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Data and Abstraction for Scenario-Based
Modeling with Petri Nets ?

Dirk Fahland and Robert Prüfer

Eindhoven University of Technology, The Netherlands
Humboldt-Universität zu Berlin, Germany

d.fahland@tue.nl, pruefer@informatik.hu-berlin.de

Abstract. Scenario-based modeling is an approach for describing be-
haviors of a distributed system in terms of partial runs, called scenarios.
Deriving an operational system from a set of scenarios is the main chal-
lenge that is typically addressed by either synthesizing system components
or by providing operational semantics. Over the last years, several estab-
lished scenario-based techniques have been adopted to Petri nets. Their
adaptation allows for verifying scenario-based models and for synthesizing
individual components from scenarios within one formal technique, by
building on Petri net theory. However, current adaptations of scenarios
face two limitations: a system modeler (1) cannot abstract from concrete
behavior, and (2) cannot explicitly describe data in scenarios. This paper
lifts these limitations for scenarios in the style of Live Sequence Charts
(LSCs). We extend an existing model for scenarios, that features Petri
net-based semantics, verification and synthesis techniques, and close the
gap between LSCs and Petri nets further.

Keywords: scenario-based modeling, data, abstraction, Petri nets

1 Introduction

Designing and implementing a distributed system of multiple components is a
complex task. Its complexity originates in the component interactions. Estab-
lished scenario-based methods such as (Hierarchical) Message Sequence Charts
((H)MSCs) [26] and Live Sequence Charts (LSCs) [6] alleviate this complexity:
A system designer specifies the system’s behaviors as a set of scenarios. Each
scenario is a self-contained, partial execution usually given in a graphical notation.
Then system components are synthesized (preferably automatically) that together
interact as described in the scenarios. Alternatively, a specification becomes a
system model by equipping scenarios with operational semantics.

A significant drawback of established techniques is that components have to
be synthesized in a different formal theory than the one in which the scenarios

? This document describes technical details of the paper ”Data and Abstraction for
Scenario-Based Modeling with Petri Nets”, presented at the 33rd International
Conference on Application and Theory of Petri Nets and Concurrency, Hamburg,
Germany, June 25-29 2012.



2 Dirk Fahland and Robert Prüfer

are given, e.g., HMSCs or LSCs are synthesized into Petri nets or statecharts [7,
19]. Also operational semantics for MSCs and LSCs require a translation into
another formalism like automata [31], process algebras [30], or require involved
formal techniques such as graph grammars [24] or model-checking [20]. Many
HMSC and LSC specifications cannot be distributed into components but require
centralized control [7, 4]. This renders turning scenarios into systems surprisingly
technical while scenarios appear to be very intuitive.

Approaches which express scenarios, system behaviors and system model
in the same formal theory face less problems. In particular, approaches which
describe scenarios in terms of Petri nets and their partially ordered runs, e.g.,
[9], have been successful. The approach in [2] presents a general solution for
synthesizing a Petri net from HMSC-style specifications in a Petri net-based
model. [8] shows how to compose complex system behaviors from single Petri net
events with preconditions. The model of oclets [12, 13] adapts ideas from LSCs to
Petri nets: a scenario is a partial run with a distinguished precondition; system
behavior emerges from composing scenarios based on their preconditions. This
idea allows oclets to adapt existing Petri net techniques for a general solution to
the synthesis problem for LSC-style scenarios [13].

The Petri net-based scenario techniques [9, 2, 8, 12, 13] in their current form
only describe control-flow and provide no means for abstracting behavior in a
complex specification. Any practically applicable specification technique needs
some notion of abstraction as well as some explicit notion of data, and means to
describe several components of the same kind.

This paper addresses these problems of practical applicability of Petri-net
based scenarios. We show for the model of oclets how to extend scenarios by
abstract causal dependencies (abstracting from a number of possibly unknown
actions between two dependent actions), and how to express data in scenarios by
adapting notions of Algebraic Petri nets [32]. Our contribution is two-fold: First,
abstraction and data are two key features of LSCs, so our extension of oclets
closes the gap between LSCs and Petri nets further. Second, all our extensions
are simple generalizations of existing concepts from Petri net theory, giving rise
to the hope that existing verification and synthesis results, e.g., [13], can be
transferred to the more expressive model proposed in this paper.

We proceed as follows. Section 2 recalls the scenario-based approach in more
detail and explains the basic ideas of oclets by an example. In Sections 3 and 4,
abstract causal dependencies and data are introduced into the model, respectively.
Section 5 discusses the relation of oclets to Petri nets. We conclude and discuss
related and future work in Section 6.

2 Specifying with Scenarios

This section recalls the scenario-based approach by the help of an example and
discusses features and limitations of scenario-based specification techniques. Two
of these limitations will be addressed in the remainder of this paper.
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2.1 Running example and requirements for capturing it

Our running example is a gas station (adapted from [23]) that allows customers
to refuel their cars using one of the available pumps as follows. When a customer
arrives with his car at a pump, he asks the operator to activate that pump for a
certain amount of fuel for which he pays in advance or after he finished pumping
the gas. The customer can start an activated pump to refuel his car, pumping gas
one unit at a time. The pump stops when all requested gas has been pumped, or
when stopped by the customer. The pump then signals the operator the pumped
amount and the operator returns corresponding change to the customer. Each
customer gets a free snack that he may pick up after starting the pump and
before leaving the gas station.

A specification technique capable to express this gas station has to describe
(R1) distributed components (e.g., pump, customer, operator), (R2) interaction
between components, (R3) sequential, independent, and alternative ordering of
actions, (R4) preconditions of actions (e.g., “when all requested gas has been
pumped”), (R5) actions that depend on data (e.g., returned change, amount
of pumped gas), (R6) multiple instances of the same kind of component (e.g.,
multiple customers and pumps). Furthermore, a specification technique also
should allow a system designer to keep an overview of larger specifications by
(R7) means of abstraction. Finally, the specification technique should allow to
(R8) derive the specified behavior in an intuitive way, that is, the derived behavior
should be “correct by construction” and not require additional verification.

2.2 Principles of scenario-based specifications

In the scenario-based approach, a system designer obtains a system model of a
distributed system (e.g., our gas station example) in two steps. First she describes
the system behavior as component interactions. One scenario describes how several
components interact with each other in a particular situation; a specification
is a set of scenarios. When she completed the specifications, components are
synthesized (preferably automatically) such that all components together interact
as described in the scenarios.

Operator Customer

order

Pump

start

change

stop

M2

pay

Operator Customer

pay

Pump

start

change
stop

M1

Env Customer

arrive

M0
M0

M1

M2
H:

Fig. 1. An HMSC H describing compositions of
MSCs M0,M1,M2.

The most valued feature of
this approach is that scenarios
tangibly decompose complex
system behavior into smaller,
self-contained stories of com-
ponent interactions (scenarios)
which are easy to understand.
Fig. 1 shows 3 scenarios (M0,
M1, M2) of the running exam-
ple in the well-established syn-
tax of MSCs. In each MSC, a
vertical lifeline describes one
component, arrows between
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components describe interactions, boxes at components describe local actions;
M0 is a special case as it describes the creation of a new instance of a customer.
Established scenario-based techniques adhere to a few simple principles that allow
to derive system behavior from scenarios in a comprehensible way as follows.

S1 A scenario is partial order of actions, understood as a partial run of the
system. A specification is a set of scenarios.

S2 System behavior follows from composing (appending) scenarios.
S3 Each scenario distinguishes a prefix as a precondition describing when the

scenario can occur; the remainder of the scenario is called contribution.
S4 When a system run ends with a scenario’s precondition, the run can con-

tinue by appending the scenario’s contribution. Scenarios with the same
precondition and different contributions lead to alternative runs.

