ky))? In| e~D(ky)
(D(ky)-D(ky))(D{k; ) -D(ks))(D{ky)-D(ky))  e~D(k,)
. (e-D(k,))? lnfe—D(kO]

(D(k3)-D(k))(D(ks ) -D(ks)( D(ka)-D(k,))  e~D(k5)
(e-D(ky))? e~D(ky)

+ In| |}, (4.55)
(D(ky)-D(ks3))(D(kz ) -Dfks))(Dkg)-D(ky))  e~Diks)

=3Qj{
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in which £;=x,'y,'z;'/6 is the volume of the jth tetrahedron.

(i) D(ky)=D(ky)=D(ks)=D(ks)=D

??L a3k m = Qy/(e-D). (4.56)

The contribution of the integral in (4.56) should be neglected in case D=e. This
rather rare situation is just a consequence of our crude assumption made in
(4.48). As can be verified, using (4.51a)«(4.51d), the occurrence of this situation,
according to (4.48), would imply Dj(k)=¢, keA;, which cannot actually be the
case.

(i) D(ky)=D(ky)=D(ks)=D#¢D(k,)

FJ‘ d3k—1—
e-a)-b -k
A, (ea)

Q’j{ (6—13(1:4))2111 D

(D(ky)-D)*  eD(ky)

. 3(e—o<k4))3/2+(e—D)*/z-z(e-D)(e—D(km}
(D(k,)-D)? '

In case D=¢, we neglect the contribution of the integral in (4.57). The
occurrence of D=e¢ in this situation is again attributable to the crude assumption
made in (4.48).

(4.57)

(iv) D(k;)=D(kp)=D'# Dks)=D(k¢)=D"

2| Px—1=>L
(e-a)-b-k
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2(e-D')(eD") - D' 2¢-D'-D"
= i { In }.

= + (4.58)
(D-D)t D" (D-D')?
(v) D(k))=D(k;)=D, D(k;)¢D, D{k,)tD
92[ k1
) (e-a)-b-k
1
. { (e-D(ky))? m;"D“‘“%
"U(D-D(ky)) 2 (D(ke)-D(k;))  ¢-D
. (e-D(k,))? 1n,‘"D("‘)1
(D-D(k;)) 2(D(ks)-D(k)) ~ €-D
+ (D) } (4.59)
(D-D(k3))( D-D(ky))

The relations needed for other possible orderings of D{k;)’s, than considered
above, are easily deducible from the relations given in (iii)(v), by just renaming
the D(k;) quantities.

It is obvious that the convergence of (4.49) for increasing number Ny of

tetrahedrons is dependent on both the smoothness of N(k) in IBz and the fact in
how far the expansion of D(k), (4.48), is valid.

We will now discuss the evaluation of I'(e). We rewrite (4.45) as

(€) = —r d2k Nk
@== |

k€IBz

Ny 9
N7}, d“k (¢ + d-k), 4.60
jwf. (c+dK) (4.60)

3
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in which use has been made of both the approximate relation (4.48) and
Nk)=c+d-k (4.61)

Here of; denotes the part of the surface of constant energy difference D(k)=r¢,
which lies within the jth tetrahedron. If it exists, this surface can be regarded,
consistent with (4.48), as a plane surface. Note that in (4.61) we propose to use
an expression for N(k) which is linear in k. This deviates from our earlier choice
made in obtaining I'(¢) of (4.49), in which Mk) was put equal to its value at
somne arbitrary point within the tetrahedron. The reason is just the fact that in
the present case the contribution of this term to I"(€) can be relatively easily
evaluated analytically. In what follows we will choose the labeling of the k;
vectors in such a way that

D(k;) < Diky,y). ' (4.62)

Concerning the geometrical forms the surface f; can assume, we have (i) if
D(k))<e<D{k;) or D(kj)<e<D(k,), then ¢; is a triangle; and (ii) if
D(k;)<e<D(k;), then o; is a tetragon. In the two cases where e<D(k,) and
€>D(k,), there are no intersections of the surface of constant energy difference
and the tetrahedron A; at all. Consequently, in the latter cases, the jth
tetrahedron has no contribution to I"(¢). We note incidentally that, in case <;
is a tetragon, the contribution of the surface integral on the right-hand side of
(4.60) is most easily calculated analytically if ome considers the latter
contribution as being the difference of two surface integrals each over two
triangles.

By introducing a new basis {is,iy',i,’}, in which o; lies in the {iy,i,'}
plane, such that one of the sides of ¢f; lies along the i, axis, one obtains after
some algebra

N;
I”(e)z-m’? {c + d-&}S;/ ||
N,
z-—x? N(x)S;/|b], (4.63)
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in which S; denotes the area of the plane surface ¢/},

/ls D(kl)ﬁtﬁp(kg),
§;=1 £ f» Dk;)<e<D(ky), (4.64)
Fo Dlks)$esDiky),

and in which & stands for the vector of the center of gravity of o/},

K1 D(ky)<e<Diky),
k=1 (Kifrraf) [ f142), D(ka)<e<Dlky), (4.65)
K D(k;)<e<ky),
where
1 4 k, - k; )
wy =Ky + - (e—-D(kli)) n% W ,i=1,24. (4.686)
nti

The functions 4j, are defined as

a;1b| (k)3
H= . (4.672)
2 (D(ky)-D(ky))(D(ky ) ~D(ky))( D{ks)-D(k,))
f= 2;|b] (e-D(k,))? o)
2 (D(ky)-D(ky))(D(ks ) -D(k,))(D(k,)-D(ky))
= ilel ‘ (D) . (4.67¢)

2 (D(kq)-D(ky))(Dlky ) ~D(kz))(D{k)-Dlks))

Note that the last expression in {4.63) would also have been obtained if we had
replaced N(k) over A; by the constant value N(x).

By the above relations one can straightforwardly calculate the bubble
(RPA) polarization function within the framework of (analytic) linear
tetrahedron method.
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Fig.1. Real and imaginary parts of the dielectric response function € o(g¢),
with ¢+0, as a function of energy. 1Bz has been subdivided into 8 tetrahedrons
and the contributions of 10 bands have been incorporated. The marks o
(indicating the real part), and o indicate calculated values while the straight
lines connecting them are merely a guide to the eye.

As an illustration of the above method we present in Fig. 1 numerical
results concerning the real and imaginéxy parts of the dielectric-matrix element
EO,O(q;e)’ with q-0, obtained within & simplified model of the semiconductor
silicon, the description of which is given in section 4.5. The results given in Fig.
1 are far from being converged. From Fig. 2 it is observed that convergence in
obtaining P0 O(q,O), with g-0, may be reached if the number of tetrahedrons is
at least 500, say. This implies the use of a large storage capacity, while the
computation time for obtaining this matrix element is excessively large. In the
next section two alternative methods are discussed which do not suffer from
these inconveniences. Nevertheless, the analytic linear tetrahedron method has
its value as a reference method.
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Fig.2. Convergence behavior of Pgo(q0), with q-0, with regard to the
incregsing number of tetrahedron subdivisions of IBz. The marked poinis
indicate the calculated Py o(q0) values (orbitrary unils) obtained by
subdividing IBz info Ni= 8, 82, 64, 256, 512 and 768 teirahedrons. The
straight lines connecting the marked points are guides to the eye. As in the
case of Fig. 1, the coniributions of only 10 bands have been incorporated.

4.5 Numerical Determination of the Bubble Polarization Function (RPA) at
Real Energies

The present section is an integral reprint of an article which has been published
in Solid State Communication, Vol. 67, No. 1, pp. 7-11, (1988). The article
describes a method to deal with the 1Bz integration for obtaining the
polarization function at real energies. In this approach we use a special-point
method, despite the singular character of the integrand. Therefore, the method
to be presented in the article is a surprising alternative to the analytic linear
tetrahedron method of the previcus seciion, that is to say, surprising in the light
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of certain remarks [115] which seem to claim that the special-point method
cannot be used for a direct evaluation of P at real energies. Moreover, this
section demonstrates the practical use of the integral relations established in
section 4.1.
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A NOVEL METHOD OF CALCULATING THE RPA DIELECTRIC
FUNCTION FOR A SEMICONDUCTOR
AT REAL ENERGIES

B. Farid, D. Lenstra and W. van Haeringen,
Department of Physics, Eindhoven University of Technology,
P.0.Box 513, 5600 MB Eindhoven, The Netherlands

(Received 20 april 1988 by M. Balkanski)

We demonstrate a novel method for direct calculation of the RPA dielectric
function for a semiconductor at real energies based on a special point integration
procedure. The method is relevant in the context of model-free ab initio
calculations of dielectric properties and self-energies in semiconductors.

Calculation of the dielectric function for a semiconductor at real energies, even
in the Random Phase Approximation (RPA), is known to be cumbersome at
energies exceeding the energy gap. The reason is the occurrence of vanishing
energy denominators which hampers the execution of the involved k integration
over the first Brillouin zone (1BZ). Direct calculation is nevertheless possible by
applying some properly adjusted {etrahedron method®?, but such a procedure!
asks for a fine mesh of k points and is therefore very time consuming. It has been -
argued? in this connection that special-point methods?:5.8 can not be used to
evaluate the dielectric function at given real emergies. Clearly, the reason for
such remarks is the presence of singularities in the integrand.

In the present paper we will show how special-point methods can
nevertheless successfully be used in direct calculations of the various matrix
elements of the dielectric response function at real energies. Our method is based
on two observations: Firstly, we note that the polarization function P at real
energy can be written P'+iP", in which P’ and P" fulfill Kramers-Kronig type of
relations and in which P" is a continuous function of real energy”®, to be
expressed as a k integration over 1BZ of weighted 6 functions with energy
arguments. Secondly, we note that in any discretization method for evaluating
this k integral, it is fully consistent to replace each § function by a Lorentzian
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with width roughly inversely proportional to the number of sampling points in
1BZ.

The method proposed, to be outlined and demonstrated below, by its
simplicity, brings us a step closer to the model-free ab initio calculation of the
self-energy in semiconductors. By using our method, the use of, e.g., plasmon-
pole models? can be avoided. We will confront the present special-point direct
calculation of the above P" at real energy with the directly related special-point
calculation of the polarization function P at imaginary energies. This
confrontation is of interest as P" at real energy can also be determined by using
a method for solving a Fredholm integral equation of the first kind!® in which
both the function P" at real energy and the function P at imaginary energy
occur.

In RPA the matrix elements of the polarization function!! in a plane-
wave basis can easily be shown to be expressible as

PKK'(ko§5) = PKK'(ko§5) + pKK’(ko;—e): (1)
where

A(ly, 10k, k,K,K")

1
PKK'(ko;f) = "1; Jd% Elv,lc (2)

e~ €1c(k+ky) +ery (k) +iny
Here k denotes a wave vector in 1BZ, K and K' are reciprocal lattice vectors; lv
and lc are valence- and conduction-band indices; ¢),(k) and €(k) are band
energies; k, is the wave vector (in 1BZ) for which the matrix elements are to be
determined. The numerators A are energy independent and can be completely
given in terms of the plane-wave coefficients of the electron wave functions;
these numerators are generally complex-valued except for K = K' when they are
real. The real quantity 7, is supposed to be infinitesimally small and positive. It
is easily seen from (2) that numerical problems due to vanishing denominators
may arise if one performs the k integration in case e is larger than eg(k,) =
min[ec(k+kq)—€1,(k)]. The dielectric matrix element, related to (1) reads!!

exk(koi€) = s = m Prx(kose). (3)
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The analytic continuation of (1) to purely imaginary energy e=ie, can be
written

A(lvxlc y k:ktnK)K' ){flc(k+k0)-elv(k)}
WIS e 4+ {e10(ktko) - €;,(K)}

[d% 2

. 1
Porpi(kyiiey) =~
KK (Kol €1 2n)?

(4)

As the right-hand side of (4) has no vanishing denominators (they are all larger
than (eg(k,))?), we may consider the possibility of calculating (4) at given ¢, by
performing the k integration using a special-point method. We will come to this
furtheron. Let us first discuss the possibility of a direct evaluation of P at real
energies.

For real energies, it makes semse to split the polarization into two
contributions, using 1/(x+in)=P(1/x)-ixb(x), where & stands for principal
value. We may then write

Pri(koi€) = Ppgoi(koie) + iPgpe(koe), (52)

with
Pl (laie) = P(P (k) (51)

and

P e (koie) = -21-; {d3k Byy10 AQlvlek kKK
T

X {é(f”flc(k'i'k ) +er(k)) — §et+ elc(k+k )"flv(k))}- (5¢)

It can directly be deduced from (4) and (5¢) that the various matrix elements of
P(k,;ie;) and P"(k,;¢) are related by

’

- PKK (ki €). (6)

. 2
Prrw(keii€y) = —j'
KK ¢ 1{‘0 32 +
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In an attempt to evaluate the right-hand side of (5¢) with a special-point
method, we first replace all § functions by Lorenizians with the same width 7,
ie.

