

Checking property preservation of refining transformations for
model-driven development
Citation for published version (APA):
Engelen, L. J. P., & Wijs, A. J. (2012). Checking property preservation of refining transformations for model-
driven development. (Computer science reports; Vol. 1208). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/7c380ba8-483d-4a6c-9121-cdb3922fa202

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

Checking Property Preservation of Refining Transformations

For Model-Driven Development

Luc Engelen and Anton Wijs

12/08

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 12-08
Eindhoven, April 2012

Checking Property Preservation of Refining
Transformations for Model-Driven Development

Luc Engelen and Anton Wijs

Technische Universiteit Eindhoven, P.O. Box 513
5600 MB Eindhoven, The Netherlands
{L.J.P.Engelen,A.J.Wijs}@tue.nl

Abstract. In Model-Driven Software Development, a software product
is created through iteratively refined modelling. It is crucial that this
process preserves certain desirable properties of the initial model. How-
ever, checking this is increasingly difficult as the models are increasingly
more refined. We propose an incremental model checking technique to
determine the preservation of safety and liveness properties in models of
concurrent systems with respect to changes applied on individual pro-
cesses, formalised as transformations of Labelled Transition Systems. The
preservation check involves checking bisimilarity between transformed
and new behaviour, and never involves reexploring unchanged behaviour.
We prove its correctness and demonstrate its applicability.

1 Introduction

Model-Driven Software Development (MDSD) [1] entails creating an initial de-
sign, i.e. model, and using this as the starting point for the development of the
implementation. Ideally, MDSD enables deriving source code directly from the
model; however, for that, the model has to be at a sufficiently low abstraction-
level. In practice, systems are typically designed in a top-down manner, since at
the start, many required details are either not yet known, or irrelevant at that
moment. This means that initially, a model is created at a high level of abstrac-
tion, and over time, this model is incrementally refined. To make this process
automatic, the refinement steps are often defined in terms of model transforma-
tions [1].

Model checking (MC) [6] can play a vital role here to ensure that the model
after a transformation still satisfies a given property ϕ. However, employing tra-
ditional techniques would mean completely starting over the whole MC proce-
dure after each transformation step. We propose an MC technique to determine
if a transformation is guaranteed to preserve ϕ. If this is the case, then recheck-
ing can always be avoided, regardless of the model structure. If this is not the
case, then either rechecking should be done, or another transformation should
be defined. This general nature of ϕ-preservation is in line with the idea of trans-
formations as reusable templates. Fig. 1 sketches the refinement of model M1 ,
leading to model Mn through a sequence of refinement steps. When a property
holds for a model, which is indicated by a black checkmark, and this model is

2 L.J.P. Engelen and A.J. Wijs

TnTm+1Tm Mm+1 MnMmM2M1 T1

Fig. 1: Avoiding rechecking intermediate models by checking transformations

transformed by a transformation that preserves this property, which is also in-
dicated by a black checkmark, then the property is guaranteed to hold for the
resulting model. This is established without rechecking the property, which is
indicated by a dashed checkmark. If a transformation is not guaranteed to pre-
serve a property, e.g. Tm , the property needs to be rechecked for the resulting
model.

In this report, models are represented by networks of Labelled Transition
Systems (Ltss) [26], where each Lts describes the potential behaviour of a con-
current process, and synchronisation rules define how those Ltss can synchronise
with each other. Refinement steps are formalised as sets of transformation rules
applicable on process Ltss, defining how process behaviour should be refined.
The results of this report are therefore relevant for any modelling language with
a semantics expressible by networks of Ltss. For the proposed ϕ-preservation
check, the only required information is the synchronisation rules, i.e. the de-
scription of the synchronisation mechanism, and the transformation rules. Fur-
thermore, some reasonable assumptions are made concerning the applicability
of the transformation rules on the process Ltss.

Recently [28], a fragment of the modal µ-calculus [23] was identified, suf-
ficiently expressive to capture the vast majority of practical safety, liveness,
and fairness properties, which is compatible with divergence-sensitive branching
bisimilarity [13], in the sense that two bisimilar systems preserve the same prop-
erties expressed in that fragment. Also, a technique called maximal hiding was
developed, to automatically abstract away all behaviour not relevant for a prop-
erty. We use these results to analyse the definitions of sets of Lts transformation
rules, also in cases where the rules affect process behaviour synchronising with
other processes. The check entails constructing networks of transformation rules
based on their synchronisation dependencies, and checking whether the Ltss
before and after transformation described by these networks are divergence-
sensitive branching bisimilar after maximal hiding.

Contributions. A check for preservation of safety, liveness, and fairness properties
of transformations of concurrent systems is formulated, and we prove it correct.
Both its space and time complexity is proportional to the transformation rules,
and hence shows speedups and reduction of memory use by many orders of
magnitude compared to rechecking a property. To the best of our knowledge, we
are the first to construct such a check.

Paper structure. Sect. 2 discusses related work and Sect. 3 introduces the pre-
liminaries. In Sect. 4, we formalise Lts transformation. Next, in Sect. 5, we
formulate and prove correct the main propositions regarding ϕ-preservation and

Checking Property Preservation of Refining Transformations 3

formulate an extension using divergencies in the model. Experimental results are
given in Sect. 6, and Sect. 7 contains conclusions and pointers to future work.

2 Related Work

The first papers on IMC [36,37] propose techniques to reuse MC results of safety
properties for a given Lts to determine whether it still satisfies the same prop-
erty after some alterations. Large speedups are reported compared to complete
rechecking, but the memory requirements are at least as high, since all states
plus additional bookkeeping per state must reside in memory.

IMC algorithms can be seen as dynamic graph algorithms [11], and in this
context, reachability is an unbounded problem [32], i.e. it cannot be determined
solely based on the applied changes, which was also noted in [36]. Later work
extends IMC to dynamic LTL model checking [8], and [21] reports complexity
results for that problem. Papers on IMC for software models are [9,24,34].

Our work differs from the previously mentioned work as follows: firstly, we
try to answer a slightly different, but no less relevant, IMC problem, which can
be solved with a bounded technique: does a given number of transformation rules
preserve a particular property (safety, liveness, or fairness) in general, given the
synchronisation rules that the model adheres to, i.e. is there no possible network
with such rules satisfying the property that can be altered in a way that the
property no longer holds? Because of this, secondly, we strictly do not reexplore
part of the Lts, but primarily focus on transformations, i.e. changes. Thirdly,
we do not work with flat Ltss, but with networks of Ltss, and changes are
applied to these Ltss, not the resulting network Lts. As such, we can take
into account how the network Lts is composed. Due to this, and how we define
the applicability of transformations, reachability is not an issue for us. Finally,
we use bisimilarity checking in our IMC technique, as opposed to rechecking
the property in changed parts of the Lts. In that sense, work on incremental
bisimulation checking algorithms [35] is also related, but the context is very
different, and our goal is not to maintain global bisimilarity results.

Other work, e.g. [2,4,5], uses compositional model checking [7] concepts, build-
ing a system using previously verified components. When a system does not
consist of multiple components, the approach does not pay off, whereas ours
does.

Graph transformation [19] is obviously related to Lts transformation, but
most work involves graph transformation as a means to express potential be-
haviour of a system, whereas we use it to define refinement steps. In [20], se-
mantics preservation of model transformations is studied for the setting where a
model written in a language X is transformed into a model written in a language
Y . It nicely complements our work, since we consider transformations where the
language remains the same, but the semantics is expected to change (insofar it
is not relevant for the properties).

Monotonically adding functionality, as opposed to refining, is addressed in
e.g. [3]. The focus is on updating property formulae as features are added; it

4 L.J.P. Engelen and A.J. Wijs

could be interesting to see if a similar approach is applicable in our setting to
update properties. Work related to B, e.g. [27], is on strictly refining existing
functionalities. We also support adding new functionality, as long as it is not
relevant for the desired property.

Most related approaches use partial results of an earlier computation to per-
form a new one, thereby focussing on the specific old and new situation. In our
approach, transformations are the primary subject, as it involves determining
whether a transformation is ϕ-preserving in general. If this is the case, then any
model can safely be transformed.

Finally, verification of model transformations has also been studied in the
context of MDSD. Giese et al. relate input and output models when specifying a
transformation, and use a theorem prover to show semantic equivalence between
the input and output of the transformation [12]. A downside of this approach is
that it is not completely automated and thus requires manual labor, whereas our
approach is automated. Instance-based verification of model transformations is
described in [22]. Their approach entails generating a certificate for each model
that is transformed. These certificates are used to show that the model trans-
formation preserves certain properties for the given input model, but cannot be
used to show that properties are preserved for arbitrary input models.

3 Background

Labelled transition system. We express the semantics of a model in a finite-state
Lts, which underlies action-based modelling languages. An Lts G is a tuple
〈SG ,AG , TG , IG〉, where SG is the (finite) set of states, AG is the set of actions
(including the invisible action τ), TG ⊆ SG ×AG × SG is the transition relation,
and IG ⊆ SG the set of initial states.1 Actions in AG are noted a, b, c, etc. A
transition 〈s1, a, s2〉 ∈ TG (also noted s1

a→G s2) means that the system can move
from state s1 to state s2 by performing action a. The reflexive transitive closure
of τ→G is denoted by =⇒ G .

Network of Ltss. A system consisting of a finite number of concurrent processes
can be described by expressing how a number of Ltss interact with each other.
For this, we use the network of Ltss model [26]. Given an integer n > 0, 1..n is
the set of integers ranging from 1 to n. A vector v of size n contains n elements
indexed by 1..n. For i ∈ 1..n, v[i] denotes element i in v.

Definition 1 (Network of Ltss). A network of Ltss M of size n is a pair
(Π,V) where:

– Π is a vector of n (process) Ltss. For each i ∈ 1..n, we write Π[i] =

(Si,Ai, Ti, Ii), and s1
a→i s2 is shorthand for s1

a→Π[i] s2;

1 Usually, Ltss representing potential behaviour of concurrent systems have only one
initial state. Here, we support having multiple initial states to enable representing
transformation rule patterns in terms of Ltss (see Section 4). In all other cases, one
should keep in mind that Ltss are expected to have a single initial state.

Checking Property Preservation of Refining Transformations 5

– V is a finite set of synchronisation rules. A synchronisation rule is a tuple
(t, a), where a is an action label and t is a vector of size n called a syn-
chronisation vector, whose elements are action labels from

⋃
i∈1..nAi and a

special symbol • which does not occur as a label in the Ltss.

Combining the Ltss in Π according to the rules in V in the network M
produces a new Lts. A networkM represents an Lts (SM,AM, TM, IM) where

– IM = {〈sI,1, . . . , sI,n〉 | ∀i ∈ 1..n.sI,i ∈ Ii};
– AM = {a | (t, a) ∈ V};
– SM = S1 × . . .× Sn;
– TM is the smallest transition relation satisfying: (t, a) ∈ V ∧∀i ∈ 1..n.(t[i] =

• ∧ s′[i] = s[i]) ∨ (t[i] 6= • ∧ s[i] t[i]→i s
′[i])⇒ s

a→M s′.

The set of indices active for t is Ac(t) = {i | i ∈ 1..n ∧ t[i] 6= •}, and the
set of actions involved in t is A(t) =

⋃
i∈1..n{t[i]} \ {•}. Let As = {a | ∃(t, b) ∈

Vy.a ∈ A(t) ∧ |Ac(t)| > 1} be the set of actions involved in rules with multiple

processes. With s a→
t

M s′, we denote that t enables s a→M s′.
As explained in [10], the network of Ltss model is very basic, yet very ex-

pressive. Through synchronisation rules, it is possible to model not only inde-
pendent process behaviour and traditional (two-party) synchronising behaviour,
but also non-deterministic and multi-way synchronising behaviour. For example,
consider a network with n = 3 and actions ai ∈ Ai, for i ∈ 1..3. Then, a rule
(〈•, a2, •〉, a2) expresses that a2 can be fired independently in Π[2], and a rule
(〈•, a2, a3〉, a4) expresses that actions a2, a3, if both can be fired simultaneously
in Π[2] and Π[3], respectively, produce a single transition labelled a4, which
therefore models synchronisation of Π[2] and Π[3]. But we can also define a rule
(〈a1, a2, a3〉, a4) expressing multi-way synchronisation of all the process Ltss,
and if we also have a2 ∈ A1 and add a rule (〈a2, •, a3〉, a4), then we may have
states in the network Lts where Π[3] can non-deterministically synchronise with
either Π[1] or Π[2], if both of the latter Ltss can fire a2.

