
 

3He-4He II mixtures : thermodynamic and hydrodynamic
properties
Citation for published version (APA):
Kuerten, J. G. M. (1987). 3He-4He II mixtures : thermodynamic and hydrodynamic properties. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Applied Physics and Science Education]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR270164

DOI:
10.6100/IR270164

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR270164
https://doi.org/10.6100/IR270164
https://research.tue.nl/en/publications/f0ca013b-badc-4b1c-8eb3-7155da9fe46e


3He-4He 11 MIXTURES: 

THERMODYNAMIC AND 

HYDRODYNAMIC PROPERTIES 

J.G.M. KUERTEN 



3He-4He 11 MIXTURES: 

THERMODYNAMIC AND HYDRODYNAMIC PROPERTIES 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de Technische Uni­
versiteit Eindhoven, op gezag van de rector magnificus, prof. dr. 
F.N. Hooge, voor een commissie aangewezen door het college van 
dekanen in het openbaar te verdedigen op vrijdag 18 september 

1987 te 16.00 uur 

door 

JOHANNES GERARDUS MARIA KUERTEN 

geboren te Bergen op Zoom 

Druk: Boek en Offsetdrukkerij Letru, Helmond, 04920-37797 



Dit proefschrift is goedgekeurd door de promotoren 
prof. dr. H.M. Gijsman en prof. dr. J.T.L. Devreese; 
eo-promotor: dr. A.T.A.M. de Waele 



Aa.n mijn ouders 



TABLE OF COI.UEl'ITS 

I GENERAL Il'ITRODUCIION 

References 6 

II THERMODYNAMICS OF 3He-4 He MIXTURES 9 

2.1 Introduction 9 

2.2 Thermodynamics of 3He- 4He mixtures at zero pressure 10 

2.3 Catcutation scheme and experimentaL data 19 

2.4 Applications to diLution refrigeration 25 

2.5 ResuLts 28 

2.6 Thermodynamics of 3He- 4He mixtures at nonzero pressures 29 

2.7 Discussion 35 

Appendix 40 

References 41 

I I I HYDRODYNAMIC PROPERTIES OF 3 He-4 He MIXTURES 43 

3.1 Introduction 43 

3.2 Microscopic theory of superfLuid 4He and 3He- 4He 

mixtures 

3.2.1 Pure 4 He 

3.2.2 3 He- 4 He mixtures 

3.3 Hydrodynamics of 3 He- 4He II mixtures 

Appendix 

References 

IV APPLICATIONS TO DILUTION REFRIGERATION 

4.1 Introduction 

4.2 GeneraL equations for 3 He circuLating·diLution 

refrigerators 

4.3 The 3 He circuLating diLution refrigerator in continuous 

operation 

4.4 The 3 He circuLating diLution refrigerator in 

singLe-cycLe oper·at ion 

References 

44 

44 

50 

55 

64 

67 

71 

71 

72 

Sl 

95 

101 

i 



V EXPERIMENTAL VERIFICATION IN THE COMBINED-DISSIPATION REGIME 103 

References lOB 

VI NUMERICAL SIMULATION OF THE MOTION OF QUANTIZED VORTICES 109 

6.1 Introduction 109 

6.2 The equation of motion of a vortex line 111 

6.2a The interpretation of the Vinen equation 119 

6.2b Dimensional arguments 120 

6.3 The reconnection of a vortex ring with a rigid smooth 

surface 

References 

LIST OF FREQUENTLY USED SYMBOLS 

SAMENV ATTINC 

SUMMARY 

NAWOORD 

CURRICULUM VITAE 

ii 

122 

132 

133 

135 

137 

139 

140 



I GENERAL INTRODUCTION 

Mixtures of 3 He and 4 He have a number of special properties. In 

the first place, like pure 3 He and pure 4 He, they remain liquid at 

absolute zero for pressures below 2.0 MPa. In Fig. 1 the phase diagram 

of 3 He- 4He mixtures at saturated vapour pressure is represented in a 

T-x diagram, where x is the molar 3 He concentration and T the tempera­

ture. The left vertical axis describes pure 4He. Below the A-point, at 

2.17 K, pure 4 He is superfluid. This means, among other things, that 

the fluid can flow through very narrow pores without friction. The 

second special property is that in region II, on the left side of the 

A-curve, the 4 He component in the mixture is superfluid. On the right 

side of this curve, in region I, the 4He in the solution is a normal 

fluid. 

2.0 

i.-curve 

I 

1.0 

Xc 

0 

Fig. 1 The phase diagrcun of 3 He- 4 He mixtures at saturated vapour 

pressure. BeLow 0.87 K phase separation occurs in region III. 

The A-curve separates the normaL region (I) from the region in 

wnich the 4He component is superfLuid (II). 



A third special property can be seen in the same figure. Below 

0.87 K the phenomenon of phase separation occurs. If a solution is 

cooled to a temperature that would correspond with a point inside 

region Ill, it will separate into two phases: the concentrated phase 

on curve x with a relatively high 3 He concentration, and the dilute c 
phase on curve xd with a lower concentration. At temperatures below 

100 mK the 4 He concentration of the concentrated phase is negligible. 

On the other hand, even at absolute zero, the concentration of the 

dilute phase is nonzero, as is shown in the experiments of Edwards and 

Daunt [1]. 

A fourth special property is provided by the Fermi character of 

the 3 He component. At low temperatures the 3 He component behaves as a 

degenerate Fermi gas. This leads to a specific heat which is high 

compared to pure 3 He and pure 4 He. This property, together with the 

solubility of 3 He in 4 He at zero temperature, also leads to a 

relatively high osmotic pressure. 

Finally, the vapour pressure of 3 He is much higher than of 4 He. 

This property implies that it is possible to extract almost pure 3 He 

from the mixture by continually removing the vapour. 

Due to all these properties 3 He-4 He mixtures can be used for a 

cooling process to ultra low temperatures. The best known example of a 

cooling machine using these mixtures is the 3 He circulating dilution 

refrigerator, which can maintain temperatures of the order of a few 

milllkelvin. Moreover, dilution refrigerators are used as a first 

cooling stage for single-cycle refrigeration to even lower tempera­

tures, like adiabatic nuclear demagnetization. 

In a dilution refrigerator the cooling is produced, using the 

property that at a given temperature the specific heat, and hence the 

enthalpy, of the concentrated phase (pure 3 He) is lower than of the 

dilute phase. Hence, when 3 He in the concentrated phase crosses the 

phase boundary into the dilute phase, heat has to be supplied from the 

surroundings. or the temperature of the liquid decreases. The property 

that approximately 6.6% 3 He can be dissolved in 4He at absolute zero, 

makes this method useful at very low temperatures. The 3 He can be 

diluted continuously, if it is extracted from the dilute phase. This 

is possible. since the partial vapour pressure of 3 He is much higher 

than of 4He. The property that the osmotic pressure is high, permits 
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the transport of 3 He through the dilute phase. The superfluidity of 

the 4 He brings about that this transport does not involve a high 

dissipation. 

From the fundamental point of view, 3 He-4 He mixtures and pure 4 He 

are of interest, because they exhibit macroscopic quantum effects. In 

pure 4 He these effects have been studied extensively during the last 

decades. The most pronounced manifestation is the quantization of the 

circulation of the superfluid, suggested by Onsager [2]. This 

suggestion has led to the notion of quantized vortex lines with a core 

of atomic size, the existence of which has been shown in a large 

variety of experiments. 

In many flow situations the evolution of these vortex lines leads 

to the development of a tangle of quanti zed vortex lines. This 

situation is called superfluid turbulence and has been studied both 

experimentally [3,4] and by numerical simulations [5]. It is 

interesting to note in this respect, that in the numerical study of 

vorticity in classical fluids the approximation is often made that the 

vorticity is restricted to singular curves [6,7]. This approximation 

is valid, if the core radius of the vortex line is small compared to 

its radius of curvature. In classical fluids the vorticity is not 

quantized and the region of vorticity may extend over a large volume. 

Thus, the condition that the core radius of a vortex line is small 

compared to its radius of curvature is only satisfied in special 

situations. On the other hand, the core radius of a quantized vortex 

line in helium is of the order of 1 A, so that this condition is 

always satisfied. Hence, some theories of classical turbulence are 

even more applicable to the quantumfluids. 

Presently, there is a wide interest in chaos and the route to 

turbulence in many branches of physics and other sciences (8]. Two 

well-known examples from the field of hydrodynamics are the 

Couette-Taylor flow of a fluid between two rotating cylinders, and the 

Rayleigh-Blmard instability in a fluid with an inhomogeneous 

temperature. These examples have also been studied with quantumfluids 

[9,10]. The transition to .turbulence in open flow systems has been 

studied recently with a classical fluid [11] and with superfluid 4He 

[12]. In the two fluid model of pure 4He II the density of the normal 

component is completely determined by the temperature. In 3 He-4 He 

mixtures, on the other hand, the temperature and density of the normal 
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component (which comprises the 3 He) are independently variable. 

Therefore, 3He-4 He mixtures have a big advantage over pure 4He in the 

study of quanti:z:ed vortices: the effects of temperature and normal 

density on the turbulence can be studied independently. In this way, a 

contribution can be made to the understanding of the general problem 

concerning the route to turbulence and chaos. 

Around 1981 a study of 3He-4He I I mixtures at temperatures below 

250 mK. both experimental and theoretical, was initiated at the 

Eindhoven University of Technology. At that time the understanding of 

these mixtures was unsatisfactory in several ways. First of,all, the 

thermodynamic quantities of 3 He-4 He mixtures as calculated and 

tabulated by Radebaugh in 1967 [13] and commonly used by the low 

temperature community, showed significant discrepancies with measured 

values of important quantities. like the osmotic pressure and the 

osmotic enthalpy. Furthermore, there was no generally accepted model 

for the hydrodynamics of 3He-4He mixtures. On the one hand, there was 

a model by Wheatley [14], in which it is assumed that there is no 

dissipative interaction between 3He and 4He. Measurements at low 3He 

velocities confirmed this model [15]. On the other hand, measurements 

at higher 3 He velocities. performed at the Eindhoven University of 

Technology, indicated that this model certainly is not genera~ly valid 

[16]. These measurements led to the proposal of the existence of 

mutual friction between 3 He and 4He, comparable with mutual friction 

between the normal and superfluid components in pure 4He II [3]. 

In the work described in this thesis a study of the thermo­

dynamics and hydrodynamics of 3 He-4 He II is made in order to clarify 

these problems. This study will be restricted to temperatures below 

250 mK, where the 4He component is superfluid (region II in Fig. 1). 

Occasionally, pure 3 He will be considered. 

Chapter I I deals with the thermodynamic properties of 3 He-4 He 

mixtures. It is shown that all thermodynamic properties of 3 He-4 He 

mixtures at zero pressure can be calculated, if the specific heat is 

known as a function of 3 He concentration and temperature, the osmotic 

pressure at zero temperature and the specific heats and molar volumes 

of the pure substances. All these quanti ties are known with sufficient 

accuracy from experiments to calculate the other quantities to a high 

precision. In this way, all quantities are calculated at zero pressure 
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as functions of x and T, and the first order terms in the pressure are 

given. The results are in agreement with all experimentally determined 

quantities to a precision of 1%. 

In chapter I I I first a review of some important theoretical 

properties of superfluid 4 He and 3 He-4 He mixtures, such as the 

quantization of circulation and the interaction between 3 He and 4He, 

is given. Next, the hydrodynamics of 3 He-4 He mixt~res is extended to 

include mutual friction. In a 3 He circulating dilution refrigerator 
3 He flows through the superfluid background. Hence, mutual friction 

between the two components plays an important role in these refrigera­

tors and in order to design a dilution refrigerator satisfying 

specified requirements for the minimum temperature and cooling power, 

it is necessary to know the thermodynamic and hydrodynamic properties 

of 3 He-4 He mixtures. In chapter IV, after a more detailed description 

of the 3 He circulating dilution refrigerator, the results of chapters 

11 and Ill are applied to this refrigerator. In this way, the 

influence of mutual friction on the operation of the 3 He circulating 

dilution refrigerator is calculated. 

Chapter V describes the experiments in which the link between the 

models with and without mutual friction is established. By varying the 

dimensions of the flow channel, it is shown that there is a continuous 

transition from the Mechanical Vacuum Model to the Mutual Friction 

Model. In the intermediate regime, the combined-dissipation regime, 

the mutual frictional force and the viscous force are both important, 

whereas in both limiting cases one force dominates the other. There is 

another -discontinuous- transition from the Mechanical Vacuum Model to 

the Mutual Friction Model. Recent measurements showed, that also for 
3 He-4 He mixtures below a certain er i tical 3 He velocity no mutual 

friction occurs [17]. At the value of the critical velocity, which 

depends on the diameter of the flow channel, the sudden dissipation 

gives rise to jumps in the temperature, the 3 He concentration and the 

pressure. In the experiments described in chapter V this transition 

cannot be detected, since it occurs at 3 He velocities too low to be 

realized in the flow channels in consideration. 

Finally, chapter VI deals with the mesoscopic . explanation of 

mutual friction. In analogy with 4 He II it is assumed that mutual 

friction arises from the interaction between the 3 He particles and 

quantized vortices in 4He, which are formed if the 3 He velocity 
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exceeds a certain critical value. An investigation is started in order 

to obtain insight in the influence of walls on the critical velocity 

and the influence of the 3 He velocity profile on the mutual friction, 

by making a numerical simulation of the motion of quantized vortices. 

In this way, it will also be possible to calculate the fluctuations in 

measurable quantities, like the temperature and 3 He concentration. The 

first results of these simulations, concerning the interaction of a 

vortex ring with a rigid smooth surface are reported in this chapter. 

Throughout this thesis SI-units will be used, unless stated 

otherwise. 
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II THERMODYNAMICS OF 3 He-4 He MIXTURES1 

2.1 

The thermodynamic properties of liquid 3 He-4 He mixtures are of 

great practical importance for low temperature physics. In 1967 

.Radebaugh performed calculations of these properties with applications 

to the 3 He- 4 He dilution refrigerator [1]. Since that time, however, 

measurements on the osmotic pressure [2,3] and the osmotic enthalpy 

[4] have been performed that do not agree with Radebaugh's results. 

Therefore, it was necessary to recalculate the thermodynamic quanti­

ties. A new calculation scheme is used, starting from experimentally 

determined values of the osmotic pressure of the mixture and the molar 

volume and specific heat of the mixture and the pure substances. The 

calculations are restricted to temperatures below 250 ml(, where the 

deviations ·from· the Landau-Pomeranchuk quasiparticle spectrum as ob­

served by Greywall (5] can be neglected. In the main part of this 

chapter the pressure is chosen to be equal to zero~ 

In section 2 the thermodynamic relations at zero pressure are 

given. The calculation scheme for the numerical results is presented 

in section 3. In section 4 applications of the calculations to 3 He-4 He 

dilution refrigeration are given in the low-temperature approximation. 

The results of the calculations are presented in section 5. In section 

6 the calculation is extended to include first order terms in the 

pressure. A comparison with the measurements and with Radebaugh's 

calculations is made in section 7. 

1rhe main contents of this chapter have been published as: j.G.M. 
Kuerten, C.A.M. Castelijns, A. T.A.M. de Waele, and H.M. Gijsman. 
Cryogenics 25, 419 (1985). An outline of the calculations has been 
published as: j.G.M. Kuerten, C.A.M. Castelijns. A.T.A.M. de Waele, 
and H.M. Gijsman, Physica 1288, 197 (1985). 
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2.2 Thermodynamics of 3He-4He mixtures at zero pressure 

In this section the thermodynamic relations for 3 He- 4 He mixtures 

at zero pressure will be derived. The thermodynamics of a general 

two-component mixture is treated extensively by Guggenheim [6]. His 

results can also be used for 3 He-4 He mixtures. They will be extended 

to incorporate a phenomenological relation for the specific heat. A 

basic thermodynamic relation for a two-component mixture is the 

Gibbs-Duhem equation, which shows that the temperature T. the pressure 

p, and the molar chemical potentials of both components cannot be 

independently variable, but are related. The Gibbs-Duhem equation for 

a 3 He-4 He mixture reads: 

(1) 

where x is the mola.r 3 He concentration, Sm the molar entropy and Vm 

the molar volume of the mixture: ~ and ~4 are the molar chemical po­

tentials of the 3 He and 4He components respectively. 

In general, the entropy of the mixture can be written in terms of 

the partial entropies s3 and s4 of the two components: 

(2) 

The partial entropies are defined as: 

(3a) 

and 

(3b) 

where N3 and N4 are the numbers of moles of 3 He and 4 He respectively 

and S is the total entropy. It follows that 

s3 = s + (1-x)(as /Bx)1 m m ,p (4) 

and 

s4 = S - x(oS 18x)1 m m ,p (5) 
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In order to calculate the entropy of the mixture the experimental 

observation [5,7] that the molar specific heat of the mixture, Cm, can 

be written as: 

(6) 

will be the starting point. In this equation c~4 is the molar specific 

heat of pure 4 He at constant volume and CvF is the specific heat at 

constant volume of an ideal Fermi gas at the same quasiparticle densi­

ty as the 3 He particle density in the mixture and with effective qua­

siparticle mass m*. Equation (6) is only valid for temperatures below 

0.25 K [5] and 3 He concentrations below 0.3 [1]. In general, the 

superscript 0 refers to a pure substance, and the subscripts 3 and 4 

refer to 3 He and 4 He respectively. 

The specific heat of an ideal Fermi gas is a function of the 

reduced temperature t = T/TF only, where TF is the Fermi temperature 

of the quasiparticle gas, given by: 

n2 [ xNvrnA]2'3 TF = -- 3'1T2 
2m*k 

(7) 

where k is Boltzrnann's constant and NA Avogadro's number [8]. 

From the specific heat, other thermodynamic quantities can be 

derived. For example, the entropy of the quasiparticle gas, SF. is 

related to its specific heat according to: 

(8) 

The entropy at absolute zero is independent of the 3 He concentration, 

in accordance with the Third Law, and is taken equal to zero. With 

equation (6) the entropy of the mixture can be written as: 

(9) 

where S~ is the molar entropy of pure 4 He. From equations (4), (5) and 

(9) it follows that: 
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(10) 

and 

In Fig. 1 a graphical construction of the different entropies is 

given. In this figure Sm is plotted as a function of x at constant 

temperature. According to equations (4) and (5) the partial entropies 

can be found as the intersections of the tangent to this curve with 

both vertical axes. The entropy of pure "He is the value of S at 
m 

x = 0. The straight line connecting this point with the point (x = 1; 

S 0) is (1-x)S~. Hence, using equation (9), the value of xSF can be 

found. 

X 

Fig. 1 Graphical construction of the parttat entropies S3 and S~, and 

the entropy of the Fermi gas SF' from the total entropy of the 

mixture as a function of x. The plotted curve does not 

correspond to the actual sf.tuatton. 

The chemical potential of the ideal quasiparticle gas follows 

from 

(12) 

where VF is the molar volume (equal to Vm/x) and pF the pressure of 

the quasiparticle gas; UF is the molar internal energy, given by: 
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T T/TF 

UF = U0F(x) +ofcvF(T',x)dT' = u0F(x) + TF 
0
f CvF dt , (13) 

where UOF is the internal energy at zero temperature. Taking the po­

tential energy of the quasiparticle gas equal to zero, pF is related 

to UF by [8] 

(14) 

Thus 

T/TF 

~F = ~OF(x) + ~TF Of CvF dt- TSF(T,x) (15) 

5 
where ~OF = 3 u0F can be identified as the chemical potential at zero 

temperature which is equal to 

~OF = RTF (16) 

With equation (9) and p 0, the Gibbs-Duhem relation (1) simpli­

fies to 

(17) 

There are various ways to define the osmotic pressure l1. The one 

commonly used is the implicit definition [2] 

(18) 

At zero pressure and the temperatures and 3 He concentrations in con­

sideration, the right hand side of equation (18) can be expanded, 

yielding 

~4(T,x) = ~~(T) - V~l1(T,x) (19) 
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where v4 is the molar volume (which is constant in this temperature 

region [9]), and~~ the molar chemical potential of pure 4 He respec­

tively. From the relation 

(20) 

and equation (11), it follows that 

(21) 

The last term on the right hand side equals zero. Thus 

(22) 

By differentiating equation (8} with respect to x. keeping T constant, 

it follows that 

1 dTF 
---c 

TF dx vF 
(23) 

Substitution in equation (22) and integration over T yields 

(24) 

where rr0 (x) is the osmotic pressure at zero temperature. This 

expression shows that the osmotic pressure at nonzero temperatures can 

be calculated from the osmotic pressure at zero temperature and the 

specific heat of the quasiparticle gas, if the x-dependence of TF is 

known. 

The chemical potential of the 4 He component follows from equa­

tions (19) and (24). 

Substitution of equation (19) in (17) yields an equation for the 

total differential of the 3 He chemical potential: 
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The chemical potential of the 3 He component follows by integration, 

first at zero temperature from x0 , the 3 He concentration of the satu­

rated solution at T = 0, to x and then at constant 3 He concentration 

from T = 0 to temperature T. The result is 

X 

+ V~ [';;" •o(x) - •-::; •o("o) + xj x \ •o(x, )dx, l 

where integration by parts has been used to write 

In general the zero points of the chemical potentials of two com­

ponents can be chosen independently, as long as no chemical reactions 

between the two components take place (see the appendix). In the pre­

sentation of the numerical results this freedom of choice is used to 

set the chemical potentials of the pure liquids of 3 He and 4 He equal 

to zero at zero temperature. As a result, ~3(0,x0) is equal to zero. 