S1 is the most generally agreed upon principle for scenarios and usually expressed
in an MSC-like notation as in Fig. 1; other notations are possible [6, 9, 12, 2]. To
specify practically relevant systems, more principles are needed. The probably
most established scenario-based techniques – (H)MSCs, LSCs and UML Sequence
Diagrams – realize these principles differently as we discuss next.

HMSCs proposed principle S2 first, where the order of scenario composition is
described by a finite automaton [26]. For instance, HMSC H of Fig. 1 describes
that M0 is followed by M1 or alternatively by M2, and then M0 can occur again.
This way, HMSCs are capable to express the requirements R1-R3 of Sect. 2.1,
but not R4. In the HMSC standard, notions of data (R5) are only provided on a
syntactical, but not on a semantical level [26]. Also multiple instances of the same
component cannot be expressed: the HMSC of Fig. 1 allows only one customer to
be served at a time. Means of abstraction (R7) are provided by the possibility of
nesting one MSC inside another MSC. UML Sequence Diagrams express scenario
composition entirely by nesting scenarios in each other.

It has been repeatedly observed that this approach to scenarios requires a
global understanding of the entire system as the ordering of scenarios is described
in a global automaton [17, 13]. Moreover, as MSCs of a HMSC cannot overlap, a
specification may have to be refactored when a new scenario shall be included [34]
and specifications tend to consist of many small-scale scenarios composed in
complex ways, which is counter-intuitive to the idea of one scenario describing a
“self-contained story” of the system [38, 13].

LSCs extend MSCs in a different way to provide enough expressive power [6].
Altogether, LSCs provide notions for preconditions of scenarios, data, multiple
instances and abstraction on component lifelines, satisfying R1-R7 of Sect. 2.1 [21].
LSCs first proposed principle S3 that a scenario is triggered by a precondition; this
idea has been adopted in other approach as well [17, 35, 12]. Fig. 2 shows 3 LSCs
corresponding to the MSCs of Fig. 1. However, LSCs specify system behavior
not by scenario composition, but each LSC denotes a linear-time temporal logic
formula: when a system run ends with an LSC’s precondition, then the run must
continue with the LSC’s contribution, i.e., the given events occur in the run
eventually in the given order.
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Operator Customer

order

Pump

start

change

stop

L2

pay

Operator Customer

pay

Pump

start

change
stop

L1

Env Customer

arrive

L0

arrive
arrive

Fig. 2. Three LSCs of the gas station example.

For instance, L1 expresses
that after arrive occurred (pre-
condition), the customer pays,
starts and stops the pump, and
gets his change (contribution).
Additionally, LSCs specify par-
ticular events as implicitly for-
bidden at particular stages of
an LSC. For instance, in L2,
event pay is forbidden to occur
before event stop. At the same
time, L1 requires pay to occur
before right after arrived (before stop) and forbids occurrences of pay after stop. In
contrast to intuition, L1 and L2 are contradictory and no system satisfies both
LSCs. This contradiction arises because of the linear-time semantics of LSCs
as both L1 and L2 have to occur in the same run. The contradiction vanishes
when using a branching-time semantics for LSCs as proposed in the model of
epLSCs [37]: when the pre-condition occurs, some run continues with the contri-
bution (principle S4). However, also in this model, deriving system behavior from
a specification is cumbersome: whether two epLSCs have to occur in different
runs or may occur overlappingly in the same run still requires to check their
temporal logic formulae, possibly requiring verification on large parts of the
specified state-space [20].

Between LSCs and HMSCs. To summarize, HMSCs have a simple semantics
that allows to derive specified behaviors by composing scenarios. Though, HMSCs
suffer from the global automaton and that scenarios cannot overlap. LSCs allow
for local preconditions and overlapping scenarios, but are based on an intricate
semantics that makes it hard to understand behavior specified by a set of
LSCs. That simplicity of semantics influences the way how components can be
synthesized from scenarios can be seen when comparing available techniques.
While synthesis is generally infeasible from both HMSCs and LSCs, synthesis from
feasible subclasses of scenarios to Petri nets is straight forward for HMSCs [31,
2] yielding components that are correct by construction, whereas synthesis from
LSCs [1, 28] requires to verify the synthesis result to ensure correctness.

In the following, we derive a scenario-based technique that inherits the
advantages of HMSCs and LSCs without their disadvantages: a LSC-style syntax
of scenarios with local precondition is given a HMSC-style semantics where
system behavior follows from scenario composition. The hope is that a simpler
semantic model allows to synthesize from LSC-style scenarios components that
are correct by construction. Indeed, this already has been proven to be successful
for a simple model of scenarios that we present next.
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2.3 A simple model for scenarios based on Petri nets

We derive a simple semantic model for LSC-style scenarios by applying principles
of Petri net theory. Petri net-based scenarios benefit from expressing scenarios,
behavior, and system in the same formal model, which allows to create a Petri-net
based operational semantics for scenarios and supports the crucial step from
specification to system model. For HMSC-style specifications, corresponding
semantics and synthesis techniques are already available [2]

arrived

prepay

Customer

Env

pay

Customer

receive

Operator

Operator
payment

arrived

pay later

Customer

Env

order

Customer

receive

Operator

Operator
order

activate

!activate

receive

Operator

?activate

Operator
activate

Pump

Pump

?activate

Customer Pump

Customer Pump

start

start

Fig. 3. Scenarios for the gas
station example.

For LSC-style scenarios, a simple model that
adopts the semantics of epLSCs [37] to Petri nets has
been proposed in the model of oclets [12, 13] that we
recall next. Oclets realize all principles S1-S4 in the
following way. Fig. 3 shows four scenarios of the gas
station example of Sect. 2.1 in the notation of oclets.
The partial order of actions is expressed as a so called
labeled causal net. A transition (place) of a causal net
is called event (condition); the flow relation defines a
partial order over events and conditions s.t. the net
is conflict-free. The grey-filled (white-filled) nodes
indicate the precondition (contribution) of an oclet.

The four oclets describe some behavior of the
gas station example. Oclet prepay: after a customer
arrived at the gas station, he asks to activate a pump
and pre-pays his gas (event pay). Alternatively (oclet
pay later), the customer may just ask the operator
to activate the pump (order). Oclet activate: after
receiving the order, the operator activates the pump.
Oclet start: When a pump is activated, the customer
may start it.

Oclets generalize the semantics of Petri net tran-
sitions to scenarios. Whenever a run ends with an
oclet’s precondition, the oclet is enabled and the run
can continue by appending the oclet’s contribution.
Two oclets with the same precondition and differ-
ent contributions are alternatives and hence yield
alternative continuations.

For example, consider the run π0 indicated in Fig. 4. In π0, oclets pay and
use card are enabled. Continuing π0 with pay yields the run π1 indicated in
Fig. 4(top), that was obtained by appending pay’s contribution to π0. Appending
use card yields the run π′1 of Fig. 4(bottom) that is alternative to π1. In π1, oclet
activate is enabled; appending its contribution yields π2. This way, oclets derive
the specified behavior of the gas station by composition.

