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Corrigenda 

Replace "Kern(to,t/J)" by "Kern(c,to,t/J)" on pages 141,142,169,173,202,249. Also omit the line 
"Let c = hchan(,P)" at the bottom of page 141. 

Add on page 279 the following case: 

• Kernel 
(~) m (,P) 

{Kern) 

(~ /\ hlc = tolc) Kern(m) (Kern(c, to, ,P)) 

transforms into: 

t/J[l.]: {~[T]} m {,P[T]} 
{Kern) 

Kern(c,to,t/J[-L]) : {~[T] Ahlc = tolc} Kern(m) {,P[T]} 
------------------------(Clos. adap.) 

Kern( c, to, ,P[l.]) : { ~[T] /\ hlc = tolc} Kern(m) { t/J[T] /\ Kern( c, to, ,P[l.])} 
----------------------- (Consequence) 

Kern(c, to, ,P)[l.] : {(~ /\ hlc = tolc)[T]} Kern(m) {Kern(c, to, ,P)[T]} 
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Chapter 1 

Introduction 

1.1 Summary and perspective 

The hierarchical decomposition of programs into smaller ones is generally 
considered imperative to master the complexity of large programs. The 
impact of program decomposition on the specification and verification of 
parallel executing programs is the subject of this thesis. Two important 
yardsticks for verification methods, viz. those of compositionality and mod
ularity, are made precise. Within this context, three methods for specifying 
the observable behavior of communicating processes, and their associated 
proof systems are considered, and proven sound and complete in various 
senses, as discussed below. 

The problem of verifying large programs was already recognized by Alan 
Turing in 1949. His paper "Checking a large routine" [Turing] opens with 
the following sentences: 

"How can one check a routine in the sense of ma.king sure that 
it is right? In order tha.t the man who checks ma.y not have too 
difficult a task the programmer should make a number of definite 
assertions which can be checked individually, and from which the 
correctness of the whole programme easily follows." 

Turing's idea is to reduce a global statement, about the whole program, in 
one step to a number of local checks for the atomie actions that constitute 
the program. The idea is embodied in the Floyd/Naur method for program 
verification, named after its inventors R. Floyd and P. Naur, cfr. [Floyd], 
[Naur]. 

In 1965, E.W. Dijkstra [Dijk] improved upon this by proposing a way of 
gradually decomposing the verification problem of a program. He suggests 

1 



2 CHAPTER 1. INTRODUCTION 

to develop a program in a top down fashion, where a program is decom
posed into smaller programs, i.e. possibly composed entities, rather than 
into atomie actions. The specification for the whole program is to be veri
fied on the basis of specifications for the programs that are the constituent 
components of the whole. The development and verification of subprograms 
then proceeds in essentially the same way, until no further decomposition is 
necessary. This top down development results in hierarchically structured 
programs. The idea of hierarchical program structure already occurs in 
[Wijn]. 

A hierarchical program structure can result in several ways, not only by 
a top down strategy, hut also as the result of bottom up composing small 
programs into larger ones, or by a mixed development strategy, or even from 
a posteriori decomposing an already existing program for the sake of its 
analysis. [Dijk2] 

Regardless of how a certain hierarchical structure has been achieved, the 
principle of compositional program verification asserts that: 

the specification of a program should be verified on the basis of 
specifications of its constituent components, without knowledge 
of the interior construction of those components. 

An important step forwards was made when the idea arose to describe the de
composition of a program into subprograms by means of its syntactic phrase 
structure. This idea formed the basis for a. syntaz directed reformulation of 
the Floyd/Naur method fora class of simple sequentia! programs, by Hoare 
in 1969 [Hoare]. 

Section 1.5 contains a rigorous mathematical characterization of the compo
sitionality principle for programs with a hierarchical structure that follows 
their syntactic phrase structure. According to this definition, Hoare's system 
is compositional, whereas the Floyd/Naur method is not. 

Among the first proof systems for parallel programs are the systems by Ow
icki and Gries [OG], and by Apt, Francez and de Roever [AFR]. The rules 
for parallel composition of processes in these systems are not compositional, 
since in [OG] aso called "interference freedom test", and in [AFR] a "coop
eration test" must be applied to the proof outlines of the components of a 
parallel construct, that is, to a text that contains the program text of those 
components, thereby revealing their intemal structure. 

Around 1979, T. Janssen and P. van Emde Boas already stressed the impor
tance of the compositionality principle in the context of program semantics 
and verification [JanEmBo]. 
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The "Concurrent Hoare Logic" published by Lamport in 1980 [La.ml] is 
compositional. Unfortunately it has the disadvantage that the verification 
of a program against a specification is reduced to verifying the same spec
ification for the components of the program. So there is no reduction in 
complexity of specifications. Moreover, it seems to enforce a strict top down 
development strategy for programs, for it would be rather surprising if, for 
a bottom up approach, two different and independently developed program 
modules would have the same specification. And if we want to combine 
those modules into a larger program, then, for Lamport's system, they must 
have the same specifications. 

Early compositional proof methods for communication based parallel pro
gramming were formulated by Zhou Chao-Chen and Hoare [ZH], and by 
Misra and Chandy [MC]. Both approaches have in common that the idea 
of a communication history plays a central role in the specifica.tion of pro
cesses. This is also the case in Hailpern's work [HailOw]. Such a history 
essentia.lly describes which communica.tions occurred in which order up to 
some given moment of time. Cornmunication histories, or tra.ces as they are 
sometimes called, are also used in [NDO], [Jon], [JoPa], [OH], [Olderog2], 
[Pratt], [Rem], [SouDa], [Widom], and, already in 1977, by Yonezawa [Yon]. 

A compositional trace based proof system in the style of Misra and Chandy 
was published in 1983 by Arie de Bruin, Willem Paul de Roever, and my
self, in [ZBR]. The system consists of rules for a type of process specifications 
closely rela.ted to those used by Misra. and Chandy in [MC]. The language 
constructs axiomatized were those of the language DNP ("Dynamic Net
works of Processes"), which is a simplification of a language with the sa.me 
name studied by de Bruin, Böhm in [BrBö]. (The original DNP had to 
be described by means of continuation semantics, see [Bruin], which com
plicates a compositional style of reasoning considerably). In essence the 
language concept goes back to Kahn and McQueen [KaQu]. 

An important notion in this context is that of the compositional completeness 
of a proof system, roughly described as the requirement that whenever a 
program sa.tisfies a. certain specification it should be possible to in/ er the 
validity of that specification, by means of the axioms and rules of the proof 
system, in a compositional way. 

At first it was thought that the system of [ZBR] would be necessa.ry incomplete. 
For DNP does possess the essential characteristics of those languages for 
which E. Clarke had proven that no ( relatively) complete axiomatization can 
exist [Cla]. The side condition on the expressiveness for finite interpretations 
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of the language used for assertions in specifications was not satisfied, since 
natura! numbers were intrînsically requîred on account of the "length" op
erator for histories, and so it seemed that some more work was necessary to 
prove the incompleteness result. Our aim then became to show completeness 
for the finite processes of DNP, as this was not excluded by the results of 
Clarke. The specifications of [ZBR] are quite coniplicated. Not only do they 
contain pre and postconditions in the style of Hoare formulae, hut also an 
assumption and commitment on the communication behavior are included. 
(The latter was anticipated in [Hailpern]). lt must be said however, that, 
although more complicated, the Misra and Chandy's rule turns out to be 
superior when it comes to actual verification of parallel programs. Now 
from the interpretation of these specifications, and also from the form of 
the proof rules in [ZBR], it can be seen that in many aspects the assump
tion commitment pair acts as an invariant of the communication history of 
a process. The completeness question could be simplified by reformulating 
the proof system so as to make this invariant character explicit. The main 
diff erence between the two systems is in the much simpler interpretation of 
specifications for the Invariant system, and, as a consequence, in the rule for 
parallel composition. The resulting proof system is the direct ancestor of 
the so called Invariant system that is one of the three proof systems studied 
in this thesis. The following results were achieved: 

• The Misra Chandy approach has a source of incompleteness, due to the 
simple fa.et that what one assumes about the communication history 
can obviously be committed too. The axiomatizations by Misra and 
Chandy, nor the system of [ZBR] did include a corresponding axiom, 
and so both are incomplete. This fa.et was observed independently 
by Van Nguyen [Nguyen]. No such axiom is needed for the Invariant 
system. 

• The axiomatization of parallel composition by means of the Misra 
Chandy rule as well as the corresponding rule for the Invariant system 
are not sufficient to obtain a complete system. Rather a new axiom, 
now called the prefix invariance axiom, has to be added to the system. 

• Clarke's result does not extend to the system of [ZBR], or to the Invari
ant system. Rather the Invariant system could be shown to be arith
metically complete for the full language, including recursion. These 
results appear in the report [ZRE2J. The ICALP paper with the sa.me 
title, [ZRE], contains the part of the report that is concerned with the 
Invariant system only. 



1.1. SUMMARY AND PERSPECTIVE 5 

The problem with combining specifications in a bottom up development that 
we signaled above for the system of Lamport is not exclusive for that system. 
This can be understood as follows. Many proof systems include rules that 
enable one to reduce the verification of an a priori given specification for 
a composed program to the verification of specifications for the constituent 
components. A well known example is the rule for sequentia! composition 
in the Hoare's logic. Such rules fa.vor a top down development, for in this 
case the specification for the parts is designed only after the specification 
for the whole is known. For a bottom up approach on the other hand, 
one must derive a specification for the whole from arbitrary a priori given 
specifications /or the parts. If the proof rules do not allow one to combine ar
bitary specifications for the parts, then the given specifications for the parts 
have to be adapted into another form until the rules do become applicable. 
Hence one might draw the conclusion that what we need is proof rules that 
combine arbitrary specifications for parts into a specification for a larger 
program composed out of these parts. Obviously this favors a bottom up 
development. 

Such bottom up style rules have been given by Barringer, Kuiper and Pnueli 
in [BKP], for the specification of parallel programs by means of tempora! 
logic. However, the system of [BKP] was obtained only by the introduction 
of a new temporal operator for each language construct. The result is that 
specifications constructed for a program in this way can be as complex as 
the semantica of the program itself. Moreover, the necessity for adaptation 
of specifications remains, since in a top down development there might not 
exist appropriate specifi.cations for the parts of a composite program that 
will result immediately in the desired specifi.cation for the whole by applying 
a bottom up style rule. In such cases one must additionally prove that the 
specification that has been obtained for the whole can be adapted to the 
desired one. 

The idea of adaptation of specifications turned out to be a key notion for 
a modular approach to program development. By modularity we mean the 
following. We have some program S, specified by some given specification 
spec, and composed out of parts P1, ... , Pm each specified by a given specifi-
cation speci(.11). The "modules" Pi, ... , Pn are treated as black boxes, that 
is, without (known) inner structure. We call the given decomposition of the 
program S correct if the black box specifications speci(.11) logically imply 
the correctness of S with respect to its specification spec. 

A proof system is called modular complete if, for any correct decomposition 
as described, one can f ormally de duce the specification spec for S under the 
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hypotheses that the black boxes satisfy their corresponding specifi.cation. 

The modular completeness notion is applicable for a top down as well as for 
a bottom up development. For a top down approach, the inner structure 
of the black boxes is literally unknown, since they are not implemented at 
tha.t stage. For a bottom up approach, the black box mechanism is used to 
abstract from the innards of the already implemented modules. 

Why is modular completeness different from compositiona.l completeness? 
Compositional completeness requires, fora given specification for the whole 
program, the existence of appropriate specifications for the parts, such that 
the specifi.cation for the whole can be deduced from them. Modular com
pleteness asserts that such a deduction can be found for a priori given spec
ifications for the parts. 

A third completeness notion is that of adaptation completeness. It asserts 
that if some given specification spec(P) fora black box P logically implies 
another specification spec'(P)for that sa.me black box, then the proof system 
admits a formal deduction of that fa.et. Adaptation completeness can be seen 
as a special, restricted form of modular completeness. In section 1.5 it is 
proven that the combination of compositional completeness together with 
adaptation completeness implies modular completeness of a proof system. 

The necessity of adapting specifications is well known from the investiga.
tions concerning the completeness of Hoare style proof systems dealing with 
(sequentia!) recursive procedures cfr. [Apt], [Bakker], [Gorelick]. Gorelick 
[GorelickJ, succeeded in proving the completeness fora Hoare style proof sys
tem by adding various substitution rules and an invariance rule to the usual 
Hoare system for while-programs. These extra rules were used to adapt 
Hoare style specifi.cations of a restricted form, called most general formulae 
in [Gorelick]. A special rule, called the Rule of Adaptation, was proposed 
by Hoare in [Hoare4], also for a proof system dealing with recursion. By 
means of this rule one ca.n "adapt" arbitrary Hoare specifications. Olderog 
investigated the Rule of Adaptation and proved essentially tha.t the rule 
can replace the "extra" rules employed by Gorelick, hut also tha.t it is not 
sufficiently strong to achieve adaptation completeness [Olderog3J. 

An interesting topic in this context is the type of adaptation rules that are 
ba.sed on certa.in closure properties of the semantic domain of denotations 
for processes. For communication based languages, prefix closedness with 
respect to communication histories is such a property, that is always satis
fied by TNP processes, hut not by specifications for such processes. The 
adaptation problem caused by this is treated extensively in the work of J. 
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Widom [Widom], (WiPa]. The solution proposed by Widom is based on an 
enrichment of the specification language by means of certain temporal logic 
opera.tions. With respect to our proof systems we remark the following. First 
of all, our systems are axiomatizations, not of a programming language, hut 
of a so called mixed formalism, where programs and specifications appear on 
the same footing. As a consequence, our processes need not denote prefix 
closed sets. And so it turns out that the corresponding adaptation problem 
has vanished. Now this is only half of the story, since one may object that 
we have blurred the distinction between "real" programs and specifications 
instead of ha.ving solved anything. Therefore we included a so called kernel 
operation within our mixed forma.lism. This operation allows for the distinc
tion between those black boxes satisfying the prefix closedness property and 
those that need not. The adaptation problem is then solved by the inclusion 
of ( ordinary) proof rules for the kernel operation. We could do so without 
extending our language of specifications. 

For the proof systems considered here, the focus of attention is whether these 
systems are compositional complete, adaptation complete or even modular 
complete. The origin and characteristics of the three proof systems are as 
follows. As already stated above, our original aim was to prove what we 
now call compositional completeness for the Misra/Chandy and Invariant 
systems, specialized for the programming language DNP. Soon it was re
alized that such completeness considerations could be much clearer if the 
language DNP was simplified. The result was the language TNP , for 
"Theoretical Networks of Processes", which is simpler, hut at the same time 
more powerful than DNP. TNP is much in the spirit of languages like CCS 
[Mil] or TCSP [OH] except that it combines a state based approach with a 
communication based approach to programming. 

For TCSP several proof systems have been developed by Olderog and Hoare 
[OH], [Olderogl], [Olderog2]. Some of these deal with program properties, 
such as absence of deadlock, that are not considered in this thesis. The sys
tem dealing with communication histories ( only) seemed a good candidate 
for a comparison with our own Invariant system. To this end we developed a 
new proof system for TNP, for a type of specifications called SAT formulae. 
This type of formulae can be seen as the generalization of the formulae used 
by [Olderog2] to the combined state and communication based approach. 
Essentially they express the inclusion between a program and its specifi
cation. We discovered how to represent formulae of the Hoare system by 
means of equivalent formulae of the SAT system, and vice versa, and even 
how to transform complete deductions within one system to corresponding 
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deductions in the other system in a canonical way. In fact it proved to be 
simpler to introduce a third proof system as a sort of intermediate system 
in between the SAT system and the Invariant system that must be seen as 
an alternative formulation of the Invariant system. We named it the Hoare 
system, sînce the form and înterpretation of the formulae of this system is 
exactly that of classical Hoare style formulae for sequentia! programs, except 
that the pre- and postconditions of our formulae are not assertions on states, 
hut rather on the combination of communication histories and states. (An 
idea going back to V. Pratt [PrattJ). 

The proof transformations yield much insight in the structure and interre
lationship of the three proof systems. Maybe the most important difference 
between SAT style and Hoare style reasoning is in the number and complex
ity of proof rules for ada.pta.tion of specifications. The SAT system is clearly 
superior in this respect, since it contains very few and only very simple adap
tation rules. The transformation of Hoare style deductions into SAT style 
deductions reveals why no Gorelick type adapta.tion rules are needed for the 
SAT system: All such rules from the Hoare system transform essentially into 
applications of the consequence rule of the SAT system. Another important 
conclusion that follows from this proof transformation is that it is feasible 
to treat Hoare style specifications and Hoare style reasoning as abbreviat
ing certain SAT style specifications and reasoning. Thus we can embed the 
Hoare system as a subsystem of the SAT system. The sa.me can sa.id about 
the relation between the Hoare and Invariant systems: The Invariant spec
ifications and reasoning abbreviate corresponding Hoare style specifications 
and reasoning. 

One should not draw the conclusion from this that the SAT system is also 
superior when it comes to the actual verification of concrete programs. For 
instance, the absence of certain adaptation rules in the SAT system only 
means that where the Hoare style proof applies one of these adaptation 
rules, the SAT style proof applies the consequence rule, and in fact both 
rely on one and the sa.me underlying logic principle. A second, equally 
important difference is the treatment of the classical sequential programming 
constructs, which is more complicated within the SAT system than in the 
Hoare and Invariant system. The Invariant system is in fa.et a generalization 
of classica! Hoare logic, and for purely sequentia!, non communicating TNP 
programs, the system simply coincides with Hoare style logic. 

We end with a description of the organization of this monograph. 

Chapter l starts, after this summary, with an example of the development of 
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a parallel sorting algorithm, thereby introducing many language constructs, 
specification methods and verification principles of later chapters. Section 
1.5 treats the concepts of compositional and modular completeness. 

TNP is introduced in chapter 2, after the definition of DNP. We indicate 
how to translate DNP programs into TNP, whereafter DNP is no longer 
used in this thesis. 

The ( denotational) semantics of TNP is developed in chapter 3. An interest
ing point here is that there are remarkable similarities between the treatment 
of state transformations and communications. Another point that deserves 
attention is the treatment of parallelism by means of a projection operation. 
Although equivalent to the usual interleaving semantica, the description by 
means of projections is mathematically more elegant. 

Chapter 4 introduces the assertion language, used to express properties of 
communication histories and sta.tea, and the three types of process specifi
cations. The properties of, and relationship between, the three specification 
methods is treated in depth. Also the language of mized terms is defined 
here. 

Chapter 5 introduces the three proof systems. The soundness of the SAT 
system is proven directly from the semantic definitions. The Hoare system 
is shown to be sound essentially by transforming Hoare style deductions into 
SAT style deductions. Similarly, the Invariant system is proven sound by 
transforming Invariant style deductions into Hoare style deductions. 

Chapter 6 addresses the completeness question for the SAT system. The 
system is shown to be compositionally complete and adaptation complete, 
and therefore modular complete. 

Chapter 7 proves the compositional completeness of the Hoare system by 
showing that SAT style deductions can be transformed, in a canonical way, 
into corresponding Hoare style deductions. The Gorelick type of adaptation 
rules are used extensively in this proof. A so called strong adaptation rule 
is introduced in chapter 5 which, contrary to Hoare's Rule of Adaptation, 
results in adaptation completeness. The proof can be found in chapter 7. 
Finally, we prove the compositional completeness of the Invariant system, by 
means of a proof transformation from Hoare style deductions into Invariant 
deductions. 
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1.2 Specification and Construction of Processes 

The object of study of this thesis is the specification, construction and verifi
cation of parallel executing processes. In this introductory section we would 
like to give an overview by showing the development of a parallel sorting 
algorithm. This gives us the opportunity to introduce the main program
ming language constructs, various specification methods, and some of the 
verification rules in an informal setting. 

If one wants to reason in a secure way about processes then the first step is 
to introduce f ormalized languages to describe processes and specifications. 
Our main formal language to describe processes is called TNP. lts syntax 
and semantica are provided in the chapters 2 and 3. Thereafter, in chapter 
4, we introduce formal languages to describe and specify process behavior. 

The language TNP , for Theoretica! Networks of Processes, evolved from 
an earlier language called DNP , for Dynamic Networks of Processes. The 
starting point for DNP was the concept of a dynamically changing networks 
of processes. A parallel network consists of a number of processes executing 
in parallel and communicating messages along interconnecting channels. A 
process is a sequentia! program that can expand temporarily into parallel 
subnetworks. This can happen recursively since the so formed subnetworks 
can contain new copies of the original (expanded) process. 

By generalizing, and at the sa.me time simplifying, DNP the language TNP 
was designed. Whereas DNP resembles a procedure based parallel program
ming language, TNP is much more in the style of languages such as TCSP 
[OH}. 

We shall introduce the main language constructs of TNP as we need them 
in the development of a parallel sorting algorithm, also known as "priority 
queue" or, as we shall call it, the "sorted bag". 

The parallel execution of two processes P1 and P2 is denoted by Pi Il P2. 
The CSP notation c!e is used to denote the sending of the message denoted 
bye along the channel named c. Similarly, c?x is a command that requests 
some message along c and stores it into variable x. Comrnunication is syn
chronous, that is, the sender and receiver of a message must cooperate and, 
conceptually, a message is received at the same time as it was sent. 

Example 1.1 

We give a picture of the network P Il Bag, consisting of two processes named 
P and Bag. The two component processes are connected by means of chan-
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nels named insert and getmin. Process P can send messages to Bag along 
channel insert by executing insertie commands. For such communications 
to occur the Bag process must execute corresponding commands of the form 
insert?x. Similarly a communication along getmin occurs if P executes a 
getmin?x command in cooperation with a getmin!e command of Bag. 

insert 

p 
getmin 

Bag 

D 

We want to specify the intended behavior of processes and to verify that the 
specification is met by some proposed implementation. For insta.nee a de
scription of the intended behavior of the Bag process could be the following: 

Example 1.2 

" Bag behaves as a so called sorted bag of va.lues. Bags are also called 
multisets since they are like sets except that multiple copies of the same 
value can be member of a bag. New va.lues can be inserted by sending them 
to Bag via the insert channel. A value can be requested via the getmin 
channel and this results in sending back and removal from the bag of the 
smallest element of the bag." 

D 

As is well known, a Bag process as described can be used to sort a given list 
of va.lues. This is done by first inserting all elements of the list, followed by 
requesting an equal number of va.lues. 

We want to specify the Bag behavior in a rigorous way, rather than informally 
as in the English description above. Our formal description method is based 
upon the notions of communication events and sequences of such events 
called traces or communication historied. 

A communication is an event that is described by a channel name and a 
comrnunicated value. For instance, the event of communicating a value v 
via channel insert is described by the pair (insert, v). A communication 
history h then, can be seen as a description of which va.lues have been com
municated along which channels in which order at some particular moment of 
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time. For instance, the history h ~r < (insert, t1), (insert, w), (getmin, t1) > 
corresponds to the sta.te where va.lues t1 and w were sent, in that order, via 
insert followed by the communication of va.lue t1 via. getmin. 

In essence a process specification can be seen as a. formula. of a ( many sorted, 
first order) predicate logic tha.t expresses the desired properties of the com
munication history h that should hold for all possible executions of the pro
cess, at any moment during the execution. Such a predicate is called an 
assertion about the behavior of the process. 

We would like to give an impression of what a forma.l specifi.cation for the 
Bag process looks like. To this end we discuss a few aspects of the language 
of assertions. 

Fundamental is the class of trace expressions. Examples are the empty trace 
e, denoting the empty sequence of communications, and the communication 
history h, denoting the communications that have been performed by the 
process up to some moment during some execution of the process. The his
tory h must be distinguished from ordinary trace valued variables t that 
denote some arbitrary sequence of communications, not especially related 
to those communications actually performed by the process. Operations 
on trace expressions te include the important channel projection operation 
tel{ ei,"., c11}. This denotes the subsequence of te consisting of all com
munications via the channels {ei, .•. , Cn}. The special case h 1 { c} is of ten 
abbreviated as c, that is, a channel name, used as a trace expression, de
notes the sequence of all communications via that particular channel. Oper
ations that we shall use in the example below are last(te), denoting the last 
communication of te, and rest( te), denoting the sequence of all but the last 
communication of te. 

The expression last( te) is not a trace expression since it denotes a single 
communication rather than a sequence of communications. The channel 
name and the communicated value of a single communication a are referred 
to by the expressions chan(a) and t1al(a). 

Assertions are many sorted first order predicate formulae. Here we only 
mention one such assertion, denoted by te1 ~ te2, which expresses that the 
sequence te1 is an initial prefix of the sequence te2. 

The fact that one requires an assertion X to hold for all possible executions of 
a process P is not expressed within the assertion as such. Rather this is the 
interpretation of the satisfaction rela.tion between processes and assertions. 
This is expressed by the following formula: 
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P sat x. 
We call such formulae SAT specifications, to distinguish them from other 
types of specifications that we shall later on. 

Example 1.3 

We use the following notation for bags: 

• The empty bag is denoted by 0, the bag containing elements ei, • .. , en 
by [ei,"., en]• 

• The union and diff erence of bags Bi and B2 are denoted by Bi $ B2 
and Bi 8 B2. 

• The least element of a bag Bof ordered va.lues is denoted by min(B). 

Let "bag (te, c )" denote the bag of all va.lues of all communications via channel 
c that occur in the sequence denoted by trace expression te. Instead of 
bag(hl{c},c) we use the abbreviation bag(c). Also we use cont(ci,c2) as an 
abbreviation for bag(ci)8bag(c2), and cont(te,c1,c2) as an abbreviation for 
bag (te, ei) e bag (te, c2), where te is some trace expression other than h. 

Let us fix some a.rbitra.ry moment during the Bag execution. We want 
to express that for all getmin communications that occur in the sequence 
hl{insert,getmin} reached thus fa.r, the correct value, that is, the "current" 
least element at the moment in question, was sent back by the Bag process. 
Now assume that t is some prefix of hl{insert,getmin} that ends with a 
getmin communication. We can express this assumption by mea.ns of the 
assertion 

t :::; hl{insert,getmin} /\ chan(last(t)) = getmin. 

The "current contents" of the bag just before that last communication is 
given by the expression cont(rest(t), insert,getmin). Therefore, the desired 
property is expressed by the assertion X11a9 (insert,getmin), defined as: 

( . t . ) def Xbag insert, ge min = 

w((t :i::; hl{insert,getmin} /\ chan(last(t)) = getmin)-+ 

val(last(t)) = min(cont(rest(t), insert,getmin)) ). 

Finally, the Bag specification is the following SAT formula: 

Bag sat Xbag(insert,getmin). 
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0 

Apart from operating as a sequentia! communicating program a process can 
be built up as a subnetwork. For instance we might implement the Bag 
process as a buffer process Buf, keeping a few Bag elements amongst which 
the current least element, executing in parallel with a process Bag keeping 
the rest of the Bag elements. This is shown in the picture below. 

Bag 

insert down 
i 

getmin 
Buf 

up Bag 

~ 
As can be seen the channels insert and getmin are connected to the Buf 
component of the network. The two components themselves are connected 
by means of channels down and up. The idea is that Buf on request will 
send its least element along getmin. The Bu/process can also send elements 
"down" to, or request the least element contained in, the Ba!I process. So 
the Ba!I process must behave as a copy of the Bag process except that its 
channels have different names. 

We would like to turn the intuitive descriptions of Bag and Buf into formal 
specifications, and then verify that the parallel network Buf Il Ba!I does 
conform to the Bag specification. To this end we first discuss the verification 
principles for parallel processes. 

A well known problem for the verification of parallel programs is that some 
specification that would be correct for a given process viewed in isolation, 
might be invalidated by the actions performed by other processes executing 
in parallel. In particular this is the case when a specification fora process 
P refers to a channel that can be modified by other processes without the 
cooperation of P. For insta.nee, if a specification for the Bar/ process would 
refer to the insert or getmin channel, then communications on these chan
nels performed by the parallel executing Buf process, without cooperation 
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with Bag', could be in conflict with this specification. We shall avoid such 
specifications, for only then the soundness is implied of the following simple 
proof rule for parallelism: 

Let P1 sat X1 and P2 sat X2 be specifica.tions of the communication behavior 
of P1 and P2 that obey the restriction tha.t the assertion Xi only refers to 
communications via. channels connected to process ~' where i = 1, 2. Then 
from P1 sat X1 and P2 sat X2 one can infer the following specification for the 
parallel composition of the two processes: 

P1 Il P2 sat (X1 A X2). 

We took care that the Bag specification does obey this restriction, since the 
only reference to the communication history is by means of the projection 
of this history onto the channels insert and getmin. A communication per
formed via some other channel than those two by some other process does 
affect the value of h, hut it does not affect the value of hl { insert, getmin}. 

To verify the correctness of the parallel composition Buf Il Bag', one has 
essentia.lly to prove that the Bu/process preserves Xbag(insert,getmin). For, 
during the expansion, the insert and getmin channels are connected to the 
Buf process. Of course the fact that Buf conforms to this behavior depends 
on the assumption that the process Bag, executing in parallel, behaves cor
rectly as a bag with respect to the channels down and up, that is, satisfies 
the specification Xbag(down, up). Therefore we choose the following Bu/spec
ifica.tion: 

Bu/ sat (Xbag(down, up)-+ Xbag(insert,getmin)). 

By the rule for parallel composition we then infer that: 

Buf 11 Bag' sat ((Xbag(down, up) -t Xbag(insert,getmin))AX1>ag(down, up)). 

Since the assertion of this last formula clearly implies Xbag(insert,getmin), 
We have shown that Bu/ 11 Bag does satisfy the required assertion. 

The fact that the Bat/ process shows the behavior of a. Bag process, except 
that its channels have different names, suggests tha.t the Bag process can be 
implemented as a parallel network itself and so on, ad infinitum. However, 
instead of such an infinitely deep nested statie network, we prefer a dynamic 
network in which Bag starts as a. sequentia[ process and expands into a sub
network only after elements have been inserted into the bag. Moreover, we 
can construct the Bag' process from a recursive copy of the Bag process 
itself, and so we will obtain a Bag process that bas a variable hut finîte 
degree of nesting, dependent on the number of elements contained in it. To 
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denote that, within the program S that we shall use to implement Bag, re
cursive copies of Bag are allowed we use the recursion construct µzBag.S. 
Apart from recursion we need a few more language constructs. First of all, 
we must rename the channels of the recursive Bag copy into ttp and down. 
This can be denoted in our language TNP as Bag(down/insert, ttp/getmin). 
The effect is that messages sent along getmin by Bag appear from out
side to be messages sent along the up channel. Similarly, messa.ges sent to 
Bag(down/insert, ttp/getmin} via down are received by the Bag process via 
its insert channel. Our first approach to implement Bag can now be given: 

µzBag · insert?x ; (Buf Il Bag(down/insert, up/getmin)) 

The semicolon, as usual, denotes sequentia[ composition. So first a value has 
to be received before the process expands into a subnetwork as indicated. 
The Bu/ process has access to the x variable in which the received value is 
stored. For instance it could send it back via the getmin channel to the 
outside world. But now a problem arises, for the recursive Bag copy also 
accesses the x variable. To avoid such "clashes" the so called variable hiding 
construct must be used to turn x into a local variable of the Bag process. 
This construct has the form S\x and it indicates that x is a local varia.bie 
of process S. We have the sa.me problem with channel names: the ttp and 
down channels connected to the recursive Bag copy have nothing to do with 
the channels of the same name within this copy. The problem is solved by 
using the ch.annel h.iding construct of the form S\c that denotes that cis an 
internal channel of S, not visible from outside. 

We arrive at the following implementation for the Bag process: 

µzBag · (insert?x; (Buf Il Bag(down/insert, up/getmin) )\up, down )\x 

Our solution still has one defect. Incarnations of the Buf and the Bag 
processes never terminate, and so although new incarnations are created 
when necessary these incarnations do not disappear when they are no longer 
needed. ldeally a parallel network Buf Il Bag(down/insert, up/getmin) 
should vanish as soon as neither the Buf process nor the Bag process stores 
anymore va.lues. So we cannot simply design the processes such that they 
terminate as soon as they store no value. To this end we synchronize the 
Buf and the Bag processes as follows. We include a new local channel called 
isempty between the two processes. If at any moment a process stores no val
ues, it offers to communicate via isempty whereafter it will terminate. That 
is, if the other process stores no values either, and so is also able to commu
nica.te via isempty, then the parallel combination can terminate as a whole. 
On the other hand if some new value is received then the proeess stores it 
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and is no longer willing to communicate via isempty. In our program the 
commands isempty! and isempty? denote communication commands where 
no values are sent or received. That is, only synchronization is required. 
(Alternatively one might see this as ordinary communication where some 
immaterial value is passed.) This suggests our final implementation for the 
Bag process: 

µ.11Bag. (isempty! 
or 

insert?x; 
(Buf Il Bag(down/insert, up/getmin) )\up, down, isempty; 
Bag 

)\x. 

The process has the choice between sending an isempty signal followed by 
termination and receiving a value via insert followed by an expansion. Note 
that if the subnetwork created by this expansion terminates itself then the 
whole process starts over again, since the execution of the subnetwork is 
followed by a recursive incarnation. In fact this second recursive call bas 
the form of a "tail" recursion, and so could have been replaced by a loop 
construct. 

A picture of this process after an expansion, where we have used Bag to 
denote Bag(down/insert, up/getmin} is: Bag 

insert 
isempty 
getmin 

Buf 

down 
isempty 

up Bag 

The vertical bar at the end of the outer i sempty channel indicates that during 
the expansion this channel is not connected to any of the sub processes. Only 
after the subnetwork has terminated the Bag process is (again) able to send 
an isempty signal. 

We adapt our Bag specification so as to express the fact that the Bag process 
only can terminate after it has sent an isempty signal, and that the contents 
of the bag is empty indeed, on termination. 



18 CHAPTER 1. INTRODUCTION 

In the assertion language, we use the symbol T to denote the characteristic 
predicate for computations that have terminated. Computations that do not 
satisfy this T predicate are called unfinished, and correspond to intermedi
a.te stages of the execution of a process. Unfinished computations are not 
the same as nonterrninating computations; every execution passes through 
unfinished intermedia.te stages whether it eventually terrninates or not. 

The specification tPbag ( i nsert, getmi n) is: 

,/, c· . ) def 'Yhag insert, getmin = 

Xbag(insert, getmin) /\ (T -t (cont(insert, getmin) = 0 /\ isempty e:)). 

The new specification still requires Xbag ( insert, getmin) to hold at all stages, 
and for terminated computations it requires the Bag contents to be empty, 
and the sequence of communications sent via isempty to be nonempty. The 
tPbag(insert, getmin) does not, and even cannot, express that the process 
must terminate a.fter it has sent the isempty signal. The reason is tha.t we 
study specifica.tion methode for so called sa/ ety properties, and the necessity 
of termination is not one of those properties. 

Example 1.4 

The picture below shows an execution of the Bag process from a certain 
(unfinished) stage for which cont(insert,getmin) = [1,5, 7]. We have only 
shown the Buf processes and the most deeply nested Bag process. We show 
also how a new value (3) is inserted, and how the current minimum (1) is 
requested. Note that, as seen from outside the minimum is requested strictly 
after the value 3 has been inserted, hut that internally the Bag process is 
still busy with the insertion process at that time. 
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(the exclamation mark in the one hut last picture indicates a synchronization 
action via an "'i sempty" channel.) 
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1.3 Hoare specifications and Invariant specifica
tions 

Now that we have proposed a. top level design for Bag, we would like to 
verify tha.t it satisfies the bag specifica.tion. We sketch how this verifica.tion 
could proceed. The proof systems that we develop in chapter 4 and 5 can 
be used for a formal verification, hut for the moment we simply rely on 
the plausibility of certain verifi.cation principles. We shall encounter certain 
diffi.culties in connection with the sequential structure of the process. To 
resolve them we introduce new types of process specifications. 

A well known verification principle, called Scott's induction rule, implies 
tha.t, to verify that Bag satisfies the specification tf>oag(insert, getmin), it 
suffi.ces to verify tha.t the body of Bag does satisfy this specification, where we 
ma.y assume "by induction" that the two occurrences of Bag processes within 
the body do satisfy tf>bag(insert,getmin). That is, under the hypothesis tha.t 
Bag satisfies </>bag(insert, getmin), we must verify the sa.me assertion for the 
process: 

( isempty! 
or insert?x ; 

(Bu/ Il Bag{down/insert,up/getmin})\{up,down,isempty}; 
Bag 

)\{x} 

To do so, we need verification principles for the cha.nnel and variable hiding 
constructs. Now these are fä.irly simple: if a process satisfies a certain as
sertion X, and the assertion does not re/er to some cha.nnel c or varia.bie x, 
then the assertion remains valid after we hide this cha.nnel or varia.bie. 

It will be clear tha.t in genera! such specifications can be obtained only by 
using appropriate pf'ojections of the communication history. 

Since our specification </>bag(insert, getmin) does not refer to the varia.bie 
x, our veri:fi.cation task for the body of Bag boils down to the verifica.tion 
of </>bag(insert,getmin) for both components of the choice construct. We 
concentrate on the verification for the second component, that is, of: 

(insert?x; (Bu/ Il Bag{down/insert,up/getmin})\up,down,isempty; Bag) 
sat 

4>11ag(insert, getmin). 
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The process of this last formula has the form of a sequentia! composition 
P1; P2; Bag, where P1 is the process insert?x and where P2 is: 

(Buf Il Bag(down/insert, up/getmin) )\up, down, isempty 

First we must establish specifications X1 and X2, such that P1 sat X1 and 
that P2 sat X2. 

This brings us to the state trans/ ormer aspect of our specifications. For 
insta.nee, the P1 process does not only communicate some value along the 
insert channel, hut it also modiftes the process state by storing the received 
value in z. As a consequence the specification X1 must describe this state 
transformation together with, and related to, the communication behavior. 
Actually this relationship is very simple; it is: x = val(last(insert)). This 
relationship between x and the value communicated via the insert channel 
exists only after the P1 process has terminated. Therefore we must use again 
the T predicate, indicating a terminated computation. The specification for 
the P1 process then becomes: P1 sat (T--+ x = val(last(insert))). 

The last specification expresses a certain relationship between the commu
nication behavior and the ftnal state of computations. But in general one 
must also refer to the initia! state in which the computation starts. For 
insta.nee, for the process downlx; up?x one must be able to specify that the 
value communicated via down is the initial state valtt.e of x, whereas the ftnal 
state value of x is the value communicated via up. We use a "0

" superscript 
to indicate an initia! state value of some varia.bie. For example, 

(down!x; up?x) sat (val(last(down)) = x0 A val(last(up)) = x) 

Our next problem is to invent a specification for the parallel construct. Be
cause this parallel process starts executing only after a value bas been sent 
via insert, the original bag specification is no longer applicable. 

H our goal would be the verification of the Bag version that we considered 
in the previous section just before the introduction of the isempty chan
nel, then we would know how to proceed. In this case, any communication 
history of Buf Il Bag(down/insert, up/getmin}, prefixed by a single com
munication (insert, v) where tJ is arbitrary, should satisfy the Bag assertion 
<P11a9(insert,getmin). This means that the appropriate assertion for the par
allel construct would be: 

\lv ( </>bag(insert, getmin)[( < (insert, v) > h}/hl), 
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where · · · [( < (insert, v) > h)/h] indicates that the concatenation of the one 
element trace < ( insert, v) > with the history h must be substituted for h. 

This simple verification principle is well known from the literature, see for 
instance [ZH]. 

Ho wever, for the final version of Bag, we must not only account for the sin
gle communication via insert bef ore the parallel construct starts, hut also for 
the communications by the recursive Bag call after the parallel construct has 
terminated. With respect to the communication history of the recursive Bag 
call we may assume, by Scott's induction rule, that it satisfies the bag spec
ification. Unfortunately there is no elegant way to combine two assertions 
that describe the components of a sequential composition of processes. The 
reason why we suceeded in the situation above was that the communication 
histories of one of the two components were fairly simple. 

In genera! one must construct a formula X that describes the execution of 
our sequentia! process Pi; P2; Bag. Informally speaking, this formula is: 

" There are intermedia.te va.lues x' and x" for x, and subsequences hi, h2, hs 
of the complete communication history h, such that h is the concatenation 
of these three histories, X l holds for the communications in h1 and the 
transition of the x value from x0 to x', X2 holds for h2 and the transition 
from x' to x", and 4>11a9(insert,getmin) holds for hs and the transition from 
x" to x ." 

In the assertion language, one can write down a predicate logic formula 
with the intended interpretation as above. This formula. is abbreviated as 
X10X204>11a9 ( insert, getmin ). 

The second and final step in the verification of: 

P1; P2; Bag sat 4>11a9 (insert, getmin) 

is then to show that: 

(X10X204>bag(insert, getmin)) -i. </>bag(insert, getmin) 

is a va.lid implication. 

Let us compa.re this with the well known rule for sequentia! composition 
in Hoare's logic for sequentia!, i.e. non parallel, programs. The specifica
tions for programs 8 are in the form of pre- and postconditions, denoted by 
{pre} 8 {post}. The pre- and postconditions are assertions on the initia! and 

, fina.l state of the computation. To verify {pre} 81; 82 {post} one must in vent 
an intermediate a.ssertion int and verify {pre} 81 {int} and {int} 82 {post}. 
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Since there is no complicated verification condition to validate, like the impli
cation (X10X2oef>bag(insert,getmin)) _,, i/>bag(insert,getmin), we prefer this 
type of reasoning over the approach sketched above. 

The observation that formulae of the form P sat X are not very appropriate 
for the sequentia! composition construct formed the incentive for studying a 
new style of process specifications. These specifications are based upon the 
idea that if some process 82 starts after termination of some other process 
Si, then at that moment of time there is already some communication his
tory. We call this the initial trace for the execution of 82. By introducing 
this notion of an initial communication history, we can view a process as 
a. tra.nsformer from initial histories and - process states to final histories 
and process states. We use the phrase "generalized state" fora combination 
of some history and some process state. The outer form of our specifi.ca.
tions is the same as that of "classica}" Hoare style formulae, with a pre- and 
postcondition. These pre- and postconditions are assertions on generalized 
states, however. To indicate this, we use the notation ( ip) P ( .p) for Hoare 
specifications, where the ip and t/J are assertions on generalized states. With 
our Hoare formulae, one can essentially use the same type of reasoning for 
sequentia! programs as within Hoare's logic. In particular the proof rule for 
sequentia! composition of processes has the sa.me form as the classical Hoare 
rule mentioned above. 

Our Hoare style specifications have in common with SAT specifications the 
uniform treatment of terminated and unfinished computations. That is, the 
assertions ip and t/J of the Hoare formula (ip) P (t/J) and the assertion X of 
the SAT formula P sat X are interpreted for both terminated and unfinished 
computations. The characteristic predicate T is used within these assertions 
to distinguish between the two types of computations. 

In practice it turns out to be easier to separate assertions into pre- and post
conditions on generalized states that are interpreted for terminated com
putations only, and invariants on communication histories, that must hold 
continuously. This leads toa third type of formulae, called "Invariant spec
ifications". They have the following form: 

I : {pre} P {post}, 

where I is an assertion on histories only, and where pre and post are as
sertions on generalized states, i.e. on histories and states together. The 
characteristic predicate T is not used within I, pre or post. The distinction 
between terminated and unfinished computa.tions is made in the interpreta
tion of the specification. Informa.lly, the meaning of the specifica.tion is: 
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" H P is started in an initial state and with an initial history for which pre 
holds, then the invariant I will hold for the communication history of P at 
any moment during execution of P, and if and when P terminates, post will 
hold for the final history and state of P." 

Remarks 

• By "the communication history of P" we mean the complete history, 
that is, the initial history extended with communications performed 
by Pat some moment during execution, not just the communications 
performed by P itself. 

• It is understood that, if P terminates, the invariant holds up to and 
including the moment of termination. 

We proceed with the Bag example, turning over to the Invariant specification 
style. First we transform the SAT specification Bag sat </>bag(insert,getmin) 
into an equivalent Invariant specification. A straightforward transformation 
is obtained by choosing a precondition that requires the initial trace to be 
empty, for then the role of the invariant is essentially the same as an assertion 
of a SAT formula. This would result in the following Invariant specification: 

Xbag(insert, getmin) : 

{insert = s A getmin = s A isempty = e:} 

Bag 

{cont(insert,getmin) = 0 A isempty "# s}. 

We have not included the assertion Xbag(insert, getmin) in the postcondition, 
although it would have made no difference since the invariant requires it 
anyhow. 

We are not satisfied with this specification for the following reason. lts pre
condition does not hold at those moments where the inner recursive calls 
of the Bag process start executing. So the given specification, although it 
correctly specifies the desired process behavior, will not fit into the correct
ness proof that we have in mind. As is not unusual with induction proofs, 
we can only prove a stronger specification. An Invariant specification can 
be made stronger by weakening its precondition, and by strengthening its 
postcondition and invariant. So the following formula is seen to be stronger 
than the specification above: 

Xoag(insert,getmin) : 

{ cont(insert, getmin) = 0 A Xbag(insert, getmin)} 
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Bag 

{cont(insert,getmin) = 0 /\ isempty =/:- 5 /\ Xoag(insert,getmin)}. 

To prove this specification we give a so called annotated program. It consists 
of the program text of the Bag process with assertions on generalized states 
attached to control points of the process. Similar to the usual program an
notations for Hoare's logic we enclose these assertions within set braces. The 
annotated text is preceded by a clause, called the invariant of the annotation, 
that has the form Xbag(insert, getmin) : . Such an annotated text is to be 
understood as follows. If S is some piece of process text that occurs within 
an annotation that is prefixed by invariant I, and S is enclosed between the 
assertions p and q, then 

I : {p A I} S { q /\ I} 

is claimed to be a valid specification for S. (The fact that the invariant I is 
implicitly attached as a conjunct to all assertions within annotations is just 
a notational convenience.) 

The actual annotation for Bag is: 

Xbag(insert,getmin) : 

{cont(insert,getmin) = 0} 

( isemptyl 

{cont(insert,getmin) 0 /\ isempty =fa s} 

or 

( insert?x; 

{cont(insert,getmin) = [x]} 

(Buf Il Bag{down/insert, up/getmin) )\{up,down, isempty}; 

{cont(insert,getmin) = 0} 

Bag 

) {cont(insert,getmin) = 0 /\ isempty =/:- s} 

)\{x} 
{cont(insert, getmin) = 0 /\ isempty =/:- 5} 

Note that the specification for the second inner call of the Bag process equals 
the specification for the whole. This can be formally justified by applying 
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Scott 's induction rule. The annotation does not indicate how to prove the 
specification that it claims to be valid for the parallel network within the 
Bag process. This specification is: 

Xbag(insert,getmin) : 

{cont(insert,getmin) = [x] /\ Xbag(insert,getmin)} 

(Bu/ Il Bag(down/insert,up/getmin))\{up,down,isempty} 

{cont(insert,getmin) = 0 /\ Xbag(insert,getmin)} 

We sketch how to prove this. 

Again we may assume that the Bag specification holds for the recursive call 
within this network, and this implies the following for the Bag process with 
renamed channels: 

Xbag(down, up) : {cont(down, up)= 0 /\ Xbag(down, up)} 

Bag(down/insert, up/ getmin) 

{cont(down, up)= 0 /\ isempty #:- 5 /\ Xbag(down, up)}. 

By strengthening the precondition and weakening the postcondition we ob
tain: 

Xbag(down,up): {down= up e} 

Bag(down/insert, up/getmin} 

{ cont(down, up) 0 /\ Xbag(down, up)}. 

The next task is to determine an appropriate specification for the Buf pro
cess. In our top down development, the most natural thing to do is to choose 
this specification such that it suits the verification of the parallel construct. 
Therefore we take the following one: 

Xbag (down, up) -+ Xbag ( i nsert, getmi n) : 

{cont(insert,getmin) [x] /\ Xoag(insert,getmin) /\ up= down= e} 

Bu/ 

{cont(down,up) = 0-+ cont(insert,getmin) = 0/\ 

Xbag(down, 1.1.p)-+ /\ Xoag(insert,getmin)} 
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We now have available specifications for the constituent components of the 
parallel construct. They satisfy the restriction that the channels and vari
ables ref erred to within these specifications are the channels and varia bles 
of the corresponding process. Under these conditions the following rule is 
applicable: 

Let Ii : {prei} Pi {post1} and I2 : {pre2} P2 {post2} be Invariant specifica
tions such that the channels and variables of Ii, prei and posti are contained 
within the channels and variables used by P;, for i = 1, 2. Then the following 
formula can be inferred from these two specifications: 

(I1 A I2) : {prei Apre2} Pi 11 P2 {post1 Apost2}. 

We can use this rule to conjoin the Bu/and the Bag(down/insert, up/getmin) 
specifications. Then, by weakening the invariant and postcondition we ob
tain the following specification for the parallel construct: 

Xbag ( insert, getmin) : 

{cont(insert,getmin) = [x] A Xbag(insert,getmin) A up= down e} 

(Buf Il Bag(down/insert, up/getmin}) 

{cont(insert,getmin) = 0 A Xbag(insert, getmin)} 

Let us omit the conjunct up = down = e from the precondition. That 
is, we no longer assume that the local channels up and down are initially 
empty. Now, unlike the initial state of variables, the initial state of channels 
cannot be sensed in any way by a process, and so the possible communication 
histories are the same as far as the projection onto channels other than up 
and down is concerned. And because the invariant and postcondition do not 
re/er to the up and down channels, they still remain valid for this larger set 
of possible communication histories. We conclude that the following formula 
is valid: 

Xbag(insert, getmin) : 

{cont(insert,getmin) = [x] A Xbag(insert,getmin)} 

(Buf Il Bag(down/insert, up/getmin}) 

{cont(insert,getmin) = 0 A Xbag(insert,getmin)}. 

Since this specification does not refer anymore to the local channels up, down 
or isempty, it remains valid if we hide these local channels. Therefore, we 
have shown the validity of: 

Xbag(insert,getmin) : 
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{cont(insert,9etmin) = [x] /\ Xba.g(insert,9etmin)} 

(Buf Il Bag(down/insert,up/getmin))\{up,down,isempty} 

{cont(insert,getmin) = 0 /\ Xba.g(insert, getmin)} 

This was to be shown. 

We have succeeded in verifying the top level design for the Bag process. lt 
remains to implement the Buf process, and to verify that the implementa
tion does satisfy the specification that we chose for this component. This 
development does neither introduce new language constructs nor new veri
fication principles. Therefore we simply list the resulting program text and 
the corresponding proof. 

The proposed Buf implementation is: 

( insert?y; 

(x, y) := (min(x, y), max(x, y)); down!y; Bul) 

or 

( getminlx; 

(( up?x; Bul) or isempty?)) 

Similar to the verifi.cation of the Bag process it is necessary to prove a 
stronger specification for Buf than the one that we required above. Again, 
the reason is that the given specification is inappropriate as an induction 
hypo thesis for Scott 's induction rule. 

The proof is in the form of an annotated program text: 
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Proof outline for the Buf process: 

Invariant Xbag(down, up)-+ Xbag(insert, getmin) : 

{ cont( insert, getmin) = cont( down, up) $ [x] /\ 
Xbag(down, up)-+ x = min(cont(insert,getmin))} 

( insert?y; 

{cont(insert,getmin) = cont(down, up) ED [x, y] /\ 
Xbag(down, up)-+ min(x, y) = min(cont(insert, getmin))} 

(x, y) := (min(x, y), max(x, y)); 

{cont(insert, getmin) = cont(down, up)$ [x, y] /\ 
Xbag( down, up) -+ x = min( cont( insert, getmin))} 

down!y; 

{cont(insert,getmin) = cont(down, up) ED [x) /\ 
Xbag(down, up)-+ x = min(cont(insert,getmin))} 

Buf 

) {cont(insert,getmin) = cont(down, up)} 

or 

( getmin!x; 

) 

{cont(insert,getmin) = cont(down, up)} 

( up?x; 

{cont(insert,getmin) = cont(down, up) ED [x] /\ 
Xbag(down, up)-+ x = min(cont(insert,getmin))} 

Buf 

) {cont(insert,getmin) = cont(down, up)} 

or 

isempty? 

{ cont(insert, getmin) = cont(down, up)} 

{cont(insert,getmin) = cont(down, up)} 
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1.4 Compositionality and Modularity 

For the task of program specification, construction and verification, pro
grams are not to be considered as monolithic entities. 

Rather a program is built up from parts that are specified, implemented and 
verified independently. The whole program is then verified on the basis of 
specifications for the parts, that is, without (using) knowledge of the inner 
structure of the parts. 

There are several ways in which one can interpret this. One view is that 
"built up from parts" refers to the syntactic phrase structure of the program. 
According to this structure a program is either an atomie action, a program 
variable, ranging over program meanings, or else it is built up from smaller 
programs by means of some syntactic operator C. We assume here that each 
of these operators has a fixed, finite arity, that is, combines a fixed number 
of programs into one larger program. 

Examples of atomie statements for the case of TNP are the assignment 
statement, and the communication commands. The set of syntactic opera
tors includes for instance the sequential and parallel composition operators. 
Program varia.bles coincide with process identifiers. Within TNP such vari
ables can occur free or bound. Note that the recursion construct in TNP 
does bind program variables. 

Proofs of program specifications should be compositional, that is, syntax 
directed. To explain this, assume that, according to this syntax, some pro
gram S is composed out of the programs 81, ... , Sn. That is, S is of the 
form C( Si, . .. , Sn) where C is some syntactic constructor. Then according 
to the statement made above a specification spec for S should be proven 
from specifications speci, ... , speen for the parts Si, ... , Bn. And, most im
portantly, the proof must not refer to the inner syntactic structure of these 
parts. 

In a. historica! perspective, the first methods for program verification , in
vented by Floyd and Naur [Floyd],[Naur], were not compositional. The rea
son is that programs were represented as flowcharts, and the usual syntactic 
structure of a flowchart, that has essentially the form of a labeled graph, does 
not decompose a. program into smaller programs, hut rather into atomie ac
tions. Moreover, the number of atomie actions that constitute a flowchart 
is not bounded from above. Therefore, we do not have a syntactic operator 
with fixed arity. 
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A major improvement was made by C.A.R. Hoare [Hoare2J who reformulated 
the Floyd Naur method as a compositional proof system. 

Hoare studied a very tiny language, often referred to as the class of "while 
programs". The method was extended by several people to encompass most 
of the usual sequential programming constructs. But when the fir~t proof 
systems for parallel programs were created, these systems did not adhere to 
the syntax directed style. 

For instance, a proof rule that violates this constraint is the one for parallel 
composition proposed by Owicki and Gries in [OG]. To verify a specification 
for a parallel program 81 Il S2 one must apply a so called inter/erence 
/reedom test to proof outlines that contain the program text of the parts 81 

and S2. 

Another well known proof system, for the verification of CSP programs, is the 
system by Apt, Francez and de Roever [AFR]. Here aso called cooperation 
test must be applied, again to proof outlines containing the program texts 
of the parts. So this system is not compositional either. 

One of the first publications containing a proof rule for parallel programs 
without reference to the inner structure of the constituent components was by 
Misra and Chandy in "Proofs of Hierarchical Networks of Processes" [MC]. 
It must be noted that Misra and Chandy did not study a language with a 
clear cut syntax. Rather they used a "picture language" for statically nested 
parallel processes communicating via channels. Therefore, strictly speaking 
their system is not compositional in the sense as defined above, because of 
the rather trivial reason that they have no syntactic operators. 

Misra and Chandy's rule is based on an interesting new type of process 
specifications. Essentially these specifications consist of a certain assump
tion and commitment about the communication history of a process. It is 
especially this formulation in terms of communication histories that made it 
unnecessary to refer to the inner structure of processes. 

The Misra and Chandy rule formed the basis for a compositional proof sys
tem for the language DNP ("Dynamic Networks of Processes") by Zwiers, 
de Bruin and de Roever [ZBR]. As already mentioned in the summary, one 
of the proof systems that we consider in this thesis evolved from the system 
of [ZBRJ. 

Before we go on discussing several aspects of compositionality in more detail, 
we would like to contrast this concept with a second interpretation of the 
statement made at the start of this section. 
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As one might have noticed already when we mentioned Misra and Chandy's 
rule, a context free grammar is not a presupposition for considering programs 
as "built up from parts". It suffices that there is some well defined notion 
of "black boxes" from which a program can be constructed, and which can 
later on be replaced by implementations in the form of concrete programs. 
Exactly how a program is built up from black boxes can be left open. 

A clear advantage of this view is that, since it is more liberal with respect to 
program structure, many more interesting systems can be discussed in this 
setting. Typical examples are flowchart languages and transition systems. 
For instance, although a flowchart does not have a nice syntax described by 
a context free grammar, one can allow named black boxes in it. If only black 
boxes with a single entry and exit are allowed, then it is possible to specify 
these black boxes in the same way as complete flowcharts are specified, i.e. by 
means of an entry and an exit condition. Essentially this is the structure of 
the language FORTRAN, where subroutine bodies play the role of flowcharts 
and subroutine calls the role of black boxes. 

Now our language TNP does have a neat context free grammar, so why are 
we so interested in this black box idea? The reason is that we want to make 
the distinction between what is called "programming in the small" versus 
"programming in the large". An often heard explanation of these terms is 
that programming in the large considers the program structure in terms of 
subroutines or procedures, whereas programming in the small refers to the 
internal structure of these subroutines and procedures. The terms "small" 
and "large" suggest that the only difference is in the scale of the program, 
and that mathematically speaking there is no real difference at all. We 
present here a different point of view. Programming "in the small" is done 
by one person, designing a program and its correctness proof hand in hand. 
As a consequence, when a specification is designed for a certain program 
part it is already clear in which program context it must function, and how 
the specification must "fit" into the correctness proof of the whole. On the 
other hand, programming "in the large" is not an activity of one person 
at one time. Therefore specifications for program parts are designed, and 
proven correct, without knowing exactly the context in which the part is to 
be placed. An (extreme) example is the design of modules fora program 
library where there is literally no contact between the designer and users of 
a module. The price for this division of la.hor is partly pa.id by the user of 
modules. For he must treat those modules as black boxes for which only an 
a priori given specification is known, and these specifications might not suit 
the correctness proof of the whole. This implies that, in general, a priori 
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given specifications must be adapted to a form that does fit into the proof. 
In our opinion, it is this extra step of specification adaptation that makes 
the difference between correctness proofs "in the small" and "in the large". 

Let spec( S) denote that some program S satisfies a certain specification 
spec. Specification adaptation means that a given specification specfr) for a 
black box~ has to be transformed into an alternative specification spec'(~). 
Tha.t is, it must be shown that spec1 (~) is a valid formula on the basis 
of the given formula spec(~). Such adaptations do not exclusively occur 
within the context of programming "in the large". For instance, for proving 
the correctness of a recursive program, it is necessary to give a correctness 
proof for the "body" of a recursive construct on the basis of an induction 
hypothesis that has the form of a specification for recursive calls. In general 
this given hypothesis must be adapted for each occurrence of a recursive call 
within the body. Usually the adaptation is performed with the aid of the 
well known consequence rule and various substitution rules. An example is 
given in [de Bakker], where a. (two page long!) proof is given, essentially 
showing tha.t if) satisfies the Hoa.re style partia.l correctness formula 

{x=z}){x=z}, 

and we also know, on the basis of syntactic considerations, that the varia.bie 
z ca.nnot be read or modified by ) , then it is also true tha.t ) satisfies: 

{x = z - 1}) {x = z - 1} 

Although specification is needed for programming "in the small", there is a 
major difference with programming "in the large". In the first case, when a 
specifica.tion is designed it is already known whether it bas to be ada.pted, and 
/or which contexts. By a proper choice of this specification one can ensure 
that all adaptations that are necessary can actually be proven correct within 
the given proof system at hand. We can contrast this with the situation for 
the second case, where a priori given specifications have to be adapted. 

Example 1.5 

We consider again the Bag process, introduced in the examples above. 

On the one hand we have the syntactic phrase structure of the Bag process, 
showing for instance that it is a recursive process, and that the body of this 
recursive process consists of a. choice construct, and so on. On the other hand 
one sees occurrences of black boxes named Bu/ and Bag. In the top down 
style verification that we gave for the Bag process, a certain specifi.cation was 
chosen for the Buf process that suited the verification for Bag. Thereafter we 
verified the Buf specification. Now consider the following different situa.tion. 
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Assume that actually the Buf process did already exist, due to some earlier 
design activity. That is, it was already constructed, specified and verified 
by someone else before, not with the intention to use it for our Bag design. 
It is unlikely that the specification would have been chosen the same as our 
Buf specification. For instance, it could have been as follows . 

