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Polarization-dependent ponderomotive gradient force in a standing wave
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Eindhoven University of Technology, Applied Physics, Coherence and Quantum Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
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The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave
with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion
method. It is shown that the well-known ponderomotive gradient force expression does not hold for this situation.
The modified expression is still of simple gradient form but contains additional polarization-dependent terms.
These terms arise because the relativistic translational velocity induces a quiver motion in the direction of
the magnetic force, which is the direction of large field gradients. Consistent perturbation expansion of the
equation of motion leads to an effective doubling of this magnetic contribution. The derived ponderomotive force
generalizes the polarization-dependent electron motion in a standing wave obtained earlier [A. E. Kaplan and
A. L. Pokrovsky, Phys. Rev. Lett. 95, 053601 (2005)]. Comparison with simulations in the case of a realistic,
nonidealized, three-dimensional field configuration confirms the general validity of the analytical results.
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I. INTRODUCTION

The ponderomotive force is a time-averaged force experi-
enced by a charged particle in an oscillating electromagnetic
(EM) field that is spatially inhomogeneous. In the standard per-
turbative approach [1,2], it is shown that a charged particle in
an oscillating EM field attains an oscillatory quiver momentum
superimposed on a slowly varying guiding-center momentum
p. The latter is subject to the classical ponderomotive force
Fp:

d p
dt

= Fp = − e2

2ε0mcω2
∇I (x), (1)

where m is the mass of the particle, e its charge, ε0 the
permittivity, ω the frequency of the EM field, and I (x) the
position-dependent field intensity. The classical ponderomo-
tive force is of gradient form and always directed toward
regions of low field intensity. The ponderomotive force is
observed and exploited in a wide range of contexts. In laser-
plasma physics, the ponderomotive force drives the formation
of laser wakefields that are used for next generation electron
accelerators [3,4]. Ion beams are produced by intense laser
irradiation of thin foils, in which the ponderomotive force
plays an essential role [5,6]. Schemes have been proposed for
ponderomotive laser-vacuum acceleration of electrons [7,8]. In
Paul traps, ions are confined by a ponderomotive potential [9].
In electron beam diagnostics, the length of electron bunches
is measured by sequentially scattering different sections of the
bunch using the ponderomotive force of a laser pulse [10,11].

The field gradients that can be obtained in a single laser
pulse are set by the laser pulse duration longitudinally and
the focal spot transversely. For many applications of the
ponderomotive force this means that, to obtain a sufficiently
strong force, field intensities are required that are high enough
to cause a relativistic quiver motion (which happens if the
normalized amplitude of the vector potential, a ≡ eA/mc =

*o.j.luiten@tue.nl

e
√

2I/(ε0c)/(mcω) � 1; that is, I � 2 × 1018 W/cm2 for a
wavelength of 800 nm). Relativistic field intensities necessitate
more complicated descriptions of the average EM force
[12–14] or, at least, restrict the domain of validity of Eq. (1)
[15,16]. An intermediate situation occurs when an already
relativistic particle enters an EM field with nonrelativistic
intensity. A relativistic derivation [17] shows that this in-
troduces an additional factor

√
1 + p2/(mc)2 + a2/2 in the

denominator of Eq. (1), resulting in an accurate description
for practical situations [18].

An alternative to the application of a relativistic laser
pulse is the use of a standing wave. In this configuration
the nodes and antinodes are spaced on the scale of the
wavelength, resulting in large field gradients. For example,
a standing wave produced by two counterpropagating EM
waves with wavelength λ = 800 nm and the very modest,
nonrelativistic peak field intensity of 1015 W/cm2 already
causes ponderomotive forces of the order of Fp/e ∼ 1 GV/m.
For this reason, a number of applications of the ponderomotive
force have been proposed that take advantage of the large
field gradients in a standing EM wave. Hebeisen et al. [19]
suggested a tabletop standing-wave version of the bunch length
measurement setup mentioned previously. Following an earlier
idea [20], Balcou proposed a novel x-ray-free electron laser
based on the wiggling of electrons in the ponderomotive
potential of a standing wave [21]. Faure et al. used a
standing wave formed by colliding laser pulses to preaccelerate
electrons ponderomotively in a laser-wakefield setup [22],
demonstrating that the production of monoenergetic electron
beams can be made stable and reproducible in that way
[23–25]. Baum and Zewail proposed to create attosecond
electron pulse trains by bunching of an electron beam due to a
comoving ponderomotive beat potential between laser pulses
of different frequencies [26].