§ed) — — T (7)

(e-€)2 + '

where it is noted that this replacement should lead {o the original function P",
strictly speaking, only when 710, but that in practice it will be a good
approximation for a finite value of 7 as well. After the substitution of (7) in (5¢)
there is no problem in performing the k integration by making use of the special-
point integration procedure. This means that the actual quantity to be
calculated reads:

n .
Prl® g=--l £ £ . Dw, Alvle,ek.k,KK)
Kk (K PN, sy e 5 e ( o

x ¥ { 1, + same expression with ¢ - ~e}.
{e=erc(akg+kg )+ €1( akg)}+n? (8)

Here, a denotes all point-group operations of the crystal lattice with N, the
number of such operations; {kgs=1,...,n} is the set of special points to be
considered in one irreducible wedge of 1BZ, and {w,} are the appropriate
weighting factors. The numerical value for 7 should of course be consistent with
the number of special points, that is, it should lead to sufficiently smooth
dependence of P"(™ on e, \
In what follows we will also consider the K,K' elements of P™(k;ie;)
which, according to (6) are related to the K,K' elements of P"®)(k;¢) of (8) by

{n N 2 o0 € w (n)ey |
PR gie) = 2 g de o P s kgie). (9)

To demonstrate our method, we have used a simplified model for the
semiconductor Si with a (very small) energy cutoff of 2.57 Ry. Depending on the
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Bloch-wave vector k, this leads to only 15-22 plane waves in the expansion of the
one-electron wave functions. The effective one-electron potential is borrowed
from an earlier well<onverged self-consistent calculation scheme!? for Si with an
energy cutoff of 11.5 Ry. The resulting model band structure has an indirect
bandgap of 0.023 Ry, a direct bandgap of 0.237 Ry, and is qualitatively similar
to the real Si bandstructure.

A series of numerical results obtained for Im eoo(ko,e) along the real ¢
axis and evaluated with the use of (8) is given in Fig. 1. The number of
Monkhorst-Pack® (MP) special points varies from 10 to 60. The value of 7 in
each case was determined as follows: A rough estimate tells us that
approximately a number of 4 x 11 : q3/2 Lorentzians cover the energy interval
of about 2 Ry, where q = 2,4,6,8,10,12,14,16,... depending on whether we have n
=1,2,6,10,19,28,44,60,... special points®®. Here, the numbers 4 and 11 are the
number of valence and conduction bands taken into account. It is important to
realize that quite a large number of k points lead to identical § peaks for
symmetry reasons, while only a few combinations of valence and conduction
bands contribute significantly to the § peak distribution patiern. We therefore
come to the rough estimate of effectively q¥/2 Lorentzians covering 2 Ry,
implying for the width 7 of each Lorentzian

n> 4/q® [Ry]. (10)

The 7 values chosen in Fig. 1 are 3.62 times larger than the minimum value
implied by (10). Moreover, we have verified that the resulting curves are hardly
sensitive to variations in the 5 values. Concerning the fine structures, one really
needs to go as far as to 60 special points, but for global purposes (e.g.,
presumably in quasi-particle band structure calculations®) as few as 10 special
points may already be good enough.

In view of the Fredholm integral equation (6) or (9), we may also
consider a completely different way of calculating P" at real energies by first
calculating P along the imaginary axis with the use of the special-point method
and after that solving the integral equation. Fig. 2 displays the dielectric matrix
elements Egg(ko;ifx) for n = 10,19,28,44 and 60 MP special points. We have
observed that convergent results are hardest to obtain at €,;=0; from Table I it
can be seen that convergence is already reached at 19 special points.
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Fig.1. Numerical results for the imaginary part of the dielectric function for
real energies oblained by a direct special-point calculation as described in the

tezt. The five different curves correspond to five different numbers of MP
special points as indicaled.

Table I

Convergence of the static dielectric constant ES%)(ko-»O;O). We take

k, =2r/a(1.2511073,0,0) while n is the number of MP special points used in the
calculation.

n| 1 | 2 6 | 10 | 19 | 28 | 4 | 60
Egg) 35.71 l 18.20 1 14.00 ] 12.66 l 12.07 l 12.07 ] 11.84 ] 11.97
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Fig.2. Special-point calculations of the dieleciric funciion for imaginery
energies. Fach curve i3 calculated using the indicaled number of MP special
points.

Using the functions of Fig. 2 as input functions, an algorithm due to te
Rielet4, making use of the regularization method of Phillips!® and Tihonov!6, was
employed to solve the integral equation for P". The resulting functions Im
€golko—0;¢) are given in Fig. 3 for the various numbers of special points used to
calculate Pyq(iey). It is a well-known fact that integral equations of the type (6)
or (9) are difficult to solve. Indeed, we observed that minor changes in P(i¢,) can
lead to enormous variations in P"(¢). Sensible results could only be obtained
through the use of the regularization procedure that is employed in te Riele's
procedure!415.18,17 Ag can be seen by comparing Figs. 3 and 1, this
regularization washes out finestructure details. In this connection we also
mention that, since we know that P"(ky;€)=0, if | ¢| <eg(k,), the lower boundary
of the integral is set equal to eg(ky). This is in agreement with the
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Fig.3. Numerical results for the imaginary part of the dielectric function for
real energies obtained by solving the integral equation (6) for P"go(k,~0,¢)
using the respective input functions of Fig. 2 at 61 equidistant points
covering the interval [0,2i]. In applying te Riele’s procedure!* the
regularization parameter is 0.5 x 10°% for all curves, while the linear
functional L is chosen to be the identity functional.

general rule that in solving the integral equations of the first kind as much a
priori information about the solution should be used as possible. Global
properties can be obtained reasonably well in this way for as few as 10 special
points. This is also illustrated in Table II, where the first four moments of
€"golko05€) = (—e?/ 5] ko |)P" o (kose)s [ ko | = 0, € > 0, are given as resulting
from calculations within the framework of the above-described two methods and
for various special point numbers. The zeroth moment, S, is just the area under

the curve, § = gwdf 6"00(1(0-*0,6), while the first moment, g, is the mean value, p

= S‘ifde € E"Og(ko—e{);e). All higher order moments are chosen to be central
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Table IT

The first four moments of the imaginary part of the dielectric function
€oo(ko—0;€) for positive energies calculated in three different ways. In each
column three numbers are presented. The first number is oblained by
approzimating the ezpressions (11), (12) or (18) by sums over special points,
without the introduction of Lorentzians. The second number is oblained from the
functions displayed in Fig. 1, i.e. it is oblained within the method in which the
delta functions are smeared out to Lorentzians; the third number is obtained from
the curves in Fig. 8, which are results of the integral-eguation method.

n |10 | 19 | 28 | 44 | 60 | n | 10 | 19 | 28 |44 | 60 |

6.13/5.9415.94|5.9115.92 .374].381.381|.383.382
S |5.7915.78/5.85{5.86|5.82 i |.395/.394).3911.391].391
6.23/6.0416.05/6.026.02 .3811.388.389].392|.392

n |10 |19 |28 |44 |60 | =n |10 |19 |28 |44 | 60 |

029].029|.029!.029.020 016].016/.016].016].016
102){ .041].036|.032|.031|.031| 1(3)|.022|.019|.018].017}.017

.030}.031].034}{.036.037 .012].0161.022].0231.024

5¢) directly, i.e. from

moments, I®) =§-1 md‘s(e—p,)’]| €" go(kom0;¢). The various moments may as well
be determined from

2
S=—=& 5 d% A(lv,le,kk, K,K' 11
42’260 |k0 | 3 ]v’lc I ( L] 0 )1 ( )

2
e ’
[ S 3kA1 1e.k K.K k+k. Y-
# 471'260“{0‘28 lv’chd (V, c, :ko: § )[elc( + o) flv(k)]; ( )
12

2
1™ o€ 5 [d%k Ayl k kKK ek )—epy (k)%
an%e, |k, |25 1v’1,cj ( k, Nexe( o)-€1v(k) 4] o

where it is noted that the expressions (11), (12) and (13) can be evaluated by
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replacing the 1BZ integrations by sums over special points; in doing so there is
no need to introduce Lorentzians of with 7. The moments calculated from {11),
{12) and (13) for various MP special-point sets are also given in Table IL
Comparison of these data with the others gives a rough idea of the global error
introduced by the above methods.

In conclusion, we have outlined and demonstrated a novel method for
direct calculation of the RPA dielectric function in a semiconductor at real
energies using a special-point Brillouin-zone integration procedure. Fine-
structure details such as the positions of sharp resonances can only be predicted
accurately using in the order of 44 MP special points at least. Global properties
can be obtained reasonably well by as few as 10 special points.
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46 Back to MCW

In the preceding sections we have discussed a number of ingredients necessary
for the calculation of the GW self-energy function. In this section we deal with
some computational aspects of an actual calculation.

The invariance of the self-energy function on application of space-group
operations { %|R}, i.e.

M(ﬁjr'*":"j'!‘Rgéjt'-i—Tj-i-R;e) = M(r,x';€), (4.68)

leads, in a similar way as in the case of the polarization function P, to the
symmetry relation

Mgy, e 9 = €8T Ty e (e
(4.69)

By means of this relation it is possible to obtain those M matrix elements, for
which the reciprocal-lattice-vector indices are related to each other through the

point-group operations of the group of the wave vector k, in a very economic
manner.

According to (3.25) and (3.26) we can express MCY in terms of three
terms, i.e.,

W
MG Vi) = Mg‘:G,(k) + Mé’j‘é,(k;e) + Mgfé.(k;e), (4.70)

in which M® is a Hartree-Fock type of contribution involving the bare Coulomb
interaction v, M2 i5 an integral over imaginary energy involving the screened-
interaction correction W and M®*® is the residue contribution, also involving W.
Each term in (4.70) contains a Brillouin-zone integration [,d%'(...), the
evaluation of which requires special care because of the possible occurrence of
singularities at k'=0.

The discussion of the typical problems encountered in the 1Bz
integrations and the proposed strategy for solving them can best be given by
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concentrating on the M™* term in (4.70).
We write

Int .. -1 '
M {(k;€) = rde
R (2r) Jo

. J S T Wo g qpolie) F olkkieie),  (471)
1Bz K,K 1 ’

in which the function ;ﬁ(’xs(k—k';e,ie') is given by
;&’K,(k—k';e,ies) = §g e,k_k.a ﬁ’k_k.{K) d k(K )

1 1
x . 4.72
{ e + ie - EfkX) ¥ ¢ - ie’ - Bfkk) } (472)

We will be concerned with the possibly singular behavior of the matrix elements
of W near k'=0 as this complicates the determination of the 1Bz integration
over k'. This behavior is directly related to the polarization matrix and the bare
Coulomb-interaction matrix, through the sequence of (symbolic) relations
W=W-v; W=¢"lv and e=1-vP. As P is regular in the direct vicinity of k'=0, we
can generally express PK,K,(k';ie) around k'=0 as

PK’K:(k’;iG)
= A(K.K';ie) + k'-B(K,K'jie) + k' C(K,K'jie)- X' + o(]K'|?).

(4.73)

For each given combination of K, K’ and ¢ the scalar A, the vector B and the
tensor C are independent of k'. Explicit expressions for these quantities can be
derived by means of a straightforward perturbation technique relating Bloch

functions ?95 k4 k'(T) With k'-0, to functions Zét «(F)- As this procedure is rather
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lengthy, complicated and cumbersome, we will not go through it here, but rather
present the general results to the extent in which they are essentially needed in
the sequel. A separate further publication on this topic including many details of
the derivation is anticipated.

The first important result of the analysis is that we have to distinguish
between the "head" element, i.e., the matrix element with K=K'=0; the "wing"
elements, i.e., those with K=0 and K'#0 or K#0 and K'=0, and the "body"
elements for which both K and K'#0. One finds the general results

Head element : A(0,0;i¢) = 0; B(0,0;i¢) = 0,
(4.74)
Wing elements : A(0,K';ie) = A(K,0;i¢) = 0.

This implies that the head and wing elements of Py K.(k';ie) vanish for k'-0,
the head element quadratically and the wing elements linearly. This typical
behavior of P, combined with the singular behavior of vy O(k') for k'-0, ie.,

vo.0k) = €%/(€o|k'|?), determines the behavior of Wy p(k';¢) near k'-0. It is
str’ajghtforward, by employing an algebraic method of matrix inversion, the so-
called method of "inversion by partitioning" [120,169], to arrive at the following

formal expression for the elements of W:
WK,K,(kl;ie) = WK’K:(k';ié) - 6K,K‘ VK’,K'(kQ)

] 1 i 6K,060,K’+ k“F(K,K';if)
KDk K3 x|

(1= 6 o s (475)

where Wy K.(k';ie) = 6(1) for k'-0, and where explicit expressions can be given
for the tensor D and the vector F in terms of the quantities A, B and c
introduced in (4.73). In fact (4.75) can be considered as the defining relation

for the regular function \;VK k' (Ksie). In (4.75) k stands for k/|k|. It can be
¥

deduced from the explicit expressions, that for a cubic crystal D is a multiple of

the unit tensor of rank three. Quite generally, the tensor D and the vector F
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ay be obtained in an actual calculation by evaluating the inverse of the dielectric
matrix in few "suitable" k' points, with k'~0, so that the components of D and F
follow from the solution of a linear system of equations. By "suitable" k' points
we mean that these points should not lead to a dependent system of equations.
Note incidentally, that the direct evaluation of the inverse of the dielectric
matrix in many k' points may generally be avoided by employing the symmetry
relation (4.36) which holds also for the inverse of the dielectric matrix.

From (4.75) we deduce that the head element of W has a 1/|k'|2
singularity, the wing elements have 1/|k’| singularities and the body elements
have no singularities at k'=0. Furthermore, the singularities, except the one in
the bare Coulomb-term 60,0v0’0(k'), have anisotropic character, i.e., their
strength depends on the orientation of k'-0.