Properties and limitations. In their current form, oclets allow to express
properties (R1-R4) of Sect. 2.1 and allow to analyze scenarios, and synthesize
a system by reusing and extending Petri net techniques [13]. Yet, oclets can-
not express data (e.g., how much gas to pump) or distinguish instances (e.g.,
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arrived

Operator PumpEnv

Env Customer

pay

Customer
payment

receive

Operator

!activate
activate

Operator

?activate

Pump

Pump
π0

π1

π2

arrived

Operator PumpEnv

Env Customer

order

Customer
order

receive

Operator

Pump
π0

π'1

Fig. 4. Two alternative runs of the gas station built by composing scenarios of Fig. 3.

two different pumps). Furthermore, the events in an oclet currently describe a
“contiguous piece of behavior.” In the worst case, the specification consists of
many short scenarios, only. Abstraction would allow a system designer to also
specify longer scenarios of corresponding, non-contiguous pieces of behavior. In
the remainder of this paper, we show how to introduce abstraction and data to
oclets, thus providing a scenario-based technique between HMSCs and LSCs. We
stay close to the spirit of Petri nets and define an extension in terms of simpler,
existing principles.

3 Adding Abstraction: Abstract Dependencies

In this section, we introduce means to abstract from behavior in a scenario. We
sketch the idea by our running example before we present formal definitions.

3.1 Abstracting causal dependencies

As stated in Sect. 2.3, the flow relation of an oclet as described in [12, 13] denotes
direct causal dependencies which may restrict how a particular system behavior
can be specified. Abstract causal dependencies allow other events to occur between
two events of a scenario.

Fig. 5 shows examples of abstract dependencies; an abstract dependency is
drawn as a dashed arrow. The oclet main describes the main interaction between
customer and the gas station’s operator and the pump (see Sect. 2.1). The oclet
abstracts from other behavior taking place at the gas station, some of that
behavior is needed to make the customer’s interaction happen. For instance,
oclet main only abstractly describes the dependency of the two Pump conditions.
This allows events which are not depicted to occur between these conditions. In
particular event start of oclet start of Fig. 3 can occur here. In other words, oclet
start refines this abstract dependency of oclet main. There are further abstract
dependencies in main that have to be detailed by other oclets. Yet, the main

scenario clearly describes that once the pump has been activated, it eventually
completes pumping, which will lead to the operator returning change to the
customer. We complete the specification in Sect. 4.5.



8 Dirk Fahland and Robert Prüfer

main[completed]

Operator

?activate

Pump

Pump

Customer

arrived

Env

payreceive

Operator
payment

completed

Pump

!activate

Pump

report

activate

main

Operator

?activate

Pump

Pump

Customer

arrived

Env

payreceive

Operator
payment

completed

Pump

Customer

?change

Customer

!activate

Operator

!change

Operator

Pump

report

change

activate

Operator PumpEnv

Env Customer

Customer

receive

Operator

?activate

Pump

Pump
π'2

Fig. 5. Main scenario of the gas station example (left), abstract dependencies allow to
abstract several details of the system behavior; a basic oclet (top right); an abstract
run (bottom right).

Abstract dependencies are also useful in a scenario’s precondition. Here, they
allow to specify that an oclet is enabled if a specific behavior occurred “some
time” in the past, instead of immediately. For instance, oclet main[completed] in
Fig. 5 expresses that activate must have occurred some time in the past in order
to enable event completed, including the possibility that other events occurred in
between.

Introducing abstract dependencies in oclets comes at a price: we cannot
continue a run with an enabled oclet by appending its contribution. The principle
solution is to decompose an oclet into basic oclets such as main[completed] in
Fig. 5(top right). Each basic oclet contributes exactly one event, its precondition
consists of all transitive predecessors in the original oclet. This effectively moves
abstract dependencies into preconditions and system behavior emerges from
concatenating well-defined single events.

In the remainder of this section, we formalize these ideas by extending syntax
and semantics of oclets [12, 13] with abstract dependencies. We assume the reader
to be familiar with the basic concepts of Petri Nets and their distributed runs;
see [33] for an introduction.

3.2 Basic Notions

First, we recall some basic notation. A partial order over a set A is a binary
relation ≤ ⊆ A × A that is reflexive (i.e. ∀a ∈ A : a ≤ a), transitive (i.e.
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∀a, a′, a′′ ∈ A : a ≤ a′ ∧ a′ ≤ a′′ ⇒ a ≤ a′′), and antisymmetric (i.e. ∀a, a′ ∈ A :
a ≤ a′ ∧ a′ ≤ a ⇒ a = a′). Let a↓≤ := {a′ ∈ A | a′ ≤ a} and a↑≤ := {a′ ∈ A |
a ≤ a′} denote the transitive predecessors and successors of a ∈ A, respectively.
As usual, for a relation R ⊆ (A × A), R+ and R∗ denote the transitive, and
reflexive-transitive closures of R.

We write a Petri Net as N = (P, T, F ), with places P , transitions T (P ∩T =
∅), and arcs F ⊆ (P×T )∪(T×P ). Notation-wise, introducing N,N1, N

′ implicitly
introduces their components PN , P1, P

′ etc. For each node x ∈ XN := P ∪ T ,
•x = {y ∈ X | (y, x) ∈ F} and x• = {y ∈ X | (x, y) ∈ F} are the pre- and
post-set of x, respectively. A causal net π = (B,E, F ) is a Petri net where (1)
≤π := F ∗ is a partial order over Xπ, (2) for each x ∈ Xπ, x↓≤π is finite, and (3)
for each b ∈ B, |•b| ≤ 1 and |b•| ≤ 1. An element of B (E) is called condition
(event). The arcs of a causal net denote direct causal dependencies: x depends
on y iff x ≤ y, and x and y are concurrent iff neither x ≤ y nor y ≤ x. We
write minπ = {x | •x = ∅} and maxπ = {x | x• = ∅} for the nodes without
predecessor and successor, respectively.

In the following, we consider labeled causal nets π = (B,E, F, `) where each
node x ∈ Xπ is assigned a label `(x) ∈ L from some given set L. We will interpret
a labeled causal net as a partially ordered run (of a possibly unknown system);
in analogy to Petri nets, an event e describes an occurrence of an action (or
transition) `(e), and a condition b describes an occurrence of a local state (a
token on a place) `(b).

3.3 Runs with abstract dependencies

We formally introduce abstract dependencies by generalizing the notion of a
partially ordered run to an abstract run. This definition then canonically lifts to
oclets with abstract dependencies.

Definition 1 (Partially ordered run). An abstract partially ordered run
( run for short) π = (B,E, F,A, `) is a labeled causal net (B,E, F, `) with abstract
dependencies A ⊆ Xπ ×Xπ s.t. ≤π:= (F ∪A)∗ is a partial order over the nodes
Xπ. π is concrete iff A = ∅.

We write πα for any run that is isomorphic to π by the isomorphism α : π → πα.
Run π occurs in run ρ, written π ⊆ ρ, iff Bπ ⊆ Bρ, Eπ ⊆ Eρ, Fπ ⊆ Fρ, Aπ ⊆
Aρ, `π = `ρ|Xπ . We will work with two important relations on runs: prefixes and
refinement.

Definition 2 (Prefix). A run π is a prefix of a run ρ, written π v ρ, iff
(1) min ρ ⊆ Xπ ⊆ Xρ (2) Fπ = Fρ|Xρ×Xπ , Aπ = Aρ|Xρ×Xπ (π contains all
predecessors), (3) for each e ∈ Eρ and all (e, b) ∈ Fρ holds (e, b) ∈ Fπ (events
have all post-conditions). The set of all prefixes of ρ is Pre(ρ) := {π | π v ρ}.

Fig. 5(bottom right) shows an abstract run; Fig. 4 shows concrete runs; π1 is a
prefix of π2; π′1 is not a prefix of π1. Each abstract run describes a set of concrete
runs (without abstract dependencies) that refine the abstract run. Intuitively, an
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abstract dependency in a run π can be refined by a number of nodes that respect
the partial order of π. The refinement can exclude nodes with a particular label,
which we need for oclet semantics.

