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1 . INTRODUCTION 

The behaviour of any two-terminal network can be described by its ad-

mittance Y = g + jb and a noise current source i in parallel with Y. When 

such a network is in thermal equilibrium at temperature T, the mean square 

of i is given by Nyquist's formula 

4kTgtif (J. I) 

where k is Boltzmann's constant and ~f is the band width concerned. 

A saturated vacuum diode through which a d.c. current I is flowing 

gives a short-circuit noise current i. This phenomenon is known as shot 

noise. For frequencies w at which the transit times of the electrons are 

much smaller than l/w, the shot noise is given by 

-:-2 
l. 2 q I ~f (I. 2) 

where -q is the electronic charge. 

If the diode is working in its space~charge limited region, there is 

a potential minimum somewhere in the inter-electrode space. This potential 

minimum causes part of the electrons to be reflected, so that only elec-

trons with a sufficiently large emission velocity reach the anode. The 

amount of noise is then smaller, since fluctuations in the electron emis-

sion from the cathode cause fluctuations in the depth of the potential 

minimum that reduce the current fluctuations. This effect can be taken 
', 

into account by introducing a noise suppression.factor r 2 into Eq.(1.2): 

2 q I r2 
!:if ( 1.3) 
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Assuming that the electrons have a Maxwellian velocity distribution when 

leaving the cathode and that there are no collisions between the elec­

trons, r 2 can be calculated!) for a plane diode. 

Let us now consider a plane diode of synnnetrical construction, in 

which two equal cathodes having the same temperature T are at a small 

distance d opposite each other. Supposing this double-cathode tube is 

working in the space-charge region, there is again a potential minimum 

somewhere between the cathodes. The potential distribution in such a 

diode (Fig. I.I) has been calculated by Lindsay et al. 2) 

cl c2 

Fig. I.I. Potential distributions in a plane space-charge limited double-

cathode tube if the applied d.c. voltage VcZ # 0 (solid line) and VcZ = 0 

(dotted line). The cathodes c 1 and c2 have the same temperature T. 

If the two cathodes are at the same potential, the d.c. current is 

zero, but nevertheless electrons are passing from one cathode to the 

other, and vice versa. Again, fluctuations in the emission currents of 

the cathodes cause fluctuations in the depth of the potential minimum. 

However, here the latter fluctuations do not reduce the noise, because a 
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change of its depth has the same influence on the currents of both cath-

odes. Hence, we can calculate the noise by applying Eq.(1.2) for the shot 

noise. If I is the d.c. current passing from one cathode to the other, 

then the total electron current flowing is 2I, so that 

i 2 4 q I ~f (1.4) 

On the other hand, this double-cathode tube is a two-terminal network in 

thermal equilibrium at cathode temperature T, so that also Eq.(l.I) holds. 

Combining this with Eq.(J.4) leads to the following expression for the 

conductance 1•3) 

g 2 
kT (1.5) 

If the frequency w is so high that the transit times of the electrons 

are not small compared with l/w, the noise of a saturated diode is smaller 

than that given by Eq.(1.2). Also, for a space-charge limited diode the 

noise suppression factor r 2 in Eq.(1.3) becomes smaller at high frequen-

cies, because there are now two noise reducing effects, viz. variations 

of the depth of the potential minimum and the transit times of the elec-

trons. 

For the double-cathode tube at thermal equilibrium Eq.(1.4) is not 

found to be true at high frequencies either. Representing the noise by 

4 q I r 2 ~f (1.6) 

the noise suppression factor r2 is now caused by transit-time effects 

alone. 
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In this thesis the noise quantity i 2 and the admittance Y of a double­

cathode tube will be calculated at different values of the transit times 

of the electrons. These values are obtained at a constant frequency of 3 

GHz by taking various values of the distance between the two cathodes. 

Eq.(J.I) provides a check on these calculations, since the temperature T 

that can be derived from them, and which is called the noise temperature 

Tn' must be equal to the cathode temperature. 

We shall further investigate what happens if a small potential differ­

ence (::_ 0.5 volt) is put between the cathodes, which are still at the same 

temperature T. Then thermal equilibrium will no longer exist. Yet, Eq. 

(I. I) can be used to define a noise temperature Tn but it appears to be 

lower than the cathode temperature. 

In the next chapter we start with a short review of the low-frequency 

properties of a double-cathode tube. Using a one-dimensional model, it is 

shown that the average kinetic energy of the electrons in a volume element 

at any point between the cathodes is !kT, when the two cathodes have the 

same temperature and the same potential. 

Later chapters are devoted to the high-frequency theory for the ad­

mittance and the noise of a double-cathode tube, and to the measurements 

of these quantities by mounting such a tube in a waveguide, in which only 

the dominant mode of the electromagnetic field can be propagated. In this 

tube the distance between the cathodes can be varied. 

The calculations further provide a means of investigating the proc­

esses going on inside such a tube, if an a.c. voltage is applied between 

the two cathodes. It is found that space-charge waves start from both 

cathodes and travel inwards with rapidly decreasing amplitudes. 
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2. POTENTIAL DISTRIBUTION IN A DOUBLE-CATHODE TUBE. RELATION WITH 
THERMODYNAMICS 

2.1 Introduction 

In this chapter a short review is given of the l.f. electric-field 

strength, the potential distribution, the density of the electrons, etc. 

These quantities will be used later on. It is assumed that the electrons 

have a Maxwellian velocity distribution when leaving the cathode and that 

the tube works in the space-charge region. 

It is shown that when the applied d.c. voltage between the cathodes 

is zero, the average kinetic energy of the electrons in a volume element 

at any point between the cathodes is ikT. 

Contrary to Lindsay et al. 2), who have analysed a three-dimensional 

model, we have used a one-dimensional model. Evidently, both models lead 

to the same results. 

2.2 Potential distribution 

If the two cathodes are kept at different potentials O and vc2 (Fig. 

I. 1), then the velocities of the electrons at a point x between the cath-

odes are given by the following expressions 

and 

2 
v 

(2.1) 

(2.2) 

where v is the electron velocity, vcl and vc2 are the electron velocities 

at the two cathodes, and m is the electronic mass. 
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Let n(x,v) be the phase-space density4), i.e. n(x,v) dx dv is the 

number of electrons per unit area which are situated between x and x+dx 

and have velocities between v and v+dv. Now, n(x,v) consists of two parts: 

n(x,v) (2.3) 

where n
1
(x,v) and n2(x,v) are the contributions to n(x,v) of the two 

cathodes. The phase-space density n 1(x,v) of electrons leaving cathode 

0, is 

~J 
kTq s ( 

mv~ 1 ) 
exp - 2kT (v cl > O) (2.4) 

where T is the. temperature of the cathodes and J is the saturation cur­
s 

rent density. From (2.1) and (2.4) one finds 

(2.5) 

Similarly, we have for electrons emitted by cathode c2 

~J { kTq s exp (2.6) 

In fact, Eqs.(2.5) and (2.6) are consequences of Liouville's law. 

Consider an electron emitted by cathode c
1 

which has a velocity 

vm = 0, when it is at the potential minimum xm (Fig. I. I). Then its ve­

locity at any point x in the inter-electrode space, after reaching the 

potential minimum, is the minimum velocity of all electrons leaving c
1

: 
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vmin(x) (2. 7) 

where the upper sign is valid in region L, which is on the left of the 

potential minimum xm' whereas the lower sign refers to region R, which is 

on the right of xm. This notation will be used throughout in this thesis. 

Similarly, we find for the maximum velocity of the electrons emitted 

by cathode c2 

(2.8) 

For plane electrodes Poisson's equation is 

(2.9) 

where n(x) is the volume density of the electrons and c
0 

is the dielec­

tric constant of free space. For n(x) the following expression is valid 

n(x) = J n(x,v) dv 

where one has to integrate over all possible velocities. It is easy to 

obtain (Cf. 
4» 

I ('!Tm)! n(x) = - -
q 2kT exp('<) [ exp(-nc 1) {I ± erf(r,l) l + 

+ exp(-nc2) {I + erf(n!>}] (2. 10) 

with n 
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z 

erf(z) (2/rr 2 ) exp(-u ) du I J 2 

0 

The reduced potential n is dimensionless. Making use of the relation 

2 (d2V dV 
} ~x2 

and performing this integration between the bounds Vm and V gives us 

where 

c 

qe: 
0 

exp(n) - 1 ± 2 (n/rr)~ + 
1 

exp(n) erf (n 2
) 

(2. 11) 

With the help of expression (2.11) the l.f. electric-field strength 

E(x) can be calculated. 

Let 

(2. 12) 

with 

Then (2.11) can be written in the dimensionless form 
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or 

:;: 2 
(dn/dE; ) 

:;: ± 
h (n) + c h (n) 

(2. 13) 
0 

since I;+= 0 for n = O. It will be readily seen that the potential mini-

mum is situated in the origin of the l;,n coordinate system (Fig. 2.1). In 

the new coordinates the positions of the cathodes are given by 1 
and 

region L region R 

sci l;c2 

Fig. 2.1 Potential distribution in a double-cathode tube. The position is 

given by ~; s is called in region L and I;+ in region R. The positions 

of the cathodes are + and I; = ;cZ' while n is a reduced potential. 

In general, (2.13) cannot be integrated analytically, except in the 

particular case3•4) that the applied d.c. voltage V z O. Then C = I and 
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Further, Poisson's equation can then be written in the simple form 

(Cf.S)) 

This means that the space-charge density depends exponentially on the po-

ten~l. 

2.3 Relation with thermodynamics. Noise. 

In this section it is assumed that the cathodes have the same poten-

tial. Th•n the electron cloud is at thermal equilibrium with the cathodes. 

The average kinetic energy of the electrons in a volume element at a 

point x is 

! m/v
2 

n(x,v) dv /J n(x,v) dv 

The integrations have to be performed over all velocities which can occur 

at x. Using Eqs.(2.3), (2.5) and (2.6) and remembering that VcZ = 0 and 

ncl = ncz the average kinetic energy turns out to be }kT.s) This result is 

in accordance with thermodynamics. Hence, the tube gives off noise that 

can be calculated with Nyquist's formula. The noise temperature In of the 

tube has to be equal to the temperature of the cathodes. 

We observe that the velocity.distribution of the electrons at any 

point x in the inter-electrode space is Maxwellian only when the two cath-

odes have the same potential. 
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3. ADMITTANCE AND NOISE AT HIGH FREQUENCIES 

3.1 Introduction 

Consider an arbitrary two-terminal network, which may contain resis-

tors, capacitors, inductors, tubes and transistors. According to a general 

network theorem, the of such a network for the frequency interval 

df can be described by a noise current generator of zero admittance con-

nected in parallel to an admittance Y (Fig. 3.1). 

_ (i2)~ 

L 
(]) 

0 0 

y 

Fig. 3.1. Equivalent circuit of a noisy two-terminal network of admittance 

Y between the terminals. Its noise is characterised by a noise current 

generator. 

Schwarz, Paucksch7), Locherer8) and Hubert9) have developed a high­

fr~quency theory for the admittance and the noise of a normal plane 

space-charge limited diode, including transit-time effects. 

In this chapter their theory will be generalised for the double-cath-

ode tube. It turns out that such a tube can be described by a system of 

two integral equations. Solving this system gives us the h.f. electric-

field strength in the inter-electrode space. Then, it is easy to deter-

mine the admittance and the noise of the tube. We shall use the theory 

given in the previous chapter, but now time-dependent quantities have to 

be introduced. 
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3.2 Derivation of the basic equations 

In order to be able to calculate the admittance and the noise of a 

double-cathode tube the same assumptions have been made as in the case of 

a normal 9) These assumptions are: 

I. The diode works in the space-charge region. 

2. The system is one-dimensional. Movements of the electrons parallel to 

the emitting surfaces need not be taken into account. 

3. The velocity distribution of the emitted electrons is Maxwellian at 

the surfaces of the cathodes. 

4. There are no collisions between electrons. 

5. Fluctuations are small enough to allow linearisation of the problem. 

Further, it is supposed that the two cathodes are identical as re-

gards the emission and that they have the same temperature. 

We obtain the total current density jtot(t) by adding the displace­

ment current density and the convection current density 

j tot (t) • (3. I) 

The convection current density consists of two parts 

(3.2) 

caused by.electrons coming from cathode c 1, ,and from cathode c2, respec­

tively. We observe that the current densities are chosen positive in the 

positive x-direction. 
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and 

The convection current densities can be written in the forms 

00 

- q f n 1 (x,v,t) v dv 

vmin(x,t) 

(3.3) 

(3.4) 

where vmin(x,t) is the lowest velocity, in the plane x at time t, of the 

electrons coming from cathode c
1

, and where n
1
(x,v,t) is the time-de­

pendent phase-space density of electrons emitted from cathode c
1

• Similar 

definitions hold for vmax(x,t) and n 2(x,v,t) with respect to cathode c2, 

but vmax is now the highest velocity. 

When there are no collisions, Liouville's law gives us the following 

equations 

dn) anl an
1 <lnl 

0 --=--+ v--+ b-= dt at ax av (3.5) 

dn2 an2 an2 an2 0 --=--+v --+ b - = dt at ax av (3.6) 

where 

b - ~ E(x,t) 

We now split each quantity into its d.c. and a.c. parts. Let 

n
1 
(x,v,t) 
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E(x, t) 

Putting these expressions into the equations (3.1), (3.5) and (3.6), 

omitting the d.c. parts and linearising, we obtain 

+ v 

an2a 
~+v 

+ q 

QO 

q f n 1a(x,v,t) v dv + 

vmin;d(x) 

l 
vmax;d(x) 

n
2
a(x,v,t) v dv + 

~ Ed(x) - .9. E a(x,t) 
anld 

m ;iv- = 

- .9. (x) - 51. E (x t) 
an2d 

m m a ' ;iv-= 

0 

0 

(3. 7) 

(3.8) 

(3.9) 

If we know j , then we have a system of 3 equations with 5 unknown tot;a 

variables: nla' n2a' v and max;a 
The corresponding d.c. parts 

can be calculated with the help of the expressions (2.5), (2.6), (2.7), 

(2,8) and (2.11). 
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In this section two equations will be derived, which express 

vmin;a(x,t) and vmax;a(x,t) as a function of the a.c. part of the elec­

tric-field strength Ea. The a.c. component v . (x,t) is determined as min; a 

follows. The smallest velocity in the plane x at time t has that electron 

from cathode cJ that was in plane xm(tm) at time tm with zero velocity. 

Here xm(tm) is the position of the potential minimum, which of course is 

time-dependent. For such an electron the following expression is valid 

Further, xm(tm) can be written as the sum of its d.c. and a.c. components 

x (t ) 
m m 

O, by linearising the above expression we find 

x(t) -; f Ea{z,t(z)ldz (3. JO) 

xm;d 

The product of v (x,t) and vmax,·d(x) is given by an equation analogous max;a 

to (3.10). 

