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CHAPTER 1

INTRODUCTION

The mixing ability of turbulent flows is unsurpassed. Most, if not all, large
scale industrial and natural fluid mixing processes make use of this aspect
[1]. From the trivial morning action of stirring cream into coffee to pollutants
dispersing throughout the atmosphere, numerous processes rely on turbulent
transport to achieve homogeneous concentrations. As in many other regards,
the nonlinearity of the fluid motion has a surprise when it comes to multiphase
mixtures. Particle- and bubble-laden turbulent flows exhibit a counterintuitive
behavior: preferential concentration.

In these flows, the dispersed phase is segregated into regions with spe-
cific characteristics. As the inertia of the droplets increases, they become
stubborn to changes in the flow, and lose the ability to faithfully follow fluid
trajectories. There is evidence that regions of high vorticity (high centripetal
acceleration) centrifuge the particles away from vortex cores and into high-
strain areas [2]. This phenomenon is thought to have major relevance in many
particle-laden processes. The aim of this thesis is to present a novel exper-
imental technique that will support our efforts to understand the underlying
dynamics of droplet-laden flows.

A droplet within a vortex is analogous to a fast car taking a curve. As
the car turns, it feels outward force proportional to its speed and mass, and
inversely proportional to the radius of the curve squared (Fc = mv/r2). If the
force is high enough to overcome the friction of the tires with the pavement,
the car slips out of the curve. In much the same way, a droplet with a rela-
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2 Chapter 1. Introduction

tively large mass or a high normal acceleration can be ejected out of a curved
trajectory (Figure 1.1).

r

Figure 1.1: As an inertial particle goes around a curved trajectory its mass
prevents it from exactly following the path of a fluid particle. This is a similar
situation as a car taking a tight curve at a high speed.

Given the prevalence of particle-laden flows and the major relevance in
many processes involving this type of flows, understanding the physics be-
hind them is of utmost importance for scientific and economical purposes.
Over the past few years this phenomenon has received increased attention,
with numerous studies being published from experimental, theoretical and
numerical perspectives. Even though these studies have increased the knowl-
edge and understanding of the preferential concentration phenomenon, many
questions remain unanswered. Recent reviews by Shaw [3] and Balanchandar
[4] give a thorough overview of the achievements and some of the remaining
challenges in fully understanding the physics of inertial particle physics. Ad-
ditionally, Toschi & Bodenschatz [5] have reviewed the Lagrangian statistics
of tracer and heavy particles in turbulent flows.

The core of this thesis is the elucidation of a new experimental technique
that will allow the quantification of the dynamics of turbulent droplet clouds
at the shortest timescale of the flow, i.e. the Kolmogorov timescale. The tech-
nique makes use of phosphorescent droplets to tag a well defined region inside
a cloud. The droplets are made out of a phosphorescent solution and, when ex-
cited, emit light for a period of time comparable to the dissipative timescales
of the flow.

The present chapter will provide the relevant background that will fa-
miliarize the reader with general aspects of particle-laden flows, particularly
those involving turbulence. This will provide a base for our subsequent anal-
ysis. First, however, we shall briefly address the general characteristics of
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turbulent flows and the equation of motion of a particle suspended in a non-
uniform unsteady velocity field.

1.1 Equations of fluid motion

Together with the incompressibility requirement ∇ · u = 0, fluid motion is
mathematically described by the Navier–Stokes equation

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1.1)

where ui represents the ith component of the velocity vector u at a point x in
space and p is the pressure at the same point. The velocity field of a dispersed
flow is also described by Eq. (1.1), but it must be augmented by an equation of
motion for the discrete particles and terms in each equation that characterize
the interplay between the fluid velocity field and the particle motion. For
very dilute suspensions of point-like particles, the effect of particles on the
fluid may be omitted: one-way coupling; whereas for dense suspensions or
large particles, the motion of the particle fraction reacts back on the fluid,
i.e. two-way coupling. Even higher densities may introduce particle–particle
interactions, a regime known as four-way coupling. In our experiments, the
concentration of the droplets is so small that the first situation pertains.

Turbulence is commonly defined as the chaotic motion of a fluid where
all scales of the flow mutually interact. Even though analytical solutions have
been reached for a few simple cases, in a turbulent environment the nonlinear-
ity of the Navier–Stokes equation renders an analytical solution impossible.
Chaotic systems are extremely sensitive to initial conditions, which means
that even if we could analytically solve the Navier–Stokes equations, the ac-
curacy with which the initial conditions must be defined would be impossible
to accomplish. Fortunately, the chaotic behavior of turbulent flows can be an-
alyzed from a statistical perspective, as long as the flow is statistically steady.

Whether a flow will become turbulent is not a straightforward determina-
tion. Conventionally, a comparison between the inertial forces and the vis-
cous forces is a good indication of the regime in which the flow is situated.
The non-dimensional Reynolds number Re gives the ratio between these two
forces. Slow or viscosity-dominated flows are said to be laminar, whereas
flows dominated by inertia are turbulent. The threshold between these regimes
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is not well defined. Moreover, this threshold depends on the geometry of the
flow. The Reynolds number is commonly defined as

Re =
LV
ν
, (1.2)

where L and V represent a characteristic length scale and velocity of the flow,
respectively, and ν is the kinematic viscosity of the fluid.

The statistical analysis of turbulent flows can be accomplished by the de-
composition of the instantaneous velocity into a mean (¯) and a fluctuating
part (′), u = ū (x) + u′ (x, t), resulting in

ūj
∂ūi
∂xj

=
∂

∂xj

[
−1

ρ
p̄δij + ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j

]
. (1.3)

These equations are commonly referred to as Reynolds-averaged Navier–
Stokes, and are primarily used in modelling of turbulent flows. One of their
drawbacks is the lack of closure, that is, there are more unknowns than avail-
able equations. Most modelling approaches rely on the development of as-
sumptions to address the closure problem for the Reynolds stresses u′iu′j .

A parallel approach to the understanding of turbulence comes from phe-
nomenological analysis, that is, through observations and ideas that do not
arise directly from theoretical derivations. One of the most commonly used
avenues in the understanding of turbulence is scale analysis. Turbulence is
made up of many eddies with different sizes and all of them can interact with
each other. The size of the largest eddies is constrained by the size of the
system, whereas the smallest eddies are determined by the energy dissipation
of the flow and the viscosity of the fluid. In almost all cases, the energy in-
put is in the largest length (L) and timescales (T ) of the flow. Due to vortex
stretching and breakup, the energy cascades down into what is known as the
inertial subrange. In this subrange, inertial forces are much larger than vis-
cous forces, and as the length- and timescales decrease towards the lower limit
of the inertial subrange, viscous forces become ever more apparent. However,
it is not until the smallest scales of the flow that viscous forces dominate, and
where the smallest eddies of the flow die, victim of viscous dissipation. Fol-
lowing this phenomenological analysis, Kolmogorov was able to predict the
magnitude of the smallest scales [6].
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The dissipative scale of the flow, commonly referred to as the Kolmogorov
scale, is solely dependent on the viscosity of the fluid ν and the energy dissi-
pation rate ε; they are defined as

η = (ν3/ε)
1/4 (spatial scale)

τη = (ν/ε)
1/2 (temporal scale) (1.4)

vη = (νε)
1/4 (velocity scale).

It can readily be seen that, at these scales, viscous and inertial forces are equal,
resulting in a Reynolds number of unity.

1.1.1 Statistical tools
As mentioned in Section 1.1 above, turbulent flows are commonly analyzed
from a statistical perspective. Experiments allow us to measure properties of
the flow, usually the velocity at one or more points, either in a time-resolved or
a time independent fashion. However, the velocity measurements themselves
do not tell the entire story, and a great deal of information can be obtained
from statistical analysis of these measurements.

To obtain information about the structure of the flow, we use, among other
things, the structure function

Gp(r) = 〈(u (x+ r)− u(x))p〉, (1.5)

where 〈·〉 denotes an ensemble average and r is the distance between two
points. The structure function gives information on the magnitude of the ve-
locity difference between a point and its surroundings, which in turn, allows
us to get information about length scales of the structures present in the flow.
Based on phenomenological arguments, Kolmogorov [6] arrived at a univer-
sal description of these velocity differences. This presumed universality rests
on an exact result, and an extrapolation which later proved wrong.

The exact result for the third-order structure function is,

G3(r) = −4

5
εr, (1.6)

when r is within the inertial range. Kolmogorov extrapolated this result to
arbitrary order,

Gp(r) = Cpε
p/3r

p/3. (1.7)
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For the second-order structure function, this definition leads to

G2(r) = C2(εr)
2/3, (1.8)

whose complementary energy spectrum becomes

E(κ) = Ckε
2/3κ−

5/3, (1.9)

where κ corresponds to the wavenumber.
For p 6= 3 we know that small but essential corrections to this extrapolation

are needed, which owe to the intermittency of turbulence [7]. Intermittency
is the tendency of the flow to explore extreme situations, such as extreme val-
ues of the velocity differences or accelerations. This phenomenon results in
a higher value of the kurtosis, that is, heavier tails in the distribution of these
values. The appearance of intermittency at the dissipative scales is well doc-
umented, while intermittency in the inertial range leads to anomalous scaling
behavior, in conflict with Kolmogorov’s theory. ([7] and references therein).
We believe that preferential concentration and turbulent intermittency are not
related, and that preferential concentration also occurs in weakly turbulent
flows with ‘normal’ statistics. The topic of intermittency, however, is beyond
the scope of this thesis. For a in-depth review, we refer the reader to [7] and
[8].

1.1.2 Equation of motion for a sphere
The motion of a sphere suspended in a flow field is a fundamental problem
in fluid mechanics. Many aspects must be considered in order to correctly
represent the forces acting on the sphere. Maxey & Riley [9] derived the
equation of motion for a sphere in a non-uniform, unsteady flow. The equation
takes into account the pressure gradient, added mass, Stokes drag, Basset
history term, and buoyancy. A force balance results in

mp
dvi
dt

= (mp −mf ) gi +mf
Dui
Dt

∣∣∣∣∣
Y(t)

− 1
2
mf

d

dt
{vi (t)− ui [Y (t)]− 1

10
r2p∇2ui|Y(t)} (1.10)

− 6πrpµ{vi (t)− ui [Y (t) , t]− 1
6
r2p∇2ui |Y(t)}

− 6πr2pµ

∫ t

0

dτ

(
d/dτ{vi (t)− ui [Y (t) , t]− 1

6
r2p∇2ui |Y(t)}

[πν (t− τ)]1/2

)
,
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where rp is the radius of the sphere, gi is the gravitational acceleration, and µ
is the viscosity of the carrier fluid. The mass of the sphere is represented by
mp, while the mass of the fluid displaced by the particle is mf ; vi and ui are
the particle and fluid velocities, respectively. Y (t) symbolizes the particle
position in a Lagrangian reference frame.

In the particular case of water droplets suspended in air (ρf � ρp) the
added mass term can be neglected in view of the large density difference
that exists between the carrier flow and the dispersed phase. Furthermore,
the inclusion of gravity must be determined for the case at hand, since the
terminal velocity of the particle must be compared to the velocity fluctuations
of the turbulent field.

The Faxén correction term (r2p∇2ui|Y(t)) accounts for forcing that arises
due to velocity gradients along the surface of the sphere. When the diame-
ter of the sphere is much smaller than the characteristic length scale of the
flow—the Kolmogorov length scale in this particular case—the term can be
neglected. The integral term in Eq. (1.10) represents the Basset history term,
which addresses the dynamical nature of the boundary layer around a sphere
in unsteady flow. It can be seen from the prefactor, that for very small diam-
eters (O(10µm)) and large density ratios (ρp/ρf � 1), this term is negligible
in comparison to the Stokes drag. Nevertheless, certain studies have warned
that the value may have a considerable magnitude in specific cases (see e.g.
[10]), i.e. for light and neutrally buoyant particles as well as particles with
large diameters relative to the Kolmogorov lengthscale. To find the value of
this term an integral must be carried out at every time, making the calcu-
lation prohibitively expensive. Fortunately, in many cases the term can be
neglected altogether, particularly when the droplets are very small compared
to the scales of the flow. Nevertheless, high-accuracy approximations have
been proposed by van Hinsberg et al. [11].

Not included in Maxey & Riley’s equation above is Brownian motion—
a random motion resulting from the collision of fluid molecules with small
droplets. This effect becomes apparent when the mass of the particle is very
small, i.e. low density and/or small radius. In the present study Brownian
motion can be disregarded given the size of the droplets and the density ratio
of the fluids.

After applying the above assumptions we come to the equation of motion



8 Chapter 1. Introduction

for a point-particle with finite mass,

dvi
dt

=
1

τp
(ui − vi), (1.11)

where the relaxation timescale of the particle τp represents the time a particle
takes to adjust to the surrounding flow. The Stokes number is a commonly
used non-dimensional parameter that quantifies the particle inertia in compar-
ison with the flow timescales. In turbulent flow situations, it is usually defined
as the ratio between τp and the Kolmogorov timescale τη, St = τp/τη. Numer-
ical simulations and experiments have shown that preferential concentration
is most evident when St ∼ 1 [3, 12]. The explanation for this behavior is that
particles with St� 1 follow the flow more precisely and particles with St� 1
filter a larger range of small-scale fluctuations.

1.1.3 Particle relaxation time

The time it takes for a droplet to adapt to its surroundings is normally referred
to as the particle relaxation time or the particle reaction time. Its value de-
pends on the density ratio between the particle and carrier flow, as well as
its viscosity and the diameter of the particle. Through a force balance on a
free-falling droplet, we can obtain the particle relaxation time. The forces
acting on a droplet in still air are the drag force (in the vertical, positive direc-
tion) and its own weight (on the vertical, negative direction), so that Newton’s
second law becomes

FD −mpg = mp
dVp
dt

(1.12)

We know that the drag force on a spherical droplet under Stokes drag (Rep�
1) is FD = 3πdpµVp. Substituting this into Eq. (1.12) we get

mp
dVp
dt

= 3πdpµVp −mpg. (1.13)

Because the droplet considered in the current study is not in still air, the rela-
tive velocity of the droplet with respect to the air velocity (u(t)− Vp) should
be accounted for; Eq. (1.13) becomes

dVp
dt

=
1

τp
(u(t)− Vp)− g, (1.14)
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where

τp =
ρd2p
18µ

(1.15)

is the relaxation time. The solution of this equation can be obtained readily
for a droplet that is accelerated from rest by setting Vp(t) = Ṽpe

−t/τp , with
Ṽp(t = 0) = 0. Differentiating with respect to time and rearranging we get

dṼp
dt

=
1

τp
u(t)e

t/τp − g e
t/τp , (1.16)

which can be integrated to arrive at

Ṽp(t) =
1

τp

∫ t

0

u(t′) e
t′/τp dt′ − 1

τp
g
(
e
t/τp − 1

)
. (1.17)

Finally, we go back the the original velocity Vp,

Vp(t) =
1

τp

∫ t

0

u(t′)e
t′−t
τp dt′ − 1

τp
g
(
1− e−t/τp

)
, (1.18)

so that the droplet velocity lags a time τp behind the velocity field.

1.2 Background: particle-laden flows
Scientists and engineers have been interested in particle-laden flows for
decades, which has resulted in a vast collection of theoretical, numerical and
experimental studies (see e.g. [3, 5]). Such interest is owed to the many ap-
plications that can be given to these flows. For example, Falkovich et al. [16]
argue that the phenomenon of preferential concentration affects the evolution
of droplet sizes within clouds, increasing the probability of collisions, which
in turn results in accelerated droplet growth. The dispersion of inertial par-
ticles is also of interest in both environmental and industrial contexts. Many
studies suggested the approximation of particle trajectories as fluid parcels
(see e.g. [17]), however, in the recent past we have learned that this is an
incorrect assumption [13]–[15].

The information obtained from these, and many other, investigations has
dramatically increased our understanding and helped in the advancement of
the field, yet many questions remain. Let us review a few of these studies to
obtain a clear perspective of the problem at hand.
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1.2.1 Preferential concentration

The possibility of having a compressible particle field within an incompress-
ible fluid velocity field, was first pointed out by Maxey [13]. This could lead
to inhomogeneities in the concentration of the dispersed phase (see Figure
1.2) even when the carrier flow is homogeneous and isotropic. For incom-
pressible flows, the divergence of the velocity field ∇ · u = 0. On the other
hand, the divergence of an inertial particle field is described by

∇ · v = −τp
4

[
S2 − Ω2

]
, (1.19)

where S and Ω represent the strain and vorticity, respectively. It can be seen
from the above equation that droplets will be ejected from vorticity dominated
regions and agglomerate in strain dominated areas. This can be explained by
the inability of particles to withstand high centripetal accelerations, being cen-
trifuged out of vortices (as pictured in Figure 1.1). The highest accelerations
in a flow field are expected to be at scales comparable to the Kolmogorov
scales, therefore we anticipate the inhomogeneities to be more pronounced
at these scales. Additionally, we observe the that divergence is proportional
to the Stokes number, meaning that clouds with heavier particles will experi-
ence more pronounced segregation. However, this equation is only valid for
relatively low Stokes numbers, as will be shown in Chapter 6.

Figure 1.2: Snapshot of numerical simulation of (a) light and (b) heavy particles
in homogeneous isotropic turbulence. The slices have dimensions of 500η ×
500η × 50η. It can be readily seen that light particles are more homogeneously
distributed. Also, the heavy particle spatial distribution shows voids. The data
was obtained from the iCFDdatabase (see [18]).
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There is no particular diagnostic that answers all of our questions regard-
ing particle-laden flows. On the experimental side, several techniques have
been used in order to examine the physics of multiphase flows, each one re-
sulting in valuable information that was not available with other diagnostics.
Point-like diagnostics such as phase-Doppler anemometry (PDA) have been
used to probe the spatial properties of inertial particle dispersion. Saw et al.
[12] employed PDA to measure the deviation in the distribution of particles
from a truly homogeneous suspension. Additionally, multidimensional ex-
perimental methods such as particle tracking velocimetry (PTV), have been
employed to assess the behavior of inertial particles in turbulent flows. For
example, using PTV, Gibert et al. [19] found that heavy particles tend to visit
strain-dominated areas of the flow. Also using PTV, Ayyalasomayajula et al.
[20] have shown that the fluctuations of the particle acceleration are reduced
due to inertial filtering effects.

Numerical simulations have also played a crucial role in the study of pref-
erential concentration by providing information that is unaccessible through
experiments. The increase in computing power achieved in recent years has
made it possible for scientists to numerically simulate flows with consider-
ably high Reynolds numbers. However, the quantity of droplets and the time
span that can be simulated remain an obstacle in the simulation of flows with
high droplet concentration. Nevertheless, many of these simulations support
the idea of preferential concentration. Calzavarini et al. [21] looked at the
spatial scales of the segregation of two different sets of particles, while Bec
et al. [22] found that the dimensionality of the particle distribution is at its
lowest when particles have a Stokes number St ≈ 0.6.

Many other experiments and numerical simulations have been carried out.
A more comprehensive review will be given in Chapter 6, where we will ex-
plore the phenomenon of preferential concentration using the phosphorescent
tagging technique.

1.2.2 Dispersion of heavy particles
Most of the work on dispersion is focused on times comparable to the integral
timescale T , given common applications such as diffusion of pollutants in the
atmosphere. Here we revisit this problem through the new perspective given
by our proposed technique. A comprehensive review about dispersion will
be given in Chapter 5; for now, let us briefly look at some of the relevant
literature.
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Taylor [23] set the foundation for the analysis of the dispersion problem.
In his study, the dispersion of scalar particles from a point source was ad-
dressed. The analysis was performed from an Eulerian reference frame, but
made use of Lagrangian autocorrelation of a particle. For times much smaller
than the Lagrangian integral time TL, the mean square displacement is given
by

x2(t) = x2(0) + 〈v2〉t2, (1.20)

whereas for times t & TL dispersion is given by

x2(t) = 2〈v2〉TLt. (1.21)

A few years later, Richardson [24] studied the dispersion of particle clouds
in the atmosphere and, through observations, arrived at the famous relation

∆2(t) = gεt3, (1.22)

where g is known as the Richardson constant. This result, however, is applica-
ble only after time t > t0 = (∆2

0/ε)
1/3, once the correlation between neighbor-

ing particles has been lost and the initial separation ∆0 is no longer important.
Batchelor [25] analyzed the dispersion of a pair of particles within the in-

ertial range. He approached the problem using the known (two-thirds power
law) behavior of the second-order structure function. In this regime, the gov-
erning equation is

〈∆2(t)−∆2
0〉 =

11

3
C2 (ε∆0)

2/3 t2. (1.23)

Both Richardson’s and Batchelor’s analyses follow the particle pairs in a La-
grangian frame of reference.

Recently, with the help of more powerful computers and modern exper-
imental techniques, a renewed interest has arisen in the topic of dispersion.
Ouellette [26] performed particle tracking in homogeneous isotropic turbu-
lence, finding an outstanding agreement with Batchelor’s pair dispersion re-
lation. Richardson’s t3 scaling was observed only for the smallest achievable
initial separation. It was argued, however, that for most natural and practi-
cal applications the t3 scaling may not be reached given the relatively small
separation between TL and t0. Nevertheless, all of the above analyses pertain
to the dispersion of fluid particles and tracers, whereas the present work fo-
cuses on the behavior of heavy particles. In the context of heavy particles,
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dispersion is expected to differ, although the way inertial effects will become
apparent is not entirely clear.

A different analysis can be obtained by calculating the Lyapunov expo-
nents of a system, which give an indication of the speed at which two in-
finitesimally close trajectories in phase space separate. A three-dimensional
dynamical system has six Lyapunov exponents λ1 > · · · > λ6, with λ1 known
as the maximal Lyapunov exponent. A positive value for this exponent is
usually associated with a chaotic system. The use of Lyapunov exponents as
a mathematical tool to analyze particle behavior presents certain advantages.
Bec et al. [27] studied the dependence of Lyapunov exponents of inertial
particles on Stokes number. The largest Lyapunov exponent λ1 is affected
by two competing mechanisms: the filtering effect of inertia, which weakens
chaoticity and the preferential concentration of particles in high strain regions,
which presents a higher stretching rate, thus increasing the chaoticity. The ra-
tio λ1(St)/λ1(St = 0) has a maximum at St ≈ 0.35, which is explained by the
preferential probing of strain-dominated regions by heavy particles.

1.2.3 Gravity effects
Several studies have noted the importance of gravity in particle and droplet
behavior [28]–[31]. Two distinct mechanisms have been pointed out in regard
of gravity effects, the first of which is known as the ‘crossing trajectories’
mechanism, whose name refers to the crossing of particles from one eddy to
another due to the force gravity exerts on them. This mechanism has been
linked to a faster decorrelation of the velocity of a particle as a result of a
particle crossing to an adjacent eddy instead of remaining within the same
eddy for the entire turnover time.

In clouds, gravity effects become apparent on droplets that have reached
increased settling velocities. Heavy settling droplets tend to travel through
regions of high strain, circumventing vortex cores. As has been previously
stated, it is precisely in these regions where droplets agglomerate due to
preferential concentration. Therefore, it has been proposed that, as heavier
droplets settle, they coalesce with smaller droplets while sweeping through
high droplet concentration regions. This phenomenon is known as ‘prefer-
ential sweeping’, and has been linked to enhanced droplet growth in clouds,
leading to rain initiation.

Buoyancy forces play a similar role as gravity. Gopalan et al. [32] used 3D
holography to follow the trajectories of diesel drops in turbulent water flow.
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They found that in some instances droplets have a faster dispersion than the
theoretical prediction for fluid parcels. However, the similarity between the
densities of the dispersed and carrier phases results in a different interaction
than in gas–liquid situations.

1.3 This thesis: glowing clouds in the lab
Inhomogeneities in the concentration of particles have major relevance in
many industrial settings, for example fuel injection in internal combustion en-
gines. The homogeneity of the air–fuel mixture plays a role in the efficiency
of combustion [33]. Evidently, preferential concentration could negatively
impact the homogeneity of the mixture. As we have previously mentioned,
acceleration in rain initiation has been linked to particle–turbulence interac-
tions. Given the large scales of clouds, the local characteristics of the flow are
ideal, i.e. homogeneous isotropic turbulence with zero mean flow. It is our
aim to replicate such flows in the laboratory. Let us now look at some flow
properties of clouds and the challenges of replicating these in the laboratory.

1.3.1 Replicating cloud conditions
There is a common belief that condensation is the only driving force behind
precipitation. While it is true that condensation plays an important role in
droplet growth, it is a dominant effect only for droplets with diameters smaller
than 10 µm, while gravity is the dominant mechanism for droplet growth for
diameters greater than 30 µm [34]. Some studies [16, 3, 28, 35] point to
turbulence as the missing link between these two regimes. It is postulated
that turbulence induces inhomogeneities in the particle concentrations, which
in turn modifies the collision kernel and increases the probability of collision
between droplets. If droplet collisions result in their coalescence, they can
quickly grow until the effects of gravity become apparent.

Acquiring field data in turbulent clouds is a challenging task. Tempera-
ture, (turbulent) flow properties as well as droplet size and concentration are
relevant in the characterization of the system. The turbidity resulting from
high droplet concentration makes optical velocity measurements particularly
difficult. In addition, hot-wire anemometers are delicate instruments prone
to damage when struck by even the tiniest of droplets. Recently, Siebert et
al. [36] were able to measure turbulent statistics in a cloudy boundary layer
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using sonic anemometers, finding an elevated turbulence intensity. Moreover,
their data was in good agreement with expected theoretical values for locally
isotropic turbulence.

A substantial amount of data regarding droplet sizes and spatial struc-
ture has been gathered using the Fast Forward Scattering Spectrometer Probe
(Fast-FSSP), designed by Brenguier and coworkers [37]. Analyzing a collec-
tion of measurements from the Fast-FSSP, Chaumat & Brenguier [38] could
not conclusively measure the degree of clustering due to uncertainty limita-
tions of the probe. However, Kostinksi & Shaw [39] using data from the
same apparatus but an alternative clustering indicator, confirmed statistically
significant clustering.

