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1 Introduction 
This thesis studies the integrated down-time service and capacity management of a 
maintenance service provider (MSP), which is running a repair shop in an environment 
with numerous operating systems that are prone to failure. The MSP is responsible for 
keeping all systems in an environment up and working. We mainly focus on two types of 
environments: 1) Specialized System Environment 2) Commoditized System 
Environment.  

The systems in the first, specialized system environment are highly customized. They are 
designed and built specifically, following the owners’ precise requirements. Mostly, 
these specialized systems have a modular design and consist of several smaller 
subsystems. The same sub-system type can be a common part of several different 
specialized systems. Complex defense systems, specific lithography systems, mission 
aircrafts or other advanced/complex, engineer-to-order capital goods are examples of 
such specialized systems. Due to the diversity of owners’ requirements, each system 
develops many unique characteristics, which make it hard, if not impossible, to find a 
substitute for the system, in the market as a whole.  

In the second environment, the systems are more generic in terms of their functionality. 
Trucks, cranes, printers, copy machines, forklifts, computer systems, cooling towers, 
power systems are examples of such more commoditized systems. Due to the more 
generic features of the owners’ requirements, it is easier to find a substitute for a 
system in the market, with more or less the same functionality.   

Upon a system breakdown, the defective unit (system/subsystem) is sent to the repair 
shop, which is operated by the MSP. The MSP is not only responsible for the repair of 
the defective units, but also liable for the costs related to the down-time. In order to 
alleviate the down-time costs, there are chiefly two different down-time service 
strategies that MSP can follow, depending on the environment the repair shop is 
operating in.  

First strategy is ideal for the systems in the specialized system environment. In this 
strategy, MSP holds a spare unit inventory for the critical subsystem that causes most of 
the failures. The down-time service related decision in such a case would be the 
inventory level of the critical spare subsystems.  

On the other hand, in the commoditized system environment, rather than keeping a 
spare unit inventory, the MSP hires a substitute system from an agreed rental store/3rd 
party supplier. The down-time service related decision in this second strategy is the 
hiring duration.  

Next to the down-time service decisions above (spare unit inventory level in the 
specialized system environment and the hiring duration in the commoditized system 
environment), the repair shop’s capacity level is the other primary determinant of the 
systems’ uptime/availability. The increasing role of the after-sales services and the 
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pressure for profitability makes the efficient use of maintenance capacity more than an 
obligation, which inspires us to investigate the prospects of cost savings from capacity 
volume flexibility in repair shops.  

In light of the discussions above, in this thesis, we focus on the integration of the repair 
shop capacity related decisions and the down-time service related decisions under both 
specialized system and commoditized system environments with different capacity 
volume flexibility alternatives. In the specialized system environment, the down-time 
service related decision is the spare unit inventory level, whereas in the commoditized 
system environment, the down-time service related decision is the hiring duration. 

The remainder of this introductory chapter is organized as follows. In section 1.1, we 
introduce the main concepts that shaped our motivation, elaborate on them in more 
detail and provide the relevant literature therein. Afterwards, in section 1.2, we explain 
the characteristics of the system environment, problem and the main players in our 
study setting. Finally, in section 1.3, we discuss the research questions, used 
methodologies and the further outline of this thesis. 

1.1 Problem Context and Key Concepts 

1.1.1 After-Sales Services 

There are many industrial research reports and academic studies in the literature that 
advice product manufacturers to add after-sales service to their product offerings. For 
instance, the Aberdeen Group, a research consultancy firm, reported that the spare 
parts sales accounted for 8% of the annual gross domestic product in United States and 
global spending on after-sales services added up to $1.5 trillion annually (Aberdeen 
Group 2003). Similarly, a study conducted by Deloitte Consulting reveals that the 
average growth of the service businesses of the companies is 10% higher than for the 
business units overall (Deloitte 2006). 

Many production companies are following this trend and shift from pure manufacturing 
to an integrated approach that includes the servicing of their products. (Oliva & 
Kallenberg 2003) study and analyze 11 capital equipment manufacturers that realized 
this transition and developed service offerings for their products. 

However, the transition of a manufacturing company from its core business to an 
integrated after-sales service business may not be a smooth process. In a recent study, 
the major challenges that firms may face in starting their aftermarket operations are 
listed (Cohen et al. 2006). In the center of these challenges lie the differences between a 
manufacturing supply chain and an after-sales service chain. Table 1-1 summarizes the 
main differences between these two chains.  

Unlike physical products, businesses cannot produce services in advance of demand. The 
service is demanded only when an unpredictable event, such as a system failure, triggers 
a need. Furthermore, fulfilling demand in the after-sales services supply chain involves 
the customer for its realization. The key performance metrics are also different: for 
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manufacturing supply chain, the product fill rate is of concern, whereas for the after- 
sales services supply chain, the system availability or in another form, the system uptime 
is the central focus.  

 

Table 1-1 Differences between manufacturing and after-sales services supply chains (Cohen et al. 2006) 

These differences and other complications may squander the manufacturers’ economic 
potential in after-sales service market. A survey study published in Mckinsey Quarterly 
also substantiated the underperformance of production firms transition to after-sales 
services in terms of revenues (Alexander et al. 2002). This under-utilized revenue 
potential impels either the emergence of new service providers in the aftermarket or 
the evolution of the after sales departments of manufacturers as semi-autonomous 
business units/organizations. There are many after-sales services that might be provided 
by these autonomous/semi-autonomous units such as system user support/technical 
education, in exchange for a service fee. However, in this thesis,  we focus on the 
maintenance aspect of the after sales services, since the majority of the after-sales costs 
are due to the system down-time, and the down-time of the systems can be controlled 
primarily by the maintenance activities. Therefore, in this thesis, we analyze the 
operations of a maintenance service provider (MSP), which is responsible for the uptime 
of its customers’ systems in exchange for a service fee.  