3.3 Transformation of the basic equations 

"In this section the basic equations (3.7), (3.8) and (3.9) will be 

transformed into more suited expressions. Define, instead of x and v, new 

variables n (section 2.2.3) and s 
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n (3. 11) 

s = n(~~) - (3.12) 

There is a one-to-one correspondence between n and ;, provided it is re-

stricted to one of the regions L and R. However, this is not the case for 

s and v. We observe that s is an invariant*) of the motion of an electron 

under stationary circumstances. 

Further, it is assumed that the a.c. components of the various quan-

tities depend harmonically on the time t. Put 

n
1
a(x,v,t) N1(n,s) exp(jwt) 

(3. 13) 

jtot;a(t) = Jtot exp(jwt) 

where w is the angular frequency of the current density jt (t). Later ot;a 
+ on we have to integrate F in respect of ~ • That is why F is defined in 

the way given in Eq. (3. 13). Then, the following expressions can be ob-

tained. 

1 dn (a a ) 
= A d~"' a;; + a; (3. 14) 

*)Applying the method of Charpit-Lagrange to Eq.(3.8), with a/at=jw, 

this invariant is easily found. In fact, s is proportional to the total 

energy of an electron. 

22 



mv a 
- kT as (3. l 5) 

a at= j w 

From (2.5) and (2.7) one can find -

Similarly, 

The equations (2.7) and (2.8) can be written in the form 

& 

v (x)=v (x)=+(2kTn) min;d max;d m (3.16) 

Using equations (3. 10) and (3.13), and the above results, (3.7) gives 

J 
tot - q /

00 

N 
1 

( n, s) v dv + 

+(2kTn/m)l 

+ q ~
00 

1 
N2 (n,s) v dv + 

+(2kTn/m) 2 

(3. 17) 
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Here w{t - t(s 1)} is the transit angle of the slowest electron between 

the planes s = s 1 and s • This electron is characterised by s = Q, 

Let 

n
1
d (x,v) 

Then, from Eq.(2.5) it is found that, omitting the prime, 

Using this result in Eq.(3.8) and remembering the definitions (3. 13) 

gives 

(3. 18) 

Similarly, the following expression holds 

()N -
• v dri 2 .9.Y. ( + 
JwN2 + A~ -3 - + kT F s ) n2d : O 

di; Tl 
(3. 19) 

Again the upper signs refer to the region L, the lower signs are valid in 

the region R. The equations (3.18) and (3.19) do not contain the operator 

3/3s. One can consider them as ordinary differential equations, in which 

s is a parameter. By solving these equations N1 and N2 can be expressed 

as functions of F. 

For each equation a boundary condition is necessary. The boundary 

conditions are different for the calculation of the admittance (section 

3.6) and of the noise temperature (section 3.7). 
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3.4 Solutions of the equations for 

The linear differential equations (3.18) and (3.19) can be regarded 

to be of the type 

~ + P(x) y Q(x) 
dx 

The general solution has the following form 

Before applying it to (3.18) and (3.19), we shall first define transit 

angles u+(n,s) and B+(n,s) for electrons in region R, and transit angles 

u-(n,s) and B-(n,s) for electrons in region L. 

Let an electron be in I; at time t(I;). This electron travels from s
1 

to i;
2 

in the transit time t(l; 2) - t(1;
1
). By definition the corresponding 

transit angle is the transit time multiplied by the angular frequency. 

For electrons that can pass the potential minimum, the transit angle be­

tween the potential minimum i; = 0 and the point I; = I;+ is 

n 

wA(m/2kT) ! f dl + 

0 
(n-s) dn/di; 

Similarly, for such electrons in region L, 

a (n,s) 

n 

wA(m/2kT) ! /--dn-'-<----­
(n-s) ~dn/di( 

0 

(s < O) 

(s < 0) 

For electrons that cannot pass the potential minimum, the transit angle 
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S±(n,s) between the turning point, where n s, and another point in the 

inter-electrode space is 

( n > s > O) 

3.4.2 Expressions for in region L 

In order to obtain a complete description of N
1
(n,s) and N

2
(n,s) one 

has to distinguish between four cases 

(a) electrons emitted by cathode cl that reach cathode cz; 

(b) electrons emitted by cathode cl that return to c
1

; 

(c) electrons emitted by cathode Cz that reach cathode cl; 

(d) electrons emitted by cathode CZ that return to c2. 

Eq. (3.18) can be written in the form 

+ jwA N = -
v dn/ds"' 1 

(3.20) 

with 

- mA 
B : -- J exp(-ncl) 

(kT)2 s 

£~~~-1~L· For such electrons s < 0 holds. Further, the following expres-

sion is valid along the electron path 

{
2kT }~ 

v = m (n-s) 

In region L the solution of Eq.(3.20) is 

c 
exp (s) J F(s ~) exp (jG 1) (3.21) 

i;;cl 

2.6 



where 

G c G(n) 

O. For electrons travelling in the positive direction 

the velocity v is 

Then the solution of (3.20) is 

~p(-jR) [N1(,01 ,,)-B-•xp(') 

!;, 

";] N
1 
(n,s) f F(~7) exp (jH

1
) (3.22) 

(;;cl 

where 

H = H(n) fl-(ncl's) - S-(n,s) and H
1 

H(n
1
) 

For an electron which is on its way back to cathode c
1

, we have to split 

the integration into two parts: from the cathode c
1 

up to the turning 

point its velocity is 

{
2kT }! 

v" m (n-s) 

from the turning point to the point ~ its velocity is 

Keeping this in mind, the solution of (3.20) is 

exp (s) x 
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(3.23) 

where L = L(n) = S-(nc
1
,s) + S-(n,s), L

1 

l; for which n(t;-) = s. 

L(n
1

) and t;(s) is the value of 

9!~~-isl· Again the condition s < 0 is valid. Further, the velocity of 

such an electron is 

Writing Eq.(3.19) in the standard form gives 

with 

B+ :;: 
- ---- exp(s) F(I; ) 

dn/dt;+ 

In region L the solution of (3.24) is 

N2(,,•) • ''p(-jM) [•2<'02'') exp(s) x 

x{J F(<;~) exp(js 1) di:;; + J 
scz o 

where 

S = S(n) 

£!~~-igl. The electrons cannot enter region L. 
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3,4,3 ~~~:===~~~=-:~=-~1_:~~-~f-~~-==:~~~-~ 
Similarly, N1(n,s) and N2(n,s) can be calculated in region R. The 

reason why the results are not given here will become clear later on. 

3.5 Integral equations for the field strength F 

In this section an integral equation is obtained for the h.f. elec­

tric-field strength F(~+) by eliminating N1(n,s) and N2(n,s) from Eq. 

(3.17). This integral equation is derived for region L. However, it turns 

out that also terms occur that depend on the field strength F(~+) in re­

gion R. These terms are connected with electrons emitted by cathode c2 

that have sufficient energy in order to pass the potential minimum. Their 

influence on F(~-) in region L depends on their previous history in re­

gion R and hence on the field strength F(~+) in that region. 

From synnnetry considerations another integral equation can be found 

that is valid in region R. 

3. 5. I !h!U:E!!!2i.L!!!S!!L2L!:h!!!_212~!!!~!:-!!!1!!!£!:!2!! 

Restricting ourselves to region L, the last term of Eq.(3.17) is a 

function of the transit angle of the slowest electron between the planes 

~ = ~~and~= ~-. It is easy to find 

3.5.2 !h~_i!!!:!!!SE!!_!!!g~!!:!2a_£2E_!_i!!_!:!!!Si2a_~ 

By using the above result, Eq.(3.17) can be written in the form 
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with 

and 

J tot q J 1 

-(2kTn/m)2 

(3.26) 

0 

The second term of the right-hand member can be expressed as the sum of 

three integrals (a), (b) and (c) 

0 (2kTn/m)! 

-q f 
1 

NI v dv - q f 
-(2kTn/m) 2 0 

NI v dv - q f NI v dv 

(2kTn/m) ~ 
(3. 27) 

!~~~£!e!_ie2 originates from returning electrons on their way back. Since 

v dv = - ds kT/m, it is found that 

0 

-q f 
-(2kTn/m)! 

30 

n 

N1 v dv = ~ j N1(n,s) ds 

0 

n 
_ qkT f · - --;n- Nl(ncl's) exp(-jL) ds + 

0 

n [ «•l 
D- f exp (s-jL) ds J F(i;~) 

0 f;cl 

f;; 

+ f F(t;; I) 

t;;(s) 

exp (jH1) dt;;~ + 

exp(jL 1) d·;] 



Here Eq.(3.23) has been applied. Now, the order of integration has to be 

changed in the two repeated integrals (Fig. 3.2). The first repeated inte-

gral becomes 

I;; 11 

- D- f F(I;;~) d!,;7 f exp(s + jH1 - jL) ds + 

0 

0 
11 1 

D- f F(!,;7) d!,;7 f exp(s + jH1 - jL) ds (3.28) 

I; 0 

and the second repeated integral 

o n1 

+ D- f F(1;7) di;~ f exp(s + jL 1 - jL) ds (3.29) 

0 

I;] 1;1 - -
I; (s) 0 

Fig. 3.2. Areas of integration of the integrals (3.28) and (3.29). 

Changing the order of integration, the bounds can be read from the figure 

Then, the integral (a) is equal to 

0 

- q f 1 
-(2kT11/m) 2 

11 

N1 v dv = + m J N1 (ncl ,s) exp(-jL) ds + 

0 
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i; n 

D- J F(t;~) di;~ J exp(s + jH1 - jL) ds + 

!;cl 0 

0 nl 

- D- J F(1;7) di;! J exp(s + jH1 - jL) ds + 

I; 
0 

0 nl 

+ D- JF(i;~) di;~ J exp(s + jL 1 - jL) ds(3.30) 

0 

!!!!:~S!e!-.Q~l is the contribution of returning electrons . that are trav-

elling in the positive direction. By using Eq.(3.22) it is not difficult 

to find that 

- q 

1 
(2kTn/m) 2 

J 
0 

n 
qkT J N1 v dv "' - m N1 (ncl ,s) exp(- jH) ds + 

0 

s n 

+ D- j F(s7) di;~ j exp(s + jH1 - jH) <ls 

<;cl 0 

(3.31) 

!~!:~S!e!_1£l is caused by electrons that can pass the potential minimum. 

With the help of Eq.(3.21) we now obtain 

q J N
1 

v dv"' q~T J Nl(ncl's) exp(-jG) ds + 

(2kTn/m)~ 0 

I; 

D- J F(i;~) di;! J exp(s + jG
1 

- jG) <ls (3.32) 

!;cl 0 

Next, the third term of the right-hand member of Eq.(3.26) can be ex-

pressed as follows 
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q f I 

-(2kTn/m) 2 

N
2 

v dv = -
m f N2(nc2's) exp(-jM) ds + 

0 

+ f '·V F(<~) exp(jS
1 

- jM) + 
+ D exp(s) di;! 

0 scz 

= - q~T j N
2

(nc
2
,s) exp(-jM) ds + 

0 

0 

-

j exp(s + js
1 

- jM) ds + 

0 

0 

+ 

(3.33) 

where n1 and i; 1 or 1 are corresponding variables. Finally, using (3.27), 

(3.30),(3,31),(3.32) and (3.33), the expression (3.26) can be written in 

the following form 

s 
Jtot jwEo F(t;-) + f(S:-) + f F(i';~) Kl(<;-,!'.;~) df;l + 

i';cl 

0 

+ f F(i';~) {K2 (<;-,i';~) + K3 (F;; ,I;~)} di;~+ 
I; 

(3.341) 

0 
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with 

ll 

2j ~ J N1 (ncl ,s) exp{-ji3-(ncl ,s)} sin 13-(n,s) ds + 

0 

+ q:T J N1(nc
1
,s) exp{ja-(n,s) - ja-(ncl,s)} ds + 

0 

0 

ll 

2jD- f exp{s - ja-(n
1
,s)} sin a-(n,s) ds + 

0 

Ill 

K2 (~-.~~) = 2jD- f exp{s - ji3-(n,s)} sin a-(n 1,s) ds + 

0 

- D+ J exp{s - ja-(n,s) + ja-(n
1
,s)} ds 

0 

- D+ J exp{s - ja+Cn
1
,s) - ja-(n,s) f ds 

0 

Eq.(3.341) is a linear integral equation in F(~+), which is derived for 

region L. The functions f(~-), K 1 (~, 
1 

, K2 (~-.~~), K3 (~-.~;) and 

+ 
K

4 
.~ 1 ) are known, while Jtot can be prescribed. In order to obtain a 

complete description of the double-cathode tube, another integral equation 

in F has to be found for region R (See the beginning of section 3.5). 
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3.5.3 

We shall call the integral equation for F in region R equation 

(3.34R). It can be derived from Eq.(3.34L) by applying the following sym-

metry relations 

(a) each index + changes into an index - and vice versa. 

(b) N1 changes into N2 and vice versa. 

(c) ncl changes into nc2 and vice versa, except in A, as defined in 

Eq. (2. 12). 

3.6 The h.f. admittance 

Neglecting the noise and enforcing an a.c. current density J tot 

through the tube, the circuit of Fig. 3.1 is simplified to that of Fig. 

3.3. Then, the terms f(~-) in Eq.(3.34L) and f(~+) in Eq.(3.34R) are zero, 

y 

Fig. 3.3. Representation of a double-cathode tube, when the noise is neg-

lected. The enforced a.c. current density is characterised by Jtot 

because N 1(nc
1
,s) 

is given by 

O. Further, the admittance Y per unit area 

(3.35) 

where F(~) is found by solving the system of integral equations under the 

above conditions. 
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The noise temperature Tn of any arbitrary two-terminal network is de­

f ined6) as the available noise output Pa in a frequency interval 6f, di-

vided by k 6f. 

T 
n P/k M (3.36) 

If there is no external current, then between the terminals a noise volt­

age e(t) with an r.m.s. value (e2 6f)! is present and the available power 

Pa satisfies the following expression 

p 
a 
~M 

4 R (3.37) 

where R is the real part of the impedance Z of the network. From (3.36) 

and (3.37) it is found that 

(3.38) 

The numerator of Eq.(3.38) is composed of a sum of noise contributions 

with r.m.s. values (-1~-1-2 ds)i, each of which corresponds with a group of 

electrons emitted by one of the cathodes and having a reduced energy 

lying between s and s + ds 

-z-- I e (t) 

cl 

+ f le
8
l2ds 

c2 

(3.39) 

Here it is assumed that the various terms are uncorrelated with each 

other, which means that they should be added quadratically. 
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~~2 

The individual quantities le I ds are calculated in the following 
s 

manner. Suppose there are no fluctuations in the emission of the two 

cathodes, except in the group of electrons from cathode c
1 

with reduced 

energy between s and s + ds. Then the distribution of the electric-field 

~ 
strength F(; ) in the inter-electrode space can be determined from equa-

tions (3.341) and (3.34R) with J ; 0, while in f(;-) and f(;+) only tot 

those terms occur that are proportional with N
1

(nc
1
,s) ds. Integration of 

from ;cl to gives the (complex) amplitude which corresponds 
! 

with es(ds) 2 in the first integral of Eq.(3.39), and is related to a fre-

quency band between f and f + 6f. Here, implicitly, the theorem is em-

ployed that it is allowed to calculate the response of a circuit to an 

input noise signal in terms of complex quantities, provided the band width 

concerned is sma116). 