• bcont ~r bag(insert) $ bag(up) e bag(getmin) e bag( down), 

• bcont[rest(down)/down] is bcont with rest( down) substituted for down, 

• lastchan ~r chan(last(hl{insert,getmin, up, down})), 

• lastval ~ val(/ast(hl{insert,getmin, up, down})), 

Let the buffer invariant be the assertion: 

X6u/ ~r (lastchan =down--+ lastval = max(bcont[rest(down)/down])) A 

(lastchan = getmin--+ lastval min(bcont[rest(getmin)/getmin])) 

Then the alternative Bu/ specification is: 

Xbv.f : {bcont = [x]} Buf {bcont = 0}. 

Since we want to treat Buf as a black box, redoing the verification task to 
see that our Buf specification is satisfied ( too) is not possible. Rather the 
already existing specification must be adapted, tha.t is, we must prove that 
the last specification implies the one that we used for the verification of the 
Bag process. 

However, simply strengthening of the precondition and weakening of the 
postcondition and the invariant of the alternative specification will not suf
fice to prove this implication between specifications. For it is not the case 
that the invariant of the alternative specification implies that of the original 
Buf specification. The reason is that the alternative invariant guarantees 
something about the last communication of the history h, at least if it is 
a communication via down or getmin. But it does not guarantee anything 
about earlier communications in h. This is to be contrasted with the original 
Bu/ invariant, that has the form 

Xbag(down, up)--+ Xbag(insert,getmin). 

The assertion X1>ag(ci,c2) has the form: 

\lt(t ~ hj{ci,c2} · · · ), 
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The result of this is that the original invariant makes a certain commitment 
about all down and getmin communications occurring inh. This indicates 
why the alternative invariant cannot imply the original one. 

One might question whether the alternative specification actually is as strong 
as the original one, since its invariant is logically weaker than the other in
variant. The intuitive reason why this is nevertheless the case is that the 
invariant of an Invariant specification is required to hold, not only for all 
possible executions, hut also at all moments during such executions. 

D 

1.5 Compositional and Modular Completeness 

For any formal proof system one of the main questions is whether sufficiently 
many axioms and rules have been collected. For instance, given a specifi
cation spec and a program S that satisfies this specification we might ask 
whether one can always prove that fa.et. Or we might ask whether we can al
ways carry through the necessary specification adaptations. Such problems 
are referred to as the completeness question for the formal system. 

First we summarize some of the standard concepts in this respect. 

As before, spec( S) denotes that specification spec is satisfied by program S. 

If S is a program that does not contain black boxes, this means that, under 
a given interpretation for programs and specifications, the formula spec( S) 
is interpreted as "true". If S does contain black boxes, then this truth value 
depends on the interpretation of the black boxes. If spec( S) is interpreted 
as true for all possible interpretations for black boxes within S, then the 
formula is called valid. This is denoted by 

f= spec(S). 

If for certain black boxes ~1, ••• , ~n and specifications spec1, •.. , speen it is 
the case that for any interpretation of black boxes that makes the formulae 
spec1fr1), .•. , specn(~n) true the formula spec(S) is also true, we say that the 
last formula is semantically implied by the former ones. We denote this as 
usual by 

spec1(~1), .•• , specn(~n) f= spec(S). 

As is well known, validity of some formula is only one side of the coin, where 
the other side is its provability. A formula is provable within a certain formal 
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system if there is a formal deduction from axioms by means of proof rules 
that ha.s the formula in question as its conclusion. If the formula spec( S) is 
provable this is denoted by 

f- spec(S) 

We say that spec(S) is provable /rom hypotheses spec1(~1), ... , specn(~n) if 
spec(S) can be deduced by means of proof rules from axioms together with 
the given hypotheses. This is denoted by: 

spec1fr1), ... , speen(~") f- spec(S) 

lt is always required that a formal system is sound, meaning that if some 
formula is provable, then it is valid. If the reverse holds too, that is, every 
valid formula is also provable, then the system is called complete" Although 
completeness is a desirable property, one does not, and cannot, always in
sist on it. For the famous results of Gödel [Gödel] showed that for many 
mathematical systems, including the system of natura! numbers, a complete 
axiomatization by means of first order predicate logic is impossible. The 
impact of this on our work is the following. Instead of proving completeness 
we shall prove relative completeness. By this we mean that we assume that 
we have a so called oracle to decide whether some assertion of our assertion 
language Assn, that we define in chapter 4, is valid or not. Relative com
pleteness means that every valid specification can be formally deduced where 
we may call upon the oracle to decide the validity of assertions. The typical 
case where the oracle is used is for application of one of the consequence 
rules that we introduce in chapter 5. 

A rather subtle point is the following. When we come to the definition of 
(the meaning of) the assertion language Assn, we shall include the natura! 
numbers, together with the usual operations of addition and multiplication. 
The interpretation for these is by means of the standard model of arithmetic. 
Such an interpretation is called strongly arithmetical (Cla2]. The reason 
for doing so is that we insist on a specification language that is sufficiently 
expressive in the sense as defined in section 6.2, and this can be achieved only 
if we can express within assertions the length of communication histories. 
Moreover, even if a finite interpretation is chosen for the domain of data that 
processes act on, one still can construct processes with three channels that 
are such that the length the history via one of these channels is essentially 
the sum or product of the lengths of the histories via the other two channels. 
This explains why we need a strongly arithmetical interpretation. 

Since we are relying on a strongly arithmetical interpretation for assertions, 
our notion of completeness is better called arithmetical completeness [Harel]. 



1.5. COMPOSITIONAL AND MODULAR COMPLETENESS 37 

To avoid cumbersome terminology we shall usually omit the adjectives "rel
ative" and "arithmetical" when we discuss completeness questions. That is, 
these qualifications are always implicitly understood. 

The "classical" completeness question in the field of program correctness 
is whether for closed programs one can prove the program correct with 
respect to every valid specification. This notion of completeness is not ap
propriate for "programming in the large", since there the normal situation 
is that some formula spec( S) has to be proven correct from specifications 
spec1 (~i), ... , specn(~n) for the black boxes ~b ••• , Çn in S. 

The natural notion of completeness in this context is that of modular com
pleteness: 

Let SPEC be a given class of program specifications. A forma} proof sys
tem is called modular complete for this class if the following holds. If 
spec eSPEC is some specification and S is some program such that the 
formula spec(S) is semantically implied by specifications speci, ... , speen 
for the black boxes ~h ••. , çn, then it is possible to prove spec(S) from the 
hypotheses spec1(ç1), ... , specnfrn)· 

In practice there is one minor technical problem with this definition. A spec
ification spec is satisfiable if there exists at least one program that satisfies 
it, else spec is unsatisfiable. Now if one of the hypotheses spec,(~1) is actu
ally unsatisfiable, then the semantic implication is always valid, vacuously. 
Then, in general, a proof of spec(S) from the given hypotheses requires the 
logical principle of reductio ad absurdum in one form or another. Since this 
principle plays no role in proving programs correct except for the situation as 
described, we would like to avoid the introduction of (yet) another proof rule 
that expresses this principle on the level of specifications. This motivates 
the following more accurate definition of modular completeness: 

Definition 1.6 (Modular Completeness) 

Let SPEC be some class of specifications for some given class of programs 
PROG. A formal proof system for these specifications is modular com
plete if, for all spec eSPEC, all satisfiable speci, • .• , speen ESPEC and all 
S EPROG, 

spec1(~1), ... , specn(~n) I= spec(S). 

implies 

spec1fr1), ... , specn()n) 1- spec(S). 
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0 

For the logica! systems that we shall consider, the specification language 
SPEC is closed under the usual logica! operations such as conjunction and 
implication. ( We shall assume tha.t these operations do have their usual 
interpretation, and tha.t the usual logica! rules for these operations have 
been included in the system.) 

Let us call a formula. mspec(S), of the form 

( /\ specifri)) -+ spec(S) (1) 
i=l,n 

a modular specification of S. Since our logical formalisms can represent a 
finite conjunction of the form 

/\ spec;(ç) 
i=l,m 

by means of a single specification spec'(s-) we shall assume that the black 
boxes ri in the premisse of a modular specification of the form ( 1) are all dis-

tinct na.mes. It is understood that if n = 0 the conjunction (/\i=l,n speci(çi)) 
is the formula "true". Identifying the formula true-+ spec(S) with spec(S) 
one sees that specifications spec ESPEC are a special case of the form (1). 
Let MSPEC be the class of all such modular specifications, corresponding 
to the given class of ( ordinary) specifica.tions SPEC. 

We call mspec(S) regular if all the premisses speci(çi) are satisfiable. Mod
ular completeness for SPEC is in fact nothing else hut completeness for 
the regular formulae of MSPEC. That is, for regular mspec EMSPEC, if 
I= mspec(S) then 1- mspec(S). This follows from the following facts: 

Since an implication Ji-+ h is valid if and only if fi semantically implies Jz, 
formula (1) is valid if and only if 

spec1(Ç1), ..• , specnfrn) I= spec(S). 

Also, for our logical formalism a (forma!) implication /i-+ h is provable if 
and only if '2 can be proven from the hypo thesis fi. So 

spec1(ç1), ... , specn(~n) 1- spec(S) 

amounts to the same as 

/\ speci(çi) -+ spec(S). 
i=l,n 
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(We remark that, although all this might seem fairly straightforward, the 
standard treatment of Hoare's logic as for example in [Apt] or [Bakker] 
defines implication between correctness formulae in amore complicated way, 
due to the presence of implicit universa! quantifications for both sides of the 
implication sign.) 

Spelled out in detail the alternative formulation of modular completeness is 
as follows: for specifications and programs as indicated in the definition, if 

( /\ speci()i)) -t spec(S), 
i=l,n 

then 

f- ( /\ specifo)) -t spec(S). 
i=l,n 

A property that is implied by modular completeness is what we call adapta
tion completeness. For this case we have a given specification spec(~) that 
we want to adapt into another specification spec'(~). Of course this adap
tation is legal only when the first specification logically implies the second 
one. So we are interested in formulae of the following form: 

spec()) --+ spec' fr) 

Proving tautologies for black boxes, by which we mean proving formulae of 
the form spec'(d that are universally valid, shall be considered as a special 
case of this. To this end we allow spec(~) to be the formula true. Adaptation 
completeness means simply completeness with respect to this particular class 
of formulae. 

Definition 1. 7 ( Adaptation completeness) 

A formal proof system is adaptation complete for a given class of specifi
cations SPEC if for all spec, spec1 ESPEC, where spec must be satisfiable, 
if 

I= spec(~)--+ spec1 (~) 

then 

f- spec(~) -t spec' (~) 

It is understood here that spec(~) can be the formula true. D 

Remark 

A from an intuitive point of view less attractive, hut nevertheless equivalent 
definition of adaptation completeness would be to state that it is modular 



40 CHAPTER 1. INTRODUCTION 

completeness for formulae of the restricted form mspec( Ç), i.e. where the 
program on the right hand side of the implication is itself a black box Ç. 
That adaptation completeness according to this alternative definition implies 
a.daptation completeness as defined above will be clear. To see that the 
reverse hold too, assume that we have a adaptation complete system, in the 
sense of the original definition, and assume that a universally va.lid formula 

( A spec1(~i)) -+ spec(Ç) (*) 
i=l,n 

has been given. If spec( Ç) is a tautology, it is provable by the assumed 
adaptation completeness, and with the usual logica! rules ( *) is then provable 
too. Next assume that spec( Ç) is not a tautology. Since all the specifications 
speci(~i) are satisfiable and all the ~i are distinct, it then can be seen that 
exactly one of the ~i must be Ç, and moreover that: 

I= spec'(Ç)-+ spec(Ç) 

Clearly the last implication is provable by the assumed a.daptation complete
ness, and again the provability of ( *) follows from this. 

D 

Since modular completeness implies adaptation completeness, one might ask 
whether we ca.n formulate some requirement that together with adaptation 
completeness implies modular completeness. In genera!, we ca.n say little 
about this. But for compositional systems, a positive answer can be given. 

Assume that our class of programs PROG is described by means of compo
sitional syntax. By this we mean that each program S has either the form of 
a black box ~ which in this context shall be identified with a variable rang
ing over program meanings, or else is of the form C(Si, ... , Sn), where C is 
some syntactic constructor and where n ~ 0. If for a program of the latter 
form n = 0 we call it an atomie program. To be able to treat constructs like 
recursion within this framework we shall allow constructors C that can bind 
black box varia.bles. 

For a compositional approach a constructor C( 81, ... , Sn) is regarded as 
a function, where the Si are the variables of the function. As is usual in 
mathematical logic, we shall use the term meta varia.bles, for varia.bles like 
s,. Meta varia.bles range over program texts, and must be distinguished from 
black box varia.bles ~ that can occur within actual program texts, and that 
range over the domain of interpretation for programs. 

By a compositional proo/ rule we mean a logical inference of the following 
form: 
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"From speco(So) and ... specn-1(8n-1) infer specn(Sn)" 

Here speci and 81 are both meta variables, one ranging over specification 
texts, the other over program texts. That is, when we say "proof rule" we 
actually mean a proof rule scheme. An actual rule is obtained by substituting 
actual texts for the meta variables in the scheme. Of course one must not 
substitute a program text fora (meta) specification variable. That is, meta 
varia.bles are of a certain type, and one may only substitute texts of the 
appropriate type. Syntactic attributes such as the free variables of a text 
are usually regarded as part of the type of the text. For example, the type 
of some meta variable s might be "program containing at most 6, e2 as free 
black box varia.bles and at most channels ei, c2, c3 as free channel na.mes" 

For a proof rule as above, the types of meta varia.bles are usually put into 
the form of restrictions attached to the rule. It is important that such 
restrictions can refer only to the types of the meta variables, hut not to the 
inner syntactic structure of these varia.bles. For insta.nee the rule for parallel 
composition by Owicki and Gries is of the following form: 

"Let {p1} 81 {q1} and {P2} 82 {q2} be Hoare style proof outlines that are 
interference free. Then the Hoare formula {p1AP2} 81 Il 82 {q1/\q2} holds." 

This is not a compositional proof rule, since the side condition about inter
ference freedom does refer to pro9f outlines, containing the whole program 
texts of 81 and 82, and not just to the types of these texts. 

We give a definition of what is called elementary compositional completeness. 

De:ftnition 1.8 (Elementary compositional completeness) 

Assume that Sis some arbitrary program of the form C(Si, ... ,Sn), that 
no black box variables occur free in S and that C does not bind a black 
box varia.bie. (The term elementary refers to these restrictions.) Let spec 
be some specification for S. A proof system is compositionally complete if 
it is compositional and moreover is complete in the sense that , whenever 

spec(S), 

there exist specifications spec1, ... , speen such that: 

(a) f= speci(Si) for i = 1..n. 

(b) spec(C(S1, ••• , Sn)) can be proven from the hypotheses spec;(S;). 

D 

The requirement that the system must be compositional guarantees that the 
proof required for point (b) is uni/ orm in that no reference to the intern al 
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structure of the parts Si, ... , Sn is possible. The proof that is required for 
(b) is in fact a proof scheme that can be instantiated by substituting actual 
program texts for the meta varia.bles Si, ... , Sn. Note that this defi.nition 
does not require that the specifi.cation for S can be proven from a priori given 
specifications for the parts. Rather one must be able to choose appropriate 
specifications, such that ( a) and (b) are fulfilled. 

For the genera! case, where we allow free black box varia.bles and more 
importantly, constructs C that bind black box variables, we do not want 
compositional completeness on the level of specifications spec ESPEC, hut 
rather on the level of modular specifi.cations mspec EMSPEC. Of course 
this includes the simple case above since SPEC formulae can be regarded as 
MSPEC formulae. Therefore our genera! definition is the following one. 

Definition 1.9 (Compositional Completeness) 

Let PROG be a class of programs. Let SPEC be a class of program specifi
cations and let MSPEC be the corresponding class of modular specifications. 
A proof system is compositionally complete if it is compositional and more
over is complete in the sense that for all S EPROG of the form C( Si, ... , Sn) 
and all mspec EMSPEC, if 

I= mspec(S), 

then there exist mspec1, ... , mspecn EMSPEC such that: 

(a) I= mspeci(Si) for i = 1..n 

(b) mspec(C(S1, ... , Sn)) is provable from the hypotheses mspec,(Si) 

D 

We show that compositional completeness is supplementary to adaptation 
completeness in the sense that together they imply modular completeness. 

Theorem 1.10 

A proof system that is both compositional complete and adaptation complete 
is modular complete. 

D 

This is seen as follows: Assume that we have a system that is compositional 
and adaptation complete. Let some regular modular specification mspec and 
some program S been given, and assume that mspec(S) is valid. We show 
that mspec(S) is provable by means of induction on the syntactic structure 
of the program. 
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There are two cases to distinguish, according to whether S is a black box 
ç or is of the form C(Si, ... , S11). Note that the second case includes the 
situation where S is an atomie program. 

If Sis a black box then the provability of mspec(S) follows from the adap
tation completeness, as shown in the remark following the definition of this 
type of completeness above. 

If on the other hand S is of the form C(Si, ... , S11), then by compositional 
completeness we can choose specifications mspeci, ... , mspec11 such that 
mspec;(S;) is va.lid for i = l..n, and mspec(C(Si, .. . , 811)) can be proven 
from the hypotheses mspec1(S1), ••. ,mspec(S11). 

Since the components S; have a simpler syntactic structure than S, we may 
conclude by induction that the formulae mspec(S;) are provable. And in
stantiating the varia bles 81, ... , 811 in the given proof scheme, we see that 
mspec(C(Si, •.. , S11)) is provable from the hypotheses mspec(S,). We con
clude that mspec( C( S1, ... , Sn)) is provable, as was to be shown. 

We a.lready remarked tha.t modular completeness includes the "classica.l" no
tion of completeness which states: if Sis a closed program and spec(S) is a. 
valid formula then this formula is provable. By the theorem, a sufficient con
dition for completeness is that the proof system is both compositiona.lly and 
adaptation complete. However, adaptation completeness is not a necessary 
condition for completeness, as we will show now. 

First we consider the simple case of elementary compositional completeness. 
That is, for the moment we only consider programs without occurrences of 
black box varia.bles, either free or bound. It is easily seen that an elementary 
compositiona.lly complete system is complete for this class of programs and 
specifications from SPEC. The proof is along the sa.me lines as that for the 
theorem above, if one reads "specification" for "modular specification", and 
omits the part of the proof that handles the case where S is a black box. 

Next we treat the general case. Even when we want to verify a simple 
specification 11pec for a closed program S of the form C(S1, ... , S 11), it will 
in general not be possible to find SPEC formulae spec; for the parts S;. from 
which the specification for the whole can be verified. For if C does bind some 
black box variable, say (}, then some of the S; contain (} as a free variable. 
And so, for these parts Si we will only be able to find a va.lid specification 
of the form 

spece(tJ) --... spec(S;). 

That is, there is no escape from using modular specifications in this case, even 
when the program as a whole has no free occurrences of black box variables. 
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We make the observation that the specification speco for the black box 0 is 
not a priori given, hut can be chosen by the verificator of the program S. 
This explains why a proof system can be complete without being adaptation 
complete. For in this case one must only be able to adapt specifications 
such as spec9, and this can be simpler than being able to adapt arbitrary 
specifications. 

H spec is some particular specification, then we call it adaptable for a cer
tain proof system if the following holds, for arbitrary specifications spec': If 
specfr) -+ spec1 (~) is a valid implication, then this implication is provable. 
( Clearly a system is adaptation complete if and only if every specification is 
adaptable.) 



Chapter 2 

The languages DNP and TNP. 

2.1 Introduction 

The object of study is the proof theory of the concept of a dynamically chang
ing network of processes. In such a network, primarily sequentia! programs, 
ca.lled processes, execute in parallel and communicate via interconnecting 
channels. Processes each have their own (private) set of (assigna.ble) vari
ables, i.e. their va.ria.bles are not shared with other processes executing in 
parallel. Processes can expand temporarily into parallel subnetworks. This 
can happen recursively since the so formed subnetworks can contain new 
copies of the original (expanded) process. After termination of all compo
nent processes of a subnetwork, the expanded process contracts (shrinks) 
again, and continues its original mode of execution. The wish to model 
this concept as close as possible led to the design of a small programming 
language called DNP ("Dynamic Networks of Processes"). The language 
includes process declarations similar to conventional procedure declarations. 
New incarnations of processes can be created by means of (potentially recur
sive) process calls. The syntax of DNP is as follows. We leave unspecified 
the precise definition of the following syntactic classes: 

(x, u E) 'Var A set of assignable variables 
(c, d E) Chan - A set of channel names 
(p E) Pid A set of process names 
(e E) txp The class of expressions 
(b E) Bexp The class of boolean expressions 

Lists will be abbreviated using "vector" notation. Similarly, hold indicates a 

set of na.mes. E.g. xi, x2 ••• Xn is abbreviated as x, and { x} ~r { xi, x2 ••• xn} 
is denoted by x. 

45 
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Definition 2.1 (Syntax of DNP) 

Statements: 
S ::=skip 1 x := e 1 c!e 

if bthen S1 else S2 :ft. while bdo Sod 

cobegin Ncoend I P(di;doiY) 
Networks: 

Process declarations: 

Dec ::= P(ëi; ë0 ; x) begin So end 

Programs: 

Prog ::= S 1 Dec : Prog 

0 

The intuitive meaning of skip, x := e and S1; S2 should be clear. The con
struct S1 or S2 stands for nondeterministic choice between S1 and S2. 

A network Si Il S2 calls for concurrent execution of S1 and S2. In such a 
network, S1 and S2 are not allowed to have "shared" assignable varia.bles. 
The two component processes can communicate with each other ( only) along 
named, directed channels. Comrnunication along a channel, say c, occurs 
when an output command c!e is executed by one of the component processes 
simultaneously, i.e. synchronized, with an input command c?x of the other. 
The value of e is then assigned to the variable x and both processes continue 
their execution. In DNP, channels always connect exactly two processes. 
That is, two different processes are not allowed to both read from or both 
write to some common channel. A channel from which some process reads 
or to which it writes is called an external input or output channel of that 
process. We denote the sets of ( external) input and output channels of 
S by in(S) and out(S). When two processes are bound together into a. 
network, their common channels, along which they communicate, are sa.id 
to be internal channels of that network. That is, the set intern( Si Il S2) of 
internal channels of S1 Il S2 is defined as 

intern( Si Il S2) = (in(Si) n out(S2)) u (in(S2) n out(S1)). 

When dealing with "nested" networks it is possible that some subnetwork 
has an internal channel with the sa.me name as the main network. This 
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is even unavoidable when the subnetwork and the main network belong to 
different incarnations of the sa.me process in case of a recursive process call. 
Such channel name clashes are resolved by introducing a kind of block struc
ture with the cobegin - coend construct, which hides all internal chan
nels. No internal channel of S1 Il S2 is visible anymore outside the process 
cobegin S1 Il S2 coend. 

Example 

In process S defined as 

S = cobegin S1 Il cobegin 82 Il 83 coend coend, 

where 

81 = c?x, 82 = c!O and S3 = c?y, 

the 82 process communicates with S3 along the c channel internal to 82 Il S3, 
and not with 8 1• The c channel of 81 is rather an external channel of the 
whole process 8. 

Note that, if channel name clashes arise, parallel composition including this 
hiding is not associative. 

To obtain a modular character for DNP, we have for recursive process dec
larations a scope concept different from that of Algol like languages. All 
varia.bles used in some process body, bracketed by begin - end, are as
sumed to be local varia.bles, i.e. there are no references to any kind of global 
variables possible. ( Correspondingly, there is no explicit variable declaration 
mechanism needed in DNP.) The para.meter list of a process consists of in· 
put channels, followed by output channels, followed by value/result variable 
parameters. To simplify matters technically, we impose the restriction that 
all na.mes in a (formal or actual) parameter list be distinct. This avoids 
any kind of "aliasing" that could introduce unwanted sharing of assignable 
variables or channel na.mes by two processes. 

2.2 The language TNP 

Process declaration in DNP is a rather elaborate construct, for it comprises 
all of the following programming concepts: 

• process naming, 

• recursion, 
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• local variables, 

• channel renaming, and 

• a call by value/result parameter mechanism. 

For the sake of a simple mathematica! description of processes, we introduce 
the language TNP (for Theoretica! DNP). In TNP, the DNP process 
concept has been disassembled into the more fundamental concepts above. 
For the same reasons, the parallel construct of DNP has been generalized 
in TNP, in the sense that no distinction is made in TNP between networks 
and statements. As a result the four syntactic classes of DNP could be 
replaced by the single class TNP of process terms. TNP is similar to a 
class of terms for a predicate logic, except that the varia.bles of TNP have 
the following structure: 

Deflnition 2.2 (the class Pvar of process variables) 

({3 E) Base ~f P(Chan) x P('Var) 

(p E) Pvar ~f Pid x Base 

0 

The base of a process is a pair (c,x), denoting the channels c via which the 
process can communicate and the variables x that the process can read and 
write. Each process variable p consists of a process name P with such a pair 
{3 attached as a subscript, that is, pis of the form PtJ P(c,x) ). 

The (context free) synta.x of TNP is given in definition 1.3. 

Definition 2.3 (syntax of TNP) 

Process terms S E TNP : 

S ::= skip 1 abort 1 x := e 1 b 1 c.x: b 1 S1 ; S2 1 

0 

We call ba guard, c.x: b communication via channel c, 81 \x hiding of varia bles 
x, S1 \c hiding of channels c, and 81 (d/c} channel renaming of c into d. p 
is called a process call, µ. 111 PtJ.S1 a recursion, and finally, PtJ S1 in S2 is 
called process naming. 
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There are a number of (context sensitive) restrictions on the language, 
summarised in table 1.5 , and formulated with the aid of the functions 
"chan", "var", and "pvar", introduced in definition 1.4. 

Definition 2.4 (free variables of process expressions) 

For each TNP expression S we define: 

• the set of free channels chan(8), 

• the set of free assignable variables var(S), and 

• the set of free process variables pvar(S). 

Remarks: 

• base(8) denotes (chan(S), var(S)). 

• We abbreviate var(8i) U var(S2) as var(S1, 82) etc. 

• We assume that for e E exp and b E 8exp the sets var(e) and var(b) 
have a.lready been defined. 

• For f3 E Base of the form (c,x) we define: var(/3) = x and chan(f3) = c. 

• Set operations applied to bases f3 are understood as abbreviating the 
corresponding operations applied to the components of those bases. 

s chan(S) var(S) pvar(S) 
skip 0 0 0 
abort 0 0 0 
x := e 0 {x} u var(e) 0 
b 0 var(b) 0 
c.x:b {c} {x} u var(b) 0 
PtJ chan(f3) var(f3) {PtJ} 
81 ;82 chan(Si,82) var( Si, 82) pvar(8i, 82) 
81or82 chan(8i,82) var(81, 82) pvar(Si, 82) 
81 fJ1 Il /J2 82 chan(f3i, /32) var(/31, /32) pvar(81, 82) 
81\x chan(81) var(8i) - x pvar(S1) 
81\c chan(81) - c var(81) pvar(81) 
81 (d/c} (chan(81)- {c}) U {d} var(81) pvar(8i) 

P.zP11.81 chan(/3) var(,8) pvar(S1) - {PtJ} 
P11 = S1in82 chan(82) var(S2) pvar(81, 82) - {PtJ} 

D 

Definition 2.5 (context sensitive restrictions for TNP) 
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CSR2 For PtJ 

CSR3 For PIJ - S1 in S2 

base( Si) Ç f3i, for i = 1, 2 

PIJ <t pvar( S1) 

base(S1) Ç f3 
CSR4 For P.11P13.S1 

0 

Remark: 

base(S1) Ç /3 

• The definition above implies that d E chan(S1 (d/c) ), even when c <t 
chan( S1). Although this causes no harm, it would have been more 
elegant to define chan(S1(d/c}) = chan(Si) in this case. 

2.3 Intuitive explanation of TNP 

The meaning of skip, x := e, 81 ; S2 and S1 or S2 is the same as for DNP. 

The parallel construct of TNP, and its associated communication mech
anism, is a generalization of the networks of DNP. The rationale behind 
this generalization is the following one. At first the only goal was to sim
plify the language structure somewhat by removing the ditference between 
networks and processes. Now the reason for introducing this distinction in 
DNP in the first place was to avoid channel sharing between more than 
two processes, by enforcing to put the cobegin - coend brackets around a 
parallel combination bef ore one could compose it in parallel with a third 
process. So for the case of TNP, where essentially a combination of the 
form So Il S1 Il S2 is allowed, we must either rule out the possibility of 
all three processes communicating via some common channel by means of 
rather complicated context sensitive restrictions, or else give a meaning to 
such situations. We adopted the second alternative. Apart from the simpli
fication of syntax the resulting generalization is interesting for its own sake. 
For insta.nee, a sort of "shared varia.bles" can now be described by modelling 
such varia.bles as processes, as will be shown below. Another application is 
that, in the context of VLSI design, a synchronous clock of such a design 
can be modelled by means of "broadcasting" special messa.ges, one for each 
"tick" of the clock, to all relevant processes. 

For DNP we determined the set of channels between two parallel processes 
for which synchronization is required from the syntax of the two processes. 
This was thought nice since it avoids an explicit declaration mechanism. 
There are essentially two reasons why we changed this for TNP. 
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1. Since the base of processes is statically determined, we prefer to treat 
bases as syntaz rather than semantics. To determine the semantics 
of a parallel construct, in the style of DNP , one needs to refer to the 
bases of the two component processes, which is not allowed for a truly 
compositional semantic definition, in which only can be referred to the 
semantics of the components. 

2. A TNP term Pp = 81 in 82 denotes a process 8 2 where occurrences 
of p within 82 call for execution of 81. So intuitively one expects this 
process to be equivalent to 82 with all occurrences of Pp replaced by 
Si, denoted as 82[81/Pp]. Unfortunately this need not be the case for 
a DNP style parallel construct as is seen by the following example: 

S ~f P{{c,d}.0) = c!O in P({c,d},0) Il (d!O; c?x) 

S' ~r c!O Il (d!O; c?x) 

For process S, synchronization is enforced for both channel c and d, 
since they occur both free in the two components of the parallel con
struct. For process S' on the other hand, only synchronization for 
channel cis required. Therefore Sis not equivalent to S'. 

The upshot of this is that Pp = 81 in 82 need not be equivalent to 82[81/ Pp] 
if base( Si) is included hut not equal to base(Pp). We regard this as undesir
able. 

For TNP we resolved these two problems by including explicit ba.se 3, within 
the parallel construct, for which synchronization is required. The semantic 
definition, to be given in chapter 3, now simply refers to these explicitly indi
cated bases rather than to syntactic attributes of component processes. And 
so the problem with compositionality has disappeared. The second problem 
above is handled by not only allowing for the construct 81 fh Il P2 82 that 
base(8i) equals f3ü hut also the situation that base(8i) is properly included 
into f3i for i = 1, 2. (This is the restriction CSRl). The synchronization 
set is in all cases determined by (31 and f32. Therefore, replacing Si by some 
semantically equivalent process 8J that differs with respect to bases from 81 

does not affect the semantics of the whole. 

We adopt the notational convention that 

• 81 /31 Il 82 abbreviates 81 /31 Il &ase(82) 82, 

• 81 11 /32 82 abbreviates 81 base(81) Il P2 82, implying that 

• 81 Il 82 abbreviates 81 &ase(81) Il 6aae(S2) 82. 
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of the different readers (writers) will be between pairs of processes, rather 
than between all processes connected to that channel. 

Example 
Assume that both 81 and 82 communicate via channel c. Using some aux
iliary channelname d, not among the names in chan(S1 , 82), we define the 
process 

S = (81 (d/c) Il S2)(c/d), 

visualized as in the picture below. 
S1(d/c} S 

Il 
c 

d 

c 

Both 81 and S2 communicate via c, hut their communication actions are 
not synchronized since on the level where the parallel binding takes place 
the c channel of S1 is renamed, and so has nothing to do with the c channel 
of 82 • Nevertheless, still one more level outside, the renamed channel of 
S1 is renamed back into c, with the effect that c communications send to 
(81 {d/c} Il S2)(c/d) are divided over the d channel of S1 (d/c} and the c chan
nel of 82 . So any value communicated via c with 8 will be communicated 
with either 81 or 82, hut not by both. It is interesting to see this "pairwise" 
mechanism easily expressed in terms of the multiple process synchronization 
mechanism. The other way around seems much more cumbersome. 

In contrast with the languages CCS and TCSP, TNP includes the concept 
of program states. That is, a process modifies assignable varia.bles x via 
explicit assignment statements x := e and via communication actions c.x: b. 
Assignable varia bles x need not to be "declared". However, they can be 

, made local to a process by means of the hiding construct S1 \x. This hiding 
construct is analogous to the block construct in combination with variable 
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declarations for ALGOL like languages. It differs from these block constructs 
in that initialization problems have been circumvented by assuming that no 
state change takes place at all on entry of the scope of the hiding operator \x. 
Changes made to varia.bles in x by 81 are simply undone for the process 
81 \x. As can be seen from the semantic definitions and the proof rules in 
the following chapters, this results in remarkable similarities between channel 
hiding on the one hand and variable hiding on the other. Variable hiding 
is an essential construct in the presence of recursion, for, if some process p 
using variable x creates a parallel network with x occurring in one parallel 
component, and a recursive incarnation of p in another component, then 
clearly the x of this incarnation must be bidden to avoid the sharing of x. 

The similarity between channel hiding and variable hiding raised the ques
tion whether there is such an analogy for other constructs too. To some 
extend this is indeed the case. For insta.nee in the next section we define 
an abbreviation 8(y/x} which can be seen as the analogue of S(d/c). An
other example is the generalization of the parallel construct with respect to 
assignable varia.bles. Although shared variable concurrency is not described 
by the semantica of TNP, we nevertheless did not impose any restriction 
on varia.bles for S1 /31 Il 1'2 S2. That is, although the semantics has a clear 
operational explanation only for those cases that var(,81) n var(,82) = 0, we 
have not made the latter condition one of the context sensitive restrictions 
on TNP. The reason for doing this is twofold: The treatment of channels 
and varia.bles for parallelism becomes uniform, which is a technical advan
tage. And secondly, we prepare the way for studying systems where it is not 
possible to determine statically appropriate bounds for the part of the state 
space modified by some proces~. A simple example of this is the situation 
where S1 and 82 share some array typed variable. It might well be the case 
that they opera.te on disjoint elements of the array, hut since it is not a 
decidable question whether this is so or not, our semantics should assign a 
meaning in all cases. 

Let us nevertheless give an informal description of the semantics of S1 P1 Il 
p2 8 2 in case var(,81) nvar(,82) =j:. 0. The idea is that each of the two processes 
execute with its own private copy of the state. That is, assignments made 
by 81 to some va.ria.bie x are not seen at all by S2 and vice versa. If both S1 
and S2 have terminated, then the parallel construct terminates, too, and all 
modifications made to the state by S1 or S2 a.re taken over as modifications 
made by the whole construct, except when both S1 and S2 have modified the 
sa.me varia.bie x, hut in a different way. In this last case the computation is 
aborted. 
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Example 

For the process 

x := 2 Il (x := 1 or x := 2) 

the only computation that terminates is the one for which x is set to 2. 
Compare this with the process: 

c.x:(x = 2} Il c.x:(x = 1Vx=2} 

Here only the value 2 can be communicated. 

The process abort simply aborts the computation in the sense that it neither 
terminates nor performs any communication. The use of this abort term 
is mainly that it provides a notation, within the programming language, for 
the least element of the domain of process denotations to be introduced in 
the next chapter. 

Instead of the if ... fi construct of DNP, boolean expressions b are incor
porated as processes. They function as "guards": whenever b evaluates to 
true the guard can be passed, i.e. it is equivalent to skip in this case. 
When b evaluates to false the guard cannot be passed and the computation 
is aborted. Clearly the guard false has the sa.me meaning as abort. In chap
ter 3, we will argue that, as far as the class of so called safety properties that 
we are interested in is concerned, only the finite observations of processes 
have to be taken into account. Consequently, it turns out that a construct 
as if b then 81 else 82 fi can be regarded as equivalent to b ; 8 1 or -.b ; 82. 

We have an analogous situation for the while loop, using the recursion 
construct µ 11 Pp.81 in TNP. Intuitively, µ.11 Pp.S1 behaves like Si, except that 
calls of the form PfJ within 81 result in a new "recursive" incarnations of 
µ 11 PtJ.81. We require that all free channels and assignable varia.bles of 81 are 
listed in the base (3 of the process variable PfJ (cf. CSR4). 

Now let S1 *abbreviate µ 11p. (skip or S1; p), where the base of p equals 
base(S1). Clearly, the 81 * construct denotes an arbitrary number of rep
etitions of S1. Then, as far as safety properties are concerned, while b do 
81 od is equivalent to (b; Si)* ; -.b . 

Similarly, initialization to some "random" value for local varia.bles, if so 
desired, can be modelled by the process x := 1 which is an abbreviation for: 
x := 0 ; (x := x + 1)* 

Processes can be given a name by means of the process naming construct 
Pp = S1 in S2. Here, restriction CSR3 requires that the base (3 includes all 
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free channels and assignable variables of the body 81. Within 82 , process
calls of the form PIJ create a new incarnation of 81. The restriction CSR2 
excludes recursive calls of PfJ in 81• 

We shall use the abbreviation ree PfJ 81 in 82 for the expression PfJ = 
µzP{J.81 in S2 • (Clearly this is similar to PfJ = S1 in S2 except that now 
recursive calls of PfJ 81 are allowed in 81). 

Finally we show how "shared varia.bles" can be modelled in TNP. Assume 
that we want a parallel construct S1 Il 82 where 81 and S2 share some 
varia.bie x in the sense that all changes made to x by one process are seen by 
the other process, as is the case for usual shared varia.bie concurrency. We 
model this by a TNP process 

(81 Il 82){assign/assign1
, value/value~ 11 XV AR, 

where XV AR is the process: 

((assign?x or value!x)*)\ {x}. 

H process 81 wants to assign to the shared varia.bie, then it must execute a 
assign!e command, whereas it must execute value?y to read the value of this 
variable. Process 82 operates essentially in the sa.me way except that it reads 
and writes the shared varia.bie via the channels assign1 and value'. Note that 
the channel renaming after the parallel composition of 81 and 82 is the same 
technique as used above to obtain a pairwise communication mechanism. 
Clearly pairwise communication is the right choice here since read and write 
actions by one process are to be interleaved rather than synchronized with 
read and write actions of the other process. 

2.4 Parametrization of TNP processes 

Unlike DNP there is no parameter mechanism associate with process decla
rations and -calls in TNP. Nevertheless, we can obtain essentially the sa.me 
sort of parametrization as in DNP by using a few abbreviations. 

• 8(d/ë}, where ë and d are lists rather then single channels denotes si
multaneous renaming of channels. Clearly this can be expressed within 
TNP, using a list of fresh nam es f, as 

8 {/o/co}(fi/c1). · · Un-1/cn-1} (do/ /o} · · · {dn-1/ f n-1}· 
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• The simultaneous assignment x := ë is executed by first evaluating 
the expressions from the list ë, followed by assigning the values thus 
obtained to the varia.bles x from left to right. It is easily expressed in 
terms of the simp Ie assignment as follows. Let z1, ... , Zn be a list of 
fresh varia.bles. Then x := ë is equivalent to: 

(z1 := e1;" .; Zn :=en; X1 := z1; ... ; Xn := Zn)\ {z1, ... , Zn}· 

• S(fi/x}, where x,y E Var*, abbreviates: (x := fi ; S ; fi := x)\z, 
where z is defined by z = {x} - {fi}. 

We call this the parameter transfer construct. Intuitively, it models the call
by-value/result mechanism of DNP process calls, where the x play the role 
of formal para.meters and the fi the role of the actuals. The hiding "\z", 
ensures that the "forma.Is" are not included into the set of local varia.bles 
of the calling environment, except for those tha.t happen to have the sa.me 
name as some "actual". 

Using these abbreviations, the DNP process declaration and -calls can be 
translated into TNP expressions as follows: 

• A declaration P( ëi; ë0 ; x) begin So end translates in to: 

P(c,x) = µzP(c,x) . (z := w; So)\z in ... , 

with c = {ëi,ë0 }, z = {z} var(So) - {x}, and where w is some 
appropriately chosen initialization constant. 

• A call P( ilü il0 , fi) translates in to: 

P(c,x) (il/ë} (y/x}, 

where ë = ëi, ë0 and il= di, d0 • 

We have included the initialization of the local va.ria.bles z of the procedure 
body 80 to avoid differences with the defi.nition of DNP in [ZRE]. 

2.5 Translation of DNP into TNP 

We summarize how to transform any DNP program into an equivalent 
TNP process, by defining a compositional, i.e. syntax directed, transla
tion scheme. Let C denote a DNP Statement S, Network N or Program 
Prog. We define a function Tl : DNP --t TNP by mea.ns of the following 
table. 
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skip 
x := e 
c!e 
c?x 
81 ;82 
81or82 

c 

if b then 81 else 82 :6. 
while b do 8 od 
cobegin N coend 
P(i4,do,fi) 

81 11 82 
P(êi; c0 ; x) begin 80 end: Prog 

Tl(C) 
skip 
x := e 

( c.x : x = e) \ { x}, where x </: t1ar( e) 
c.x: true 
T/(81}; T/(82) 
Tl(81) or Tl(S2) 
(b; Tl(81)) or (-ib ;Tl(82)) 
(b; Tl(8))*; -.b 
Tl(N)\c, where c = intern(N) 
P(c,x) (d/ë) (y/if) 
where ë = êi, ë0 and d = i4, d0 

Tl(81) Il Tl(S2) 
P(c,x) = µzP(c,x). (z := w;Tl(So))\11 
in Tl(Prog), where 
c = {êi7 ë0 }, 11={z}=11ar(80) - {x} 



Chapter 3 

The semantics for TNP 

3.1 Introduction 

In this introductory section we discuss certain aspects of semantic definitions 
for programming languages from a rather genera! point of view. We take 
the opportunity to define already some of the domains to be used for our 
particular semantics for TNP, as an illustration of the genera! concepts. 

For CSP-like languages a number of semantic definitions have been given. 
([Hoare3], [FHLR], [FLP], [OH]). In genera! these definitions differ consid
erably with respect to the degree in which they abstract from behavioural 
properties of programs. To discuss the idea of "program behaviour" we as
sume, or better postulate, that with a given programming language some 
set of observable events "Event" is associated. We acknowledge that, even 
for a single language, there are several reasonable choices for this set, each 
leading to a different semantics. To describe our choice for the case of TNP, 
we introduce the following basic domains: 

Definition 3.1 (the domains Val,A and State) 

(v E) Val Some given countable set of (proper) valttes. 

(a E) A ~r Chan x Val The communication alphabet. 

(s E) State ~r Var -t Val The set of proper states. 

D 

For TNP we postulate that Event consists of the following types of events: 

(1) the event of starting a computation in some initia[ state so, 

(2) the events of the form (c, v) E A. These represent the communication 
of some value v via channel c, 

61 
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(3) the event of termination in some final state s. 

Event is almost the smallest reasonable set of observables for TNP. For 
instance, we have not included a deadlocked state as directly observable. 
Our particular choice is motivated by the type of properties of processes 
that we can analyse within the proof systems studied here. 

For any execution of some given process S, after any finite amount of time, 
some finite sequence >. of such events will have occurred. The collection of 
all finite nonempty sequences of events that can arise in this way during 
execution of processes, is called the set of finite observations A. lf >. ( E A) 
can occur when we execute S, we will say that S admits the observation >.. 
We denote the set of observations that some process admits by Obs(S). 

Remark Below we shall introduce the notation Obs[ S ]]'7, which denotes 
the same set of observations. It has the extra argument '1 to cope with free 
occurrences of process variables. For the moment we omit this argument, 
since it does not affect the present argumentation. 

It will be clear that if S admits >. and >.' is some prefix of >., then S must 
admit >..' too. For TNP we can divide A into unfinished computations U 
and finished or terminated computations F: 

U = {(so, t) 1 so E State, t E A*}. 

F = {(so, t, s) 1 so, s E State, t E A*}. 

U-computation, started in initial state so, have performed the sequence of 
communications t thus far. F-computations additionally did terminate in 
final state s. To represent unfinished and terminated computations in a uni
form way, we introduce a special state "J_" called the bottom state. A bottom 
state indicates an unfinished computation. For the technical development to 
follow, it is convenient to treat J_ as the least element of a complete partial 
order (epo). For the same - technical - reason, we introduce a bottom value 
J_val and a bottom channel J_chan· 

De:finition 3.2 ( State.i, 'Val.i, Chan.i, Trace, a) 

• State.i, 'Val.i and Chan.i are defined as the flat cpo's derived from 
State, 'Val and Chan. The corresponding least elements are denoted as 
J_, J_val and J_chan• 

• (h, t E) Trace ~f (A*, ~) The p.o. of communication histories 
or traces, ordered by the prefix order on sequences. The empty trace 
is denoted by e. 
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D 

• (ó E) A ~f (State x Trace x Statel.) U {(1..,e:,1..)} 
finite observations or computation triples. 

The set of 

• Proper(A) denotes the subset State x Trace x Statel. of proper obser
vations of A 

The triple (1.., e, 1..) has been added to the set A to allow for a simpler 
treatment of sequential composition. Informally it can be understood as 
representing the fa.et that if a process is not even started, for insta.nee because 
its sequentia! predecessor did not terminate, then it will neither communicate 
nor terminate. 

For the purpose of process specification we are interested in those process 
properties for which the truth or falsity is determined by the set of possible 
observations of a process. In fa.et, one should be able to tell for any particular 
observation whether it violates some given specification or not. 

To make this more precise, let us assume that Prop is some class of properties 
of processes, i.e., for each property 11' E Prop and process 8, 11'(8) might hold 
or might not hold. 

A binary predicate Jàf(1r,ó) on properties 1r and observations ó is called a 
refutation criterion for Prop if the following holds: 

V1r,S(3ó E Obs(8): Jà/(11',5) => -i11'(8)) (1) 

If là/(11',ó) holds, we say that the observation ó refutes 11'(8). Equation (1) 
states simply that /à/ is correct in the sense that a refutation of 11'(8) indeed 
implies that 11'(8) cannot hold. Now consider some hypothetical specification 
11' and process S such that on the one hand 1r(S) does not hold, hut on the 
other hand there is no possible 8 observation that refutes 1r(8). We regard 
this specification as uninteresting since a claim that some process satisfies it 
does not imply any guarantee in terms of observations. We want to exclude 
such specifications. To this end, a class Prop is sa.id to consist of f alsifiable 
properties if there is some refutation criterion !à f for Prop such that: 

V11', vs(-i11'(8) => 36 E óbs(8): Jà/(11',ó)) (2) 

In words: if 11' is not valid for 8, then there is at least one observation possible 
about 8 that refutes 1r(S). Properties that are falsifiable by means of finite 
observations are called safety properties. In this thesis the safety properties 
of processes are the focus of attention. 
Fora class of falsifiable properties it follows from (1) and (2) that validity 
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of some property 1f' for processes S can be expressed as follows, in terms of 
the observations that S admits: 

1r(S) Ç:::> Vó E óbs(S): -.Ref(1r,ó) 

Now if we associate with a property 1f' the set of observations that do not 
refute it, that is, if we define: 

óbs(1r) = {ó E A 1 -iRe/(1r,ó)}, 

then we see that we have the following eharacterization of validity for safety 
properties: 

\11r,S(1r(S) Ç:::> (óbs(S) Ç óbs(1r))) 

We mention here the work of [OH] where essentially this last formula was 
taken as the meaning of speeifieations. 

All this suggests that the meaning of TNP proeesses as well as the meaning 
of safety properties concerning these processes should be expressed by means 
of so ealled A-predicates: 

Definitlon 3.3 (A-predicates) 

Let P denote the usual powerset operation. The domain of A predicates, 
with typical element p, is defined as: 

(p E) P(A) - the set of A-predicates. 

D 

3.2 The domain of observations 

Up to now we have not taken into account that TNP includes recursive 
construets, and so, that our semantics includes fixed point equations of the 
form p = f(p). We adopt the standard solution of denotational semanties 
to this problem. That is, we will turn P(A) into a complete partial order 
(epo), and rely on the fixed point theorem of Kleene [Kleene], to determine 
the unique least solution of the equation. 

A epo structure on some set U eonsists of a partial order Ç on U that has a 
least element ..Lu in U, and that is complete in the sense that every eountable 
infinite ehain Po Ç P1 Ç · • • has a least upper bound (lub) UieN Pi in U. This 
epo strueture is denoted by (U, Ç, ..Lu ). 
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A function f from a epo U to a epo W is continuous if it preserves least 
upper bounds of countable ascending chains, that is, if for every aseending 
ehain {Pi)ieN: 

/( lJ Pi) = lJ /(Pi)· 
iEN iEN 

The theorem of Kleene states that every continuous funetion <p on a epo U 
has a least fixed point µ( <p) in U, and moreover that this fixed point can be 
obtained as the least upper bound (lub) of an ascending ehain as follows: 

µ(<p) lJ 'P'(J.u ), 
i;:::O 

where <pi is defined by: 

O~Jd d <p - ,an 

<pi+l ~ <p o <pi, for i ~ 0. 

There is no general agreement as to which type of epo structure must be used 
for concurrent programs. In fact this depends very much on which type of 
observable events one wants to describe. Therefore we let our precise math
ematical definitions precede by an intuitive development of the partieular 
epo structure that we have chosen. 

The first task is to determine which set of computations in P( A) is the appro
priate least element for our epo structure. This might sound strange since, 
as yet, we have not even determined a partial order on P( A). However, in the 
standard approach to denotational semantica the meaning of the recursive 
process µ 111 P13.Pf:J is the least solution of an equation of the form p = p, and 
sinee clearly it is the case that every P( A) element is a solution, the least 
epo element must coincide with the set of computations admitted by this 
process. Beeause the process µ 111 P13.P13 never terminates nor communicates, 
hut only allows for the observation of starting a computation in any initia! 
state, the appropriate least element is the following one: 

z ~r {(so,e,..L) i so E State.L}· 

Note that, according to the intuitive explanation of the TNP constructs 
in chapter 2, Z is exactly the set of computations admitted by the process 
abort. In fa.et we included the abort process to have a denotation within 
TNP for the least element of our doma.in. Using the abort process, we are 
able to define the so ealled syntactic approximations S[i] for some recursive 
process PzP,;.S. 
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Deflnition 3.4 (Syntactic approximations) 

Let S be some process with possible occurrences of the process va.ria.bie P13, 
and let 8 1 be some process with its base contained in {3. Then S[S' / P13] 
denotes the process obtained from S by repla.dng all occurrences of P13 in S 
by S'. 

For the recursive process µ 111 P13.S, we define: 

S(O) ~f' abort 

slH11 ~r s[sl'l/ Pr;], for i ~ o. 
0 

We use syntactic approximations to determine the appropriate epo structure 
for our domain. To this end we consider a process µ 111Pr;.S where S does con
tain neither (nested) recursive processes, nor process calls other than of Pp. 
On the one hand, since syntactic approximations are finite processes in this 
case, one can use operational insight to determine the observations admit
ted by these. On the other hand, in the standard approach to denotational 
semantics, the fixed point that is the meaning of a recursion construct can 
be calculated as the lub of an ascending chain that consists of the interpre
tations of the syntactic approximations. 

It is clear that if some observation ó of µ. 111 PtJ.S corresponds to some execution 
where the depth of recursive calls of Pr; is at most i, then this observation is 
also admitted by the process S[i]. And since a finite observation corresponds 
to some finite depth of recursive calls, every finite observation of µ111 PtJ.S is 
admitted by some sliJ. 
Next we argue that every finite observation admitted by S[i) is also admitted 
by µ 111 Pr; .S. For computations that correspond toa recursion depth of at most 
i this is clear. About computations tha.t reach a. recursion depth greater tha.n 
i we can remark the following. Assume tha.t at the moment where, for the 
first time, the depth i + 1 is reached, the sequence of communications t' has 
already performed. The execution has rea.ched some internal, not observable 
state s'. For µ 111 PtJ.S, the execution then would proceed from state s', possibly 
extending the sequence t1 by performing new communications, and possibly 
by reaching an observable final state. But for s!•I an occurrence of an abort 
process is started, implying that no further communications take place and 
that no final state will be rea.ched. That is, sl•I admits the observation 
(s0 , t', ..L). The interesting point here is that the sa.me observation is also 
admitted by µ. 111 P13.S, for it corresponds to the intermedia.te stage of the 
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computation where the recursion depth i + 1 is reached. What we have argued 
is that every 6.nite observation admitted by S[i], whether it corresponds to 
some execution where one of the occurrences of abort bas been reached or 
not, is also admitted by µzPp.S, and vice versa, that every finite observation 
admitted by µzPfJ.S is also admitted by some S[iJ. But this implies that the 
meaning of µzPfJ.S, as a set of finite observations, simply is the union of the 
sets that are the meanings of the S (ij. 

By the reasoning above one sees that the set of observations denoted by S[i] 
is included in the set denoted by S(i+ll. Therefore the chain {Obs(Slil))i is 
monotone increasing with respect to the set inclusion order on P(.ö.)and the 
union of the sets Obs(Slil) coincides with the least upper bound ofthis chain. 
We conclude that the set inclusion order is the appropriate one for our epo 
structure. 

For this order it is even the case that every collection {Pi 1 i E I, Pi E P( .ö.)} 
bas a least upper bound Uier Pi in P(.ö.). It is determined by: 

lJ Pi= U Pi, 
iEJ iEJ 

where it is understood that the union of an empty collection of sets is the 
empty set. 

If not only ascending chains, but rather every subset of some partial order 
U has a least upperbound, then U is called a complete lattice. A complete 
lattice has a least element, determined as the lub of the empty set. If f is a 
function from a complete lattice U to a complete lattice W, then f is called 
completely addititJe (c.a.), if it preserves least upper bounds of arbitrary 
subsets of U. Clearly a complete lattice is a epo, and a completely additive 
function is continuous. Although a epo structure suffices for our semantics, 
we shall develop our domain as a complete lattice since it is technically 
somewhat more convenient. For the operations on this domain we shall 
often prove complete additivity rather than continuity, for the same reason. 
The same notation is used for complete lattices and epos. 

The following structure is a complete lattice: 

Definition 3.5 (The domain P( .ö.)) 

(P(.ö.), Ç, 0) is the domain of all subsets of .ö. with the set inclusion order, 
and the empty set as least element. 

D 

At this point a technical problem arises, for we have defi.ned a domain struc
ture with the empty set as least element, although we argued above tha.t 
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this least element should be the set z, and so, that the appropriate domain 
is the following one: 

Definition 3.6 (The domain Pz ( A)) 

D 

• A subset p of A is called total if Z Ç p. 

• (Pz(A), Ç, z) is the domain of all total subsets with the set inclusion 
order, and Z as least element. 

Here we must be careful. Although we argued that every TNP process must 
have a meaning within the subset Pz(A), this is not the case for the specifi
cations that we shall use for such processes. Such specifications essentially 
have the form of a predicate logic formula, interpreted as a subset of A. Not 
all such formulae do admit all computations from Z. A simple example is the 
predicate "false" thà.t does not admit any computation. This shows that 
Pz(A) does not suffice as the domain of interpretation for such predicates. 
In chapter 4 we shall introduce the la.nguage "Mixed terms", in which TNP 
processes and specifications are within the sa.me syntactic category, implying 
that the (common) domain of interpretation must be P(A). 

Now the problem is that certain equations of the form p = f(p) will have 
different least solutions, dependent on whether we solve the equation in the 
domain P(A) or in the domain Pz(A). For insta.nee, in the former case the 
equation p = p has 0 as least solution, whereas in the latter case Z is the 
least solution. 

More interesting examples are processes that need not terminate but rather 
keep on communicating, like the Bag example of chapter 1. A simple exam
ple of such a process is 11.zPp. (c!O; Pp); a process that never terminates but 
rather communicates forever via c. Hence it admits the following observa.
tions: 

{(_L, e:, _L)} u 
{(so, e:, _L), (so, < (c, 0) >, _L), (so, < (c, O)(c, 0) >, J..) ... l so E State} ( *) 

Now with our semantic definitions the fixedpoint equation for this recursive 
process is essentially the following one: 

p = {(so,tit2,s) 1 3s1[(s1,ti,s1) E Obs(c!O)t\ (si,t2,s) E p]} (**) 

The set óbs(c!O) of observations admitted by c!O is: 

{(_L,e:,J..),(so,e:,_L),(so,< (c,O) >,J..),(so,< (c,O) >,so) lso E State}. 
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Thus it is seen that ( *) is indeed a possible solution of the equation ( ** ). 
However, it is not the least one within .P(a), for 0 is a solution tool 

The exa.mples show that sol ving equations in .P( À) does not always yield the 
right solution with respect to the intuitive operational semantics of TNP. 
To correct this situation, we first exarnine the relationship between the two 
domains in more detail. The underlying idea is that we use insight about 
the intuitive operationa.l semantics of TNP processes to determine the ap
propriate semantic operations corresponding to the TNP operations on the 
restricted domain Pz(À). Then, as the next step, we try to extend these 
operations to the complete domain P( À) in a canonical way. Fina.lly we 
define an embedding that allows us to extend the least fixed point operator 
µ 11 to an operator defined on [P(a) -t P(a)] that can be used to determine 
the semantics of the recursion construct. The embedded operator differs 
from theµ operator for [P(a) -t P(a)] in that as far as TNP processes are 
concerned it yields a meaning that matches the operational intuition. 

We start with a straightforward embedding of Pz(..ó.) into .P(a)by means of 
the inclusion function: 

i : Pz(a) -t P(a) 

Since the order on Pz(.ö.) is the restriction of the order on P(.d) the inclusion 
function is completely additive. Moreover, some function f : D -t Pz(.d) is 
c.a. iff i of is c.a. Cfr. [Arbib] this means that Pz is a substructure of P(..ó.) 
in the category of complete lattices and c.a. functions. 

The inclusion function has a left inverse in the form of a c.a. projection 
function 1r. That is, as we shall show now, we have a function: 

n-: P(.ö.) -t Pz(a), 

that satisfies the equa.lity: 

1r o i =Id, 

where Id is the identity function. From this equality it follows that, for 
arbitrary p E P(a), 

n-(p u z) = 1r(i(p u z)) = p u z. 

Then, using also the additivity of 11', we see that 

1r(p) = 1r(p) u z 7r(p) u 1r(Z) = 1r(pu z) = pu z. 

That is, 1r is deterrnined by the following equality. 

1r(p) p u z. 
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This also shows that, although i has no right inverse, the following inequality 
does hold: 

i o 11' ;J Id, 

where Ç denotes the pointwise ordering on operations on P(A). Beca.use of 
this, the pair (11',i) is called a continuous closure, cfr. [Sanchis]. 

Remark A continuousclosure resembles a continuous projection pair as used 
in D. Scott's domain theory [Scott], except that for such a pair one would 
have the inequality i o 1f Ç Id instead of the inequality above. Both con
tinuous closures and projections are instances of what is called a continuous 
representation in [Sanchis]. D 

We want to define a similar embedding and projection for operations on the 
two domains. To this end we first extend the injection and projection above 
to cartesian products for we must be able to treat operations like (the inter
pretation of) sequentia! composition, that have more than one argument. 

Therefore, for tuples (pi, ..• , Pn) E (P(6))n we define: 

1r((p1" · ., Pn)) ~f (7r(p1), · · ., 1f(Pn)). 

The injection function i is extended similarly. 

Based upon these functions 11' and i, we define a corresponding embedding 
and projection for operations defined on the two domains P(A)and Pz(6). 

Definition 3. 7 (Projection and embedding of operations on P( À)) 

For operations / on P( A) and g on Pz ( A) we define: 

Il(/) ~f 11" o f o i " projection of /" 

E( ) def . 
g = sogo1f "embedding of g " 

D 

For operations f and g of one argument, we can illustrate this definition by 
means of commuting diagrams: 

-
1

- P(a) 
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Lemma 3.8 

II and E form a continuous closure, that is: 

II(E(g)) = g 

E(II(f)) ~ / 

D 

Proof 

D 

II(E(g)) = "' o ( i o g o "') o i = ("' o i) o g o ("' o i) = Ido g o Id = g. 