In view of all these important technological applications,
a thorough understanding of the ponderomotive force in a
standing wave is essential. The scattering of charged particles
by a standing EM wave was first described in a quantum-
mechanical context by Kapitza and Dirac [27], and since
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then many papers have appeared on this subject [28–32].
Nevertheless, there are only a few classical electrodynamical
studies on the standing-wave ponderomotive force [33–36].
Most publications on the ponderomotive force have concen-
trated on propagating EM waves, establishing the validity of
Eq. (1) in that context [1,2,17]. Equation (1) is also applied
to the standing-wave configuration, implicitly assuming that
it remains valid in that case as well. In 2005, however,
Kaplan and Pokrovsky [37,38] calculated the time-averaged
equation of motion of an electron in a standing wave for a
number of field polarizations, and their results showed that
the ponderomotive force depends on the polarization. Most
notably, the ponderomotive force can even change its direction
toward high field regions for certain situations. Clearly, these
results are in conflict with the polarization-independent Eq. (1),
which is commonly used. Kaplan and Pokrovsky did not
provide an alternative expression for the ponderomotive force,
however.

We would first like to show, on the basis of simple
arguments, that it can be understood that the ponderomotive
force in a standing wave is polarization dependent. Consider
Fig. 1, showing a particle with charge e and initial velocity
v0 parallel to the x axis, incident on a standing wave with
electric field E and magnetic field B. The wave is oriented
with its nodal planes parallel to the (x,y) plane, so that the
spatial variation of the field is much more rapid in the z

direction than in the transverse direction. This is the typical
system considered in this paper. When the particle enters the
EM field, it will start to quiver in the polarization direction
in response to the oscillating electric force eE. This electric
quiver, combined with the Lorentz force equation, leads to
the well-known average force, Eq. (1), independent of the
polarization direction. However, the incident particle will also
quiver in response to the magnetic force ≈e(v0 × B). This
“magnetic quiver” can be comparable in magnitude to the
electric quiver for relativistic particles. Because the magnetic
quiver is in the z direction, the particle samples a large
field gradient, leading to an additional contribution to the
ponderomotive force that is comparable to the electric one.

FIG. 1. (Color online) Charged particle with initial velocity v0,
which is deflected by the ponderomotive force of a standing EM wave
oriented with its nodal planes parallel to the (x,y) plane. The dashed
arrow indicates the polarization direction for the case considered in
Sec. III A.

And since the magnetic force and hence the amplitude of
the magnetic quiver depend on the angle between v0 and B,
the magnetic contribution is dependent on the polarization
direction.

In this paper, the ponderomotive force is derived for a
relativistic particle entering a nonrelativistic standing wave
with a general three-dimensional field distribution. It is shown
that indeed Eq. (1), or the relativistic equivalent, does not
hold for this situation. This may have important implications
for experiments and proposals based on the standing-wave
ponderomotive force. The main result of this paper, Eq. (21),
shows that the modified ponderomotive force is still of
simple gradient form but contains additional polarization-
dependent terms. We thus generalize the results of Kaplan and
Pokrovsky, which follow naturally from our ponderomotive
force expression. This paper is structured as follows. In Sec. II,
the polarization-dependent ponderomotive gradient force in
a standing wave, Eq. (21), is derived using a perturbation
expansion method. The origin of the additional polarization-
dependent terms is discussed. Next, Eq. (21) is applied in
Sec. III to calculate the averaged equation of motion of an
electron in specific standing-wave geometries, reproducing
the results obtained by Kaplan and Pokrovsky. In Sec. IV,
we validate our ponderomotive force expression by testing
it against numerical simulations of electron trajectories in a
realistic, nonidealized field configuration.

II. THE POLARIZATION-DEPENDENT
PONDEROMOTIVE FORCE

A. Assumptions

Consider first the idealized case of two plane EM waves
of equal frequency ω that counterpropagate along the z axis
and add to form a standing wave. In the Coulomb gauge, the
vector potential A of this ideal standing wave is then purely
harmonic in time t and position z; that is, (∂2/∂t2 + ω2)A = 0
and (∂2/∂z2 + k2)A = 0, where k = ω/c, with c the speed of
light. Furthermore, the vector potential satisfies Az = 0 and
∇⊥Ai = 0, where i = x,y.

In practical applications, however, an EM standing wave
differs from this idealized situation in two ways. First, the
standing wave has a finite transverse extent, leading to a small
but nonzero transverse gradient ∇⊥Ai and a small longitudinal
component Az. These two quantities are related by the gauge
condition ∇ · A = 0, and scale analysis of the latter shows
that, symbolically,

Az

A⊥
∼ ∇⊥

∂/∂z
∼ ε. (2)

Here, ε � 1 is a small parameter measuring the magnitude of
the field inhomogeneity and is used as the expansion parameter
in the derivation that follows. For example, in Gaussian laser
beams focused to a waist of size w0, this parameter is ε ∼
(kw0)−1.

Second, the standing wave has a finite lifetime, so that the
vector potential is only quasimonochromatic:

∂2 A
∂(ωt)2

+ A = O(δA),
∂2 A

∂(kz)2
+ A = O(δA), (3)
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where δ � 1 is another small parameter measuring the
monochromaticity. For a standing wave produced by coun-
terpropagating laser pulses of temporal length σ , for example,
this parameter is δ ∼ (ωσ )−1.

In addition, in this paper the EM field is assumed to be of
nonrelativistic intensity, which means that

eA

mc
≡ a � 1. (4)

For reasons of clarity, for the moment it is assumed that
a ∼ ε. However, the derivation below can be generalized
straightforwardly to other field strengths such as a ∼ ε2 and
a ∼ ε1/2, leading to the same result. Appendix B gives a short
description of the generalized derivation.