We want to stress that the singularities of W, as expressed in (4.75), can
be integrated and pose no fundamental problem but only numerical
inconvenience. The first inconvenience is that we have to split off the singular
parts of the integrand such that the integration of these parts can be performed
without any problem. This can be done, as will be discussed below, in an elegant

way in which (time-consuming) evaluations of W and % can be avoided. The
second inconvenience has to do with the ¢’ dependence of the integrand in (4.71).
The integrand may have singularities, depending also on the value of ¢, for
certain values of ¢’ in the interval [0,A], where A is somewhat larger than the
largest imaginary part of all quasi-particle energies taken into account. These
singularities, as a function of ¢, may occur for energies e satisfying

| Re(€)~| >€/2 where €;=min, {Re(E lc(k)_E &,(k))} and pi=max, {Re(E &,(k))}
+?g/2. In the special case where all one-particle energies are real, e.g., in the
first iteration step, these singularities only occur at ¢'=0. We have demonstrated
in chapter 3 that M will have a discontinuity in each such case which is

compensated precisely, for that matter, by the discontinuity in MRS,

In view of these inconveniences, the general strategy in performing the
integrations in (4.71) can be as follows: Split the €' integration into two parts,
an integral from ¢'=0 to A and an integral from ¢'=A to infinity. The former is
performed analytically before the Bz integration is done by, e.g., approximating
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W by its value at ¢'=0. Since A is usually small and W(i¢') is very smooth (note

moreover that W is an even function of energy), this will give an excellent
approximation. The subsequent Bz integration of the resulting function can be
carried out in the same spirit as the general approach for the remaining ¢’
integral, which will be discussed in the sequel.

We will now consider the second part of the ¢’ integration in (4.71), i.e.,
the integral from ¢'=A 10 . In this part we perform the Bz integration first and
after that the ¢ integration. As we anticipate smooth ¢ dependence of the
integrand after Bz integration, we need to calculate the integrand at a very
restricted number of ¢’ values only, in order to perform the ¢’ integral.

Let us concentrate on a Brillouinzone integration in (4.71), i.e.,

I= J &3 W g g (K€) Fg oliciieie),  (476)
1Bz

in which Jkk (k-k';e,ie’) is a regular function of k-k'. We write
Jﬁ(K(k—k ele)m the form

;ZK K:(k—k';f,if') = CYK X' + ﬂK K:'k' + a?.K K!(k,k';é,iél), (477)

in  which og XK'= ;%(’Kr(k;f,if') and ﬂK,Kaa-Vka’&’Ka(k;e,ie'). By
construction, the function | f?}( X' {kX’;¢,i€’)| approaches zero for k'-0, as |k'|2
The scalar og X' and the three components of the vector ﬂK » can be easily
determined numencally by solving a 4x4 linear system of equatlons obtained by
first calculating 4 K (k—kj;e.ie’) at four vertices of a regular tetrahedron of
small dimensions (so that the effect of higher-order terms will be negligible)
centered at k, and them equating the thus-obtained values with
ag K'+ﬁK kX i=1,2,34
We substitute (4.77) in (4.76) and obtain

— 3 + LRI
I= QK,K'J d°k Wg_K,G,_KI(k ie')
1Bz
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3.4 ta ot
+ ﬂKKJ 0% K Wg g ggeKie)
1Bz

+J K’ WG_K’G,_K,(k';ie’) a?K’K,(k,k';e,ie’). (4.78)
1Bz

The last integral on the right-hand side of (4.78) poses no problem at all, since

the |k'|2 behavior of (%(’K‘(k,k’;e,ie‘)[, for k'~0 makes the whole integrand
regular in 1Bz. This integral can be performed by the method of special points.
The same can be said of the first integral for all body elements, and the second
integral for both body and wing elements. Hence, the only integrals which
require closer examination are (we present below oaly the integral of one type of
wing elements, since the wing elements of the other type can be treated
identically):

I, = J &%’ Wy o(k'ie), (4.793)
1Bz
I, = J &% Wy qr_ge(Kiie), (4.79b)
1Bz ’
I, = j &' & W, o(Kie). (4.79¢)
1Bz

We mention that for crystals with inversion symmetry, such as silicon, the
property Wo 0(k';ie')=W0 0(—-k';ie') holds so that I vanishes. After substitution
of the form (4.75) for WG—K, a'—x(Kiie) in (4.79a,b,c) we can write

S IR e —
“1g; ¥ 13,  E-R)K [k
+j & Wy y(K'ie’), (4.80a)
1Bz .
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. K'-F(0,G'—K';i¢')

12 = d3k. 7 » f ﬂf i
1Bz k'-D(ie')-k | k'|
+ J &K' W, gr_ge(K'ie), (4.80D)
1Bz '

Is = .-i—:"[ d3k‘ k! + d3k' ? F : “l 1’

°1Bz X'l 1Bs K-D(ie)k" [K|
+ J 3k K Wy g(Kie). (4.80c)

1Bz ’

None of the integrals involving \?V pose any problem and therefore they all can
be evaluated with the aid of special-point methods. The first integral in (4.80b)
and the first two integrals in (4.80c) are seen to vanish because they have
antisymmetric integrands. Hence, the remaining integrals to be discussed are the
first and second ones on the right-hand side of (4.80a). As the first of these
integrals is a special case of the second one, we will only consider the second
integral in (4.80a) and write it into the form

14 = dak' “l ]-. i 2 ]"
1Bz k'-D(ie') k' [k'|?
3 27
=J de sin(@)JO do &(0,9)/ o(0,v). (4.81)
0

Here k(©,p) is the length of the k' vector located on Bz surface in the polar

directions ©, ¢ and- o(@,@)si-_g_(ie')ofc’. In the specific case of a cubic crystal
the tensor D(ie') is a multiple of the unit tensor of rank three, so that the
integrand in I, is simply proportional to 1/|k'|2 The integral (4.81) involves a
finite integration region as well as well-behaving integrand, free from
singularities. Hence, the numerical execution of this integral should not pose any

problem at all. In our final expression for MgWGs(k;e), to be presented in
. H
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chapter 5, some of the contributing terms will still contain Bz integrals over
singular functions. However, in all these cases the integrands, though singular,
are antisymmetric in the integration variable k', such that these singular parts
in fact do not contribute. The use of, e.g., a special-point integration technique
in these cases is perfectly suited to deal with such integrals, as it leads to zero
contribution to them. This concludes our brief and global discussion of the
typical problems in the Bz integration present in (4.71). In chapter 5 we will

discuss the feasibility of calculation of Mg\ivcl(k;e), starting from expression
(3.25) and (3.26), in which, however, we have carried through a number of
rearrangements in order to cope, numerically, with the above-mentioned
singularities.
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CHAPTER 5

CALCULATIONAL PROSPECTS

5.0 Imtroduction

In this chapter we discuss the question whether 2 GW-bubble calculation of the
energy bands in semiconductors is indeed achievable without any further
opprozimetion. The main obstacle in such a calculation is the determination of
the self-energy function, which, strictly spoken, has to be performed in a self-
consistent way. However, even the first iteration cycle in such a procedure is
already an enormous task. We claim to be close to the achievement of

calculating MW and the energy band structure in the first iteration step.
Subsequent iteration steps do not pose principally new problems, but will lead to
an enormous increase of computation time. Fortunately, however, calculations
based on a plasmon-pole model [64,65] strongly suggest that a first iteration
cycle is sufficient. Though this phenomenon is not yet fully understood, we
consider it as realistic to anticipate its correctness. In view of this we will focus
in what follows on the feasibility of an actual calculation of the GW self-energy
matrix elements in the first iteration step, starting from our final expressions for

M?}V?Ga(k;e) to be given below. The particular form in which the matrix
elements will be written makes it indeed possible to judge the feasibility of their
numerical evaluation. However, there is also a price paid for that: We had to
decompose the self-energy expression into no less than 32 different contiibutions,
many of which need special attention and care.

Thus, the organization of matters in the present chapter has an
advantage, but also a disadvantage. To start with the latter, the lengthy
formulas of section 5.1 will certainly cause a lot of discomfort to those readers
who are not interested in all the little details. We encourage these readers to
jump directly to section 5.2 for the discussion of computational aspects. On the

other hand, the advantage is that complete expressions for MW matrix
elements are now for the first time available, in which all singularities,
peculiarities and, from the computational point of view, less attractive
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properties are unraveled and fully exposed. This expression will make the
discussion of feasibility as realistic as possible and, hopefully, it will serve as a
convenient starting point for further attempts towards ab inifio band-structure
calculations. '

5.1 Basic Expressions

Starting from expressions (3.25) and (3.26) for Mngg(k;e) and taking account
of all intricacies such as the singular behavior of v, 0(l:') for k'-0, the singular

behavior of the head and wing elements of WKK(k €) for k'~0 and the
singularity in the imaginary energy range (0, 1A) of the energy-dependent

integrand in the expression for M Int G'(k;¢), we finally come to an expression for

M(G;WG:(k;e) in which matters ha,ve been organized in such a way that all
1
occurring Bz integrations and summations over reciprocal lattice vectors and

energy bands can be done numerically. We write MCY, M™ and MR® (see
(4.70)) as follows:

G = L A&, (5.1)

(2 )3h

Méné (k;e) = % {J/(éfa?(k;e,ﬁ) + IZ de’ Jéfa)(k;e,e')},

4
(2 ) e (5.2)

MEeE (o0 = =y £ alauo, (53)

(2 )*”h

where all contributing terms on the right-hand side can be calculated with the
aid of simple algorithms. In below we indicate 1Bz integrals with regular
integrands by boldface integral signs. Also, 1Bz integrals in which integrands
occur with singular parts (which parts, in view of our analysis given in section
4.6 can be shown not to contribute) are indicated with boldface integral signs.
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The reason why we mark these integrals in a special way is that they can all be
performed in a relatively simple and inexpensive way, for instance by using a
special-point method [112-114]. The remaining 1Bz integrals do have
singularities, but can; in view of our considerations in section 4.6, be done as
well in a relatively simple way. We will first give expressions for the functions

J{é ();(k) ./I(G(n)(k 6,A), J{G( 2(]: ;6,€) and Jé G (k ¢), whereafter the

respecuve symbols and functions occurring in them will be defined:

#d 0= B | g @), 64
1Bz
) =I &K Jg, Gk K)vg o(kK), (5.5)
1Bz
“"é?()%’(k) =fG,G'(k)j & vg,okK), (5.6)
1Bz
"ﬁé?()}’(k) = lkaG,G'(k)] J. d3k (& -—k)v0 0(k—k ), (5.7)
1Bz

G kied) = e J &% Wy (K50 Kl ¢ qr_gelkse)

1Bz

(5.8)

“’%Eéz(";‘»‘ﬁ) » I a3 Wﬁ?&(k';O) 'XGA: g/ (k-K'5e), (5.9)
1Bz

#Ben) [ e TR0 AL gkii,  (510)
~ 1Bz

40(4 (k;e,8) = —J a3 Fa A G ok X'; e)vo ol&): (5.11)

1Bz
#5{ G e0) = ‘XGA, G'(k;‘)_{ a%x' T (k50), (5.12)

1Bz
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#lsen) = - AP lie) [ K v o), (5.13)
1Bz

# Giee) = e | 6% Wi geiie) g g g lkKieie),
'™ 1Bz
(5.14)

#eS B s6,€) = j &% WKie) g gk Keie),  (5.15)
1Bz

«(3 ) 3 ] 0 et RN |
# e €) =J & T ) g gkKSeic),  (5.16)

1Bz
A e, = - J & Ay glkKieicvg (&), (5.17)
1Bz ' ’
.A’e’éséz(k;e,e') = %G,Gs(k;e,ie')‘[ Sk T(G())(k ;ie), (5.18)
1Bz
(kee)m—%GG(kele)]- a3’ voo(k), (5.19)
1Bz
£(1). 5 . 3y L
#e Qs = K):K sz K {7 e Kimahd g gy (k)

¢ Wi oK 8 (k) (5.20)

£(2 3, ¥/ 1 { Y

L) = A iBz K {7 ks g qex)
xir KjeB (k-K))), (5.21)



aﬁé(é)(k;e) = ,E J ' {9 e(k—k';y,e)hé g-x'{k¥)
’ K'#0 1Bz ’

x V.V(gfl){,(k';e—ﬁe(k—k'))}, (5.22)

#E &) = ng:nj FE {3‘(k~k';p,e)?§é__K,G.(k,k')

1Bz
. rlgjg(k';e—ﬁt(k-k'))}, (5.23)
# &) = JBdsk {9 4xx ,p,e)%GG (k)
x Tgfl)(.(k';e-ﬁt(k—-k'))}, (5.24)
45 Q)
== T [thé_KG(k) J S k' 7 Yk, e T B k),
K#0 1Bz
(5.25)
Jéfé?(k;e)
E Vi g ()] j S 7 ek T8 ) (e R k),
1B (5.26)

#E &0 e)——J S 7 - k',u,e)?iGG(kk) 00¥)  (527)

#8060 = [ B¢ 7 ekimend kW k)),
1Bz
(5.28)

107



45 G0k €) = J 8 7 e iG k)TN e k),
1Bz
(5.29)

‘<11(k e)—-hGG(k) J d3k 7 s, 0 {1 (s () 5.30)
1Bz

‘f L) (k;e) = [thé’G«(k)]-J S K e é(k-—k’;;a,e)’r(():())(k’;e-ﬁ LK),
1B
’ (5.31)