On the left of Fig. 2, a network comprising two process Ltss is shown. The
corresponding network Lts is shown on the right. The synchronisation rules
specify that actions b and d of the processes synchronise and lead to an action e
in the network Lts, that action f can only be fired if it is enabled in both process
Ltss, and that action a of the leftmost process and action c of the rightmost
process lead to actions a and c in the network Lts.

Hiding. For networks of Ltss, we define the hiding operator τH with H ⊆ AM
as follows:

Definition 2 (Hiding). Let A be a set of actions and H ⊆ A. The hiding of
an action a ∈ A w.r.t. H is defined as follows:

τH(a) =

{
a if a 6∈ H
τ if a ∈ H

6 L.J.P. Engelen and A.J. Wijs

5

6

c

7

dffa

0

1

a

2

a

3

a

4

b

a c

a c a

a c a

c
a

1 5

0 5

2 5

3 5

3 6

0 6

1 6

2 6

e

4 7

a

a

f

(<a, ∙ >, a)
(< ∙, c>, c)
(<b, d>, e)
(<f, f>, f)

Fig. 2: A network and its corresponding Lts. Initial states are colored black

The hiding of a networkM = (Π,V) w.r.t. H is defined as follows:

τH(〈Π,V〉) =
〈
Π, {(t, τH(a)) | (t, a) ∈ V}

〉
.

Divergence-sensitive branching bisimilarity. As equivalence relation between
Ltss, we consider divergence-sensitive branching bisimilarity [13,14], which pre-
serves branching-time properties such as inevitable reachability and τ -cycles.

Definition 3 (Divergence-Sensitive Branching Bisimulation). A binary
relation B on SG is a divergence-sensitive branching bisimulation if B is sym-
metric and s B t implies that

– if s a→G s′ then
• either a = τ with s′ B t;
• or t=⇒ G t̂

a→G t′ with s B t̂ and s′ B t′.
– if for all k ≥ 0 and s = s0, sk

τ→G sk+1 then for all ` ≥ 0 and t = t0,
t`

τ→G t`+1 and sk B t` for all k, `.

Two states s and t are divergence-sensitive branching bisimilar, noted s ↔∆
b t,

if there is a divergence-sensitive branching bisimulation B with s B t.

We say that two sets of states S, S′ ⊆ S are divergence-sensitive branching
bisimilar, i.e. S ↔∆

b S′, iff ∀s ∈ S.∃s′ ∈ S′.s ↔∆
b s′ and vice versa. Two Ltss

G1,G2 are divergence-sensitive branching bisimilar, i.e. G1 ↔∆
b G2, iff I1 ↔∆

b I2.
A state s is diverging, noted s ↑, iff an infinite τ -path is reachable from s,

which for finite Ltss means that a τ -cycle is reachable via τ -transitions.
Divergence-sensitive branching bisimilarity is a congruence for networks of

Ltss if they are admissible w.r.t. τ -transitions:

Definition 4 (Network Admissibility). A network M = (Π,V) is called
admissible iff the following holds:

Checking Property Preservation of Refining Transformations 7

1. No synchronisation and renaming: ∀(t, a) ∈ V.t[i] = τ ⇒ Ac(t) =
{i} ∧ a = τ ;

2. No cut: ∃s1, s2 ∈ Si.s1
τ→i s2 ⇒ ∃(t, τ) ∈ V.t[i] = τ .

In the following, we only consider admissible networks.

The modal µ-calculus Ldsbr
µ . In [28], a fragment of the modal µ-calculus, called

Ldsbr
µ , was identified which is fully compatible with the so-called maximal hiding

technique [28] and divergence-sensitive branching bisimilarity. Formulas in Ldsbr
µ

consist of action formulas (noted α) and state formulas (noted ϕ and ψ). The
syntax and semantics of these formulas are defined in Fig. 3.

Action formulas are built over the set of actions by using Boolean connectors
as in Action-based Ctl [29].

Interpretation [[α]]AG of α on the set of actions AG denotes the set of actions
satisfying α. An action a satisfies a formula α (noted a |=AG α) iff a ∈ [[α]]AG . A
transition s1

a→G s2 with a |=AG α is called an α-transition.
State formulas are built from Boolean connectors, the minimal fixed point

operator (µ) defined over propositional variables X belonging to a set X , and
some new operators:

1. The weak possibility modality 〈(ϕ1?.α1)
∗〉ψ, where α1 must capture τ ,

characterises the states having an outgoing sequence of (0 or more) α1-
transitions, whose intermediate states satisfy ϕ1 and whose terminal state
satisfies ψ, and the weak infinite looping operator 〈ϕ1?.α1〉@ characterises
the states having an infinite outgoing sequence of α1-transitions whose
intermediate states satisfy ϕ1. The saturation operator is [ϕ1?.α1] a =
¬ 〈ϕ1?.α1〉@. When ϕ1 of a weak operator is true, it can be omitted.

2. Strong modalities 〈α2〉ϕ and [α2]ϕ = ¬ 〈α2〉 ¬ϕ, where α2 denotes only
visible actions, are restricted syntactically such that they can appear only
after a weak possibility or necessity modality. The intuition is that visible
transitions matched by a strong modality will remain in the Lts after max-
imal hiding and ↔∆

b minimisation, and the transition sequences preceding
them can become invisible or even disappear in the minimised Lts without
affecting the interpretation of the formula, because these sequences are still
captured by the preceding weak modality.

A propositional context ρ : X → 2SG is a partial function mapping proposi-
tional variables to subsets of states. The notation ρ� [U/X] stands for a proposi-
tional context identical to ρ except for variable X, which is mapped to the state
subset U . The interpretation [[ϕ]]G ρ of a state formula on an Lts G and a propo-
sitional context ρ (which assigns a set of states to each propositional variable
occurring free in ϕ) denotes the subset of states satisfying ϕ in that context. The
Boolean connectors are interpreted as usual in terms of set operations. The min-
imal fixed point operator µX.ϕ1 (resp. the maximal fixed point operator νX.ϕ1)
denotes the least (resp. greatest) solution of the equation X = ϕ1 interpreted
over the complete lattice

〈
2SG , ∅,SG ,∩,∪,⊆

〉
.

8 L.J.P. Engelen and A.J. Wijs

State formulas:

ϕ ::= false | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈(ϕ1?.α1)
∗〉ψ | 〈ϕ1?.α1〉@ | X | µX.ϕ1

ψ ::= ϕ | 〈α2〉ϕ | ¬ψ1 | ψ1 ∨ ψ2

where τ ∈ [[α1]]AG and τ 6∈ [[α2]]AG

[[false]]G ρ = ∅
[[¬ϕ1]]G ρ = SG \ [[ϕ1]]G ρ

[[ϕ1 ∨ ϕ2]]G ρ = [[ϕ1]]G ρ ∪ [[ϕ2]]G ρ

[[〈(ϕ1?.α1)
∗〉ψ]]G ρ = {s ∈ SG | ∃m ≥ 0.s = s0 ∧ (∀0 ≤ i < m.si

ai+1→ si+1 ∈ TG
∧ ai+1 ∈ [[α1]]AG ∧ si ∈ [[ϕ1]]G ρ) ∧ sm ∈ [[ψ]]G ρ}

[[〈ϕ1?.α1〉@]]G ρ = {s ∈ SG | s = s0 ∧ ∀i ≥ 0.(si
ai+1→ si+1 ∈ TG ∧ ai+1 ∈ [[α]]AG

∧ si ∈ [[ϕ1]]G ρ)}
[[X]]G ρ = ρ(X)

[[µX.ϕ1]]G ρ =
⋂
{U ⊆ SG | [[ϕ1]]G (ρ� [U/X]) ⊆ U}

[[〈α2〉ϕ]]G ρ = {s ∈ SG | ∃s
a→ s′ ∈ TG .a ∈ [[α2]]AG ∧ s

′ ∈ [[ϕ]]G ρ}

Action formulas:

α ::= a | false | ¬α1 | α1 ∨ α2

[[a]]AG = {a}
[[false]]AG = ∅
[[¬α1]]AG = AG \ [[α1]]AG

[[α1 ∨ α2]]AG = [[α1]]AG ∪ [[α2]]AG

Fig. 3: Syntax and semantics of Ldsbr
µ

The fact that a state s satisfies a closed formula ϕ, i.e. a formula without
free propositional variables, is denoted by s |=G ϕ. Finally, |=G ϕ denotes ∀sI ∈
IG .sI |=G ϕ.

In Ldsbr
µ , it is possible to express safety, liveness, and fairness properties.

For example, from the divergence-sensitive branching bisimilarity point of view,
deadlock states are states leading eventually via τ -transitions to states without
successors:

deadlock = [true∗] [¬τ] false ∧ [τ] a

Maximal hiding. When checking a state formula ϕ on an Lts, some actions can
be hidden (renamed to τ) without disturbing the interpretation of ϕ.

Checking Property Preservation of Refining Transformations 9

Definition 5 (Hiding Set). Let α be an action formula interpreted over a set
of actions AG. The hiding set of α w.r.t. AG is defined as follows:

hAG (α) =

{
[[α]]AG if τ |= α

A \ [[α]]AG if τ 6|= α

The hiding set of a state formula ϕ w.r.t. AG, noted hAG (ϕ), is defined as the
intersection of hAG (α) for all action subformulas α of ϕ.

We denote maximal hiding in an Lts G as τ̃ϕ(G) = τhAG (ϕ)(G). In [28], it
is shown that maximal hiding preserves Ldsbr

µ properties: |=G ϕ ⇐⇒ |=τ̃ϕ(G)
ϕ. As an example, consider the Ldsbr

µ formula below, expressing the inevitable
reachability of a recv action after every send action:

ϕ = [true∗] [send] ([(¬recv)∗]¬deadlock ∧ [¬recv] a)

The subformula stating the inevitable reachability of a recv action is the conjunc-
tion of a weak necessity modality forbidding the occurrence of deadlocks before
a recv action has been reached, and a weak saturation operator forbidding the
presence of cycles not passing through a recv action. When checking ϕ on an Lts,
one can hide hAG (ϕ) = hAG (send)∩hAG (¬recv) = (AG\[[send]]AG)∩[[¬recv]]AG =
(AG \ {send}) ∩ (AG \ {recv}) = AG \ {send , recv}, i.e., all actions other than
send and recv, without changing the interpretation of the formula.

Now we can state the main result about Ldsbr
µ , namely that for closed ϕ, this

fragment is compatible with the ↔∆
b relation.

Proposition 1 (Compatibility with ↔∆
b). Let G = 〈SG ,AG , TG , IG〉 be an

Lts and let s1, s2 ∈ SG such that s1 ↔∆
b s2. Then:

s1 |=G ϕ⇔ s2 |=G ϕ

for any closed state formula ϕ of Ldsbr
µ .

Proof. Given in [28]. 2

This allows reducing an Lts (after maximal hiding) modulo divergence-sensitive
branching bisimilarity before verifying a closed Ldsbr

µ formula. This is done
in [28]. It also allows reasoning about Ltss w.r.t. properties: given a Ldsbr

µ for-
mula ϕ and Ltss G1,G2 with |=G1 ϕ, then if τ̃ϕ(G1)↔∆

b τ̃ϕ(G2), also |=G2 ϕ.