1.1.2 Maintenance 

Maintenance can be defined as the total of activities required to retain the systems in, 
or restore them to, the state necessary for the fulfillment of the production function 
(Gits 1992). In this definition, the activities to “retain in” are considered to be under the 
umbrella of “preventive maintenance”, whereas the activities to “restore” are 
considered to be under the umbrella of “corrective maintenance”. In contrast to 
preventive maintenance, corrective maintenance actions are taken after a failure/ 
breakdown, which make them difficult to plan in advance. In addition, previous studies 
report that the responsiveness of the corrective maintenance activities is decisive on the 
duration of down-time (Coetzee 2004). Motivated by the planning challenges that the 
uncertainty brings as well as the observations in the academia/industry that most of the 
maintenance actions that are performed are corrective maintenance (Vliegen 2009), we 
narrow down our focus on corrective maintenance activities in this thesis. 
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Generally speaking, maintenance activities necessitate three types of resources: capacity 
(manpower), tools and materials. It has been observed (e.g. (Keizers 2000) and 
(Schmenner 1995)) that tools generally do not appear to be bottleneck resources in 
maintenance activities that take place mostly in repair shops (i.e. when there is 
no/limited field repair activity). On the other hand, capacity management is quite 
critical, because maintenance itself is labor intensive and workforce capacity is needed 
during the entire processing time of a maintenance job. Similarly, materials 
management is the other critical pillar. Especially, after the industrial development of 
interchangeable parts, sound management of the availability of the parts can reduce the 
down-time of the systems drastically, due to the repair by replacement concept. Repair 
by replacement infers the following: if a critical part fails and leads to a system failure, 
the system is restored by replacing the defective part with a new, ready for use one. The 
decisions on capacity and material resources are very interrelated; therefore integrated 
decision making for both resources is needed. Next we review the literature on 
maintenance briefly. 

1.1.2.1 Literature on Maintenance  

There has been considerable research on maintenance policies and practices. We refer 
the interested readers to (Pierskalla & Voelker 1976), (Sherif & Smith 1981) , (Cho & 
Parlar 1991), (Wang, 2002), which provide extensive surveys and reviews of the 
maintenance literature. Also, for a framework of maintenance to classify problems and 
research, we refer the reader to “The EUT Maintenance Model”, a descriptive model 
developed by (Geraerds 1992), which describes the sub-functions within maintenance 
and their inter-relations. As mentioned before, we focus on corrective maintenance 
activities in this thesis. 

Despite the sheer volume of studies conducted on corrective maintenance, the number 
of studies that incorporate the repair capacity in the maintenance systems is limited. 
These studies can be mainly classified into two groups based on the repair environment, 
namely machine interference/repairman problem environment and repairable item 
inventory problem environment. 

The machine interference/repairman problem involves a finite population of machines, 
operating under the supervision of a number of repairmen (or repair facilities or 
servers), who repair the machine as they break down in a non-pre-emptive manner. 
(Stecke & Aronson 1985) provide a survey for the performance analysis of the models in 
this setting. There are also studies that analyze the optimal control for the machine 
interference problem. The control can be realized either by variable service rates (Crabill 
1974), (Winston 1977), or by variable number of repair service facilities (Winston 1978). 
Further extensions of these models include (Goheen 1977), who assumed Erlang 
distribution for failure and repair times, (Albright 1980), who included both repair rate 
and the number of repair service facilities as control variables and (Van Der Duyn 
Schouten & Wartenhorst 1993), who included general failure and repair service 
distributions. Another stream of researchers extends the single class problem to multi-
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class machine-interference problems with heterogeneous machines. (Chandra & 
Shanthikumar 1983), (Chandra 1986), (Agnihothri 1989) and (Kameda 1982) all analyze 
different extensions of the classical homogenous single class machine interference 
problems. Further studies such as (Shawky 1997), (Iravani & Krishnamurthy 2007) 
incorporated the cross training issues for the repairmen into the multi-class machine-
interference problems.  

The second group of papers considers the management issues in a repairable-item 
inventory setting. In these problems, it is considered that a machine is composed of 
parts and upon a part failure, the failed part is replaced by a spare part, if it is available 
in the inventory. The control of the inventory levels in single-echelon and multi-echelon 
systems have been an area of interest for both practitioners and academicians. METRIC 
(Multi-Echelon Technique for Recoverable Item Control), is the famous approach for the 
stock allocation problem for repairable items and is developed in 60’s. The METRIC 
approach (Sherbrooke 1967), is a greedy and iterative heuristic that increases the 
inventory level of a certain item at a certain location in each iteration. This approach 
spawned much further research. For instance basic METRIC model is extended to the 
multi-indenture case by MOD-METRIC approach (Muckstadt 1973), and the variance of 
the pipeline is incorporated to obtain more accurate approximations, which resulted in 
VARI-METRIC models (Sherbrooke, 1986). All of these studies assume a constant failure 
rate and an ample repair capacity. Later, (Gross et al. 1983), (Diaz & Fu, 1997),  (Perlman 
et al. 2001) and (Sleptchenko et al. 2003) provide extensions of the existing VARI-
METRIC methods by replacing the infinite server queuing model by different, finite 
capacity systems.  

Aside from these METRIC based models; there are studies that deal with modeling of the 
capacitated service networks via closed/open queuing networks, e.g. (Zijm & Avsar 
2003) and other studies are mostly based on the analysis of Markov Process such as 
(Gupta & Albright 1992) and (Albright & Gupta 1993). 

Flexible capacity control in repairable-item inventory models is a rather understudied 
topic. Many simulation studies are conducted in order to explore the benefits of the use 
of overtime policies in a repairable-item inventory setting, e.g. (Scudder 1985) and ( 
Scudder & Chua 1987). To the best of our knowledge, (de Haas 1995) is the last study 
which sheds light to the problem of integration of the flexible manpower and the initial 
stock decisions in repairable item systems. In all of these simulation studies mentioned 
above, overtime decisions are not periodic, but can be taken at any point in time. 

Another stream that worked on the flexible maintenance workforce planning is the 
maintenance scheduling literature. Studies on workforce-constrained maintenance 
scheduling problem developed several meta-heuristic approaches that analyze different 
aspects of the problem such as conflicting objectives, precedence relations, priority 
setting, etc. Most of these studies either assumed deterministic/given repair job time 
requirements (e.g. Yan et al. 2004), or incorporated the randomness by simulation (e.g. 
Safaei et al. 2010). In (Yang et al. 2003), it has been shown that flexible manpower 
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strategies reduced the operating costs significantly in a test bed that is built on the 
operating data from a leading Taiwanese airline company.  

1.1.3 Capacity Flexibility 

Researchers unanimously agree that flexibility is an essential requirement for 
organizations and systems for a better responsiveness (Bertrand 2003), whereas there is 
no consensus on the definition of it. The lack of a consensual agreement on the 
demarcation is due to the fact that the concept of flexibility is conceptually broad, multi-
dimensional (Suarez et al. 1995) and polymorphous (Evans 1991). However, volume 
flexibility, focus of our thesis, is more amenable to definition. It is defined as the ability 
of an organization to change volume (of output) levels in response to changing socio-
economic conditions profitably and with minimal disruptions (Jack & Raturi 2002). There 
are different drives and sources of volume flexibility.  

