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A Compound Poisson EOQ Model for
Perishable Items with Intermittent High and

Low Demand Periods

Onno Boxma∗, David Perry†, Wolfgang Stadje‡ and Shelley Zacks§,

Abstract

We consider a stochastic EOQ-type model, with demand operating in a two-state
random environment. This environment alternates between exponentially distributed
periods of high demand and generally distributed periods of low demand. The inven-
tory level starts at some level q, and decreases according to different compound Poisson
processes during the periods of high demand and of low demand. The inventory level
is refilled to level q when level 0 is hit or when an expiration date is reached, whichever
comes first. We determine various performance measures of interest, like the distribu-
tion of the time until refill, the expected amount of discarded material and of material
held (inventory), and the expected values of various kinds of shortages. For a given
cost/revenue structure, we can thus determine the long-run average profit.

Keywords: EOQ model; Perishable inventories; Outdatings; Unsatisfied demands;
Regenerative process; Compound Poisson process

1 Introduction

Consider a stochastic EOQ (Economic Order Quantity) model in which demand occurs

in a two-state random environment. This environment alternates between periods of high

demand and periods of low demand according to a continuous-time semi-Markov process.

The demand is represented by a compound Poisson process {YH(t), t ≥ 0} during high

demand periods and another compound Poisson process {YL(t), t ≥ 0} during low demand
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periods. We assume that the mean increment per time unit during high demand periods is

higher than during low demand periods, but this assumption is not necessary for the analysis.

The high demand periods and the low demand periods alternate according to an alternating

renewal process as follows: the high demand periods are independent and exponentially

distributed random variables with rate µ and the low demand periods are i.i.d. random

variables with some distribution G.

We denote by Q = {Q(t) : t ≥ 0}, with Q(0) = 0, the cumulative inventory demand

process. Q initially increases according to YH, subsequently according to YL, etc. We

assume that the goods under consideration are perishable, with a fixed expiration date.

At some time t0, the outdating or expiration time of the perishable goods, the remaining

inventory is discarded and the buffer is instantaneously refilled with fresh perishable goods

up to level q (all goods of the same batch have common shelf life). It is possible that the

demand already reaches q before the expiration date t0. In that case, an order of size q

is placed (with negligible lead time), with the proviso that, if level zero is reached during

a period of low demand, the buffer is refilled at the end of that low demand period. In

either case, the buffer content process X(t) := q − Q(t) now stochastically repeats itself,

again starting at level q with a period of high demand. Thus the buffer content process is a

regenerative process whose cycles start at moments of replenishments. In Remark 3 below we

comment on the assumption to postpone the order until the begin of the next high demand

period.

A controller might wish to maximize the long-run average profit, by controlling the order

quantity q. Accordingly, he would wish to select the optimal q so as to properly balance

revenues and costs. Revenues are earned by selling units. The costs are composed of setup

costs, which are incurred each time an order is placed, holding costs, the costs for discarded

units (outdating) and the costs for unsatisfied demand. We return to this in Section 8.

Remark 1. The two-state random environment model reflects situations in which the de-
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mand rate for a certain commodity undergoes periodically recurring changes. The demands

for many goods change according to changes in the interest rate or due to fashion or other

recurring seasonal/external effects. Models including a multi-state random environment can

be suitable for such situations; the two-state case presented in this article could serve as a

first approximation.

The rationale behind having exponentially distributed high demand periods is that low

demand periods may represent some form of recession, whose starting times (in first approx-

imation) may form a Poisson process. This yields exponentially distributed high demand

periods. Recessions within recessions may give rise to extended low demand periods; it seems

less natural to assume that low demand periods are exponentially distributed.

We determine various performance measures of interest, such as the distribution of the time

until either shortage occurs or items are being discarded, the expected amount of discarded

material and of material held (inventory), and the expectations of various kinds of shortage.

That would allow one to analyze the following cost optimization problem: given the profit of

selling one unit of stock, and given setup costs, holding costs, costs for discarding outdated

units and costs for unsatisfied demand, choose q so as to maximize the long-run average

profit. The study of this optimization problem does not fall in the scope of the present

paper, but in Section 8 we indicate how it can be tackled numerically.

This is a companion paper of [4]. The latter paper considers a stochastic fluid EOQ

model with a similar underlying semi-Markov process, the key difference to the present

model being that demand there is constant, with a high demand rate βH during high de-

mand periods and a demand rate βL < βH during low demand periods. We also refer to

[4] for an extensive literature review. The case of compound Poisson demand was intro-

duced in [2], but without a random environment. See also the surveys [6, 9, 13, 14, 17] on

Perishable Inventory Systems (PIS). Our paper is closest to the subject area of [9], which

3



focuses on the stochastic analysis of PIS that operate under certain heuristic control policies.

According to [9] continuous review inventory models can be classified into three categories:

those without fixed ordering cost or lead times, those without fixed ordering cost having

positive lead times, and those with fixed ordering cost (typically with zero lead times).