Similarly, the noise contribution of electrons emitted by cathode c2 

can be found. 

In the sections 3.7.2 and 3.7.3 the noise analysis will be completed 

with a calculation of the noise terms in the integral equations (3.341) 

and (3.34R). 

For electrons that are emitted by cathode c
1 

and have a reduced energy 

lying between s and s + ds, the noise terms f(;-) and f(;+) occurring in 

equations (3.341) and (3.34R) become 

(O<s<n) 

0 (s > n) 

(s < 0) 
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(s < 0) 

0 (s .::_ O) 

In the above expressions N1(ncl ,s) ds has to be replaced by the r.m.s. 

value calculated per unit of bandwidth 

For electrons that are emitted by cathode c
2 

and have a reduced energy 

lying between s and s + ds, the corresponding noise terms in the integ~al 

equations (3.34L) and (3.34R) become 

(s < O) 

0 (s .::_ 0) 

(O<s<n) 

0 (s .::_ n) 

(s < O) 

Similarly, N2 (nc2,s) ds has to be replaced by 

3.7.3 ~~~~:!9~~f~_2E_Eh~!!:~E~S~-~!g~!~!!! 

Despite the fact that fluctuations in emission actually occur at 

random over the surfaces of the cathodes, we shall nevertheless suppose 
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that the noise current density in a frequency band from f to f + ~f is 

uniformly spread over the cathode areas. That this is permissible has been 

10) 
discussed by Thompson • Now restricting our attention to the emission 

current density dJs contributed by electrons emitted by cathode c 1, whose 

initial velocities lie between v and v + dv, we obtain 

- Js exp(s 

Since dJs exhibits shot noise, the theorem of Nyquist for the mean-square 

fluctuation current density dj 2 in a bandwidth 6f ~an be applied!) (where 

Sis the cathode area): 

2 qldJ I 6f s 

For the fluctuation dj in the emission current density dJ we can 
s 

also write 

m 

Consequently, there is a mean-square fluctuation current density 

(3.41) 

39 



Substituting Eq.(3.40) in Eq.(3.41) leads to 

(3.42) 

In the same way one can obtain 

(3.43) 

3.8 Compatibility of h.f. admittance with l.f. admittance 

Let the angular frequency w tend to zero. Then, supposing the tube to 

be noise-free, the integral equation (3.341) changes into 

F,c2 

I + D+ f F(t;) d<;~ (3.44) 

!;cl 0 

for the transit angles of the electrons are all negligible. Doing the 

same with Eq.(3.34R), one also finds Eq.(3.44). The two integral equa-

tions are reduced to one. 

Define the a.c. voltage ¢(<;) by 

F, 

¢(;) A f F(y) dy 

• ,, F,cl 

Then, Eq.(3.44) can be transformed into 

Turning now to a low-frequency treatment of the tube, the d.c. cur-

rent density is (see Fig. I.I) 
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where J is chosen if catho;:.e c 
1 

a higber potential than 

cathode dJ of slow variations of J we find 

dJ - dV 
m 

(3.46) 

Identi_fying with 9 (o) exp with 

$(sc2) exp(jwt), 

(3, and (3. 46), of: the LL and the h.f. 

theory, as r;gards a double-cathode tube, when w tends 

to zero, for there is a potential differen,ce be-

tween the two cathod~s. 

In this section the int:eg;rnl eqt:.ations (3.341) and (3.34R) for the 

double-cathode tube will be with the integral equations that 

describe the behaviour of a 1m1:mal diode at high frequencies S). 

Since a normal plane diode is a double-cathode tube whose second 

cathode c
2 

has no emission, its integral equations are derived by putting 

and 

The latter expression is satisfied, if in the integral equations (3.34L) 

and (3.34R) D+ is replaced by zero. It can be show'n that then the equa-

tions (3.341) and (3.34R) become identical with Eqs.(17) and (15) of 

Locherer8). 
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3.10 The Fredholm equation of the second kind 

Mathematically, the two equations (3.34L) and (3.34R) can be re­

garded as one integral equation of the formll) 

g(t;) 

E;c2 

F(e;) - ;\ f K(t;,t; 1) F(t; 1) dt;
1 

f;cl 

(3.47) 

where A• -l/jwe
0 

and the kernel K(t;,t; 1) is a bounded continuous function 

of both variables in the closed square t;cl :5.. t;,; 1 .::._ t;cZ' except for 

E;l • o, if 1 ; - t;cZ (Fig. 3.4). On the x-axis the function K3(t;,E; 1) is 

not defined at all, except in the origin: 

Keeping t; 1 fixed, the real and imaginary parts of K3 ((,t;
1
) have the same 

Fig. 3.4. The kernel K(t;,t; 1) in the various parts of the closed square 

t;cl ::_ t;,<;1 ::_ t;cZ' It is discontinuous on the line s, 1 = 0 (-t;cl ; f;cZ). 

The region on the left of~= 0 corresponds with Eq.(3.341), that on the 

right oft;= 0 with Eq.(3.34R). 
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kind of singularity as the function f(x) = sin(l/x), when x tends to zero. 

Physically, this phenomenon corresponds with the infinite transit times 

of electrons, which have zero velocity in the potential minimum. 

If I';.:_ 0, then the kernel K(l';,1'; 1) is given by Eq.(3.34L). If I';:::._ 0, 

the kernel K(l';,1';
1
) can be found in Eq.(3.34R). Further, jwE

0 
g(i';) = 

- J tot 
f(i';-) in the first region, and jwE g(i';) = J t - f (1';+) in the o to 

second region. 

Now, consider the particular case that -i;cl = i';cZ' Then, of course, 

O. It is easy to prove that the function K is sym-

metric: K(l';,1'; 1) K(i'; 1,1;,). Besides, K(l';,1'; 1) is continuous everywhere in 

the closed square .:_ i';,1'; 1 < l';c2 (Fig. 3.5). 

K2 I'; 

<\,.0>1--~~~~-,1<~~~~~-t-::-:-­
(i';c2•0) 

Fig. 3.5. The kernel K(i;,,1'; 1), if -1;,cl = i';cZ' It is continuous and sym-

metric in the closed square I < I;' i';I < i';c2' 

The question which arises is: Has Eq,(3.47) in all cases a unique 

solution? We define an operator P by 

i';c2 

PF f K(i';,i';I) F(l'; 1) di;, 1 
i';cl 
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It can be proved in our case that K(s,F, 1) 

is in c[t;cl'i;c2], Le. the 

whenever F is an eleme::il: of 

fulfilled, the energy associated 

nite. Then, since g(F,) is 

of Eq.(3.47) that is in C 

rived fr.om Eq. (3.47) only has 

uniqueness of the solution F(F,) was already 

3.6 and 3.7. 

ke::r.e 1
12

) and that PF 

cec::;.dit:.on for F were not 

field would be infi-

solution F(;;) 

equation de­

F (f,) = OIZ). The 

used in sections 

Physically, the solutions of the homogeneot\s equadon which are not 

trivial may be connected with the occurrence of :i.mpeds.nces with negative 

real parts (Cf. 9)). Then oscillations can take place. Experimentally, 

such oscillations have been found in nc.rmal diodes by Llewellyn and 

Vi) 
Ecwen·~c. In their paper an average transit time of electrons that travel 

from the cathode to the anode, plays im p&rt. Whenever this 

transit angle is equal to 2Tin + where n ~ 1,2,3,etc., then the elec-

tron stream exhibits a negative resistance. However, in the case of the 

double-cathode tube working in the space-charge region, it seems most im-

probable that oscillations do exist, because there are two opposite elec-

tron streams that do not cooperate. 

44 



4. NUMERICAL ANALYSIS OF THE EQUATIONS 

4.1 Introduction 

Since the integral equations (3.341) and (3.34R) cannot be solved an-

alytically, a numerical treatment of the problem is needed. To that end, 

first, the equations found will be replaced by a complete symmetric sys-

tem of two other equations, which is more suited for the purpose. Next, a 

discretisation of the integral equations will be performed. Then, the 

problem can be described by a matrix equation. In order to obtain the ma-

trix elements, it is necessary to calculate the potential distribution 

~ + 
and the transit angles a (n,s) and e (n,s). After determining the matrix 

elements, the matrix equation will be solved. 

Complete symmetry between regions L and R can be obtained by re-

placing ~ by • The new satisfies the relation ~ > O. We also in-

- + J+ troduce the current densities Jtot and Jtot' where tot = + Jtot' The po-

tential distributions in both regions are given in Fig. 4.J. Then, the 

t n 

~c2 

Fig. 4.1. Potential distribution in a plane space-charge limited double-

cathode tube. In region L the relation 0 :::_ ~ ~~cl is valid. Similarly, 

in region R: O < < 
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integral equations (3.34L) for region L can be written in the following 

form: 

i;-

J~ot"' jwt:o F(!;-) + f(!;-) + f F(!;~) kl(!;-,!;~) dt;I + 

f;cl 

with 

46 

t; t;c2 

+f F(t;~) {k2 (t;-,t;~) + k3 (t;-,!;~)}dt;~ +f F(i;7) k
4

(i;-,i;7) dt;~ (4.IL) 

0 0 

n 

f(t;-) 2j ~ J N1 (net ,s) sin S-(n,s) exp{-jS-(ncl ,s)} ds + 

0 

+ ~ j N2 (nc
2

,s) exp{-ja.-(n,s) - ja+(nc
2
,s)} ds + 

0 

0 

n 

2jD- J sin 8-(n,s) exp{s - jS-(n
1
,s)} ds + 

0 

+D- J exp{s+ja-(n,s)-ja.-(n
1
,s)}ds 

0 

nl 

k2 0;;-,t;~) 2jD- J sin i3-(n
1
,s) exp{s - jS-(n,s)} ds + 

0 

- D+ J exp{s - ja-(n,s) + ja-(n
1 
,s)} ds 

0 



_,., 

k4 (i;;~.t;~) D+ J exp{s - ja-(n,s) - ja+(n1,s)} ds 

0 

The equivalent form of Eq.(3.34R), which is valid in region R, will 

be called Eq.(4.IR). It can be derived from Eq.(4.11) by applying the 

following synnnetry relations: 

(a) each index + or - is replaced by - or + 

(b) N1 becomes N2, and vice versa 

(c) ncl changes into ncz' and vice versa. 

Further, the new form of the equation for the potential as a function 

of the position (section 2.2.4) is 

dn + ± [ - J ! di;+ = h (n) + exp(ncl - nc2) h (n) (4.2) 

with 

Finally, for the transit angles we have, instead of the equations in sec-

tion 3. 4. I 

n 
+ a (n ,s) wA(m/2kT) ~ J In + (s < O, n > O) 

0 
(ri-s) dn/dt; 

(4.3) 

n 
+ S (n,s) wA(m/2kT) ! J dn + (0 < s < n) 

(n-s)! dn/dt; 
s 

(4.4) 

A= [:;s 
4.3 Discretisation of the integral equations 

The equations (4.11) and (4.IR) can be solved numerically in the same 
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way as the following equation 

b 

f k(x,y) f(y) dy 

a 

f(x) + g(x) (4.5) 

In the pivotal points x =xi= a+ ih, where b = a+ nh and i = O(l)n, we 

approximate the integral with the help of the well-known trapezoidal rule. 

Then, the following equations are obtained 

(4.6) 

for i = O(J)n, where k .. = k(x., y.); 
1. ,J l. J 

Here, of course, has been chosen equal to yi. Eq.(4.6) is a set of n+l 

linear algebraic equations for the n+l pivotal values fi and can be re­

presented by the matrix equation 

(K - I)f = g (4. 7) 

where I is the identity matrix of the order n+l. If the matrix K - I is 

regular, there is always a unique solution f of Eq.(4.7). Then we have an 

approximate solution f of Eq.(4.5) in the points x =xi with i = O(l)n. 

It is possible to improve upon the procedure by using a "deferred correc­

tion" technique 14), but we did not make use of it. 

Applying these general considerations to the equations (4.IL) and 

(4.IR), we have to choose pivotal values*) for ~: In region Las well as 

*) In reality we have chosen ~: slightly different from zero. The dis­

tance between two adjacent points in region L is in general different 

from the corresponding one in region R. 
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in region R, N+2 equidistant points are taken with i = O(l)N+l, where N 

equals, for instance, 9. This means that we have to know the correspond-

ing values of the reduced potential ni in both regions, together with 

+ + the transit angles a (ni,s) and S (ni,s). 

Then, k1(x,y), k2(x,y), k3(x,y) and k4 (x,y) can be computed in the 

+ 
discrete points (x., y.), where x. = s. and y. 

1. J J_ 1. J 
lj with i,j = O(l)N+l. 

It turns out that the equations (4.11) and (4.IR) are replaced by one ma-

trix equation of the order 2(N+2). Because the matrix elements are com-

plex, this matrix equation is equivalent to a real matrix equation of 

the order 4{N+2). 

In the following sections the potential distribution and the transit 

angles of the electrons will be calculated. We shall return to the matrix 

equation in section 4.7. 

4.4 Computation of the potential distribution 

As stated in the previous section we have only to know the values of 

the reduced potentials ni in the pivotal points s~ in the regions L and 

R. In order to obtain the potential distribution, Eq.(4.2) has to be 

solved. The boundary condition is n = 0 for = O. In addition, 

ncl - nc 2 has a prescribed value. In fact, this means that there are two 

differential equations which have to be solved simultaneously (See Fig. 

4.1). The integration of Eq.(4.2) has been performed by using a Runge­

Kutta method, for which a subroutine RK1 is available 15). Since dn/ds+=O 

for 0, the method of Runge-Kutta fails, when s+ = 0 is chosen as a 

starting point. Therefore, it is necessary to begin the integration at a 

point a, where a equals, for instance, O.OJ. The value of n, corre-

sponding with s± = a, can be calculated by means of a Taylor expansion. 

With this value of n the Runge-Kutta method was started. In order to sat-
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isfy the condition that net - ncz had a fixed value, the integration of 

Eq.(4.2) was performed iteratively. A typical potential distribution is 

shown in Fig. 4.2. 

t n 

2 2 3 4 5 6 

Fig, 4.2. Reduced potential n vs. reduced position~~. Positions of cath-

odes c
1 

and are ~cl= 1.986 and ~c 2 = 5.837. Reduced potentials of 

cathodes c 1 and c2 are ncl = 1.928 and nc 2 = 6.222. 

4.5 Computation of the transit angles 

The transit angles for a normal plane diode have been calculated by 

Paucksch 16). We have generalised his method for the case of a double-

cathode tube. Equations (4.3) and (4.4) contain singular integrals of the 

17) type treated by Isaacson and Keller . Further, it is no restriction to 
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suppose ncl - nc2 < O. From now on we shall always make this supposition. 

It has been pointed out in section 4.3 that we have to know the tran-

:i: + sit angles a (n,s) and S (n,s), for fixed values ni' as functions of the 

reduced energy s. It is, therefore, important to try to find, whenever 

possible, polynomials in s (with coefficients depending on n) that are 

good approximations for the transit angles a and s. 