‘(13)(1: €) = }3 hG_KG(k)I Sk 7 {ex; ,u,e)’l”(lt))(k';e—ﬁl(k-k')),
1B
’ (5.32)

zfl“)(k 9= L hé,G._K.(k) J S’ é7z(k—k';;;,e)’r((ljl){;(k';e—-ﬁz(k—k')),
K'#0 1Bz (5.33)

“15 Mk; €) =—hGG(k)J Sk 7 - —Kimevg oK), (5:34)
1Bz

(“‘ (k:¢) -[vthG(k)] J & 7 i exy, o). (535)
1Bz

In the above expressions }.' denotes summation over all K, K’ except K=0 and
K'=0, while }," stands for summation over all K and K' except K=0 or K'=0.
“The functions occurring in the 32 expressions (5.4)(5.35) are given by

el?

m ; (5.36)

VK,K(k) =

fox k) = % O(u-Reb (k") hé__K’G,_K;(k'), (5.37)
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e () = By 4 (K) )oK, (5.38)

o, 0) = g g 0) ~ g 9~ Wl M- (X, (5:39)
A , A, o
F g (Ki) = j | € T g g g (Keie)

v, 4 : A
=2Yh + w(k-k') arctan)—2—— 1 5.40
% G‘—K,G -‘K ( ) arc an{ € - E[k"k')} ( )

1oa Y £ '
ﬁG—K,G’—K’(k_k j6ie) = }g, hG—K,G'mK'(k"k )

1 1 }
x + ) (5.41)
{ e + ie - B(kXk') e - ie' - Efk-k)
arctan(z) = Tarctan(———————) i ln(—’ii'-(ﬁ'—l)i—)
x3-y? +(y—1)?
with z=x+iy, x,y€R, 2%-1 and -—7r/2<arcta.n(—-—-;——-—)<a-/2 (5.42)

A : A . A A ;
J?G , g'(kkse) = Hq ’ gk-k'5e) - Fq : g'(ke) + [V Zq ) g'(ke)]-k

(5.43)

( )x k';iC' =""r_—_l —
k' (K'5i€) YD)

by a6r v K -F(KX'ie)
 (Jx0l0K (K,

&°|? ||

g ol (544)

WI({?I)(.(k’;ie') =Wgx' (K5ie) + b K K'K’ (k') - TK K (k'iie"),
(5.45)
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c%{ Kc(k,k';e,ie') = Hy Ks(k—k';e,ie') - J K«(k;e,ie')
+ [V ¢ g(keie)] K, (5.46)

7 ek ,6) = O(u-Rel (kX)) - O(Re(e-B(kK)),  (5.47)

e (KK = b o (6K) = hig 09 + [Vyhyg o (W]
‘ (5.48)

This concludes our complete listing of all expressions for the 32 contributions to

MW In the next section we will discuss matters concerning the required
computation time and storage capacity.

5.2 Computational Aspects

All expressions (5.4){5.35) contain a k' integration over 1Bz. Apart from the
bold-faced integrals, which can best be performed by means of a special-point
method [112-114], there are also 1Bz integrals with singular integrands. In these
latter cases we propose, in accordance with our analysis in section 4.6, to exclude
a small sphere or (regular) polyhedron around the singularity point and integrate
analytically in this region. The integration over the remaining part of 1Bz can
then be carried out by means of a simple integration method. Namely, in all
these cases matters have been organized in such a way that the evaluation of the
integrands is relatively inexpensive. An exception is the case of the singular-type
integrals (5.30)5.35) in which the evaluation of the integrands involves the
determination of band energies at many points in 1Bz. This happens to be rather
expensive, but can be avoided by using a band-structure-interpolation procedure
such as that of Slater and Koster [170,171], or a procedure based on the
expansion of energy bands in terms of symmetrized plane waves [114,172]. In the
latter case the expansion coefficienis may be obtained either by fitting to
calculated band enpergies in a restricted number of points in 1Bz or by utilizing
the orthonormality property of the symmetrized plane waves so that each
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expansion coefficient may be written as a Bz integral of the product of the
energy band with the corresponding symmetrized plane wave. Such integrals can
be evaluated by means of a special-point method. We mention, however, that
although the latter method is advocated by Monkhorst and Pack [114],
Schuurmans et al [172] are less positive as to the usefulness of symmetrized plane
waves for expanding energy bands in general.

Quite generally, the evaluation of (5.4)5.35) anyhow requires the

determination of wave-function coefficients ae k-.(K) and energy eigenvalues
Y

Ez(k") in quite a number of k" points in 1Bz. Furthermore, a number of
summations over K and X' has to be performed. The first requirement, however,
is the evaluation of the integrands (summands) in the respective expressions
(5.4)-(5.35). Some of these integrands contain functions which do not depend on

the variables k and ¢ occurring in Mng,(bk;e). As an example, consider the
?

function WK’Ks(k';ie’) in (5.14), which can be determined once and for all in a
number of (special) k’ points and a number of ie’ points on the imaginary energy
axis and subsequently stored. This will result in a substantial reduction of the
computation time when calculating quasi-particle band structures as this implies

the evaluation of the self-energy function M‘éwG,(k; €) in various k and € points.
b

As will be shown later on, the determination of W is rather costly and therefore
a repeated evaluation of this function should be avoided. In this respect the

function W occurring in (5.20) deserves special attention. It depends on k’, but
also on k and ¢ via the energy argument e—EZ(k—k'). We propose in this case to
calculate WK’K.(k‘;Ei) values at a limited number of fixed mesh points {E;}

and to use interpolated W quantities between these Ey’s in the actual calculation
of (5.20).

Examination of the integrands (summands) in (5.4)-(5.35) reveals that
quite a number of functions occurring in the integrands do depend on k and e.
Varying these quantities generally requires repeated evaluations of these
functions. Taking account of all the above considerations it is now in principle

possible to estimate the feasibility of actually calculating MEW in terms of the
computation time required for the first iteration cycle.
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Let us assume that all required 8& gjks(K)’ d k- g;ks(K)’ Et( ajks) and

Ez(k—gjks) values have been evaluated and stored, where kg, s=1,2, ..., Ny, are
special points while g;, j=1,2, ..., Ng, are operations of the underlying lattice
point group. In general, if k is a non-symmetric point, the number of k~-g;ks
points will grow rapidly at increasing number of special points ky. For instance,
if g; denotes the elements of the lattice point group of a cubic lattice, and the
number of Monkhorst-Pack (MP) special points is equal to 2, we have 32 points
k-o;k, At 10 MP special points this number is even 258, etc. Furthermore, it
will be assumed that functions not depending on k and ¢ (we consider

K k'(giksie ) Ak-2jks)) as belonging to this category because of the above—
proposed interpolation procedure) have been calculated and stored. In this
respect we assume in fact to have sufficient storage capacity at our disposal.
Without this facility, computation times will certainly grow beyond practical
limits but on the new-generation type computing systems the storage capacity
should not pose any principle problem.

With these assumptions we will now estimate the time required for the

determination of Mng,(k;e) for one combination of k, ¢, G and G'. Note in
this connection that determination of the whole MG matrix at k and ¢ requires

the knowledge of Ngw such matrix elements, where Ny is the number of plane
waves taken into account. If, however, k has some symmetry, the determination

of the whole MW matrix may require appreciably less than Ngw times the

computation time for one MG @'(k;¢) matrix element. This remark is based on
expression (4.69). Subsequently, we have of course to pay attention to the

computation time required for the above-discussed stored quantities d, B,

WK,K'(gjksﬁf‘) and WK,K‘(gjks;Ei)‘

It is not difficult to see that the most time-consurning contributions to
MS‘:’G.(k;f) originate from (5.8), (5.14) and (5.20). The reason is that these
terms contain a summation both over K and K', which is at least one summation
more than involved in the remaining contributions. In a calculation with the
number of plane waves of the order of hundred, the computation time will be
almost completely determined by these three contributions. Though (5.4)
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Table I

Estimate performance of the Burroughs B7900 system

name symbol required time x 108 s
assignmen Ty 1.0
summation/subtraction T3 1.5
multiplication T3 2.0
division T4 3.5
standard functions Ts 45.0
comparison Tg 1.0

contains only one summation over K, we will nevertheless deal with its
computation time, as it may be of interest for a Hartree-Fock self-consistent-field
calculation; (5.5)«5.7) are not ‘considered in this respect as they contain no K
summation at all.

In Table I times are given for elementary operations such as
approximately valid for a Burroughs B7900 computing system, which we will

take as our reference. Our aim is to express the evaluation time for M%“?Gg(k; €)
quite generally in terms of these elementary times 77 Let us denote the
minimum computation time required to evaluate a function f at fized values of
its arguments, subscripts and superscripts by T{f}. Let furthermore N, be the
number of operations in the lattice point group; L, (L.) the number of valence
(conduction) bands; L the total number of bands; Ny, the number of special
points and Ny, the number of distinct points in 1Bz equivalent to the points in
a given special point set. According to our best estimates we can write:

T{AG 41} § Nop Npw T (K}

+ NQ Nsp pr (77’1 + 7'3'2 + 27'3), (5.49)

T{ Jf‘égé}(k;f,ﬁ)} » Nyg; N2, T{ ngA, D)

+ Ng Ny, N2, (137 + 273 + 873), (5.50)
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T{AG G560} ~ Nipy Now T{ F¢ ger(leic)}

+ Ng Ngp N2, (137, + 27, + 873),

T{ ,{éfé).(k;e)} ~ Nips {T{ff Qmey + N2, T{hf{,x'(k)}}

+ Ngp No N2 (147, + 147, + 127)

2 14
~ Nipy, pr T{hK,K'(k)}
+ Nyp Ny N2y (147, + 147, + 1275).
in which

T{fK,K'(k)} s Lv (IGTE + 5‘7'2 -+ 87'3),

T{JAKA’ w60} 2 L (197, + 11ry + 117y + 27, + 275),

T{ ;%’Kl(k,é,ifg)} ~L (157’1 + 12?’2 + 87’3 + 47’4),
{5 )} = 4y + 374,

T{ké’K:(k)} o 107'1 + 47'2 + 873.

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

In (5.49){5.52) by the symbol "~" we mean that the relations are asymptotic
ones, in the sense that they are to be used (only) for Ny, of the order of ten or
larger (in (5.49) < means asymptotically smaller). Assuming N energy mesh
points ie’ needed for the evaluation of the integral running from A to » and

assuming N, bands in the £ summation for M g‘éx(k; €), we come to the estimate
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T{Mg‘f’g,(k;e)} « T{ g §lse,0)} + N T A e
+ N, T{ L xa). (5.58)
¢ TG, gk e} :

For determining the whole MGW(k;g) matrix, requiring the determination of
NpwiNpy matrix elements, the following estimate holds (mote that by
suppressing the subscripts of a matrix in T{.}, the computation time of the
whole matrix is meant):

TMEW (i)} ~ oy Moy TMGY ()}

- oy Nipy N [T{HE g6} + T{ o (e} + T{byg o ()},
(5.59)

in which the quantity o, 0<0y<1, takes account of the fact that for symmetric
k vectors, according to (4.69), only a part of the self-energy matrix elements
need to be evaluated directly. In case k is a non-symmetric point, o equals
unity. Note that the second term on the right-hand side of (5.59) accounts for

the fact that the matrices JZA , ¢ and h£ are to be evaluated only once (see
(5.50)5.52)). Using, as an example, No=48, Ny,=2, N3,=32, Np,=15, L=10,
Ly=4, N.=10 and N =3 we obtain

GW
{Mg : g(ki€)} ~57.8s. (5.60)

Determination of the whole MGW(k;e) matrix then requires for a non-symmetric
wave vector k about 9.02x103 s, which is about 2.5 hours. If, however, k is
chosen to be & symmetric point, this time will be enormously reduced.

Let us now consider the computation times involved in the evaluation of

af,gjks(x)’ al,k—gjks(K)’ Eg(gjks)s Eg(k“gjks): WK,K'(gjksﬁf') and

WK K'( aikg;E;), again as above in the first iteration step. First we deal with
K'\E ;
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the times involved in the evaluation of 3 (K) and Eg(q), with g some point in
1Bz such as gjks or k-g;k;. These quantltxes are obtained by the solution of an
eigenvalue problem in which use has been made of ab initio norm conserving
pseudopotentials such as given in Ref. [173]. As is well-known, the latter

procedure for an N,x Ny, system of equations, takes approximately 77Ngw s per
q point [174]. The parameter 7; which, among other things, depends on the
computing capacity of a system, is taken equal to 0.4x10"* s in our reference
system. In view of the relatively large number of k~g;k, points involved, it is
necessary to do these evaluations in many points in 1Bz which is very time

consuming. Incidentally, the calculation of d and ¥ quantities in a higher-

iteration step will also require the computation of MGw(k—gjks;e) at all these
k-ga;k; points. As according to the above estimates the determination of the

M®Y matrix takes at least 2.5 hours (see below (5.60)), it is clear that it will be
problematic to reach self-consistency.