4 Lts Transformations

In this report, models are represented by Ltss and refinement steps are for-
malised as Lts transformations. These transformations are defined by means of
transformation rules:

Definition 6 (Lts transformation rule). An Lts transformation rule r :
Lr 7→ Rr consists of a left pattern Lts Lr = (SLr ,ALr , TLr , ILr) and a right
pattern Lts Rr = (SRr ,ARr , TRr , IRr), with ILr = IRr = (SLr ∩ SRr).

10 L.J.P. Engelen and A.J. Wijs

States SLr ∩ SRr (the glue-states) are all initial and define how Rr should
replace Lr, as all changes are applied relative to them. In graph transformation
terminology, Lts Lr∩Rr would be called the interface.2 We call a rule applicable
on an Lts G iff there exists at least one match mr : Lr 7→ G for which the
following holds:

Definition 7 (Transformation rule match). Let G = (SG ,AG , TG , IG) be an
Lts. A transformation rule r : Lr 7→ Rr has a match mr : Lr 7→ G on G iff mr

is injective and:

1. ∀s1
a→Lr s2.mr(s1)

a→G mr(s2);3

2. ∀s1 ∈ SLr \ SRr , s2 ∈ SG :

– mr(s1)
a→G s2 ⇒ ∃s ∈ SLr .s1

a→ s ∧mr(s) = s2;
– s2

a→G mr(s1)⇒ ∃s ∈ SLr .s
a→ s1 ∧mr(s) = s2.

We will shortly comment on the latter part of this definition, but first, we
define the effect of a match. If a rule r is applicable to G, then the latter can be
transformed as follows:

Definition 8 (Lts transformation). The transformation of an Lts G =
(SG ,AG , TG , IG) according to a rule r : Lr 7→ Rr and a given match mr : Lr 7→ G
is defined as follows: Tmr (G) = (Smr ,Amr , T mr , IG) where

– Smr = (S \ {mr(s) | s ∈ (SLr \ SRr)}) ∪ (SRr \ SLr);
– T mr = (TG ∪ {s1

a→Rr s2 | s1, s2 ∈ (SRr \ SLr)} ∪
{mr(s)

a→G s2 | s ∈ (SLr ∩ SRr) ∧ s2 ∈ (SRr \ SLr) ∧ s
a→Rr s2} ∪

{s1
a→G mr(s) | s ∈ (SLr ∩ SRr) ∧ s1 ∈ (SRr \ SLr) ∧ s1

a→Rr s})
\{s1

a→G s2 | ∃s, s′ ∈ SLr .mr(s) = s1∧mr(s
′) = s2∧{s, s′}∩(SLr\SRr) 6= ∅};

– Amr = {a | ∃s1
a→Tmr (G) s2} ∪ {τ}.

Lts Tmr (G) is also called a direct derivation from G via r. The new set of states
Smr consists of SG without the states matched to by mr that are represented in
SLr \ SRr (the states that are to be removed), and with the states in SRr \
SLr (the newly added states). We assume that the latter states are ‘fresh’ in
Smr . Transitions T mr consist of TG together with the transitions between newly
added states, and between new states and glue-states, but without the transitions
between a removed state and either another removed state or a glue-state (the
Lts on the right in Fig. 4 is an example of a transformation).

Returning to Def. 7, condition 2 expresses the so-called dangling condition. In
graph transformation, an edge is called dangling if exactly one of its connecting
vertices is removed by rule application (e.g., see [20,31,18]). It can be shown
that a direct derivation exists iff mr satisfies the dangling condition [18]. In
our setting, a rule not satisfying the dangling condition may result in reachable
states becoming unreachable through transformation, and this effect cannot be
2 We define G1 ∩ G2 = (S1 ∩ S2,A1 ∩ A2, T1 ∩ T2, I1 ∩ I2).
3 Here, a state s is interpreted as an Lts 〈{s}, ∅, ∅, {s}〉.

Checking Property Preservation of Refining Transformations 11

Fig. 4: Transformation rule matching

determined by just looking at the rule. In Fig. 4, the two smaller Ltss in the
middle connected by an arrow denote a transformation rule. Here, it defines that
any state matched on (ii) should be removed and replaced by a new state ((iv)
in the rule). In the Lts on the left, the left pattern can be matched on {0, 1, 2},
but not on {1, 2, 3}, otherwise applying the rule would make 4 unreachable. The
reason for making all glue-states initial, such as state (iii) in the transformation
rule in Fig. 4, is to ensure that all glue-states are always involved in bisimilarity
checks of rule patterns. This, however, only really starts being necessary when
considering transformations of multiple parties in synchronising behaviour (see
Section 5.3).

We refer with mr(SLr) ⊆ SG to the set of states to which SLr is exactly
matched (they have the same number of elements), and with m−1r to the inverse,
i.e. m−1r (mr(SLr)) = SLr . Finally, m̂r(SLr) refers to the states which relate to
non-glue-states in Lr: m̂r(SLr) = {s ∈ mr(SLr) | m−1r (s) 6∈ SRr}.

Now, we can express the following lemma about transitions between states:

Lemma 1. ∀s ∈ mr(SLr), s′ ∈ SG \mr(SLr).s
a→G s′∨s′

a→G s⇒ s ∈ mr(SLr)\
m̂r(SLr)

Proof. Follows directly from Def. 7 and the fact that mr is an injection. Ac-
cording to Def. 7, for all states s ∈ m̂r(SLr), s′ ∈ SG , if either s a→G s′ or
s′

a→G s, then s′ ∈ mr(SLr). Since here, s′ ∈ SG \mr(SLr), we must have that
s 6∈ m̂r(SLr), therefore s ∈ mr(SLr) \ m̂r(SLr). 2

Lemma 1 directly results from the way we treat dangling edges: if a transition
connects two states, one of which is matched on by r, and one which is not
matched on by r, then the state matched on must be a glue-state; if this was
not the case, then the state would not exist anymore after transformation, but
then the transition would be a dangling edge, contradicting the existence of the
match.

Rule systems. With transformation rules, a rule system Σ = (R, V̂) can be built,
with R a set of transformation rules and V̂ a set of synchronisation rules. In this
report, a rule system is a formal description how given potential behaviour (rep-
resented by an Lts) evolves into other (often more detailed) potential behaviour.

12 L.J.P. Engelen and A.J. Wijs

In that context, we are not interested in all possible interleavings of applying
the transformation rules in a system, and the number of applications should be
finite. For this reason, we assume that rule systems are terminating and conflu-
ent. Let G VR G′ denote the fact that an Lts G′ can be obtained by applying a
rule r ∈ R on one match in Lts G, and let V∗R be the reflexive, transitive closure
of VR. Then, Σ is terminating iff VR is terminating, and Σ is confluent iff the
following holds.

Definition 9 (Confluent rule system). Let Σ = (R, V̂) be a rule system
and G be an Lts. Σ is called confluent iff for all Ltss G1, G2 with G V∗R G1,
G V∗R G2, there exists an Lts G3 such that G1 V∗R G3 and G2 V∗R G3

From graph theory, it is known that for general rule systems, confluence is
undecidable, but it is decidable under certain conditions [25,31]. Here, we ensure
that Σ is terminating and confluent by requiring that (1) for all r ∈ R, action
labels in the right pattern are ‘fresh’, i.e. that ARr ∩ (AG ∪

⋃
r′∈R\{r}ARr′) = ∅

and (2) no part of G matched on by more than one rule is altered, i.e. for all
r1, r2 ∈ R, mr1 , mr2 , let G′ = mr1(Lr1) ∩ mr2(Lr2), then if G′ 6= ∅, we have
G′ ∩ m̂r1(Lr1) = ∅ and G′ ∩ m̂r2(Lr2) = ∅. These conditions ensure that rule
application on one match (1) does not result in new matches, and (2) removes
exactly one match. These conditions can be checked straightforwardly.

For terminating, confluent Σ, applying all r ∈ R as often as possible results
in a particular Lts, independent of the order of rule application. We refer to
that Lts as T+

R (G). Finally, we define the transformation of a network of Ltss.

Definition 10 (Network transformation). Given a network M = (Π,V)
and a rule system Σ = (R, V̂), the transformed network is defined as follows:

TΣ(M) = ({T+
R (G) | G ∈ Π},V ∪ V̂)

5 General ϕ-Preservation Under Transformations

In this section, we show how property preservation of transformations can be
checked by generating networks from rule systems, and comparing the Ltss of
these networks. Fig. 5 gives an overview of the approach.

Generate
Checks

Generate
LTSs

Check
Bisimilarity

Networks
Rule
System

Property

LTSs or

Fig. 5: Checking property preservation by comparing Ltss

First, networks are generated based on the left and right-hand sides of trans-
formation rules. Then, the network Ltss corresponding to these networks are

Checking Property Preservation of Refining Transformations 13

generated, while applying maximal hiding w.r.t. the property at hand. Finally,
property preservation is checked by comparing the network Ltss generated from
left-hand sides of transformation rules with the network Ltss of the correspond-
ing right-hand sides.

5.1 The Setting

Consider a design for a concurrent system, formalised by a network My =
(Πy,Vy) describing an Lts (Sy, Ty,Ay, Iy), with y ∈ N, a property ϕ ∈ Ldsbr

µ ,
and a terminating, confluent rule system Σy formally describing a design step
to a new networkMy+1 = TΣy (My). We call Σy ϕ-preserving iff |=My

ϕ ⇐⇒
|=My+1 ϕ, regardless of the structures of the Ltss My, My+1, as long as Σy
is confluent w.r.t. My. If we know that |=My ϕ and Σy is ϕ-preserving, it
means that ϕ does not need to be rechecked in My+1. Since Ldsbr

µ is compati-
ble with maximal hiding and divergence-sensitive branching bisimilarity, Σy is
ϕ-preserving if τ̃ϕ(My)↔∆

b τ̃ϕ(My+1). In this section, we discuss under which
conditions a rule system implies the bisimilarity of τ̃ϕ(My) and τ̃ϕ(My+1). The
most important condition roughly boils down to checking whether, after some
appropriate rewriting, the left and right patterns of the transformation rules
are divergence-sensitive branching bisimilar after maximal hiding. If this is the
case, then applying the rules does not result in a structurally different network
Lts, given that the rules satisfy the dangling condition; if they do not, state
reachability may be altered through transformation. In Section 5.2, we will first
look at applying a single transformation rule, after which we will consider the
more general case with multiple rules in a rule system in Section 5.3. Without
loss of generality, we assume that each r ∈ Ry has exactly one match to some
Πy[i], and that each Πy[i] is matched on by exactly one r. This is expressed by
indexing the r ∈ Ry; rule ri is matched on Πy[i]. If Ry contains only one rule,
we omit its index. Since Σy is confluent, the results of this section can be lifted
to the more general case where rules may have an arbitrary number of matches.
With this assumption, it can also safely be assumed that all the Ai are disjoint.
If this is not the case, some renaming of actions can resolve this.

5.2 Applying a Single Transformation Rule

Given a rule r : Lr 7→ Rr, let Lrκ be 〈SLr ,ALr ∪ {κs | s ∈ SLr ∩ SRr}, TLr ∪
{〈s, κs, s〉 | s ∈ SLr ∩ SRr}, ILr 〉. The Lts Lrκ equals Lr extended with selfloops
on the glue-states, where each loop is labelled with an action uniquely related
to that state; we assume that the κ-actions are not originally in ALr .4 In a
similar way, Rrκ can be derived from a given Rr, and rκ : Lrκ 7→ Rrκ refers to the
extended rule r.

The κ-selfloops are added to glue-states in the patterns of r to make explicit
that the matches of these states, since they form the interface between the rule
matches and other states in My, My+1, may have outgoing transitions not
4 The Greek word κóλλα means ‘glue’.