B. Perturbation expansions

Before considering the dynamics of a charged particle in
a standing wave in detail, let us first determine what time
scales are involved. First, there is the time scale of the quiver
motion, which is the optical time scale ω−1. Second, there is the
time scale on which the motion of the guiding-center changes.
Substituting an ideal standing wave A = A0ex cos kz sin ωt

in Eq. (1) and integrating yields oscillatory motion in the
z direction, with a typical frequency � = eA0ω/(

√
2mc).

Thus the guiding-center motion in the z direction changes
on a second, longer time scale (aω)−1 ∼ (εω)−1. Finally,
in a realistic standing wave, the nonzero transverse field
gradient causes transverse ponderomotive forces, which, in
view of Eqs. (1) and (2), are weaker than the longitudinal
ponderomotive forces by a factor ε. Therefore the transverse
guiding-center motion changes on a third, still longer time
scale (ε2ω)−1.

Having established the three time scales of the problem,
consider next the equations of motion of a charged particle in
the standing wave [39]:

d

d(ωt)

(
p

mc
+ eA

mc

)
= 1

γ

(
λ∇
2π

eA
mc

)
· p
mc

, (5)

d(kx)

d(ωt)
= 1

γ

p
mc

, (6)

in which γ =
√

1 + p2/(mc)2 is the Lorentz factor, and the
dyadic notation ∇ A has been used [40]. Equations (5) and
(6) have been made dimensionless by dividing the usual
equations by mcω and c, respectively. Below, these equations
are solved by expressing the various quantities in perturbation
expansions in terms of ε. Subsequently, terms of like order
in ε will be collected and equated [41]. We use the symbol
“Os” to denote “on the order of”; that is, f = Os(εi)
means 0 < limε↓0 f/εi < ∞, in distinction from f = O(εi),
which is equivalent to 0 � limε↓0 f/εi < ∞. Superscripts in
parentheses denote the order of the terms.

First, the momentum is expanded as

p =
∞∑
i=0

p(i), p(i) = Os(ε
i). (7)

Note that p(0) would be the momentum in the absence of the
standing-wave field, that is, the initial momentum, since p →
p(0) as a ∼ ε ↓ 0. Next, each order p(i) is decomposed into a

slowly varying guiding-center part p(i) = 〈 p(i)〉 and a rapidly
varying quiver part p̃(i) = p(i) − 〈 p(i)〉. Here, 〈·〉 denotes
time-averaging on the time scale ω−1. Upon substitution of
this decomposition in the left-hand side of Eq. (5), each term
is differentiated with respect to ωt . This preserves the order of
magnitude of the fast quantities p̃(i), since these vary on the
time scale ω−1; that is, d p̃(i)/d(ωt) = Os(εi). However, from
the discussion above, the slow quantities p(i)

z and p(i)
⊥ vary

over longer time scales, so that differentiation increases their
order according to dp(i)

z /d(ωt) = Os(εi+1) and d p(i)
⊥ /d(ωt) =

Os(εi+2), respectively. More formally, these order relations
may be established using the multiple scale technique [41],
considering pz a function of the two variables ωt and εωt

and considering p⊥ a function of the two variables ωt and
ε2ωt . Multiple scale analysis has been applied in a relativistic
derivation of the ponderomotive force in propagating EM
radiation [14].

Next, expansion (7) is substituted in the reciprocal
Lorentz factor 1/γ . Extracting the zeroth-order part γ (0) =√

1 + (p(0))2/(mc)2, this gives

1

γ
= 1

γ (0)
√

1 + [mcγ (0)]−2[2 p(0) · p(1) + O(ε2)]

= 1

γ (0)
− p(0) · p(1)

(mc)2[γ (0)]3
+ O(ε2)

≡
(

1

γ

)(0)

+
(

1

γ

)(1)

+ O(ε2). (8)

The quantity (1/γ )(1) is the first-order time-dependent vari-
ation of the reciprocal Lorentz factor with respect to the
constant value (1/γ )(0). As shown below, this variation leads
to an additional contribution in the final ponderomotive force
expression.

Finally, below it is required to take the time average of
expressions involving powers of A or its derivatives. These
time averages need to be taken along the trajectory of the
particle; that is, in the average 〈A[x(t),t]〉, the vector potential
is to be evaluated at x = x(t). To bring out this position
dependence explicitly, the position is also expanded in a
perturbation expansion in terms of ε:

x =
∞∑
i=0

x(i);
dx(i)

dt
= Os( p(i)) = Os(ε

i). (9)

Again, each order x(i) is decomposed into a slowly varying
guiding-center part x(i) = 〈x(i)〉 and a rapidly varying quiver
part x̃(i) = x(i) − 〈x(i)〉. Then the vector potential can be
expanded in a Taylor series around x = ∑

x(i) ≡ x,

A [x(t),t] = A + z̃ (1)(t)
∂ A
∂z

+ O(ε3). (10)