In this thesis we assume that a change in volume is only possible by a change in the 
capacity level of the repair shop, therefore we use “capacity flexibility” instead of 
volume flexibility in the remaining part of the thesis. Empirical studies show that flexible 
capacity management policies (e.g. flexible staffing, under/over working hours, 
outsourcing) are commonly used in the manufacturing as well as service industries 
(Houseman 2001) and (Kalleberg et al. 2003). 

For various reasons, most of the time, capacity flexibility can be practiced only 
periodically. Firstly, a company’s reach to the external capacity pool may be restricted to 
certain specific times like the start of a day or the start of a week. Secondly, decisions 
about working times (e.g. working over/under time) are often taken on a periodic basis, 
in order to abide to labor regulations and to accomplish the timely communication of 
these working time decisions to the relevant employees. In addition, periodic flexible 
capacity policies are compatible with the modus operandi of resource planning software 
systems, most of which also operate on a periodic basis due to decision-information 
synchronization issues (see e.g. (ORACLE 2000)). 

Owing to the reasons listed above, we concentrate on periodic capacity flexibility in this 
thesis. 

1.1.3.1 Literature on Capacity Flexibility/ Capacity Management 

In this subsection, we provide a brief overview of the capacity management literature. 
Most of the capacity management research is studied in production/service 
environments.  

Decisions on capacity investment are first studied in Economics/Econometrics literature 
as capacity investment problems. See e.g. (Chenery 1952), (Eberly & van Mieghem 
1997). These studies take a holistic view on the interactions between the capacity 
decisions and the performance of the system. A more detailed modeling is necessary for 
the planning of operations in a production or a service environment. 
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(Holt et al. 1960) were the first to address the problem of the coordination of 
production, inventory and capacity decisions, and they develop the aggregate planning 
model, in which the production, inventory and workforce decisions (such as hiring/firing 
and over time/under time working hours) are taken for a finite horizon based on 
forecasted demand over that horizon with the help of linear decision models.  

(Pinker 1996), (Milner & Pinker 2001), (Pinker & Larson 2003) develop models with 
different types of flexible capacity arrangements (such as contingent labor contracting 
or overtime working hours) in the presence of demand/supply uncertainty over a finite 
discrete-time horizon. In these studies, different stochastic dynamic programming 
models are presented in order to obtain the optimal decisions on the capacity levels.  
Similarly, (Kouvelis & Milner 2002) study the interplay of demand and supply uncertainty 
in capacity and outsourcing decisions in multi-stage supply chains. These models 
incorporate several factors of permanent/contingent capacity or outsourcing structures, 
however the inherent congestion effects of a production/service system are not 
analyzed. 

Later studies extend the problem to integrated capacity and inventory control. (Bradley 
& Glynn 2002) provided a Brownian motion approximation to study the joint optimal 
control of the inventory and the capacity in a make-to-stock system. Similarly, (Alp & 
Tan 2008) use stochastic dynamic programming formulations for the integrated capacity 
and inventory management problem of a make-to-stock system.   

Another relevant research stream is the call center capacity management literature.  
The rise of the industry in the late 90’s revived the call-center research stream again. 
Different from maintenance/repair environments, call center environments are very fast 
moving and the systems are mostly operating under heavy traffic. Therefore, most of 
the studies in this stream use either heavy traffic or fluid approximations for the 
workload process in their models. See (Gans et al. 2003) for a general overview, tutorial 
and a list of prospects for the call-center research. 

If a production/service system is modeled as a queuing system, the service rate (or 
number of servers) of the queue can be interpreted as the capacity level. Mostly, 
stochastic dynamic programming formulations are utilized in order to determine the 
optimal service rates of the queuing systems with the help of the uniformization 
technique (Lippman 1975). (Sennott 1998) provides a comprehensive overview of the 
usage of stochastic dynamic programming in queuing systems for different control 
aspects. In most of the queuing control studies that use dynamic programming, the 
capacity actions are taken based on an event occurrence and the average delay (or 
equivalently average number of customers) in the system is penalized.  

Other approaches than dynamic control often necessitate the performance evaluation 
of the system first. For instance (Bekker & Boxma, 2007) and (Bekker et al. 2004) first 
provide performance analysis of several queuing systems with variable service rates. 
(Zijm & Buitenhek, 1996) discuss a framework for capacity planning and lead time 
management in manufacturing companies, with an emphasis on the machine shop, 
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where queuing theory results are used to derive approximations for the necessary 
performance measures. 

In spite of its practical relevance, periodic capacity control in queuing systems is not as 
popular as its continuous counterpart. This can be due to the complexity of deriving the 
transient queuing behavior that is needed for the analysis of the performance of 
systems under periodic capacity control. In (Yoo 1996), an unconstrained dynamic 
programming model is formulated to address the problem for setting staffing levels at a 
post office’s service window over multiple periods, including the transient behavior of 
the queue. Afterwards, (Fu et al. 2000) prove the monotonicity of the optimal control by 
establishing the sub-modularity of the objective function with regard to the initial queue 
size and the staffing level. In a single processing unit (Buyukkaramikli et al. 2011-a) and 
parallel processing unit MTO environments, (Buyukkaramikli et al. 2011-b), analyze 
threshold-type, two-level periodic capacity control policies for single server and multi-
server MTO systems, respectively. In both of the studies, it is assumed that capacity 
actions can be only taken at equidistant points in time and the systems in consideration 
operate under a lead time performance constraint. In this thesis, we also stick to the 
assumption that periodicity is a sine qua non condition for the realization of the capacity 
volume flexibility for the repair environments that we study.  

1.1.4 Compensating Differentials 

Compensating differential is a term used in labor economics literature that denotes the 
additional amount of income necessary to compensate workers for the non-pecuniary 
disadvantages (such as risk, unpleasantness or other undesirable attributes) of a 
particular job. The basic conception of wage differentials dates back to late 18th century, 
at the beginning of Industrial Revolution (Smith 1776). 

The topic is important for both theoretical and empirical research. Theoretically, it can 
make the legitimate claim to be the fundamental market equilibrium construct in labor 
economics on the conceptual level (Rosen 1986). Empirically, it contributes to the useful 
understanding of the determinants of the structure of wages in the market and to make 
inferences about preferences and technology from observed wage data. The bottom line 
of the concept is rooted in the utility theory and the theory asserts that workers receive 
compensating wage premiums when they accept jobs with undesirable nonwage 
characteristics, holding the worker’s characteristics constant. 

As a framework of analysis, compensating wage differentials provide a solid explanation 
of the wage rate structure of the flexible capacity resources. In our thesis, we assume 
that a high frequency of decisions over the use of a flexible capacity resource as an 
undesirable attribute, since the corresponding worker will have less work security and 
has to be ready and available to be deployed more frequently. In a similar manner, the 
frequency of task switching is also considered to be undesired, since the level of 
concentration is disrupted more frequently and a higher working memory is needed for 
more frequent task switching activities (Rogers & Monsell 1995).  
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In order to reflect the compensating effects above, we provide several empirically 
testable functional forms for the wage rate of a unit flexible capacity resource. A 
common trait of these functions is that they are all decreasing with the period length (or 
increasing with the changing frequency). 

