
 

The influence of the structure and sizes of jobs on the
performance of co-allocation
Citation for published version (APA):
Bucur, A. I. D., & Epema, D. H. J. (2000). The influence of the structure and sizes of jobs on the performance of
co-allocation. In D. G. Feitelson, & L. Rudolph (Eds.), Job Scheduling Strategies for Parallel Processing (6th
International Workshop, JSSPP 2000, Cancun, Mexico, May 1, 2000. Proceedings) (pp. 154-173). (Lecture
Notes in Computer Science; Vol. 1911). Springer. https://doi.org/10.1007/3-540-39997-6_10

DOI:
10.1007/3-540-39997-6_10

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1007/3-540-39997-6_10
https://doi.org/10.1007/3-540-39997-6_10
https://research.tue.nl/en/publications/00aa9cc2-f52f-4d9a-8f43-03b41e160523


The Influence of the Structure and Sizes of Jobs
on the Performance of Co-allocation

Anca I.D. Bucur and Dick H.J. Epema

Parallel and Distributed Systems Group
Faculty of Information Technology and Systems

Delft University of Technology, P.O. Box 356, 2600 AJ Delft, The Netherlands
anca@pds.twi.tudelft.nl, epema@pds.twi.tudelft.nl

Abstract. Over the last decade, much research in the area of scheduling has
concentrated on single cluster systems. Less attention has been paid tomulticluster
systems, although they are gaining more and more importance in practice. We
propose a model for scheduling rigid jobs consisting of multiple components
in multicluster systems by pure space sharing, based on the Distributed ASCI
Supercomputer. Using simulations, we asses the influence of the structure and
sizes of the jobs on the system’s performance, measured in terms of the average
response time and the maximum utilization. We consider three types of requests,
total requests, unordered requests and ordered requests, and compare their effect on
the system’s performance for two scheduling policies, First Come First Served,
and Fit Processors First Served, which allows the scheduler to look further in
the queue for jobs that fit. These types of job requests are differentiated by the
restrictions they impose on the scheduler and by the form of co-allocation used.
The results show that the performance improves with decreasing average job size
and when fewer restrictions are imposed on the scheduler.

1 Introduction

Muchworkhas beendone in the area of scheduling in parallel computer systems, butmost
of it is related to single-cluster systems (i.e., single multiprocessors and single clusters
of uniprocessors) with identical processors connected by links of the same speed. Much
less research has been dedicated to multicluster systems, although many such systems
are in use. We study the performance of co-allocation, that is of scheduling jobs that
can be spread on more than one cluster, in multicluster systems such as the Distributed
ASCI Supercomputer (DAS) [5], depending on the structure and size of jobs and on
the scheduling policy. In particular, we provide a performance comparison between a
single-cluster system and a multicluster system of the same total size.

Multiprocessor systems gained popularity during the last years. The increase in the
computational power of the existing sytems encouraged people to design larger and
larger parallel applications. The sequential solutions to many problems were replaced
by parallel ones in order to become faster.

Being expensive, large parallel systems are in general not dedicated, but shared by
large numbers of applications designed by many different users. For this reason, many
scheduling strategies have been developed, giving solutions for how applications should

D.G. Feitelson and L. Rudolph (Eds.): JSSPP 2000, LNCS 1911, pp. 154–173, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 155

be structured, how they should be chosen for being processed, and how they should be
mapped to the resources.

One of the simplest ways to solve these problems, and yet often used in practice
due to its simplicity, is to allow only rigid jobs, scheduled by pure space sharing. This
means that at execution, each job requires some number of processors and is executed on
those processors until its completion. The advantages are that the implementation of the
application is not restricted by the system, so the users can design their applications the
way they consider the best performance is obtained, and that each application can have
exclusive access to and control of the assigned processors. There is also the economical
advantage that the providers of service can easily and fairly charge the users for the
employed resources.

Compared to single-cluster systems, multicluster systems can provide a larger com-
putational power (more nodes). They canbegeographically spread, and insteadof smaller
groups of users with exclusive access to single clusters, larger groups of users can share
themulticluster consisting of the total of the initial single clusters. Of course, the fact that
the resources are spread will entail that the connections between clusters will be slower
than the ones inside the clusters. Another reason for building multicluster systems is that
very large single-cluster systems are hard to manage by single schedulers.

The necessity of dividing the processors into pools in order to simplify the scheduling
decisions is discussed in the literature [3]. In the case of multiclusters, the division is
natural and is imposed by the architecture of the system, and not by the scheduler. The
nodes cannot be treated as identical anymore because their relative position inside the
clusters influences the performance of the communications between them, and this must
be taken into account by the application and the scheduler.

This paper concentrates on real multicluster systems such as the DAS. We provide a
model of the system and study by simulations the influence of the structure and size of the
jobs on the performance of the multicluster system. We also take into account the effect
of the scheduling policy on the system’s performance, being aware of the modifications
the policy brings to the order of the requests. The scheduling schemes implemented are
First Come First Served and Fit Processors First Served, which can look further in the
queue for jobs that fit. The scheduler provides co-allocation, meaning that a job can ask
for the simultaneous allocation of processors in multiple clusters. The performance is
measured in terms of the maximal utilization and of the response time as a function of
the system’s utilization.