As a last estimate let us consider the computation time involved in the
evaluation of an N, xNy, screened-interaction matrix at an imaginary energy,
i.e. T{W(k"ie')}. This time will be representative for T{W(k",E;)} as well. We
start by dealing with ‘I‘{PK K’ J(k%ie")}. Making use of a special-point method
and assuming the precalculatxon of all required terms of the kind (see (4.37)):

* »
aK( a; s’-3k +k° A )aK'("giks’giks+k ;lv,tc),
Etv( gjks) -8 ¢ ( gjks—i-k"),
c
we obtain the following result:

T{PK)Kn(k';ie')} v Nop Ly Lo N (177, 4+ 775 + 1873 + 7).
(5.61)

If the wave vector k" is a general point in 1Bz, all elements of the polarization

matrix have 10 be calculated independently, so that the computation time of an
NpwiNpg polarization matrix amounts to (note that in the first iteration cycle
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the polarization function along the imaginary axis is Hermitian):

T{P(k";ie')} ~ } NEWT{PK’K,(k”;is’)}. (5.62)

According to the relation W=(1-vP)v and the fact that the involved
computation time in a matrix inversion procedure amounts asymptotically to

TaxNgw, [175], with 74~0.4x107¢, we obtain
T{WEN} ~ TR(Ki€)}

+ N2, (347 + 275 + 87y + 27¢) + 74 N2 (5.63)

If we use the parameters employed in the calculation of (5.60) and choose
Nypw=15, we obtain

T{W(k";ic')} ~ 17.45. (5.64)

As it is necessary to compute W at Ny special points k" and at N, energy points
along the imaginary energy axis, the latter computation time will be enhanced
by a factor NexNgp. Assuming the screened interaction to be a smooth function
along the imaginary energy axis we expect that Nex10 will be sufficient, in
general,

In conclusion, we have shown that a first-principles calculation of the
three most time consuming contributions to the 15:15 MGW(k;e) matrix in the
first dteration cycle of a self-consistency procedure at one non-symmetric k point
and at one ¢ value takes about 2.5 hours. Taking into account the time required
to calculate the remaining 29 contributions, we estimate the total evaluation
time of MGW(k;e) to be about 5 hours. There is however additional computing
time to be taken into account because of the necessary determinations of d, B
and W functions. In view of this we estimate the total evaluation time of
MGW(k;e) at a non-symmetric k point to be about 5.25 hours. In giving this
estimate, we took Ny =2, however, which might be too optimistic in view of
required accuracy. On the other hand, if we consider symmeiric k points, for
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instance in the (1,0,0) or (1,1,1) direction, the computation time will
significantly reduce. Let this reduction be in the order of ten. As we will need
MGw(k;e) at a given k in about twenty to thirty ¢ values, in order to be able to
solve the quasi-particle equations [62], we estimate that the evaluation of one set
of energy values B Ak) at one such symmetric k point will take about 14 hours.

This indicates that a first-iterationcycle determination of the band structure is
within reach for a system in which we restrict ourselves to fifteen plane waves. It
indicates also that extension to more plane waves is only possible at this
moment if further refinements in our calculation procedure can be carried
through, among which, for instance, parallel computing. Extension to a self-
consistent way of determining energy band structures is nof yet within reach,
unless the above-used 77 values reduce dramatically, or unless actual first-
iterationcycle calculation indicate that the obtained MEX?G.(k;e) matrix

elements appear to show little structure in k. We repeat, however, that pursuing
self-consistency may not be necessary at all [64,65].

We find ourselves in the unfavorable position of not being able to
produce numerical results for the self-energy function or the quasi-particle band
structure, not even in a first iteration step within the GW approximation.
However, several partial results have been obtained and progress is still being
made. Moreover, valuable preparatory work has been done and presented, while
a fairly complete exposition has been given in the present chapter of the way in
which the GW self-energy function is to be calculated. Without the claim of
having foreseen all practical problems or presenting the ultimate strategy for
finishing the work, we are comvinced that all basic difficulties have been
recognized and strategies for tackling them have been proposed.
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APPENDIX A

DIAGRAMMATIC APPROACH TO THE CALCULATION OF THE
ONE-PARTICLE GREEN AND SELF-ENERGY FUNCTION

This appendix summarizes the main features of the representation of the one-
particle Green function G and the related self-energy function M for an
interacting many-particle system in terms of diagrams [176-179]. The method
accounts for all perturbation-expansion terms when expanding the full Green
function G in terms of the interaction part of the Hamiltonian. The
diagrammatic technique, originally due to Feynman, enables one to obtain the
whole perturbation series merely on the basis of topological properties of
diagrams. The new aspects in this appendix are the inclusion of the z, [57,180]
and zn[interaction terms and the diagrammatic derivation of Hedin’s equations
[56,181]. Note that, although we are interested in the behavior of particles with
spin, the material in this appendix mainly deals with spinless particles. We have
chosen to do so because the results for particles without spin can be
straightforwardly modified to cover the case of particles with spin. Thus,
unnecessary complicated notational work is avoided. The above-mentioned
modifications will be discussed at the end of this appendix.

We first note that the solution of Dyson’s equation (2.10) can
symbolically be written

G = (1-G°M) lge

= G + GOMG® + GOMGMG® + ... . (A1)
By introducing the function M defined by

Bf = M + MGOM + MGOMG®M + ... = MGGo ™, (A.2)

we can, making use of the right-hand side of (A.1), express the Green function as
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2 2 2 2 2 2 2 2
(2.10) (A.1)
3
1 1 1.
3 3 ? 3
% = @ + + Fas ey - +
4 4 ¢
4
2 2 2
4
(A2) (A.3)

I{"ig. )Al. The diegrammatic notations of equations (2.10), (A.1), (A.2) and
A.3).

G =G° + GoMGe . (A.3)

The function M is usually called the improper self-energy, contrary to M which
often is referred to as the proper self-energy.

In Fig. Al a diagrammatic notation of equations (2.10), (A.1) (A.2) and
(A.3) are given. It should be realized that these diagrammatic equations are
nothing but formal visualizations of the respective equations and do not af this
stage contribute to solving G and M in terms of G°, v, z,and Zop

The important point is now that the general theory [176-179] shows that
G can be written in the form of a perturbation series in the interaction, each
term being a multiple space-time integral of products of unperturbed Green
functions G°, interaction functions v(1,2)=v(rrr;)é(trta), zfri), 2 [1,2)
=zne(r1,r2)6(t1-t,), and a numerical factor to be specified below. Among all
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possible products of the functions G°, v, z and Zys only those products are

allowed which do not fall apart into factors depending on disjoint subsets of the

space-time variables; these allowed terms are called linked or connecled. Of most
practical importance is the fact that each term of this perturbation series can
uniquely be represented by diagrams which are commonly referred to as

Feynman diagrams.

In a Feynman diagram, different types of functions are represented by
different types of lines, whereas the arguments of the functions, being space-time
points, are symbolized by points accompanied by a unique number, j say,
representing the space-time point rjt;.

A direct consequence of the specific kind of terms, allowed in the
perturbation series of G, is the restriction of the diagrams to linked or connected
ones. A connected or linked diagram is a diagram which does not consist of
separate parts. A diagram representing a term with n interactions, either of the
kind v, z 40T 2,y is called a diagram of nih order.

The prescription of drawing an nth-order diagram involving 1 v-
interactions, m z_interactions and (n--m) z ginteractions is as follows:

(i) Mark iwo points 1 and 2 on the paper. These two points specify the
space-time points in the function G(rt;r;t,). We shall refer to these
points as ezlernal points, as opposed to the other points in the diagram
which are referred to as infernal points.

(if) Mark 14+m pairs of internal points (vertices) on the paper and label them
3, 3; 4, 4, ..., (14+m+2), (14+m+2)". Join the pairs of points (j,j'),
=34,..,1+2, j'=3'4',..(1+2)' by v-interaction lines (dotted lines

~mwwe- ) and the pairs of points (j,j'), j=1+3, 1+4, ..., (1+m+2),
i=(+3)',(1+4)’, ..., (1+m+2)’ by z_ interaction lines (thick wiggled
lines -AAAA~ ). Mark (n--m) additional points 14+m+3, 14+m+4, ...,
n+2 and join to each ome a z[interaction line (thin wiggled line
AN )

(ii) Draw directed lines, the so-called particle-lines, (thin lines
i ——— i), representing unperturbed Green functions G°(i,j), such
that each of the internal points connected with a v-or z [intera,ction line
has precisely one particle line entering and one leaving. To the points
connected with a zn[interaction line only one directed line should be
attached; it is either entering or leaving.
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(a) (b)

Fig. A2. Ezamples of two {th-order Feynman diagrams. (o) A linked or
connected diagram. (b} An unlinked or disconnected diagram.

As an example, consider Fig.A2 representing two 4th-order diagrams containing

all three kinds of interaction v, z ‘ and Zop
In considering the diagrams, we may restrict curselves to the collection

of topologically inequivalent diagrams. Topolegically equivalent diagrams, which
can readily be shown to have the same contribution [176], are accounted for by
just calculating the contribution of one of them and multiplying this
contribution by the number of equivalent diagrams. Two diagrams are said to be
topologically equivalent if they can be transformed into one another, irrespective
of the indices of the internal vertices, by continuous deformations. The latter
consist of all kinds of rotations, either of the whole or a part of the diagram,
stretchings, shortenings, etc., provided that none of the lines is cut. For instance,
the diagrams in Fig.A3 are all topologically equivalent. ’

' We call a representative of a class of topologically equivalent diagrams,
the fopological structure of the corresponding class. The linked topological
structures contributing to G, up to the second order, are given in Fig. A4.

The prescription of calculating the contribution of a given topological structure

of nth order, with 1 v-interaction lines, m z_,lines and (n-1-m) z lines is given

below:

) Assign to each v line connecting j and j', v(j,j'); to each z,,¢ line between
jand j, = t(j’ j") and to each zy line attached to j, —z L(rj). Each particle
line directed from j' to jis to be identified with G°(j,i"); in the case j=j’,
it has to be assumed that t;'=t;*=t;+n with 7 an infinitesimal small
positive number. The latter is meant to guarantee the correct ordering
of the field operators in the defining relation of G°.
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1 1 1
3L 3 30 3 e 3

/ /@
4. 4 4 & T 4
2 2 2

Fig. A3. Four 2nd-order diagrams which are topologically equivalent with
each other.

(ii) Multiply the contribution of all lines in the diagram, and subsequently
integrate over all infernal variables i’
(iii)  Multiply the result obtained in (i) by a factor (<H)(-i/n)2

x(i)"‘“‘(—-l)F:(—l)Fﬂ/ﬁP. Here F is the number of closed loops in the
diagram. For example, F's in the diagrams (by),(cs) and (c,) of Fig. A4
are 0, 1 and 2, respectively.
As an example, we write down the contribution to G of the topological
structures (by) and (b,)

1

) }M g "ljd(a) Go(1,3)241:)G°(3,2). (A4)

3 T‘Q = (-1)in‘1jd(3)d(4) Go(1,3)v(3,4)Go(4,41)G0(3,2)
2= w-iﬁ,”ljd(s)d"ir‘ G°(1,3)v(r3-t4)G°(r4t3,r4t'§’jG°(3,2). (A.5)

‘We are now able to obtain G in ferms of G, v, 2 4 and 7 pin the form
of a diagrammatic expression,

1 1 1 1 1 1

o AL NGE e g+ . (AS)
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(e12) (e13)

(c18) (c17) (c18) (c20)
(c21) {c22) » {23) (c24)

Fig. Ad. All linked topological structures contributing to G, up to the second
orde?' ay) is o zeroth-order siructure; (by)-(b,) are Ist-order structures;

(e

(
ty4) are Znd-order structures.
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By identifying this expression for G with the expression (A.1), one can
extract an expansion for M in terms of functions G®°, v, z and zp To this end,
let us consider a diagram contributing to G with external lines left out, i.e.
without the particle lines entering vertex 1 and leaving vertex 2. From (A.3) we

deduce that this diagram is an M diagram; only if it cannot be split up into
separate diagrams by cutting a single particleline, it is an M diagram as well
(cf. (A.1)). In the former case we call this diagram an improper diagram whereas
in the latter case a proper diagram. The collection of all proper diagrams to be
obtained in this way, i.e. by leaving out the external lines, gives the complete
proper self—energy function. As an example take the diagrams =<

o and
s o . 'The first one is proper and contributes to M ‘while the

second one is improper; both diagrams contribute to M.

Let us now introduce the concept of a skeleton M diagram [182]. Such a
diagram is defined by demanding that it is an M diagram with the restriction
that it does not contain any internal M diagram. For example =iz s
a skeleton diagram, whereas = ===y is not, for this containg =g, . It
will be clear that all diagrams for M may be obtained by drawing all skeleton M
diagrams and then inserting all possible M parts. This is equivalent with
[182,183):

M = {Contribution of all possible skeleton M diagrams
with G° replaced by G} . (A7)

Equation (A.7) is actually an implicit equation for M since G also contains M.

In considering the skeleton M diagrams we notice that the two first-
order diagrams A~ and (> are special ones, as they
represent the only local contributions to M. As the self-energy function,
introduced in (2:10), is by definition a two-point function, it turns out that in
these two cases the contributions are to be expressed with the help of § functions
[cf. (A.4) and (A.5)):

;NW = -07l50,2)2 ), (A.8)
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v g0t

(al) a2) (a3)  (ad)

(e9)  (c10)

‘Fig. A5. All skeleton M structures u: f to the third order in interactions. (a -

(a,g are 1st-order structures. (by),
order structures.