The molar Gibbs free energy is given by 

(27) 

If Gm is known as a function of T and x, all other thermodynamic quan­

ti ties can be calculated. The molar enthalpy of the mixture Hm is 

given by 

H = G + TS m m m 
(28) 
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Using equations (19),(24) and (26), Hm can be written as 

1-x0 } rr
0
(x' )dx' - -- rr (x ) xo 0 0 

T/TF 

+ xTF 
0
J CvF dt + (1-x)H~(T) 

where H~ is the molar enthalpy of pure 4 He. ' 

(29) 

In chapter IV it is derived that conservation of energy in 

adiabatic 3 He flow experiments leads to a conserved quantity [4,9,10], 

given by 

(30) 

Following Ebner and Edwards [9] this quantity is called the osmotic 

enthalpy per mole 3 He. For low temperatures and not too low 3 He con­

centrations the last term on the right hand side is negligible. Then 

H3" is equal to the enthalpy of the quasiparticle gas, Hj. introduced 

in reference 11 and .to the quantity H
3

, introdu<:;ed by Radebaugh [1]. 

When one component of a classical mixture flows with respect to the 

rest of the fluid, the conserved quantity is the partial enthalpy of 

the flowing component. In 3 He-4He li mixtures the superfluid component 

carries no entropy. Hence, the conserved quantity differs from the 

partial 3 He enthalpy which is normally indicated by H
3

. and given by 

(31) 

From equations (10) and (11) it can be seen that the two enthalpies H3 
and H3s differ by a term 

(32) 

which is generally not negligible (see equations (11) and (23)). 
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The quantity ~3 is defined as [1,12] 

(33) 

Since ~F is the chemical potential of a noninteracting Fermi gas of 

quasiparticles with the same effective mass and density as the 3 He 

quasiparticle gas, ~3 can be interpreted as the potential energy of 

the 3 He due to interactions. 

With the molar specific heat of pure 3 He, c~3 • the thermodynamic 

quantities of pure 3 He can be calculated. The entropy is given by 

T 

I C
0 (T') 
v3 T' dT' 

0 

the internal energy by 

I 

I C0 dT' 
0 

v3 

(34) 

(35) 

The enthalpy and internal energy are equal, since the pressure equals 

zero. Hence, 

The chemical potential equals 

0 
~3 U~ TS~ 

Analogous relations hold for pure 4 He. 

(36) 

(37) 

The excess enthalpy HE is defined as the increase in enthalpy 

when the mixture is produced from the pure components at constant 

temperature and pressure: 

(38) 

It follows from the condition of thermodynamic equilibrium that 

in a saturated solution the chemical potential of the 3 He component is 
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equal to the 3 He chemical potential of the concentrated phase at the 

same temperature. At low temperatures the concentrated phase mainly 

consists of pure 3 He and the 4 He in it will be neglected (see chapter 

I). The equation of the phase separation curve, xs(T), then follows 

from 

(39) 

It follows, as noted before, that 

(40) 

Since the 3 He chemical potential is by definition the partial Gibbs 

free energy of the 3He component [6] 

(41) 

the concentration of a saturated solution can be found from the graph 

of Gm(x), as shown in Fig. 2. Similar as in Fig. 1, the partial 

chemical potentials ~3 and ~4 can be found from the intersections of 

this curve with both vertical axes. Furthermore, ~~ is the value of 

G (x) at x = 1. From equation (39) it follows that x is the value of m s 
x, where ~3 equals ~~ and hence where the tangent to Gm(x) intersects 

the line x = 1 at ~~· 

JJ4 
0~--L---~~~--~--~ 

X 

Fig. 2 Graphical construction of the concentration of the saturated 

solution. The value of xs corresponds with the concentration 

where the tangent to Gm intersects the Line x = 1 in ~~· 
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2.3 CaLcuLation scheme and experimentaL data 

With the relations derived in the preceding section a scheme is 

constructed, according to which all thermodynamic quanti ties can be 

calculated. It is shown in Fig. 3a. The quantities on the top line 

were deduced from experiments. The dependence of CvF on the reduced 

temperature t was calculated and tabulated by Ston~r [13]. It is not 

possible to approximate these tabulated values by a simple polynomial 

over the whole t region. Radebaugh [1] has divided the domain of the 

reduced temperature into three regions and fitted a power series in t 

to Stoner's values in each region. His fit is, however, not 

continuously differentiable at the boundaries of the regions. In this 

work Radebaugh' s results for t < 0. 15 and t > 0. 7 are used. Another 

polynomial is fitted to Stoner's values in the intermediate region, 

requiring that the specific heat is continuously differentiable at the 

boundaries. This requirement is necessary to avoid discontinuities in 

derived quantities. The result is: 

and 

4 

C~F = 2 A1jt2J+1 

j=O 

c 6 
~-\A tJ 

R - L 2j 
j=O 

3 

c~F = 2 
j=O 

A t-3j/2 

3j 

for t ~ 0. 15, 

for 0.15 ~ t ~ 0.7, 

for 0.7 ~ t, (42) 

where R is the molar gas constant. The coefficients Aij are given in 

Table I. 
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34-37 

Fig. 3a The calculation scheme used in this work. The quantities on 

the top line are the input data. The subscripts e and c refer 

to quanti t tes deduced from experiments and calculated 

quanti ties respectively. The numbers correspond with the 

equations in this chapter. For some quantities the dependence 

on the thermodynamic properties of pure 4He is not indicated. 
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Fig. 3b The calculation scheme used by Radebaugh [1]. The dashed Line 

means that a theoretical extrapolation has been used. 
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Table I. 

The coefficients A
1

. from equation (42). 
. J 

i Ali A2i A3i 

0 4.934802 -0.201414 1.5 
1 -14.400636 8.910152 -0.09973557 
2 -167.8453 -27.147564 0.00560236 
3 -4313.1735 56.254979 -0.00024872 
4 203138.64 -77.719454 
5 62.61363 
6 -21.64979 

As mentioned before, the molar volume of the mixture is tempera­

ture independent at low temperatures. The concentration dependence is 

given by [3] 

where the molar volume of pure 4He, V0 27.58 x 10-6 m3 mol- 1 and 
4 

a = 0.286. 

The value of the effective quasiparticle mass has been determined 

experimentally by measuring the specific heat [5,7], the osmotic pres­

sure [2] or the velocity of second sound [5]. From these measurements 

it was found that m* is slightly x-dependent. However, the results are 

not consistent [5]. In this calculation a concentration independent 

value of the effective mass is used: 

m" = 2.46 ~ (44) 

where m3 is the mass of the bare 3 He atom. This value is consistent 

with specific-heat measurements at concentrations of 1-5% [7] and fits 

the specific-heat measurements at low concentrations [5] within 1%. 

Also, as will turn out lafer, it fits the measurements of the osmotic 

pressure and the T-x dependence of the phase separation curve. This 

choice of the value of the effective mass will be discussed in more 

detail in section 2.7. 
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With equations (7) and (42) to (44) the specific heat of the 

quasiparticle gas can be calculated as a function of T and x. 

Measurements of the osmotic pressure were performed by Landau et 

al. [2,14] and by Ghozlan et at. [3]. The fit to a theoretical formula 

of Varoquaux [15] of Landau's results forT= 0, yields: 

[-X ]5/3 [ ]2 rr0 (x) = 3.092 x 105 l+ax - 1.32 x 105 
1:ax 

[-X ]8/3 
- 6.91 x 105 

1+ax Pa. (45) 

This formula is based on measurements for concentrations below x 0 . In 

principle it might not be valid at higher concentrations. However, the 

calculated phase separation curve agrees with measurements up to 

x = B%. Therefore, equation (45) will be used for concentrations up to 

8%. The osmotic pressure at temperatures above zero can be obtained, 

using equations (24) and (45). The results fit Landau's data [2] 

within 1%. 

The molar specific heat of pure _.He was measured by Creywall for 

0.14 K < T < 0.86 K [16]. He fitted a polynomial to his data for low 

temperatures, yielding: 

4 

C~4 = 2 BiTt+3 

i=O 

forT < 0.4 K. (46) 

The coefficients Bi are given in Table II. From a theoretical formula 

for the phonon contribution to the specific heat it is expected that 

this formula will be valid for temperatures down to zero kelvin [16]. 

Different measurements of x0 do not give the same result [ 17]. 

The value used here, 

(47) 

is consistent with the measurements of Ref. 19. 

The specific heat of pure 3 He at zero pressure was measured by 

Greywall [18]. He fitted mathematical expressions to his measurements, 
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dividing the temperature domain into two regions. However, the fit at 

higher temperatures cannot be integrated analytically. Therefore, a 

polynomial is fitted to the data for temperatures between 100 and 

450 mK. imposing the condition that c~3 is continuously differentiable 

at I = 100 mK. The result is 

i 1forT~0.1K 

i = 2 for 0.1 K ~ T ~ 0.45 K. (48) 

The coefficients C .. are given in Table II. This formula fits the mea­
lJ 

surements within 1%. 

The concentration of the saturated solution, xs' was obtained as 

a function of temperature by solving equation (39) numerically. To the 

values of xs obtained in this way, a polynomial fit in T results in: 

5 

xs(T) = x0 + l DiT
1 (49) 

The coefficients Di are given in Table II. For concentrations up to 8% 

equation ( 49) agrees within experimental error with measurements of 

Abraham et at. [19]. For higher concentrations there are deviations 

Table II. 

The coefficients B1, Cij and 01 from equations (46), (48) and (49). 

i B. cli c21 D. 
l l. 

0 0.08137 0.0245435 
1 0 2.7415 1.85688 
2 -0.0528 0 9.39988 0.5056 
3 0.05089 -61.78929 -117.910 -0.2488 
4 0.019 -177.8937 440.369 18.22 
5 2890.0675 -735.836 -74.22 
6 0 468.741 
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between equation (49) and experiment. This is to be expected, since 

equation (45) yields for higher concentrations a decreasing value for 

rr0 (x), which is not consistent with measurements. Therefore, equation 

( 49) is in good agreement with measurements for temperatures below 

150 mK. 

2.4 Applications to dilution refrigeration 

In chapter IV the basic properties of a 3 He circulating dilution 

refrigerator are explained. Consider a 3 He-4 He dilution refrigerator 

in which n3 moles of pure 3 He are circulated per second. The mixing 

chamber is sketched in Fig. 4. The temperature in the mixing chamber 

is Tm' the temperature of the incoming 3 He is T1 and the cooling power 

is Q. As will be shown in chapter IV, the enthalpy balance of the 

mixing chamber can be written as 

(50) 

Furthermore, 

~(T ) = M3{T ,x (T )} ·.:s m m s m (51) 

Fig. 4 The mixing chamber of a 3 He circuLating dilution refrigerator. 

The temperatures of the incoming 3 He and of the mixing chamber 

are Ti and Tm respectively. The cooling power is Q. 
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The maximum cooling power of the dilution refrigerator is reached in 

the limit that Ti = Tm = T. There holds 

and 

where equation (51) has been used. A measure for the cooling power is 

the quantity 1. defined as: 

(52) 

It follows that 

SF{T,x
5

(T)} - S~(T) 

T 
(53) 

The minimum mixing chamber temperature is reached if Q = 0. 

Equation (50) then reads: 

H3°(T.) = H3os{T ,x (T )} 
1 m s m 

(54) 

Some thermodynamic properties will be calculated in the low tempera­

ture 1 imi t, where terms of higher order than T2 and x-x0 can be 

neglected. 

First the equation of the phase separation curve is calculated. 

The chemical potentials in equation (51) can be expanded in the fol­

lowing way: 
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(55) 

and 

0( ) 1 2 2 ~-t3 T = - 2' c11 RT = - 11 . 40 T · (56) 

with Al.O and c11 given in Table I. Substitution in equation (51) 

yields: 

(57) 

in accordance with equation (49). 

In the same limit it follows from equation (53): 

(58) 

When the first order terms of the enthalpies are substituted, equation 

(54) yields 

= C T ( ) - 1 = 8.156 . 
11 F xO 

Thus the minimum temperature is directly related to the temperature of 

the incoming 3 He, according to: 

(59) 
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As follows from equation (46), in the low temperature limit the 
4 He contribution to the osmotic enthalpy ~an be neglected. This 

quantity is given by 

H3"(T,x) = 17.58 (x-x0) + 84.06 T2 (60) 

The T-x dependence of the isenthalps is given by 

+ fjx = constant, (61) 

where f3 0.209 K2
. In the low temperature limit the osmotic enthalpy 

is equal to Radebaugh's H
3

. Therefore, the same linear relationship 

between T2 and x must hold for lines of constant H
3

. 

As a last property the osmotic pressure along the phase separa­

tion curve is computed. From the approximation for the osmotic pres-

sure: 

and equation (57) for the phase separation curve, it follows that 

(63) 

This result agrees with the experimental values of Varoquaux [15] and 

of Landau et at. [2], within experimental accuracy. 

2.5 ResuLts 

In reference 20 the thermodynamic quantities, defined above and 

calculated according to the scheme described above are listed as 

functions of x and T, together with the fountain pressure of pure 4 He, 

defined as: 

(64) 
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Fig. 5 The H3 5 -rr diagram with isotherms (T tn mK), tines of constant 
3 He concentration and the phase separation curve, resutting 

from the calculations described here. 

In Fig. 5 the Hj5 -rr diagram with isotherms, lines of constant x 

and the phase separation curve is shown. Figure 6 is the inverse dia­

gram: a T2 -x diagram with lines of constant osmotic pressure (!so­

tones), isenthalps and the phase separation curve. From the latter 

diagram it can be seen that the linear relationship between T2 and x 

of the isenthalps, as expressed by equation (61), is in good approxi­

mation valid in a large T-x region: x > 0.02 and T < 100 mK. 

2.6 Thermod.U!lf!11tics of 3He- 4He mixtures at nonzero pressures 

In this section the calculation of the thermodynamics of 3 He-4 He 

mixtures is extended to nonzero pressures. In the results only the 

first order terms in the pressure will be maintained. This restricts 

the validity to pressures below about 104 Pa, which is the region of 

interest for the following chapters. At these pressures 3 He-4He 

mixtures do not undergo a phase transition in the region of interest. 

Therefore, the thermodynamic quantities are smooth functions of the 

pressure and can be obtained from an expansion in powers of p. 
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Fig. 6 The T2 -x diagram with isenthalps (dashed), isotones (full) and 

the phase separation curve (fat). (rr in Pa and H3s in ]/mat). 
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As a first example the 4 He chemical potential satisfies [6] 

(65) 

where v4 is the partial volume of the 4 He component, defined in the 

same way as s4 . The expansion of ~4 in powers of p follows as 

(66) 

The partial volume of the 4 He component can be derived from the molar 

volume of the mixture, which is given by [2] 

Vm(p,T,x) = V~(p){l + xa(p)} (67) 

In this equation the thermal expansion and the x-dependence of a, 

which both are small at low temperature and 3 He concentration [2], 

have been neglected. From equation (67) v4 follows as 

(68) 

So, to first order in the pressure the 4 He chemical potential equals 

~4(p,T,x) ~4(0,T,x) + V~(O)p (69) 

The second order term equals 

(70) 

where K 4(p) is the compressibility of pure 4 He, which equals 

1.2x10-7 Pa- 1 at zero pressure [21]. Hence, neglecting the second 

order term in p is valid if p ( 1/K4(0) ~ 8x105 Pa. 

The osmotic pressure at arbitrary pressure follows from its 

definition (equation (18)) as 
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-ll(p,T,x) 

~4 (p.T,x) = 
0
J V~(p' ,T)dp' + ~~(p,T) (71) 

In the region of interest l1 is of the order of 1000 Pa. Hence, equa­

tion (71) can be approximated by the first order term in rr. yielding 

(72) 

Using equation (69) and (19) this gives to first order in p 

U(p,T,x) = U(O,T,x){l + K4(0)p} (73) 

In this case the first order term is negligible in all situations of 

interest. 

For the 3 He chemical potential the following relation holds 

(74) 

where ~3 is the partial volume of the 3 He component, equal to 

~3(p,T,x) = V~(p){l + a{p)} (75) 

So to first order in p the 3 He chemical potential equals 

(76) 

The expansion of the molar entropy can be found from the Maxwell 

relation 

(8S /8p)T = -(8V /8T) m ,x m p,x (77) 

The right hand side of equation (77) is proportional to the cubic 

expansion coefficient, which is negligible at low temperatures. Hence, 

to first order the molar entropy is independent of pressure. Without 

any approximation equation (77) yields a differential equation for the 

effective mass as a function of pressure in the following way. From 

equation (9) follows 
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(78) 

Furthermore 

(79) 

and 

(SO) 

where TF is a function of p through V m and m". From equation (67), 

where in general V~ and a also depend on T follows 

(aV /8T) = (c3V0

4/8T) + x f~aV4°)] m p,x p l~• p,x (81) 

Substitution in equation (77) yields, using (7) 

(82) 

In principle, with this equation it is possible to calculate m" at 

arbitrary pressure, if it is known at zero pressure and the equation 

of state is known. 

The molar Gibbs free energy can be calculated from equation (27). 

Substitution of equations (69) and (76) for the chemical potentials 

yields to first order in p 

Gm(p,T.x) = Gm(O,T,x) + V~(O){l+a(O)x}p (83) 

In the same way the molar enthalpy equals 

H (p,T,x) = H (O,T,x) + v4°(0){1+a(O)x}p 
m m 

(84) 

The molar Helmholtz free energy, defined as Fm = Gm- pVm' is in 

first order independent of pressure, since the first order term of the 
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molar Gibbs free energy equals pVm. This can be seen directly from the 

relation 

dFm = -SmdT - pdVm + (aFm/ax)V .Tdx, 
m 

which gives 

(aF /8p)T = -p(8V /8p)T pVmK' m ,x m ,x 

(85) 

(86) 

where K is the compressibili ty of the mixture. This leads in second 

order to 

F (p.T,x) = F (O.T,x) + -2
1 V Kp2 

m m m 
(87) 

From equation (38) and (84) follows for the molar excess enthalpy 

HE(p.T.x) = HE(O,T,x) + x{V~(O)[l+a(O)]-V~(O)}p (88) 

Finally, the osmotic enthalpy is in first order equal to 

H3 5 (p,T,x) = H3 5 (0,T.x) + V~(O){l+a(O)}p (89) 

With these results, the 3 He concentration of a saturated solu­

tion, xs, can be calculated at low pressures. As follows from the 

condition for thermodynamic equilibrium, the chemical potentials of 

the concentrated and dilute phases are equal. Hence, xs satisfies the 

relation 

~{p,T,xs(p,T)} = ~(p,T) (90) 

where /.!~ is the molar chemical potential of pure 3 He. Expansion in 

powers of p yields to first order 
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s~bstitution of equations (39) and (76) gives 

Bxs V~ - V~(l+a) 
8p = ilJJ.3/8x. 

(92) 

The molar volumes of pure 3 He and 4He have been measured by Greywall 

[16, lB]. At zero temperature the low temperature approximation of 

section 4 can be used, yielding (~/8x)T=O,p=O = 17.58 J/mol [22]. 

The result is: 

(93) 

This is in good agreement with the experimentally determined values of 

B.6x10-8 Pa- 1 [2] and 6.6x10-8 Pa- 1 [17]. 

In section 4 the cooling power and the minimum mixing chamber 

temperature of a 3 He circulating dilution refrigerator are calculated 

at zero pressure. It is possible to extend these calculations to non­

zero pressures. However, the terms of first order in the pressure are 

smaller than the terms of higher order than T2 and x-xo· which are 

neglected in section 4. Therefore, the corrections due to the small 

pressures in the practical situation are not important for the 

calculated values of the cooling power and minimum temperature. 

2.7 Discussion 

In this section the results of our calculation are compared with 

the calculations of Radebaugh [1] and with experimental results. 

First the choice of the value of 2.46 for the ratio m*/~ is dis­

cussed. The values deduced by Greywall [5] from measurements of the 

second-sound velocity and the specific heat, range from 2.34 at x = 0 

to 2.425 at x = 0.01. However. these specific-heat measurements were 

performed at high reduced temperatures: T ~ TF' where CvF is not sen­

sitive to the effective mass. AI though the values of m* of Greywall 

differ up to 5% from the. values obtained from equation (44). the 

calculated values for the specific heat agree with the values of 

Greywall within 1%. This should be compared with the estimated 

precision of the measurements of 0.1%. On the other hand, a small 
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change in the value of mK causes a larger change in the values of the 

osmotic pressure in the T-x region of Landau' s measurements; the 

strong dependence of m" on x, as found by Greywall. would lead to 

osmotic pressures that differ from the measurements of Landau et aL. 

[2] up to 10%. Values of the effective mass that lead to consistency 

within 1% with both types of measurements are preferable. The value, 

given by equation (44) satisfies this requirement. 

The specific heat data of Anderson et aL. [7].were refitted by 

Landau et aL. [2] who deduced m"/~= 2.42 ± 0.04 at 1.3% and 

m~/m3 = 2.47 ± 0.04 at 5%, consistent with equation (44). 

The excess enthalpy at zero temperature was measured by Seligmann 

et al. [23]. These measurements are compared with the calcul~tions in 

Fig. 7. The differences are systematic and increase with increasing 
3 He concentration. This may be due to the measuring method which leads 

to systematic and cumulative errors in the excess enthalpy [23]. In 

Fig. 8 the calculated results for ~3 at zero temperature are compared 

with the values calculated from the excess enthalpy in reference 23. 

It can be seen that the values of Ji.3 are almost the same at low 

concentrations and deviate at higher concentrations. Since ~· deter­

mined in reference 23, does not satisfy the requirement that 

~3 (o,x0) = 0, the osmotic-pressure data of Landau et al. [2] are a 

better starting point for the calculations than the data on the excess 

enthalpy. 
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j 

Fi..g. 7 Comparison of the excess entha.tpy between this calculat ton 

(full curve) and measurements of Seli..gmann et al. [23] (o). 
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X 

Fig. 8 Comparison of the 3 He chemical potential between this {fu'll. 

curve) and Se Hgma.nn' s [23] catcul.ation ( o}. 

Finally the results are compared with the work of Radebaugh [1]. 

In Fig. 3b the calculation scheme of the latter is shown. This has to 

be compared with the calculation scheme given in Fig. 3a. The results 

of the two calculation schemes should be the same, as the same thermo­

dynamic relations are used. The values of the specific heat of an 

ideal Fermi gas, the effective mass and the molar volume are nearly 

the same in both calculations and do not lead to significant differ­

ences. This can be verified by comparing the two results on the 

specific heat, the entropy and the chemical potential of the 

quasiparticle gas, which agree within 2% for x > 0.01. 