1.1.4.1 Literature on Compensating Differentials 

A large corpus of studies does exist on compensating wage differentials, however they 
are published mainly in economic/econometric journals, aiming to explore the causal 
relations between the wage rate and the other working conditions/factors. (Rosen 1986) 
provides an excellent summary of the concept and an overview of the literature.  

Different studies focused on different aspects of wage differentials concept, however 
there are a few related studies that analyze the wage differentials for  temporary/on-call 
and fixed term workers. Among the body of the literature, there are two studies that are 
particularly interesting to the context of this thesis. In (Hagen 2002), the risk premiums 
are studied for the temporary workers. In that study, there is no evidence for the wage 
differential for fixed time contracted workers, but the author commented that the 
sample size was too small. In (De Graaf-Zijl 2012), the role of uncertainty on the 
compensation of on-call and fixed term employment contracts is studied by using an 
analytical framework. In the paper, it is found that compensation differentials does exist 
for the future uncertainties/unemployment risks, and it is concluded that these are 
reflected to the temporary/on-call workers’ wages additionally.  

The impacts of wage differentials are reflected in the operations management literature 
in a narrow and limited manner. For instance, in many production planning models, the 
overtime costs are mostly more expensive than the regular-hour costs, see e.g. (Holt et 
al. 1960), (Bitran et al. 2011) and (Graves 1982). However in all of these studies, the 
models in concern are deterministic, which leads to non-stochastic demand and service 
requirements for each job. In addition, in all of these studies, the overtime wage rates 
are mostly taken constant per unit time. On the other hand, the increasing role of the 
capacity/workforce agencies in the market and the greater use of contractual 
agreements make the wage of flexible/temporary resources more responsive and 
reflexive to different system and usage characteristics. We take this trend into 
consideration while modeling the additional cost effects of the capacity action 
frequency in future chapters.  

1.1.5 Commoditization 

Increasing technology and the effective communication mediums have accelerated the 
commoditization of products/processes. Commoditization is a process during which 
non-commodity products become more like a commodity. Commodity is a good for 
which there is demand, but is supplied without significant functional differentiation 
across a market.  

In most of the popular business publications, commoditization is portrayed as an 
inevitable tragic end-trap for organizations who cannot innovate, since they cannot 
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generate profit from premium margins obtained from the unique products/ services. 
Although innovation of a new product/service is often prescribed to avoid the “wrath” 
of commoditization, the other side of the medallion is most of the time ignored: a 
ground breaking innovation of a product may require the commoditization of its 
subcomponents. For instance, the emergence of the smart phones necessitated the 
commoditization of processors, memory, screen, etc… This perspective frames 
commoditization as a natural process whose consequences fertilize the ground for the 
innovation of higher-level, better and more complicated products/ services. This 
perspective is in line with the insights from innovation theory and complex system 
theory, where the emergence of complex patterns arise out multiplicity of relatively 
simple patterns/interactions (Holland 2000). 

The commoditization state can be considered as a continuum, which ranges from near 
zero commoditization at one end to fully commoditization at the other end. Figure 1-1 
sketches this continuum of the commoditization state. 

 

 
Figure 1-1 The commoditization trend (Holmes 2008) 

 

In this thesis, systems under concern are considered to be either limited/no 
commoditized or partially/fully commoditized. We believe that as a product becomes 
more commoditized,  the rental/leasing availability of that product, or a substitute, 
becomes much more common, more widely reachable and economically more 
attractive. We refer to this process as rentalization, and after the rentalization of a 
system, the immediate market availability for that system (or a substitute) for short 
term renting/leasing purposes can be achieved through rental/3rd party supplier 
channels. 

1.1.5.1 Literature on Commoditization 

Most of the studies on commoditization are published in popular business magazines. 
The conversion of the previously non-commodity market into a commodity market, 
which means declining profits and prices, is not a preferable situation and it is often 
destined for non-innovator manufacturing/service provider companies. Therefore, bulk 
of the studies in the literature tries to answer how to avoid or beat the commoditization 
trend with the best strategic response. Industry-specific studies include (Olson & Sharma 
2008) for electronics industry, (Ealey & Troyano-Bermudez 1996) for automotive 
industry, (McLean 2007) for radiology industry and (Carr 2003) for IT service industry. 
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(Reimann et al. 2010) conduct an extensive survey in ten industries to better understand 
the commoditization phenomenon and its role and nature in evolving market 
competition. (Davenport 2005) sheds lights on the process commoditization and its 
effects on the business. A recent book, (Holmes 2008), summarizes the foundations of 
the stages of the commoditization, the impacts of commoditization on business level 
and individual level, and discusses the best responses of the companies to 
commoditization in order to survive.  

The number of studies that conduct quantitative analysis of the effects of 
commoditization is limited. (Weil 1996) uses simulation and system dynamics 
methodology to explain the causal relationships between commoditization dynamics in 
service and technology-based markets. A similar approach is followed by (Manatayev 
2004) for analyzing the commoditization in the third party logistics industry. 

To the best of our knowledge, the impacts of the commoditization phenomenon have 
not been explicitly analyzed at the operational level in the literature. As discussed, after 
the commoditization, often, the substitute of a product becomes much more common, 
widely reachable and more economical. In this thesis, parallel to this discussion, we 
further assume that the rental/leasing (or other short term  use) reachability of 
commoditized systems are quite high, such that the short term hire of a substitute 
system upon a failure becomes an alternative down-time service strategy for 
commoditized systems, rather than keeping spare unit stocks. The further effects of the 
rentalization and the commoditization of the systems on maintenance 
strategy/operations and their interactions with the capacity decisions will be analyzed 
more in detail in Chapter 3. 

1.2 Problem under study 
In this section, we describe the problem under study, which is motivated by the trends 
and the concepts discussed in the previous subsection. As mentioned earlier, we study 
the capacity flexibility management problem for a MSP operating in 
specialized/commoditized system environments, where the systems are prone to 
failure. Upon a failure, the defective units are sent to the repair shop to get repaired. 
The MSP is responsible for the availability of the systems so that the operations of the 
system owners can continue uninterruptedly. Therefore, the MSP is liable for the repair 
as well as the down-time costs resulting from the system unavailability.  