The first category was originated by Graves [7], who assumed that items are continuously

produced and perish after a deterministic time, and that demand follows a compound Poisson

process with either a single-unit or an exponential demand at each arrival. The second

category goes back to Pal [15], who investigated the performance of an (S − 1, S) control

policy. The third category, originated by Weiss [18], is of relevance to our model; [5], [10],

[11], [12] and [16] made significant contributions to models in this category. In particular,

Lian, Liu and Neuts [11] consider discrete demand for items and perishability times that are

either fixed (and known) or follow a phase-type distribution.

A large variety of inventory models is presented in detail in the monograph [19]. The

stochastic models are based on point processes to represent the demand arrivals in a random

environment. The fluid systems in [19] are deterministic EOQ models with the classical

extensions such as planned backorders, limited capacity, quantity discounts, and imperfect

quality. In the deterministic setting, time-varying demands are considered also, but without

multiple order quantities.

Remark 2. If we let, in our compound Poisson model, the arrival rates tend to infinity,

and take exponential demand sizes with rates that also go to infinity, such that the average

increase rate equals βH during high demand periods and βL during low demand periods,

then in the limit one arrives at the fluid EOQ model that was studied in [4]. Actually, both

the fluid EOQ model of [4] and the compound Poisson EOQ model of the present paper are

special cases of an EOQ model that alternates between two different non-decreasing Lévy

demand processes. It would be interesting to provide an analysis for that, more general and
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more complicated, model.

The paper is organized as follows. Section 2 contains a detailed model description. We

study the distribution of the total time in (0, t) of high demand periods in Section 3. In

Section 4 we use this to determine the distribution of Q(t) and of the time until either

complete stock depletion or stock discarding. In Section 5 we consider the expected amount

of material discarded (because the deadline expires) and the expected amount of material

held. Section 6 is devoted to determining the expected length of an inventory cycle; the

mean shortages are derived in Section 7. Combining the various results from Sections 3-7

enables us to determine the expected profit per time unit. In Section 8 we present numerical

examples, evaluating the formulae for cost functionals and exploring the effect of several

parameters on the cost function.

2 The Model

Consider an inventory system filled with perishable items, which have to be discarded after

t0 time units. The demand follows intermittent periods of high demand (HD) followed by

low demand (LD). Let {Hi, i = 1, 2, . . .} and {Li, i ≥ 1} denote two independent sequences

of i.i.d. positive random variables, representing the lengths of the HD-periods and of the

LD-periods, respectively. The intermittent sequence of high and low demand periods are

then represented by the alternating renewal process associated to {H1, L1, H2, L2, . . .}. We

denote by HD the union of all high demand periods. In the present paper we assume that

Hi ∼ Expo(µ) (exponential distribution with mean 1/µ) while the Li have a general common

absolutely continuous distribution G, with density g.

To describe the demand process we need compound Poisson processes (CPP(λ, F ))

(2.1) Y (t) =

N(t)∑
n=0

Xn, X0 ≡ 0,

where {N(t), t ≥ 0} is an ordinary Poisson process with intensity λ and {Xn, n ≥ 1} is
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a sequence of i.i.d. positive random variables with common distribution function F and

independent of {N(t)} . We denote by Y
(i)
H (t), i ≥ 1, independent processes of the type

CPP(λH , FH) giving the total quantity demanded during the i-th HD-period (where t is the

time elapsed since the beginning of that period). Similarly, let Y
(i)
L (t), i ≥ 1, be independent

processes of type CPP(λL, FL), also independent from the Y
(i)
H (t), giving the total quantity

demanded during the first time units of the i-th LD-period. Of course the pairs (λH , FH)

and (λL, FL) of intensities and distribution functions can be different. Let Q(t) denote the

total demand up to time t. Formally, let M(t) be the number of completed HD-periods in

(0, t). Then Q(t) = Y
(1)
H (t) if M(t) = 0, while if M(t) ≥ 1 and t ∈ HD,

Q(t) =

M(t)∑
i=1

[Y
(i)
H (Hi) + Y

(i)
L (Li)] + Y

(M(t)+1)
H

(
t−

M(t)∑
i=1

[Hi + Li]
)

and if M(t) ≥ 1, t ∈ (0,∞)\HD,

Q(t) =

M(t)−1∑
i=1

[Y
(i)
H (Hi) + Y

(i)
L (Li)] + Y

(M(t))
H (HM(t))

+ Y
(M(t))
L

(
t−

M(t)−1∑
i=1

[Hi + Li]−HM(t)

)
.

In Figure 1 we display a possible sample path of Q(t).

q

t0L1

t

Q(t)

H1 H2

Q(t )0

Y (t)H

(1)

Y (t)L

(1)

Y (t)H

(2)

Figure 1. A possible sample path of Q(t)

In the present illustration the total demand at t0, Q(t0), is smaller than q. The quantity
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discarded is q − Q(t0). q is the amount of material replenished; i.e. the stock level at any

replenishment time.

Define the stopping times

(2.2) τ = inf{t > 0 : Q(t) = q},

and

(2.3) τ ∗ = min{τ, t0}.