2 The Model

Our model is a simplification of a real system, a multicluster distributed system called
the Distributed ASCI Supercomputer, the performance of which we intend to evaluate,
depending on the scheduling scheme and on the structure and the distribution of the
requests of the incoming jobs.



156 A.I.D. Bucur and D.H.J. Epema

2.1 The Structure of the System

Wemodel amulticluster distributed system consisting ofC clusters of processors, cluster
i having Ni processors, i = 1, . . . , C. The system has a single central scheduler, with
one global queue (see Fig. 1).

queue

processor
clusters

1

2

N1 nodes

N2 nodes

 NC nodesC

Fig. 1. The model of a multicluster system.

We assume that all processors have the same service rate. For both interarrival times
and service times we use exponential distributions.

By job we understand a parallel application requiring some number of processors.
A job can simultaneously ask for processors in more than one cluster (co-allocation).
We will call a task the part of an application which runs on a single processor. Jobs are
rigid, meaning that the numbers of processors requested by and allocated to a job are
fixed, and cannot be changed during its execution. All tasks start and end at the same
time, which implies that all the processors allocated to a job are being simultaneously
occupied and released. Preemption is not admitted, nodes being released only when the
tasks running on them end. We also assume that jobs only request processors and we do
not include in the model any other types of resources.

In our simulations wemake the simplification that all the clusters have an equal num-
berN of processors. Clusters of different sizeswould not change the results significantly,
but would make them harder to be evaluated. Besides, factors of another nature, such as
the users’ preference for the larger clusters, would become relevant. When C = 1, the
system is a single cluster. We compare the performance of the multicluster system with
a single-cluster system with CN processors.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 157

2.2 The Structure of Jobs

We consider three cases for the structure of jobs, differentiated by the structure of the
system and of the job’s request:

1. A request of a job is represented by a tuple of C values (r1, r2, . . . , rC), each of
them uniformly distributed on the interval [n1, n2], with 0 < n1 ≤ n2 ≤ N . By
these values, the job only specifies how many nodes it needs in separate clusters,
but not the precise clusters where the nodes must be allocated. We will further call
this type of request “unordered request”.

2. The request is again given by a tuple of C values (r1, r2, . . . , rC), each uniformly
distributed on the interval [n1, n2], with 0 < n1 ≤ n2 ≤ N , but here their positions
in the tuple specifies the clusters from which the processors must be allocated. This
will be called an “ordered request”.

3. Here, there is only a single cluster with size CN , and a request only specifies the
single number of processors it requires. An instance of this case is characterized by
a number of clusters C and an interval [n1, n2]. The distribution of the numbers of
processors required by jobs is the sum of C copies of the uniform distribution on
the interval [n1, n2]. In this case, the requests are called ”total requests”. We include
this case in order to compare the ordered and unordered multicluster cases above
with a single-cluster case in which the job sizes have the same distribution.

As long as we do not take into account the characteristics of the applications (e.g.,
the amount of communication between processors), the case of total requests amounts to
the same as would a case with a multicluster when the requests are given as single values
and the users do not impose restrictions on the clusters they will receive processors
from. In order to be able to compare the results, we choose the intervals for the uniform
distributions in such a way as to have equal mean values for the request sizes, in all
three cases. Ordered requests are used in practice when the user has enough information
about the system, to take full advantage of the characteristics of the different clusters, for
example of the data availability. Unordered requests (especially the case when grouping
request components on the same cluster is allowed) model applications like FFT, where
tasks in the same request component share data and need intensive communication, while
tasks from different components exchange little or no information.

We also did simulations for the situation when requests are unordered and the sched-
uler tries to group as many components as possible on the same cluster. For the value
ranges we chose the results were not much different from the case when only distinct
clusters are used. However, in general this choice can much influence the performance
(see also Sect. 3).

2.3 The Scheduling Policies

To observe the contribution of the scheduling scheme to the system’s performance, apart
from the First Come First Served (FCFS) policy, the Fit Processors First Served (FPFS)
policy explained below was implemented as well.

For ordered and total requests, it is clear when a job fits on the system, either the
total number of processors requested are idle, or all job components fit in the clusters
they request.



158 A.I.D. Bucur and D.H.J. Epema

When requests are unordered, for both FCFS and FPFS, the algorithm that checks
whether a job fits first orders the values inside the request, and then tries to schedule them
in decreasing order of their size. This ensures the maximum success for the individual
job, whatever way of placement such as First Fit, Best Fit or Worst Fit, is chosen (if our
placement would not succeed, no other one would—the request cannot be served for that
configuration). Clusters are checked in the same order each time and the components of
the request are placed into the clusters in decreasing order of their size, in the First Fit
manner.

We do not consider the influence each placement has on the jobs following in the
queue, although it can affect performance, especially for the FCFS policy (a placement
according to Worst Fit could give better results than First Fit because it would leave in
each cluster as much room as possible for the next job). Our focus is on the influence
of the structure and sizes of the requests on the system’s performance and less on the
impact of the scheduling schemes. FCFS is the simplest scheduling scheme, processors
being allocated to the job at the head of the queue. When the job at the head of the queue
does not fit, the scheduler is not allowed to choose another job, further in the queue.
Because of this restriction, FCFS results in a low maximal processor utilization.