E(II(f)) = i o ("'of o i) o 1f' = (i o "') o / o (i o 1r) ~ Ido/ o Id= /. 

Some (n-place) operation / on P(A) preserves totality if: 

( À Z ç; Pi) implies Z ç; f (p1, ... , Pn)• 
i=l,n 
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Every embedding E(g) of some operation g does preserve totality. For total
ity preserving operations f, the projection II(/) is simply the restriction off 
to the domain Pz(A). For if Pi E Pz(A) for i = 1..n, then Z ç; f(pi, ... ,pn), 
and so we have the equality: 

II(f)(pi, .•. , Pn) = /(pi, ... , Pn) U Z = /(pi, ... , Pn)· 

In fact E(g) is an extension of g in the sense that the operation E(g) restricted 
to Pz(A) coincides with g again. This follows easily from the equality: 

E(g)(p) = i(g(1r(p))) = g(pU Z). 

So for p E Pz(A) we have that E(g)(p) = g(p u Z) = g(p). 

It is easily checked that II and E preserve continuity and complete additivity 
of their arguments. For instance, assume that f and g are c.a. The following 
calculations prove the complete additivity of Il(/) and E(g). 

Il(l)(LJ pi) = /(U Pi) u z = <U !(Pi)) u z 
iEl iel iel 

= LJ(l(Pi) u z) = LJ Il(/)(p,), and 
iel iEl 

E(g)(LJ Pi) = g((LJ Pi) u z) = g(LJ(Pi u z)) 
iEl iEl iEl 

iel iEJ 
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This allows us to define a projection and an embedding for functionals F 
and G of the following types: 

F: [P(A)-+ P(A)]-+ P(A), and 

G: [Pz(A)-+ Pz{A)]-+ Pz(A). 

Note that the least fixed point operator µ, defined for continuous functions 
in P(A), and the analogous operator µz, defined for continuous functions in 
Pz(A), are functionals of these types. 

Deftnition 3.9 (Embedding and projection of functionals) 

For functionals F and G as above, we define the projection II(F) and the 
embedding E( G) as follows: 

0 

II ( F) ~r 11' o F o E, and 

E( G) ~ i o G o Il. 

[P(A)-+ P(A)] __!__.. P{A) 

[Pz{A) - Pz(A)] -----+- Pz{A) 
G 

Similar to above, the projection Il is the left inverse for the embedding E: 

II(E(G)) = 11' o E(G) o E = 11' oio Go II o E =Ido Go Id= G, 

where we use the same notation for the identity functions on Pz(A) and 
[Pz(A)-+ Pz(A)J. Again, E bas no right inverse, hut we do have the following 
inequality: 

E(II(F)) = i o Il(F) o Il= i o 11' o F o E o II ;;;J Ido F o Id= F. 

This time we used "Id" both for the identity on P( A) and on [ P( A) -+ P( A)]. 

The following theorem forma the basis for our embedding of the µ;s operator. 
Point (i) of the theorem states that the least fixed point µz (g) of some opera
tion g on Pz( A) is preserved when hoth the operation g and the µ;s operator 
are embedded. Point (ii) is important because it relates the extended µ;s 
operator to the least fixed point operatorµ on [P(A) -+ P(A)]. 

Theorem 3.10 (Embedding of the µ 11 functional) 
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(i) E(µ.)(E(g)) = i(µ.(g)) 

(ii) E(µ.)(f) = µ(i o"' o !) 

0 

Pro of 

Point {i) is simple: 

E(µ 8 )(E(g)) = i(µ.(II{E(g)))) = i(µ.(g)). 
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The proof of (ii) relies on the continuity, implying monotonicity, off, i and 

"'. 
µ(i 0"' 0 !) = u (i 0"' 0 l)i(0) = u (i 0"' 0 J)i(0) 

;~o ;~1 

= LJ (i o"' o l)i-1(i("'(f(0)))) = LJ (i o"' o l)i(J(0) u z) 
i~O 

2 LJ (i o"' o J)i(z) = LJ (i o"' o l)i(i(z)) 
i~O i~O 

= LJi(('Kofoi)i(z)) = i(LJ('Ko/oi)i(z)) 
i~O i~O 

= i(µz("' of o i)) = i(µ.(II(/))) = E(µz)(f). 

This proves inclusion from one side. The other side is shown as follows: 

µ(io'lro/) = LJ(io'lro/)i(0)Ç LJ(io'lroj)i(z) 
i~O ;~o 

= ···(as above) = E(µ.)(I). 

0 

At last we can explain our strategy for defining semantic operations on P(Ä). 
For each of the (syntactic) TNP operators op there is a corresponding se
mantic operation fop defined on Pz(.6.), that captures the operational intu
ition. In the semantic definition we interpret the operator op as an operation 
on P(Ä) however, and by now it will be obvious that we shall choose the 
embedding E(/0p) as the meaning of op. We shall write fop instead of E(f 0p) 
to avoid a cumbersome notation. When we come to the actual definitions 
we shall define fop directly as an operation on P(Ä) and we check that it 
preserves totality. 

For interpretation of the recursion construct we shall use the embedded 
version E(µ 8 ) of the least fixed point operator JLz· Again we write JLz instead 
of the more cumbersome E(µ.). lt follows from the lemma above that we 
can treat JLz on P( À) as a derived operator, defined by: 
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µz(/) 

Remark 
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µ(i 01i 0 /) µ(>..p.(f (p) u z)). 

Our final definition of µz(/) turns out to be surprisingly simple. Why did 
we not define it that way in the first place, thereby avoiding the categorical 
considerations above? Purely technically this is feasible, for apart from the 
definition of Pz(/) we won't need the results above any more. However, it 
would then have been rather difficult to see why we should not have chosen 
one of the following alternatives: 

alternative 1 µz(f) = µ(>.p.f(pu z)). 

alternative 2 pz(f) = µ(>.p.(f (p U z) u z)). 

With respect to functions f that preserve totality there is no real difference 
with the definition we have chosen. But for instance, for our definition, 
µz(Àp.0) = Z whereas according to alternative 1, µz(Àp.0) = 0. Alternative 
2 can be seen to be equivalent to our definition. At this stage it is not clear 
which alternative is "best". But in terms of projections and embeddings our 
choice can be seen to be more natural than the other alternatives, rather 
than being just some smart guess. 

One might think that it is not too important which alternative is chosen. 
Mter all, for "real" process the Pz operator is always applied to functions 
that preserve totalness, and for such functions the three alternatives yield 
the same result. However, such subtle differences show up later on when 
considering proof rules for recursive processes. The rules for recursion that 
are introduced in chapter 5 for instance, would be sound hut incomplete 
when we had chosen alternative 1. 

3.3 Prefix closures 

A typical property of the meaning of TNP processes is the following one. 
If some TNP process S admits some computation ó of the form (so, t, s), 
then it also admits any ó' of the form (so, t', J.) where t' is some initial prefix 
of the trace t. For (so, t', ..L) corresponds to some intermediate unfinished 
state where the communications in t1 have already been performed. Note 
that this includes the observation (s0 , t, ..L) where all communications of t 
have occurred already, but where the process has not yet terminated. A 
set of observations with this property is called prefix closed. We give a for
mal definition of prefix closedness, and also introduce two important closure 
operations. 
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The relationship between ó and ó' is captured by the following partial order, 
defined on the domain A. 

Defi.nition 3.11 (The prefix order on A) 

The p.o. ÇA on A is defined by: 

( so', t', s') Ç..6. ( so, t, s) iff 

either (so',t',s') = (so,t,s) or so' = so,t' ~tand s' = .1... 

Remark Usually we drop the index A on "Ç ". 

0 

Defi.nition 3.12 (prefix closures) 

0 

• Fora p.o. (U, !;;;), a set p Ç U is called downwards closed iff: 

(x E p /\ y Ç x) => y E p. 

• For the p.o.A, the term prefix closedwill be used instead of downwards 
closed. 

• A set p is called closed if it is both total and prefix closed. 

• Pp(A) and Ppz(A) denote the collections of all prefix closed, and all 
closed subsets of A. 

• The prefix closure Pref(p) of a set pis defined as the smallest prefix 
closed set containing p. 

• The kernel Kern(p) of a set p is defined as the largest prefix closed set 
contained in p. 

• The closure Qose(p) of a set p is defined as the smallest closed set 
containing p. 

Lemma 3.13 (Properties of Pref and Kern) 

(a) Kern(p) Ç p Ç Pref(p). 

(b) A set p is prefix closed if and only if 

Pref(p) = p if and only if 

Kern(p) = p. 

(c) Pref(p) = {ó' E A 1 36 E p: 6
1 

Ç 6}. 

(d) Kern(p) = {óEA 1 'fó
1

Çó:ó
1

Ep}. 
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(e) The Pref operation is completely additive, and preserves totality. 

(f) The Kern operation is continuous and preserves totality. 

(g) aose(p) = Pref(pu z) = Pref(p) u z. 

0 

Proof 

Most cases are clear. We spell out the proof of (e) and (f). 

Let {Pi 1 i EI} be some arbitrary collection of Ä subsets. 

Pref(LJ Pi)= {6' 1 36 E U Pi. : ó' !;;; 6} 
i.El i.El 

= U { 6' i 3ó E p;. : 6' !;;; 6} 
i.El 

= U Pref (p;.). 
iEI 

Preservation of totality is seen as follows. Assume that Z Ç p. Then: 

Pre/(p) = Pre/(p u z) = Pre/(p) u Pre/(Z) = Pre/(p) u z, 

which implies that Z Ç Pref(p). 

Next we consider the Kern operation. This operation is not completely 
additive, hut it is continuous. Failure of complete additivity is seen by the 
following example. 

Kern( {(so, e:, .l)} U {(so, < (c, 0) >, .l)}) 

=Kern( {(so, e:, .L), (so, < (c, 0) >, .l)}) 

= {(so, e:, .L), (so, < (c, 0) >, .l)} 

:/= {(so, e;, .l)} U 0 = Kern( {(so, e:, .l)}) U Kern( {(so, < (c, 0) >, .l)} ). 

But assume that {p;.)ieN is an ascending chain of Ä subsets. Then we have 
that 

Kern( U p;.) = {ó I 'Vó' !;;; ó : ó' E U p;.} 
i.EN i.EN 

= { ó 1 Vó' !;;; ó 3i E N : 6' E p;.}. ( *) 
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It is not immediately clear that the universa! and existential quantifiers in 
( *) can be interchanged. However, this follows from the fa.et that, for any 
computation 6, there are only finitely many A elements 61 such that 61 Ç 6. 
For 6 is of the form (so, h, s), where the trace h is a sequence of finite length, 
and if ó' Ç 6 then 61 bas the form ( so, h', ..L), where h1 must be one of the 
finitely many prefixes of h. 

So, if 6 is such that for all 6' Ç 6 there is some number i with 61 E Ph then we 
take the maximum m of these numbers and, by the assumption that (Pi}ieN 
is an a.scending chain, all 6' are contained in Pm· This shows that: 

( *) = { ó 1 3i E N 'v' ó' Ç ó : ó' E Pi} 

= LJ { ó 1 'v'ó' Ç ó : ó' E Pi} 
iEN 

LJ Kern(pi)· 
iEN 

It is clear that the Kern opera.tion is monotone. And since Kern(Z) = Z this 
a.lso shows that totality is preserved by Kern. 

0 

Lemma 3.14 

Ppz(A) is a subcpo of Pz(A). 

0 

Proof 

Clearly the least element Z of Pz(A) is prefix closed. It is obvious tha.t the 
union of a collection prefix closed sets is aga.in prefix closed. Tha.t proves 
tha.t the lub of a collection of prefix closed sets is prefix closed itself. 

0 

If some prefix closed set p only conta.ins computations with tra.ces of bounded 
length, then it is often more transparent to define the set as Pref(Pm) where 
Pm contains the maximal elements of p. Moreover, if in fact all unfinished 
computations of Pm are of the form (so, e:, ..L), then p can be defined as 
Close(pF ), where PF conta.ins all finished computations of p. We have done 
this in section 3.8 in the definition of the meanings of atomie processes. 

The purpose of the kernel operation is the following. A process specification 
is essentially an inequality of the following form: 

Obs(S) ç; p, 
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where p is determined by some a.ssertion, in a way to be described in the 
next chapter. Unlike the process denotation Obs(S), p need not be prefix 
dosed. However, p can always be replaced by the prefix closed set Kern(p). 
For Kern(Obs(S)) = Obs(S), and since Kern is a monotone operation it is 
seen that the inequality above is equivalent to the following one: 

Obs(S) Ç Kern(p). 

This fa.et forms the basis for the kemel rule that is discussed in chapter 5. 

3.4 Semantic operations 

To facilitate the definition of the semantics of TNP, we define a series of 
operations on our domains. 

De:finition 3.15 ( Operations on states) 

For s E State, if E 'Var* of the form xo, · · · , Xn-1, and ii E 'Val* of the form 
vo, · · ·, Vn-h the variant slz: ïi is defined as usual: 

0 

(slz: i.i)(y)= Vi if, for some i, y = Xi and y ~ x; for i < j < n, 
= s(y) if y ~ Xi for 0 $ i < n. 

For the bottom state we define: ..Llz: ïi = ..L 

Defi.nition 3.16 (Operations on tra.ces) 

• Concatenation of tra.ces to and ti is denoted by to •ti or t0t1• By 
"translation over to" we will mean the operation >.t. tot. It ha.sa partial 
inverse, called prefix chopping which is defined as follows: 

t/to = ti if t = toti, provided such a t 1 exists; otherwise, it is not 
defined. 

Note the following properties: 

(i) (tot)/to = t 
(ii) to(t/to) = t, provided t/to is defined. 

• The projection tic, of a trace t onto a set of channels c, is defined as 
the trace obtained from t by omitting all communications ( c, v) with 
c <%. c. 

• A special form of projection is hiding t\c, which denotes tl(Chan c). 
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D 

• Benaming a channel c into d means replacing all occurrences of com
munications of the form (c, v) by (d, v). It is denoted by t[d/c]. 
Note that t[d/c][c/d] = t[c/d], and that this trace expression equals t 
only if no communications via d occur in t. 

Definition 3.17 (Operations on A.) 

D 

• Any operation op(t) on traces induces a corresponding operation on 

.6., defined by op((so,t,s)) = (so,op(t),s). 
E.g to A(so, t, s) = (so, to "t, s), (so, t, s)lc (so, tic, s) etc. 

• Projection onto variables 

Let x Ç 'Var be some set of varia.bles such that x = { x} = { xo, x1, • • ·}. 

We define the projection onto the variables x as an operation on A. : 

Ifs=f:...L, then (so,t,s)jx=(s0 ,t,solx:s(x)). 

In all other cases we define (so, t, ..L)jx = (so, t, ..L). 

• Hiding of variables 

· \x is defined analogous to hiding of channels: 

(so,t,s)\x ~r (so,t,s)l('Var x) 

Provided that s =/:- ..L, we can rewrite this as: 

(so,t,s)\x = (so,t,s!x:so(x)) 

For, in this case also so =/:- ..L and so, if {y} = 'Var - x, we have that 
sol!i : s(y) = six : so(x). For a bottom final state we have of course 
that: 

(so, t, ..L)\x = (so, t, ..L). 

• Projection and ki.ding /or bases 

Fora base {J of the form (c,x) we define, for 6 E A.: 

ól/J = ólc!x, and 

6\{J = 6\c\x. 

Remark Note that there is no projection or hiding operation defined on 
states as such. 
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Next we define operations on P(A). We show that these operations are 
completely additive, and preserve totality and prefix closedness. 

Definition 3.18 (Pointwise extensions) 

Any transformation op : A-...+A induces a corresponding operation opP 
P(.6)-P(.6), defined by: 

opp(p) = {op(8) 1 8 E p} 

We call it the pointwise extension of "op". When no ambiguity arises, we 
usually omit the P-superscript. 

0 

Lemma 3.19 

The pointwise extension opP, as defined above, is completely additive. 

0 

Proof 

Take some arbitrary collection of P(A) elements Pi, where i EI. 
Then one sees that: 

iEI iEI 

iEI iEI 

0 

Lemma 3.20 

Let c Ç Chan, x Ç 'Var, c, d E Chan. 
The following operations preserve totality and prefix closedness: 

1. >.p.plc 

2. >.p.p\c 

3. >.p.plx 

4. >.p.p\x 

5. >.p.p[d/ c] 

0 

Proof 
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Since the hiding operations are defined by means of projections it suffices to 
treat the cases 1,3 and 5. And since the operations are completely additive 
a sufficient condition for preservation of totality is that Z Ç op(Z). 

Case 1 

Preservation of totality: 

Zie= {(so, e, J...) I so E State_L} 1 c = {(Bo, ejc, J...) 1 Bo E Statel.} Z. 

Preservation of prefix closedness: 

Assume that p is prefix closed, and that we have some arbitrary li, /;1 such 
that 6 E plc and o' Ç /;. We must prove that 6' E plc. Since this is trivia! 
when li' = li we only consider the case that 6' c li. lf li is of the form 
(Bo,h,B) then 6' is of the form (Bo,h',J...), for some prefix h' of h. Since 
6 E pjc, there is some trace t such that (Bo, t, s) E p and h = tjc. For some, 
not necessarily uniquely determined, prefix t' of t we have that h' = t'lc. 
By prefix closedness of p it follows that ( so, t', J...) E p, and so we see that 
(so, h', J...) E pjc, as was to be shown. 

Case S 

Preservation of totality: 

Zlx = {(so, e, J...)!x 1 Bo E Statel.} = {(so, e, J...) 1 so E Statel.} = Z. 

Preservation of prefix closedness: Obvious because the operation affects only 
final states and preserves computations with bottom final states. 

Case 5 

Preservation of totality: similar as for case 1, since e[d/c] = e. 

Preservation of prefix closedness: similar as for case 1, hut even simpler, 
because if h = t[d/c] and h' is some prefix of h, then there is some particular 
prefix t1 of t such that h' = t'[d/c]. 

D 

De:ftnition 3.21 (Sequentia! composition) 

Elements of P(A) can be regarded as a combination of a state transformer 
relation and a trace set. With this in mind we define the composition Pl op2 
of two P(A) elements as a relation composition w.r.t. the state parts and a 
trace concatenation w.r.t. the trace sets, thus: 

P1 op2 = {(so, ti "t2, s2) 1 3s1 E Statel..(so, ti, s1) E P1, (si, tz, s2) E pz}. 

This operation will be used to define the meaning of sequentia! composition. 
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Lemma 3.22 

The sequential composition operator is completely additive and preserves 
totality and closedness. 

D 

Proof 

Complete additivity is shown by the following calculation: 

(LJ Pi) 0 ( U pj) = 
iEI iEJ 

3s1 : (so, ti, s1) E (LJ Pi), and (si, t2, s2) E ( U pj)} = 
iEI iEJ 

3si, i E I,j E J : (so, ti, s1) E Pi, and (si, t2, s2) E pj} = 

U {(so,t1"'t2,s2) 1 3s1: (so,ti,s1}Ep;., and{si,t2,s2)Epj}= 
(i,i)ElxJ 

U (p;.opj). 
(i,i)ElxJ 

Preservation of totality follows from the complete additivity and the easily 
verified fact that ZêZ = z. 
Note that it is quite essential here that Z contains the pseudo computation 
(L, e, L). For arbitrary sets p1, p2, if, and only if, this pseudo computation 
is present in P2 we have that every unfinished computation ( so, h, J_) of p1 
does also occur within P1 êp2. 

H PI and P2 are closed, we can prove closedness of p1êp2. That is, if p1 
and P2 are prefix closed and total, then the sa.me holds for the sequentia! 
composition of the two sets. Since we a.lrea.dy showed the preservation of 
totality, the preservation of prefix closedness remains. However, we cannot 
prove prefix closedness of p1 êp2 without the assumption of totality of p2, 

which guarantees that P2 contains the pseudo computation (L, e, L}. This 
explains why the lemma claims the preservation of closedness, rather than 
of prefix closedness. 

So assume that PI and P2 are total and prefix closed, and that for certain ó, li1 

we have that 61 c ó E Pl êp2. By the definition of the operator, we know that 
ó is of the form (so, h1h2, s}, where for some intermedia.te state s1 E Statej_, 
(so, hi, s1) E Pl and (si, h2, s) E P2· Then ó1 must be of the form (so, h', L}, 
where either h' is a prefix of h1 or else h' = hih" for some prefix h" of h2. 



3.4. SEMANTIC OPERATIONS 83 

In the first case we infer from the prefix closedness of Pl that Ó1 E pi, and, 
since (..L,e,..L) E P2, it is also true that ó' E p1êp2. In the second case we 
infer from the prefix closedness of P2 that ( s1, h", ..L) E P2, and thus it follows 
that ó' E p1êp2. (As was to be shown). 

D 

In P(A) we have the following constant, acting as a unit element for compo
sition: 

1 ~f {(so, e, so) 1 so E State.L}· 

That is, 1êp=po1 = p for all p e P(A). 

Note tha.t 1 ft. Pz(A) ! Fortunately the set: 

lz «!:f lUZ = {(so,e,..L),(so,e,so) 1 so E State.L} 

is both total and prefix closed, and acts as a unit within Pz(A). That is, 

lz ê p =po lz = p for all p e Pz(A). 

The set 1 z consists exactly of the observa.tions admitted by the skip pro
cess, for this process never communicates, and when it terminates, it has 
not changed the state. As is the case for any process, it also a.dmits the ob
servations in z, corresponding to the intermedia.te stage where the process 
has started hut not (yet) terminated. 

Definition 3.23 (Union and intersection) 

Our semantic operation for nondeterministic choice will be set union, for 
the process S1 or S2 admits exactly all observations of S1 as well as of S2. 
The intersection PI n P2 is used below to ana.lyze the parallel composition 
operator. 

Lemma 3.24 

The union and intersection operations Àp1.ÀP2·(P1 Up2) and Àp1.Àf'2.(p1np2) 
are completely additive and preserves totality and prefix dosedness. 

D 

Proof 

As the proof for the union opera.tion is a.lmost trivial, we only treat inter
section here. 

Complete additivity follows immediately from the distributivity of set unions 
over intersections: 
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(LJp,) n (LJ pj) = U p,npj. 
iEI ;eJ (i,;)EJxJ 

Preservation of totality is clear: if both P1 and P2 contain Z as a subset, 
than the sa.me holds for P1 n P2· Fina.lly, preservation of prefix closedness is 
also clear, for if some 8 occurs in the intersection of two prefix closed sets, 
then any 8' such tha.t 81 Ç 8, occurs in both sets too. 

D 

Similar to the unit element for composition, we have a zero element for set 
union. In the case of P(A) this is of course the empty set. For Pz(A) we can 
take the element Z, since we have that, for any set p E Pz(A) : 

ZUp=pUZ=p (*) 

Obviously Z is total and prefix closed. As already explained before, this set 
is the denotation for abort, since it is the least element of Pz(A). It consists 
of the observations admitted by a process that never terminates and never 
performs a.ny communication. Clearly this is the appropriate denotation for 
a diverging process, like while true do skip od. However, Z will also be the 
denotation of a deadlocked process like, e.g. 

c!O ; dfO 11 d?x ; c?x. 

The rea.son for this is that we did not include "deadlock" in our list of 
observable events, and so deadlock and divergence cannot be distinguished 
by means of finite observations. 

From ( *) it can alrea.dy be seen that if a process has the choice between, on 
the one hand, divergence (or dea.dlock) and, on the other hand, termination 
or communication, then the divergence (or deadlock) possibility is not rep
resented any more in our semantics. So e.g. c!O or abort turns out to be 
equivalent to c!O. Such identifications are justified since within our class of 
safety properties there is no such property that could distinguish between 
the two processes. (In the sense that it would be va.lid for one process hut 
not for the other). 

We have discussed semantic operations corresponding to all TNP operators 
except for parallel composition. The sema.ntics of parallelism is easier to 
describe after the next section. 
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3.5 Process Bases 

In chapter 2 we defined the (syntactic) base of a process. The definition is 
such that if base( S) = ( c, x) then S has the following properties: 

1. it communicates exclusively via channels in c, 

2. it can read only the variables in x, 

3. it can assign only to the variables in x. 

One of the purposes of this section is to define a corresponding semantic 
notion of bases, and to relate it to the syntactic base of processes. 

In the next chapter we define the class of assertions that, in the terminology 
of section 3.1, play the role of negations of refuta.tion criteria. That is, for 
a given assertion X and a computa.tion ó it is possible to determine whether 
the computation sa.tisfies X or not. To each assertion we assign a so called 
assertion base, that is the counterpart of the base of a process. The a.ssertion 
base of assertion X is denoted by abase(x). It has the following properties. 
H abase(X) = (c,x) then: 

1. the truthvalue of X does not depend on communications via channels 
outside the set c, 

2. the truthvalue of X does not depend on the va.lues of varia.bles outside 
the set x. 

Similar to the semantic base that we mentioned above, we define the notion 
of the semantic assertion base of some given set of computations. In chapter 
4 we consider the exact relationship between the syntactic assertion base of 
an assertion and the semantic assertion base of the set of all computations 
that satisfy the assertion. 

A third goal of this section is to introduce an operation called chaotic closure, 
that is in some sense the dual of the projection operation. We need this 
opera.tion to characterize assertion bases, but it plays also a major role in 
the definition of parallelism. We start with the definition of this operation. 

3.5.1 Chaotic closures 

From the properties of the projection operations it follows immediately that 
Àp.pj{J, where f3 is a base, is a completely additive opération tha.t preserves 
totality and prefix closedness. We define an operation Àp.p î /3, called 
"chaotic closure". 
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De:flnltion 3.25 (Chaotic closure) 

p î fJ is the largest set p1 such tha.t p'l/J = PIP· 

D 

Whereas projection onto P removes all communications and modifications of 
channels and varia.bles outside {J, the chaotic closure inserts arbitrary com
munications and "random assignments" /or channels and variables outside 
/J. 

It is clear that p î (3 equals the following set { 6 E A 1 6IP E Pl/J}. 
Using this fact, the following lemma is proven easily. 

Lemma 3.26 

Àp.p î P is completely additive and preserves totality and prefix closedness. 

D 

Pro of 

{ 6 E A 1 61,8 E (LJ p;) l,8} = (by c.a. of projection) 
iEI 

{6 E A 1 :Ji such that 6IP E Pil/J} = LJ{6 E A 1 ólP E PïlP} 
iEI 

= LJ(p; Î f3). 
iEI 

We conclude that the operation is completely additive. Preservation of to
tality is rather obvious. To see that prefix closedness is preserved, assume 
that p is prefix closed and 6' Ç ó E p î /J. Then 6'IP Ç 61{3 and 6lf3 E PIP· 
Since projection preserves prefix closedness we ma.y conclude that 6'1,8 E PIP, 
which proves that ó' E p î {3. 

D 

We list a few properties of projection and chaotic closure, all of which can 
be checked fairly straightforward. 

(i)p<;;.pîf3 

(ii) p î ,8 is the largèst set p' such that p'l/J <;;. PIP 

(iii) Pl.81IP2 = Pl(f31 n ,82) 
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(iv) Pl,Bl,8 = Pl,8 

(v) PÎ ,8iî ,82 = pî(,81 n ,82) 

(vi) PÎ ,8î ,8 = PÎ ,8 

(vii) pl,8î,8=pî,8 

( viii) p Î ,Bl,8 = pl,8 

(ix) Pl.8 Ç PÎ ,8 

(x) SE PÎ ,8 iff Sl,8 E pl,8 

D 
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We now come to the definition of the semantic base and the semantic asser
tion base of a set of computations. After the definition and the proof of a 
few simple properties we relate these semantic notions to their corresponding 
syntactic counterparts. 

De:flnition 3.27 (Semantic base and semantic assertion base) 

• For a set p E P( A) we define: 

D 

base(p) is the smallest base ,8 such that pl,8 = p, and 

abase(p) is the smallest base ,8 such that p î ,8 = p. 

• The set Ap is defined as the set of all computations with their base 
contained in ,8, that is: 

Ap ~f {SE Al Sl,8 = S}. 

• The domains P(Ap), Pz(A,8) and Ppz(Ap) are derived from the corre
sponding domains P(A), Pz(A) and Ppz(A) by restricting their elements 
to subsets of Ap. 

To prove that the base and assertion base of a set p are well defined, we 
remark the following. 

• There exists at least one ,8 such that pl,8 = p and p î ,8 = p, viz. the 
base (Chan, Var). 

• If for certain bases ,8 and ,8' it happens that pl,8 = p and also pl,8' = p, 
then Pl(,8 n ,8') = Pl.Bl,8' =p. Similarly, if both PÎ ,8 =pand PÎ ,8' = p 
then also PÎ (,8 n ,8') = PÎ ,8î ,8' = P· 
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From this it follows that base(p) always exists and is uniquely determined 
as the intersection of all bases f3 such that PIP = p. Similarly, abase(p) is the 
intersection of all ,8 for which p î ,8 = p. 

The base of some set of computations can be determined easily from the 
channelset and assignsets of these computations, that we define as follows: 

Deflnition 3.28 (channelset and assignset of computations) 

• chan( (so, t, s)) ~f chan(t) ~ 
{c E Chan 1 t contains some communication via c}. 

• assign((so,t,s)) ~r {xE 1Jar 1 s,so-:f:. ..Land so(x)-:j:. s(x)}. 

• For p E P( .6.) we define: 

chan(p) = LJ {chan(S) 1 SE p}, 

assign(p) = LJ {assign(S) 1 SE p}. 

D 

Lemma 3.29 

base(p) = (chan(p),assign(p)). 

D 

Proof 

Let base(p) = ,8 = (c,x), and let 

(chan(p),assign(p)) = ,8p = (cp,xp)· 

Let ( so, h, s) E p. The trace h of this computation contains only commu
nications via channels in Cp,by the definition of Cp. Therefore hiep = h. H 
s -:j:. ..L then solx, : s(x,) = s, since, by definition, Xp contains all variables 
for which so and s could possibly differ. We see that (so, h, s)j,Bp = (so, h, s), 
and thus, that /3p has the property that pj,8p p. 

lt remains to show that ,8p is the smallest base with this property. Assume 
to the contrary that for some ba.se /31

, pj,81 = pand that there is some channel 
d or varia.bie y such that d '/: Cp or y '/: Xp· By definition of c, there is at 
least one computation in p that contains d communications, or that ends in 
a non bottom final state for which y has been modified. This contradicts the 
assumption that pjf31 = p, and so we conclude that ,8, is contained in every 
,81 that has the property that pj,81 = p. 

D 

Lemma 3.30 
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(P{Ap), Ç, 0) and (Pz{A,s), Ç, Z) 

are complete lattices. 

D 

Proof 

Let {Pi 1 i E I, Pi Ç Ap} be some nonempty collection of P( A) elements. We 
consider the base of the lub (in P(A)) of this collection: 

base( IJ Pi) = base( LJ Pi) = LJ base(pi) Ç f3. 
~] ~] ~1 

The lub of an empty collection is the least element of a domain. Since it is 
clear that base(0) = base(Z) = 0, we see that the lub of any collection of 
sets with base contained in /3 is again a set with base contained in /3. This 
shows tha.t P(A,s) and Pz(A,s) are complete lattices. 

D 

By the cha.racterization of semantic bases above it will be clear that there is a 
close relationship between the semantic and syntactic base of some process, 
hut that in general the two will not be identical. The reason for this is 
twofold: 

• First of all, the fa.et that in the program text of S some communication 
action or a.ssignment occurs doesn't imply that the action or assign
ment is actually executed for some computation. For insta.nee, the 
process if false then c!O else d!O fl never communicates via channel 
c although this channel occurs in the syntactic base of the process. 
Even when some assignment is executed its effect can be undone by 
assignments executed thereafter. Our notion of the semantic base of a 
process captures only those channels for which actual communication 
occurs in at least one computation, and those varia.bles for which there 
is a difference between the initial and final state value for at least one 
computation. 

• The difference between initia.l and final state va.lues or the occurrence 
of a. communica.tion can, be esta.blished for each computa.tion in isola
tion. But it is not possible to establish /or some computation in iso
lation whether it has a.ctually read some varia.bie or not. This shows 
that statements a.bout the read set of some process cannot be falsifi· 
able. (This follows from the characterization of falsi6.a.ble properties on 
page 3 of this chapter.) Since the correctness formulae that we study 
are concerned with falsifiable properties only, we can simplify matters 
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by defining the semantic base of a process such that it captures as
signments to variables and communications, hut not read actions for 
varia.bles. Due to this simplification, we could lay a simple and useful 
connection between semantic bases and the projection operator. 

The second reason raises the question why we did not define the syntactic 
base along the same lines, i.e., why the syntactic base does include the 
varia.bles that are read at some point. The reason for this is rather indirect. 
In chapter 6 we associate with each process S an assertion A(S) that is 
called the characteristic assertion for S. It has the important property that 
its assertion base equals the (syntactic) base of the process it describes. 
However, the assertion base of the characteristic assertion A(S) consists of 
those channels via which the process can communicate and those varia.bles 
that it can write to or read /rom, and therefore this equality holds only 
because we included the variables that a process can read in its syntactic 
base. 

We formalize our claims concerning the relation between syntactic and se
mantic bases in the form of a lemma. This lemma should be compared with 
the clauses for the corresponding syntactic operations in definition 2.4. 

Lemma 3.31 

D 

(i) base(Z) = 0 

(ii) base(l) = 0 

(iii) base(pl,8) = base(p) n ,8 

(iv) base(p\,8) = base(p) - ,8 

(v) base(p[d/c]) Ç (base(p)- ({c},0)) U ({d},0) 

(vi) base(p1op2) Ç base(p1) u base(p2) 

(vii) base(p1 U P2) = base(p1) U base(P2) 

For most cases the proof is almost trivia!. We consider a few interesting 
cases. 

case (iii) 

This is a straightforward consequence from the fa.et that: 

chan((so,hlc,solx: s(x))) = chan(hlc) 

= chan(h) n c = chan((s0 , h, s)) n c, and 
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assign((so, hjc, solx: s(x))) = assign((so, h, s)) n {x}. 

case (iv) 

base(p\/1) = base(pl((Chan, 'Var) - P)) 

= base(p) n ((Chan, Var) - P) = base(p) - {3. 

case {v) 

91 

This is obvious, except maybe that we claim containment rather than equal
ity between left and right hand side. The reason for this is that if p does not 
contain computations that include c communications, then p[d/ c] need not 
contain computations with d communications. So it is not always the case 
that d E base(p[d/c]). 

case {vi) 

If 6 E p1op2 then it is of the form (so,h1h2,s), where, for some state si, 
(so, hi, s1) E Pt and (s1, h2, s) E P2· Obviously we have that 

chan(6) chan(h1h2) = chan(h1) U chan(h2) Ç chan(p1) U chan(pz). 

Also, if s -:/= ..L and s0 (x) -:/= s(x) for some varia.bie x, then s1 -:/= ..L and 
so(x)-:/= s1(x) or s1(x)-:/= s(x). That is, assign(S) Ç assign(p1) Uassign(p2). 

D 

3.6 Parallel composition 

For the semantics of a parallel composition, 81 /31Il13.,, 82, of processes, we 
introduce a corresponding semantic operation Àp1.Àp2.(P1 /31 Il /32 P2). 

Let i = 1 or 2, let Pi be ( Ci, Xi). The context sensitive restriction CSR 1 of the 
la.nguage definition in chapter 2 requires that base(8i) Ç (ci,Xi)· This mea.ns 
that we must define a semantic operation that matches the operational intu
ition for arguments Pi that contain only computations with communications 
via channels within Ci and modifications of variables within Xi· Note that 
for such Pi the projection PilPi equa.ls Pi, for removing communications or 
varia.bie modifica.tions that are not present has no effect. 

Our handsha.king communication protocol states that if c E Ci, then any 
communication (of 81 /31 ll/3:.1 82) via c must be synchronized with a c com
munication by s,. In particular, if c E c1 nc2, both 81 and S2 must perform 
the c communication simultaneously. This implies that if t is a possible trace 
for 81 /31 ll/32 82, than tjc, must be a.dmitted by si. 
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As to the state transformation we have the following situation: if (s0 , t, s) is 
admitted by 81 fh Il /;2 82, and s =/:- .l., then s must equal so except possibly 
for the variables in x1 Ux2. Moreover, all reads and assignments toa variable 
x E xt have been performed by 8&, which means that s0 lxi : s(xi), where 
{x;} = xt, is a possible final state for the execution of 8;. 

Altogether one sees that if (so, t, s) is admitted by the parallel composition 
81 1'1'11'2 82 then the component Si must admit ( so, t, s) IPi· So for sets Pi 
that satisfy the equality Pil.Bi Pi our parallel composition operator must 
satisfy: 

(Pi 1'1 1i P2 P2) l.Bï Ç Pi for i = 1, 2. 

An elegant generalization into a requirement for arbitrary sets Pi is the fol
lowing: 

(P1 P11i P2 P2)l.8i Ç Pil.Bi for i = 1, 2. 

These inequalities determine the parallel composition as far as the channels 
and variables in ,81 U fJ2 are concerned. Note that ,81 U ,82 is the base of 
the parallel construct, and that outside this base neither communications 
are performed nor assignments are made by the parallel network. This is 
equivalent to the requirement that the following equality holds: 

(P1 1'1 Il P2 P2) 1 (/hu ,82) = (p1 P1 Il Pi P2). 

This equality states that removing communications and modifications of 
channels and variables outside the base (/31 U ,82) has no effect on the set 
p1 1'1 Il P2 p2, which amounts to the same as stating that there are no such 
communications or modifications in the set. More formally, the equality 
states that the semantic base of the set is contained within (,81 U /32), and 
by lemma 3.29 this implies that all communications and modifications are 
within (,81 U fJ2). 

We define the parallel composition as follows: 

Definition 3.32 (Parallel composition) 

D 

Pl 1'1 11 P2 P2 is the largest set p such that: 

(i) Pl.81 Ç Pil.Bi, for i = 1, 2, and 

(ii) Pl(,81 U ,82) P· 

Lemma 3.33 
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The parallel composition operator is completely additive, and preserves to
tality and prefix closedness. 

0 

Instead of proving this directly from the definition we show that the parallel 
composition operator can be expressed in terms of operations introduced 
above. The lemma then follows from the corresponding properties for these 
operations. First we prove a simple lemma. 

Lemma 3.34 (Distributivity of "r and "!") 
lf, for i = 1, 2, base(pi) Ç (3, or, for i = 1, 2, abase(p,) Ç (3, then: 

(P1 n P2) lf3 = (P1 IP) n (P2 l.B), 
(P1 n P2)î ,8 = (Piî (3) n (p2 î (3). 

0 

Proof 

First we assume that base(pi) Ç (3 for i = 1, 2. 

Projection is fairly simple in this case since it is clear that 

base(p1 n P2) Ç base(p1) u base(P2) Ç (3. 

Consequently, 

(P1 n P2)lf3 = (P1 n P2) = (P1lf3) n (P2lf3). 

Using this we prove distributivity for the î operator, under the given condi
tion for (3. 

(P1 n p2)î (3 = {ó 1 ólf3 E (p1 n P2)l.8} 

= {ó j c5j(3 E P1lf3 n P2lfi} 

= {ó 1 ólf3 E p1j,8} n {ó 1 ój(3 E P1l,8} 

= PlÎ f3 n P2 Î (3. 

Next we assume that abase(pi) Ç (3, for i = 1, 2. 

Distributivity for the two operators in this case can be reduced to distribu
tivity for sets with their base, rather than their assertion base, contained 
in,8. From the assumption on Pi it follows that Pi= Pi î ,8 = Pilf3î (3. 

For projection: 
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(P1l,8n1>2l,8) î ,81,8 = (P1l,8 n P2l,8)l,8 = 

rho1l.Bl.Bn1>2l,8l,8 = P1l,8np2l,8. 

And for chaotic closure: 

D 

(Pin P2) î ,8 (P1l,8î ,8 n P2l,8î ,8) î ,8 = 

(P1l.8 n P2l,8) î .8î ,8 = (P1l,8 n P2l,8) î ,8 = 
rho1l.Bî ,8 n P2l,8î ,8 = P1 î ,8 n P2 î ,8. 

Lemma 3.35 (Parallel composition as derived operation) 

Let ,8 = ,81 u ,82. 

D 

Pl fli Il fJ2 P2 = (P1 Î .81!,8) n (P2 Î /32 l,8) 

(P1 Î fh n P2 Î ,82)1,8. 

Pro of 

Let p = (P1 î .811.8) n (p2 î .821,8). 

First we show that p satisfies clauses (i) and (ii) of the definition of the 
parallel composition operator. We tacitly use the monotonicity, and the 
properties (i) - (viü) listed in section 3.5.1, for the projection and chaotic 
closure operators. 

PI .8ï = ((Pi î .81 l ,8) n (1>2 î .82 l,8)) IPi 

Ç (PiÎ.8il.8)l,8i PiÎ.8ïl.8i = Pil.8i (Thisshows(i)). 

Since base(pi î .8ïl,8) Ç ,8, projection onto ,8 distributes over the intersection 
(Pi Î ,811.8) n (P2 î .821,8). And since (Pi î .8•1.B)l,8 = (Pi î .8ïl.8) this implies that 
PIP = p. (This shows (ii)). 

Next we show that p is the largest set that satisfies clauses (i} and (ii). 
Assume that p' also satisfies these two clauses, that is: 

(i') ll.8• Ç Pil.8i, for i = 1, 2 and 

(ii') p'l.8 = p'. 
Using (i') one sees that, for i = 1, 2 : 

p' Ç p' Î f3i = (p'lf~i) Î f3i Ç Pi Î f3ï· 

Then, using (ii'), it follows that 
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p' P'l.8 Ç PiÎ .8il.8, 
from which it immediately follows that 

P1 
Ç (P1 Î ,811.8) n (P2 Î .821,8). 

We have shown that pis the largest set satisfying clauses (i) and (ü), and 
by definition this equals the parallel composition Pl /3111 /32 P2· 

Finally we remark that, since 

abase(pi Î .Bi) Ç Pi Ç f3, 
it follows by lemma 3.34 that: 

(P1 î .811.8) n (P2 î .821.8) = (PI î .81 n P2 î .82)1.8· 

D 

Finally we prove a result that amounts to the associativity of parallel com
position as mentioned in section 2.3. There we claimed that: 

{81/l1lltJ282) l!Pa 83=8i /J1ll (821J2llPa83), 

where, by convention, the omitted base for the left hand side is .81 U f32, and 
for the right hand side is .82 U f33. 

Lemma 3.36 {Associativity of parallel composition) 

Let /312 = .81 U f32 and ,823 = .82 U (33. 

(PI /l1 Il P2 P2) fln 11 Pa P3 = Pl /J1 Il /Ju (P2 /32 Il /Ja Pa). 

D 

Proof 

Let ,8 = {31 U ,82 U {33 • Since the commutativity of parallel composition is 
clear, it suffices to prove the following: 

(Pi P1 Il P2 P2) fJu Il /Ja P3 = 
(Pi î .81!.8) n (P2 î .821.8) n (p3 î ,831,8). 

We use the two lemmata above. 

(P1 P1 Il /32 P2) /J12 Il Pa P3 = 
(Pi î .811.812 n P2 î f32l,812) î /h2l.8 n p3 î ,831,8 = 

Pi î .811.812 î .8121.8 n P2 î .821/312 î .8121.8 n p3 î ,83l,8 = 

(P1 î .811.8) n (P2 î /321/3) n (pa î fJ3lfJ). 
(As was to be shown). 

D 
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3. 7 Process environments 

Now that we have established the domain P(A) , we are able to define 
the meaning of TNP processes S. This meaning, Obs[S]'l, is the set of 
observations that S admits, where 'I is a process environment determining 
the meaning of free occurrences of process varia bles in S. With this in mind it 
will be clear that '1 itself must be a function from the set of process variables 
Pvar to P(A). Then, if we denote the domain of process environments by 
H, Obs is a function of the form: 

Obs: TNP-t (H- P(A)) 

Actually, a process variable P(c,x) denotes a process with a base contained 
in ( c, x). Therefore we define the domain of process environments as follows. 

De:finition 3.37 (Process environments) 

('IE) H ~r {'1 E Pvar -t P(A) 1 for all PIJ, q(PIJ) E P(AIJ)}. 

('1 E) Hpz ~f {'7 E Pvar -t Ppz(A) 

The variant q[pp/ P11], where PIJ E P(AtJ), is defined as usual: 

('1[P11/P,e])(Pp) = PtJ 

('l[P,e/ Pp])(Q1J1) = 11(Qp1) if QIJ' ~ P,e. 

0 

Lemma 3.38 

(i) Hand Hpz, with the usual function space order, are complete lattices. 

(ii) For any PIJ E Pvar : 

>..q.ÀPIJ·'l[Pl'f PI'] E [H - [P(Ap) - H]]. 

(iii) Similar to (ii), with H replaced by Hpz· 

Proof 

(i) Take any collection {'11li EI} in H. It is clear that U 'li exists as an 
element of Pvar-tP(A). lt remains to show that (U 'li)(P!j) E P(Ap). 
This follows directly from: 

(LJ 'li)(Pp) = lJ(1u(P11)), 
i i 

and the fact that P( AIJ )is a complete lattice. The proof for Hpz is very 
similar. 



3.8. THE DEFINITION OF THE SEMANTICS OBS 97 

(ii) First we show that >..pp.rJ[Pp/ Pp] is a completely additive function from 
P(A.p) to H, for each particular 'fJ E H. 

Let {P1li EI} be some collection in P(A.p). 

( q[(LJ Pi)/ PpJ) (Pp) = U Pi= U ( 'l[Pi/ Pp](P,a)). 
iEl iEI iEI 

For process variables Q ,8' ~ Pp : 

("reu P•)/P13J)(Qp1) = q(Qp1) = 
iEI 

U q(Qp1) = U ( 'l[Pi/ Pp](Qp1) ). 
iEI iEI 

So we have indeed: 

iEI iEI 

Secondly, we show that >..q.Àp.q[p/ Pp] is completely additive in its '1 
argument. Let { 'li li E J} be some collection of environments, 

(>..q.Àpp.q[pp/Pp])(LJ 'I;) = Àpp.(LJ 'l;)[pp/Pp] 
iEJ iEJ 

= ÀPfJ· lJ (q;[Pp/Pp]) = lJ >..PfJ·'li[PfJ/Pp] = 
iEJ iEJ 

lJ (>.1J.>..pp.'fJ[PfJ/ Pp](q;)). 
iEJ 

(iii) Very similar to case (ii). 

0 

3.8 The definition of the semantics Obs 

Finally we come to the semantics of TNP, that we define by means of the 
following function: 

Obs : TNP-+[Hpz-+Ppz{A)]. 

We do this by first defining a function with the sa.me name Obs that has the 
functionality: 

Obs : TNP-+[H-+P(A.)]. 
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Then we prove that the restriction of this latter function to the subset Hpz 

of H has the correct functionality, that is, always yields prefix closed, total 
sets of computations. This way of defining Obs facilitates the definition of 
the semantics of mixed terms that we introduce in chapter 4. 

We assume that we have available two interpretation functions, e and B, for 
expressions and boolean expressions: 

t : exp -+ (State --+ 'Val), 

B: Bexp-+ (State-+ {true,false}). 

The definition of Obs is by induction on the structure of processes. 

Deftnition 3.39 (Semantics of TNP) 

0 

Obs[skip]'I = lz 

Obs[abort ]'1 Z 

Obs[x := e]" = aose( {(so, e, solx: (e [e]so)) 1 Bo E State}) 

Obs[b]'I = Qose({(so,e,so) 1 so E State, B[b]so}) 

Obs[c.x:bBfl = 

Qose( {(so, < (c, v) >, solx: v) i so E State, v E 'Val, B [b](solx: v)}) 
Obs[P,e]'I = 'l(P,e) 

Obs[S1 \x]'I = ( Obs[Sd'l)\x 

Obs[S1 \c]t'J (Obs[Sdf'J)\c 

Obs[S1{d/c)]11 = (óbs[S1]'1)[d/c] 

Obs[S1; S2]lt'J = Obs[S1]'1 o Obs[S2]t'J 

Obs[S1 or S2]'1 = Obs[S1]11 u Obs[S2]t'J 

Obs[S1 .B11i.B2 S2]l'1 = Obs[S1]'1 .B11i.B2 Obs[S2]'1 

Obs[µzP,e.S1]t'J = µ11 (Àp,e.Obs[S1](11[P.e/ P,e])) 

= µ( Àp,e.(Obs[S1]('1[P,e/P,e]) u Z)) 

Obs[PIJ = S1in82]'7 = Obs[S2]('1[0bs[Si]"/P.e]) 

Theorem 3.40 (Well definedness of Obs) 

The semantics Obs is well defined, and in fact: 
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Àq.Obs[S]q E [H-+P(A.a)J, where f3 = base(S). 

D 

Proof 

Let SE TNP,p = base(S) = (c,x). 
We must show: 

(a) óbs[S]q E P(A), i.e.,Obs[S]q is a well defined subset of A. 

(b) chan(óbs[Sllq) Ç c 

(c) assign(óbs[S]11) Ç x 

(d) Àq.óbs[S]q is a continuous function. 
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We prove this simultaneously by induction on the structure of the process 
s. 
Case 1 SE {skip, abort, b, x := e, c.x: b} 

(a) Follows immediately from the definitions of lz, Zand the Qose oper
ator. 

(b) Is obvious for the first four cases, since here chan(Obs[S]17) = 0. 
Also, from the semantic de:finition and definition 1.4, it follows that 
chan(Obs[c.x:b]11) = {c} = chan(c.z:b). 

(c) Is obvious for the first three cases, since here assign(Obs[S]17) = 0. 
Further: 

assign(Obs[x := e]q) Ç {x} U var(e) = var(x := e), 

and similarly: 

assign(óbs[c.x:b]tJ) Ç {z} U var(b) = var(c.x:b). 

( d) Is satisfied since ÀfJ.Óbs[ 8]'1 is a constant function in all five subcases. 

Case 2 S = P.a. 

Clearly Obs[P.a]'1 q(P.a) E P(A.a), by the definition of H. 
Moreover, function application is continuous in its first argument. 
Hence, Àq.q(P.a) is continuous. 

Case 3 8 E {81 \x, 81 \c, S1(d/c}}. 

Let f31 = base(81), and let {:J = base(S). By induction, 

ÀfJ.óbs[S1]'1 E [H-+P(A.a1 )]. 
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It has been proven above that the corresponding semantic operations 
are all continuous. Moreover, by comparing the results of lemma 3.31 
and definition 2.4 of base(S) in chapter 2, one sees tha.t these semantic 
operations transform a set with its base contained in (31 into a set 
with base contained in {J. That is, the semantic operations have the 
functionality: 

\x, \c, {d/c} E [P(Ap1)-P(Ap)]. 

But then, by function composition we obtain semantic functions with 
the following functionality: 

A".Obs[8B'1 E [H-P(Ap)]. 

Case 4 8 E {81; 82, 81or82, 81 Pil!Pz 82} 

Let f3i = base(8i) for i = 1, 2. Then f3 = base(8) 
definition 1.4. 

By induction we ma.y assume that, for i = 1, 2 : 

The semantic operations for these three operators have been shown 
to be continuous. Lemma 3.31 states that, for sequentia! composition 
and choice, sets pi, P2 with bases contained in {h, /32 are mapped into 
a set with base contained in {h U /32. The sa.me is clear for parallel 
composition, from the definition of this operation. This means that: 

o,U, IJi llP2 E [P(Ap1 ) x P(Ap3 )-P(Ap)]. 

So, by function composition, we obtain the function 

Àf1.0bs[8B'1 E [H-P(Ap)] 

Case 5 8 = µ.P".81 

In chapter 2 the definition of bases and the context sensitive restrictions 
guarantee that base(8) = {J ~ /31 ~f base(81). 
From the theory of epos it is known that the fixed point operator is a 
continuous operator itself, that is, µ is an element of: 

[[P(Ap)-P(Ap)]-P(Ap)]. 

Therefore, it suffices to show that : 

À1J.Àpp.Obs[8d('1[Pp/ Pp]) u Z 

is an element of [H-[.P(Ap)-+P(Ap)]]. Now this is the case, since: 
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(i) by induction, 

Àf1.Óbs[S1]11 u Z E [H-+P(Äp)]. 

(ii) by lemma 3.37, Àf1.Àpp.f1[pp/P.s] E [H-+[P(Ä,s)-+H]]. 

Composition of these two functions yields the desired result. 

Case 6 S = Pp = 81 in 82 

D 

Let fJi = base( Si}, for i = 1, 2. Then {J = base(S) = {J2• 

By induction we have that 

Àf1.óbs[S;]'1 E [H-+P(Äp;)], for i = 1, 2. 

By lemma 3.37, 

>.11.App1 .tJ[P,e1/ Pp1] E [H-+[P(Äp1 )-+H]]. 

From this we infer that: 

ÀtJ.fl[Obs[S1]tJ/P.sJ E [H-+H], 

and hence that: 

ÀtJ.óbs[S2]('1[0bs[Si]tJ/Pp]) E [H-+P(Äp2 )]. 

Since fJ2 = {J we conclude that 

Obs[S]11 E [H-+P(ö.p)]. 
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Next we show that the restriction of Obs to the domain Hpz is a function 
that yields total prefix closed sets. 

Lemma 3.41 

The restriction of Obs to Hpz has the following functionality: 

Obs : TNP-+[Hpz-+Ppz(Ä)]. 

D 

Pro of 

The proof is by a straightforward induction on the structure of processes. 
For process variables Pp we have that Obs[Pp]'I E Ppz(Äp) by the assump
tion that '1 E Hpz• In section 3.4 we have shown that the denotations for 
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the atomie processes skip and abort are total prefix closed sets, and it is 
clear from the definition that the denotations for the other atomie processes 
are total and prefix closed because we used the Gose operator for the corre
sponding clauses. We have also shown that the semantic operations that we 
have used in the definition of óbs all preserve totality and prefix closedness. 
Finally, in section 3.3 it was shown that .Ppz(.6.) is a subcpo of Pz(.6.), and· 
so the µ 11 operator yields a prefix closed set for functions in the subspace 
[Ppz ( .6. )--+ Ppz ( .6.) ]. 

D 

3.9 An alternative representation 

Up to now we have regarded the meaning of a process as a set of com
putations. This is rather different from the usual semantica for sequential 
programs, where one defines the meaning of a program as a transformer of 
states or, in the case of nondeterrninistic programs, as a transformer of sets 
of states. We show in this section that our semantica is in fact isomorphic to 
such a tra.nsformer semantics, based upon the notion of so called generalized 
states. A generalized state is a pair ( h, s), consisting of a trace component 
h and a state component s. Intuitively, such pairs can be used to describe, 
for some moment during the execution of some process 8, the current state 
of the varia.bles and the sequence of communications performed thus far. If 
this moment corresponds to the start of some process 8, then we call ( h, s) 
the initia/ trace and state for the execution of 8. If and when 8 terrninates, 
some generalized state ( h', s') has been reached, where h' includes the initia! 
trace h as a prefix. A generalized state of the form ( h, l.) shall be used 
to describe those moments during execution where no observable final state 
has been reached yet. As one may expect, when we consider the semantics 
of a sequential composition S1; 82, a final generalized state (h, s), with an 
observable, i.e. non bottom, state s Cor some process S1, is converted into 
a pair ( h, l.) to indicate an intermedia.te stage of the computation, and a.lso 
functions as an initial generalized state Cor the execution of 82. 

The first step is to treat a set of computations as the graph of a function. 
To this end we define the following domains. 

Deftnition 3.42 () 

• (u E) E ~f Trace x Statel. - ( Generalized states) 
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D 

• The partial order ÇI: on :E is defined by: 

(t,s) (t',s') iff either (t,s) = (t',s') or s J_ and t :::5 t'. 

:::5 is the prefix order on traces. We omit the :E subscript when no 
ambiguity arises. 

• A subset X of :E is called prefix closed if it is downwards closed with 
respect to ÇI: • This is the case iff for every generalized state (h, s) in 
X all pairs (h', _1_) are also in X, where h' is an arbitrary prefix of h. 

• A subset of :E is called total if it contains the pair (€, ..L). 

• P (:E) denotes the collection of all subsets of :E. Pp(:E), Pt(:E) and Ppt(:E) 
denote the collections of all prefix closed subsets, all total subsets and 
all total prefix closed subsets of :E. 

• (c;bE) .1un<!!f{c;bE(State.L-+P(:E)) 1 cfo(_l_)Ç{(e,_1_)}} 

• A functions c;b: State.L -+ P(:E) is called total (prefix closed) if, for each 
so, c;b(so) is nonempty (prefix closed). 

There is an obvious bijection between the domains P(.6.) and .1un. The 
bijection .1: P(.6.) -+ .1un, and its inverse g are defined by: 

.1(p) = >.so.{(t,s) 1 (so,t,s) E p} and: 

9(4') = {(so,t,s) 1 (t,s) E ,P(so)}. 

Note that the strictness requirement for .1un elements corresponds to the 
property of the domain À that (_1_, e, _1_) is the only computation starting 
with a bottom initia! state. 

The bijection 1 : P(.6.) -+ 1un preserves prefix closures and totality. That 
is: 

• p E P(.6.) is prefix closed iff 1(p) E .1un is prefix closed. 

• z Ç p iff .1(p) is total. 

This follows directly from the definitions. In fa.et the complete epo structure 
of the domains P(.6.) and Pz(.6.) is inherited, if we define the following epo 
structures: 

Definition 3.43 (Cpos based on P(:E)) 

We introduce the following epos: 
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D 

• (P(:E), Ç, 0) 

• (Pt(:E), Ç, {(E, ..L)}) 

• (Ppt(:E),Ç,{(E,..L)}) 

• The function space 1un with the usual pointwise order on functions. 

• The subspaces 1unt and 1unpt of 1un where the range of functions is 
restricted to Pt or Ppt· 

It is straightforward to check that F and G are monotone functions. From 
genera! epo theory it is known that if a bijection and its inverse are both 
monotone, then they are both continuous bottom preserving functions. There
fore, since F is such a bijection, one sees that P( .6.) and 1un are isomorphic 
as epos. 

The next step in our development is to associate with each 1un element </> a 
transformer of sets of generalized states. 

Definition 3.44 (Generalized predicate transformers) 

Define, for </> E Statel.-+ P(:E), the functions: 

</>1 
: :E-+ P(:E) and 

q,t : P(:E)-+ P(:E), as follows. 

t/>'((to,so)) ~r to"t/>(so) 

cpt(x) der U t/>'((to,so)) = U to"</>(so) 
(to,so)EX (to,so)ex 

D 

By analogy with "classical" forward predicate transformer semantics, we call 
P(:E)-+P(:E) elements generalized predicate transformers. We combine the t 
mapping with the isomorphism F, and define a mapping Tr. 

De:finition 3.45 (The mapping T r) 

Tr: P(.6.)--+ (P(:E)---.P(:E)) 

is defined by: 

Tr(p) def (.T(p))t. 
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D 

Obviously this associates a state transformer semantics Tr(Obs[S]17) with 
process S. 

The Tr-operator enjoys the following property: 

Tr(p1op2) = Tr(p2) o Tr(p1) 

Thus we see that a sequential composition of processes corresponds to a 
simple function composition of the associated transformers: 

We want to formulate our semantica directly in terms of :E-transformers. 
First, we collect some genera! facts about isomorphic cpo's. 

Deftnition 3.46 (Isomorphic representations of environments) 

Assume that a: P(ö.)-D is some isomorphism of cpo's. Define: 

DtJ ~f a(P(ö.tJ)) (for each f3 E Base) 

Z ~f fr E Pvar-'> D 1 ~ = a o 17 for some 11 E H} 

D 

Clearly the following holds: 

• ~(PtJ) E DIJ fort E Zand 

• .>..17.a o fJ is an isomorphism from H to Z. 

Deflnition 3.47 (Isomorphic copy of semantica) 

With a, D, Z as above, define .M. : TNP-(Z-D) such as to make the 
following diagram commute: 

H 

Áq.Ot 0 q 1 
z 

Obs[S]I P(ö.) 