τ ∗ is the instant of complete stock depletion or stock discarding. Stock replenishment takes

place at τ ∗, if τ ∗ is in an HD-period. If τ ∗ falls in an LD-period, replenishment is deferred

till the end of this LD-period. Accordingly, the inventory cycle has length

(2.4) C =


τ ∗, if τ ∗ ∈ HD

τ ∗ +R, if τ ∗ /∈ HD

where R is the remaining time, after τ ∗, in LD.

Remark 3. The above control policy guarantees that the cycle always starts with an HD-

period. The following example shows that it is often natural to wait for the beginning of

the next high demand period before ordering. HD-periods will typically be periods in which

trade is relatively brisk. If the holding costs are relatively high compared to the costs of

unsatisfied demand, entrepreneurs will not start new initiatives during LD-periods, since if

they place orders during LD-periods the content level will stochastically increase and the

holding cost component will cause the long-run average costs to go up. If they wait till the

beginning of the next HD-period, the costs due to lost sales are low and the holding costs

will also be low, since the content level will be depleted quickly. Hence in this case it may

be worthwhile to pay the costs of unsatisfied demands by waiting with the content at level

0 rather than placing an order and for a long time paying considerable holding costs while

the content level is near its maximum q.
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Let W (t) denote the total time in (0, t) spent in HD-periods, i.e.,

(2.5) W (t) =

∫ t

0

1{s∈HD}(s)ds.

Since Y
(i)
L (t) and Y

(i)
H (t), i = 1, 2, . . ., are independent stochastic copies of Lévy processes

and independent of the process W (t), the strong Markov property yields the distributional

equality

(2.6) Q(t) =d YH(W (t)) + YL(t−W (t)),

where YH(t) = Y
(1)
H (t) and YL(t) = Y

(1)
L (t). In the following sections we present the dis-

tribution of W (t), Q(t), τ ∗, R, the expected quantity of discarded material ED(q; t0) =

q − EQ(τ ∗), and the expected total holding quantity.

3 The Distribution of W (t)

For w > 0, let N∗(w) = max{n ≥ 0 :
n∑
j=0

Hj ≤ w}, H0 ≡ 0. Since {Hj} are Expo(µ),

{N∗(w), w ≥ 0} is an ordinary Poisson process, with intensity µ. Consider the CPP(µ,G)

given by

(3.1) Y ∗(w) =

N∗(w)∑
n=0

Ln, L0 ≡ 0.

The c.d.f. of Y ∗(w) is

(3.2) H∗(y;w) =
∞∑
n=0

p(n;µw)G(n)(y),

where p(n; η) = e−ηηn/n! denotes the Poisson p.d.f. with mean η. Notice that H∗(0;w) =

e−µw (atom of (3.2)). We denote by h∗(y;w) the p.d.f. of Y ∗(w), for 0 < y <∞, namely:

(3.3) h∗(y;w) =
∞∑
n=1

p(n;µw)g(n)(y).

Upon reflection (see Figure 2) we realize that W (t) is the stopping time

(3.4) W (t) = inf{w > 0 : Y ∗(w) ≥ t− w}.
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t

t

L1

L2

L2

L3L3

R

w

Y(w)

Case( )ii
Case( )i

H1

H2

H3

W(t)  W(t)

Figure 2. The Process Y ∗(w) and W (t)

Since Y ∗(w) is non-decreasing with probability 1, (3.4) yields, for 0 < w < t,

(3.5) P{W (t) > w} = H∗(t− w;w);

also

(3.6) P{W (t) = t} = e−µt.

As shown in Figure 2, if W (t) = w and Y ∗(w) > t − w, the alternating renewal process

(ARP) is at an LD-period at t; and if Y ∗(w) = t− w the ARP is at an HD-period at t.

The p.d.f. of W (t), on (0, t), is ψW (t)(w; t) = − d

dw
H∗(t− w;w), which is

(3.7)

ψW (t)(w; t) = µe−µw + µ

∞∑
n=1

(p(n;µw)− p(n− 1;µw))G(n)(t− w)

+
∞∑
n=1

p(n;µw)g(n)(t− w), 0 < w < t.

Thus the density of W (t) can be written as a sum of two components, i.e. ψW (t)(w; t) =

ψ
(LD)
W (t)(w; t) + ψ

(HD)
W (t) (w; t) where

(3.8) ψ
(LD)
W (t)(w; t) = µe−µw + µ

∞∑
n=0

(p(n;µw)− p(n− 1;µw))G(n)(t− w)

and

(3.9) ψ
(HD)
W (t) (w; t) = h∗(t− w;w).

9



From the Bayes theorem we obtain

(3.10) P{t ∈ LD | W (t) = w} =
ψ

(LD)
W (t)(w; t)

ψW (t)(w; t)
, 0 < w < t.

4 The Distribution of Q(t) and τ ∗

Let H(i)(y; t) and h(i)(y, t) be the c.d.f. and p.d.f. of Yi(t), i ∈ {L,H}. These are

(4.1) H(i)(y; t) =
∞∑
n=0

p(n;λit)F
(n)
i (y), y ≥ 0,

and

(4.2) h(i)(y; t) =
∞∑
n=1

p(n;λit)f
(n)
i (y), y > 0.