In FPFS the scheduler searches further in the queue, from head to tail, and schedules
the jobs which fit. It is similar to the backfilling policy [1], but the duration of jobs is
not taken into account, so the requirement that the job at the head of the queue should
not be delayed is not enforced. In order to avoid starvation (a job is never scheduled)
we introduce counters as aging mechanism. Each job counts the number of times it was
jumped over by jobs which were behind it in the queue, but were scheduled before it.
When a job’s counter reaches a chosen limit MaxJumps, the scheduler is not allowed to
overpass that job anymore. In this way, the effectiveness of scheduling is preserved. Of
course, when MaxJumps is equal to zero, FPFS becomes FCFS. FPFS has the potential
advantage of an increased maximal utilization of the system compared to FCFS.

2.4 The Distributed ASCI Supercomputer

The DAS [5] is a wide-area distributed computer, consisting of four clusters of work-
stations located at four Dutch universities, amongst which Delft. One of the clusters
contains 128 nodes, the other three contain 24 nodes each. All the nodes are identical
Pentium Pro processors. The clusters are interconnected by ATM links for wide-area
communications, and for local communication inside the clusters Myrinet LANs are
used. The operating system employed is RedHat Linux. The system was designed by
the Advanced School for Computing and Imaging (ASCI, in the Netherlands) and is
used for research on parallel and distributed computing. On single DAS clusters a local
scheduler called prun is used; it allows users to request a number of processors bounded
by the cluster’s size, for a time interval which does not exceed an imposed limit (15
minutes).

Using the Globus toolkit [10] which we installed in the DAS system, a job can
simultaneously and transparently require processors on distinct clusters. However, this
form of co-allocation has not been used enough so far to let us obtain statistics on the
sizes of the jobs’ components.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 159

3 The Maximal Utilization

In the model described in Sect. 2, it may happen that some processors are idle while
at the same time there are waiting jobs. Of course, this phenomenon already occurs in
single clusters, but in multiclusters we can expect it to occur more often or with a larger
fraction of the processors remaining idle. As a consequence, if ρm is the traffic intensity
such that the system is stable (unstable) at traffic intensities ρ with ρ < ρm (ρ > ρm),
we have ρm < 1. We will call the quantity 1 − ρm the (maximal) capacity loss, which
we denote by L.

In this section we first discuss some important reasons for capacity loss, and then
we present a very simple approximation for the capacity loss in single-cluster systems.
We validate this approximation with simulations when the job sizes have a uniform or a
(truncated) geometric distribution. Finally, we assess the capacity loss in multiclusters
with simulations.

3.1 Reasons for Capacity Loss

The problem of unutilized processor capacity when space sharing is employed for rigid
jobs in single clusters has of course been recognized before. In [8], gang scheduling
is proposed as a solution to this problem. However, for multiclusters such as the DAS,
gang scheduling may not be a viable solution for technical reasons and because of
the distributed ownership of such systems. Even if the cluster schedulers support gang
scheduling (and our local DAS scheduler does not), the separate cluster schedulers
would have to synchronize and agree on the number and size of the time slices, and
on the jobs that run in each time slice. Because of the wide-area latencies, the context-
switching overhead will be larger than in single clusters. Clusters in a multicluster may
have different systems administrators or different owners, who want to determine for
themselves how their own systems are used. Setting aside some number of processors
for some amount of time for (components of) foreign jobs (i.e., space sharing) does
interfere much less with local jobs than gang scheduling.

There are at least three reasons for the phenomenon of capacity loss. First, it may be
due to the job-size distribution, and, in multiclusters, to the jobs’ structures. For instance,
when in a single cluster with N processors all jobs have size �(N + 1)/2�, for large
values of N the capacity loss L is close to 0.5. In multicluster systems in which ordered
requests are used, much higher fractions of the capacity may be lost if many jobs have
mutually conflicting requirements in one specific cluster while they do not require many
processors in the remaining clusters.

Second, the scheduling policy employed may cause capacity loss. It is possible that
the job at the head of the queue does not fit, while some job further down in the queue
does fit, which means that the capacity loss when FCFS is employed is larger than when
a policy like FPFS is used instead. In the case of total requests, this only occurs when
not enough processors are idle, while in the cases of unordered and ordered requests,
even when the total number of idle processors is large enough, a job may still not be
accommodated because its components do not fit in the separate clusters.

A third reason for having ρm < 1 is that we are considering an on-line problem,
which means that we take scheduling decisions without knowing when jobs will arrive



160 A.I.D. Bucur and D.H.J. Epema

in the (near) future and what their sizes and service times are. We may expect that in
multiclusters, having knowledge of the structure of jobs and the sizes of their components
would be even more important to reduce capacity loss.

3.2 An Approximation of Capacity Loss in Single Clusters

We now present a procedure for computing an approximation to L in a single cluster of
size N for the FCFS policy. Subsequently, we simplify this approximation, and show
this simplification to yield good results for different job-size distributions. We assume
that there is no correlation between the job sizes (number of processors requested) and
the job service times.