:...,....m“.O = ~ih 6(1,2) J.dsl'l' V(Il—f{)G(r{tl',r{t1'+)~

by) are Znd-order and (c\)-(cy) are rd-

Also the first order skeleton diagrams involving the non-local interaction Zog is

special and leads to the M contribution

1

é = — h;-lznérhrz)é‘(t 1"t2)-

2

Note that a thick line in {A.9) represents a G function.

In Fig.A5 the set of skeleton M structures, with full Green functions, up

to the third order are presented.

The prescription of calculating the contributions of the skeleton
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diagrams of order n>1 is:

1) Assign to each v line connecting j and j', v(j,j’), and to each thick line
i’ —>— jdirected from j' to j, G(3i)-

(1) Multiply the contributions of all lines in the diagram, and subsequently
integrate over all internal space-time variables, except the ones
connected with only one particleline.

(i)  Multiply the results obtained in (ii) by the factor (~i)(</h)®

n(i)m*l(-—l)F = (—~1)F (i/h)®; F being, as before, the number of closed
particle loops in the diagram.

In this way we have a prescription at our disposal giving the self-energy
function M in terms of the Green function G and the known functions v, z ¢ and

Znt‘.

We now want to show (diagrammatically) that the contribution to M
due to all diagrams (but the first three diagrams in Fig.A5) can also be
expressed in a closed analytical form, in ferms of G and v. The resulting
expression, hcwéver, has to be supplemented with three additional equations, as
it turns out to be helpful to introduce three additional functions, i.e. a screened
interaction function W, a polarization function P and a vertex function T'. The
resulting equations are known as Hedin’s equations [56]. A direct derivation of
the above-mentioned equations, making use of a non-perturbative method, will
be given in Appendix B. »

We first introduce the dynamically screened interaction function

W(1,2), (dashed interaction line) by means of the equation [56,57,181,184]

1 1§ 13

l

! 3

o= +@. (A.11)
[ : '

i i 4

i i i

2: 2 2!

where
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3
P(3.4) = @ - O (zeroth order in W)
4
+ (first order in W)
: PR )

* *1 1*1 ! (second order in W)

LI (higher order in ¥). (A12)

In analogy with Dyson’s equation for the one-particle Green function, we may
now write this as

W(1,2) = v(1,2) + Jd(B)d(zi) v(1,3)P(3,4)W(4,2), (A.13)

or symbolically W=v+vPW. The function P(i,j) is called polarization function.
An alternative way of writing (A.13) is

W(1,2) = j d(3) €1 (1,3)v(3.2), (A.14)

thus introducing the inverse dielectric screening function €1

It is now possible to express the self-energy funciion M completely in
terms of the contributions of z o Inp Hartree potential and a series of skeleton
diagrams in which the dotted v lines have been replaced by dashed W lines. Up
to the third order in W we now have [61]
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(a1) (a2) (b)
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\ . .
* i (first order in W)
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(c)
i
\
11
v TA .
VL (second order in W)
A
2 (d)
ir~ ir
) N }
M ot r/,: /
[ o ! T 24
A 7 Y
\\~2 \\ 2
s i 1peme rm——
ll AN
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v .
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(third order in W)

e , (higher order in W). (A.15)

Note incidentally, that the third diagram in (A.15) representing the Hartree
potential still contains an unscreened interaction line.

It is observed from (A.15) that all diagrams, except the first three ones,
can formally be represented by a single diagram with a verfer part:

M(12) = M(1,2) - " - :é - 2O
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- %Jd(3)d(4) w(t,3)G(1,4)0(4,2:3), (A.16)

where the vertex part, according to (A.15), is formally represented by

T'(4,2;3)

1
(8]
w

- a3 (zeroth order in W)

|
. 3 3 (first order in ¥)
i

{second order in W)

(higher order in ¥). (a1n)

The plus sign of the argument of W on the right-hand side of (A.16) has its
origin in the fact that otherwise the contribution of the first-order diagram
e due to the instantaneous time behavior of the bare Coulomb
interaction; contained in W, would not be specified.
From the diagrammatic structure of the vertex part T in (A.17) it is
straightforward to obtain the corresponding analytical expression for the vertex

function: The zeroth-order contribution to TI'(4,2;3) is clearly equal to
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6(4,2)8(4,3) as can be deduced from the M diagram in (A.15) contributing to
first order in W. As far as the higher-order contributions to I'(4,2;3) are
concerned, it should be realized that the structure of the vertex diagrams in
(A.17), with the exception of the zeroth-order diagrams in W, is such that each
I' diagram can be obtained by starting from any skeleton diagram contributing
to M', in which, however, one internal line representing G(k,l) is replaced by two
particle lines representing G(k,i), G(j,]), and a diagram contributing to I'(i,j;3).
Note that this replacement has to take place in the polarization parts,
contributing to dashed interaction lines, as well. The elimination from an
M'(4,2) diagram of subsequently all internal particle lines representing the
functions G(k,1) is in fact equivalent with taking the functional derivative
[54,185] 6M'(4,2)/6G(k.1). Therefore, taking the above structural property of the
vertex part I’ into account, we conclude to the analytical expression

T(423) = 84.2) 8(43) + [dDADA0N0) T

* G(k,)G(II(1,53)- (A.18)

Until now, the polarization function P(1,2) is the only function which
has not yet been given in analytical form. In view of our above definition (A.17)
of I' it is straightforward, however, to conclude to

P(1.2) = - [46)d(3) GLHGGATITG52) (A.19)

This completes our attempt to write M', and therefore M, in closed analytical
form. We succeeded in doing so by means of equations (A.13), (A.16), (A.18)
and (A.19) which are Hedin’s equations.

Thus far, we have dealf with spinless particles. We will now discuss the
required modifications of the above results, if particles with spin are dealt with,
As stated earlier, the above-presented prescriptions are easily carried over to the
case of particles with spin. In fact the scalar functions we have been dealing with
until now, such as the one-particle Green functions, the self-energy function, etc.,
become operators in the spinor space. As a consequence, the ordinary
multiplications of the functions, as described in the prescriptions for evaluating
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the one-particle Green and the self-energy function, become matrix
multiplications. Therefore, in addition to the space-time integrations over the
coordinates of the internal vertices of diagrams, a2 summation should be carried
out over all of the internal spin indices. In the simplest case, in which the
interparticle interaction is spin independent, all of the above-mentioned matrices
become multiples of a unit tensor of appropriate rank. For instance, for the one-
particle Green function we have G g(1,2)=8,,8G(1,2), in which a and / are spin
indices and G(1,2)=Gq o(1,2), for all a. Note, that for electrons o assumes the
values :f. The spin summations can be carried out directly, resulting in an
enhancement of the contributions of diagrams containing closed loops, as
compared to the case of spinless particles, while the contributions of other kind
of diagrams remain unchanged. For particles with spin s, the above-mentioned
enhancement factor is (2s+1)F, in which F denotes the number of closed loops in
the diagram under consideration. For electrons, the latter factor is equal to 2F,
which has been carried through in the main text.
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APPENDIX B

LINEAR-RESPONSE APPROACH TO THE DETERMINATION OF
THE ONE-PARTICLE GREEN FUNCTION
AND THE CORRESPONDING SELF-ENERGY FUNCTION

In this appendix we reformulate Hedin’s derivation [56] of the general
relationship between the one-particle Green function G and the corresponding
self-energy function M for an interacting system of electrons such as met in, e.g.,
a metal or a semiconductor. This relationship is commonly expressed in terms of
the four equations (A.13), (A.16), (A.18) and (A.19) which in fact give M as a
functional of G. We call these four equations Hedin’s eguations. In order to fix
both G an M, these four equations are to be supplemented by either the Green
function equation (2.7) or Dyson’s equation (2.10). Hedin’s derivation is based
on linear response theory and falls back on an earlier treatment by Martin and
Schwinger [55]. The advantage over the diagrammatic derivation given in
appendix A is its non-perfurbative character, in the sense that no use is made of
series expansions in terms of the bare Coulomb interaction function v. This
advantage is indeed important, as it is well-known that the individual terms in a
series expansion in v turn out to suffer from divergencies [186]. Such divergencies
are believed not to show up if G and M are expressed in terms of a screened
interaction function W which appears the natural function to choose if linear
response theory is applied.

Hedin’s equations together with Dyson’s equation (2.10) directly lead to
the diagrammatic representation of M given in (A.15) involving (dashed)
screened interaction lines. As mentioned above there are no indications that the
individuael terms in this series expansion in W suffer from divergencies, which is
therefore an obvious advantage over the similar diagrammatic expansion of M
given in Fig. A5. Still there is no a priori proof that the expansion (A.15) in
terms of W converges [91]. In this thesis, however, we strongly suggest this to be
the case; we even approximate the expression by its very first term (the GW
term). Though Hedin’s derivation as given in his paper [56] is certainly correct, a
number of intermediate steps are not explicitly commented on. In view of this,
we considered it worthwhile to present our (rather lengthy) reformulation of
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Hedin’s derivation of the expressions relating G and M.

We start by introducing an auxiliary time-dependent scalar and local
potential ¢(r,t) acting on the system under consideration. By studying the
response of the systems on variations of ¢, we will be able to establish the
relation between G and M. We may think of ¢ as being the potential associated
with an external (longitudinal) electric field which polarizes the system. The
potential ¢(r,t) will be assumed to vanish outside the time interval (-T,T,)
where T, may have any fixed positive value.

~ In accordance with (2.5), we write the Hamiltonian of the system as

- - 12
Hylt) = J e 1/)*(:){-2%‘;7 V2 4 u(r) + ¢(x.t)
sz [ i@ e i, 6D
where 17&1' and ';5 are Schrodinger creation and annihilation field operators

'fﬂulﬁlling the anticommutation relations (2.2) and where the time dependence of
H ¢ is entirely through the additional time dependent ¢(r,t). Note that, due to

the presence of ¢(rt), the Schrodinger and Heisenberg representations of the
Hamiltonian will be different, unlike the situation with ¢=0, in which case H
represents a constant of motion. In (B.1), the Hamiltonian is given in the
Schrédinger representation.

The time evolution of state vectors is given by the‘Schrédinger equation
-2 | FOIPES FOILFO (B.2)
which, after introducing the unitary time-evolution operator A ¢(t,t') through
246> = A 1417 44, (B.3)
can also be expressed as

ih%t— A 1) = i ¢(t)Ix A6, (B.42)
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and

i —Z-t-; A At)=- A ¢(t,t')f{ A1) (B.4b)

It can be verified that A ¢ satisfies the following relations:

I\};(t,t') = A1) = ;\;(t,t'), (B.5a)
A ¢(t,t');x A7) = A A6t (B.5b)
A OESE © (B.5¢)

Heisenberg (i.e., time independent) state vectors will be introduced by
means of the relation :

|‘1’¢)H = A¢(“Tmt) lq’,}s(t))Ss (B.6)
implying that in view of (B.5c) the Heisenberg and Schrddinger states coincide
at t=-T,.

Let O be a time-independent Schrddinger operator. The Heisenberg
representation of O is given by

04(t) = Ay(-Toit) O & (t-To) (87)

By using (B.4) we readily find that operator 0 ¢(t) satisfies the Heisenberg

equation of motion

ih-’—gt-f) =10 ¢(t),fig(t)_]_, (B.8)

where ﬁ%(t) is obtained from (B.1) by replacing ;ﬁ*(z) and ;&(r) by their
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Heisenberg versions ;bg(rt) and {b ¢(rt).

We now introduce a one-particle Green function which we want to
coincide with G(rt,r't’) of (2.4) if ¢=0. The function

gy [A(Te, ~T5) 7 {%(rtw“(rt)}wN>H
(‘I’N l A¢(To’“‘To)|q’N)H

Gé(rt,t)m—l (B.9)

obviously reduces to (2.4) for ¢=0. As we will show, it also satisfies a Green-
function type of equation of precisely the same form as G(rt,r't') in case of
vanishing ¢. In order to derive the equation of motion for G & we depart from

(B.8) in which ) (t) is replaced by {b ¢(rt), use the anticommutation rules (2.2),

which are valid for the Heisenberg field operators at equal tunes, and multiply
the members of the obtained equation on the right by ¢ <15(1-t) Subsequent

applications of the {ime-ordering operator then leads to
g 8 B2 oy PP SR
fit G+ e V2 - u(e) - o(52)] Hw)ohe))
+i J Srdt” vt 5{{@@%'*){& AT ¢(rt)1:&;(r't')}
= h &r-1')8(t-t"). (B.10)

In obtaining (B.10) we have also used 80(t)/dt=4§(t); the superscript "+4"
occurring in (B.10) over the time symbols are introduced to guarantee the
correct order of operators.

In order to obtain the equation of motion for G & we will first prove the

important identity:
3;,;{3; [A g(TaT0) 20 8520

= S A y(ToTo) HEL3 W 319 ()0}, (B.11)
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where the symbol 6/6¢(3) stands for the functional derivative with respect to
#(3). The functional derivation &F ¢/6¢(1) of a functional F é is defined by

means of the implicit relation

éF
[ e e = lim T {F g F gh (B.12)

where f(1) is an arbitrary, but smooth and integrable function. For a short
introduction to the theory of functional derivative as well as for a compendium
of useful differentiation rules the reader is referred to the literature [54,185,186).
Let us, however, consider a simple example in which F <)5------jd(1) A(1)¢(1). By

applying (B.12) we obtain

[ 4 ggry 1)

=13 m - {[ 4 4isy+nrn - [ ) 4mew)

= [aw 4w
As this relation holds for every suitable f, we conclude that 6F q?5/ §¢(1) =4(1). In
the same manner one obtains 6¢(1)/6¢(2)=4§1,2).