14 L.J.P. Engelen and A.J. Wijs

0

2 1

κ0

κ1κ2

ab

0

2 κ2

κ0

a b

1 κ1

Fig. 6: κ-loops ensure 1 6↔∆
b 2

present in the patterns. Without these loops, a divergence-sensitive branching
bisimilarity check of patterns could consider two deadlock states to be bisimilar,
while they are actually different glue-states that are possibly matched on states
with different outgoing transitions not present in the patterns (e.g. see Fig. 6,
with a, b ∈ hAy (ϕ))). In other words, with these extra transitions, we ensure
that Lrκ ↔∆

b Rrκ iff there exists a divergence-sensitive branching bisimulation
where all the glue-states are related to themselves; a glue-state s in Lrκ (or Rrκ)
with selfloop s κs→ s must at least be related to itself in Rrκ (or Lrκ), since it is
the only state where a κs-transition is enabled. So, if there exists a divergence-
sensitive branching bisimulation B with sI,Lrκ B sI,Rrκ , then we know that B is
a divergence-sensitive branching bisimulation with ILr B IRr and {(s, s) | s ∈
SLr ∩ SRr} ⊆ B. This implies the following lemma:

Lemma 2. Let B be a divergence-sensitive branching bisimulation between Lrκ
and Rrκ. Then, the following holds:

∀s ∈ SLr ∩ SRr , s′ ∈ SRr .s B s′ ⇒ (s′=⇒Rrs)

Proof. Since s ∈ SLr ∩SRr , we have s
κs→Lrκ s (and s

κs→Rrκ s). Also, since s B s′,
κs 6= τ and B is a divergence-sensitive branching bisimulation, by Def. 3, there
exist ŝ, s′′ ∈ SRrκ with s′=⇒Rrκ ŝ

κs→Rrκ s
′′. Because s is the only state from which

a κs-transition can be fired, we must have ŝ = s, therefore s′=⇒Rrκs. 2

In the following, we refer with m′r : Rr 7→ Tmr (G) to a match between the
right-hand side of r and Tmr (G), corresponding with a match mr : Lr 7→ G such
that for all glue-states s, we have mr(s) = m′r(s). The functions m−1r

′ and m̂′r
are defined similar to m−1r and m̂r, respectively.

The following proposition directly gives rise to a ϕ-preservation check for rule
systems consisting of a single rule, i.e. systems Σy with Ry = {r}.

Proposition 2. Let G be an Lts, r : Lr 7→ Rr be a transformation rule, and
mr : Lr 7→ G be a match. Now, the following holds:

Lrκ ↔∆
b Rrκ ⇒ G ↔∆

b Tmr (G)

Proof. By definition, we have G ↔∆
b Tmr (G) iff there exists a divergence-sensitive

branching bisimulation C such that IG C ITmr (G). We will show that such a
bisimulation can be constructed.

Checking Property Preservation of Refining Transformations 15

Obviously, G ↔∆
b G, e.g. consider the identity relation B = {(s, s) | s ∈ SG},

which is in fact a strong bisimulation. Furthermore, since Lrκ ↔∆
b Rrκ, there

exists a divergence-sensitive branching bisimulation relation B̂ with ILr B̂ IRr
and {(s, s) | s ∈ SLr ∩ SRr} ⊆ B̂. Now we construct a divergence-sensitive
branching bisimulation C between G and Tmr (G) as follows: C = B′ ∪ B̂′, with
B′ = {(s, s) | (s, s) ∈ B ∧ s ∈ SG \ m̂r(SLr)} and B̂′ = {(mr(s),m

′
r(p)) | (s, p) ∈

B̂}. We show that C is a divergence-sensitive branching bisimulation by proving
that for all (s, p) ∈ C, Def. 3 holds. We distinguish two cases:
(I) (s, p) ∈ B′, hence s = p. Again, we distinguish two cases:

1. s a→G s′. We distinguish two cases:
(a) s′ ∈ SG \ m̂r(SLr), and we have s B′ s and s′ B′ s′;
(b) s′ ∈ m̂r(SLr). By Lemma 1, s ∈ mr(SLr). Then, m−1r (s)

a→Lr
m−1r (s′). Since s B̂′ s, also m−1r (s) B̂ m−1r

′
(s) and either a = τ and

m−1r (s′) B̂ m−1r
′
(s), hence also s′ B̂′ s, or there exist p̂, p′ ∈ SRr with

m−1r
′
(s)=⇒Rr p̂

a→Rr p′ and m−1r (s) B̂ p̂ and m−1r (s′) B̂ p′, hence also
s=⇒ Tmr (G)m

′
r(p̂)

a→Tmr (G) m
′
r(p
′) and s B̂′ m′r(p̂) and s′ B̂′ m′r(p′).

2. s ↑ (there exists an infinite path σ of τ -transitions in G). We show that
such a path also exists in Tmr (G). Let s1, s2, . . . be the sequence of states
in mr(SLr) \ m̂r(SLr) as they appear in σ. For each si, we distinguish two
cases:
(a) There exists an si+1 in the sequence. Then,m−1r (si)=⇒ Lrm−1r (si+1) and

since m−1r (si) B̂ m−1r
′
(si), also m−1r (si+1) B̂ m−1r

′
(si), and by Lemma 2,

m−1r
′
(si)=⇒Rrm−1r

′
(si+1), hence si=⇒ Tmr (G)si+1.

(b) There does not exist an si+1 in the sequence. Then, si ↑ in Lr. Since
si B̂

′ si, also si ↑ in Rr, hence in Tmr (G).

(II) (s, p) ∈ B̂′. We distinguish two cases:

1. s a→G s′. We distinguish two cases:
(a) s′ ∈ SG \mr(SLr). By Lemma 1, s ∈ mr(SLr) \ m̂r(SLr). By Lemma 2,

m−1r
′
(p)=⇒Rrm−1r

′
(s), hence p=⇒ Tmr (G)s, and we have s B′ s and

s′ B′ s′.
(b) s′ ∈ mr(SLr). Then, m−1r (s)

a→Lr m−1r (s′). Since s B̂′ s, also
m−1r (s) B̂ m−1r

′
(s) and either a = τ and m−1r (s′) B̂ m−1r

′
(s), hence

also s′ B̂′ s, or there exist p̂, p′ ∈ SRr with m−1r
′
(s)=⇒Rr p̂

a→Rr p′

and m−1r (s) B̂ p̂ and m−1r (s′) B̂ p′, hence also s=⇒ Tmr (G)m
′
r(p̂)

a→Tmr (G)

m′r(p
′) and s B̂′ m′r(p̂) and s′ B̂′ m′r(p′).

2. s ↑. The proof for case (I).2 is also applicable here. 2

By Props. 1 and 2, if Lrκ ↔∆
b Rrκ, then |=G ϕ ⇐⇒ |=Tmr (G) ϕ. Moreover, due

to the compatibility of Ldsbr
µ with maximal hiding, this also holds if we hide all

actions in hAG (ϕ) and hAmr (ϕ) (note that the κ-actions are not in AG and Amr),
i.e. if τ̃ϕ(Lrκ)↔∆

b τ̃ϕ(Rrκ), then |=G ϕ ⇐⇒ |=Tmr (G) ϕ.

16 L.J.P. Engelen and A.J. Wijs

5.3 Multiple Transformation Rules and Synchronising Behaviour

If a rule system consists of multiple transformation rules, then multiple transfor-
mations can be applied in a single transformation step. To check ϕ-preservation
of such rule systems, we need to take possible synchronisation between dif-
ferent rule patterns into account. For example, consider the network M0 =

(〈A,B〉, {(〈a, b〉, c)}), with A = s1
a→ s2 and B = s3

b→ s4,5 and the rule sys-

tem Σ0 = ({r1, r2}, {(〈a′, b′〉, c)}}) with r1 = (p1
a→ p2) 7→ (p1

a′→ p2) and

r2 = (p3
b→ p4) 7→ (p3

b′→ p4). Note that r1 can be matched on A, and r2 can be
matched on B. The two rules affect two different actions involved in the same
synchronisation rule. Individually, the rules seem to fundamentally change the
system behaviour, but since the rule system also adds the new synchronisation
rule (〈a′, b′〉, c), the final network Lts is equal to the one before transformation.
To incorporate such possible dependencies between rule patterns, we developed
a ϕ-preservation check involving networks of rule patterns.

In this section, we will first discuss some required notations to reason about
combinations of patterns and combinations of states of the different process Ltss
in a network. After that, we will formulate the generalised ϕ-preservation check
and prove it correct.

First of all, remember that we assume that ri is matched on Π[i]. The set
of id’s of process Ltss that potentially can synchronise with behaviour in Lri
is dep(Lri) =

⋃
{Ac(t) | (t, a) ∈ Vy ∧ t[i] ∈ ALri}. This means that j is in

dep(Lri) iff there exists a synchronisation rule (t, a) in Vy such that both i 6= •
and j 6= •, i.e. both i and j are active for that rule, and the behaviour in Π[i]
is matched on by ri. The set of actions of process j on which Lri depends is
AL

ri

dep(j) = {t[j] | (t, a) ∈ Vy ∧ t[i] ∈ ALri ∧ t[j] 6= •}. Say that the set of all
rules applicable on Lri is called F , then the set of all actions

⋃
t∈F {t[j]} \ {•}

constitutes AL
ri

dep(j). Sets dep(Rri) and AR
ri

dep (j) are defined similarly.
When considering transformation rules which affect synchronisation actions,

i.e. involving multiple process Ltss, one quickly realises that in general, one
cannot determine whether a given rule system Σy involving such rules is ϕ-
preserving by just analysing the Lri and Rri of all ri ∈ Ry. However, we prove
that this can be done if Σy has a number of properties w.r.t. synchronising
behaviour inMy, which we together call synchronisation uniformity.

Definition 11 (Synchronisation uniformity). We say that Σy is synchro-
nisation uniform w.r.t.My iff the following holds:

1. ∀a ∈ As.(∃ri ∈ Ry.a ∈ ALri)⇒ ∀s1
a→i s2.s1, s2 ∈ mri(SLri);

2. ∀ri ∈ Ry, j ∈ dep(Lri).ALridep(j) ⊆ ALrj ;
3. ∀(t, a) ∈ V̂y, i ∈ 1..n.t[i] = • ∨ t[i] ∈ ARri

5 For convenience, we consider a transition s
a→ s′ to be shorthand for the Lts

({s, s′}, {a}, {〈s, a, s′〉}, {s}).

Checking Property Preservation of Refining Transformations 17

Condition 1 states that if a transformation rule is applicable to a synchro-
nising transition, then it is applicable to all synchronising transitions with that
label in My. If this is not guaranteed, it becomes very hard to reason about
My+1; it is difficult to determine a priori exactly which transitions in different
process Ltss will be able to synchronise in the network, so predicting the effect
of rewriting e.g. a-transitions in some places, but keeping other a-transitions the
same is as difficult.6 Condition 2 says that all actions that can synchronise with
Lri are also being transformed by Σy. If this does not hold, it becomes hard
to analyse the synchronising behaviour as appearing in transformation patterns,
since some of the involved behaviour is outside their scope. Finally, condition 3
says that each new synchronisation rule (t, a) ∈ V̂y only involves actions from the
Rri of the corresponding ri. This condition is not referred to anymore later on,
but it is crucial to rule out the possibility of transforming merely by introducing
synchronisation rules; e.g. if we define a new synchronisation rule involving ex-
isting actions a, b, and these actions were previously not allowed to synchronise,
then we clearly change the model without actually transforming anything.

In the remainder of this report, we consider Σy to be synchronisation uni-
form w.r.t. My. This may seem a big assumption, but in practice, one tends
to transform synchronising behaviour in a uniform way; usually, synchronising
actions, say a and b, represent communication over some channel. If one wants
to transform this behaviour, i.e. change the details about the communication, it
is natural (1) to do this consistently in all places where a and b occur, and (2)
not only transform e.g. a, but also b to keep both sides in the communication
compatible with each other.