In order to alleviate the down-time costs, in the specialized system environment, MSP 
holds a spare unit inventory for the most critical subsystem. On the other hand, in the 
commoditized system environment, MSP makes a long term agreement with a rental 
store/external 3rd party supplier, and upon a system failure, another substitute system is 
immediately supplied for a predetermined duration. The predetermined duration of the 
hiring period is necessary for the substitute system supplier, as it provides a degree of 
controllability for the rental/leasable asset utilization.   
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In the specialized system environment, inventory level is the down-time service related 
decision, however in the commoditized system environment, the hiring duration for the 
substitute is the down-time service related decision. Note that in the commoditized 
environment, it is still possible to both keep a spare unit inventory and make an 
agreement with an external 3rd party supplier, at the same time. In the thesis, we 
analyze this hybrid strategy as a special case in the later parts (end of Chapter 3) of the 
thesis.  

1.2.1 Flexible Capacity Modes  

The MSP aims to minimize its total relevant costs which is the sum of capacity costs, 
spare unit holding/substitute system hiring costs and down-time costs. The use of 
capacity flexibility in the integration of capacity and down-time service related decisions 
forms the leitmotif of this thesis.  

We assume that there is a capacity/workforce agency, which can provide the contingent 
capacity resources to the repair shop, upon a need. Similarly, that capacity  agency may 
have an interest in buying the repair shop’s unused in-house capacity, since the agency 
can assign the idle repair shop capacity to other temporary tasks found in the market 
and may generate profit out of it. The capacity agency can be an external agency as well 
as an internal department within the MSP. We focus on periodic capacity flexibility and 
investigate three different capacity modes in this thesis: 

Fixed Capacity Mode: In this mode, all of the capacity is permanent and ready for use in 
the repair shop. This mode serves as a reference point in order to assess the benefits of 
other flexible capacity modes. The relevant capacity decision in this mode is the single 
capacity level of the repair shop.  
Periodic Two-Level Capacity Mode: In this mode, we assume two levels of repair shop 
capacity: permanent level and permanent plus contingent capacity level. The permanent 
capacity is always deployed in the repair shop, whereas the periodic deployment of the 
contingent capacity in the repair shop is decided at the start of each period based on the 
number of defective units waiting to be repaired in the shop. The relevant capacity 
decisions in this mode are the permanent and contingent capacity levels, the period 
length and the states (in terms of number of defective units waiting) where the 
contingent capacity is deployed.  
Periodic Sell-back Capacity Mode: A condition for deploying this mode is that the failed 
units are sent to the repair shop at regular intervals in time. Due to this admission 
structure, when the repair of all the defective units in the repair shop are completed in a 
period, it is known that no new defective unit will arrive to the shop at least until the 
start of the next period, therefore the shop capacity will remain idle at least until the 
next interval. This allows for a contract, where the repair shop capacity, which is 
assumed to be multi-skilled and flexible, can be deployed at different tasks during these 
idle times. The original cost of the multi-skilled repair shop capacity per time unit is 
higher than that of the permanent capacity that is mentioned in the previous modes, 
and once the repair shop capacity becomes idle, the capacity is immediately sold at a 
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reduced price back to the capacity agency until the next interval. The underlying 
reasoning and the motivation of this contract/cost structure will be explained further in 
Chapter 2 and Chapter 3. Other physical factors arising from the periodic admission 
structure, such as the pre-admission delay of a defective unit and the clustering of 
defective system/sub-system arrivals, will be examined in the later chapters, thoroughly. 
The relations between the capacity/workforce agency and the repair shop can be 
depicted for the second (Periodic Two-level) and the third (Periodic Sell-back) capacity 
modes in Figure 1-2a and Figure 1-2b respectively. 

 
Figure 1-2 The relations between the repair shop and the capacity/workforce agency through contractual 
agreements in: a) Periodic Two-Level (on the left) b) Periodic Capacity Sell-back Mode (on the right) 

Note that in the first capacity policy, the repair shop operates only with permanent 
capacity and the contractual agreement would enforce the provision of an agreed 
amount of capacity indefinitely, i.e. for an infinite time, which can be interpreted as the 
ownership of the capacity resources is taken over by the MSP. In this thesis, we 
investigate the performance of these three capacity modes for the repair shop, servicing 
for highly specialized or commoditized systems. 

1.2.2 Specialized /Commoditized System Environments  

The specialized systems are highly customized (frequently they are designed and built 
on demand) and not readily available in the market. We assume a specialized system 
consists of several subsystems and one critical subsystem causes most of the failures, 
therefore keeping a spare stock for that critical spare subsystem and using a spare 
subsystem upon failure in order to replace the defective subsystem (due to repair by 
replacement concept), if available, can reduce the system unavailability and down-time 
costs drastically. The down-time service related decision for this strategy is the stock 
level of the spare parts. In Figure 1-3, the actors and their interactions upon a system 
failure are sketched for specialized system environment. 

On the other hand, (partially) commoditized systems that we study in this thesis are less 
customized and upon a failure, it is easier to find a substitute for the failed system in the 
market. Key property for the commoditized systems is that they are accessible for short 
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term hiring purposes in the market through rental/other 3rd party supply channels, and 
we further assume that a 3rd party supplier agrees to provide a substitute system, at a 
fixed hiring rate, for a pre-determined duration, every time a system fails. We advocate 
a uniform and deterministic hiring duration for the substitute system due to practical 

reasons which will be explained further in Chapter 3. The incurred hiring costs are non-
refundable, i.e. if the repair of the defective system is completed before the hiring 
duration elapses, the hiring cost is still deducted based on the uniform hiring duration, 

 
Figure 1-3 The actors and the interactions upon a system failure for specialized system environment. 

not usage. On the other hand, if the repair of the defective system took longer than the 
hiring duration, the down-time cost per unit time is incurred during that non-covered 
time. Therefore, the down-time service related decision for the commoditized 
environment is the (uniform) hiring duration of a substitute system, which has to be 
decided judiciously, taking both the hiring and down-time costs into account. In Figure 
1-4, the actors and their interactions upon a system failure are sketched for 
commoditized system environment.  

Note that the special hybrid strategy, where MSP applies both keeping spare unit 
inventory and hiring substitute upon failure, will be explained further in the end of 
Chapter 3. Even though the optimal hybrid strategy can be more cost effective, the MSP 
may still have a tendency to apply the "hire only" strategy. This preference can be 
explained due to the fact that "hire only" strategy does not require any initial capital 
investment, unlike keeping a spare unit inventory, which necessitates the purchasing of 
the units in the stock at the beginning. This necessity implies that the repair shop 
manager, who is probably a small/medium sized enterprise manager, has to invest a 
serious amount of money initially for this “keeping spare unit” availability strategy. On 
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the other hand, “hire only” strategy does not require such an initial investment but 
merely a service fee paid to the 3rd party supplier, due to the long-term agreement of 
uniform-duration hiring of the substitute system upon a system failure.   