Definition 3 (Refine an abstract run). Let π and ρ be abstract distributed
runs. Let κ : Aπ → 2L assign each abstract dependency in π a (possibly empty)
set of forbidden labels. ρ refines π w.r.t. κ, written ρ �κ π iff

– Bπ ⊆ Bρ, Eπ ⊆ Eρ,∀x ∈ Xπ : `π(x) = `ρ(x),
– Fπ ⊆ Fρ and (Fπ ∪Aπ)+ ⊆ (Fρ ∪Aρ)+, and
– ∀(x, y) ∈ Aπ@e ∈ Eρ : x ≤ρ e ≤ρ y ∧ `ρ(e) ∈ κ(x, y).

We write π � ρ if κ(x, y) = ∅ for all (x, y) ∈ Aπ. Every run π describes the set
JπK := {ρ | ρ � π,Aρ = ∅} of all concrete runs that refine ρ.

Run π2 of Fig. 4 refines the abstract run π′2 of Fig. 5.

3.4 Scenarios with abstract dependencies

Syntax. Abstract dependencies canonically lift from abstract runs to oclets. As
already sketched in Sect. 3.1, an oclet is an abstract run with a distinguished
prefix.

Definition 4 (Oclet). An oclet o = (π, pre) consists of an abstract distributed
run π and a prefix pre v π of π.

Fig. 5 shows oclet main. Def. 4 generalizes “classical” oclets as introduced in [12,
13] by abstract dependencies of the underlying run. We call pre the precondition
of o and the suffix con(o) := (Bπ \Bpre , Eπ \Epre , Fπ \Fpre , Aπ \Apre , `π|Xcon(o)

)
its contribution; technically con(o) is not a net as it contains arcs adjacent to
nodes of the precondition.

A specification is a set of oclets together with an initial run that describes
how system behavior starts.

Definition 5 (Specification). A specification Ω = (O, π0) is a set O of oclets
together with an abstract run π called initial run.

A specification usually consists of a finite set of oclets; we allow the infinite case
for technical reasons. This is all syntax that we need.

Semantics. The semantics of oclets is straight forward. An oclet o describes a
scenario with a necessary precondition: the contribution of o can occur whenever
its precondition occurred. Then, we call o enabled.

Definition 6 (Enabled Oclet). Let o = (π, pre) be an oclet and let π be a run.
Each (x, y) ∈ Aπ defines the post-events of y as forbidden, i.e., κ(x, y) = {`(e) |
(y, e) ∈ Fo ∪ Ao, e ∈ Eo}. Oclet o is enabled in π iff there exists a refinement
pre ′ �κ pre s.t. (1) pre ′ ⊆ π, (2) max pre ′ ⊆ maxπ, and (3) Xcon(o) ∩Xπ = ∅.
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An oclet is enabled in a run π if the complete precondition occurs at end of π,
i.e., “just happened.” The forbidden events κ restrict which events may occur in
place of an abstract dependency of pre (see Def. 3); this ensures enabling only at
a “very recent” occurrence of the precondition. The same model is applied in
LSCs [6].

An oclet o can be enabled at several different locations in π (whenever we
find pre several times at the end of π). We say that o is enabled in π at location
α iff oα is enabled in π. For technical reasons, o’s contribution is assumed to be
disjoint from π so that it can be appended to π.

Definition 7 (Continue a run with an oclet). Let o be an oclet and let π be
a distributed run. If o is enabled in π, then the composition of π and o is defined
as πB o := (π∪πo) = (Bπ ∪Bo, Eπ ∪Eo, Fπ ∪Fo, `′, Aπ ∪Ao) with `′(x) = `π(x),
for all x ∈ Xπ, `′(x) = `o(x), for all x ∈ Xo.

A specification Ω describes a set R(Ω) of abstract runs: that is, the prefixes of
all runs that can be constructed by repeatedly appending enabled oclets of Ω to
the initial run. The concrete system behaviors specified by Ω are the concrete
runs that refine R(Ω).

Definition 8 (Semantics of a specification). Let Ω = (O, π0) be a specifica-
tion. The abstract runs of Ω are the least set R(Ω) of runs s.t.

1. Pre(π0) ∈ R(Ω), and
2. for all π ∈ R(O), o ∈ O, if o is enabled in π at α then Pre(π B oα) ∈ R(O).

A set R of concrete runs satisfies Ω iff for each π ∈ R(Ω), JπK∩R 6= ∅.

3.5 Operational semantics

A system designer can use oclets to specify the behaviors of a distributed system.
Harel et al. [20] suggested to turn a specification into an executable system model
by providing operational semantics for scenarios.

Operational semantics describe system behavior as occurrences of single events.
Each event has a local precondition, if the precondition holds, the event can
occur by being appended to the run. These principles are naturally captured by
basic oclets that contribute just a single event; we define operational semantics
of oclets by decomposing complex oclets into basic oclets.

We call an event e of a run π concrete iff e has no abstract dependencies, i.e.,
∀(x, y) ∈ Aπ : x 6= e 6= y. Oclet o is basic iff its contribution consists of exactly
one concrete event e (with post-conditions). If o is not basic, then it can be
decomposed into basic oclets. Each concrete event e of o’s contribution induces
the basic oclet o[e] that contributes e and e’s post-set and has as precondition
all transitive predecessors e ↓≤o of e in o.

Definition 9 (Decomposition into basic oclets). Let o = (π, pre) be a basic
oclet. A concrete event e ∈ Econ(o) induces the basic oclet o[e] = (π′, pre ′) with
X ′ = e ↓≤o ∪e•, F ′ = F |X′×X′ , A′ = A|X′×X′ , `′ = `|X′ , and pre ′ v π′ s.t.
Xpre′ = e ↓≤o \{e}. The basic oclets of o are ô = {o[e] | e ∈ Econ(o), e is concrete}.
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There may be specifications where a particular action a has no corresponding
concrete event e, `(e) = a, i.e., it is always adjacent to some abstract dependency.
In this case, the specification provides no information on how to refine these
abstract dependencies. We found it useful for concise specifications, that in this
case, a non-concrete event e of an oclet o = (π, pre) also induces the basic
oclet o[e] where the abstract dependencies between e and some condition b are
turned into direct dependencies, i.e., replace in o each abstract dependency
(b, e) ∈ Ao, b ∈ Bo by an arc (b, e) ∈ Fo and each (e, b) ∈ Ao, b ∈ Bo by an arc
(e, b) ∈ Fo, and then compute o[e] as in Def. 9.

In both cases of Def. 9 and with additional basic oclets, the operational
semantics of an oclet specification follows from its basic oclets.

Definition 10 (Operational semantics). Let Ω = (O, π0) be a specification.
Ω̂ = (

⋃
o∈O ô, π0) is the basic specification induced by Ω. It defines the operational

semantics of Ω as R(Ω̂). Ω is operational iff R(Ω̂) satisfies Ω.

We call R(Ω̂) the operational semantics of Ω because Ω̂ describes a set of single
events. Each event is enabled when its local precondition holds; an enabled event
can occur (by appending it to the run). Not every specification has operational
semantics that satisfy the specification. A non-operational specification needs to be
refined to become operational. Yet, we can characterize operational specifications.

Theorem 1. Let Ω = (O, π0) be a specification s.t. π0 is concrete and each
event in the contribution of each oclet in O is concrete. Then Ω is operational.

Proof. This theorem has been proven for oclets without abstract dependencies
in [12]: by induction on the prefixes of an oclet’s contribution, an oclet’s contri-
bution can be reconstructed from its basic oclets. In particular, whenever oclet
o is enabled in π, also each basic oclet of o is enabled in π or in a continuation
πBo[e1]B. . .Bo[ek]. This reasoning applies also when o has abstract dependencies
in its precondition (still, each basic oclet o[e] gets enabled whenever o is enabled).