However, the differences are more significant for the other tabu­

lated quantities. This is caused by the difference in input data. 

Radebaugh used dat~ on ~3 at the phase separation curve. For 3 He con­

centrations lower than x0 he extrapolated the potential energy J.t3· 
using a theoretical expression of Bardeen, Baym and Pines [24]. This 

expression, however, gives the difference between ~3 and the chemical 

potential of an ideal Fermi gas of mass m0 , the quasiparticle mass at 

zero concentration, where Radebaugh used the concentration-dependent 

quasiparticle mass. Recent measurements [3,25] give a value for m0/~ 
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Fig. 9 Comparison of the quantity ~-t3 a.t zero temperature between this 

and Radeba.ugh's ca.Lcutation [1]. 

of 2.25, which leads to an appreciable difference in ~-t3 at zero 

concentration. Furthermore, the theoretical expression for J.t3 contains 

the interaction potential between two 3 He atoms, which was .not well 

known in 1967. These two facts explain the difference between J.t3, 
calculated by Radebaugh, and the values calculated in this work, which 

follow directly from measured quantities (see Fig. 9). 

A similar difference also shows up in the values of the osmotic 

pressure and the osmotic enthalpy, which Radebaugh calculated using 

J.t3· In Fig. 10 Radebaugh's values of the osmotic pressure at zero 

temperature are compared with measurements and with the fit to these 

measurements given in equation ( 45). Since the osmotic enthalpy is 

equal to Radebaugh's H3 at low temperatures, the differences between 

the two calculations also become evident by comparing the values of 

the constant p, defined in equation (61). The value of 0.209 K2 calcu­

lated here agrees very well with the measured value [4] of 0.21 K2
. 

Radebaugh's P = 0.14 K2
, on the other hand, is too low. This can also 

be seen from Fig. 11, whePe an isenthalp for both calculations and a 

measured isenthalp [26] are given in the T2-x diagram. 

The results of the calculations presented here are in good agree­

ment with the measurements. However, at present there is a lack of 
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Fig. 10 Comparison between the measurements of the osmotic pressure by 

La.ndau et al.. [2] (o), Ghozl.an et al. [3] (A) and the 

calculations of Radebaugh [1] (chained line). The full. curve 

represents equation (45). 
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Fig. 11 Comparison between the calculated isenthal.ps of Radebaugh [1], 

this work, and measurements of Zeegers [26]; 

fuLl. curve: H3" = 0.33 ]!mol. as calculated in this work; 

dashed curve: H3" = 0.33 ]/mol. as calculated by Radebaugh. 
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accurate measurements of the specific heat at low temperatures and 3 He 

concentrations higher than 1%. New measurements will result in a more 

precise determination of the effective quasiparticle mass, f,rom which 

the thermodynamic properties can be derived with more preciision than 

given here. 

Appendix 

In this appendix it will be shown that the zero points of the 

chemical potentials of two substances can be chosen independently, if 

no chemical reactions between the two components occur. This can be 

understood as follows. Following the argument of Guggenheim [6], the 

system drawn schematically in Fig. 12 is considered. Vessel A contains 

the mixture at temperature TA and concentration x
1 

of component i. 

Vessel B contains the component i in the pure form. The two vessels 

are connected through a thermally-insulating, semi-permeable membrane 

which can only be passed by component i. The temperature in vessel B 

can be chosen in such a manner that the system is in equilibrium. This 

is the case if the chemical potentials of i in both vessels are the 

A I B 
I 

TA 
I Ts I 

Xj <1 
I 

Xj •1 I 
I 0 

PiA : JJiB 

Fig. 12 IUustraHon used tn the proof that the zero points of the 

partiaL chemical potentials of the components in a mixture can 

be chosen arbitrariLy. VesseL A contains the mixture at 

temperature TA; the concentration of component i in A is xi. 

Vesset B contains the component i in pure form at temperature 

TB' The boundary between the two l)essels is a semi-permeable 

membrane, through llihich only component i can pass. The 

chemical potent ial.s of component i in both !)esse l.s are the 

same. 
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same. The zero point of the chemical potential of any pure substance 

may be chosen independent of the zero points of other pure substances 

provided that no chemical reactions take place. Since J.L. = J.Lt?, the 
1 1 

zero point of the chemical potential of the component i in the mixture 

can also be chosen independent of the zero point of component j. All 

thermodynamic expressions for observable quantities, such as the 

specific heat and the osmotic pressure, are independent of the choices 

of the zero points of the two chemical potentials. 
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I I I HYDRODYNAMIC PROPERTIES OF 3H-4He MIXTURES 

3.1 Introduction 

Until some years ago it was generally assumed that there would 

only be a dissipative interaction between 3 He and 4 He if the relative 

velocity is high enough to create rotons. This assumption has its 

origin in a paper by Landau and Pomeranchuk [ 1], and is called the 

Mechanical Vacuum Model. Khalatnikov used it to derive the hydro­

dynamic equations for 3 He-4 He 11 mixtures [2]. Wheatley and his 

coworkers [3,4] calculated the properties of a 3 He circulating 

dilution refrigerator, using this model. 

This hydrodynamic description leans heavily on the hydrodynamics 

of pure superfluid 4He, developed by Landau [5]. It is based on the 

idea that in order to describe the macroscopic properties, 4He II can 

be viewed of as consisting of two components: a superfluid and a 

normal component. This two-fluid model is not appropriate for 

microscopic properties, as it is not possible to call a single atom 

normal or superfluid. Below the critical relative velocity for roton 

excitation (58 m/s) no friction should occur. However, only a few 

years after the proposal of this model the experiments of Corter and 

Mellink showed the existence of a frictional force between the two 

components above a critical velocity of the order of a few cm/s [6]. 

In the same year Onsager conjectured besides phonons and rotons a 

third kind of elementary excitations [7], namely vortices with quan­

tized circulation. Following a suggestion of Feynman [8], Vinen 

developed a model in which the frictional force between the two 

components is caused by the interaction of the normal fluid with 

vortices. These vortices are assumed to form a tangle throughout the 

fluid when a critical relative velocity between the two components is 

exceeded [9]. This flow situation is generally called superfluid 

turbulence. 

Since the work of Mazur and Prigogine [10,11]. who did consider a 

mutual frictional force between 3 He and 4He, the existence of a vortex 

tangle in 3 He-4He II mixtures as a possible origin for the interaction 

has not been considered for a long time. However, in studying the 

properties of 3 He circulating dilution refrigerators, where 3 He flows 
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through superfluid 4 He, di'screpancies from the Mechanical Vacuum Model 

have been reported occasionally [12,13]. A more extensive study on 

these discrepancies was initiated by the observations of Coops et al. 

[14,15]. and continued by Castelijns et al. [16,17]. It was found that 

the interaction between 3 He and 4 He could be described by a mutual 

frictional force which, if the 4He velocity is small, varied with the 

cube of the relative velocity, like in the Gorter-Mellink experiment. 

In the course of the investigation a new difficulty showed up: in the 

experiments where the mutual friction was measured, no pressure 

difference over the tube in which 3 He flows through 4He was detected. 

Hence, it was assumed that there is no viscous force. The solution to 

this problem was presented recently [18]. It turned out that the early 

experiments by Wheatley et at. [19] were performed in a region in 

which the mutual frictional force is outweighed by the viscous force, 

whereas in the experiments of Castelijns et at. the former is 

dominant. In chapter V the results of an experiment in the 

intermediate region, where both forces can be detected, will be 

presented. 

In section 3.2 some aspects of the microscopic theory of super­

fluid 4 He and 3 He-4He mixtures that are useful for this chapter are 

reviewed. In section 3.3 the hydrodynamics of 3 He-4 He II including 

mutual friction is developed in the region T < 0.5 K and x < 8%. 

3.2 Mtcroscoptc theoru of superf!uid 4He and 3He-4He mixtures 

3.2.1 Pure 4 He 

Liquid 4 He exhibits a second-order phase transition at the A 

point. It has been proposed that, in spite of the large interatomic 

forces in '~He, the transition results from the same effect as the 

condensation of an ideal Bose gas [20]. Feynman has shown that this 

effect would indeed explain the A transition [21]. 

In order to explain the properties of 4He, Landau (5] introduced 

the two-fluid model mentioned above. The densities of the normal and 

superfluid component are denoted by pn and ps respectively. At zero 

temperature pn equals zero, since there are no excitations. Above the 

A point the whole fluid is normal: ps = 0. The two components have 
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0 

Fig. 1 The dispersion curve for eLementary excitations in He II. The 

thickened regions of the curve indicate the phonon- and roton 

excitations. The stope of .the dashed tine corresponds with the 

crit icat ve loctty for rot on excitation, as explained in the 

text. 

velocities vn and vs respectively. The total momentum density j can be 

written as 

(1) 

It should be noted that the two-fluid model is a phenomenological 

model, which was set up to describe the macroscopic observations. It 

is certainly not true, that some atoms belong to the normal component 

and others to the superfluid. 

The unusual properties below the X point can be explained by 

studying the elementary excitations. On basis of measured thermodynam­

ic properties, Landau [22] proposed the energy spectrum of the excita­

tions given in Fig. 1. At low values of the energy there are two parts 

in the energy spectrum with different behaviour. At low values of the 

momentum p the excitations are phonons with energy equal to 

E- = cp (2) 
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where c is the velocity of sound in 4 He, which at zero pressure equals 

239.6 m/s [23]. At values of the momentum near the minimum in the 

spectrum a second kind of excitations occurs, called rotons. Their 

energy is given by 

(3) 

where 4/k = 8.6 K. p0/h = 1.91 A- 1
• and~= 0.16m4 [2], and m4 is the 

mass of a 4 He atom. 

It is possible to explain superfluidity from the energy spectrum 

and conservation of energy and momentum [5,24]. It follows that the 

fluid velocity v needed to create an excitation of momentum p and 

energy €:. equals 

V p cos fJ (4) 

where fJ is the angle between v and p. Equation (4) can only be satis­

fied, if 

V l <:./p (5) 

From the excitation spectrum it can be seen that e/p has a minimum in 

the point where dc./dp c./p, near the roton minimum. If the velocity 

is lower than this value of c./p, it is not possible to create phonons 

and rotons. The critical velocity is equal to 58 m/s and is called the 

Landau critical velocity. This would imply that superfluid 4 He can 

flow without friction through very narrow channels with velocities up 

to 58 m/s. 

Feynman has shown from first principles that the excitations of 

lowest energy are phonons [25], and that there exists a minimum in the 

energy spectrum corresponding with rotons [26]. However, as stated in 

the introduction, there are other possible exci tations with higher 

momentum. Experiments show that the critical velocity for creation of 

these excitations is of the order of a few centimeter per second, far 

below the Landau critical velocity. Furthermore, the critical velocity 

measured in circular tubes is dependent on the diameter of the flow 

tube [27]. This observation suggests that the energy spectrum of these 

excitations depends on the geometry of the flow channel. 
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From the experiments in rotating superfluid 4 He it is known that 

above a certain angular velocity quantized vortex lines, parallel to 

the axis of rotation, are created [28, 29]. The properties of these 

vortex lines have been explained by Feynman [8]. He showed that at 

absolute zero the many-particle wave function of a uniformly moving 

superfluid is given by 

l[l = W exp (iS) (6a) 

where the phase of the wave function equals 

(6b) 

w is the wave function of the ground state and R. is the position of 
J 

the jth particle. The wave vector k is related to the total momentum P 
of the system, through 

n 
N = L -;- V .l[l = Nfllcli 

j 1 J 
(7) 

where N is the total number of particles and the property that l[l is an 

eigenfunction of the momentum operator has been used. On the other 

hand the total momentum equals Nm4v s, if vs is the velocity of the 

superfluid. Thus: 

(8) 

if vs is uniform. If vs varies only little over distances of the order 

of the atomic spacing, a function s of r can be introduced by 

S=Ls(R.) 
j J 

(9) 

Here, s is evaluated at the position of each particle. The local 

velocity of the superfluid is given by 

(10) 
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From this relation an important equation ·for superfluid flow follows 

at once: 

Vxv 
s 0 

Hence, the flow of a superfluid is irrotational. 

(11) 

Next, consider a very long chain of atoms each of which is a 

nearest neighbour of the next in line, and together lying on a closed 

contour C. If all the atoms are displaced over small distances ARj' 

then the change in the phase AS of the wave function equals 

AS= n- 1m4L v (RJ)·AR. 
j s J 

(12) 

apart from small changes in the wave function of the ground state. If 

the displacements are such that each atom moves to its nearest neigh­

bour next in line, the change in phase equals 

n- 1m4L v (Rj)•AR. 
j s J 

= n- 1m4f vs·dt = n- 1 m4k 

c 
(13) 

where k is by definition the circulation around the contour1. Since 

the final situation is indistinguishable from the initial situation 

(the spin of a 4 He atom equals zero), the change in phase has to be 

equal to 2v times an integer. Hence, the circulation is quantized: 

(14) 

with n an integer. 

By changing a contour in the fluid the circulation can only 

change in discrete steps, so it was proposed that there may be lines 

1The transition from the summation to an integration is only allowed, 
if the superfluid velocity does not vary appreciably over distances of 
the order of the atomic spacing. 
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in the fluid (vortex lines) around which the circulation is quantized 

[8]. Outside these lines the flow is irrotational. It can be shown [2] 

that vortex lines with n ±1 are energetically favourable. When the 

angular velocity of a rotating bucket of 4He II is increased, 

gradually more vortex lines appear. At higher angular velocities the 

density of the vortex lines is so high, that the superfluid seems to 

be in a state of solid body rotation. 

Quantized vortex lines are also created in other situations where 

the normal component moves with respect to the superfluid. From equa­

tion (11) and Stokes's theorem follows that they form a closed loop or 

end on natural boundaries, such as walls and liquid-vapour interfaces. 

For the onset of vorticity in flow through channels. circular vortex 

rings with their axes aligned along the axis of the channel appear to 

be important. Apart from logarithmic terms, the energy of a vortex 
2 ring is proportional to its radius, while its impulse varies as the 

square of the radius [31]. Thus the relative velocity between the two 

components needed to create a vortex ring of radius R is inversely 

proportional to R (see equation (5)). So the larger the vortex ring. 

the smaller the velocity needed to create it. However, the radius of 

the vortex ring is bounded by the dimension of the channel. It is thus 

not surprising that the critical velocity depends on the geometry of 

the channeL For a cylindrical flow channel the critical velocity 

would in first approximation be inversely proportional to the diameter 

of the tube [28]. This picture is far too simple to explain the 

measured critical velocities quantitatively [27]. 

One of the aspects that has not been taken into account yet, is 

the structure of the vortex core. The detailed structure is still a 

subject of investigation. A review of the various models has been 

given recently by Glaberson and Donnelly [32]. However, a few general 

remarks can be given. The superfluid velocity varies inversely propor­

tional to the distance to the vortex line, r: 

v = k/2Trr 
s 

(15) 

~he impulse of a vortex ring is defined as JFdt. where F is the force 
needed to create it. This impulse is immediately transmitted to 
infinity. Therefore, the momentum of a vortex ring equals zero and one 
has to use the impulse [30]. 
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In order to keep the kinetic energy of the superfluid motion finite, 

the superfluid density should approach zero at the center of the vor­

tex line. Furthermore, in a region where Vxvs = 0, the pressure is in 

a stationary situation and at constant temperature related to the 

superfluid velocity by Bernoulli's law according to [28] 

p + ;;p21 vz 
s s constant. (16) 

Hence, the pressure decreases near a vortex line, so that the normal 

component is attracted towards the center of a vortex line. In one of 

the proposed models [32]. the vortex core is considered as a region 

filled with the normal component, around which the superfluid rotates. 

Since the diameter of the core region is of atomic size (~ lA) [32]. 

quantummechanical effects will play an important role in the descrip­

tion of the core of quantized vortices. 

Since the normal part of the fluid is attracted towards the vor­

tex line, the concentration of excitations is higher near the vortex 

line. It is conceivable that in a steady state at a temperature above 

1 K the excitations are continually trapped into the vortex core and 

emitted again. Moreover, the energy of the excitations depends on the 

local superfluid velocity, which varies strongly near the vortex core. 

These two effects lead to an interaction between the vortex lines and 

the phonons and rotons, which is responsible for the mutual frictional 

force. A microscopic calculation for the force between rotons and a 

vortex line has been given by Hillel and Vinen [33,34]. A more 

detailed description of the interaction between vortices and 

excitations will be given in chapter VI. 

From a theoretical point of view 3He-4He II mixtures are of spe­

cial interest, since these are the only known mixtures of bosons ( 4 He) 

and fermions ( 3 He) that are liquid down to absolute zero at ambient 

pressure. This opens the possibility to study the interaction between 
4He and quasipartlcles in the range where the quaslparticles vary from 

a classical gas to a degenerate Fermi gas, by varying both temperature 

and 3 He concentration. 
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In the hamiltonian of a 3He-4He mixture there are several contri­

butions from the 3 He particles. In the first place a moving 3 He atom 

can excite phonons and rotons. However, the momentum of the 3 He atom 

needed is, even at the concentration of a saturated solution, much 

higher than the Fermi momentum (see section 3.2.1). Thus the excita­

tion of real phonons and rotons does not occur at 3He velocities below 

the Landau critical velocity. In the second place a 3 He atom is able 

to excite and absorb virtual 4He phonons and rotons [35]. In this way 

it is always surrounded by a cloud of virtual excitations. This leads 

to the notion of effective .mass. When a 3 He atom moves through the 

fluid, the virtual excitations are moving with it, thus increasing the 

inertia of the 3 He atom. The most sophisticated microscopic calcula­

tion until now yields a value of the effective mass of 2.37 times the 

bare mass of a 3 He atom [36]. This value is close to the experimen­

tally determined m/m3 = 2.34 [37]. In the third place there is an 

interaction between the 3 He particles. Since 3 He and 4 He are isotopes, 

the interatomic force between 3 He atoms is almost the same as that 

between 4He atoms. However, since the bare mass of a 3 He atom is 

smaller than the mass of. a 4He atom, the zero point motion of a 3 He 

atom will be bigger, leading to a larger atomic volume [35]. 

If the superfluid velocity is unequal to zero, for example by the 

presence of a thermal excitation or a vortex line, the energy of a 3 He 

quasiparticle is changed. This affects the effective interaction 

between two 3 He atoms. The origin of the dependence of the quasi­

particle energy on the local superfluid velocity can be explained as 

follows. Consider a system of 4He with a single 3 He quasiparticle. The 

hamiltonian of this system can be written as 

(17) 

where pi and r 1 are the momentum and position of the 4He particles and 

p and r of the 3 He particle, V is the interatornic 4 He potential, and U 

the 3 He-4 He interatomic pot~ntial. On the other hand the total energy 

in the superfluid rest frame equals 

(18) 
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where~ is the hamiltonian of pure 1 He and ~p{O} the energy of aqua­

siparticle with momentum p in the superfluid rest frame. At low values 

of the momentum this quantity equals [38] 

( 19) 

where ~O is the binding energy of a 3 He particle to pure 4 He and m the 

effective mass in the limit of zero concentration. Greywall has 

measured the deviations from this equation at high values of the 

momentum [37]. 

In a frame where the super£ luid velocity equals vs (denoted by 

primes), the momenta of the particles are related to the momenta in 

the superfluid rest frame by 

(20a) 

and 

(20b) 

Substitution in equation (17) gives the energy in this frame as 

(21) 

where N is the number of 4 He particles, and it has been assumed that 

the interatomic potentials are independent of momentum. Substitution 

of equation (18) and (19) yields 

(22) 

On the other hand this energy equals 

(23) 
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By comparing these equations an expression for the energy of a quasi­

particle in the frame with superfluid velocity vs can be obtained as: 

~:; {v } 
p s 

(24) 

where om is the difference between the effective mass and the bare 

mass of a 3 He atom: 

om=m-~ (25) 

Equation (24) describes the most important contribution to the 

interaction between 3 He and vortices. 

At temperatures below about 500 mK 3 He-4He mixtures can be de­

scribed by considering only one kind of excitations: the 3 He quasi­

particles. In the appendix it ls shown that the momentum density of 
3 He-4 He mixtures at these temperatures can be written as 

(26) 

where pn is the density of the normal component due to the quasiparti­

cles, which exceeds the 3 He density p3 . 

The velocity v3 is the hydrodynamic 3 He velocity which appears in 

the equation for 3 He number conservation 

Conservation of total mass can be written as 

Bp + V•j = 0 at 

(27) 

(28) 

It turns out that part of the 4He mass is carried along by the 3 He 

quasiparticles and is not counted as super fluid density, which is 

defined as 
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(29) 

In a quantummechanical point of view the effective mass is caused by 

the fact that a 3 He particle is surrounded by a cloud of virtual pho­

nons and rotons. This phenomenon has a simple classical analogon. It 

is known that if a rigid sphere moves through a perfect fluid, part of 

the fluid flows with the sphere, so that the inertia of the sphere in 

the fluid exceeds the bare mass of the sphere [39]. 

Equation (26) is the basis for the Landau two-fluid model, for it 

shows that the total momentum density consists of one part propor­

tional to the superf luid velocity and another part caused by the 

excitations, constituting the normal fluid which at low temperatures 

consists only of quasiparticles. 

It is known from experiment that the presence of 3 He atoms in 

superfluid 4He has a large effect on properties related to quantized 

vortices. Recently. it has been found that below 0.5 K the critical 

canter-of-mass velocity above which vorticity occurs in pure 4 He, 

decreases with the addition of only a very small amount of 3 He 

(x <:>: 10-7
) [40,41]. Other experiments indicate that the mobility of 

positively charged helium clusters and electrons in superfluid 4 He is 

affected strongly by the presence of 3 He (for x of the order of a few 

percent and T < 0.5 K) [32,42,43]. 