State vectors. A state in Sy (and Sy+1) is a vector s = 〈s[1], . . . , s[n]〉. An
arbitrary s ∈ Sy can have up to n elements that are matched on by some
transformation rule. We denote the set of indices of elements in s matched on
by the corresponding rule with M(s) = {i | s[i] ∈ mri(SLri)}. In a similar way,
M̂(s) = {i | s[i] ∈ m̂ri(SLri)}. Again, note that we assume that if s[i] is matched
on, then it is matched on by rule ri. We will now formulate a number of lemma’s.

Lemma 3. s a→My
s′ ⇒ M̂(s′) ⊆M(s) ∧ M̂(s) ⊆M(s′)

Proof. (M̂(s′) ⊆ M(s)) Let i ∈ M̂(s′), i.e. s′[i] ∈ m̂ri(SLri), so there exists
m̂−1ri (s

′[i]) ∈ SLri \ SRri . Let (t, a) enable s a→My s
′. Either i ∈ Ac(t), then

s[i]
t[i]→i s

′[i] and by Def. 7, there exists an ŝ ∈ SLri with mri(ŝ) = s[i], so
i ∈ M(s), or i 6∈ Ac(t) and s′[i] = s[i]. Then i ∈ M̂(s), so i ∈ M(s). With the
same reasoning, (M̂(s) ⊆M(s′)) holds. 2

The underlying principle making Lemma 3 valid is the way transformation
rules are matched (Def. 7); specifically, dangling edges cannot occur. If state s[i]

6 Note that condition 1 and the fact that Σy is confluent implies that if a synchronising
a-transition is transformed by a rule, then only this rule transforms all transitions
labelled a inMy.

18 L.J.P. Engelen and A.J. Wijs

(resp. s′[i]) is matched on, but not a glue-state, i.e. i ∈ M̂(s) (resp. i ∈ M̂(s′)),
then the corresponding state s′[i] (resp. s[i]) must also be matched on. If i is
active for the transition from s to s′, then this follows from Def. 7. If i is not
active, then this follows from the fact that s[i] = s′[i].

It follows from the definitions of Ac(t) and dep(Lri) that if in a state s, s[i]
is matched on by rule ri and i is active for a synchronisation rule (t, a), then
Ac(t) ⊆ dep(Lri):

Lemma 4. s a→
t

My
s′ ∧ ∃i ∈M(s) ∩M(s′) ∩Ac(t)⇒ Ac(t) ⊆ dep(Lri)

Proof. Let i ∈ M(s) ∩M(s′) ∩ Ac(t). Since i ∈ M(s) and i ∈ M(s′), we have

s[i], s′[i] ∈ mri(SLri). Since s[i]
t[i]→i s

′[i], due to the isomorphism between Lri

and mri(SLri), also m−1ri (s[i])
t[i]→Lri m−1ri (s

′[i]), hence t[i] ∈ ALri , so by the def.
of dep(Lri), Ac(t) ⊆ dep(Lri). Therefore, by Def. 11, case 2, for all j ∈ Ac(t),
AL

ri

dep(j) ⊆ ALrj , so t[j] ∈ ALrj and by def. of dep(Lrj), Ac(t) ⊆ dep(Lrj). 2

From Def. 11, case 2, it follows that if outgoing transitions from s[i] can
potentially synchronise with outgoing transitions from some s[j], and if s[i] is
subject to transformation, i.e. is matched on by ri, then s[j] is subject to trans-
formation as well, i.e. is matched on by rj . This fact is proven in the following
lemma:

Lemma 5. s a→
t

My
s′ ∧M(s) ∩M(s′) ∩Ac(t) 6= ∅ ⇒ Ac(t) ⊆M(s)

Proof. Let i ∈M(s) ∩M(s′) ∩Ac(t). We distinguish two cases:

1. |Ac(t)| = 1, then trivially, since i ∈M(s), Ac(t) ⊆M(s).
2. |Ac(t)| > 1. Hence, A(t) ⊆ As. By Lemma 4, Ac(t) ⊆ dep(Lri), so by Def. 11,

case 2, for all j ∈ Ac(t), AL
ri

dep(j) ⊆ ALrj . Clearly, t[j] ∈ AL
ri

dep(j), and since

t[j] ∈ As, by Def. 11, case 1, for all j ∈ Ac(t), we have for all s1
t[j]→j s2 that

s1, s2 ∈ mrj (SLrj), so s[j], s′[j] ∈ mrj (SLrj), i.e. j ∈M(s). 2

Networks of transformation rules. In order to reason about synchronisations
within transformation patterns, we need to consider appropriate pattern com-
binations that capture both successful and unsuccessful synchronisation. Given
a network of Ltss which involves synchronising behaviour, we cannot easily de-
termine a priori, i.e. without constructing the explicit network Lts, whether or
not successful synchronisation can occur in some states in the network Lts, and
whether or not there will be reachable states in the network Lts from which an
unsuccessful attempt to synchronise can be performed. In other words, we do not
know a priori which scenarios related to synchronisation are actually relevant for
the network. Therefore, to reason about ϕ-preservation in general, we will have
to take all possible scenarios into account. This is illustrated in Fig. 7(a). On
the left, the Lts of the network in Fig. 2 is shown, now with unsuccessful at-
tempts of Π[2] to synchronise displayed as dashed transitions, i.e. the transition

Checking Property Preservation of Refining Transformations 19

a c

a c a

a c a

c
a

1 5

0 5

2 5

3 5

3 6

0 6

1 6

2 6

τ

0 8

τ

1 8

τ

2 8

τ e

4 73 8

a

a

f

a c

a c a

a c a

c
a

1 5

0 5

2 5

3 5

3 6

0 6

1 6

2 6

d

d

e

4 7

d

a

a

f

iii

iv

d

iv

d'

iii

g

v

(<∙, g>, τ)
(<b', d'>, e)

i

ii

b

i

ii

b'

(a)

a c

a c a

a c a

c
a

1 5

0 5

2 5

3 5

3 6

0 6

1 6

2 6

τ

0 8

τ

1 8

τ

2 8

τ τ/e

4 73 8

a

a

f

a c

a c a

a c a

c
a

1 5

0 5

2 5

3 5

3 6

0 6

1 6

2 6

τ/e

4 7

a

a

f i iii

ii iv

τ/e

κ2κ0

κ3κ1 τ/e

i iii

τ

v

κ2κ0

κ3κ1

iii

iv

d

i

ii

b

iv

d'

iii

g

v

i

ii

b'

ii iv

(b)

Fig. 7: Transformation of successful and unsuccessful synchronising behaviour

which is enabled in Π[2] is shown, but since the corresponding required transi-
tion in Π[1] is not enabled, synchronisation fails, resulting in no transition in the
network Lts. If we apply the rule system in the middle of Fig. 7(a), which trans-
forms d-transitions in Π[2] (see Fig. 2) and introduces two new synchronisation
rules, then the network Lts after transformation suddenly contains a number of
deadlock states, resulting from the fact that in multiple states, a d-transition is
enabled from Π[2], but no b-transition is enabled in Π[1].

We will combine rule patterns into networks to reason about different sce-
narios. Let ξri be a vector of transformation rules relevant for the behaviour in
Lri . Formally, for all j ∈ 1..n, we have the following, with ∗ a dummy state:

ξri [j] =

{
∗ 7→ ∗ if j 6∈ dep(Lri)
rj,κ if j ∈ dep(Lri)

For a given vector ξri , ξriL is the vector of left patterns of the (extended) rules
in ξri , and ξriR is the vector of right patterns. The networks ΞriL = (ξriL ,Vy) and

20 L.J.P. Engelen and A.J. Wijs

0

2

1

a1

b2b10

1

a1

b

3

4

a2

3

4

a3

b2

(hidden) synchronisation rules

(<b1, ∙>, τ)
(<b2, b2>, τ)
(<a1, a3>, τ)

(<b, ∙>, τ)
(<a1, a2>, τ)

source network:

added by transformation:

0 3

2 3

1 4

κ0 κ3

τ τ

κ3
τ

κ4κ1

0 3

1 4

τ

κ1κ4

κ3κ0τ

0

2

1κ0 κ1

τ

0

1

κ0

κ1

τ

transformation rule r1 transformation rule r2 successful synch. r1 & r2 unsuccessfull synch. r1

Fig. 8: Transforming synchronising behaviour requires analysing all scenarios

ΞriR = (ξriR ,Vy ∪ V̂y) allow comparing synchronising behaviour in rule patterns,
before and after the transformation according to Σy, in particular involving ri.

Finally, we want to construct vectors based on ξri where some parties are
absent, to reason about unsuccessful synchronisation. Fig. 8 shows an example in-
spired by a case study we performed involving the transformation of multi-party
synchronisation into multiple two-party synchronisations: on the left, there are
two rules r1 and r2 that apply on synchronisation actions a1, a2, and new syn-
chronisation rules are introduced by transformation. On the right of the synchro-
nisation rules, successful synchronisation of the patterns of r1 and r2 before and
after transformation is shown. These networks are divergence-sensitive branch-
ing bisimilar. However, next to that, the scenario where a1 is enabled but not
a2 is shown (∗’s are omitted), i.e. only the behaviour described by r1 is relevant,
which may hold for some s ∈ Sy. After transformation, a transition from 0 to 2 is
possible, leading to a deadlock. Before the transformation, this was not possible.
Hence, the transformations are not ϕ-preserving. To consider different scenarios,
we define a projection operator /I (I ⊆ 1..n): for each j ∈ 1..n, ξri/I[j] = ξri [j] if
j ∈ I, otherwise ξri/I[j] = ∗ 7→ ∗. This operator can similarly be applied on the
ξriL and ξriR , and we say that ΞriL /I = (ξriL /I,Vy) and Ξ

ri
R/I = (ξriR/I,Vy ∪ V̂y).

Similar to matches mri for a single rule ri, we can define how state vectors
in ΞriL /I = (ξriL /I,Vy) can be matched on states of My, by means of referring
to the matches of individual vector elements. Due to the presence of ∗-states,
the ξriL /I (ξriR/I) can possibly be matched to multiple states in Sy (Sy+1). We
formalise this mapping as follows:

Definition 12 (Mapping of state vectors). A state s∗ ∈ SΞriL /I is mapped

to a state s ∈ Sy, denoted as s∗ `ri,IL s, iff for all j ∈ I:

s∗[j] 6= ∗ ⇒ s[j] = mξri/I[j](s
∗[j])

That is, all states s∗[j], with j ∈ I, are matched by rule ξri [j], i.e. rj, to s[j].

This mapping actually constitutes a simulation relation between state vec-
tors: s∗ `ri,IL s implies that the states {s[i] | i ∈ I} in state s together can
simulate the combined behaviour of the states {s∗[i] | i ∈ I} in state s∗. This is
expressed in the following lemma:

Lemma 6. For all ri ∈ Ry, I ⊆ 1..n, s∗ ∈ SΞriL /I , s ∈ Sy with s∗ `ri,IL s,

(t, a) ∈ Vy with Ac(t) ⊆ I : s∗
a→
t

Ξ
ri
L /I

s∗′ ⇒ s
a→
t

My
s′ ∧ s∗′ `ri,IL s′

Checking Property Preservation of Refining Transformations 21

Proof. Consider a (t, a) ∈ V with Ac(t) ⊆ I ∧ s∗ a→
t

Ξ
ri
L /I

s∗′. Since ∗ 6∈ Ac(t),
by definition of `ri,IL , we must have for each s∗[j] with j ∈ Ac(t) that
s[j] = mξri/I[j](s

∗[j]). But then, due to the isomorphisms between ξriL /I[j] and

mξri/I[j](SξriL /I[j]) for each j ∈ Ac(t), (t, a) is also applicable in s, i.e. s a→
t

My
s′.