Theorem 1 states a rather strict sufficient condition for operational specifi-
cations (abstract dependencies only in preconditions). Next, we present a more
general sufficient condition: Ω is operational if all abstract dependencies of Ω
can be refined by its basic oclets.

Refining abstract runs lifts to oclets: oclet o2 = (π2, pre2) refines oclet o1 =
(π1, pre1), written o2 � o1, iff π2 � π1 and pre2 = pre1, i.e., we may only refine
contributions. An oclet’s refinement can be justified by another oclet.

Definition 11 (Justified by oclet). Let o1, o2 be oclets s.t. o2 refines o1. The
refinement from o1 to o2 is justified by an oclet o iff there exists run ρ ⊆ πo2 s.t.
Xo2 \Xo1 ⊆ Xcon(o), Fo2 \ Fo1 ⊆ Fcon(o), Ao2 \Ao1 ⊆ Acon(o).

Let Ω = (O, π0) be an oclet specification. The refinement from o1 to o2 is
justified by Ω iff there is a sequence of refinements from o1 to o2 s.t. each
refinement is justified by a basic oclet o ∈ Ô (or by an isomorphic copy oα of o).

Theorem 2. Let Ω = (O, π0) be a specification. If each oclet o1 ∈ O can be
refined to an oclet o2 justified by Ω s.t. all events of o2’s contribution are concrete,
then Ω is operational.
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Lemma 1. Let Ω = (O, π0) be a specification. Let o be an oclet that can be
refined into an oclet o′, justified by Ω, s.t. each e ∈ Econ(o′) is concrete. Let π be

a run s.t. o is enabled in π. Then there exists a sequence o1, . . . , on ∈ Ô ∪ ô of
basic oclets s.t. (π B o1 B . . .B on) = (π B o′) � (π B o).

Proof (Lem. 1). Proof by the number n = |Econ(o′)|. For n = 0, the proposition
holds trivially. For n > 0, let e ∈ Econ(o′) be a maximal (no other event of o
succeeds e).

Case 1: e ∈ Econ(o′) and e is concrete. Obtain o−e, o
′
−e by removing e and e•

from o, o′. o′−e � o−e justified byΩ and ρ := πBo1B. . .Bon−1 = πBo′−e � πBo−e
by inductive assumption. From e being complete follows o[e] ∈ ô and o[e] enabled
in ρ. Thus (ρB o[e]) = (π B o′−e B o[e]) = (π B o′) � (π B o).

Case 2: e ∈ Econ(o′) and e is not complete, or for some b ∈ e•, b ∈ maxπo
(s.t. e is added by refining (x, b) ∈ Ao, see Def. 3). By Def. 11, a basic oclet õ of
Ω with p̃re ⊆ π′ justifies e ∈ Eo′ ∩Eõ and all (x, e), (e, y) ∈ Fo′ \ Fo ⊆ Fcon(õ).
Thus, there ex. oclet o′′ s.t. o′ � o′′ � o where o′ � o′′ is justified by õ (and
the rest by Ω). All events of o′′ (except e) are concrete. Obtain o−e, o

′
−e, o

′′
−e

by removing e and e• from o, o′, o′′. By construction holds o′′−e = o′−e and
max p̃re ⊆ maxπ′−e. Refinement o′′−e � o−e is justified by Ω, thus ρ := (πB o1 B
. . . B on−1) = (π B o′−e) � (π B o−e) holds by inductive assumption. Further,
p̃re ⊆ π′−e ⊆ ρ and max p̃re ⊆ maxπ′−e ⊆ max ρ holds. Thus, õ is enabled in ρ
and (ρB õ) = (π B o′−e B õ) = (π B o′) � (π B o). �

Proof (Thm. 2). By induction on the semantics of Ω = (O, π0). Let Ω̂ = (Ô, π0).
Base: By Def. 8, π0 ∈ R(Ω) and π0 ∈ R(Ω̂). Step: Show for π B o ∈ R(Ω) (o
enabled in π) that there ex. ρ ∈ R(Ω̂) s.t. ρ � π B o. By assumption there ex. a
refinement o′ � o justified by Ω. As ô ⊆ Ô, Lem. 1 implies that π B o′ ∈ R(Ω̂)
and (π B o′) � (π B o). �

4 Adding Data: Σ-Oclets

In the current model of oclets, conditions and events can be labeled with specific
data values. But the language of oclets does not allow to concisely describe
manipulation of data values and data-dependent enabling of events. In this
section, we extend oclets with notions of data. As in Sect. 3, we first informally
describe our approach and afterwards present our formal model.

4.1 Specifying Data

We propose to incorporate data into oclets in the same way as data has been
introduced in Place/Transition nets (P/T nets) by several classes of high level
Petri Nets, e.g., in Coloured Petri nets [27]. Recall that in CPNs, a marking
distributes concrete values (from one or several domains) on places; expressions
on arcs describe which values are consumed or produced by an occurrence of
a transition; a guard expression at the transition may restrict consumable and
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producible values further. The method-wise relevant property of CPNs is that each
coloured net can be unfolded w.r.t. all possible interpretations of its expressions
into an equivalent P/T net. Then, a (black) token on a P/T net place (p, v)
denotes value v on colored place p; likewise each colored transition unfolds to
several P/T net transitions defined by the consumed and produced concrete
values. A special class of CPNs are Algebraic Petri nets [32] where expressions
and values are defined by a Σ-algebra with a signature Σ.

pumpPump

pump

Pump

(p  ,Running,done,todo)id

(p  ,Running,done+1,todo-1)id

[todo>0]

Pump

pump

(17,Running,0,3)

Pump
(17,Running,1,2)

pumpβ

Fig. 6. Σ-oclet pump of the gas station ex-
ample (left) and an unfolding pumpβ (right)
by assigning each variable a concrete value.

We adapt the idea of Algebraic
Petri nets to oclets and introduce Σ-
oclets. In a run, a place p carrying the
value v is labeled (p, v). In a Σ-oclet,
each condition is labeled with a pair
(p, t) where p is a name (e.g., of a com-
ponent) and t is a term (over function
symbols and variables of Σ) describing
possible values on p. Events are labeled
with names of actions as before; an event may carry an additional guard expres-
sion (defined over Σ). A system designer can use different terms in the pre- and
post-sets of an event to describe how values change by an occurrence of an event.

arrived

Operator Env
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π
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!activate

Operator

?activate

Pump

Customer
(1,17,3,70)

(1,17)

payment
(3,70)Operator

(3,70) activate
(17,3)
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(17,Free)
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(17,Active,0,3)

start

Customer
(1,17)

Pump
(17,Running,0,3)

pump

Pump
(17,Running,1,2)

Fig. 7. A distributed run with data.

Fig. 6 shows Σ-oclet pump of the gas
station example; the complete specification
is given in Sect. 4.5. Oclet pump describes
how the pump at the gas station refuels
the customer’s car by one unit of fuel and
updates its internal records about the pro-
vided and the remaining amount of fuel.
A Pump’s internal record is represented as
a 4-tuple. An occurrence of event pump in-
creases done by 1 (3rd entry) and decreases
todo by 1 (4th entry). The guard restricts
occurrences of pump to those cases where
todo > 0. Technically, pid, todo and done

are variables and Running is a constant of
Σ. As in Petri nets, the semantics of a Σ-
oclet o can be understood by unfolding o
into a “low-level” oclet that has no terms

and variables. The basic idea is to assign a value to each variable in o, and then
to replace each term t in o by the value obtained by evaluating t. For example,
for Σ-oclet pump, the assignment β : pid 7→ 17, done 7→ 0, todo 7→ 3 yields the
classical oclet pumpβ shown in Fig. 6. An occurrence of pumpβ can be understood
as an occurrence of pump in mode β. Other assignments yield other low-level
oclets. A Σ-oclet can only be unfolded if all guards evaluate to true.