Let 

+ + ± . 
H (t) = h (t) + exp(ncl - nc2) h (t) 

Using Eq.(4.2), the equations (4.3) and (4.4) can be written in the fol-

lowing forms 

I n 
2 + f dt a (n,s) wA(m/2kT) 

0 
(t-s),~H+(t)}! 

(s < O, n > O) (4.8) 

n 
1 

s'''cn,s) wA(m/2kT) 2 f dt 
(t_.s),{H+(t)}i 

(O < s < n) (4.9) 

s 

+ Clearly, the integrand in Eq.(4.8) is singular fort= 0, since H (t) 

O(t), when t tends to zero. The integrand in Eq.(4.9) is singular for 

t = s. Moreover, both expressions are divergent, when s = O. This corre-

sponds with the infinite transit times of electrons that can just reach 

the potential minimum. 

4.s.1 !~~~~~~~El!}!~-~~-=!=~~~~~~-~~~~-~~!!-!~=-~~!~~~~~~-~~~~~~~ 

A direct numerical integration of Eq.(4.8) is not possible, owing to 

the singularity of the integrand at t = O. Let 6 be a small positive con-

stant (e.g. 6 = 0.2). Several cases of integration can be distinguished, 

depending on the values of n and s: 
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(a) n is smaller than o 

(b) n is larger than o 

(c) n is smaller than lsl/S 

(d) n is larger than Jssl. 

+ In case (a), an analytical expression for a (n,s) can be derived. It turns 

out that the normal case of integration treated in (b) can be accelerated 

for the special cases (c) and (d). 

:::~=--~=:~· Putting t = y2 
into Eq.(4.8) gives the following expression 

n! 
a+(n,s) = wA(2m/kT)~ ~ 

0 

dy Y. 
2 ! + 2 I 

(y -s) {H (y )t 2 

For small values of y we have, with C = exp(ncl - nc2), 

with 

I 2 (I - c)2 

b2 = - 4 + 31T T"'+C 

( 
I I - C)

3 
± 20 -r T"'+C 

31T2 

(4. JO) 

(4.11) 

If n is less than o, integration of (4.10) with the help of Eq.(4. 11) 

leads to 
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(4.12) 

fe!~_i£2· If n > 6, the integral in Eq.(4.10) has to be split into two 

parts, one from zero to oi and the other from oi to ni. The first part can 

be calculated by means of Eq.(4.12), while in the second part the exact 

expression for H+(y2) h~s to be used. 

fe!~_i£2• If n < lsl/5 we have in the whole integration interval of 

Eq. (4.8) 

( 
2 3 ) 

(t-s)-! = (-s)-! I + .!. !. + 1 .!.__ + 1- .!.__ + 
2 s 8 2 16 3 ••• 

s s 

+ Then, a (n,s) can be approximated by 

a+(n,s) = UlA(m/2kT)~(-s)i { + 

with 

(n = 1,2,3) 

where again a new variable y = t~ is introduced. If n.::;,. 6, it is easy to 

find, using Eq.(4.11), that 
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If n > 6, we have 

l 

ri' 

f 
Once the auxiliary functions P+(n) have been calculated for fixed 

n 

values of n, the transit angles a~(n,s) can be computed rapidly by means 

of Eq.(4.13), provided Isl > Sri. 

£!!~-1~2· If n >jSsj,we make use of the following Taylor series ex-

pans ion 

_I -1 
(t-s) ;; = t 2 (4. 14) 

This expansion is applied, if t satisfies the condition 

t > ni ::_max(M,-Ss) 

where ni is the value of n that corresponds with one of the pivotal val­

ues~~ with i = O(l)N+I, and Mis a positive number. A possible value of 
]. 

Mis 0.5. It turns out that M cannot be chosen too small (see below). Now, 

the following expression for a+ is obtained: 

+ a (n,s} 

(4.15) 

The second term of the right-hand member of Eq.(4.15) is calculated with 

\the help of the exact expression f.or H+ (y2). A good approximation for the 

integral in the last term is 
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where 

(with n 0(1)3), 

provided Q
3

(n) is of the same order as Q
0

(n). Because the integrands of 

these integrals are singular for t = 0, the lower bound ni has to be 

chosen not too small. This explains our choice of M. Of course, it is ad-

-lO -8 -6 -4 -2 

6 

5 

4 

3 

2 

s -
Fig. 4.3. Transit angle c/ (n,s) vs.reduced energy s. Frequency 3 GHz, tem­

perature of cathodes 1350°K, saturation current density 0.990 A/cm2. Re-

duced potentials of cathodes cl and c2 are 1 = J.928 and nc 2 = 6.222; 

n1 = 0.0786, r:
5 

= l.5130, n10 = 6.222. 
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vantageous to compute beforehand the auxiliary functions Qn(n) for fixed 

values of n. 

As an example, transit angles u+(n,s) are plotted as a function of s 

in Fig. 4.3, where n is a parameter. 

The numerical integration of Eq.(4.9) presents difficulties due to the 

singularity of the integrand at t = s. Let again o be a small positive 

constant. Several cases will be analysed: 

(a) n and s are larger than o 

(b) n is smaller than o 

(c) o lies in the integration interval (s,n) 

(d) n is larger than Ss and o < s. 

(e) n is larger than Ss, but o lies in (s,n) 

(f) n is nearly equal to s, while n is not near zero. 

In case (a), the normal procedure of numerical integration has to be 

applied. In case (b), an analytical expression for S+(n,s) can be derived. 

Case (c) is a combination of (a) and (b). In the last three cases the nu-

merical integration can be accelerated. 

Q~~~-i~L· Introduce a new variable y (t~s)!, Then Eq.(4.9) can be 

written in the following form 

l 
(n-s) 2 

[ 
The numerical integration has to be performed by employing the exact ex-

, + 
pression of H (t). 

£~~~-1£2· Substituting t 
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y in Eq.(4.9) leads to 

n~ 

{ 
s 

l y 
dy 2 ! + 2 I 

(y -s) {H (y )}~ 



When n :::._ o, the integrand of this equation can be simplified by using Eq. 

(4.Jl). A straightforward calculation shows that then 

+ 
13 (n, s) 

(4.16) 

~~~~isl· The integration of Eq.(4.9) is here split into two parts, 

2 one from s to o and the other from 6 to n. Putting t-s = y in the second 

part, we obtain 

(4. 17) 

+ The first term S (o,s) is calculated by means of Eq.(4.16), while the 

normal numerical integration has to be applied to the second term, if n 

is not large enough. This condition will be made clear below. 

~~~~-igl. Suppose n > ni > max(5s,M) and ni-l < max(Ss,M). Again, the 

integration of Eq. (4.9) is performed in two steps, one from s to ni and 

the other from n. to n 
1 

(4. 18) 

