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Abstract

Demand for fashion products is usually highly uncertain. Often, there is only
one possibility for procurement before the selling season. In order to improve the
traditional newsvendor-type overage-underage trade-off we study a network of two
expected profit maximizing retailers selling a fashion product where there is an
additional opportunity for redistribution of stock during the selling season. We
distinguish between the situation where redistribution is done at the moment when
one of the retailers is running out of stock and the situation where the redistribution
time is already determined and fixed before the selling season. We model the demand
process at a retailer by a Poisson Process with an uncertain mean and use a Bayesian
approach to update the distribution parameters before transshipments are done. In
a numerical study we compare the different policies and show that timing flexibility
and updating are especially beneficial in situations with low profit margins and
high parameter uncertainty. Further, we show that depending on the instance, an
optimal predetermined transshipment timing depends on the problem parameters
and may be between the middle and the end of the selling season.
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1 Introduction

Though inventory and information management for fashion products have a long tradi-
tion, new concepts and strategies are still at the core of the supply chain management
research agenda. Since customer requirements are increasing, the use of efficient logis-
tics and innovative supply chain management strategies is necessary for fashion retailers
competitiveness. Besides cost reduction, a high product availability is essential to meet
customer demands, improve customer service, and ensure customer satisfaction, which is
a key success factor for any business.

However, striving for excellent operational performance in a fashion supply chain is a
challenging and notoriously difficult task, since fashion products are usually characterized
by long replenishment lead times, short selling seasons, and nearly unpredictable demand
and therefore, inaccurate forecasts. In extreme cases the replenishment lead times can be
longer than the selling season and often, retailers can only place a single order long before
the selling season starts and there are no additional replenishment opportunities during
the selling season. Further, highly uncertain demand triggers the optimization problem
of balancing the trade-off between providing too many or too few items associated with
excess stock, which has to be sold with a markdown and often below procurement cost at
the end of the season, or lost sales and unsatisfied customers due to inventory stockouts.

Facing this challenge, several innovative business practices were initiated, investigated,
and implemented to create more flexibility in fashion supply chains. A broadly used
strategy for improvement, that has attracted considerable attention in recent years, is
Quick Response (Hammond (1990)), aiming at lead time reduction and enabling order
placements closer to the start of the selling season. The postponement of ordering deci-
sions after initial demand signals have been received leads to better demand forecasts. In
a multi-product environment, a smart allocation of production capacity offers the option
to accurately respond to highly uncertain demands as proposed by Fisher et al. (1997).
For multiple retailers an operational strategy to reduce uncertainty is to pool risks by
sharing inventories (Tagaras (1999)). This can be achieved by a delayed allocation of
(some) central stock to retailers or the opportunity to redistribute inventories. Compared
to a pure push approach with a single initial supply only, the latter provides an efficient
means of salvaging excess inventories besides clearance pricing.

Our research was motivated by a fashion retailer buying and selling luxury lingerie at sev-
eral outlet stores in Europe. Recent advances in information technology enable the use
of point-of-sales data to manage supply chain processes efficiently. We investigate a sup-
ply chain management strategy combining risk-pooling with the possibility to improve
forecasts using actual sales data. Retailers can share their inventories through lateral
transshipments and information gathered regarding sales until the moment of transship-
ment is used to optimize an inventory rebalancing decision. The option to rebalance
inventories serves as the operational enabler for demand learning by (partly) postponing
the final inventory allocation. However, there is a trade-off between the value of improved
demand information by further postponing the time of rebalancing and the opportunity
to make use of it as later rebalancing reduces the time to sell redistributed items.

The use of proactive transshipments by having the opportunity to rebalance inventory has



not been investigated as an enabler to unlock the benefits of demand parameter learning.
Our research question and contribution is to identify the benefits of the transshipment
opportunity in the presence of demand parameter uncertainty, to provide insights on the
time instant for rebalancing and how this impacts initial inventory investments. In this
paper we use a newsvendor-type, single-item, single-period stochastic inventory model
under the assumption that unsatisfied demand is lost and we allow for an additional op-
portunity during the selling season for redistributing stocks between two retailers after
early sales have been observed and demand parameters have been updated according to
a Bayesian approach. Our goal is to determine the optimal initial inventory levels that
maximize the expected profits of the entire selling season. Generally, there is no bene-
fit from rebalancing as long as both retailers have positive inventory. Therefore, in the
absence of costs and lead times for redistribution, the optimal time for a single redistri-
bution is the time of the first stockout of a retailer. However, due to other operational
constraints, there might be a necessity to fix the time of redistribution beforehand. In this
case we optimize the timing of the redistribution, too, which provides insights into how to
resolve the trade-off between the value of demand parameter learning and the possibility
of making use of it.