There are two major contributions to the interaction between 3 He 

and vortices. One results from the pressure decrease towards a vortex 

line (equation (16)), as the binding energy of quasiparticles in 

superfluid 4He is a function of the pressure, and the other contribu­

tion results from the fact that the energy of a quasiparticle is a 

function of the local superfluid velocity (equation (24)). 

Several authors have calculated the hamiltonian of a 3 He quasi­

particle as a function of its momentum and its distance to the canter 

of a rectilinear vortex line, and calculated the energy spectrum 

[44-46]. The most sophisticated calculation results in the existence 

of states in which the 3 He quasiparticle is bound to the vortex, the 

lowest of which has a nonzero angular momentum and a binding energy of 

3.51 Kat zero external pressure [44]. Using scattering theory, Titus 

[ 47] found the possibility of trapping of quasiparticles onto the 

vortex core. Thus the 3 He will be attracted towards a vortex line and 
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condenses onto it. If the ambient 3 He concentration is high enough, 

the 3 He concentration in the vortex core will exceed the value of a 

saturated solution, so that phase separation occurs [48,49]. This 

explains the observation that below a certain temperature ions do not 

condense onto vortex lines [32] in the presence of 3 He. The diameter 

of the vortex core will increase with increasing 3 He concentration and 

decreasing temperature, thus changing the properties of the quantized 

vortices. 

In a situation where 3 He flows through superfluid 4 He, the 3 He 

particles will be attracted towards the vortex lines, which they cre­

ate themselves, be absorbed by them and re-emitted. This leads to a 

mutual frictional force between 3 He and 4 He, like in pure 4 He when the 

normal component flows with respect to the superfluid component. At 

present, the properties of vortices are not sufficiently understood to 

calculate this force microscopically. 

3.3 Hydrodynamics of 3 He- 4 He II mixtures 

The hydrodynamic equations for pure 4 He I I and for 3 He-4 He I I 

mixtures have been derived by Khalatnikov [2]. He supposed, however, 

that no interaction between the normal fluid and the superfluid is 

present. If interactions between the two components or between the 

superfluid component and the wall are present, extra terms in the 

hydrodynamic equations appear. In this section it will be assumed that 

there is a mutual frictional force between 3 He and the superfluid. A 

force between the superfluid and the wall will not be incorporated, 

since there is no experimer.tal evidence for the existence of such a 

force. 

The hydrodynamic equations can be derived starting from the con­

servation laws. In the case of 3 He-4 He mixtures the total mass, total 

momentum, the number of 3 He particles and total energy are conserved 

quanti ties. The equation of motion of the superf luid component is 

extended to include a mutual frictional force. Finally, from the 

condition that the entropy production is positive, expressions for the 

dissipative terms in the conservation laws can be found. This 

treatment is analogous to the one given in Ref. 50 for a classical 

multi-component fluid. In the derivation it will be assumed that the 
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temperature is low enough to neglect the normal component of 4 He 

entirely, apart from its effect on the quasiparticle mass, as 

described above. 

The equation for conservation of mass has been given in equation 

(28). In Khalatnikov's derivation a dissipative 3 He flux appears in 

the equation for 3 He number conservation. However, this term is 

negligible at temperatures where thermal excitations are negligible, 

because the normal component of the mixture contains only 3 He. So, 

there is no difference between vn and v3 . The equation describing 

conservation of 3 He particle number is therefore 

(30) 

It is convenient to introduce the mass concentration of 3 He particles, 

defined as 

c (31) 

where N
3 

and N
4 

are the number of moles 3 He and 4 He and M
3 

and M
4 

the 

respective molar masses. Combining equations (28), (30) and (31) 

yields 

ac 
at = V•(pcv ) + £ V•j 

P n P 

The law of conservation of total momentum reads [2] 

where rrik is the stress tensor equal to 

(32) 

(33) 

(34) 

and Tik is the viscous stress tensor. The viscous stress tensor takes 

into account the dissipation caused by a possible difference in normal 
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velocity between two neighbouring layers of fluid. As the mutual 

frictional force acts only between the two components and not on the 

total fluid, it does not show up in equation (33). The stress tensor 

(34) accounts for the force acting on the fluid through a pressure 

gradient, and the momentum densities transported by the normal and 

superfluid components respectively. 

The equation for energy conservation reads 

BE at + V·Q 0 (35) 

where E is the energy density and Q the energy flux, still to be de­

termined. The energy density consists of the kinetic energy of the 

motion of the fluid and of the internal energy. From equation (22) 

follows that the energy density equals 

E (36) 

where E
0 

and Jo are the energy and momentum densities in the super­

fluid rest frame. If the relative 3 He- 4He velocity equals zero, the 

energy density in the superfluid rest frame follows from thermodynam­

ics.. For the total energy U the following relation holds 

(37) 

where S is the entropy and V the volume of the system. From an 

elementary but tedious calculation it follows that 

dE
0 

= Tda + ~p + Zdc (38) 

where a is the entropy per unit volume, and~ and Z are related to the 

chemical potentials through (see [2]) 

(39) 

and 
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(40) 

If the normal fluid has a nonzero velocity in the superfluid rest 

frame, there is a contribution to the energy density due to the kinet­

ic energy of the relative motion [2,28]: 

(41) 

Equation (37) can be used to calculate the pressure, since 

(42) 

where J0 is the total momentum in the superfluid rest frame. Combining 

equations (42) and (41) yields 

(43) 

The equation for the entropy production is 

8a 
8t + V•(avn +q/T) = RIT (44) 

where q is the dissipative heat flux and R the dissipative function. 

In this equation is incorporated that the superfluid component does 

not carry entropy, so that entropy is transported with velocity vn. 

Finally, the equation of motion for the superfluid component 

reads 

8v 
Bts + (vs•V)vs +V(~+ h)= f (45) 

where V~ is the non-dissipative force on the superfluid and h the dis­

sipative term, both still to be determined. The right hand side of 

equation ( 45) is the mutual frictional force per unit mass of the 

superfluid component, that is exerted by the normal component on the 

superfluid. Taking the curl of equation (45) and using VxV = 0 gives 
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(46) 

Equation (46) shows that the mutual frictional force creates vortici­

ty. If Vxf equals zero, and Vxvs = 0 initially, the superfluid stays 

irrotational. If Vxf is unequal to zero, equation (45) is in conflict 

with equation (11), which states that the flow of the superfluid is 

irrotational. However, vorticity is possible if restricted to lines on 

which ps -+ 0. If the velocity is averaged over a volume containing 

many vortex lines, this average velocity field may be rotational. So 

the hydrodynamic equations derived here, are averaged over volumes 

with dimensions larger than the typical distance between vortices. 

Now it is possible to determine the unknown terms in the hydro­

dynamic equations, since there is one equation more than variables. 

Differentiating equation (36) with respect to time and using (41) and 

equations (28), (32), (33), (44) and (45) yields after a time-consum­

ing calculation 

8E Zc 1 2 

at + V•{(~---+:v2 )j+Zcv +aTv +h(j-pv )+v (v ·j0)+q+v •T} p s n n nnn n 

Zc 1 · p (v -v )•V(~~+--)+R+hV·(j-pv )~·VT-p (v -v )•f+T:Vv s n s p n T s n s n 
(47) 

With equation (35) the energy flux Q can be identified as 

Zc 1 2 Q = (~---+=v2 )j+Zcv +aTv +h(J-pv )+v (v ·J
0

)+q+v •T (48) 
p s n n n n n n 

and the right hand side of equation (47) equals zero. Since the first 

term on the right hand side of (47) is non-dissipative it cannot give 

a contribution to the dissipative function R, and must equal zero for 

all values of vn and vs. Therefore, 

Zc ~4 
<p=~---=;;r­

p 4 
(49) 

where equations (39) and (40) have been used. The driving force on the 
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superfluid is thus the 4 He chemical potential. The other terms in 

equation (47) are the contributions to the dissipative function: 

R =- h V•(j-pv)- ~·VT + p (v -v )•f- T:Vv ") 0 (50) n T s n s n-

At this point, the theory of the thermodynamics of irreversible 

processes can be applied. The dissipative function is a sum of four 

terms. each of which is the product of a generalized thermodynamic 

force and a flux. In thermodynamic equilibrium all these forces and 

fluxes are equal to zero. For a large class of irreversible processes 

there exist linear relations between the fluxes and forces [50], but 

in general, higher order relationships are allowed, provided that the 

dissipative function is positive. By writing 

(51) 

where the indices refer to components of the tensors and 1-tik is a 

traceless symmetric tensor. it is possible to write down the linear 

relations between the fluxes and forces: 

and 

q -KVT + ap (v -v ) s n s 

f = -~T + lP (v -v ) T · s n s 

where vni is the ith component of the vector vn. 

relations, which follow from time reversal invariance read 

and 
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(52a) 

(52b) 

(52c) 

(52d) 

(52e) 

The Onsager 

(53) 



a -13 (54) 

where the minus-sign in equation (54) appears, because VT is invariant 

under time reversal, whereas p (v -v) changes sign. The coefficient~ s n s 
can be recognized as the coefficient of first viscosity, and the (

1 
as 

coefficients of second viscosity. The heat conduction coefficient is 

denoted by K. 

Equations (52a)-(52d) are verified experimentally, but from 

experiments, both in pure 4He [6] and in mixtures [lS], it is known, 

that the relationship between the mutual frictional force f and the 

velocity difference is nonlinear. The most important contribution to 

the frictional force is proportional to the cube of the relative 

velocity: 

f ~ Bp lv -v 12 {v -v ) 
n n s n s (55) 

where 8 may be a positive function of temperature and 3 He concentra­

tion. This equation has been verified for 3 He-4He mixtures below 

150 mK, 3 He concentrations between 2% and 7% and small values of v . 
s 

The reason for this nonlinear dependence is the following. The 

normal component can interact with the superfluid only by creating 

exci tat ions. For low velocities the only possible exci tations are 

quantized vortices. The vortices form a tangle in the fluid, due to 

the interaction with the quasiparticles and with each other. The total 

force on the superfluid is proportional to L. the density of vortex­

line-length and to the averaged relative velocity. However, L itself 

is a function of the relative velocity. The higher the relative veloc­

ity, the larger L. From a dimensional argument it can be seen that L 

is proportional to the square of the relative velocity. If the turbu­

lence is homogeneous, L is independent of volume and has dimension 

[length]-2
. There are two relevant quantities connected with the flow 

of 3 He through a tangle of quantized vortices: the absolute value of 

the relative velocity lvn-vsl and the circulation around a vortex line 

hlm
4

. The only way to make a quantity with dimension [length]- 2 with 

these quantities is the combination (m4 1v -v llh) 2
• Using the n s 

11-theorem [51], it follows that L is proportional to lvn-vsl 2
• 
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In writing down equation (55) the effect of a temperature gra­

dient on the mutual frictional force has been neglected. In the same 

approximation the effect of a relative velocity on the dissipative 

heat flux is negligible. 

There have been several derivations of the hydrodynamic equations 

of pure 4 He in the presence of quanti zed vortices. Bekarevich and 

Khalatnikov [2,29] have derived these for a rotating superfluid. In 

that case the vortex lines all have the same direction, parallel to 

the axis of rotation. The number of vortex lines is directly related 

to the angular momentum of the system and to the value of Vxvs aver­

aged over a volume containing many vortex lines. Khalatnikov used this 

average of Vxvs as an independent hydrodynamic variable and c~lculated 

the mutual frictional force using the conservation laws. Since a vor­

tex line implies a known superfluid velocity profile, a definite 

amount of energy can be assigned to a unit vortex line. 

Nemirovskii and Lebedev [52] have extended this approach to the 

situation of superfluid turbulence. They chose L as a hydrodynamic 

variable and used the Vi~en equation [9] to account for the time de­

pendence of L. However, they also needed experimental results to ob­

tain the right expression for the mutual frictional force and their 

result is essentially the same as the one obtained here, in the case 

that the 3 He concentration equals zero everywhere. 

Geurst [53,54] used the expression of Bekarevich and Khalatnikov 

for the mutual frictional force to describe 4 He flow through capil­

laries. His results agree with measurements for small velocities. They 

are not applicable to the situation of homogeneous superfluid turbu­

lence, the situation in which the average vortex line density is 

uniform in the capillary. In a later paper [55] he used an averaging 

procedure to describe homogeneous super£ luid turbulence. If certain 

assumptions about the shape and the order of the vortex 1 ines are 

satisfied, his calculations produce equation (55) for the frictional 

force. 

Schwarz [56] used the equation of motion for a vortex line, which 

will be given in chapter VI, to calculate the evolution of homogeneous 

superfluid turbulence numerically. The motion of a vortex line con­

sists of a self-induced part and a contribution from the friction by 

the normal component. For the latter term he used an expression ob­

tained from measurements in rotating 4 He. He calculated L and the 
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frictional force from the configuration of the vortex tangle in the 

steady state. The dependence on the relative velocity follows from a 

dimensional analysis, and the numerical values of both quantities 

agree with measurements on homogeneous superfluid turbulence within a 

few percent. A more detailed analysis of these numerical simulations 

will be given in chapter VI. 

Yamauchi and Yamada [57] introduced a boundary force due to the 

interaction of a vortex line with the wall, in order to explain the 

measured excess pressure difference for flow through capillaries in 

pure 4 He. A result of their calculation is a form of the Vinen equa­

tion which implies a critical velocity in the case of thermal counter­

flow. An assumption in their derivation is, that the boundary force is 

uniform in a cross-section of the capillary, while one would think 

that it is only present in the neighbourhood of the walls. 

Equation (55) is certainly not valid under all circumstances. In 

pure 4 He II experiments have been performed for many different combi­

nations of v and v [58,59]. The cubic relationship (55) seems to be 
n s 

valid only in situations where v is small compared to v . Further-. s n 
more, for small velocities no mutual friction is present and the flow 

is laminar. If the velocity is gradually increased, at some value 

suddenly the extra dissipation appears. It seems that the turbulent 

state just above this critical velocity is not homogeneous. Above a 

second critical velocity a state of homogeneous superfluid turbulence 

exists in which the cubic relationship (55) holds [27]. In pure 4 He 11 

the values of the critical velocities have been measured in many 

experiments [60-62] and have been calculated by numerical simulations 

[63]. 

It seems reasonable to assume that the situation in superfluid 
3 He-4 He mixtures is similar. Until now, however, there have not been 

enough measurements to derive a general expression for the frictional 

force. All experimental evidence suggests that f is proportional to 

the cube of vn in the case that the superfluid velocity is small [18]. 

Furthermore, recent investigation [64] showed that below some critical 
3 He velocity the mutual frictional force is zero. In most situations 

discussed in the next section, the 3 He velocity is higher than the 

critical value and the superfluid velocity small enough to assume the 

validity of equation (55). 
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Appendix 

In this appendix it will be shown, using microscopic theory, that 

the contribution to the momentum density that moves with the 3 He velo­

city is not equal to p3v3 , but has a contribution from the 4 He mass, 

that has to be counted to the normal fluid, as stated in equation 

(26). It will be assumed that the temperature is so low, that the 

thermal excitations can be neglected. In reference 38 a general deri­

vation is given. 

When E is the density of internal energy, the variation of E is 

given by 

(56) 

where ~4 is the 4 He chemical potential per particle, n4 the 4 He number 

density, n the number density of quasiparticles with momentum p and 
p 

cp their energy: 

(57) 

In this equation the difference between the two spin states of the 

quasiparticles is neglected. The total 3 He number density can be found 

from the n as p 

2n 
p p 

The Boltzmann equation for the quasiparticles reads 

(58) 

(59) 

where V and V are the gradients in co-ordinate space and in momentum 
r p 

space respectively, and I(p) is the collision integral, equal to the 

increase in number dens! ty of quasiparticles with momentum p due to 

collisions with other quasiparticles. The only property of the colli­

sion integral needed is the conservation of quasiparticles: 
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L I(p) = 0 
p 

(60) 

The equation for conservation of 3 He particles can be found by 

summing the Boltzmann equation over all momenta: 

on 
L __..E. + L(V c ) •V n - L(V c ) •V n = 0 at p p r p r p pp p p p 

(61) 

By changing the order of summation and differentiation, the first term 

yields an
3
/at. The other terms can be written as a divergence by inte­

grating by parts. This is allowed as the summation over p is equiva­

lent to an integral over p: 

A V I L (V c )•V n -- dp (V e )•V n 
P r p p p (Znn)::J r p p p 

The result is 

a~ 
at + V .L n V e = 0 

r P pP P 

(62) 

(63) 

The second term is equal to Vr•n3v3 , where v3 is the hydrodynamic 3 He 

velocity: 

(64) 

Conservation of total mass can be written as 

£e..+ V•j = 0 (65) 
at 

According to equation (20b) the momentum density in the superfluid 

rest frame equals 

(66) 
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So in the frame with superfluid velocity vs 

(67) 

In equation (24) the energy of a quasiparticle in a superfluid veloci­

ty vs is calculated in the case that only one quasiparticle is pre­

sent. If more quasiparticles are present, the interactions alter the 

mass of a quasiparticle and it is possible to define a concentration 

dependent effective mass m;. so that 

e {v } __£ + p•v
5

(1 -
m3 

- ~1 ~)m v2 (68) = -) p s 
2m3 " " 3 s m3 ~ 

This effective mass is larger than m, the effective mass at zero con-

centration [38]. Substitution of equation (68) in (64) yields 

(69) 

where Am is the difference between the concentration dependent effec­

tive mass and the bare mass of a 3 He particle: 

(70) 

Equation (69) can be used to calculate the momentum dens! ty. The 

result is 

(71) 

By defining the normal mass density pn as 

(72) 

equation (26) follows. 
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IV APPLICATIONS TO DILUTION REFRIGERATION 

4.1 Introduction 

In 1951 London suggested that the thermal properties of 3 He-4 He 

mixtures could be used to reach very low temperatures [1]. In 1962 he 

and his coworkers proposed three versions of a continuous refrigerator 

[2]. These proposals and all later dilution refrigerators are based on 

the fact that the molar enthalpy of pure 3 He is smaller than the molar 

enthalpy of 3 He in a saturated mixture at the same temperature (see 

chapter II). With the discovery of the finite solubility of 3 He in 4 He 

at zero temperature, it became clear that this cooling method can be 

used down to very low temperatures. 