When in a single cluster the traffic intensity approaches ρm, the job queue will be
very long. This means that we can assume that whenever a job leaves the system, new
jobs from the head of the queue can be started until the next job does not fit. So in fact,
we can find an approximation to L by computing the average number of processors that
remain idle when we put jobs one by one on a single cluster of N processors that is
initially completely idle until the next job does not fit. If there was a correlation between
job size and service time—for instance, when larger jobs run for a longer period of time,
as has been observed in some systems [9]—the mix of the sizes of the jobs in service
would be different from the general job-size distribution, and the approximation would
in general not be valid.

To find the approximation, let N be the number of processors, and let F be the
job-size distribution, which is a discrete distribution on the set {1, 2, . . . , N}; F (n) is
the probability that a job’s size does not exceed n. We assume F to be non-degenerate,
for otherwise, if all jobs are of size say d, we have L = (N mod d)/N . Let f be the
density of the job sizes, so f(n) = F (n)−F (n−1), n = 1, 2, . . . , N , is the probability
that a job is of size n. For an N -tuple v = (v1, . . . , vN ) of jobs of sizes 1, 2, . . . , N ,
respectively, we denote by s(v) the sum

∑
n vnn, which is the total number of processors

these jobs require. Now let

V = {(v1, . . . , vN )|vn ≥ 0, n = 1, . . . , N, s(v1, . . . , vN ) ≤ N}
be the set of N -tuples of numbers of jobs that fit on N processors, and let

W = {v ∈ V | there exists a n with f(n) > 0, such that s(v) + n > N}
be the subset of V of N -tuples of jobs such that an additional job may not fit. Then the
set I of numbers of processors that can remain idle is

I = {i|i = N − s(w), w ∈ W}.

We are interested in the probabilities P (i) that i processors remain idle, for all i ∈ I .
The probability P (i) is made up of the probability that when adding jobs we reach a
level ofN − i processors, and the probability that the next job is larger than i processors.
A general expression for these probabilities is (the first factor in the summation below
is a multinomial coefficient)

P (i) = (1 − F (i)) ·
∑

w=(v1,...,vN )∈W,s(w)=N−i

( ∑
n vn

v1, . . . , vN

)
·
(

N∏
n=1

f(n)vn

)
. (1)



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 161

The capacity loss L can now be approximated by

L =
1
N

∑
i∈I

P (i)i. (2)

The reason that this is an approximation rather than an exact result is that we assume
that the fractions of time that i processors are idle for i ∈ I , are equal.

Equations (1) and (2) give a procedure for computing the approximation of the
capacity loss, but for large values of N and a large number of possible job sizes this
procedure is time-consuming. Therefore, we now present a simple approximation of L
in the case of a single cluster with the FCFS scheduling scheme.

The approximation simply consists in assuming that the P (i) are proportional to the
first factor, 1−F (i), in (1), which amounts to assuming that the value of the summation
in (1) is the same for all i ∈ I . The approximated capacity loss is then given by

L =
1
N

·
∑

i∈I(1 − F (i))i∑
i∈I(1 − F (i))

. (3)

Let’s now assume that the job size is uniformly distributed on the interval [n1, n2],
with 0 < n1 < n2 ≤ N . Then we have I ⊂ {0, 1, . . . , n2 − 1}. When the interval
[n1, n2] is large or n2 is much smaller than N , the set I will not be much different from
{0, 1, . . . , n2−1}, andwe assume equality below. A straightforward computation shows
that (3) can then be written as

L =
1
N

· n3
2 − n3

1 + 3n2
1 − n2 − 2n1

3n2
2 − 3n2

1 + 3n2 + 3n1
. (4)

In particular, when n1 = 1, (4) yields

L =
n2 − 1

3N
, (5)

and so

ρm =
3N − n2 + 1

3N
. (6)

We have validated the approximation of (3) with two different kinds of simulations.
The first kind consists of filling a single bin of sizeN with items of sizes drawn from the
job-size distribution in the order they are drawn, until the next job does not fit. All results
for simulating bin filling reported in this section give averages for 10, 000 simulation
runs. The second kind is by simulating the queueing model defined in Sect. 2 and finding
the utilization when the average response time is at least 1, 500 time units (the average
service time is put to 1 time unit; for more on the simulations see Sect. 4). Of course,
simulating bin filling is much easier than trying to simulate a queueing model close
to its maximal utilization. In the latter case, it is very difficult to find out whether the
simulation is still in its transient phase, and programming difficulties like running out of
space for datastructures such as job queues may arise.

In Table 1 we compare the approximation and the two sets of simulation results for
a cluster of 32 processors and for different uniform job-size distributions. Overall, the



162 A.I.D. Bucur and D.H.J. Epema

results agree very well, except when the interval of job sizes is rather small and the job
sizes are large relative to 32. Figure 2 shows the results of simulating the queueingmodel
for uniform job sizes on [1, 16] in a 32-processor cluster, with 95% confidence intervals,
and may be compared with the entry for n1 = 1, n2 = 16 in Table 1.