Clouds may reach integral length scales on the order of 103 m, while hav-
ing dissipative length scales reaching 10−3 m [40], resulting in well separated
scales and great local isotropy and homogeneity with virtually zero mean
flow. The following two chapters will describe the steps taken to construct
the working setup that simulates cloud-like conditions in the laboratory.

This thesis focuses on experimental work to develop and test a novel di-
agnostic that will yield information about the behavior of heavy droplets sus-
pended in an isotropic, homogeneous turbulent velocity field with zero mean
flow. Generating such flow has proven challenging, however, Hwang & Eaton
[41] successfully fabricated an experimental facility capable of generating
this type of flow; several refined designs have followed since [42]–[44]. In
Chapter 2 we give an overview of the different approaches taken to generate
homogeneous isotropic turbulence with zero mean flow, and perform a scale
analysis to optimize the turbulence generation for its application to droplet
tagging. We will also describe the flow characterization system used in our
measurements.

Clouds are made up of a broad distribution of droplet sizes. Nevertheless,
to find a concrete dependence of the droplet dynamics as a function of their in-
ertia, it is our goal to measure inertia effects on flows that have a well-defined
Stokes number. This raises a new challenge considering that the generation
of monodisperse droplets is a non-trivial task. Additionally, the measurement
of the diameter of droplets of micrometer size presents challenges of its own.
In Chapter 3 we will address the generation of a well characterized aerosol
and the size measurement of the generated droplets. Additionally, we address
practical issues regarding droplet generation and measurement, and provide
details of the automated data processing algorithm that was developed.
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1.3.2 Glowing droplets
The uniqueness of our method rests on the possibility of tagging particles,
practically rendering all non-tagged particles invisible. Molecular tagging ve-
locimetry has been used as a flow diagnostics for decades. Both fluorescence
and phosphorescence have been used to obtain information about flows. From
straightforward velocity measurements in Poiseuille flow to pressure sensing
paint in aircraft models, the possibilities are comprehensive. In the present
study we use a phosphorescent solution to observe the behavior of heavy
droplets. Previously, a similar idea was used by Krüger & Grünefeld [45]
to obtain velocity measurements in a fuel injector spray. In their study, how-
ever, only a snapshot of the velocity field was obtained, as it was possible to
obtain only one pair of images in every tagging sequence.

In our study we aim to uncover the dynamical behavior of the cluster-
ing phenomenon, which requires a sequence of images that span a few Kol-
mogorov times. To this aim, a solution with a longer lasting phosphorescence
was sought. This can be applied in a variety of situations, e.g. dispersion of
a droplet cloud where only the tagged volume will be visible after the tag-
ging procedure. Ideally, we would like a phosphorescent solution that glows
for extended periods of time, say, comparable to the integral timescale T .
Even though this is not currently possible, we believe that the ability to fol-
low tagged droplets for several Kolmogorov times will provide valuable in-
sight into the dynamics of preferential concentration. In addition, the tagging
technique remains functional at much higher particle concentration than tech-
niques such as PTV. In Chapter 4 we will explain the photophysics involved
in Molecular Tagging Velocimetry (MTV) as well as the characterization and
optimization of the phosphorescent solution used in our experiment.

1.3.3 Dispersion and preferential concentration at the Kol-
mogorov timescales

Once it is possible to generate the desired flow conditions, we explore two
fundamental aspects of the behavior of particle-laden flows. First, the long-
standing problem of turbulent dispersion is revisited in Chapter 5. Dispersion
is of great interest in atmospheric flows, thus has been mostly analyzed at the
integral timescales, that is, the longest timescales of the flow, while knowl-
edge about the dynamics at the dissipative scales is scarce. Using our novel
technique we focus on the dispersion of a cloud of heavy droplets at such
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length and timescales.
Chapter 6 addresses the interesting topic of preferential concentration.

Most of the research on this particular topic consists of statistical snapshots of
the distribution of droplets in a turbulent velocity field. As important as these
statistics are, we are interested in the time and length scales of clustering, and
the dynamics of segregation. With the newly developed phosphorescent tag-
ging technique we aim to shed light on the dynamics of particle clustering and
its scales.
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CHAPTER 2

TURBULENCE CHAMBER AND
FLOW STATISTICS

It is the goal of this study to shed light on the dynamics of droplets suspended
in homogeneous, isotropic turbulence with zero mean flow. This type of ‘ide-
alized’ turbulence has been studied in depth numerically, analytically and, in
recent years, experimentally. The attributes of this type of flow are well es-
tablished, giving us the opportunity to compare and validate our experimental
results. To this aim we have designed and tested a turbulence chamber.

As previously mentioned, our idea is to selectively tag droplets by dissolv-
ing phosphorescent molecules in water, making droplets out of this solution,
illuminating the droplets by a laser and following the droplets using a fast
camera, thus giving us the ability to study the dynamics of preferential con-
centration on the smallest time and length scales.

Important constraints in the design of the experiment are the phosphores-
cence lifetime τph of the droplets, the camera exposure time te of the imaged
cloud, and the desired spatial resolution of the registered image. In addition,
the Reynolds number of the flow should be as large as possible. The key tur-
bulence parameters that can characterize the flow are the turbulent velocity
fluctuations u (or the turbulent energy per unit mass q2, which in the isotropic
case is q2 = 3u2) and the energy dissipation rate ε. In this chapter we will
describe the relevant scales of the flow (Section 2.1) and how these impact
the design of the chamber. Afterwards (Section 2.2), we will briefly discuss

19
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the available methods to measure turbulence statistics, and, in particular, de-
scribe our particle image velocimetry setup. In Section 2.3 we will present
the resulting velocity fields and flow statistics. Concluding remarks will be
given in Section 2.4.

2.1 Turbulence chamber design
In recent years, several devices capable of producing homogeneous, isotropic
turbulence have been designed [41]–[43]. Each in its own way, these de-
signs rely on generating a mean transfer of momentum while maintaining
mass transfer at a minimum, on average. Table 2.1 summarizes the tur-
bulence statistics of three experimental facilities capable of producing such
flows. Let us briefly look at the methods used to generate them. Hwang &
Eaton’s (H&E) [41] design consists of a cubical box whose corners have been
cut off to accommodate eight synthetic jet actuators, one in each corner. The
actuators are driven by random noise to produce homogeneous, isotropic tur-
bulence with zero mean flow. The maximum stable Reynolds number reached
was Reλ = 218.

Using water as a working fluid, Zimmermann et al. [42] fabricated an
icosahedral chamber with opposing propellers in each of its twelve vertices
to create homogeneous isotropic turbulence. They named their apparatus the
Lagrangian Exploration Module (LEM). The increased number of symmetry
axes appears to be beneficial for the homogeneity of the flow. The maximum
attainable Taylor-based Reynolds number is considerably high, reaching Reλ
= 330. The use of water is beneficial in certain aspects, such as a longer Kol-
mogorov timescale, which would reduce the necessary time resolution of the
velocity measurement system. However, due to the increased density of the
carrier fluid, reaching St ∼ 1 would most probably compromise the require-
ment of dp � η necessary for the point-particle assumption.

Study Fluid urms (m/s) λ (mm) Reλ η (µm) τk (µs)

H&E [41] air 0.85 3.83 218 132 1160
LEM [42] water 0.13 2.7 330 73 5300

Chang et al. [43] air 1.1 6.4 481 155 1500

Table 2.1: Summary of turbulence statistics of recent experimental facilities ca-
pable of producing homogeneous isotropic turbulence with zero mean flow.
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Following the trend of increased number of axes of symmetry, Chang et
al. [43] used a truncated icosahedron (similar to a soccer ball) and placed
synthetic jets on each of its 32 faces. Such an amount of axes of symme-
try allowed them not only to obtain an outstandingly homogeneous, isotropic
flow with Reλ = 481, but also to accurately generate and control flows with
prescribed anisotropic characteristics. Since every face of the chamber was
used to mount speakers, the optical access was limited to small orifices. It
was through some of these orifices that they introduced laser beams for laser-
Doppler anemometry measurements. For our particular experiment, optical
access for cameras is essential, making this design problematic.

We conclude that the best option for our particular requirements is an im-
provement on Hwang & Eaton’s design, since we plan to use optical diagnos-
tics. Our aim is to increase the maximum attainable Reynolds number, while
maintaining homogeneity and isotropy. In what follows, we will explore our
possibilities to achieve this.

2.1.1 Length and timescales of turbulence
The energy dissipation rate ε ≡ 2ν〈sijsij〉 (sij ≡ rate-of-strain tensor) lies
at the core of the phenomenological analysis of turbulence made by A.N.
Kolmogorov in his seminal 1941 paper [6]. For homogeneous isotropic tur-
bulence, it becomes

ε = 15ν

〈(
∂u1
∂x1

)2
〉
, (2.1)

(see Appendix A.1 for derivation). This can be used to determine relevant
turbulent scales, i.e. the Taylor microscale λ and the Kolmogorov length and
time scales η and τη, respectively, through the following relations

λ =

(
5νq2

ε

)1/2

=

(
15νu2

ε

)1/2

(2.2)

τ η =

(
ν

ε

)1/2

(2.3)

η =

(
ν3

ε

)1/4

. (2.4)

The integral and Kolmogorov length scales are related to the Taylor-based
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Reynolds number Reλ by

L

η
= Cε15

−3/4Re
3/2
λ , (2.5)

where Cε is a dimensionless constant of order 1, and the integral length scale
L is defined in terms of the normalized correlation function Rii(x) (such that
Rii(0) = 1) as

L =

∫ ∞
0

Rii(x)dx. (2.6)

Since turbulence becomes more independent of the way it is stirred as the ratio
between the integral scale and the Kolmogorov scale grows, it is convenient to
strive for the highest obtainable ratio. Combining (2.4) with the Kolmogorov
estimate of the dissipation rate,

ε = Cε
u3

L
, (2.7)

we obtain

η =

(
ν

u

)3/4(
L

Cε

)1/4

. (2.8)

Additionally, we know that the Taylor-based Reynolds number is related
to the large-scale Reynolds number Re = uL/ν by

Reλ = 15
1/2C

−1/2
ε Re1/2,

which results in

Reλ =

(
15uL

Cεν

)1/2

. (2.9)

Similarly, the relation between the Kolmogorov timescale and the large scales
of the flow is

τη =

(
νL

Cε

)1/2

u
−3/2. (2.10)

We will now use these relations to see whether an improved Hwang & Eaton
[41] apparatus is possible with a larger Reynolds number.

When designing the new apparatus we have roughly two choices: either
increase its size or increase the velocities. In order to see more clearly the ef-
fects of these changes, let us summarize the dependence of the key parameters
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on L and u:

Reλ ∝ L
1/2u

1/2 (2.11)
η ∝ L

1/4u
−3/4 (2.12)

τη ∝ L
1/2u

−3/2. (2.13)

The first possible improvement would be to increase the size of the apparatus.
We see in Eq. (2.12) that η has only a weak dependence on L, meaning η will
remain approximately the same even after a considerable increase in the size
of the chamber. This may be advantageous because the smallest observable
η will depend on the spatial resolution of the experiment. Additionally, if
our droplets are to be treated as point-particles, η should be much larger than
the droplet diameter dp. However, increasing the size may have a negative
effect on the magnitude of the velocity at the center of the chamber since the
distance from the jet orifice to the center will increase.

With increasing size, the Taylor-based Reynolds number increases pro-
portional to L1/2. At the same time, the Kolmogorov time scale also increases
proportional to L1/2, which may be disadvantageous for our phosphorescence
method because of time limits placed by the lifetime of the solution.

Now let us assume that we keep the size of the apparatus the same and
increase the velocities. Then, the Reynolds number will increase ∝ u1/2, and
the Kolmogorov length scale η decrease ∝ u−3/4, which may bring a spatial
resolution issue; but the timescale decreases strongly as τk ∝ u−3/2, which
is advantageous for our phosphorescence method. We conclude that the best
way to improve the design of H&E’s apparatus [41] is by increasing the ve-
locity.

Increasing the velocities may be accomplished by using more powerful
loudspeakers. However, accommodating these may clutter the apparatus, so
a compromise must be sought. By taking twice as big loudspeakers, and
assuming that the membrane movement is the same, the velocities become
four times larger (if the size of the orifice remains the same). Therefore, τk
can become eight times smaller, while η is reduced by approximately two-
thirds. It can be easily shown that for water droplets in air (ρp/ρair ≈ 1000),
the relaxation time will be equal to the Kolmogorov time, i.e. St = 1, if the
droplet diameter dp and the Kolmogorov length scale fulfill

dp ∼= 0.135η,

therefore
dp ∼= 0.135 L

1/4 u
−3/4ν

3/4C
−1/4
ε . (2.14)
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For the Hwang & Eaton [41] paper we thus find dp ≈ 18µm. With velocities
four times larger, the droplet size becomes dp ≈ 7 µm, which seems rather
small. However, most probably, the limitation on droplet size is the phospho-
rescence intensity, which will be addressed in Chapter 4.

In conclusion, in order to have many smallest-eddy turnovers during the
decay time of the phosphorescence, we should have large velocities with, con-
sequently, small droplets. The final design of the turbulence chamber, shown
in Figure 2.1 below, consists of a cubical box with a side length of 40 cm and
eight speakers of 36.5 cm diameter (MTX Audio sub-woofer model RT15-04,
Mitek Corporation, Phoenix, AZ, USA) each with an independent 145 Watt
amplifier (model RN-2160, Rodek, Garden Grove, CA, USA). The jet orifice
is 4 cm in diameter, and the box has four square windows (20× 20 cm2) for
optical access.

Figure 2.1: Picture and CAD drawing (inset) of the final design of the turbulence
chamber. The side length of the cubical chamber is 40 cm. It has eight synthetic
jets which use 36.5 cm speakers and a jet orifice of 4 cm.

2.1.2 Speaker control and balancing
As mentioned above, understanding of droplet behavior in isotropic, homo-
geneous, zero-mean flow turbulence is the goal of this study. The first step to
achieve this is the creation of a flow with these characteristics. Synthetic jets
fulfill the requirement of average momentum transfer while averaging zero
mass transfer. This is possible due to the asymmetry in the flow around the
orifice during the contraction and the expansion of the synthetic jet cavity.
When the membrane contracts, the velocity profile at the jet’s orifice resem-
bles a top hat (Figure 2.2(a)), meaning that the mass ejected is traveling paral-
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lel to the axis of the orifice. On the other hand, when the membrane expands,
the air comes from all directions (Figure 2.2(b)).

(a) (b)

Figure 2.2: The (a) contraction and (b) expansion of the membrane is an asym-
metric process that allows for mean momentum transfer without mean mass
transfer.

The speakers are driven by creating an analog signal and sending this sig-
nal to an amplifier, which in turn is connected to the speakers. Several factors
must be considered when creating the excitation signal. First, the maximum
frequency a speaker can handle is limited by its dynamical response; sub-
woofers are especially suited for lower frequencies. Second, periodic signals
are easy to produce, but any imbalances among the power of the jets will be
more easily translated into a mean flow. Taking these two factors under con-
sideration, the speakers are driven using colored noise, with the frequency of
the color chosen near the resonance frequency of the speakers.

To generate the signal we use a 16-bit, 8-channel analog output card
(16AO16, General Standards Corporation, Huntsville, Alabama, USA) with a
256 kS FIFO buffer. Our sampling frequency was 10 kS/s per channel, easily
meeting the Nyquist criterion. The FIFO buffer allowed for data to be loaded
as needed by the use of an interrupt. The buffer was filled with data and as
the buffer reached the one-quarter flag, a new batch of data was fed through,
achieving a seamless signal throughout the entire measurement.

The signal is obtained from uniformly distributed random numbers xmi
created for each channel, where the subscript i denotes the sample number in
time and m represents the channel number. To maintain a constant volume in
the chamber these numbers are balanced at any given time by ensuring that∑M

i=1x
m
i =0, which is done by subtracting the mean from xmi , m= 1, · · · , M ,

with M being the total number of active channels. The consequence is that
at each given time the numbers xmi are correlated. Next the time series is
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convolved with a filter function to produce the samples ymi of the output signal

ymi =
N∑

k=−N

akx
m
i−k, (2.15)

with ak = F (kts) where ts is the sample time and the filter function

F (t) =
1

σ
√

2π
exp

[−t2
2σ2

]
sin(2πf0t). (2.16)

Here σ represents the Gaussian width and f0 the central frequency. Since xmi
is balanced, so is ymi . Further, since the spectrum of the random numbers is
white, the spectrum of the balanced driving signal is the Fourier transform of
Eq. 2.16,

F̃ (f) = exp

[
−(2π)2(f − f0)2

σ2

2

]
. (2.17)

In Figure 2.3 we illustrate the filtering procedure. Through the ‘color’ of the
signal it is possible to drive the jets near a particular frequency, for example
the resonant frequency fr. For our speakers, fr = 20 Hz, however, we did
not drive the jets using this frequency because the jet velocity increase had a
negative effect on the homogeneity of the flow.

* =

Figure 2.3: The driving signals for the speakers were obtained by convolving a
vector of random numbers with a Gaussian modulated sine wave of frequency f .
Shown signals are in arbitrary units.

After prolonged use, the temperature of the speakers and amplifiers may
considerably rise, changing the resistance of the speaker coil, in turn affect-
ing the stationarity of the turbulent flow due to changes in the response of the
speaker membrane. To avoid these displacement fluctuations, 80 mm cooling
fans were installed on the amplifiers and speakers. The cooling allowed the
system to reach a steady temperature after approximately 15 minutes of con-
tinuous use. Before a set of measurements was performed, the speakers were
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allowed to reach a stable temperature by running the system for an appropriate
time span.

Several steps were taken to balance the speakers in order to create a flow
with the lowest possible mean velocity. The first step was to ensure the rms
output signal from the amplifiers was constant for a sinusoidal input. This was
achieved by manually adjusting the gain for each amplifier. Even after this
adjustment, possibly due to manufacturing inconsistencies, the velocity field
was not balanced. The second step towards balancing the flow consisted of
measuring the displacement of the speaker membrane using a high-precision
CMOS displacement sensor with a resolution of 10µm. The difference in the
measured displacement of each speaker was used to correct the driving signal,
but due to small, unavoidable inconsistencies in the mounting procedure of the
speakers, the resulting velocity fields were still considerably unbalanced.

Given the failed attempts to systematically balance the flow, it was nec-
essary to do a trial-and-error balancing approach by adjusting the input sig-
nal and measuring the flow characteristics using particle image velocimetry
(PIV) and iterating on this procedure until satisfactory results were achieved.
We used the results from the membrane displacement measurements as ini-
tial guesses. The results of the PIV measurements will be addressed in the
following section.

2.2 Flow characterization
In an experiment we must characterize the inertial-range properties of the tur-
bulent flow. Since developed turbulence is scale-independent, instrument res-
olution should not matter. Nevertheless, in this experiment we are interested
in droplet statistics on the smallest scales, which we would like to measure
directly. However, we will show later that the resolution of the PIV technique
falls short to actually resolve the smallest scales; so we must either extrapo-
late measured gradients to smaller scales, or resort to inertial range quantities
combined with known scaling behavior. Before we describe these methods,
let us briefly summarize the techniques of velocimetry and their limitations.

A common technique used in turbulence, due to its unparalleled time res-
olution and its maturity, is hot-wire anemometry. This technique can measure
the velocity at a fixed point in space, and is consistently used in flows that
have a mean velocity, such as wind tunnels, pipe flows and water channels.
Unfortunately, the intrusive nature of this technique, together with the in-
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ability to distinguish between back and forward flow, render this technique
inappropriate for our particular setup.

There exist several non-intrusive techniques that rely on optical measure-
ment of the flow through the use of seeding particles that are sufficiently
small to act like fluid tracers. One of such optical techniques is laser-Doppler
anemometry (LDA). The point-like nature of this diagnostic comes paired
with advantage of high spatial resolution. Unfortunately, resorting to this
technique would translate into a prohibitive number of measurements to eval-
uate a velocity field of area ∼ 10 cm2.

Phase-Doppler anemometry (PDA) works in a similar fashion as LDA,
but presents an attractive addition when it comes to particle-laden flows: it
is capable of measuring both the velocity and the particle diameter at a point
in space. Similarly it suffers from a point-like nature. Moreover, multiple
diffraction in dense particle suspensions may degrade the quality of the data.
For an in-depth review of LDA and PDA, the reader is referred to [46].

Thanks to the progress in imaging tools over the past two decades, a cou-
ple of two- and three-dimensional methods have gained popularity, being now
commonplace in many fluid dynamics laboratories. These are particle track-
ing (PTV) and particle image velocimetry (PIV). PTV has the capability of
measuring particle tracks in two or three dimensions with good spatial reso-
lution. It has greatly enhanced the ability of fluid dynamicists to learn about
Lagrangian properties of flows. In order to accurately track particles, it is nec-
essary to have a data rate comparable to the shortest timescales of the flow,
resulting in the need for a high repetition laser, which is not available in our
laboratory.

PIV is the Eulerian counterpart of PTV, which offers the possibility of
directly measuring full velocity fields in two or three dimensions, depending
on the particular equipment available. A downside of PIV is that its resolution
is not sufficient to resolve the smallest scales in a turbulent flow. Fortunately, a
few methods, which will be addressed below, have been proposed to overcome
this limitation. In what follows, we will give a brief summary of the working
principle of this diagnostic technique. For an extensive treatise, the reader
is referred to [47, 48], where the capabilities and limitations of almost every
variant of particle image velocimetry are reviewed.

Briefly, the procedure consists of the measurement of the average dis-
placement of tracers inside the flow, which is done by imaging tiny particles
or droplets at two slightly different times (with a known time difference ∆t)
and correlating small regions—known as interrogation windows—of the im-
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age pair to determine the average velocity within each region (see Figure 2.4).
The size of the interrogation window must be large enough so that it at least
contains a few particles. However, the flow velocity is an average over the
interrogation window. This imposes a limit on the smallest resolved scale.

lenses

Nd:YAG laser

laser sheet

camera

Figure 2.4: Schematic representation of particle image velocimetry (PIV). A
pulsed Nd:YAG laser is used to illuminate tracers in the flow at two distinct times
with a known time delay ∆t. Lenses are used to transform the laser beam into
a thin sheet. The images are then divided into small interrogation windows (e.g.
32 × 32 pixels), which are correlated to obtain the average velocity within the
interrogation region. This procedure is repeated for the entire image to obtain
the full velocity field.

Many variations of the method have been developed to increase the data
yield, e.g. stereoscopic PIV measures three components of the velocity field
in one plane, while tomographic PIV is able to measure the three compo-
nents in a volumetric region. From the simplest 2D PIV to the more complex
variations, the use of interrogation windows inherently filters scales smaller
than the size of these regions (∆). In many instances ∆ falls well within
the inertial range of the flow, making it difficult to directly calculate crucial
quantities such as the energy dissipation rate ε. Sheng et al. [49] proposed
a procedure based on the Smagorinsky model [50] that allows for the cal-
culation of sub-grid stresses. Using the scaling properties of turbulence, the
energy dissipation rate can also be estimated from the second- and third-order
structure functions which can be calculated using PIV data.

Our PIV setup used consisted of a dual-head Nd:YAG laser (CFR400,
Quantel, Les Ulis, France) and a 1600×1200 pixel2 digital camera (ES2020,
Princeton Instuments, Trenton, NJ, USA). Seeding for the PIV measurements
was done with a commercial smoke generator capable of producing droplets
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of approximately 1 µm. The field of view was approximately 60×80 mm2

(resulting in a magnification of 20 pixel/mm); the sampling rate was 15 Hz.
The processing was done with commercial software (PIVtec, Göttingen, Ger-
many) with a 32× 32 pixel interrogation area with a 50% overlap. Even
though the magnification of the optical setup results in a spatial resolution of
25µm/pixel, we have seen above that a filtering effect is introduced by the av-
eraging over interrogation regions. The resulting distance between grid points
is approximately 5η, yet the resolution is set by the windows size and is twice
that value. For every case analyzed, approximately 1500 PIV samples (3000
images) were acquired. The acquisition was performed in batches of 300 im-
ages due to the decline of tracer concentration over a span of approximately
10 seconds. Before every recording, an appropriate quantity of smoke was in-
jected into the chamber, and after homogenisation of the tracer concentration,
the recording was started.

2.2.1 Large-eddy PIV

As we have seen above, PIV has a spatial filtering effect on the velocity field.
If, hypothetically, we reduced our field of view to, say, 16× 12 mm2, a laser
timing issue could arise due to the requirement that particles displace no more
than one-third of the size of the interrogation window. Taking the worst case
scenario of velocity fluctuations of 6 m/s, the maximum acceptable time delay
between our images ∆t =17 µs, which is not attainable with the available
laser. Furthermore, the spatial resolution of the velocity field would still be
five times larger than the Kolmogorov length scale.

Given such resolution issues, methods to circumvent this limitation have
been devised. Let us assume we have a PIV velocity field to measure the small
scale turbulence properties. The turbulent kinetic energy at a point (x1, x2) in
the plane of measurement is given by

q2(x1, x2) =
〈 3∑

i=1

u2i (x1, x2)
〉

(2.18)

where 〈·〉 denotes the ensemble average and ui is the fluctuating component
of the velocity.