 
Figure 1-4 The actors and the interactions upon a system failure for (partially) commoditized systems. 

In both of the environments, we assume that the MSP serves to numerous systems and 
the number of total systems is quite high compared to the probability of a system failure 

in a given unit time, and repairing a defective unit is more cost-effective than scrapping 

the defective unit and buying a new one. In the next section, the summary, 
methodologies and the contributions of the thesis will be explained in detail. 

1.2.3 Summary, methodologies & Contributions and Outline of 
thesis 

The research presented in this thesis aims at developing decision support models that 
can integrate the down-time service related and the capacity related decisions of a MSP 
in two different environments: 

1. A specialized system environment, where the substitute of the system/critical 
subsystem under concern is not available for short term hiring purposes in the 
market. 

2. A (partially) commoditized system environment, where a substitute 
system/critical subsystem can be hired from a 3rd party supplier upon a system 
failure.  
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For each of these environments, three capacity modes, namely fixed, periodic two-level 
and periodic sell-back capacity modes are investigated.  

In the specialized system environment, MSP decides on the stock level for the spare unit 
inventory next to the capacity related decisions. On the other hand, in the 
commoditized system environment, rather than keeping a spare unit inventory, MSP 
signs an agreement with a 3rd party supplier, which guarantees the temporary provision 
of a substitute system for a predetermined duration upon a system failure. The related 
decision in this environment is the length of the uniform hiring duration. The MSP tries 
to integrate this down-time service decision with the capacity-related decisions for each 
of the three capacity modes. 

As mentioned before, the benefits from the capacity flexibility in different modes form 
the leitmotif of the thesis for both of these (specialized and commoditized) 
environments. We assume that the capacity flexibility decisions can only be taken at 
equidistant points in time, and we incorporate the effects of the frequency of these 
capacity decision points on the operations of the repair shop. Henceforth, the period 
length, which is the time between two consecutive capacity decision points, arises as a 
capacity flexibility metric due to the introduced capacity modes. Also the impact of the 
period length on wage rates of the flexible resources are modeled and explained 
through the wage differential concept.    

We analyze the centralized decision making problem and focus on the cost rate 
minimization problem of the MSP. We assume that the service fee that the MSP asks for 
as well as the substitute hiring/rental prices are already given. Therefore, the price 
determination problem of the service fee or any other decentralized decision making 
issues are out of the scope.  

The objective of this study is to get more insights into the effects of the capacity 
flexibility possibilities in the operations of MSP firms for specialized and (partially) 
commoditized systems. In achieving this objective, we raise a number of research 
questions that will be addressed in different ways in the upcoming chapters. 
Furthermore, different research methodologies have been applied. We have used 
analytical stochastic modeling, Markov Decision Process and computer simulation as 
methodologies in our research, which all provide valuable insights towards 
understanding the planning and control of capacity management of MSPs. The 
contributions of this thesis to the literature can be listed as follows: 

 In addition to the traditional maintenance problem of specialized system 
environments, we address the maintenance problem of (partially) commoditized 
systems and build a maintenance strategy coherent with the increased short-
term substitute hiring possibilities resulted from the commoditization and the 
rentalization of the systems in consideration.  

 Different from many other studies, we focus on periodic capacity flexibility, 
where period length arises both as a decision variable and as a dimension of a 
system’s flexibility measure. Furthermore, we use the wage differential concept 
from Labor Economics literature to reflect the effects of some capacity related 
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decisions (such as the frequency) upon the per time unit cost of flexible 
capacity. 

 We introduced novel capacity flexibility policies and substantiated their possible 
cost savings compared to the fixed capacity policy in both specialized and 
commoditized environments. 

 We integrate the down-time service related decisions with capacity related 
decisions of a MSP in the presence of three different capacity modes in both of 
the system environments. 
 

We believe that the framework, design and analysis of the problems addressed as well 
as the results and the insights obtained in this thesis can help and motivate other 
researchers/ practitioners to further investigate the cost saving prospects from capacity 
flexibility in the after sales/maintenance service operations. We also anticipate that the 
framework described for commoditized systems will be increasingly useful in the future, 
since the commoditization and rentalization of the systems will be much more 
widespread due to the increasing information technology and the accelerated mimetic 
innovations. Therefore all the after-sales service providers have to come up with 
innovative strategies and compete more on the efficiency of their after-sales operations 
in order to regain what they lose from the commoditization. 
The remainder of the thesis is organized as follows. In Chapter 2, we focus on the use of 
capacity flexibility in the repair operations of the MSP in the specialized system 
environment. The capacity related decisions are integrated with the decision on the 
stock level of the spare unit inventory for all three capacity modes. In Chapter 3 we 
investigate the same three capacity modes in a (partially) commoditized system 
environment, where hiring a substitute system for a pre-determined, uniform duration 
becomes the conventional down-time service upon a failure. In this chapter the decision 
on the hiring duration is integrated with the other capacity related decisions. In Chapter 
4 we provide some preliminary analysis and give the  early results on future research 
topics such as the hybrid strategy where both “keeping stock” and “hire substitute” 
strategies are followed simultaneously. Finally in Chapter 5, we summarize our results, 
give the conclusion and discuss the topics covered in this thesis.                  
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2 Specialized System Environment 

2.1 Introduction 
 

In this chapter, we focus on the integration of capacity and down-time service related 
decisions in the specialized, engineer-to-order system environments, in which there are 
different types of capacity flexibility options available. In this type of environments, each 
specialized system is designed and built specifically according to its owner’s 
requirements. Defense systems, lithography systems, aircrafts or other 
advanced/complex, engineered to order capital goods are examples of such specialized 
systems. Due to the diversity of owners’ requirements, each system develops many 
unique characteristics, which make it hard, if not impossible, to find a substitute for the 
system upon a failure, as a whole. Other factors that restrain the substitution of a 
system as a whole are the complexity and the scale of the system.   

No matter to what extent each individual system is specialized; these systems are often 
composed of a number of standard subsystems. The modularity and the commonality of 
interchangeable parts make the repair by replacement solutions realizable in this 
maintenance context. We suppose that the same type of subsystems/components are 
interchangeable between various systems. However, we also assume that the repair 
processes of different types of subsystems require different technical skills and/or 
manpower, therefore each sub-system type necessitates either its own repair shop or its 
own crew in a repair shop.   