Here and in the remainder of the paper, an overbar on the vector
potential denotes evaluation at the guiding-center position; that
is, A ≡ A(x,t). In writing the series in Eq. (10), it has been
anticipated that x̃(0) = 0, as shown below.
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C. Order-by-order solution of equations of motion

Substituting expansions (7)–(10) in equations of motion
(5) and (6), and collecting terms of equal order in ε, results
in two equations at each order of ε. These order equations
are listed in Appendix A. Order-by-order solution, balancing
in each equation the averaged parts and the oscillating parts
separately, yields the zeroth-order quantities

p(0) = p0, (11)

p̃(0) = 0, (12)

dx(0)

dt
= p0

mγ (0)
, (13)

x̃(0) = 0, (14)

in which p0 is the initial momentum. As expected, at zeroth
order (that is, in the limit a ∼ ε ↓ 0, where both the field
strength and the field inhomogeneity are 0), the motion is
equal to what it would be if the EM field were absent. For
first-order quantities, it is found that

p̃(1)
⊥ = −eA⊥, (15)

dp̃(1)
z

dt
= e

mγ (0)

∂ A⊥
∂z

· p0⊥, (16)

dz̃ (1)

dt
= 1

mγ (0)

(
p̃(1)

z +p0z

eA⊥· p0⊥ − p0zp̃
(1)
z

(mcγ (0))2

)
, (17)

dz(1)

dt
= p(1)

z

mγ (0)
. (18)

Equation (15) expresses the well-known result that, in an
oscillating EM field, at lowest order the quiver momentum
balances the vector potential, such that the canonical momen-
tum p + eA is conserved. Equation (18) is used in Sec. III for
the description of the guiding-center motion. Equations (16)
and (17) describe the quiver motion in the direction normal to
the plane of polarization of the standing wave, which is the
direction of the strong field gradient. This is the magnetic
quiver motion described in Sec. I. Time differentiation of
Eq. (17) and substitution of Eq. (16) yield

d 2̃z (1)

dt2
= e

[mγ (0)]2

[(
1 − β2

0z

)∂ A⊥
∂z

+ β0z

c

d A⊥
dt

]
· p0⊥,

(19)

where β0 = p0/[mcγ (0)] is the initial velocity divided by c.
We now restrict to the situation where β0z is sufficiently small
that the second term in brackets in Eq. (19) is negligible, which
is the case if β0z � 1. Then, in addition, using Eq. (3) the full
time derivative may be written d2/dt2 = (∂/∂t + v · ∇)2 =
−ω2 + O(ε,δ,β0z), so that double time integration yields

z̃ (1) = − e

[mγ (0)]2ω2

∂ A⊥
∂z

· p0⊥ [1 + O(δ,β0z)] . (20)

The second bracketed term expresses the error introduced by
the integration. Equation (20) clearly shows that the amplitude
of the magnetic quiver motion is polarization dependent: if
p0⊥ is parallel to A⊥, this amplitude may be substantial,
while for p0⊥ perpendicular to A⊥, it vanishes at first order.
This reinstates the argument made in Sec. I: if p0⊥ ‖ A⊥,

the momentum is largely perpendicular to the magnetic field,
resulting in a substantial magnetic force and quiver amplitude.
Conversely, if p0⊥ ⊥ A⊥, the momentum is largely parallel to
the magnetic field, with vanishing magnetic force and quiver
amplitude.

As the final step, we substitute Eqs. (11)–(15) and (20) in
the right-hand sides of the remaining order equations, (A7) and
(A8), and take the time average of these equations. Then the
left-hand sides reduce to the rate of change of the first-order
guiding-center momentum, d p(1)/dt . The right-hand sides
reduce to a single gradient:

d p(1)

dt
≈ − e2

2mγ (0)

· ∇
〈

A
2
⊥ − (β0⊥ · A⊥)2 +

[
∂(β0⊥ · A⊥)

∂(kz)

]2〉
.

(21)

This is the polarization-dependent ponderomotive force in a
nonrelativistic standing wave for a particle with β0z � 1; it is
the main result of this paper. The approximate sign expresses
a relative error of the order of β0z + δ. In the limit β0⊥ → 0,
Eq. (21) reduces to the well-known polarization-independent
ponderomotive force, Eq. (1), with the relativistic factor
γ (0) ≈

√
1 + p2/(mc)2 + a2/2 included in the denominator.

For β0⊥ �= 0, however, the two polarization-dependent terms
in Eq. (21) become significant.

The term in Eq. (21) proportional to [∂(β0⊥ · A⊥)/∂kz]2

originates from including the magnetic quiver motion,
Eq. (20), in the Taylor expansion of the vector potential,
Eq. (10). It accounts for the fact that the z position oscillates
in phase with the temporal oscillation of the field. Therefore,
when a field gradient in the z direction is present, the particle
systematically samples higher fields at selected phases of the
electric quiver motion in the direction of A⊥ and lower fields at
other phases. The induced nonzero average force is negligible
in most applications of the ponderomotive force. But in a
standing wave the derivative ∂2/∂(kz)2 is of order unity, so
that this term is comparable to the other terms in Eq. (21).