~ 

f 
~~~ 

M 

H 

Fig. 1 

Schematic drawing of the Low­

temperature part of a 3 He 

circuLating diLution refrigerator. 

M: mixing chamber; E: experimentaL 

ceLL; H: heat exchangers; 

St: stiLL; K: 1-K pLate; 

SL: OptionaL superLeak. The diLute 

exit tube is the connection 

between the mixing chamber and the 

stiLL, through which the 3 He 

flows, after its diLution in the 

mixing chamber. 

A schematic drawing of the essential parts of a 3 He circulating 

dilution refrigerator is given in Fig. 1. The 3 He is circulated using 

the property that at 0.7 K and x = 1% the partial vapour pressure of 

71 



3 He is much higher than of 4 He. Thus, if the vapour is withdrawn from 

the liquid mixture in a still, pressurized by a pump at room tempera­

ture, and recondensed into the system before it enters tljle mixing 

chamber again, almost pure 3 He will be circulated. The heat exchangers 

provide a cooling of the 3 He by the cold mixture before it enters the 

mixing chamber. 

The first 3 He circulating dilution refrigerator was built in 1964 

by Das ,. de Bruyn Ouboter, and Taconis (3]. This prototype of a 3 He 

circulating dilution refrigerator was improved many times in the fol­

lowing decades, for example by improving the heat exchangers (4,5], 

the dimensions of the dilute exit , tube [6], or by using a multiple 

mixing chamber device [7]. In other types of dilution refrigerators 
4 He is circulated by injection through a superleak [8], or both compo­

nents are circulated [9]. Reviews on dilution refrigerators have been 

given by Frossati [10] and by Taconis [11]. 

All types of dilution refrigerators have in common that they con­

tain a tube in which the 3 He component flows with respect to the 4 He 

component. The description of the performance of a dilution refrigera­

tor thus depends on the model about the flow properties of 3 He-4 He 

mixtures. In the pioneering years there has been some discussion about 

the presence of mutual friction, and in one of the proposals bY London 

et al. [2] mutual friction is essential for the operation. I However, 

since the properties of the existing 3 He circulating dilutio~ refrig­

erators could satisfactorily be explained by assuming that no mutual 

friction is present, the Mechanical Vacuum Model was proposed [4]. 

Recently, measurements indicated that mutual friction can be impor­

tant, depending on the ~eometry of the dilute exit tube, the flow rate 

and the temperature [12]. In this chapter the low temperature part of 

a 3 He circulating dilution refrigerator will be treated, using the 

hydrodynamic equations derived in the preceding chapter. 

4.2 General equations for 3 He circulating dilution refrigerators 

In Fig. 2 a schematic drawing of the low temperature parts of a 
3 He circulating dilution refrigerator is given. Normally, the dilute 

exit tube, through which the diluted 3 He flows from the mixing chamber 

to the still. consists of a single cylindrical tube. In order to study 
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Fig. 2 Schematic drawing of the mixing chamber M, experimentaL ceLL 

E, and heat exchangers H. Between M and E a fLow impedance Zm 

is installed. The moLar 3 He flow rate is il:J· and the 

temperature of the incoming 3 He T1 . The concentrations, 

temperatures and pressure difference can be measured. 

the properties of 3 He flowing through 4He II. it is useful to consider 

more general geometries for this tube, such as a number of parallel 

tubes. This variable part of the dilute exit tube, on which the 

attention will be focussed in this chapter, will be called the 

impedance Zm. In this impedance 3 He flows through 4 He II. So, the 

hydrodynamic equations of the preceding chapter can be applied to Zm. 

In some situations there is also a 4 He flow through the impedance. The 

net 4 He molar flow rate will be denoted by n4 . It will be assumed that 

the temperature is low enough to neglect thermal phonons and rotons. 

and that the velocities are so low that quadratic terms in the 

velocities may be neglected. 

In the steady state the equation of continuity (III.28) yields 
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0 (1) 

or after integration over the cross section of the impedance 

(2) 

The equation of conservation of 3 He particle number (III.30) yields 

constant. (3) 

Since pn is not equal to p
3 

(see chapter III). while vn equals v3 , 

these simple conservation laws have a rather unexpected effect. For, 

if the net flow rate of the 4 He component equals zero, the total 

momentum density j equals J3 , the 3 He momentum density. Hence, 

(4) 

where a quantity with a dash denotes the quantity averaged over the 

cross section. As pn > p3 . it follows that the average superfluid 

velocity is unequal to zero and directed opposite to vn. This super­

fluid flow compensates the flow caused by the 4 He that is moving with 

the 3 He quasiparticle gas. 

In the following it will be assumed that the components of the 

velocities in the radial direction are negligible and that the temper­

ature is uniform in a cross section of the impedance. For pure 4 He II 

deviations from these assumptions have been calculated [13]. It 

appeared that their magnitude depends on the boundary conditions. In 

pure 4He there is a condition that the component of the mass velocity 

perpendicular to a wall equals zero at the wall, but there is no 

restriction on the individual normal and superfluid velocities. This 

implies that the radial component of both velocities may become large 

[13]. In 3 He-4He mixtures on the other hand, both radial velocities 

equal zero at the boundaries, as there can be no flow of 3 He or 4 He 

into the wall. Furthermore, if there is no heat flow into the bound­

ary, the radial temperature gradient equals zero at the boundary as 

well. This justifies the assumption. Hence, the continuity equation 

gives 
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(5) 

and 

0 (6) 

where I! is the co-ordinate in the direction of the axis of the 

impedance, and vn and vs are the velocities in that direction. 

Neglecting quadratic terms in the velocities and gradients in the 

equation for conservation of momentum (III.33) yields with substitu­

tion of (111.51) and (III.52c) 

(7) 

and 

(8) 

where r
1 

and r 2 are the co-ordinates in the two directions perpendi­

cular to the axis. Thus, the pressure is constant in a cross section 

of the impedance. It follows from 

constant in a cross section of the 

2 a2 
equation (7) that 2 ~v is also 

i=l ri n 
impedance. The approximations made, 

are valid if the terms p v2 + p v2 and ~vn/al! in the stress tensor n n s s 
can be neglected with respect to p, which is the case at not too high 

velocities. 

For a normal Fermi liquid the velocity at a boundary has been 

calculated by ~jgaard Jensen et at. [14]. If the flow is stationary, 

the slip length, defined as the distance behind the wall at which the 

fluid velocity becomes zero when extrapolated from the bulk, equals 

approximately 0.6 1, where 1 is the mean free path of the Fermi gas. 

For 3He-4He II mixtures at low temperatures the mean free path of the 
3 He quasiparticles is determined by their mutual interaction and is of 

the order of 0.1 Mm [15]. Therefore, in the case under consideration 

the slip length is small compared to the dimensions of the impedance 
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and the no-slip approximation holds: 

v = 0 at the boundaries. 
n 

(9) 

With this condition equation (7) and (8) can be solved for a cylindri­

cal impedance, using the symmetry of the problem. The result is the 

familiar parabolic velocity profile for Poiseuille flow in a cylinder: 

V - - L 9£. roz - r2] 
n - 4TI d2 l4 (10) 

where r is the distance from the tube axis and D the diameter of the 

tube. This result can be written as 

dp 128 • V 
d2 = -TI1rD4 ~ 3 (11) 

where v3 is the volume of one mole of 3 He in the mixture (which is not 

equal to 13 . the partial volume of 3 He, used in chapter II). For an 

impedance of arbitrary, uniform cross section, an impedance factor per 

unit length r. only dependent on the geometry. can be defined by [16] 

9£. r· V dP = -1'1~.~ 3 ( 12) 

The equation of motion of the superfluid component (III.45) 
yields, when again quadratic terms in the gradients and velocities are 

neglected and with substitution of equations (III.49) and (111.55) 

and 
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for lv -v I < v n s c (13) 

(14) 



Below the critical velocity vc which may depend on the geometry of the 

impedance and on the velocity of one of the components, no mutual 

friction is present [17]. Hence, the 4 He chemical potential is uniform 

in the impedance. If mutual friction is present, the 4He chemical po­

tential is uniform in a cross section of the impedance, and so is the 

relative velocity vn-vs. For a cylindrical tube this leads to a para­

bolic superfluid velocity profile. However, since the superfluid has a 

viscosity equal to zero, its velocity at the wall is not necessarily 

equal to zero. A parabolic velocity profile implies that the super­

fluid velocity is not irrotational (Vxv s ;l 0). However, as noted in 

chapter Ill, in the presence of quantized vortices the velocities in 

the hydrodynamic equations should be considered as averaged over a 

volume containing many vortices. 

In the steady state the mutual frictional force can be obtained 

directly by determining the chemical potential difference over the 

impedance, which can be calculated from temperature, pressure and 3 He 

concentration (see chapter II). In the situation that the 4He flow is 

small compared to the 3 He flow this has been done by Castelijns et al. 

[12.18] for several impedances as a function of ~- The results con­

firm the cubic dependence between the frictional force and the rela­

tive velocity and can be represented by 

(15a) 

where 

and A is the cross-sectional area of the impedance. It is a rather 

unexpected result that X does not vary much in a wide temperature and 

concentration range (10 mK < T < 150 mK and 0.02 < x < 0.07). 

By measuring the temperature in the middle of the tube, it was 

verified that the quadratic terms in the equations of motion are very 

small indeed. 

In the steady state the energy conservation law (111.35) reduces 

to 
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V•Q = 0 (16) 

where the energy flux Q is given by (III.48). Neglecting again qua­

dratic terms, using the approximation that the velocities are directed 

along the axis of the impedance, and integrating over 

section yields with equation (III.52d) 

or using (11.30) 

the cross 
! 

(17) 

(18) 

When the impedance connects two reservoirs with large cross-sec­

tional area, a more general conservation law can be derived from 

equation (16). The cross sections of the reservoirs can be so big, 

that the velocities of both components are negligible there. If 0 is a 

volume consisting of the impedance and a part of both reservoirs, as 

-.-Jr-t~- -
Q.1 

~ ~ 
Zm 

Q 

--~--.;;----
0.2 

Fig. 3 The energy conservation law applied to a volume consisting of 

two large reseruotr,s connected by an impedance. The energy 

fl.ow Q denotes ~H3" + il:,.ll:,. + Qc. Qex is an exteqml heat 

load. 
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indicated in Fig. 3, application of the divergence theorem gives 

0 = J V•Q dr = J Q•n dS (19) 
n s 

where S is the closed surface bounding 0, with area element dS and 

unit outward normal n at dS. At the natural boundaries there is no 

contribution from the energy flux to the surface integral, apart from 

an external heat flux Q , which is counted positively, if heat is ex 
supplied externally. Furthermore, at the other boundaries the veloci-

ties are so small. that all nonlinear terms can be neglected. As n3 
and n4 are constants. the result is 

(20) 

where the symbol A denotes the difference of a quantity between the 

exit and the entrance of the impedance, and Q is the heat flow caused 
c 

by heat conduction: 

,.. dT 
~oic = -AK dl! (21) 

This term cannot be made small by increasing the cross section of the 

reservoirs, since dT/dl! is inversely proportional to A. 

Equation (lS) can also be derived from the equation for the en­

tropy production (III .44) using the expressions for the dissipative 

terms. This equation can be put in a more transparent form using the 

Cibbs-Duhem relation for the mixture (II.l). The result is 

From equations (12), (15) and (22) p, T and x can be calculated 

in principle as functions of e. However, solution of these equations 

is complicated, for Sm, K and the viscosity T1 are functions of 

temperature, 3 He concentration and pressure. The entropy is a well­

known, but difficult function of these quantities. The viscosity and 

heat conduction are not well-known in the region of interest. This 
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makes an analytical solution of (22) impossible. In most situations, 

however, the impedance is placed just behind the mixing chamber. 

Hence, the temperature in the impedance is very low and the 3 He con­

centration close to x0 , the concentration of a saturated solution at 

zero temperature and pressure. In that situation S /x equals SF 
m ' 

(I I. 9). Furthermore, the following relations hold within 2% below 

50 mK [18] 

SF cdr ' with cd 104.3 J mol- 1K- 2 , (23a) 

T1 ryd/T2 with Tld = 5x10-8 Pa s K2 , (23b) 

K Kd/T with "d 3x10- 4 W m -1 (23c) 

and 

(23d) 

Substitution in equation (22) gives 

This equation is generally valid, as it does not incorporate any 

assumption about mutual friction. Substitution of equation (15) makes 

it valid in the situation of the experiments by Castelijns et aL. 

[18]. Substitution of dM4/d2 = 0, gives the results of the Mechanical 

Vacuum Model by Wheatley et aL. [4]. In this case, equation (22) has 

been solved analytically by van Haeringen et aL. [19] to calculate the 

temperature profile in the impedance and the intrinsic minimum temper­

ature of a 3 He circulating dilution refrigerator. 

In the derivation of equation (24) gravitation has not been taken 

into account. If the axis of the impedance is in the 
1
vertical 

direction, gravitation causes an extra contribution to the pressure­

and chemical potential differences. However, these contributions 

cancel in equation (24), so that gravitation has no effect on the 
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temperature difference over the impedance. If the axis of the 

impedance does not coincide with the vertical direction, gravitation 

destroys the symmetry properties of the flow state. This weakens the 

basis for the assumption that the radial velocities and radial 

temperature gradient equal zero, and gives rise to radial pressure and 

chemical potential differences. Generally these effects are small and 

will not be considered here. 

4.3 The 3 He circulating dilution refrigerator in continuous gperation 

In continuous operation a continuous flow of 3 He is maintained in 

a 3 He circulating dilution refrigerator. Under most circumstances the 

temperature in the still is low enough to neglect the amount of circu­

lated 4 He. This reduces equation (24) to 

(25) 

This equation has been treated several times in the case dj..t
4
/dP = 0 

[18,19], but this relation is not valid in the presence of quantized 

vortices, where equation (15) has to be substituted. The result is an 

ordinary second-order differential equation for T(P), which has a 

unique solution, if two boundary conditions are given. An analytical 

solution has not been found yet, but the equation has been solved 

numerically [16]. 

It is convenient to bring equation (25) in a dimensionless form 

by introducing the reduced temperature t and reduced length A, defined 

by 

t (26) 

and 

(27) 

where 
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[

4K Tl y2 A( 1/6 

d d 3d ~ 3.16x10-4 (AC) 116 K 
c2 

d 

(28) 

and 

(29) 

are the characteristic temperature and length. Substitution in 

equation (25) yields 

- ~-Jl dt] + dt
2 

- 1 I: 0 
d;\.[td;\. d;\. tz"-!. (30) 

where f is a dimensionless parameter equal to 

(31) 

The parameter f measures the strength of the mutual frictional force. 

If no mutual friction is present. f equals zero. The ratio of the last 

two terms on the left of equation (30). ft 2
, is a measure for the 

ratio of the contributions to the temperature rise due to the viscous 

force and the mutual frictional force. It equals1 

1-x0 X~T2 

=-- (32) 

For the experiments of Wheatley et at. [20] a value of ft 2 of the 

order of 2.5x10- 4 follows. Hence, the effect of mutual friction is 

negligible and the viscous force dominates. On the other hand, .in the 

1For dilution refrigeration it is often useful to work with mK, mm and 
mmol/s as units (milli-units). For one cylindrical tube with diameter 
D equation (32) yields 

ft 2 ~ 0.79 ~T2/D2 (in milli-units). 
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flow situation of Castelijns et al. [18] §t2 is of the order of 200. 

This means that in these experiments the viscous force is dominated 

completely by the mutual frictional force. This work makes clear that 

both situations, which first seemed to be contradictory. are differ­

ent limits of one theoretical description which incorporates both 

forces. If ft2 is of the order of 1, both forces are important. This 

will be called the combined-dissipation regime. 

To solve equation (30), in analogy with Wheatley et al. [4], the 

function f(t) is introduced as 

f(t) dt 
= t3 d/1. 

(33} 

This quantity is the ratio of the enthalpy flow due to heat conduction 

and the total enthalpy flow. Substitution yields two first-order dif­

ferential equations for f and /1. as functions of t, 

(34) 

and 

(35) 

which can be solved, if f and /1. are known for a certain value of t. In 

Fig. 4a-f the solutions are plotted for § = 0, f = 1 and f = 10. In 

these figures the solutions, in which f becomes negative for high val­

ues of t have been left out. Since these solutions correspond to cool­

ing at the "warm" end of the dilute exit tube, they are impossible, 

unless the lowest heat exchanger is cooled somehow. This situation 

will not be considered here. 

All solutions with f < 1 for high values of t tend to one asymp­

totic solution for low t (see Fig. 4). Outside the region of the 

asymptotic solution the derivative dt/d/1. is generally large. Hence, 

for a given temperature at the end of the tube, the temperature 

profile follows the asymptotic solution in the main part of the tube. 
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Fig. 5 The asymptotic soLutions of {34} and (35} for severaL values 

of f {full curves) and the solutions of the equations in which 

the heat conduction has been neglected, given in {42) and (43) 

(dashed curves} . 
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Only in a distance of order i
0 

near the exit, the profile will deviate 

from the asymptotic solution in order to obey the boundary condition. 

In Fig. 5a and 5b the asymptotic solutions f(t) and ~(t) are plotted 

for several values of f. 
The tempera tu re of the mixing 

temperature T. of the incoming 3 He, 
1 

chamber is a function of n3' the 

the sizes of the impedances of the 

inlet tube and the dilute exit tube and the external heat load on the 

mixing chamber Q . To calculate T , equation (30) has to be solved, ex m 
for which two boundary conditions are needed. 

The first boundary condition is a condition for the temperature 

at the end of the exit tube, Te. Since the entrance of the inlet tube 

and the end of the exit tube are connected by a heat exchanger, T e 

should be smaller than T.. If T exceeds T., the incoming 3 He is 
1 e 1 

heated by the mixture in the heat exchanger and T i rises until a 

stationary situation is reached. So, the boundary condition reads in 

dimensionless form 

• Hos 
"3 3 

(36) 

Fig. 6 Schematic drawing of the energy fLows near the mixing chamber 

in continuous ope rat ion. The temperature T i of the incoming 
3 He at the entrance of the inLet tube is high enough to 

negLect the heat conduction there. 
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The second boundary condition is the energy balance in the mixing 

chamber (see Fig. 6), which reads, if the temperature in the mixing 

chamber is uniform 

(37) 

where Qc and Qd are the conductive heat flows towards the mixing cham­

ber in the concentrated and dilute phase, respectively. The quantity 

Q involves the gradient of the temperature in the inlet tube, which c 
can be found by solving the equation for the temperature profile in 

that tube. This equation has the same form as equation (30) ~ith f = 0 

[19], but different characteristic temperature and length. Thus, to 

calculate Tm' in principle two coupled differential equations should 

be solved. However, under normal conditions Ti is high enough to ne­

glect the heat conduction at the entrance of the inlet tube. Hence, 

equation (37) can be replaced by 

(38) 

or applying the low temperature limits 

(39) 

where H
3

c= 11.4 ]/mol K2
, H3s= 93.0 ]/mol K2 [14], and the suffix m 

denotes the mixing chamber values. With (33) equation (39) reads 

f(t ) m [::r-
[

t. ]2 
1.788- 0.219 < - (40) 

where the dimensionless external heat load qex equals 
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2Qex 
=---
~CdT~ 

(41) 

The solutions of equation (30) depend very strongly on the boun­

dary condition in the mixing chamber. This can be seen directly in 

Fig. 4 where many solutions tend to a single asymptotic solution for 

low values of t. A small change in the value of f(t ) leads to a m 
completely different temperature profile. Therefore, a numerical 

integration from tm to high values of t is impossible. There is, 

however, a way to cope with these numerical difficulties, namely by 

reversing the problem. First, for a given value of ~ and tm equations 

(34) and (35) can be integrated in the negative A-direction from 

several different high values of t and low values of f to t . In this 
m 

way the asymptotic solution and f(t ) are found. Next, from equation m 
(40) t. can be found for a given value of q . Finally, the maximum 

l ex 
dimensionless length of the tube Au can be determined as the value of 

A where the asymptotic solution t(X) equals ti. Since for higher 

values of A cooling at the end of the tube should occur to reach t 1 
again, Au is an upperbound for the length of the tube. For a shorter 

tube the t-profile does not have to follow the asymptotic solution. 

However, as the deviations from the asymptotic solution are restricted 

to a part near the end of the tube of length 20 • this hardly affects 

the value of f(tm). Hence, for all values of A~ 2, the value of ti' 

found in this procedure, is reliable. 

The values of ti obtained in this way are plotted in Fig. 7 as 

functions of tm for several values of § and qex = 0. It turns out that 

if t. > 3, the value of t is in good approximation independent of ~ 
1 m 

for values of § up to 10. However, the maximum length of the tube 

decreases strongly with increasing f. Thus, the presence of mutual 

friction bounds the length of the dilute exit tube. 

The intersections of the curves with the line ti = tm obey the 

relation f(tm) = 1. 788 - 0.219 = 1.569, which follows from equation 

(40). The corresponding value of tm can be called the intrinsic mini­

mum temperature of a 3 He circulating dilution,refrigerator in contin­

uous operation. It can only be reached in the limit that A approaches 

zero, which corresponds to a very short or very wide dilute exit tube, 
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Fig. 7 The maximum vaLue of tt as a function of tm when the externaL 

heat Load equaLs zero. The curves correspond from Left to 

right with f = 0, 1, 10 and 100. The straight line represents 

t i = tm. The intersections of this tine with the curves are 

the minimum tm in continuous operation. 

0.1!:-----'--:!:"----Ll------L-_j 
0 2 4 6 

tm 

Fig. 8 Two examples of qex as a function of tm for fixed vaLues of f 
and ti; 1: ti 6, f = l; 2: ti = 8, f = 10. 

or a very small 3 He flow rate. This limiting temperature depends on f. 
In Table I some calculated values of tm. t 1 , qex and Au are given for 

several values of f. In Fig. 8 two examples of graphs of qex as a 

function of tm are plotted for fixed t 1 and f. These examples show how 

a possible heat load on the mixing chamber influences its temperature. 
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Table I. 

Calculated values of tm' ti' qex and Au for several values of f. 

f t. t qex A 
1 m 

0.0 0.777 0.71 0.0 0.130 
0.0 0.906 0.72 0.0 0.401 
0.0 1.209 0.75 0.0 1.344 
0.0 2.571 1.0 0.0 21.98 
0.0 3.459 1.25 0.0 70.86 
0.0 4.237 1.5 0.0 158.95 
1.0 0.993 0.8 0.0 0.281 
1.0 2.294 1.0 0.0 3.461 
1.0 4.133 1.5 0.0 13.315 