These assumptions distinguish our approach from some of the other conventional multi-
item inventory approaches in the maintenance literature. Although some repair shops 
can conduct repairs of multiple component types (i.e. (Adan et al. 2009), we observe an 
ongoing trend of after-sales service differentiation in modular designed system 
environments. For instance, upon a failure of a system, once the root of the failure is 
diagnosed, the corresponding failed module is handled distinctly for each type. This 
proclivity can be seen in the repair/maintenance activities of many specialized and 
modular system environments such as aviation or defense industry. In (Keizers et al. 
2009), it is reported that there were 75 repair shops specialized on the repair of 
different parts/projects in the Dutch Royal Navy Maintenance and Repair Organization. 
In a case study conducted in the MRO department of the Canadian Airforce  (Nima 
Safaei et al. 2011), it has been observed that the skilled technicians are divided into 
many trades (i.e. weapons and electrical armament, airframe mechanical, airframe 
electrical, propulsion and avionics/electronics), and each trade group is responsible for 
the overhaul of different types of components/parts. Similarly, the evolutionary pattern 
of the medical science epitomizes this differentiation/segmentation phenomenon. As 
the accumulated knowledge on human body and on the diseases mounted, different 
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specializations/branches (e.g. cardiology, neurology, etc...) came into existence and 
hence resulted in better, more effective and (sometimes) more economical services and 
treatments. This ongoing trend is expected to continue in the maintenance industry, 
thanks to the increasing role of the modular design concept of the products and 
systems.  

Parallel to this trend, in this thesis, we suppose that each critical type of subsystem 
requires a different repair shop for the necessary repair activities. Thus, the integrated 
capacity related and the down-time service related decisions are taken for each 
subsystem type separately.  

In this chapter, it is assumed that the MSP takes care of the repair and the availability of 
a critical subsystem (e.g. jet engines, railway locomotives, etc.), which is used in 
numerous specialized systems (e.g. planes, trains, etc.), installed in a region, in exchange 
for a service fee. In order to realize the repair process of a critical subsystem, the MSP 
operates a repair shop, and the overall system availability is improved by spare unit 
inventory pool for the critical subsystem under concern. This single item repair-to-stock 
system is modeled using a single inventory/queue formalism, where the processing rate 
corresponds to the repair shop capacity and the base stock level corresponds to the 
maximum number of non-defective spare units not in use in the absence of failed 
systems.  

Our objective in this chapter is to minimize the total relevant costs (   ) of the MSP, 
which consists of the three components listed below with their abbreviations in 
parentheses: 

1. Capacity related costs of the repair shop (   ) 

2. Down-time costs of a system whose critical subsystem has failed and not 
replaced with an operating one from the stock (   )  

3. Holding costs for the critical spare units, both in the stock and in the repair shop 
(  ) 

Given the cost components above, the MSP takes capacity and inventory related 
decisions simultaneously in order to minimize its    . Three capacity modes are 
investigated in this chapter are: Fixed Capacity Mode (Reference), Two-Level Flexible 
Capacity Mode and Periodic Capacity Sell-back Mode 

As mentioned in Chapter 1, the service provider can make use of periodic capacity 
flexibility options while integrating its repair shop capacity and spare unit inventory 
decisions. The reasons behind the periodicity of capacity flexibility were already 
discussed in Chapter 1.  

The flexibility options can be realized through an external agent. We use the umbrella 
term of “capacity agency” for the contingent capacity supplier(s) in all of the flexibility 
scenarios. The capacity cost structures of the contractual agreements for each capacity 
mode will be further explained in this chapter. 
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The relations between the repair shop, the capacity agency (can be either internal or 
external), and the specialized systems in this chapter’s environment is depicted in Figure 
2-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: The relations between the MSP of a critical subsystem, the capacity agency and the specialized 
systems through contractual agreements. 

We aim to model the maintenance service network for the specialized systems which 
embodies all the active/passive actors listed above in order to analyze the interplay 
between the capacity agency and the repair shop, derive the cost performance 
characteristics and develop a decision support system that integrates the capacity 
related and the inventory related decisions in order to minimize the     of the MSP 
under different capacity flexibility options. In addition, the developed modeling 
framework in this chapter enables the researchers/practitioners to foresee how much 
cost savings can be realized through the use of capacity flexibility compared to the best 
practice under the fixed capacity setting. 

This single-item modeling approach can be simply generalized to multi-item settings by 
designing different single item repair-to-stock systems for each type of subsystem and 
by summing up the total costs of each single item model. Under this modeling approach, 
it is assumed that a separate repair shop unit and a separate spare item stock are 
operated for each relevant critical subsystem type and that the failures due to the 
different types of subsystems, their repair process and the relevant capacity/subsystem 
availability decisions are independent from each other. 
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The outline of the remainder of this chapter is as follows. In Section 2.2, we provide a 
brief literature review about the maintenance/repairable item control and capacity 
management in specialized system environments and list this chapter’s contributions. 
The capacity provision mechanism, the cost structure of a unit of provided capacity and 
how this is affected by the period length due to the wage differentials are explained in 
Section 2.3. In Section 2.4, we model and analyze the integrated decision making 
problem under the fixed capacity mode, which serves as a reference model for the 
further modes. In Section 2.5 and in Section 2.6 we explain, model and analyze the same 
problem framework under two-level flexible capacity and capacity sell back modes, 
respectively. Finally in Section 2.7, we draw overall conclusions over the performance of 
capacity modes, interpret the differences and finalize this chapter. 

2.2 Literature Review 
As mentioned in the general literature review presented in the previous chapter, 
inventory control of the repairable items constitutes one of the strongest streams of the 
literature in the realm of maintenance. However, the dominant part of the models for 
the repairable item inventory control are based on the assumption of ample repair 
capacity, which used to be a benign presumption for most of the military environments. 
(See (Sherbrooke 1992)  and (Muckstadt 2005) for detail).  

Several studies generalized this ample supply assumption mostly by incorporating exact 
queuing network models to the repairable item inventory control problems (See (Gross 
et al. 1983), (Albright & Soni 1988) and (Albright & Gupta 1993)). A critical aspect of this 
approach is the inherent computational complexity of the performance evaluation 
methods of closed queuing networks, which can be prohibitive for multi-item setting of 
practical problems. Therefore, further studies introduced approximations and other 
methods for multi-echelon repairable item inventory systems with limited repair 
facilities (See (Diaz & Fu 1997), (Perlman et al. 2001), (Zijm & Avsar 2003) and 
(Sleptchenko et al. 2003). The flexible capacity/manpower use in repairable item 
systems is a rather understudied subject. There are only a few studies, by using 
simulation, trying to explore the benefits from the use of flexible manpower decisions in 
multi-echelon/ multi-indenture repairable item systems (See (Scudder & Hausman 
1982), (Scudder 1985) and (de Haas 1995)).  