where some results, obtained previously in the corresponding case for a, 

have been used. 

~~~~-i~L· Supposing n > ni > max(5s,M) and ni-I < max(5s,M), we have 

to split the integration into three parts 
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(4.19) 

Comparing this with the equations (4.16), (4.17) and (4.18), the further 

treatment of Eq.(4.19) is self-evident. 

9!~~-1f2· If n-s .s_ a, where a = say 0.01, the transit angle (n,s) 

can be expressed as a seri1~s in n-s. Eq. (4.9) can be written in the fol-

lowing form 

0 

13\n,s) = wA(m/2kT)! f 
s-n 

{ + i-l Expanding H (y+n)r 2 in a Taylor series in y, followed by integration, 

it is found that 

with 

+ + + + Here H = H (n), dH /dn = dH (n)/dn, etc. When n is too small, the coef-

ficients G1(n), G2(n), G3(n) and G4(n) are very large. That is why Eq. 
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(4.20) is only a good approximation for S+(n,s), if n is far away from 

16) zero, e.g.n > 0.2. Paucksch has found for the normal diode a power 

series in (n-s)l, analogous to Eq.(4.20), but with coefficients depending 

on s. 

In Fig. 4.4 results are given for B+(n,s) plotted against the reduced 

energy s. Observe that the derivative of B+ is infinite in the turning 

points, where n s. 

6 

5 

4 

3 

2 

Fig. 4.4. Transit angle S+(n,s) vs.reduced energy s. The parameter values 

are the same as in Fig. 4.3. In addition, n3 = 0.6073, n7 = 2.7675, 

n9 = 4.5982. 



4.6 The kernels of the integral equations 

4.6.1 1B!E!g~£!i2~ 
The results obtained in the previous section enable us to tabulate 

the transit angles a+(n,s) and B+(n,s) as a function of s for 2(N + 2) 

fixed values of n. 

Now, the real and imaginary parts of k 1, k2 , k3 and k4 are given 

below. If 0 < n .::_ n1, k 1 is: 

·Re + :i: 
k2(1; ,i;l) 
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n 

J ds exp(s) cos{B+(n,s) - s+<n, ,s)} + 

0 

+ f ds exp (s) cos{c.+ (n,s) 
-

0~<"1 ·•>I] 
0 

n 

- j ds exp(s) sin{fl+ (n,s) - r/ (nl's)} + 

0 

( ) • f + ds exp s sinla (n,s) 

0 

[ "1 
D+ - ! ds exp(s) cos{B+(n 1,s) + B+(n,s)} + 

nl 

- a'<,.•>I} +f ds exp(s) cos{B+ Cn 1 ,s) 

0 



- D +J 
0 

111 

+ J ds exi(s) sinje+ (n 1 ,s) 

0 

+ D± J ds exp(s) sin{a+(n,s) - a+(n 1,s)} 

0 

If 0 < 11 1 and 0 < n , k 4 is : 

Re k4 (s+,~~) = n* J ds exp(s) cos{a+(n,s) + a±(11 1,s)} 

0 

0 

4.6.2 ~~=~:~~==~~~-~~ 
According to.Eq.(4.8) we have, if 0 < 11 1 ;:.. 11, 

n 

- wA(m/2kT) i f ' ~t ~ 
t f H (t)} 

111 

(4.21) 

If n satisfies the condition 11 < 6, one can find, by expanding {H;(t)I-~ 

in a Taylor series and integrating, 
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I 

wA{2kTCl+c)}' {1n(n/n1) + 2 bl(n~-nl~) + 

If n and n1 satisfy the condition n1 < o < n, the integration of Eq.(4.21) 

has to be done in two steps, one from n
1 

to o and the other from o to n. 

The first part is calculated,by means of the previous formula with n re­

placed by 6. In the second part we substitute y = t 2 , after which its nu-

merical integration is performed. If n is larger than o, the integration 

of Eq.(4.21) has to be done in an ordinary numerical way. By means of 

these results it is not difficult to compute the function k3• 

+ + Integrals over infinite intervals occur in the functions k 1 (~ .~ 1 ), 
+ + + + 

k2 (~ .~ 1 ) and k4 (~ .~;).For instance, the integral 

f 
0 

is approximated by replacing the bound -oo by a finite value b. Because of 

the exponential behaviour of the integral it is sufficient to choose 

b = 10. 

Further, all the integrals occurring in k
1

, k2 and k4 have singular 

integrands in the neighbourhood of s = O. In other words, we always have 

to start the integration in a point~ away from the points= O. 1£1 can 

be taken equal to e.g. 0.01. Thanks to the strongly oscillating character 

of each of the integrands, the contribution over the interval (o,£) is 

not large. On the other hand, their oscillating behaviour limits the ac-
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curacy over the interval of integration considered. 

4.7 The matrix equation for the field strength 

Choosing steps h+ and h- in regions L and R respectively, taking 

I;+# 0 and neglecting the noise, Eq.(4.IR) for the pivotal value 
0 

I;+= I;~, with i = 0(1) N+I, is (See a1$o section 4.3): 

l;N+l 

+ f F(f;-) k
4 
(I;~ ,f;-) df;­

l;;o 

( 4. 22) 

tc2 and f;N+l = f;cl' Approximating Eq.(4.22) 

by means of the trapezoidal rule, the following expression is found 

i < N+I 

i > 0 

(4.23) 
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In matrix notation, the set of N+2 linear equations (4.23) can be written 

as 

+ ~ 

+ N F 

where F:I: =(F
0

:1: I' ... , F:+l)T; Fj"' F(f;!) with j O(l)N+I; 

J;ot = (J:ot' ••• , J:
0
t)T; I is the identity matrix of the order N+2; P+ 

and N+ are square matrices of the order N+2. The elements of the matrices 

P+ and N+ can be calculated from Eq.(4.23). 

Similarly, Eq.(4. IL) is replaced by a corresponding matrix equation 

J tot 
- + 

+ N F 

The matrix equation for the whole inter-electrode space is 

( 
+ ) ( + +) ( +) 

J tot M N F 

J~ot = N- M- F- (4.24) 

where M+ P+ + jw£
0

I and M = P + jwE0I. Turning to a real matrix equa­

tion, Eq.{4.24) is equivalent to 

J =HF (4.25) 

where 

+ 
Re M Re N+ + 

-Im M -Im N + 

Re N Re M -Im N -Im M 
H = 

Im M+ Im N+ Re M+ + 
Re N 

Im N Im M- Re N Re M 
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J+ + 
Re Re F 

tot 

Re J Re F 
J tot and F 

+ + 
Im J Im F 

tot 

Im Jtot Im F 

The matrices J and F are column vectors with 4(N+2) elements, the matrix 

H has order 4(N+2). Solving Eq.(4.25) would give us the required field 

strength F in the pivotal points. However, there is a snake in the grass. 

In contrast with the functions k 1,k2 and k4 , which are slowly varying 

functions in two variables, the function k3 has a strongly oscillatory 

character when n
1 

tends to zero. As a result, applying the trapezoidal 

rule to integrals, occurring in Eq.(4.22), such as 

s + 
I 

f 
so+ 

(i ~ O) 

leads to terms in Eq.(4.25) that are too rough approximations of those 

integrals. Therefore, the following iterative procedure has been employed. 

In Eq.(4.25) replace ± + 
k3 (si,s~) by zero, for i > 0 (Notice that s± is 

- 0 

chosen approximately zero). Let F(l) be the solution of Eq.(4.25). Next, 

the left-hand member of that equation is replaced by a new one with the 

help of the solution F(I) obtained earlier. Illustrating this with the 

+ 
component (Re Jtot)i' the new component of J is given by the expression 

s+ 
I 

(Re J:
0
t)i - Re~ F(I)(s+) k

3
(s:.;+) ds+ + 

so 



+Re [trapezoidal approximation, with two pivotal points, 

+ + 
where (Jtot\ is equal to the enforced current density Jtot' Then, Eq. 

(4.25) with its new left-hand member is solved. Let its solution be F( 2). 

By means of this solution Eq.(4.25) is again corrected, etc. When the sum 

of the absolute differences of the corresponding components of two suc­

cessive solutions F(n) and F(n+I) (where n is a positive integer) is less 

than a prescribed number, the iteration is stopped. The final solution is 

a good approximation of the required h.f. electric-field strength F(~:). 
l 

The above technique is based on the fact that the integral of a function 

has a more quiet behaviour than the function itself. 

Afterwards, the admittance Y per unit area can be computed by means 

of Eq.(3.35), where the integral in the denominator is calculated e.g. by 

applying Simpson's rule (This necessitates the choice of an odd number of 

pivotal points in region Las well as in region R). 

Similarly, the noise temperature of the double-cathode tube can be 

computed along the rules given in Section 3.7. Here, too, the same matrix 

H plays a dominant part. 

From now on, let Y be the actual admittance of the tube (the area of 

each of the cathodes is 7.94 mm2). By subtracting from Y the admittance 

jwC of the cold tube, we find the electronic admittance, i.e. the effect 

of the electrons alone. 

The calculated real and imaginary parts of Y - jwC have been plotted 

as a function of the d.c. voltage V in Fig. 4.5 for a typical set of 

parameters. The calculated noise temperature is plotted against the d.c. 

voltage V in Fig. 4.6. If V ~ 0, Nyquist's formula gives Tn = T. The cal-
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culated value of Tn appears to be 1% higher than the assumed cathode tem­

perature. In table 4.1 the numerical values of the calculated quantities 

are represented. 

r:: re(Y-jwC) 

13 

I 2 

11 

0 0.5 v 

mA 
V t Im(Y-jwC) 

-9 

-7 

0 0.5 v 

Fig. 4.5. Calculated real and imaginary parts of electronic admittance 

Y - jwC vs. d.c. voltage V. Frequency 3 GHz, distance between cathodes 

55 µm, temperature of cathodes 1300°K, saturation current density 3.537 

A/cm2, diameter of the cathodes 3.18 mm. 

1300 

1200 

1100 

1000 

0 

v --0.5 v 

Fig. 4.6. Calculated noise temperature Tn of double-cathode tube vs. d.c. 

voltage V. Parameter values as in Fig. 4.5. 
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Table 4.1. Calculated admittances and noise temperatures (r = 1.59 llllll) • 

J T d v Y - jwC jwC T 
s n 

[A/cm2] [OK] (µm] [v] (mA/V] (mA/V] [OK] 

3.54 1300 55 0 10.4 - 8.36j 24.0 1310 

0.1 10.6 8.34j 1290 

0.2 I I. I - 8.28j 1240 

0.3 11.8 - 8.12j 1180 

0.4 12.4 - 7.90j I 130 

Q.5 12.9 - 7.69j 1090 

3.54 1300 45 0 17.9 - 13.5 j 29.3 1320 

0.5 20.9 - 10. 7 j 1060 

3.54 1300 20 0 116 - 50.6 j 66.0 1310 . 
0.2 114 44.5 j 1230 

o.s 107 - 30.5 j 1030 

I. 41 1300 55 0 9.32 - 8. 33j 24.0 1310 

0.5 I 1.6 - 7.93j I JOO 

2.62 1400 50 0.2 14.5 - 10.7 j 26.4 1340 

0.5 16.4 9.49j 1170 

1.46 1350 50 0 12.3 - 10. 7 j 26.4 1370 

0.2 13.0 - 10.4 j 1290 

0.5 14.9 - 9.46j 1130 

4.8 On the reliability of the numerical calculations 

A number of checks on our computed results are available. The first 

one is founded on purely physical considerations. If we apply no voltage 

between the two .cathodes of a double-cathode tube, thermodynamics predicts 

at any frequency a noise temperature Tn equal to the temperature of the 
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cathodes (Cf. section 2.3). Numerical calculations thus have to yield the 

predicted noise temperature. In all the cases that we computed, this is 

true within 2%, as can be seen from table 4.1. This check is a proof of 

the correctness of our computer program, but only for the case that both 

cathodes have the same d.c. potential. 

For testing the program also for t~e case that there is a d.c. volt-

age between the cathodes, the following procedure turned out to be useful. 

Two independent ALGOL programs for the EL X 8 of the Department of Mathe-

matics of the Eindhoven University of Technology were written by Van der 

. 'd 18) h c . f h 1 f h Mei] en and the pre·sent aut or. omparison o t e resu ts o t e two 

programs, gave us an easy tool for detecting errors. 

A different way of checking our program is to use it for computing 

the admittance and noise of normal diodes and comparing the results with 

those obtained by Locherer8>. For a particular set of parameter values 

Locherer has computed the value 6.0 + 73.6j mS/cm2 for the admittance Y 

per cm2 (in his notation Y ) of a normal diode, and the value 0.26 for -ges 

F(;c2), where*) F(;c2) is the "Schwachungsfaktor des gesamten Kurzschluss-

rauschstromes" of the diode. The parameter values for this case are given 

in Locherer's expression (42), while the distance between cathode and 

anode is 175.6 microns. Using the same set of parameter values we have 

found the value 6.31+74.1j mS/cm2 for the admittance Y per cm2 , and the 

value !030°K for the noise temperature Tn' which corresponds with 

F(;c2) = 0.288. The difference between the last number and the one ob­

tained by Locherer may be due to the fact that he has considered only 18 

velocity classes of electrons, whereas we had 91. Locherer has calculated 

his results partly manually, partly by means of· a computer. His way of 

*) This should not be confused with the field strength F(~+). 
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representing the computed values of Y in this case suggests an accuracy 

lower than ours. 

Hubert9) has extended Locherer's calculations very considerably. As a 

check we also used one of Hubert's figures, viz. Fig. 14 (jwE0 :!_in 

Hubert's notation corresponds with our F). Since he does not give one of 

his parameters as a number, this had to be read from the figure in ques­

tion. Our calculation yielded a curve for the solution F(s+) of the equa-

tions (3.34L) and (3.34R) that coincides nearly with his. The relative 

deviations are of the order of 2%. 

Hence, we estimate to have a total relative error less than 2% for the 

admittance Y as well as for the noise temperature Tn. The time needed by 

the computer for calculating the admittance and the noise temperature was 

1.5 hours for each set of parameters. Obtaining the potential distribution 

and the transit angles took only about five minutes. These were, there-

fore, calculated with a much higher accuracy. 

We can compare our computation of the potential distribution with the 

results obtained by Lindsay et al. 2) They found, when nc 1-nc
2 

= 0: 

~+ = I. 1498 for n = 0.75 ands+= 1.1825 for n = 0.80. From this, linear 

interpolation yields = 1.1580 for n = 0.76256. We have computed 

s+ = 1.1582 for n = 0.76256. 

Finally, regarding the transit angle 
! 

a-(n2,s) divided by wA(m/2kT) 2 (See section 4.2) has been computed for 

n1 = 5, n2 = 0.2 ands= -J. We found l.11694, while P~ucksch 16 ) had 

+ + I 
I. 11692. Similarly, we computed a (n 1,s) - a (n

2
,s), divided by wA(m/2kT) 2 , 

resulting in J.9878 for n
1 

= 3, n2 = 0.4 ands= -J. The corresponding 

value calculated by Paucksch 16 ) is 1.98775. 
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5. RELATIVE IMPEDANCE OF THE TUBE HOUNTED IN A WAVEGUIDE 

5.1 Introduction 

So far the admittance and the noise of a double-cathode tube have 

been investigated in terms of voltages and currents. In this chapter the 

behaviour of such a tube when mounted_ in a waveguide will be investi-

19) 
gated • 

We mention the following related studies. Other authors have de-

termined the admittance of a normal diode in a coaxial mount, as e.g. 

Hennings 20), or of a normal diode in a waveguide mount 21 ). Vacuum tube 

diodes have been studied as microwave detectors at X-band by Dye et al. 22) 

and by Bronwell et a1. 23 ) 

A similar arrangement as in our double-cathode tube is often used for 

mounting semiconductor devices in a waveguide. Its theory was discussed 

24) 
e.g. by Van Iperen et al. 

5.2 Relative impedance of the tube. Transformation factor Q. 

Fig. 5.1 shows the cross-section of a double-cathode tube. It can be 

placed between the broad sides of a waveguide (inner dimensions a and b; 

a> b). In principle it consists of two metal posts, the cathode-bearers, 

with a gap between them and surrounded by a coaxial glass wall. The ex-

tremities of the posts constitute the cathode surfaces. Between the posts 

an electron cloud is formed. By using a membrane it is possible to vary 

the distance between the cathodes d from 0 to 200 microns, which can be 

measured with a micrometer (not completely shown here). 

Neglecting the glass wall, the tube can be considered as one cylin-

drical inductive obstacle consisting of two equal posts with a gap be-

tween them (Fig. 5.2), the posts being mounted symmetrically in a wave-

guide. In this approximation the electron cloud may be described by a 
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I .. 

Fig. 5.J. Cross-section through double-cathode tube. The distance between 

the cathodes can be varied from 0 to 200 microns; bl, b2 =posts, at the 

ends of which are the cathode surfaces, g = glass wall, w = wall of wave-

guide, m = membrane .. p part of micrometer. 
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I 

Fig. 5.2. Cross-section through waveguide with cylindrical obstacle. The 

gap is filled with a medium with dielectric constant e and specific con-

ductance a. 

medium with a dielectric constant e and a specific conductance o. It is 

further assumed that the walls of the waveguide and the posts have an in-

finitely high conductance. The equivalent T-network of such an obstacle 

is shown in Fig. 5.3. Let both the input reference plane I and the output 

reference plane 2 coincide with the plane of the post. Assuming r << A
0 