.M.[ SJI 
D 

That is, .M.[S] is determined by: .M.[S](a o 17) = a o Obs[S]fJ. 
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This canonical way of defining semantic functions .M becomes applicable to 
our domain of generalized predicate transformers if we can turn the map ping 
T r in to an isomorphism of epos. To this end we have: 

Deflnition 3.48 (Domain Tra of !:-transformers) 

Trais defined as the set of all functions t/J E P(I:)-+P(I:) that satisfy the 
following conditions: 

(i) t/1(..LE) Ç ..LE (strictness) 

(ii) t/J(U Xi) = U ,P(Xi) (complete additivity) 
iEI iEI 

(iii) .P(to "X) =to "t/J(X) (prefix preservation) 

D 

Lemma 3.49 

The mapping >.q,.q,t is an isomorphism between 1un and Tra. lts inverse 
is: >..p. >.so. t/1( {( t:, so)} ). 

D 

Proof 

First we prove that the mappings between 1un and Tra are well defined. 

Assume that </> E 1un. We check that q,t satisfies properties (i) - (iii) of the 
definition of !: transformers. 

Property (i) 

q,t{..LE) = q,t({(e,..L)}) = tf>(..L) Ç J_E• 

Property (ii) 

</>t(U Xi} = U{</>'((to, so)) 1 (to, so) E U Xi} = 
iE/ iE/ 

U{c/>'((to,so)) 1 (to,so) E Xi 1 i EI}= 

UCU{</>'((to,so)) (to,so) E Xi}) = U c/>t(x,). 
iEI iel 

Property (iii) 

q,t(t0 "X) = U{t"</>(s) (t, s) E t0 "X} = 

UHtot1)"</>(s) 1 (ti, s) EX}= 
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LJ to A {t1 A </>(s) (ti, s) EX}= 

toA LJ{ti A</>(s) (ti,s) EX}= to"t/>t(x). 

This proves the well definedness of the mapping >..<f>.<f> t. The well definedness 
of >..f/1. >..so. f/1( {(e:, so)}) follows from: 

lso.?/J({(e:,so)}) (.L) = ?/J({(e,.L)}) = f/1(.Lt) Ç .Lt. 

Next we prove that the two mappings are inverses of each other: 

lso.<f>t({(e,so)}) = >..so.LJ{r<fo(s) 1 (t,s) E {(e:,so)}} = 

>..so.</>( so) = </>. 

Vice versa, we have: 

( >..so.f/1( {( e:, so)})) t 

>..X.LJ{tA(..\so.?/J({(e:,so)})(s)) 1 (t,s) EX}= 

>..x.LJ{tA?/J({(e,s)}) 1 (t,s)EX}= 

..\X. LJ{ ?/1( {(t, s)}) 1 (t, s) EX} = 

>..X.?/J(LJ{{(t,s)} i (t,s) EX})= 

>..X.?/J(X) = f/1. 

rhe monotonicity of both mappings is clear. 

0 

So we have the following epo isomorphisms: 

P(A) 1un >.q,.q,t Tra 

Consequently, we define the state transformer semantica for TNP as follows: 

0 

M: TNP--+ (Z-+1un), 

Mt: TNP--+ (Zt-+Tra), defined by 

.M[SD(1o11) ~r 1( Obs[S]tJ), 

.Mt[s](Tr o '1) c!!f Tr(Obs[S]tJ), 

whereZ={1o'7 1 11EH},zt {Tro11 1 11EH}. 



Chapter 4 

Correctness f ormulae 

4.1 Introduction 

Our aim is the study of formal systems for reasoning about TNP programs, 
and so our first task is now to introduce the formulae of these systems. 
Corresponding to the different semantic domains, we have a number of dif
ferent classes of formulae. Those formulae corresponding to the domains 
Trace, State.L, E and 1::,,. are called assertions, and those corresponding to 
program denotations are ca.lled correctness formulae. 

Our language for assertions deviates in severa.l ways from what is the custom 
for Hoare style proof systems: 

• It is a first order typed predicate language. That is, there are four 
types of terms, all called expressions, denoting values, channelnames, 
natural numbers and traces. 

• We distinguish between assignable va.riables, denoting values that can 
be changed by program execution, and logical va.riables, denoting va.l
ues that remain fixed throughout program execution. 
Assignable varia.bles coincide with the va.ria.bles in programs, while 
logica! va.ria.bles cannot occur within program text. 

• Sometimes we also distinguish between the va.lue of an assignable vari
able in an initial state and in a final state. 
Therefore we end up with four types of variables: 

1. (x E)Var - Assignable variables, ranging over Val.L. Var was 
a.lready introduced with the semantics. For assertions interpreted 
in both an initia! and fina.l state, a term x will denote the value 
of variable x in the final state. 

109 
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2. (x 0 E)'Var0 
- Similar to 'Var except that x0 denotes the initia[ 

state value of x. 

3. h - the single variable denoting the trace or communication his
tory of a program. It is similar to assignable variables in that it 
is affected by program execution. 

4. (v E).CVar, (n E)J.lvar, (t E)Tvar - Logica[ variables, ranging 
over 'Val.L, N and Trace, where N denotes the natural numbers. 
Variables of this type can occur /ree or bound by means of a 
quantifier. Free logical variables are also called ghost variables. 
Logical variables n, ranging over the natural numbers N are used 
as indices for trace expressions. 

Expressions are built up from constants and the variables above, by means 
of operations. As for operations on traces we focus the attention on the im
portant trace-projection operator "I". We found that, in order to formulate a 
compositional rule for parallel composition, one needs to be careful in which 
ways to refer to the communication history. Restricting such references by 
making them exclusively via projections allows a rule without any kind of 
interference freedom tests, by imposing some simple syntactic restrictions on 
the projections occurring in the premisses of the rule. 

Other operations on traces include the length lt 1 of a trace t, as well as 
chan(t[n]) and val(t[n]), denoting the channelname and communicated value 
of the n-th communication of t. 

Finally we remark that, unlike what is the custom, we shall not consider 
an assertion to be undefined in bottom states. The reason is that a bottom 
state only indicates an unfinished computation, and so it makes sense to 
interpret an assertion for a computation ending in a bottom state. This 
is even essential to describe nonterminating processes. Unlike what is the 
case for sequentia! programs such processes are not deemed to be uninter
esting, for it is possible to communicate with them. Therefore our assertion 
language must be capable of describing the communication behaviour of a 
nonterminated process. Within assertions, the symbols T and T 0 denote the 
characteristic predicates for non-bottom final- and initia! states. 

4.2 The syntax of assertions 

For each of the domains Trace, State, I:: and .6. there is a class Assn(-). 
Since Assn(Trace), Assn(State) and Assn(I::) can be obtained as subsets 
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of Assn(.6.), we first define this latter class. We shall write simply Assn 
instead of Assn(.6.). 

Defi.nition 4.1 (Syntax of expressions) 

D 

• (e E) exp The class of 'Val.t expressions. 

(This class is not fixed; we list the minimum requirements.) 

e ::= x x0 
1 v 1 val( te[ie]) 1 • • • 

• (ie E) iezp Integer expressions. 

ie::=O 111 n I ie1+ie2 1 ie1·ie2 j ltel 

• (ce E) cexp- Channelname expressions. 

( c denotes a constant channelname; there are no varia bles) 

ce ::= c 1 chan(te[ieJ) 

• (c E) cset - Fixed sets of channelnames. 

c::= {ci,"·,cn} 1 chan-{ci,··"cn} 

• (te E) texp - Trace ezpressions. 

te::= e 1 < (c, v) > 1 h 1 t I te1te2 1 tejc 1 te[d/c] 

De:6.nition 4.2 (Syntax of assertions) 

(X E) Assn - Assertions. 

X ::= e1 = e2 1 ie1 = ie2 ce1 ce2 I te1 = te2 1 

T 1 T 0 
1 X1 A X2 1 •X 1 3v(x) 1 3n(X) 1 3t(X) 

D 

For expressions and assertions the sets FV (-) and BV(-), of free- and bound 
varia.bles, are defined as usual. Note that the variables x, x0 and h can only 
occur free, since there are no quantifiers for these types of variables. ( Only 
logical varia.bles can occur bound). 

From FV(X) we derive the following sets: 

var(X) ~f FV (X) n 'Var 

var0 (X) ~f FV(X) n 'Var0 

lvar(X) ~ FV(x) n /!,var 
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nvar(X) ~r FV(X) n >Ivar 

tvar(x) ~r FV(X) n Tvar 

gvar(X) ~f lvar(X) u nvar(x) u tvar(X) 

var<0 >(x) ~r {z E Var 1 x E var(X) or z0 E var0 (X)} 

(And analogously for expressions). 

Definition 4.3 {Assertions on Trace, State and E) 

• (~, t/J e)Assn(E) ~r 
{~ E Assn 1 var0(~) = 0 and T 0 does not occur within ~} 

• (I e)Assn(Trace) ~r 
{IE Assn(E) 1 var(~)= 0 and Tdoes not occur within I} 

• (Ç e)Assn(State) ~r {Ç E Assn(E) 1 h ~ FV(Ç)} 

D 

4.3 The meaning of assertions 

The next step is to interpret expressions and assertions. For the interpreta
tion of assertions, we need the domain T of truthvalues: 

Definition 4.4 ( truth values T) 

The complete lattice of truth values is defined as: 

T del { true, false} ordered by: false Ç true. 

D 

Expressions and assertions are interpreted in a computation triple (s0 , h, s), 
determining the values of variables z 0

, x and h, and in a logical variable 
environment ï, determining the va.lues of free logica! varia.bles v, n and t. 

Definition 4.5 (logical varia.bie environments) 

(ï e)r ~r (.Cvar - Val) x (Jlvar-N) x (Tvar - Trace) 

Each "'fis a triple (ïL,ïN,"'fT)· However, we will usually write simply i(v), 
ï(n) and ï(t) instead of 'lL(v), 'lN(n) and 'lT(t). 

D 

The interpretation of expressions is by means of the following functions: 
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e : exP-(r-+(d-+ 'Val.L)) 

et : cexP-(I'-+(d-+Chan.L)) 

Je : iexP-(I'-+(d-+N)) 

Te : texP-(r-+(d-+ Trace)) 

Remark 
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There is no need for any bottom value for trace expressions, since the com
putation history is always well defined, and all trace operations are total. In 
particular the expression < ( c, v) > is always defined, hut only because we 
do only allow logica! variables v, rather than arbitrary expressions e, as the 
value component of the communication. For similar reasons we don't need 
a bottom value for natura! numbers in our setup. 

We list the defining clauses for these four functions. 

• t[x]ï(so,h,.l)=.l 
êffxh(so,h,s) = s(x) fors-:/= .l 
e[x0 h(..L,h,s) = ..L 
e[x0 h(so,h,s) = so(x) for Bo "f= J_ 

t'[vh(so,h,s) = ')'(v) (i.e.')'L(v)) 
e [ val(te[ie]) h(so, h, s) = the value part of the element with index 
Ie [ie]'l(so, h, s) of trace Tt' [te]'Y(so, h, s), provided this element exists, 
otherwise it is defined to be .l. 

• Jt[Oh(so,h,s)=O 
Jt[lh(so,h,s) = 1 
It'[n]'Y(so,h,s) = 'Y(n) (i.e. 'YN(n)) 
It' [ie1 + ie2]1(so, h, s) Jt [ie1h(so, h, s) + It' [ie2h(so, h, s) 
Jt[ie1 ·ie2Jh(so,h,s) = It[ie1h(so,h,s) · Jt[ie2h(so,h,s) 
Ie [ltel]b(so, h, s) = the length of trace Tt[teh(so, h, s). 

• Ct[ch(so,h,s) = c 
Ct[chan(te[ie])h(so, h, s) =the channel part of the element with index 
Je [ieh( Bo, h, 8) of trace Te [te h ( so, h, 8)' provided this element exists, 
otherwise it is defined to be .l. 

• Tt [eh(so, h, s) = e 
Tt[ < (c,11) > h(so,h,s) =< (c,')'(v)) > 
Te[h]1(so,h,s) = h 
Te [th(so, h, s) = 7(t) (i.e.')'x(t)) 
Te [te1te2]1(so, h, s) = Te [te1]1(so, h, srTt [te2]1(so, h, s) 
Te[telch(so,h,s) = (Tê[teh(so,h,s))lc · 
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Te [te[d/c]h(so, h, s) = (Te[te]ï(so, h, s))[d/c] 

• We left open the possibility that there are other operators for expres-
sions. All such operators must be interpreted strictly. 

There is some ambiguity between the function e as above and, on the other 
hand, the function e : exr>-+'( State-+ Val) as defined in chapter 3. 

However, we shall make the following assumption: 

(a) t'xp Ç exp, i.e. any expression e that can occur in a program is 
also allowed within assertions. 

(b) t[eh(so, h,s) = !'[e)s for e E t'xp. 

(c) Consequently, if e E exp and x is a list such that {x} 2 irar(e), 
then e [e[x0 /x]h(so, h, s) = e [e]so 

Next we interpret assertions by means of the function 

T : Jlssn-+(r-+(A-+T)). 

Again we must face the problem of dealing with "undefined" va.lues. As 
already mentioned, simply defining T [ X hó to be "false" whenever some 
expressions within X turns out to have a bottom value is not appropriate. For 
insta.nee, assume we want to express that some process S cannot terminate 
unless some value v has been sent along channel c and is stored in x. Using the 
predicate T, denoting a terminated computation, we can write this formally 
as: 

T-+ ( lhl{c} 1#=0 /\ x = val(hJ{c}[l])) 

Obviously this assertion should be interpreted as "true" for any nonter
minated computation (so, h, .L), despite the fact that x will have a bottom 
value in this case. 
Since we are not eager to introduce the complexity of a three-valued logic, we 
have adopted the following solution. All atomie assertions occurring in Jlssn 
are interpreted strictly with respect to bottom values of expressions, that is, 
they have the truthvalue false as soon as they contain some expression that 
has a bottom value. 

Definition 4.6 (Interpretation of assertions) 

T [e1 = e2hó iff t [e1hó = e [e2]]ïó #= .L 
T[ie1 = ie2]hó iff Tt'[ie1hó = Tt'[ie2hó 
T[ce1 = ce2hó iff Ct'[ce1]'15 = Ct'[ce2hó #= .L 
T[te1 = te2]ïó iff Tt'[te1hó = T!'[te2]hó 
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T[T]"Y(so,h,s) iff sf...L 
T[T0 ]"Y(so, h, s) iff sof. ..L 
T[X1 A X2]îó iff T[X1]ïó and T[X2hó 
T[•X]ïó iff not T[X]ïó 
T[3v(X)]ïó iff there is some w E Val such that T[Xh[w/v]6 
T[3n(X)]ï8 iff there is some m EN such that T[Xh[m/n]ó 
T[3t(X)h8 iff there is some u E Trace such that T[x]ï[u/t]ó 

Note that quantifiers range over proper, i.e. non bottom, values. 

We often use the following abbreviations: 

• ie1 ~ ie2 for 3n(ie1 + n = ie2). 

• te1 ~ te2 for 3t(te1t = te2). 

• a channelname c used as tra.ce ezpression, for hj{c}. 

• last( te) for te[ ltel]. 

• ..L for -.T. 

• ei f. e2 for -.(ei = e2)· 

• X1 v X2 for -.(-.x1 "-.x2). 

• X1--+ X2 for -.(x1 /\ -.x2). 

• Vv(x) for -.3v( -.x). 

• 'v'n(X) for -i3n(-.x). 

• Vt(X) for -.3t( -.x). 

• Vx(X) for Vv(X[v/x]), where v (/:. FV(x). 

• 'v'h(x) for 'v't(x[t/h]), where t (/:. FV(x). 
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Remark Defined predicates, such as f., need not be strict! E.g., for a 
nonterminated computation 8, an assertion such as x f. x turns out to be 
true. 

The abbreviations above are "syntax directed" in the sense that the text 
denoted by an abbreviation does not depend on, nor affects, the textual 
context in which the abbreviation is placed. This is not the case for the 
following more complicated abbreviational mechanisms: 



116 CHAPTER 4. CORRECTNESS FORMULAE 

• rest(te)is often used as a trace expression denoting all communications 
of te but the last one. That is, te= rest(tetlast(te). Our la.nguage has 
no trace expression that equals rest( te), but any assertion X conta.ining 
the abbreviation rest(te) is equivalent to the assertion: 

\lt(tAlast(te) =te-+ x'), 
where t is some fresh logica! trace variable, and where X' is obtained 
from X by substituting t for all occurrences of rest(te). 

• In a similar way one can rewrite an assertion containing a trace expres
sion of the form < (c, e) >, where e is some arbitrary expression, into 
an equivalent assertion tha.t uses an expression of the form < ( c, v) > 
instead. 

We have similar interpretations for Jlssn(:E) etc.: 

T : Jlssn(E)-+(r-+(E-+T)) 

T: Jlssn(Trace)-+(r-+(Trace-+T)) 

T : Jlssn(State)-+(r-+(Statei. -+T)) 

For ip E Assn(E), IE Assn(Trace), Ç E Assn(State), we define: 

T[ip]ï(h, s) ~r T[iph(so, h, s), where so E State is arbitrarily cho
sen. 

T[Ihh ~r T[I]ï(so, h, s), where so, s E State are arbitrarily chosen. 

T[ ehs ~f T[ Çh(so, h, s), where So E State, h E Trace are arbi
trarily chosen. 

On ma.ny occasions it is more appropriate to interpret an assertion as a set 

of computations: 

Deflnition 4.7 (Interpretation of assertions as sets) 

[ • ].A : Assn-+(r-+P(a)), 

[ · h: Assn(E)-+(r-P(E)), 

defined as follows: 

[X]o. 'Y ~r {6 E Ä 

D 

T[Xhê} and 

T[ip]ïu} 

We omit the Ä or E subscripts if these are clear from the context. 
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4.4 Assertions in normal form 

A simple theorem of predicate logic states that if some variable x does not 
occur free in some formula X, then the truthvalue of X does not depend on the 
value of x. As far as assignable varia.bles and logica! varia.bles are concerned 
we have a similar result for our assertion language. The communication 
history h needs a more refined theorem, however. It is not so interesting 
to know whether X depends on h itself or not. Rather we must be able to 
determine whièh projections of h X depends on. To this end we introduce a 
certain normal form for assertions. 

Definition 4.8 (normal form and history channels of assertions) 

• A trace expression is in normal form iff: 

(i) Each occurrence of h is contained within an expression of the form 
hjc. (Possibly with c equal to Chan). 

(ii) No occurrence of h is within the scope of a projection operator 
other than required by (i). 

• An assertion X is in normal form if all its trace expressions are. 

• For X in normal form we define the set hchan(X) as the union of all 
sets of channels used for the projections as required by (i). We call 
this the set of history channels of x. 

0 

Remark 

In [ZREJ, only trace expressions in normal form are allowed. There, the sub 
expressions as required by (i) are denoted as 1rc. 

0 

Next we list algebraic rules for trace expressions that allow one to rewrite 
any assertion into (some) normal form. By no means we need all these laws 
to obtain normal forms; hut the list is of interest in itself. A normal form 
is achieved by "moving projections inside" and replacing occurrences of h 
not within the scope of any projection by the term hjChan. Laws (vi), (vii), 
(viii), (ix), (x) and (xi) are sufficient to perform this transformation. 

Algebraic laws for trace expressions 

Concatenation laws: 
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(i) tee ete = te 

(ii) (te1te2)te3 = te1(te2tea) 

Projection la.ws: 

(iii) sic e 

(iv) < (c, t.1) > Ic=< (c, t1) > 

(v) <(c,v)>lc=e ifc~c 

(vi) (te1te2)lc = (te1ic)(te2lc) 

(vii) teic'lc = tei(c n c') 

if c E c 

(viii) (te[d/c])lc = (te[d/c])l(c - {c}) provided d "!- c 

(ix) (te[d/c])lc = (tejc)[d/c] if c,d E c 

(x) (te[d/c])lc = (telc) 

(xi) tejChan = te 

(xii) tei0 = e 

Relabeling laws: 

(xiii) e[d/c] = e 

if c,d ~ c 

(xiv) < (c, v) > [d/c] =< (d, t1) > 

(xv) < (c', v) > [d/cJ =< (c', v) > if c "!- c' 

(xvi) (te1te2)[d/c] = (te1[d/c])(te2[d/c]) 

(xvii) (teic)[d/c] = (te[d/c])l(c U {d}) if c E c 

(xviii) (telc)[d/cJ = (tejc) if c ~ c 

(xix) te[c/c] =te 

(xx) te[d/c][d'/c] = te[d/c] if c "!- d 

(xxi) te[d/c][d'/d] = te(d' /c][d' /d] 

(xxii) te[d/c][d'/c'] = te[d'/c'][d/c] if c1 "!- c, c1 ;F. d, d' "!- c 

In the presence of (viii), we could have chosen instead of (ix) and (x) the 
following two laws: 

(ix') te(d/c]lc = tei(c U {c})[d/c]provided d E c 

(x') te[d/c]jc tel(c - {c}) provided d ~ c 
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Although normal forma are not unique, we claim the following. 

Lemma4.9 
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If te1 and te2 are both normal forma of te, then hchan(te1) - hchan(te2). 

Pro of 

Assume that hchan(te1)-::/: hchan(te2), say c E hchan(te1), hut c tl. hchan(tez). 
If < (c, 0) >m denotes a sequence of m communications, then by a straight
forward proof with induction on the structure of te1 and te2, it is shown 
that Àm.Tê[lte1lh(so,< (c,O) >m,s) is, for all 7,so and s, strict monotone 
increasing, while Àm. Te [ lte2I ]ï ( so, < ( c, 0) > m, s) is a constant function. 
This contra.diets the fa.et that te1 and te2 have been obtained by rewriting 
the same trace expression te, so that te1 te= te2. 
By reduction ad absurdum we conclude that hchan(te1) = hchan(te2). 

0 

Deflnition 4.10 (history channels of assertions) 

For arbitrary assertions X we now define the set hchan(X) as hchan(XN ), 
where XN is some normal form of x. (The previous lemma guarantees that 
this definition is unambiguous.) 

0 

In practice, one needs not to rewrite assertions into normal form to determine 
their history channels. In fact it is sufficient to ensure, via rewriting using the 
laws above, that there are no intervening renaming operations between any 
projection operation and occurrences of h within the scope of that projection 
operation. For provided that X satisfies this restriction, one can calculate 
hchan(X) by means of the following table. 

FV(·) tvar(·) hchan(·) 
h {h} 0 Chan 
t {t} {t} 0 
tejc FV(te) tvar(te) hchan( te) n c, 
te1te2 FV(te1te2) . tvar(tei, te2) hchan(te1, te2) 
3t(x) FV(X) - {t} tvar(X) - { t} hchan(X) 
te[d/c] FV(te) 

1 

tvar(te) • hchan(te) 

The other cases follow as usual by induction on the structure of x. Note 
that channelnames, occurring in x, hut not used in references to h do not 
count for hchan(X). E.g. we have hchan(hj{c,d}) = {c,d}, hut, on the 
other hand, hchan(tj{c,d}) = 0. 
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Note that channel renaming applied to some trace expression te does not 
inftuence the history channels of the expression. An example might clarify 

this. Consider the trace expressions te1 ~r hl{c} and te2 ~r (hi{c})[d/c]. 
Of course it is true that te1 denotes a sequence consisting exclusively of c 
communications and te2 denotes a sequence of d communications. But if we 
interpret the expressions for some computation (so, h, s), then in both cases, 
the result is determined by the c communications of the history ( only). It 
is this dependence on the communication history, rather than the channels 
occurring in the final result of interpreting a trace expression te, that is 
formalized by the set hchan(te). Indeed hchan(te1) = hchan(te2) = {c}. 

Note also that te2i{d} te2, and so hchan(te2i{d}) must equal hchan(te2) 
rather than hchan(te2) n {d}. This shows that the third clause of the table 
is incorrect for assertions that do not satisfy the restriction. 

We define the syntactic counterpart of the semantic assertion base, intro
duced in chapter 3. 

Definition 4.11 (Assertion bases) 

For an assertion X the (syntactic) assertion base is defined as: 

abase(X) ~f (hchan(X), var(x)). 

0 

Note that the assertion base abase(X) does not account for variables in 
var0 (X), that is, in genera! abase(X) -:j:. (hchan(X), var(0 )(x)). 

Finally we can state the main lemma of this section, about the independence 
of assertions X from variables and trace projections not occurring {free) in 
x. The corollaries of this lemma form the basis for proof rules for parallel 
composition, channel hiding and varia.bie hiding, as we shall introduce in 
the next chapter. The lemma itself is used again in chapter 6, to show the 
appropriateness of the characteristic assertion for sequential composition. 

Lemma 4.12 

Let X be some assertion with: 

var(X) Ç {x}, var0 (X) Ç {y0
}, hchan(X) Ç c, gvar(X) Ç {g}. 

Assume ,, ,, Er, so, so', s, s' E Statel., h, h1 E Trace are such that: 

• so and so' agree on var0 (X), that is, either so = so' .l. or so(ti) 
so'(y), 

• s and s1 agree on var(X), that is, either s = s1 .l. or s(x) = s1(x), 



4.4. ASSERTIONS IN NORMAL FORM 121 

• hlc = h'lc, and 

• 1(g) = 1'(g). 

Then T[X]'Y(so,h,s) iff T[x]l'(so',h',s'). 

Proof First, rewrite all trace expressions within X into normal form. Then 
each occurrence of h in X, is within a projection of the form hlc', where 
c' Ç c. Clea.rly: 

Té'[hlc'hh = hlc' = h'lc' = Té'[hlc'hh' 

Similarly, we have for any x, y0 ,g E FV{X) that: 

e[x]ï(so,h,s) = J_ e[x]ï'(so',h',s'), if 8 = s' _l_, 

t[xh(so,h,s) = s(x) = s'(x) = t[x]l'(so',h',s'), if s,s' f. J_ 

e[y0 ]ï(so,h,s) = J_ = e[yh'(so',h',s'), if so = so' = _l_, 

t[y0 h(so,h,s) so(Y) so'(y) = t[y]'Y'(so',h',s'), if so,so' f. _l_, 

e[gh(so,h,s) = ï(g) = 1'(g) e[gh'(so',h',s'). 

From these equalities, it follows by a straightforwa.rd induction on the struc
ture of expressions that all expressions , occurring in atomie formulae of X get 
the same values for both cases. Since atomie assertions are either equalities 
between expressions, or T or T 0 predicates, it follows that all such atomie 
assertions within X have the same truthvalue for both cases. Consequently, 
X itself must have the same truthvalue for both cases. 

D 

Corollary 4.13 

Let abase(X) Ç {3. Then, for any ï Er, p E P(A): 

p ç [xh iff Plf3 ç [x]'Y. 

Pro of 

Let f3 = ( c, { x}) and take some arbitrary computation ó = ( so, h, s) E p. 

Then if s f. _l_, we have that ól,8 = (so, hlc, solx : s(x)), and else ól/3 
(so,hlc,_l_). 

We apply the lemma, where we take so = so',s' = solx: s(x), and h' hlc. 
Clearly, hic = {hlc)lc and if s '1- J_ then s(x) = (solx: s(x))(x). 

Hence, by the lemma: 

T[x]ï(so, h, s) iff T[x]ï(so, hlc, soix: s(x)) 
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That is: 

6 E ffxh iff ólclx E [x]î', 
(as was to be shown). 

0 

Corollary 4.14 

abase([X]ï) Ç abase(x). 

0 

Proof 

[.,et p [xh and let /3 = abase(x). Since abase(p) is defined as the smallest 
base (J' 1mcb that p î /31 = p, it suffices to show that p î /3 = p. 

p Î /3 is defjm~d as the largest p1 such that P'l/3 = pj,8. Therefore, to prove 
that this set actua/Jy equals p, we must show that 

(a) Pl.8 = pj,8, which is trivia], and 

(b) If P'l.8 = Pl/3, then p' Ç p. 

To prove that (b) is satisfied we apply c<Jro11ary 4.13 twice: 

0 

1. Since clearly p Ç p, we see that pj/J Ç p, where we use the given 
conditions on abase(X) to apply the prevÎ<JUH corollary. 

2. Now a.ssume that p'j/3 = pj/3. Then, from point J, p'//3 Ç p. Again 
using the previous corollary, we see that p' Ç p. 

4.5 Validity and proper validity 

In our semantic definition we have chosen for a uniform treatment of finished 
and unfinished computations. The assertion language reflects this approach 
by admitting assertions that express properties of both finished and unfin
ished computations. This property of the assertion language is vita} for two 
of the proof systems that we formulate in the next chapter. The first of 
these two, the so called SAT system, has been set up so as to mimic the ob
servation semantica, and therefore it is only natural to deal explicitly with 
bottom and top predicates in this case. The second system we have called 
the Hoa.re system, since many of the proof rules resemble, or even are of 
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identical form, as the rules of "classica!" Hoare style systems for sequentia! 
programs. Nevertheless it should be said that these nice looking rules have 
been obtained at the price of a more complicated assertion language. There
fore a third proof system is presented, the so called Invariant system, for a 
new type of correctness formulae. This system diff ers from the Hoare sys
tem in that finished and unfinished compuatations are treated separately, i.e. 
in a non uniform fashion. As a consequence, assertions for the correctness 
formulae of the Invariant system are simpler, since they express properties 
of either finished computations or of communication histories. Formulae of 
the Invariant system can be regarded as formulae of the Hoare system of 
a special, standardized form. It is the task of this section to introduce the 
concepts and notations that allow us to discuss the relationship hetween the 
two systems. Besides this relationship there is the related prohlem how to 
deal with the concepts of validity and universa! closure of assertions in the 
presence of bottom and top predicates. We distinguish between strict va
lidity and proper validity of assertions. Informally speaking, strict validity 
means "true for all possible computations", and proper validity means "true 
for all possihle finished computations". When no amhiguity arises we say 
"valid" instead of the somewhat cumbersome "strictly valid" or "properly 
valid". In practice this means that valid stands for strictly valid except for 
the Invariant system where it stands for properly valid. 

De:8.nition 4.15 (Validity of assertions ) 

• X is strictly valid if: V"fV8 E .6. : T [X ]"18. 

• An assertion X is properly valid if: 
V"IV(so,t,s) E .6.,so ::f. ..L,s ::f. ..L : T[xh(so,t,s). 

0 

For "classical" first order predicate logies, the validity of some assertion 
X boils down to the truth of the universa! closure of x. We would like 
to introduce a generalized version of the universa! closure operation, with 
similar properties. To be precise, we want to define the universal closure 
't (X) as an assertion that is true if and only if X is properly va.lid. Similarly, 
the strict universal closure V1- (X) should be an assertion that is true if and 
only if X is strictly valid. 

In analogy with predicate logic, one first attempts to define 't (X) by means 
of putting universa! quantifiers in front of X, one for each free variable of 
x. This however does not take care of the - state dependent - bottom 
and top predicates. To state the problem more clearly: an assertion that 
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is closed with respect to free varia.bles does not denote a constant truth 
value, since the truth value of bottom and top predicates still depends on 
the comp~~~tion. Therefore, let us first state more precisely what is meant 
by a "closed" assertion in this context. 

De:flnition 4.16 (Closedness of assertions) 

D 

• Closedness of some assertion X with respect to assignable variables or 
ghost varia.bles is defined as usual for (many sorted) predicate logic. 
Here we distinguish between 1Jar closedness, meaning that var(X) 0, 
and Var0 closedness, meaning that var0 (X) = 0, 

• X is closed with respect to final states if it is Var closed and moreover 
does not contain the J_ or T predicates. Analogously it is closed with 
respect to initial states if it is Var0 closed and does not contain the J_ 0 

and T 0 predicates. 

• An assertion is closed if does contain neither free varia.bles nor any of 
the 1-, J_ 0 , T or T 0 predicates. 

It will be clear that the universa! closure operation that we try to define must 
remove free variables as well as all bottom and top predicates. Whereas free 
varia.bles can be bound by means of universal quantifiers, we can get rid 
of top and bottom predicates by means of operations called bottom sub
stitution and top substitution. The idea is that any assertion X can be 
rewritten into a (finite) conjunction of assertions obtained from X by such 
substitutions. Essentially, a bottom substitution X[1-] is some assertion not 
containing bottom or top predicates tha.t is equivalent to X as fär as nonfin
ished computa.tions are considered. Also, we define X[T] as an assertion not 
containing bottom or top predicates that is equivalent to X for finished com
putations. There are sim.Har operations for removing the versions for initial 
states of the bottom and top predicates. The assertion X[1-0

] for insta.nee is 
an assertion not conta.ining J_ 0 or T 0 that is equivalent to X for computations 
starting in a bottom state. Since there is only one such computation, viz. 
the triple (1-, €, 1-), the operation includes also substitutions for the history 
h and for atomie predicates referring to the final state. 

Deflnition 4.17 (Bottom and top substitutions) 

Let X be some assertion. The assertions: X[1-],X[1-0 ],X[T] and X[T0
] are 

obtained from X as follows: 

• X[1-] is obtained by replacing atomie subformulae containing 1Jar names, 
and occurrences of T, by false. 
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• x[..L 0 ] is obtained by replacing atomie subformulae containing Var 
and/or Var0 names, and occurrences of T, T 0

, by false. Finally, ,; 
is substituted for h. 

0 

• X[T] is obtained by replacing occurrences of T by true. 

• X[T0
] is similar, except that occurrences of T0 instead of T are replaced 

by true. 

There is an accompanying lemma that states that the operations do have 
the intended effect as explained above: 

Lemma 4.18 

Let (so, h, s) E a 
(a) T[X[..L]]l(so,h,s) iff T[xh(so,h,..L) 

(b) If s #= ..L then: T[X[T]h(so,h,s) iff T[x]h(s0,h,s) 

(c) T[x[..L0 ]h(so,h,s) iff T[xh(..L,,;,..L) 

(d) If so #= ..L then: T[X[T0 ]h(so,h,s) iff T[Xh(so,h,s) 

( e) ..L 0 --+ ( h = E /\ ..L) is strictly valid. 

0 

Proof 

For cases (a) .. (d) the proofs are by means of induction on the structure of 
assertions, and are fairly straightforward. It suffices to check that, for the 
right hand and left hand sides, all expressions obtain the same value, and 
that the T and T0 have the same truthvalue. For the T and T0 predicates 
this is immediately clear from the definitions. For expressions the equality 
follows essentially from the strictness of our interpretation. 

For example, consider case (a). An expression e either does not contain 
Var na.mes , in which case its value does not depend on the fi.nal state 
component, or it does contain such names. In the last case, for the right 
hand side the value of the Var names in e is ..L, and by the strictness of all 
operations, the value of e itself is also ..L. The atomie assertion containing e 
is then interpreted as false. By the definition of X[..L], the atomie assertion 
containing e is for the left hand side replaced by the assertion false, that is, 
it has the same truthvalue. 

Property (e) follows directly from the structure of the domain .6.. Note 
that if we would have defined a as State.J.. x Trace x State.J.., rather than 
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as (State x Trace x State.!.) U {(1-, e, 1-)}, property (e) would not have been 
universa.lly va.lid. Of course, it would have been a property satisfied by any 
process, and so, (e) would have been present in the form of an extra axiom 
within the proof systems of chapter 5. 

D 

At last we can define the universa} closure operations: 

Definition 4.19 (Universa} closures) 

D 

• H var(X) {x} = {xi, · · ·, xn} and ii is a list, of the sa.me length a.s x, 
of fresh logical va.ria.bles, then the proper universa} closure with respect 
to final states is the assertion: 

't:z (x) ~r Vu(x[T] [ ii / x]), 

• The strict universa! closure with respect to final states is: 

'hx (X) ~r '1..x (X) /\ X[1-] 

• With similar notation the proper and strict version of universal closure 
with respect to initial states are: 

'Y_x0 (X) ~f Vii(X[T0 ][ii/x0
]), 

VJ..x0 (X) ~t '!.x0 (X) /\ X[1-0
] 

• Universa! closures with respect to the three types of ghost varia.bles 
are defined as usual for (many sorted) predicate logic. Note that there 
is no need for bottom or top substitution in these cases. We denote 
these closures by: Y...v (X), Y...n (X) and '!_t (X). 

The universa! closure with respect to all ghost varia.bles together is 
denoted by 't..g (x). 

• Finally, the proper and strict version of the universal closure of X are: 

'1.. (x) ~r 'tv '!.n Y...t Vh '!.x '!_x0 (X) 

VJ.. (X) ~ '!.v'!.n'!.tVh 'v'.Lx'v'l.x0 (X) 

We remark tha.t in the formula defining V .L (X) the order of the quantifiers 
is important: the quantifi.cation Vl.x0 should occur only after the quantifiers 
for hand x. The reason is that Vl.x0 includes substitutions for h, Tand Var 
varia.bles. For actual calculations and proofs a somewhat simpler formula 
for Vl. (X) is offered in the lemma below. 
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One might think that we should have introduced a new quantifier ranging 
over 'Val_L rather than 'Val. This however would not have allowed us to ex
press the strict closure operations in amore direct way since for e.g. V.Lx (X), 
either all x denote the bottom value or none does, excluding intermediate sit
uations. This is not expressed by means of a sequence of quantifiers ranging 
over 'Val_t. 

Lemma 4.20 (properties of universal closures) 

(a) Y..z (X) and V.Lx (X) are closed with respect to final states. 
For sof. J_: 

T ["1..x (X) h( so, h, s) iff V's E State: T [X]'Y( so, h, s ), 

T [V.Lx (X) h(so, h, s) iff V's E State.L : T [X]'Y(so, h, s). 

(b) "1_x0 (X) and V.Lz0 (X) are closed with respect to initial states, and: 

T["1_z0 (X)h(so,h,s) iffVso E State: T[X]'Y(so,h,s), 

T[V.Lx0 (X)h(so, h, s) iff T["1_x0 (X)]'Y(so, h, s) and T[x]'Y(.1_, e, .1_). 

(c) "1..(X) and V.L (X) are closed assertions and moreover: 

X is properly va.lid iff "1.. (X) is true, 

X is strictly valid iff V .L (X) is true. 

(d) V.L (X) is equivalent to: 

'f.t (X) dei "1..(X) /\ "1..[X[.l_]] /\ "1..[X[.l_ 0 )]. 

D 

The proofs are directly from the definitions and lemma 4.18. 

Item (d) of the last lemma indicates that a proof of (strict) validity of some 
assertion X in genera! splits into a. threefold case analysis, where the cases 
correspond to a bottom initia! state, an unfinished computation and a fin
ished computation. Such case analyses are less cumbersome if the assertion 
is of the following form: 

(.1_ 0 -x1) /\ ((T0 
/\ 1-)---+X2) /\ (T-Xa), 

where none of Xi, X2 or Xa contains bottom or top predicates, X1 does not 
refer to 'Var or 1Jar0 variables, and X2 does not refer to 'Var variables. 

For the validity of X then boils down to the proper validity of X 1, X2 and Xa. 

We call assertions that do not contain bottom or top predicates proper asser
tions. Since this type of assertions forms the basis for the Invariant system, 
we introduce some notation. 1 
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Definition 4.21 (Proper assertions) 

The class of proper assertions is defi.ned as: 

(r E) Assnp ~f 
{r E Assn j r does not contain the . .L°,..i, T 0 or the T predicate} 

(p, q, r E)Assnp(E) ~f {p E Jlssnp j var0 (p) = 0} 

Remark. We do not define Jlssnp(Trace) as this class would coincide with 
Assn(Trace). 

0 

The next lemma shows that any assertion can be factorized into three con
juncts as indicated above. A similar factorization into disjuncts is also pro
vided. An important special case is the factorization of assertions t.p from 
Assn(E) since this factoriza.tion forms the basis for the formula.e of the In
variant system. 

Lemma 4.22 (Factorization of assertions) 

Let X E Jlssn and t.p E Assn(E). 
Let X1 = X[..i 0 ], X2 = X[T0 ][..i], Xs = X[T], p = t.p[T] and l = t.p[..i]. 

1. All of X1, X2, Xs, p and I are proper assertions. 

2. I is even closed with respect to initia! and final states, 
that is IE Assn(Trace). 

3. The factorization into conjuncts is: 

X <==> (..i 0 -+Xi) /\ ((T0 
/\ ..i)-+X2) /\ (T-+Xs), 

4. and the factorization into disjuncts is: 

X <==> (..i 0 
/\ X1) V ((T0 

/\ ..i) /\ X2) V (T /\ Xs), 

5. t.p <==> (..i-+I) /\ (T -+p) (factorization in conjuncts) 

6. t.p <==> (..i /\ I) V (T /\ p) (factorization in disjuncts) 

0 

Proof 

The proofs are all very similar. We give the proof of case 6, as an example. 

Let (h, s) E E and ï Er be arbitrary. Then: 

(h, s) E ['Ph iff 



4.6. MIXED TERMS 

s = ..L and ( h, ..L) E [ <p h or s f:: ..L and ( h, s) E [ <p h 
iff 

129 

(h,s) E [..Lh and (h,s) E ['P[-L]h or (h,s) E [Th and (h,s) E [ip[T]h 

iff 

(h,s) E [(..LA 'P[-L]) V (T A ip(T])h, 

as was to be shown. 

D 

Assertions of the form T-+<p, ..L-+<p, T A <pand ..LA <p, where <p E Assn(E) 
shall play an important role. We list some useful properties of these. AB 
before, let p = ip[T] and I = ip[..L] 

1. (T -+<p)[..L] ~ true (anti-strictness w.r.t . ..L} 
(T A ip)[..L] ~ false (strictness w.r.t . ..L) 
( ..L-+<p) [T] ~ true (T -strictness) 
(..LA ip)[T] ~ false (T-antistrictness.) 

2. T-t-<p ~ T-t-p 
TA<p~TAp 

..L-t-<p ~ _L-t-[ 

..LA<p ~ ..LAI 

3. (T -t-p)-+(T -t-q) ~ T -t-(p-t-q) 
(T-t-p)A(T-+q) ~ T-+(pAq) 
(T-t-p) V (T-+q) ~ T-+(pv q) 
-i(T -t-p) * T -+-ip 
N.B. -i(T -+p) #:* T -t--.p 

4. VJ..x [T-t-p] ~ ':f_x [p] 
3J..X [T -+p] ~ 2x [pj 

5. T -t-p is strictly valid iff p is properly valid. 

4.6 Mixed terms 

AB already motivated in chapter 3, we have set up our definitions of the 
semantics of processes and assertions such that a formula of the form S ~ X 
can be used to express that some process S satisfies certain safety proper
ties, viz. those formalized by the assertion x. More specificly, we have taken 
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care that although processes and assertions belong to different syntactical 
categories, both denote sets of computations. Therefore a formula S Ç X 
makes sense since it can be interpreted as Obs[S]]'7 Ç [xh. Notwithstand
ing these facts we shall introduce yet another syntactic category, viz. that of 
mixed terms, that incorporates both processes and assertions, and moreover 
is closed under the TNP operations, such as for instance sequential or par
allel composition. One reason for doing this is that it allows a more uniform 
treatment of several definitions and proofs, especially when we come to the 
completeness results of chapter 6. For instance, we need counterparts of the 
TNP operations for combining assertions anyhow. Now we prove in chap
ter 6 that one can always represent assertions containing these counterparts 
within the a.lready given assertion language Assn i.e., without such TNP 
operations. Although this shows that it is inessential to have these TNP 
operations for assertions, it is conceptually much clearer to allow them nev
ertheless. A similar reason for introducing mixed terms is that in chapter 
6, we seek for each closed process S a corresponding characteristic assertion 
Xs, such that not only S Ç Xs holds, hut even S = Xs is the case. It turns 
out that no such assertion does exist. However, we can find an assertion 
A(S) such that S = A(S)lbase(S), where "I" denotes the projection oper
a.tor. Although the term A(S)!base(S) is not an assertion, it is one of our 
mixed terms. 

Whereas we have indicated certain technical reasons for introducing mixed 
terms, there is also the advantage that certain methodologies for program 
development can be studied in an elegant way. For instance, if some process 
S is to be constructed from a given specification X then according to one 
strategy we want to transform X gradually in to S. Here mixed terms arise 
in the intermedia.te stages of the development of S. 

Finally we remark that the idea of mixed terms was much inspired by [OJ, 
who considers mixed terms for the language TCSP. Olderog na.mes Dijkstra 
[Dij] and Wirth [Wij as the inventors of the original idea of mixing programs 
with specifications. Also, Back [Ba] and Hehner [He] are referred to as the 
first ones who formalized this idea for sequentia! and concurrent programs, 
respectively. 

Deftnition 4.23 (Syntax of mixed terms) 

For any set .A of atomie terms, with typical elements a, we define TNP(A) 
as follows. 

mETNP(A) 

m ::= a 1 Z 1 Xp 1 m1\c 1 m1\x I m1(d/c) 1 Kern(m1) 1 
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0 

m1 ; m2 I m1 or m2 1 m1 fli Il /J2 m2 1 

Xp m1 in m2 I µXp.m1 1 µzX{J.m1 

The classes of atomie terms that we are interested in are the following: 

Deftnition 4.24 (Syntax of atomie processes and of predicative terms) 

• aE Atom 

0 

a ::=skip 1 abort 1 x := e 1 b 1 c.x:b 

• For assertions X E Assn and bases {3 E Base the class of predicative 
terms Pred is: 

""E Pred 

"" ::= Xl,8 (the vertical bar denoting projection ) 

If {3 is finite, then we call the specification finitely based. 

• We abbreviate TNP(AtomUPred) as Mixed and call its elements mixed 
terms. If all predicative terms of some mixed term are finitely based 
we call the mixed term itself finitely based. (Atomie processes a are 
always finitely based). 

We identify the assertion X with the mixed term XI ( Chan, 1Jar). That is, 
we regard Assn as a subset of Mixed. In the same way, TNP processes 
are included, hut here we must be carefull. For assertions are mixed terms 
and the assertion false is interpreted as an empty set of computations. This 
indicates that the appropriate domain of interpretation for mixed terms is 
the complete set P( a) rather than for insta.nee the set of all non empty sets 
of computations. As discussed extensively in chapter 3 we run into troubles 
with the recursion construct for this domain, since the least solution for 
µXfJ.X/J is the empty set. There we also argued that this is not appropriate 
for the recursion construct in TNP. Therefore, our language of mixed terms 
includes two recursion constructs: 

• µXp.mi, interpreted as the least solutionof the equation x" = m1(X"), 

• P.zX".mi, interpreted as µX,s.(m1 or z). 

We identify the TNP term p.zP,s.So with the mixed term µzP{J.So. If we 
compare our approach with the mixed terms as studied in [OJ, we see that 
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a slightly different solution has been adopted for the problem. In our ter
minology we can rephrase it as follows: An assertion X is interpreted as 
equivalent to X or Z. To be precise, Olderog [O] deals with traces only, not 
with state transformers, and so the set Z does not occur within his theory. 
However, the set { 6} plays the same role in [ 0] as our set Z, and it is actually 
this singleton set that is always included in the traceset denoted by some 
predicate. Consequently, the domain of interpretation can be restricted to 
non empty ( trace) sets, and on this restricted domain the difference between 
recursion constructs in the style as for our mixed terms vanishes. The dis
advantage· of this approach is the unnatural interpretation of specifications. 
For instance, the fact that "false" and "h = E" are equivalent assertions is 
somewhat surprising, and so although one would expect that no process sat
isfies the specification false, any non communicating and non terminating 
process does. 

We prefer to include Z only for recursive processes, where it is justified on 
the basis of the intuitive operational semantics. 

There is a second difference between TNP processes and mixed terms in 
that the former always denote prefix closed sets, whereas the set denoted by 
assertions, and so mixed terms, need not prefix closed. A typical example is 
the assertion 

X ~f (h = E V h =< (c,O)(c,O) > ). 

For this reason we introduced the kernel operation into our language. It is 
assured that Kern( m) is prefix closed since the kernel operation transforms 
the set denoted by m into the largest prefix closed set contained within this 
set. The kemel operation plays an important role when it comes to the 
question of modular completeness. The idea is that if X13 is regarded as a 
"black box" process that is to be replaced by some actual implementation, 
then we already know that this implementation will denote a prefix closed 
set. This is similar to the information provided by the base f3 of the black 
box: any legal implementation has a base that is included in (3. Now to be 
able to use this implicit knowledge in a formal proof one needs proof rules 
to do so. One of these is the invariance axiom that expresses the invariance 
of all channels and assignable variables outside (3. The fact that X13 denotes 
a process rather than some arbitrary mixed term can be expresssed by the 
equality X13 = Kern(X13). If it has been specified that X13 satisfies some 
assertion X, then this equality can be used, within a. formal proof tha.t is, to 
infer tha.t Xp actually satisfies Kern(X). 

Example lf X13 satisfies the assertion 
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X ~~f (h = ë v h =< (c, O)(c, 0) > ), 

and XfJ = Kern(XfJ), then it can be proven that XfJ satisfies the assertion 
(h = ë). The so called substitutivity rule that enables the proof of this fact 
is introduced in section 4.14. 

D 

The definition of the semantica of mixed terms is almost the same as for 
TNP processes. In section 3.8 we defined the function: 

Obs : TNP---+ [H---+P(.ö.)]. 

We extend this toa function defined for mixed terms. Unlike TNP processes, 
mixed terms can contain free logica! variables. Consequently we define our 
new version of Obs with an extra argument / that determines the meaning 
of such variables. So the new version has the following functionality: 

Obs : Mi. xed---+ ( r ---+ [ H---+ P( .6.)]). 

The semantic functions .M and .M t are adapted in the same way. 

For atomie processes a we define: 

Obs[ah'I = Obs[a]q. 

Here the function Obs on the right hand side is the one defined for TNP 
processes, and the the function on the left hand side is the "new" one. 

For predicative terms xl,8, we derive their semantics from the semantics for 
assertions. 

The semantics of operations is the same as for TNP, except for the new 
recursion construct: 

De:finition 4.25 (Sema.ntics of TNP(A)) 

Obs[XfJh'I = q(Xp) 

Obs[m1\xh'I = (Obs[m1h'l)\x 

Obs[m1\eh11 = (Obs[m1]111)\e 

Obs[ mi (d/c} h'I = (Obs[m1]i'l)[d/c] 

Obs[m1 i m2h11 = Obs[m1h11 o Obs[m2h'I 

Obs[m1 or m2Jh''7 Obs[m1]1''1 U Obs[m2h'1 

Obs[m1 f11 ll.82 m2h'7 = Obs[m1ht1 fh ll.82 Obs[m2ht1 
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Obs[µXp.m1htJ µ( Àpp.Obs[m1htJ[P13/XpJ) 

Obs[Xp = m1in m2htJ = Obs[m2](ï)(q[Obs[m1htJ/Xp]) 

D 

The semantics of the µz recursion construct is defined via the abbreviation 
defined above. 

It is seen that for TNP processes, viewed as mixed term, we have essentially 
the same semantica, that is: 

Obs[Sh11 = Obs[S]q, 

where again the right hand side function is the sema.ntic function for TNP, 
and the left hand side function is the semantic function for mixed terms. 

4. 7 Correctness formulae 

The overall goal of chapter 4 is the introduction of formulae that are used 
to specify processes. These are called "correctness formulae", or simply 
"formulae". 

Deflnition 4.26 (Syntax of formulae) 

Let X E Assn, <p, ,,P E Assn(E), m, mi, m2 E .Mixed and let g denote a ghost 
variable. 

(! E)1orm - Formulae or correctness formulae. 

f ::= X 1 m1 Ç m2 1 (<p)m(tµ) 1 Vg(f) 1 

/i V h 1 /i Ah i /i--+ h 1 VXr;(/) 

D 

We are mainly interested in those m1 Ç m2 formulae where the second 
mixed term is an predicative term x. We use the notation m1 sat X for such 
formulae, and call them "SAT formulae". The SAT system of chapter 5 is 
in fact an axiomatization of SAT formulae. 

Similarly, {'P) m (,,P) is ca.lled a "Hoare triple", and the Hoare system of 
, chapter 5 forms the corresponding axiomatization. 

The Invariant system of chapter 5 is based on formulae that can be seen 
as Hoare formulae with a special, standardized, form. This is explained in 
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section 4.8, and so we do not pay special attention to Invariant formulae 
anymore in this section. 

We freely use other logical connectives than the ones listed in the definition. 
As is custom, these are formally treated as abbreviations. Also we use 
m1 = m2 as an abbreviation for m1 Ç m2 A m2 Ç m1. 

The free logical varia.bles, called ghost varia.bles, and the free process vari
a.bles of a formula are defined as follows: 

gvar(f) pvar(f) 
x gvar(f) 0 
m1 Ç m2 gvar(mi, m2) pvar(mi,m2) 
(<p)m(1/J) gvar(<p, 1/J, m) pvar(m) 
Vg(f) gvar(f) - {g} pvar(f) 
/i v h gvar(/i, h) pvar(fi, '2) 
/i A /2 gvar(fi, '2) pvar(fi, /2) 
h-h gvar(!i, h) pvar(fi,h) 
VXp{f) gvar(f) pvar(f) {XJJ} 

Correctness formulae do never contain free the variable h denoting the com
munication history, neither do they contain free assignable varia.bles. The 
(implicit) binding of the assignable varia bles and the history h is not that 
surprising, as this is also the case for conventional Hoare logic. But the 
fact that ghost varia.bles are not implicitly bound needs some explanation, 
especially since in [ZRE] we did rely on such an implicit quantification. 

Examine the following proof ou~line. 

{x=v} 
x := x -1 j 
{x=v-1} 
Xp 
{x = v - 1 A y = (v - l)!} 
x := x + 1 ; !I := y • x 
{ x = v A y = vl} 

IT we consider a formulae such as {x = v} x := x 1 {x = v - 1} as 
a specification on its own, then clearly the intention is that the formula 
should be true for any value of v, which suggests that we interpret such a 
formula as follows: 

Vv ( {x = v} x := x - 1 {x = v -1} ). 



136 CHAPTER 4. CORRECTNESS FORMULAE 

Indeed such an universa! quantification is introduced, implicitly, when we say 
that the formula {x = v} x := x - 1 {x = v - 1} is valid, which informally 
means that the formula is true /or all environments. (The notion of validity 
is defined in section 4.10). However, the proof outline above is intuitively 
understood as: 

"From: 

{ x = v} x := x - 1 { x = v - 1}' 
{x = t1 - 1} Xp {x = v - 1 A y = (v - 1)!} and 
{x=v-lAy (t1-l)!}x:=x+l; y:=y·x{x=vAy=v!} 

it follows that: 

{x = v} x := x - 1 Xp; x := x + 1; y := y · x {x = t1 A y = v!}," 

rather than: 

"From: 

vv({x=v}x:=x-l{x=v 1}), 
Vv( {x = t1 - 1} Xp {x = t1 - 1 A y = (v - 1)!}) and 

Vv( {x = v - 1 A y = (v - 1)!} x := x + 1; y := y • x {x v A y = v!}) 

it follows that: 

Vv( {x = t1} x := x - l; Xp; x := x + 1; y := y • x {x = v A y = t1!} )." 

We do not claim that the Jatter proof is invalid; only that it cannot be seen 
as an accurate formalization of intuitive reasoning. For intuitively, as soon 
as we consider the proof as a whole, all occurrences of the "v" in the outline 
above are meant to denote one and the same logical value, throughout the 
whole proof outline. 

Note that this is not the case for assignable variables: occurrences of x in 
different assertions also denote different values. 

We decided that no implicit quantification for ghost variables should be used 
for the interpretation of correctness formulae, hut that rather the formula 
language must provide the means to write such quantifications explicitly. As 
a result, many definitions and proofs became more natura!. For example, 
when implicit quantification over ghost variables is used, the soundness proof 
of the Hoare rule for sequentia! composition reveals that implicit applications 
of the logical rules for removal and introduction of universa! quantifiers are 
hidden in the Hoare rule. Such complications are not present in our ap
proach. 
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Since the only free variables of correctness formulae are process variables 
and ghost variables, it is natural that the semantics can be given as follows: 

Deflnition 4.27 (Semantics of formulae) 

Let H denote the domain of process environments, as defined in chapter 3. 
Then the semantic function 

T: .1orm-+(H-+(f-+T)) 

is defined as follows: 

D 

T[Xh'1 iff for all 6 E .6: T[X]"16 

T[m1 Ç m2h'1 iff Obs[m1h'1 Ç Obs[m2h'1 

T[(~)m(t/1)b'1 iff .Mt[mhf'J([~h:'Y) Ç [tP]E'Y 

T[/i v hh'I iff T[/ih11 or T[hh'I 

T[/i A hh'I iff T[/ih11 and T[h]'Yq 

T[/i-+'2hf1 iff T[fth'1 implies T[hh'1 

T[VXp(/)h'I iff for all Pp E P(.6p): T[/]('1[Pp/Xp])'y 

T[Vg(f)h'I iff T[/]("1[v/g])11 

for all values v of the domain of interpretation for g. 

4.8 Substitution in correctness formulae 

For f E 1orm, e E Pvar and m E TNP, the substitution /[m/ eJ is defined 
provided that base(m) Ç base(Ç). It is defined as usual for predicate logies, 
except for the following: TNP terms can contain bindings of Ç in the form 
of a recursion or process naming construct. Therefore, the following cases 
deserve special attention: 

(a) (µÇ.m1)[m/el µe.m1 

(b) (µs-.m1)[m/e] = µs-.(m1[m/Ç]), provided that S' <t, pvar(m) 

(c) (Ç = m1 in m2)[m/ÇJ = (Ç = m1 in m2} 

(d) (S' = m1 in m2)[m/ÇJ = (S' = m1[m/Ç] in m2[m/Ç]), 
provided that S' <t, pvar( m) 

(e) VÇ(f)[m/ÇJ VÇ(/) 
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(f) V~(f)[m/ Ç] = V~(f [m/ Ç]), 
provided ~ ~ pvar(f). 

(g) lf, in case (b),(d) or (f), ~ E pvar(m), then the substitution is applied 
after renaming ~ into O, for some fresh O, as is usual for such "name 
clashes". 

Lemma 4.28 

T[/[m/Ç]JhTJ = T[f]b)(TJ[Obs[mhTJ/Ç]) 

Proof 

The proof is by means of induction on the structure of correctness formulae, 
and mixed terms. It is very much like similar proofs of substitution lemmata, 
for instance as in [Bak]. Therefore, we omit the details here. 

D 

4.9 Predicate transformers 

We define a weakest precondition and a strongest postcondition operator. 
It is custom to define the weakest precondition and strongest postcondition 
of some assertion with respect to some program. However, we define these 
conditions with respect to some assertion X E Assn. This means that we 
treat assertions from Assn as predicate transformers, where in this context 
a "predicate" is to be understood as an assertion from Assn(:E), i.e. a 
predicate denotes a set of generalized states. The weakest precondition and 
strongest postcondition are used to transform SAT specifications into Hoare 
specifications. The transformation of Hoare formulae into SAT specifications 
is possible too, by means of the so called "leads to" operator "~". 

Apart from the three operators mentioned above, we take the opportunity to 
introduce a few abbreviations and some more operations on assertions. One 
of these is the (sequentia!) composition operator "ê." This operator forms 
the basis for the sequentia! composition rule of the SAT system. A reason 
for introducing it here is that there is a close relationship with the strongest 
postcondition operator. 

The other operations that we define correspond to the closure operations, 
introduced in chapter 3. Especially the kemel operation is of interest. We 
remark that in [Widom] the kemel closure is handled by adding extra tem
pora! logic operators to the assertion language. Within our approach this is 
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not necessary, for the kernel closure of the set denoted by some assertion X 
is denotable by some assertion Kern(X) that is obtained from X as described 
in this section. 

The following operations are defined. Let X, Xi, X2 E Assn, rp, 1/J E Assn(:E). 

X1 o X2 (E Assn) composition of X1, X2. 

rp <l X (E Assn(E)) strongest postcondition for rp with respect to x. 
X l> t/J (E Assn(E)) weakest precondition for 1/J with respect to x. 
rp"""' t/J (E Assn) characteristic formula determined by rp, t/J. 

lc, lx, lp, Ze, Z. 

Pref(X) prefix closure of x. 
Kern(X) Kernel of x. 
Kern( to, t/;) Kernel of r/J with respect to initia! trace to. 

Qose(X) Closure of x. (Not to be confused with the universa! closure 
operations introduced above.) 

First we define the semantic operations corresponding to weakest precondi
tions, strongest postconditions and the leads to operator. 

Definition 4.29 {Let p, pi, P2 E P{A), 11', 11'1, 11'2 E P(E).) 

7r<l p= 

{ (h,s) E E 

p 1>11'= 

{ (h, s) E E 

7r1 """' 11'2 = 

{Cso,h,s)EA 1 Vto((to,so)E11'1=>(toh,s)E1r2)} 

D 

Definition 4.30 (Let X, Xi, X2 E Jtssn, rp, t/J E Assn{E).) 