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

Fig. 2. The response time for a 32-processor single cluster, with job requests uniformly distributed
in [1,16], for the FCFS policy.(The bars show the 95% confidence intervals)

In Table 2 we compare the approximation with only bin-filling simulations when
the job sizes have a (truncated) geometric distribution on the interval [1, 32] in a 32-
processor cluster. In this distribution, f(n) is proportional to qn for some value q with
0 < q < 1. This distribution gives a larger proportion of small jobs, a phenomenon that
has been observed in actual systems [9], [13].

3.3 Capacity Loss in Multiclusters

For multiclusters, we have only performed a few bin-filling simulations for uniform
distributions of the size of job components, for both ordered and unordered requests.
It is not generally true that a multicluster performs better with unordered requests than
with ordered requests. In fact, when the different job components of unordered requests
all have to go to distinct clusters, First Fit may cause a much larger capacity loss than
ordered requests experience because the first cluster fills up more rapidly than the last,
until at some point it cannot accommodate any component of the next job. In all our



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 163

Table 1. The capacity loss in a cluster with 32 processors and with a uniform job-size distribution
on the interval [n1, n2].

job size capacity loss

n1 n2 approximation simulation simulation

bin filling queueing model

1 4 0.031 0.031 0.033

1 5 0.042 0.042 0.044

1 13 0.125 0.124 0.138

1 16 0.156 0.154 0.166

4 5 0.056 0.049 0.052

4 13 0.132 0.132 0.145

4 16 0.163 0.159 0.175

5 13 0.137 0.137 0.150

5 16 0.166 0.163 0.178

13 16 0.212 0.094 0.095

Table 2. The capacity loss in a cluster with 32 processors andwith a (truncated) geometric job-size
distribution on the interval [1, 32] with parameter q.

capacity loss

q approximation simulation

bin filling

0.95 0.272 0.254

0.90 0.215 0.211

0.85 0.163 0.161

0.80 0.122 0.123

0.75 0.093 0.091

0.70 0.073 0.074

0.65 0.058 0.058

0.60 0.047 0.046

0.55 0.038 0.039

0.50 0.031 0.032

queueing-model simulations in Sect. 4 (in which First Fit is used) the performance with
unordered requests is better than with ordered requests, which is in agreement with
the results of the bin-filling simulations shown in Table 3, which presents the maximal
utilization ρm for sets of parameters that are also used in Sect. 4.

Whenwe useWorst Fit instead of First Fit for unordered requests (job components in
decreasing order of size go to distinct clusters in decreasing order of the numbers of idle



164 A.I.D. Bucur and D.H.J. Epema

Table 3. The maximal utilization in a multicluster with 4 clusters of 8 processors each with a
uniform job-component-size distribution on the interval [n1, n2], for ordered (O) and unordered
(U) requests (First Fit, distinct clusters). These results are obtained with bin-filling simulations.

job size maximal utilization

n1 n2 O U

1 4 0.685 0.722

1 8 0.578 0.608

Table 4. The capacity loss in a multicluster with C clusters of 32 processors each with a uni-
form job-component-size distribution on the interval [n1, n2], for ordered (O) and unordered (U)
requests (Worst Fit, distinct clusters). These results are obtained with bin-filling simulations.

job size capacity loss

n1 n2 C = 1 C = 4 C = 10
O U O U

1 4 0.031 0.146 0.049 0.198 0.053

1 5 0.042 0.172 0.063 0.229 0.067

1 13 0.124 0.326 0.177 0.411 0.177

1 16 0.154 0.363 0.219 0.444 0.229

4 5 0.049 0.106 0.041 0.146 0.029

4 13 0.132 0.282 0.181 0.363 0.199

4 16 0.159 0.329 0.230 0.371 0.282

5 13 0.137 0.270 0.164 0.358 0.158

5 16 0.163 0.317 0.242 0.342 0.303

13 16 0.094 0.094 0.094 0.094 0.094

processors), we can expect that the performance for unordered requests is always better
than for ordered requests. In Table 4 we present some results of bin-filling simulations
that confirm this expectation.

4 Simulating Co-allocation

In order to estimate the performance of multicluster systems such as the DAS, for differ-
ent structures and sizes of requests, we modeled the corresponding queuing systems and
studied their behaviour using simulations. The simulation programs were implemented
using the CSIM simulation package [4]. Simulations were performed for a single-cluster
system with 32 processors and for a multicluster system with 4 clusters of 8 nodes each.
We varied the distribution of the number of processors requested by jobs by changing
the interval from which it was generated, in order to study the influence it has on the
performance. Simulations were made for job component sizes uniformly distributed on



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 165

the intervals [1, 4] and [1, 8] for the multicluster system. The sizes of the total requests
in the single-cluster system with 32 processors we use for comparison, are the sum of 4
numbers uniformly distributed on these intervals.

In all the simulations, the mean of the service time was maintained constant, equal
to 1, and the interarrival time was varied in order to determine the response time as a
function of the utilization of the system, and to approximate the saturation point (see
also Sect. 3.3).

Themain goal is to evaluate the performance of themodel depending on the structure
and distribution of the requests. We consider the performance to be better when for the
same utilization the average response time is smaller, and when the maximum utilization
is larger.