(where r is the radius of the post and A
0 

is the wavelength in vacuum), 

lz 11 -z 12 1 and lz22-z 12 1 are very small, so that the obstacle may be re­

presented by a single relative impedance z 12 • 

I . 2 

Fig. 5.3. Equivalent T-network of obstacle with gap. It is characterised 

by the relative impedances z 11 , z22 and z 12 • 
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Now consider z 12 as a series connection of z~~) (the impedance of the 

obstacle without the gap) and an additional impedance representing the 

action of the gap 

with 

z gap 

+ z gap (5. I) 

(5.2) 

Here Z = l/Y = l/(G + jB); G = cr~r 2 /d; B = w£~r2 /d; Z is the characteris­o 

tic impedance of the waveguide defined as Z
0 

= (µ /E )~ (A /A )• A is 
0 0 g 0 • g 

the wavelength in the guide, and Q is a transformation factor. If d << b, 

then 

Q = {1 + ~ F} a £ br 
r 

(5.3) 

with 

F 

and 

where Kn is the modified Bessel function of the second kind and order n, 

and £ 
r 

E 1/E
0

, the complex dielectric constant £ 1 being defined by 

e:* = E -
w 

An expression for z(o) can be found in Kato et ai. 21 ) It turns out 
12 

that for our configuration the dominant term in (5.3) is 2b/a, i.e. more 

74 



than 80% of the absolute value of Q for all cases that occurred. 

In principle, in the case of a vacuum gap (8r = 1) the theory has 

been given by Kato et al. It could be applied, with minor alterations, to 

explain experiments we performed on such obstacles 25 ). 

Heijnemans26) has generalised the results of Kato and Isobe for the 

case that the relative dielectric constant Er is not equal to one. In 

particular, he has derived Eq.(5.3). 

We have treated the numerical calculation of the transformation factor 

25) Q elsewhere , when I (Remember that here an extra factor 2 is in-

corporated in the definition of Q). 

5.3 Measurements of relative impedances 

The impedance measurements were carried out at a frequency of 3.03 

GHz. The measuring set-up is shown in Fig. 5.4. We used the method of 

A 
-----' I 

I Sh 
Ge I E ~ ............. I 

I 
I 

2 

Fig. 5.4. Measuring arrangement; Ge = generator, Pr = probe, In = indi-

cator, Ta= taper, A = position of tube, Sh= movable short-circuit, 

1,2 =reference planes. 

Deschamps27 • 28 ) in a somewhat modified form. The frequency of the gen-

erator, a reflex klystron, was stabilised by phase-locking it to a I MHz 
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quartz crystal oscillator (the long term stability of the crystal oscilla-

8 tor is 5:10 per week). 

The standing wave measurements (Cf. Fig. 5.4) were carried out with a 

very accurate slotted line (inner dimensions of the waveguide 72 x 34 mm). 

The tubes we used were placed in a waveguide with inner dimensions 

72 x IO mm. The linear taper was about 370 mm in length. 

By means of the method of Deschamps the scattering matrix S of the 

tube can be calculated. From S the impedance matrix Z can be derived: 

z (I + S) (I 

with 

I is the identity matrix of order 2 and (I - S)-I is the inverse matrix 

of I - S. Of course, the reference planes in Fig. 5.4 are not the ref-

erence planes in respect of which the impedance matrix Z is calculated 

(See section 5.2). 

. 25 29) Since the measuring method was described elsewhere ' , we refer the 

reader to these papers for further details. In this connection we only ob­

serve that a linear taper always causes reflections near its ends30), and 

that the concept of the least-square circle29 ) is very useful for numer­

ical data processing of reflection coefficient circles (Cf. 31 )), 

Finally, we would mention that the measurements themselves can be 

performed with an accuracy better than 2% using the above method. 

When the heater supplies are switched off, the double-cathode tube 
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behaves as an inductive post with a capacitive gap. As a first example, 

experimental results measured on tube No. I are shown in Fig. S.S. 

o.s 
' ' ' ' ' ' ' ' x ', 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 0 t--~~-'-~~~~~~-'--~'-"'.-L~-'-~-L-'-'.-....~'---'~....L..~-'--d~-;;_ 
so 100 ', lSO um 

' ' x ' ' ' ' ' ' 

x 
-0.3 

Fig. 5.5. Im z 12 vs. distanced for cold tube No. I. Parameter values are: 

frequency 3.03 GHz, diameter of cathodes 3.18 mm, inner dimensions of 

waveguide JO x 72 mm. The solid line is the theoretical curve with skew-

ness o = 78 µm and effective radius reff = l.5S mm, best fitting the ex­

perimental points. The dotted line represents the theoretical curve with 

8 = 0 and reff = 1.55 mm. 

Neglecting the glass wall the theoretical curve for the cold tube can 

be calculated (section 5.2), if the extremities of the cathode bearers 
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25) are parallel. A refinement of the theory was set up for the case that 

the gap-width varies linearly from d to d + o. The effective distance 

deff is then given by the following expression 

(5.4) 

Since the axes of the cathode bearers do not coincide with each other, 

the l.f. capacitance C occurring between the bearers will be less than 

0.5 

' 

-0.3 

' ' ' ' ' ' ' x ' 
' ' ' ' ' ' ' ' ' ' 

50 

' ' ' ' ' ', d 

Fig. 5.6. Im z 12 vs. distance d for cold tube No. 2. The skewness is 

o = 64 microns. The effective radius is 1.57 mm. See further the caption 

of Fig. 5.5. 
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may be expected according to the actual radius r. In order to bring this 

into account, an effective radius reff is introduced so that by definition 

C • E0~r!ff/deff' Comparing the experiments with the theory (Cf. Fig. 8 

of referenceZS)) and using the method of least squares adapted for non-

linear equations, the values of the skewness o and the effective radius 

reff are found. For tube No. I the skewness o is 78 microns and reff is 

I.SS mm. The former corresponds with an angle of 1.4 degrees between the 

two cathode surfaces. With the help of the above values for o and reff 

the curve of Im z
12 

vs. the distance d has been calculated (Fig. S.5: so­

lid line). 

The determination of 6 depends strongly on one measurement, viz. that 

(o) 
of z

12 
• We estimate the accuracy with which deff is,determined to be 3 

microns. 

In Fig. S.6 similar results are represented for tube No. 2. Here the 

skewness and the effective radius are 64 microns and J.57 mm, respec-

tively. 

When determining impedance and noise (see chapter 6), the two cathodes 

should have the same temperature. However, the temperature of one of the 

cathodes was adjusted slightly in order to get a d.c. current I = 0 when 

the applied d.c. voltage V = O. The resulting difference in temperature 

was at most 10°K. 

From the experimental data the relative impedances z
12 

and z (Eq. gap 

(5. I)) have been calculated. The value of z~~) was determined by measure-

ments on the cold tube. In Figs. S.7 and S.8 the relative impedances z gap 

are plotted as functions of the applied d.c. voltage V for tubes No. 

and No. 2, respectively. 
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0.25 

0.15 
0 

z 
gap 

v 

0.5 v 

-0.40 
t Im 

-0.30 

-0.20 

-0.15 

-0.10 
0 

z gap 

v -
0.5 v 

Fig. 5.7. Experimental values of real and imaginary parts of z vs. d.c. 
gap 

voltage V for tube No. 1. Frequency 3.03 GHz. 

Distances d between cathodes: 20 µm, 30 µm, 40 µm 

cathode temperature 1300°K 

cathode temperature 1350°K 

5.4 Discussion of the results 

• 
0 

x 

a * 

In order to be able to compare the theory with the experimental data, 
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0.20 

0.15 

t Re z gap 

v 
0 .. l 0 '---'---'---'--'---L----

0 0.5 v 

-0.45 
t Im 

-0.35 

-0.30 

-Q.25 

z 
gap 

v 
-0.20'---'---'----'--~-~-------

0 0.5 v 

Fig. 5.8. Experimental values of the real and imaginary parts of z vs. 
gap 

d.c. voltage V for tube No. 2. The parameter values are the same as in 

Fig. 5.7. 

we have to know the values of the following parameters during the measure-

ments: 

(a) the frequency 

(b) the effective radius of the cathodes 

(c) the distance between the cathodes 

(d) the temperature T of the cathode surfaces 

(e) the saturation current density Js 

(f) the d.c. voltage V applied between the cathodes 

(g) the inner dimensions of the waveguide. 

The effective radius is found from the measurements on the cold tube, 

while the distance d is determined by means of a micrometer and has after-
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wards to be corrected for skewness (See section 5.3.2). Eq.(5.4) for the 

effective distance is valid when the admittance Y is inversely propor-

tional to the distance. However, from the data of table 4.1 it can be 

found that the real and imaginary parts of the admittance Y vary accord-

ing to da, -1 < a < -2. Using a similar method as in reference25 ), 

we.derived a formula for deff if Y varies with d-2• This yielded values 

of deff that deviated from those calculated by means of Eq.(5.4) by at 

most 3 microns in the cases we investigated experimentally. Therefore, we 

used Eq.(S.4) in all our calculations. 

The temperature T was found pyrometrically. The true temperature of 

the cathodes is obtained by applying a correction of 80°K. Herewith the 

absorption of the glass wall and the emission coefficient of a tungsten 

cathode surface32) have been taken into account. 

The saturation current density was determined in the following way. 

Switching off one of the heaters and using pulse techniques, the normal 

diode characteristic was made visible on an oscilloscope. From such char-

acteristics the saturation currents of the cathodes were easily found 

(Fig. 5.9). The saturation currents of the two cathodes of one tube may 

I 
s 

Fig. 5.9. (I,V) characteristic of a normal plane diode. The point of in-· 

tersection of the tangents determines the saturation current I , 
s 
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differ as much as 30%. Nevertheless, in order to simplify the numerical 

calculations, we assumed that both cathodes had the same saturation cur-

rent, viz, the mean of the values found. This is justified by the fact 

that the value of the saturation current does not affect the results very 

much (see table 4.1). 

The manner in which the other parameters are determined is self-evi-

dent. 

In order to compare the experimental values with our theoretical cal-

culations, we need a relation between the relative impedance z and the . gap 

electronic admittance Y-jwC. It can be derived from Eqs.(5.2) and (5.3): 

Y - jwC = - jwC (1 + 
4d F) +~a~ br 2bZ z (5.5) 

o gap 

where C = ~ ~r2 /d is the l.f. capacitance of the gap for vacuum. By means 
0 

of Eq.(5.5) the experimental values of the electronic admittance Y-jwC 

have been determined for both tubes from the data given in Figs. 5.7 and 

5.8. The results are shown in Figs. 5.10, 5.11, 5.12 and 5. 13 together 

with the theoretical ones (see table'4,l). 

Observe that in applying Eq.(S.S), it is necessary to use ford in 

that formula the value of deff calculated by means of Eq.(5.4), and for r 

the value of 

Comparing the experimental and theoretical data for both tubes, the 

deviations can be explained by the expected measuring errors of deff' ex­

cept for Re(Y-jwC) of tube No. 1 (Fig. 5.JO), where the deviation is lOµm. 
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':/' t Re(Y-jwC) 

25 

T 1300°K 

20 a 

~ t Re (Y-j uC) 

2 

T 1350°K 

20 

15 15 

10 --------

5 
v 5 -0 v 

v -
Fig. 5.10. Real part of Y-jwC vs. d.c. voltage V for tube No. I. Skewness 

6 = 78 µm, effective radius I .SS mm. 

Experimental: f = 3.03 GHz, deff =SI µm (o), 62 µm (x), and 73 µm (•). 

Theoretical: f • 3 GHz, J = 3.S4 A/cm2; d = SS µm (dotted line), 
s 

d = 45 µm ([J). 

':/' t Im(Y-j<.1C) 

-IS T = 1300°K 

mA t Im(Y-j1.uC) 

~5 13S0°K T 

-s v 
v 

Fig. S. 11. Imaginary part of Y-jwC vs. d.c. voltage V for tube No. J. For 

further data see caption of Fig. S.10. 
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T = J350°K 
JO 10 
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Si:::...-__.-~-- s 
v v - -0 o.s v 0 o.s v 

Fig. S~ 12. Real part of Y-jwC vs. <l.c• voltage V for tube No. 2. Skewness 

o = 64 ~m, effective radius= J.S7 mm. 

Experimental: f = 3.03 GHz, deff = 46 µm(o), S7 µm(~), and 67 µm(•). 

Theoretical (dotted line): f = 3 GHz, d = 50 µm, J = 1.46 A/cm2• 
s 

~ f Im(Y-j,.oC) 

-15 
T = 1300°K 

-lO 

~ tim(Y-j1..iC) 

-JS T = l350°K 

-------10 ------

() 0.5 v 

Fig. 5.13. Imaginary part of Y-}.uC vs. d.c. voltage V for tube No. 2. For 

further data see caption of Fig. 5. 12. 

85 



So far we have neglected the influence of the glass wall on the meas-

uring results. This we were permitted to do, because it has been 

taken into account by subtracting from z
12 

the measured value of 

largely 

(o) 
zl2 

(see section 5.3.3), which is also affected by the presence of the glass 

wall. However, the glass wall had yet another effect on the measurements. 

When the cathodes of the tube were at a high temperature, metal parts of 

the cathodes precipitated on the glass wall. This caused the properties of 

the tube to vary slowly during the measurements. Although, obviously, its 

influence on z 12-z~~) is not so large, part of the discrepancy may be due 

to this phenomenon. Its effect on noise is more pronounced. In chapter 6 

we shall return to this subject. 

If there is no potential difference between the two cathodes, the l.f. 

admittance g of the tube is given by the following expression (see Eq. 

(1.5)) 

where I s 
is the saturation current of each of the cathodes. For 

J s 
3.54 A/cm2, T = 1300°K, and V = 0 the theoretical values of g and 

Re Y are represented in table 5.1. Since with increasing distance the po-

Table 5.1. Values of g and Re Y when V 0 

d g Re Y 

[~m] ~~ ~~ 

20 138 116 

45 32.9 17.9 

55 22.8 10.4 
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tential minimum becomes deeper, the l.f. and h.f. values of the electronic 

conductance decrease. If the distance is 20 microns, the transit time ef-

fects are not yet very important so that the difference between the two 

values is small. For larger distances the h.f. values of the electronic 

conductance is decreasing more rapidly as transit times become larger. 

As regards the influence of the saturation current, we find, compar-

ing the theoretical results (table 4.1) for a large change of Js' viz., 

from 3.54 A/cm2 to 1.41 A/cm2 (with T • 1300°K and d • 55 µm) that Re Y 

changes about 10% and that Im Y is practically constant. It is conceivable 

that the influence is so small, because the density of the d.c. electron 

current j flowing from one cathode to the other is almost independent of 

the sac;.uration current density. From Eq.(J.5) and the value of g given in 

table 5.1 it can be calculated that j • 32.1 mA/cm2 
if J = 3.54 A/cm2 

s 
z 2· 

(and V • 0), while we found j • 29. 7 mA/cm if Js = 1.41 A/cm , so that 

the change of j , and hence also of g (Eq. (I. 5)), is only 8%. 

5 

o.s v 

Fig. 5.14. Theoretical (I,V) characteristic of a double-cathode tube. For 

the other parameters see caption of Fig. 4.5. 
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The calculations treated in chapter 4 provide also the (I,V) charac-

teristic of a double-cathode tube, which is shown in Fig. 5.14. It appears 

from it that g decreases with increasing V. At high frequencies the behav-

iour of the electronic admittance Re Y as a function of V depends on the 

distance d. If d 20 µm, Re Y also decreases with increasing voltage. As 

has already been stated, at that distance the influence of the transit 

times is small and then we may expect that the behaviour of Re Y is simi-

lar to that of the l.f. admittance g. If d = SO µm, however, the influence 

; f IFI 
v tfFI 0 v m 0.4 v 

JO 10 

5 s 

x x 
0 - 00 --0 50 um x 0 µm 

m m 

t arg F targ F 
r/ 50 µm 00 50 µm - -x x 

-20° -20° 

-40° 

-60° 

Fig. 5.15. Theoretical curves for the complex amplitudes of the h.f. field-

strength distributions (absolute values and arguments). Applied d.c. volt-

ages are zero (left) and 0.4 .volt (right). Amplitude of a.c. total current 

· · I 2 · f . 4 aens1ty I Am . For the other parameters see captron o Fi.g. .S. 
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of the transit times is large. They decrease with increasing d.c. voltage, 

and consequently, the real part of Y as well as its imaginary part must 

increase, as is indeed shown in Figs. 5.10 to 5.13 inclusive. 