Finally, since s∗′ ∈ SΞriR /I , for all j ∈ Ac(t), s∗′[j] 6= ∗, and due to the isomor-
phisms, s′[j] = mξri/I[j](s

∗′[j]), therefore s∗′ `ri,IL s′. 2

We now come to the main proposition formalising our ϕ-preservation check.
Here, we provide a sketch of its correctness. The full proof can be found in
Appendix A.

Proposition 3. Let ϕ ∈ Ldsbr
µ be a temporal property with |=My

ϕ. Then Σy is
ϕ-preserving if for all ri ∈ Ry, I ⊆ dep(Lri):

τ̃ϕ(Ξ
ri
L /I)↔

∆
b τ̃ϕ(Ξ

ri
R/I) (1)

Proof sketch. By def., Σy is ϕ-preserving iff there exists a divergence-sensitive
branching bisimulation C showing that τ̃ϕ(My) ↔∆

b τ̃ϕ(My+1). Such a bisim-
ulation can be constructed based on (1). We use the fact that rule patterns and
their matches are isomorph, i.e. both Lri and mri(Lri), and Rri and mri(Rri)
are isomorph. This also holds for networks of rule patterns; in Fig. 7(b), some
rule networks are given for the example of Fig. 2 (with τ/e, we denote that e
is hidden after maximal hiding). The combinations of the patterns of the two
rules represent successful synchronisation before and after transformation. The
state vectors in the left rule network can be matched on state vectors (2 6) and
(4 7) in the left system Lts, and the state vectors in the right rule network can
be matched on state vectors (2 6), (2 8), and (4 7) in the right system Lts. In
fact, these isomorphisms imply simulation relations between rule networks and
system networks. This can be formalised as follows: for a state vector s∗ in a rule
network ΞriL /I (resp. ΞriR/I) and a state vector s inMy (resp.My+1), we say
that s simulates s∗, denoted s∗ ` s, iff ∀i ∈ 1..n.s∗[i] 6= ∗ ⇒ s[i] = mri(s

∗[i]),
i.e. besides the place-holder states, all process states in s∗ are matched on the
corresponding states in s. Now, first of all, if s∗ ` s, and s∗

a→ s∗′, then also
s

a→ s′ and s∗′ ` s′. Second of all, it also works in the other direction, in cases

that s a→
t
s′, Ac(t) ⊆ I, and both Ac(t) ⊆ M(s) and Ac(t) ⊆ M(s′). In those

cases, the involved behaviour of every active Π[i] (i ∈ Ac(t)) is matched on by
ri. These simulation relations are preserved after maximal hiding.

By (1), all left and right rule pattern networks induced by the synchroni-
sation rules are divergence-sensitive branching bisimilar. The union D of all
relations constructed from these bisimulations in combination with the simula-
tion relations between rule and system networks (such as in Fig. 7(b), where
(2 6) on the left is related to (2 6) on the right, and (4 7) on the left is related
to (2 8) and (4 7) on the right) relates all matched on behaviour in the left
and right system Ltss. Now consider a relation D′ such that for state vectors

22 L.J.P. Engelen and A.J. Wijs

s ∈ Sy, p ∈ Sy+1, we have s D′ p iff ∀i 6∈ M(s).s[i] = p[i]. In words, D′ re-
lates all state vectors with exactly the same elements apart from those matched
on by a transformation rule. Now, we can construct C as (D ∩D′) ∪D′′, with
D′′ = {(s, s) | M(s) = ∅}, i.e. those states are related which can both perform
exactly the same non-transformed behaviour, and perform divergence-sensitive
branching bisimilar behaviour insofar it has been subjected to transformation.
One can prove that C is a divergence-sensitive branching bisimulation by con-
sidering the cases of Def. 3 (see Appendix A).7

Complexity. The divergence-sensitive branching bisimilarity checks of networks
of extended ri ∈ Ry are “locally persistent” [32], since My is not taken into
account. For flat Ltss, reachability cannot be determined by only analysing
the changes, but in our setting, process Lts states cannot become unreachable
unless specified in a transformation rule, and when network Lts states become
unreachable, it follows directly from the transformations applied to the process
Ltss. The complexity of each divergence-sensitive branching bisimilarity check
is linear to the size of the network of dependent ri (cf. [16]). Dependency (dep)
induces a partitioning of the ri into classes, and per class, the number of checks
is exponential to the number of ri in the class; however, in practice, ri patterns
tend to be very small, and most classes contain only one or two ri. Finally, it
is important to note that the size of My+1 often grows exponentially with the
number of matches, but the checks do not.

5.4 ϕ-Preservation Checking Using Global Divergency Information

In practice, the criteria formulated in Prop. 3 are often too strong. For instance,
a check may fail if Lri and Rri are not equivalent regarding τ -divergence, even
if ri will only be applied on a particularMy in places where states are already
diverging. Hence, the proposition can be extended by taking (system global)
divergency information of Hy into account.

With N ⊆ Sy, we refer to all states not diverging in Hy. Determining N
involves τ -compression, i.e. reducing τ -cycles to states, and adding a selfloop
with a new action τ ′ to these states. Now, all states which can reach via a
τ -path a τ ′-transition are diverging.

We extend the Ry to R∆y = {ri∆ : Lri∆ 7→ R
ri
∆ | ri ∈ Ry}, and perform the

divergence-sensitive branching bisimilarity checks of Prop. 3 for R∆y instead of
Ry. Here, Lri∆ = 〈SLri ,ALri ∪ {τ}, TLri ∪ T∆, ILri 〉, with T∆ = {〈s, τ, s〉 | s ∈
SLri ∧¬∃p ∈ N .p[i] = mri(s)}, i.e. states not part of non-diverging state vectors
inMy get a τ -selfloop in Lri , to make their diverge in Hy obvious. Pattern Rri∆
is defined in a similar way.

7 Note that the checks will correctly detect that the rule system of Fig. 7 does not
yield a divergence-sensitive branching bisimulation between the system Ltss, since
the unsuccessful synchronisation networks resulting from (iii)

d→ (iv) and (iii)
g→

(v)
d′→ (iv) are not divergence-sensitive branching bisimilar.

Checking Property Preservation of Refining Transformations 23

It turns out that N can be updated after a transformation without analysing
Hy+1. For an s∗ ∈ SΞriL /I , let rem(s∗) = {j | s∗[j] ∈ Lrj∆ \ Rrj} be the indices
in s∗ of states to be removed, and for a p∗ ∈ SΞriR /I , let add(p

∗) = {j | p∗[j] ∈
Rrj \ Lrj∆} be the indices in p∗ of states to be added. Then updating N entails
doing the following for each ri∆ ∈ R∆y , I ⊆ dep(Lri∆):

1. Adding: Note that for all p∗ ∈ SΞriR /I , there exists s
∗ ∈ SΞriL /I with s

∗ ↔∆
b

p∗. If p∗ ↓, i.e. does not diverge, and add(p∗) 6= ∅, add all 〈p1, . . . , pn〉 to N
where for each j ∈ 1..n:

pj =


p∗[j] if j ∈ add(p∗)

s[j] if p∗[j] = ∗ ∧ s ∈ N ∧ s∗ `rj ,IL s
mrj (p

∗[j]) otherwise

2. Removing: ∀s∗ ∈ SΞriL /I .rem(s∗) 6= ∅ ⇒ N := N \ {s ∈ Sy | s∗ `ri,IL s}

In words, all state vectors with at least one element removed by transfor-
mation need to be removed from N since they no longer exist in Hy+1, and
all states with new elements need to be added by mapping existing elements
and ∗-elements to the appropriate states in Hy+1. Note that remaining states
cannot change regarding diverging behaviour. We show this here for the case
that for s ∈ SHy , s ↑ holds due to s[i] ↑. A more general proof can be con-
structed. Since s[i] remains after transformation, it must relate to a glue-state
s∗[i] ∈ SΞriL /{i} ∩ SΞriR /{i}. Since ΞriL /{i} ↔∆

b ΞriR/{i}, we must have that
s∗[i] ∈ ΞriL /{i} is divergence-sensitive branching bisimilar to s∗[i] ∈ ΞriR/{i},
since it is the only state able to perform a κs∗[i]-transition. But then, it cannot
have changed regarding divergency after transformation, and we have a contra-
diction.

Note that N only grows linear with the size ofMy+1 in the worst case that
new states are introduced, but no divergence. However, many practical trans-
formations introduce divergence (see Section 6), and unlike the set of explored
states when doing model checking, N only needs infrequent updates, and can be
maintained on secondary storage.

6 Experimental Results

Table 1 shows experimental results for five case studies with various rule sys-
tems8, some preserving a relevant property (noted by 3) and some not (noted
by 7). The number of explored states and the runtime for full exploration are
given for the initial model and the transformed model. The applied rule systems
have been analysed separately (ϕ-pres.), and for these checks, the maximum
number of states of the two Ltss involved in a check is given in the form “(size
left pattern)+(size right pattern)”. Furthermore, the number of required checks,
and the total runtime are reported. The experiments have been performed on a
8 The rule system definitions can be found in Appendix B.

24 L.J.P. Engelen and A.J. Wijs

Table 1: Transformation results for several specifications of concurrent systems.
max #st. = size of largest check performed, in terms of sizes of compared Ltss.
“n1 + n2” means Lts with n1 states is compared to Lts with n2 states.

ACS 1394-fin wafer brdcst (1) brdcst (2) c.syst. (1) c.syst. (2)

initial
#states 4,764 188,569 78,919 161,051 161,051 759,375 759,375
time (sec.) 1.85 379.08 4.88 3.48 3.48 29.97 29.97

trans.
#states 21,936 5,849,124 375,937 4,084,101 28,629,151 656,356,768 656,356,768
time (sec.) 10.23 18,045.13 49.33 83.53 952.85 48,795.28 45,553.27

ϕ-pres.

max. #st. 2 + 3 2 + 6 2 + 5 27 + 30 27 + 31 15 + 58 15 + 58

#checks 3 3 3 7 7 63 63
result 3 3 3 7 3 7 3

time (sec.) 0.01 0.01 0.01 0.616 0.792 1.90 1.90

machine with two dual-core amd opteron (tm) processors 885 2.6 GHz, 126
GB RAM, running Red Hat 4.3.2-7. For divergence-sensitive branching bisim-
ilarity checking, we used the ltsconvert tool of the mCRL2 toolset [15]. The
first three models are part of the distribution of mCRL2. We generated their
Ltss with the mCRL2 tools, and manually transformed them to incorporate
refined information concerning internal steps. In the other two cases, synchro-
nising behaviour was transformed, and the network Ltss have been constructed
from sets of process Ltss using Exp.Open [26]; brdcst is a system of fifteen pro-
cesses communicating via broadcast, i.e. three processes at a time synchronise
simultaneously. A practical transformation is to break this down into a series
of two-party synchronisations, e.g. due to restrictions imposed for the eventual
implementation. We defined two rule systems for this, and they could be ap-
plied fifty times using a prototype tool developed by us. The first of these rule
systems does not preserve properties, whereas it can be shown that the second
one does, using divergency information of the input models. The c.syst. case is
a communication system, where in five different places, communication between
two processes is refined to use the ABP protocol, representing an adaptation to
the use of lossy channels. The different rule networks for the various checks were
produced by our prototype, and we again used divergency information of the in-
put models. We analysed two versions of the rule system, one containing a subtle
error (the receiver of messages does not expect messages with the wrong bit).
In this case, we expect that it is possible to define a ϕ-preserving rule system
formalising the desired transformation, i.e. replacing one way of communicating
by another should not affect the truth-value of properties not stating anything
about the used communication mechanism. Therefore, the negative outcome of
a check is a strong indication that transformation of the network Lts results in
a violation of the property.

The gain in speed is obvious, as is the gain in memory use, since it is linear to
the number of analysed states. In the future, we wish to look at larger, practical
case studies to further validate the applicability of our techniques.