Because 2D PIV yields only the u1 and u2 components of the velocity,
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then, by assuming isotropy, Eq. (2.18) can be written as

q2(x1, x2) =
3

2

〈 2∑
i=1

u2i (x1, x2)
〉
. (2.19)

Based on the isotropy assumption, the out-of-plane velocity u23 should
have on average the same magnitude as the average in-plane fluctuations u21,
u22. In the case only u3 can be measured,

q2(x1, x2) = 3
〈
u23(x1, x2)

〉
. (2.20)

Given that the spatial resolution of PIV is not high enough to measure the
smallest turbulent scales, a trick must be used to correct for the unresolved
motion. This trick consists of defining the stress as in the Smagorinsky model
[50], expressing it in the resolved gradients. Thus,

ε(x1, x2) ≈ − 2
〈
τij(x1, x2)S̃ij(x1, x2)

〉
, (2.21)

with

S̃ij(x1, x2) =
1

2

(
∂uj(x1, x2)

∂xi
+
∂ui(x1, x2)

∂xj

)
, (2.22)

where S̃ij is the filtered strain measurement, and where the sub-grid stress τij
is estimated from the Smagorinsky model

τij(x1, x2) = −C2
s∆2

∣∣∣∣√2S̃ij(x1, x2)S̃ji(x1, x2)

∣∣∣∣S̃ij(x1, x2), (2.23)

where Cs = 0.17 is the Smagorinsky constant and ∆ is the spatial resolution
of the velocity vectors. This spatial filtering is determined by the linear di-
mension of the interrogation window. This application of the Smagorinsky
[50] model has been used to calculate the sub-grid stresses in PIV data and is
described extensively by Sheng [49], and compared to other methods by de
Jong et al. [51].
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2.2.2 Estimating ε from structure functions
For inertial-range separations r, the second- and third-order structure func-
tions in homogeneous isotropic turbulence should behave as

G2(r) = C2ε
2/3r

2/3 (2.24)

G3(r) = −4

5
εr. (2.25)

We see that the value of the dissipation rate can be calculated from the struc-
ture functions given the measured G2 and G3 structure functions. These func-
tions are available from the PIV data, which allows us to estimate the dissi-
pation rate and compare its value to that obtained from the Large-eddy PIV
method.

2.3 Characteristics of turbulent flow
It is our aim to understand the effect inertia has on the dynamics of droplets
suspended in the flow. We will explore different Stokes numbers by changing
the droplet size while maintaining constant turbulence. As will be explained
in Chapter 3, we generate droplets using a spinning disk aerosol generator
(SDAG), which creates a parasitic flow. Therefore, it is necessary to balance
the speaker power according to the perturbation introduced by the spinning
disk. PIV was performed for each of the five cases, with all of them resulting
in relatively similar characteristics. Each one of the cases corresponds to a
different Stokes number.

2.3.1 Turbulence statistics
Table 2.2 presents a summary of the turbulence statistics for every case as
well as those for Hwang & Eaton’s [41] for comparison. It can be seen that
the average turbulent velocity fluctuations have more than doubled compared
to H&E, and that, similarly, the Taylor-based Reynolds number had a propor-
tional increase.

Another notable aspect of the turbulent statistics is the elevated value
of the energy dissipation rate ε. This result was first calculated using the
Large-eddy PIV method proposed by Sheng [49], and later validated using
the second-order structure function. While not in perfect agreement, both
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Present Study Case Hwang and
1 2 3 4 5 Eaton (2004)

〈u〉 (m/s) 1.95 2.06 2.08 2.03 2.04 0.9
ε (m2/s3) 71.9 60.7 58.7 53.9 55.3 11.3
Reλ 448 548 563 562 560 218
τη (µs) 457 497 505 527 521 1160
η (µm) 83 86 87 89 88 132
dp (µm) 11.0 15.4 16.5 18.8 21.9 —
St 0.95 1.67 1.86 2.43 3.15 —

Table 2.2: Comparison between turbulence statistics of H&E [41] and the five
cases of the present study.

methods were consistent to within 20%. It was noted by de Jong [51] that the
LEPIV method usually overestimates the value of ε, while the converse is true
for the second-order structure function; this is consistent with our findings.

As seen in the contour fields of the magnitude of the velocity fluctuations
(Figure 2.5), the homogeneity of the flow within the measurement window
is substantial. A subtle pattern emerges in the field where the highest values
appear in the center, while the magnitude decreases as we move towards the
edges. However, we see that the magnitudes range between 2.7 and 3.1 m/s,
which is within approximately ten percent of the average magnitude.

It must be noted that the region of interest for the phosphorescent tagging
experiments is approximately 30×30 mm2, which is why the velocity fields
show a smaller area than that described earlier. Outside of this window the
homogeneity is reduced substantially, with the turbulent velocity fluctuations
further decreasing in magnitude away from the center. We believe this is
a result of the size of the jet orifice diameter and the short distance from
the orifice to the center of the box. Unfortunately, the jet orifice could not
be increased due to the design of the chamber. Several attempts were made
to break the large scales of the flow by placing obstacles, i.e. crosses and
wire mesh, in front of the orifice. However, the effect on the homogeneity
of the flow was low, while these objects considerably reduced the velocity
fluctuations.

An opposite scenario was seen in the mean velocity fields, where higher
values were observed around the edges. The mean velocity fields of all five
cases are shown in Figure 2.6. It can be seen that, in comparison with the total
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Figure 2.5: Contours of the magnitude of the velocity fluctuations, (a)–(e) for
cases 1–5, respectively. All four velocity fields present a high degree of homo-
geneity.
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Figure 2.6: Velocity fields for cases 1–5. The reference vector has a magnitude
of
√
u2 + v2 = 3.0 m/s. It can be seen that the mean velocity is much lower than

the average velocity fluctuations.
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magnitude of the velocity fluctuations, the mean velocity field is much lower
(approximately one-tenth of the turbulent velocity fluctuations).

2.3.2 Structure functions

The structure functions of the turbulent flow provide important information
about its isotropy. Additionally, we can use them to estimate the energy dis-
sipation rate ε of the flow. Our PIV system only provides two components
of the velocity, yet it is important to ensure isotropy and homogeneity of the
three components. Information about the statistics in the z-direction was ob-
tained by rotating the turbulence chamber 90 degrees and repeating the PIV
measurements. Given the similarity of turbulent statistics of the five different
cases, this measurement was only performed for case 2. The data obtained for
the four other cases in the xy-plane displays similar characteristics as case 2,
therefore we do not expect the values in the z-direction to change consider-
ably.

Structure functions encompass small (inertial-range) to large scales. In-
homogeneity affects the large scales, this is especially so for the third-order
structure function. Therefore, we have normalized the velocity field by
its local rms value, u′(x, y) = u(x, y)〈〈u2(x, y)〉〉1/2x,y/〈u2(x, y)〉1/2, so that
〈u′2(x, y)〉1/2 is everywhere the same, and similarly for v. As expected, this
affected most the third-order structure function. The resulting structure func-
tions are shown in Figure 2.7. From G2(r) = C2ε

2/3r2/3 we derive ε = 72.9
m2/s−3, while fromG3(r) = −4

5
εr we find ε = 65.9 m2/s−3; values that com-

pare well to that found from our direct measurement of the gradients, ε = 75.8
m2/s−3. Our results appear to be in agreement with the comparison made by
de Jong et al. [51], with large-eddy PIV consistently giving a higher value for
the dissipation rate, and the converse being true for the structure functions.
We also find that the large-scale isotropy u/v of the flow is excellent, as is
shown in Figure 2.7(d).

In general, structure functions depend both on the velocity component
involved and on the direction of the separation vector. In isotropic turbulence
there are two distinct second-order structure functions, the transverse Gy

xx(r)
and Gx

yy(r), and the longitudinal Gx
xx(r) and Gy

yy(r). We have

Gx
xx(r) = 〈(ux(x + rex)− ux(x))2〉, (2.26)
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and similarly for Gy
yy(r). Likewise,

Gy
xx(r) = 〈(ux(x + rey)− ux(x))2〉, (2.27)

and similarly for Gx
yy(r).

1 10
0.1

1

r (mm)

G
2

(m
2

s-2
)

1 10
10 -2

0.1

1

r (mm)

G
3

(m
3

s-3
)

| |u u / v

1 10
0.5

1.0

1.5

r (mm)

G
2

Is
ot

ro
p

y

1 10
r (mm)

0.5

1.0

1.5

G
2

Is
ot

ro
p

y

(b)(a)

(e) (f)

20 40 60 80

20

40

60

2.2

2.4

2.6

2.8

3.0

20 40 60 80

20

40

60

0.9

1.0

1.1(c) (d)

Figure 2.7: Relevant turbulence characteristics for the PIV measurements in
the xy-plane. (a) Second-order longitudinal structure functions in the x- and
y-direction. (b) Third-order structure functions in the x- and y-direction. (c)
Contour field of the magnitude of the velocity fluctuations. (d) Contour field of
u/v. (e) Isotropy calculated using Eq. (2.28). (f) Ratio between x and y structure
functions.
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The values of transverse functions should be the same, and so should the
longitudinal ones. Incompressibility then dictates the following relation be-
tween longitudinal GL

2 and transverse GT
2 structure functions,

GT
2 (r) = GL

2 (r) +
r

2

d

dr
GL

2 (r), (2.28)
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Figure 2.8: Relevant turbulent characteristics for the PIV measurements in the
yz-plane. (a) Second-order longitudinal structure functions in the y- and z-
direction. (b) Third-order structure function in the y- and z-direction. (c) Con-
tour field of the magnitude of the velocity fluctuations. (d) Contour field of u/v.
(e) Isotropy calculated using Eq. (2.28). (f) Ratio between y and z structure
functions.
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where GT
2 is Gy

xx(r) or Gx
yy(r) and GL

2 is Gx
xx(r) and Gy

yy(r).
A good way to measure the small-scale anisotropy is a test of the isotropy

relation for the second-order longitudinal and transverse structure functions.
In Figure 2.7(e) we plot the ratio GT

2 (r)/(GL
2 (r) + r

2
d
dr
GL

2 (r)), for both direc-
tions of the separation vector, while in Figure 2.7(f) we plot Gx

xx(r)/G
y
yy(r).

We conclude that the turbulence is isotropic at both large and small scales.

2.3.3 Integral length and timescale
Even though an increased effort by the scientific community has been devoted
to generate homogeneous isotropic turbulence with zero mean flow, an impor-
tant anomaly is encountered in the calculation of the integral length scale of
the flow. Supported by the available literature [41]–[44], [52] and by our own
experience, we see that in such flow facilities this length scale appears to be
considerably, or in some cases, much larger than the homogeneous isotropic
region of the flow. Moreover, the measured correlation functions do not reach
zero, so the integral length scale must be estimated indirectly. This is the case
for Hwang & Eaton’s experiment [41], where it was not possible to obtain the
integral length scale from the correlation function, and an estimation has to
be made using the kinetic energy and the dissipation rate. Chang et al. refer
to a large-eddy turnover time as they use extended self-similarity to calculate
scaling exponents of the structure functions, however, the value is not sup-
plied. The same apparatus was used in the study by Bewley et al. [52], where
the transverse correlation function RT

ii was measured using LDV. From the
relation between the longitudinal and transverse correlation functions [53],

RT
ii =

1

2

[
Rii +

d

dr
(rRii)

]
, (2.29)

it can be easily shown that the longitudinal integral length scale is twice the
transverse. We can then estimate the longitudinal integral length scale in [52]
to be L11 = 160 mm, which is considerably higher than the homogeneous
region given in [43] (≈ 100 mm).

Goepfert et al. [44] were able to obtain an integral length small enough
to fit within their measurement area (40 mm). We see two possible causes for
this (which need not be exclusive): the open setup—as opposed to a closed
chamber—and the use of perforated sheet to create an array of small jets. The
latter, we believe, limits the size of the larger length scales, however, it has a
negative impact on the Reynolds number.
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In the present study we estimate the integral length scale L by fitting an
exponential function to the tails of the correlation function, as shown in Figure
2.9. We find Txx = 77.5 mm and Tyy = 80 mm.

The reason for such large values of the integral length scale remain un-
clear, although we expect the walls of the chamber, and the size of the jet
orifice as well as the distance from the orifice to the center likely playing a
role. In the present study, we are interested in the dynamics of droplets at the
smallest scales, thus we do not foresee any considerable effect. However, in
studies were integral time- and length scales are of interest, this issue must be
addressed.
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Figure 2.9: Plot of the measured correlation functions Rxxx and Ryyy (symbols)
and corresponding fits (dashed). The estimated integral length scale is approx-
imately 80 mm. This is considerably higher than the region of homogeneity and
may be due to wall effects or the forcing mechanism.

2.4 Conclusion
Throughout this chapter, we presented three options for the design of a tur-
bulence chamber and the characterization of the flow within it. We reviewed
scaling relations of turbulent flows in order to improve on an earlier design by
Hwang & Eaton [41]. After analyzing the scaling relations of turbulence we
decided to increase the size of the speakers in order to increase the Reynolds
number. Additionally, we explained the algorithm used to create the driving
signal for the synthetic jets. A brief description of the available techniques for
velocity measurement was given, and the working principle of particle image
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velocimetry was described in further detail. Furthermore, the experimental
setup used to characterize the flow in the turbulence chamber was illustrated.

The results of the PIV measurements demonstrate that we have indeed
been able to generate homogeneous, isotropic turbulence with a considerably
reduced mean flow and an increased Reλ, establishing the functionality of the
experimental facility. The isotropy of the flow was determined in several dif-
ferent ways: we did so by comparing the longitudinal structure functions in
all three directions and by looking at the relationship between the longitu-
dinal and transverse structure function in homogeneous isotropic turbulence
(Eq. (2.28)). Finally we tested the isotropy in the large scales by comparing
the velocity fields of the components of the velocity fluctuations u and v.

With this in mind, we will now proceed to give a detailed explanation of
the droplet generation and characterization in the following chapter, and an
explanation of the phosphorescent tagging technique thereafter.
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CHAPTER 3

AEROSOL GENERATION AND
CHARACTERIZATION

The generation and characterization of particles and droplets is essential for
industrial and scientific purposes. On a day-to-day basis we rely on the cre-
ation of aerosols for processes as trivial as hairspray application or as sensitive
as medication dispensing through inhalers and nebulizers. Since the charac-
teristics of aerosols play a crucial role in the transport of droplets, a reliable
generation process is essential.

Monodisperse aerosols can simplify the analysis of particle-laden flows,
e.g. fundamental studies of droplet behavior in turbulent flow, where, ideally,
a single Stokes number should characterize the droplets. There exist several
types of devices to produce a collection of monodisperse droplets: vibrating
orifice, flow focusing and spinning disk aerosol generators. The first two offer
a very narrow distribution of droplet sizes with the drawback of single droplet
production rate. The advantage of the spinning disk droplet generator is that
large amounts of droplets can be produced simultaneously. Briefly, fluid is
applied near the center of a fast spinning disk, wetting its surface completely.
Due to the centrifugal force, fluid ligaments are ejected tangentially from the
disk rim. These ligaments break up into a primary droplet and a few satel-
lite droplets of smaller diameter. All primary droplets have approximately the
same diameter, which is determined by the angular velocity of the disk, the
fluid density and its surface tension. The principle of the spinning disk gen-

43



44 Chapter 3. Aerosol generation and characterization

erator is well established [54]–[56], yet little is known about the particle size
distribution function (PDF).

A few techniques exist to measure droplet sizes and their PDFs, of which
interferometric particle imaging (IPI) is quite attractive because of its rela-
tively simple setup. Other optical techniques are direct microscopic vision,
which suffers from the small field of view of microscope objectives, and
phase-Doppler anemometry, which provides a simultaneous measurement of
the droplet size and velocity at a single point in space.

The purpose of this chapter is to give an overview of the droplet genera-
tion and characterization methods used in our study. In Section 3.1 we present
the background and theory of IPI. Additionally, we present an algorithm for
image analysis for interferometric particle imaging with an emphasis on a reli-
able measurement of particle size distribution functions, which is tested using
synthetic images. In Section 3.2 we explain the working principle of spinning
disk aerosol generators and present the characteristics of our experimental
setup. Next (Section 3.3), we present the resulting PDFs obtained using our
novel processing algorithm and compare our findings with available literature.
We give concluding remarks of the chapter in Section 3.4.

3.1 Interferometric particle imaging
IPI, first proposed by König et al. [57] and Ragucci et al. [58], presents
particularly convenient characteristics when compared to other methods: it
has the capability of yielding two-dimensional data while most other available
methods are point measurements. Additionally, the only necessary equipment
is a reasonably coherent light source and a camera. In cases where droplets
have relatively high velocities, the use of a pulsed light source is required to
‘freeze’ the particles.

3.1.1 Background
The scattering of coherent light off a droplet results from interference between
light wavefronts passing over and through the droplet. However, for droplets
larger than the wavelength of light, the picture can be simplified to rays orig-
inating from two glare points, one corresponding to a reflected ray, and one
to a ray which is refracted twice. This creates a difference in the optical path,
introducing a phase shift between the two rays. The shift creates an interfer-
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ence pattern where each fringe translates into a full wavelength difference in
the path travelled. A derivation of the difference in optical path lengths of
these two rays can be found in Albrecht et al. [46].

When the diameter of large droplets is being measured, counting fringes
can be a simple and relatively accurate method of interpreting the data. The
number of fringes Nfr is related to the droplet diameter dp by

Nfr =
dadpA
2λv

=
∆θr
∆ϕ

(3.1)

where da is the aperture diameter, v is the object distance, λ is the wavelength
of the incident light and A(θr) is a geometry-dependent factor defined as

A(θr) =

(
m cos (θr/2) +

m sin (θr/2)√
m2 + 1− 2m cos (θr/2)

)
, (3.2)

with m the relative refractive index and θr the angle between the incident
light and the optical axis of the setup. ∆θr is the total angle swept by the
interference pattern, and ∆ϕ is the angular period of the interference fringes.
It is important to differentiate between θr and ∆θr.

As droplets decrease in size, a higher resolution is necessary to accurately
measure their diameter. The discreteness of fringe counting limits the reso-
lution with which we can measure droplet sizes, since it is not uncommon to
encounter fractions of fringes, which are hard to quantify. A better resolved
analysis can be obtained by measuring the wavelength of the interference pat-
tern λI .

The geometric arrangement of IPI is sketched in Figure 3.1(a). The an-
gular separation ∆ϕ of the fringes is determined by the optical path length
difference of the two scattered rays,

∆ϕ =
2λ

A(θr)dp
. (3.3)

If these rays have equal intensity, the visibility of the fringes is maximal. In
general, the contrast depends on the scattering angle θr and the polarization of
the light. For water droplets with a diameter dp ' 20 µm the optimal angles
are θr ≈ 100◦ and θr ≈ 70◦ for parallel (p) and perpendicular (s) polarization,
respectively.

Angular information of scattered light is obtained from out-of-focus imag-
ing, with the optical arrangement sketched in Figure 3.1(b). In this arrange-
ment, particle images are circular spots with diameter di determined by the
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location of the object plane and the size da of the lens aperture. The intensity
in the spots is modulated by fringes.

If x is an image coordinate, the fringe spacing ∆x is

∆x = (di/da)v∆ϕ. (3.4)

Since x and di can be measured in pixels, the only additional information
needed is the size da of the lens aperture and the object distance v. Roughly,
the particle size is proportional to the number of fringes observed in a droplet
image. Counting fringes provides the droplet sizes on a discrete scale. How-
ever, in our method, we will use the detailed intensity information, which, in
principle, allows us to quantify the size of particles that produce less than two
fringes. Nevertheless, particle size measurements benefit from large spatial
fringe frequencies.

In order to have many fringes in a particle image, v must be small and
da must be large (Eq. (3.1)). As the size of the out-of-focus images is deter-
mined by the lens aperture, dense droplet clouds lead to many overlapping
particle images. An analysis regarding the optical limits of particle concen-
tration is given by Damaschke et al. [59], where they introduce the overlap
coefficient γo. We are interested, in particular, in the effects of overlap on the
PDF of the droplet diameters. A few adaptations have been proposed in order

da

x

�r

�

di

v

�x
P’

I

P

c

(a) (b)

1

Figure 3.1: (a) Geometric arrangement of interferometric particle imaging. (b)
Schematic of the optical arrangement of IPI for a droplet positioned at the op-
tical axis. The point P represents the position of the particle, v is the object
distance, ϕ is an angular coordinate, with ∆ϕ (Eq. (3.3)) the angular fringe
separation, while ∆x is its linear counterpart. The focused image plane lies at
point P ′. The interference pattern has spot diameter di, and the aperture diam-
eter is da. If the maximum intensity in the fringes is 1, c determines the fringe
contrast.
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to optically alleviate this issue. Maeda et al. [60] suggested the optical com-
pression of images along the axis parallel to the interference pattern, which
resulted in thin ellipsoids and a reduced probability of overlap. Hardalupas
et al. [61] used a rectangular mask together with a cylindrical lens, resulting
in narrow, rectangular interference patterns. This approach allows for a larger
droplet density, and also allows for the association of the size and position
of a droplet. In this way the simultaneous measurement of size and veloc-
ity is possible using two cameras, one operating in-focus and the second one
operating out-of-focus. However, it is our experience that if thin, rectangu-
lar interference patterns were to overlap, distinguishing one from the other
becomes a challenging task.

The sphericity of the droplets and particles can also affect the accuracy of
the results. Dehaeck & Beeck [62] looked at the influence of bubble defor-
mation on their size determination, and discussed other sources of error such
as the tilt angle of the deformed droplet and the uncertainty arising from the
angle θr and the refractive indexm. In our particle size range, however, we do
not expect particle deformation since the droplets are much smaller than any
length scale of the flow, and their velocities within the measurement volume
are relatively low.

3.1.2 Image processing
It is relatively simple for a human to visually identify an interference spot
and measure its wavelength. As the quantity of data increases, however, it
becomes cumbersome to do this manually, so a reliable processing algorithm
is necessary. Analysis of the fringe spacing in many particle images provides
the probability distribution function of the particle sizes. The measurement of
this PDF is the prime goal of this section. A key question is the influence of
particle overlap. Several methods have been proposed that achieve automated
data processing, but details regarding the algorithms have not been provided.
Kawaguchi et al. [63] proposed the use of a Fourier transform method similar
to that used in phase-Doppler anemometry, i.e. a one-dimensional signal in
which a Gaussian fit to the Fourier spectrum is used to find the peak in the
wavenumber space. An alternative proposed by Hardalupas et al. [61] is
the automatic processing of the data using the continuous wavelet transform,
which has the advantage of locality over its Fourier counterpart. The large
scales of the wavelet transform were used to identify particles, whereas the
small scales revealed the fringe spacing.
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Inspired by this method, we will use a hybrid algorithm in which a sin-
gle wavelet is used to locate the particle image, but where the particle size
is inferred from a detailed representation of the fringe pattern. Let us now
describe the steps taken in the image analysis. We will then test our method
on simulated images with a prescribed PDF, and finally show the results of an
IPI measurement on calibrated glass spheres.

The purpose of the image processing is to locate the particle images, de-
termine the spatial frequency of the fringes within each particle, and make a
histogram of particle sizes from the measured spatial frequencies. As each
particle image is a disk whose diameter is determined by the aperture of the
lens, the chances of overlapping images are sizable. This leads to ambiguity in
the interpretation of the images. However, reducing the height of the particle
images by use of masks, leads to loss of intensity, resulting in noisy images.
It is our experience that, with the camera used for this study, the cylindri-
cal lens approach to image compression [60] works well in lenses with small
focal length, e.g. 55 mm, but as this value increases, a cylindrical lens with
an extremely long focal length (>10 m) would be necessary. Instead of a
unidirectional compression of the particle images, we will focus on the pro-
cessing of images with circular spots; the algorithm can be readily adapted to
ellipsoidal particle images.

The first task is locating the particle images. We make use of the circum-
stance that, when droplets are illuminated by a thin light sheet, all particle
images have the same diameter di, and we convolve the image with a ker-
nel κ(x, y) = 1 if x2 + y2 < (di/2)2, and 0 otherwise. Next we seek for
the local maxima in the convolved image. A center pixel (x0, y0) is a local
maximum if its intensity is a factor F larger than all points within the circle
(x− x0)2 + (y − y0)2 = (di/2)2. For F we typically took the value F = 1.1.
This leaves us with many candidate centers for each particle image. These
are further pruned by sorting their intensities in decreasing order, picking the
first candidate center, and deleting all other candidate centers that fall within
the search circle of this particular image, and so on. For isolated particle
images, this procedure leaves us with a complete list of images that satisfy
the intensity contrast criterion. Exactly the same steps can be used for ellip-
soidal particle images with circles replaced by ellipsoids. The key point of
this procedure is the a priori knowledge of the outline of a particle image.

After finding the particle images, for each of them, the pixel values are
summed along the fringe orientation (y-direction), resulting in an intensity
distribution I(x) for each of them. The function I(x), x ∈ [−di/2, di/2] is
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defined at discrete pixel locations xi; it is differentiated to reduce the pedestal
modulation, extended with zeros to the left x < −di/2, and to the right, x >
di/2, and Fourier transformed. The zero padding provides an interpolation on
the spatial frequencies.

From the Fourier transform we determine the spatial wavelength λI with
the maximum energy, and the corresponding phase φ. Due to the optical
arrangement in our experiment, and the rather small particle sizes, often no
more than a few fringes are observed and further refinement of the found
fringe wavelength λI is necessary.

To this aim we fit the measured intensity function I(x) to

I(x) = a

[
1−

(
2x

di

)2
]1/2

(1 + c cos{2π(x/λI + φ)})
(1 + c)

, (3.5)

where the intensity a, the fringe contrast c, λI , and the phase φ are determined
in a least-squares procedure. The first factor results from the compression
of the particle image in the y-direction and the second factor represents the
fringes. Since for λI and φ a good estimate already exists from the Fourier
transform, the least squares procedure was restrained. Without the refinement
provided by Eq. (3.5), the fringe wavelengths λI and measured particle sizes
approximately lock to discrete values.

The first question is whether this procedure reproduces the particle size
distribution functions P (dp) in simulated images, and in particular whether
the influence of particle overlap is detrimental.

3.1.3 Simulated images
Simulated particle images were made by randomly sprinkling disks with fixed
diameter di and intensity profile

I(x, y) =

[
1 + cos

(
2πx

∆x

)]
Ip(x− x0, y − y0), (3.6)

where Ip(x, y) is I0 inside the disk x2 + y2 ≤ (di/2)2, and 0 outside, and ∆x
is inversely proportional to the particle diameter dp, ∆x = Fpdi/dp, with a
proportionality factor Fp, whose value is determined from the experimental
parameters θr, m, λ, etc. In the experiments the droplets are illuminated us-
ing a laser sheet with a Gaussian intensity distribution, accordingly the droplet
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intensity was taken proportional to exp(−z2), with z sprinkled uniformly on
the interval [−1.5, 1.5]. Finally a small amount (1.5%) of random noise was
added to the simulated images. The particle diameters dp were picked ran-
domly from a Gaussian distribution,

P (dp) =
1

dσπ
1/2

exp

[
−(dp − dm)2

d2σ

]
, (3.7)

with mean dm and Gaussian width dσ.
To assess the functionality of the processing algorithm, let us first look at

the resulting histograms of the synthetic data. We simulate data over a range
of droplet diameters dm = 10. . .30µm, in steps of 2.5µm and Gaussian width
dσ = 5 µm. This range was chosen because the smallest droplet diameters
come with less than two fringes. Figure 3.2(a,b) show sample images and the
resulting distributions produced by the processing algorithm. The resulting
distributions are compared with the simulated ones. It can be seen that our
procedure correctly reproduces the prescribed P (dp), but that problems arise
at small particle diameters, where a particle image contains a single fringe.
As expected, this problem is aggravated when particle images clutter.