The remainder of the paper is structured as follows. In Section 2 we review the existing
literature related to our research topic. In Section 3 we develop a mathematical model to
determine inventory levels and the optimal timing for rebalancing under different demand
learning and rebalancing timing strategies. Section 4 reports numerical results and pro-
vides insights on potential improvements by demand learning and inventory rebalancing.
The paper concludes with a summary of the main contribution and an outlook of further
research.

2 Literature Review

Two streams of research are closely related to our work, i) risk-pooling through lateral
transshipments and ii) newsvendor models with two replenishment possibilities and/or
demand parameter updates.

2.1 Risk-pooling through lateral transshipments

In retail supply chains mainly two different risk-pooling strategies are applied to hedge
against uncertainty. In the first approach, only a portion of the goods received by the
central warehouse is shipped to the retail outlets at the beginning of the selling season
while the remaining part is kept centrally at the warehouse. During the selling season
there exist one or several opportunities for the warehouse to allocate and distribute the
retained central stock to the retailers in order to balance their inventories. Optimal initial
inventory levels, optimal allocation policies, and the optimal timing of withdrawals from
warehouse stock are studied in many papers, e.g., Jackson (1988), Jackson and Muckstadt
(1989), McGavin et al. (1993), McGavin et al. (1997), Cao and Silver (2005). The second
approach, also followed in this paper, is based on a complete PUSH-strategy where all
goods are shipped to the retail outlets at the beginning of the selling season and retailers



may share their inventories using lateral transshipments.

Lateral transshipments have received increasing attention over the last years and many
contributions demonstrate their benefits in centralized and decentralized distribution en-
vironments. Lateral transshipments are often applied in spare parts systems where they
occur in response to stockouts. Another area of application are distribution networks of
retailers. Contributions are devoted to centrally controlled systems and to the coordi-
nation impact of transshipments in decentralized systems using game theoretic methods,
e.g. Rudi et al. (2001) for the two-retailer case and Wee and Dada (2005) for n retailers.
However, the majority of all these studies assumes that transshipments are only possible
at the end of a period where locations with excess stock transship to locations with excess
demand. This implies a pure reactive approach for clearing excessive stock and excessive
demands. For further literature we refer to the review presented in Wong et al. (2006).
However, in case of fashion goods it is very unlikely that customers that arrive within the
season are willing to wait until the end of the selling season and therefore, a proactive
transshipment policy is required.

A few studies devoted to periodic inventory models allow redistribution of stock between
order moments. Mostly, only one redistribution opportunity is considered and the time
instant is assumed to be exogenously predetermined. Joénsson and Silver (1987) argue
that backorders are likely to occur at the end of a replenishment cycle and therefore,
stock transfers should only take place close to the end of a cycle. They fix the time
for redistribution at one subperiod before the end of the order cycle motivated by high
required service levels and therefore high inventory levels. Similar arguments are used
in Tagaras and Vlachos (2002). However, an optimal point in time for redistribution is
not determined. Das (1975) and Lee and Whang (2002) do not comment at all on the
choice of the redistribution instant. While in the last named articles replenishment and
redistribution decisions are jointly optimized, Allen (1958) focusses on optimal lateral
transshipment decisions under given initial inventory levels. The joint optimization of
timing and rebalancing decisions for given initial inventory levels is studied in Agrawal et
al. (2004). Based on their investigations they conclude that rebalancing of stock tends to
take place later during the period.

2.2 Newsvendor models and information update

Newsvendor models are a frequently used tool for the determination of order quantities
for fashion products (see Khouja (1999) for a review). The economic trade-off between
providing too many or too few items, associated with overage and underage costs, is
optimized. However, the traditional newsvendor model only allows goods to be produced
(or ordered) once before the selling season starts. Lau and Lau (1998) and Li et al.
(2009) analyze the benefit of a second order opportunity during the selling season. While
a second order opportunity can lead to lower inventory costs and fewer lost sales at the
end of the selling season, additional set-up costs and higher procurement unit costs might
occur. Under the assumption of independently identically normally distributed demands
and constant cost parameters Lau and Lau (1998) illustrate for a pre-determined second
order time instant that with increasing demand uncertainty and with decreasing product’s
profitability (measured by the newsvendor ratio) the value of a second order moment



increases. If demand uncertainty increases linearly with expected demand, the second
order moment should be set at the time when the average demand of the first subperiod
is equal to 75% of the total expected demand.