In Sects. 4.1 and 4.2, the scheduling policy used is FCFS. In Sect. 4.3 the two
scheduling policies, FCFS and FPFS are compared. Section 4.4 presents the simulation
results for a system composed of 4 clusterswith 8 processors each, using ordered requests
with component sizes obtained from a job-size distribution presented as being more
realistic in [9] and [13].

4.1 The Influence of the Structure of the Requests

Figure 3 compares the average response time for the three types of requests, for two
different distribution intervals of their component sizes. As expected, the case of total
requests gives the best results from the point of view of the maximal utilization of the
system and of the response time, because whenever the number of requested processors
does not exceed the number of idle ones, it will be possible to accept the job for service.
Less good results are given by the case with unordered requests. Still, because of the
fact that it gives more freedom to the scheduler than the one with ordered requests, its
performance is better than in the ordered case, in all our simulations.

When requests are ordered the results are the worst because the user imposes both the
number of nodes received from distinct clusters and the actual cluster for each of those
numbers. It causes a lower maximum utilization and a larger average of the response
time. Because of the lowutilization, the systembecomes saturated faster and gets instable
for a lower utilization than in the other cases. However, in general there are situations
when unordered requests determine a lower maximal utilization than ordered requests
(see Sect. 3.3). The saturation point can be estimated in the graphs by the fast growth
of the response time depending on the utilization, as the maximum utilization is being
reached.

4.2 The Influence of the Size of the Requests

Wemay expect that the distribution intervals of the request sizes influence the probability
of having multiple jobs served simultaneously. When the upper limit of the distribution
interval is decreased, the average size of the requests decreases which means that more
jobs can be simultaneously admitted for service. As Fig. 3 and Fig. 4 show, this has a
positive impact on the maximum utilization of the system, and on the average response
time.



166 A.I.D. Bucur and D.H.J. Epema

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

The response time  for requests uniformly distributed in [1,4]

 ordered requests
 unordered requests

total requests

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

The response time  for requests uniformly distributed in [1,8]

 ordered requests
 unordered requests

total requests

Fig. 3. The influence of the structure of the requests, for the FCFS policy.

Figure 3 shows that for each typeof requests, smaller request sizes generate a decrease
in the response time. For the distribution in [1, 8], the mean value of the job components
sizes is larger than half of the cluster’s size, which makes the probability to have more
jobs served simultaneously small, especially in the ordered case. Then, on average there
is little more than one job in service at a time, which allows a comparisonwith theM/M/1
queueing model. For the ordered requests case with job components sizes in [1, 8], the
system behaves like a single processor, as Fig. 5 indicates. The simulation results prove
the comparison to be accurate, the maximum throughput being similar to that of the
M/M/1 system.

Figure 4 compares the results for the two distributions of sizes in the cases of ordered
and total requests.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 167

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

ordered requests in [1 8]
ordered requests in [1 4]

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

total requests in [1 8]
total requests in [1 4]

Fig. 4. The influence of the size of the requests for the FCFS policy.

4.3 The Impact of the Scheduling Policy

Another factor which influences the performance of the system is the scheduling policy.
As expected, FPFS improves the maximal utilization and the response time compared
to FCFS, because it can schedule jobs in an order different from the arrival order. Figure
6 also shows that the influence on performance of the distribution of jobs sizes and of
the structure of the requests observed for FCFS is maintained for the FPFS scheme.

For FPFS, increasing the maximum number of times a job can be jumped over,
MaxJumps, improves the performance up to a point. When this number is too large, the
performance of individual jobs is negatively influenced, and even the effectiveness of
the scheme can be affected (MaxJumps → ∞ would cause starvation, being the same as



168 A.I.D. Bucur and D.H.J. Epema

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

M/M/1 system
 ordered requests in [1,8]

Fig. 5. A comparison between a multicluster with ordered requests in [1,8] and a M/M/1 system.

FPFS without a counter). At the other extreme, for MaxJumps=0 we return to FCFS.We
performed simulations with different values forMaxjumps, and finally choseMaxJumps
equal to 7. Table 5 show the sensitivity of the response time to the value of MaxJumps
for different values of the utilization, in the case of total requests.

Table 5. The response time in a single cluster with 32 Processors (FPFS policy) as a function of
MaxJumps.

MaxJumps utilization

0.62 0.78

0 1.91246 4.8845

1 1.80850 3.8588

3 1.80102 3.3412

7 1.70349 2.9125

12 1.69023 2.8249

20 1.68996 2.7771

It can be noticed that for low utilizations, far from the saturation point, improvements
given by the scheduling scheme or the distribution and the structure of the requests are
very small if any. The differences show only for heavy traffic, when the arrival rate is
reasonably high and the job queue is long. For a low arrival rate, under all circumstances
we obtain the same results because jobs can be served immediately upon arrival.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 169

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

The response time for requests uniformly distributed in [1,4]

ordered requests, FCFS
ordered requests, FPFS

total requests, FCFS
total requests, FPFS

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

The response time for requests uniformly distributedin [1,8]

ordered requests, FCFS
ordered requests, FPFS

total requests, FCFS
total requests, FPFS

Fig. 6. The influence of the scheduling policy.