In the case of Figure 3.2(a,c), a properly identified disk, overlaps on av-
erage with 2.5 disks in a simulated image, which is equivalent to an overlap
coefficient of γo = 0.24, and only a fraction (0.36) of the generated droplets is
found. For Figure 3.2(b,d), a found disk overlaps overlaps with 1.6 simulated
disks (γo = 0.36), and a fraction of 0.55 of the simulated disks is found.

Probability density functions for a distribution of three superimposed
Gaussians are shown in Figure 3.2(c,d). The problem with overlaps now is
that, in a broad range of sizes, the number of small droplets is underestimated
as overlaps introduce extra (but out-of-phase) fringes in a particle disk.

It may seem surprising that images with many overlapping particle disks,
such as shown in Figure 3.2 still result in relatively small errors in measured
particle size PDFs. We will try to understand this by using the simulated im-
ages, in which all droplet intensities and locations are known a priori, for
further statistical analysis. The problem of overlaps is that found image disks
may not correspond to one particular droplet, but may be positioned some-
where in the overlap region and cover several different droplet images. The
spatial fringe frequency would, in that case, not correspond to any of the over-
lapping particle images. The advantage of our disk location method is that it is
strongly biased towards a particular particle disk. It does not identify a parti-
cle disk through its edges, neither through its intensity maximum, but through
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Figure 3.2: (a) Particle size histogram measured from simulated images, with
128 particle images per frame, and 1024 frames. (b) Same as (a), but 64 particle
images per frame. The particles sizes were distributed according to a Gaussian
distribution, with mean dm = 10. . . 30 µm, in steps of 2.5 µm and Gaussian
width dσ = 5 µm. The dashed distribution represents the input to the synthetic
data generation. The images are for the case dm = 30 µm. (c) Particle size
distribution function measured from simulated images, with 128 particle images
per frame, and 1024 frames. (d) Same as (c), but 64 particle images per frame.
The dashed lines indicate the input PDF, the horizontal grey lines illustrate the
dp-independent peak heights of the input particle distribution. The PDFs have
been normalized.
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its known shape—a disk, or an ellipse if cylindrical lenses are involved in the
imaging.

The first question is if a particle found with our methods actually corre-
sponds to a true particle disk, or falls somewhere in between overlaps. The
answer can be found in Figure 3.3(a) where we show the histogram of dis-
tances of a found particle disk to the one in the simulated image that is near-
est. Clearly, most particle disks are identified correctly, 94% of the found
disks fall within ri/2 of a simulated disk for the most dense image (Figure
3.2(a)). If particle disks overlap, the next question is if our method selects
the brightest of a group of overlapping particle disks. The answer is in Figure
3.3(b), where we show the histogram of distances of a found particle disk to
the original brightest one in an overlapping cluster. In most cases (83%) the
brightest of a cluster corresponds to the found particle disk.
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Figure 3.3: (a) Histogram of distances of a found particle disk to the one in
the simulated image that is nearest. The conditions are those from Figure 3.2.
The full line corresponds to 128 particle disks per image, the dashed line to 64
particle images. The disk radius ri is 50 pixels. For 128 (64) particle disks
per image, each found particle disk overlaps on average with 2.5 (1.6) disks in
a simulated image. (b) Same as (a), but now the distance is to the brightest
simulated particle disk in an overlapping cluster.

From these simulations we conclude that our methods find the correct PDF
of particle sizes, as long as particles are not so small that their images contain
less than two fringes. Finding the correct PDF of small particles (dp . 15
µm) becomes more difficult when the particle density increases and particle
images severely overlap. In the case of Figure 3.2(b), a fraction of 36% of
the simulated droplet images is actually found because many images overlap,
nevertheless, the resulting PDF of particle sizes appears to be correct.
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Let us again emphasize that our approach differs from earlier work, where
the main concern was the correct identification of droplets, their location and
their velocity, in addition to their size. In this context, overlapping droplet
images are indeed detrimental, as it leads to ambiguity about location and
size.

3.1.4 Experimental validation
After establishing the functionality of our algorithm with synthetic data, we
test it once again by imaging interference patterns of glass microspheres
whose diameters have been measured using a microscope. The imaging setup
for measurements of both glass spheres and droplets consists of an Nd:YAG
laser (CFR 150, Quantel) with wavelength λ = 532 nm as a light source, and
a 1200×1600 pixel CCD camera (ES 2020, Redlake). We create a light sheet
by using a cylindrical lens.

Figure 3.4 compares the microsphere diameter histograms obtained
through IPI and microscopy, which are in good agreement. Even though the
glass spheres are spherical and smooth, inhomogeneities in their refractive
index (possibly due to porosity) produce wavy fringe patterns when imaged
with the IPI setup. Nevertheless, the IPI algorithm is robust enough to in-
terpret the wavy fringes and reproduce the histogram of particle distributions
reasonably well.
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Figure 3.4: Comparison of particle size distribution function measured from
calibrated glass spheres by IPI and microscopy (in grey). Inhomogeneities in the
refractive index of the glass microspheres result in wavy interference patterns.
In this arrangement, the fringes run horizontally.
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3.2 Droplet generation

As previously mentioned, several monodisperse droplet generation methods
are available. Vibrating orifice and flow focussing generators exploit the
Rayleigh–Plateau instability. The former method, first proposed by Berglund
& Liu [64], uses a piezo-electric crystal, or some other controllable vibrating
mechanism, in order to induce perturbations on a liquid jet. These perturba-
tions grow and result in the controlled pinch-off of identical droplets. The
latter method focusses a liquid meniscus into a thin liquid thread by means
of a concentric (gas or liquid) jet [65]. The interaction between the outer and
inner fluids produces a Kelvin–Helmholtz instability at the interface which
translates into a Rayleigh–Plateau instability, resulting in a controlled droplet
pinch-off. The main drawback of these two methods is the inability of pro-
ducing many simultaneous droplets, which is necessary in our flow tagging
experiments given many droplets are lost in collisions against the wall.

Spinning disks and tops offer a considerably higher droplet production
rate, at the cost of reduced monodispersity. We opt for the spinning disk
generation due to cost, ease of fabrication and robustness. Let us now explore
the working principle of this type of generators.

3.2.1 Spinning disk aerosol generation

Spinning disk aerosol generators were first proposed by May [54] and Walton
& Prewett [55] over sixty years ago. An extensive review can be found in
Davies & Cheah [56]. The working principle of spinning disk aerosol gen-
erators is the breakup of a liquid film at the edge of the disk due to cen-
trifugal forces. Depending on the flow rate of the fluid supplied to the disk
surface, droplets are ejected directly, or ligaments first form which break up
into droplets. In the first mode of operation, nearly monodisperse droplets are
created, trailed by much smaller droplets that result from the trailing ligament
breakup. Balancing inertial and surface tension forces provides the droplet
primary diameter dp as a function of the disk radius R, its angular velocity ω,
the fluid density ρ and the surface tension γ, dp/R = We−1/2Qu, in terms of
the Weber number We, or

dp =
Qu

(Rρ/γ)
1/2 ω

. (3.8)
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The Quincke number Qu depends weakly on the supply rate of the fluid Q.
The analysis of a collection of experiments lead Davies & Cheah [56] to the
following empirical relation

Qu =
1

8
(log Qe + 2.85)2 + 2.15. (3.9)

The dimensionless flow rate Qe = Q/(2πR2(νω)1/2), is formed from Q and
a reference value for a thin film driven by a centrifugal force, with ν the
kinematic viscosity. Experiments show that the transition from direct droplet
ejection to ligament formation occurs at Li ' 0.08, with the ligament number
Li = QeWe1.15Re−0.95, which compares the length of the attached ligaments
to their mutual distance [56].

l c

d
z

y

x

Figure 3.5: Experimental setup for SDAG droplet measurement. A laser l illu-
minates the droplets being generated by the spinning disk d. The optical axis of
the camera c is perpendicular to the laser sheet, i.e. θr = 90◦. The intensities of
the reflection and first order refraction are comparable at this angle for the ex-
pected primary droplet sizes. The arrow points to the needle which feeds liquid
onto the disk.

For this study we use an air-driven spindle (EST 1000K, Mannesmann-
Demag, Stuttgart, Germany) and two disks: radii 1 and 4 cm. Both disks
are manufactured in-house out of stainless steel. The maximum angular ve-
locity reached by the spindle is approximately 3600 s−1 for the large disk
and 7500 s−1 for the small one. Even wetting is crucial to create a uniform
film. We are interested in droplet sizes between 10µm and 60µm. Given our
maximum angular velocities, we must reduce the surface tension by means
of surfactant addition in order to achieve such diameters. This also ensures
proper wetting. We used demineralized water with Triton-X100 at 1% by vol-
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ume to achieve a surface tension of γ = 3.0×10−2 N/m. The imaging setup is
described in Section 3.1.4.

The purpose of the experiments was to measure the size distribution of
droplets created by the spinning disk. Their mean size will be compared to the
predictions by [56]. However, information about the size distribution appears
to be scarce in the literature. Each data set contained 1000 frames taken at a
sampling rate of 15 Hz. The number of valid droplets imaged in each frame
depended on the particular optical setup of each case, i.e. the values of v, f
and da.

Measurement of droplets with diameters in the vicinity of 30µm presents
a few practical issues. As apparent from Figure 3.1, a shorter distance v is
desirable to increase the fringe frequency. Similarly, a larger aperture diam-
eter will result in more inlying fringes. Unfortunately, these two approaches
for decreasing the fringe spacing may have a negative impact on the data. To
locate the particle images, our algorithm relies on the uniform diameter of the
interference spots, which can only be achieved if the object distance v is equal
for all droplets, that is, all imaged droplets lie within a thin volume parallel
to the image plane. Lenses with large focal length were more susceptible to
variations in spot size since a small change in the object distance v had con-
siderable impact on the image distance b. This was particularly problematic
when big droplets were imaged, since they can scatter sufficient light to be de-
tected even when outside the laser sheet. To ensure the spot diameter remains
constant a compromise between the focal length and the aperture diameter of
the objective must be sought, depending on the droplet size.

3.2.2 Principal planes

All the above calculations assume a thin lens approximation, which does not
apply to compound camera lenses. The accuracy in the measurement of the
object distance v has a direct impact on the accuracy of measurement of
droplet diameters. To determine the value of v, we do the following: take
v′ as the distance from the object to some reference plane Pref on the objec-
tive, and δ as the distance from Pref to the principal plane of the compound
lens. We then have

1

v′ + δ
+

1

b
=

1

f
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where b represents the distance from the image plane to the principal plane
and f is the focal length. Then the magnification becomes

M =
b

v′ + δ
.

We combine the above equations to obtain

v′ + δ = f

(
M + 1

M

)
. (3.10)

Using a calibration target we monitor the magnification as we change the
distance between the object and the reference plane. From the values of v′

and M we find a linear relation, the slope of which is determined by the focal
length of the lens, and the y-intercept represents the value of δ (see Figure
3.6). To validate this result we compare the slope of the line to the lens focal
length f and get a match to within 3%.
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Figure 3.6: Distance between reference plane and object plane as a function of
the magnification for the 55 mm focal length lens. The y-intercept represents the
distance δ between the principal plane and the reference plane Pref . A similar
result, to within 0.5%, was obtained for the 105 mm lens.

3.2.3 Disk size and Kármán flow
Rotating objects can act as pumps by inducing flow normal to the axis of
rotation, which in turn creates an axial flow in order to replace the fluid
transported outwardly. These flows were first studied by von Kármán, who
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through a series of transformations described the flow created by an infinite
disk. Cochran [66] followed von Kármán’s analysis and found a numerical
solution for the transformed variables. From Cochran’s solution we know the
induced flow velocity u ∝ Rω.

In our flow tagging experiments and PIV measurements, this parasitic flow
disturbed the flow within the chamber, which, as seen in Chapter 2, must be
homogeneous, isotropic and have a negligible mean velocity.

For a given droplet size dp, a disk with large radius rotates more slowly,
but the secondary flow is larger. From Eq. (3.8) we see that u ∝ R1/2d−1p .
Additionally, the viscous drag on the disk is proportional to R4, which results
in a need for higher air pressures for larger disks. If the air pressure is limited,
as in our case, the use of a small disk is preferred.

3.2.4 Droplet ejection distance
As the droplets rupture from their ligaments, they are ejected with the tangen-
tial velocity of the disk, which in some cases exceeds 100 m/s. The difference
in diameter between the primary and satellite droplets results in a different de-
celeration magnitude, creating a spatial segregation. We can take advantage
of this fact to separate droplets depending on the spatial position they reach
after being flung away from the disk. To accomplish this, we must calculate
at what point in space will the droplets stop when ejected into still air. The
prediction of the velocity and position of a droplet will allow for the sepa-
ration between bigger primary droplets and smaller satellite droplets. From
Newton’s second law we have

m
d2x

dt2
= −CD

πρar
2
pV

2
d

2
(3.11)

where m is the mass of the droplet, CD is the coefficient of drag, ρa is the
density of the air, rp(= dp/2) is the droplet radius and Vd = dx/dt is the
velocity of the droplet. The mass of the droplet is related to its diameter and
density. Since the density ratio of the carrier fluid to the particle plays an
important role, we wish to state this explicitly,

4

3
πr3pρp

d2x

dt2
=

1

2
ρaπV

2
d r

2
pCD. (3.12)

The initial droplet velocity is given by the diameter of the spinning disk D
and its angular velocity ω. For small droplets (rp ∼ 10 µm), the particle
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Reynolds number can reach magnitudes on the order of 102, where Stokes
flow is inapplicable. We use the definition given by [67],

CD =
24

Re

[
1 +

1

6
Re2/3

]
,

(we know Re = 2Vdrp/νa) and Eq. (3.12) becomes

d2x

dt2
=

9

2

ρaνa
ρp

1

r2p
Vd

[
1 +

1

6

(
2Vdrp
νa

)2/3
]
. (3.13)

Integrating Eq. (3.13) once and twice for velocity and position, respectively,
and applying the initial conditions V (0) = V0 and x(0) = D/2, we arrive at
(see Appendix A.2 for full derivation)

Vd(t) =
e−αt(

−βe− 2
3
αt +

(
D
2
ω
)−2/3

+ β
)3/2

(3.14)

and

x(t) = − 3

α

[
e−

1
3
αt

β(V
−2/3
0 + β − βe− 2

3
αt)1/2

− 1

β3/2
tan−1

(
β1/2e−

1
3
αt

(V
−2/3
0 + β − βe− 2

3
αt)1/2

)

+
1

β3/2
tan−1

(
β1/2

V
−1/3
0

)
− 1

βV
−1/3
0

]
(3.15)

where

α =
9

2

ρaνa
ρpr2p

and β =
1

6

(
2rp
νa

)2/3

.

Unfortunately, this equation fails to describe the velocity and position of
a droplet that is ejected into a turbulent fluid, which is the case for most in-
stances analyzed in this study. However it can be useful if the spinning disk
is small enough that the Kármán flow is negligible.
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3.3 Results and discussion

3.3.1 Droplet size distribution

From the experimental data we are able to retrieve the histograms of the
droplets produced using spinning disks. Figure 3.7 shows droplet diame-
ter PDFs for two disk radii, R = 1 cm, and R = 4 cm, and a range of ro-
tation speeds. The particle size distribution functions show a large peak at
dp ≈1.5µm, which corresponds to particle disks without interference fringes.
These blank disks are produced by very small droplets, such images contain
too little information, and our algorithm decides on a fringe spacing which
equals half the droplet disk diameter. It must be noted that this peak, while
present in the histogram of the glass microspheres, is much higher in the case
of droplets produced by the SDAG. We believe this difference stems from the
presence of tiny droplets created during ligament breakup.

Particle disks with a single intensity minimum give rise to another para-
sitic peak at dp ≈ 5µm and dp ≈ 9µm, depending on the optical arrangement
used. Such images /are often the result of overlaps. For large enough mean
droplet diameters, the contribution of the satellite droplets can be observed as
a broad distribution centered at≈ dp/3 for theR=4 cm disk. This distribution
is much broader in case of the R = 1 cm disk.

Our image analysis algorithm finds a broad range of droplet sizes, apart
from a well-defined contribution of the main droplets. The corresponding
peak in the PDF has a significant width, with both peak position and width
quantified using a Gaussian fit. The results for the two disk diameters are
shown in Figure 3.8. The agreement with the predicted size is fair. Although
the cause of the discrepancy is not entirely clear, we believe evaporation might
explain the disparity.

The main droplets are fairly monodisperse; the width of the primary peak
in the PDF is about 7 µm for the smallest droplet size, and increases to ≈
10 µm for the largest ones. The peak positions and widths were quantified
using a Gaussian fit. The results for the two disk diameters are shown in
Figure 3.8, with the error bar indicating the full width half maximum of the
peak. The agreement with the predicted size is fair. Although the cause of
the discrepancy is not entirely clear, we believe evaporation might explain the
disparity.



3.3. Results and discussion 61

d (� m)

(a)

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

d (� m)

(b)

P
D

F
(1

/�
m

)

Figure 3.7: Particle diameter PDFs of droplets generated by spinning disks
with radius R = 4 and 1 cm for case (a) and (b), respectively. The angular
velocity of the disk decreases from top to bottom. For frame (a), the values
are ω = 3.7, 3.6, 3.1, 2.8, 2.2, and 1.2 × 103 s−1. At ω = 1.2 × 103 s−1, the
ligament number is Li = 3.5 × 10−5. In the case of frame (b) the rotation
speeds are ω = 7.6, 5.8, 5.1, 3.5, 2.2, and 2.1× 103 s−1. At ω = 7.6× 103 s−1,
the ligament number is Li = 3×10−3. For large enough mean droplet diameters,
the contribution of the satellite droplets can be observed as a broad distribution
centered at ≈ dp/3 for the R = 4 cm disk. This distribution is much broader in
case of the R = 1 cm disk. The greyed regions denote the droplet diameters that
are too small to be estimated correctly because particle disks contain less than
approximately one intensity minimum. The size of this region depends on the
optical arrangement used, for the region reaching to 10µm, a lens with 55 mm
focal length was used, while a 105 mm lens was used in the region reaching to
7µm.
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Figure 3.8: Symbols: Mean diameter of primary droplets as a function of an-
gular velocity for (a) R = 1 cm and (b) R = 4 cm. The error bars indicate the
standard deviation of the droplet diameters, which was obtained from a Gaussian
fit to the measured PDFs. Solid lines are the predicted diameters from Davies &
Cheah [56]. The measured droplets are consistently smaller than the prediction,
which could, partially, be explained by evaporation.

3.3.2 Satellite droplets
Satellite droplets are a result of ligament breakup. As a drop detaches from its
ligament, considerably smaller droplets emerge. Their size and quantity varies
depending on the liquid feed rate, normally falling between dp/2 and dp/4 [54].
In each experiment we find a large amount of droplets which are so small that
their size could not be determined, i.e. their images are uniform, without a
trace of an interference pattern. At low angular velocities, satellite droplets
should be big enough to be resolved in our optical setup, but the presence
of many blank droplet images suggests otherwise. These tiny droplets imply
the ligament breakup process is not a clean one, that is, more than one size
of satellite droplets exists, some being much smaller than the others. This is
illustrated in Figure 2 of Davies & Cheah [56], which shows a primary droplet
followed by several satellite droplets of different sizes as they detach from a
ligament.

Even though we have a low Ligament number, it appears that a large
amount of detected droplets are extremely small. According to Davies &
Cheah [56], if Li ≤ 3×10−3, only one or two satellites are expected per pri-
mary droplet. We see that satellites of about a half to a quarter of the primary
droplet diameter do appear in approximately the same quantity as the main
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droplets, but the smallest satellite droplets (blank disks) appear in consider-
ably larger amounts.

3.4 Conclusion
We presented an algorithm capable of automatically processing interferomet-
ric particle imaging data and test its functionality through simulated data as
well as calibrated glass spheres. The processing algorithm is capable of al-
most exactly reproducing the droplet distribution of the synthetic data for in-
terference patterns with two or more fringes, despite a high number of over-
laps. Overlapping particle images negatively impact the ability to reproduce
the particle distributions for small droplets, but this effect is small for large
droplets. The issue of overlap is circumvented in the processing algorithm by
‘locking’ to one of the overlapping images, allowing for the correct identifica-
tion of at least one droplet in the overlapping group. Using this algorithm we
analyze the droplet distributions produced by a spinning disk aerosol genera-
tor. The measured mean droplet diameter compares well with the predictions
of literature [56]. The width of the size distribution of the primary droplets
is approximately 3 µm. We find a large number of satellite droplets with di-
ameters dsat . 5µm, whose size could not be measured and are considerably
smaller than the expected satellite droplet diameter of dp/4< dsat < dp/2.
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CHAPTER 4

PHOSPHORESCENT FLOW
TAGGING †

In the previous chapter we have illustrated the experimental methods nec-
essary to establish the proper flow conditions that will allow us to test our
proposed phosphorescent tagging technique. The foreseeable applications for
this technique are varied: one can observe the dispersion of a cloud of parti-
cles, analyze the deformation of material lines of the dispersed phase, or fol-
low a specific set of droplets using particle tracking techniques, among others.
In the present chapter we focus on the workings of the tagging mechanism it-
self, as well as practical details about the phosphorescent solution, leaving
its application for later chapters. In Section 4.1 the photophysics involved in
the tagging process are briefly explored, and the distinction between fluores-
cence and phosphorescence is clarified. In Section 4.2 we give an overview
of Molecular Tagging Velocimetry; Section 4.3 addresses the characteristics
of lanthanide chelates and explains the optimization of the phosphorescent
solution. We close the chapter with conclusions in Section 4.4.

† This chapter done in collaboration with Thanja Lamberts.
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4.1 Photophysics

Photophysics describes the interaction between light (photons) and matter
(atoms or molecules). The photophysical properties of each molecule deter-
mine the wavelength and number of photons required to take it into a particu-
lar excited state. Quantum mechanics dictates there are a number of discrete
electronic states in which an atom or molecule can reside, with the ground
state, under normal circumstances, being the most probable.

Typically, atomic or molecular energy levels are illustrated schematically
using Jablonski diagrams like the one in Figure 4.1. Three distinct groups of
lines are shown, each representing (in this illustrative case) a particular spin
state, S0 being the singlet ground state, and the vertically ascending groups
symbolizing excited singlet (S) or triplet (T ) states of increasing energy. The
lines within these groups correspond to different vibrational states. Each
vibrational state has fine structure due to rotation, but this is omitted here.
Molecules in any state may transition to another state through interactions
with their environment. Not all transitions can take place, or are ‘allowed’, as
a result of symmetry constraints and selection rules that follow from theory.
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Figure 4.1: A Jablonski diagram illustrates the different molecular states. The
labels, S and T stand for singlet and triplet, and denote the total electron spin
state of a system. The numbers alongside each group of lines are the vibrational
quantum numbers.
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Symmetry restrictions for larger molecules can usually be neglected as these
molecules themselves are often no longer symmetric. One selection rule that
applies to every system is the selection rule for the net electron spin, which
states that electric-dipole-induced transitions cannot take place between en-
ergy levels of different spin state. This concerns, in first order, all radiative
transitions. In general, a real (and often unknown) energy level in a molecule
can be thought of as a combination of known theoretical energy levels with
various spins. This leads to forbidden transitions to be in fact observable,
although typically with low efficiency.

Phosphorescence typically arises from forbidden transitions. The low ef-
ficiency of these transitions has a negative effect on the excitation process
S0 → T1. Nevertheless, in our application, low efficiency can be beneficial in
the relaxation process, i.e. T1 → S0, since molecules will only slowly emit
photons as they relax. In molecules in which the excited singlet (S1,2,···) and
triplet states are strongly coupled, one can use the alternative route of Fig-
ure 4.1 to avoid the direct excitation process and indirectly create a pool of
highly excited (metastable) molecules. This is achieved by exciting S1, which
is quickly transferred to T1, where thermalization occurs so that the entire
population reaches T1(ν=0). This, too, is important since T1(ν=0) is lower
in energy than S1, therefore, with no energy-conserving way back to S1, the
excited pool is trapped in T1.

In what follows, a brief description of the main processes is given. For an
in-depth review of photophysics we refer the reader to [68, 69].

4.1.1 Photophysical processes

We consider three radiative processes: absorption, fluorescence and phospho-
rescence. Absorption is the process in which a molecule takes a photon and
reaches an excited state,

S0 + hν
ε−→ S1. (4.1)

The efficiency of the absorption process in Eq. (4.1) is measured by the ex-
tinction coefficient ε. Once a molecule is taken to an excited state, it can
return to its ground state through both radiative or non-radiative decay, that
is, through the release of energy in the form of a photon or as heat. In gen-
eral, this so-called relaxation can proceed via various pathways, as indicated
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in Figure 4.1.

S1
kF−→ S0 + hν (4.2a)

S1
knr1−−→ S0 + ∆Eb (4.2b)

S
k±ISCST←−−−−→ T + ∆Ec (4.2c)

T1
kP−→ S0 + hν (4.2d)

T1
knr2−−→ S0 + ∆Ee (4.2e)

M∗ +Q
kQ[Q]−−−→ M +Q(∗) + ∆EQ (4.2f)

Each decay process has a certain probability of occurrence, which is repre-
sented by a rate constant k. In an ensemble (population of molecules), all the
processes described by Eqs. (4.2) happen simultaneously at different rates.
Depending on the process being allowed or forbidden, the rate coefficient k is
large or small, respectively.

