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Abstract—Polarization rotation within an Arrayed Waveguide
Grating (AWG) is found to cause sidelobes in the response of the
AWG. The devices in which this effect was observed are briefly
discussed. Their measured responses are compared to a detailed
simulation.

Index Terms—Arrayed waveguide grating (AWG), integrated
optics, optical planar waveguides, optical polarization, birefrin-
gence

I. INTRODUCTION

Arrayed waveguide gratings (AWGs) are standard compo-
nents in integrated optics. In most applications the crosstalk
performance offered by these devices is very important. Large
sidelobes adversely affect crosstalk levels. In [1] Smit reports
the a number of possible sidelobe causes, among which:
finite array aperture sizes, phase errors due to fabrication
imperfections and coupling between array waveguides. Here
we report on a new cause: polarization rotation in the curved
waveguides of the array. Sidelobes caused by this effect will be
referred to as polarization rotation sidelobes or ‘PR-sidelobes’
for short. To the best of the authors’ knowledge this is the first
time PR-sidelobes are reported on.

In birefringent waveguides the TE and TM modes have
different propagation constants. In an AWG this results in a
different dispersion for both polarizations. As such the AWG
pass band positions will be shifted in frequency with respect
to each other.

First the devices in which the PR-sidelobes were measured
will be briefly described. Section III treats the measurements
and the results. Section IV describes a detailed simulation
of an AWG subject to polarization rotation. We conclude in
section V.

II. DEVICE DESIGN

The devices were designed for an indium phosphide layer
stack from the company Oclaro. The stack consists of a lightly
doped 2µm thick p-InP top cladding and a 0.36µm thick MQW
core on a n-InP substrate. The resulting slab index is 3.246. All
waveguides were 1.5µm wide and deep-etched with an etch
depth of 3.6µm. The surrounding material is air. The resulting
cross-section is shown in Fig.1a. The indicated angle in this
figure equals 86.8 degrees.

Fig.1b shows the layout of the device. The used bend
radius was 150µm for all curved waveguides. Lateral offsets
of 16nm were applied at junctions between straight and curved
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Fig. 1. (a): Electron microscope image of a waveguide cross-section of the
manufactured AWG. The indicated angle is 86.8 degrees, which means the
sidewall angle equals 3.2 degrees. (b): Layout of the manufactured AWG.

waveguides. The designed four channel AWG had a free
spectral range of 1600GHz and a channel spacing of 400GHz.
The devices were manufactured by Oclaro using their well
established process.

III. MEASUREMENTS

The devices were characterized and sidelobes on one side
of the transmission peaks were observed. These sidelobes
are indicated by the arrows in Fig.2. Further measurements
were carried out to determine the source of these sidelobes.
The measurement setup used is shown in Fig.3. In this setup
the light from a broadband light source is TE polarized by
a polarizer. After the light has passed through the device
under test a second polarizer can be set to transmit either
TE or TM. Three measurements were performed. In the first
measurement the output polarizer was set to transmit the TE
part of the output signal. In the second measurement the TM
part of the output was transmitted. In the last measurement
the output polarizer was removed and the total transmitted
power was recorded. The results of these measurements are
shown in Fig.4. This figure clearly shows a sidelobe on the
shorter wavelength side of the main transmission peak. This
sidelobe is not present in the TE only output signal. It is
present however in the TM part of the output. As only TE
polarized light was launched, the TM output must be the result
of polarization rotation in the sample.
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Fig. 2. Typical response of the characterized devices for TE input (black)
and TM input (grey). The arrows indicate the PR-sidelobes.
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Fig. 3. Schematic of the experimental setup. The input polarizer is present in
all measurement; in some measurements no output polarizer was used. ASE:
Amplified Spontaneous Emission source, SMF: Single Mode Fiber, DUT:
Device Under Test, OSA: Optical Spectrum Analyzer.

Fig.2 shows that the distance in wavelength between the
sidelobe and main peak (≈ 2.4nm) is less than the observed
shift between the TE main peak and TM main peak (≈ 4.3nm).
This means that the polarization rotation occurs within the
array itself and not in the input and output waveguides. The
rotation most likely occurs in the curved array waveguides[2].
In the next section the measurements will be compared to
detailed simulations to further support this hypothesis.

IV. SIMULATION

A simulation model of the AWG under test was con-
structed, which includes polarization rotation in the curved
array waveguides. The model uses a Gaussian approximation
of the modal fields in the waveguides. The star-couplers are
modelled using a paraxial approximation. The slab and mode
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Fig. 4. Cutout of an OSA trace of the filtered, TE polarized ASE spectrum
for: no output polarizer (solid), output polarizer set to TE (dashed), output
polarizer set to TM (dotted). The traces have been normalized, correcting for
the nonuniform shape of the ASE spectrum.
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Fig. 5. Simulation of an AWG with polarization rotation occurring in the
curved array waveguides.

indices were calculated for both polarizations and fitted as a
function of wavelength, using a 1D effective index method
and a 2D Film Mode Matching method respectively. In the
straight waveguides the mode index is used to propagate the
TE and TM fields independently over the waveguide’s length.
The curved waveguides are modelled by two orthogonal hybrid
modes with their principle axes rotated over an angle θ with
respect to the straight waveguide TE and TM modes. The
hybrid modes have different mode indices. At the straight and
curved waveguide junctions the straight waveguide modes are
coupled to the hybrid modes. Due to the accumulated phase
difference between the hybrid modes after propagating through
the curved waveguide, the coupling to the straight modes will
change. This causes the state of polarization to rotate.

The fitted TE and TM mode indices were changed slightly
to match the measured polarization dispersion of 4.3nm in
the array. This was done by subtracting 0.008 from the TM
mode index. The need for this correction can be explained
by the fact that the layer stack uses a MQW core, which
can induce additional polarization dispersion. The polarization
rotation angle θ was set to 2.7◦ to match the height of the
measured polarization sidelobe.

A simulation was carried out with fully TE polarized light
at the input. In the simulation result the PR-sidelobe is shifted
2.2nm with respect to the main lobe. In the measured response
this is 2.4nm. Altogether the result of the simulation, shown
in Fig.5, is very similar to the measured response.

V. CONCLUSION

It was shown through simulation and through measurements
that polarization rotation in the curved waveguides of an AWG
causes a sidelobe in the response of the device. Devices may be
tested for the presence of this effect using a relatively simple
setup.
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