1.0 5.654 2.0 0.0 26.20 
1.0 7.114 2.5 0.0 42.47 
1.0 8.556 3.0 0.0 62.25 

10.0 1.193 1.17 0.0 0.00913 
10.0 1.505 1.2 0.0 0.1247 
10.0 3.329 1.5 0.0 0.9805 
10.0 5.273 2.0 0.0 2.448 
10.0 6.904 2.5 0.0 4.184 
10.0 8.429 3.0 0.0 6.230 
10.0 9.909 3.5 0.0 8.608 
10.0 11.368 4.0 0.0 11.328 
10.0 12.814 4.5 0.0 14.396 
10.0 14.255 5.0 0.0 17.816 
10.0 15.691 5.5 0.0 21.590 
10.0 17.126 6.0 0.0 25.720 

100.0 3.733 2.25 0.0 0.1179 
100.0 5.170 2.5 0.0 0.240 
100.0 7.363 3.0 0.0 0.485 
100.0 9.196 3.5 0.0 0.751 
100.0 10.867 4.0 0.0 1.044 
100.0 12.451 4.5 0.0 1.367 
100.0 13.984 5.0 0.0 1.722 
100.0 15.484 5.5 0.0 2.109 
100.0 16.964 6.0 0.0 2.529 

1.0 6.0 3.0 8.147 25.74 
1.0 6.0 2.75 5.564 27.03 
1.0 6.0 2.5 3.200 28.19 
1.0 6.0 2.25 1.053 29.22 
1.0 6.0 2.15 0.253 29.59 
1.0 6.0 2.1174 0.0028 29.71 

10.0 8.0 5.0 30.49 3.903 
10.0 8.0 4.5 21.95 4.380 
10.0 8.0 4.0 14.28 4.809 
10.0 8.0 3.7 10.10 5.044 
10.0 8.0 3.5 7.488 5.191 
10.0 8.0 3.2 3.821 5.397 
10.0 8.0 3.0 1.543 5.526 
10.0 8.0 2.87 0.134 5.606 
10.0 8.0 2.8574 0.003 5.613 
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In the experiments of Castelijns et at. [18] an experimental cell 

was installed in the dilute exit tube between the mixing chamber and 

the lowest heat exchanger. In that case the steep part of theitempera­

ture profile, where heat conduction plays a role, is situated between 

the experimental cell and the heat exchangers. Hence, the asymptotic 

solution describes the temperature profile between the mixing chamber 

and the experimental cell. If the first term in equation (30). the 

heat conduction term, is negligible, equation (30) reduces to a first­

order differential equation which can be solved implicitly. The result 

is 

if E > o 

and 

if E = o 

Substitution of equation (42) in (33) yields for all values of f 

f(t) = 1+ft2 
2t6 

(42) 

(43) 

In Fig. 5a and 5b these functions are drawn for the same values of f 
as the asymptotic solutions. The parameter tm in equation (42) has 

been chosen such that the temperatures of both solutions are the same 

at the high temperature side of the tube. It can be seen that the so­

lutions of the equation without the heat conduction term follow the 

asymptotic solution with the same f down to low temperatures. Hence, 

if the temperature in the mixing chamber is not too low, heat conduc­

tion can be neglected in the part of the tube between the mixing cham­

ber and the experimental cell. 

In the situation of reference 18 the value of ft 2 was always much 

greater than 1, so that the logarithmic term in equation (42) is ne­

gligible. Substitution of equations (28), (29) and (31) then yields 
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(44) 

where Te is the temperature in the experimental cell and L the length 

of the tube. In reference 18 the measured temperatures were represent­

ed by the relation 

(45) 

with a= 2.8±0.4 and a1 = (7.4±0.7)x10-9 in SI units. Refitting the 

measurements to a cubic·dependence A(T2
)- (~/A) 3L yields good agree­

ment with equation (44). 

If the heat conduction is negligible. the derivation of the tem­

perature profile in the tube can be made much easier by leaving out 

the heat conduction term from the beginning and choosing other units 

of temperature and length. Neglecting the heat conduction term in the 

energy conservation law (25) leads to 

(46) 

where equation (15) has been substituted for ~4/de. This equation can 

be made dimensionless by defining T and A' as 

T = rn6 (47) 

and 

(48) 

where 

(49) 

93 



and 

(50) 

are the characteristic temperature and length. In this temperature­

and lengthscale equation (46) reads 

(51) 

from which follows the implicit relation for T(X') 

2 2 [l+T
2

] , T - T - In -- =X 
m l+T2 

m 

(52) 

where Tm is the dimensionless temperature in the mixing chamber, where 

X' equals zero. The pressure drop Ap over the impedance can be found 

from 

(53) 

where equation (12) has been substituted. The integral in equation 

(53) can be calculated by substitution of (46). The result is 

where Te is the temperature at the end of the impedance, A' the 

dimensionless length and p0 the unit of pressure defined as 

x 11 V C A
3

( [ ]
2 

P = _0_ d 3d d o.< 7 .85x10-3 An·3 A( Pa. 
0 l-xo 2Xn~ 

(55) 
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4.4 The 3 He circulating dilution refrigerator in sinqte-cycte operation 

From equation (40) and the shape of the asymptotic solution f(t) 

it can be seen that the minimum attainable mixing chamber temperature 

in continuous operation is restricted by the temperature of the incom­

ing 3 He. For high values oft., f(t) is small which leads to a higher 
1 m 

tm. For low values of t 1 the dissipation in the exit tube is important 

and restricts the dimensionless length of this tube to very small 

values. 

A solution to this dilemma is the single-cycle mode. In this mode 

the circulation of 3 He is stopped at a certain moment, while 3 He is 

still extracted from the still, so that the amount of 3 He in the con­

centrated phase in the mixing chamber gradually decreases. The price 

to be paid is the finite duration of this process: when the 3 He in the 

concentrated phase is exhausted, the cooling in the mixing chamber 

comes to an end. Thus, the duration of the single cycle is determined 

by the amount of 3 He at the start and the molar 3 He flow rate. 

At the start of a single cycle the situation in the exit tube is 

not stationary, but the temperature gradually decreases. At a certain 

time, however, a stationary situation in the exit tube begins to 

settle. From that time on, the amount of 3 He in the mixing chamber 

still decreases, but the temperature is constant. If the total amount 

of 3 He is diluted, the temperatures start rising again. 

In this section only the situation during the time that the exit 

tube is in a stationary state will be considered. Hence, equation (24) 

for the conservation of energy in this tube still applies. However, 

although the temperature ir:. the mixing chamber does not vary, the 

amount of 3 He. and thus the total energy in the mixing chamber, 

change. Hence, the time derivative in the energy conservation law 

(111.35), applied to the mixing chamber, does not equal zero. 

During a single cycle, the 4 He flow cannot be neglected, since 
4 He flows into the mixing chamber to compensate the 3 He flow out of 

the mixing chamber. If no mutual friction is present, this makes no 

difference, but ln the presence of mutual friction, ~4/ae is unequal 

to zero and this gives a contribution to the energy flux. 

95 



The net 4 He molar flow rate can be determined from the condition 

that the volume of the mixing chamber is constant. This volume is 

given by 

(56) 

where N3c and N3d are the numbers of moles of 3 He in the concentrated 

and dilute phase in the mixing chamber, respectively, and V~ is the 

molar volume of pure 3 He, equal to 36.8x10-6 m~ /mol. The number of 

moles of 4 He in the mixing chamber equals 

(57) 

and the molar flow rate of the 3He leaving the mixing chamber equals 

(58) 

where ~ is positive, if 3 He flows out of the mixing chamber. 

From the time derivative of equation (56) follows that 

(59) 

Hence 

(60) 

(61) 

and 

(62) 

where n
4 

is positive, if 4 He flows out of the mixing chamber. 

96 



Substitution in equation (24) and using (15) yields 

This equation can be written in dimensionless form in the same way as 

equation (25), by using the reduced temperature t and reduced length 

A. defined in equations (26)-(29). The result is similar to equation 

(30): 

(64) 

where f' is a dimensionless parameter, which is due to the 4He back­

flow slightly different from f, and equal to 

(65) 

As the structures of equations (64) and (30) are the same, the 

results of the foregoing section can also be used in the single-cycle 

mode: again the function f(t) of equation (33) can be introduced and 

the temperature profiles in the exit tube are given in Figs. 4 and 5. 

However, the boundary conditions at the entrance and exit of the tube 

are different. 

The boundary condition in the mixing chamber can be found again 

from the law of conservation of energy. The internal energy of the 

mixing chamber equals 

(66) 

where U~ and Urn are the molar internal energies of pure 3 He and of the 

mixture. respectively. From equations (60)-(62) follows in the limit­

ing situation in which Tm is constant 

(67) 
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The increase of internal energy equals the sum of the external heat 

load and the energy flow from the exit tube into the mixing chamber, 

J0 , which can be found from equations (18) and (62) as 

yo 

J . Hos • 1-x 3 A rdT] A 
u = -~ 3 + n3x v3d-v; ll4 + "Ld.e m + "lex (68) 

Equating JU and 8U/8t, using the low temperature approximation, equa­

tion (II.30) for H3" and the equilibrium condition ll; = Jl3 , yields 

(69) 

where it has been used that at low temperatures 

S° C T 3 c 
(70) 

with C = 22.8 J/mol K2
. 

c . 
In dimensionless units equation (69) with (33) and (41) reads 

f(t ) m 1.711 (71) 

From the properties of the solutions of equation (64) it follows 

again that the boundary condition at the downstream end is not very 

important for the temperature profile near the mixing chamber. If the 

tube is long enough (L > e0 ), the temperature profile will follow the 

asymptotic solution in the low temperature part of the tube for all 

reasonable boundary conditions at the exit of the tube. 

The difference with the boundary conditions in continuous opera­

tion is that the temperature at the exit te is not coupled to ti, as 

in equation (36). Thus, apart from the condition that the 3 He concen­

tration in the still is high enough, there is no restriction on the 

length of the tube. Furthermore, as can be seen by comparing equations 

(40) and (71), f(t ) is larger in single-cycle operation. Hence, the m . 
temperature in the mixing chamber is lower. For arbitrary values of f' 
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equation (34) can be integrated along the asymptotic solution starting 

from a high value of t. The value of tm where the solution obeys equa­

tion (71) for arbitrary qex is the limiting value of the mixing cham­

ber temperature during the single cycle. 

100 

Fig. 9 The minimum dimensionless mixing chamber temperature in singLe 

cycle operation as a function of f' for qex = 0. 

E .... 

0 2 6 10 

Fig. 10 The minimum dimensionl.ess mixing chamber temperature in a 

singte cycle as a function of q for f' = 0, 1 and 10. ex 
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Fig. 11 The minimum mixing chamber temperature in a single cycle as a 

function of the 3 He molar flow rate for seueral impedances 

consisting of N parallel tubes with diameter D and length 

23 mm. The values of N are indicated in the figure; N = 1 : 

D = 1.6 mm; N 9: D = 0.5 mm; N = 28: D = 0.28 mm. 

In Fig. 9 the thus obtained values of tm are plotted as a func­

tion of f' in the case that Qex = 0. In Fig. 10 tm is plotted as a 

function of qex for several values of f'. In Fig. 11 the mixing 

chamber temperature is plotted as a function of the 3 He molar flow 

rate for three different impedances, each consisting of N parallel 

tubes with the same diameter D and the same length. The diameters are 

chosen in such a way, that the total cross section of each impedance 

is approximately the same. In each case the external heat load equals 

zero. It follows from equations (28) and (65) that 

rmm] 1/3 
r0 = 5.63 Lo mK (72) 

and 

J:' = r n3 ]2 romm]B/3 
~ 27

·
5 

lmmol/s N2 L (73) 
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It can be seen that the mixing chamber temperature is minimum in 

the limit of zero 3 He flow rate. This corresponds to f' = 0 and thus 

this temperature equals the intrinsic minimum temperature of a 3 He 

circulating dilution refrigerator in the Mechanical Vacuum Model, as 

calculated by Wheatley [5]. In the Mechanical Vacuum Model this tem­

perature is independent of the 3 He flow rate. The presence of mutual 

friction leads to a higher minimum temperature for realistic values of 

the flow rate. 
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V EXPERIMENTAL VERIFICATION IN THE ·COMBINED-DISSIPATION REGIME1 

As stated in section 3. 1, the results of the measurements of 

Castelijns et aL. [l] led to the existence of two contradicting theo­

retical models. In the Mechanical Vacuum Model [2] it was assumed that 

mutual friction is absent and viscosity is the only dissipative term. 

In the Mutual Friction Model viscosity is absent and the only dissi­

pative mechanism is mutual friction between 3 He and 4He. The assump­

tion that viscosity is absent was inspired by measurements of the 

pressure difference over a flow tube. Only in the situation where a 

superleak parallel to the tube was installed, a nonzero pressure 

difference was observed. However, in that case there is no mutual 

friction, as the 4 He flows with the 3 He through the impedance and back 

again through the superleak. Hence, the Mechanical Vacuum Model is 

applicable. It seemed that two different models were needed to de­

scribe a general flow situation: one, the Mechanical Vacuum Model 

leading to a small temperature increase and large pressure drop, holds 

for small relative velocities, and the other, the Mutual Friction 

Model, with large temperature increase and zero.pressure drop, holds 

for high relative velocities. 

The measured pressure differences can be explained with the theo­

ry described in the preceding chapters. Since the viscosity of the 

mixture decreases strongly with temperature, the pressure differences 

in the experiments described in Reference 1 are of the order of 1 Pa. 

Pressure differences of this order are difficult to measure accurate­

ly, because hydrostatic pressure differences due to density variations 

in the liquid are of the sa1,1e order of magnitude. Hence, in the exper­

iments by Castelijns et aL [1]. the viscous force is dominated by 

mutual friction. On the other hand, in the experiments by Wheatley 

et aL. [3], the 3 He flow rate is so low that the mutual friction is 

1The main contents of this chapter have been published as j.G.M. 
Kuerten, C.A.M. Castelijns, A.T.A.M. de Waele, and H.M. Gijsman, Phys. 
Rev. Lett. 56, 2288 (1986). This work was done in co-operation with 
C.A.M. Castelijns (Thesis, Eindhoven University of Technology (1986), 
section 5.2.B). 
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outweighed by the viscous force. The value of ft 2 , introduced in chap­

ter 4, determines the relative importance of both forces. 

In the combined-dissipation regime, where ft 2 ~ 1, the viscous 

force and the mutual frictional force play an equally important role. 

Therefore, an important verification of the theory is an experiment 

which measures the effects of both forces simultaneously in this 

regime. To satisfy ft 2 ~ 1 with a 3He flow rate in the range of the 

dilution refrigerator and a single flow tube, a large diameter is 

needed (see equation (IV.32)). This leads to negligibly small temper­

ature differences over the tube. Therefore, a series of impedances was 

constructed consisting of a bundle of N parallel tubes each with the 

same diameter DN and length L. The diameters ~ were chosen in such a 

way that the total cross-sectional area of the various impedances was 

approximately constant (N1TD~4 :::: 2 mm2
). The characteristics of the 

impedances are given in Table 1. 

Table I. 

Properties of the flow impedances which were investigated in this 

work. The impedance factors Z of the bundles of tubes were calculated 

from the tube dimensions assuming Poiseuille flow (Z = 12BL/N1TD~). The 

Z value of the sinter sponge was measured at room temperature. The 

properties of this sinter sponge are explained in the text. The f 

values are calculated for l'l:3 = 0.5 mmol/s. The ft 2 ranges are given 

for l'l:3-Tm values of 0. 7 mmol/s and 60 ml<. and 0.2 mmol/s and 30 mK 

respectively. 

Kind of N L DN Z/1012 E ft 2 

impedance (mm) (mm) (m-3) 

bundle 1 23 1.6 0.14 1.8 11-540 
bundle 9 23 0.5 1.7 0.49 1.4-70 
bundle 28 23 0.28 5.4 0.24 0.46-23 
sinter - - o-0.1 183 - -
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impedance consisting of 28 

tubes in paralleL. The symbols 

correspond to different values 

of Tm (a; 30 mK; o· 40 mK; 
A: 50 mK; V: 60 mK). 

The line obeys: 
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b: Data obtained from four 

different fLow impedances 

mentioned in Table I 

(A: N = 1, Tm = 30 mK; 

a: N = 9, Tm = 30 mK; 

o: N = 28, Tm = 30 mK; 
•: stnter sponge, Tm 54 mK). 
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a: The pressure difference Ap 

over the 28 paraLleL tubes, as 

a function of n3. The data 

were obtained for severaL 

constant vaLues of Tm 

(c: 30 mK; o: 40 mK; ~= 50 mK; 

V: 60 mK}. 

The tines are for visuaL aid 

only. The viscosity constant 
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dashed parts of the curves. 

b: Reduced pressure 

differences for the four ftow 

impedances. The symbols refer 

to the same situations as in 

Fig. lb. The straight tine 
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dependence given in equation 
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, which 
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Line. The differences between 

the tubes may be due to the 

inaccuracy in the values of 

the diameters of the tubes, 

leading to an uncertainty in 

the values of the impedance 

factor Z (Z ~ D- 4 for 

Poiseuttle flow). 



The pressure difference Ap was measured as a function of n3 for 

several values of the mixing chamber temperature, varying between 30 

and 60 miC Furthermore. from the measured temperature, pressure and 
3 He concentration at the end of the impedance, the 4He chemical poten­

tial is calculated. The 3 He concentration and the 4He chemical poten­

tial in the mixing chamber follow from the measured Tm using the ta­

bulated values at the coexistence curve [4]. 

In Fig. 1, some examples of the cube root of the difference in 
4 He chemical potential between the exit and the entrance of the imped­

ance, 4~4 • are plotted as functions of ~· It can be seen that mutual 

friction is present (~4 # 0) and satisfies equation (IV.15). In 

Fig. 2 measured pressure differences for various values of Tm are 

plotted as functions of n3 . The values of the constant ~d are derived 

from the linear part of these graphs. They vary from (5±1)x10- 8 

Pa s K2 at T = 30 mK to (6.5±1)xto-a Pa s K2 at T = 60 mK. In view 
m m 

of the approximations made in deriving equation (IV.30), these values 

are in good agreement with the measurements of Kuenhold et al.. [5], 

who found a value for Tld increasing with temperature and with a low 

temperature limit of 5xlb-a Pa s K2
• For higher flow rates the in­

creasing temperature in the tube leads to a decreasing viscosity of 

the mixture. This effect results in a smaller pressure difference than 

expected from the linear Ap-n3 relationship in Fig. 2a and 2b. 

Figures 1 and 2 also give the results of measurements using a 

porous plug as a flow impedance. The plug had a length of 33.8 mm and 

a circular diameter of 8 mm. It consisted of a sintered bronze sponge. 

The spherical particles had a diameter varying from 30 to 90 ~. The 

pore size was irres~lar and varied from 0 to 100 ~- The filling fac­

tor was 74 %. The values of the cross-sectional area A and the effect­

ive length L for this geometry are not well defined. From the results 

of Fig. 1 an effective area of 1 mm2 is found, which is on the low 

side. A closed packed system of spheres would yield a free area for 

the flowing 3He of the order of 3 mm2 • Using the value of the imped­

ance factor Z = .CL as determined at room temperature (see Table I), 

the results derived from the pressure measurements are in good agree­

ment with equation (IV. 12). This result shows the validity of the 

model described here for flow-impedance factors which differ by three 

orders of magnitude. 
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In conclusion, in this work a new description for the hydro­

dynamics of 3 He-4 He mixtures is set up, which includes both a mutual 

frictional force and a viscous force. This description is in agreement 

with experiments, in which one force dominates the other, as well as 

with the measurements described here, in which both forces are equally 

important. With this description an important problem in 3 He-4He 

hydrodynamics is solved. 
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VI NUMERICAL SIMULATION OF THE MOTION OF QUANTIZED VORTICES 

6.1 Introduction 

In chapter I II the phenomenological hydrodynamic equations for 
3He-4He II mixtures, including mutual friction, were derived. From the 

analogy with flow in pure 4He II it is expected, that mutual ~riction 

is due to the interaction of 3 He with quanti zed vortex lines. The 

adopted picture is that these vortex lines are created, if the average 

relative velocity between 3 He and 4He exceeds a certain critical 

value. Due to their mutual interaction and the interaction with 3 He, 

the vortex lines will develop towards a complex structure, which is 

called a vortex tangle. Using a dimensional argument, the dependence 

of the mutual-frictional-force density on the relative velocity has 

been established (see equation (111.55) and below). The experimentally 

obtained frictional force of equation (IV.15) shows indeed this 

dependence on relative velocity, at least within the temperature and 

concentration region of the experiments. 

What is still missing, is a theoretical derivation of the 

numerical value of the friction parameter X. introduced in (IV.15). To 

make up for this deficiency, one would like to calculate the inter­

action between a vortex line and one 3 He particle, and subsequently 

the mutual-frictional-force density. In pure 4He, where the normal 

fluid only consists of phonons and rotons, it is possible to calculate 

the interaction between a vortex line and the normal fluid in a 

semi-classical way [1.2]. On the other hand, in mixtures at low 

temperatures the 3 He constitutes a degenerate Fermi gas, so that a 

calculation of the interaction between 3 He and vortices involves 

quantummechanics. Furthermore, the vortex lines are of macroscopic 

size, and have a continually changing, irregular shape. Therefore, a 

calculation of the mutual-frictional-force density from first prin­

ciples is an enormous task. which has not been accomplished as yet. 

On the other hand, if the force between 3 He and a single straight 

vortex line is known, the equation of motion for a vortex line can be 

constructed. It is then possible to calculate the evolution of a 

vortex tangle numerically, starting from an arbitrary initial 

configuration. One may expect that after a transient time dynamical 
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equilibrium will be reached, in which macroscopic properties, like the 

line-length density L. and the mutual-frictional-force density F. 

fluctuate around an average value. 

The procedure outlined above has been followed by Sch~rz [3,4] 

for pure "He, where the force between the normal component and a 

straight vortex line is known from experiment [5]. Unfortunately, the 

force between 3 He and a vortex line is not known from experiment, nor 

from theory, although a theoretical calculation seems possible. It 

will be shown that it is possible to use a general expression for this 

force with only two unknown parameters. which may be dependent on 

temperature and 3 He concentration. Hence, the unknown quantities L and 

F can then be determined as functions of these two parameters and the 

relative velocity. 

Especially for homogeneous turbulence a lot of work has been done 

by Schwarz, but many questions remain. Two of these are: what is the 

influence of walls on the mutual friction, and which effect does 

mutual friction have on the 3 He velocity profile. Both questions are 

related to the understanding of critical velocities. Furthermore, in 

the proposed treatment it will be possible to calculate the fluctua­

tions of measurable quantities, such as the temperature• and 3 He 

concentration, which are directly comparable with experimental 

results. To answer these questions an investigation on the numerical 

calculation of the evolution of a vortex tangle was started at the 

Eindhoven University of Technology. As a first step it is necessary to 

calculate the evolution in the case of homogeneous turbulence, as has 

been done before by Schwarz. The results can be compared with the 

experiments that led to equation (IV.15), so that an estimate of the 

accuracy of the calculations can be obtained. In a later stage, the 

open questions mentioned above will be studied. In this chapter the 