The origin of the term in Eq. (21) proportional to
(β0⊥ · A⊥)2 can be traced back to including the first-order
term (1/γ )(1) in the expansion of the Lorentz factor, Eq. (8),
rather than approximating γ ≈ γ (0) throughout.

D. Time-averaged Hamiltonian

The ponderomotive force on a charged particle in an EM
field can also be derived using a Hamiltonian description,
showing that this force is essentially the gradient of the
time-averaged Hamiltonian of the particle [42]. Indeed, the
right-hand side of Eq. (21) can be written as such. To see this,
note that combination of Eqs. (15), (16), and (20) gives

d p(1)

dt
≈ −∇

〈
γ0mc2 + [ p̃(1)]2

2γ0m
− [ p0 · p̃(1)]2c2

2(γ0mc)3

〉
,

where the term ∇(γ0mc2) ≡ 0 has been added for convenience.
The quantity in angle braces is just the average of the
Hamiltonian H =

√
m2c4 + p2c2, in which the momentum p

and the square root have been expanded up to second order in ε.
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III. WIGGLING MOTION IN A STANDING WAVE

The last term of the z component in Eq. (21) may be
rewritten by performing the z differentiations and using Eq. (3),
after which Eq. (21) becomes

dp(1)
z

dt
≈ − e2

2mγ (0)

∂

∂z
〈A

2
⊥ − 2(β0⊥ · A⊥)2〉. (22)

We now evaluate Eq. (22) for the linearly and circularly polar-
ized standing waves considered by Pokrovsky and Kaplan.

A. Linear polarization

Let the standing wave be produced by two counterpropa-
gating plane waves of equal amplitude and frequency that are
collinearly polarized in the direction ep = ex cos φ + ey sin φ,
as indicated in Fig. 1 by the dashed arrow. Then the vector
potential is A = A0ep cos kz sin ωt . Suppose that a charged
particle enters the standing wave parallel to the x axis with
initial velocity β0. Differentiating Eq. (18), and substituting
Eq. (22), gives the equation of motion for the guiding center
of the particle in the z direction:

d2kz

d(ωt)2
− a2

0
1 − 2β2

0 cos2 φ

4(γ (0))2
sin(2kz) ≈ 0, (23)

in which a0 = eA0/(mc). Equation (23) shows that the guiding
center makes pendulum-like oscillations in the z direction
(it wiggles in the ponderomotive potential), with equilib-
rium points at kz = nπ/2 and low-amplitude frequency
� = a0ω

√
|1 − 2β2

0 cos2 φ|/(
√

2γ (0)).
First, consider polarization parallel to the initial velocity,

that is, cos φ = 1. Then Eq. (23) reduces to Eq. (40) in Ref. [38]
after rewriting β0 = p0/(mcγ (0)). As noted in Ref. [38],
the most striking feature of this configuration is that the
guiding-center oscillations vanish for β0 = 1/

√
2; in terms of

the guiding-center motion, the standing wave is invisible to the
particle for this value of initial velocity. When β0 is increased
above 1/

√
2, the stable and unstable equilibrium points in

Eq. (23) reverse their positions; that is, the ponderomotive
force changes direction toward high field regions. This is the
relativistic reversal described in Ref. [38].

For polarization perpendicular to the initial velocity of
the particle, cos φ = 0. Then Eq. (23) becomes identical to
Eq. (52) in Ref. [38]. For this polarization, the magnitude
of the ponderomotive force and the wiggling frequency are
independent of the initial velocity, and the relativistic reversal
effect is absent.

B. Circular polarization

If the standing wave is produced by two counterpropagating
plane waves that are circularly polarized with opposite helici-
ties, the vector potential is equal to A = A0 cos kz(ex cos ωt +
ey sin ωt). Thus the standing wave has equally spaced nodes
and antinodes along the z axis, while locally the field direction
rotates around the z axis with time. Again combining Eqs. (18)
and (22) and substituting the vector potential now gives

d2kz

d(ωt)2
− a2

0

2[γ (0)]4
sin(2kz) ≈ 0, (24)

which equals Eq. (56) in Ref. [38] taking into account
that the field amplitude used there is A0/

√
2. Thus, in this

configuration the equilibrium points are the same as in the
linearly polarized case described by Eq. (23) for cos φ = 0,
although the magnitude of the ponderomotive force is a factor
of [γ (0)]2 weaker.

For counterpropagating circularly polarized waves of
equal helicity, the vector potential reads A0 sin ωt(ex sin kz +
ey cos kz). In this case, the standing wave is polarized in a
helix along the z axis. Equations (18) and (22) yield

d2kz

d(ωt)2
+ a2

0β
2
0

2(γ (0))2
sin(2kz) ≈ 0, (25)

which is the same as Eq. (62) in Ref. [38] after rewriting
β0 = p0/(mcγ (0)) and taking into account the different defi-
nition of the field amplitude. As noted in Ref. [38], the field
intensity is homogeneous along the z axis, so that Eq. (1)
predicts zero ponderomotive force. However, the modified
ponderomotive force expression, Eq. (21), shows that this force
is nonzero, so that Eq. (25) still yields wiggling motion of the
guiding center.