4.4 A Realistic Job-Size Distribution

The simulations described in this section use a distribution of the job component sizes
that favours small values and powers of 2.

In order to achieve this, with probability p = 0.7 the component-size distribution
on [1,8] is the normalization of (q, 3q2, q3, 3q4, . . . , 3qN ), where N = 8 and q = 0.90.
With probability 1−p a job with components uniformly distributed in [1, 4] is generated.
Figure 7 shows the variation of the response time for the composed distribution together
with the confidence intervals, for a confidence level of 95%.



170 A.I.D. Bucur and D.H.J. Epema

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Utilization

Fig. 7. The response time for a multicluster with ordered requests and with job sizes generated
from a distribution that favours small values and powers of 2.

5 Related Work

The problem of scheduling rigid jobs by pure space sharing in a multiprocessor system
was also the subject of [1]. It was pointed out that although more complex scheduling
schemes are presented in the literature, scheduling schemes for rigid jobs using pure
space sharing are still important since these are the schemes implemented on most
existing multiprocessor systems. The authors implemented and compared scheduling
strategies such as FCFS, FPFS, FPFS with job sorting (both decreasing and increasing),
and backfilling. In order to avoid starvation in FPFS and its variations, a time limit is used
rather than the maximal number of times a job can be overtaken. Simulation results were
combined with performance analysis and experiments in order to verify the effectiveness
and the practicality of the schemes. The performance was analysed in terms of processor
utilization and stability, using queueing models and the one-dimensional bin-packing
problem. As a result of the simulations, the mean response time and the utilization were
represented as a function of the system’s load. It was concluded that the most effective
and the most practical from the schemes analysed are FPFS and Fit Processors Most
Processors First Served (FPMPFS). Backfilling can improve performance as well, but it
requires a-priori knowledge of the execution times of jobs, which makes it less practical.
The performance of the scheduling schemes proved to be sensitive to the distribution of
the number of processors requested by a job.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 171

In [13], the optimizations of sorting the job queue according to increasing numbers
of processors requested, and of backfilling, are studied with trace-driven simulations.
The traces were derived from the logs of three supercomputer installations, amongst
which an SP2, and showed relatively large numbers of short jobs and of jobs with
sizes that are small or powers of 2. On the SP2, for a sorted job queue, increasing the
Maximum Allowable Skipping Count (MASC), a parameter with the same meaning as
ourMaxJumps, to a large value (simulations were presented withMASC=10, 100, 1000)
yielded a considerable decrease of the average turnaround time. This contrasts with our
result that the performance of FPFS in a single cluster is not very sensitive to increasing
MaxJumps beyond 7. However, on the Paragon, the sensitivity to the MASC was much
smaller than on the SP2, so this sensitivity is very dependent on the job mix.

The influence of splitting the processors into groups on the performance of the system
was also studied in [3]. A technique for operating system schedulers called processor
pool-based scheduling, designed to assign the processes of parallel applications in mul-
tiprogrammed, shared-memory NUMA multiprocessors, is presented and evaluated. It
is assumed that a job starts as a single process, and that it may grow by starting additional
processes. Different policies for the initial placement of the jobs and for the placement
of its additional processes when it expands were studied. Since it was assumed that the
number of processors required by each job is not known when the application starts, the
best strategy for initial placement was found to beWorst Fit, because it leaves the largest
room for the growth of jobs inside the pool. The author noted that when the number of
processors required is known by the time of the arrival, the problem of choosing which
processors to allocate is similar to a bin-packing problem with multiple bins. He stud-
ied the importance of application parallelism in determining the pool size, and also the
influence of the architectural configuration. The results show that although application
parallelism should be considered, the optimal pool size is a function of the system’s
architecture.

Whereas we approach the problem of themaximal utilization from amore theoretical
perspective, in [11] a study of the utilizations as observed in existing supercomputing
installations is presented. Experience with a large range of machines over more than
a decade shows that employing FCFS results in a 40% − 60% utilization, that more
sophisticated policies such as backfilling give an improvement of about 15 percentage
points, and that reducing the maximal job size allowed increases utilization.

Finally, let us briefly mention some of the other research that is being performed in
the context of the DAS. Whereas the research presented in this paper is at the operating
systems level, the other research on the DAS is done at the level of the run-time sys-
tem [12] and of the applications [2]. In [12], a library is presented which optimizes the
collective communication primitives of MPICH, a widely used version of MPI, in order
to achieve fast communications in wide-area systems. Because collective communica-
tion algorithms are usually designed for LANs, they do not take into account the high
latencies of wide-area links, which negatively influence their performance. The authors
designed algorithms which are wide-area optimal in that an operation includes only one
wide-area latency, and every data item is sent at most once across each wide-area link.
They modified 14 collective operations of MPI and obtained substantial performance
improvements over MPICH. As an example, in the case of the MPI Bcast primitive, the



172 A.I.D. Bucur and D.H.J. Epema

completion time was reduced to 50% for 32 processors divided into 4 clusters and a
message size of one byte. This was obtained by sending the message only once to each
cluster over the wide-area links, and then broadcasting it inside each cluster on the fast
local links.