This way an entire set of Σ-oclets O can be unfolded to a (possibly infinite)
low-level oclet specification O′. O describes the distributed runs that are described
by O′, that is, can be constructed from the unfolded oclets. For example, pumpβ
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is enabled in run π of Fig. 7, i.e., oclet pump is enabled for pid 7→ 17, etc. We can
continue π by appending the contribution of pumpβ which updates the internal
record of the pump. Now pump is enabled for the assignment todo 7→ 2. Thus,
pump can occur two more times, i.e., until the assignment todo 7→ 0 violates the
guard expression.

This notion of data now allows to express data-dependent behavior : event
pump repeats as often as specified by todo. Further, we are now able to distinguish
different instances of a component. Unlike in run π2 of Fig. 4, we can now
distinguish the two pumps run in π of Fig. 7. This permits to activate exactly
the pump that was chosen by the customer.

We continue with the formal description of Σ-oclets. Similar to Sect. 3, we
will first introduce some basic notions (concerning the representation of data)
and afterwards formally describe the syntax and semantics of Σ-oclets.

4.2 Basic Notions

We now introduce some basic concepts from the theory of abstract data types. For
a further introduction, we refer to [10]. We describe data by terms and expressions
from a fixed signature Σ; Σ is then interpreted as an algebra A that gives the
symbols in Σ a meaning. A signature Σ = (S,F , V ) defines pairwise disjoint
sets of sorts S, function symbols F , and variables V . Each function symbol
defines sorts for arguments and result, written f : s1 . . . sn → s0 ∈ F , si ∈ S for
0 ≤ i ≤ n; if n = 0, then f is a constant symbol. Variables V =

⋃
s∈S Vs are sorted:

Vs ∩Vr = ∅ for s, r ∈ S, s 6= r. The terms T (Σ) over Σ are inductively defined: for
all c : s ∈ F , c ∈ T (Σ)s; for all s ∈ S, Vs ⊆ T (Σ)s; if f : s1 . . . sn → s ∈ F and for
1 ≤ i ≤ n, ti ∈ T (Σ)si , then f(t1, . . . , tn) ∈ T (Σ)s. Finally, T (Σ) =

⋃
s∈S T (Σ)s.

V (t) denotes all variables occurring in term t.
A Σ-algebra A = (SA,FA) interprets sorts as domains sA ∈ SA iff s ∈ S, and

function symbols as functions fA : s1A . . . snA → s0A ∈ FA iff f : s1 . . . sn →
s0 ∈ F ; if n = 0, then fA is a constant. An assignment β : V →

⋃
SA (for A)

maps each v ∈ Vs to a value β(v) ∈ sA. β lifts to an evaluation of Σ-terms valβA :

T (Σ)→
⋃
SA as follows: for all c ∈ T (Σ), valβA(c) = cA; for all v ∈ V , valβA(v) =

β(v); for t = f(t1, . . . , tn) ∈ T (Σ), valβA(t) = fA(valβA(t1), . . . , valβA(tn)).
We consider Boolean signatures containing sort Bool and symbols =, ¬, ∨, ∧,

⇒, True, and False, and their usual interpretation. For the rest of this section, let
Σ be an arbitrary, but fixed Boolean signature.

4.3 Syntax and Semantics of Σ-oclets

Syntax. As sketched in Sect. 4.1, we introduce data into oclets by following
the ideas of Algebraic Petri nets: each condition of an oclet is annotated with
a Σ-term that specifies which values may hold at this condition (or in Petri
net terms, which values may be on the place). Further, each event is annotated
with a Boolean Σ-term that takes the role of a guard. Similar to the abstract
dependencies of Sect. 3 we introduce data on the level of runs.
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Definition 12 (Σ-run). A Σ-run π = (B,E, F, `, A, τ) is an abstract partially
ordered run (B,E, F, `, A) together with a term-assignment τ : Xπ → T (Σ)
s.t. τ(e) ∈ T (Σ)Bool for all e ∈ E. We write V (π) for the set of all variables
occurring in terms in π.

Each condition b of a run π implicitly gets sort s by its term τ(b) ∈ T (Σ)s. All
notions on runs canonically lift to Σ runs by preserving terms, e.g., prefixes,
refinement. Σ-oclets follow canonically; a specification additionally fixes an
interpretation of Σ.

Definition 13 (Σ-oclet). A Σ-oclet o = (π, pre) consists of a Σ-run π and a
prefix pre v π of π.

Fig. 6 (left) shows the Σ-oclet pump. A node’s term is written below its label; the
particular example uses tuples to express complex data at conditions. In all Σ-
oclets, we omit the trivial guard True. The initial run of a Σ-specification contains
no variables (the run is unique) and no guards (the run is always well-defined).

Definition 14 (Σ-specification). A Σ-specification Ω = (O, π0,A) consists
of a finite set O of Σ-oclets, a Σ-run π0 where V (π0) = ∅ and τ(e) = True for
all e ∈ Eπ0

, and a Σ-algebra A.

Semantics. The semantics of Σ-oclets follows the principles of Petri nets. An
oclet o is enabled in a run π (w.r.t. an assignment β of o’s variables) if the
evaluation of o’s precondition (replace all terms by their evaluation) occurs at the
end of π, and the guards at o’s events evaluate to true. If o is enabled, append
the evaluation of o’s contribution to π. The formal definition is slightly different:
we unfold each Σ-oclet into a set of classical oclets, one oclet per assignment;
the labels of the unfolded oclet carry the concrete values. The semantics of a
Σ-specification is then the semantics of its unfolded oclets.

Definition 15 (Low-level unfolding of Σ-oclets). Let π be a Σ-run and A
be an interpretation of Σ. An assignment β satisfies π iff for each e ∈ Eπ, its
guard τ(e) evaluates to true, i.e., valβA(τ(e)) = true. In this case, π unfolds to

the abstract run valβA(π) = (Bπ, Eπ, Fπ, `
′, Aπ) where for each b ∈ Bπ, l′(b) =

(l(b), valβA(τ(b))), and for each e ∈ Eπ, `′(e) = `(e).

A Σ-oclet o = (π, pre) unfolds to oclet valβA(o) = (valβA(π), valβA(pre)) for any
assignment β that satisfies π (in this case, we also say that β satisfies o). The

semantics of o is the set of all low-level oclets valA(o) := {valβA(o) | β satisfies π}
into which o unfolds. A specification Ω = (O, π0,A) unfolds to the low-level
specification val(Ω) = (

⋃
o∈O valA(o), valA(π)).

A single Σ-oclet can unfold to infinitely many oclets if the domains of A allow it.
An unfolded oclet for a concrete assignment is shown in Fig. 6 (right). The low
level unfolding of a Σ-specification Ω is finite if each domain of A is finite.

Definition 16 (Semantics of Σ-specifications). Let Ω be a Σ-specification.
Ω describes the behaviors R(Ω) := R(val(Ω)) described by its unfolding. A set R
of concrete runs satisfies Ω iff R satisfies val(Ω).
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4.4 Operational Semantics

In principle, Σ-oclets gain operational semantics by the operational semantics
of their unfolding. However, unfolding a Σ-specification into an (infinite) set of
oclets seems impractical to operationalize a Σ-specification. A more practical
approach is to directly decompose a Σ-oclet o into its basic Σ-oclets ô by lifting
Def. 9 to preserve each node’s terms.