The equation which results if in (B.4a) ¢ is varied by an infinitesimal
amount §¢ reads

* a - L - e 1 - N '

h A (1,t)) = . .

ih— 6 ¢( t)=¢6 ¢(t) A ¢(t,t )+ H ¢(t) §A ¢(t,t ) (B.13)
It can easily be verified by substitution that the solution to (B.13) is given by

- . £ . - N
5A é(t,t') = :;r -[t'dts A ¢(t,t3)6H ¢(t 3)A ¢(t3,t'), (B.14)

which by using (B.1) can be written
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&iqs(t,t') = “”Tirjzed“ 5&¢(t,t3)
R E U LD MR D)
- “%rj d(3) {O(t-t5)O(tst)-O(t'~t3)O(t4t)}
A ()W o)A gltat) 69(3), - (B19)

so that using (B.5) and (B.7), we obtain for the functional derivative (note that
we change variables: t-t;, t'-t;)

A 4(11,82) -3
—b— = b {00 ts-t2)-0(tr-t:)8(t4-t1)}
« R y(t-TUH3)P B ~Torta) (B.16)

This general relation is used, together with the general expression (B.7) for
Heisenberg operators, to establish the relation

T35y P4L) = 5 Ot K308 43)9 (14 (P }3)6 4} (B17)

A similar relation for ;};1'5(1) can be obtained by taking the Hermitian

conjugation of (B.17). If we now consider the left-hand side of (B.11) in which
A [ToTo)b ¢(1)¢};(2) has to be differentiated with respect to ¢(3), it is, using

the chain rule of differentiation [54,187] together with (B.16) and (B.17), an easy
task to obtain the identity (B.11). R
We proceed by multiplying (B.10) on the left by A ¢(To,-’l‘o) and by

taking the expectation value of the equation in the ground state |\I'N)H. Using
the definition (B.9), we straightforwardly arrive at
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HCON R TorTo) ¥y MG+ B Vi = u(x) - 9(1)] G y(1.2)
i [ 4(3) v(13) gty LUy 1A gl ToTo) | ) g G (1,20}
= g(Uy 1A 4 ToTo) [¥y) g K1,2). (B.18)

The functional derivative occurring in (B.18) can be shown, again using (B.16),
10 equal '

5305 {1 A f(Tor T ¥ygd g G (1,20}

. . A 6G ,(1,2)
= - G 433G (12 +g (¥ |4 (To-To) ¥ , (B.19)

where the first term on the right-hand side explicitly takes apart the
contribution which factorizes with G ,(1,2). As the explicit external-potential
term ¢(1)G ¢(1,2) on the left-hand side of (B.18) is precisely of the same form, it
is natural to introduce a one-electron response potential function in the following
way:

v (1) = ¢(1) i j 4(3) v(13)G 433, (B.20)
such that the equation of motion for G ¢(1,2) reduces to the form
[ih A0+ L V2 u(r) - v (1)] G ,(1,2)
" m ! VI E e

-mj d(3) ¥(1*3) 3@%’3 G 4(1.2) =1 5(1,2). (B.21)

Note that, » (1) reduces to the well-known Hartree potential if ¢=0. This
implies that the local (Hartree) part of the interaction is now accounted for in
v ¢(1). In accordance with the procedure followed in (2.8), we finally define a
self-energy function M(’b through the relation
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j 4(3) My(1,3)G 4(3,2) = J d(3) v(1%3) wf’ﬁ G 12,  (B22)
such that (B.21) is alternatively written |

[ih g2 + e V2 u(my) - v (1)] G ((1.2)

R j 4(3) M(1,3)G 4(32) = 1 &1,2). (B.23)

Note that for ¢=0, the above M cﬁ coincides with the M’ of (A.16), being equal to
the M of (A.15) without the first three diagrams. In the main text we reserved
the notation M, without prime, to generally indicate the self-energy including z,,
o4 and Hartree contributions.

In accordance with the procedure followed in section 2.1 we may also
introduce the unperturbed Green function G9, fulfilling the equation

b e + o Vi —ule) - v, (1] Gy(L2) = &12).  (B24)

It can then again be shown (see the main text below (2.9)), that G é fulfills an
inhomogeneous integral equation of the second kind (Dyson’s equation)

G4(12) = G4(1.2) + j d(3)(4) GYLIM 3G [42),  (B.25)
which is symbolically written
Gy=Gg+GyMyG,y. (B.26)

The functional derivative occurring in (B.22), can alternatively be written

—6(;%%32—) - j 4(4)4(5) G 4(1,4) f(-}-‘g%;s—) G52, (B2)

which straightforwardly follows from the definition of the inverse of a two-point
functional, being given by
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J d(3) F ((13)F31(32) = j d(3) F (13) F (32) = §12),  (B.28)

or symbolically F Fq‘S1=F &51}3‘ ¢==1. Namely, taking the functional derivative of
(B.28) with respect to ¢ directly leads to &F ¢/6¢ = ~F ¢{6F éll&p}F é which
proves (B.27). Substitution of (B.27) in (B.22) and subsequent "multiplication"
of the resulting equation on the right by G&‘ yields

My(12) = -iJ d(3)4(4) v(1*3)G 1.4) ff%,;g}?l . (B29)

The final step in deriving Hedin’s equations will now be to eliminate the
functional derivative of G ;! with respect to ¢ and to replace it by an expression
involving a functional derivative of M |, with respect to G ;. To this end, we first
introduce the inverse of a dielectric response function [188,189): '

SUDE .6;%%- , (B.30)

being the "ratio" of the variation of the response function v (1) and that of the
stimulating function ¢(2). In view of the definition of v 4 in (B.20), we can
express €71 as

€54(1,2) = §(1,2) j d(3) v(1°,3) j‘?_%%;ﬂ

G5 1(4,5%

= §1,2) + iJ A(3)AA)() v(1°3)G (3.4 G ¢(5,3*), (B.31)

where the last equality is due to (B.27). The leading idea in all this is that two
electrons in the system will not interact with each other via the bare Coulomb
interaction v but rather via the modified (screened) interaction:

W (12) = j 4(3) € 34(1,3)%(3,2)

=v(1,2) +i J d(3)A(4)A(B)A(6) V(1*4)G (4,5)
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6G - 1(5,6%)

] "%WT)— G 4{6.4¥(3.2) (B.32)

Using the chain rule of differentiation

S - J d(2) P2 e (B.33)
54(1) ~ 5V¢(§; ’ )
and introducing a polarization function P & by means of

G-t

5,6%)
P ¢(4,3)=ij (5)4(6) G 4%, s)—-%—(m— G 4(6:4)

6G ,(4,4%)

= '%%(5)“ (B.34)

we straightforwardly rewrite (B.32) in the form

W (12) = v(12) + J 484 VAP BOW (42),  (B35)

which is one of Hedin’s equations (originally due to Hubbard [57]). If we define
the so-called vertex function T’ é by means of

5G:1(1,2)

r ¢(1,2;3) =t —%”_qsm- , (B.36)

equation (B.34) can also be written in the form (we change names of variables)

P 4(1,2) = Jd(3)d(4) G 1G4 (3,42,  (BAY)

which is another equation of Hedin. Application of the chain rule (B.33) and use
of (B.30), (B.32) and (B.36), when applied to (B.29) gives

ML) = J d(3)4(4) G (LIW (41T ((3:2:4),  (B.38)
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what is again one of Hedin’s equations.

Finally, we derive an equation for T' ; in terms of a functional derivative
of M' with respect to G. This is achieved by first multiplying (B.23) on the right
by G ‘;1(2,3) and integrating with respect to 2. This gives

R GH(1,3) = [ih 50 + g V47 - u(r) — ()] KL,3) -h M4(1,3). -

Differentiating this equation with respect to v <15(2) gives (use (B.36))

m ?
L 1,32) = {1,3)8(1.2) + h—-g%%?-. ~ (B.40)

By applying the chain rule of differentiation for a two-point function:

M (1,3) 1G,4(4,5)  M(13)
7‘"‘5‘%(7)" 16(4)‘3(5) 5 42) 5G¢(45) o (BA1)

and by writing in accordance with (B.27) and (B.36):

_.gi(%))_ =~ atea(r) 6 o) 5‘%(3&7-) G0

= J d(B)A(7) G (48)T (6,7:2)G ((7,5), (B.42)

we may rewrite (B.40) in the form

&M (1,3
T4(1,32) = L3812 + [ d@)aEM(0) Wf((ﬁ)r
1 G 4(4,6)G 4(T5)T 4(6.7:2), (B.43)

which is the last one of the Hedin equations.
The above-derived Hedin equations, (B.35), (B.37), (B.38) and (B.43)
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indeed coincide for ¢#=0 with equations (A.13), (A.19), (A.16) and (A.18),
respectively; they can as such be taken as the expressions generating the
diagrammatic expansions for M', T and P in terms of W, as given in (A.15),
(A.17) and (A.12). If subsequently M', T' and P are all approximated by taking
only the lowest-order expansion term in W, i.e., the zeroth-order term for P and
T, and the first-order term for M', we obtain the so-called bubble GW scheme,
adopted in this thesis. I{ remains to be shown, however, whether this simplifying
procedure, adopted by many authors [37,62-68], is a valid procedure indeed.
Until now its "justification" is merely based on a few preliminary apparent
successes in predicting energy band structures of some semiconducting
crystalline materials [37,62-68].

To conclude this appendix, it is useful, in view of its appﬁcation in
chapter 3, to introduce the fime-ordered density-density correlation function
[153], (cf. (B.9)):

(TN IA 4(To,=To) & {o5(1) 0 (2} ¥y
H(‘I'N ' A‘@(To:"To) I‘I’N)H

D(12) = , (B.49)

where pq'é(l) stands for the density-deviation (Heisenberg) operator

(N IA 4 (To,=To )9k (19, (1) ¥ g
g{IN 1A 4(To,=To) 1 ¥ g '

py1) = whLw ) -
(B.45)

It can be verified, using (B.11) and (B.17) and differentiating by parts, that

5G (1,1%) |
—g'ﬂﬂ‘ =+ D AL.2). (B.46)

This enables us to rewrite the first line of (B.31) in the form

€5(1,2) = 5(1,2) -ﬁ;rJ' d(3) v(14,3)D 4(3,2). (B.47)
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Equation {B.47) expresses the well-known simple relationship between the
inverse dielectric function and the demsity-density correlation function. This
relationship is used for ¢=0, in chapter 3.
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SUMMARY

The central theme in this thesis is the ab initio calculation of electron energies in
a semiconductor. The fact that the commonly used effective-potential methods,
such as the Hartree, Hartree-Fock and Kohn-Sham (local) density functional
methods invariably lead to wrong predictions, indicates that there is a serious
problem. Indeed, these methods do not seem to take into account the effect of
electron-electron interaction in a proper way. Therefore, we return to the
rigorous theory and recomsider the incorporation of the mutual electron
interaction.

Our framework is the theory of Green functions. In this theory the
Fourier transform with respect to time of the one-particle Green function G
plays an essential role. It can formally be shown that the excitation energies of a
system show up as the singularities of this function in the energy domain. We
introduce a representation of G in terms of wave functions which satisfy
Schrddinger-like wave equations and thus can be thought of as representing
particlelike entities. These entities are referred to as quasi-particles and their
“energies", being the simple poles in the above-mentioned representation, are
given by the corresponding eigenvalues in the equations.

A crucial role in our considerations is played by the self-energy function
M, whichk relates the one-particle Green function of an unperturbed system to
that of the interacting system through the Dyson equation and which acts as an
energy-dependent non-local potential in the above-mentioned quasi-particle wave
equations. The non-Hermiticity of this function gives rise to complex-valued
quasi-particle "energies", that is, to quasi-particles with finite lifetimes.

Each effective-potential method can uniquely be characterized in terms
of its corresponding approximated Hermitian self-energy function. In this thesis
we concentrate on a more general non-Hermitian approximation of M, which is
called the GW self-energy function. In view of its recent successes in energy band
calculations of semiconductors, the study of the GW scheme takes a central
position in this thesis. We have, among other things, thoroughly investigated the
analytic behavior of the GW self-energy function in the complex energy plane,
enabling us to justify a Taylor-series expansion of M, which will very likely
facilitate its numerical evaluation. Moreover, a number of further
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approximations within the framework of GW are discussed which may be of
practical relevance in actual calculations. ,

As the name suggests, the self-energy function in the GW scheme asks
for the determination of both the one-particle Green function G of the
interacting system and the dynamically screened Coulomb interaction function
W. The latter function, in contrast to the bare Coulomb interaction, takes
account of the polarization effects in the interacting system. These effects are
described by means of the polarization function P whose study in this thesis is
restricted to the simplest approximation, namely the so-called bubble
approximation. In this approximation one assumes no interaction between the
‘members of excited electron-hole pairs. Besides the presentation of a number of
general expressions and properties concerning both the bubble polarization
function and the exact screened interaction function, two new methods for the
determination of P are introduced and numerically tested. These methods
substantially facilitate the numerical evaluation of P and W at real energies.