In [2], several nontrivial algorithms on a multilevel communication structure (LAN
clusters connected by aWAN, such as the DAS) were analyzed and several optimization
techniques were used to improve their performance. The optimizations either reduced
intercluster traffic or masked the effect of intercluster communications and caused a
significant improvement. The authors concluded that many medium-grain applications
could be optimized to run well on a multilevel, wide-area cluster. One of the optimized
applications solves the Traveling Salesman Problem. It was improved by replacing the
dynamic work distribution through a centralized queue with a static distribution over
the clusters, each of them having its own local queue. For 32 processors divided into 4
clusters, the speedup was 24, compared to 15 for the unoptimized solution.

6 Conclusions

We have proposed a model for scheduling rigid jobs in multicluster systems based on
our DAS system, and assessed its performance for different structures and sizes of jobs
in terms of average response time as a function of utilization.

We simulated two scheduling schemes, First Come First Served and Fit Processor
First Served, and three types of requests. As expected, for both scheduling schemes, the
average response time is smaller and themaximum utilization is larger when the requests
are more flexible. The best performance was obtained for total requests, when only the
total number of processors needed is provided, and when the problem is similar to a
single bin-packing problem. For unordered requests, when the numbers of processors to
be allocated in separate clusters is specified, the problem is similar to a set of related bin-
packing problems, and because there are more restrictions, the performance decreases. It
can be improved by changing the policy from FCFS to FPFS, because then the scheduler
gets freedom to look further in the queue for jobs which fit, but it will still be below the
total requests case. In all our simulations, ordered requests, when the exact clusters from
which to satisfy the components of the requests are provided, cause even larger response
times, and an even lower maximum utilization. This latter result is not universally valid
using First Fit, as we did.

Decreasing themaximal size of the requests improves the performance of the system.
This fact is again related to the bin-packing problem, because it is easier to schedule
small jobs than large ones.

We derived an approximation for the maximal utilization in single-cluster systems
and checked its validity against simulation results.

We plan future work on the effect of communication on the performance of mul-
ticluster systems (and of the applications) in comparison with single-cluster systems,
because inter-cluster communication is much slower than communication inside the
same cluster (in [2] a factor of 50 between these communication speeds was reported).
We also intend to do simulations and performance measurements using traces from real
multicluster systems (the DAS) instead of theoretical distributions.



The Influence of the Structure and Sizes of Jobs on the Performance of Co-allocation 173

References

1. Aida, K., Kasahara, H., Narita, S.: Job Scheduling Scheme for Pure Space Sharing Among
Rigid Jobs. Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer
Science 1459 (1998) 98–121

2. Bal, H.E., Plaat, A., Bakker, M.G., Dozy, P., Hofman, R.F.H.: Optimizing Parallel Applications
for Wide-Area Clusters. Proceedings of the 12th International Parallel Processing Symposium
(IPPS’98) (1998) 784–790

3. Brecht, T.B.: An Experimental Evaluation of Processor Pool-Based Scheduling for Shared-
Memory NUMA multiprocessors. Job Scheduling Strategies for Parallel Processing, Lecture
Notes in Computer Science 1291 (1997) 139–165

4. The CSIM18 Simulation Engine, User’s Guide. Mesquite Software, Inc.
5. The Distributed ASCI Supercomputer’s site. Http://www.cs.vu.nl/das/
6. Feitelson, D.G., Rudolph, L.: Toward Convergence in Job Schedulers for Parallel Supercom-

puters. Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science
1162 (1996) 1–26

7. Feitelson, D.G., Rudolph, L.: Theory and Practice in Parallel Job Scheduling. Job Scheduling
Strategies for Parallel Processing, Lecture Notes in Computer Science 1291 (1997) 1–34

8. Feitelson, D.G., Jette, M.A.: Improved Utilization and Responsiveness with Gang Scheduling.
Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science 1291
(1997) 238–261

9. Feitelson, D.G.: Packing Schemes for Gang Scheduling. Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science 1162 (1996) 89–110

10. The Globus site. Http://www.globus.org
11. Patton Jones, J., Nitzberg, B.: Scheduling for Parallel Supercomputing: A Historical Perspec-

tive of Achievable Utilization. Job Scheduling Strategies for Parallel Processing, Lecture Notes
in Computer Science 1659 (1999) 1–16

12. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe: MPI’s Col-
lective Communication Operations for Clustered Wide Area Systems. ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’99) (1999) 131–140

13. Subhlok, J., Gross, T., Suzuoka, T.: Impact of Job Mix on Optimizations for Space Sharing
Schedulers. Supercomputing ’96 (1996)


	Introduction
	The Model
	The Structure of the System
	The Structure of Jobs
	The Scheduling Policies
	The Distributed ASCI Supercomputer 

	The Maximal Utilization 
	Reasons for Capacity Loss
	An Approximation of Capacity Loss in Single Clusters
	Capacity Loss in Multiclusters

	Simulating Co-allocation
	The Influence of the Structure of the Requests
	The Influence of the Size of the Requests
	The Impact of the Scheduling Policy
	A Realistic Job-Size Distribution

	Related Work
	Conclusions