The conditional c.d.f. of YH(W (t)), given {W (t) = w}, 0 ≤ w ≤ t, is H(H)(y;w), and that

of YL(t−W (t)) is H(L)(y; t− w).

4.1 Distribution of Q(t)

The conditional distribution of Q(t), given W (t) = w is, according to (2.6),

(4.3)

HQ(y;w, t) = I(y = 0, w < t)e−λHw−λL(t−w)

+ I(0 < y, 0 < w < t)[e−λHwH(L)(y; t− w)

+

∫ y

0

h(H)(x;w)H(L)(y − x; t− w)dx]

+ I(w = t)e−µtH(H)(y; t).

Notice that the first term of (4.3) is P{Q(t) = 0 | W (t) = w}.

The corresponding conditional density of Q(t), for 0 < y, is for W (t) = w,

(4.4)
hQ(y;w, t) = e−λHwh(L)(y; t− w) + e−λL(t−w)h(H)(y;w)

+

∫ y

0

h(H)(x;w)h(L)(y − x; t− w)dx.

We obtain
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Theorem 4.1. The c.d.f. of Q(t) is

(4.5) H∗Q(y; t) = e−µtH(H)(y; t) +

∫ t

0

ψW (t)(w; t)HQ(y;w, t)dw.

The corresponding density is, for y > 0,

(4.6) h∗Q(y; t) = e−µth(H)(y; t) +

∫ t

0

ψW (t)(w; t)hQ(y;w, t)dw.

The m-th moment of the truncated cumulative demand Qq(t) = min(q,Q(t)) is

(4.7) E{Qm
q (t)} = qm −m

∫ q

0

xm−1H∗Q(x; t)dx, m ≥ 1.

�

4.2 The Distribution of τ ∗

Since Q(t) is a non-decreasing process we have

(4.8) P{τ ∗ > t} = H∗Q(q; t), 0 < t < t0

and

(4.9) P{τ ∗ = t0} = H∗Q(q; t0).

According to (4.3) and (4.5),

(4.10)

H∗Q(q; t) = e−µtH(H)(q; t)

+

∫ t

0

ψW (t)(w; t)

[
e−λHwH(L)(q; t− w)

+

∫ q

0

h(H)(x;w)H(L)(q − x; t− w)dx

]
dw.

Let pτ∗(t; q) denote the density of τ ∗, for 0 < t < t0. Since pτ∗(t; q) = − d

dt
P{τ ∗ > t}, for

0 < t < t0, inserting (4.3) yields, for 0 < t < t0,

(4.11)

pτ∗(t; q) = µe−µtH(H)(q; t) + e−µt
(
− ∂

∂t
H(H)(q; t)

)
+

∫ t

0

(
− ∂

∂t
ψW (t)(w; t)

)
HQ(q;w, t)dw

+

∫ t

0

ψW (w; t)

(
− ∂

∂t
HQ(q;w, t)

)
dw.
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Since
d

dt
G(n)(t− w) = g(n)(t− w) and

(4.12)
d

dt
g(n)(t− w) =

∫ t−w

0

g(n−1)(x)
d

dt
g(t− w − x)dx

we obtain

Lemma 4.1.

(4.13)

∂

∂t
ψW (t)(w; t) = µ

∞∑
n=1

(p(n;µw)− p(n− 1;µw)) ·

· g(n)(t− w) +
∞∑
n=1

p(n;µw)

(
d

dt
g(n)(t− w)

)
.

�

As an example, if G(t) = 1− e−ζt, t ≥ 0 (exponential case), then g(n)(t) = ζp(n− 1; ζt)

and

(4.14)

− ∂

∂t
ψW (t)(w; t) = µζ

∞∑
n=1

(p(n− 1;µw)− p(n;µw))p(n− 1; ζ(t− w))

− ζ2

∞∑
n=1

p(n;µw)(p(n− 2; ζ(t− w))− p(n− 1; ζ(t− w))),

where p(−1; ·) ≡ 0.

We derive now a formula for
∂

∂t
HQ(y;w, t). We start with

Lemma 4.2. For y > 0, if H(y; t) is the c.d.f. of a CPP(λ, F ), then

(4.15) − ∂

∂t
H(y; t) = λe−λtF̄ (y) + λ

∫ y

0

h(x; t)F̄ (y − x)dx,

where h(x; t) is the corresponding p.d.f. and F̄ (·) = 1− F (·).

Proof. For the CPP(λ, F ),

H(y; t) =
∞∑
n=0

p(n;λt)F (n)(y),

and

h(y; t) =
∞∑
n=1

p(n;λt)f (n)(y).
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Thus,

(4.16)

− ∂

∂t
H(y; t) =

∞∑
n=0

(
− ∂

∂t
p(n;λt)

)
F (n)(y)

= λe−λt + λ

∞∑
n=1

(p(n;λt)− p(n− 1;λt))F (n)(y)

= λ
∞∑
n=0

p(n;λt)F (n)(y)− λ
∞∑
n=0

p(n;λt)F (n+1)(y)

= λe−λtF̄ (y) + λ

∞∑
n=1

p(n;λt)[F (n)(y)− F (n+1)(y)].