Our computer programs give also information on the a.c. field in the 

space between the cathodes. From a physical point of view it is inter-

esting to consider the absolute values and the phases of (a) this field, 

(b) its integral, the a.c. potential, and (c) its derivative, as functions 

of x • The derivative represents the a.c. part of the space-charge den-

sity. 

mV t lfF dxj 

o.s 0 v 
mV tlfF dxj 

o.s 0.4 v 

x x -50 µm 50 µm 

'

arg(fF dx) targ(jF dx) 

001--~~~+...~....-~5-0~_um~ 001--~-1-~~~....--5~0~_µ_m~ - -x x 

-20° -20° 

-40° ~ ::::~ 
Fig. 5.16. The complex amplitudes of the a.c. potentials plotted vs. x 

(absolute values and arguments). For the parameters see caption of Fig. 

5.15. 
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The h.f. field-strength distributions are shown in Fig. 5.15 for two 

typical sets of parameters. As can be seen on the right of the figure, 

the field strength F at cathode c 1 is nearly equal to that at cathode c2 . 

This is to be expected, because the stationary space-charge densities at 

the two cathodes are equal within 0.5% (Eq.(2.10)), 

In Fig. 5.16 are plotted the absolute values and the arguments of the 

a.c. potentials for the same parameter values. It turns out that the am-

plitudes of the a.c. potentials grow more or less linearly. 

The most interesting results are found by considering the derivative 

0 v o.4 v 

5 

x 
0 -

Ill 
µm 

t arg p t arg p 

90° . J _.!"' 

x x -- -50 µm 50 µm 

Fig. 5.17. The complex amplitudes of the a.c. parts of the space-charge 

densities p vs. x (absolute values and arguments). For the parameters see· 

caption of Fig. 5.15. 

90 



of F, which is proportional to the a.c. space-charge density p (Fig. 

5.17). There appears to be a point where its amplitude is zero. If no 

voltage is applied, this point coincides with the potential minimum. 

Hence, although an a.c. current is flowing through the tube, the space-

charge density in the potential minimum remains constant. Looking also at 

arg p as a function of x, we see that a space-charge wave is travelling 

from cathode c 1 towards the potential minimum with decreasing amplitude 

and increasing phase velocity, which seems to be infinite when the wave 

reaches the potential minimum. The phase of -50° at cathode c 1 means .that 

a maximum of the electron density is leaving this cathode 50/360 of a pe-

riod after the current from c2 to c 1 has reached its maximum value. A 

space-charge wave also starts from cathode c2 • This wave is in opposite 

phase with the wave starting from c 1. The two waves arrive at the poten­

tial minimum with a phase difference of 180° and thus would annihilate 

each other if their amplitudes had not already become zero. 

3 

2 

x --µm 

Fig. 5.18. The inverse of the volume density n(x) of the electrons plotted 

against x, if the applied d.c. voltage is 0.4 volt. For the other para-

meters see caption of Fig. 4.5. 
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When a d.c. voltage of 0.4 volt is applied, there are likewise two 

space-charge waves starting from the two cathodes. The point where they 

meet now with zero amplitudes and a phase difference of 180° is not the 

potential minimum. It lies nearest to the cathode with the highest poten­

tial, while the potential minimum lies nearest to the other cathode. The 

former point seems to coincide with the point of minimum d.c. space-charge 

density. In order to show this, the inverse of the volume density n(x) of 

the electrons, calculated with the aid of Eq.(2.10), is represented in 

Fig. 5.18. As regards the phase difference between space-charge waves and 

curr~nt, the situation is roughly the same as in the case of no voltage. 

The space-charge waves are now starting from the cathodes in almost oppo­

site phases. Their phase differences with the current are about - 40° and 

- 60°, respectively. 
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6. NOISE TEMPERATURE OF THE TUBE 

6.1 Introduction 

In order to measure its noise temperature Tn' the double-cathode tube 

has to be matched to the waveguide. We have found that this is more easi-

ly done in a waveguide with reduced hei~ht. In our case we obtain a VSWR 

less than 1.2 over a band width of 70 MHz around the centre frequency of 

3 GHz. The frequency of the i.f. amplifier of our Dicke radiometer33 ) is 

30 MHz. 

6.2 Matching of the tube to the waveguide 

The tube is mounted in a waveguide with a movable short-circuit, 

which comes nearly Ag/4 after the tube, and with an adjustable probe near 

the tube (Fig. 6.1). The latter is matched to the waveguide by adjusting 

the depth of the probe, the distance d between the cathodes, and the po-

sition of the short-circuit Sh, when the applied d.c. voltage equals zero. 

Keeping d fixed, matching is obtained for other voltages by slightly ad-

justing the plunger and the probe. 

A ~iA 

1-
g 

.. I Sh 

~ ('!' IJiiU :: H- · H · I 
1 2 A' 

,!! b 

Fig. 6.1. Tube mounted in waveguide with adjustable probe p and movable 

plunger Sh, situated nearly lA after the tube (left). Cross-section AA' 
g 

(right); g =glass wall, b1, b2 posts, at the ends of which are the 

cathode sur~aces (Cf, Fig. 5.1). 
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In Fig. 6.2 the set-up is given with which the matching of the tube 

to the waveguide is carried out. The source B supplies a signal the fre­

quency of which is swept linearly with time. Entering the waveguide via 

the adapter Ad2 , the signal is split into two parts by the directional 

coupler C. The first part is detected by the crystal D
2

. The de-

tected signal is used for the automatic level control ALC of source B. 

The other part of the signal enters the measuring arm. If reflection oc­

curs at the taper Ta and the load A, which is the waveguide circuit shown 

in Fig. 6.J, the reflected wave can be made visible with the help of the 

detector D1 and the oscilloscope Osc. When the frequency characteristics 

of the two ways are equal, one can obtain quickly an insight into how well 

the tube is matched. 

Fig. 6.2. Set-up for matching the tube to the waveguide. B = signal 

source, F = bandpass filter, I = isolator, Ad 1, Ad2, Ad3 = coaxial-to­

waveguide adapters, A1, A2 =attenuators, D1, o2 =detectors, Ta= taper, 

A= load, Osc =oscilloscope, ALC·= automatic level control, C = direc­

tional coupler. 
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Finally, the matching has to be checked by point-to-point measure-

ments with the help of a slotted line that is placed between the direc-

tional coupler C and the taper Ta. 

6.3 Noise temperature measurements 

The arrangement ·for the noise measurements is shown in Fig. 6.3. It 

D 

Ph 

R 

Fig. 6.3. Set-up for noise temperature measurements. 0 = oil bath, H = 

hot load, Sw = waveguide switch, A
1 

= precision attenuator, Ta = taper, 

X = matched noise source with unknown noise temperature, Ad coaxial-to-

waveguide adapter, I
1

, = isolators, Mod = PIN modulator, A2 = attenu-

ator, Ref reference noise source,' M = balanced mixer, L.O. = local cs-

cillator (3 GHz), Amp i.f. amplifier, D = detector, Ph phase sensitive 

amplifier, G = 1.f. generator (I kHz), P =pulse former, R =recorder. 
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is a variant of the well-known Dicke radiometer (Cf. 33 )). It contains 

three noise sources, viz. the standard noise source H that is placed in a 

temperature-controlled oil bath O, the reference noise source Ref and the 

noise source X, of which the noise temperature has ·to be measured. Here X 

is the double-cathode tube. 

Let us first assume that the switch Sw is in the position shown in 

Fig. 6.3. The PIN modulator switches alternatingly (with a frequency of 

kHz) the noise from the hot load H and the noise from the noise source 

Ref. After the signal is mixed with the local oscillator signal, the fre­

quency of which is about 3 GHz, in the balanced mixer M, the resultant 

signal is fed into the i.f. amplifier Amp {with centre frequency 30 MHz). 

The signal obt~ined is detected. It is then amplified by means of a phase 

sensitive amplifier Ph and supplied to a recorder R. With the attenuator 

A2 the noise signal from the source Ref can be adjusted in order to get 

zero output at the recorder R (zero method). Then the Dicke radiometer· 

has the highest sensitivity. Switching the waveguide switch Sw, the pre­

cision attenuator A1 is adjusted in such a way that the noise from the 

matched load X causes a signal output v 1 on the.recorder R just above 

zero. Next, the attenuator A1 is adjusted to obtain an output signal v 2 

just below zero. Linear interpolation between v
1 

and v
2 

yields the value 

of the attenuation a of the attenuator A1 needed for equilibrium between 

the two positions of switch Sw (substitution method). 

The noise temperature TX of source X is then given by the following 

expression 

where TH = absolute temperature of the hot load H, T
0 

ture of A1 = room temperature. 
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It is not necessary to know the noise temperature of the reference 

source Ref. It can be a IOPM noise diode34 ) or a gas-discharge tube35). 

We observe that in reality we combined the measuring equipments, which 

are sketched in Figs. 6.2 and 6.3 in order to be able to check the match~ 

ing of load X with taper while determining the noise temperature. 

The above method presents the difficulty that the value of has 

to be known accurately, since TH << TX. A better though more time-con­

suming method is the following. Instead of a hot load in an oil bath, a 

hot load H in a furnace is used. Part of the measuring arrangement in 

this case is shown in 6.4. The temperature of the noise standard H 

can easily be 1200 or 1300°K. For rapid adjustment of the equilibrium in 

noise temperature between the two positions of the waveguide switch, the 

Ta I X 

to modulator 

Fig. 6.4. Part of measuring arrangement with hot load H in furnace F. 

Dis =gas-discharge tube (K51A); A precision attenuator, L = matched 

load, D =directional coupler (20 dB), C; water cooling. See further 

Fig. 6.3. 
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temperature TH of the load H is chosen just below the unknown noise tem­

perature TX. The difference is compensated for by noise, originating from 

a gas-discharge tube. If there is equilibrium, the following expression 

is valid 

(6.2) 

where T = noise temperature of the gas-discharge tube, a = attenuation 

factor of the attenuator A, b = coupling factor of the directional cou-

pler, and T
0 

= absolute temperature of the attenuator A. 

Using a standard noise source in an oil bath (Fig. 6.3), the noise 

temperature.of tube No. I has been measured as a function of the applied 

d.c. voltage V (Fig. 6.5). The theoretical curve has been computed for a 

1300 

1200 

l 100 

1000 

0 0.5 

v -v 
Fig. 6.5. Noise temperature Tn of tube No. I vs. d.c. voltage V. Parameter 

values for the theoretical curve (dotted line) as in Fig. 4.5. Crosses 

indicate the experimental points, with: frequency of local oscillator 2.98 

GHz, distance between the cathodes 30 um, skewness 78 µm, temperature of· 

cathodes 1300°K. 
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distance of 55 microns between the cathodes and a frequency of 3 GHz (See 

also table 4.1). Each experimental point is the average of three measure-

ments. 

The results for tube No. 2 have been obtained in a similar manner. 

The experimental points are shown in Fig. 6.6, each of which is the aver-

age of two measurements. The noise temperature Tn has been calculated on-

ly for V = 0.2 and 0.5 volt, respectively. According to Nyquist Tn is 

known for V = O. This yields a third point for the theoretical curve in 

Fig. 6.6. 

Observations on other tubes can be found in table 6.1. In these cases 

the noise temperature has been measured only for equal potentials of the 

two cathodes. The second column of table 6.1 shows the frequency, which 

1400 

1300 

1200 

1100 

1000 

v -
0 o.s v 

Fig. 6.6. Noise temperature Tn of tube No. 2 vs. d.c. voltage V. Theoret­

ical (dotted line): J
5 

= 2.62 A/cm2, T = 1400°K, d = 50 µm, f = 3 GHz. 

Experimental: T = 1400°K, d = 30 µm, 6 64 µm, frequency of local oscil-

la tor 2.98 GHz. 
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Table 6. 1 

tube freq. band temp. of cathodes T average noise 
No: width ~yrometric true n of T source 

(GHz) .2 [Oc] [oK] [oK] [oKr 

3 3.00 75~ffiz 1050 1400 1381 1379 hot load in 

1400 oil 

1356 

1379 

1363 1359 hot load in 

1357 furnace 

1354 

1366 

1352 

4 2.98 70MHz 950 1300 1230 1219 hot load in 

1217 furnace 

1218 

1221 

1223 

1217 

1000 1350 1275 

1050 1400 1312 

5 2.98 .:::_80~: 1050 1400 1381 1378 hot load in 

1374 furnace 

6 2.98 .:::_SOMH2 1050 1400 1304 1305 hot load in 

1305 furnace 

is the centre of the band for which the VSWR is less than 1.2. The true 

temperature of the cathodes is obtained by applying a correction of so°K 

(section 5.4. 1). In the last column of table 6.1 the standard noise source 

that has been used is mentioned. 
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6.4 Discussion of the results 

6.4.1 g2~E~E!~£g_2~-~~E~E!~~g~~-~!~g-~g~2Ei 

If the applied d.c. voltage V is zero, the measured noise temperature 

should be equal to the temperature of the cathodes. For tubes No. I and 

No. 2 (Figs. 6.5 and 6.6) we find a noise temperature that is some 70° 

below cathode temperature. This discrepancy should for the greater part 

be attributed to the absorption of the noise signal by a thin metal layer 

on the glass wall. As already mentioned in section 5.4.2, this layer is 

caused by evaporation of metal (presumably Ba) from the cathodes during 

the life of the tube. 

In order to verify this, we measured, with V = O, the noise tempera­

tures of tubes No. 3 and No. 5, which had not been used in measurements 

before. For both tubes the first measurements gave a noise temperature 

that was 20° below cathode temperature (table 6.1). Also, tube No. 3 

showed a decreasing noise temperature when being subjected to a long se­

ries of measurements. 

The remaining discrepancy of 20° found in a new tube can partly be at­

tributed to the inaccuracy of the determination of the cathode tempera­

ture and partly to the systematic errors in the attenuation factors a and 

b (see Eqs.(6.1) and (6.2)). The accuracy with which the black body tem­

perature can be determined by means of a pyrometer is about 10°. The ac­

curacy of the correction that has to be applied in order to obtain the 

true temperature, can also be estimated to be 10°. The possible errors in 

a and bare of the order of magnitude of 0.05 dB, i.e. 15°. The deviation 

found for tubes No. 3 and No. 5 can thus be well accounted for. 

If we apply a voltage across the double-cathode tube, we find both 

theoretically and experimentally that the noise temperature decreases. 
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However, experimentally a smaller decrease is found than the calculated 

values would suggest. We have no explanation for this difference. 

As already_ d.iscussed in chapter I, if no voltage is applied to a dou-

ble-cathode tube, its noise can be considered either as thermal noise or 

as shot noise. When considering its noise temperature if V + O, we are, 

in fact, studying how much it differs from a thermal noise source. Instead 

of comparing its noise temperature with the temperature of the cathodes, 

we may also compare it with a temperature defined by means of the random 

kinetic energy <Wr> per electron, i.e. the average kinetic energy <W> per 

electron minus the average drift-energy per electron. 

To that.end we first calculate the average kinetic energy <W> per 

electron for the whole inter-electrode space. Let Q(x)dx be the sum of 

the kinetic energies of the electrons in a layer with an area of l m2 and 

a thickness dx situated at x: 

Q(x) ! m f v
2 

n(x,v) dv (6. 3). 

The integration has to be performed over all velocities that occur at x. 

Using Eqs.(2.3), (2.5) and (2.6), it is found that 

(6.4) 

where 

B • (2rrkTm)~ ~41 J exp(-n 1) 
q s c 

The total number of electrons is given by the following expression: 
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d 

Nt "j n(x) dx 

0 

(6.5) 

Integrating Eq.(6.4) with respect to x, and using Eqs.(6.5) and (2.10), 