A second order moment can be even more beneficial using modern technologies and point-
of-sales data to update demand forecasts before the second order decision. Bradford and
Sugure (1990) divide the selling season in two equal time-periods and apply a Bayesian
approach to optimize the two ordering decisions when demand follows a Poisson process
with an unknown Gamma-distributed parameter A\. A dynamic programming formulation
is presented in Murray and Silver (1966) to optimize the profit for a selling season with
a finite number of possible acquisition times. The underlying demand model assumes N
potential customers, willing to buy the product with probability p, where the numerical
value of p is unknown and updated based on information gathered during the selling sea-
son. The selling season is also divided into several sub-periods in Eppen and Iyer (1997).
However, purchasing is only possible at the beginning of the first period, while dumping
is possible at the beginning of all future sub-periods. The sell-off price is decreasing with
time and Bayesian updates are applied to improve demand forecasts. One of their main
conclusions is that updating is always beneficial and under certain circumstances can yield
significant improvements.

While Bradford and Sugure (1990), Murray and Silver (1966), and Eppen and Iyer (1997)
use point-of-sales data to update the demand parameters and allow for additional ordering
or dumping decisions during the selling season, another stream of literature assumes that
all decisions are made before the selling season. Only one purchasing opportunity is
considered in Iyer and Bergen (1997), who focus on the benefit of a Quick Response
strategy, providing shorter lead times, which enables data collection of related items to be
used to decrease forecast errors for the item being ordered. Iyer and Bergen (1997) apply
information updates to an unknown mean and Choi et al. (2006) extend this to update
both mean and variance of normally distributed demand.

A situation where a retailer has two instants to order a seasonal product and where the
total order quantity arrives before the selling season is studied in Fisher and Raman
(1996), Gurnani and Tang (1999), Choi et al. (2003), Miltenburg and Pong (2007a), and
Miltenburg and Pong (2007b). These papers resolve the trade-off between early and late
ordering. At the first order instant there is a high uncertainty about the expected de-
mand and a low price uncertainty, while at the second order instant more information is
available about demands, but the purchasing price is larger or subject to higher uncer-
tainty. Donohue (2000) investigates a similar model with a focus on pricing schemes that
coordinate the channel and maximize the total profit.

Although there are some similarities between existing approaches and this paper, there
are two important differences. First, we jointly optimize the initial inventory levels, the
redistribution quantities, and redistribution time instant. Second, our model allows for
parameter updating using a Bayesian approach.



3 Model formulation

3.1 Assumptions and transshipment policies

We consider two retailers who order a single product from a supplier (manufacturer or
distributor) with infinite supply and sell it over a selling season of length 7. Retailers
demand is stochastic and assumed to be independent between both retailers. Further,
demand that cannot be filled from stock is considered lost. We assume that unit pro-
curement costs ¢ and unit sales revenues p are identical for both retailers. For further
simplicity of presentation, the salvage value of units left over at the end of the selling
season is zero. Replenishment lead times from the supplier may be positive, but retailers
place their orders in advance such that products arrive at the beginning of the selling
season.

Due to the short selling season there is no further opportunity for external resupply, but
there is a single time instant where inventories can be redistributed. We assume that
retailers are located close together such that transshipment lead times are negligible. The
additional costs incurred by transshipments are assumed to be negligible too, e.g., due to
a transportation contract with a logistics service provider. Since retailers can share their
inventories, it has to be determined when and how many units to transship. As fashion
customers are not willing to wait for a product in case of a stockout, we consider proactive
transshipment policies. We assume that transshipments are only allowed once within the
selling period and distinguish two policies with respect to the timing of redistribution.

For the FLEX-policy the transshipment instant is not fixed in advance. Since the trans-
shipment time is assumed to be negligible the best theoretical instant for stock transfer is
the first moment when a customer arrives at a retailer with zero stock. However, fashion
retailers may not observe lost sales when shelves are empty, since not all customers are
willing to contact a shop assistant. Therefore, we assume redistribution to take place when
the inventory level of a retailer reaches zero. In this situation the transshipment instant
is a random variable Ty. If no redistribution takes place we set Ty = T and therefore,
Ty € [0,T]. In this situation the decision process involves choosing the initial inventory
levels Sy, Sy and at Ty how much inventory to redistribute.

One disadvantage of the FLEX policy is the uncertainty with respect to the timing of the
transshipments that might result in planning difficulties if e.g. transportation capacities
have to be reserved in advance. Therefore, retailers may prefer to know before the selling
season when transshipments will take place. For this purpose we investigate the FIX-
policy where the transshipment instant ¢y is fixed and known to the retailers prior to the
selling season when initial ordering decisions take place. In this case we determine the
optimal division of the selling season, because early stock transfers may lead to imbalance
at the end of the selling season, resulting in lost sales, while late transshipments may lead
to lost sales before redistribution takes place. The decision variables in this situation are
the initial inventory levels S, Ss, the redistribution time ty as well as the quantity to be
redistributed in response to observed demand.