[X1 o X2h ~f [X1h o [X2h 

[rp <l xh ~r [rp]ï <l [xh 

[x 1> r/Jh ~r [xh 1> [1/Jh 

[rp"""' 1/Jh ~ [rph"""' [t/Jh 
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0 

[Zc]ï ~Ze~ {(so,h, ..l.) E a 1 hlc = e} 

[z]h 1~f z 

[lc]ï ~f {(so,h,s) E a 1 hlc = e} 

[lxh ~r {(so, h, ..l.), (so, h, s) 1 so(x) = s(x)} 
def [l(c.x)lh = [lclh n [lxh 

[Pre/(X)h ~r Pre/([X]h) 

[Kern{X)h ~ Kern([X]ï) 

[Oose(X)]ï c!!_f Z u Pref([X]ï) 

Lemma 4.31 The constructs defined above can be expressed within our 
assertion language, as follows: 

• Ze is expressed by hlc = e A ..l. 
Z is expressed by h = e A ..l. 
lc is expressed by hlc = e 
lx is expressed by T ~ x = x0

, where {x} = x 
l(c,x) is expressed by lc A lx = {hlc = e A (T ~ x = x0

)) 

• Pref(X) is expressed as follows. 

Let x be a list containing all x in var(X), and let ii be a list of fresh 
logical varia.bles of the same length. Let c = hchan(X), and let t be a 
fresh logica! trace variable. Then Pref(X) is expressed by: 

x v 3t ( hlc ~ tic A ..l. A (x[..l.][t/ h] v 3v(x[v /x, t/h]))). 

• Kern(X) is expressed by: 

X A Vt(tlc ~ hlc ~ X[..l.][t/h]), 

where c = hchan(X) and where t is a fresh logica! trace variable. 

• Oose(X) is expressed by: 

z v Pref(X) and by Pref(z v x) 
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• Let if E Var• be a list containing all x E Var such that x E uar(X1) 

or x 0 E uar0 (X2), and let ii E !var• be a list of fresh logical varia.bles 
of the same length. Let ti, t 2 be fresh logical trace varia.bles, and let c 
denote hchan(Xi, X2). 

Then X1 o X2 is expressed by: 

[(x1[l..]AX2[l..0 ]Al..) v 

T0 A 3t13t23ii( hjc = (t1t2)!c A X1[T][t1/h, ii/z] A X2[T0 :l[ii/z0
, t2/h])]. 

• Strongest postcondition. 

Let if E Var• be a list containing all x E Var such that x E var( cp) or 
x0 E var0 (X), and let ii E f,var* be a list of fresh logical varia.bles of 
the same length. Let ti, t2 be fresh logical trace varia.bles, and let c 
denote hchan(cp, x). 

Then cp <l X is expressed by: 

[(cp[l..]AX[l..0 ]Al..) V 

3t13t23ïï( hlc = (t1t2)lc A cp[T][ti/h, ii/z] A X[T0 ][ii/if0
, t2/hJ)]. 

• Weakest precondition. 

X I> 1/J is expressed by: 

(l.. A (X(l.. 0 ]-+1/J(l..J)) V 

(T A (Vt1V.Lx(X[T0 ][t1/h]-+1/J[ht1/h]))[z/z0
]), 

where x contains all x E Var such that x E var(X, 1/J) or x 0 E var0 (X), 
and where ti is fresh. 

• Leads to operator. 

Let x contain all x such that x E var(cp) or x0 E var0 (cp), and let 
to E T var be fresh. 
cp "'-+ t/J is expressed by: 

Vto (cp[to/h, if0 /x, T0 /T] -+ t/J[toh/hJ). 

For the Hoare and Invariant systems we need an operation closely related to 
the kernel operation: 

Definition 4.32 (Kernel for Assn(E)) 

For 'ljJ E .Assn(E) and logical trace variable to we define Kern( to, t/J ). Then: 
Let c = hchan(tfJ). 
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Kern( to, 1/J) ~r 1/J /\ Vt(tolc S tic S hlc--+ tf;[..LJlt/h]). 

D 

Proof of the lemma. 

We consider only a few interesting cases. 

• Kernel 

We prove semantic equality between Kern(X) and the representing assertion 
defined in the lemma. 

[Kern(X)]ï = Kern([Xh) 

{6 E À 1 V6' ç fj : o' E [xh} = 

{(so, h, s) E [x]ï 1 Vh'(h' S h--+ (so, h', 1-) E [xh)} = 
{(so, h, s) E [xh 1 Vh'(h'lc S hlc--+ (so, h', 1-) E [Xh)} = 

{(so,h,s) E [Xh 1 Vh'{h'lc S hlc--+ (so,h,s) E [X[.i][t/h]](l[h'/t]))} = 

{(so,h,s) E [Xh 1 Vh'((so,h,s) E [tic S hlc-+ X[.i}[t/h]]{ï[h'/t]))} = 

[x /\ Vt(tlc s hlc--+ X[..L][t/h])h. 

• Composition 

[X10X2h = 

{(so, h, s) E .6. 1 3hi, h2, si, such that h = h1h2 /\ 

(so, h1, s1) E [X1h /\(si, h2, s) E [X2h} = 

{(so, h, s) E .6. 1 s = 1- /\ (so, h, ..L) E [X1h /\ (.i, 6, 1-) E [X2h} u 

{(so, h, s) E A 1 3h1, h2, si, such that h = hih2 /\ so =f:. ..L /\ s1=f:.1- /\ 

(so, hi,s1) E [Xih /\ (si,h2,s) E [X2]'Y}. 

Using lemma 4.17 one sees that the first set of this union equals: 

[X1[.i] /\ X2[.i0
] /\ ..L]1. 

In the treatment of the second set of the union above, we rely on lemmata 
4.11 and 4.17. Assume that (so, h, s) is some arbitrary À element. The 
following equivalences hold: 

so =f:. 1- /\ 3hi, h2, s1 =f:. 1-, such that 

h = h1h2 /\ (so, hi, si) E [X1h /\ (s1, h2, s) E [X2h 

iff 
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so :/ J.. /\ 3h1, h2, w, s1 :f:. J.., such that 

hlc = (h1h2)lc /\ s1(x) = w /\ (so, hi, s1) E [X1h /\ (s1, h2, s) E [X2h 

iff 

so :/ J.. /\ 3hi, h2, w, such that hlc = (h1h2)lc /\ 

(so,h,s) E [X1[T][t1/h,tï/x]h' /\ (so,h,s) E [X2[T0 ][1ï/x0 ,t2/h]h', 

where "'{1 <!!f "'f[h1/ti, h2/t2, tü/îi] 

iff 

(so, h, s) E 

[T0 
/\ 3t1, t2, tï (hlc = {t1t2)lc /\ X1[T][t1/h, v/x] /\ X2[T0 ][1ï/x0

, t2/h]) )ï. 

Altogether we showed that the the two sets of the union above are expressed 
by the two disjuncts of the assertion X10X2-

• Strongest postcondition 

Note that the semantic definition of 'P <I X is almost the sa.me as for !poX, 
except that the interpretation of the former is by mea.na of a set of trace 
state pairs rather than as a set of computations. Here we used the fact that 
!p, although an element of Assn('E), is also an element of Assn, that does 
not actually refer to the initial state. Thus one sees that: 

(h, s) E ['P <I xh iff 3so :f:. J.. such that (so, h, s) E ['PoX]'Y. 

This explains the formule. representing 'P <I x: It equals 3x0 ('PoX). Since 
var0 ('PoX) = 0, this boils down to (l()OX)[T0

]. 

• Weakest precondition 

[X t> t/Jh = 

{(h,s) 1 Vhi,s1((s,hi,s1) E [X]'Y => (hhi,s1) E ["1h)} -

{(h,s) 1 s = J.. /\ (J..,6",l.) e [xh => (h,J..) e ["1]b} u 

{(h, s) 

Clearly the first set of this union equals: 

[J.. /\ (X[l.0 ]-+t/1[1-])h. 
We show that the second set equals 

[T /\ Vt1Vix(X[T0 ][t1/h]-+,P[ht1/h])[xjx0 ]h. 
Let 
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( *) Vt1 V.ix(X[T0 ][t1/ h]-+1/1[ht1/ h]}[z/z0
] 

From the definition of strict universal closure it follows that this is the for
mula: 

Vt1 (X[T0 ][..i][t1/ h][z/z0 ]-+1/1[..i)[ht1/ hl) /\ 

Vt1 Vii(X[T0
] [T] [t1/ h} [ii/zj [z/z0 ]-+1/1[T] [hti/h] [ii /x]). 

In the following sequence of equivalences we rely on the fact that, although 
X E .Assn, it is the case that for instance X[T0 ][T][t1/h][ïï/z][z/z0 J is an 
element of Assn(E). 

(h, s) E [T /\ (*)h 

iff 

s =j:. ..i A 

[vh1 ( (h, s) E [X[T0 ][..i][t1/h][z/z0 H ('y[h1/t1]) 

=> (h,s) E [1/1[..i][hti/h]]j(ï[h1/t1]))] /\ 

[vh1 Vx ( (h, s) E [X[T0 ][T][v /x:l[t1/h][x/x0
]]( 'Y[hi/ti, w /ïï]) 

=> (h,s) E [1/1[TJ[ïï/x][ht1/h]]('y[h1/ti,w/u]))] 

iff 

8 =j:. ..i /\ 

Vh1 ( (s, hi, ..i) E [x]h => (hh1, ..i) E [1/1h) A 

Vh1Vs1 =j:. ..i((s,hi,s1) E [X]h => (hhi,s1) E [1/1h) 

iff 

s =j:. ..LA Vh1Vs1((s,hi,s1) E [xh => (hhi,s1) E [1/1Jh)· 

This was to be shown. 

• leads to operator 

['P ~ 1/1h = ['Ph ~ [1/1h = 
{(so,h,s) 1 Vho((ho,so) E ['Ph => 

( hoh, s) E [ 1/1 h)} = 

{(so,h,s) 1 Vho((so,h,s) E [cp[to/h,x0 /z, T0 /T]](')'[ho/to]) => (so,h,s) E 

[ 1/1[toh/h]]('y[ho/to]))} = 
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[Vto(<p[to/h,x0 /x, T0 /T] -i. tfl[toh/h])]"1. 

This last set equals the interpretation of the assertion expressing <p /'\.+ t/J. 

0 

The operators defined above enjoy a number of simple properties. We list 
some of these properties. 

Lemma 4.33 Properties of semantic predicate transformers 

Let 11' E P(E), p E P(a), 'lri E P(E) for i E I, and Pi E P(a) for i E I. 

(i) p t>,.. is antimonotone in p, monotone in,.., 

(ii) 1r <I pis monotone in both 1r and p. 

(iii) (U;.p;.) I>,.. = n;(Pi I> 1r) 

(iv) (n;.pi) t>"" 2 Ui(Pi t> n) 

(v) p t> (Ui11'i) 2 Ui(P I> 11';) 

(vi) p 1> (n;1ri) = n;(p t> 11';) 

(vii) 11' <I (UiPi) = u,(11' <I Pi) 

(viii) 11' <I (n,p,) Ç ni(11' <I Pi) 

(ix) (U;.1ri) <I p = Ui(11'i <lp) 

(x) (ni11'i) <I p Ç ni(""• <lp) 

(xi) 11' Ç p t> (11' <I p) 

(xii) (p t> 11') <lp ç 11' 

(xiii) (1r <l P1) <I P2 Ç 1r <l (p1op2) 

0 

The proof of these properties is straightforward from the definitions. To 
each of the properties above there is a corresponding property for a syntactic 
operator, that follows immediately from the lemma above. We list some of 
the more useful of those properties. 

Lemma 4.34 Properties of syntactic predicate transformers 

The following implications and equivalences are (strictly) valid: 

(i) X t> (t/J1 V t/J2) - (X I> t/J1) V (X I> t/J2) 

(ii) x 1> (tP1 A tP2) ~ (x t> tP1) A (x t> tP2) 
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(iii) (~1 v ~2) <l x - (~1 <l x) v (~2 <l x) 

(iv) (~1 A ~2) <l x - (~1 <l X) A (~2 <l x) 
(v) ~-+ x 1> (~ <l x) 
(vi) (x 1> t/J) <l x-+ tb 
(vii) (~ <l X1) <l X2 - ~ <l (x10X2) 

(viii) ~ <l (X1 V X2) +-t (~ <l X1) V (~ <l X2) 

D 

4.10 N atural deduction and correctness formulae 

Our goal in the next chapter will be the design of formal proof systems for 
correctness formulae. The systems are in natural deduction style. Hence, we 
must define a satisfaction relation for formulae, and a notion of soundness 
of proof rules, that suits natura! deduction. 

Deftnition 4.35 (Satisfaction relation) 

Let F = {/o, · · ·, f n-1} be a fini te set of formulae. 
Then we define: 

D 

• F I= I iff Vq E H.V1 Er.( f\ T[li]"/rJ => T[/hq). 
/;EF 

• We define validity of a formulae f as a special case of this: 

I= / iff Vq E H.V1 E r.(T[lhq). 

For a natural deduction system, as opposed to a Hilbert style proof system, 
provability of formulae bas the form of a relation: F 1- I. (Read: f is provable 
from the set of hypotheses F) 
A formal proof system then, is an inductive definition of the 1- relation, by 
means of a number of clauses of the form: "H Fo 1- /o, · · · Fn-1 1- /n-1' then 
also Fn 1- In". This is usually put into the form of a proof rule: 

Fo l- fo,···,Fn-11- fn-1 
Fn 1- In 

An axiom is a rule for which n = O; it is denoted as Fo 1- Jo. 
H we can infer F 1- f by application of proof rules, we say that F 1- f is 
deducible or also that f is provable under the hypotheses F. 

A rule is called sound iff 
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(/\ F, f=I•) =!rFn In· 
i<n 

Clearly, when all (axioma and) rules are sound, the proof system is sound, . 1.e.: 

Ff-f=rFf=I 

Most of our proofrules turn out to be axioms, that is, they are of the form: 

{lo, · "' ln-t} f- In 
This is also written as a rule of the form: 

lo," ·, ln-1 
In 

For this latter type of rule, the soundness condition amounts to the following: 

v,., E H.v, Er.(/\ TH•h'l =r T[lnh'7 ). 
i<n 

We will design several proof systems in the next chapter. They differ only 
as far as the nonlogical rules are concerned. Therefore, we summarize the 
logica! rules here. Essentially, these rules have been taken from [v. Dalen] 

4.11 Logica! rules 

(i) F f- f if f E F ( reflexivity) 

(ii) F f- Ji,.",F f- ln-1, {/1,".,ln-1} f- In 
Ff- In 

( 
... ) F f- I 
m F' f- I 

(iv) h' h 
fi/\h 

(v) ft/\f2 
li 

( ') ,, 
Vl I f 1 v 2 

provided F Ç F' (weakening) 

( /\-introduction) 

(i = 1, 2) ( /\-elimination) 

(i = 1,2) (v-introduction) 

( ") F U {/i} f- /, F u {'2} f- I, F f- /i V h 
Vll F f- I 

(viii) F u {/i} f- '2 
F f- /i-+'2 

(-+-introduction) 

(transitivity) 

( V-elimination) 
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(ix) /i, /i--+ '2 
h 

(--+-elimination) 

Frf 
(x) F r VÇ(/) provided Ç f/. pvar( F) (V-introduction) 

Frf 
F r Vg(f) 

provided g f/. gvar(F) (V-introduction) 

. VÇ(/) 
(x1) /[m/Ç] (V-elimination) 

D 

(It is understood here that base(m) Ç base(Ç), since otherwise the 
substitution for the process varia bie e is not even defined.) 

'Vg(f) 
f[ge/g] 

(V-elimination), 

where ge is an expression of the sa.me type as the logical va.ria.bie g. 

The soundness of most of these rules is obvious. We give a proof for three 
cases: 

• Rule ( viii). This is the analogue of the "deduction theorem" for Hilbert 
style systems, however, without the restrictions associa.ted with this 
theorem. 

We must show, for arbitrary F ~f {/&, · · ·, /~_1}, that: 

F U {fi} F h ~ F f= /i--+/2, 
that is: 

'V1'1(( f\ T[/f]hq /\ T[fiJh'l) ~ T['2hfl) ~ 
i<n 

i<n 

This is obvious. 

• Rule (x) Take some arbitrary F ~r {/Ö, · · ·, /~_1 } such that Ç f/. pvar(fl) 
for i < n. Assume that F f= /, that is: 

V1'1(f\ T[/fhri ~ T[/Jb'l)· 
i<n 

This implies: 

v,"vpp E P(L::,,,p)(/\ T[/lh'l[Pp/Ç] ~ T[/h'l[Pp/Çl). 
i<n 
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D 

Since Ç ~ pvar(IJ), 

T[flh11[P.B/e] = T[/H111, for i < n. 

So we get: 

""7'11(/\ T[/fh'11 => Vpp E P(Àtt): T[/]ï77[pp/Ç]). 
i<n 

That is: 

i<n 

So we conclude that F != ve(f), as was to be shown. 

The corresponding rule for the introduction of universa! quantifiers for 
logical variables is proven sound in a completely similar way, except 
that the role of ï and '11 is interchanged. 

• Rule (xi) For this, substitution lemma 4.28 is needed: 

T[/[m/e]h'11 = TUD(ï)(.,,[Obs[m]ï.,,/Ç]). 

We show: 

So take some arbitrary '11 E H. 

T[VÇ(/)]1'1 means: Vpp E P(Àtt) : T[/h('7[Ptt/Ç]), where f3 = 
base(Ç). 

Since base(m) ç;; (3, we have Obs[mh11 E P(Àp). Hence, instantiating 
pp as Obs[m]ï", we see that T[n(ï)(11[0bs[mh11/e]) holds. By the 
lemma, this implies T[f[m/Ç]]ï'fJ. 

Again, the corresponding rule for logical varia.bles is proven in a similar 
way. 

We give an example, explaining how one can change the name of a bound 
variable. Let Vg(f) be some given formula, and let g1 be a ghost variable, of 
the sa.me type as g, that does not occur free in/. We show that H 1-Vg'(f) 
is deducible from H 1- Vg(f), even when g' does occur free in some of the 
hypotheses H. 

Note that the 'v'-elimination rule is in fa.et the following axiom: 

'v'g(f) 1- f[ge/g]. 
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If we choose g1 for ge we have the following instance: 

Vg(f) 1- /[g'/g}. 

Since g1 does not occur free in 'r/g(f), we can apply the V-introduction rule, 
and obtain: 

'rlg(f) 1- Vg'(f[g' /g]). 

Now if H 1- 'rlg(I) has been given, then clearly one can combine this with 
the above, using the transitivity rule. This yields the desired result: 

H 1- Vg'(f[g1/g]). 

Note that the deduction above is valid even when g' does occur free in H. 

4.12 Axioms and rules for (in-) equalities. 

mÇm ( reflexivity) 

m1 Ç m2, m2 Ç ma 
m1 Ç ma 

Remark 
m1 Ç m2 , m2 Ç m1 

m1=m2 

( transitivity) 

( antisymmetry) 

is a derived rule, since m1 = m2 abbreviates m1 Ç m2 A m2 Ç m1; this latter 
formula is derivable by means of the A-introduction rule. 

0 

m1 = m2 , /[m1/ Pp} 
/[m2/Pp} 

(substitutivity) 

(m1 and m2 must be substitutable for P13). 

To be able to give corresponding rules for Ç, we must introduce the notion 
of positive and negative occurrences of some process variable Pp. To this 
end, we define, for f E 1orm, the sets j+ ·and 1- as follows: 

Defi.nition 4.36 (Positive and negative occurrences) 
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f 1+ 1-
x 0 0 

m1 Ç m2 pt1ar(m2) pvar(m1) 
m sat X 0 pvar(m) 
(cp)m("1) 0 pvar(m) 

h /\ h 1i+ u 12+ 1i- u 12-
h v '2 1i+u12+ 1i-u12 
h~h 1i- u 12+ 1i+u1i-
VP11(/) f+ - {P11} 1- - {P11} 
Vg(f) 1+ 1-

We call f monotone in P11 if P13 '/:. 1-, and antimonotone if P13 '/:. j+. 
Now we can formulate our rules: 

m1 Ç m2 , /[m1/ P13] 
/[m2/P13] 

m1 Ç m2 , /[m2/ P11] 
/[m1/Pp] 

provided fis monotone in P13. 

provided f is antimonotone in Pp. 

4.13 Satisfi.ability 

151 

A SAT or Hoare formula /(XtJ) is an antimonotone formula. We call such 
a formula satisfiable if there exists a TNP process S such that /[ S / Xp] is 
valid. TNP processes satisfy the following axiom: 

Z Ç S (least element). 

From this, and the antimonotony rule of the previous section, .it follows that 
f(XtJ) is satisfiable if and only if /[Z/X13] is va.lid. A SAT formulae of the 
form X13 sat X is satisfiable iff Z Ç [Xh, for all 7 E r. This is the case 
whenever X[..L}[6/h] is a strictly valid assertion. In this situation, we will 
also say that X itself is satisfiable. 

D 

4.14 The relation between SAT and Hoare for
mulae 

By means of I>, <l and "'-+,we can translate SAT formulae into Hoare for
mulae and vice versa. This is the contente of the following four proofrules 
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Lemma 4.37 

(i) 

(ii) 

(iii) 

(iv) 

0 

m sat X 

(IP) m (IP <l x) 

m sat X 

(x 1> t/l) m (t/l) 

(IP) m (t/l) 

m sat IP~ t/J 

m sat IP~ t/J 

(SP) 

(WP) 

(HS) 

(SH) 

(IP) m (t/l) 

The rules show that (IP) m ( t/J) and m sat IP ~ t/J are equivalent. In gener al 
this is not the case form sat X and (IP) m (IP <l X) or (X I> t/J) m (t/J). 

Proof 

We prove the soundness of the four rules. 

Take some arbitrary rJ E H. 

(i) Assume that Obs[mhrJ Ç [xh. To show: 

.Mt[m]hrJ([IPh) Ç [IP <l X]ï· 

So take some (h, s) E .Mt[mhrJ([IP]ï)· 
Then, there must be some ( ti, s1) E [IP Jh and (si, t2, s) E Obs[ m Jh'I 
such that h = t1t2. 
By the assumption above, (si, t2, s) E [X]ï· 
Hence, (h,s) E [IPJh <l [Xh =[IP <l X]h 

(ii) Assume again that Obs[mhrJ Ç [X]ï· To show: 

.Mt[m]ïrJ([X I> t/Jh) Ç [t/JJh 

Take some (h,s) E .Mt[mhrJ([x I> t/Jh)· Then there are (to,so) E 

[X I> t/Jh, (so, ti, s) E Obs[mhrJ such that h = tot1. 
From the premisse of the rule it follows that (so, ti, s) E [xh. 
But then, by the definition of I>, (to,ti,s) E [t/lh, that is, 
( h, s) E [ t/J Jh. 
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(111),(iv) Take some rJ E H, "f Er. Then we have the following equivalences: 

D 

Mt[mh'1([~h) ç [.Ph iff 
\lto, so, h, s : 

((to, so) E [~h /\ (so, h, s) E Obs[mhq) => (toh, s) E [.Ph iff 
V(so, h, s) E Obs[mh'1: 

Vto((to,so) E [~h => (toh,s) E [.Ph) iff 

V(so, h, s) E Obs[mhfl: (so, h, s} E [Ph ~ [.Ph iff 
Obs[mhrJ Ç [p ~ .Ph· 

4.15 Proper correctness formulae 

In [ZRE] an a.xiomatization is given for specifications that are essentially of 
the following form: 

l : {p} s {q}, 

where S is a process, l E .Assn(Trace) , p, q E Assnp(E). 

Within the present context we can define the meaning of this formula as 
follows: 

T'[I : {p} S {q}hrJ iff 

Vto'v'so -:/:- ..L : 1' [p] ("t)(to, so) => 

(v(ti,s) E M[SilrJso : T'[I]{"t)(to"t1) /\ (s -:j:. ..L => T'[q]("f)(to"ti,s))). 

This definition can be understand as follows ([ZRE]): 

"Let to, so be some initia! trace and state for which p holds, then: 

• lis required to hold for all possible extensions to "t1 of the initia! trace 
to, produced by executing S. Note that, because of prefix closedness 
of M[S]]rJso, this amounts to the same as requiring that I holds at all 
moments during execution of S. 

• q is required to hold for the final state and trace, if and when S ter
minates, since such terminated computations are represented by pairs 
(t, s) with s-:/:- ..L in M[S]f1so". 
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We rewrite this definition into a simpler form. Note that: 

• (so #: l.. /\ T[p](")(to, so)) <=> T[T /\ p]('y)(to, so), 

• [T[I]('Y)to"ti /\ (s-:f:: l.. =? T[q]]('Y)(to"ti,s))] <=> 
T[J /\ (T-+q)](ï)(to"ti,s), 

• (ti,s) E .M[S](11)(so) <=> 
(t1,s) E .Mf[S](71)({(e,so)}) <=> 
(to "ti, s) E .Mt[ Sil( 11 )({(to, so)} ). 

So, using the complete additivity of .Mf[S]71, we see that: 

T[I : {p} S {q}]ïfJ iff 

.Mf[S](fJ)([T /\ pll(-7)) Ç [I /\ (T-+q)]('r). 

But this means that 1 : {p} S {q} is equivalent to: 

(T /\ p) S (I /\ (T-+q)). (*) 

That is, the formula.e of [ZRE] can be expressed within our formalism! 

We shall use 1 : {p} m {q} as an abbreviation of the Hoare formula: 

(T /\ p) m (1 /\ (T -+q)). 

We call our new type of correctness formulae proper formulae. Note that we, 
although the motivation for these formulae is based upon a certain intuition 
about processes, we nevertheless allow arbitrary mixed terms in our Invariant 
formulae. 

Although it appears that the expressive power of the formulae of [ZRE] is 
less than that of our Hoare triples, we now show that this is not the case if 
we restrict ourselves to TNP processes S. 

First, we list some pro of rul es that we will need below. Apart from the 
bottom closure rule, all of these rules are included in the Hoare system of 
chapter 5. The bottom closure rule is special, for it is sound only for TNP 
processes and not for arbitrary mixed terms. 

(epi) s ( 1/Ji) ' ( ep2) s ( 1/J2) 
(epi /\ ep2) s ( 1/J1 /\ 1/J2) 

( conjunction) 

(ep1) s ( 1/J1) ' ( ep2) s ( 1/J2) 
(epi v ep2) s ( 1/J1v1/J2) 

( disjunction) 

VJ.(ep-+ep'), (ep') S (1/J'), VJ.(1/J1-+1/J) 
(ep) s (1/J) 

( consequence) 
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(..L /\ I) S (..L /\ I) where IE Assn(Trace) (strictness) 

(cp) S (..L-+I) where IE Jlssn(Trace) (bottom closure) 
{cp) S (I) 
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We shall not prove the soundness of these rules here, since that is the task 
of chapter 5, except for the bottom closure rule. 

Lemma 4.38 (Soundness of the bottom closure rule) 

Let IE Jlssn(Trace), fJ E H,7 Er. If T[(cp)S(.l-+I)]1'17 = true, then also 
T[(cp)S(I)J1fJ = true. 

D 

Proof 

T[(cp)S(..L-+1)]111 = true is interpreted as: 

Mt[SH11)([cp]'I) ç [..L-+Ih. 

This mea.ns that if (h, s) E Mf[S](rJ)([cph) and s = ..L, then h E [I]h. 

We must prove that for (h, s) as indicated except that s =l ..L, it is also true 
that h E [Ih. 

So assume that (h, s) E ).{t[s](")([cph) and that s =l ..L. Then there exists 
an initia! trace state pair (h0 , so) such that for some trace hi, h = h0 h1 and 
(s0 , h1, s) E Obs[S]]q. Since we assume here that Sis a TNP process, rather 
than an arbitrary mixed term, we know from lemma 3.41 that Obs[ S ]'7 
is prefix closed. This implies that (so,h1,..L) E Obs[S]q too,and so, that 
(h, ..L) E Mf[S](11)([cph). But this implies that h E [lh! 

We conclude that: 

Mf[S](rJ)([cph) Ç [Ih, 

which amounts to the truth of T[(cp)S(I)]'lq. 

D 

Next we show how to represent a formula ( cp) S ( 1fJ) in the form of an 
Invariant formula. From lemma 4.22 it follows that any such formula can be 
rewritten into: 

( (..L /\ I) V (T /\ p)) S ( {..L-+J) /\ (T-+q) ), (1) 

where I = cp[..L], p cp[T}, J = 1/J[.l], q = 1/J[T]. 

This lemma states that the following equivalences hold: 
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VJ. (IP - ({..L /\ I) V (T /\ p))) and 

VJ. ( t/J - ((..L-J) /\ (T-tq)) ). 

Hence using the consequence rule and the implication introduction rule 
twice, one can formally prove: ( <p) S ( t/J) +-+ ( 1). Formula ( 1) can be 
factorized into a conjunction of the following four: 

(..L /\ I) S (..L-J) (2) 

(..L /\ I) S (T -tq) (3) 

(T /\ p) S (..L-tJ) (4) 

(T /\ p) S (T -tq) (5) 

Again (1) +-+ ( (2) /\ (3) /\ (4) /\ (5)) can be formally proven, using the con
junction, disjunction and consequence rules. 

Now from (4) one derives (T Ap) S (J) by means of the bottom closure rule. 
Combining this with (5), using the conjunction and consequence rules, we 
see that 

(T Ap) S (J /\ (T-tq)) 

is formally derivable from (1). That is, the following is a provable implica
tion: 

(ip) s (t/J) - J: {p} s {q}. 

H I-J is a va.lid assertion, that is if 't.(l-tJ) is true, we can show the 
reverse too. (Note that since I and J are closed with respect to initial and 
final states, 't.( [-tJ) is equivalent to VJ. ( I-J).) 

From (T Ap) S (J /\ (T-q)), we get, by using the consequence rule: 

(T /\ p) S ((..L-tJ) /\ (T-tq)) (6) 

Also, the insta.nee of the strictness axiom ( ..L /\ I) S ( ..L /\ I) can be weakened 
by means of the consequence rule into: 

(..L /\ 1) S ({..L /\ J) V (T /\ q)) (7) 

Again using lemma 4.22, we obtain the equivalent formula: 

(..L /\ I) S ((..L-J) /\ (T -tq)) (8) 

Then, by applying the disjunction rule to combine (6) and (8), followed by 
an application of the consequence rule, we derive formula (1). So 
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J : {p} s {q} - (i:p) s ("1) 

is provable in the case that '.!( I -+J) hol ds. 

Finally we prove that if '.!( I-+J) is not valid then ( <p) S ( 1fJ) is unsatisfiable. 
That is, there exists no TNP process S such that (i:p) S (1/J). For, assume 
there are some h E Trace and"{ Er, such that h E [Ih hut not h E [Jh. 
Then we have: 

(h, l_) E [(l_ /\ I) V (T /\ p)]"I, and (h, l_) f/. [(l_-+J) /\ (T -+q) h· 
Hence, since .M t [SM ( '1 )( {( h, J_)}) = {( h, J_)}, we see that ( 1) cannot hold in 
this case for any '1· That is, (1), and so (i:p) S (1/1), is unsatisfiable. 

All together we proved the following: 

Lemma 4.39 

Let <p, .p E Jtssn(:E), SE TNP, p = i:p[T], q = t/J[T}, I = i:p[..L}, J = 1/1[.l]. 
H 't( 1-+J) is true the equivalence: 

(i:p) s (.P) ~ J : {p} s {q} 

is valid and can even be proven formally, using the rules above. Eise, that 
is if '.!( I-+J) is not true, ( <p) S ( 1fJ) is unsatisfiable. 

D 

We finish with three proofrules that are used to translate Hos.re formulae 
into Invariant formulae and vice versa. The soundness of the first two rules 
follows immediate from our definition of Invariant formulae. The soundness 
of the third rule is part of the lemma above. 

(i) 

(ii) 

l : {p} m {q} 

(T /\ p) m (I /\ (T-+q)) 

(T /\ p) m (I /\ (T -+q)) 

l: {p} m {q} 

(IH) 

(Hl). 

For TNP processes S: 

( <p) s ("') ' 't( i:p[l_}-.P[.l]) 
(iii) 

t/J[l_j : {i:p[T]} S {tfJ[T]} 
D 

(Prop) 



Chapter 5 

Proof systems for TNP 

5.1 Introduction 

We introduce three forma} proof systems for TNP processes, called the SAT 
system, the Hoare system and the Invariant system. The three systems are 
axiomatizations of the three types of correctness formulae with correspond
ing names that we defined in chapter 4. Each system is divided into three 
groups: 

A Axioms for atomie processes. 

B Rules corresponding to the TNP constructs. 

C Adaptation rules. 

We introduce the term "adaptation rules" for all those rules that are con
cerned with the adaptation of some black box specification spec(ç) to another 
specification spec'(ç) for the same black box. A well known example of such 
a rule is the "consequence rule" of Hos.re's logic. There are important dif
ferences with respect to the number and the complexity of adaptation rules 
for the three systems. 

The SAT system is an axiomatization of mixed terms by means of SAT 
formulae. These formulae are of the form m sat X, where m is a mixed term 
and X(E Jfssn) is an assertion. For the SAT system the adaptation rules 
are: 

• the invariance axiom, 

• the conjunction rule, and 

• the consequence rule. 

159 
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The fact that there are only a few of such adaptation rules, and moreover 
that they are quite elegant, is one of the virtues of the SAT system. The 
price for this elegance is the added complexity of assertions in comparison 
with usual Hoare style logic. This is prominently present in the rule for 
sequentia! composition. This rule is the following one: 

m1 sat Xh m2 sat X2 

One should keep in mind here that, although the "o" operator allows a 
compact notation, X10X2 is nothing else hut an abbreviation of a rather 
complex assertion. Let us consider the case where one wants to show that 
a certain process m of the form m1; m2; · · ·; mk satisfies a given assertion 
X, where the component ffli is known to satisfy Xi· Basically, there are two 
strategies for proving this specification: 

(1) First prove that m sat X10X20 • • ·oXk, by repeated application of the 
sequentia! composition rule of the SAT system. (That part is very 
easy, indeed.) Then, as the second step, prove that m sat X by means 
of the consequence rule. The latter step includes the validation of the 
implication: (X10X20 • • • oXk) -+ x. The problem with this validation, 
whether feasible or not, is that it is as complex as the validation of the 
original specification. 

(2) First prove that m1; m2 sat X12, for some appropriately chosen asser
tion X12, by means of the sequentia! composition rule and the con
sequence rule. Of course this includes the validation of the assertion 
(X10X2) - X12· We proceed in this way, inventing "intermediate" as
sertions for binary sequentia} compositions that are proven by means 
of the sequentia! composition and consequence rules. The validation 
of one huge "verification condition", that was necessary for the first 
strategy, has been replaced by the validation of k-1 simpler conditions. 

Similar problems arise when one tries to formulate a proof rule for the itera
tion construct. We have not included such a rule in the formal system below 
since in fact m• is an abbreviation of fJ.z€ • (skip or m; Ç), and the loop 
rule is a derived rule that follows from the SAT rules for skip , the choice 
and sequentia! composition, and the recursion construct. Nevertheless, it is 
interesting to discuss this rule, since it brings out more clearly the differences 
between the SAT system on the one hand and Hoare style systems on the 
other hand. 
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One possibility is to introduce a so called "chop-star" [BKP] operation on 
assertions that has the same semantica as the Kleene star for processes. That 
is, we could define x• as an assertion that is interpreted as follows: 

i [ x• h( so, h, s) iff there exist some integer n 

and states and traces si, . .. , s,u h1, ... , hn such that 

sn = s, h = h1h2 · · · hn, and, for 1 Si S n: i[X]'y(si-1' hï, s.;) 
This definition explains the name chop-star: it is a generalization of the "o" 
operator that is sometimes called the "chop" operator. There is no simple 
way to express the chop-star operation in terms of the chop operator in our 
assertion language, since the chop-star includes an existential quantifier for 
the number n of chops so to say. 

The proof rule for the loop construct would then become: 

mi sat X1 
(chop-star) 

mi sat Xi 

The problem with this type of rule is essentially the sa.me as above: the 
assertion Xi is as complex as the process itself. 

It will be clear that if some specification mi sat X is to be verified, and 
m1 is known to satisfy X1, then one must valida.te the verification condition 
Xi -+ x. This in generally will involve some kind of induction on the number 
n of chops in the definition of Xi. We regard this as the ma.in difference with 
the well known proof rule for loops in Hoare's logic: whereas the Hoare style 
rule explicitly indicates that some induction hypothesis must be formulated 
(the loop invariant), and also indicates what kind of "induction step" must 
be proven (the invariance of the loop invariant), the chop-star rule shifts the 
problem to a similar problem within the assertion language. 

A more attractive rule is the following one: 

mi sat X1 skip sat X , 'v'l.((X10X)-+ X) 
---------------(loop) 

mi sat X 

This time the induction principle is captured by the rule. The rule also 
brings out once more the importance of the axiomatization of sequential 
composition, here embodied by the chop operator in one of the premisses of 
the rule. 
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The problems with the treatment of sequentia! composition in proof systems 
in the style of the SAT system formed the incentive for studying a precon
dition/postcondition style of reasoning about processes. The main idea is 
that there is not only an initia! state in which a process starts executing, hut 
that there is also an initia! trace of communication actions. For a sequentia! 
context m1; m2 of m2, the initia! trace for m2 includes the communications 
performed by m1. Regarding pairs of states and tra.ces as a generalized state, 
and using assertions </>, 1" that are predicate formulae for generalized states, 
we were able to formula.te the following rule for sequentia! composition: 

('P) m1 (p), (p) m2 (1") 

Note that, a.t least in its outer form, it is exactly the "classica!" rule of 
Hoare's logic for sequentia! composition. Because of this coincidence, the 
following rule for the loop construct should not be a surprise: 

('P) m1 ('P) ('P) skip ('P) 
---------(loop) 

('P) m~ ('P) 
Apart from the premisse for skip this has the same form as the corresponding 
rule in Hoare's logic. (Again we have not included this rule in the forma! 
system below since it is a derived rule for our approach.) 

Comparing these two rules with the corresponding SAT rules, we remark 
that the Hoare style rules do not introduce complicated operators, like the 
chop operator. 

A more interesting observation is that whereas the SAT rules suggest a 
bottom up approach to program development, the Hoare rules suggest a. top 
down development. For insta.nee, the SAT rule for sequential composition 
constructs a specification from a priori given specifications for the parts, hut, 
on the other hand, the Hoa.re style rule splits an apriori given specifi.cation 
for the whole into specifications for the parts. 

This difference in terms of top down versus bottom up development is present 
in most of the rules for the two systems. 

One nota.bie exception is the SAT rule for channel renaming; as can be seen 
below, this rule has a top down character. It is not the case that we could not 
formulate a bottom up style rule for this construct, hut the bottom up rule is 
much less attractive for actual program proving tha.n the top down version. 
Of course this raises the question whether we have excluded a bottom up 
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style program development, and if so, what style of development do we 
propose? To answer the first question: no, we have not excluded bottom 
up style. This is shown in chapter 6, where we construct, bottom up, aso 
characteristic assertion for each mixed term, that is essentially the strongest 
assertion that is satisfied by the mixed term. The SAT system allows one 
to formally prove that a mixed term does satisfy its characteristic assertion. 
In particular the characteristic assertion for m1 (d/c) can be proven from the 
characteristic assertion for m1 without undue effort. The reason then why 
we do not regard the renaming rule as a bottom up style rule is that, given 
some actual specification for mh the rule does not suggest any appropriate 
specification for m1 {d/c). 

The section with adaptation rules for the Hoare system does contain more 
axioms and rules than the corresponding section for the SAT system. This is 
a well known phenomenon from Hoare style systems for sequentia! programs 
that allow procedurea. Of course then the question remains why the SAT 
system does not need so many adaptation rules. The reason for this is that 
many adaptation rules are in fact reformulations of genera! logic principles. 
For instance, the (3)-pre rule of the Hoare system corresponds closely to the 
following logica! principle: 

Provided that g fj. FV ( H) : 

Hu {/o} 1- h 
------- (3 - introduction) 

Hu {39(/0)} f- /i 

Now for the SAT system, the logica! principle can be applied via the use 
of the consequence rule, whereas for the Hoare system one needs a new 
proof rule. This can be seen more clearly from the soundness proofs that we 
give for the Hoare system. Instead of proving the soundness of Hoare rules 
directly from the sema.ntic definition of TNP , we show that the a.pplication 
of a Hoare rule corresponds to a proof in the SAT system preceded and 
followed by a translation of Hoare formulae into equivalent SAT formulae 
and vice versa. 

One salient point of the Hoare system is the prefix invariance axiom. This 
axiom is: (tolc :5 hjc) m (tolc :5 hlc), where to is some logica! tra.ce varia.bie, 
and c is some arbitrary set of cha.nnels. 

This axiom has no counterpart in Hoare systems for sequentia.! programs. 
The soundness of the a.xiom is clear by the fact that a process can only ex
tend an existing initia.l trace by submitting new communications, hut it can 
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neither withdra.w nor change the tempora! ordering of a.lready performed 
communications. In our completeness proof for the Hoare system in chapter 
7, it is the preservation of temporal ordering what we need the prefix invari
ance axiom for. It has been shown by Josef Hooman [HooZwJ that the prefix 
invaria.nce axiom is essential to obtain a complete proof system. 

Finally we discuss the Invariant system. By inspection of the Hoare system 
below, one remarks that many axioms are more complicated than one would 
expect, due to the fact that both terminated and non finished computations 
must be described by the same assertions. In chapter 4 we already pointed 
out tha.t for TNP processes an alterna.tive, more attractive, representa.tion 
of Hoare formula.e is possible in the form of Invariant formulae. In fact 
The Invariant system is, apart from a. few exceptions, a. reformulation of the 
Hoare system in terms of Invariant formulae. 

5.2 The SAT proof system 

5.2.1 Axioms for Atomie Processes 

To bring out the structure of the axioms for atomie processes more clearly we 
first define a. so called characteristic assertion A(a) for each atomie process 
a. In the soundness proofs for these axioms we actually prove that, as far 
as the free channels and varia.bles of a are concerned, A( a) and a itself 
do have the same semantics. So it is certainly the case that the set of 
computations denoted by a is contained in the semantics of A(a). This 
inclusion is expressed by the following SAT axioms, where A(a) is as defined 
below. 

Predicative processes of the form xl,8, resemble in many aspects atomie pro
cesses. We include here the "characteristic assertion", and the axiom for 
such predicative processes. 

• Atomie processes a 

a sat A(a). 

• Predicative processes 

xl,8 sat x. 
0 

De:finition 5.1 {Characteristic assertions for .Atom and Pred) 
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D 

A(abort) A(Z) = .L 

A(skip) = true. 

A(x := e) = T- (x = e[y0 /ii] Aw = w0
), 

where {ii} = t1ar(e) and {w} var(e) - {x}. 

A(b) = T - (b A w = w0
), where { w} var(b). 

A(c.x: b) (.l A c = e;) V 

3v[c =< t1 > A b[w0 /w,11/x] A (T - (11 x A w = w0
])) 

where w = var(b) - {x}. 

A(Xl,8) = x. 

5.2.2 Rules for the TNP constructs 

• Channel hiding 

m satx 
provided hchan(X) n c = 0 

m\c sat X 

• Variable hiding 

m sat X 
provided var(X) n x = 0 

m\x sat X 

• Renaming 

m sat X[ h[d/c]/h] 

m{d/c) sat X 

• Kernel 

m sat X 

Kern(m) sat Kern(X) 
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• Sequential composition 

• Choice 

• Parallel composition 

Provided that for (i,j) = (1, 2) and for (i,j) = (2, 1): 

abase(Xi) n f3; Ç f3i, the following rule is applicable: 

• Recursion 

Provided that XfJ t/. pvar(H): 

Hu {Xp sat X} 1- m sat X 

H 1- µXfJ.m sat X 

• µz; Recursion 

Provided that Xf:J t/. pvar(H): 

H 1- Z sat X , H U { XfJ sat X} 1- m sat X 

• Process naming 

Provided that XfJ t/. pvar(H): 

H 1- m1 sat X1 , HU {X,s sat X1} 1- m2 sat X2 

H 1- Xp = m1 in m2 sat X2 



5.3. THE HOARE SYSTEM 

5.2.3 Adaptation rules for the SAT system 

• lnvariance 

Provided that base(m) n (d, {y}) = (0, 0): 

m sat (hld = 51\ (T-+ y = y0
)) 

• Conjunction 

m sat X1, m sat X2 

• Consequence 

m sat X2 
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Remark The universa! quantor Vl., introduced in chapter 4, denotes strict 
universa! closure. 

5.3 The Hoare system, 

5.3.1 Axioms for Atomie Processes 

In the section for the SAT system we introduced the characteristic assertions 
A(a) for atomie processes and predicative processes o:, that describes the 
behavior of o: as far as the channels and varia bles in base( o:) are concerned. 

For bases f3 such that base(o:) ç; {J the assertion A,e(a), defined as A(o:) /\ 
lp-bciH(a)' then can be seen to describe this behavior as far as all channels 
and variables in{J are concerned. 

We have chosen the axiom for atomie process to be of the form: 

(Ap(o:) I> t/i) o: (t/i), 

where {J = base(o:) U abase(t/J). This form shall enable us to deduce, indi
rectly, the completeness of these axioms from the completeness of the corre
sponding SAT axioms. 

Af ter simplification of the assertions of the form Ap ( o:) I> t/J, one obtains the 
following set of axioms: 

• Abort,Z 
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(1/1[..L]) abort (1/1) 

(1/1[-L]) Z (1/1) 

•Skip 

( 1/J[..L] /\ 1/1) skip ( 1/1) 

•Guard 
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(1/1[..L] /\ (T /\ b) -t1/J[T]) b (1/1) 

• Assign 

(1/1[..L] /\ (T-t1/J[..L][e/x])) x := e (1/1). 

•Gom 

( 1/1[..L]/\ 

T - Vv(b[v/x]- (1/J[..L][h < (c, v) > /h] /\ 1/J[T][h < (c, v) > /h, v/x]) )) 

c.x:b 

(1/i) 

For predicative processes, we choose the following axiom: 

• Predicative processes 

(p) (xl.8) (p <l x). 

The axiom has been chosen such as to facilitate the completeness results of 
chapter 7. 

5.4 Rules for the TNP constructs 

• Channel hiding 

(p) m ("1) 

(p) m\c (1/1) 

• Variable kiding 

(p) m (1/1) 

(p) m\x (1/1) 

provided hchan( tP) n c 0 

provided var( tjJ) n x = 0 
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• Renaming 

Let c1 be some fresh channel name. 

(~[ h[c/c']/h] A c = e) m ( t/>[ h[d/c][c/c~/h]) 

(~) m{d/c) (tfi) 

•Kern 

If hchan(~, tfi) Ç c and to is fresh, then: 

(~ A hlc = tolc) Kern(m) (Kern(to, tfi)) 

• Sequential composition 

(~) m1 (p) , (p) m2 (tfi) 

(~) m1; m2 (tfi) 

• Choice 

• Parallel composition 

Provided that for (i,j) = (1, 2) and for (i,j) = (2, 1): 
abase( tfli) n f3; Ç 13,, the following rule is applicable: 

• Recursion 
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Let g be some arbitrary list of logical variables, possibly the empty list. 
Provided that XtJ ~ pvar(H): 

Hu {'v'g[(~) Xp (tfi)]} 1- 'v'g[(~) m (tfi)] 

H 1- 'v'g[(~) µXp.m (tP)] 
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• J.tz Recursion 

Let g be some arbitrary list of logica! variables, possibly the empty list. 
Provided that Xf!J ~ pvar(H): 

H f- Vg((<p) Z (1/>)J , HU {Vg((<p) Xf!J (1/>)]} f-Vg[(<p) m (1/>)J 

H f-Vg[(<i0) J.tzXfJ.m (1/>)] 

• Process naming 

Let g be some arbitrary list of logica! variables, possibly the empty list. 
Provided that Xf!J ~ pvar(H): 

H f-Vg[(<i01) m1 (1/>1)] , Hu {Vg[(<i01)X13(1/>1)]} f- (<i02) m2 (1/>2) 

5.4.1 Adaptation rules for the Hoare system 

• lnvariance 

(V>[J_] /\ 1/>) m (V>) 

provided that abase( 1f>) n base( m) = (0, 0). 

• Prefiz invariance 

For arbitrary logical trace variable to and channel set c: 

(tolc ~ hlc) m (tolc ~ hlc) 

• Strictness 

(..L /\ <p) m (..L /\ <p) 

• Conjunction 

(<i01)m(~) , (<i02)m(~) 

( <p1 /\ <p2) m ( 1/>1 /\ 1/>2) 

• Disjunction 
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• Consequence 

(So) m (tl>) 

• 3- pre 

provided g n var( tP) 0 
(3!i(So)) m (tl>) 

Remark 

An alternative formulation is: 

Provided jj n var( tl>) = 0 and {g} n gvar(H) = 0: 
H 1- (So) m (tP) 

H 1- (3!i(So)) m (tl>) 

This second version is in facta derived rule. For if {g} n gvar(H) = 0 one 

can first apply the V introduction rule of chapter 4, to obtain Vj [ ( So) m (tl>) J 
from ( So) m ( tP), and then apply the 3 - pre rule. We of ten use this derived 
rule tacitly. 

5.4.2 Extra adaptation rules for the Hoare system 

• Strong adaptation 

Provided that ,8 n base(m) = (0, 0), 

(So1) m (t/11) 

Although we don't use it, there is also a weakest precondition version of this 
rule. Under the same conditions for f3 : 
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(Adaptation,WP~version) 

• Initial trace adaptation 

Provided that c' n hchan( <p, t/J) 0 
(<p /\ hlc' = e) m (t/J) 

initial trace adaptation 

5.5 The Invariant System 

ó.5.1 Axioms for Atomie Processes 

• Abort,Z 

1 : { I} abort { false} 

1: {I} z {false} 

•Skip 

1 : {p /\ J} skip {p /\ J} 

•Guard 

1 : {p /\ J} b {p /\ 1 /\ b} 

• Assign 

1: {p(e/x] /\ l} x := e {p /\ J} 

• Com 

I: {I /\ Vv (b[v/x] - (I[h < (c, v) > /h] /\ p[h < (c, v) > /hJ[v/x]))} 

c.x: b 

{pi\ I} 

• Predicative processes 

We do not offer an axiom for arbitrary predicative processes. We consider 
only processes denoted by (J, R}, that are of the following form: 

{J,R)~r{(T0 -J) /\ (T-R))lbase(J,R), 
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where J and Rare proper assertions, that is, elements of Assnp, and where 
var(J) = 0. 

So R is proper assertion characterizing the relation between initial state va.l
ues, communication histories and final state va.lues for terminated computa
tions. Similarly, J describes the communication history during execution in 
relation to the initial state va.lues of varia.bles. 

For such processes, the following a.xiom holds: 

(p <l J) : {p} {J, R) {p <l (JA R)}. 

5.5.2 Rules for the TNP constructs 

• Channel hiding 

I:{p}m{q} 
provided hchan( I, q) n c = 0. 

I: {p} m\c {q} 

• Variable hiding 

I:{p}m{q} 
provided var(q) n x = 0. 

I: {p} m\x {q} 

• Renaming 

Let c' be some fresh channel na.me. Then: 

(I[ h[d/c][c/c']/h]): {p[ h[c/c']/h] A c = 6} m {q[ h[d/c][c/c~/h]} 

I: {p} m{d/c){q} 

• Kern 

H hchan(I,p,q) Ç c and t0 is fresh, then: 

I: {p} m {q} 

(Kern( to, I)): {p A hlc = tolc} Kern(m) {q} 

• Sequential composition 
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I:{p}m1{r} , I:{r}m2{q} 

I: {p} m1; m2 {q} 

• Choice 

I:{p}m1{q}, I:{p}m2{q} 

• Parallel composition 

Provided that for (i,j) = (1, 2) and for (i,j) (2, 1): 
abase(Ii, qi) n /3; Ç /3i: 

I1: {p1} m1 {qi} , 12: {p2} m2 {q2} 

• Recursion 

Let g be some arbitrary list of logical varia.bles, possibly the empty list. 
Provided that Xp tt, pvar(H): 

Hu {Vg[I: {p} Xp {q}]} 1- Vg[I: {p} m1 {q}] 

Vg[I: {p} µXp.m1 {q}] 

• /Jz Recursion 

Let g be some arbitrary list of logical varia.bles, possibly the empty list. 
Provided that Xp tt, pvar(H): 

Hu {Vg[I: {p/\ l} X13{q}]}1-Vg[I: {p/\ I} m1 {q}) 

Vg[I: {p/\ !} µ.X13.m1 {q}] 

• Process naming 

Let g be some arbitrary list of logical varia.bles, possibly the empty list. 
Provided that Xp tt, pvar(H): 

H 1- Vg[I1 : {p1} m1 { q1}] , HU {Vg[/1 : {P1} m1 { q1}]} 1- 12 : {p2} m2 { qz} 
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5.5.3 Adaptatlon rules for the Invariant System 

• Invariance 

I : {p A I} m {p A I} 

provided abase(p, I) n base(m) = (0, 0). 

• Prefix invariance 

For arbitrary logical trace variable to and set of channels c: 

(hlc::; toic): {hlc::; tolc} m {hlc::; tolc} 

• Closure adaptation 

I: {p} m {q} 

l: {p} m {q AI} 

• Initial trace adaptation 

Provided that c' n hchan(I,p, q) = 0 
I:{pAhlc'=e}m{q} 

initial trace adaptation 

I:{p}m{q} 

• Conjunction 

• Disjunction 

• Consequence 

I': {p'} m {q'} 
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't(l'-+ I), 't_(p-+p'), 't(q'-+q) 

I: {p}m{q} 

• 3- pre 
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provided jj n var(I, q) 0 
l: {3g(p)} m {q} 

5.6 Scott's induction rule 

The Induction Principle of Scott is well known.[Scott] We rephrase this prin
ciple for our particular language of correctness formulae. 

Deflnltion 5.2 {Admissible formulae) 

A correctness formula fis called anticontinuous in a process variable Xr; if 
for any chain < Pi >iEN in P(6.r;) the following holds: 

T[fDh)(11[U Pi/X13]) iff 
iEN 

Vi E N{T[fD('y)(11[pï/X13])). 

If a formulae f is anticontinuous in all its free process variables, we call it 
admissible. 

0 

Theorem 5.3 Scott's Induction Rule 

Let f be a correctness formula that is anticontinuous in Xr;. Then the fol
lowing rule is sound. Provided that Xr; fÎ. pvar(H) : 

H f- /[false/ Xp] , HU{/} f- /[m/ Xr;] 

H f- f [µXp.m/ Xp] 

0 

Pro of 

The second premisse of the rule can be transformed as in the following 
derivation. Note that the introduction of the universa! quantifier in the 
second step is allowed since Xr; fÎ. pvar(H). 
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HU{/} 1- /[m/ XpJ 
(-+ Introduction) 

H 1- f -+ /[m/ X,s] 
(V Introduction) 

H 1-VXp(f--+ f[m/Xp]) 

Therefore, what we must prove is that from: 

H f= /[false/ Xp] and 

H VXp(/-+ f[m/X,s}), 

it follows that: 

H f= f[µXp.m/ Xp]. 
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Let H = {/o, ... , /n}· Take some arbitrary "'f, '1 such that /\ T [!th'7 holds. 
iEN 

Then we have the following two facts: 

(1) 

(2) 

T[/[false/X,s]h'l, that is, 

T[/Ilb)('7[0bs[falseh'7/Xp]), or equivalently, 

T[/Jlh)('7[0/Xp]). 

Vpp E P(Ap)(T[/-+/[m/Xp]B("'f)('l[Pp/Xp])), which holds iff 

Vpp E P(Ap)(T[/]("'f)('l[Pp/Xp]) * T[/[m/X,s]]lb)('l[Pp/Xp])) iff 

Ypp E P(A,s)(T[/](1)('7[P,s/X11]) * T[/J](ï)("[Obs[m]{'l[Pp/Xp})/X,s])). 

Define the chain < p(i) >ïeN in P(A,s) as follows: 

{ 
p(o) = J_ = 0 
p(HI) = Obs[m]("'f)('l[P<i)/X,sJ) for i;:::: 0. 

From point (1) it follows that: 

T [JD ("1 )( 'l[P(o) / Xp]), 

and from point (2) that, for all i EN: 

T[/Ilh)('l[P(ï)/Xp]) * T[fD(ï)('l[P(ï+l)/X,sJ). 

A simple proof by induction on i yields that: 



178 CHAPTER 5. PROOF SYSTEMS FOR TNP 

Vi EN( ê[/D(1)(11[p(i) / X13])). 

The anticontinuity of f in Xr; then implies that : 

ê[JD(1)(11[u,p(i) /Xp]). 

Since Obs[µXr;.m]('I) Uip(i), one sees that: 

ê [IE ( 7)( 11 [ Obs[µX13.m ](" )/ Xp]) holds, 

which is equivalent to: 

ê [f[µXp.m/ Xp]] (7)(11), 

which was to be shown. 

D 

The Recursion rules for our three proof systems are in fact instances of 
Scott's Induction rule. This follows from the following lemma. 

Lemma 5.4 Admissibility of SAT 

Let m E Mixed, X E Jtssn. Then the correctness formula m sat X is admis
sible. 

D 

Corollary 5.5 

Hoare formulae Vg[(~) m ("1)] and Invariant formulae Vg[J: {p} m {q}] are 
admissible. 

D 

Proof 

We must prove the anticontinuity of m sat X in every process variable of 
pvar(m sat X)(= pvar(m)). So let Xp E pvar(X), and let < p;. >ieN be 
some chain in P(.613). 

The following equivalences hold: 

ê[m sat x]('Y)(11[LJ pifXp]) iff 
iEN 

Obs[m]('Y)(,.,[LJ P1/Xp]) s;;; [xh iff 
iEN 

( U Obs[m]b)(11[Pi/X13])) s;;; [xh iff 
iEN 
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w( Obs[mH1)(rJ[p,/X"]) ç [xh)· 
This proves the admissihility of SAT formulae. 

The admissibility of Hoare formulae follows from the admissibility of SAT 
formulaeand the fact that each Hoare formula Vg[(~) m ("7)] is equivalent to 
the SAT formula m sat Vg[~ ~ 1/J]. This shows also shows the admissibility 
of Invariant formulae, as these are ( abbreviations of) Hoare formulae. 

D 

5.7 The soundness of the sat system 

We prove the soundness or all SAT axioms and -rules, directly from the 
definition of the semantics. We recall that the condition for the soundness 
of the rule: 

/o, · · ·, /n-1 

In 
is the following semantic condition: 

V'fJ E 1N1 E r(f\ T[Fi]"/'1 ~ T[/nhf1). 
i<n 

We present the proof as a series of lemmata. 

Lemma 5.6 

For the assertion A( a), defined for atomie processes and predicative processesa 
in section 5.2.1, the following equality holds: 

a = A(a)jbase(a). 

D 

Corollary 5. 7 

The SAT axioms for atomie processes are sound. 

D 

Pro of 

Since A(a)lbase(a) Ç A(a) and a sat A(a) is just an abbreviation of a Ç 
A( a), the corollary follows directly from the lemma. 

The lemma is proven by means of the following semantica! calculations. 
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• Abort, Z 

Obs[aborth11 = Z = {(so, e, J..)lso E StateL} = 

{(so, h, J..)iso E State.L}l(0, 0) = [J.. ]]ïl(0, 0). 

The process Z is treated similarly. 

• Skip 

Obs[skiphf1=1 = {(so,e,J..),(so,e,so)lso E State.L} = 

{(so, h, s)lso, s E State.L, h E irace}j(0, 0) = [truehl(0, 0). 

• Assign 

Let {y} = var(e),z = {y} u {x}, {w} {y} - {x}. 

Obs[x := ehfJ = Close({(so,e,so[ê[e]so/x]) 1 so E State})= 

Z U {(so,e,so[ê[e]so/x})lso E State}= (*) 

[J..h!(0,z) u [T/\x=e[z0 /x]]ïl(0,{x})= 

[J..hl(0,z) u [T/\x=e[x0 /x]/\w=w0 ]ïl(0,z)= 

[J.. v (T /\ x = e[x0 /x]) /\ w = w0 ]ïj(0,z) = 

[(T-+x = e[z0 /xj /\ W = ill0 )]'yj(0, Il). 