Checking Property Preservation of Refining Transformations 25

7 Conclusions and Future Work

We formulated a check to determine whether a terminating confluent system of
Lts transformation rules preserves a specific safety, liveness, or fairness property
for networks of Ltss in general, as long as the rule system is synchronisation
uniform w.r.t. the network. One should keep in mind that the question of whether
or not a rule system is ϕ-preserving in general is different from the question
whether a rule system is ϕ-preserving when applied on a particular model. Our
proposed technique is not complete when applied to answer the second question;
applying a rule system which is not deemed to be ϕ-preserving may still result in
a new network Lts in which ϕ holds, because this depends on the structure of the
original network. In a way, this is a limitation of our technique, but on the other
hand, the notion of ϕ-preservation in general is a useful criterion for the concept
of transformation rules as reusable templates, since a ϕ-preserving rule system
can safely be applied on any network of Ltss for which it is synchronisation
uniform.

Besides the synchronisation rules, the system model is not involved in the
check, which entails divergence-sensitive branching bisimilarity checking of net-
works of transformation rules. Its complexity completely depends on the rule
system. The check can be further extended by involving system divergency, at
the expense of introducing more bookkeeping, but with the benefit that it can
more often identify preservation. It is important to note that the approach sup-
ports transformations being performed one after another, leading to systems
My+1,My+2, etc., without requiring that any system Lts must be constructed;
new divergency information can be derived, and only the process Ltss, which
grow linearly, need to be maintained. Finally, checking multiple properties simply
involves performing all the checks for multiple hiding sets.

Future work. All required functionality has been implemented, but it still needs
to be integrated into one tool. We plan to consider a more general network of
Ltss model involving asynchronous communication, which would allow trans-
forming one type of communication to the other. Another extension would be to
support the addition and deletion of processes in a network, and we will consider
situations where ϕ is transformed. Clearly, as long as its hiding set remains the
same, it is preserved, but perhaps more can be achieved. We plan to further
extend the technique, possibly making it complete w.r.t. the question whether
a property is preserved when a rule system is applied to a particular model. To
achieve this, we will investigate how our technique can be combined with those
in related work. Finally, we will consider more expressive notions of transfor-
mation, for instance involving negative application conditions (Nacs) [17]. This
will allow more refined definitions of transformation rules. There exists work on
bisimilarity in the presence of Nacs, e.g. [33]. In our setting, however, Nacs
can be expected to be in conflict with the notion of uniform transformation of
synchronising behaviour, i.e. synchronisation uniformity, since they are used to
define exceptions to a transformation rule.

26 L.J.P. Engelen and A.J. Wijs

References

1. S. Beydeda, M. Book, and V. Gruhn, editors. Model-Driven Software Development.
Springer, 2005.

2. P. Böhm. A Framework for Incremental Modelling and Verification of On-Chip
Protocols. In Proc. FMCAD’10, pages 159–166. IEEE, 2010.

3. C. Braunstein and E. Encrenaz. CTL-Property Transformations Along an Incre-
mental Design Process. In Proc. AVOCS’04, volume 128 of ENTCS, pages 263–178.
Elsevier, 2004.

4. S. Burmester, H. Giese, M. Hirsch, and D. Schilling. Incremental Design and
Formal Verification with UML/RT in the FUJABA Real-Time Tool Suite. In
Proc. SVERTS’04, pages 1–20, 2004.

5. H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental Formal
Verification of Hardware. In Proc. FMCAD’11, pages 135–143. IEEE, 2011.

6. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
7. E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional Model Checking. In

Proc. LICS’89, pages 353–362. IEEE, 1989.
8. G. Cohen and O. Kupferman. Incremental LTL Model Checking. in Proc. Work-

shop on Sem. and Verif. of Hardware and Software Syst., 2003.
9. C.L. Conway, K.S. Namjoshi, D. Dams, and S.A. Edwards. Incremental Algorithms

for Inter-procedural Analysis of Safety Properties. In Proc. CAV’05, volume 3576
of LNCS, pages 449–461. Springer, 2005.

10. P. Crouzen and F. Lang. Smart Reduction. In Proc. FASE’11, volume 6603 of
LNCS, pages 111–126. Springer, 2011.

11. D. Eppstein, Z. Galil, and G. Italiano. Dynamic Graph Algorithms. In CRC
Handbook of Algorithms and Theory of Computation, chapter 22. CRC Press, 1997.

12. H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. Towards Verified
Model Transformations. In Proc. MoDeVa’06, pages 78–93, 2006.

13. R.J. van Glabbeek, B. Luttik, and N. Trčka. Branching Bisimilarity with Explicit
Divergence. Fundamenta Informaticae, 93(4):371–392, 2009.

14. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

15. J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der Wulp.
The mCRL2 Toolset. In Proc. WASDeTT’08, 2008.

16. J.F. Groote and F.W. Vaandrager. An Efficient Algorithm for Branching Bisimu-
lation and Stuttering Equivalence. In Proc. ICALP’90, volume 443 of LNCS, pages
626–638. Springer, 1990.

17. A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application
Conditions. Fundamenta Informaticae, 26(3-4):287–313, 1996.

18. A. Habel, J. Müller, and D. Plump. Double-Pushout Graph Transformation Re-
visited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

19. R. Heckel. Graph Transformation in a Nutshell. In Proc. FoVMT’04, volume 148
of ENTCS, pages 187–198. Elsevier, 2006.

20. M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, and
H. Wehrheim. Showing Full Semantics Preservation in Model Transformation -
A Comparison of Techniques. In Proc. IFM’10, volume 6396 of LNCS, pages 183–
198. Springer, 2010.

21. D. Kähler and T. Wilke. Program Complexity of Dynamic LTL Model Checking.
In Proc. CSL’03, volume 2803 of LNCS, pages 271–284. Springer, 2003.

Checking Property Preservation of Refining Transformations 27

22. G. Karsai and A. Narayanan. On the Correctness of Model Transformations in the
Development of Embedded Systems. In Proc. 13th Monterey Workshop, volume
4888 of LNCS, pages 1–18. Springer, 2007.

23. D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

24. S. Krishnamurti and K. Fisler. Foundations of Incremental Aspect Model-
Checking. ACM Trans. on Softw. Eng. and Meth., 16(2), 2007.

25. L. Lambers, H. Ehrig, and F. Orejas. Efficient Detection of Conflicts in Graph-
based Model Transformation. In Proc. GraMoT’05, volume 152 of ENTCS, pages
97–109. Elsevier, 2006.

26. F. Lang. Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-the-Fly Verification Methods. In Proc. IFM’05, volume 3771 of LNCS,
pages 70–88. Springer, 2005.

27. K. Lano. The B Language and Method, A Guide to Practical Formal Development.
Springer, 1996.

28. R. Mateescu and A.J. Wijs. Property-Dependent Reductions for the Modal Mu-
Calculus. In Proc. SPIN’11, volume 6823 of LNCS, pages 2–19. Springer, 2011.

29. R. De Nicola and F.W. Vaandrager. Action versus State Based Logics for Tran-
sition Systems. In Semantics of Systems of Concurrent Processes, LITP Spring
School on Theoretical Computer Science, volume 469 of LNCS, pages 407–419.
Springer, 1990.

30. B. Ploeger. Analysis of ACS using mCRL2. CS-Report 09-11, Eindhoven Univer-
sity of Technology, 2009.

31. D. Plump. Confluence of Graph Transformation Revisited. In Processes, Terms
and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on
the Occasion of His 60th Birthday, volume 3838 of LNCS, pages 280–308. Springer,
2005.

32. G. Ramalingam and T. Reps. On The Computational Complexity of Dynamic
Graph Problems. Theoretical Computer Science, 158:233–277, 1996.

33. G. Rangel, B. König, and H. Ehrig. Deriving Bisimulation Congruences in the
Presence of Negative Application Conditions. In Proc. FOSSACS’08, volume 4962
of LNCS, pages 413–427. Springer, 2008.

34. W. Ruanthong and P. Muenchaisri. Model Checking for Aspect-Oriented Software
Evolution. WSEAS Trans. on Computers, 4(2):216–221, 2005.

35. D. Saha. An Incremental Bisimulation Algorithm. In Proc. FSTTCS’07, volume
4855 of LNCS, pages 204–215. Springer, 2007.

36. O.V. Sokolsky and S.A. Smolka. Incremental Model Checking in the Modal Mu-
Calculus. In Proc. CAV’94, volume 818 of LNCS, pages 351–363. Springer, 1994.

37. G.M. Swamy. Incremental Methods for Formal Verification and Logic Synthesis.
PhD thesis, University of California, 1996.

28 L.J.P. Engelen and A.J. Wijs

A Correctness Proof of the ϕ-Preservation Check

With Hy (Hy+1), we refer to τ̃ϕ(My) (τ̃ϕ(My+1)).

Proposition 3. Let ϕ ∈ Ldsbr
µ be a temporal property with |=My ϕ. Then Σy is

ϕ-preserving if for all ri ∈ Ry, I ⊆ dep(Lri):

τ̃ϕ(Ξ
ri
L /I)↔

∆
b τ̃ϕ(Ξ

ri
R/I) (1)

Proof. By def., Σy is ϕ-preserving iff there exists a divergence-sensitive branch-
ing bisimulation C showing that Hy ↔∆

b Hy+1, i.e. ∀sI,y ∈ Sy, sI,y+1 ∈
Sy+1.sI,y C sI,y+1. We will show that such a bisimulation can be constructed,
given that (1) holds. By (1), there are for each ri ∈ Ry, 2|dep(L

ri)| − 1 bisimula-
tions relating the τ̃ϕ(ΞriL /I) and τ̃ϕ(Ξ

ri
R/I).

9 With this, we construct C between
Hy and Hy+1 as follows: C = {(s, p) | ∀i ∈ 1..n.(i 6∈ M̂(s) ⇒ s[i] = p[i]) ∧ (i ∈
M(s) ⇒ ∀I ⊆ dep(Lri).∃s∗ ∈ Sτ̃ϕ(ΞriL /I), p

∗ ∈ Sτ̃ϕ(ΞriR /I).s
∗ `ri,IL s ∧ p∗ `ri,IR

p ∧ s∗ ↔∆
b p∗)}. We show that C is a divergence-sensitive branching bisimula-

tion by proving that for all (s, p) ∈ C, Def. 3 holds. We distinguish four cases:

1. s a→Hy s′. This is enabled by some (t, a) ∈ Vy. We distinguish two cases:
(a) M̂(s)∩Ac(t) 6= ∅. We have M̂(s) ⊆M(s′) (Lemma 3) and M̂(s) ⊆M(s),

soM(s)∩M(s′)∩Ac(t) 6= ∅. Hence, by Lemma 4, Ac(t) ⊆ dep(Lri), and
by Lemma 5, Ac(t) ⊆M(s). Let i ∈M(s)∩M(s′)∩Ac(t). By def. of C,
since i ∈M(s) and Ac(t) ⊆ dep(Lri), we have an s∗ ∈ Sτ̃ϕ(ΞriL /Ac(t)) with

s∗ `ri,Ac(t)
L s, and by Lemma 6, s∗ a→τ̃ϕ(Ξ

ri
L /Ac(t)) s

∗′ with s∗′ `ri,Ac(t)
L

s′. By def. of C, since i ∈ M(s), we have a p∗ ∈ Sτ̃ϕ(ΞriR /Ac(t)) with

p∗ `ri,Ac(t)
R p and s∗ ↔∆

b p∗. So in τ̃ϕ(ΞriR/Ac(t))
– either a = τ and s∗′ ↔∆

b p∗. Since for all j 6∈ Ac(t), s′[j] = s[j], we
have s′ C p;

– or we have p∗′, p∗′′ such that p∗=⇒ τ̃ϕ(Ξ
ri
R /Ac(t)))p

∗′ a→τ̃ϕ(Ξ
ri
R /Ac(t)))

p∗′′, with p∗ ↔∆
b p∗′ and s∗′ ↔∆

b p∗′′. Repeated application of
Lemma 6 shows that p=⇒Hy+1p

′ a→Hy+1 p
′′ with p∗′ `ri,Ac(t)

R p′ and
p∗′′ `ri,Ac(t)

R p′′. Since for all j 6∈ Ac(t), s′[j] = s[j] and p′′[j] =
p′[j] = p[j], we have s C p′ and s′ C p′′.