3.2 Demand model

Representative for fashion demand processes there are two sources of uncertainty. First,
there is an inherent demand uncertainty, meaning that even if the mean demand is known,
there are unpredictable fluctuations. This is reflected by the assumption that demand at
retailer ¢ follows a Poisson Process with parameter )\; if mean demand is known. Further,
there is uncertainty with respect to the value of the parameter )\;. We assume that the
prior information regarding \; follows a gamma distribution with parameters «; > 0 and
0B; > 0 and density
Zqz‘xai—le—ﬁix

foupi(T) = T Tl (1)

where I'(a) is the Gamma function defined as I'(ar) = [;° 2 'e™* dxz. Thus, the expected
value F[)\;] and variance VAR[)\;] are given as:

Q;

VAR[\] (2)

Ea

It follows that unconditional demand D;(¢) during a time interval with length ¢ is negative

binomial with parameters «; and ﬁﬁ+ -, and corresponding expected value and variance are
«; Q; Q;

E[D;(t)] = —t,  VAR[Di(t)] = =t + —5t*. 3

[Di(t)] 5. [Di(t)] A (3)

The first term of the variance in (3) reflects the variance with respect to the inherent de-
mand uncertainty while the second term is induced by the uncertainty about the demand
parameter. While the inherent demand uncertainty is exogenous to our model and cannot
be influenced, we study the situation where retailers collect information and use actual
point-of-sales data to update the probability distributions for the redistribution decision
at time ty. A retailer ¢ observing demand d; can update his probability distribution fol-
lowing a Bayesian approach. The resulting posterior distribution for the parameter \;
is again a gamma but with new parameters «; + d; and §; 4+ ty and the unconditional
demand for the remaining time of the selling season is distributed according to a negative

binomial distribution with parameters a; + d; and %

3.3 Objective functions

The objective is to maximize the expected profit during the selling season for the total
supply chain under centralized information and decision making. Decisions take place on
two stages. For a given transshipment policy the initial inventory levels S; have to be de-
termined for both retailers at the first stage. At the second stage the optimal rebalancing
of remaining inventories, as to maximize the expected revenues over the remaining selling
season, has to be identified.

In order to formulate the expected profit we use the following notation. Let S; be the
initial inventory level of retailer ¢ and r;(m) the share retailer i gets from redistributing
a total of m units at ty. Further, let D} = D;(to | \;) and D? = Dy(T — to | \;) denote
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retailer ¢ demand for a given value of \; prior and after a given redistribution time instant
to respectively. The expectation taken over a random variable X is denoted as Ex[-] and
T = Maz(0,z). Further, for notational convenience, let A = (A1, A\2) and D' = (D1, D3).

For the situation with a fixed transshipment time instant ¢y the expected profit for given
initial inventory levels S; and a rebalancing policy r;(m) is stated in the following.

> Eppe lmin{D}, S;} + min {D?; T (Z(Sj - Djl.)+> }” (4)

i=1 Jj=1

2
pix = —c Z S; + pEy

1=1

Let m;(x,t) denote the expected sales quantity of retailer ¢ during a period of length ¢
with an initial inventory level of x. Then the expected profit can be characterized by
initial procurement costs and sales price times expected sales quantities before and after

the redistribution of stock.
2 2
ZT{'Z‘ (TZ' (Z(SJ — D]l>+> ,T — to)]
i=1 j=1

Expected sales of retailer ¢ before the redistribution can easily be computed, since demand
before the transshipment moment ¢, is negative binomially distributed with parameters

) Bi
o; and Fitte

S to) = me{d S}(aﬂLd ) (@fitO)ai (5:’1;:0)6[' ®)

Note that expected sales of retailer ¢ after the redistribution of stock are dependent on
the demand process of both retailers before redistribution. For given first period demand
d; of retailer 7 we get

m (r,- (;(S-—d) ) —t0> _

2

3" min {d; <Z<Sj - d»*) } P(DA(T — to) = d|dy) (6)

j=1

2 2
Mprx = —c Z Si+p Z 7;(Si, to) + pEp
— —

where

d+d; i— 1 i 1 T — 1))
P(Di(T—tO):dui):( " Za )(go_-ll—-;) </6+79) ")

which is a negative binomial distribution with parameters a; + d; and gf&ﬁ Then, the
unconditional expected sales of retailer i become

> m (ri (Z(sj - dj)+> T — t0> P(Dy(ty) = dy)P(Ds(to) = dy).

d1=0 da=0 j=1



If there is no possibility to gather information or sales data are not used to update demand

parameters, i.e., the demand probabilities in (6) are not conditioned on observed demands

d;, the decision maker will use a negative binomial distribution with parameters a; and
5 instead of (7) to compute the expected profit.