(As was to be shown). Here the equality (*) follows from the assump
tions made on the t functions in chapter 4. These assumptions imply 
that if a computation ó is of the form (so,e,so[ê[e]so/x]), then we 
have the following equalities: 

t[xhó = (so[ê[e]so/x])(x) = t[e]so, and 

t[e[x0 /x]]ïó = ![e)so. 

So if ó is of the this form then ó E [x e[x0 /xlh· 
• Guard 

Let {w} = var(b). 

Obs[b)'Yq = Close({(so,e,so)lso E State,B[b)so}) 

= Z u {(so,e:,so)lso E State,B[b]so} = 

[J..]'yj(0,{w}) U [T Ab)'Yj(0,0)= 

[J..hl(0,{w}) u [T Ab/\w = z<>h!(0,{w}) = 

[T-+ (bi\ w = w0 )]ïj(0, {w}). 
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• Com Let 11 = var(b) U {x}, {w} = var(b) - {x}. 

Obs[c.x:b]ïq = 

Close( {( so, < (c, v) >, so[v /x])}lso E State, B [b](so[v/x])}) = 

Z U {(so,< (c,v) >,l.),(so,< (c,v) >,so[v/x])I 

so E State, B[b](so[v/x])} = 

[l.]1(0,11) U 

[3v[c =< v > /\b[w 0 /w, v/x] /\ (T -tx = v)Jhl( {c}, {x}) = 

[l. /\ c = ehl({c},11) U 

[3v[- - -] /\ w = w0 hl({c},11) = 

[(l. /\ c = e) v (3v[- - -] /\ w = w0 ]ï( {c}, 11)). 

• Predicative processes 
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We must prove that xl,B = A(X!P)lbase(Xl,B). This is obvious, since 
A(xl,B) = X and base(xl,B) = {3. 

0 

Lemma 5.8 

The proof rules of the SAT system are sound. 

Pro of 

• Hiding rules 

For both hiding rules the premisse states that: 

Obs[m]iq ç [x]ï 

The restrictions for. these rul es are: 

(a) var(X) Ç Var - x, for variable hiding, and 

(b) chan(X) Ç Chan - c, for cha.nnel hiding. 

From (a) it follows, by corollary 4.13, that 

p Ç [xh iff pl('Var x) Ç [xh. 
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And so, from the premisse, we can infer that: 

Obs[m1 \x]hfl = Obs[mhqj(Var - x) Ç [Xh 

By the same corollary, and (b) we see that 

p Ç [xh iff pj(Chan - c) Ç [x]I, 

Hence: 

Obs[m1 \c]lq = Obs[mhfll(Chan- c) C [X]]"Y. 

• Renaming 

First note that: 

Te[h[d/c]b(so,t,s) = (T![hh(so,t,s))[d/c] 

= t[d/c] = T![hh(so,t[d/c],s). 

Since h is the only atomie expression that depends on the trace component 
of a computation 6, one sees that the following holds: 

T[x[h[d/c]/h]]'ï6 iff T[x]l(6[d/c]) 

This implies that 

([x[h[d/c]/h]h) [d/c] = [x]h. 

Remark Note that, in genera!, [X[d/c]h -:fa (ITxh) [d/c] ! 

Now assume that the premisse of the rule holds, i.e. that: 

Obs[mhfl Ç [X[h[d/c]/h])i. 

Then from the monotonicity of the renaming operation [d/c] follows: 

Obs[m(d/c} hfl = ( Obs[mhfl) [d/c] Ç 

{[x[h[d/c]/h]h) [d/c] = [Xh 

This proves the soundness of the rule. 

• Kernel 

The premisse of the rule states that: 

Obs[mhfl Ç [x]ï. 

From this, and the monotonicity of the Kern operation, it follows directly 
that: 

Obs[Kern(m)h'1 Ç Kern([xh) = [Kern(X)h 
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• Sequential composition and nondeterministic choice 

The premisses of both rules state that: 

Obs[fflihfl Ç [Xih for i = 1, 2 

From this the desired results follows easily: 

(i) Obs[ mi; m2hfl = Obs[m1h1100bs[m2h"I ç (monotony of o) 

[X1h ê [X2h = [X10X2h, and 
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(ii) Obs[S1 or S2h11 = Obs[m1]h11 U Obs[m2h11 Ç (monotony of u) 

[X1h U [X2h [X1 V X2h· 

• Parallel composition 

The premisses of the rule state that: 

for i = 1, 2. 

We reformulate the restrictions on the free varia.bles of the Xi: 

abase(Xi) Ç f3i U ((Chan, 'Var) - !3;), 

for (i,j) = (1, 2) and for (i,j) = (2, 1). 

From this we must prove that Ob~[ m1 /J1 11.B:i m2h'1 Ç [X1 /\ X2]'Y, where 
Obs[m1 .81 ll.e:i m2h11 is determined as the largest set p E P(.6.) such that: 

(2) Plf3i Ç Obs[mïh'I, and 

(3) base(p) Ç (!31 Uf32) 

That is, for pas above, we must prove that p Ç [Xi]1. 

Now from the restrictions, it follows by corollary 4.13 of chapter 4 that, for 
(i,j) as above: 

{4) p Ç [Xih iff 

PI (f3i U ( ( Chan, 'Var) - !3;)) Ç [Xi Jh 
Also, property (3) is equivalent to: 

(5) p pj(f31 U f32). 

Since pj(f31 U !32)!(.Bi U ((Chan, 'Var) - ,8;)) = Plf3ü we see that from (4) and 
(5) it follows that: 

(6) p Ç [Xih iff PI.Bi Ç [Xi]h, for i = 1, 2. 

Combining this with (1),(2) yields: 
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(7) p Ç [Xih for i = 1, 2, that is : 

p Ç [X1 /\ X2h· 

(As was to be shown). 

• Recursion 

This case follows from Scott's Induction rule and the fact that SAT formulae 
are admissible. The first premisse of Scott's rule becomes H f- false sat x. 
Since this is a valid formula, the first premisse can be omitted from the rule, 
and only the second premisse remains. The second premisse is, for the case 
of SAT formulae: 

Hu {Xp sat X} f- m sat x. 
This is exactly the premisse of the SAT rule for recursion. 

• µ1& Recursion 

From the premisse H f- Z sat X it follows by means of the weakening rule 
that 

HU {Xp sat X} f- Z sat x. 
This is one of the premisses of the following derivation: 

Hu {Xp sat X} f- Z sat X, HU {Xp sat X} f- m sat X 
-------------------(Choice) 

HU {Xp sat X} f- morZ sat XV X 
-------------(Consequence) 

HU {Xp sat X} f- morZ sat X 
-----------{Recursion) 

H f- µXp.(morz) sat X 

The conclusion of this derivation is (abbreviated by} H f- µzXp.m sat X, 

which was to be shown. 

• Process naming 

Note that this rule is not of the restricted format, hut rather is a natural 
deduction rule of the genera! form. We must show the following: 

(H f= m1 sat X1 /\ Hu {6 sat X1} f= m2 sat X2) => 

H f= 6 = m1in m2 sat X2 

This amounts to the following: 

If 
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'Vf1V1( T[Hhfl =* Obs[m1h11 Ç [X1h) and 

V17V1( (T[H]l" 1u1(6) Ç [X1]h) =?- Obs[m2h'1 Ç [X2]"Y) 

then: 

V'7V"'f(T[Hh'1 =* Obs[6 = m1in m2h'1 Ç [X2Jh) 
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So choose some arbitrary f1 and "f such that T [ HJhf1. From the first im
plication it follows that Obs[md"Y'1 Ç [X1h· Let '11 '7[0bs[mi]111/6]. 
From the restriction for the rule it is known that e f/:. pvar(H). Therefore 
T[H]fJ'">' holds too. Moreover, f1'(e1) = Obs[md"f'1 Ç [X1]ï. But then 
we can infer from the second implication that Obs[m2h11' Ç [x2h. Since 
Obs[Ç1 = m1in;m2Jh'1 = Obs[m2]"f11', we conclude that 

Obs[6 = m1in;m2h'7 Ç [X2h, 

as was to be shown. 

• Invariance 

From the theorem following the semantic definition, we know that: 

Obs[mhfJ E P(a,6), where,8 = (c,x) base(m). 

That is, for any ó = (so, h, s) E Obs[mh11, we have the inclusion: base(ó) Ç 

base(m) Therefore, if d, y are such that (d, y)nbase(m) = (0, 0), then hld e 
and if s =/:- ..L then so(ti) s(y) We conclude that T[ hld = e /\ (T-+ y 
y0 )]"16 true for all 6 E Obs[m]ïf}, as was to be shown. 

• Conjunction 

The premisses of the rule state that: 

Obs[mh11 Ç [Xih for i = 1, 2 

This implies that 

Obs[mh'1 Ç [X1h n [X2h = [X1 /\ X2h· 

• Consequence 

From the first premisse we have: 

Obs[mhfl Ç [X1h (•) 

The second premisse, V.L[X1-+ X2], holds iff X1 -t X2 is a strictly va.lid asser
tion. That is, for any "f Er, if T[X1hó, then T[X2]ïó. We see that, for 
any ")', [X1h Ç [X2h· 
Together with ( *) we can conclude that: 

Obs[m]ïf1 Ç [X2h· 
(AB was to be shown.) 
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5.8 The soundness of the Hoare system 

5.8.1 The Hoare SAT transformation 

Let A( a) and Ap ( a) as defined in the section on axioms for atomie processes, 
where (3 = base( a) U abase( 1/J ). Since for assertion X, 1/J the implication: 

x ---t (x t> 1/J) ~ 1/J 

is valid, we have the following derivation: Let {31 ~f abase('l/J) - base(a) 

a sat A(a) (SAT axiom) a sat lp1 (invariance) 
( Conj unction) 

a sat Ap(a) 
( Consequence) 

a sat (Ap( a) t> 1/J) ~ 1/J 
(SH) 

(Ap( a) t> 1/J) a ( 1/J) 

Therefore, to prove the soundness of the Hoare axioms for atomie processes, 
all we need to do is to show that they are actually of the form: 

(Ap( a) t> 1/J) a ( 1/J ). 

This is done as follows, using the representation for X t> 1/J provided in lemma 
4.31. In all cases below, let (3 = (c, {x} ). 

• Skip 

We must calculate Ap(skip). To this end, we first calculate a few sub 
expressions of this assertion: 

A(skip) = true, so 

- A.B(skip) = hic = e /\ (T---tx = x0
) 

- A.B(skip )[l_ 0 ] iff eic = e /\ false---tfalse iff true 

Ap(skip)[T0 j[_L][t1/h] iff tilc = e 

- Ap(skip)[T][tif h] iff tilc = e /\ x = x0 

Therefore, Ap (skip) t> 1/J iff 

(j_ /\ (true---t'l/J[l_])) V 

(T /\ Vt1VJ_ x (Ap(skip)[T0 1[t1/h]---t1/J[htifh])[x/x0
]) iff 
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(1- /\ 1/J[1-]) v 

(T /\ V't1(t1lc = €-+1/J[1-:l[ht1/h]) /\ Vt1VJ. x ((t1lc = € /\ x = x0
) 

-+1/J[-r][htif h])[x/x0
]) iff 

(1- /\ 1/J[1-]) v (T /\ 1/J[1-] /\ ( 1/J[T][x0 /x]) )[x/x0
] iff 

1/J[1-] /\ (T -+1/J[T]) iff 

"' [ J_ J /\ "' 
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This last assertion is indeed the precondition of the skip axiom in the 
Hoare system, as was to be shown. 

• Abort, Z 

A(abort) = 1- so Ap(abort) = (1- /\ hlc = €) 

For the purpose of calculating Ap(abort) I> 1/J we remark that: 

- Ap(abort )[1-0
] iff true /\€Ic = € iff true 

- Ap(abort)[T0 ][1-][t1/h] iff true /\ tilc = € iff tilc = € 

- Ap(abort)[T][t1/h] iff false /\ tilc = € iff false 

Therefore we see that: 

Ap(abort) I> 1/J iff 

(1- /\ (true-+1/J[1-])) V 

(T /\ Vt1VJ.x(Ap(abort)[T0 ][t1/h]-+1/J[ht1/h])[x/x0
]) iff 

(1- /\ 1/J[1-])v 

(T /\ Vt1(t1lc = €-+1/J[1-l[htifh]) /\ Vt1~x(false-+ · · ·)) iff 

(1- /\ 1/J[1-]) v (T /\ 1/J[1-]) iff 

1/J[1-] 

Here we used the fact that, if tilc = € then 1/J[_l_J[ht1/h] iff 1/J[1-] since 
hchan(1/J) Ç c. We conclude that (Ap(abort) I> 1/J)abort(1/J) is the 
formula: ( t/J [ 1-])abort ( t/J), as was to be shown. 

The case Z is of course completely similar. 
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• Guard 

A(b) = T-(bA tD = w0
), where {w} = var(b), so 

- Ap(b) = T-(b A x = x0
) A (hjc = e;), and 

- Ap(b)[..L 0 ] iff false-(false t\ ëlc = ë) iff true 

- A,a(b)[T0 ][..L][ti/h] iff tilc = g 

- Ap(b) [T:l[t1/ h] iff b t\ x = x0 A ti Ic = g 

Therefore: A,a ( b) I> tb iff 

(..LA (true-tb[J..])) V 

(T t\ Vt1V1.x{Ap(b)[T0 ][ti/h]-tb[hti/h])[x/x0
]) iff 

(J.. A tb[J..])v 

(T A Vt1(tijc = g-t/J[J..][t1h/h])A 

Vt1'.tx((bt\ x = x0 A tilc = e)-tb[T][hti/h])[x/x0
]) iff 

(J.. A tb[J..]) v (T A tb[J..] t\ (b-tb[TJ[x0 /x])[x/x0
]) iff 

t/J[..L] A (T A b)-+t/J[T] 

We conclude that (Ap(b) I> tb)b(tb) is the formula: 

(tb[J..] A (T A b)-tb[T])b(tJI). 

• Assign 

A(x := e) =: T -(x = e[z0 /z] t\ w w0
), 

where {z} = var(e), {w} = var(e) - {x}. 

So: 

Ap(x := e) = (T -(x = e[z0 /z] t\ fi = y0
)) t\ (hlc = e;), 

where {y} = {x} - {x} 

- Ap(x := e)[..L 0 ] iff (false- · · ·) A ëlc = e iff true 

- Ap(x := e)[T0 ][J..][ti/h] iff (false- · · ·) A tilc = e iff tilc = ë 

- A11(x := e)[T][t1/h] iff x = e[z0 /z] A y y0 A tilc = g 

Therefore, Ap(x := e) I> t/J iff 

(..L t\ (true-t/J[..L])) V 
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(T A Vt1V.Lx(Ap(x := e)[T0 ][t1/h]--+,P[ht1/hJHx/x0
]) iff 

(_!_ A '1/J[_!_])V 

(T A Vt1(tilc = 6--+,P(_!_j[ht1/hj)A 

Vt1~x((x = e[Z° /z] A y = fi 0 A t1lc = 6)--+,P[T][ht1/h])[x/x0
]) iff 

(_!_ A '1/J[_!_])V 

(T A ,P[_!_] A (,P[T][e[Z° /z]/x, y0 /y])[x/x 0
]) iff 

,P[_!_} A (T--+,P[_!_][e/x]) 
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So we can conclude that ( Ap ( x := e) I> ,P) x := e ( t/J) is the assertion: 

(,P[_!_] A (T--+,P[_!_][e/x])) x := e (,P). 

• Communication 

A(c.x:b) = (_!_ A c = 6) v 

3v [c =< v > Ab[w0 /wj[v/xj /\ (T--+(v = x A w = w0
))], 

where w = var(b) - {x}. 

Therefore, 

- Ap(c.x:b) = (_!_Ahlc = e:)v 

(hld = e; A 3v[c =<" > Ab[w0 /wHv/x] A (T--+(t1 = x /\ jj = g0
))]), 

where d = c - {c}, {y} {x} - {x}. 

- Ap(c.x:b)[.1_0
] iff (true /\ 61c = s) V • · · iff true 

- Ap(c.x:b)[T0 ][_!_][t1/h] iff t1lc = 6V 

(t1ld = e; /\ 3t1[t1ic =< t1 > Ab[w0 /tD}[t1/xlJ) 

- Ap(c.x:b)[T][t1/h] iff 

t1ld = 6 /\ 3t1[tilc < t1 > Ab[w0 /w][t1/x] /\ v = x A fi = fi0
] 

We use this to calculate Ap(c.x:b) I> ,Pas follows: 

Ap(c.x:b) I> ,P 

iff 

(_!_ A (true--+,P[_!_])) V 

(T A Vt1 V.Lx( A.8(c.x: b) [T0 ][ti/h]--+ t/J[ht1/hJ) [x/x0 J) 
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iff 

(..L /\ 1/J[..L}) v 
{T /\ Vt1((t1lc = 6 V (tild = 6 /\ 3v[t1lc =< v > /\b[w0 /w][v/x]])) 

- T/J[..L][ht1/h])[x/x0
]/\ Vt1V.Lx((t1ld = 6/\3v[t1lc =< v > /\b[w0 /w][v/x]/\ 

v = x /\ fi = !ï0
)] - 1/J[T][ht1/h])[x/x0 J) 

iff 

{..L /\ 1/J[..LJ) V {T /\ 1/J[..L] /\ Vv(b[v /x]-tt/J[..L][h < (c, v) > /h]) 

/\Vv(b[v/x]-t,P[T][h < (c, v) > /h][v/x])) 

iff 

1/J[..L] /\ T-tVv(b[v/x]-t(,P[..L][h < (c, v) >]/\ 
1/J[T][h < (c, v) > /h][v/x])). 
This last assertion is the precondition of the communication axiom 
within the Hoare system, as was to be shown. 

• Predicative processes 

The following simple derivation suffi.ces: 

(xl,8) sat X (Predicative process) 
(SP) 

(<,o) (xl,8) (<,o <1 x) 

This ends the soundness proof for the Hoare axioms for atomie processes. 
The next step is to treat the TNP constructs. 

• Hiding rules 

Assume for the channel hiding rule that hchan( 1/J) n c = 0 and for the 
variable hiding rule that var( 1/J) n x = 0. 
Since hchan(cp""" 1/J) = hchan(,P) and var(<p""" 1/J) = var(,P), the following 
derivations are possible: 

(<,o) m (1/J) 
(HS) 

m sat (<,o I"\..+ 1/J) 
(channel hiding in sat system) 

m\c sat (<,o""" 1/J) 
(SH) 

(cp) m\c {1/J) 
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(p) m (1/1) 
(HS) 

m sat (p ~ 1/1) 
(var hiding in sat system} 

m\x sat (p ~ ,P) 
(SH) 

(p) m\x (1/1) 

• Renaming 

Let c' be fresh, and let îp and ;j, be as follows: 

îp ~r p[h[c/c']/h] A (c = e:), 

;j, ~r ,P[h[d/c][c/ci/h]. 

We prove that the following implication is valid: 

((îp ~ ;j,) A c' = e:)-+ ((p ~ tl>)[h[d/c]/h]). 

Therefore assume: 

(îp ~ ;j,) A c' = e;. (1) 

By expanding the definition of the ~ operator one sees that this is equivalent 
to: 

Vto(îi>[to/h,x0 /x, T0 /T]-+ ;j,[toh/hJ) A (c' = e:), 

that is: 

Vto ( (p[to[c/c']/h, x0 /x, T 0 /T] A tolc = e:)-+ 

t/>[(toh)[d/c][c/c1/h]) A (c' = e:). (2) 

From (2} we must prove: 

Vt~ (p[t~/h, x0 /x, T 0 /T] -+ ,P[tti(h[d/c])/hJ). (3) 

So take some arbitrary tb and assume p[tb/h, x0 /rt, T 0 /T]. We must then 
prove that t/>[tb(h[d/c])/h] holds. Since c' is fresh, so in particular does not 
occur free within p or 1/1, we may assume, without loss of generality, that 
t~ 1 c' = e; for this proof. 

We now instantiate (2}, where we choose to to be tb[c' /c]. 

It is easily checked that: 
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to[c/c'J = th[c'/c][c/c'] th and that 

tolc = th [c' / c] Ic e:. 

Therefore we can use the implication in (2) to infer t/J[(toh)[d/c][c/c1/h]. 

By the assumption on t~ and the conjunct c' 6 in (2), it is seen that 

(toh)[d/c][c/c1 = (t~[c' /c][d/c][c/c1)"(h[d/c][c/c1) t~(h[d/c]). 

But then we can condude that t/J[t~(h[d/c])/h] holds, as was to be shown. 

We use the implication that we just proved, in the the following derivation: 

(<P) m (;[J) 
(HS) m sat ( c' = 6) (Invariance) 

m sat (<P ~ ;[J) 
(Conjunction ) 

m sat ((<P ~ ;f,) /\ c' = e:) 
( Consequence) 

m sat ((rp ~ ,P)[h[d/c]/h]) 
(Renaming) 

m{d/c} sat (rp ~ t/J) 
(SH) 

(rp) m{d/c} (tP) 

Let c = hchan(t/J), and let <p1 = <p /\ (hlc = tolc). 
(rp)m1(t/J) 

-----(HS) 

m1 sat (rp ~ t/J) 
---------(Kern) 

-----------(SP) 

(rp')Kern(m1)(rp' <l Kern(rp ~ ,P)) 
-----------(Consequence) 

(rp')Kern(m1)(Kern(to, ,P, c)) 

The application of the consequence rule in this derivation is justified as 
follows. 
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(h, s) E [~' <l Kern(~ '\À t/J) b 
implies 

3hi,h2,s1: h = h1h2 A (hi,s1) E [~'h A (si,h2,s) E [Kern(~ '\À t/J)b 

implies 

3h1, h2, s1 : h = h1h2 A {hi, s1) E [~h A h1lc = 1(to)lc A 

'th1((hi,s1) E [~h-+ ((h1h2),s) E [t/Jh) A 

'th~ $ h2, Yh1 ( {h1, s1) E [~h-+ (h1h~, ..L) E [t/JDb)) 

implies 

3hi, h2, s1 : h = h1h2 A hilc = 1(to)lc /\ 

(h1h2,s) E [f/J]ï/\ Vh~ $ h2((h1h~,..L) E [t/Jh) 

implies 

3hi, h2, 8] : h = h1h2 /\ 

(h1h2,s) E [t/JJh /\ Vh~::; h2((ï(to)h~,..L) E [t/JJh) 

implies 

(h, s) E [.Ph /\ Vh' ( 1(to)lc::; h'lc $ hlc-+ (h', ..L) E [t/Jh) 

implies 

(h,s) E [Kern(to,t/J,c)h. 

•Sequential composition 

(HS) (HS) 

m1 sat (~'\À p) m2 sat (p '\À .P) 
(;) 

( Consequence) 

(SH) 

•Choice 
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(ep) m1 (1/1) (ep) m2 (1/J) 
(HS) (HS) 

m1 sat (ep -v 1/J) m2 sat (ep -v 1/J) 
(Choice) 

( Consequence) 

m1 or m2 sat (ep -v 1/J) 
(SH) 

• Parallel composition 

Assume that abase(1/Ji) n (3; Ç f3i, for (i,j) = (1, 2) and (i,j) = (2, 1). 

Note that, since abase(ep -v 1/1) = abase(,P) the conditions above still hold if 
we replace 1/Ji by epi -v 1/Ji· This means that the application of the parallel 
composition rule in the following derivation is justified: 

(ep1)m1(1/J1) (ep2)m2(1/12) 
(HS) (HS) 

m1 sat (epi -v 1/11) m2 sat (ep2 -v 1/12) 
(Parallel composition) 

( Consequence) 

(SH) 

• Recursion, µz Recursion 

The recursion rule is a special case of Scott's Induction rule, since we already 
showed the admissibility of Hoare formulae. Just as for the case of SAT 
formulae, the first premisse of Scott's rule, which is in this case of the form 
H 1- ( ep) false ( 1/J), can be omitted since it is always satisfied. 

The case of µz recursion is treated completely similar to the corresponding 
case for the SAT system. 

• Process naming 

This case is very similar to the corresponding case for the SAT system. 

• Invariance 
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Assume that abase(t/J) = (d,{y}) and that (d,{y}) nbase(m) = (0,0). 

Then we have the following derivation, starting with an insta.nee of the 
invariance axiom, for the sat system. 

m sat (hld = 6 A (T-+ji = fï°)) 
(WP) 

( Consequence) 

(t/J[-L] A t/J) m (t/J) 

(The proof of the property used for the consequence rule in this derivation 
is very similar to the calculation of the weakest precondition for the skip 
process above.) 

• Prefix Invariance 

Note that: 

\lto(tolc $ hlc ""' tolc $ h!c) iff 

\lfo\lto(tolc $ t~lc-+ tolc $ t~lc) 

Clearly the last assertion is universally valid, explaining why we need no 
prefix invariance axiom for the SAT system! 

The soundness of the axiom for the Hoare system follows from: 

m sat true invariance 
( Consequence) 

m sat \lto(tolc $ h!c ""' tolc $ hlc) 
( Consequence) 

m sat tolc $ hlc ""' tolc $ hlc 
(SH) 

(tolc $~Ic) m (tolc $ hlc) 

• Strictness 

Note that if 'P E Assn(E), then the Assn assertions ..L0 A1.p[t0/h,x0 /xl, T 0 T] 
and ..LA1.p[to/h] do have the same truth value. Also, we recall that ..L 0 -+ (hic = 
~ A ..L) is universa.By va.lid, by the structure of the domain ~. 

So if we choose c = hchan(1.p), then we see that: 

(..L/\1.p)""' (..LA1.p), 
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which is equivalent to 

\lto { (..L 0 
/\ ip[to/ h, x0 

/ xl, T0 T]) -+ (..L /\ ip[to/ h])), 

is universally valid. 

This explains why there is no strictness axiom for the SAT system. And 
similar to above, we can prove the soundness of the strictness axiom for the 
Hoare system: ..L 0 -+ (hlc = e: /\ ..L) 

m sat ( ..L /\ ip) 'VI> ( ..L /\ ip) 
(SH) 

(..L /\ ip) m (..L /\ 'P) 

• Conju.ncti.on 

(ip1) m (,Pi) (ip2) m (1/12) 
(HS) (HS) 

m sat ( 'Pl "-" "11) m sat ('P2 'VI> f/12) 
( Conjunction) 

( Consequence) 

(SH) 

• Disjuncti.on 

(ip1) m ("11) (ip2) m (1"2) 
(HS) (HS) 

m sat ('Pi 'VI> 1/11) m sat ('P2 "-" 1/12) 
(Disjunction) 

( Consequence) 

(SH) 

• Consequence 

Assume the validity of V.L(ip-+ip') and VJ.{f/1'-+1/1). Then is is easily checked 
that also (ip' 'VI> 1/1') -+ (ip ""' "1) is valid, and thus we have the following 
derivation: 
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( ip') m ( 1/J') 
(HS) 

m sat ( <p
1 

"""' 1,b') 
( Consequence) 

m sat ( <p """' 1,b) 
(SH) 

(ip) m (1/J) 

• 3-pre 

IT gare logica.} va.ria.bles tha.t do not occur free in 1/J, then: 

\1 g ( 'P """' "') iff 

Vg\lto(ip[to/h,x0 /x, T0 /T] ~1,b[toh/hJ) iff 

Vto(3g(ip[to/h,x0 /x, T0 /T]) ~1,b[toh/hJ) iff 

3g ( 'P) """' "'. 
This is used in the following derivation. Provided that g do not occur free 
in hypotheses of the derivation: 

(ip) m (1/.7) 
(HS) 

m sat ( <p """' 1,b) 
(V-Intro) 

m sat (\f g( <p """' 1,b)) 
( Consequence) 

m sat (3g ( <p) """' 1,b) 
(SH) 

(3g(ip)) m (1,b) 

• Strong adaptation 

Under the assumption that ,Bnbase(m) = (0, 0) we have the following deriva.
tion: 

(HS) m sat 1,e (Invariance) 

(SP) 
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The weakest precondition version of the rule is derived similarly, using the 
"WP" rule instead of the "SP" rule. 

• Initia[ trace adaptation 

The transformation is simple: 

(HS) 

( Consequence) 

m sat 1.p ~ 1" 
(SH) 

(1.p) m (1") 

The application of the consequence rule is justified by the following calcula
tions. We prove that 

((1.p /\ hle' = e) ~ 1")-+ (1.p ~ 1") 
is a valid implication, under the assumption that e1 n hchan( 1.p, 1") = 0. 

Assume that: 

(so, h, s) E [(1.p /\ hle' = e) ~ 1/J]ï. 

This is equivalent to: 

'v'ho (((ho, so) E [ 1.p h /\hole' = e) => (hoh, s) E [ 1" Jlï). 
We want to show that the conjunct hole' = e can be left out. So assume 
that we have some arbitrary (ho,so) E [1.p]'Y. Since hchan(1.p) n e' = 0 this 
implies that: 

(ho\e',so) E [1.p]ï. 

It is clear that (ho\e')le' = e, and so by the given implication it follows that: 

((ho\e')h, s) E [1/J]ï. 

Since also hchan( 1") n e1 = 0, one sees that: 

(hoh,s) E [1/J]ï, 

as was to be shown. 

D 
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5.9 Soundness of the Invariant system 

• Abort,z 

Choosing t/J = (I 1\ (T-.false)), we have: 

( t/J[..L]) abort ( t/J) (Abort) 
( Consequence) 

(I) abort (I 1\ (T-.false)) 
( Consequence) 

(T 1\ I) abort (I 1\ (T -.false)) 
(Hl) 

I: {I} abort {false} 

The process Z is treated completely similar. 

•Skip 

Choosing t/J = (I 1\ (T-.p )), we have: 

( t/J[..L] 1\ t/J) skip ( t/J) (Skip) 
( Consequence) 

(I 1\ (I 1\ T -.p)) skip (I 1\ (T -.p)) 
( Consequence) 

(T 1\ p 1\ I) skip (I 1\ (T -.(p 1\ I))) 
(Hl) 

I : {p 1\ I} skip {p 1\ I} 

• Assign 

Choosing t/J as I 1\ (T -+(p 1\ I)) we have that: 

t/J[..LJ {:} I and 

t/J[T)[e/x] {:} (pi\ I)!e/xJ {:} (p[e/x] 1\ I). 

Hence: 

(t/J[..L] 1\ t/J[T][e/x]) x := e (t/J) (Assign) 
( Consequence) 

(T 1\ p[e/x] /\ I) x := e (I /\ (T -.(pi\ I))) 
(Hl) 

I: {p[e/xj /\ I} x := e {pi\ I} 
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•Guard 

Choosing t/J as 1 A (T -+(p A 1 Ab)) we have that: 

t/J[..L] <:> 1 and 

t/J[T] <:> (p Al A 6). 

Hence: 

(t/J[..L] A (T A b)--+t/J[T]) b (t/J) (Guard) 

(IA (T A b)-+(p Al Ab)) b (IA (T-+(pA l Ab})) 

(T ApA I) b (IA (T-+b)) 

1 : {p /\ I} b {p Al Ab} 

• Com 

Let t/J = l A (T -+(p AI)). Then: 

t/J[..LJ <:> I and 

t/J[T] <=> p AI. 

(Hl) 

( Consequence) 

( Consequence) 

The comrnunication axiom in the Hoare system for this t/J is: 

(IA 

T -t Vv{b[v/x]-t (I[h < (c, v) > /h] A (pA I)[h < (c, v) > /h, v/x]) )) 

c.x:b 

(IA (T-+(pA !))). 

By means of the the Consequence rule one can derive from this the following 
formula: 

(TAIA 

Vv(b[v/x]-+ (I[h < (c,t1) > /h] Ap[h < (c,v) > /h,v/x]))) 

c.x:b 

(IA (T-+(p AI)). 

By definition, formalized in the "(Hl)" rule, the last formula is: 

I: {IA Vv(b[v/x]-+ (I[h < (c, v) > jh] A p[h < (c, v) > /h][t1/x]) )} 
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c.x: b 

{pA /}. 

• Predicative processes 

Let (J, R) be a predicative process as indicated for the axiom. We calculate 
the following strongest postconditions: 

(T /\ p) <1 ((T0 -+ J) A (T-+ R)) 

iff 

3t13t23v( hlc (t1t2)lc Ap[tif h, ii/x] /\ J[v/x0
, t2/h] /\ (T-+ R[ii/x0

, t2/h]}). 

p <1 J iff 

(p[j_] /\ true /\ j_) v) 

3t13t23v( hjc = (t1t2)lc /\ p[t1/h, v/x] A J[ii/x0
, t2/h]). 

T-+ (p <1 (J /\ R)) iff 

T-+ [3t13t23v(hlc = (t1t2)lcAp[tifh,ii/z]AJ[ii/x0 ,t2/h]AR[v/x0 ,t2/h])]. 

From these calculations it is clear that the following is a strictly valid asser
tion: 

[(TAp) <1 ((T0 -+J) A (T-+R))]-. [(p<lJ)A(T-+(p<l (JAR)))]. 

Therefore, the following derivation is admitted. 

(T /\ p) (J, R} ((T A p) <l ((T0 -+J) /\ (T -+R)) (Pred.) 
------------------(Consequence) 

(T /\ p) {J, R) (p <1 JA (T-+(p <l (J /\ R)))) 
(Hl) 

p <1 J : {p} (J, R} {p <l (JA R)} 

• Hiding rules 

If c n hchan(q, I) = 0, then also c n hchan(I A (T -+q)) = 0. Hence the 
following derivation is allowed: 
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(IH) 

(T /\ p) m1 (1 /\ (T -+q)) 
(Hiding) 

(T A p) m1 \c (1 A (T-+q)) 
(Hl) 

I:{p}m1\c{q} 

Variable hiding is very similar since x n var(q) = x n var(I A (T -+q)). 

• Renaming 

We use the following two abbreviations for substitution: 

[1] ~ [h[c/c']/h] and 

[2] ~ [h[d/c][c/c1/h]. 

Then we have the following derivation: 

l: {p} m1 (d/c){q} 

1[2} : {p[l] /\ c = e} m1 {q[2}} 

(T /\ p[l] /\ c = e:) m1 (1[2] A (T -+q[2])) 

Let c Ç hchan(l, q). 

I: {p} m1 {q} 

( Consequence) 

{IH) 

------(IH) 

(T /\ p) m1 (1 /\ (T -+q)) 
-----------------(Kern) 

(T /\ p /\ hic = to!c) Kern(m1) (Kern( to, l A (T -+q))) 
------------------(Consequence) 

(T /\ p /\ hlc =to ic) Kern(m1) (Kern( to, I) /\ (T -+q)) 
-------------(HI) 

Kern(to,l): {pA hlc = toic} Kern(mi) {q} 

• Sequential composition 

We have the following derivations: 
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(A) 

I:{p}m1{r} 
(IH) 

(T /\ p) m1 (I /\ (T -+r)) 
( Consequence) 

(T /\ p) mi((..L /\ I) v (T /\ r)) 

(B) 

I: {r} m2 {q} 
(IH) (..L /\ I) m2 (..L /\ I) (Strictness) 

(T /\ r) m2 (I /\ (T -+q)) 
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(Disj.) 

((..L /\ I) V (T /\ r)) m2((..L/\1) V (J /\ (T-+q))) 
( Consequence) 

((..L /\ I) v (T /\ r)) m2 (I /\ (T-+q)) 

(C) 

(T /\ p) mi((..L /\ I) v (T /\ r)) ((..L /\ 1) V (T /\ r)) m2 (1 /\ (T -+q)) 
---------------------(;) 

(T /\ p) m1; m2 (I /\ (T -+q)) 
(HI) 

Clearly the soundness of the rule follows by combining these three deriva
tions. 

• Choice 

l:{p}m1{q} I:{p}m2{q} 
(IH (IH) 

(T /\ p) m 1 (I /\ (T -+q)) (T /\ p) m2 (I /\ (T -+q)) 
{Choice) 

((T /\ p) /\ (T /\ p)) m1 orm2 ((1 /\ (T -+q)) v (I /\ (T -+q))) 
(Cons.) 

(T /\ p) m1 or m2 (I /\ (T -+q)) 
(Hl) 

1: {p} m1 orm2 {q} 

• Parallel composition 
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Assume that for i = 1, 2 : abase( q;, l;) n f3i Ç {3;. Then we have the following 
derivation: 

li : {pi} m1 {qi} fz: {P2} m2 {q2} 
(IH) (IH) 

(T /\ P1) m1 (li /\ (T ~q1)) (T /\ p2) m2 (fz /\ (T ~q2)) 
(P.C.) 

(Hl) 

The application of the parallel composition rule for Hoare formulae is justi
fied by the fact that: 

abase(l; /\ (T ~q;)) n f3i = abase(l;, q;) n f3i Ç {3;. 

• Recursion, µz Recursion 

Since I : {p} m 1 { q} formulae are ( abbreviations of) Hoare formulae, the 
corresponding rules for this latter type of formulae are applicable. For the 
case of µz recursion one could have expected the following rule: 

H f- Vg[I: {p} Z {q}], Hu {Vg[I: {p} Xp {q}]} f- Vg[I: {p} m1 {q}] 

The premisse of the form H f- Vg [ I : {p} Z { q}] however boils down to 
H f- ~(p ~ I). The premisse could be omitted by including the invariant I 
as a conjunct to the preconditions of the relevant formulae, as we have clone 
for the rule for µz recursion in the Invariant system. The following simple 
derivation shows that in this case the premisse for Z in the rule above is 

always valid. 

I: {I} Z {false} 
( ( Consequence) 

I : {p /\ I} z { q} 
(V- introduction) 

Vg[l: {p/\ I} Z {q}] 

• Process naming. 
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The rule for the invariance system is just a special case of the corresponding 
rule for the Hoare system. 

• lnvariance. 

Let 1/J = I /\ (T->(p/\ /)). 

The assumption for the axiom is that abase(p, I) n base(m) = (0, 0). This 
implies that abase(1jJ)nbase(m) = (0,0). 

Since 1/J[..l] {:::} I it is clear that: (T /\ p /\ I) ~ (1/J[..l] /\ 1/J). 

Hence the following derivation is possible: 

( 1/J [ ..l] /\ 1/J) m1 ( 1/J) (in variance) 
( Consequence) 

(T /\ p /\ /) m1 (/ /\ (T ->(p /\ /))) 
(Hl) 

I: {p/\ /} m1 {pi\/} 

• Prefix invariance 

hlc :S tolc) m (hlc :S tolc) (prefix invariance) 
( Consequence) 

T /\ hlc :S tolc) m (hlc :S tolc /\ (T ->hlc :S tolc)) 
(Hl) 

(hlc :S to lc): {hlc :S toic} m {hlc :S toic} 

• Closure adaptation 

I: {p} m {q} 
(IH) 

(T /\ p) m (I /\ (T ->q)) 
( Consequence) 

(T /\ p) m (I /\ (T ->(q /\ /))) 
(Hl) 

I : {p} m { q /\ /} 

• Initia[ trace adaptation 
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I: {pAhlc = ë} m {q} 
--------(IH) 

(T !\ p !\ hlc = ë) m (I !\ (T ~q)) 
-----------(Initia! trace adaptation) 

(T !\ p) m (I !\ (T ~q)) 
------(HI) 

I: {p} m {q} 

• Conjunction 

(IH (IH) 

-------------------(Conj.) 

(Cons.) 

(Hl) 

• Disjunction 

(IH (IH) 

-------------------(Disj.) 

----------------- ---(Cons.) 

• Consequence 

From the premisse: 

't( I' ~ !) ''t(p~p') ' 't( q' ~ q)' 

it follows that: 

(Hl) 

V1-((T !\ p)~(T !\ p')), V1-((J' !\ (T ~q'))~(J !\ (T ~q))). 
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Therefore the following derivation is possible: 

I': {p'} m {q'} 
(IH) V1-((T /\ p)-+(T /\ p')), 

V1-((I' /\ (T-+q'))-+(I /\ (T-+q))) 
(T /\ p') m ( I' /\ (T -+q')) 
---------------------(Cons.) 

(T /\ p) m (I /\ (T-+q)) 

I: {p} m {q} 

• 3 - pre 

Vg[I: {p} m {q}] 
-----(V- elimination) 

I: {p} m {q} 
--------(IH) 

(T /\ p) m (I /\ (T -+q)) 
--------(V- introduction) 

----------(3- pre) 

(3g(T /\ p)) m (I /\ (T -+q)) 
--------(Consequence) 

(T /\ 3g(p)) m (I /\ (T -+q)) 
--------(Hl) 

I : { 3g (p)} m { q} 

(Hl) 



Chapter 6 

Completeness 

6.1 Introduction 

Now that we have formulated several proof systems, we consider the deduc
tive strength of these systems. In relation to this we examine the expressive 
power of specifications. 

First of all we formulate some rather genera} yardsticks that can be applied 
to arbitrary proposed specification methods for TNP processes. Then we 
apply these yardsticks to our own method, as proposed in chapter 4. This 
results in the definition of so called characteristic specifications, that will 
play a major role in the completeness proof for the SAT system. 

6.2 The expressive power of specifications 

Consider some arbitrary proposed specification method for TNP processes. 
So for the moment the term "specification" refers to a certain type of for
mulae from this method, not necessarily to the specifications of chapter 4. 
A reasonable assumption that we will make is that processes with equal se
mantics and with the same bases satisfy the same specifications. That is, 
if S1 = S2 and base(S1) = base(S2), and "spec" is some specification, then 
either both S1 and S2 satisfy spec or none of the two does. Let S1ÇS2 de
note that S1 Ç S2 and base(S1) Ç base(S2). Also let S1 ~ S2 denote that 
S1 = S2 and base(S1) = base(S2). Four criteria about the expressiveness of 
the method, that might be satisfied or not, are: 

l. lf S1 and S2 satisfy the same specifications, then S1 ~ S2. 

209 
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(Together with the assumption made above this means that 8 1 ~ 8 2 

iff 81 and 82 satisfy the same specifications.) 

2. For each process 8 there is a weak characteristic specification Wch(8) 
in the following sense: if 81 1' 82, then 81 does not satisfy Wch(82) 
or 82 does not satisfy Wch(81). (It is understood here that 8 itself 
does satisfy W ch ( 8).) 

3. For each process 8 there is a characteristic specification Che ( 8) with 
the property that any 8' satisfies Chç (8) iff 8 1Ç8. -

4. Similar to 3, there is a specification Ch'.!!!. ( 8), such that 81 satisfies 
Ch<.!!!.(8) iff 8 1 ~ 8. 

Criterion 1 is the weakest of these four. 
An alternative formulation is: If 81 1' 82, then there exists some separating 
specification Sep(8i, 82) that is satisfied by one of the two processes hut not 
by the other. 

Criterion 2 is stronger: it requires that specifications Wch (8) are deter
mined on forehand such that Sep(81, 82) can be chosen as either Wch(8i) 
or Wch(82). 

Criterion 2 is implied by criterion 3, since if we have available characteristic 
specifications Che (8), we can choose Wch(8) to be Che (8). Then, if 
81 1' 82, we must have 81 f82, or 82 f 81, and therefore that 81 does not 
satisfy Che ( 82) or 82 does not satisfy Che ( 81). 

- -

Clearly criterion 4 is still stronger than criterion 3. It implies a stronger 
version of criterion 2, in that the separating specification Sep(81, 8 2) can be 
chosen as Ch<.!!!.(81) and also as Ch<.!!!.(82). 

Criterion 3 is the best of these four that one can hope for in the case of 
a system for safety properties. The reason for this is that if spec is such 
a specification that is satisfied by 8, it is also satisfied by all 8' such that 
8 1 Ç S. This follows from the characterization of safety properties of chapter 
3. This shows that criterion 4 cannot be met by specifications methods for 
safety properties, including our own methods from chapter 4. 

An example of a specification method for TNP not meeting criterion 1 would 
be the class of Hoare formulae {pre}P,e{post}, with the usual interpretation: 
If P,e starts in an initial trace and state satisfying "pre", then if and when Pf3 
terminates, "post" will hold for the resulting final trace and state. This is 
essentially our class of invariant formulae I: {pre}P,e{post} with I identical 
to true. For this method, the processes 81 and 82, defined as: 
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(Together with the assumption made above this means that 8 1 ~ 82 
iff 81 and 82 satisfy the same specifications.) 

2. For each process 8 there is a weak characteristic specification Wch(8) 
in the following sense: if 81 ~ 82, then 81 does not satisfy Wch(82) 
or 82 does not satisfy Wch(81). (It is understood here that 8 itself 
does satisfy Wch(8).) 

3. For each process 8 there is a characteristic specification Che (8) with 
the property that any 8' satisfies Chç (8) iff 8'Ç8. -

4. Similar to 3, there is a specification Ch2!.(8), such that 8' satisfies 
Ch2!.(8) iff 8' ~ 8. 

Criterion 1 is the weakest of these four. 
An alternative formulation is: If 81 ~ 82, then there exists some separating 
specification Sep(8i, 82) that is satisfied by one of the two processes hut not 
by the other. 

Criterion 2 is stronger: it requires that specifications Wch(8) are deter
mined on forehand such that Sep(S1, 82) can be chosen as either Wch(81) 
or Wch(82). 

Criterion 2 is implied by criterion 3, since if we have available characteristic 
specifications Chc(8), we can choose Wch(8) to be Chc(8). Then, if 
81 ~ 82, we must have 81 .[82, or 82 .[81, and therefore that 81 does not 
satisfy Chç (82) or 82 does not satisfy Chç (81). 

Clearly criterion 4 is still stronger than criterion 3. It implies a stronger 
version of criterion 2, in that the separating specification Sep(8i, 82) can be 
chosen as Ch!:!!(81) and also as Ch!:!!(S2). 

Criterion 3 is the best of these four that one can hope for in the case of 
a system for sa/ ety properties. The reason for this is that if spec is such 
a specification that is satisfied by 8, it is also satisfied by all 8' such that 
S'Ç8. This follows from the characterization of safety properties of chapter 
3. This shows that criterion 4 cannot be met by specifications methods for 
safety properties, including our own methods from chapter 4. 

An example of a specification method for TNP not meeting criterion 1 would 
be the class of Hoare formulae {pre} Pr; {post}, with the usual interpretation: 
If PtJ starts in an initial trace and state satisfying "pre", then if and when Pr; 
terminates, "post" will hold for the resulting final trace and state. This is 
essentially our class of invariant formulae I: {pre}Pr;{post} with I identical 
to true. For this method, the processes 81 and 82, defined as: 
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and 

would satisfy the sa.me specifications, since both have base f3 and neither of 
them terminates. However, 81 =f=. 82 and so 81 ~ 82. 

It is noteworthy that the system consisting of "classical" Hoare style speci
fications for, sequential programs does satisfy criterion 1 and 2, hut that it 
does not meet criterion 3. For these systems a specification consists of a pair 
(pre, post) of assertions in a first order predicate language. A program 8 
satisfies a specification if {pre} 8 {post} is a valid formula. To prove that cri
terion 3 cannot be met, let us assume on the contrary that (pre11kip,post81cip) 
is a characteristic specification for the program skip. That is, we assume 
that: 

{pre8Jcip}8'{post8kip} iff 8'Çskip 

Now since the set of free varia.bles occurring in pre8 Jcip or post11kip is a finite 
one, there must be some varia.bie, say x, not occurring in it. But then it is 
easily seen that: 

{pre11kip} x := 1 {post111ci11 } 

is a valid formula, despite the fact that x := 1 g;skip. 

The simple counterexample as above is not possible for the Hoare specifi
cations of chapter 4, who have the form (pre)Pp(post). Here the base f:J 
attached to P expresses the invariance of the infinitely many varia.bles and 
channels not present in f:J. For insta.nee, a characteristic specification for 
skip is: 

(true) P(0,0} (true) 

The process x := 1 does not satisfy this specification because it is not even 
substitutable for P(0,0)' We shall prove that for closed processes there are 
characteristic specifications conform criterion 3 in the form of Hoare spec
ifications as well as in the form of SAT formulae. To deal with non closed 
processes we must enlarge these specification classes if we want criterion 3 
still to be satisfied. We prove that in this case specifications of the following 
form suffice: 

f( e) ~{ 'v'~1 ". \f~n ( ( /\ spec,(~,))-spec( e)) 
i=l,n 

where each spec,(~i) is a SAT formula or Hoare formula. As mentioned 
before in chapter 4, the formula f ( e) above specifies a process 8 such that 
8 satîsfies spec provided the "modules" ~1 ••• ~n satisfy spec1 .•• speen. 
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The proof of these claims introduces the so called characteristic assertions 
A(m) for mixed terms m. We shall define A(m) as an assertion that satisfies 
the equality: A(m)lbase(m) =m. If m does contain free process variables, 
then A( m) is a parametrized assertion. These characteristic assertions play 
a major role in the completeness proof for the SAT system. 

Before we proceed to the definition of A( m) we would like to compare our 
treatment of bases with that of others. In [Olderog2], specifications are 
identified with assertions X that are closed with respect to ghost variables. 
Satisfaction of such a specification by a ( closed) process S simply means 
that S Ç X is valid, and, in particular, no explicit condition on bases is 
included. This means that such specifications correspond to formulae of the 
form P Ç X in our system. Here we adopt the convention that P without 
base subscript abbreviates P(Chan, 'Var)' 

The problem with these formulae is that the assertion X must somehow 
express the invariance of (infinitely many) channels and varia.bles. Naw, 
similar as in [Olderog2], we can include a conjunct h = hlc in X to enforce 
that no communications outside c can occur. A problem with such conjuncts 
is that they are not preserved by the parallel composition operator. For 
insta.nee, the following inference is not sound: 

The conclusion of this inference can be rewritten into: 

This is incorrect however; in fact we may conclude only that: 

S1 Il 82 Ç (h = hl(c1 u c2)). 

Indeed the restrictions associa.ted with our parallel composition rule in gen
era! forbid the inference above. The reason is that hchan(h = hjci) = Chan, 
and so the condition that hchan(h = hlci) n chan(S;) Ç chan(Si) for 
(i,j) = {1, 2) and for (i,j) = (2, 1), implies that chan(S1) = chan(S2), 
which is usually not the case. 

An even more serious problem is caused by the fact that, within our assertion 
language, there exists no assertion at all that expresses the invariance of 
infinitely many assignable variables. This could be regarded as a weakness 
of this Ianguage that should be corrected by adding for instance special 
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assertions of the form mod(x). The interpretation of these new assertions 
then must be as follows: 

[mod(x)]{ï) = {(so, h, s) 1 s = J_ or s(y) = so(t1) for all y E llar - x}. 

Another alternative would have been to allow for infinite conjunctions, such 
as /\ (y = y0

). Both approaches occur in the literature; see for example 
11e1Jar·-X 

[Lam2], [Jonkers]. 

Of course, if we express the invariance of varia.bles within assertions, we 
will have the sa.me type of problems with parallel composition as was the 
case with the invariance of channels. For example, the following inference, 
analogous to the one above, is not sound either: 

Si s; mod(x1) , 82 s; mod(x2) 
The foregoing explains why we decided 

81 Il 82 s; mod(x1) A mod(x2) 
not to rely on the assertion language to express the base of processes, but 
rather include bases as a separate part of specifications. 

A similar approach, fora language dealing with tra.ces only, can be found in 
[Snep]. There the base of a process is called its alphabet. 

6.3 Characteristic specifications 

In chapter 5 we introduced characteristic assertions A( a) for atomie pro· 
cesses a. We proved that not only a sat A(a), but that even a = A(a)lbase(a) 
is the case. This means that, of all assertions X such that abase(X) s; base(a), 
A( a) is the strongest assertion that is still satisfied by a. 

The next step is now to extend A by assigning such a characteristic assertion 
A(m) to just any mixed term m. 

For m with free process varia.bles contained in Çi, · · ·, en, A( m) is param
eterized by assertions X1,···,Xn· We indicate this by A(m)(X1,···,Xn), 
where the matching between the parameters Xa and process varia.bles ç, is 
to be understood from the context. Sometimes we abbreviate A(m)(X) as 
A( m )(Xi, · · ·, Xn) or even omit the list X completely. Similarly we use m(xj,8) 
as an abbreviation for m[(X1l.81)/6, · · ·, (Xnl.Bn)/Çn]· 

We shall prove the following equality: 

A(m)(x)lbase(m) = m(X'IP) 
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In particular for closed m this implies that: 

A(m)lbase(m) = m 

The free channels and varia bles in A( m) are chosen such that: 

abase(A(m)) Ç base(m) 

It is seen that for predicates X such that abase(X) Ç f3 the following equation 
holds for /31 2 /3 : 

(x A lfJ'-P) IP' = xlP 
As a consequence of this, if we define for p 2 base( m) the assertion AfJ ( m) 
as 

AtJ(m) = A(m) A lfJ-baae(m) 

then: 

AfJ(m)l/3 = A(m)lbase(m) =m. 

We use this abbreviation AfJ(m) already in the definition of A(m) below. 
First we repeat definition 5.1, which defines A(a) for atomie processes a. 

Deflnition 6.1 (Characteristic assertions for .Atom) 

D 

A(skip) = true 

A(abort) = ..L 

A(x := e) = T -+ (x = e[y0 /y] A w = w0
), 

where {y} = var(e) and { w} = var(e) - {x} 

A(b) = T-+ (b A w = w0
), where { w} = var(b) 

A(c.x: b) = (..LA c = e) V 

3v[c =<tl> A b[w 0 /w, v/x] A (T-+ (v = x A w = w0
])) 

where w = var(b) - {x} 

Apart from the recursion construct we give an explicit definition of A(m). 
For the recursion construct we can prove that there ezists such an assertion, 
without being able to give such an explicit definition. In section 6.5 we 
point out that in an assertion language that includes infinite disjunctions of 
formulae, one can give an explicit definition of characteristic assertions for 
the recursion construct. 

Deflnition 6.2 ( Characteristic assertion for mixed terms) 

For m not a µ-construct we define: 
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D 

A(Xl.8) (X) = X 

A(z)(X) = .l 
A(l)(X) = true 

A(Xb,)(X) = Xh where X = Xi, · · ·, Xn· 

A(m1 \c)(x) = 3t( A(m1)(x)[t/h] A hlc' =tic'), 

where c' = chan(m1 \c) chan(m1) - c. 

A(m1 \x)(x) 3x( A(m1)(X)), where {x} = x. 

A(m1 (d/c) )(x) ( A(m1)(x)[t/h] A hlc = (tlc1)[d/cJ) 

where c = chan(m1 [d/c]) = (chan(mi) - {c}) U {d} 

and c1 = chan(m1). 

A(Kern(m1))(X) = Kern(A(m1)(x)) 

A(m1; m2)(X) = A13(m1)(X) o Ap(m2)(X), where {1 = base(m1; m2). 

A(m1 U m2)(X) = A13(m1)(X) V A13(m2)(X), where {1 = base(m1 U m2). 

A(m11'1 ll/32 m2)(X) = Ap1(m1)(X) A Ap~(m2)(X) 

A(X130 = mo in m1)(x) = A(m1)(Xo,.X), where Xo = A130 (mo)(x), 

and where we assumed that m1 = m1(X~0,X~1 ,· • ·XpJ· 

To prove the existence of an assertion A( m) for the case that m contains 
the µ construct, we first show that the set of (codes of) m computations is 
recursively enumerable (r.e.). From this it then easily follows that A(m) is 
arithmetical, that is, representable by some formula from first order arith
metic. A slight complication will be tha.t m possibly contains subterms of 
the form (Xl.8) or Xp. Such terms do not necessarily correspond to some 
r.e. set. Now since we aim at a. representing assertion for m(x!,8), we may 
assume without loss of generality that m itself does not contain subterms 
of the form (Xl/3). A second, more technica!, problem is that computations 
cannot be enumerated by a Turing machine (T.M.) since they are infinite 
objects, due to the presence of sta.tes within them. However, it suffices to 
enumerate integer codes for computations. The coding relies on the finite 
base of m. 
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Since our assertion language "includes", hut not equals the language of arith
rnetic, we first show that arithmetical sets are representable in our assertion 
language. So assume that base(m) = (3 = (c, x) = (c, {xi, · · ·, Xn} ). Choose 
some injection 

/ : 1Jaln x irace X 1Jaln-+N 

that is representable within arithmetic, and define for ó E .6., p E P( .6.) : 

codep(ó) codep((so, h, s)) ~ f(so(x), hlc, s(x)), 

codep(p) {codep(ó) 1 6 E p}. 

Since our assertion language does contain the expressions x1 °, x2 °, · · · x~, 
hlc, x1, · · · Xn, and also includes arithmetic, it is clear that there is some 
assertion Xcode say, with hchan(Xcode) = c, var0 (Xcode) = x, lvar(Xcode) = 
{ n} that satisfi.es: 

6 E [Xcodeh iff -y(n) = codep(ó). 

Abbreviate m(xl,ä) by m[•/•]. From the assumption that base(m) = (3, 
it follows that base( Obs[ m[•/•] ]'117) Ç (3. From this and the fact that 
codep(ó) = codep(ó') iff ó and ó' agree with respect to the channels and 
variables in (3 it follows that: 

61,8 E Obs[m[•/•]ht7 iff codep(ó) E codep(Obs[m[•/•])'m). 

Below we argue that the set codep(Obs[m[•/•]h71) is arithmetical. Then 
there is some assertion, Xm say, such that: hchan(Xm) = var<0 1(Xm) 
0, lvar(Xm) = lvar(m[•/•]) U {n} and 

Tr[Xm]ó"1 iff 'Y(n) E codep(Obs[m[•/•Jh71). 

(The 6 argument for Tr[Xm] is arbitrary here). 

Define Arr(m)(x) to be: 

3n(Xm A Xcoàe)• 

Then we have that: 

6 E [Arr(m)(x)h 

iff for some integer n such that n = codep(ó) : 

n E codep(Obs[m[•/•Jh71) 
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iff ól,8 E Obs[m[•/•]h'1· 

That is, [Arr{m)(x)hl.B = Obs[m[•/•]]ïq, 

• We define A(µXp.mo)(X) as Arr(µXp.mo)(x). 

It remains to be shown that codep(Obs[m[•/•U'Y'1) is arithmetical. We give 
an argument ba.sed on recursive enumerability. A set p is called recursively 
enumerable with respect to sets pi, · • · , Pn if p can be enumerated by a Turing 
machine TM that is allowed to consult so called oracles to decide whether 
some object is in Pi or not. {[Hop].) Call a mixed term m(XJ

1
,."x;;J 

r.e. with respect to XJ
1
,···X;3" if codep(Obs[m]"Yq) is r.e. with respect to 

codep1 ( q(XJ1 )), • • ·, codepn ( 11(X;3J). 

Theorem 6.3 

Every mixed term m(XJ
1

, • • • x;;J not containing subterms of the form (Xj,8) 
is recursively enumerable with respect to XJ

1
, • • • x;;". 

D 

Theorem 6.4 
arithmetical. 

D 

If m is r .e. with respect to X~1 , • • • x;;", then m(xl.8) is 

Proof of theorem 6.3 

We heavily rely on genera! techniques as occurring in, for insta.nee, [Hop]. 

What must be seen is the following: 

There exists a TM M that given as input a mixed term m and the codes for 
oracle TM's for the parameters X~1 , • • ·, Xpn produces the code for a TM 
O(m) that enumerates the (codes of the) computations of m. 

The reason that it does not suffice to show mere existence of 0 is that then 
our induction argument below gets stuck for the case of (nested) recursion. 

The proof is by means of induction on the number of recursion constructs 
appearing within m. {That is, there is a different M for each number of 
recursion constructs.) The TM M for some given number of recursion con
structs in m, constructs 0 by means of a syntax directed translation. That 
is, for a composed m, M first creates TM's O(fflï) for the parts fflï, and 
then uses these for the construction of O(m). This means a case distinction, 
according to the various TNP constructs. We treat a few interesting cases. 
We show what the structure of O(m) must be. That a TM M exists that 
constructs O(m) will be reasonably clear in the cases below. 
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• Constructs such as hiding. 

Let m be of the form m1 \c. Our TM M must construct O(m) from 
O(m1). Now O(m) is as follows: It simulates O(m1), and for each 
(code of a) computation generated during this simulation, it removes 
all c communica.tions. The result is then output generated by our 
machine O(m). 