Moreover

(4.17)

F (n)(y)− F (n+1)(y) =

∫ y

0

f (n)(x)(1− F (y − x))dx

=

∫ y

0

f (n)(x)F̄ (y − x)dx.

Substituting (4.17) in (4.16) we get (4.15).

Remark 4. A probabilistic interpretation of (4.15) is readily obtained when one realizes the

following. H(y; t) not only is the probability that the CPP(λ, F ) at t is below y, but also

the probability that a crossing of level y has only taken place after t. Minus the derivative

of the latter probability gives the density of the crossing time of level y, which is easily seen

to be the righthand side of (4.15).

We use this lemma in the following derivation. First, according to (4.15)

(4.18) − ∂

∂t
H(H)(q; t) = λHe

−λH tF̄H(q) + λH

∫ q

0

h(H)(x; t)F̄H(q − x)dx.

Moreover, by (4.10)

(4.19) − ∂

∂t
H(L)(q; t− w) = λLe

−λL(t−w)F̄L(q) + λL

∫ q

0

h(L)(u; t− w)F̄L(q − u)du.

Collecting terms we get, for w < t,
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Lemma 4.3. For 0 < w < t < t0

(4.20)

− ∂

∂t
HQ(q;w, t) = λLe

−λHw−λL(t−w)F̄L(q)

+ λLe
−λHw

∫ q

0

h(L)(x; t− w)F̄L(q − x)dx

+ λLe
−λL(t−w)

∫ q

0

h(H)(x;w)F̄L(q − x)dx

+ λL

∫ q

0

h(H)(x;w)

∫ q−x

0

h(L)(u; t− w)F̄L(q − x− u)du dx.

�

An explicit formula for pτ∗(t; q) is obtained by substituting (4.13), (4.18) and (4.20) into

(4.11).

Theorem 4.2. The m-th moment of τ ∗ is

(4.21) E{(τ ∗)m} = m

∫ t0

0

tm−1H∗Q(q; t)dt, m = 1, 2, . . .

Proof.

(4.22) E{(τ ∗)m} = tm0 P{τ ∗ = t0}+

∫ t−0

0

tmdP{τ ∗ ≤ t}.

Substituting tm = m

∫ t

0

ym−1dy in the second term of (4.22) we get, after changing the order

of integration,

(4.23) E{(τ ∗)m} = tm0 P{τ ∗ = t0}+m

∫ t0

0

ym−1

∫ t0

y

dP{τ ∗ ≤ t}dy.

Notice that

(4.24)

∫ t0

y

dP{τ ∗ ≤ t} = P{τ ∗ < t0} − P{τ ∗ ≤ y}

= (−(1− P{τ ∗ < t0}) + 1− P{τ ∗ ≤ y}

= −P{τ ∗ = t0}+H∗Q(q; y).

Substituting (4.24) in (4.23) we get (4.21).

From the above theorem we get, as a special case,

(4.25) E{τ ∗} =

∫ t0

0

H∗Q(q; t)dt.

Notice that E{τ ∗} is an increasing function of q with a limit t0.
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5 The Expected Amount of Discarded Material and

The Expected Total Amount of Material Held

Material is discarded only if Q(t0) < q, which is the case when τ ∗ = t0.

Theorem 5.1. The expected amount of discarded material is

(5.1) E{D(q)} =

∫ q

0

H∗Q(x; t0)dx.

Proof.

(5.2) E{D(q)} =

∫ q

0

P{waste at t0 > q − x}dx =

∫ q

0

H∗Q(q − x; t0)dx =

∫ q

0

H∗Q(x; t0)dx.

The expected total amount held during an inventory cycle is

(5.3)

E{T (τ ∗)} = qt0P{Q(t0) = 0}

+

∫ t0

0

pτ∗(t; q)

∫ t

0

E{q −Q(s) | τ ∗ = t}ds dt

+

∫ q

0

h∗Q(y; t0)

∫ t0

0

E{q −Q(s) | Q(t0) = y}dy ds.

In order to compute (5.3) we have to develop formulae for E{Q(s) | τ ∗ = t} when 0 < t < t0,

and for E{Q(s) | Q(t0) = y} for 0 < s < t0. Notice that

(5.4)

∫ t0

0

pτ∗(t; q)

∫ t

0

q ds dt+

∫ q

0

h∗Q(y; t0)

∫ t0

0

q ds dy = qE{τ ∗}.

The conditional expectation of Q(s), given τ ∗ = t, for s < t < t0 is

(5.5) E{Q(s) | τ ∗ = t} =

∫ q

0

yh∗Q(y; s)h∗Q(q − y; t− s)dy∫ q

0

h∗Q(y; s)h∗Q(q − y; t− s)dy
.

Similarly, for 0 < s < t0

(5.6) E{Q(s) | Q(t0) = y} =

∫ y

0

xh∗Q(x; s)h∗Q(y − x; t0 − s)dx∫ y

0

h∗Q(x; s)h∗Q(y − x; t0 − s)dx
.