Bi+T—to
I B\ T—t \*
PIDAT =~ t0) = d) = ( d )(5i+T—t0) <6i+T—to)' ®

Under the transshipment policy FLEX the redistribution instant is determined by the
demand process and therefore uncertain. In this situation the expected profit is formulated
as:

2
Hrrex = —CZ Si

+pZE>\Z. Ep1 p2 [min{Dil, S;} + min {D?;r,- <Z(Sj — Djl.)+) }]” (9)

i=1 j=1

E,

with only the two initial inventory levels .S; as decision variables.

3.4 Optimal decisions

The optimal redistribution decision at ¢y only depends on the remaining time to sell
products and the available total inventory and is the same for policy FLEX and FIX.
Let m denote the total inventory in the system at ¢, available for redistribution. We are
interested in the optimal distribution of the m units among the two retailers to maximize
the expected revenues in the remaining selling season of length 7" — #3. The optimal
transshipment quantities are the solution of the following problem:

max p(m(rl(m),T—to)+7r2(r2(m),T—t0)> (10)

ri(m),ra2(m)

st ri(m) +ra(m) =m

The optimal redistribution decisions are characterized in the following proposition.

Proposition 1: Suppose m units have to be allocated at time ty to two retailers. Then the
optimal allocation, maximizing the expected revenues during the time interval of length
T —ty as given in (10) has to satisfy the following inequalities:

P(DYT —t0) <vi(m)) > P(DE(T —t) < rjm) —1) (11)

P(Dg(T —t) < r;(m)) > p(D%(T —ty) < 7 (m) — 1) (12)

Proof: Using ro(m) = m — ri(m) we can express ma(ro(m), T — to) as a function of ri(m)



only:

II(ri(m)) = pmi(ri(m), T —to) + pra(m —ri(m), T —to) (13)

ri(m)—1

= pri(m)P(DYT —to) > ri(m)) +p Y P(DYUT —to) = j)

=0
m—r1(m)—1
+p(m —r1(m))P(D(T — to) = m — ri(m)) +p P(D(T —to) = j)
=0
An optimal inventory allocation 77(m) has to satisfy
(ry(m)) = (ry(m) +1) =0 and  II(r{(m)) = I(ri(m) —1) = 0 (14)

Inserting (13) into (14) and simplifying terms yields (11) and (12).

Note that the inequalities (11) and (12) are the discrete equivalent to both retailers having
equal non-stockout probabilities. In case of no parameter update the decision maker
assumes that demand of the second subperiod with length T — ¢, is negative binomially
distributed with parameters o; and 7 Jf[i_ 7o) while in the other case the second parameter
of the distribution will depend on the observed demand (7).

Since it is in general not possible to obtain analytical expressions for the optimal share

*

r¥(m), the optimization problems

max HF]X(Sl,SQ,t()) and maXHFLEx(Sl,SQ) (15)

S1,S2,to 51,52

are solved numerically. For policy FIX we restrict ourselves to the optimization of
the embedded version of the problem and only allow for discrete values of t5 € M :=
{0,t1,t2,...,7T |0 <t; <T}. Then the optimal initial inventory levels (S} (t;), S5(t;)) are
determined for each value of the transshipment moment ¢; € M and the overall optimum
is computed using

(S:,S5,85) = argmax{HFIX(Sf(ti),S;(ti),ti)\tiEM}
Wpx = Hrix (57,55, )

In case of no updates for the FIX as well as for the FLEX policy the search domain can be
bounded to & = {(51,52) | 0 < 57 < 5750 < 5y < Spews}. SPevs denotes the optimal
initial inventory level of retailer i if no redistribution takes place (newsvendor solution).
The optimization is done by complete enumeration.

In view of the characteristics of the objective function of the FLEX policy, we determine
the expected profit for given inventory levels (Si, Se) by simulation. We use 150000 periods
to obtain simulation statistics. All numerical results are obtained using MATLAB.

4 Computational experiments

In the previous section, we presented four different supply chain strategies depending on
the choice of the transshipment strategy and the decision whether to update or not (see
Table 1). Here we evaluate each of these across a variety of parameters.