After absorption, the energy in the excited state can decay back to
the ground state through phosphorescence (Eq. (4.2d)), or fluorescence
(Eq. (4.2a)), or an inter-system crossing (ISC, Eq. (4.2c)) may occur. Note
that phosphorescence is usually preceded by inter-system crossing. Non-
radiative transfer of energy (Eqs. (4.2b) and (4.2e)) or energy flow through
highly energetic vibrations, can also lead to a decay from the excited state to
the ground state, which is accompanied by a release of surplus energy as heat.

4.1.2 Rates of decay

Fluorescence and phosphorescence are collectively known as luminescence,
and both are radiative decay processes. Atoms and molecules, depending on
their particular structure, can often be modeled as two- or three-level systems,
as shown in Figure 4.2 below.

The natural time evolution of the population of excited molecules or atoms
in a two-level system can be represented mathematically as

∂N2(t)

∂t
= −k21N2(t), (4.3)

resulting in an exponential decay: N2(t)∝ e−k21t. The addition of a third level
adds substantial complexity to the system, since two simultaneous processes
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Figure 4.2: Schematic representation of (a) two- and (b) three- level systems. In
our experiment we excite in 1→3 and observe in 2→1. 3→2 represents inter-
system crossing.

affect the decay of the excited population:

∂N2(t)

∂t
= −k21N2(t) + k32N3(t) (4.4a)

∂N3(t)

∂t
= − (k31 + k32)N3(t) (4.4b)

Integrating the above equations yields

N2(t) ∝
k32

k31 + k32 − k21
e−k21t

(
1− e(k21−k31−k32)t

)
(4.5a)

N3(t) ∝ e−(k31+k32)t. (4.5b)

Eqs. (4.5) show us a clear distinction between the decay rates of these two
different processes. The time constants for fluorescence and phosphorescence
are τf = 1/ (k31 + k32) and τph = 1/k21, respectively, which helps explain the
difference in the lifetimes between the two mechanisms; in general, τf � τph.

Both of these decay mechanisms can be used for fluid flow diagnostics,
each having advantages and disadvantages. Fluorescence typically has a
stronger signal intensity since all photons are emitted quasi-instantaneously,
while in phosphorescence a slower emission of photons translates into a
longer lasting signal with a significantly lower intensity.

4.2 Molecular tagging velocimetry
Now that we have a better, albeit limited, understanding of photophysical pro-
cesses, it is time to apply this knowledge to a flow diagnostic tool. Molecular
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tagging velocimetry (MTV) encompasses minimally or non-intrusive proce-
dures in which the photochemical characteristics of specific molecules, ei-
ther naturally occurring or added to the fluid, are exploited to get information
about the flow characteristics. The main advantage of this class of techniques
is the use of the fluid itself as a flow tracer; however, certain issues may arise
due to the excitation process. A brief explanation of the different MTV meth-
ods will be given below. For an in-depth analysis, we refer the reader to [70]
and references therein.

In a nutshell, the extraction of information consists of tagging a well de-
fined region of the flow and visualizing the tracers after a determined period
of time (Figure 4.3). Naturally, the experimental aspects will impact the mea-
surements, i.e. which components of the velocity can be extracted, the maxi-
mum tracking period, et cetera. Typically, the tagging step is achieved using
a focused pulsed laser, which allows for a well-defined region to be tagged
in a well-defined moment in time. The visualization or reading step can be
performed one or more times, depending on the lifetime of the tracer. With
this data, a Lagrangian displacement vector can be calculated, from which an
estimate of the velocity vector can be obtained.

t=0 t = ∆t

∆x(y)

x

y

t = 2∆t

∆x(y)

Figure 4.3: Schematic representation of molecular tagging velocimetry as a flow
diagnostic in channel flow. At t = 0 a straight line is tagged, after a short period
of time ∆t, the interrogation or reading step is performed. The displacement
vector ∆x can be used to determine the average velocity of the flow between the
writing and reading steps.

An important consideration is the pattern chosen for tagging, e.g. line,
cross, grid, etc., which will be used to determine certain properties of the flow,
and will limit access to some information. For example, in some instances, if
we choose to tag a line, information about the flow parallel to the line will not
be available.
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4.2.1 Tagging mechanisms

There are two main tagging mechanisms in molecular tagging velocimetry,
both of which start with one or several precursors. These are photochemically
manipulated by one of two options: 1) direct excitation of a precursor to cre-
ate a metastable state or 2) creation of a different chemical species through
photochemistry. Techniques such as RELIEF, LIPA and phosphorescence fall
into the first category. The second class includes PHANTOMM, APART, and
several other nitric oxide (NO) production techniques. Let us briefly look at a
some of these techniques.

LIPA (Laser-induced photochemical anemometery, Figure 4.4(a)) is based
on the detection of absorbance by using a tautomer—a structural isomer that
can rapidly interconvert due to proton transfer—as a tracer. The tracer M is
excited radiatively with photons of energy hν producing an excited molecule
M∗. This excited molecule then relaxes via non-radiative decay creating a
high-energy tautomer (the molecule consists of the same atoms connected
through different bonds). The absorption spectra of M and Ptaut are different,
allowing the use of white light to detect the excited tracer. The advantage of
this method is the long lifetime of Ptaut, which can reach several seconds be-
fore thermally converting back to M, while the drawbacks include the need for
two light sources, the poor solubility of known photochromic dyes in water,
and the low signal-to-noise ratio caused by the measurement of the difference
between the incident and the transmitted light instead of measuring an emitted
signal against a black background.

On the other hand, in RELIEF (Raman excitation plus laser-induced elec-
tronic fluorescence, Figure 4.4(b)) the precursor M is irradiated with radiation
of frequency ν0. Through Raman scattering, a vibrationally excited state M′

is created at a level ν0 − ν, which is a long-lived tracer that can be interro-
gated using a second light source producing hν ′. M∗ decays back to M via
fluorescence, making it possible to detect the displacement of the fluid. The
first step of this mechanism (hνex) requires a high power laser or a stimulated
Raman scattering setup to produce enough M′.

PHANTOMM—photo-activated non-intrusive tracking of molecular
motion—is schematically portrayed in Figure 4.4(a). This technique uses
‘caged’ fluorescent tracers to visualize the flow, falling into the second tag-
ging mechanism. The caging consists of attaching a deactivating group to the
tracer molecule, and removing this group photochemically. The removal is
irreversible, meaning that the fluid containing uncaged tracers can be tracked
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Figure 4.4: Schematic diagrams of the four general mechanisms used in MTV.
(a) LIPA and PHANTOMM, (b) RELIEF, and (c) direct phosphorescence.

indefinitely as long as the reading step is repeated. This can be advantageous
in instances such as channel flow, since it allows to observe the tagged fluid
for long periods of time, but requires replacement once a considerable amount
of tracer has been uncaged.

Direct phosphorescence, as illustrated in Figure 4.4(c), works by exciting
a molecule with photons of a specific energy, after which the tracer relaxes
by emitting photons of a different wavelength. As we have mentioned before,
due to the forbidden nature of most triplet transitions, direct phosphorescence
has a low efficiency. A more common approach involves a three-level sys-
tem as depicted in Figures 4.1 and 4.2(b), where the excited molecule usually
undergoes inter-system crossing and decays to the original state by emitting
photons of a different wavelength. From the different processes that have
been probed, this is the most accessible, requiring only one light source and
being directly detectable. As mentioned earlier, it has a relatively long life-
time. Also, the tracer returns to the ground state, meaning it can be reused.
The increase in lifetime comes at the price of lower efficiency in the form of
quenching and competing energy channels.

4.2.2 MTV applications

Many variations on the mechanisms presented above have been successfully
attempted. Different fluorescent or phosphorescent molecules are employed
to suit the particular needs of the flow in question as well as the properties of
the fluid itself. For an in-depth review, the reader is referred to [70]. Let us
revisit a few of these variations for illustration purposes.
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The development of the PHANTOMM technique by Lempert et al. [71]
was used to visualize tip vortices created by a wing in channel flow with two
different tagging agents: dextran carboxy fluorescein and 8-hydroxypyrene-
1,3,6-trisulfonic acid. The experiment consisted of tagging a thin line adja-
cent to the wing and perpendicular to the mean flow with a Nd:YAG laser
at 355 nm, and using a dye laser to interrogate the flow at a later time. The
technique was tested by measuring a well known velocity profile in Poiseuille
flow, agreeing well with theoretical predictions.

Other variations use naturally present compounds to obtain information
about the flow, e.g. creating nitric oxide (NO), which can easily be visualized
by laser-induced fluorescence, from N2 and O2 in air using an ArF excimer
laser and a dye laser for interrogation [72]. The technique was applied to a
laminar flow and a pulsed jet. This technique had the obvious advantage of
avoiding the addition of any seeding, since gases present in the flow are used
to determine characteristics of the flow. The problem with tagged molecules
in a gas is that written patterns blur because of diffusion. Since the ratio of the
diffusion rate of momentum (the kinematic viscosity) to the molecular diffu-
sion is approximately 1, this poses a fundamental limit on the visualization of
the smallest vortices of turbulence.

One more example of flow tagging, this time in a dispersed phase, comes
from a study performed by Krüger and Grünefeld [45], who used a Terbium-
based phosphorescent solution to estimate the velocity of droplets produced
by a fuel injector. The droplets were tagged by a laser grid and interrogated
twice after a single tagging event. Subsequent images were correlated in a
similar fashion as PIV, and the velocity field of the dispersed phase was ob-
tained. In this study, the authors stress the capabilities of flow tagging in dense
clouds. The volume tagged was in the central part of the cone produced by
the injector, however, the tagged lines were clearly visible and distinguish-
able from one another even though the space between them was only a few
millimeters.

4.3 Phosphorescent solution
As with any experiment, the (time and length) scales of the phenomenon of
interest set many of the study parameters. Our case is no different and, as
mentioned before, the Kolmogorov scales will define the resolution needed
to observe the droplet dynamics. In this regard, the phosphorescent solution



74 Chapter 4. Phosphorescent flow tagging

from which the droplets will be produced plays a crucial role in the proposed
diagnostic technique. It is its phosphorescence lifetime that will constrain
many of the parameters of the flow, and its intensity will affect the imaging
setup, more specifically, the gate time of the camera. Given the importance of
this component of the technique, it is critical to have a thorough characteriza-
tion of it, and optimize it to our particular application.

There are several lanthanide elements which have phosphorescent capabil-
ities. One of them must be chosen depending on several factors, e.g. toxicity,
ease of synthesis, lifetime, excitation and emission wavelengths.

4.3.1 Tracer characterization and optimization
The first and foremost characteristic we look for in a luminescent tracer
molecule is the emission of sufficient light. Secondly, the lifetime should
be compatible with the phenomena of interest. As previously mentioned,
quenching can significantly affect the phosphorescence lifetime of a molecule,
so it too should be considered. One should also keep in mind the complex-
ity of the synthesis of each solution, since chemical equipment might not be
readily available within our lab and a substantial amount of the solution could
be necessary.

Most of these requirements are met by some of the so-called lanthanide
complexes, and the use of one of these for droplet tracking has been suc-
cessfully demonstrated [45]. The lanthanides (from Lanthanum) or rare earth
metals, are the elements with partially filled 4f shell, which form stable triva-
lent cations, e.g. Ln3+.

Direct excitation of the ions proves to be difficult, but can be overcome by
making use of complexation, a typical feature of metal ions. The metal ion is
then surrounded by so-called ligands, typically organic molecules. The com-
plex thus consists of one or more metal centers and multiple ligands. Weiss-
mann was the first to note the effect of complexation as well as the importance
of solvent and temperature on Europium luminescence in 1942 [73]. Much
follow-up research has been performed since.

The various lanthanide elements emit at different wavelengths, ranging
from the ultraviolet (Gd3+) to the visible (blue, Tm3+; green, Tb3+; yellow,
Dy3+; orange, Sm3+; red, Eu3+) to the near infrared (Yb3+, Nd3+ and Er3+).
Several review articles concerning the quenching [74], the energy transfer and
various ligands [75] and design [76] of luminescent lanthanide complexes are
available. For the current study, we use Europium due to its ease of prepara-
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tion, well-separated excitation and emission wavelengths and the availability
of a light source with the required excitation wavelength (λex = 355 nm).

4.3.2 Sample preparation

The light-emitting Europium molecule Eu3+ is docked within one or more
ligand molecules, which serve as antennae to absorb energy from the laser
beam and transfer it to the lanthanide, which in turn emits this energy as
photons with a wavelength λem = 613 nm. The ligands used in this solu-
tion were thenoyltrifluoroacetone (TTA), which has a strong absorption peak
at 355 nm, and trioctylphosphine oxide (TOPO). Although the stoichiomet-
ric composition of the solution was found to be Eu(TTA)3(TOPO)2 by Arnaud
and Georges [77], it was also concluded that phosphorescence reached a max-
imum when the concentration of TTA was at least ten times that of Europium.
This is beneficial to our method since a stronger phosphorescent signal allows
for a longer tracking of the droplets. With this in mind, the solution used in
the present study was prepared taking the 10:1 ratio into consideration.

Two solutions were prepared and tested to assess dependence of signal
intensity and decay on the concentration of the ingredients. Before prepar-
ing the working solutions, stock solutions for each of the three components
were mixed separately. The Europium stock solution used distilled water as
a solvent and Europium(III) chloride hexahydrate, while the TTA and TOPO
solutions used ethanol; all stock solutions have a concentration of 10−2 M.
The working solutions used in the measurements were prepared by mixing
demineralized water with the necessary amount of each ligand solution. The
Eu3+ was added first, followed by the TTA and finally the TOPO, which did
not fully mix, creating a milky appearance. Finally, to clear the solution and
serve as a wetting agent, 0.1% v/v of Triton X-100 was added. The concentra-
tion of the components in the solutions is presented in Table 4.1 below.

Solution Eu3+ TTA TOPO
10−5M 10−4M 10−4M

1 8.3 8.3 8.3
2 1 1 1

Table 4.1: Concentration (molarity) of the components of the analyzed solutions.
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4.3.3 Signal intensity and saturation

Following on the characterization of the phosphorescent solution we test
phosphorescence intensity as a function of laser power as well as any self-
quenching effects on the decay constant. Saturation must be considered to
avoid using excess energy which could be scattered outside the cross section
of the laser beam resulting in widening or blurring of small features in the
tagging pattern. This, of course, depends on the scales of interest for each
particular experiment.

The measurements consisted on creating a light sheet with a pulsed
Nd:YAG laser (Powerlite Precision II 8010, Continuum, Santa Clara, CA)
to illuminate droplets and recording the phosphorescent signal using an in-
tensified high-speed camera (HiCAM 5000, Lamberts Instruments, Roden,
The Netherlands). The laser beam power was measured using a thermopile
power sensor (Coherent model PM10V1). Approximately 600 sequences of
ten frames each were recorded. The measurement was repeated for six differ-
ent power settings on the laser. The sequences were phase-averaged and the
intensity as a function of time was fitted with an exponential function. No ap-
parent effect of the laser power on the decay constant was evident. The values
of τph fluctuated around 654 µs without a particular trend, with the maximum
variation being approximately 6% of the mean. Figure 4.5(a) shows the decay
of the phosphorescence intensity of the case with power setting of 616 mW.
The signal to noise ratio is considerably reduced in the final data points, re-
sulting in a standard deviation with a higher value than the mean. Because of
this, error bars must be truncated when plotted on a logarithmic scale.

The intensity as a function of power shows a clear saturation trend. This
effect can be seen in Figure 4.5(b). Even though at the maximum tested
laser power a slight increasing trend can be observed, the intensity increases
marginally as the power is raised. The intensity was determined by averag-
ing over a small region of the frame (this helped increase the signal-to-noise
ratio).

The first data point in all of our decay measurements was consistently
higher than the fitted curve (see Figure 4.5(a)). This suggests a double expo-
nential trend as a result of a secondary process (possibly fluorescence). We
believe this does not significantly affect any of our results since the timescale
involved is much shorter than any timescale of the flow.

Both solutions show an almost identical decay constant, however, the in-
tensity of the signal increased substantially with higher Europium concentra-
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Figure 4.5: (a) Phosphorescence intensity as a function of time for case with
power of 616 mW, resulting in τph = 691µs.(b) Phosphorescent signal intensity
as a function of laser power for solution 1. Error bars for both cases are on the
order of the symbol size.

tion. When using solution 2, writing well defined volumes was not possible,
given the lower saturation threshold. That is, droplets outside the cross sec-
tion of the laser beam receiving only stray light had a similar intensity as those
within the beam. After this analysis, it was decided to use solution 1 for all
dispersed phase measurements.

Imaging a dynamic luminescent signal can present a few challenges, par-
ticularly in regard to the exposure settings of the camera. If one has an exces-
sively long exposure time the first few images could be overexposed, however,
if one has a short exposure, the frames recorded further into the sequence may
be too dark to yield any significant information. To counteract the signal de-
cay, we exponentially increase the exposure time of the camera. This allows
to record a longer sequence with a reduced difference in the signal intensity.
Two considerations must be addressed: 1) the possibility of imaging streaks
due to the rapid movement of the droplets and 2) the maximum length of
the exposure is tied to the frame rate of the camera. These concerns must
be addressed specifically for each measurement, seeing that their effects are
potential sources of error.
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4.3.4 Phosphorescent tagging in continuous phase
Even though the present study is focused on the application of phosphorescent
tagging in dispersed (droplets) phases, the Europium solution may be used as
a flow diagnostic in continuous (liquid) phases. Using solution 1 from Table
4.1 above, we inspect the behavior of the phosphorescent signal as a function
of power and the spatial uniformity of the emitted signal as a beam traverses
it.

We fill a (2×3×4 cm3) cuvette with phosphorescent solution 1, illuminate
it with a pulsed laser beam of approximately 8 mm diameter, and record the
intensity of the phosphorescent signal using an intensified camera with an
exposure time of 500 ns. To reduce noise and beam inhomogeneity effects,
we average the intensity values over a narrow rectangle (Figure 4.6(a)) as
well as only the incoming or outgoing half of the rectangle. The procedure is
repeated over a range of powers.
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Figure 4.6: (a) Excerpt of the image of tagged liquid in a cuvette showing the
thin rectangle over which the intensity was averaged, (b) phosphorescence in-
tensity as a function of power for solution 1. Error bars denote the standard
deviation of the pixel values within the averaged region.

It is evident from Figure 4.6 that intensity is lost as the beam traverses the
fluid in the cuvette. Also, it can be seen that the solution in the incoming side
of the cuvette quickly saturates. Similar measurements were tried with solu-
tion 2 (not shown), but the quick absorption of UV light by the solution due
to the high TTA concentration hinders a comparison between measurements.
The implications of these results are two: 1) a very high power laser or a very
thin beam is necessary to write a line of uniform intensity across a continuous
liquid phase and 2) low (high) Europium concentrations will allow (curb) the
phosphorescent tagging across relatively long sections of continuous liquid.
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4.4 Conclusions
Throughout this chapter we have presented the results of the characterization
of the Europium-based solution used in our tagging experiments. There are
multiple mechanisms applicable to molecular tagging velocimetry of which
some use fluorescence and some phosphorescence, each with its benefits and
disadvantages. Europium is one of many lanthanides that can be used for
MTV. Its decay constant in the particular solution used here, τph ≈ 650 µs,
appears to be a good match for the timescales of interest in our turbulent flow
(see Section 2.1). The intensity of the phosphorescence allows us to obtain
approximately 2 ms of data, which is approximately equivalent to 5τη.

We have also seen that concentration can play an important role in both
dispersed and continuous phases. Less concentrated solutions are suitable
for continuous phase tagging, while dispersed phases benefit from a more
concentrated solution. In addition, the concentration appears to have minimal
impact on the decay constant.
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CHAPTER 5

DISPERSION OF HEAVY
DROPLETS

Turbulent dispersion plays a crucial role in many natural and industrial pro-
cesses. In nature, animals rely on the dispersion of scents to locate both mat-
ing partners and prey [1], while mushrooms rely on turbulence to get their
spores transported away from their fruiting bodies [78]. In urban areas, the
dispersion of pollutants produced by cars and factories is of interest due to
health concerns [79]. Another important example is the dispersion of nuclear
particles or chemical agents after catastrophic events. Although apparently
similar, the above mentioned examples have fundamental differences that set
them apart. For once, the dispersion of a passive scalar—an agent that opposes
no resistance to the flow—can be considerably different than the dispersion
of inertial particles. Furthermore, these cases can also be classified as either
absolute or relative dispersion, depending on the reference frame used in the
analysis.

Briefly, absolute dispersion is concerned with the concentration of the
agent at a particular point in space, i.e. Eulerian frame. For example, the
concentration of dye as a function of time and position after a small ink blob
is released into a turbulent field. On the other hand, we have relative dis-
persion, where the relevant value is the distance between two particles, fluid
or otherwise, as they are advected by the flow. This, of course, is based on
a Lagrangian frame, since both particles are followed as they move around

81
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the flow field without regard of their absolute position. An extension of the
relative dispersion problem is the relative dispersion of a cloud or puff of par-
ticles, which could be seen as a collection of N(N − 1)/2 pairs for a cloud
of N particles, although in this case—depending on the size of the cloud—
particle pairs may be correlated with each other, which appears to be different
than taking many pairs that are uncorrelated from all other pairs.

Even though most of the examples presented above involve atmospheric
dispersion, which in most cases is inhomogeneous and anisotropic, experi-
ments in an idealized flow can provide insight into fundamental aspects of the
dispersion phenomenon in general. In our experiment, we are able to create—
without influencing the flow—a particle cloud within a turbulent field. This
allows us to look at the dynamics of the concentration of particles. It must be
noted, however, that the particles are not entirely passive, since their inertia is
enough to resist the fastest accelerations in the flow. As we have seen in Chap-
ter 1, dispersion has been of scientific interest for over 90 years [23]–[25]. In
this chapter we will revisit this longstanding problem. In Section 5.1 we will
give an overview of the existing background followed by a description of our
experiment (Section 5.2). Next, in Section 5.3, we will present the outcome of
our phosphorescence measurements, and complement these experiments with
PIV of heavy particles (Section 5.4) and with numerical simulations (Sections
5.5 and 5.6). We will close the chapter in Section 5.7 with a summary of the
results and concluding remarks.

5.1 Background

5.1.1 Absolute dispersion

The problem of turbulent dispersion was first addressed by G.I. Taylor [23]
in his classical paper Diffusion by continuous movements, where he explored
the evolution of a scalar field within a turbulent velocity field. In his study,
Taylor argues that the role of molecular diffusion is so small compared to that
of turbulent diffusion, that it can be neglected. This assumption allows scalar
particles to be treated as fluid particles, translating into the possibility of ap-
proaching the issue through the probability density function of the Lagrangian
position of the fluid particles.

For a point source, the probability fx(x; t|Y0) that a fluid parcel is found
at x at time t, given it was at Y0 at t = 0 is equal to the density φ(x, t) of a
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scalar released from the origin. We are interested in the moments of fx. The
probability density fx can be physically interpreted in the following way: if at
time t = 0 we release a blob of dye from a point Y0 then, as time progresses,
we would see the blob expanding in such a fashion that the amount of dye
along any straight line crossing Y0 would have a profile equal to the PDF
fx(x; t|Y0).

The second-order moment of the particle position 〈x2ii(t)〉 follows from
the dynamics xi(t) = xi(0) +

∫
ui(t

′) dt′,

〈x2ii(t)〉 = 〈x2ii(0)〉+ 2

∫ t

0

∫ t

0

〈ui(t′)ui(t′′)〉dt′dt′′, (5.1)

where 〈x2ii(0)〉 can be interpreted as the squared size of the initial cloud. As-
suming stationarity of the turbulence statistics, 〈ui(t′)ui(t′′)〉 depends only on
the time difference t′′ − t′, and

〈x2ii(t)〉 = 〈x2ii(0)〉+ 〈u2i 〉
∫ t

0

(t− s)Rii(s)ds, (5.2)

with the Lagrangian velocity autocorrelation function defined as

Rii(s) =
〈ui(s)ui(0)〉
〈u2i 〉

. (5.3)

For very short times (s� Tii) the normalized correlation function Rii ≈
1, and the dispersion proceeds ballistically,

〈x2ii(t)〉 = 〈x2ii(0)〉+ 〈u2i 〉t2, (5.4)

while for very long times t,

〈x2ii(t)〉 = 〈x2ii(0)〉+ 2〈u2i 〉Tiit. (5.5)

where Tii =
∫∞
0
Rii(s)ds is the Lagrangian integral time, also known as the

large-eddy turnover time.
The above relations apply to fluid parcels, and their accuracy in describing

trajectories of heavy droplets is not guaranteed, given that inertial particle
trajectories deviate from those of tracers. Particle velocity fluctuations are
expected to be smaller than its fluid parcel counterpart due to the smoothing
effect of the increased reaction time originating from the inertia. The Stokes
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number quantifies the inertia of a particle. Higher Stokes numbers indicate a
larger reaction time, whereas tracers have Stokes number zero.

Evident from the above analysis is the fact that the autocorrelation func-
tion lies at the core of the dispersion problem. Prompted by this premise,
Snyder & Lumley [31] studied the autocorrelation function of heavy particles
within grid turbulence in a vertical wind tunnel. Particles with different den-
sities (glass, pollen and copper) and diameters (47 and 87 µm) were used in
order to explore the autocorrelation function of particles with equal Stokes
number but different diameters and viceversa. This analysis concluded that
the autocorrelation decreases much faster for heavier particles than it does for
fluid tracers (47 µm hollow glass beads). The decrease was linked to inertia
effects and a gravitational phenomenon referred to as ‘crossing trajectories’.
Inertia effects are the result of heavy droplets resisting sudden accelerations,
thus filtering out the fastest scales in the flow. The crossing trajectories effect
is observed when, due to the terminal settling velocity induced by gravity, a
particle that otherwise would have remained within an eddy throughout its
turnover time, crosses from one eddy to another, decorrelating itself from its
initial velocity much faster. Due to the decaying nature of grid turbulence it
was not possible to characterize the particles with a single Stokes number, but
an estimate gives St≈ 0.15 for the hollow glass spheres and St≈ 4.22 for the
copper particles, on average.