In summary, all the equations of motion (23)–(25), can
be derived from a single ponderomotive force expression,
Eq. (21). We have therefore generalized the results of Kaplan
and Pokrovsky, who started from the Lorentz force equation
for each individual case. Moreover, Eq. (21) also gives the
transverse component of ponderomotive force, which was not
considered in Ref. [38].

IV. COMPARISON WITH SIMULATIONS

In this section, Eq. (21) is tested against numerical
simulations of electron trajectories in a realistic, nonidealized
standing-wave field. We have used the GPT code, which uses
an embedded fifth-order Runge-Kutta method with adaptive
step-size control [43]. For comparison with the simulations,
Eq. (21) is needed in terms of the electric field rather than the
vector potential. From Eq. (3), the potential is approximately

harmonic in time, so that 〈A
2
⊥〉 ≈ ω−2〈E

2
⊥〉. Therefore A⊥

may be effectively replaced by E⊥/ω in Eq. (21).
We consider again the configuration shown in Fig. 1,

this time with two identical Gaussian laser beams in the
fundamental mode that counterpropagate along the z axis,
have a central wavelength λ = 800 nm and a peak intensity
I0 = 2.0 × 1014 W/cm2, and are focused in a common waist
of size w0 = 12.5 µm at z = 0. For these parameters, ε ∼
(kw0)−1 = 0.01 and a = 0.01 so that the theory in Sec. II is
valid. The beams are assumed to be pulsed with a Gaussian
pulse shape of length σ = 85 fs and timed such that the
centers of the pulses coincide at z = 0 at time t = 0. This
configuration yields a standing wave around the origin with
length ∼cσ and width ∼w0, and with a lifetime of ∼σ around
t = 0. Furthermore, we assume that the pulses are collinearly
polarized in the direction ep = ex cos φ + ey sin φ, similar to
the case considered in Sec. III A. In each of the following cases,
the trajectory is calculated for an electron entering with initial
velocity β0 = β0ex for t � −σ and with the initial position
chosen such that, at t = 0, the position of the electron would be
(x,y,z) = (0,w0/2,λ/8) in the absence of the laser fields. Then
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FIG. 2. (Color online) Trajectory of an electron incident on a
standing wave that is polarized in the y direction (out of plane), for
three initial velocities β0. The color map shows the field intensity of
the standing wave in the (z,x) plane at time t = 0. For each initial
velocity, the plot actually includes three trajectories, calculated with
the methods GPT, OLD, and NEW, respectively; in each case all three
lines overlap to within the linewidth.

the electron meets the standing wave close to the origin, has
interaction with it for some time ∼σ , and leaves the interaction
region in a deflected direction. To maximize the ponderomotive
effects, the initial position has been chosen such that the
electron samples the highest available field gradients both in
the z direction and in the perpendicular direction.

In Figs. 2 and 3, the trajectory of the electron is shown as
viewed from the negative y axis, for several values of β0 and
for two polarization directions. The trajectories are calculated
using three methods:

(1) (GPT) numerical integration of the exact equations of
motion using the GPT code (solid lines);

(2) (OLD) calculation according to the classical pondero-
motive force, Eq. (1) (dashed lines); and

(3) (NEW) calculation according to our polarization-
dependent ponderomotive force, Eq. (21), with A⊥ replaced
by E⊥/ω (dash-dotted lines).

Standard paraxial field expressions have been used [18];
these are listed in Appendix C for reference.

Figure 2 shows the configuration in which the polarization
is perpendicular to the initial velocity. In this case the
polarization-dependent terms in Eq. (21) vanish, and Eq. (21)
reduces to the classical expression, Eq. (1). Indeed, for all
three initial velocities the three descriptions yield identical
trajectories to within the width of the lines, showing that
the classical expression gives an excellent description of the
averaged motion of the electron. The usual behavior can be
seen, in which the electron is deflected toward low-intensity
regions.

In Fig. 3, however, the situation is very different. Here,
the polarization is parallel to the initial velocity, so that the
polarization-dependent terms in Eq. (21) become important.
Because of this, in Fig. 3(a) the magnitude of the ponderomo-
tive force is smaller than in the corresponding case in Fig. 2
(β0 = 0.5), the ponderomotive force vanishes in Fig. 3(b),
and it even changes direction toward the high-intensity region
in Fig. 3(c). In all of these cases, the resulting trajectories
are excellently predicted by Eq. (21). Figure 3 demonstrates

FIG. 3. (Color online) Trajectory of an electron incident on a
standing wave that is polarized in the x direction (left-right), for an
initial velocity β0 equal to (a) 0.5, (b) 0.707 ≈ 1/

√
2, and (c) 0.9. The

color map shows the field intensity of the standing wave in the (z,x)
plane at time t = 0. In each plot, the trajectory has been calculated
with the methods GPT (solid line), OLD (dashed line) and NEW
(dash-dotted line).

the relativistic reversal described in Ref. [38] and Sec. III A.
Meanwhile, Eq. (1) is insensitive to the polarization direction,
so that the trajectories (dashed lines) are incorrectly predicted
to be identical to the corresponding cases in Fig. 2.