9



Information
Update | No update
Transshipment | FIX I II

Strategy FLEX I11 v

Table 1: Strategies

For the following comparisons, there is a difference between the objective functions used
for obtaining the required policy parameters and for policy evaluation. The quality of a
solution of initial inventory levels and a redistribution policy is evaluated by (4) for FIX
and by (9) for FLEX for both information cases. However, depending on whether initial
demands are used for an update or not, the initial inventory levels and the redistribution
policy are either determined using (7) (update) or (8) (no update).

4.1 Experimental design

We employ a numerical study to investigate the impact of key parameters on the perfor-
mance of the strategies, where the following parameter values are chosen. In all problem
instances the sales revenue for an item is normalized to p = 100 and the planning horizon
is normalized to T' = 1. To create our test cases we distinguish between five different fac-
tors: newsvendor ratio v = ==, expected demand rate \; for each retailer, and coefficient

P )
of variation of demand parameter uncertainty for each retailer c,(\) = ‘;?/\}]%[A]). For

each factor we allow for three different levels (low, middle, high) shown in Table 2. We
use a full factorial design and eliminate the symmetric examples leading to 135 problem
instances for each strategy.

factor | low | middle | high
vy 0.2 0.5 0.8
A 5 20 50
A2 5 20 50

(M) | 01| 05 1

(o) | 0.1 ] 05 1

Table 2: Parameter values

In the following we summarize the results and investigate the value of flexibility, the value
of information, and the optimal time instant for redistribution.

4.2 The value of flexibility

To assess the value of flexibility we compare policy FLEX and FIX and we separately
analyze the cases without updating (II and IV) and with updating (I and III). The relative
difference A; for the expected profit of policy FIX (II};x ;) and policy FLEX (11} x5y ;)

10



under optimal decision making is computed for each instance ¢

|| ; LI
A= TEEXE HIRG 109,135 (16)
HFIX,Z’

Table 3 summarizes the results for the minimum, average, and maximum relative cost
difference over all problem instances.

N
. 1
Amin = Il’lilll{Ai}, Aav = N ; Aiu Amam = Il’lZaX{AZ} (17>
no update update

factor | level | factor | level | A,in JA YAV Ain JA AN,

low | 0.16% | 12.49% | 115.90% | 0.42% | 3.94% | 20.65%
0 middle | 0.00% | 1.48% | 4.79% | 0.09% | 1.53% | 6.14%
high | 0.03% | 0.44% | 2.59% | 0.01% | 0.58% | 2.39%

low low | 0.54% | 11.43% | 115.90% | 1.22% | 6.05% | 20.65%

low middle | 0.00% | 4.13% | 31.86% | 0.28% | 2.14% | 9.34%

Al low o high | 0.01% | 5.05% | 56.78% | 0.01% | 0.89% | 4.56%
middle middle | 0.04% | 3.70% | 30.33% | 0.09% | 1.86% | 4.74%
middle high | 0.02% | 2.91% | 33.65% | 0.02% | 1.23% | 5.30%

high high | 0.03% | 2.78% | 20.66% | 0.08% | 0.82% | 2.11%

low low | 0.09% | 1.52% | 8.19% | 0.06% | 1.54% | 8.89%

low middle | 0.00% | 1.37% | 8.23% | 0.04% | 1.33% | 8.36%

co(M) low co(Na) high | 0.01% | 2.90% | 24.35% | 0.01% | 1.66% | 9.26%
! middle | middle | 0.03% | 2.88% | 11.53% | 0.05% | 2.18% | 10.98%
middle high | 0.02% | 5.44% | 27.70% | 0.02% | 2.15% | 12.43%

high high | 0.04% | 17.07% | 115.90% | 0.22% | 3.69% | 20.65%

Table 3: Relative profit difference policy FLEX - policy FIX

While the average percentage improvement in maximal profit that results from flexibility
is 4.1% in case of no parameter updates and 2.0% when information about sales data is
used, the FLEX policy can be more beneficial in cases with low profit margins and high
parameter or demand uncertainty. On the one hand this can be explained by low initial
inventory levels due to low profit margins resulting in the necessity of a careful allocation
of scarce inventory. On the other hand the variance of the redistribution time of the
FLEX policy increases with increasing parameter uncertainty and, therefore, fixing the
redistribution moment in advance is limiting the scope of actions and lowering profits.
In general, sales can be increased and left over inventory can be decreased by applying a
flexible transshipment policy. A comparison of the savings with respect to the use of infor-
mation reveals smaller differences when parameters are updated before the redistribution
decision is made.