A correction of the autocorrelation function was necessary given the de-
caying nature of grid turbulence. The adjusted values show a considerable
decrease in the autocorrelation of particles as their inertia increased. The
particle dispersion also saw a decrease. It must be noted that the terminal
settling velocity of the heavier droplets was over three times the turbulent ve-
locity fluctuations, which can have a considerable impact on droplet behavior,
for example, preferential sweeping [30, 29]. In our experiments, the heaviest
droplets have a settling velocity of approximately 1% of the turbulent velocity
fluctuations.

Many other studies have been dedicated to the analysis of dispersion of
heavy particles (see [14] and references therein), but most of them have fo-
cused on times t ∼ TL. Such studies agree on the conclusion that heavy
droplets may disperse faster than their massless counterpart due to the effects
observed by Snyder & Lumley [31]. The question is: at times t ∼ τη, will
heavy particles disperse faster or more slowly than tracers? It is the aim of
this chapter to look at the dispersion of heavy droplets at the shortest timescale
of the flow, namely the Kolmogorov timescale. We wish to quantify the dif-
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ference in the dispersion of heavy droplets versus the theoretical expectation
of fluid particles with zero diffusivity. To do this, we set up an experiment
using the aforementioned phosphorescent tagging method (Chapter 4).

Before we engage in the experimental details, let us consider three in-
stances in the Stokes parameter space to aid in the understanding of the effects
increased inertia brings with it. When St→0 the autocorrelation of tracers
and particles is identical. As the Stokes number becomes finite, there are two
competing forces affecting the autocorrelation: since inertia prevents sudden
changes in velocity, the value of R(p) tends to increase with inertia. However,
the converse is true for the crossing trajectories effect.

These two counteracting effects are influenced differently by inertia,
meaning that one may overpower the other as inertia is further increased.
Lastly, for particles that are very massive (St→ ∞) R(p)(t) = 1 and R(f)(t)
becomes the Eulerian autocorrelation function since the particle becomes in-
susceptible to changes in the flow, maintaining its velocity for longer peri-
ods of time. These effects will obviously modify the dispersion statistics
of heavy particles, nevertheless, the quantification of this difference remains
unanswered.

The great advantage of our tagging technique is that creating the initial
condition does not perturb the flow, unlike the experiments by Gopalan [32],
where drops of light fluid were injected into the turbulent flow. Nevertheless,
some aspects of the initial condition must be considered. Naturally, our initial
puff of particles is not point-like, but has the shape of a sausage. The droplets
within this cylinder are not a collection of independent point-sources, as the
length of the cylinder can be compared to the integral length scale. This may
influence the rate of increase of the width of the cloud. Moreover, the cloud
spans the entire frame along its axial direction, which may also cause an ar-
tificial widening when the sausage is smashed along its axis due to influence
of the large-scale flow fluctuations. Finally, the tagged droplets already par-
took in the turbulence, which implies they may have undergone preferential
concentration, and may sit in regions of the flow that have a rate of strain
which is different from the average [19]. Therefore, the spreading of a tagged
cloud provides a biased view of dispersion compared with a cloud which is
initialized freshly.
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5.1.2 Relative dispersion
Our analysis is mostly based on absolute dispersion, i.e. in the Eulerian frame
of reference. For completeness, however, we will give a brief overview of rel-
ative dispersion. For an in-depth review, we refer the reader to recent reviews
by Sawford [80] and Salazar & Collins [81].

Richardson’s seminal paper [24] set the foundation for the study of relative
dispersion; both the separation of a particle pair as well as the statistics of this
value for a cloud of particles were addressed as diffusion of a passive scalar.
In this study it was concluded that the mean square separation

〈∆(t)2〉 = (r1(t)− r2(t))2, (5.6)

would grow as t3. This conclusion was later refined by Obukhov [82], finding
a dependence on the dissipation rate ε, resulting in

〈∆(t)2〉 = gεt3, (5.7)

where g is a universal constant. Neither of the above authors included the
initial separation as a variable in their studies, which proved essential when
within the inertial range.

It is known that the velocity of two neighboring fluid parcels will be cor-
related for a time comparable to the turnover time of the largest eddies of the
flow TL. This introduces a ‘memory’ effect to the fluid parcels. Within the
inertial range, two particles situated a distance ∆0 apart will remember for a
time comparable to the turnover time of an eddy size l0=∆0. Meaning that it
will take longer for them to forget their initial relative velocity as their initial
separation is increased. To account for this memory effect, Batchelor [25]
resorted to the second-order Eulerian structure function to develop a relation
in which the initial separation of the fluid parcels plays a role in the growth
of the distance between them, and only after time t0 = (∆2

0/ε)
1/3 will the

Richardson-Obukhov scaling be observed. For t < t0, Batchelor’s prediction
is 〈

[∆(t)−∆0]
2〉 =

11

3
C2 (ε∆0)

2/3 t2, (5.8)

where C2 is the constant found in the second-order structure function and has
an approximate value of 2.1.

Recently, an experimental study performed by Bourgoin et al. [26]
confirmed the existence of the Batchelor scaling and was able to detect a
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Richardson-Obukhov scaling for a very limited number of cases. It was sug-
gested that in order for the t3 scaling to be observed over an ample range
of initial separations, a large difference between the three relevant timescales
TL, t0 and τk was necessary. Also, it was stated that even in the most turbulent
flows encountered in nature (Reλ ∼ 1000), the separation of these timescales
scales would be modest.

Bec et al. [18] performed a numerical study of the dispersion of tracers
and heavy particles in a turbulent flow over a range of St and initial separa-
tions. Their initial separations ranged from l0 < η to l0 = 6η. They used such
low initial separation values to assess the impact of caustics in the evolution
of ∆(t). A noteworthy result is that the tracers show no sign of a Batchelor
regime (∝ t2) for either separation, going into a Richardson regime (∝ t3)
after 10η. This does not agree with the findings of Bourgoin et al. [26]. How-
ever, this difference might arise due to the relatively large initial separations
(∼ 10η) in the experiment. Smaller initial separations result in smaller t0, al-
lowing the particles to ‘forget’ their initial correlation, and enter Richardson’s
regime more quickly.

5.2 Experiment and data processing
The experiment consists of filling the turbulence chamber with phosphores-
cent droplets and tagging a narrow cylindrical volume using a laser. As the
glowing droplets are advected by the flow, images are recorded, allowing us
to follow the droplets emerging from this ‘line-source’.

Tagging is done using a high-power, frequency tripled Nd:YAG pulsed
laser (Powerlite Precision II 8010, Continuum, Santa Clara, CA) at a rate of
10 Hz and a power output of approximately 120 mJ/pulse (355 nm wave-
length). The recording begins 0.5 µs after the laser shot, for which an inten-
sified CMOS camera was used (HiCAM 5000, Lamberts Instruments, Roden,
The Netherlands). The intensifier is necessary due to the low light intensity
emitted by the glowing droplets. The signal intensity is further reduced by the
short exposure time derived from the high frame rate. The recordings have a
frame rate of 5000 FPS with a 512×512 pixel2 resolution. The field of view
is a 32×32 mm2 window, resulting in a magnification of 64 µm/pixel.

The tracking of the particles is not meant in a strict sense as in PTV.
Rather, it is the signal intensity of the images which is used to determine
the width of the cloud as a function of time. For every case, a series of 3275
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sequences is recorded, each containing 18 frames. This procedure is repeated
for different Stokes numbers to estimate the effect inertia will induce. The
particle diameters for each case, together with the resulting Stokes number,
are listed in Table 5.1. As mentioned in Section 3.2.3, there are slight differ-
ences in the turbulence statistics among cases due to the fine-tuning necessary
to balance the speaker forcing with the perturbation created by the spinning
disk aerosol generator.

Case 1 2 3 4 5
dp (µm) 11.0 15.4 16.5 18.8 21.9

St 0.95 1.67 1.86 2.43 3.15

Table 5.1: Particle diameter and resulting Stokes number for each one of the
studied cases. Information about the turbulence statistics is presented in Chapter
2.

The concentration of droplets is estimated with two different procedures.
The first one consisted of counting droplets from PIV-like images. Each im-
age is processed with a particle locating algorithm from which an average
quantity is obtained. The volume is approximated by the area of the field of
view and the thickness of the laser sheet. This yields a mean inter-particle
separation of approximately 30 particle diameters. This method, however,
cannot distinguish between primary and satellite droplets, since it uses diffrac-
tion (not phosphorescence) to image particles, making satellite particle detec-
tion possible. Nevertheless, we are interested in the concentration of primary
droplets. Additionally, we believe that satellite droplets are small enough to
be disregarded in our volumetric fraction calculation. The signal intensity of
phosphorescent particles is proportional to their volume, that is, d3p, therefore
we expect the phosphorescence signal intensity of satellite droplets to be less
than 30 times that of primary droplets, thus having little effect in our analysis.

A second method, which is more appropriate for the scenario at hand, is to
determine the particle concentration from the approximate number of droplet
collisions with the wall. Since the signal intensity of our data remains rel-
atively constant throughout the experiments, this means that the number of
collisions per second is approximately equal to the number of droplets gen-
erated in the same time. The feed rate of liquid to the aerosol generator Q is
known, therefore we can estimate the number of droplets generated (assuming
all the liquid is used in primary droplets). From kinetic theory we can readily
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prove that the number of collisions to the wall Nc can be approximated by

Nc ≈
vAchn

2π1/2
, (5.9)

where v is the rms velocity of the particles, Ach is the area of the walls of the
chamber, and n is the particle density. By equating Eq. (5.9) to the number
of droplets generated Ng = Q/(πd3p/6), we estimate the particle density to be
172 particles/cm3. This is equivalent to a volume fraction of approximately
7.2×10−7. This value falls under one-way coupling according to Sommerfeld
[83]. From the volume fraction, we estimate an average inter-particle distance
of approximately 90 particle diameters. We see that the particle counting
method overestimates the volume fraction of droplets, and as such, it is not
suitable to our circumstance. The big difference between the two methods
is that even though satellite droplets have a tiny volume in comparison with
primary droplets, they are still detected by the particle detection algorithm.

In Chapter 4 we addressed the characteristics of the phosphorescent so-
lution, where it was shown that it has an exponential intensity decay. To
counteract the decaying intensity of the glowing droplets we use a Field Pro-
grammable Gate Array (FPGA) board, which externally controls the intensi-
fier gate time. This allows us to exponentially increase the exposure within a
sequence in order to compensate for the decrease in the intensity of the phos-
phorescence. For all five cases the first frame has an initial exposure time τ0 =
40 µs. The exposure time is increased exponentially in the following frames
proportional to the phosphorescence lifetime τph ≈691µs. Once the exposure
time reached the limit set by the frame rate (200 µs at 5 kHz), the exposure
time was held constant at 199.5 µs, 0.5 µs less than the inter-frame time.

The data was processed in a phase-locked fashion, that is, the nth frame
of each sequence (where n = 1, 2,· · · , 18) is superimposed with the corre-
sponding frame of every sequence in the entire series. After all sequences
have been accounted for, an average is obtained for each time delay within
the sequence. Figure 5.1(a) shows a single shot of the tagged volume. Be-
cause of the intensity decay in time, the signal to noise ratio is dramatically
reduced as the end of the sequence is approached, which can have an impact
on the fit quality. To increase the signal-to-noise ratio, each image from the
averaged sequence is further averaged along the (horizontal) x-direction. Any
streaking due to the relatively long exposure time does not affect the results,
since, by superimposing all images, data about each particular droplet is lost.

The optical setup introduced aberrations resulting in a slight deformation
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(a) (b)

x

y

Figure 5.1: (a) Single shot of the tagged volume. The sparseness of the droplets
can be appreciated. (b) Resulting intensity map after phase-averaging showing
the backbone (solid white). It can be observed that, due to optical aberrations,
the line appears bowed. This is corrected by straightening the backbone and
shifting the intensity profile accordingly.

of the registered image, making the line appear bowed (Figure 5.1(b)). To
avoid an artificial widening of the profile, this anomaly was rectified by find-
ing the intensity peak along sections of the image in the x-direction, with
every resulting peak becoming a node in the backbone of the line. The back-
bone was then aligned with the x-axis, resulting in a straight line .

In order to quantify the dispersion we want to measure a characteristic
length scale of the tagged cloud as a function of time. The shape of the laser
beam sets the initial intensity profile, which may or may not be Gaussian.
In the case of a Gaussian profile, the two-dimensional projection is also a
Gaussian profile, however, other beam shapes translate into more complex
profiles.

A diffusive process evolves in a Gaussian fashion. In the present study, we
expect to see diffusive spreading of the tagged cloud. If our initial condition
is given by some profile P (y, z), the evolution of the profile will follow

I(y, z) =
1

πσ2

∫
P (y′, z′) exp

(−(y − y′)2 − (z − z′)2
σ2

)
dy′ dz′,

where x, y and z follow a right-handed coordinate system as in Figure 5.1(b).
Because of experimental setup limitations, we have no information about the
depth (z-direction) of the cloud, so that we must integrate the above equation
over z, to obtain

I(y) =
1

π1/2σ

∫
P (y′) exp

(−(y − y′)2
σ2

)
dy′, (5.10)
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where P (y) =
∫
P (y, z)dz. In general, the projection of a rotationally

symmetric profile is called an Abel transformation. For arbitrarily widen-
ing sausages, an initial radial profile must be determined through the inverse
Abel transform, after which the temporally evolved profile must be compared
to the experiment through a forward Abel transform. For Gaussian spreading,
this tedious procedure can be circumvented, as Eq. (5.10) demonstrates.

The initial profile in our experiments is not exactly a Gaussian, but could
be represented well by a Voigt profile, which is the convolution of a Gaussian
and a Lorentzian,

P (y) = Ap
γ

σ0π
3/2

∫ ∞
−∞

(
1

γ2 + (y − y′)2
)

exp

(−y′2
2σ2

0

)
dy′,

where Ap gauges the intensity and σ0, γ are the parameters that were deter-
mined from the initial profile using a least squares procedure. Substitution in
Eq. (5.10) results in

I(y) = Ap
γ

σ2π3/2

∫
1

γ2 + y′2
exp

(−(y − y′)2
σ2
0

)
dy′, (5.11)

where we have trivially replaced σ2(t) + σ2
0 by σ2(t). At later times we must

determine Ap and σ, and, in addition, allow for a background B and a shift y0
of the line due to a residual mean velocity. Because of the decaying phospho-
rescence the integrated line intensityAp decreases exponentially in time, after
correcting for the increasing exposure intervals. Also the background (dark)
intensity increases slowly during the lifetime of the tagged pattern. Summa-
rizing, a least-squares fit provided the time-dependent values of σ, y0, Ap,
and B.

5.3 Experimental results and discussion
We expect the dispersion of heavy droplets to deviate from that of fluid tracers
as a result of droplet inertia. As the Stokes number increases, we anticipate
these effects will become more apparent. In the Eulerian frame, we foresee a
t2 dependence of the widening of the phase-averaged cloud. Figure 5.2 shows
the phase-averaged intensity profile of the cloud for the first six time steps of
case 5 (St = 3.15). We can see that the quality of the fit is very good, which
is true for all cases; however, these are not shown for brevity.
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Figure 5.2: Cloud profile (solid line) and corresponding fit (dashed line) for
case 5, (a)–(f) for time steps corresponding to t = 200–1200µs in increments of
200µs.
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We quantify the width of the line with σ2(t), as defined in Eq. (5.11),
however, we subtract the initial width σ2

0 for easy comparison among cases
(see Figure 5.3). Clearly, σ2(t) increases proportional to t2, σ2(t) − σ2

0 =
v2st

2, where vs is the spreading velocity. For fluid tracers, vs is the turbulent
velocity u. Below, we will discuss a similar experiment which follows true
fluid tracers. As Figure 5.3 demonstrates, vs is always larger than the turbulent
velocity u, and reaches a maximum at St ≈ 2.

An outstanding result is the appearance of a peak in the dispersion as a
function of Stokes number. In Figure 5.3(b) it can be observed that the par-
ticles with the lowest and highest Stokes number show a significantly slower
dispersion than the particles with intermediate inertia. This suggests an op-
timum dispersion at St ≈ 2. The mechanism behind the faster dispersion is
unclear, as it is well established that the rms velocity of heavy particles is
lower than that of fluid tracers.
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Figure 5.3: (a) Cloud width as a function of time σ2(t)− σ20 for different Stokes
numbers. Dotted line marks t ≈ 1.6τη. (b) Cloud width as a function of Stokes
at t = 800µs indicated by the dotted line.

Before discussing this remarkable result, let us first describe the analogous
fluid-particle experiment. In this experiment, we create a thin line of nitric
oxide (NO) molecules in air with an excimer laser using a technique which
has been described elsewhere [84]. These NO molecules, which are faithful
tracers in air, are then made visible using fluorescence induced by a second
(dye) laser, whose beam is expanded wide enough to embrace the tagged line
as it has been deformed by the turbulent flow. The initial profile is Gaussian
(i.e. γ = 0), but otherwise the analysis of this experiment proceeds in exactly
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the same way. The result is shown in Figure 5.4. At t ∼ 2τη the line has
widened so much that the slightly non-homogeneous profile of the dye laser
becomes visible. In this experiment the spreading velocity us/u ' 1.05.
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Figure 5.4: The width of averaged lines in a fluid tracer experiment as a function
of the delay time t between writing and reading. (a) Full lines are measured
profiles at t = 0.2, 15 and 30µs (t/τη = 0, 1.1, 2.1). Dashed lines are Gaussian
fits I(y) ∝ exp(−y2/σ2). (b) Dots are widths σ(t)2 − σ(0)2, dashed line is
σ2(t)− σ20 = 2u2 t2, with u = 12 m/s.

For droplets, Figure 5.5 shows that the ratio vs/u may reach vs/u ≈ 1.5.
This is a surprising result, since it is commonly believed that the fluctuating
particle velocity 〈vs〉 ≤ 〈urms〉 as a result of the filtering effect of inertia. We
estimate vs by fitting a function to the quantity σ(t) − σ0. It can be seen that
in all of the cases 〈vs〉 > 〈urms〉.

Even though there are fundamental differences between the study per-
formed by Gopalan et al. [32] and our experiments, we can resort to their
results to obtain clues regarding this anomaly. They found the turbulent ve-
locity fluctuations of diesel droplets to be up to 10% higher than those of fluid
tracers. This also contradicts the common notion that the ui > vi. The two
main differences between the studies are the size of the droplets in comparison
to the Kolmogorov length scale η and the effect of buoyancy.

The size of the droplets can have considerable repercussions on the dy-
namics of the particle, as more of the forces outlined in the equation of motion
of a sphere (Eq. (1.10)) become important. In our experiments, the value of
η remains close to constant. However, the droplet diameter doubled from the
lowest to the highest Stokes number. For dp ≈20µm, dp/η ≈ 1/4, which may



5.3. Experimental results and discussion 95

0.5 1 1.5 2 2.5 3 3.5
1.5

2

2.5

3

St

〈v
〉(

m
/
s)

Figure 5.5: Spreading velocity of droplet vs (symbols) compared to the turbulent
velocity fluctuations (dashed). We see that the difference reaches almost 50% for
case 3 (St ≈ 2).

not be low enough for a point-particle approximation. Two of the neglected
forces in the Maxey & Riley equation are affected by the droplet size. The
Faxén correction accounts for the local curvature of the velocity field, which
can induce lift forces on the droplet. For highly turbulent velocity fields the
effect of the Basset history force, which accounts for transients in the de-
velopment of the boundary layer around the particle, can be challenging to
calculate, and is usually neglected or estimated using models of particles in
chaotic fields. However, it has been pointed by Daitche & Tél [10] that the
history force may become important even for relatively large, heavy particles.

In the case of diesel drops, the added mass becomes important, given the
density ratio between diesel and water is close to unity. We do not expect
this term to affect water droplets in air given such high difference between the
densities of these fluids.

Another explanation may be that a tagged cloud gives a biased sampling
of droplet, a bias induced by preferential concentration. At the moment the
cloud is tagged,the droplets are not homogeneously distributed. The droplets
have been suspended in the flow for a relatively long time, and the effects of
turbulence may have become apparent in the form of droplet agglomeration in
regions of high strain [19]. These regions have a higher stretching rate [27],
which could result in faster separation of droplet clouds.
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5.4 PIV of heavy particles

A complementary experiment that may help explain the faster dispersion of
heavy particles was the measurement of the velocity field of droplets through
particle image velocimetry. The setup for this experiment is exactly equal to
that explained in Chapter 2, and only case 2 was analyzed. Measurements un-
der the exact same conditions were performed for tracers (smoke) and heavy
particles. A remarkable difference was found in the structure functions and,
consequently, in the energy dissipation rate. Additionally, a slight increase
was seen in the turbulent velocity fluctuations of the heavy droplets as com-
pared to tracers.

The rms velocities saw a slightly anisotropic increase, with a higher in-
crease in the vertical than in the horizontal direction—possibly due to gravity.
The magnitude of the increase was approximately 5% and 10%, respectively.
This modest increase, however, cannot explain the increase of the energy dis-
sipation rate, which amounted to almost 80%. This increase in the dissipation
rate, we believe, can be explained by the increase in the velocity differences
(structure functions), shown in Figure 5.6, which is in agreement with the
findings of Bec et al. [85], and can be explained by the existence of caustics
in the particle velocity field. Such singularities manifest themselves as par-
ticles with finite velocity differences even when their separation approaches
zero.
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Figure 5.6: Comparison of structure functions of tracers (dashed) and heavy
(solid) droplets. The increase in velocity differences may be explained by the
appearance of caustics in the particle velocity field.
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As we have seen in Section 5.1, the cloud width σ(t) depends on the tur-
bulent velocity fluctuations, so higher rms velocities translate into faster dis-
persion. Nevertheless, the increased velocities experienced by heavy droplets
are substantially lower than the spreading velocities seen in Figure 5.5, which
cannot fully explain the rapid dispersion observed in our measurements. How-
ever, we believe the increase in velocity differences may, in part, explain the
increase in dispersion, since droplets with higher relative velocities will more
quickly increase their separation.

5.5 Numerical simulations

The dispersion of drops and fluid elements is described by the velocity cor-
relation functions. The short-time dispersion, 〈x2〉 ∼ t2, follows from the
short-time behavior of the correlation function, while the long-time diffusive
spread is related to the integral times of the correlation function. We can
distinguish between the correlation of fluid-element velocities u, the fluid ve-
locity at the position of the particle u0, and that of the particle velocity v. For
simple linear Stokes friction, it can be readily shown that [14]

〈v(t+ τ)v(t)〉 ≡ R(p)(τ) =
1

2τp

∫ ∞
−∞

exp

(− |t′ − τ |
τp

)
R(f)(t′)dt′, (5.12)

which relates the particle velocity correlation function R(p) to the correlation
of the fluid velocities at the location of the particle R(f) and where τp is the
particle relaxation time, τp = (ρpd

2
p)/(18µ).

At τ = 0 we have the fluctuating velocity of the particle,

〈v2rms〉 =
1

2τp

∫ ∞
−∞

exp

(− |t′|
τp

)
R(f)(t′)dt′. (5.13)

SinceR(f)(0) = 〈u20〉, this implies that 〈v2〉 ≤ 〈u2rms〉. More specifically, if we
assume an exponential form for the fluid correlation as seen by the particle,
R(f)(τ) = 〈u20〉 exp(−τ/T f ), which defines T f as the associated integral
time, it can be shown readily that

〈v2rms〉 =
〈u20〉

(τp/T f ) + 1
. (5.14)
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Using Eq. (5.12) it can also be readily shown that∫ ∞
0

R(p)(t′)dt′ =

∫ ∞
0

R(f)(t′)dt′. (5.15)

Since many of these quantities are not accessible in an experiment, it is
useful and instructive to compute them from numerical simulations. To obtain
numerical information, we resort to a set of data available in the iCFDdatabase
(www.cineca.it), which consists of Lagrangian tracks of particles in homoge-
neous, isotropic turbulence with zero-mean flow for several Stokes numbers.
A brief account of the details about the simulations will be given here, for
more information the reader is referred to [18]. The turbulent velocity field is
obtained through direct numerical simulations (DNS) using a pseudospectral
method. It uses a grid of 20483 points with a Reλ = 420. The time resolution
of the numerical experiment is τη/200. The Lagrangian timestep is equivalent
to τη/20. Lagrangian tracks are calculated using the point-particle approxima-
tion (Eq. (1.11))

dvi
dt

=
1

τp
(ui − vi).

Initially, the particles are seeded randomly throughout the flow and given the
local fluid velocity. However, the particle statistics are calculated after a ‘ther-
malization’ period which allows the particles to forget their initial condition.
The database includes the position of the particle, its velocity v and the veloc-
ity of the fluid at the position of the particle u0. It also includes the instanta-
neous accelerations of the particle, however, we do not use this information.
The turbulence statistics are shown in Table 5.2 below.

〈urms〉 Reλ ε η τη L TE

1.4 420 0.88 2.8×10−3 2×10−2 3.14 2.2

Table 5.2: Particle diameter and resulting Stokes number for each one of the
studied cases. Information about the turbulence statistics is presented in Table
2.2.

From these data sets we calculate the autocorrelation function of the par-
ticle R(p)

ii (τ) and of the fluid seen by the particle R(f)
ii (τ). Additionally, using

the case for St = 0, we calculate the autocorrelation of a fluid tracer Rii(τ).
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We also calculate the cross-correlation between the fluid velocity and the par-
ticle

Ruv(τ) =
〈u(0)v(τ)〉
〈uv〉 , (5.16)

which gives us information about the time it takes a particle to decorrelate
from its surroundings.

5.6 Numerical results
The Lagrangian statistics of the flow are calculated with fluid tracers, i.e.
St = 0. We also calculate statistics for seven other Stokes numbers: 0.16,
0.6, 1.0, 2.0, 3.0, 5.0, and 10.0. The velocity fluctuations of the fluid trac-
ers 〈urms〉 = 1.4. This is calculated by averaging over all three components√
u2x + u2y + u2z/3. The velocity fluctuations of the particles 〈vrms〉 and those

of the fluid at the position of the particle 〈u0〉 are shown in Figure 5.7(a) as a
function of Stokes number. As expected 〈vrms〉 decreases considerably with
inertia, while 〈u0〉 remains almost constant.