Definition 17 (Operational semantics). The operational semantics of Σ-
specification Ω = (O, π,A) are the runs R(Ω̂) of its basic Σ-specification Ω̂ =
(Ô, π,A), i.e., R(Ω̂) = R(val(Ω̂)).

While Ω̂ yields semantics based on occurrences of single events, it may introduce
spurious behavior (not specified by Ω). This spurious behavior arises if a basic
Σ-oclet o[e] of o unfolds to some basic low-level oclet that is not defined by the
unfolding of entire o. For instance, for an oclet o with two events e1, τ(e1) =
(x > 0) and e2, τ(e2) = (x < 5), e1 ≤ e2, assignment β(x) = 17 permits a basic
oclet oβ [e1] while oβ is undefined because of τ(e2). With oβ [e1], the operational
semantics would “get stuck” in the middle of o after e1.

In the following, we characterize a class of Σ-specifications where each basic
Σ-oclet o[e] of o unfolds by those assignments that also unfold the entire oclet o.

Definition 18 (Data-consistent). An oclet o is data-consistent (w.r.t. a Σ-
algebra A) iff for each event e ∈ Eo and any assignment β : V (o[e])→ SA holds:
β satisfies o[e] iff there ex. β+ : V (o)→ SA that satisfies o and β+|V (o[e]) = β. A
Σ-specification Ω is data-consistent iff each o ∈ OΩ is data-consistent w.r.t. AΩ.

The basic Σ-oclets of a data-consistent specification Ω yield exactly the opera-
tional semantics of Ω.

Lemma 2. An oclet o is data-consistent (w.r.t. algebra A) iff {o[e]β | o[e] ∈
ô, o[e]β ∈ valA(o[e])} = {oβ [e] | oβ ∈ valA(o), oβ [e] ∈ ôβ}. For each Σ-specification

Ω holds: R(v̂al(Ω)) ⊆ R(val(Ω̂)) = R(Ω̂); and R(v̂al(Ω)) = R(val(Ω̂)) iff Ω is
data-consistent.

Lemma 2 holds immediately by Def. 18 and the respective definitions of oclet
semantics. Next, we characterize data-consistent specifications in terms of their
structure and guards. In a data-consistent specification, two distant nodes only
carry variables that also occur in their joint predecessors, and guards of two
events are not contradictory.

Definition 19 (Variable-consistent). Let o be a Σ-oclet. Two nodes x, y ∈
Xo are variable-consistent iff V (τ(x))∩V (τ(y)) ⊆ V (τ(x↓o ∩ y↓o)). Oclet o
is variable-consistent iff all nodes of o’s contribution are pair-wise variable-
consistent.

Definition 20 (Guard-consistent). Let o be a Σ-oclet and let A be a Σ-
algebra. An assignment β is feasible for an event e ∈ Eo iff β satisfies the guard
of each pre-event of f , i.e., ∀f ∈ Eo ∩ e↓o \ {e} : valβA(τ(f)) = true. Two events
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e, f ∈ Eo are guard-consistent iff f 6≤o e implies that for all assignments β that
are feasible for e and f , valβA(τ(e)⇒ τ(f)) = true. An oclet o is guard-consistent
iff all events of o’s contribution are pair-wise guard-consistent.

Theorem 3. Let Ω be a Σ-specification. If each oclet o ∈ OΩ is variable-
consistent and guard-consistent, then Ω is data-consistent.

Proof (Sketch). In a guard-consistent oclet o, a guard τ(e) is constrained by
the guards of e’s predecessors (by a feasible binding, τ(e) holds only true if the
predecessors’ guards do). Further, if τ(e) holds, then the guard τ(f) of any other
event f that e does not depend on also holds true. Thus, an assignment β that
satisfies o[e] (τ(e) and all predecessor guards) can be extended to an assignment
β+ to satisfy o (all guards of o). That the extension is indeed possible (and
does not require contradicting assignments of variables), follows from o being
variable-consistent. ut

Theorem 3 decomposes data-consistency into smaller properties that are easier
to check; though the help of a theorem prover may be needed to prove the
implications stated in Def. 20.

Lemma 2 obviously allows to implement operational semantics for data-
consistent Σ-specifications. The crucial part is to check whether a basic oclet
o[e] = (π, pre) is enabled in a run π. First, find a sub-net ρ ⊆ π s.t. ρ refines pre
when ignoring all terms of o. Then assign each variable v a value s.t. each term
τ(b) of a condition evaluates to the value a, `π(b) = (p, a) in π and τ(e) evaluates
to true. If no such assignment exists, then o is not enabled. The occurrence of
o[e] is straight forward with the chosen assignment.

4.5 Complete Gas Pump Example

Fig. 8 shows the complete set O of Σ-oclets for the gas pump example including
its initial run init. The signature Σ for the Σ-specification Ω = (O, init,A) is
Boolean and also contains the theory of integers with its usual interpretation,
and additionally defines constant symbols Price, 6, 17 of sort integer. Further, it
has a sort containing the constant symbols Free, Active and Running. The variables
are V = VNat = {$, change, cid, done, pid, todo, left}. The initial run init specifies an
environment (Env), the operator, and two inactive pumps with ids 6 and 17.

Oclets prepay (when the customer pays in advance) and pay later (when the
customer pays at the end) describe the system behavior at the most abstract
level. All other oclets but env justify a refinement of main. The specification is
data-consistent, and the run of Fig. 7 is a run of this specification.

Oclet env describes the arrival and leaving of a new customer; technically a
new instance of Customer is created with id (cid), the amount the customer wants
to refuel (todo), the id of the pump he wants to use (pid) and his payment ($).
Only customers who can pay their desired amount of gas may participate. A
customer instance is destroyed after the customer received his change.

When the customer paid or ordered his amount, the operator activates the
pump (see prepay and pay later). The pid assures to activate the pump that the



Data and Abstraction for Scenario-Based Modeling with Petri Nets 19

ComputerOperator PumpEnv
init

Pump
(17,Free)(6,Free)

prepay

Operator

?activate

Pump

Pump

Customer

arrived

Env

payreceive

Operator
payment

completed

Pump

Customer

?change

Customer

!activate

Operator

!change

(c  ,p  ,todo,$)id id

(todo,$)

(p  ,Free)id

Operator (c  ,p  )id id

(c  ,p  ,$-done*Price)id id

(p  ,Active,0,todo)id

Pump
(p  ,Finished,done,0)id

(p  ,Free)id

report
(done)

change
($-done*Price)

(todo,$) activate
id(p  ,todo)

pay later

Operator

?activate

Pump

Pump

Customer

arrived

Env

orderreceive

Operator

completed

Pump

Customer

?change

Customer

!activate

Operator

!change

(c  ,p  ,todo,$)id id

order
(todo)

(p  ,Free)id

(c  ,p  )id id

(c  ,p  ,$-done*Price)id id

(p  ,Active,0,todo)id

Pump
(p  ,Finished,done,0)id

(p  ,Free)id

report
(done)

(todo) activate
id(p  ,todo)

pumpPump

pump

Pump

(p  ,Running,done,todo)id

(p  ,Running,done+1,todo-1)id

[todo>0]

arrived

env

Customer

Env

(c  ,p  ,todo,$)id id

[todo ≤ $*Price]

?change

Customer
(c  ,p  ,done,$)id id

Env

leave

Env

start
snack

Customer

get free snack

Customer

get gasCustomer
(c  ,p  )id id

receive
?activate

Customer
(c  ,p  )id id

Pump
(p  ,Active,0,todo)id

Pump
(p  ,Running,0,todo)id

start

Customer
(c  ,p  )id id

Pump
(p  ,Running,done,left)id

Customer
(c  ,p  )id id

Pump
(p  ,Finished,done,0)id

stop

Operator

pay

receive

payment($)

Customer
(c  ,p  ,$)id id

change
($-done*Price)

(c  ,p  )id id

(c  ,p  )id id

Operator
(done)

Fig. 8. Complete specification of the gas station example with Σ-oclets.

customer wants to use. The amount that has to be pumped is passed to the
pump.