• Kernel operation 

Assume m is of the form Kern( m1). This case is different from opera,.. 
tions such as hiding since Kern is not the pointwise extension of some 
operation on single computations. However, if we can enumerate the 
codes of computations of mi, then we can also enumerate finite sets 
of such codes. For ea.ch of such sets, our TM 0( m) can check whether 
it consists of the code of some computation li together with the codes 
of all 8' such that ó' Ç 6. If this is the case, then our TM outputs the 
code of li, otherwise it proceeds immediately with generating the next 
finite set. This is seen to generate exactly the codes for Kern(m1). 

• Process varia.bles. 

Obvious, since we have available oracle TM's for such varia.bles. 

• Recursion. 

So assume that mis of the form µX13.m1• The syntactic approximar 

tions m~l, as defined in chapter 3, do not have a simpler syntactic 
structure than m, hut the number of recursion constructs within them 
is one less than for m. So we may assume by induction that there 
is some TM M' that constructs O(mi) from input mi and the oracle 
TM's. (Note that we do not need an extra oracle for X13 because this 
varia bie does not occur free in any of the mfi].) The TM M, that 
we are to construct, must construct O(m). The latter TM operates as 
follows: By means of "dovetailing" it enumerates the syntactic approx
imations mfil, for each m[i) it first constructs O(ml'I) using the TM M', 
and finally it simulates O(mlil), where the codes generated during this 
simulation are included in the enumeration of our TM O(m). This 
generates exactly all codes for the (infinite) union of the semantic de
notations for the mf i), and from chapter 3 it follows that thls equals 
the set of codes for the semantics of the recursion construct µXfJ.m1. 

Proof of theorem 6.4 
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The proof that r.e. sets are arithmetical is completely standard, and can be 
found in [Schoen]. Now we have sets that are r.e. relative to given oracles. 
But the sets enumerated by these oracles are certainly arithmetical since 
they equal codep;([Xïl.Bï ]'"t, where Xi is by definition within our assertion 
language. 

D 

6.4 Expressiveness of characteristic assertions 

We prove a theorem that is a generalization of lemma 5.2 to the case of 
arbitrary mixed terms, rather than atomie processes only. It is shown that 
a mixed term m and its characteristic assertion Ap(m)(X) have the same 
semantica as far as the channels and varia.bles in .B are concerned, and pro
vided that m is placed in a context where its free process varia.bles have 
the same semantica as the parameters x, again as far as the bases of these 
variables are concerned. 

Theorem 6.5 Let base( m) Ç ,8 and pvar( m) Ç { X~1 , ••• , X~"}. For 
A(m)(x) defined as above: 

( f\ X~, = Xïl.Bï) -t (Ap(m)(x))l.B = m 
i=l..n 

Corollary 6.6 

(Ap(m)(x))l.B = m(xl,8) 

D 

Proof 

Clearly the corolla.ry follows from the theorem since 

(f\ X~, = Xïlf1ï) -t m = m(xl,8) 
i 

is a va.lid formula. 

The proof of the theorem is by induction on the structure or m. To avoid te
dious notation we omit in most cases the X parameter list and also implicitly 
assume the premisse Äi=l..n X~, = X;l/1; 

• Atomie processes 

These have already been taken care of in the proof of lemma 5.2 

• Specification 
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Obs[xl.Bh11 = [xhl.8 = [ A(xl,8)(x) hl.8 

• cases m = Z and m = 1. These are completely sim.ilar to abort and 
skip. 

• Process va.ria.bie. 

That is, assume m is one of the free process variables X~;. Then: 

Obs[m(xl~)h'1 = Obs[Xtl.8•]'1ï· 

= [Xihl,8i = [A(X~,)(x)Jbl.Bt 
= [A(m)(x)hlbase(m) 

• Channel hiding and renaming 

First a simple lemma. Assume that f is some operation on traces. 
Recall that this induces an operation f on A as well as on P(A). 
Moreover, assume that f is representable in our assertion language. 

Lemma6.7 

(/([Xh))lc = ([3t[X[t/h] /\ hlc = /(t)ic]h)lc. 

Proor 

D 

([3t[x[t/h] /\ hlc = /(t)!c]]ï)lc = 
{(so, h, s) 1 3h', h" E Trace such that h = h'lc, 

(so, h', s) E [x[t/h] /\ hlc = /(t)lc]ï[h" /t]} 

= {(so, h, s) 1 3h', h" E Trace such that h = h'lc, 

(so, h", s) E [X]h and h'lc = /(h")lc} 

= {( so, h, s) 1 3h" E Trace such that 

(so,h",s) E [Xh and h = /(h")lc} 

= (/([xh))lc. 

Using this lemma we handle channel hiding as follows: Let c1 
chan(m1),x1 = var(0 l(m1). 

Obs[m1\ch11 = (Obs[m1]ï11)\c = 

(Obs[m1]ï11)l(Chan - c) = 

([A(m1)b)lc1lx1l(Chan - c) = 



222 CHAPTER 6. COMPLETENESS 

Here the last hut one equality follows from the fact that: 

(so, h, s'[w/x])l(x1 - x) = (so, h, s')J(x1 - x). 

D 

Let (c1,x1) = base(m1) (So (ci,x1 x) = base(m1\x)). 

Using the lemma, one sees that: 

Obs[m1 \x]711 = (Obs[m1]h11)\x = 

(Obs[m1]ï11)l(Var- x) = 
(([A(m1)]ï)Jc1lx1)i('Var - x) = 

([A{m1)h)l(x1 - x)lc1 = 

([3v{A(m1)[ii/x])h)l(x1 - x)Jc1 = 
([A(m1)\xh)lc1l(x1 - x). 

•Kern 

Lemma6.9 

If p E P(A) is saturated w.r.t. (Chan, Var) - f3 in the sense that 
abase(p) Ç ,8 then 

Kern(pl,8) = Kern(p) J,8. 

Proof: Let p be as indicated. Then p î {J p. This has the following 
consequences: 

6 E p implies 6j,8 E pJ,8 Ç PÎ f3 = p, implies 6 E p. 

6J,8 E p implies 6J,BJ,8 E pJ,8, implies 6lf3 E PlfJ. 
From this we conclude that if p' E P(A), then p' Ç p iff ll,8 Ç p. In 
the proof below we apply this to the set down( 6') defined as: 

down(6') = {6 E A 1 6 Ç 6'}. 

We also use, in the one hut last step, the fact that pl,8 Ç PÎ (3 =p. 

Take some arbitrary 6 E A. Then: 

6 E Kern(p)Jf3 iff 

36'(6 = 6'J,8 and 61 E Kern(p)) iff 

36'(6 = 6'1,8 and down(6') Ç p) iff 

36'(6 ó'l,8 and down(ó')lf3 Ç p) iff 
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([A(mi)]'Y)j(c1 - c)lx1 = (By the lemma, choosing f to be identity) 

([3t( A(m1)[t/hj /\ hl(c1 - c) = ti(c1 - c)) ]ï)l(c1 - c)lx1 

([A(m1)\ch)l(c1 - c,x1). 

Next we handle channel renaming by choosing f(h) to be (hlc1)[d/c]. 
Let (ci,x1) =base( mi (d/c} ). From rules (vii),(viii) and (ix) in chapter 
4, it follows that: 

(hlc1)[d/c] = (hlc1lc1 U {c,d})[d/c] = ((hlc1)[d/c])lc1 U {c,d} 

= ((hlc1)[d/c])j((c1 - {c}) U {d}) = ((hlc1)[d/c])lc. 

This equality, and the fact that the lx1 and [d/c] operations commute 
from the basis for the following derivation: 

Obs[m1{d/c)hfJ = (Obs[mi]'Y11)[d/c] = 
([A(m1)hlc1lx1)[d/c] = 

(([A(m1)hlc1)[d/c])lclx1 = (By the lemma) 

([3t[A(m1)[t/h] /\ hlc = (tlc1)[d/c]ic]]'Y)lclx1 = 

([3t[A(m1)[t/h] /\ hlc = (tlc1)[d/c]]h)lclx1 = 
([A(m1 (d/c} )h)lc1lx1. 

• Varia.bie hiding 

First a lemma similar to that used for channel hiding. 

Lemma6.8 

[xhl(x1 - x) = ([3u(x[u/x])]b)l(x1 - x). 

Pro of 

([3ïi(X[ïi/x])h)l(x1 - x) = 
{ ( so, h, s) j 3s' E State .L such that 

(so,h,s') E [3ïi(X[ïi/x])]'Y and (so,h,s) = (so,h,s')l(x1 -x)} = 

{(so, h, s)i3s' E State.L, 3w E 'Val• such that 

(so,h,s'[w/x]) E [X]ï and (so,h,s) = (so,h,s')l(x1 -x)} = 

{( so, h, s) l 3s" E State l. such that ( so, h, s") 

E [Xh and (so, h, s) = (so, h, s")l(x1 - x)} = 
([xh)l(x1 - x). 
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D 

3ó1(ó = ó'l,8 and down(ó'l,8) Ç p) iff 

ó = ól,8 and down(ó) Ç p iff 

down(ó) Ç pl,8 iff 

ó E Kern(pj,8) 

We use the lemma to show that the given assertion for A(Kern(m1)) 
is the appropriate one: Let (c,x) = base(m1)(= base(Kern(m1))). 

Obs[Kern(mi)]ï11 = Kern(Obs[m1]ï'1) = 

Kern([A(mi)]ïlclx) = (By the lemma) 

(Kern([A(m1)]ï))lclx. 

• Sequentia! composition 

Let ,8 = base(m1; m2) = base(m1) U base(m2). Then: 

Obs[ m1; m2h'7 = Obs[ m1]h'7 o Obs[ m2h'7 = 
([A.e(m1)Jh)l,80 ([Ap(m2)Jh)l,8 = (By lemma shown below) 

([A.e(m1)h o [A.e(m2)h) l,8 = 

([A.e(m1) 0A.e(m2)Jh)l,8 = 

([A(m1; m2)]ï)j,8. 

In this proof we relied on the fact that, in the above case, the pro
jection j,8 distributes over the composition operator o. In general it 
is not true that for pi,p2 E P(a) we have (p1op2)l,8 = Pil,8op2l,8! 
However, if there are assertions Xi, X2 say, such that Pi = [Xi ]ï and 
moreover, (hchan(Xi), var<0 >(xi)) Ç ,8 for i = 1, 2, then we do have 
this distributive property. 

In fact this is a consequence of lemma 4.12. The following proof relies 
heavily on this lemma. Let ,8 = (c,x), {x} = x, and let pi,p2 be as 
indicated. We show that (P1 o P2)l,8 = P1l,8 o P2l,8 as follows: 

For arbitrary ó E a, we have that 

ó E (P1 o P2)j,8 

iff 

3so,si,s2,hi,h2 such that ó = (so(hi,h2)lc,solx: s2(x)) 
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and ( so, hi, s1) E Pl, (si, h2, s2) E P2 

iff 

3so,si,s2,h1,h2 such that 6 = (so,h1!cAh2lc,so!x: s2(x)) 

and (so,hi,s1) E pi,(so[x: s1(x),h2,s2) E P2 

iff 

3so,s1',s21,h~,h~ such that 6 = (so,h~lcAh~jc,so\x: s2'(x)) and 

(so, h~jc, solx: s1'(x)) E P1l,B, (solx: s11(x), h~, solx: s2'(x)) E P2l,B 

iff 

3so si" s2" h" h" such that ó - (so h"h" s ") ' ' ' ll 2 - ' 1 2l 2 

and ( so, h1, s1") E P1 l,B, (si'', h~, s2") E P2 l,B 

iff 

ó E P1 j,8 o P2\,B. 

• Choice 

Let ,B = base(m1 or m2) = base(m1) U base(m2). Then: 

Obs[m1 or m2hfl = Obs[m1hfl U Obs[m2hfl = 
([Ap(m1)h)l,Bu ([Ap(m2)h)l,B = 
([Ap{mi)h U [Ap(m2)h) l,B = 
([Ap(m1) V Ap(m2)h)l,B = 
([A(m1 or m2)h)l,B 

Remark 

This resembles the case of sequentia! composition, except that distribu
tivity of the projection over set union is dear. In fäct, 

(P1 U P2)l.8 = P1!,Bu P2l,B 

follows from the complete additivity of the projection operator, as 
shown in chapter 3. 

• Parallel composition 

In the next derivation we use properties of the projection and chaotic 
closure operations, the fact that abase(Ap(m)) Ç ,B, and the charac
terization of the parallel composition operator in lemma 3.35. 
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Let ,8 = ,81 U ,82 = base( m1 fh Il fJ:a m2). Then: 

óbs[m1 lh llP:a m2hfJ = óbs[mdïrJ 1'1111'2 óbs[m2h'7 = 

([A1'1(m1)]ï)l,81 /3i llP2 ([A1'2(m2)]ï)l,82 = 

(([Ap1 (m1)hlP1)î ,81cap([Ap2 (m2)hlP2)î P2) IP= 

(([Ap1 (m1)h) î ,8 n {[Ap2(m2)h) î P) IP= 

([Ap1 (m1)]1 n [Ap2(m2)h) IP== 

([Ap1 (m1) A Ap2(m2)h )IP= 

([A(m1 /J1 !IP2 m2)]"1)!,8. 

• Process na.ming 

Since A(J(Xj0 = mo in m1)(X1, · · · Xn) = Ap( m1)(Xo, Xi, · · · Xn), 

where Xo = Ap0 ( mo)(Xi, · · · Xn), we must prove: 

( A x~i = XilPi)- (~o = moinm1) = Ap(m1)(Xo,Xi,···Xn)IP(l) 
l:Si:Sn 

By induction we may assume: 

( A .x;,. = X1IP•)-+ mo = Apo(mo)(Xi,·· ·Xn)l,8o, (2) 
l:Si:Sn 

( /\ ~. = XïlPs)-+ m1 = A(J(m1)(Xo,Xi,···Xn)IP· (3) 
0Si:Sn 

Now take some 1, 17, such that 

Tr[ A x~. = X;l,8,Jlïq. 

Then: 

Obs[~0 = mo in m1hfJ = Obs[m1]bii, (4) 

where ij= rJ[(Obs[moh11)/X~0]. 

Using (2) we see that actually: 

ij= f'J[([AfJ0 (mo)(X1,···Xn)hlPo)/X~0 ]. 

By the definition of Xo we then see that: 

Tr[ /\ ~. = Xïl.Bihii· 
O:Si:Sn 
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D 

So we can use (3) to infer that: 

Tr[m1 = Ap(m1)(Xo,Xi,···Xn)l/3]ïij, 

that is: 

Obs[m1h'1 = [Ap(m1)(Xo, Xi, · · · Xn) hl/3 

Combining this with ( 4) we see that ( 1) is satisfied, as was to be shown. 

• Recursion 

We defined A(µ.Xp.mo)(X) = Arr(µXp.mo)(X), and we know that 

(µXp.mo)(XIP) = Arr(µXp.mo)(x)l/3· 

So (µXp.mo)(XIP) = A(µXp.mo)(X}l/3 follows immediately from the 
definition of characteristic assertions for µ constructs. This last equal
ity is equivalent to: 

( f\ zj; = X;l/3ï)-+ µXp.mo = A(µXp.mo)(X)l.8· 
1$i$n 

6.5 Characteristic assertions and recursion -again 

Although we succeeded in defining A(µXp.mo)(X) as an assertion, we need a 
more tractable representation for the completeness proof to be given below. 

Form= µXp.mo define the syntactic approximations x[i] for i ~ 0: 

{ 
x0 false 
x[i+l] = Ap(mo)(xl•l, X) 

(Here we assume that mo = mo ( Xp, X}
1

, • "Xif,.)). 

The characteristic assertion for m could be written by means of an infinite 
disjunction: 

" v 1·1» A(µXp.mo)(x) = x' . 

Of course such an infinite formula is not an assertion itself. However, we can 
trea.t the formule. 

"m = V xl'l" 
i;:::o 

as an abbreviation for the following semantic equality: 
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We now prove that in this sense the equality ( *) above is valid. So what we 
want to prove is: 

( f\ X~, = Xil.8i)-tµXp.mo = V x[;J, 
1$i$n ;?.o 

that is, for arbitrary ", "/ : 

( f\ fJ(X~,) = [Xi]"ll,8i) => 

Obs[µXp.moh'1 = CU [x!ilh)l,8. 
;?.o 

Now from the definition of Obs for recursion it follows that: 

Obs[µXp.mohfl = Up[;) 
;?.o 

where 

{ 
p[O] = 0 
p!H1l = Obs[moD("l)(71[p!;J/xp]) 

Therefore, using the complete additivity of the projection operator l,8, we 
see that it suffices to show that for all j ~ 0: 

( f\ fl(x},) = [Xihl,8,) => p[i] = [X[;]]]"ll,8 
1$i$n 

This last equality then, can be shown to hold by induction on j. So assume 
that fJ and '1 are such that: 

f\ fl(X~J = [Xihl,8i 

• case j = 0: 

pl01 = 0 = [false]ïl,8 [x!0lhl.8· 
• Induction step: Assume p[i] = [xlil]ïl,8. Then: 

p[i+l] = Obs[moD("l)(71[p!il/Xp]) = óbs[mo]'Yq, (1) 

where ij = '1[([xlil]"!l,8)/ Xp]. 

Using also the assumption for f1 we see that: 

Tr[( /\ x~. = x,l,8i)" (Xp = x!;Jl.B)hij. 
1;5i$n 
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But this means that theorem 6.5 is applicable, and thus we infer that: 

D 

Obs[mo]ih = [Ap(mo)(xlil,xi, · · ·Xn)hl/1 = [xli+I]hlP 

Together with (1) this shows that 

pli+il = [xli+ilhl/1 

Define the following abbrevia.tions: 

xlwl ~r (µXp.mo)(X), 

x[w+l) <!!.f A(mo)(xlwl, x). 

Lemma6.10 

x[w] and xlw+l] are equivalent assertions. 

Pro of 

Since the free channels and variables of both assertions are contained within 
(3, it suffices to show that xlwJ 1/1 = xlw+il l,8. For the proof of this equality 
we use the fact that (the semantics of) µXp.mo is given as a (least) fixed 
point of (the semantics of) mo. Therefore we know that: 

mo[(µXp.mo)/ Xp] = µXp.mo. 

Consequently: 

xlw+iljp = A(mo)(xlwl,x)l,8 = mo[(xlwlj,8)/Xp,- - -] = 
mo[(µXp.mo)/Xp,- - -J = µXp.mo[- - -] = A(µXp.mo)(X)l.8 = xlwllf1· 

D 

6.6 Compositional completeness of the SAT sys
tem 

We are in the position to give the proof of one of the main results of this 
thesis: that of the compositional completeness of the SAT system. 

First we show in lemma 6.12 that the characteristic assertion for some mixed 
term m is satisfied by this mixed term, and moreover that it is the strongest 
assertion with this property. 

Then, in lemma 6.13, essentially the completeness proof is given for all lan
guage constructs except recursion and process naming. 
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Finally, in theorem 6.15, we prove the compositional completeness of the 
whole SAT system. 

Lemma 6.11 

H pvar(m) Ç frï, · · ·~n}, base(m) Ç Pand H is some set of hypotheses, of 
the form fr1 sat Xi, ... , ~n sat Xn}, then 

H f= m sat Ap(m)(Xi, · · · Xn)· (1) 

Moreover if abase(X) Ç p, and 

H m sat X, (2) 

then the following assertion is valid: 

Ap(m)(Xi,"·Xn)--+X (3) 

0 

Proof 

~i sat Xi implies ~i Ç Xïl.fli where p, = base(~i)• So, using the monotonicity 
of m(~,, · · · ~n), we see that : 

{)1 sat Xi, ... , ~n sat Xn} f= m Ç m(xlJ3), 

where m(xl,8) abbreviates m[(X1l/h)/~1," ·, (XnlPn)/~n]· 

On the other hand we know from corollary 6.6 that: 

m(xlP) = A(m)(Xi, • • ·Xn)ibase(m). 

Therefore we conclude that: 

fr1 sat Xi,"., ~n sat Xn} f= m Ç A(m)(X1, · · · Xn)lbase(m) 

is valid, that is, ( 1) is valid, indeed. 

Now assume that (2) is valid. Note tha.t (2) implies that m(x!,8) sat X, and 
so, m(xl,8) Ç x. Since, by corollary 6.6, m(XIP) = Ap(m)(X1, · "Xn)IP we 
see that: 

Ap(m)(Xi,· • ·Xn)IP Ç X. (4) 

It is easily proven that for arbitrary Xa,Xb with abase(Xa) =Pa~ abase(X11) 
that if XalPa Ç Xb, then Xa Ç Xb, that is, Xa--+X11 is va.lid in this case. To see 
this, let Pa= ffx11 ]ï,p" = ffXbh, and assume that Pal.Ba Ç Pb· Then we have 
the following (in )equalities: 

Pa =Pa Î Pa = PulPa Î Pa Ç Pb Î Pa. Pb• 
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Applying this to the situation above one sees that from ( 4) it follows that: 

Ap(m)(Xi,·"Xn)- X 

is valid, since abase(Ap(m)(· · ·)) = f3 2 abase(X) by the assumption made 
for x. 

D 

The main step is to show tha.t a. characteristic assertion for some mixed term 
is not only satisfied by this term, hut that it possible to formally deduce that 
fa.et. We first prove that this is the case for TNP constructs that do not 
introduce bound process va.ria.bles. By inspection of the SAT system, one 
sees tha.t it conta.ins only compositional proofrules. Therefore, what we prove 
in lemma 6.13 is essentia.lly elementary compositional completeness for the 
SAT system. 

Theorem 6.12 ( Completeness w.r.t. characteristic assertions) 

Let "ui' be one of the mixed term operators, where we assume that it is not 
the recursion construct or the process naming construct. Let: 

• m = op(mi,· · ·,mk), 

• pvar(m) Ç Ü"h · · ·~n} 

• x(m):: A(m)(Xi, · · ·Xn) 

• x(m1) :: A( ms)(Xi, · · · Xn) for i = 1 · · · k 

Then the following is deducible within the SAT system: 

m1 sat x<mi), •• ·, mk sat x(m1;) r- op( mi, •.. ' mk) sat x(m) 

D 

Proof 

We check simply that the claim holds for each of the operators in turn. 

• op is a nullary operator. 

That is, k = 0 and so m = op. Then m is either one of the atomie 
processes a, or it is a predicative term x1.s. 
Hence, we must show the following for atomie processes: 

f- a sat A(a). 
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This is the case, indeed, since by inspection of the system one sees that 
for each of the atomie processes, a sat A(a) is one of the SAT axioms 
fora E Atom. 

For predicative processes m = xl,8, we must show that 

1- xl,8 sat x, 
which follows immediately from the presence of the axiom for predica
tive processes. 

• m= m1\c 

x<mi) = A( m1)(X) 

x(m) = 3t(x<mi)[t/h] /\ hlc' =tic') 

where c' = chan(m1 \c) = chan(m1) - c 

Note that x<m1 )--+x(m) is valid, and tha.t hchan(x(m)) n c = 0. This 
justifies the following deriva.tion: 

m1 sat x(m) 

m1 \c sat x(m) 

• m= m1\x 

( Consequence) 

( Cha.nnel hiding) 

x<mi) = A(m1)(X) 

x<m) = 3x(x(mi)), where {x} = x 

Simila.r to the case above, we have that x(m1)--+x(m) is valid and that 
var(x(ml) n x = 0. So the obvious deriva.tion is: 

m1 sat x<m) 

m1 \x sat x(m) 

• m = m1{d/c} 

( Consequence) 

(Va.riable hiding) 

x<mi) = A(m1)(x) 
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x<m) = 3t(x<m1 >[t/h] /\ hlc = (tlc1)[d/c]) 

where c = chan(m1(d/c)) = (chan(m1) - {c}) U {d} 

and c1 = chan(m1). 

Let ê = { c, d}- c1• First we show that the following assertion is valid: 

(x(mi) /\ hlê = e)-+ (x(m)[h[d/c]/h]). (*) 

So assume x(mi) and hjê = e. We must prove the existence of a trace 
t such that both 

x<mil[t/h} and h[d/c}lc = (tlc1)[d/cJ 

are true. Now choose t = h. Then clearly the first of these latter 
two is satisfied. Note that hlé = e implies that hlc1 = h!(c1 U ê) = 
h 1 ( c 1 U { c, d}). Using this equality and the algebraic laws from chapter 
4, one sees that: 

h[d/c}ic h[d/c}j(c u {c}) = h[d/c]j(c1 u {c,d}) 

(hj(c1 U {c,d}))[d/cJ = {hlc1)[d/cJ. 

So if we choose t = h, then the second of the two assertions above is 
satisfi.ed too. 

The assertion ( *) forms the basis for the following derivation: 

m1 sat x(mi) , m1 sat hlé = e (Invariance ) 
(Conjunction) 

(Consequence,( * )) 
m1 sat x(m)[h[d/c]/h] 

{Renaming) 

m1(d/c) sat x(m) 

The conclusion is that m 1 sat x(mi) 1- m 1(d/c} sat x(m), as was to be 
shown. 

•Kern 

Let m = Kern(m1). 

If x(mi) = A(m1)(x), then A(Kern(m1))(x) = Kern(xlmd). 

So the following simple derivation suffices: 
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(Kern) 

• Sequentia! composition 

Let m = m1; m2, f3 = base(m) = /3i U /32, where f3i = base( mi) for i 
1, 2. Recall that A.B(ffli)(X) = A(ffli)(X) f\ lp-.B;· 

For i = 1, 2 we have the following derivation: 

ffli sat A(mi)(X), mi sat 1/3-.8; (Invariance) 
{ Conjunction) 

The conclusions of these two derivations are combined by the sequentia! 
composition rule: 

(Sequentia! composition) 

m1; m2 sat A.B(m1)(x) êAr;(m2)(x) 

This is the desired result since A(m1; m2)(X) = A19(m1)(X)oA13(m2)(x). 

So we conclude that: 

m1 sat A(m1)(X), m2 sat A(m2)(X) 1- m1; m2 sat A(m1; m2)(x). 

• Choice 

Let m = m1 or m2, and 

let f3 base(m) = /31 U /32, where /31 = base(ffli) for i = 1, 2. 

Similar to the case for sequentia! composition one can derive 
mi sat A13(m,)(x) from ffli sat A(ffli)(X), using the invariance axiom. 
Then the choice rule combines those two formulae: 

{Choice) 

This is what was to be shown since: 
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D 

• Parallel composition 

Let m = m1 f31 Il fJ2 m2, f3 = f31 U f32. The syntactic restrictions on 
mixed terms require that base( mi) ~ f3i for i = 1, 2. 

As before, ffli sat Ap.(ffli)(X) is derivable from mi sat A(mi)(X), us
ing the invariance axiom. Now abase(A,B;(mi)(X)) ~ f3i, and so the 
following application of the rule for parallel composition is justified: 

(Parallel composition) 

This was to be shown since the conclusion of this rule is the required 
assertion A(m1 .B1llP2 m2)(x). 

Finally we arrive at the main theorem: 

Theorem 6.13 

The SAT system is compositionally complete. 

D 

According to the definition of compositional completeness this means the 
following. Let mspec(m) denote a modular specification for the SAT system. 
We shall use the "natura! deduction form" for such specifications in this 
chapter. 

That is, for a modular specification 

mspec(m) ~f ( /\ ~i sat Xi) - m sat X 
i=l..n 

we shall freely use the equivalent formula: 

H 1- m sat X, 

where H is the set of hypotheses ~l sat X1, ••• , ~n sat Xn· As argued in chap
ter 1 we may assume that the process variables ~i are all distinct. 

Compositional completeness the amounts to the following: 

H m is of the form C(mi, ... , mi:), where C is one of the mixed term con
structs, and mspec(m) is valid, that is, 

H f= m sat X, 
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then there exist mspeci, •.. , mspec1c such that: 

(a) mspeci('11i) is valid for i=l"k. 

(b) mspec(C(mi,. ", m1:)) is deducible from the hypotheses mspeci(mi)· 

Note that C can be one of the mixed term operators, hut that it can also be 
the process naming construct or the recursion construct. 

Pro of 

We may assume that H contains only specifications for process variables 
that actually do occur free in m. For if this is not the case we first show the 
deducibility of (Hnpvar(m)) 1- m sat X and then apply the weakening rule 
of chapter 4 to deduce H 1- m sat x. 
The definition of compositional completeness allows a completely free choice 
of modular specifications mspec;, for the parts '1li as long as (a) and (b) are 
satisfied. But actually we can limit our choice as follows. lf pvar('11i) = 
pvar(m), that is, C does not bind a process variable or else the bound 
variable does not occur free in m;,, then we shall choose the hypotheses part 
of mspec;, equal to the corresponding part (Ai<n ~i sat Xi) of mspec(m). So 
in this case mspec;, ( m;,) is of the form: -

H 1- spec(m;) ( 111i), 

where spec(m;)(mi) is a SAT specification of the form mi sat X;,. 

And if C does bind the process variable 01 and this variable occurs free in 
'1lï, then we shall choose mspeci of the form: 

Hu {01 sat x<81l} 1- spec(m;)('11i), 

where speclmtl(111i) is a SAT formula as above. 

So let m be some mixed term with pvar(m) Ç fri · ··~n} and let X,Xi, · · ·Xn 
be assertions such that, for H as above, 

H I= m sat X ( * ). 
Either m is of the form op( mi, · · ·, mk) where op is one of the mixed term 
operators, or m is a process naming or recursion construct. 

Case 1. m of the form op( mi, · · ·, m1c) for some k 5 0. 

This is a case where no process varia.bles are bound, and consequently: 

pvar('1lï) Ç pvar(m) Ç Ü1 · · ·~n} for i E 1 ···k. 
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We must show the existence of specifications spec(m;) such that clause (a) 
and (b) from the definition of compositionality are satisfied. We make the 
following choice: 

spec(m;)(mi) =mi sat A(fflä)(X1,· · ·Xn)• 

We must prove, for i=l..k, 

(a) H f= mi sat A(fflï)(Xi,"·Xn),and 

(b) H ~ op(m1," · m1c) sat X is deducible from the following set of specifi
cations: 

H ~ fflï sat A(fflï)(Xi, · · ·Xn), where i E 1 ···k. 

Now (a) follows easily from lemma 6.12 above. To prove (b) it suffe.ces to 
show that op( mi,"· m1c) sat X is derivable from hypotheses mi sat A( mi)(X). 
The transitivity rule of chapter 4 then ensures that (b) is satisfied. 

By theorem 6.13, op( mi,·", m1c) sat A(m)(.X) is derivable from the given 
hypotheses. 

Let~ base(m) u (hchan(X), var(o)(x)). By lemma 6.12, Ap(m)(.X) - X is 
a valid assertion. This justifies the application of the consequence rule in 
the following derivation. 