yields <W> 1.12 x lo-20 joule, if the applied voltage 0.5 volt, the 

distance d 55 microns, the temperature of the cathodes (area " I m2) 

= 1300°K, and the saturation current density" 3.54 A/cm2• The average 

kinetic energy <W> is about 20% higher than !kT. 

Secondly, we calculate the average drift-energy per electron. Let w(x) 

be the drift velocity at x. It is given by the following expression: 

w{x) =j v n(x,v) dv~jn(x,v) dv 

where the integration has again to be performed over all possible veloci­

ties. The drift energy per electron between x and x+dx is !mw2(x). From 

this it is easy to find the average drift-energy per electron in the whole 

inter-electrode space: 

d d 

~ ~t j n(x) w
2

(x) dx c Jn~~) (6.6) 

0 0 

with 

c " 

Subtracting the average drift-energy, expressed by Eq.(6.6), from <W>, 

yields a value for the random kinetic energy <Wr> per electron that is 

some 5% higher than !kT, if V = 0.5 volt. In Fig. 6.7 the average kinetic 

energy <W> and the random kinetic energy <Wr> per electron are also plot­

ted for other values of the voltage V. It seems that the tube is not far 
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from thermal equilibrium. Still, the noise temperature does not increase 

when raising the voltage, as suggested by the above results, but decreases. 

8 

7 

t 
<W> 

<W > 
r 

0 o.s v 

Fig. 6.7. Average kinetic energy <W> per electron (dotted line) and random 

kinetic energy <Wr> per electron (solid line) vs. the applied d.c. volt­

age v. Temperature of cathodes = 1300°K, saturation current density 

= 3.54 A/cm2; distance d = SS µm. 

Finally, we mention the surprising result obtained from numerical cal-

culations that the total number Nt of electrons is practically independent 

of the d.c. voltage V for the range considered in Fig. 6.7. 

While we considered in the previous section the deviations of the 

noise of the tube from that expected by treating it as thermal noise, we 

shall now study the deviations from shot noise, as given by Eq.(1.4). 

Let us determine the noise suppression factor r2 as defined in chapter 

I. As stated there, r 2 is equal to unity al low frequencies if V = O. At 3 
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GHz, however, we find r 2 

4 k T ReY lif 
n 

0.459 for V 

4 q I r 2 
llf 

O, using the equality 

(6. 7) 

which was derived from Eqs.(1.1} and (1.6). Since the noise is not sup-

pressed by the potential minimum in this case, the noise suppression is 

obviously caused by transit-time effects. 

On the other hand, if the voltage between the cathodes is high, the 

double-cathode tube behaves as a normal diode. At low frequencies the noise 

suppression factor of a normal diode is {Cf. reference6) ,p.96): 

(6.8) 

• . . 2 
If we apply this formula to our tube at V = 0.5 volt, we find r = 0.250. 

At 3 GHz we can calculate r 2 under similar conditions with the help of the 

t 

v 
0 '--~ ........ ~-'-~~'--~ ........ ~...a.~~'--~-'-~ ..... -------~~-

0 0.5 0.8 v 

Fig. 6.8. Noise suppression factor r 2 vs. d.c. voltage V at 3 GHz. The 

dotted line indicates the values of r 2 for a normal diode at low frequen-

cies. See caption of Fig. 6.7 for other parameter values. 
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following expression 

r2 
2 k T ReY 

n (6.9) 

which is the same as Eq.(6.7), except that the sum of the t¥O electron 

currents 21 has been replaced by 1 1+1 2, the two currents not being the 

same if V 1 O. At V = 0.5 volt, r 2 is 0.229. These and other results ob-

tained with the aid of Eqs.(6.8) and (6.9) are shown in Fig. 6.8. The val-

ues of nc
2 

at V = 0.6, 0.7 and 0.8 volt, which have been substituted in 

Eq.(6.8), were found by extrapolation of those known for V • 0(0.1)0.5 

volt. It turns out that for voltages of over-0.4 volt the values of r2 for 

the double-cathode tube at high frequencies are somewhat lower than the 

corresponding ones for the normal diode at low frequencies. This is due to 

transit-time effects. 

106 



REFERENCES 

I. North, D.O., R.C.A. Review.'.'._ (1939/40) 441-472. 

2. Lindsay, P.A. and F.W. Parker, J. Electr. Control I_ (1959) 289-315. 

3. Knol, K.S. and G. Diemer, Philips Res. Repts. 5 (1950) 131-152. 

4. Lindsay, P.A., contribution to: 

Marton, L.(Ed.) Advances in electronics and electron physics, XIII, 

Academic Press, New York (1960) 181-315. 

5. Von Laue, M., Jahrbuch Radioaktivitat Elektr . .!2 (1918) 205-256. 

6. Van der Ziel, A., Noise, Prentice-Hall, Englewood Cliffs, N.J. (1956). 

7. Paucksch, H., Nachrichtentechn. z. 2_ (1956) 410-414. 

8. Locherer, K.-H., Archiv E.ti. Q (1958) 225-236, '265-270. 

9. Hubert, H., Proc. HOGA 68, Nachrichtentechnische Fachberichte 12_, 

327-332, V.D.E. Verlag, Berlin, 1968. See also: Hubert, H., Disserta­

tion, Technische Universitat Berlin (1969). 

IO. Thompson, B.J., R.C.A. Review.'.'._ (1939/40) 269-285. 

II. Whittaker, E.T. and G.N. Watson, A course of modern.analysis, Univer­

sity Press, Cambridge (1963). 

12. Taylor, A.E., Introduction to functional analysis, John Wiley, New 

York (1958) pp. 277 and 284. 

13. Llewellyn, F.B. and A.E. Bowen, Bell Syst. T.J. ~ (1939) 280-291. 

14. Fox, L. (Ed.), Numerical solution of ordinary and partial differential 

equations, Pergamon, Oxford (1962), Chapter I I. 

15. Zonneveld, J.A., Automatic numerical integration, Mathematisch Cen­

trum, Amsterdam (1964). 

16. Paucksch, H., Archiv E.ti. 2_ (1955) 171-176. 

17. Isaacson, E. and H.B. Keller, Analysis of numerical methods, John 

Wiley, New York (1966), Section 6.2 of chapter 7. 

107 



18. Van der Heijden, P.J.H., Internal report EEA/53/1969, Dept. of Elec­

trical Engineering, Eindhoven University of Technology. 

19. Versnel, W., Proc. HOGA 70, Eighth int. conf. on microwaves and opti­

cal generation and aoplification, pp. 18/19-18/23, Kluwer, Deventer 

(The Netherlands), 1970. 

20. Hennings, K., Nachrichtentechn. z., 12 (1959) 459-464. 

21. Kato, N. and T. ·Isobe, Hem. Fae. Eng. Kyoto Univ. (1958) 27-47 

(Part I) and (1958) 48-71 (Part II). 

22. Dye, N.E., J. Hessler, A.J. Knight, R.A. Hiesch and G. Papp, 1959 

IRE National Convention Record ]_, part 3, 40-46. 

23. Bronwell, A.B., T.C. Wang, LC. Nitz, J. Hay and H. Wachowski, Proc. 

24. Van Iperen, B.B. and H. Tjassens, Proc. HOGA 70, Eighth int. conf. on 

microwaves and optical generation and amplification, pp. 7/27-7/32, 

Kluwer, Deventer (The Netherlands), 1970. 

25. Groendijk, H. and W. Versnel, Appl. Sci. Res. l!_ (1969) 309-321. 

26. Heijnemans, W.A.L., Internal report ETA/4/1970, Dept. of Electrical 

Engineering, Eindhoven University of Technology. 

27. Deschamps, G.A., J. Appl. Phys. 24 (1953) 1046-1050. 

28. Storer, J.E., L.S. Sheingold, S. Stein, Proc. IRE~ (1953) 1004-1013. 

29. Pieterse, J.D. and w. Versnel, Appl. Sci. Res.!!__ (1969) 13-23. 

30. Lewin, L., Wireless Engineer (1949) 258-264. 

31. Kajfez, D., IEEE Trans. HTT- ( 1970) 96-100. 

32. Espe, w., Werkstoffkunde der Ho.chvakuumtechnik I, Deutscher Verlag 

der Wissenschaften, Berlin (1960), p. 896. 

33. Wells, J. S., W. c. Daywitt and C .K. S. Hiller, IEEE Trans. IH-..!2 (1964) 

17-28. Further, see the "Special issue on noise" of IEEE Trans. HrT-16 

(1968) No. 9. 

34. Groendijk, H., Philips T.T . ..!.2_ (1957) 383-385. 

35. Hart, P.A.H., Philips T.T. (1961) 284-301. 

108 



Acknowledgements 

This work was performed as part of the research program of the Elec­

tronics Group of the Department of Electrical Engineering of the Eindhoven 

University of Technology under the direction of Professor Dr. H. Groendijk. 

Thanks are due to Mr. J.F.G.J. Olijslagers, who carefully carried out' 

most of the measurements. The tubes were manufactured in the workshop con­

ducted by Mr. H.J. de Weyer, according to a design of Mr. C.J.H. Heijnen. 

I also owe much to Ir. c. Kooy, Associate Professor in Theoretical 

Electrical Engineering, to Ir. W.A.L. Heijnemans, who was coached by the 

former, and to Ir. P.J.H. van der Meijden. 

I would like to express my gratitude to several members of the Mathe­

matical Department for their advice, to Mr. H.J.A. van Beckum for correct­

ing the English text and to Mrs. A.M. Bogaerts-van den Wildenberg for 

carefully typing the difficult manuscript. 

109 



Samenvatting 

Wanneer men bij een vlakke diode de anode eveneens als kathode uit­

voert, ontstaat er een dubbel-kathodebuis. De bestudering van de eigen­

schappen van een dergelijke buis bij hoge frequencies, wanneer deze in 

het ruimtela4ingsgebied is ingesteld, vormt het onderwerp van dit proef­

schrift, Hoogfrequent betekent in dit verband, dat de looptijden van de 

elektronen niet verwaarloosd mogen worden. 

De bewegingen van de elektronen in een dubbel-kathodebuis kunnen on­

derzocht worden op dezelf de manier als in de theorie van de gewone diode 

gebeurt. Dit geldt zowel voor lage frequenties, waarbij de looptijden ver­

waarloosd worden, als voor hoge frequenties. In het eerste geval levert 

de theorie o.a. de stationaire potentiaalverdeling, waarbij evenals bij 

een normale.diode een potentiaalminimum gevonden wordt. 

In het bizondere geval, dat de kathoden dezelfde temperatuur en de­

zelfde potentiaal bezitten, ligt dit minimum midden tussen beide kathoden. 

De potentiaalverdeling is dan nl. symroetrisch. Dit geval is daarom zo in­

teressant, omdat dan de elektronenwolk in thermodynamisch evenwicht is met 

de kathoden. Een gevolg hiervan is, dat de ruis die de buis kan afgeven, 

hetzij als thermische ruis hetzij als shotruis beschreven kan worden. 

Een overzicht van de eigenschappen van een dubbel-kathodebuis bij lage 

frequenties is in hoofdstuk 2 gegeven. 

Bij hoge frequenties kunnen, zoals reeds vermeld is, de looptijden 

van de elektronen niet meer verwaarloosd worden. Het is mogelijk in dat 

geval het gedrag van de buis te beschrijven met behulp van twee integraal­

vergelijkingen in de hoogfrequente elektrische veldsterkte. Met behulp 

van deze veldsterkte kunnen de admittantie en de ruis van de dubbel-ka­

thodebuis berekend worden. In hoofdstuk 3 is de theorie behandeld, ter­

wijl in hoofdstuk 4 de numerieke uitwerking is weergegeven. Een van de 

resultaten van de theorie is, dat zowel het reele als he~~imaginaire deel 
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van de hoogfrequente elektronische admittantie, d.w.z. de admittantie die 

een gevolg is van de elektronen alleen, met toenemende gelijkspanning 

tussen de kathoden groter wordt. Dit is juist andersom als bij lage fre­

quenties waar de (hier uiteraard reele) elektronische admittantie juist 

afneemt bij toenemende gelijkspanning. Dit is een gevolg van de relatief 

grote looptijden bij hoge frequenties. Bij zeer korte afstanden (20 µm), 

waar de looptijden kleiner zijn vinden wij dan ook bij hoge frequenties 

hetzelfde verloop als bij lage frequenties. Een ander resultaat is, dat 

de ruistemperatuur van de buis afneemt bij toeneming van de aangelegde 

gelijkspanning (tot 0.5 volt). 

In hoofdstuk 5 wordt vervolgens onderzocht, wat het effect is wanneer 

een dergelijke buis opgenomen wordt in een golfpijpcircuit. Het blijkt, 

dat bij juiste keuze van de referentievlakken, ten opzichte waarvan het 

equivalente microgolfnetwerk van de buis bepaald is, de dubbel-kathode­

buis door een enkele relatieve impedantie goed beschreven kan worden. 

Theoretische en experimentele resultaten worden, voor wat betreft de elek­

tronische admittantie van de buis, met elkaar vergeleken. Gezien de com­

plexe structuur van het theoretische model is er een redelijke overeen­

stemming van theorie en praktijk. 

De berekeningen stellen ons in staat een inzicht te krijgen in de pro­

cessen, die in het inwendige van de buis plaats vinden bij het aanleggen 

van een kleine hoogfrequente wisselspanning tussen de kathoden. Het blijkt, 

dat de verschijnselen beschreven kunnen worden door middel van twee uit­

dovende ruimteladingsgolven, die met nagenoeg tegengestelde fasen vanaf 

de kathoden naar binnen lopen. Op hun ontmoetingspunt hebben zij een am­

plitude nul en verschillen zij 180° in fase. Dit punt, waar de ruimtela­

ding dus constant is, valt waarschijnlijk samen met het minimum van de 

ruimteladingsdichtheid. 
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Tenslotte worden in het laatste hoofdstuk de ruismetingen behandeld. 

Het blijkt bij deze metingen noodzakelijk te zijn, dat de buis is opgeno­

men in een golfpijp met een kleinere hoogte dan die van de standaardgolf­

pijp. In dat geval kan aanpassing over een voldoend breed frequentiege­

bied van de buis aan de golfpijp gerealiseerd warden. Ook hier wordt een 

redelijke overeenstemming tussen theorie en experiment gevonden. 

Als de kathoden op dezelfde spanning staan zijn de voor de ruis ge­

vonden waarden kleiner dan de met de f ormule voor de shotruis berekende 

waarden. Er kan daarom een ruisonderdrukkingsfactor r 2 bepaald worden. 

Deze wordt vergeleken met de waarde r 2 = I, welke voor lage frequenties 

geldt. 

Bij relatief hoge gelijkspanningen gedraagt de buis zich als een nor­

male diode.-Ook hier blijkt r 2 bij hoge frequenties kleiner te zijn dan 

bij lage frequenties. De afwijkingen zijn een gevolg van looptijdeffecten. 
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STELLINGEN 

Door Lindsay's theorie betreffende de potentiaalverdeling in een dubbel­

kathodebuis welke in het ruimteladingsgebied is ingesteld, te combineren 

met de ruistheorie van North voor de gewone diode kan een generalisatie 

van de laatste theorie verkregen worden. Deze gegeneraliseerde theorie be­

schrijft de ruis van een dubbel-kathodebuis bij lage frequenties. 

1) Lindsay, P.A., bijd:l.'age tot: Marton, L. (Ed.), 

Advanaes in eZeatronias and eZeatron physias, XIII, 

Aaader.rfo Press, ileLJ York, 1960, blz. 243. 

2) North, D.O., R.C./.. Review 1_ (1939/40) 441-472. 

2 

De ruistheorie bij lage frequenties, vermeld in bovenstaande stelling, is 

niet af te leiden uit de in dit proef schrift gegeven ruistheorie door 

daarin de frequentie tot nul te laten naderen. 

Dit proefsahrift, § 3.7. 

3 

Het is mogelijk een on·sager-relatie op te stellen voor de dubbel-kathode­

buis. 

De Groot, S.R., :iaemodynamias of i1'reversibie proaesses, 

,-io;•tii-I-iolland PubZ. Cy, J,.risterdam, 1966. 
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4 

Bij microgolfmetingen aan een inductief obstakel in een golfpijp, bestaan­

de uit twee cirkelcylindrische paaltjes met een spleet er tussen, waarvan 

de breedte instelbaar is, treedt in het algemeen een sprong in de reflec­

tie op bij de overgang van positieve spleetbreedte naar spleetbreedte G 0, 

In dat geval staan de twee eindvlakken van de paaltjes niet geheel even­

wijdig ten opzichte van elkaar. 

Groendijk, H. and W. rersne1'., Appl'.. Sai. Res. 

309-321. 

5 

(1969) 

De ruistemperatuur van de KSIA, een gasontladingsbuis, is ongeveer 

17.000°K in plaats van 23.600°K, waarop Wittig zijn ruismetingen-aan een 

vacuumdiode bij 2,4 GHz baseert. Ook de ruismetingen bij 3 GHz van 

Prinzler aan de K51A zijn onjuist. 

1) Wittig, G., ilaah!'iahtenteahn. -z. 16 (1963) 8-13. 

2) PX'inz1'.er, H., Proa. second colt. on miarowave cor.ununication, 

Akademiai Kiad6, Budapest, 1963, btz. 261-273. 

6 

Bij frequentie-stabilisatie van een 4nun-klystron met behulp van de 

"phase-locking" techniek, waarbij als referentie een kwartskristal ge­

bruikt wordt, kan volstaan worden met slechts een "phase-locked loop" in 

plaats van twee. 

1) Meier, G., Z. Angeu. (1964) 466-471. 

2) French, I.P. and T.E. ArnoZd, Rev. of Sai. Instr. 38 

(1967) 1604-160?. 
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7 

Het is mogelijk een gesloten trilholte voor 8mm-golven te maken, welke, 

op kamertemperatuur gehouden, bij kritische aankoppeling een "loaded" kwa­

litei tsfactor groter dan 10.000 bezit. 

Otto, W., Naahriahtenteahnik 10 (1980) 365-372. 

8 

Vraagstukkenboeken dienen enkele uitgewerkte voorbeelden en alle ant­

woorden te bevatten. Uitwerking van alle vraagstukken is vanuit didactisch 

standpunt gezien onjuist. 

9 

"Multiple choice" examens zijn zeer geschikt om feitenkennis te testen. 

Des te exacter een vak is, des te minder leent zich deze methode om een 

oordeel te verkrijgen over het inzicht van de examinandus. 

10 

Een digitale rekenmachine, welke op meesterniveau zou kunnen'schaken, kan 

in verband met practische overwegingen niet gerealiseerd worden. 

Botvinnik, M.M.; Computers, ahess and 7,,onge-range p'lanning, 

Springer, N<J'w York, 1970. 

W. Versnel, Eindhoven, 14 mei 1971 