Afterwards, the pump can be started by the customer (see get gas). Then,
the pump starts pumping (see pump). The customer may stop at any time, at
the latest when all of the amount requested by him was pumped. When the
pump finished, the actual amount that was pumped is passed to the operator. A
customer who did not pay in the beginning can pay now (see pay later). Then, the
change is calculated (see prepay and pay later). Note that because cid, pid, todo and
$ occur in prepay’s precondition, it is not necessary that the operator continuously
carries any of these values up to the occurrence of change. Thus, he may start
serving a second customer before the first one gets his change back.

Between starting the pump and leaving the gas station, the customer can get
one free snack. Oclet snack can occur only once as an occurrence of get free snack

after start prevents oclet snack from being enabled.
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Tool support. The approach presented here is implemented in the Eclipse-
based tool Greta [14]. Greta provides a graphical editor for oclets and animated
execution via a simulation engine which implements the operational semantics
of oclets including abstract dependencies and Σ-oclets. Greta finds variable
assignments and evaluates terms using the simulation engine of CPN Tools
via Access/CPN [40]. Additionally, Greta allows to verify whether a Petri net
implements a given specification, and to synthesize a minimal labeled Petri net
that implements a specification — both techniques operate on McMillan-prefixes
for oclets [13]. Greta is available at www.service-technology.org/greta.

5 On the Relation of Oclets to Petri Nets

This section discusses the relation between oclets and Petri nets. As above, oclets
without abstraction and data representation are called “classical.”

Classical oclets vs. P/T nets. Classical oclets contain P/T-nets: for each P/T
net N exists a specification Ω s.t. their behaviors are identical: R(Ω̂) = R(N) [12].
The converse does not hold. Even classical oclets can mimic a Turing machine by
their preconditions [13]. However, if Ω is bounded (i.e., there exists a k s.t. no
run π ∈ R(Ω̂) of Ω has more than k maximal conditions with the same label),
then there is a labeled Petri net N with the same behavior: R(N) = R(Ω̂). N
can be synthesized automatically from Ω by first building a McMillan-prefix [11]
for Ω that finitely represents R(Ω̂) and then folding that prefix to N [13].

Σ-oclets vs. P/T nets.Σ-oclets extend classical oclets. Clearly, aΣ-specification
Ω with an infinite domain has no equivalent finite P/T net. If Ω has only finite
domains, it unfolds to a finite low-level specification val(Ω). If abstract depen-
dencies in val(Ω) can be refined s.t. they only occur in pre-conditions, then
semantics of classical oclets carries over (Thm. 2). Thus not every Σ-specification
has a P/T net with the same behavior. Yet it seems plausible that every bounded
Σ-specification with finite domains has a net with the same behavior: finitely
many oclets will allow to continue markings of finite size only in finitely many
ways. This suggests that the synthesis from oclets [13] can also be generalized to
Σ-oclets. If abstract dependencies in Ω cannot be refined, the synthesis of a P/T
net also has to find a refinement of the abstract dependencies.

Σ-oclets vs. Algebraic Petri nets. As synthesizing Algebraic Petri nets from
Σ-oclets is out of the scope of this paper, we just sketch some basic observations
here. First, every Algebraic net N with term-inscribed arcs and term-inscribed
transition guards has an equivalent Σ-specification: translate each transition and
its pre- and post-places to a basic oclet by moving arc inscriptions to the respective
pre- and post-condition. The reverse direction is more difficult. Term annotations
are not an issue as both models are based on the same concepts. But enabledness
of an event of a Σ-oclet depends on a “history” in the execution while enabledness
of a transition depends on the current marking only. Hee et al. [22] have shown
how to express history of tokens in a data-structure of an Algebraic Petri net,
and how to use them in guards. Whether all data-dependencies expressible in
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Σ-oclets can be expressed this way is an open question. Yet, token histories
of [22] have drawbacks regarding analysis. Thus, synthesizing a net without an
explicit and complete recording of token histories is an interesting, open problem
as well. In any case, the signature Σ of a specification has to be extended to
allow remembering behavior in the past.

6 Conclusion and Future Work

In this paper, we proposed a formal model for scenarios that combines the
advantages of HMSCs (simple semantics by composition of scenarios) with the
advantages of LSCs (intuitive notion of scenarios with local preconditions and a
flexible style of specifying systems). Our model called oclets is based on Petri nets
and their distributed runs. The basic semantic notions of composing LSC-style
scenarios to distributed runs have been proposed earlier; in this paper we have
shown how the basic model of oclets can be lifted to the expressive means of
LSCs by introducing a notion of abstract dependencies and adopted concepts
from Algebraic Petri nets to represent data. All of our extensions are constructed
such that (1) they generalize and embed the “classical” oclet concept and (2)
their semantics can be described in terms of classical oclets. Existing operational
semantics for oclets canonically lift to our extended model. Oclets deviate from
LSCs where their semantics turns problematic for the aim of deriving specified
behavior by composing scenarios (see Sect. 2). Our approach is implemented in
the tool Greta and was validated on a number of elaborate examples. Finally,
composition, decomposition, abstraction, refinement, and unfolding suggest oclets
to be an interesting model for a calculus of scenarios. The contribution of this
model of scenarios becomes obvious when considering existing works that relate
scenario-based techniques to Petri nets.

From Scenarios to Petri nets. To bridge the gap between scenario-based
specifications and Petri nets, several approaches have been proposed. Methods to
transform UML sequence diagrams to Coloured Petri nets (CPNs) are described
in [5], [16], and [41]; the latter approach is used in [15] to model a variant of
the gas station example used in this paper. Further, there exist approaches to
provide Petri net semantics for MSCs [25, 29] and to synthesize a Petri net out
of a MSC specification [36]. While these approaches are straight-forward, the
scenario languages lack expressive power (MSCs, UML sequence diagrams) or
tend to yield complex specifications in practice (HMSCs, see Sect. 2).

Approaches to transform a LSC specification to a CPN have been described
in [1] and [28]. As two LSCs of a specification may be contradictory [20], both
synthesis approaches need to generate the state space of the LSC and the
synthesized CPN to check equivalency of both models. Also operational semantics
of LSCs [20] requires model checking to find a correct play-out step. We have
shown in this paper that Σ-oclets do not require model checking for operational
semantics. The gives rise to the hope that components can be synthesized from
Σ-oclets as correct by construction (as in the case of HMSCs).
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To the best of our knowledge, no other Petri net-based model for scenarios
features data and abstract causal dependencies. The notion of history-dependent
behavior in Petri nets was introduced in [22]. Oclets particulary relate to Token
History Petri nets where each token records its “traveling” through the net;
LTL-past guards at transitions restrict enabledness to tokens with a particular
history. The scenario-based approach of oclets provides a graphical syntax for a
subclass of these guards. Particularly, Token History Petri nets might allow to
synthesize components from an oclet specification. There are numerous refine-
ment and abstraction techniques for Petri net system models, e.g., by modular
refinement [39] or using rules [3]. Refinement of actions of a distributed run
has been studied in [18]; we think these results can be lifted to refine abstract
dependencies in oclets in a systematic way.

Future work. A next step for research work is to develop symbolic semantics
for Σ-oclets allowing to concisely describe infinitely many behaviors. This should
support solving the main challenge of scenarios: to synthesize high level Petri net
components from a Σ-specification without unfolding into a concrete low-level
model.
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