first results of the investigation on homogeneous turbulence are 

reported. Section 6.2 deals with the equation of motion of a vortex 

line. It turns out that in order to numerically simulate the evolution 

of a vortex tangle, serious problems arise, if two vortices approach 

closely. In those events Schwarz assumes that a reconnection of the 

two vortices occurs: they break at the point of closest approach and 

cross-connect (reconnection assumption). Similarly, he assumes that a 

vortex connects to a wall, if it approaches the wall closely. In 
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section 6.3 the latter process is studied in order to obtain a useful 

numerical procedure for a reconnection event in the simulation of a 

vortex tangle. The calculations described here, were performed on the 

supercomputer Cyber 205. 

6.2 The equation of motion of a vortex tine 

As a first step towards the calculation of the evolution of a 

vortex tangle, the equation of motion of a vortex line should be 

known. This equation has been derived by Schwarz [6]. Two contribu­

tions can be distinguished. If there is no mutual friction, the 

vortices move along with the superfluid. This follows directly from 

the Kelvin circulation theorem [7] and equation (111.45) in the 

absence of f. So, the first contribution to the velocity of a point on 

the vortex line is the local superfluid velocity v0 . This toca.l 

velocity v0 differs from the hydrodynamic superfluid velocity vs .used 

in chapter Ill, which equals the average of v0 over a volume 

containing many vortex lines. The other contribution stems from the 

force on the vortices · due to the interaction with the normal 

component. Since the inertia of the vortex core is very small. this 

force has to be transferred to the superfluid as a Magnus force. This 

causes a difference between the local superfluid velocity and the 

velocity of the vortex line, as calculated by Schwarz [6]. 

He showed that this velocity difference is proportional to the 

velocity of the normal fluid with respect to the line. Generally, it 

has an arbitrary direction. However, the component in the direction of 

the line results in a displacement of a point on the vortex line along 

the line. As the resulting superfluid velocity field does not depend 

on the positions of the individual points on a vortex line, but only 

on the shape of the vortex as a whole, such a displacement has no 

physical significance. Therefore, the general expression for the 

velocity of a vortex line, v equals 

(1) 

where vn is the average normal fluid velocity, s' is the unit vector 

tangent to the vortex line (see Fig. 1), and a and a' are two friction 
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parameters, dependent on temperature and concentration. For pure 
4He II these parameters are known from experiments in rotating helium 

[5] and have been calculated theoretically [1,2]. The results are in 

reasonable agreement for temperatures below 2 K. For 3 He-4 He mixtures 

the friction parameters have not been measured in the same way. 

For a given configuration of the vortices, equation ( 1) yields 

the time evolution, if v0 is known. This local superfluid velocity can 

be calculated in the following way. The vortex configuration is 

represented as a continuous curve by the parametric form s(f,t), where 

f is the arc length of the vortex and s(f,t) the position in three­

dimensional space of the point f at time t. The local superfluid 

velocity obeys the relations 

(2) 

and 

(3) 

if C is a contour around one vortex line with positive orientation. If 

the superfluid would be an incompressible fluid obeying 

{4) 

the equations are similar to the equations for a magnetic field in the 

presence of electric currents and give the Biot-Savart solution [8]: 

(5) 

where r is a position in three-dimensional space, vsO is an arbitrary 

solution of equations (2) and (4) without vortices and the integral is 

taken over all vortex lines. As will be discussed later, vsO can be 

found from the boundary conditions. Since the configuration of the 

vortex lines is a function of time, v0 depends on t. 

In general V•v0 ~ 0, due to spatial variations in the normal and 
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superfluid densities, and equation (5) is not correct. However, it can 

be shown in the following way that in most cases the corrections to 

equation (5) are small. Suppose that 

(6) 

If v0 = vsa + vsb in such a way that vsa satisfies equations (3) and 

(4) and vsb satisfies (2) and (6), then v0 satisfies equations (3) and 

(6) and is thus the general solution. The velocity field v has sa 
already been given in equation (5), and v sb can also be found from 

electrodynamics as the electric field in a static charge distribution 

[S]. By adding the two velocity fields the general solution for the 

local superfluid velocity follows as 

k I (s-r)xds +!_I d3r'g(r') r-r' 
v sO + 4lT 4lT 

~ I s-r 13 

0 
I r-r' I 3 

.(7) 

The region of integration of the second integral extends over the 

entire volume. 

It is possible to estimate the last term. which will be denoted 

by 1
2

, with respect to the second as follows. Generally, the 

variations in the total density of the fluid are small, because the 

compressibility is small. Hence, the continuity equation (III.28), 

which also holds locally, yields 

V•j = 0 (8) 

g(r) (9) 

Since the velocity of the normal component is generally small compared 

to the superfluid velocity, the second term will be neglected. 

Furthermore, the spatial variations of the superfluid density are 

small except near a vortex core, where ps~o. Near a vortex core the 

superfluid velocity is large as well, but its important component is 
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in the azimuthal direction, perpendicular to Vp • Therefore, g(r) is 
s 

negligible except in the region of the vortex core, where it equals 

g(r) "' (10) 

where r0 is of the order of the radius of the vortex core and v: is 

the superfluid velocity at a vortex line due to boundary conditions 

and all other vortices. In this equation IVps(r)l "'ps(r)/r0 has been 

substituted. The resulting estimate for 12 is 

(11) 

Now, the two integrals in equation (7) can be compared. The 

result is that 12 can be neglected, if 

(12) 

where the core radius r0 has been estimated as 0.5 A. The superfluid 

velocity at a distance of 1 A from the center of a vortex line equals 

160 m/s. Hence, I2 can be neglected, except if two vortex lines 

approach within a few angstrom. It is to be expected, that if two vor­

tex lines approach so closely, the structure of the vortex core, which 

is not known. plays an important role. Those situations, in which this 

classical calculation is not valid anyway, will be treated in a 

different way, and equation (5) can be used in all situations under 

consideration. 

With expression (5) the velocity in the liquid, but also in a 

point on the vortex can be calculated. In the latter case equation (5) 

has to be evaluated for each point on the tangle: 

(13) 

The integral diverges when St~ s. This problem can be solved by taking 
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into account the finite structure of the vortex core. By comparison 

with the velocity of a classical vortex ring, the integral in equation 

(13) can be separated in two parts: a local contribution due to the 

part of the tangle near s, and a nonlocal contribution due to the rest 

of the tangle. The result is [4,9] 

(14) 

where ao is the diameter of the vortex core, 1. and 1- are the lengths 

of the parts of the vortex line around s omitted from the integration 

in the second term, and the prime indicates that this local part is 

omitted. The second derivative of s with respect to f is denoted by 

s". This vector points along the principle normal of the vortex line 

ins and has length R- 1
, where R is the local radius of curvature. The 

cross product s' xs" is directed along the binormal and has the same 

length (see Fig. 1). Equation (14) yields the expression for the 

velocity of a classical vortex ring with radius R in an infinite 

fluid, independent of the choices of 1. and 1- [10]: 

k f SR ] 
vo = 41TR In l~ ( 15) 

with direction perpendicular to the plane of the ring. In general, the 

separation in a local and nonlocal part in equation (14) is in good 

approximation valid, if 1+ and L are chosen in such a way, that 

a 0 < 1+,1- < R. This follows by expansion of the integration variable 

in equation (13) around s. 

There is still an unknown term in equation (14). As mentioned 

above. the velocity field v sO is an arbitrary solution of equations 

(2) and (4). If boundaries are present, it can be calculated from the 

requirement that the local superfluid velocity satisfies a specified 

boundary condition. For the smooth plane surfaces considered here, the 

boundary condition that the component of the superfluid velocity 

perpendicular to the wall equals zero, can easily be incorporated. In 

that case vsO equals the velocity field of the reflections of the 

tangle into each wall, with the direction of the reflections reversed. 
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Fig. 1 a. Part of a vortex line with parametric representation 

s(§,t), where f is the arc Length. The derivatives of s with 

respect to f are denoted by primes. The vectors s', s" and 

s'xs" form a triad wtth Lengths 1, R- 1 and R- 1 , where R is the 

tocat radtus of curvature of the vortex tine. 

b. Reconnection of a vortex tine to a rigid smooth surface. 

c. Reconnection of two vortex Lines. 

This implies that a vortex line ending on a wall should enter it at 

right angles. When considering homogeneous turbulence, periodic 

boundary conditions can be applied. Then vsO equals the velocity field 

of the periodic continuation of the tangle. Another example is an open 

flow system. In that situation the boundary condition is the 

externally imposed superfluid velocity, which should be added to vsO' 

If equation (14) can be solved, the solution of equation (1) can 

easily be found, so that in principle it is possible to calculate the 

evolution of an arbitrary vortex tangle. There are, however, two 

serious problems. One arises when two parts of the tangle approach 
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each other. This approach takes place with increasing velocity, and 

the limit of the validity of the calculation will be reached soon. The 

same problem is encountered, if a vortex approaches a rigid wall. This 

problem will be dealt with later. 

The second problem is the calculation time needed to solve the 

equation of motion numerically. To calculate the evolution, the tangle 

has to be discretized: a number of points on the line is defined, 

which together give a good representation of the tangle. The evolution 

of the tangle is followed by calculating the path of each point, using 

equations ( 1) and ( 14). If the distance between two neighbouring 

points on the tangle becomes too small or too large during the 

evolution, one point will be left out or a new point will be inserted 

in between, using a circular interpolation [ 4]. The points on the 

tangle are called discrete points. The most time-consuming contribu­

tion to v is the nonlocal term, which involves an integration over the 

entire tangle. Therefore, the time needed to calculate the velocity of 

all the points on the tangle is roughly proportional to N2
, were N is 

the number of discrete points. For simple configurations, like one or 

two loops, N may be of the order of 100 and the fully nonlocal 

calculation is possible. However, for a typical tangle N is of the 

order of 104
, which makes the calculation even on a vector processor 

unfeasible. 

To cope with these problems, some approximations are made. The 

local contribution is of the order of 10k/4vR, where the logarithmic 

term has been estimated as 10, whereas the nonlocal contribution is of 

the order of k/2vA, with A the distance to the nearest wall or other 

vortex line. Hence, except if two vortex lines approach very closely, 

the nonlocal contribution can be neglected. (This approximation is 

known from classical fluids as the localized induction approximation 

[9]). This is even more so for a random tangle, where nonlocal terms 

from different par.ts of the tangle tend to cancel. In the calculation 

of the evolution of a tangle, where not the exact shape of the tangle, 

but only average properties are of interest, the localized induction 

approximation would be sufficient. However, if A < R. the nonlocal 

contribution is important. This is the case, if two vortices approach 

each other. or a vortex approaches a wall. The localized induct~on 

approximation would not take these events into account. An assumption 
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is needed to treat them. The results of Schwarz's calculations [3,4] 

suggest that in these events a reconnection takes place (see Fig. 1). 

With the localized induction approximation and reconnection at 

crossings of vortices a dynamically stable configuration develops. 

This can be seen from the effect of friction on a curved vortex 

line. Consider a part of a vortex with radius of curvature R in the 

plane z = 0. In the localized-induction approximation the velocity of 

this part of the vortex equals 

where v sO is the superfluid velocity at infinity, ez the unit vector 

in the z-direction and 

k [eR] /3 =-In -41T ao (17) 

with c a constant of order unity. From equation (1) it can be seen 

that only the term with. a is directed perpendicular to the local 

velocity, and thus gives the change of R. This change is give~ by 
I 

(18) 

where vns is the relative velocity vn-vs at infinity and 8 the angle 

between vns and ez. This equation can be elucidated by considering a 

transformation to the frame in which the part of the vortex under 

consideration is stationary. In this frame the velocity of the normal 

fluid equals v - (/3/R)e . Hence the sign of the z~component of the ns . z 
normal fluid velocity in this frame determines whether the part of the 

vortex shrinks or grows. If the z-component of the normal fluid 

velocity is positive, the normal fluid transfers energy to the vortex, 

so that it grows; if it is negative, energy is transferred from the 

vortex to the normal fluid. Only. if the vortex moves with the same 

velocity as the normal fluid, it retains its length. This can be put 

in the following mathematical form. A part of the vortex with R < Rc, 

where 
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R = if cos .(J > 0 c V cos (19a) 
ns 

and 

R = ro if cos .(J ~ o. c (19b) 

shrinks, whereas a part with R > Rc grows. This process would lead to 

an unstable situation: vortices with small R or cos .(J < 0 would 

annihilate and the other vortices would grow without limitation. 

This unstability is resolved by reconnection. If a vortex grows 

(R > Rc)' it will eventually encounter another vortex or a wall. Then 

a reconnection occurs, creating a part in the vortex with small radius 

of curvature and cos -8 < 0. This causes that part of the vortex to 

shrink. In this way both problems mentioned above are solved and the 

evolution of the tangle can be calculated until a dynamically stable 

situation is reached. 

6.2a The interpretation of the Vtnen equation 

It is interesting to note that this analysis gives a contribution 

to the discussion about the interpretation of the Vinen equation. This 

equation, proposed by Vinen in 1957 [11], gives the time evolution of 

the line length density L. Vinen used phenomenological and dimensional 

arguments to make it plausible. It consists of two terms. The first 

produces line length and is caused by the friction with the normal 

fluid. The other term describes the destruction of line length and is 

caused by the reconnection processes. 

In 1978 Schwarz derived the Vinen equation in a completely 

different way [6]. He introduced a probability density A(R,-8,t) 

defined in such a way, that at time t, 1\(R,-8, t) R2 cos -8 dRd-8 is the 

vortex line length with radius of curvature between R and R + dR and 

angle between .(J and .(J + d8. Next, he constructed a partial differen­

tial equation describing the time evolution of A, which consists of 

"driving terms". caused by the friction and "randomizing terms", 

caused by the reconnection events. He showed that the solutions of 

this equation tend to a stationary distribution and that the total 
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line-length density obeys the Vinen equation. It turned out, that in 

this approach the randomizing terms do not give a contribution to the 

Vinen equation, so that both the production and destruction term are 

caused by the friction. From this argument Schwarz concludes that 

Vinen' s' interpretation of the destruction term is wrong. Thif analysis 

given above shows that the two interpretations of the destruction term 

are not contradicting: destruction is caused by the friction, when 

after a reconnection the radius of curvature decreases and cos 8 

becomes negative. In this way the two interpretations are combined. 

6.2b Dimensional considerations 

Even without calculating the evolution of a vortex tangle, some 

properties of the dynamical equilibrium can be derived, if the 

relative velocity vns is homogeneous. In the localized induction 

approximation the equation of motion of the vortex can be written as 

os 
at = vsO + f3s'xs" + [a-a's'x][s'x(vns-f3s'xs")] (20) 

The first term yields a uniform translation of the vortex and can be 

removed by a. Calilei transformation. The parameters f3 and vns have 

dimensions [length2/time] and [length/time] respectively. It is 

possible to define a dimensionless lengthscale and timescale by 

and 

to = t v 2 /{3 ns 

Substitution in equation (20) yields 

(21) 

(22) 

(23) 

where the z-axis has been chosen in the direction of vns This 

120 



equation only depends on a and a'. Hence, if no walls are present, the 

solution does not depend on the applied velocity v and the vortex 
ns 

tangle is homogeneous. 

The density of vortex-line-length L is given by 

(24) 

where the integration is performed over the tangle inside a volume n. 
In dimensionles~ units L equals 

The dimensionless vortex-length density 

L0 (a.a:') = J df0/n0 
~ 

(25) 

(26) 

is only a function of a and a:'. This derivation proves the statement 

in section 3.3, that L is proportional to v~6 . 

In a similar way the average mutual-frictional-force density F 

can be calculated. The force exerted by the normal fluid on a unit 

length of vortex line equals [6] 

f = -p ks'x{[a:-a:'s'x][s'x(v -J3s'xs")]} s ns (27) 

The density of the frictional force on the superfluid component equals 

pki 
F = ~ s'x{[a-a's'x][s'x(vns-/3s'xs")]} df (28) 

~ 

and in dimensionless units 

(29) 
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where the dimensionless force density equals 

Fo(a.a') =- ~0 I sox{[a-a'soxJ[sox(ez-sOxso)J} dfo (30) 

~ 

This quantity does not depend on vns or ~-

V 
c 

With the same arguments the dependence of the critical velocity 

on vns for flow through a rigid cylindrical tube with diameter D 

can be determined. The situation of dynamical equilibrium found from 

equation (23) is not only a function of a and a', but also of the 

dimensionless diameter of the tube vnsD/~. Hence, 

L (31) 

for a certain function L0 . It is known, that below the critical velo­

city L equals zero in the equilibrium state, while above the critical 

velocity a turbulent state is present. Thus L0 = 0 for vns < vc and 

L0 '1- 0 for vns > vc. The function L0 depends on vns only through 

vnsD/~. Hence, 

(32) 

Equations (25), (29) and (32) have to first order been confirmed 

by experiment [12]. However, in the derivations it has been neglected 

that f3 weakly depends on the local structure of the vortex, as it 

involves the logarithm of the local radius of curvature. The analysis 

of Swanson and Donnelly [13] takes this dependence into account and 

gives a better agreement with experimental results. Recently, relation 

(32) has also been verified to first order in the flow of 3 He through 

superfluid 4He [14]. 

6.3 The reconnection of a vortex ring with a rigid smooth surface 

As explained in the previous section, the evolution of a vortex 

tangle towards a dynamically stable situation of homogeneous 

turbulence can be simulated numerically by solving equation (20) using 
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the reconnection assumption and periodic boundary conditions. In the 

first place, a resolution criterion for the discrete points has to be 

chosen. In order to get a good representation of a vortex, the 

distance e between two neighbouring discrete points should not exceed 

R/5. On the other hand, e should not be too small in order to limit 

the total number of discrete points, and thus the computation time. 

The choice of e is directly related to the time step At of the 

numerical integration, for At should be chosen in such a way that the 

displacements of the discrete points in one time step are small 

compared to e. The most important contribution to the displacements is 

/3s'xs"At. which equals lOAt/R (see page 117). Hence, the requirement 

for At is: lOAt/R < R/5. If At is proportional to R2 this requirement 

can be satisfied. 

At the moment of a reconnection the value of R in the region of 

reconnection suddenly decreases strongly (see Fig. le) and hence At 

decreases correspondingly. Furthermore, the number of discrete points 

in the reconnection region increases. As a result of the increase in 

the number of discrete points and decrease of At, the numerical 

solution tends to block a·t a reconnection. Therefore, it is important 

to model a reconnection in such a way, that the parts of the tangle 

with high curvature become smooth again after a short time. 

In a first attempt to calculate the evolution of a random tangle, 

it appeared that the numerical procedure for the reconnection cannot 

be chosen arbitrarily. Therefore, a detailed investigation on the 

reconnection of two vortices was started. In this section the 

evolution of a vortex ring near a rigid wall is studied. Due to the 

symmetries of the problem (reflection symmetry in the plane of the 

wall, and in a plane perpendicular to the wall and the ring), the 

calculation time is limited even in the fully nonlocal calculation. 

The evolution can be calculated in this way until the shortest 

distance of the vortex to the wall is of the order of the core 

diameter. In this region equations (1) and (14). describing the time 

evolution of the vortex, are not valid. At that point the connection 

to the wall is established in a prescribed way. After this 

reconnection has taken place, the behaviour can be followed with the 

same numerical procedure as before the reconnection. After some time 

the small scale structure introduced by the reconnection vanishes. 
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In the calculation the relative velocity vns and the superfluid 

velocity at infinity have been chosen equal to zero. This does not 

have a great influence on the results, since in the interesting part 

of the calculation the radii of curvature are small, so that vns is 

small compared to v0 . Furthermore, the friction parameters are chosen 

as a= 0.1 and a' = 0, corresponding in good approximation to pure 4 He 

at 1.6 K, and the core diameter equals 1 A. The wall is situated at 

x = 0. At t = 0 the vortex is a ring of radius Ro in the plane z = 0 

with positive orientation (this means moving in the positive 

z-direction) and centre x = Ro + D and y = 0. Hence, D . which is 

positive, is the shortest distance from the vortex to the wall. The 

planes of symmetry are x = 0 and y = 0. From the structure of the 

equation of motion follows that these symmetries are conserved during 

the evolution. So the motion of only half of the loop has to be 

calculated. In the absence of a wall the ring would move parallel to 

the z-axis with ever increasing velocity and decreasing radius due to 

the friction, until it annihilates. Therefore, if the value of D is 

large, the friction dominates over the image force and the vortex will 

not approach the wall close enough for a reconnection to occur. This 

can be seen from Fig. 2, where the time of reconnection (where the 

shortest distance to the wall is 3ao) is plotted as a function of D in 

the case that Ro = 10 ~-

0.4 

'i:r;0 0.3 
~ 
...:t ..... ..... 
..ll: 0.2 

0.1 

0 
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Fig. 2 

The time before a reconnection with 

the rnaU occurs as a function of 

the intt ial. distance between the 

vortex ring and the maLL. In this 

figure the radius of the vortex 