It is well-known that the bare Coulomb interaction, due to its long
range, is responsible for many inconveniences in the treatment of interacting
systems. In our case, the bare Coulomb interaction gives rise to singular
behavior in the wave-vector dependence of a number of plane-wave matrix
elements of the dynamically screened interaction matrix. As the evaluation of M
involves a Brillouin zone integration of an expression containing these matrix
elements, a number of precautionafy measures must be taken in order to make
numerical integration possible. Based on a thorough analysis of these matrix
elements, we propose a decomposition of the expression for the self-energy
function in such a way that the above-mentioned Brillouin zone integration can
be performed numéricaﬂy, either by a special-point method or by some more
common numerical method. ‘

Finally, we give an analysis of the numerical feasibility of the proposed
calculation strategy. We conclude that an evaluation of M and the related quasi-
particle spectrum within 2 GW scheme, in which no further approximations are
carried through, is very time consuming. There will be no problem in this
evaluation if we restrict ourselves to the first iteration step of the required self-
consistency procedure, at least if the number of plane waves in which the quasi-
particle wave functions are expanded is not too large. Subsequent iteration steps
can only be carried out if it turns out that M depends smoothly on its wave-
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vector argument. This conclusion is based on the computing power of an
ordinary computing system without facilities for vector and parallel computing.
The prospects are much better if such facilities can be used. It is a lucky
circumstance in this connection that recent studies on simplified GW schemes
seem to indicate that there is no need to go beyond the first iteration step. In
view of all this, we conclude that an ab initio (GW) calculation of electron
energies in a semiconductor is indeed within reach.
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SAMENVATTING

Het centrale thema in dit proefschrift is het model-vrij berekenen van elektron-
energiedn in halfgeleiders. Het feit dat de gangbare effectieve-potentiaal
methoden, zoals die volgens Hartree en Hartree-Fock, alsmede de methode van
de (locale) dichtheidsfunctionaal volgens Kohn en Sham, zonder uitzondering tot
foutieve voorspellingen leiden, laat zien dat hier sprake is van een ernstig
probleem. Inderdaad blijkt geen van deze methoden het effect van de
wisselwerking tussen elektronen op behoorlijke wijze in rekening te berengen.
Derhalve keren wij terug naar de rigoureuze theorie ten einde het in rekening
brengen van deze wisselwerking opnieuw te bezien.

Ons raamwerk is de theorie van de Green-functies. In deze theorie speelt
de naar de tijd Fouriergetransformeerde ééndeeltje Greense functie G een
essentiéle rol. Het kan formeel worden aangetoond dat de excitatie-energieén van
een systeem zich manifesteren als singulariteiten van deze functie in het energie-
domein. Wij introduceren een representatie van G in termen van golffuncties die
aan vergelijkingen van het Schrodinger-type voldoen en derhalve deeltjesachtige
entiteiten geacht kunnen worden te representeren. Naar deze entiteiten wordt:
verwezen als quasi-deeltjes, en hun "energiegn", zijnde de enkelvoudige polen van
de bovengenoemde representatie, zijn de betreffende eigenwaarden van de
vergelijkingen. '

Een cruciale rol in onze beschouwingen wordt gespeeld door de
zelfenergie-functie M die de ééndeeltje‘Green—fnnctie van een ongestoord systeem
met die van het wisselwerkend systeem, via de vergelijking van Dyson, aan
elkaar relateert en als een energie-afhankelijke, niet-lokale potentiaal in de
bovengenoemde quasideeltjes-golivergelijkingen voorkomt. De niet-Hermiticiteit
van deze functie geeft aanleiding tot complexwaardige "energieén", dat wil
zeggen, tot quasideeltjes met eindige levensduur.

Elke effectieve-potentiaal methode kan op unicke wijze worden
gekarakteriseerd in termen van een daaraan gerelateerde Hermitische zelfenergie-
functie. In dit proefschrift concentreren wij ons op een meer algemene, niet-
Hermitische benadering van M, die de GW-zelienergie-functie wordt genoemd. In
het licht van recente successen die zijn behaald in de bandstructuurberekeningen
van halfgeleiders, krijgt de benadering van het GW-schema een centrale plaats in
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dit proefschrift. Wij hebben ondermeer een grondige studie gemaakt van het
analytische gedrag van de GW-zelfenergie in het complexe energie-vlak,
waardoor het nu mogelijk is om een Taylor-ontwikkeling van M te
rechtvaardigen, die wellicht de berekening van M aanzienlijk zal
vergemakelijken. Tevens worden een aantal verdere benaderingen binnen het
raamwerk van GW besproken die van praktisch nut kunnen zijn in een
daadwerkelijke berekening.

Zoals de naam suggereert, vraagt de zelfenergie-functie in het GW-
schema om de berekening van zowel de ééndeeltje Green-functie G van het
wisselwerkende systeem als van de dynamisch afgeschermde Coulomb-interactie
W. De laatstgenoemde functie houdt, in tegenstelling tot de niet-afgeschermde
Coulomb-interactie, rekening met de polarisatie-effecten in het wisselwerkende
systeem. Deze effecten worden beschreven door middel van de polarisatie-functie
P, waarvan de studie in dit proefschrift wordt beperkt tot de meest eenvoudige
benadering, de zogenaamde "bubble"-benadering. In deze benadering
veronderstelt men dat bij elektron-gat paar-creatie geen wisselwerking optreedt
tussen het elektron en het gat. Naast de presentatie van een aantal algemene
uitdrukkingen en eigenschappen van zowel de "bubble"-polarisatiefunctie als
van de exacte afgeschermde interactie-functie, worden twee nieuwe methoden ter
berekening van P geintroduceerd en op numerieke wijze getoetst. Deze methoden
vergemakkelijken het berekenen van P en W voor reéle energieén.

Het is bekend dat de naakte Coulomb-interactie, vanwege haar lange
dracht, verantwoordelijk is voor veel ongemak in de behandeling van
wisselwerkende systemen. In ons geval geeft de naakte Coulomb-interactie
aanleiding tot singulier gedrag in de golfvector-athankelijkheid van een aantal
vlakke-golf-matrixelementen van de dynamisch afgeschermde interactie. Daar bij
de berekening van M een Brillouinzone-integratie moet worden uitgevoerd van
een uitdrukking die deze matrixelementen bevat, dient een aantal
voorzorgsmaatregelen genomen te worden om numerieke integratie mogelijk te
maken. Uitgaande van een grondige analyse van deze matrixelementen, stellen
wij een zodanige decompositie van de zelfenergie-uitdrukking voor, dat de
bovengenoemde Brillonin—zone-integratie toch op numerieke wijze uitgevoerd kan
wordenv, met behulp van hetzij een speciale-punten methode, hetzij een meer
gewone methode.

Tot slot geven wij een analyse van de numerieke haalbaarheid van de
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voorgestelde rekenkundige strategie. Geconcludeerd wordt dat een berekening
van M en het daaraan gerelateerde quasideeltjes-spectrum binnen het GW-
raamwerk zonder verdere benaderingen zeer fijdrovend is. Er zullen zich geen
problemen voordoen zolang we ons beperken tot de eerste iteratiestap van de
vereiste zelfconsistente-procedure, ten minste, als het aantal vlakke golven
waarin de quasideeltjes-golffuncties worden ontwikkeld niet te groot is. De
iteratiestappen die daarna volgen, kunnen alleen worden witgevoerd als zal
blijken dat M op voldoend vioeiende wijze van haar golfvectorargument afhangt.
Deze conclusie is gebaseerd op het rekenvermogen van een normale computer die
niet geschikt is voor vectoriéle of parallelle berekeningen. De vooruitzichien
worden beter als dergelijke opties wel aanwezig zijn. Het is een gelukkige
omstandigheid dat recente studies in het kader van vereenvoudigde GW-schemas
erop lijken te wijzen dat het niet nodig is verder te gaan dan de eerste
iteratiestap. In het licht hiervan concluderen wij dat een modelviije GW-
berekening van elektiron-energieén in een halfgeleider wel degelijk binnen bereik
ligt.
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Het door Hubbard aangegeven voorschrift om uitgaande van een expressie
behorende bij een pola.risatié—diagrami de bijdrage van het daarzan
geassocieerde "exchange conjugate™ diagram te bepalen, schendt de wet van
behoud van impuls. Voorts is onduidelijk op welke manier hij de
"gemiddelde interactie" voor processen rondom het Fermi oppervlak
uitrekent.

J. Hubbard, Proc. Roy. Soc. A243, 336 (1958).

Semi-empirische clusterberekeningen [1,2] leveren geen wezenlijke bijdrage
tot de studie van defecten in haligeleiders.

[4 P. Dedk, L.C. Snyder, R. Singk and J. Corbett, Phys. Rev. B36, 9612 (1987).
[2}  P. Dedk and L.C. Snyder, Phys. Rev. B36, 9618 (1987).

De door Godby, Schliiter en Sham [1} afgeleide uitdrukking voor de zelf-
energie-functie is onvolledig [2]. De invlced van de weggelaten term op de
bandstructuur van guasi-deeltjes is onduidelijk en dient nader onderzocht te
worden.

{11  R.W. Godby, M. Schliiter and L.J. Sham, Phys. Rev. B37, 10159 (1988).
[2]  Dit proefschrift, hoofdstuk 3.

De door Mattuck aangegeven diagrammatische ontwikkeling ter bepaling
van de zelf-energieflunctie behorend bij een systeem wisselwerkende deeltjes
bevat een principiéle onjuistheid met als gevolg dat er te veel diagrammen
in rekening worden gebracht. '

R. D. Mattuck, 4 Guide to Feynman Dicgrams in the Many-Body Problem, McGraw-
Hill, New York, 1967, pp. 170-172.

De veelgebruikte benaming "Random Phase Approximation, afgekort
RPA, van Pines en Bohm [1,2, die een bepaalde benadering van de
polarisatie-functie van uniforme elektron-gassen voorstelt, is misleidend als
het om kristalien gaat. Het is dan beter om in plaats van de bovengencemde
benaming de aanduiding "Bubble Approximation" te gebruiken.

[1]  D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
{21 1M, Ziman, Plements of Advanced Quanium Theory, Cambridge University
Press, Cambridge, 1969, pp. 158-162.



10.

De door Gygi en Baldereschi [1] voorgestelde methode ter bepaling van de
zelf-energiefunctie met behulp van "speciale punten" doet geen recht aan
het anisotrope karakter van bepaalde integranden in integralen over de
Brillouin-zone. Het is goed mogelijk de methode in dit opzicht aan te passen
2.

[i]  E. Gygi and A. Baldereschi, Phys. Rev. B34, 4405 {1986).
[2]  Dit proefschrift, hoofdstukken 4 en 5.

De door Pratt voorgestelde methode om fot de juiste bandstructuur van
halfgeleiders te komen met behulp van een effectieve potentiaal, berust op
een onjuiste veronderstelling.

G.W. Pratt, Jr., Phys. Rev. 118, 462 (1960).

De bevindingen van Hawrylak, Eliasson en Quinn aangaande het
kwalitatieve gedrag van de zelf-energie, de effectieve massa en de levensduur
van quasi-deeltjes in een gelaagde structuur zijn pas dan interessant als kan
worden aangetoond dat deze bevindingen niet een gevolg zijn van de door
hen veronderstelde, maar niet gerechtvaardigde, wisselwerking fussen de
deelt jes.

P. Hawrylak, G. Eliasson and J.J. Quinn, Phys. Rev. B37, 10187 (1987).

Beschouw een in één richting (y-richting) oneindig uitgestrekte starre plaat
ter breedte 2a (in de x-richting), trillend met frequentie w en amplitude v},
op een lokaal reagerende, instantane, tijdinvariante, lineaire, isotrope,
homogene vioeistof met massadichtheid p en compressiemodulus . Het
drukprofiel onder de plaat laat zich dan verrassend nauwkeurig beschrijven
door p(x;w)=C(ka)iwpavpl(l—leaz)l/ 2 waarin C{ka) een bekende functie is
van ka, k==w/p/% en i de imaginaire eenheid voorstelt, als tenminste voldaan
is aan de eis ka<1.

Het door W. Oevel gesuggereerde verband tussen hoekvariabelen en
zogenaamde "master symmetries" is in de meeste van zijn voorbeelden niet
aanwezig,

W. Oevel, Topics in Solilon Theory and Ezactly Solveble Nonlinear Eguaiions, Woﬂd
Scientific Publ., Singspore, 1987, pp. 108-124.
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12

13.

14.

In tegenstelling tot wat algemeen werd aangenomen [i], kan de dynamische
diglectrische functie van een haligeleider met success worden berekend door
gebruik te maken van de "speciale punten"-methode [2].
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De uitdrukking voor het verschil tussen de exacte bandsprong in een
halfgeleider en het in de LDA methode daarvoor te verkrijgen resultaat kan
eenvoudig worden bepaald door gebruik te maken van Brillonin-Wigner of
Rayleigh-Schrdinger storingstheorie [1,2]. Dit maakt {een deel van) een
aantal bestaande, dikwijls langdradige, artikelen [3-5] in feite overbodig.
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Door een deel van de opvoeding van kinderen door grootouders te laten
verzorgen, wordt niet alleen geprofiteerd van een opvoedkundig voordeel,
maar worden tevens de gelijke kansen op maatschappelijke ontplociing van
man en vrouw bevorderd.

Het "sport"-onderdeel boksen dient uit de lijst van officiéle sporten
verwijderd te worden.