op( mi,·· ·m1c) sat A(m)(.X), op( mi,·· ·m1c) sat lp-p (lntJariance) 
~~~~~~~~~~~~~~~~~~~~~(Coaj.) 

( Consequence) 

The conclusion of this derivation is the desired specification. 

Case!!. mis of the form 01 = m1 in m2. 

Here we have the following situation with respect to free process varia.bles: 

pvar(m1) Ç ptJar(m), 

ptJar(m2) Ç {Oi} u ptJar(m). 

Let 

x(mi) A(m1)(Xi,"·,Xn), and 

x(m2 ) := A(m2)(X(mi),Xi,· · ·,Xn)· 
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Choose spedm;) (m1) = mi sat x(m;) for i = 1, 2, and take spec<61) = spec(m1). 

It suffices to show the following: 

(a') H m1 sat x(m1) and Hu {01 sat x<md} I= m2 sat x<m2 ). 

(b') H 1- 01 = m1 in m2 sat X is deducible from: 

H 1- m 1 sat xCmi), together with: Hu {01 sat xCm1)} 1- m2 sat x<m2 >. 
As before, (a') follows from lemma 6.12. 

Note that 01 does not occur in any of the hypotheses H, by the assump
tion made a.bove, and the fact that 01 does not occur free in m. There
fore, one application of the process naming rule suffices to deduce H 1-
01 = m1 in m2 sat x<m2 ) from the two hypotheses. Since actually xCm2) = 
A(m)(.X), we can use the same reasoning as for (b) above to deduce H f-
01 = m1 in m2 sat x. 
Case !J. mis of the form µ01.m1 

Here, pvar(mi) ç;; {O} U pvar(m) 

Let xlw] = A(µ01.m1)(Xi,· · ·,Xn), and choose spec(m1l(m1) = m1 sat xlwl. 
Take spec(61) = spec(m1). 

We must prove: 

(a") HU {01 sat xlwl} I= m1 sat xlwJ, and 

(b") H 1- µ01.m1 sat X is deducible from: Hu {01 sat X} 1- m1 sat xlwl. 

If xlwJ :::: A{m1)(xlwl,x1,"·,Xn), then from lemma 6.12 above it follows 
that: 

Hu {01 sat xlwl} I= m1 sat xfw+l) 

is valid. Lemma 6.11 guara.ntees tha.t xlwJ ~ x!w+IJ is valid too. From these 
two facts it directly follows that (a") is satisfied. 

The proof of (b")is fairly similar to that of (b'). 

Again we may assume that the va.ria.bie 01 does not occur free in the hy
potheses H. Using the recursion rule one first deduces H 1- µ01.m1 sat xfw], 
and then, in the way described under (b), deduces H 1- µ(Ji.m1 sat xlwl,. 

This ends case 3, and therefore the proof of the theorem. 

D 
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6. 7 Modular Completeness 

Our aim is to show that the SAT system is modular complete. Since we 
already know that the system is compositionally complete, it rema.ins to see 
that it is adaptation complete. For then theorem 1.9 of chapter 1 guara.ntees 
that the system is modular complete too. 

Theorem 6.14 

The SAT system is a.da.ptation complete. 

D 

Pro of 

Assume tha.t for certa.in process varia.bie ~ and assertions X, X' the following 
implication is valid: 

~ sat X -1> ~ sat x'. (1) 

We must show that ~ sat X' is deriva.ble from ~ sat x. To this end we prove 
first a simple lemma. 

Lemma 6.15 

Let base(~)= /3 and abase(X,x') = {3', and let (1) be va.lid. 

Then the assertion (X /\ 1111-p) -1> x' is (strictly) va.lid. 

D 

To prove this we must show for arbitrary 'Y E r that 

[x /\ 1111-ph ç [x'h (2). 

By interpreting (1) we see that for a.11-y Er and all p E P(dp) the following 
holds: 

P Ç [Xh-1> P Ç [x']'Y. 

We apply this to the set p defined by: 

P ~' ([x A lp1-11h)l,8. 
It is obvious that p E P(dp). We prove that it is also contained in [x]"Y. We 
use the fa.et that abase(X A 1111-11) Ç /3'. 

([x A l111-11h)l.B ([x A l111-11h)l(.B u ,8') ç 

([x A t.a'-.ah) î (/3 u ,8') = [x A t.a'-.ah ç [x]'Y. 
We may conclude from this that: 
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([x A lp'-ttlh)l,8 ç [x'lh· 

But then we see that: 

[x A lp'-Ph = ([x A lpi-p]ï) î(,8 u ,8') = 

([x A 1.B'-.B h)l(,8 u ,B')î (,8 u ,8') = 
([x A lp'-tth)l,8î{,8u ,8') ç ([x'h) î(,Bu ,8') = 
[x']'Y. 

This proves the lemma. 

D 

The lemma justifies the use of the consequence rule in the following 
derivation: 

~ sat X, ~ sat lp'-P (Invariance) 
( Conj unction) 

~ sat X /\ lp'-P 
( Consequence) 

)' sat x' 
As was to be shown. 

D 

Theorem 6.16 

The SAT system is modular complete 

D 

Proof: hnmediate from theorems 1.9, 6.13 and 6.14. 

239 



Chapter 7 

The Hoare and Invariant systems 

7.1 The SAT-Hoare transformation 

In this chapter we consider the completeness question for the Hoare system 
and the Invariant system. Rather than proving the completeness of these 
systems directly from the semantic definition for mixed terms we point out 
how proofs given within the SAT system can be transformed into proofs 
within the Hoare system. Moreover, proofs within the Hoare system can be 
transformed into proofs within the Invariant system. In this way we are able 
to prove the compositional completeness of these two systems. 

In chapter 4 we explained that any Hoare formula ( cp) m ( 1") can be repre
sented by the SAT formula m sat cp ~ 1/J. The idea is to transform a proof 
of the latter formula into a proof of the former one. Below we formulate a 
theorem that essentially states that if m sat X is provable, in the SAT sys
tem that is, then ( cp )m( cp <l X) is provable in the Hoare system, where cp is 
arbitrary. Then one can obtain a proof of (cp) m (1") by first transforming 
a proof of m sat cp ~ 1" in to a proof of ( cp) m ( cp <l ( cp ~ 1")). One more 
application of the consequence rule then suffices to prove ( cp) m ( 1") since 
( cp<l ( cp ~ 1")) ---+ 1" is a valid implication. A slight complication arises for the 
transformation of proofs that rely on the introduction and discharge of hy
potheses concerning free process variables. One problem is that the formula 
(cp) m (cp <l X) is in genera! weaker than m sat X, and for hypotheses this is 
undesirable. Another problem is that hypotheses specify the behavior of a 
black box that can occur several times within the program text, and so one 
must be able to adapt such specifications. Therefore, we prove that a deduc
tion of H f- m sat X, where H is a set of SAT formulae ~1 sat X1, ••• , ~I sat Xi, 
can be transformed into a deduction of iI f- (cp) m (cp <l X), where iI is a set 
of Hoare formulae, 'v'g 1 [(cp1 )~1(tli1)], ... , 'v'gi[(cp1 )~1(1"1)] that are all adaptable 

240 
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and moreover are equivalent to the corresponding SAT formulae. We con
sider both the Hoare system with and without the "extra adaptation rules" 
of section 5.4.2. In the latter case not all formulae are adaptable. Never
theless, we prove that also in this case it is always possible to choose an 
adaptable and equivalent Hoare formulae for some given SAT specification 
~ sat x. 
Theorem 7.1 Transformation of SAT proofs to Hoare proofs 

Let m( mi, ... , mn) be some mixed term with occurrences of the meta vari-
ables m1, ... , mru let X some satisfiable assertion and let some proof scheme 
be given that shows how 

H 1- m{m1, •.. , mn) sat X 

is deduced from 

H1 1- m1 sat Xi, 

Hn 1- mn sat Xn· 

Let il be a given set of adaptable Hoare formulae equivalent to the formulae 
in H. Let <p E Jlssn{:E) be arbitrary. 

Then, for i = 1..n, there are sets iii of adaptable Hoare formulae equivalent 
to the SAT formulae in Hi and assertions 'Pü such that 

Hl-(ip) m(mi, ..• ,mn) (ip<l X) 

is deducible from: 

Îi1 1- ('P1) m1 ('P1 <1 X1), 

0 

Lemma 7.2 

For each mixed term mand satisfiable assertion X there exist a list of (fresh) 
logical variables g and an assertion <p such that Vg[(ip) m (ip <1 X)] is an 
adaptable Hoare formula, and moreover the following equivalence is valid: 

m sat X +-t Vg[(ip) m (ip <1 x)J. 
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D 

We start with the proof of the theorem, where we already use the lemma. 
The proof of the lemma is given thereafter, but of course does not depend 
on the theorem. 

Proof of theorem 7 .1 

The proof is by induction on the length of the given deduction in the SAT 
system. We make a case distinction, according to the proof rule used in the 
last step of this deduction. For most cases, the sets Hi are the same as H, 
and it will be clear that we then chose the sets Hi equal to il. For such 
cases we avoid mentioning the sets of hypotheses, to avoid lengthy notation. 

Some cases below need a separate treatment of bottom - and non bottom 
initial states. It is profi.table to treat bottom initia! states once and for all. 
This is done as follows. 

Assume a given deduction ends as: 

m sat X 

Let some rp E Assn(:E) be given. Define: 

'P.1 = ..L /\ rp[..L], 

rp T ::::: T /\ rp[Tj. 

In each case below we shall prove that 

(rp T) m (rp T <J x) (1) 

is derivable. Here we treat (rp.1) m (rp.1 ), and how to combine the formulae 
for the bottom and top case. 

We made the assumption tha.t X is a. satisfiable predicate, implying that 
X[..L 0 ] is valid. We use this in a (partial) expansion of rp.l <J x: 

'P.1 <J x iff 
(rp.l[..L] A X[..L 0 ] /\ ..L} V - - - - - iff 

(true /\ rp[..L] A true A ..L) V - - - - - iff 

(..LA rp[..L]) V - - - - -

This already suffices to conclude that 

'P.i -+ (rp.i <J X) 
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is a valid implication. We use this in the following derivation, showing the 
derivability of r.p <l X : 

(r.p.l) m (r.p.l )(strictness) 
---------(Consequence) ------

(r.p.l) m (r.p.l <l X) (r.pT) m (r.pT <l X) 
(Disjunction) 

( Consequence) 

(r.p) m (r.p <l X) 

Here the second application of the consequence rule is justified by the fol
lowing laws: 

• r.p iff r.p.l V r.p T, (lemma 4.22) 

• (r.p1 <l X) V (r.p2 <l X) iff ((r.p1 V r.p2) <l X) (lemma 4.34). 

Convention. In the rest of the proof we show the derivability of (r.p) m (r.p <l 
X) where r.p can be assumed to be of the form T /\ r.p'[T]. Of course the 
induction hypothesis can be applied for arbitrary preconditions, not only for 
preconditions of the form above. 

We now make our case distinction with respect to the last step of the de
duction. 

• Atomie processes 

Assume that the last step of the deduction is an instance of one of the 
SAT axioms for an atomie process. In chapter 6 we showed that these 
axioms are of the form: 

o: sat A(a) (1) 

In section 5.8.1 we showed that the Hoare system axioms for atomie 
processes are all of the form: 

(A,8(a) l> t/J) a (t/J), (2) 

where P = base( a) U abase( t/J). 
Now let r.p be given, and let p = base(a) U abase(r.p). Then one can 
construct the following derivation: 

(A,8(a) l> (r.p <l A,B(a))) a (r.p <l A,8(0:)) (o:-axiom) 
( Consequence) 

(r.p) a (cp <l A(a)) 
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The application of the consequence rule is justified by lemma 4.34 and 
the fact that Ap(a) - A(a) is a valid assertion. 

• Predicative processes 

Assume that the last step of the deduction is an instance of the SAT 
axioms for a predicative process. This axiom has the form: 

(xl,8) sat x. 
The corresponding Hoare axioms are, for arbitrary precondition <p : 

(r>) (xl,8) (r> <l x). 

The provability of these last formulae was to be shown. 

• Channel hiding 

Assume that the given deduction ends as: 

(Hiding) 

m1\ê sat X 

The restriction associated with the rule enforces that hchan(X) n ê = 0 
here. If <p happens to be such that hchan(r>) n ê = 0 too, then also 
hchan( r> <l x) n ê = 0, and 80 the following derivation is possible: 

(Hiding) 

{r>) m1 \ê (r> <l x) 

Since by induction (r>) m1 (r> <l X) is derivable, we have shown that 
(r>) m1 \ê (r> <l X) is derivable for <p with hchan(r>) n ê = 0. We use 
this fact to handle the general case, i.e. without any restriction on r>· 

Let c = hchan(r>,X) and let c' = c - ê. Define <p1 as follows: Take 
some fresh logical trace variable to and let: 

<p1 
::::: r>[to/h] /\ (tolc' = hlc'). 

Note that hchan(r>')nê = c'në = 0. Therefore, fromabovewe already 
know that the following formula is derivable: 

(r>') m1 \ê ((r>' <l X)). (1) 

Apart from this derivation we have the following instance of the prefix 
invariance axiom: 
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(tolc ~ hlc) m1 \ê (tolc ~ hlc). 

An a.pplica.tion of the conjunction rule to combine this with (1) yields: 

(,o' /\ (to!c ~ hlc)) m1 \ê ((,o' <1 X) /\(to Ic ~ hlc)). (2) 

The precondition of (2) is: 

,o[to/h] /\ (tolc' = hlc') /\(tale~ hlc). 

Since c' Ç c this is clearly implied by: 

,o[ta/h] /\(tale= hlc). 

Since hchan( ,o) Ç c, this last a.ssertion is equivalent to: 

,o /\(tale = hlc). 

Moreover, we prove below that: 

((,o' <1 x) /\(tale~ hjc)) - (,o <1 x) (3) 

is va.lid. 

Therefore we can apply the consequence rule to (2) as is done in the 
following derivation: 

(2) 
( Consequence) 

(,o A (tolc = hlc)) m1 \ê (,o <1 X) 
(3-pre) 

(3ta[,o /\(tale= hlc)]) m1 \ê (,o <1 X) 
( Consequence) 

The conclusion of this derivation is the formula which was to be shown 
provable. 

We are left with the proof of (3). Take some arbitrary "/Er, (h, s) E !.: 
a.nd assume: 

• (h, s) E [(,o[ta/h] A (to ic'= hlc')) <1 X]"J, 
that is: 

3hti3hi3so'(h = htihi /\ ('y(ta),sa') E [,oh A 

('y(to)lc' h61c') /\(sa', hi, s) E [Xh) (4) 
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• (h, s) E [tolc:::; hlch, that is 

ï(to)lc :$ hlc (5) 
From (4) and (5) we must show that: 

• (h, s) E [(<p <l X)]'Y, that is : 

3ho3h13so(h = hoh1/\(ho,so) E [<p]ï/\(so,h1,s) E [xh) (6) 

Now take some h~, hi, so' as indicated by (4). From (5) it follows 
that there exist traces ho such that ho :$ hand ï(to)lc = hole. Take 
one of these and take hi such that h = hoh1. Choose so = so'· We 
must prove for this choice of ho, hi and so that (ho, so) E [ <p ]ï and 
(so, hi, s) E [X]]ï. To this end we first show that actually hole'= h~lc' 
and hilc' = hilc'. 

First of all: 

hole'= holclc' = ï(to)lclc' = ï(to)lc', and 

by (4) we know that ï(to)lc' = h~lc'. This shows that hole' = h~lc'. 
Secondly, since hoh1 = h = h~hi we have that 

(holc'r(h1lc') = (h~lc'r(h~lc') 

So we conclude that also hilc' = hilc'. 

As to the proof of (ho, so) E [ <p h we remark that, since ï( to) Ic = 
hole and so = so', the pairs (ho,so) and (ï(to),so') agree on abase(<p). 
But we know already that (ï(to), so') E [<p]I, and so we can infer that 
also (ho,so) E [<p]ï. 

The restriction on hchan(X) implies that hchan(X) Ç c'. This means 
that (so, hi, s) and (so', hi, s) agree on abase(x). And since we know 
that (so',hi,s) E [X]ï we can conclude that also (so',hi,s) E [x]]ï. 
(As was to be shown). 

D 

• Variable hiding 

Assume the given deduction ends as: 

m1 sat X 
(Hiding) 

m1\x sat X 

The restriction for this rule then requires that var(X) n x = 0. (Note 
that nothing is required with respect to var0 (X)). Now var(<p <l X) = 
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var(X), and so var(<p<I x)nx = 0 too, for arbitrary <p. So the following 
derivation is allowed: 

(Hiding) 

(The restriction for this rule requires that var( <p <I X) n x = 0, hut 
nothing is required with respect to var(<p).) 

Since (<p) m1 (<p <I X) can by induction assumed to be derivable, we 
see that ( <p) m 1 \x ( <p <I X) is derivable, as was to be shown. 

• Channel renaming 

Assume that the given deduction ends as follows: 

m1 sat x[h[d/c]/h] 
(Renaming) 

m1 {d/c} sat X 

Let <p1 = <p[h[c/c']/h] /\ (c = g) /\ (c' = t'), where c' is some fresh 
channel name and t' is some fresh logical trace variable. By induction 
the following is derivable: 

(<p') m1 (<p1 <I (X[h[d/c]/h])). (1) 

The invariance rule can be used to derive: 

(c' = t') m1 (c' = t'). (2) 
' 

Combining (1) and (2) using the conjunction rule yields: 

(<p1
) m1 ((<p1 <I (X[h[d/c]/h])) /\ (c' = t')). (3) 

Below we prove the validity of the following assertion: 

(<p' <1 (X[h[d/c]/h]) /\ (c' = t')) ~ ( (<p <I X)[h[d/c][c/c1/hl) (4) 

We use this in the following deduction that shows the derivability of 
(<p) m1 (d/c} (<p <I x). 
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(cp') m1 ((cp' <l (X[h[d/c]/h])) A (c' = t')) 
( Consequence) 

(cp') m1 ((cp <l x)[h[d/c][c/c']/h]) 
(3-pre) 

(3t'[cp']) m1 ((cp <l x)[h[d/c][c/c~/h]) 
( Consequence) 

(cp[h[c/c'j/h] A (c = e)} m1 ((cp <l X)[h[djcj[cjc~jh]) 
{Renaming) 

(cp) m1 {d/c) (cp <l X) 

Proof of {4). 

Take some arbitrary 'Y Er, (h, s) E E and assume: 

• (h,s) E [(cp[h[c/c']/h] A (c = e) A (c' t')) <l (X[h[d/c]/h])]'Y. 

that is: 

3hri3hi 3so' ( h h~hi A ( h~ [ c / c'], so') E [ cp Jh A 

{h~j{c} = e) A {hrii{c'} = 7(t')) A (so',hi[d/c],s) E [xh)· 

• (h, s) E [c' = t']'Y, that is: hj{c1
} = 'Y(t'). 

We must prove from these assumptions that 

• (h,s) E [(cp <l X)[h[d/c][c/c1/h]h, that is: 

3ho3h13so(h[d/c:l[c/c1 = hoh1 A (ho, so) E [cph A (so, hi, s) E [Xh ). 

To see that this is the case, take hb, hi, so1 as indicted, and choose: 

- ho = hri[c/c1, 

- hi hi[d/c], 

so so'. 

Clearly the requirements (ho,so) E [cph and (so,hi,s} E [xh follow 
directly from the assumptions. There remains to prove: 

h[d/c][c/c1 = hoh1 = (h~[c/c']f (hi[d/c]). 

Since h = hbhi it suffices to prove: 

(i) h6[d/c][c/c~ = h6[c/c'], and 

(ii) hHd/c:l[c/c~ = hi[d/c]. 
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Now (i) follows immediately from the assumption hbl{c} t: implying 
h~[d/c] = hb. Equality (ii) will follow similarly if we can show that 
(hHd/c])l{c'} = e, or, equivalently, that h~l{c'} = t:. This last equality 
follows from: 

h~l{c'} 1(t1
) = hi{c'} = (h~hUi{c'} = (h~l{c'} )"(h~l{c'} ). 

0 

• Kemel 

Assume the given deduction ends as: 

m1 sat X 
(Kernel) 

Kern( m1) sat Kern(X) 

Let some precondition <p be given. Let ( c, { x}) = abase( <p, X) and let 
ii be a list of fresh logical variables of some length as x. Take some 
fresh logical trace variable t0 • Define: 

<p1 <p A (hlc = tolc) A (x = ii) 
We have the following derivation, where the premisse itself is derivable 
by the induction hypotheses: 

('P') m1 ('P' <I x) 
(Kemel) 

('P' A hlc = tolc) Kern( mi) (Kern( to, <p1 <1 x)) 
-----------------(Consequence) 

(<p1
) Kern(m1) (<p <I Kern(X)) 

-------------3-pre 

(3t0 3ii[<p1]) Kern(m1) ('P <I Kern(x)) 
--------------(Consequence) 

('P) Kern(m1) (<p <I Kern(X)) 
Here the application of the consequence rule relies on the fact, to be 
proven below, that 

Kern( to, ('P' <1 x)) - <p <1 Kern(x) (*) 

is valid. 

Proof of(*). 

Let (h,s) E [Kern(to,<p1 <I X)h. 
By expanding the definition of Kern( to, <p' <IX) we see that this means: 
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(h, s) E [~' <1 Xh, and 

(h,s) E [\it(toic::; tic 5 hic-+ (~' <1 X)[..Lj[t/h])]'i. 

We interpret these two formulae, and also use the fact that ~ can be 
assumed to be of the form T /\ - - -. (So (ho, so) E [ ~ ]I implies 
so -j:. ..L . ) This interpretation amounts to the following: 

(a) 3ho, hi, so ( h = hoh1 /\(ho, so) E [~]ï /\(hole 1(to)lc) 

/\so "# ..L /\ (so(x) = ï(v)) /\ (so, hi, s) E [X]]ï ). 

(b) If, for some h', ï(to)lc 5 h'lc 5 hjc then: 

3h~,hi,so'(h' = h~hi /\ (h~,so') E [~h /\ (h~lc = "7(to)lc) 

/\ so' "# ..L /\ (so'(x) = ï(v)) /\ (so', hi, ..L) E [xh ). 

From ( a) and (b) we must prove: 

(h, s) E [~ <l Kern(x)]ï, that is: 

3ho,hi,so(h = hoh1 /\ (ho,so) E [~]ï /\ (so,h1,s) E [Kern(x)]ï). 

To prove this, take ho, hi, and so as indicated by (a). The requirement 
( so, hl! s) E [ Kern(X) h splits into: 

(i) (so, h1, s) E [x]ï and 

(ii) If h~ 5 h1 then (so, h~, ..L) E [x]ï. 

Clearly (i) follows immediately from (a). Now apply (b) and choose 
h' = hoh1. Since, by (a), "7(to)lc =hole 5 (hoh1)1c 5 (hoh1)lc = hlc, 
we see that there exist hb, hi, so' with the properties as indicated under 
(b). From hole= ï(to)lc = h~lc and (hoh7)1c = h'lc = (hbhD!c it fol
lows that h11c = hilc. Similarly we see: so(x) = 1(ii) = so1(x). There
fore, (so', hi, ..L) and (so, hï, ..L) agree on abase(X) and since we know al
ready that (so', hi, ..L) E [X]ï by (b), we see that also (so, h1, ..L) E [X]]ï, 
as was to be shown. 

• Sequentia! composition 

Assume the given deduction ends with: 

m1 sat X1 , m2 sat X2 
(Sequentia! composition) 
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By induction, (p) m1 (p <1 X1) and (p <1 X1) m2 ((p <1 X1) <1 X2) are 
derivable. Since by lemma 4.34 (p <1 X1) <1 X2 implies p <1 (X10X2), we 
have the following derivation: 

(Seq. comp.) 

( Consequence) 

• Choice 

Assume the given deduction ends with: 

m1 orm2 sat X1 V X2 

By induction, (p) m1 (p <1 X1) and (p) m2 (p <1 X2) are derivable. By 
lemma 4.33, point (ii), (p <1 Xi.) implies (p <1 (X1 V X2)), for i = 1, 2. 
So we have: 

-------(Cons.) 

(Choice) 

• Parallel composition 

Assume that the given deduction ends as follÓws: 

m1 sat X1 , m2 sat X2 
(Parallel composition) 

m1 ~1 ll~2 m2 sat X1 A X2 

Let in the following "j'' stand for 3 - i. From the restrictions associated 
with the rule it the follows that abase(Xi) n P; Ç Pi. for i E 1, 2. 

We want to show the derivability of: 

(p) m1 P1 Il P2 m2 (p <1 (X1 A X2)), 

where we may assume, by induction, the derivability of: 

(Pi)mi(Pi. <1 Xi.), 
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for i = 1, 2, for arbitrary 'Pi· 

The first idea is to choose 'Pl = 'P2 = ip. Unfortunately this will not 
do, for the resulting specifications for the parts in general cannot be 
combined by the parallel composition rule from the Hoare system. The 
reason is that in general (abase(ip) n P;) ~Pi· 

Therefore we choose 'Pi as in the following definition. We rely on the 
fact that we can assume that tp is of the form T A ip1

• 

Define for i E 1, 2: 

• {J~r P1UP2Uabase(ip,X1,X2) = (say) (c,{x}), 
def - N -• /Ji = /JiU(abase(ip,Xi,X2)-f3;)= (say) (ci,{xi}), 

• Let ii be a list, of the sa.me length as x, of distinct fresh logica! 
varia.bles. Let ii1 be the sublist of ii corresponding to Xi· Also, let 
to be a fresh logical trace varia.bie, 

• 'Pi ~f ip[ii/xl[to/h] A (ïï1 = x1) A (tolct hlci)· 

lnformally speaking, we have divided up {J into fJ1 and f32, that is fJ1 = 
f31 U !32, in such a way that fJ1 n P; Ç .81. The assertion 3ii3to ('Pi) is the 
strongest one possible on the channels and varia.bles in f3i given that 
tp holds. 

In fact we have that abase( 'Pi) n P; = fJi n P; Ç Pi. Moreover, from the 
restriction on abase(Xi) stated above, it follows that : 

abase(ipi <l Xi) n P; = (abase(ipi) U abase(Xi)) n P; Ç Pi 

From these calculations we conclude that the restrictions associated 
with the following application of the parallel composition rule are met: 

----------------(parallel comp.) 

('P1 /\ 'P2) m1 P1 Il P2 m2 (('P1 <l X1) /\ ('P2 <l X2)) 

Let 'Pp denote (tolc ~ hjc) and let m = m1 P1 Il P2 m2. Clearly, 
('Pp) m ('Pp) is an insta.nee of the prefix invariance axiom. Using the 
conjunction rule to combine this axiom with the conclusion of the rule 
above, we obtain: 

('P1 /\ 'P2 /\ 'Pp) m {('P1 <l X1) /\ ('P2 <l X2) A 'Pp)· (1) 
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Below we give the proof of the following: 

Lemma 7.3 

The following assertions are valid: 

(i) (<p1 /\ <p2 /\ <pp) +-+ (<p /\(il= x) /\(to Ic= hlc)). 

(ii) ((<p1 <l X1) /\ (<p2 <l X2) /\ <pp) ___. (<p <l (X1 /\ X2)). 

D 

Using the lemma we obtain the following derivation: 

Let 1/; denote <p /\(il= x) /\(to Ic= hlc). 

(<p1 /\ <p2 /\ <pp) m {(<p1 <l X1) /\ (<p2 <l X2) /\ <pp) 
( Consequence) 

{3-pre) 

( Consequence) 

The last formula was the one to be shown to be provable. 

Proof of the lemma. 

The important observation to be made here is that although 

(tolc = hlc) ;4 ((tolc1 = hlci) /\ (tolc2 = hlc2)), 

it is true that 

(tolc = hlc) +-+ ((tolc1 = hlc1) /\ (tolc2 = hlc2) /\ (tolc $ hlc)). 
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The implication from left to right is easy: if tolc = hlc then also 
tolcï = tolclcï = hlclcï = hlcï. Reverse, assume tolcï = hlcï for i = 
1, 2 and tolc $ hlc. Let us assume to the contrary that tolc -:/= hlc. 
Since tolc $ hlc it follows that ltolcl-:/= lhlcL This excludes the case 
that tolc and hlc differ only in that the order of the communications is 
different. Rather there must be some channel d E c such that 1to1 { d} 1 -:/= 
lhl{d}L However, d E c1 or d E c2 and so tolc1 = hlc1 is violated or 
tolc2 = hlc2 is violated. By reduction ad absurdum, tolc = hjc. 

Using the equivalence above we now prove part(i) of the lemma: 

<pl /\ <p2 /\ <pp iff 
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0 

~[v/x][to/h] /\ (v1 = x1) /\ (v2 = x2) /\ (tolc1 = hlc1)A 

(tolc2 = hic2) /\ (tolc ~ hic) iff 

~[v/x][to/h] /\ (v = x) A (tolc = hlc) iff 

~ /\ (v = z) /\ (tolc = hic) (since abase(~) ç;:; (c,x)). 

Next we prove part (ii) of the lemma. We give a. semantic argument. 
Tha.t is, we prove that for a.rbitrary ï Er, (h, s) E Il, 

if (h,s) E [(~1 <I X1) /\ (~2 <I X2) /\ ~p]]ï 

then (h,s) E [~ <I (X1 AX2)]ï. 

Let us first rewrite this, by expa.nding the (semantic) <I operators. 

We may assume: 

• (h,s) E [~i <I Xï]ï, that is, for i E 1,2: 

3ht3hi3sHh = hthiA(h~,st) E [~i]]ïA(s~,hi,s) E [Xïh)· (1) 

• (h, s) E [tolc ~ hich, that is: 1(to)lc ~ hlc. (2) 

From this it must be shown that: 

• (h, s) E [~ <I (X1 /\ X2)]l1, that is: 

3ho3hi3so ( h = hoh1 /\ (ho, so) E [ ~ ]]ï /\ 

(so,hi,s) E [X1]]î' /\ (so,hi,s) E [X2h)· (3) 

So assume (1) and (2). Take some hb, h{ and sb as indicated by (1). 
From (2) it follows that there exists tra.ces hb such that hb ~ h and 
1(to)lc = hblc. Choose ho as the longest of these hb tra.ces. Take hi 
such that hoh1 = h. (We postpone the choice of some so.) 

First we show that actually holci = hblci and h1lci = hÎICi· For we 
have that: 

holCi = holclci 'Y(to)lclci = 1(to)lci. 

And from (hb,sb) E [~ih follows that: 

ï(to)lci = htlc,. 

Therefore holcï = hblc,. Moreover, 

(holci)"(h1lci) = (hoh1)lci = hlci = (hthi)lci = CktlCï)"(hilci)· 
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We conclude that also h1lc; = hilc1. 

Next we must choose some so and then prove that (ho, so) E [Ph and 
(sa, h1, s) E [Xi]7. Because of the assumption that p is of the form 
T A • • ·, the same holds for the Pi assertions. So from the assumption 
that (hb, s~) E [Pi h it follows that s~ =f:. 1-, for both i = 1 and 
i 2. Therefore we can, for instance, choose so = sàlx : 7(ü). From 
the lemma, part(i), follows that instead of proving (ho, so) E [ p h it 
suffices to show that (ho,so) E [~sh and (ho,so) E [Pph· This is 
done as follows: 

From (hb, sb) E [Pih follows: 

(a) hblci = holci (This was shown above.) 

(b) sb(xi) = 7(vi) = (sjx: 1(v))(x,) = so(x,) 

So (ho, so) and (hb, sb) a.gree on abase(p,), and therefore (hb, sb) E 

[~,]ï implies that (ho, so) E [Pih· 

The proof that (ho,so) E [~ph is straightforward: 7(to)lc =hole by 
the choice of ho. 

We are left with the proof of: (so, hi, s) E [Xih· Now this is clear, as 
(so, h1, s) and (sb, hi, s) agree on abase(Xi) and (sb, hi, s) E [x,]ï. 

This ends the proof of the lemma, and so of the parallel composition 
case. 

D 

• lnvariance 

Assume we have given an insta.nee of the invaria.nce axiom: 

m sat (hld = e:) A (T - fi = y0
). 

From this axiom it then follows that (d, {g}) n base{m) = (0, 0). 

Let some ~ be given. We want to prove: 

(p) m (~ <1 {{hld = e:) A (T - g = g0
))). 

- Let abase(~) u {d, {ii}) = (c, {x}). 
- Let v be a list, of the sa.me length as x of fresh logical varia.bles. 

Let w be the sublist corresponding to jj. Let to be some fresh 
logical trace variable. 

- Let p' = (p[T][ii/x][to/h]). 
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- Let P/ =: (told = hld) /\ (T --t w = y). 

- Let Pp = (tolc ~ hlc). 

Note that we have the following instances of the invariance axiom: 

( ( rp' /\ rp I) /\ ( rp' /\ rp I )[ 1-]) m ( rp' /\ rp /) · 

Since the precondition of this formula is equivalent to rp1 
/\ rp 1, we can 

use the consequence rule to derive: 

( rp' /\ rp /) m ( rp' /\ rp I) · 

We use the conjunction rule to combine this with the following instance 
of the prefix invariance axiom of the Hoare system: 

(rpp) m (rpp)· 

This yields the formula: 

(rp' /\ Pt /\ Pp) m (rp' /\ Pt /\ Pp)· 

Below we prove the validity of: 

(rp' /\ Pt /\ Pp)-+ (rp <l ((hld = e) /\ (T-+ y = y0
))). (*) 

Therefore the following derivation is possible: 

( Consequence) 

(rp' /\ Pt /\ Pp) m (rp <J ((hld = e) /\ (T --t y = g0
))) 

(3to3ii[rp' /\ Pt /\ Pp]) m (rp <J ((hld = e) /\ (T-+ g = g0
))) 

(rp) m (rp <J ((hld = e) /\ (T --t g = g0
))) 

(As was to be shown.) 

Proof of(*): 

Assume (h, s) E [rp' /\ Pt /\ Pph· 
We must show: (h, s) E [rp <J (hld = e /\ (T---+ g = g0 )))î'. 

(3-pre) 

( Consequence) 

Take some arbitrary state s' "# 1-. We have have the following situa
tion: 

(a) s' "# 1-, 

(b) (h, s) E [rp[1-][ïï/x][to/h]]ï, that is: (ï(to), s'lx: ï(ii)) E [rp]1, 
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(c) 1(to)ld = hjd, 

(d) 1(to)lc ~ hjc, 

(e) if s =j:. ..L then 1(w) = s(y). 

From ( a) - ( e) must be shown: 

3ho, h13so( (so, hi, s) E A /\ h = hoh1 /\(ho, so) E [So]ï /\ 

(h1ld = t:) /\ (s =j:. ..L-t s(y) = so(y))). 
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[Remark The clause "( s0 , hi, s) E A" might appear superfluous, for 
by our naming conventions we already know that so E Statel.., hi E 

Trace and s E StateJ... However, this is not sufficient since we have 
no guarantee that if so ..L then h1 = t: and s = ..L, as is the case 
for A elements. In all cases before, there was some clause of the form 
"(so, hi, s) E [Xh" present, and since [X]I Ç A, the condition above 
was enforced automatically. Not so in this case, explaining the conjunct 
(so, hi, s) E A. ] 

Now choose ho such that ho ~ h and hole -y(to). (There exists such 
a ho by (d)). Take hi such that hoh1 = h. Choose so = s'lx: 1(v). 

Because s' =j:. ..L, we have that so =j:. ..L and this guarantees that 
(so, hi, s) E A. Note that (ho, so) and ('Y(to), s'lx : 1(v)) agree on 
( c, { x}), and so agree on abase( So). From this and (b) it follows that 
(ho, so) E [Soh· 

We chose ho such that hole= -y(to)lc, implying that hold= 1(to)ld, 
for we have d Ç c. Then, using equality (c), we see that 

(hoh1)ld = hld = 1(to)ld =hold; 

Conclusion: h1ld = e. 

Similarly, because w is a sublist of v, we have that if s =j:. ..L: 

s(y) = ')' ( w) = s!x : 1( u)(y) = so (y). 

This ends the proof of ( * ), and so of the "invariance" case. 

• Conjunction 

Let the given deduction end with 

m sat X1 , m sat X2 
( Conjunction) 
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We want to deduce (cp) m (cp<I (X1AX2)). Surprisingly the last formula 
cannot be proven from (cp) m (cp<I X1) and (cp) m (cp<I X2) by applying 
the conjunction- and consequence rule. The reason for this is that: 

((cp <I X1) A (cp <I X2)) - (cp <I (X1 A X2)) 

is not valid in general. Rather it follows from lemma 4.33, point (viii), 
that the reverse implication holds. However define: 

cp' = cp A (hlc = t0 lc) A (x = v), 

where (c, {x}) = abase(cp, Xi, X2) and where to and ïi are fresh logica! 
variables. Below we prove that: 

is a valid assertion. Moreover, by induction we may assume provability 
of (cp') m (cp' <I Xi) for i = 1, 2. This leads to the following derivation: 

(cp') m (cp' <I X1) , (cp') m (cp' <I X2) 
( Conjunction) 

(cp' A cp') m ((cp' <I X1) A (cp' <I X2)) 
( Consequence) 

{3-pre) 

(3to3ii[cp']} m (cp <I (X1 A X2)) 
( Consequence) 

There remains the proof of ( *) 

We may assume that cp is of the form T Alp. Therefore (h, s) E cp' 
implies that s =/= . .L. 

Now assume (h, s) E [(cp' <I X1) A (cp' <I X2)h, that is: 

For i = 1 and i = 2 : 

3h~, 3hi, 3soi ( h = h~hi A soi =/= ..l A (h~, soi) E [cp]; A 

{h~lc = ;(to)lc) A (soi(x) = ;(v)) A (soi,hi,s) E [XiJI;). 

To prove: (h, s) E [cp <I {X1 A X2)h, that is: 

3ho3h13so(h = hoh1 A (ho,so) E [cp]; A 
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(so, hi, s) E [X1h A (so, hi, s) E [X2h ). 

Now take hb, hi, s0i as indicated. We then have that: 

(a) hälc = 7(to)lc = halc, 
(b) Since häh} = h = h5hf, from (a) it follows that also hl!c = hîlc. 

(c) so1(x) = 7(ii) = so2(x). 

We see that (so1 ,hf,s) and (so2,hi,s) agree on abase(Xi,X2). There
fore we can choose ho, h1 and so as follows: 

ho= h~, h1 = h~, s0 = s0
1 

It is immediately clear that h = hoh1, that (ho, so) E [ y::> h and that 
(so, hi, s) E [X1h· Since, by the above, (so, hi, s) and (so2, hf, s) agree 
on abase(X2), we see that also (so, hi, s) E [X2h· As was to be shown. 

• Consequence 

The given deduction, 

m sat x, 'v'.L(X--+ X1) 

( Consequence) 

m sat x' 
is easily transformed into: 

(y::>) m (y::> <l x) , 'h((y::> <l x)--+ (y::> <l x')) 
( Consequence) 

(y::>) m (y::> <l x') 

• Process naming 

Assume the given deduction ends with an application of the process 
naming rule: 

H 1- m1 sat X1 , HU {6 sat X1} 1- m2 sat X2 

H 1- ei = m1in m2 sat X2 

From the restriction for this rule it follows that e <:/. H. We recall that 
fI is some given set of adaptable Hoare formulae that are equivalent 
to the formulae in H. It is clear that e <:/. ÉI too. . 

By lemma 7 .2 we can take some adaptable specification of the form: 
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\t'g[('PF)6('PF <l X1)]., (1) 

such that (1) is equivalent to Ç1 sat X1· We ma.y a.ssume tha.t the logica! 
varia.bles g have been chosen fresh, so they do not occur free in the set 
if. 
By induction we ma.y assume, for arbitrary <p, the deducibility of: 

if 1- ('PF) m1 ('PF <l Xi), and 

if U {(1)} 1- (ip) m2 ('P <l X2). 

Using the \t'- introduction rule, one derives from the first of these two 
formula.e: 

if 1- \t'g [ ('PF) m1 ('PF <l X1)] • 

From this, the desired formula is deduced in one step, using the process 
naming rule of the Hoare system: 

if 1- (1) , if U {(1)} 1- ('P) m2(<p <l X2) 
(Process naming) 

if 1- (ip) ei = m1 in m2 ('P <l X2) 

• (µ") Recursion 

Assume tha.t the given deduction ends with an application of the re
cursion rule as follows: 

H 1- z sat x, Hu {e sat x 1- m1} sat x 
(µ z recursion) 

From the restriction for this rule it follows tha.t e <!j. H, and so also 
e <!j. if, where if is the corresponding set of Hoare formulae. We must 
show the deducibility of if 1- (ip)µze.mi('P <l x) for arbitrary 'P· 

By lemma 7.2 we can take some Hoare specification of the form: 

v9[('PF)e('PF <1 x)], (1) 

such that it is equivalent to e sat x and is also adaptable. 

By induction we ma.y a.ssume the deducibility of: 

if 1- ('PF )z('PF <l X) and 

if u {'v'g[('Pp)e('PF <1 x)]} t- ('PF) m1 ('PF <1 x). 
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Since we may assume that g has been chosen such that g it. lvar(Îl), 
the V- introduction rule can be used to infer: 

fl f-Vg[(cpF)z(~F <l X)] and 

fl, Vg[(~F)e(~F <l X)] f-Vg[(~F) m1 (cpp <l X)]. 

Clearly we can apply the recursion rule from the Hoare system, and 
obtain thus: 

fl r-vu[(~p)µze.mi(~F <l x)]. 
From the equivalence between ( 1) and e sat X and the validity of the 
implication 

(e sat X)---. (~) e (~ <l X), 

it follows that the implication 

vu[(~F) e c~F <l x)] - (~) e (cp <l x) 

is valid too. Because of the adaptability of (l) this implication is 
provable or, equivalently: 

fl f- (cp) e (~ <l x) 

can be deduced from: 

fl r-vu[(cpp) e (cpp <l x)]. 
By replacing e by µzÇ.m1 in this proof we see that: 

fl f- (cp)µze.m1(~ <l x) 

is deducible from: 

fl f- 'v'g[(cpp)µzÇ.m1(~F <l x)]. 

This shows that the latter formula is deducible, since we already proved 
above that the former formula is deducible. 

Finally we treat (non µz) recursion. This case is identical to the case 
of µz recursion except that the corresponding proof rules of the SAT 
system and the Hoare system do not have the premisse of the form 
Z sat x. 
This ends the proof of theorem 7.1. 
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0 

Theorem 7 .4 Compositional Completeness for the Hoare system 

The Hoare system is compositionally complete for the class of Hoare formulae 
il 1- Vg[ ( <p) m ( 1")] where il consists of adaptable Hoare formulae, and where 
Vg[(<I') € (1")] is a satisfiable specification. 

[] 

Pro of 

Assume that il is the following given set of adaptable Hoare specifications: 

il ~r {V91[(iP'1) ri (~1)], · · ., Vgn[{iP'n) rn (~n)]}. 
Assume that Vg[(<I') e (1")] is satisfiable, and that: 

il f=\tg[(<I') m(mi, ... ,mk) {1")]. (1) 

To prove the theorem we must show the existence of sets of adaptable Hoare 
specifications ili, and assertions <f'i, tPi such that: 

(a) ili f= (<!'i) mi (tPi), for i = 1"k, and 

(b) il 1-Vg[(<p) m(mi, .• . ,mk) (1")] is deducible from: 

IÏ11- (<1'1) m1(1/Ji), ... ,IÏk1- (<!'k) m.t (tPA:)· 

Let H ~r fri sat \tg1 ((J5'1 ~ ~i), ... , rn sat 'v'gn(Pn ~ .$11)}. 

From ( 1) it follows that: 

il f= (<p) m(mi, •.• ,m1:) (1"), 

and so: 

H m(m1, ... ,mA:) sat (<p ~ 1/J). 

By the compositional completeness of the SAT system this implies the exis
tence of sets of SAT specifications Hi and assertions Xi such that: 

(a') Hi m; sat Xü for i = 1..k, and 

(b') H 1- m( mi, ... , mA:) sat ( <p '\À tP) is deducible from: 

H11- m1 sat Xi, • .• ,Hk 1- m1 sat Xk, 

Note that il as defined above is a set of adaptable Hoare specifications that 
are equivalent to the SAT specifications H. But then, by theorem 7.1, there 
do exist sets of Hoare specifications bi and assertions <l'i such that: 

(a") bi (<l'i) m; (<l'i <l Xi) for i 1"k, and 
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(b") il 1- (So) m(mi, ... , mk) (So <I (So ~ 1/J)) is deducible from: 

fi11- (So1) m1 (So1 <1 X1), . .. ,fik 1- (Sok) mk (Sok <1 Xk)· 

Therefore, if we choose 1/J;, ~f )O;, <I X;, then point (a.) is satisfied. Moreover, 
( )0 <I ( )0 <"\À' 1/J)) -+ 1/J is a va.lid implication, and so, one can a.pply the 
consequence rule to deduce: 

il 1- (So) m(m1, ... ,mk) (1/-i) 

from: 

il 1- (So) m(mi, ... , mk) (So <1(So~1/J)). 

If g n gvar(Ïl) = 0, then we can apply the V- introduction rule to obta.in: 

il 1- Vg[(So) m(mi, ... , mk) (1/J)], 

and we are finished. 

If jj n gvar( il) -/= 0, then we first choose some list of fresh ghost varia.bles jj1, 

and deduce as above: 

il 1- Vg'[(So[ü'/g]) m(m1, "., m1i:) (1/J[ii'/g])], 

In section 4.11 we already showed how to change the name of bound vari
a.bles, and in this way one can deduce: 

il 1-Vg[(So) m(m1, ... ,mk) (1/-i)]. 

This was to be shown. 

D 

7.2 Freeze predicates 

We are left with the proof oflemma. 7.2. We define aspecial class of assertions 
tha.t we sha.11 use to prove this lemma. The assertions of this class are called 
freeze predicates since they are used to "freeze" the va.lues of the channels 
and assignable varia.bles in some particular state in the sense tha.t logical 
varia.bles are introduced that are set equa.l to these va.lues. lf such a freeze 
predicate is used as precondition to freeze the initia.l state va.lues and initia.l 
trace va.lues of varia.bles, then one can (indirectly) refer to these va.lues in the 
postcondition via the logica.l varia.bles introduced by the freeze predicate. 

Definltion 7.5 (Freeze predicates) 
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Let /3 = ( c, { x}) and let iJo be a list of the same length as x of logica! 
variables. Let to be a logica! trace variable. We define the /reeze predicate 
4>r; (to, vo) as follows: 

4>fJ(to, iio) ~r T /\ (hlc = tolc) A (x = iio). 

D 

Next we prove the following lemma, which clearly implies lemma. 7.2. 

Lemma 7.6 

Let X be a satisfiable predicate such tha.t abase(X) ç;; /3 and 
gvar(X) n {t0 , vo} = 0. Then the following holds: 

(i) For any mixed term m not containing to or iJo free: 

m sat X iff'v'toVvo[(4>r;(to,vo))m(4>fJ(to,ïïo) <IX)]. 

(ii) VtoVïïo[(4>fJ(to, vo)) € (ef>p(to, vo) <1 X)] is an a.daptable specification for 
the Hoare system even when it does not include the "extra" a.daptation 
rules of section 5.4.2. 

[] 

Proof 

Abbreviate </>{J(to, üo) as tP{J· 
• lf m sat X then Vto\tvo[(4>fJ)m(4>fJ <IX)] as is shown by the following deriva
tion: 

msat X 
(SP) 

( 4>r; )m( ef>p <1 x) 
(V-introduction) 

Vto\1'vo[(4>fJ)m(4>fJ <IX)] 

To prove the reverse we start with a derivation: 

VtoViïo[(</>{J)m(ef>r; <IX)] 
(V-elimination) 

(<Pr; )m( tP{J <1 X) 
(HS) 

m sat </>r; ~ ( </>{J <I X) 
(V-introd uction) 

m sat Vto\tiio[4>fJ ~ (<l>fJ <IX)] 
( Consequence) 

m sat X 
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The application of the consequence rule must be justified by proving the 
validity of: 

\lto\lvo[<f>.e ~ (</>11 <1 x)] - x. (1) 

The implication (1) is not valid for arbitrary assertions </>11; rather it is a 
typical property of our freeze predicates. To prove ( 1) we first expand the 
definition of </>11 <l x. 

</>,e <l x iff 
(</>11[..L] A X[..L0

] A ..L) V 

{3ti,t23v(hlc = (t1t2)lc A </>,e[T][t1/h][v/x] A x[T0 ][v/x0 ][t2/h])) 

iff 

(false A - - -) V 3( hlc =(tot) Ic A X[T0 ][vo/if0 :l[t/hJ). 

This expansion is used in the following expansion of \lto\lvo[</>,e ~ (</>p <l X)] : 

\fto\liio[<f>.e ~ (</>{3 <l x)] iff 

\lto\lvo\lto' ( </>p[to' /h, x0 /x, T0 /T] - (</>p <l X)[to'h/hJ) iff 

Vto'fvo\lto' ( (T0 
A to'lc = tolc A x0 vo) -t 

3t((to'h)lc =(tot) Ic A X[T0 ][vo/x0 ][t/h]) ). (2) 

Choosing to' = to = e, iio = x0
, we see that (2) implies: 

T 0 -t3t(hlc =tic A X[T0 j[t/hJ). {3) 

And from (3) it follows that: 

T0 -tX[T0
]. (4) 

Since X is satisfiable, X[..L 0 ]is valid. And therefore we see that: 

X iff (T0 -tX[T0
]) A (..L0 -tX[..L0

]) iff {T0 -tX[T0 J). 
So ( 4) actually is equivalent to x. 
This ends the proof of implication (1), and so of the proof of part (i) of the 
lemma. 

Next we prove part (ii). 

First we show how to adapt the formula 
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WoVvo[(4>,e) Ç (</>,e <I x)] (1) 

to a similar formula that expresses extra invariance properties. 

Let {3' = ( d, {Y}) such that /31 n base( Ç) = (0, 0). 

Let wo be a list of logical variables of the same length as fi. If the i-th 
element of fi actually is the same variable as the j-th element of z, then take 
for the i-th element of wo variables the j-th element of ilo. Choose fresh w0 

variables for those y elements not already occurring in f. In short: although 
the f and fi list need not be disjunct we have chosen the üio consistent with 
the already given ïïo list. Now our claim is that if: 

</>p ~-f T /\ (tol(c ud)= hl(c ud))/\ x = ïïo /\ fi = wo, 

then we can derive from ( 1) the formula: 

VtoViio,wo[(</>p) Ç (</>p <I (X /\ lp1))]. (2) 

Let: 

'PF ~r (told = hld /\ (T -+y = üio)), 

'PP ~ (tol(c ud) $ hl(c Ud)). 

We use instances of the invariance- and prefix invariance axioms: 

('Pp[..lj /\ 'PF) Ç (ipp ), (3) 

('Pp) e ('Pp). (4) 

By application of the V - E rule, followed by the conjunction rule we derive 
from (1), (3) and (4): 

(</>p /\ 'Pp[..LJ /\ 'PF /\ 'Pp)Ç((</>p <IX)/\ 'Pp /\ 'Pp). (5) 

Clearly it is the case that 

</>p-+(</>p /\ 'Pp[..l] /\ 'PF /\ 'Pp) 

is valid. If we can prove that 

((<l>fJ <1 x) /\ 'PF /\ 'Pp)-+(4>p <1 (x /\ l,e1)) (6) 

is valid too, then the consequence rule is applicable to (5) and yields: 

(</>p) Ç (</>p <I (X /\ lp1)). (7) 
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Since neither to nor a.ny of the iio or illo occur free in hypotheses of this 
derivation of (7) we can use the \f-introduction rule to obtain the desired 
formula (2) from (7). 

We are left with the proof of (6). 

Assume, for arbitrary chosen (h,s) E l'J,-1 Er, that: 

(h,s) E [(<f>tt <l x) "'PF /\ 'Pp]'Y, 

that is: 

(a) 3hti, hi3so' ( h = h~hi /\ so' # J_ /\ (h~lc = 7(to) Ic) /\ 

so'(x) = 7(iio)A (so',hi,s) E [x]"Y), and 

(b) hld = 7(to)ld/\ (s # J_-+s(y) = 7(wo)), and 

(c) -y(to)l(c ud.) S hi(c ud). 

From the above it must be shown that: 

(h, s) E [</>p <l (x /\ lp1)]"1, 

that is: 

3ho, hi3so ( h = hoh1 /\ so # J_ /\ (hol(c ud) = 7(to)l(c ud)) 

/\so(x) -y(vo) /\ so(iï) = -y(wo) /\ (so,hi,s) E [xh 
Ah1id = e: /\ (s # J_-+ s(y) = so(y))). 

Let h~, h~, so' be as indicated under (a). By (c) we can choose some ho such 
that ho S hand -y(to)l(cu d) = hol(cud). Take for this choice of ho a trace 
hi such that hoh1 = h. Choose so = so'['Y(wo)/y]. Since so' # J_ also so # J_, 

and 

so(ii) = so'b(wo)/y] = 7(wo). 

For those x from x not already occurring in fi : 

so(x) = so'b(wo)/g] = so'(x) = 1(vo), 

where vo is the iio element corresponding to x. Since the list illo was chosen 
in a way consistent with iio and so(Y) = "Y(illo) we see that so(z) = "Y(vo) is 
the case. 

To see that (so, hi, s) E [ X h it will suffice to show that (so, hi, s) and 
(s0', h~, s) agree on abase(x)(Ç (c, {x} )). 
For we know already that (so', h~, s) E [x]'Y. From (a) follows so'(x) = 7(ïio), 
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and we just showed so{x) = 1(iio), so so and so' do agree on f. From the 
definition of ho follows directly that 1(to)le = hole and 1(to)ld = hold. 
Combining with equalities from (a) and (b) we see that: 

hole= -y(to)le = h61e, and 

hold= 1(to) Id= hld. 

Since hoh1 = h = h~hi, this implies: 

hile hile and 

hild e:. 

We have shown that (so, hi, s) and (so', hj_, s) agree on abase(X) and so that 
(so,hi,s) E [Xh· Also hild = e: has been shown, so there remains to see 
that if s f:; J_ then s(fi) = so(y). But this is clear since both sides equal 1( wo) 
in this case, as follows from the definition of so and (b). 

At last we can continue the proof of part (ii). 

Assume that the following specification implication holds: 

vç[VtoViio((</>p) Ç (</>p <l X)) - Vg[(\O) Ç (1/J)J]. (8) 

We must show that 

Vg[(\O) Ç (1/J)] 

can de derived from: 

VtoVvo((ef>p) Ç (</>13 <l x)). 

We have already shown how to change the names of bound logical varia.bles, 
and so we may assume here that the logica} variables {g} are disjunct from 
the "freeze" variables {to, tio} and from any logical varia.bles that occur in 
hypotheses. Under these conditions, (8) implies the following formula: 

vç[VtoVvo((</>13) Ç (ef>p <l X)) - (\0) Ç (1/J)]. 

By part (i) of the lemma, this is equivalent to: 

ve[e sat x-(\0) e (1/J)], (9) 

a.nd this is equivalent to: 

ve[e sat x-e sat (\0~1/J)]. (10) 

Let {J' = abase(X, \0 ~ 1/J) - base(Ç). Then lemma 6.15 states that {10) 
implies the validity of: 
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(X /\ li'.'1)-+(<p ~ t/J). (11) 

We have shown already how to adapt the formula 

V'to'tvo((</>p) e (</>p <l x)) 

to: 

'tto'tvo,wo((</>13) e (</>13 <l (x /\ lp1))). (12) 
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(Notation as above, except that we have now fixed our choice for /3' as 
abase(<p1 ~ .P') - base(Ç)). H we remove the quantifiers by means of the 
V-elimination rule and then apply the consequence rule we obtain: 

(4>13 ) e (<1>13 <l (<p ~ .p)). (13) 

Let ip' = ip[T][to/h][vo/x, wo/y]. 
Then (ip') Ç (ip') follows directly from an instance of the invarfänce axiom. 
Combining this formula with (13) via the conjunction rule yields: 

Ct/>p" ip') e ((</>p <l (<p ~ .P)) "ip'). (14) 

We prove below, in lemma 7.7, the validity of: 

(C<t>p <l (<p ~ .P)) "ip') _.. 1/J. (15) 

Therefore we can proceed the derivation as follows: 

(14) 
( consequence) 

(3 - pre) 

( consequence) 

(T /\ ip) Ç (t/J) 

By the assumption that X is a satisfia.ble assertion, together with (9) it 
follows tha.t ( <p) Ç ( .p) is a satisfia.ble formula. As before, this implies that 
( ..l /\ <p) -+ .p is valid and so that: 

( ..l /\ <p) e ( ..l /\ <p) strictness 
(consequence) 

is a legitimate derivation. Using the disjunction rule and consequence rule 
a.gain we obtain the formula: 



270 CHAPTER 7. THE HOARE AND INVARIANT SYSTEMS 

('P) e (1/J). 

Fina.lly, by mea.ns of the V-introduction rule we obta.in the desired formula: 

Vg[('P) € (1/;)]. 

D 

Lemma 7.7 

Let tp, 1/J E Jlssn(I.:) with abase(tp, 1/;) c /3 = (c, {x}),a.nd to,iio f/. gvar(tp,1/J). 
If </>p(to, ïio) is the freeze predica.te T A tolc hlc A x = iio, and 
tp1 'P[T][t0/h][iio/x] then the following assertion is valid: 

( (</>p(to, iio) <l ('P ~ .P)) A 'P')~.µ. 
D 

Pro of 

Take some arbitrary (h,s) E I".:,ï Er. If (h,s) E [</>p(to,iio) <l ('P ~ 1/J)h 
then: 

3ho3h13so(h = hoh1 A (ho,so) E [</>p(to,iio)]')'/\ 

(so,hi,s) E ['P ~ .Ph), tha.t is: 

3ho3h13so ( h = hoh1Aso=/...LA1'(to)lc =hole/\ ï(iio) = so(x) 

l\\lho((ho,so) E ['P]h => (hoh1,s) E [.Ph)). (1) 

If also ( h, s) E [ 'P'h then for any s E State, i.e. 8 =/. ..L, 

((1'(to)), s!x: ï{iio)) E ['Ph· (2) 

We must prove from (1) and (2) that (h, s) E [1/;]b. This is stra.ightforward: 
Take ho, hi and so as indicted by (1). Then from (1) it follows that (ho, so) 
a.nd (ï(to), slx: 1'(ii0)) agree on abase(tp). By (2) the latter pair is member 
of ['Ph a.nd therefore also (ho,so) E ['Ph· But then the implica.tion in (1) 
gua.rantees that ( hoh, s) E [ 1/J h, i.e, that ( h, s) E [ 1/J h. 
D 
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7 .3 Adaptation completeness for the Hoare sys
tem 

We prove that the Hoare system is adaptation complete if it includes the 
"strong adaptation rule". That is if 

V'g1 [ (ipi) Xp ( t/11)] _. V'g2 [ (1P2) Xp ( t/J2)] 

is a valid formula, then 'v'g2 [ ( ip2) Xp ( t/12)] is provable from the hypo thesis 

'v'g1 [ { 1P1) Xp { t/11)] • 

In chapter 4 we showed that our forma! system allows one to change the 
names of bound variables. That is, if g1 is a fresh variable, then the following 
is deducible: 

V'g[(ip) Xp (tf.i)] 1- 'v'g'[(ip[g'/g]) Xp (tf.i[g'/g])]. 

Therefore, we may assume without loss of genera.lity that, for the formulae 
as above, the following conditions are satisfied: 

{91} n g1.1ar(<p2, '12) = 0, and 

{U2} n gvar(ip1, t/11) = 0. 

Under these conditions, it is the case that 

I= 'v'g1 [ (<pi) Xp ( 1/11)] _. 'Vg2 [ ( 1P2) Xp ( t/12)] iff 

f='v'g1\7'U2[(1P1) Xp (t/11)- (1P2) Xp (tf.i2)] iff 

I= (1P1) Xp (t/11) _. (1P2) Xp (t/12) iff 

I= Xp sat (1P1 """'t/11) _. Xp sat (<p2 """'t/12). 

From the results on modula.r completeness for the SAT system, we know 
that the last formula implies the validity of the following assertion: 

( (<p1 """' f/11) A l(d,{!i})) _. (<p2 """' f/12), 

where (d,{fi}) ~r abase(<p1 """'t/11,<p2 """'t/12)-/3. 

In cha.pter 4 we also proved the validity of 

(<p <l (<p ~ '1)) - tP· 
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Altogether we now see that the following derivation is possible within the 
Hoare system: 

(\f-elimination) 

(Strong adaptation) 

( Consequence) 

(Consequence) 

\f-in trod uction) 

'v'g2[(cp2) Xp (t/J2)] 
This proves the adaptation completeness of the Hoare system. 

Theorem 7.8 

The Hoare system is modular complete. 

D 

Pro of 

Since we already showed the compositional completeness of this system, 
it follows from the results of chapter 1 that the Hoare system is modular 
complete. 

7 .4 The Invariant system 

We prove the compositional completeness of the Invariant system. Since the 
formulae and proof rules of the Invariant system are so closely related to 
the formulae and rules of the Hoare system, we shall base our proof upon a 
transformation of Hoare style proofs in Invariant style proofs. 

For a given Hoare formula / of the form ( cp) m ( t/J) we denote by /t the 
corresponding Invariant formula t/J[-'-] : {cp[T]} m {t/J[T]}. In chapter 4 we 
proved the equivalence of/ and /t, for TNP processes S. For a set of Hoare 
formulae H we use Hf for the set of Invariant formulae obtained from H by 
applying the t operation to each formula in H. 
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Theorem 7 .9 Transformation of Hoare proofs to Invariant proofs 

Let m(m1, ... ,mk) be some mixed term with occurrences of the meta vari-
ables mi, ... , mk. Assume that all predicative processes used within mare of 
the restricted form, (J, R), as defined with the Invariant rule for predicative 
processes, and that they are all satisfiable. 

Let some Hoare style proof scheme be given that shows how 

is deduced from 

and that does not use the "extra adaptation rules" of section 5.4.2. Assume 
also that all Hoare specifications used in this scheme are satisfiable. 

Then there is a proof scheme for the Invariant system for which: 

nt f--f!J[l_] : {cp[T]} m(mi, ... ,mA:){t/J[T]} 

is deduced from: 

D 

Pro of 

The proof is with induction on the length of the given Hoare style deduction. 
We make a case distinction, according to the proof rule used in the last step 
of this deduction. 

• For a number of axioms and rules it is the case that if 

(cp)m(f!J) 

is an instance of the ( axiom or) rule in the Hoare system, then 
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tP1[..L] : {v:>1[T]}m1 { tP1[T]}, • ", tPk[..L] : {V'k[T]}mk{ tPk[T]} 

tfi[..L] : { v;>[T]}m{ tfi[T]} 
is an instance of the corresponding (axiom or) rule in the Invariant 
system. In these cases the induction step is immediately clear. By 
inspection of the rules one sees that this is the case for the following 
axioms and rules: 

• channel hiding 
• variable hiding 
• channel renaming 
• parallel composition 
•choice 
• conjunction 
• disjunction 
•prefix invariance 
• 3-pre 

We check the other possible axioms and rules. 

• Abort,Z 

The given instance of the abort axiom: 

( tfi[..L]) abort ( tJi) 

transforms into: 

tfi[..LJ: {tfi[..L]} abort {false} (abort) 
( Consequence) 

tfi[..L] : { tfi[..L]} abort { tfi[T]} 

The process Z is treated completely similar. 

• Skip 

The given instance of the skip axiom: 

(tfi[..L] /\ tP) skip (tP) 

transforms into: 

tfi[..L]: {tfi[T] A tfi[..L]} skip {tfi[T] A tfi[..L]} (skip) 
( Consequence) 

tfi[..L] : { tfi[..L] A tfi[T]} skip { tfi[T]} 
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• Guard 

The given instance: 

( 1/J [ J_] /\ (b-+1/J [T])} b ( 1/J) 

transforms into: 

1/J[l_] : { 1/J[l_] A (b-+1/J[T])} b { 1/J[l_] A (b-tt/J[T]) /\ b} 

1/J[l_]: {1/J[l_] /\ (b-+1/J[T])} b {1/J[T]} 
( Consequence) 

The derived conclusion is the desired formula since 

( 1/J[l_] A (ht/J[T])) [T] =: 

1/J[l_][Tj /\ (b[T]-tt/J[T][T]) =: 

t/J(l_] A (ht/J[T]). 

• Assign 

The given instance: 

(1/J[l_] /\ (T -t ,P[1-][e/x])) x := e (t/J) 

transforms into: 

t/J[l_]: {1/J[l_] A t/J[T][e/x]} x := e {1/J[l_] /\ 1/J[T]} (assign) 

1/J[l_]: {1/J[l_] /\ 1/J[T][e/x]} x := e {,P[T]} 

The derived conclusion is the desired formula since 

( 1/J[l_] /\ (T -t 1/J[T])) [T] =: 

t/J[..L]rr) /\ (T[T] -t 1/J[T][T]) = 
t/J[-L] /\ t/J[T] 

• Communication 

The given instance is: 

( t/J[l_]/\ 

(Cons.) 

T-t Vt1(b[v/x]-t (t/J[l_J[h < (c,v) > /h]/\1/J[T][h < (c,t1) > /h,v/x]))) 

c.x:b 

("') 
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The corresponding derivation in the invariant system is: 

t/J[..L] : 

{ t/J[..L]/\ 
Vv(b[v/z]-+ (t/J[-LJ[h < (c,v) > /hj /\ t/J[T][h < (c,v) > /h][v/x]))} 

c.x: b 

{ tJirlJ A t/J[..L]}, 

followed by an application of the consequence rule to remove the con
junct t/J[..L] from the postcondition. 

• Predicative processes 

We only consider the transformation for predicative processes of the 
form (J, R), as defined with the Invariant system. The term (J, R} 
abbreviates the process: 

(J, R) ~~f ((T0 -+ J) /\ (T-+ R))lbase(J, R). 

Now assume that we have an instance of the axiom for predicative 
processes of the following form: 

{<p) (J, R} (<p <1 ((T0 -+ J) /\ (T-+ R))). 

By expansion of the definition of the <1 operator, one sees that the 
following implications are va.lid: 

(<p[T} <1 J) -+ (<p <1 ((T0 -+ J) A (T-+ R))[..L]), 

(<p[i] <1 (J /\ R)) -+ (<p <1 {(T0 -+ J) /1. (T-+ R))[T]). 

These fa.cts form the basis for the following derivation. 
Let XJR «!!_C <p <1 ((T0 -+ J) /\ (T-+ R)). 

<p [T} <1 J : { <p[T}} ( J, R) { <p[T} <1 ( J /\ R)} 
( Consequence) 

(<p <1 XJ,R)[..Lj : {<p[T]} (J, R) {(<p <1 XJR)[T]} 

• Parallel composition 

Although parallel composition is one of the "trivial" cases from the list 
above, we show what the transformation is, as an example: 
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transforms into: 

"71[..L}: {~1[T]} m1 {t/l1[T]},t/J2[..LJ: {~2[T]} m2 {t/l2[T]} 

(~1 A ~2)[..LJ: {(~1 A ~2)[T]} m1 /Ji ll.82 m2 {(t/J1 A t/J2)[T]} 
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Here we used the fact that (~1 A ~2)[T] = ~i[T] A ~2[T] etc. It is 
easily checked that the restrictions for the rule are equivalent to those 
for the rule in the given proof step above. 

• Sequentia! composition 

Let the given derivation end as: 

(~) m1 (p) , (p) m2 (tb) 

(~) m1; m2 (tb) 
We first show that p[.l]-tt/J[..L] is a va.lid assertion. 

By the assumption that all predicative processes in the given scheme 
are satisfiable, we know that Z Ç m2. So we conclude that (p) Z (tb) 
is va.lid. 

Since Tr[Zh11([..LAp[..L]);) = [..LAp[..LJ]ï we see that [..LAp[..L]h Ç [t/Jh 
must hold. Now if (h,s) E [p[..L]]b then (h,..L} E [..LAp[..L]]ï so 
(h, ..L) E [..LA t/J[..L]h and so (h, s) E [tb[..LJh. This proves the validity 
of the implication p[..L]-tt/J[..L]. 

Therefore, the proof step above can be transformed into: 

p[..L]: {p[T]}m1{p[T]} 
(Cons.) ,P[..LJ: {p[T]}m2{,P[T]} 

t/J[..L] : { ~[T]}m1 {p[T]} 
------------------ (Seq. comp.) 

• (µz) Recursion 

Let the given deduction end as follows: 

Hr Vg[(~) z ("' )] ' Hu {Vg[(~) Xp ( ,P)]} r 'v'g[(~) m (tb)] 

Hr 'v'g[(~) µ3 Xp.m (t/J)] 

The restriction for this rule is that Xp </:. pvar(H). 

From the validity of the premisse H r ( ~) Z (tb) follows that: 
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Tr(Obs[Z]h11)([rph) Ç [1/J]ï· 

(Tr was defined in section 3.9). 

That is: 

{( h, 1-) 1 ( h, s) E [ <p ]ï} Ç [ 1/J ]ï · 

Since for s =f. 1- it is the case that ( h, s) E [ rp[T] ]ï iff ( h, s) E [ <p Jh 
and (h,s) E [1/1[1-]]ï iff (h,1-) E [,P]ï, one sees that: 

rp[TJ-1/1[1-] 

is proper valid, and so rp[T] ~ (rp[T] /\ 1/1[1-]) is a proper equivalence. 
Therefore the proof step above is transformed into: 

Hu {Vg[,P[1-] : {rp[T] /\ ,P[J_]} X~ { ,P[T]}]} l
V'g[,P[1-]: {rp[T] /\ 1/1[1-]} m1 { ,P[T]}] 

---------------(Cons.) 

• lnvariance 

(1/1[1-] /\ ,P)m(,P) 

with the restriction Abase(,P) n Base(m) = (0,0), transforms into: 

1/1[1-] : { "1[-L] /\ ,P[T]}m{ "1[-L] /\ ,P[T]} (Invariance) 
( Consequence) 

1/1[1-] : { 1/1[1-] /\ ,P[T]}m{ ,P[T]} 

The conclusion of this derivation is the one that was to be shown 
provable, since 

(1/1[1-] /\ ,P)[T] := 1/1[1-][T] /\ ,P[T] := 1/1[1-] /\ ,P[T]. 

(1/1[1-] does not contain 1-or T symbols, so 1/1[1-][T] = 1/1[1-]). 

• Consequence 

V'.i(rp-rp'), V'-1("1'-,P), 
(rp')m( ,P') 

(rp)m(,P) 

( Consequence) 
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0 

transforms into: 

~( t/J'[.l]-+1/7[..L]), ~(~[T]-+~'[i]), ~( tJ;'[T]-+1/J[T]) 
tJ;'[.l]: {~'[T]}m{.P'[T]} 

t/1[.l] : {~[T]}m{ tJ;[T]} 
• Strictness 

IC / is an instance of the strictness axiom of the form: 

(.iA~) S (.LA~), 

then /fis the formula ~[.l] : {false} S {false}. 
Now false : {false} S {false} is an instance of the invariance axiom 
of the Invariant system, and using the consequence rule one derives 
easily the desired formula Jf from this instance. 

• Process naming 

Assume the Hoare deduction ends as: 

This is transformed in a straightforward way: 

H 1-Vg[tJ;[..L]i: {~[T]i} m1 {1/l[T]i}] 
HU {Vg[t/J[..L]i: {~[i]i} m1{t/l[T]i}]}1- 1/7[.1]2: {~[T]2} m2 {tJ;[l.]2} 

H 1- t/1[.l]2: {~[T]2} X~ = m1 in m2 {tJ;[T]2} 

We have proven the compositional completeness of the Invariant sys
tem. 
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SAMENVATTING 

Het construeren van correct werkende programmatuur is een van de belang
rijkste, slechts gedeeltelijk opgeloste, problemen in de informatica. Sinds 
de constructie van de eerste electronische rekenapparatuur in de veertiger 
jaren van deze eeuw is de capaciteit van deze apparatuur even dramatisch 
toegenomen als de prijs daarvoor is afgenomen. Helaas heeft de ontwikkel
ing van programmatuur daar geen gelijke tred mee weten te houden. Sinds 
1968 is men zelfs gaan spreken van de "software crisis". Een van de oorzaken 
daarvoor moet gezocht worden in de (fundamentele) onmogelijkheid om pro
grammatuur afdoende uit te testen. Immers, het aantal mogelijke inputs met 
de daarop volgende responses van een programma is dermate groot dat dit 
als uitgesloten wordt beschouwd. We citeren E. Dijkstra: "Het testen van 
programma's kan gebruikt worden om fouten aan te tonen, maar niet om 
de afwezigheid daarvan aan te tonen". Als alternatief voor het testen is het 
verifüfren van de correctheid van programma's met behulp van wiskundige 
middelen ingevoerd. Het principe bestaat daaruit dat eerst in een zgn. spec
ificatietaal een (wiskundige) beschrijving wordt gegeven van het gewenste 
gedrag van een te construeren programma, waarna tijdens de constructie, 
weer met wiskundige middelen, geverifiè"erd wordt dat het programma ook 
daadwerkelijk voldoet aan deze beschrijving. Dit proefschrift beschrijft en 
analyseert een drietal van dergelijke specificatietalen en de daarbij behorende 
verificatiemethoden. De aandacht gaat daarbij uit naar de specificatie, con
structie en verificatie van parallelle, d.w.z. gelijktijdig opererende, processen. 
Processen kunnen elkaar daarbij beiiivloeden door onderlinge synchronisatie 
en door communicatie van gegevens. Bovendien kunnen er tijdens het exe
cuteren van een programma nieuwe processen bijkomen en weer verdwijnen. 

Een belangrijk middel om niet ten onder te gaan in de complexiteit van 
omvangrijke programmatuur is het "verdeel en heers" principe. Daartoe 
wordt een programma onderverdeeld in een aantal onafhankelijk van elkaar 
te construeren modulen. Een specificatie van het gedrag van zo'n module 
dient als een soort contract tussen de gebruiker en de implementator van 
de module. De gebruiker construeert zijn programma met behulp van deze 
modulen en verifü!ert de programmaspecificatie op basis van de specificaties 
van de modulen. De interne constructie van de modulen hoeft en wenst hij 
niet te kennen. Een module moet daarbij opgevat worden als een programma 
dat zelf weer verder onderverdeeld kan worden in nog eenvoudiger modulen. 
De term compositioneel verwijst in deze context naar de mogelijkheid om 
de correctheid van een uit modulen samengesteld programma te verifiéren 
op grond van specificaties van deze modulen, maar zonder kennis van de 
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inwendige constructie daarvan. De specificatie- en verificatiemethoden die in 
dit proefschrift bestudeerd worden, onderscheiden zich doordat zij ontworpen 
zijn om een dergelijke compositionele specificatie en verificatie mogelijk te 
maken. De kwaliteiten van de diverse specificatie en verificatiemethoden 
worden in dit licht met elkaar vergeleken. 

Hoofdstuk 1 bevat een overzicht, en een informele inleiding in de verifi
catie van TNP programma's. Verder worden de begrippen "compositionele 
volledigheid", "adaptatie volledigheid" en "modulaire volledigheid" ingevo
erd. 

Hoofdstuk 2 bevat een definitie van de grammatica van de talen DNP ( "Dy
namic Networks of Processes"), en TNP ("Theoretica} Networks of Pro
cesses"). 

Hoofdstuk 3 behandelt de betekenis van TNP, ook wel (denotationele) se
mantiek genoemd. 

Hoofdstuk 4 voert de verschillende talen voor het specificeren van TNP 
programma's in. Dit zijn de a.ssertietaa.l, de klassen van SAT, Hoare en 
Invarianten specificaties, en tenslotte een mengvorm tussen TNP en de as
sertieta.al, genaamd "Mixed terms". 

Hoofdstuk 5 introduceert drie bewijssystemen die gebruikt kunnen worden 
voor de verificatie van TNP programma's, te weten het SAT systeem, het 
Hoare systeem en het Invarianten systeem. De soundness, d.w.z. geldigheid, 
van deze systemen wordt bewezen. 

Hoofdstuk 6 en 7 beschouwen de volledigheid aan van de drie bewijssytemen. 
Het SAT systeem en het Hoare systeem worden beiden zowel composition
eel, adaptatie als modulair volledig bewezen. Voor het Invarianten systeem 
wordt compositionele volledigheid aangetoond. 
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Stelling 1 

Stellingen 

behorend bij het proefschrift 
Compositionality, Concurrency and Partial correctness 

van 
Job Zwiers 

Het in dit proefschrift ingevoerde "generalized state" begrip maakt het mogelijk de specificatietaal 
COLD uit te breiden naar parallel communicerende systemen, waarbij het bestaande COLD (voor 
sequentiële systemen) behouden blijft. 

L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, G.R. Renardel de Lavalette, 
"Formal Definition of the Design Language COLD-K", Philips Research Technical Note 234/87, 
ook als ESPRIT rapport METEOR/t7 /PRLE/7. 

Stelling 2 

In "Trace-Based Network Proof Systems: Expressiveness and Completeness" door J. Widom wordt 
de specificatietaal STL ingevoerd. Een STL specificatie wordt "precise" genoemd voor een gegeven 
process wanneer, informeel gesproken, ieder door de specificatie toegelaten communicatie gedrag 
ook wordt toegelaten door het process en vice versa. Het begrip speelt een belangrijke rol in het 
volledigheids resultaat van Widom, waarin wordt aangetoond dat een bepaalde parallelle compositie 
regel, verwant aan de overeenkomstige regel van het SAT systeem van dit proefschrift, preciseness 
behoudt. Er zijn echter processen waarvoor geen "precise" STL 'specificatie bestaat. Dit volgt uit 
het feit dat er in STL geen onderscheid gemmakt kan worden tussen de volgende twee processes: 

( c; d or d) en ( c; d or d; c or d). 

J. Widom, "Trace-based network proof systems: Expressiveness and Completeness", 
Ph.D. Thesis 87-833, Cornell University, Ithaca, NewYork, 1987. 

Stelling 3 

In hoofdstuk 5 van "Mathematica! Theory of Program Correctness" van J. de Bakker wordt een 
Hoare logica voor recursieve sequentiële programma's zonder parameter mechanisme ingevoerd. 
Om een relatief volledig bewijssyteem te verkrijgen blijkt een relatief groot aantal minder aantrek
kelijke adaptatieregels te moeten worden toegevoegd, zoals bijvoorbeeld de verschillende substitutie 
regels. 

Een aanmerkelijk eenvoudiger en eleganter relatief volledig systeem kan echter worden verkregen 
door niet uit te gaan van Hoare logica maar van een formalisme analoog aan het SAT systeem 
van dit proefschrift. Er is dan natuurlijk geen specificatie van communicatie gedrag meer nodig, 
en daarmee vervalt eveneens de noodzaak om het gedrag van nog niet getermineerde berekeningen 
vast te leggen. Slechts een drietal eenvoudige adaptatieregels is dan nodig, te weten een invariantie 
axioma, een conjunctie- en een consequence regel. Wanneer slechts gestreefd wordt naar relatieve 
volledigheid, en afgezien wordt van modulaire volledigheid zoals gedefiniëerd in hoofdstuk 1 van 
dit proefschrift, dan kan wat de adaptatie regels betreft zelfs volstaan worden met uitsluitend een 
consequence regel. 

J. de Bakker, "Mathematical Theory of Program Correctness", Prentice-Hall. 

Stelling 4 

In K. Apt's "Ten years of Hoare's Logic" wordt een bewijsregel gegeven voor ALGOL type declaratie 
van locale variabelen die niet compositioneel is, omdat in de premisse van deze regel een substitutie 
wordt uitgevoerd in de syntactische component S van de constructie begin new x; S end. Apt stelt 
daarbij dat, wanneer recursieve procedures zijn toegelaten, een regel, geïntroduceerd door Lauer, 



waarbij niet in de programmatekst maar in de pre- en postcondities van Hoare formules gesub
stitueerd wordt correspondeert met een dynamic scope semantiek, in plaats van de gebruikelijke 
semantiek met de statie scope aanname. 

Echter, in een opzet die uitgaat van natuurlijke deductie kan op eenvoudige wijze een compositionele 
regel gegeven worden, waarbij de statie scope aanname behouden blijft. Deze regel heeft de volgende 
vorm: 

il 1- {p(t1/z]} S {q[t1/z]} 

l!t-·{p}'begfn new z; :!nmd {q} · 

Hierbij is H een verzameling hypothesen in de vorm van Hoare formules {prei} Pi {posti}, waarbij P, 
een procedure naam is. il is uit H verkregen door in alle daarin voorkomende pre- en postcondities 
de variabele tl voor z te substitueren. De variabele tl moet noch vrij voorkomen in de gebruikte 
pre- en postcondities pre, en pos"tá, noch in S. 

K.R. Apt, "Ten years of Hoare's logic", TOPLAS 3, (4), 1981. 
P.E. Lauer, "Consistent formal theories of the semantica of programming la.nguages", 
Technical Report TR.25.121, IBM La.bora.tory Vienna, 1971. 

Stelling 5 

In "Ten years of Hoare's logic" (ref. zie boven) bespreekt Apt verschillende mechanismen voor 
parameter overdracht voor procedures, waaronder het call-by-value/result mechanisme. Apt merkt 
op dat corresponderende bewijsregel het nadeel heeft dat voor iedere procedure call een afzonderlijk 
bewijs nodig is voor de_ premisse die betrekking heeft op de body van de desbetreffende procedure. 
Daarom wordt voorgesteld om een parametersubstitutie regel van Cook, oorspronkelijk bedoeld 
voor het call-by-name mechanisme, te gebruiken waarbij dan wel de nodige restricties die inherent 
zijn aan deze regel moeten worden geaccepteerd. Deze restricties zijn de volgende. Als procedure 
P( :e, 6) met formele value/result parameters !f en formele value parameters 6 gedeclareerd is met 
procedure body So, dan moet voor iedere call van de vorm P( ü, ë) voldaan zijn aan de volgende 
voorwaarden: ü is een lijst van tJerschillende variabelen, ë is een lijst van expressies die geen van de 
ü variabelen bevatten, en geen variabele in ü of ë anders dan een formele parameter mag voorkomen 
in de body So. Bovendien mag in So niet geassigneerd worden aan de formele value parameters ii. 
De regel wordt dan de volg~nde. Mits var(post) n {z, v} Ç {ü}: 

{preo} P(z, ii) {posto} 

{preo[ü/z, ë/ii]} P(ü, ë) {post[ü/z, ë/ii]} 

Dit resultaat kan als volgt worden verbeterd. Voor het call-by-value/result mechanisme kunnen al 
de genoemde restricties achterwege blijven wanneer de volgende regel wordt gebruikt: 

Als uar(post) n {z,ii} Ç {ü} dan geldt:. 

{preo} P(if, t>) {posto} pre-+ preo[ü/z, ë/ii] , posto-+ post[x/üJ 

{pre} P(ü,ë) {post} 

Wanneer toch aan alle restricties is voldaan kan Cook's regel afgeleid worden uit de hier voorgestelde 
regel. 

S.A. Cook, "Soundness and completeness of an axiom system for program verification", 
SIAM Journal on Computing, vol. 7, no 1, 1978. 



Stelling 6 

De correctheid van programmatransformaties gebaseerd op het bestaan van een simulatierelatie 
a tussen een "abstract" programma SA en een implementerend "concreet" programma Se komt 
neer op het aantonen van een inclusierelatie van de vorm a-1 ; Sa; a ç;; SA. Dergelijke trans
formaties vormen de basis van onder meer de methoden voor datastructuren implementatie van 
[Hoare], [Hoare&Jifeng] en [Reynolds], en van de reïficatie techniek zoals gebruikt voor de VDM 
methode [Jones]. Als het abstracte programma gespecificeerd is door middel van een Hoare spec
ificatie {pre} SA {post} dan is aan bovenstaande inclusie voldaan wanneer het implementerende 
programma voldoet aan {(a)pre} Se {[a]post}. 

Een Hoare formule {pre} S {post} wordt vaak geïnterpreteerd als Vv[{pre} S {post}] waarbij de 
lijst ö bestaat uit alle vrije logische variabelen van de formule. 

Echter, het gebruik van deze impliciete universele qua.ntifica.tie is ongewenst omdat in dat geval 
bovenstaande verificatiemethode voor programma.transformatie onvolledig blijkt te zijn. Wanneer 
geen impliciete quantiflcatie wordt aangenomen, dan kan volledigheid worden aangetoond. 

[Hoare] C.A.R. Hoare, "Proof of Correctness of Data Representations", 
Acta Informatica, vol 1, 1972. 
[Hoare&Jifeng] C.A.R. Hoare, Jifeng He, J.W. Sanders, "Data Refinement Refined", 
Proc. lst ESOP, LNCS 213, 1986. 
[Jones] O.B. Jones, "Systematic software development using VDM", Prentice-Hall. 
[Reynolds] J. Reynolds, "The craft of programming", Prentice-Hall. 

Stelling 7 

Programmaspecificaties gebaseerd op assumption-commitment paren zijn geïntroduceerd door Misra 
en Chandy. Het "generalized state" concept zoals geïntroduceerd in dit proefschrift kan in de 
Misra/Chandy aanpak geïncorporeerd worden, en leidt dan tot formules van de volgende vorm: 

(A, C) : {pre} S {post}. 

Hierin zijn A en 0 een assumption en commitment betreffende het communicatie gedrag en zijn pre 
en post een pre- en postconditie betreffende zowel het communicatie gedrag als het state-transformer 
gedrag. De interpretatie van deze formule is: 

Als voor de initiële communicatiegeschiedenis en programma.toestand waarin process S start voldaan 
is aan de preconditie pre, dan is de commitment 0 gegarandeerd op ieder moment tijdens executie 
mits op alle voorafgaande momenten de assumptie A niet geschonden is, en als het process termi
neert en de assumptie A is nooit geschonden tijdens de executie, dan voldoen de finale communicatie 
geschiedenis en toestand aan de postconditie post. 

Het is echter niet noodzakelijk om Misra/Chandy type formules als een nieuwe vorm van specifi
caties te beschouwen, omdat dergelijke formules al gerepresenteerd kunnen worden door "Invariant" 
formules zoals ingevoerd in hoofdstuk 4 van dit proefschrift. De representerende formule is: 

Vto[Past(c,to,A)-+ 0: {preA tolc = hlc} S {Kern(c,to,A)-+ post}], 

waarbij Past(c, to, A) staat voor de assertie Vt(tolc :5 tic < hle -+ A[t/h]), en Kern(c, to, A) voor 
AA Past(c,to,A). 

J. Misra, M. Chandy, "Proofs of Networks of Processes", IEEE SE 7 (4), 1981. 

Stelling 8 

De aantrekkelijke kant van Misra/Chandy type specificaties wordt vooral gevormd door onder
staande bewijsregel voor parallelle compositie van processen. In [ZBR] is beargumenteerd dat 
daarmee bepaalde bewijzen met inductie naar de lengte van de communicatie geschiedenis vereen
voudigd worden op een manier die vergelijkbaar is met de vereenvoudiging die de welbekende "while 
rule" voor iteratie betekent ten op zichte van een expliciet inductie bewijs naar de lengte van de 
berekening van een programma. Om deze reden is onderstaande regel superieur aan bewijsregels 



voor parallelle compositie die in essentie gebaseerd zijn op het nemen van een conjunctie van de 
specifica.ties voor de delen 81 en 82 als specifica.tie voor de parallelle compositie 81 Il 82, zoals 
ingevoerd door Zhou Cha.o-Chen en Hoa.re [ZH], en zoals bestudeerd in dit proefschrift. De regel 
is echter een afgeleide regel voor het Invariant system uit hoofdstuk 5, zie [ZRE]. De regel is geldig 
voor TNP processes, maar niet voor willekeurige "mixed terms". 

Mits abase(Ä.i,0üPi,qi) nbase(8s-i) Ç base(8ï), voor i = 1,2: 

(A1, 01) : {p1} 81 {q1} , (A2, 02) : {P2} 82 {q2} 

~AA ai.~ A:) 1 t.(A /\ 02-+ A_i) 
(MO) 

[ZBR] J. Zwiers, A. de Bruin, W.P. de Roever, "A proof system for partial correctness of Dynamic 
Networks of Processes", Proc. of the Conference on Logies of Programs 1983, Springer Lecture 
Notes in Computer Science 164, 1984. 

[ZH] Zhou Chao-Chen, C.A.R. Hoa.re, "Partia.l correctness of CSP", IEEE Int. Conf. on Distributed 
Computer Sytems 1981. 

[ZRE] J. Zwiers, W.P. de Roever en P. van Emde Boa.s, "Compositionality and Concurrent Net
works: Soundness and Completeness of a Proofsystem", in de versie van het rapport No.57, sectie 
Informatica Katholieke Universiteit Nijmegen. 

Stelling 9 

Van Nguyen merkt in [Nguyen] op dat het bewijssysteem zoals gegeven door Misra. en Chandy on
volledig is. Door het invoeren van onderstaand axioma kan deze onvolledigheid worden opgeheven. 

(A,Past(c,to,A)) : {tolc = hlc} 8 {true}. 

Hierin is c de verzameling channels vrij voorkomend in A, en is to een niet in A vrij voorkomende 
trace variabele. 

Een relatief volledig bewijssyteem kan worden verkregen door modificatie van het Invariant system 
op de wijze zoals aangegeven in [ZRE]. 

[Nguyen] Van Nguyen, "The incompleteness of Misra and Chandy's proof systems for networks of 
processes", Information Processing Letters 21, 1985. 

[ZRE] Zie boven. 

Stelling 10 

Uit de handleiding van het Ji\TEJX, "Document Prepa.ra.tion System", gebruikt voor o.m. het zetten 
van deze stelling, blijkt niet dat de auteur een expert op het terrein van programma specificatie is. 

Leslie Lamport, "I;\'J.EX User's Guide & Reference Manua.l", Addison-Wesley, 1986. 