The insets in Fig. 3 are closeups of the solid lines, showing
that these actually consist of the smooth, time-averaged
trajectory predicted by Eq. (21) (dash-dotted line) and the GPT
trajectory. The latter also contains the quiver motion, which
has components in the x direction [Eq. (15)] and the z direction
[Eq. (20)] and is therefore visible in the plane of drawing in
Fig. 3. The frequency of this quiver motion is ω, while the
electron moves forward with a velocity βx ≈ β0x , so that the
spatial period of the quiver motion is 1/(β0xλ). This has been
made visible by scaling the x axes in the insets. In Fig. 2, the
quiver motion would not be visible in a closeup because it is
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FIG. 4. Sideview from the positive z axis of the trajectories shown
in Fig. 3(a). The trajectories were calculated with the methods GPT
(solid line), OLD (dashed line), and NEW (overlapping with GPT).

perpendicular to the plane of drawing, since A⊥ · p0⊥ = 0 in
Eq. (20) and the z component of the quiver motion vanishes.

To show some ponderomotive effects in the perpendicular
direction as well, in Fig. 4 a sideview is given of the trajectories
in Fig. 3(a), as seen from the positive z axis. Note from
the vertical scale that in this direction the deflection of the
electron is very small due to the very small field gradient.
Nevertheless, again it is clear from the figure that Eq. (21)
accurately predicts the electron trajectory, contrary to the
classical expression. Thus Eq. (21) gives a precise description
of the three-dimensional electron trajectory in a realistic,
nonidealized field configuration. We have also repeated the
simulations for combinations of ε and a other than a ∼ ε.
Whenever both ε and a are less than about 0.1, consistent with
the assumptions a,ε � 1 made in Sec. II, we find the same
level of agreement with the GPT results.

V. CONCLUSION

The classical polarization-independent ponderomotive
force expression is commonly used to describe the time-
averaged motion of a charged particle in an inhomogeneous
oscillating EM field. It is generally assumed that this is an
accurate description, at least for nonrelativistic field intensities.
However, we have shown that this is not always true. If the
field configuration possesses a direction in which the field
changes on the scale of the wavelength, that is, in a standing
wave, and, in addition, the charged particle is relativistic, the

ponderomotive force is modified. In particular, it becomes
dependent on the polarization of the field. Because of this,
the ponderomotive force may even vanish, or change its
direction toward high field regions, as found earlier by Kaplan
and Pokrovsky [37]. We have derived the modified pondero-
motive force expression for these configurations, which is
of gradient form like the classical expression. Comparison
with simulations in the case of a realistic, nonidealized,
three-dimensional field configuration confirmed the general
validity of the analytical results.

The modifications of the ponderomotive force derived in
this paper may have important implications for applications
that involve the ponderomotive interaction of relativistic
charged particles and standing EM waves. For example, in the
electron bunch length measurement based on ponderomotive
scattering of the electrons by a standing wave [19], the
polarization of the wave is essential for an optimal design of
the experimental setup. In the proposed x-ray-free electron
laser relying on the wiggling motion of electrons induced
by the ponderomotive force in a standing wave [21], the
frequency of wiggling and hence that of the stimulated
radiation directly depend on the polarization. Experimental
tests involving the controlled scattering of electrons by a
standing wave have confirmed the classical ponderomotive
force expression [28] and Kapitza-Dirac diffraction [29] using
nonrelativistic electrons. It would be very interesting to
extend these experiments to relativistic electrons to test the
polarization-dependent ponderomotive force, Eq. (21), in the
classical limit and to study the polarization dependence of
Kapitza-Dirac diffraction.
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APPENDIX A: ORDER EQUATIONS

Substituting expansions (7)–(10) in equations of motion
(5) and (6), and collecting terms of equal order in ε, results
in the following order equations. The components of the
vector potential and the spatial derivatives have been treated as
eA⊥/(mc) = Os(ε), eAz/(mc) = Os(ε2), λ∇⊥ = Os(ε), and
λ∂/∂z = Os(1), consistent with Eq. (2) and the assumption
a ∼ ε. For reasons of clarity, the equations are displayed in
dimensional form.