We are also interested in how flexibility influences the ordering decisions. Therefore, we
compute the relative difference of the optimal initial inventory levels as

A ((ST,FLEX + Sik,FLEX) - (SiFIX + S;FIX)) (18)
. (ST,FIX + SS,FIX) .
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A comparison between the initial inventory levels of strategy I and III does not reveal
a significant difference in the initial inventory levels (in 75% of the instances there is
no change at all and the average relative difference is less than 1%). However, in case
of no parameter update less inventory investment is needed if retailers apply a flexible
transshipment policy (on average a reduction of 5% is achieved). We have to mention
that these differences are not uniformly spread over all 135 examples, and they are larger
in cases with high demand and/or parameter uncertainty. To demonstrate this effect we
present the impact of the factors (c¢,(A1),c,(A2)) on the relative difference of the initial
inventory levels in box and whisker plots, illustrating median, lower and upper quartile
of the data. Figure 1 captures the effect for identical retailers while Figure 2 is devoted
to situations with non-identical retailers.
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Figure 1: identical retailers Figure 2: non-identical retailers
Impact of parameter uncertainty Impact of parameter uncertainty

Based on our numerical examples we conclude that substantial savings in inventory in-
vestments can be obtained by adding flexibility to the system in situations with high
parameter uncertainty and no possibility of using additional demand information.

4.3 The value of information update

In order to quantify the value of information we compute for policy FIX (FLEX) the
relative difference o between the optimal profit in case of updates and when no parameter
updates are used similar as in (16).

The first observation from Table 4 concerns the relative benefit of parameter updates
and is in line with previous work. Using sales data to update demand parameters always
pays. The average improvement in case of a fixed transshipment point is about 9% and for
flexible transshipment moments 5.6%, because a less flexible system covers a wider scope
for improvements resulting in higher benefits of additional information. The numerical
results confirm what is intuitively expected: the value of information increases with in-
creasing parameter uncertainty. Additionally, significant improvements can be observed
in the low profit margin case where left over inventory as well as inventory investment
decreases by using information. An illustration of the impact of the newsvendor ratio on
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FIX FLEX

factor | level Omin Oaw Omaz Omin Oav Omax
low | 0.00% | 21.63% | 128.82% | 0.00% | 11.53% | 50.58%
y middle | 0.03% | 3.80% | 14.33% | 0.00% | 3.85% | 15.46%
high | 0.00% | 1.31% 5.61% | 0.00% | 1.44% | 6.23%
low low | 0.00% | 11.69% | 128.82% | 0.34% | 6.00% | 27.87%
low middle | 0.00% | 8.34% | 63.12% | 0.00% | 5.93% | 39.51%
A low o high | 0.00% | 11.33% | 99.23% | 0.00% | 5.98% | 50.58%
middle middle | 0.00% | 7.90% | 63.60% | 0.14% | 5.66% | 31.47%
middle high | 0.00% | 6.94% | 60.81% | 0.00% | 5.00% | 26.70%
high high | 0.00% | 7.34% | 53.45% | 0.00% | 5.03% | 28.68%
low low | 0.00% | 0.15% 1.31% | 0.00% | 0.16% | 0.97%
low middle | 0.06% | 1.49% 8.61% | 0.00% | 1.45% | 6.03%
() low (o) high | 0.23% | 7.23% | 66.36% | 0.43% | 5.656% | 37.37%
v middle | middle | 0.69% | 3.59% 9.30% | 0.69% | 2.87% | 6.83%
middle high | 0.10% | 12.40% | 84.42% | 0.97% | 8.47% | 50.58%
high high | 1.55% | 31.43% | 128.82% | 1.66% | 15.67% | 35.25%

Table 4: Relative profit differences update - no-update

the relative percentage difference of inventory investment is shown in Figure 3 for policy
FIX and in Figure 4 for the FLEX policy, respectively.
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Impact of newsvendor ratio

For lower newsvendor ratios, the initial inventory levels can be reduced under parameter
updates while for larger profit margins it is more likely that the inventory levels increase,
because more sales are expected.

The optimal procurement decisions depend on the parameter uncertainty. The following
Figures illustrate the relation between the parameter uncertainty and the relative differ-
ence of initial inventory levels induced by updating demand parameters during the selling
season. Figure 5 and 6 show the results for a fixed transshipment moment.
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It can be seen that for a fixed transshipment time the use of point of sales data for the
transshipment decisions result on average to reduced initial inventory levels compared to a
strategy where no updates are done. This effect is increasing with increasing uncertainty.
Parameter updates under a flexible transshipment policy increase replenishment order
sizes as can be seen in Figure 7 and 8.
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4.4 Optimal timing of redistribution

We determine the optimal rebalancing moment ¢y for policy FIX without parameter up-
dates (Strategy II) as well as for Strategy I where information is gathered and used to
compute the optimal redistribution of stocks. Table 5 reports on the average (¢ 4y), the
minimum (tg min), and the maximum (¢ ,u..) values over all instances.