These functions are substituted in (5.3) to obtain the expected total amount held, E{T (τ ∗)}.
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6 The Expected Length of an Inventory Cycle

The inventory cycles are the periods between replenishing epochs. If τ ∗ ∈ HD, replenishing is

done at τ ∗. On the other hand, if τ ∗ ∈ LD period, replenishing takes place at the beginning

of the next HD-period. That is, if C denotes the length of an inventory cycle then

(6.1) C =


τ ∗, if τ ∗ ∈ HD

τ ∗ +R, if τ ∗ ∈ LD,

where R is the remaining length of the LD-period, after stopping. The expected length of

an inventory cycle is thus

(6.2) E{C} = E{τ ∗}+ E{R, τ ∗ ∈ LD}.

We have to derive a formula for E{R, τ ∗ ∈ LD}.

Generally, for a renewal process
{
Vi
}∞
i=1

, if G is the c.d.f. of V , then the remaining length

of the last renewal cycle, at time t, has the c.d.f. (see p. 109 of [8])

(6.3) FR(x; t) = G(t+ x)−
∫ t

0

Ḡ(t+ x− y)m(y)dy,

where Ḡ(·) = 1−G(·) and m(y) is the renewal density

(6.4) m(y) =
∞∑
n=1

g(n)(y), y > 0.

Of course, if G is exponential with rate ζ, one has m(y) ≡ ζ and it is immediately verified

that FR(x; t) is also exponential with rate ζ.

In the ARP, the conditional distribution of R, given {t ∈ LD} and {W (t) = w} is

(6.5) P{R ≤ x | t ∈ LD,W (t) = w} = FR(x; t− w).

Accordingly,

(6.6)

E{R | t ∈ LD,W (t) = w} =

∫ ∞
0

F̄R(x; t− w)dx

=

∫ ∞
0

[
Ḡ(t+ x− w) +

∫ t−w

0

Ḡ(t+ x− w − y)m(y)dy

]
dx.

Finally, we obtain from (4.7) and (6.6),
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Theorem 6.1.

(6.7)

E{R, τ ∗ ∈ LD} =

∫ t0

0

(∫ t

0

E{R | t ∈ LD,W (t) = w} ·

· ψ(LD)
W (t)(w; t) · hQ(q;w, t)dw

)
dt

+

∫ t0

0

E{R | t0 ∈ LD,W (t0) = w}HQ(q;w, t0)ψ
(LD)
W (t0)(w, t0)dw.

7 Mean Shortages

There are three kinds of shortages in the present problem

(i) First kind of shortage, Sh1, is the one when τ ∗ < t0 and τ ∗ ∈ HD. In this case

(7.1) Sh1 = (Q(τ ∗)− q)I(τ ∗ < t0, τ
∗ ∈ HD).

(ii) Second kind of shortage occurs when τ ∗ < t0 and τ ∗ ∈ LD. In this case

(7.2) Sh2 = (Q(τ ∗)− q + YL(R))I(τ ∗ < t0, τ
∗ ∈ LD).

(iii) The third kind of shortage occurs when τ ∗ = t0 and τ ∗ ∈ LD. In this case

(7.3) Sh3 = YL(R)I(τ ∗ = t0 ∈ LD).

Theorem 7.1. The expected value of Sh3 is

(7.4) E{Sh3} = λLξLE{R, τ ∗ = t0 ∈ LD},

where E{R, τ ∗ = t0 ∈ LD} is the second term on the right hand side of (6.7), and ξL =∫∞
0
xdFH(x).

Proof. First, since the process YL(t) is conditionally independent of W (t),

(7.5) E{YL(R) | R} = λLξLR.

Accordingly

(7.6)
E{YL(R)I(τ ∗ = t0 ∈ LD)} = λLξLE{R, τ ∗ = t0 ∈ LD}

= λLξL

∫ t0

0

E{R | t0 ∈ LD,W (t0) = w}HQ(q;w, t0)ψ
(LD)
W (t)(w; t0)dw.
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We develop now the formula for E{Sh1} and E{Sh2}. Recall that Q(τ ∗) − q when

W (τ ∗) = w, is the overshoot of YH(w) at {τ ∗ ∈ HD}. The joint density of τ ∗ and S =

Q(τ ∗)− q, given W (t) = w and {τ ∗ ∈ HD} is given in (7.7).

Let hQ(y;w, t) =
d

dy
HQ(y;w, t). Then, with fH (fL) denoting the density of FH (FL),

(7.7)
pτ∗,S(t, s | τ ∗ ∈ HD,W (t) = w) = λHe

−λHw−λL(t−w)fH(q + s)

+ λH

∫ q

0

hQ(y;w, t)fH(q + s− y)dy.

Lemma 7.1.

(7.8)

∫ ∞
0

sfH(q + s)ds =

∫ ∞
q

F̄H(u)du.

Proof.

(7.9)

∫ ∞
0

sfH(q + s)ds =

∫ ∞
q

(u− q)fH(u)du =

∫ ∞
q

fH(u)

∫ q

z

dydu =

∫ ∞
q

F̄H(u)du.