The prediction of Eq. (5.14) is shown in Figure 5.7(b) together with the
measured velocity. The difference is substantial due to the fact that it lays
on the assumption that the correlation R(f) has an exponential form. As the
inertia increases the correlation moves away from this assumption and the dif-
ference between the prediction and the measurement increases substantially.
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Figure 5.7: (a) Velocities as a function of Stokes number. It can be seen that
the velocity of the particle 〈vrms〉 decreases with inertia, while the velocity of
the fluid at the position of the particle remains (almost) constant. (b) Prediction
of the particle velocity velocity from Eq. (5.14) and those measured from the
simulations.
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Intuition tells us that a heavy particle will resist changes imposed by its
surroundings. This means that the autocorrelation of a heavy particle should
be higher than that of a fluid tracer. Figure 5.8 shows the autocorrelation
for the particle and the fluid at the position of the particle. Our results agree
with notion that the autocorrelation for particles is higher than that of a tracer,
however, this is not entirely clear from Figure 5.8(a) due to the normalization
with the corresponding integral timescale. Nevertheless, the inset of the figure
shows a clear increase in the integral timescale T (p). On the other hand, the
autocorrelation of the fluid velocity at the position of the particle—shown
in Figure 5.8(b)—displays a different behavior. For small Stokes numbers,
R(f)(τ) increases with inertia, however, after a critical value is reached, we
see a decrease in the correlation. This agrees with the notion of crossing
trajectories, where a particle moves across eddies due to inertial effects. Even
so, the crossover does not seem to affect the particle correlation, which keeps
increasing with Stokes number.
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Figure 5.8: Normalized Lagrangian autocorrelation function for particles (a)
and fluid at the position of the particle (b) for the eight Stokes numbers analyzed.
The time is normalized with the corresponding integral timescale for each case.
Inset: Corresponding integral timescale as a function of Stokes as calculated
from the integral of the autocorrelation function.

The insets of Figure 5.8 show the corresponding Lagrangian integral
timescales for particle and fluid. It can be seen that T (p) increases consid-
erably with Stokes number. However, we expect this behavior to subside as
inertia increases, reaching a saturation point. The saturation arises from the
fact that as particles become heavier they are less susceptible to the fluid forc-
ing. In the limit of infinite Stokes number the Lagrangian integral timescale
becomes equal to its Eulerian counterpart TE . A slight anomaly is observed
in the first two points of this graph, where T (p) has a modest drop to later in-
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crease again. We believe this is caused by the fact that the autocorrelation has
not yet reached zero. The fluid velocity counterpart T (f) saturates much faster
given the drop in correlation due to inertia effects. These results are in good
agreement with those of Wang & Stock [14]. However, the Stokes values in
their study are much higher.

The exact relation given by Eq. (5.15), implies that

T pv2 = T fu20. (5.17)

This can be used to corroborate our results, given this relation is exact. These
values are plotted in Figure 5.9 below, showing excellent agreement.
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Figure 5.9: Comparison of integral timescales as given by Eq. (5.17). The fit is
excellent, and only at very large Stokes numbers can a small difference be seen.
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Figure 5.10: Normalized Lagrangian cross-correlation functions (a) Ruv and
(b) Rvu, respectively. Time has been normalized using the integral timescale for
tracers T .

The cross-correlation function gives us insight into the lag between the
fluid and particle velocities. Ruv (Figure 5.10(a)) increases above 1.0 at short
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times. This, we believe, happens due to the delayed response of the particle
to the fluid forcing, that is, after a short time, the particle velocity adjusts to
its surrounding, becoming more correlated to it. We should note that both the
magnitude and the location of the peak shift with Stokes number. The for-
ward movement is expected given the increase in reaction time. On the other
hand, the complementary cross-correlation Rvu, does not suffer any notable
changes.

None of the numerical results suggest a mechanism that may increase the
dispersion of inertial particles. We see an increase in the particle velocity au-
tocorrelation, however, there is also a reduction in the velocity fluctuations.
Moreover, we do not observe any change that suggests an optimum Stokes
number for dispersion at short timescales. Again, we believe, the disper-
sion of clouds—as opposed to single droplets—may introduce effects that
increase the spreading velocity. Also, we have seen that relative dispersion
of heavy particle pairs is, in some instances, faster that that of tracers. In
our experiment, we cannot discriminate between absolute and relative disper-
sion. The puff is being advected by the large-scale velocities, but it is also
widening due to the velocity differences between the droplets in the tagged
cloud. As we have seen in Section 5.4, these differences are higher in the
case of heavy droplets than in fluid tracers. Simulations on the dispersion
of clouds of droplets would be beneficial for the physical interpretation of
the phenomenon, however, the available database does not have the necessary
density to replicate our experiments.

5.7 Conclusions
We have shown an experiment in which we tag a thin cylindrical volume
(sausage) within a turbulent cloud of heavy droplets with predetermined
Stokes numbers (diameters). In all five cases, the cloud of inertial particles
disperses faster than the theoretical expectation for fluid tracers. Even more
notable is the appearance of a peak in the dispersion at St≈2, which suggests
an optimum Stokes number for accelerated dispersion. The physics behind the
fast dispersion remain unclear. One reason that may help explain this behav-
ior is the fact that heavy droplets preferentially gather in areas of high strain,
which have higher stretching rates, and the preferential collinearity of the ve-
locity and acceleration differences [19]. Nevertheless, more information is
needed to pinpoint the cause behind this anomalous behavior.
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To obtain more information about heavy particles we used numerical sim-
ulations from the iCFDdatabase. These show that the Lagrangian velocity au-
tocorrelation of inertial particles increases with Stokes number. However, the
autocorrelation of the fluid velocity at the position of the particle increases for
low inertia and decreases as inertia increases above a critical point. Numeri-
cal results agree well with both numerical and theoretical literature, however,
there is no indication that droplets could disperse faster than fluid tracers.
Numerical simulations of cloud dispersion—a numerical recreation of our
experiment—could help in the interpretation of our intriguing experimental
results.
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CHAPTER 6

DYNAMICS OF PREFERENTIAL
CONCENTRATION

As has been previously mentioned, inertia effects create concentration inho-
mogeneities in the dispersed phase even when the carrier flow is homogeneous
and isotropic. This anomalous behavior stems from the inability of heavy
particles to faithfully follow the flow. Preferential concentration is known to
impact many natural and industrial processes. Some examples that appear
in nature include rain initiation in warm clouds [16, 3, 35], and sediment
transport in rivers [86]; industrial processes such as spray drying [87] and
fuel sprays ([33] and references therein) are also affected by the dynamics of
particle–turbulence interaction.

Numerical, theoretical and experimental work consistently agree on the
existence of such phenomena and, to a lesser extent, on its effects. Never-
theless, the time and length scales at which this behavior occurs remains a
matter of debate. While it is commonly agreed upon that flows with St ∼ 1
display a higher degree of segregation ([3] and references therein), Bec et al.
[22]—among others—have pointed out that the size of the voids and clusters
is related to the time and length scales at which observations are made. For
example, segregation will occur at small scales when (τp/τη) ∼ 1, however,
for particles with τp � τη, a characteristic timescale τ ∗ can be defined such
that the concentration inhomogeneities will be observed at its complementary
length scale `∗. Moreover, little is known about the clustering timescales, that

105
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is, if we start with a homogeneously distributed set of particles in region with
size on the order of the dissipative scales, how long will it take before particles
segregate? Throughout this chapter we will inspect the dynamical behavior of
a cloud of particles with the goal of shedding light on these particular aspects
of the dynamics of particle–turbulence interaction.

The chapter is structured as follows: in Section 6.1 we will give a brief
overview of the relevant background of preferential concentration and some
of the options available for quantification of clustering. This will be followed
by the description of our experimental setup (Section 6.2). Thereafter, we
will present the results of our data analysis from statistical (Section 6.3) and
dynamical (Section 6.4) perspectives. Concluding remarks will be given in
Section 6.5.

6.1 Background
In Chapter 1 it was stated that, according to Maxey [13], a particle field can be
seen as a compressible field even when the carrier flow advecting the particles
is incompressible. This compressibility manifests itself as the accumulation
of droplets in regions of high strain and the ejection of droplets from those
of high vorticity, as will be shown below. At this point we will paraphrase
this derivation and point to the approximations made. For a more complete
derivation, we refer the reader to the original article (on which we base our
derivation).

The equation of motion of a droplet undergoing Stokes friction is

τp
dv

dt
= u(t)− v, (6.1)

where the Stokes time τp = d2pρp/18µ. We can integrate this equation once to
obtain

v(t) = v(t = 0) exp(−t/τp) +
1

τp

∫ t

0

exp

(
t′ − t
τp

)
u(t′)dt′, (6.2)

which can be integrated by parts once,

v(t) = exp(−t/τp)(v(0)− u(0)) + u(t)−
∫ t

0

exp

(
t′ − t
τp

)
du

dt′
dt′, (6.3)
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and once more,

v(t) = exp(−t/τp)(v(0)− u(0)) + u(t)− τp
du

dt
(6.4)

+ τp
du

dt

∣∣∣
t=0

exp(−t/τp) +

∫ t

0

exp

(
t′ − t
τp

)
d2u

dt′2
dt′,

and so on.
For long times t� τp and small Stokes relaxation times, we have

v(t) ' u(t)− τp
du

dt
. (6.5)

In fact, since the small-scale velocity field varies on time scale τη, the approx-
imation depends on the smallness of τp/τη, i.e. the smallness of the Stokes
number.

For du/dt in Eq. (6.5) we have to take the material derivative,

du

dt
=
∂u

∂t
+ (u · ∇)u, (6.6)

so that finally

v(x, t) = u(x, t)− τp
(
∂u

∂t
+ (u · ∇)u

)
. (6.7)

In incompressible flow the divergence of the velocity field must vanish. The
premise of the above derivation was precisely that a particle field may ex-
perience compressibility even when the carrier flow is incompressible. We
examine this possibility by calculating the divergence of v(x, t), after which
all but one term of Eq. (6.7) vanish, resulting in

∇ · v = −τp∇ · (u · ∇u). (6.8)

Rearranging terms and moving to a tensor notation we come to

∇ · v = τp
∂uj
∂xi

∂ui
∂xj

, (6.9)

which is equivalent to Eq. (1.19),

∇ · v = −τp
4

[(
∂ui
∂xj

+
∂uj
∂xi

)2

−
(
∂ui
∂xj
− ∂ui
∂xj

)2
]
. (6.10)
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The above derivation is part of an asymptotic analysis, and, as such, may
not accurately represent the dissipative scale dynamics. However, it gives an
impression of the underlying physics. Eq. (6.10) clearly conveys the notion of
preferential concentration by demonstrating that particles will gather in high
strain regions and avoid those with high vorticity. Let us now look at relevant
experimental and numerical work which has focused on particle–turbulence
interaction.

An experimental study by Gibert et al. [19] concluded that heavy particles
preferentially probe particular regions of the flow. Tracking polystyrene, glass
and stainless steel particles using PTV, they calculated the mixed velocity–
acceleration Eulerian structure function 〈δrv · δra〉. For true fluid tracers the
magnitude of this quantity equals a constant: −2ε [88]. Although constant
for each type of particles, the magnitude for each group differed, with the
highest value being associated with the heaviest particles. The increase in the
value of the structure function could not be explained by the differences in
relative velocities and relative accelerations alone. Therefore, the alignment
between δrv and δra must play a role in such increase. The cosine of the
angle between these two vectors,

cos θ =
δrv · δrap

|δrv| |δrap|
, (6.11)

gives information regarding their alignment. The probability density function
(PDF) of cos θ for heavy particles shows a clear preference for collinearity,
that is, |cos θ| ≈ 1, whereas the PDF of fluid tracers is more homogeneously
distributed in the range −1 < cos θ < 1. The experimental results are com-
pared to two hypothetical linear velocity fields ui = Mijxj , where Mij is the
velocity gradient tensor. In a purely rotational field it can be easily shown
that δrv · δra = 0. On the other hand, in a purely straining velocity field,
numerical simulations display similar behavior as seen in experiments, i.e.
the velocity and acceleration differences show a trend of enhanced collinear-
ity, which increases with the ratio between the first and second eigenvalues
〈λ2/λ1〉. This, indeed, provides evidence that heavy particles preferentially
probe strain-dominated regions of the flow as predicted by Eq. (6.10).

Experimental and numerical evidence exists which points to the filtering
effect inertia has on the dynamics of a particle, that is, the most extreme fluc-
tuations of velocity and acceleration are suppressed due to the increased re-
sponse time of heavy particles. Ayyalasomayajula et al. [89] used 2D PTV to
determine the probability density function of the acceleration of droplets with
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St ≈ 0.1 in wind-tunnel grid turbulence. Their experimental setup included
translating cameras, allowing them to track particles for relatively long peri-
ods of time. A comparison between the acceleration PDF of heavy particles
and fluid tracers revealed a narrowing of the tails in the case of inertial par-
ticles. This agrees with the notion that inertia filters out the most extreme
events, due to the increased reaction time.

An experiment in a similar setting was performed by Saw et al. [12],
however, the approach was focused on the quantification of inhomogeneities
in the particle concentration rather than the inertial effects on the dynamics of
particles. Resorting to Taylor’s hypothesis of frozen turbulence [90], a one-
dimensional snapshot of the particle distribution was obtained using phase-
Doppler anemometry (PDA). This information allowed them to calculate the
pair correlation function, which gave proof of the clustering effect of inertia.
PDA is able to measure both the velocity and size of the particle at one point,
opening the possibility to calculate statistics conditioned on the particle size,
i.e. for a given set of data, only particles with a diameter within a specific
range dp ±∆dp can be considered.

For all the studied cases—in which the Stokes number and turbulence
intensities were varied—the pair correlation shows a monotonic decrease as
r increases, until the clustering scale reaches approximately 10η. As r enters
the inertial range, clustering weakly decreases, and the dependence on Stokes
number diminishes. The results also show a limited influence of the Taylor-
based Reynolds number,Reλ, on particles with St . 1, and suggest that such
a dependence may arise after the Stokes number increases beyond this level.

The size of particle clusters plays an important role in the calculation of
the collision kernel, which is commonly used in many multiphase flow mod-
els. Sundaram & Collins [91] performed a numerical study on the collision
rates of a particle suspension in isotropic turbulence. They varied both flow
and particle parameters in order to assess their effects separately. For in-
termediate St, their findings show two main effects. The first effect is the
preferential concentration of particles in regions of high strain, which agrees
with Eq. (6.10) and the findings of Gibert et al. [19]. The second effect is the
decorrelation of particle pairs, which signifies an increase in the relative ve-
locities between particles. The preferential concentration effect increases the
collision rate, while the relative velocity effect can either increase or decrease
the number of collisions, depending on the value of St. For small Stokes
numbers, the collision frequency increases with Stokes numbers due to the
increase in relative velocities and preferential concentration; a maximum is
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reached at St = 0.4. At St > 0.4, the collision frequency keeps increasing,
nevertheless, this effect is only due to high relative velocities. This trend con-
tinues until the filtering effect of inertia decreases the kinetic energy of the
particle (τp ∼ T ).

From the above examples, it is clear that inertia has an effect on the distri-
bution of particles in turbulent flows. However, data on clustering dynamics,
that is, how fast clusters are created in an initially homogeneous suspension,
is not available. This is an interesting question that, unfortunately, has many
practical obstacles, both numerically and experimentally. In numerical simu-
lations the concentration of particles is usually very low due to computational
costs. This results in a sparse distribution, and translates into an increased
clustering time, e.g. the simulations by Bec et al. [18, 85] have an effective
volume fraction of 10−10. In experiments, one may introduce sufficient par-
ticles in a flow. For example, our particle volume fraction is three orders of
magnitude higher than that in the mentioned simulations. However, starting
from a reasonably homogeneous distribution cannot be easily achieved, since
particles are affected by the flow as soon as they are introduced.

Nevertheless, Balkovsky et al. [92] have proposed a method which theo-
retically addresses the clustering dynamics of droplets. Generally, preferen-
tial concentration is quantified through the location of individual particles in a
snapshot of the field. Their distribution is then compared to random processes
to assess the magnitude of inhomogeneities. However, in their approach, it is
proposed to look at the particles as a compressible concentration field which
is advected by the turbulent flow. An increase in the moments of the concen-
tration 〈nα(t)〉 indicates clustering. More details about this will be given in
Section 6.4, where we will address the data analysis procedure.

Preferential concentration as a result of particle inertia is not the only
collision-enhancing effect of inertia in particle-laden flows. Wilkinson &
Mehlig [93] suggest the existence of an anomalous behavior characterized
by caustics in the particle field, that is, droplets which are close together can
have considerably different velocities, resulting in folds as faster particles may
overtake slower ones. The appearance of caustics was also observed in a study
by Bec et al. [85], where the particle velocity structure function was calcu-
lated from a numerical simulation of a large amount of point-particles. In this
study, the absolute value of the difference in particle velocities as a function
of their separation r remained finite as r → 0. The explanation given for this
anomalous behavior was the existence of caustics in the particle distribution.
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6.2 Experimental setup

The overall characteristics of the setup described in the Chapter 5 remain
unchanged. The single difference was the creation of a light sheet with a
thickness of approximately 1 mm (≈ 13η) to tag a slab within the droplet
cloud. In much the same way we obtained the dispersion data (Section 5.2),
the experiments consisted of the acquisition of a series of frame sequences.
Each sequence was triggered by a laser shot and consisted of 18 frames. For
every analyzed case, we collected 3275 sequences. Measurements for cases
3–5 from Table 2.2 are presented in this chapter.

Again, we use a pulsed laser with a wavelength of 355 nm. Each laser
pulse initiates the acquisition of a sequence. We image a square region in
the center of the chamber with a side length of 32 mm. A slight illumination
inhomogeneity arises due to the profile of the laser beam. We see a higher
intensity in the central region of the image, however, this is corrected during
the data processing.

While analyzing the data for these experiments, we consistently see a de-
lay in the dynamical effects of the flow on the concentrations. This pattern
arises from the contribution of the satellite droplets to the signal intensity of
the acquired images. This trend affects the first five frames of our data, which
are those on which we are able to compensate for the decay of the signal inten-
sity. An argument can be made that our results are really showing the decay
of the phosphorescent signal, however, this is corrected by the normalization
of our intensity with the average intensity of the frame.

As mentioned before, the phosphorescent signal of the droplets depends
on their volume, meaning that a satellite droplet with one-third the diameter
of a primary droplet (see Section 3) will emit 27 times less light. This means
that the signal from smaller droplets will decrease below the noise level much
faster than the signal coming from primary droplets.

6.3 Statistical quantification of clustering

6.3.1 Deviation from complete randomness

A survey of relevant literature demonstrates that preferential concentration is
commonly quantified through statistical analysis. One such example is the
previously mentioned study by Saw et al. [12], where the one-dimensional
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pair correlation function,

χ(r) =
Q̃(r)/δr

Q/L
− 1, (6.12)

was calculated using PDA. Q is the total number of pairs detected, while Q̃
is the number of pairs with separation r ± δr; L is the total length probed,
calculated from the average mean velocity and the time duration of the mea-
surement. In essence, this quantity represents a histogram of the distance
between particles. Similar information can be obtained from the correlation
function

C(r) =
〈(I(x+ rx, y + ry)− 〈I〉)(I(rx, ry)− 〈I〉)〉

〈I2〉 − 〈I〉2 , (6.13)

where I(x, y) is the intensity of the pixel located at (x, y). However, this is
not a count of pairs, but of the probability of finding clusters of bright pixels.
A homogeneously distributed concentration would produce a delta pulse as its
correlation will be greater than zero only at r = 0, whereas clusters produce a
high value in the small scales with long tails due to the growth of voids. We
perform this correlation over 16 pixels, which translates to 13η.

The radial correlation function C(r) was obtained by the azimuthal aver-
age of C(r). We notice that in 2D the definition Eq. (6.12) would require an
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Figure 6.1: Radial correlation functions of I(x, t)/〈I(x, t = 0)〉c, where 〈·〉c
denotes the cycle average and 〈I(x, t = 0)〉c provides a correction for the slight
illumination inhomogeneity of the sheet. (a)–(c) represent cases 3–5. The arrow
represents time, where the delay goes from t/τη = 0.8 to 3.4. At increasing
delay times the tails of the correlation grow, representing the increasing size of
clusters.
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azimuthal integration. The result, shown in Figure 6.1 can be compared to the
correlation functions shown in [12]. Differences between our data and that
of [12] are due to normalization, since χ(r) is normalized by the expected
number of pairs, while we normalize with C(r = 0). As time progresses,
the correlation reaches out to larger separations,signifying the growth of clus-
ters. In the smallest scales, we see a decrease in the correlation, signifying
compression of the cluster. We see a very modest difference among different
cases, where the correlation slightly increases with Stokes, whereas a strong
dependence is seen by Saw et al. [12]. This could represent a larger size of
the clusters at larger inertia, however, the difference is not enough to draw
conclusions.

Randomly dispersed points usually follow a Poisson distribution. This is
also true for the position of fluid tracers. Conversely, heavy particles segre-
gate, preferentially concentrating in particular regions of the flow. This cre-
ates a deviation from a random process, which can give us clues regarding
the relationship between the structure of the flow and the position statistics of
inertial particles. A Poisson distribution is a discrete probability distribution
which counts the occurrences of an event k. The special characteristic of such
distribution is the fact that the mean and variance are equal. The probability
is given by

P (k) =
λke−λ

k!
. (6.14)

Monchaux et al. [94] quantified the inhomogeneities in the particle distri-
bution by means of a Voronoï tesselation. To do this, they imaged droplets
suspended in wind-tunnel grid turbulence, and compared the PDF of the
Voronoï cell area to the theoretical expectation from a random Poisson pro-
cess. Their results show a wider distribution than that expected from homo-
geneously distributed particles, suggesting the presence of voids and clusters.
These findings were later confirmed in homogeneous isotropic turbulence us-
ing the Lagrangian Exploration Module [42] by Fiabane et al. [95]. In this
study, the authors compare the cell area distribution of both neutrally buoyant
and heavy particles. Due to their finite size, the neutrally buoyant particles
have St > 0, however, the histogram of cell area does not show a significant
deviation from that of a random process. On the other hand, the tails of the
PDF for heavy particles show a considerable increase, indicating the existence
of voids and clusters.

In many instances, such as the measurement of signal intensity or a con-
centration, the phenomena of interest are not discrete events, but continuous
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functions. For such processes the probability can be approximated using a
Gamma distribution. For the particular case of concentration measurements,
a random process can be described by [96]

P (X ) =
nn

Γ(n)
X n−1e−nX , (6.15)

where X = I/〈I〉 and Γ(n) is the Gamma function, and n is adjusted to adapt
the fit.

In our experiment we take a slightly different approach. Instead of locat-
ing the particles within an image—as must be done in a Voronoï tesselation—
we split the image into small windows of size δ and measure the intensity
within them. This, in principle, should yield equivalent information. We cal-
culate the histogram of the intensity Iδ(x, t)/〈Iδ(x, t)〉c as a function of time.
Due to the decaying intensity, we normalize using the time-dependent local
average. It can be seen in Figure 6.2 that the measured histogram deviates
from the random process, which is approximated in this case by a Gamma
distribution. Our histograms show t/τη = 0.8 to 4.4. The first few images
were omitted due to the effects of the secondary droplets, which generate am-
biguous results given their tracer-like behavior. We do not expect, however,
to have a homogeneous distribution at the time of tagging, since the droplets
have been affected by the turbulent flow as soon as they were created
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Figure 6.2: Histograms of Iδ(x, t)/〈Iδ(x, t)〉c, where 〈·〉c denotes the cycle
average, δ/η = 3.2, 6.4, and 12.8, and where the delay time t varies from to
t/τη = 0.8 to 4.4, with the arrow representing the direction of time. The dashed
line is a reference obtained from the Gamma distribution with different parame-
ters for each window size (see text). The enhanced probability of voids as time
progresses points to clustering of the droplet distribution function.

The Gamma distribution has a single adjustable parameter, which only
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affects its shape. In our case we choose this parameter only as a reference, and
not as a fit, since our data cannot be properly fitted given the large deviations
from a random process. The values of n for the data seen in Figure 6.2 are n =
2, 3, and 7 for δ/η = 3.2, 6.4, and 12.8, respectively. The Gamma distribution
is a probability density, while we show our data as a histogram. This requires
an appropriate scaling factor, which we picked by inspection.

6.3.2 Fractal dimensions

The dimensionality of simple shapes such as lines or blocks can be easily
determined. It is obvious, for example, that a plane occupies two dimen-
sions. The dimensionality of fractal objects, however, does not follow such
simple rules. A homogeneously distributed cloud of points occupies all of
its dimensions, but deviations from homogeneity may translate into reduced
dimensionality. Droplets and bubbles in a turbulent flow are not homoge-
neously dispersed, creating voids and clusters as a result of their interaction
with turbulence. Several studies have looked at the fractal dimension of dis-
persed phases in turbulent flows (see e.g. [22, 97]), finding that indeed the
dimensionality of the dispersed phase is reduced due to inertia.

Calzavarini et al. [97], studied the dimensionality of light and heavy par-
ticles suspended in turbulence. As their numerical simulation provided dy-
namical information, they computed the Lyapunov exponents λi, which quan-
tify the growth of perturbations along trajectories. Using this information the
Kaplan–Yorke dimension can be computed as

DKY = K +
K∑
i=1

λi
|λK+1|

, (6.16)

where K is defined such that
∑K

i=1 λi ≥ 0. The Kaplan–Yorke dimension
also estimates the fractal dimension of the particle distribution in space. It
appeared that neutrally buoyant particles with St .1.5, haveDKY =3, which
implies that they fill space homogeneously. This is in agreement with the
results of [95]. On the other hand, both heavy and light particles present a
dimensionality lower than three for this Stokes number region, with minima
at St ≈ 0.5 and St ≈ 0.9, respectively.