ring equals Ro = 1 j.Uil and the core 

diameter equaLs ao = 1 A. At the 

time of the reconnection the 

shortest distance from the vortex 

to the mal.l. is 3ao. At D ~ 0.275 Ro 

no reconnection occurs. 



!::: 0.2 
<I 

Fig. 3 The critical initial distance from the vortex ring to the watt 

as a function of the radius of the vortex ring. The triangles 

are results of Schwnrz [4] for the situation that the ring is 

distorted to a four-lobed loop. 

There is a critical value of D, A, above which the vortex annihi­

lates before a reconnection takes place. In Fig. 3 the calculated 

dependence of AIRo is plotted as a function of Ro. For a more general 

treatment, which includes the orientation of the vortex ring and the 

influence of other vortices, Schwarz [4] estimated that A should obey 

the relationship 

A _ bRo 
- c+ln(Ro/ao) (33) 

with b and c constants of order unity. A fit to the calculated values 

yields 

b = 4.04 ± 0.08 (34) 

and 

c = 5.8 ± 0.3 (35) 
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As a result A < Ro. The agreement between the calculations and equa­

tion (33) is good although the values of b and c differ from those in 

Ref. 2, where b = 2 and c ~ 0. The reason for this difference may be 

that in the calculations described here the appearance of a reconnec­

tion is determined only by the action of the friction against the 

image force, whereas the effects of the orientation of the vortex ring 

and the influence of other vortices are not included. 

The important result. that A is smaller than the typical radius 

of curvature. remains. This justifies the localized induction approxi­

mation with the reconnection assumption in the simulation of super­

fluid turbulence, as described in the previous section. At !the same 

time it provides a useful condition for reconnection to a wall: if the 

distance between a vortex line and a wall becomes smaller than A, a 

reconnection should be made. Since A is in first order proportional to 

R, and thus to 2, this condition can be examined by comparing the 

distances of a discrete point to the wall and to its neighbours. 

For one situation, with Ro = 10 ~. the reconnection process has 

been calculated in detail. In the first stage of the process the 

motion of the part of the.vortex ring near the wall is slowed down by 

-o. 010o:-......... --=o.-=-oos=---o:-'.o:-:-1o=----:-o.o-:'-:1=-s -----,o-=-.o2o 
X 

Ftg. 4 Four stages of the reconnection. process on a reduced scale. 
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These drawings show a projection on the xy-pl.an.e. The l.ef t 

vertical. axis is the watt. The numbers along the axes of Figs. 

4-7 are in units of Ro. 
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its image. As a result, the vortex bends towards the plane of the 

wall, and moves towards the wall due to the self-induced velocity. A 

tip on the vortex develops which moves towards the wall with increas­

ing velocity. This can be seen in Fig. 4, where the projections on the 

xy-plane of four stages in this process are given on a reduced scale. 

In Fig. Sa-c the projections of the final situation, where the 

distance to the wall equals 3ao, on three perpendicular planes are 

drawn. In the xy-projection the initial situation is also given. It 

can be seen in these figures that a part of the vortex, large: compared 

to the core diameter, is situated almost parallel to the wall at short 

distance from the wall. At a large distance the velocity fields from 

this part of the vortex and its image tend to cancel, since ~hey have 

opposite direction. Thus, this part and its image do not give a 

contribution to the velocity field. This justifies the reconnection 

assumption. 

The connection to the wall is made by cutting the vortex at the 

point of closest approach (y = 0). The two "loose ends" are connected 

to the wall, by requiring that the f.i,rst and last of the discrete 

points have x-co-ordinates equaJ to zero. The distortions created in 

this way will propagate along the vortex, initially with high 

velocity. However, the scale of the distortions gradually increases 

and hence the velocity of their propagation decreases. In Fig. 6a-c 

the three projections of several stages of this process are plotted on 

a reduced scale. As can be seen by comparing the different projec­

tions, the sharp kinks in the xz-projection are only apparent. due to 

the projection of an almost straight line on a plane perpendicular to 

the line. Note that the values of the z-co-ordinate are shifted with 

respect to the values before the reconnection. The projections of the 

final shape of the vortex, where the calculation was stopped, are 

drawn in Fig. 7a-c. In the xy-projection the initial shape is also 

plotted. It can be seen that the effect of the wall on the shape of 

the vortex is small in the main part of the vortex. 

The computation time for this fully nonlocal calculation amounted 

to approximately 450 seconds Cyber 205 CPU (central processing unit} 

time. Even in this case of a relatively small number (2Q-60) of 

discrete points, the amount of time needed to calculate the nonlocal 

contribution to the superfluid velocity is enormous. This can be seen 

128 



a 

Fig. 6 

N 

-0.0005 

_,J 
I 

0.0005 0.001 0 b 0.0005 0.001 
X X 

Three projections on a reduced scale of several stages in the 

process after the reconnection of a vortex Line to a wall. 

a. Projection on the xy-plane, where the watt corresponds with 

the left vertical axis. Only a part of the vortex with y ) 0 

is shown. The part with negative y-vatues can be found by a 

reflection in the x-axis. 

b. Projection on the xz-ptane. The watt is the left vertical 

axis. 

c. Projection on the plane of the watt (Next page). 

Note that the z-vatues are translated with respect to Fig. 5. 

129 



c z 

by calculating the same process in the localized induction approxima­

tion and making the connection to the wall at the beginning. The 

computation time for this calculation amounted to approximately 15 

seconds Cyber 205 CPU time, smaller by a factor 30 than the fully 

nonlocal calculation. The results of the two calculations are qualita­

tively the same. The results can be compared quantitatively by 

calculating the total line length of the vortex as a function of time. 

The difference between the two calculations increases with time to 

approximately 12 % at the end of the calculation. This shows the 

validity of the localized induction approximation for the purpose of 

this investigation and provides a useful model for a reconnection 

event. 

130 



Fig. 7 

X Three projections of the 

situation, where the 

calculation was stopped, and 

the initial situation. 
2 a. Projection on the 

xy- plane. 

b. Projection on the 

xz- plane. 

c. Projection on the 

yz- plane. 

In this figure the same 

translation of the z-values 
-10 

b 2 3 4 is made as in Fig. 6. 

:~ 
>. t 

-1 
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LIST OF FREQUErflLY USED SYMBOLS 

Subscripts: 
c 
d 
e 
ex 
F 
i 
m 

n 
s 

0 

3 
4 

Superscript: 
0 

Symbols: 
ao 
A 
B 
c 
c 
D 

E 
f 
f 
F 
F 
g 
c 
H 
Hos 

3 

HE 
j 
k 
k 
e 

L 
;e 
m 
m~ 

concentrated phase 
dilute phase 
end of impedance 
external 
Fermi gas 
incoming 3 He 
molar 
mixing chamber 
normal fluid 
superfluid 
saturated solution 
zero temperature (Ch. 11) 
characteristic quantity (Ch. IV) 
dimensionless quantity (Ch. VI) 
3He 
4 He 

pure substance 
derivative with respect to the arc length of a vortex 
line 

core diameter 
area of impedance 
friction parameter (111.55) 
mass concentration of 3 He 
specific heat 
diameter of cylindrical impedance (Ch. IV-V) 
distance between vortex ring and wall (Ch. VI) 
energy density 
ratio of enthalpy flows (IV.33) 
mutual frictional force per unit mass 
Helmholtz free energy 
mutual-frictional-force density 
divergence of the superfluid velocity (Ch. VI) 
Cibbs free energy 
enthalpy 
osmotic enthalpy per mole 3 He 

molar excess enthalpy 
momentum density 
quantum of circulation 
Boltzmann's constant 
co-ordinate in the direction of the 3 He flow (Ch. IV) 
distance between two neighbouring discrete points on 
a vortex line (Ch. VI) 
vortex line length density 
the curves representing a vortex tangle 
atomic mass 
effective mass 
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M 
ii 
N 
p 
q 
Q 
Q 
ro 
R 

S, S1 

s 
t 
T 
u 
V 

vo 
vsO 
V 
v3 
"113 
X 

z 
a 

a' 
A 
r 
T) 

K. 

A 
A 
J.l. 
JJ.' 

J.l.ik 

f 
f' 
E 
rr 
rrik 
p 
a 
T 

Tik 

X 
n 

molar mass 
molar flow 
number of moles 
pressure 
dimensionless heat load 
energy flux 
cooling power, external heat load 
radius of the vortex core 

molar gas constant (Ch. II) 
dissipative function (Ch. Ill) 
local radius of curvature of a vortex (Ch. VI} 
position of a point on a vortex line 
entropy 
reduced temperature 
temperature 
internal energy 
velocity 
superfluid velocity at the point on the vortex line 

superfluid velocity due to the boundaries 

volume 
volume of one mole of 3 He 

partial volume of 3 He 

molar 3 He concentration 
chemical potential 
BBP parameter (Ch. 11) 
friction parameter (Ch. VI) 
friction parameter 
critical distance between vortex ring and wall 
impedance factor per unit length 
coefficient of viscosity 
coefficient of heat conduction 
reduced length 
reduced length of impedance 
chemical potential 
molar potential energy of 3 He 
part of viscous stress tensor 

dimensionle3s parameter (IV.31) 
dimensionless parameter (IV.65) 
arc length on a vortex line (Ch. VI) 
osmotic pressure 
non-dissipative stress tensor 

density 
entropy density 
reduced temperature 
viscous stress tensor 

mutual friction parameter (IV.15) 
volume 

The numbers in parentheses correspond to the chapter where the symbol 
is used, or to the formula where the symbol is defined. 
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SMENVAITING 

Dit proefschrift beschrijft een theoretische studie van de 

thermodynamische en hydrodynamische eigenschappen van 3 He-4 He II 

mengsels bij temperaturen beneden 250 mK. Deze studie was nodig, omdat 

gebleken was dat de bestaande theoretische beschrijvingen niet in 

overeenstemming waren met experimentele resultaten. 

In 1967 waren de thermodynamische grootheden van 3He-4He mengsels 

bij lage temperaturen berekend en getabelleerd. Deze tabellen werden 

veelvuldig gebruikt met name door ontwerpers van 3 He circulerende 

mengkoelers. Het bleek echter dat de berekende waarden van 

bijvoorbeeld de osmotische druk en de enthalpie niet overeenstemden 

met latere metingen. In het gangbare hydrodynamische model van 3 He-4He 

mengsels, dat eveneens aan het eind van de jaren zestig was opgesteld 

en geverifieerd was bij lage 3 He snelheden, wordt ervan uitgegaan dat 
3 He bij snelheden beneden 60 mls wrijvingsloos door superflui:de 4 He 

kan stromen (Mechanisch VacuUm Model). De basis voor deze veronder­

stelling is het excitatiespectrum van superflu1de 4 He, waaruit volgt 

dat bij deze snelheden geen fononen en rotonen opgewekt kunnen worden. 

Latere experimenten in 3 He circulerende mengkoelers hebben echter 

aangetoond, dat al bij veel lagere snelheden wrijving tussen 3 He en 
4 He optreedt. Aan de andere kant was in deze experimenten het effect 

van een viskeuze kracht ten gevolge van de viskosi tei t van het 3 He 

onmeetbaar. Dit leidde tot het Wederkerige Wrijvings Model, dat 

ui tgaat van een empirische relatie tussen de wederkerige wrijvings­

kracht en de relatieve snelheid tussen 3 He en 4He. Het doel van het 

hier beschreven onderzoek was een nieuwe berekening van de thermo­

dynamische grootheden van 3 He-4He mengsels, uitgaande van nauwkeurige 

meetresultaten, en het opstellen van een nieuw hydrodynamisch model, 

waarin wel het effect van de wederkerige wrijvingskracht is verwerkt, 

en dat zowel bij hoge als bij lage 3He snelheid in overeenstemming is 

met de experimenten. 

Na een inleidend hoofdstuk I, waarin kort wordt ingegaan op het 

belang van 3 He-4He mengsels, zowel voor hun gebruik in mengkoelers als 

vanuit fundamenteel oogpunt, wordt in hoofdstuk II de thermodynamica 

van deze mengsels behandeld. Uitgaande van metingen van de soortelijke 

warmte, het molaire volume en de osmotische druk, geextrapoleerd naar 

temperatuur nul, zijn alle overige grootheden, zoals de chemische 

potentialen, de osmotische druk en de osmotische enthalpie berekend. 
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Deze laatste grootheid is van belang, omdat ze behouden is bij de 

stroming van 3 He door 4 He. De afwijking van de berekende resul taten 

met metingen is kleiner dan 1%. 

In hoofdstuk Ill wordt na een bespreking van superfluYditeit en 

van de interactie tussen 3 He en 4 He, een hydrodynamisch m9del opge­

steld voor 3He- 4He mengsels met wederkerige wrijving. Tevens.wordt met 

een eenvoudige dimensionele beschouwing de vorm van deze wrijvings­

kracht als functie van de 3 He snelheid afgeleid. Deze is in overeen­

stemming met de empirische relatie. 

In hoofdstuk IV warden de hydrodynamische vergelijkingen 

toegepast op 3 He circulerende mengkoelers, met als doel de invloed van 

de wederkerige wrijving op de werking van deze koelmachines te 

berekenen. Het blijkt dat, vooral bij het ontwerp van mengkoelers met 

een hoge 3He circulatie, rekening gehouden moet warden met wederkerige 

wrijving. Dit komt tot uiting in restricties op de afmetingen van de 

buis waardoor het 3 He van de mengkamer naar de verdamper stroomt, en 

in een hogere minimumtemperatuur van de mengkamer in een single cycle. 

In systemen met een hoge 3 He snelheid is de wederkerige wrijving 

dominant, terwijl bij lagere 3 He snelheden de viskositeit van het 3 He 

de dissipatie bepaalt. In hoofdstuk V worden experimenten peschreven 

in het tussenliggende gebied, waarin zowel viskositeit als wederkerige 

wrijving belangrijk zijn. Zo wordt aangetoond, dat er een continue 

overgang van het Mechanisch VacuUm Model naar het Wederkerige 

Wrijvings Model bestaat. 

In hoofdstuk VI tenslotte, warden de eerste resultaten van een 

studie van de kwantitatieve berekening van de wederkerige wrijvings­

kracht besproken. In analogie met wederkerige wrijving tussen de 

normale en superfluYde component in zuiver 4 He, wordt aangenomen dat 

wederkerige wrijving een gevolg is van de interactie tussen 3 He en 

gequantiseerde wervels in de superfluYde component, die warden 

opgewekt als het 3 He een bepaalde snelheid overschrijdt. Door de 

evolutie van gequantiseerde wervels onder invloed van de interactie 

met 3 He numeriek te simuleren kan een ui tdrukking voor de macros­

copische wrijvingskracht gevonden warden. Bij de evolutie van wervels 

spelen de verschijnselen die optreden als twee wervels elkaar naderen, 

of als een wevel een wand nadert, een belangrijke rol. In dit 

hoofdstuk warden deze verschijnselen geanalyseerd voor het geval dat 

een wervel een vlakke wand nadert. 
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SUMMARY 

In this thesis a theoretical study is descr\ibed of the thermo­

dynamic and hydrodynamic properties of 3He- 4He 11 mixtures at 

temperatures below 250 ml<. This study was necessary, as it appeared 

that there were substantial discrepancies between the existing 

theoretical models and experimental results. 

In 1967 the thermodynamic properties of 3 He-4 He mixtures at low 

temperatures have been calculated and tabulated. The tables were 

frequently used by designers of dilution refrigerators. However, it 

appeared that the calculated values of for example the osmotic 

pressure and enthalpy were not consistent with later experiments. In 

the current hydrodynamical model of 3He-4He mixtures, also proposed at 

the end of the sixties and verified for low 3 He velocities, it is 

assumed that the 3 He does not experience friction, if it flows through 

superfluid 4He with a velocity below 60 mls (Mechanical Vacuum Model). 

The ground for this assumption is the excitation spectrum of 

superfluid 4 He, from which follows that it is not possible to excite 

phonons and rotons at these velocities. However, later experiments in 
3 He clrculating dilution refrigerators demonstrated that there is 

friction between 3 He and 4He at much lower velocities. On the other 

hand, in these experiments the effect of a viscous force due to the 

viscosity of the 3 He was negligible. This led to the proposal of the 

Mutual Friction Model, based on an empirical relation between the 

mutual frictional force and the relative velocity between 3 He and 4 He. 

The purpose of the investigation described here. was a new calculation 

of the thermodynamic properties of 3 He-4He mixtures. starting from 

accurate measurements, and a new hydrodynamical model, which 

incorporates the effect of the mutual friction, and that at both high 

and low 3 He velocities is consistent with experiments. 

The introductory chapter I goes shortly into the importance of 
3 He-4 He mixtures, both for their use in dilution refrigerators and 

from the fundamental point of view. In chapter II the thermodynamics 

of these mixtures is treated. Starting from measurements of the 

osmotic pressure, extrapolated to zero temperature, the specific heat 

and the molar volume, the other quantities such as the chemical 
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potentials, the osmotic pressure and the osmotic enthalpy are 

calculated. This latter quantity is important, since it is conserved 

in the flow of 3 He through 4He. The discrepancies between the 

calculated results and measurements are smaller than 1%. 

In chapter III first a short review of superfluidity and of the 

interaction between 3 He and 4 He is given. Next, a hydrodynamical model 

is set up which incorporates mutual friction between the two compo­

nents. From a simple dimensional argument the dependence of this 

mutual frictional force on the relative velocity is derived, in 

agreement with the empirical relation. 

In chapter IV the hydrodynamical equations are applied to 3 He 

circulating dilution refrigerators in order to calculate the influence 

of mutual friction on the operation of these cooling machines. It 

appears that, especially for the design of dilution refrigerators with 

a high 3 He circulation, mutual friction is important. This results in 

restrictions on the dimensions of the dilute exit tube and in a higher 

minimum temperature of the mixing chamber in single-cycle operation. 

In systems with a high 3 He velocity the mutual friction is dominant. 

whereas at lower 3 He velocities the 3 He viscosity determines the 

dissipation. In chapter V experiments in the intermediate region, 

where both viscosity and mutual friction are important, are described. 

In this way it is shown that there is a continuous transition from the 

Mechanical Vacuum Model to the Mutual Friction Model. 

In chapter VI the first results of an investigation to the 

quantitative calculation of the mutual friction are reported. In 

analogy with mutual friction between the normal and superfluid 

components in pure 4 He, it· ls supposed that mutual friction is caused 

by the interaction between 3 He and quantized vortices, which are 

created if the 3 He velocity exceeds a certain critical value. An 

expression for the macroscopic frictional force can be found by a 

numerical simulation of the evolution of quantized vortices under the 

influence of the interaction with 3 He. The phenomena that occur if two 

vortices approach. or if a vortex approaches a wall, are important for 

the evolution of vortices.. In this chapter these phenomena are 

analysed for the case that a vortex approaches a smooth solid surface. 
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uitgevoerd in de groep Lage Temperaturen. ender leiding van Prof.dr. 

H.M. Gijsman, van de faculteit Technische Natuurkunde van de 

Technische Universiteit Eindhoven. Van de vele personen die aan de 

totstandkoming van dit proefschrift hebben bijgedragen, wil ik op deze 

plaats graag enkele met name noemen. 

- Dr. Fons de Waele, de vele discussies met jou hebben al tijd een 
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de gelegenheid die je me gegeven hebt college te geven. 

- Kees Castelijns, de tijd die we in een kamer hebben doorgebracht zal 

ik niet snel vergeten. Mede door de gezellige sfeer zijn hieruit 

goede resultaten voortgekomen. Verder wil ik Marian en jou bedanken 

voor de vele malen dat ik van jullie gastvrijheid heb mogen 

genie ten. 

jos Zeegers, jouw ontembare werklust heeft ook mij inspiratie 

gegeven. Jouw vakmanschap blijkt goed uit de nauwkeurigheid van de 
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- ]os van Geffen en Jan Rouvroye, zonder jullie bijdragen aan de 

computersimulaties van hoofdstuk VI zou dat werk nooit zo 

voorspoedig verlopen zijn. 

Rob van der Heijden, Richard van de Sanden en Richard Smokers wil ik 

bedanken voor alle discussies die we gevoerd hebben over ui teen­

lopende onderwerpen uit de fysica. 

- Ook Chen Gang, Leo van Hout, Leek Panders, Jos van Amelsvoort en Wil 

Delissen hebben bijgedragen tot de prettige sfeer binnen de groep. 

- Prof.dr. j.T.L. Devreese, Johan Witters en Gert Poppe wil ik 

bedanken voor hun stimulerende belangstelling voor het onderzoek in 

de groep. 

I like to thank Professor J. T. Tough, Donald Griswold and Claude 

Lorenson for their hospitality during my stay at the Ohio State 

University. 

Ruth Gruyters heeft op vakkundige wijze de tekeningen verzorgd. 

- Tenslotte wil ik mijn ouders bedanken voor de steun die ze mij 

altijd hebben gegeven. 
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1. Er is geen wezenlijk verschil tussen de interpretaties van Vinen 

'en Schwarz voor de fysische achtergrond van de produktie- en 

annihilatieterrn in de Vinen vergelijking. 

W.F. Vinen, Proc. Ray. Soc., Ser. A242, 493 (1957); 

K.W. Schwarz, Phys. Rev. B18, 245 (1978); 

dit proefschrift, hoofdstuk 6. 

2. In tegenstelling tot wat Hansen en Nelkin beweren, leidt de 

interactie tussen gekwantiseerde wervels in helium wel degelijk 

tot strukturen met een lengteschaal tussen de gerniddelde 

wervelafstand en de diameter van een wervelkern. 

A. Hansen, en M. Neikin, Phys. Rev. B34, 4894 (1986). 

3. De afleiding die Bowley geeft voor de snelheid van het tweede 

geluid in 3 He-4 He rnengsels is onjuist. Een juiste afleiding heeft 

al's resul taat 

waarbij dezelfde notatie gebruikt is als in de referentie, en V~ 

het molaire volume van zuiver 4He is. 

R.M. Bowiey, ]. Low Temp. Phys. 61, 291 (1985). 

4. Door de verzwakking van tweede geluid te meten, is het, in de 

door Zeegers et al. beschreven experimentele opstelling, mogelijk 

de kritische snelheid van 3 He door superflu1de 4 He te bepalen in 

cilindrische buizen met een diameter tussen 5 en 20 mm. 

]. Zeegers, ].G.M. Kuerten, A.T.A.M. de Wade, en H.M. Gijsman, 

wordt gepubltceerd. 



5. De toepassing van een gegeneraliseerde vorm van de master 

vergelijking !evert een nauwkeurigere bepaling van de werkzame 

doorsneden voor door botsingen geYnduceerde overgangen in 

aangeslagen atomen dan de methode. die gebruikt is door Ciuri!o 

en Krause. 

]. Ciurito, en L. Krause, ]. Quant. Spectrosc. Radiat. Transfer 

28, 457 (1982). 

6. Uit de matrix die botsingsgeYnduceerde koppelingen in een stelsel 

van N nabijliggende aangeslagen atomaire of moleculaire niveaus 

beschrijft, kan analytisch de fluorescentiematrix berekend 

warden. Een consequentie hiervan is dat, als aan het principe van 

gedetaileerd evenwicht voldaan is, een element van de 

fluorescentiematrix berekend kan warden, als het element op · 

dezelfde plaats van de getransponeerde matrix bekend is. 

C.i.].M. Klaassen, stageuerslag V-mf-84-75, Rijksuniuersiteit 

Utrecht, (1984). 

7. Als a een posi tief getal is en xn de verzameling posi tieve 

oplossingen van de vergelijking axn + tg xn = 0, dan geldt dat 

1+3a+3a2 

6(1+a) 2 

8. Het recente onderzoek aan supergeleiders met een hoge kritische 

temperatuur maakt duidelijk, dat er een sterke behoefte bestaat 

aan een ondubbelzinnig criterium voor supergeleiding. 

C.W. Chu, P.H. Hor, R.L. .Meng, L. Gao, Z.]. Huang, en Y .Q. Wang, 

Phys. Reu. Lett. sa, 405 (1987); 

M.K. Wu, J.R. Ashburn, C.]. Torng, P.H. Hor, R.L. Meng, L. Gao, 

Z.]. Huang, Y.Q. Wang, en C.IV. Chu, Phys. Reu. Lett. sa, 908 

(1987). 



9. In de analyse van Vedeneev et at. wordt ten onrechte geen 

rekening gehouden met het photon assisted tunneling effect. 

S.I. Vedeneev, V.A. Stepanov, en R.G. Gamitov, Sov. Phys. Sotid 

State 28, 697 (1986); 

S.N. Artemenko, A.F. Volkou, en A.V. Zattseu, Solid State Commtm. 

30. 771 (1979). 

10. De beweringen van de Kam, dat de unificatie van de zwaartekracht 

met de andere fundamentele krachten het eindpunt van de 

fundamentele fysica betekent, en dat de zo verkregen theorie de 

potentia heeft de hele bekende natuur te verklaren, zijn uiterst 

discutabel. 

]. de Kam, Intermediair, 23, nr. 19, p. ·11 {8 met 1987). 