Thus,

(7.10)

E{S | τ ∗ ∈ HD,W (t) = w} = λHe
−λHw−λL(t−w)

∫ ∞
q

F̄H(u)du

+ λH

∫ q

0

hQ(y;w, t)

∫ ∞
q−y

F̄H(u)dudy.

Finally, integrating (7.10) with respect to W (t) and t we get

Theorem 7.2.

(7.11)

E{Sh1} = E{SI{τ ∗ ∈ HD}}

=

[∫ ∞
q

F̄H(u)du

] [
λH

λH + µ
(1− e−(λH+µ)t0)

+ λH

∫ t0

0

∫ t

0

e−λHw−λL(t−w)ψ
(HD)
W (t) (w; t)dwdt

]
+ λH

∫ q

0

(∫ t0

0

∫ t

0

hQ(y;w, t)ψ
(HD)
W (t) (w; t)dwdt

)
·

·
(∫ ∞

q−y
F̄H(u)du

)
dy.
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Similarly we get

Theorem 7.3.

(7.12)

E{Sh2} = λL

(∫ ∞
q

F̄L(u)du

)
·

·
∫ t0

0

∫ t

0

e−λHw−λL(t−w)ψ
(LD)
W (t)(w, t)dwdt

+ λL

∫ q

0

(∫ t0

0

∫ t

0

hQ(y;w, t)ψ
(LD)
W (t)(w, t)dwdt

)
·

·
(∫ ∞

q−y
F̄L(u)du

)
dy

+ λLξL

∫ t0

0

∫ t

0

E{R | t ∈ LD,W (t) = w}ψ(LD)
W (t)(w; t)dwdt.

8 Cost Functionals for Exponential Distributions and

Numerical Examples

In the present section we specialize the formulae for the various cost functionals assuming

that

G(t) = 1− e−ζt, t ≥ 0

Fi(t) = 1− e−κit, t ≥ 0,

where κi =
1

ξi
, i ∈ {L,H}. The main purposes of the section are to show how the formulae

for the various key performance indicators simplify in this case, and how one may evaluate

them numerically. At the end of the section we provide some tables with numerical values of

cost functionals. In principle, one may thus perform optimization; e.g., one may determine

the q value that maximizes profit. That is outside the scope of the present paper; we

refer the interested reader to [4], where considerable attention has been given to the profit

optimization problem in the fluid demand case.

The c.d.f. of Yi(t) is

(8.1) H(i)(y; t) =
∞∑
j=0

p(j;κiy)P (j;λit), i = L,H
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and

(8.2) H∗(y; t) =
∞∑
j=0

p(j; ζy)P (j;µt).

Lemma 8.1. The p.d.f. of H∗(y, t) is for y > 0

(8.3) h∗(y, t) = ζ
∞∑
j=0

p(j; ζy)p(j + 1;µt).

Proof.

h∗(y; t) =
d

dy
H∗(y; t)

= ζ

[
−
∞∑
j=0

p(j; ζy)P (j;µt) +
∞∑
j=1

p(j − 1; ζy)P (j;µt)

]

= ζ

[
∞∑
j=0

p(j; ζy)(P (j + 1;µt)− P (j;µt))

]
.

This implies (8.3).

Notice that the p.d.f. of H(i)(y; t) is similarly, for y > 0,

h(i)(y; t) = κi

∞∑
j=0

p(j;κiy)p(j + 1;λit), i = L,H.

The densities of W (t) at HD- and LD-periods are given in the next lemma.

Lemma 8.2.

(8.4)

ψ
(HD)
W (t) (w; t) = h∗(t− w;w)

= ζ

∞∑
j=0

p(j; ζ(t− w))p(j + 1;µw).

(8.5) ψ
(LD)
W (t)(w; t) = µ

∞∑
n=0

p(n;µw)p(n; ζ(t− w)).

Proof.

ψ
(LD)
W (t)(w; t) = ψW (t)(w; t)− ψ(HD)

W (t) (w; t).
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Moreover,

ψW (t)(w; t) = − d

dw
H∗(t− w;w)

= − d

dw

∞∑
j=0

p(j; ζ(t− w))P (j;µw)

= ζ
∞∑
j=0

p(j; ζ(t− w))p(j + 1;µw)

+ µ
∞∑
j=0

p(j; ζ(t− w))p(j;µw).

An important function is H∗Q(y; t) given by (4.5). For numerical computations it is

convenient to use numerical integration to evaluate H∗Q(y; t). For example

(8.6)

∫ t

0

e−λHwHL(y; t− w)ψW (t)(w; t)dw

= t

∫ 1

0

e−λH tzHL(y; t(1− z))ψW (t)(tz; t)dz

∼= t
8∑
i=1

e−λH tziHL(y; t(1− zi))ψW (t)(tzi; t) · wi,

where zi and wi are the abscissas and weight factors of the Gaussian integration (see p. 921

of [1]).

In the following table we present the values of H∗Q(y; t) for various values of y, at t = 10,

λH = 1.5, λL = 1.0, κH = 0.5, κL = 1, µ = 1, ζ = 2.