Os(1) :

d p̃(0)

dt
= 0; (A1)

d (x + x̃)(0)

dt
= ( p + p̃)(0)

⊥
mγ (0)

. (A2)

Os(ε) :

d p̃(1)
⊥

dt
+ e

d A⊥
dt

= 0; (A3)

d
[
p(0)

z + p̃(1)
z

]
dt

= e

mγ (0)

∂ A⊥
∂z

· ( p + p̃)(0)
⊥ ; (A4)
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d (x + x̃)(1)

dt
= ( p + p̃)(1)

mγ (0)
− ( p + p̃)(0) · ( p + p̃)(1)

[mcγ (0)]2

( p + p̃)(0)

mγ (0)
. (A5)

Os(ε
2) :

d[ p(0)
⊥ + p̃(2)

⊥ ]

dt
= e

mγ (0)
(∇⊥ A⊥) · ( p + p̃)(0)

⊥ ; (A6)

d
[
p(1)

z + p̃(2)
z

]
dt

+ e
dAz

dt
= e

mγ (0)

{̃
z (1) ∂

2 A⊥
∂z2

· ( p + p̃)(0)
⊥ + ∂ A⊥

∂z
· ( p + p̃)(1)

⊥ + ∂Az

∂z
(p + p̃ )(0)

z

− ( p + p̃)(0) · ( p + p̃)(1)

[mcγ (0)]2

∂ A⊥
∂z

· ( p + p̃)(0)
⊥

}
. (A7)

Os(ε
3) :

d[ p(1)
⊥ + p̃(3)

⊥ ]

dt
= e

mγ (0)

{̃
z (1)

(
∇⊥

∂ A⊥
∂z

)
· ( p + p̃)(0)

⊥ + (∇⊥ A⊥) · ( p + p̃)(1)
⊥ + (∇⊥Az)(p + p̃ )(0)

z

− ( p + p̃)(0) · ( p + p̃)(1)

[mcγ (0)]2
(∇⊥ A⊥) · ( p + p̃)(0)

⊥

}
. (A8)

APPENDIX B: GENERAL FIELD STRENGTH

The ponderomotive force, Eq. (21), has been derived
under the assumption that a ∼ ε. Since this expression is
the result of balancing terms of equal order in the equations
of motion, one might expect that it would be affected by
changing the order of magnitude of the vector potential
to, for instance, a ∼ ε2. This is not the case, however. We
only give a sketch of the generalized derivation for arbitrary
a � 1.

Repeating first the order expansion method for the case
a ∼ εn, n � 1, it is not difficult to find the lowest order
slowly varying term and the lowest order rapidly varying
term of the expansions of p and 1/γ . Also, the first two
terms in the expansion of A follow straightforwardly. The
right-hand side of the equation of motion (5), is then formed
by factoring out the product of these three expansions. Taking
the time average of the result, it is found that the lowest
order terms that are nonzero on average are precisely those
that form the ponderomotive force given by Eq. (21). In
terms of the corresponding set of order equations analogous
to those in Appendix A, the first 2n − 1 orders of the
momentum equations yield vanishing right-hand sides upon
averaging, while the 2nth and (2n + 1)th orders evaluate to
the z component and the perpendicular component in Eq. (21),
respectively.

Also, the opposite situation, in which 1 � a ∼ ε1/n, n � 1,
is possible. Since in this case factors of A in the equations of
motion lead to terms of fractional order in ε, it is appropriate
to expand all quantities in power series in terms of ε1/n

rather than ε. This is effected by using the same power
series expansions as before, with the understanding that
p(i) = Os(εi/n) rather than p(i) = Os(εi), for example. Except
for this modification, the derivation of the ponderomotive force
is analogous to that for the case a ∼ εn considered above, and
again, Eq. (21) is found. Thus Eq. (21) is valid for arbitrary
a � 1.

APPENDIX C: FIELD EXPRESSIONS USED
IN NUMERICAL CALCULATIONS

The solid lines in Figs. 2–4 have been calculated by
numerical integration of the equations of motion,

d p
dt

= e

(
E + 1

γ
p × B

)
,

dx
dt

= p
mγ

,

using for E and B the following paraxial Gaussian beam fields
[18]. For polarization in the x direction (φ = 0),

E = E+ exp

[
− (z + ct)2

4(cσ )2

]
+ E− exp

[
− (z − ct)2

4(cσ )2

]
,

E± = E0
w0

w

(
ex cos ψ± ± xw0

zRw
ez sin χ±

)
,

(C1)

B = B+ exp

[
− (z + ct)2

4(cσ )2

]
+ B− exp

[
− (z − ct)2

4(cσ )2

]
,

B± = E0

c

w0

w

(
∓ey cos ψ± − yw0

zRw
ez sin χ±

)
,

in which E0 = √
2I0/(ε0c) is the peak electric field amplitude,

w = w0

√
1 + z2/z2

R is the beam waist, zR = kw2
0/2 is the

Rayleigh length, and the Gouy phases are

ψ± = ωt ±
(

kz − arctan
z

zR

+ z

zR

x2 + y2

w2

)
,

χ± = ωt ±
(

kz − 2 arctan
z

zR

+ z

zR

x2 + y2

w2

)
.

The dashed lines in Figs. 2–4 have been calculated according

to Eq. (1) with I (x,t) = ε0c〈E2
x〉 using Eq. (C1) for Ex . The
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dash-dotted lines have been calculated according to Eq. (21)
with A⊥ replaced by Ex/ω. For polarization in the y direction

(φ = π/2), replace x → y and y → −x in the expressions
above.
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