For both strategies the optimal transshipment time is at least half of the selling sea-
son. Additionally, redistribution is done later if sales data is used to update demand
parameters, because more time is needed to gather reliable information. While the opti-
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no-update update

factor level tO,min tO,av tO,mam tO,min tO,av tO,max
low 0.50 | 0.59 | 0.75 | 0.50 | 0.62 | 0.80
~y middle | 0.50 | 0.61 | 0.80 | 0.50 | 0.65 | 0.85
high 0.50 | 0.61 | 0.80 | 0.50 | 0.66 | 0.85

low low | 0.50 | 0.57 | 0.65 | 0.50 | 0.57 | 0.65

low middle | 0.50 | 0.60 | 0.75 | 0.50 | 0.64 | 0.75

" low \, | high | 050 |0.60 | 0.75 | 0.50 | 0.69 | 0.85
middle middle | 0.55 | 0.61| 0.75 | 0.50 | 0.62 | 0.75
middle high | 0.50 | 0.61| 0.80 | 0.50 | 0.67 | 0.80

high high | 0.55 | 0.62| 0.80 | 0.50 | 0.64 | 0.80

low low | 0.55 |0.73| 0.80 | 0.55 | 0.74 | 0.85

low middle | 0.55 | 0.64 | 0.75 | 0.55 | 0.72 | 0.80

(A1) low co(Ao) high | 0.50 | 0.59 | 0.70 | 0.50 | 0.65 | 0.80

middle middle | 0.55 | 0.58 | 0.60 | 0.55 | 0.63 | 0.75
middle high | 0.50 | 0.55| 0.60 | 0.50 | 0.58 | 0.70
high high | 0.50 | 0.54 | 0.55 | 0.50 | 0.53 | 0.70

Table 5: Optimal redistribution time (policy FIX)

mal transshipment times for both strategies do not differ significantly in case of identical
retailers, this does not hold for non-identical retailers.

The experiments also reveal that the optimal redistribution instant depends on the newsven-
dor ratio v. With larger values of + the optimal initial inventory levels are higher and
the transshipment of goods can be postponed to a later moment in time. As a result the
optimal value of ¢y is increasing with increasing ~.

Parameter uncertainty has a large impact on the optimal redistribution time. With in-
creasing uncertainty the moment of the reallocation of stock should be set earlier inde-
pendent of the policy used with respect to information. Since optimal initial inventory
levels are robust against parameter uncertainty, they are not optimal for a specific demand
pattern. Therefore, an early correction moment improves system performance.

5 Summary, Outlook and Extension

Quick response strategies with demand learning opportunities and inventory pooling
through lateral transshipments are widely discussed and well analyzed supply chain man-
agement concepts to deal with highly uncertain fashion retail inventory management
problems. In this paper we integrate these two research streams and investigate trans-
shipments as an enabler of exploiting demand learning opportunities. We have illustrated
the basic trade-offs and the numerical results give advice for practical rules of thumb on
how to set the redistribution time instant and where parameter updating and redistri-
bution timing flexibility pay off the most. Note that the reported benefits come on top
of the general benefits of transshipments over independent newsvendor stocking policies.
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The results show that an optimal redistribution will on average not take place at the
middle of the selling season nor close to the end of it. Further, we saw that redistribution
flexibility and parameter updating are somewhat substitute strategies, i.e., the presence
of one instruments reduces the benefits of the other. The most promising improvements
were achieved for instances with low newsvendor ratio, low demand values, and high pa-
rameter uncertainty. The differences in inventory levels between different strategies were
only minor, implying that it is more important to do the right parameter update and
redistribution.

Several simplifying assumptions need to be relaxed to generalize the model in future
research. In the case of multiple (> 2) retailers, an exhaustive parameter search will
no longer be applicable and therefore good approximations and effective heuristics for
setting the inventory and timing parameters are required. Further, other demand models
than the Poisson, e.g., the normal distribution, should be considered, however with the
burden to have more than one uncertain parameter and requiring more complex parameter
updating. Another limiting assumption which might not hold in general are negligible
transshipment times and costs. Then, the option to withhold stock centrally for a later
allocation instead of an immediate push of all units becomes a viable option to exploit
the benefits of learning that needs to be traded-off with transshipments.
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