Table 8.1. Values of H∗Q(y; 10)

y H∗Q(y, 10) y H∗Q(y; 10)

4 0.00267 24 0.56143

8 0.02677 28 0.70666

12 0.09970 32 0.81713

16 0.22877 36 0.89294

20 0.39346 40 0.94071
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For a system with q = 30 and t0 = 20, the survival function of τ ∗, i.e., P{τ ∗ > t} =

H∗Q(30; t) is displayed in Table 8.2 for the above values of λH , λL etc.

Table 8.2. P{τ ∗ > t}

t 5 10 12 15 20

P (τ ∗ > t) 0.9837 0.7665 0.6036 0.3559 0.0968

The expected value of τ ∗, E(τ ∗) =

∫ 20

0

H∗Q(30; t)dt = 13.31. Also P{τ ∗ = t0} = 0.0968.

The median of τ ∗ is τ ∗0.5 = 13.26. The expected amount of discarded material is E{D(30)} =∫ 30

0

H∗Q(x; 20)dx = 9.3473.

Since G(t) = 1− e−ζt, t ≥ 0, R ∼ Expo(ζ), independently of τ ∗. Thus, for E{Sh3},

(8.7) E{R, τ ∗ = t0 ∈ LD} =
1

ζ
P{τ ∗ = t0 ∈ LD},

and

(8.8) P{τ ∗ = t0 ∈ LD} =

∫ t0

0

HQ(q;w, t0)ψ
(LD)
W (t0)(w; t0)dw.

For the above system, with t0 = 20, q = 30, λH = 1.5, λL = 1, κH = 0.5, κL = 1, µ = 1,

ζ = 2 we get P{τ ∗ = 20 ∈ LD} = 0.03431, and E{Sh3} = 0.01716.

For Sh1 we have

(8.9)

E{Sh1 | τ ∗ = t ∈ HD} =
λH
κH

e−κHq

(
1

λH + µ
(1− e−(λH+µ)t0)

+

∫ t0

0

∫ t

0

e−λHw−λL(t−w)ψ
(HD)
W (t) (w; t)dwdt

)
+
λH
κH

∫ q

0

e−κH(q−y)
(∫ t0

0

∫ t

0

hQ(y;w, t)ψ
(HD)
W (t) (w; t)dwdt

)
dy.

Finally

(8.10) E{Sh1} =

∫ t0

0

E{Sh1 | τ ∗ = t ∈ HD}P{τ ∗ = t ∈ HD}dt.

For example, for a system with t0 = 20, q = 30, λH = 1.5, λL = 1, κH = 0.5, κL = 1, µ = 1,

ζ = 2 we get E{Sh1} = 0.37398. In a similar manner we compute E{Sh2} using eq. (7.12).
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We get E{Sh2} = 0.28667. Finally, according to (5.3), the expected total material held is

E{T (τ ∗)} = 245.037.

In the following table we present a few values of E{Q(s) | τ ∗ = t} for the case of λH = 5,

λL = 2, κH = 1/6, κL = 1/5, µ = 0.1, ζ = 0.2, t = 15 and q = 350, computed according to

(5.5).

Table 8.3

s 2 4 6 8 10 12 14 15

E{Q(s) | τ ∗ = t} 41.42 86.87 136.44 188.10 238.56 286.14 328.88 350.00

In the following table we present the values of E{τ ∗}, E{R, τ ∗ ∈ LD}, E {Sh} (which

is defined as the sum of the three shortage terms E{Sh1}, E{Sh2}, and E{Sh3}), E{D(q)}

and E{T (τ ∗)} for various q values. The parameters are those of Table 8.3.

Table 8.4

q E{τ ∗} E{R, τ ∗ ∈ LD} E{Sh} E{D(q)} E{T (τ ∗)}

300 12.66 0.1109 9.005 0.618 1955.51

350 14.72 0.2632 8.998 2.057 2664.45

400 16.66 0.5105 9.297 5.354 3457.77

450 18.47 0.8576 9.643 11.736 4342.10

500 20.05 1.2833 10.949 22.563 5424.51

A reasonable objective function is the long-run average net profit per time unit, which is

given by

(8.11) O(q) :=
cpq −K − cdE{D(q)} − cshE{Sh} − chE{T (τ ∗)}

E{C}
.

Here cp are the earnings per item, K the set-up costs per cycle, and cd, csh and ch are the

costs of a discarded unit, the costs for shortage of one unit, and the costs of holding the

buffer content. It should be noted that, if not all items are sold, the profit from selling in one

cycle is less than cpq; however, that is taken into account by the D(q) term. We compute the

expected profit per cycle for the parameters of Table 8.3, when the cost values are cp = 5,
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K = 10, cd = 10, csh = 2, and varying values of ch. These are presented in the following

table.

Table 8.5

q ch = 0 ch = 0.1 ch = 0.2 ch = 0.3 ch = 0.4 ch = 0.5

300 114.78 99.47 84.15 68.84 53.52 38.22

350 113.56 95.77 77.99 60.21 42.42 24.64

400 112.86 92.72 72.58 52.44 32.31 12.17

450 108.83 86.36 63.89 41.43 18.96 -3.50

500 105.12 79.69 54.26 28.83 3.41 -22.00
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