Fractal dimensions gauge the self-similar distribution of droplet clusters.
We compute them as generalized dimensions, which are related to the scaling
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of the partition sum [98]

L(δ; q) =
∑
i

P q
i ∼ δ(q−1)D(q), (6.17)

where δ is the linear size of the square over which the mass Pi is summed,
and in our analysis we approximate the mass as

Pi =

∫
Bi,δ

I(x, t)

〈I(x, t = 0)〉c
dx, (6.18)

withBi,δ the square with index i and linear size δ. The mass Pi is proportional
to the number of droplets in a square of size δ. For a completely homogeneous
distribution, D(q) = 2 for all values of q. The fractal dimension of droplet
distributions in a 3D simulated velocity field was reported as D(2) ' 2.4,
using the correlation dimension, which should be comparable to D(q = 2)
[97]. We are measuring the distribution of droplets in a tagged sheet. Using
the intersection rule for a fractal dimension [99], the corresponding dimension
in the sheet would be D(2)− 1 = 1.4.
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Figure 6.3: Scaling of box-integrated intensity, 〈I2δ 〉/δ2. In case of a homoge-
neously filled plane, 〈I2δ 〉/δ2 would be independent of δ. The dashed line fitting
the data at t/τη = 2.1 shows 〈I2δ 〉 ∝ δ1.3, which implies a fractal dimension of the
three–dimensional droplet distributionD(2)≈ 2.3. However, the fractal scaling
does not cover all scales, so that the droplet distribution is not self-similar. At
the Stokes numbers used, clusters and voids cover distances up until ≈ 10η.

Instead of the partition sum L(δ; q = 2), we compute the deviation from
plane filling 〈I2δ 〉/δ2. For small distances δ/η . 10, we find scaling with
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a fractal dimension D(2) ≈ 1.3. In three dimensions this would amount to
D(2) = 2.3, which is in reasonable agreement with the dimensions found by
Bec et al. [22] and Calzavarini et al. [97]. The fractal scaling does not cover
all scales, which is in line with available literature (see e.g. [22]).

6.4 Dynamical quantification of clustering
As mentioned above, an interesting dynamical quantity of preferential con-
centration has been described by Balkovsky et al. [92]. Let us briefly para-
phrase their argument. The key point is that we view the particle field as
a continuous droplet concentration field n(x, t), which actually matches our
experiment, where n(x, t) is proportional to the measured intensity.

This concentration field satisfies the continuity equation

∂n

∂t
+∇(vn) = 0. (6.19)

In this equation, ∇ · v is a source of random fluctuations, which, in the ap-
proximation of Eq. (6.10) is completely determined by the fluctuations

∇ · v = τp∇ · ((u · ∇)u) (6.20)

of the turbulent velocity field u(x, t). In the Lagrangian frame, Eq. (6.19)
becomes an ordinary differential equation

dn

dt
= −n(∇ · v), (6.21)

with the trivial solution

ln

(
n(t)

n(0)

)
= −

∫ t

0

(∇ · v)dt′. (6.22)

Again, the fluctuations of the quantity X(t) = ln(n(t)/n(0)) are induced by
the fluctuations of the turbulent velocity field (Eq. (6.10)), but now taken
along a Lagrangian trajectory. For long times, fluctuations are time-averaged
over many correlation times, and the law of large numbers applies with the
PDF of X assuming a Gaussian shape

P (x) =
1

(πσt)1/2
exp

(−x2
σt

)
, (6.23)
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or, more general, P (X) ∼ exp(−ts(X/t)), with s a convex function.
Eq. (6.23) expresses that the magnitude of the fluctuations decreases as
〈X2〉 ∼ t−1 when time progresses. The consequence is that the moments

〈nα〉 ∝
∫

exp [(α− 1)X − ts(X/t)] dX,

where the factor exp(−X) arises from the translation back to the Eulerian
frame. For large t, only the minimum of the integrand contributes, so that

〈nα〉 ∝ exp [(α− 1)Xα − ts(Xα/t)] ,

with Xα given by s′(Xα/t) = α− 1, so that Xα = tf(α), and

〈nα(t)〉 ∝ eγ(α)t, (6.24)

with γ(α) = (α− 1)f(α)− S(f(α)). In our experiment the time t extends to
only a few Kolmogorov times, but we average 〈nα(t)〉 over an area spanning
many Kolmogorov lengths, and the question is whether an exponential growth
of moments can be observed in the experiment.

There are three crucial aspects on the applicability of this method to our
data. First, the analysis relies on the assumption that the concentration is
a conserved quantity, while our experimental data suffers from an inherent
‘loss’ of droplets due to the diminishing phosphorescent signal. Second, it
is assumed by the authors of the study that the initial concentration n(0) is
homogeneous, however, this may not necessarily be the case at the time of
tagging in our experiment, since droplets have undergone the effects of tur-
bulence from the time they entered the chamber. Lastly, the analysis calls for
the normalization of the concentration n(t) by the initial concentration n(0)
in a Lagrangian sense, that is, when we take the local concentration of a small
tile within the image, we must follow that tile as it is advected by the flow.
Currently, this is not possible as we do not have the instantaneous particle
velocity field.

The loss of particles is partially resolved by the exponential increase in the
exposure of the camera, which ameliorates the intensity decay. In addition,
we normalize the instantaneous local concentration using the instantaneous
ensemble-averaged concentration.

A sample of a data image is plotted in Figure 6.4 together with the values
for 〈Iαδ (x, t)〉c/〈Iδ(x, t)〉αc . We see that the moments of the intensity increase
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exponentially, as indicated by Eq. (6.24). Also we see that the exponent γ(α)
saturates, fulfilling the convexity requirement. The increase in the moments is
delayed by approximately by 2τη, after which we see the expected exponential
increase.
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Figure 6.4: Moments of local concentration fluctuations,
〈Imδ (x, t)〉c/〈Iδ(x, t)〉mc as a function of delay time t and δ/η = 6.4. The
intersection of the solid white lines shows the windows over which the intensity
was integrated. Dashed line: 〈Imδ (x, t)〉c/〈Iδ(x, t)〉mc ∼ exp(γt/τη), with
γ = 0.3. After t/τη ≈ 2, the moments increase exponentially due to the
Langrangian average of the fluctuations of the divergence of the particle
velocity field.

As we mentioned in Section 6.2, the dynamical behavior displayed by our
data in the first few frames is affected by the contribution to the intensity of the
satellite droplets. This can be observed in the time evolution of the moments,
where the first five points display an almost constant value. Once the signal
from the satellite droplets is no longer appreciable, the behavior of the heavy
droplets becomes apparent.

The length scale at which preferential concentration can be seen is a mat-
ter of debate. Measurements by Saw et al. [12] suggest clustering is seen
at scales ∼ η, where the effect of clustering on the pair correlation function
is very weak at scales larger than 10η. On the other hand, it has been pro-
posed by Bec et al. [22] that a clustering timescale τ ∗ can be found such
that the Stokes number becomes unity, thus resulting in preferential concen-
tration at its corresponding length scale `∗. To assess this, we calculate the
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moments of the local concentration averaged over three different box sizes
δ = 3.2η, 6.4η, and 12.8η.

In our experiments we have a relatively narrow distribution of droplets,
meaning the Stokes number is well defined. Therefore,we expect to see clus-
tering effects at scales corresponding to τη, i.e. the Kolmogorov length η. At
larger length scales δ, we would see clustering at longer time scales. Figure
6.5 shows the behavior of the moments for case 3, which show an exponential
increase of the moments at length scales δ = 3.2η, 6.4η, while the largest
scale δ = 12.8η clearly loses the exponential behavior. This behavior can also
be seen in cases 4 and 5 (not shown).
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Figure 6.5: Moments of the local intensity for case 3 for three interrogation
size lengths δ/η = 3.2, 6.4, and 12.8 for (a)–(c), respectively. We see that the
exponential behavior is delayed for the largest interrogation size.

A similar picture can be obtained from the fractal dimension of the droplet
distribution. As seen in Figure 6.3, the reduced dimensionality reaches ap-
proximately 10η, being in agreement with the findings of [12].

6.4.1 Stokes number dependence
It has been previously established that inertia can be quantified through the
ratio of particle and flow timescales, namely the Stokes number. We have
also established that inertia has a filtering effect on the velocity of the droplets.
Naturally, this will have an impact on the dynamics of the particles. To assess
the extent of this effect we have performed experiments with three different
Stokes numbers, cases 3–5.

From Eq. (6.24), we see that the function γ(α) gives an indication of the
speed at which the moments grow, that is, a higher value translates into a
faster increase of the moments. We see in Figure 6.6, that a considerable
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difference is seen between the exponents of the three different inertia cases,
with the heaviest droplets consistently being slower.
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Figure 6.6: Dependence of the function γ(α) on Stokes number. (a)–(c) for
interrogation window size δ/τη = 3.2, 6.4, and 12.8, respectively.

6.5 Conclusions
In this chapter, we have addressed the problem of preferential concentration
of inertial particles by tagging a thin slab within a turbulent cloud. Once the
sheet is tagged, we measure the inhomogeneity of particle concentration from
a statistical and a dynamical perspective. Not much is known about methods
that can probe the dynamics of clustering. Our results can be compared to
results from the literature, which were from numerical simulations most of
the time.

Throughout the chapter we have used three different approaches for the
quantification of particle segregation, one of which consists of the measure-
ment of the deviation of a particle distribution from a random process. In
our case, we look at the deviation from a random Poisson process of the in-
tensity histogram of small tiles within the imaged distribution. This shows a
clear deviation from the expected distribution of a random process. Also, it
shows that this deviation grows in time, pointing to the further clustering of
the droplets.

We have also measured the dimensionality of the arrangement the particles
take when suspended in a turbulent flow. The correlation dimension D(2) of
the intensity was measured by looking at the dependence of the box-integrated
intensity on the size of the box. The particle distribution does not show self-
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similarity, however, at the small scales a reduced dimensionality is clear. The
value of D(2) = 1.3 agrees with numerical simulations by [22, 97].

Lastly, a dynamical perspective to the clustering of droplets was obtained
by calculating the moments of the particle concentration as suggested by
Balkovsky et al. [92]. We see that the moments increase exponentially after
approximately two Kolmogorov times, and γ(α) meets the constraints placed
by the theoretical analysis.

In both statistical and dynamical analyses, we see a clear dependence of
the clustering manifestation on the scales at which the data is inspected. The
fractal dimension shows a lower dimensionality at scales . 10η. Analogously,
we also see a change in the clustering behavior as given by the moments of the
intensity 〈Iαδ (x, t)〉c/〈Iδ(x, t)〉αc . The moments lose their exponential behavior
and appear to shift to a power law.



CHAPTER 7

CONCLUDING REMARKS

7.1 Conclusions

Throughout this thesis, we have given an in-depth description of a novel tech-
nique that makes the tagging of selected regions of clouds possible. We have
tested this technique in a man-made cloud chamber which holds some of the
characteristics possessed by natural clouds. The chamber is able to generate
very intense turbulence (Reλ ≈500) with a negligible mean flow, and substan-
tial isotropy and homogeneity. Phosphorescent droplets were generated using
spinning disk aerosol generation. We used interferometric particle imaging
to measure droplet diameters, and developed an algorithm capable of auto-
matically processing IPI data. The algorithm is capable of locating particle
images and generating a probability density function of the particle diameter.
It is also able to partially circumvent the sensitivity of IPI to particle overlaps.
Five different cases were inspected with droplet diameters ranging from 11
µm to 24 µm, the droplets having a narrow distribution with a standard de-
viation of approximately 3 µm. This allows us to have a well defined Stokes
number in our experiments.

We have given a proof of principle on the use of phosphorescent droplets
as a diagnostic tool for particle-laden flows. The phosphorescent solution
used is water-based and uses Europium (Eu3+) as its phosphor; the ligands
used are TTA and TOPO. The solution has a phosphorescence lifetime τph ≈
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600 µs, which is comparable to the Kolmogorov timescale τη of our flow. The
solution can also be used in continuous phases, however, it must be diluted to
increase penetration of the laser beam into the fluid.

The longstanding problem of turbulent dispersion was revisited with a
new perspective given by the newly developed phosphorescent tagging tech-
nique. We tag thin, pencil-like clouds of phosphorescent droplets and look
at their widening at timescales comparable to τη. Two notable results came
from these experiments: droplets disperse much faster (up to 50%) than the
theoretical prediction for fluid tracers, and the spreading velocity of the cloud
vs has an optimum at St ≈ 2. Data from an analogous experiment with true
tracers (nitric oxide in air) produces a spreading velocity which is slightly
higher (< 10% than the rms velocity. From the pair dispersion study by Bec
et al. [18], we know that relative dispersion may be faster in heavy droplets
than in tracers. However, our experiment does not exclusively measure rel-
ative dispersion. The cause behind these results remains unclear, however,
we speculate that such rapid dispersion may be a result of the higher velocity
differences seen in heavy particles compared to fluid tracers. These velocity
differences may translate into the faster separation of two particles.

Numerical simulations give no indication of such a rapid dispersion. How-
ever, the simulations do not exactly represent the experiment, since the dis-
persion, as measured by the velocity autocorrelation, does not account for
larger velocity differences between particles. We believe a simulation with a
higher concentration, where large groups (clouds) of particles can be tagged
may help us understand the physics of puff dispersion.

A slight modification to our experimental setup allowed us to look at the
preferential concentration phenomenon. By tagging a thin sheet of droplets
within the turbulent cloud, we were able to quantify the segregation from
both statistical and dynamical perspectives. The histogram of the local signal
intensity (concentration) presents wider tails than expected from a random
process. This is a signature of preferential concentration as voids and clus-
ters translate into a higher probability of finding either very low or very high
particle concentrations.

Another statistical tool that brings preferential concentration to light is
the dimensionality of a dispersion of particles. Randomly dispersed particles
occupy all space, while fractal structures display reduced dimensionality. The
experimental data exhibits a correlation dimension D(2) = 1.3, which tells us
that indeed a fractal structure is seen in the spatial concentration of droplets.
This value, when translated to three dimensions, agrees reasonably well with
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existing numerical data [22, 97].
As we have repeatedly mentioned throughout this thesis, the primary in-

terest in the development of the phosphorescent tagging technique lies in the
elucidation of the dynamics of preferential concentration. To this aim, we fol-
lowed the approach proposed by Balkovsky et al. [92] to measure the growth
of the moments of the intensity (concentration). Despite some differences
between the theoretical instance and the experiment the moments grow expo-
nentially, agreeing with the theoretical prediction. The exponent γ(α), which
determines the growth in time of the moments of the concentration 〈n(x, t)〉,
satisfies the constraints set by the theoretical analysis, i.e. it is a convex func-
tion, γ(1) = 0, and γ(α < 1) < 0.

7.2 Outlook

As we have seen throughout this work, particle-laden flows are commonplace
in both nature and industry. Some of these instances are the dispersion of
pollen and pollutants by wind and silt transport in rivers, while on an indus-
trial setting, fuel injection and spray drying are intimately affected by aerosol
physics. Because of such abundance and the increased interest in this type of
flows, we propose a few experiments that may be created or adapted which
can benefit from our tagging technique.

7.2.1 Collision detection

Even though some fundamental aspects of particle-laden flows remain unan-
swered, a substantial body of literature has been collected regarding the phe-
nomenon of preferential concentration. However, the same cannot be said
about the effect of preferential concentration on the collision kernel. The fact
that particles agglomerate in certain areas of the flow increases the probabil-
ity of collisions, yet a postulate by Woittiez [28] argues that droplets that are
close to each other and have similar sizes will consequently have similar ve-
locities, reducing the probability of collision. On the other hand, Wilkinson
& Mehlig [93] point to the existence of caustics in the particle velocity fields,
which precisely opposes the notion of Woittiez. However, it is argued that
even a slight polydispersity can have a considerable effect on the collision
kernel.
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To address the question of droplet collisions we propose an experiment
where two different liquids are used to make droplets, and only when two
droplets of different type have collided will the droplet obtain phosphorescent
properties. The possibility of using chemiluminescence is appealing, how-
ever, unless the luminescence is very short-lived, light-emitting fluid on the
walls of the facility could deteriorate the quality of the data. We believe that a
slight modification to our technique, where one type of droplets only contains
Europium and water, and a second type contains ligands and water, may help
in the detection and quantification of crucial collision statistics.

7.2.2 Gravity effects
The trivial situation of a droplet falling through a quiescent fluid becomes a
complex issue when this circumstance arises in turbulent flow. Several studies
(e.g. [29, 30]) suggest that the turbulent terminal velocity of a droplet is larger
than that of a free-falling droplet as a result of ‘preferential sweeping’—a
propensity of droplets to sweep through regions of the flow that have a down-
ward velocity. However, Pasquero et al. [100] obtained results opposing this
view. In their simulations, two distinct terminal velocities appear for identical
droplets. One of the populations has a settling velocity which is larger than
the terminal velocity in still fluid, while the second one has a virtually zero
terminal velocity. The second group of particles is product of droplets having
closed trajectories, that is, the trajectory ends in its own tail. According to the
authors of this study, this is possible due to the change of sign of the curvature
along the trajectory.

A slight modification to our dispersion experiments (Chapter 5), where
bigger droplets with settling velocities on the order of the turbulent velocity
fluctuations are generated, may shed light on both the effect of gravity on
lateral dispersion and the effective terminal velocity of a settling droplet.

7.2.3 Cluster break-up
When inspecting the data obtained from the experiments described in Chapter
6, we notice that, at times, clusters were present within the tagged slab and, as
time progressed, these clusters would become elongated and disperse. As has
been discussed above, in our experiments, tagged droplets have undergone the
effects of turbulence before being tagged, resulting in clusters being present in
the tagging event. We believe our technique is especially suited to investigate
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this phenomenon, given these droplet bunches can be located using particle
tracking algorithms, and the dispersion in a Lagrangian sense can be analyzed.

This cluster break up mechanism appears to counteract preferential con-
centration, opening yet another interesting question in the realm of cloud
physics.
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A.1 Dissipation in isotropic turbulence
A fourth-order, isotropic tensor can be written as

cijkl = αδijδkl + βδikδjl + γδilδjk (A.1)

where α, β, and γ are scalars. For isotropic turbulence we have the fourth-
order, isotropic tensor〈

∂ui
∂xj

∂uk
∂xl

〉
= αδijδkl + βδikδjl + γδilδjk (A.2)

From continuity (∇ ·u = 0) we know ∂ui
∂xi

= 0. Setting i = j in (A.2) we have〈
∂ui
∂xi

∂uk
∂xl

〉
= αδiiδkl + βδikδil + γδilδik = 0

Now setting i = l and rearranging we get

(3α + β + γ) δkl = 0

3α + β + γ = 0 (A.3)
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The second condition used is homogeneity (no spatial variation of the
following average)

∂

∂xj

〈
ui
∂uj
∂xl

〉
=0 Using the product rule 〈

∂ui
∂xj

∂uj
∂xl

+ ui
∂2uj
∂x2j

〉

Again, due to continuity the second term goes to zero (∂uj
∂xj

= 0) to get〈
∂ui
∂xj

∂uj
∂xl

〉
= αδijδjl + βδijδjl + γδilδjj = 0

Setting j = l we get
(α + β + 3γ) δil = 0

α + β + 3γ = 0 (A.4)

From (A.3) and (A.4) we get α = γ = −β/4. From isotropy we have〈
∂ui
∂xj

∂uk
∂xl

〉
= β

(
−1

4
δijδkl + δikδjl −

1

4
δilδjk

)
(A.5)

where 〈(
∂u1
∂u1

)2
〉

=
β

2
and

〈(
∂u1
∂u2

)2
〉

= β (A.6)

Now, we know the dissipation is defined as

ε = ν

〈
∂ui
∂xj

ui
xj

〉
(A.7)

From (A.1) and (A.5), (A.7) can be written as

ε = νβ

(
−1

4
δijδij + δiiδjj −

1

4
δijδji

)
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Setting i = j we get

ε = νβ (−3/4 + 9− 3/4) = νβ
15

2

which by (A.6) becomes

ε = 15ν

〈(
∂u1
∂x1

)2
〉

(A.8)

In conclusion, the well-known results Eq.(A.8) follows from homogeneity
and isotropy.

A.2 Velocity and position of an ejected droplet
Eq. 3.13 can be written in the form

dVd
dt

= −αVd
(

1 + βV
2/3
d

)
(A.9)

where

α =
9

2

ρaνa
ρpr2p

and β =
1

6

(
2rp
νa

)2/3

We see that Eq. (A.9) can be solved analytically. We start with the ansatz
Vd = ξe−αt to get

−αVd + e−αt
dξ

dt
= −αVd − βV

5/3
d

Canceling terms and separating variables we get

dξ

ξ5/3
= −αβe− 2

3
αtdt

Integrating results in

−3

2
ξ−

2/3 = αβ
3

2α
e−

2
3
αt + C1

Rearranging,we get

ξ =
1(

−βe− 2
3
αt + C

)3/2
or Vd =

e−αt(
−βe− 2

3
αt + C1

)3/2
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The value of the integration constant C1 can be obtained by evaluating Vd
at its initial condition Vd(t = 0) = Vo = ωD

2
to get

C1 = V −
2/3

o + β.

So

Vd(t) =
e−αt(

−βe− 2
3
αt +

(
D
2
ω
)−2/3

+ β
)3/2

(A.10)

Now we can integrate the velocity to get the droplet position as a function
of time. Again, we know

dx

dt
= Vd(t)

Making the change of variable y = e−αt (dy =−αe−αtdt→ dt=−y−1dy/α),
from Eq. (A.10) we get

Vd(t) = −
α

1

(−βx2/3 + C1)
3/2
dy (A.11)

Making a second change of variable z= y1/3 (dz= y−2/3dy/3→ dy= 3z2dz),
we get

Vd(t) = − 3

α

z2

(−βz2 + C)
3/2
dz (A.12)

The resulting equation has an integral of the form∫
z2

(a− cz2)3/2
dz =

z

c(a− cz2)1/2
− 1

c3/2
tan−1

(
c1/2z

(a− cz2)1/2

)
+ C2

So Eq. (A.12) becomes

x(z) = − 3

α

[
z

β(C1 − βz2)1/2
− 1

β3/2
tan−1

(
β1/2z

(C1 − βz2)1/2

)
+ C2

]
Before we apply the initial condition x(t = 0), we must return to our original
variable t. This results in

x(t) = − 3

α

[
e−

1
3
αt

β(C1 − βe−
2
3
αt)1/2

− 1

β3/2
tan−1

(
β1/2e−

1
3
αt

(C1 − βe−
2
3
αt)1/2

)
+ C2

]
(A.13)
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After applying the initial condition, the integration constant becomes

C2 =
1

β3/2
tan−1

(
β1/2

(C1 − β)
1/2

)
− 1

β (C1 − β)
1/2

Resulting in

x(t) = − 3

α

[
e−

1
3
αt

β(C1 − βe−
2
3
αt)1/2

− 1

β3/2
tan−1

(
β1/2e−

1
3
αt

(C1 − βe−
2
3
αt)1/2

)

+
1

β3/2
tan−1

(
β1/2

(C1 − β)
1/2

)
− 1

β (C1 − β)
1/2

]
(A.14)
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SUMMARY

Glowing droplets: a diagnostic for particle-laden flows

Particle-laden flows surround us. From dust particles suspended in the
air we breathe to the clouds that cover the sky, particle–fluid suspensions are
ubiquitous. For instance, the internal combustion engine—one of the most
prevalent machines—relies on the dispersion and evaporation of fuel droplets
to achieve combustion. The homogeneity of the droplet distribution has an
impact on the combustion efficiency, and given the current environmental and
energy concerns, it is important to achieve the cleanest combustion possible.

Turbulence is known as a particularly efficient mixing agent, however,
an anomalous behavior arises in turbulent particle-laden flows, that is, ‘de-
mixing’ of the droplet suspension. This phenomenon is commonly referred
to as preferential concentration, and has been documented in experiments and
numerical simulations, yet most of our knowledge arises from statistical anal-
ysis. Through the development of a novel experimental technique, we aim at
shedding light onto the dynamics of particle-laden flows. The technique con-
sists of the generation of phosphorescent droplets which can be tagged and
followed for relatively long periods of time.

The testing and development of an experimental technique requires a well
characterized experimental setup. To this end, we have constructed a cham-
ber capable of generating a highly turbulent homogenous, isotropic flow with
a negligible mean velocity. Furthermore, we have fabricated an aerosol gen-
erator capable of producing monodisperse droplets. Additionally, a phospho-
rescent solution has been adapted to be used in our experiment. We use Eu-
ropium (Eu3+) as a phosphorescence agent.



Particle dispersion in a turbulent flow is well-documented process. It is of
great importance in geophysical flows, such as volcanic ash and pollen trans-
port. It also plays a crucial role in pollution control and catastrophic con-
taminant release. Nevertheless, most of the information we have about this
process concerns the dispersion of fluid tracers at relatively long (integral)
timescales. The longstanding issue of turbulent dispersion of heavy droplets
is revisited using a novel experimental technique. Within a cloud of phospho-
rescent droplets, thin cylindrical volumes are tagged and recorded in a high-
speed fashion as they are advected by the flow. The widening of these volumes
provides experimental evidence of dispersion which is faster than that of fluid
parcels. We explore the effect of inertia in the dispersion of heavy droplets
by experimenting with several droplet diameters. A remarkable result is ob-
tained where the spreading velocity of a cloud of heavy droplets is higher than
the theoretical expectation for fluid tracers. Furthermore, there appears to be
an optimum value for inertia where the droplets disperse fastest. This hap-
pens when the particle relaxation time is approximately twice the dissipative
timescale of the turbulent flow.

Lastly, we look at the phenomenon of preferential concentration by tag-
ging a thin slab within a cloud of droplets. First, spatial statistics of the droplet
cloud are calculated and compared to available literature. We measure the di-
mensionality of the droplet cloud by calculating the correlation dimension.
The dimensionality of the cloud is less than the expectation for a completely
random distribution. Similarly, we measure the deviation from a homoge-
neous dispersion by measuring the probability density function of the local
intensity. The dynamics of preferential concentration are probed by calculat-
ing the moments of the local concentration and looking the evolution in time.
Our results show that the moments increase exponentially in time, which is
in agreement with the theoretical expectation. Moreover, our data gives evi-
dence that preferential concentration is a fast process which can be observed
within the first few small-eddy turnover times.
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