(b) M̂(s) ∩Ac(t) = ∅. We distinguish two cases:
i. M̂(s′)∩Ac(t) = ∅. We will first show that p=⇒Hy+1

p′
a→Hy+1

p′′ by
showing that for each j ∈ Ac(t), p[j] =⇒ jp

′[j] and p′[j] = s[j]. By def.
of C, ∀j ∈ Ac(t) \M(s).p[j] = s[j]. For each j ∈ Ac(t)∩M(s), since
M̂(s)∩Ac(t) = ∅, we have j ∈M(s)\M̂(s) and since {j} ⊆ dep(Lrj),
by the isomorphisms, also an (initial) s∗ ∈ S

τ̃ϕ(Ξ
rj
L /{j})

∩S
τ̃ϕ(Ξ

rj
R /{j})

9 There are at most 2|dep(L
ri)| different combinations of processes able to participate

in synchronisations included in Lri ; the case where no process is able to do so is
trivial. Note that for each ri and all rj with j ∈ dep(Lri), the bisimulations are
identical, so the number of distinct bisimulations is much lower.

Checking Property Preservation of Refining Transformations 29

with s∗
κs∗[j]→ s∗. By def. of C, there is a p∗ ∈ S

τ̃ϕ(Ξ
rj
R /{j})

such that

s∗ `rj ,{j}L s, p∗ `rj ,{j}R p, and s∗ ↔∆
b p∗. By Def. 3, since κs∗[j] 6= τ ,

there must be p∗′, p∗′′ such that p∗=⇒
τ̃ϕ(Ξ

rj
R /{j})

p∗′
κs∗[j]→

τ̃ϕ(Ξ
rj
R /{j})

p∗′′. But since only s∗[j] has an outgoing κs∗[j]-transition in Rrj , we
must have p∗′[j] = s∗[j]. Since p∗ `rj ,{j}R p, rep. appl. of Lemma 6
shows that p=⇒Hy+1

p′ with s∗ `rj ,{j}R p′, hence p′[j] = s[j]. So for
each j ∈ Ac(t), p[j] =⇒ jp

′[j] and p′[j] = s[j]. Since M̂(s)∩Ac(t) = ∅
and ∀j 6∈ Ac(t).p′[j] = p[j], we have s C p′. Since M̂(s′)∩Ac(t) = ∅,
we have ∀j ∈ Ac(t).p′′[j] = s′[j]. Since ∀j 6∈ Ac(t).s′[j] = s[j] ∧
p′′[j] = p′[j], we have s′ C p′′.

ii. M̂(s′)∩Ac(t) 6= ∅. We have M̂(s′) ⊆M(s) (Lemma 3) and M̂(s′) ⊆
M(s′), so M(s)∩M(s′)∩Ac(t) 6= ∅. By Lemma 5, . . . (continued as
in 1.(a)).

2. p a→Hy+1 p
′. Similar to the previous case.

3. s ↑. We call the infinite τ -path σ. Let si
τ→
ti
Hy si+1 be the first transition in

σ for which M(si) ∩M(si+1) ∩Ac(ti) 6= ∅. If it does not exist, then clearly,
p ↑. If it does, then this action can also be performed in the appropriate
τ̃ϕ(Ξ

rj
L /Ac(ti)), by case 1 simulated in τ̃ϕ(Ξ

rj
R /Ac(ti)), and by the isomor-

phisms, also simulated inHy+1. If there is a finite number of such transitions,
there is still an infinite number of reachable τ -transitions in Hy+1, hence p ↑.
If there is an infinite number of such transitions, then since there is a finite
number of networks ΞrjL /I (Ry is finite and 1..n is finite), one of these must
contain an infinite τ -path that can be matched on a part of σ. But then, there
is a diverging state si

∗ in this network, which is↔∆
b to a pi

∗ ∈ S
τ̃ϕ(Ξ

rj
R /Ac(ti))

,
which can be matched on a pi ∈ Sy+1. Due to the isomorphisms, pi ↑. Since
p=⇒Hy+1

pi (all τ -transitions up to si have been simulated), p ↑.
4. p ↑. Similar to the previous case. 2

30 L.J.P. Engelen and A.J. Wijs

B Specifics of the Performed Experiments

In this section, we discuss the experiments of Sect. 6 in more detail. We describe
the input models used for these experiments and show how they are transformed.

B.1 Broadcast

Broadcast is a system of fifteen processes communicating via three-party broad-
cast, i.e. three processes at a time synchronise simultaneously. Fig. 9 shows two
pairs of three such processes. For each group of three processes, there is a syn-
chronisation rule that states that actions a1 , a2 and a3 synchronise.

Fig. 9: Groups of three processes that communicate via broadcast

A practical transformation is to break this down into a series of two-party
synchronisation, e.g. due to restrictions imposed for the eventual implementa-
tion. Three transformation rules that refine a model in this way are shown in
Fig. 10. After transformation, new synchronisation rules are introduced that de-
fine that a1 ′ and a2 ′, and a2 ′′ and a3 ′ synchronise. This naive refinement does
not preserve properties.

Fig. 10: Three transformation rules that replace a three-party broadcast by
pairwise communication

Checking Property Preservation of Refining Transformations 31

Improved versions of these transformation rules are shown in Fig. 11. After
transformation, new synchronisation rules are introduced that define that

– m1a1 and m2a1 ,
– c1a1 and c2a1 ,
– a1a1 and a2a1 , and
– a2 ′ and a3 ′

synchronise.

Fig. 11: Three improved transformation rules that replace a three-party broad-
cast by pairwise communication

Note in the rules in Fig. 11 that a2 and a3 are replaced by a2 ′ and a3 ′,
respectively, after transformation. This is done to make the rule system termi-
nating and confluent; otherwise, each rule would be applicable again on its own
output.

To check whether the transformation rules of Fig. 11 preserve properties,
a number of checks 10 have to be performed. Creating and performing these
requires the tool ltscompare from the mCRL2 toolkit, and Exp.Open and
bcg_io from the Cadp toolkit. You can perform the checks as follows:

– Install the mCRL2 toolkit.
– Install the Cadp toolkit.
– Download the Exp.Open definitions of the checks.
– Convert the modified left-hand sides and right-hand sides of the transfor-

mation rules in Aldebaran format to Binary Coded Graphs by running
createbcg.

– Create networks by running createnetworks.
– Convert the networks to the Aldebaran format by running createaut.
– Check whether the networks for the left-hand sides are divergence-sensitive

branching bisimilar to the networks for the right-hand sides by running
check.

10 An archive containing all files necessary to perform these checks can be found at
http://www.win.tue.nl/~awijs/incmc.

http://www.win.tue.nl/~awijs/incmc

32 L.J.P. Engelen and A.J. Wijs

Fig. 12: Process Ltss of the left-hand sides of the transformation rules

Figs. 12 and 13 show the process Ltss that are used for the checks. These
Ltss are created from the left-hand and right-hand sides of the three trans-
formation rules. The tools Exp.Open and ltscompare of the mCRL2 toolkit
cannot handle process Ltss with multiple initial states. For this reason, one ini-
tial state is added to each of the Ltss, as well as τ -transitions to the original
initial states. The figures also show the κ-loops that are added to the original
initial states. Each of the checks determines whether a network consisting of a
combination of process Ltss created from the left-hand sides of transformation
rules is divergence-sensitive branching bisimilar with the network consisting of
the corresponding process Ltss created from the right-hand sides, after hiding
the appropriate actions in both networks.

Fig. 13: Process Ltss of the right-hand sides of the transformation rules

B.2 Alternating Bit Protocol

Fig. 14 shows two components, P and Q , that communicate via four buffers,
B1 , B2 , B3 , and B4 . For the experiment described in this report, we analyzed
a model containing five instances of such a communicating system operating
concurrently.

Checking Property Preservation of Refining Transformations 33

Fig. 14: Two components (P and Q) that communicate via four buffers (B1 ,
B2 , B3 and B4)

Figs. 15 to 20 show the process Ltss representing the six components. Pro-
cess P either performs an action pa or an action qa and then communicates with
component Q . After receiving either an a or a b from P , process Q performs an
action qa or an action qb. Afterwards, Q acknowledges the message reception.

Fig. 15: Process P Fig. 16: Process B1 Fig. 17: Process B2

Fig. 18: Process Q Fig. 19: Process B3 Fig. 20: Process B4

Fig. 21 shows two transformation rules that replace two of the buffers by
two processes that implement the alternating bit protocol. The alternating bit
is encoded by the added suffixes “t” (TRUE) and “f” (FALSE) in the transition
labels. Applying this transformation to the five concurrent communicating sys-
tems (and adding appropriate synchronisation rules in the obtained network of
Ltss) leads to an explosion of the state-space and thus to a large exploration
time. Checking whether these transformation rules preserve properties, however,

34 L.J.P. Engelen and A.J. Wijs

takes very little time. Note that there are also transformation rules for the other
processes only doing some simple renaming, e.g. pa to pa ′, to make the rule sys-
tem synchronisation uniform w.r.t. the synchronisation rules of the system. The
actual check then involves checking whether 26 − 1 = 63 combinations of active
processes before and after transformation produce divergence-sensitive branch-
ing bisimilar Ltss (after maximal hiding). However, the generation of each rule
network Lts only took at most 0.01s, and the check involving all processes, i.e.
involving the largest Ltss also only took 0.01s, leading an overall runtime of
approximately (0.01s ∗ 126 networks)+ (0.01s ∗ 63 checks) = 1.89s, which is very
close to the measured 1.90s.

Fig. 21: Two transformation rules that replace buffers

B.3 ACS (comparable with 1394-fin and Wafer Stepper)

The ACS Manager along with Containers and Components is a part of the soft-
ware of the ALMA project carried out by the European Southern Observatory
(ESO) [30]. The intention of this project is to put more than 60 radio telescopes
on a plane high up in the mountains of Chili for radio astronomy. A specification
is part of the official distribution of the mCRL2 toolset. Fig. 22 describes a trans-
formation of the receive action (rcv) into a more detailed procedure involving
decompression of the received message. This rule was applied on the two com-
ponents and one container present in the specification. The other party in the
two-way synchronisation (the send action), was basically left unchanged (rewrit-
ten to a send ′ action to ensure that the rule system is terminating, confluent,
and synchronisation uniform).

Checking for preservation of a property when two-party synchronising be-
haviour is transformed requires performing three checks, representing the sce-
narios of successful synchronisation and unsuccessful synchronisation where ei-
ther one of the parties unsuccessfully attempts to synchronise. All checks involve
determining whether the corresponding networks of left- and right-hand sides of
the relevant rules are divergence-sensitive branching bisimilar after maximal hid-
ing, which can be done very fast. In the networks of right-hand side patterns, a
synchronisation rule is added stating that decompress can be fired by itself.

Checking Property Preservation of Refining Transformations 35

0

1

rcv

1

decompress

0

rcv'

2

Fig. 22: A transformation rule refining the processing of received messages

The 1394-fin (Firewire) case and the Wafer Stepper case are two other
mCRL2 specifications which have been transformed using rules very similar
to this rule (but involving different numbers of transitions).

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

	TITEL.PG12-08
	Blanco
	CSR-12-08
	Checking Property Preservation of Refining Transformations for Model-Driven Development
	Luc Engelen, Anton Wijs

	Blanco
	PUBL.LS4csr 2009 tm