As mentioned before, in this chapter, we use a single inventory/queue formalism to 
model the repair shop operations of the MSP under study. In a different context, similar 
quantitative formalisms are widely used in manufacturing/production control problems, 
in the shape of produce-to-stock or make-to-stock systems. (Buzacott & Shanthikumar 
1993) and (Altiok 1997) provide good overviews of the stochastic models used in 
capacity and base stock level decision problems for make-to-stock production systems. 
A review of the studies that incorporate capacity flexibility in make-to-stock systems is 
already given in the corresponding literature review section of Chapter 1.  

Following from this literature review, the objective of this chapter can be summarized as 
follows: to integrate the stock level related decisions for spare unit availability with the 
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capacity related decisions of the repair shop, both of which are taken by the MSP for a 
specific subsystem type, which is critical for many specialized systems installed in a 
region. In the next section, we explain the capacity provision mechanism, the cost 
structure of a unit of permanent capacity and a unit of contingent capacity that is 
delivered from the capacity agency, and how these costs are affected by the period 
length due to the wage differentials. 

2.3 Capacity Provision Mechanism  
The capacity agency is a reactive agent in the whole decision making process, and is 
responsible for the capacity provision mechanism under the periodic two-level and 
periodic sell-back capacity modes. The capacity provision mechanism has a periodic 
nature: at equidistant points in time, the capacity agency must be ready to supply an 
agreed amount of capacity that covers the whole period, that is to say until the next 
equidistant point. The use of this reserved capacity is decided instantaneously at these 
equidistant supply points.  

In order to be able to supply the required amount of capacity for each period, the 
capacity agency has to be prepared at the start of each period before the decision is 
taken. Although the provided capacity is ready to be deployed at the start of each 
period, it is not guaranteed that it will be used.  

In the second (two-level) capacity mode, the permanent capacity is always deployed at 
the repair shop, and the use of the contingent capacity is decided by the repair shop at 
the start of each period with regard to the workload situation. If the number of units 
waiting to be repaired is bigger than a given threshold value, then the provided capacity 
is deployed and used by the repair shop. Since this decision cannot be known in advance 
with certainty, this uncertainty on the use of the periodically provided capacity creates 
an economic factor that causes an opportunity cost, because that capacity could be used 
somewhere else if it was not reserved for that period.  

Similarly, in the third capacity mode (capacity sell-back), the provided capacity is 
deployed at the repair shop at the start of each period. However, in this capacity mode, 
additional uncertainty factor is the time during which the provided capacity will be 
actually deployed at the repair shop. This is due to the fact that the capacity is sold back 
to the agency to be hired out temporarily for other external tasks as soon as there is no 
repair waiting in the shop. This uncertainty of the duration of the deployment in the 
repair shop and frequency of job switching (between the repair shop and the tasks that 
the capacity agency assigns) create an economic factor that causes an opportunity cost 
due to the additional skills needed for, and the extra cognitive load generated from task 
switching as well as the transportation/ transaction costs of the shop capacity.  

In the light of the explanations of the opportunity costs for the capacity modes, in the 
next section, the opportunity cost per time and its relation with the period length will be 
elucidated. 
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2.3.1 Opportunity Cost as a Function of Period Length   

Let   denotes the length of the period, which is the time between two equidistant 
capacity supply points. A longer   mitigates the severity of the lost opportunity effects 
due to the enforced capacity availability at the start of each period because: 

 Longer   gives more room to the capacity agency to benefit from the possibility of 
using the reserved capacity for other tasks until the start of the next period.  

 Longer   implies an improved task security for the provided resources in the second 
capacity mode and less job switching for the third capacity mode.  

These effects are in line with the wage differential theory, a research area in Labor 
Economics that analyzes the relations between the wage rate and the unpleasantness, 
risk or other undesirable attributes of a particular job (Rosen 1986).  

Let    denotes the per time unit cost for a unit of fixed capacity that is deployed at the 

repair shop indefinitely, e.g. for an infinite period length. This is equivalent to the 
situation when the ownership of the provided capacity is passed to the repair shop, 
therefore hereafter    is denoted as the permanent unit capacity cost per unit time. 

Similarly,    is the cost that is incurred per unit time for a unit of provided contingent 
capacity. Due to the opportunity costs resulting from the capacity reservation,    is 
greater than or equal to    for finite period lengths and as the period length   goes to 

infinity, the capacity is provided to the repair shop indefinitely, which can be interpreted 
that the capacity is owned by the repair shop, thus    equates to    when    .  

The opportunity cost is denoted by   (     ), which is always greater than or equal to 
zero. The opportunity cost   (     ) decreases with the period length   in different 
forms as will be shown in Table 2-1. We assume that    is the sum of    and   (     ). 

We propose three different functional forms for   (     ). Note that other functions 
(which can be constructed after an empirical investigation) can be also used to model 
the opportunity costs per unit time, as well. However, we limit ourselves to these three 
functional forms, namely: linear, inverse proportional and exponential forms, which are 
quite commonly used in Labor Economics (Rosen 1986).   

These proposed functions depend on two additional cost parameters next to the period 
length:   and  .      represents the maximum opportunity cost per time unit due to 
the availability of the capacity at the start of each period, and     reflects the 
decreasing rate of the opportunity cost with period length. The proposed functions can 
be seen in Table 2-1, and for these suggested functional forms of   (     ), the effects 
of   and   on    are illustrated in Figure 2-2. 
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Name of the function   (     )  

1.Linear (    )   

2.Inverse Proportional   (    )  

3.Exponential       

Table 2-1 Three proposed opportunity cost functions. 

In the next section, we start with the fixed capacity mode, where the capacity is either 
owned by the repair shop or provided to the repair shop indefinitely. The minimum cost 
performance achieved in this mode will act as a reference point to judge the 
performance of the MSP using other flexibility options in further modes.    

 

 

Figure 2-2 The figures on the top depict the behavior of    for     and            . The figures on the 
bottom depict the behaviour of    for      and                . Right to the left:    is of the linear, 
inverse proportional and exponential forms. 

2.4 Fixed Capacity Mode 
In this section, we analyze the integrated decision making problem of the MSP under the 
fixed capacity mode. In this mode, all of the capacity is permanent, owned by the repair 
shop and ready for use all the times. This mode serves as a reference point for the other 
two capacity modes, necessary to assess the benefits of further flexibility options.  

The MSP has to determine the optimal inventory and capacity level decisions in order to 
minimize its    . This section aims at building a modeling framework and a decision 
support system for the MSP operating under the first capacity mode. Therefore in 
Subsection 2.4.1 we present the model, assumptions and the problem formulation. In 
Subsection 2.4.2, the derivation of the total relevant cost per unit time as well as the 
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analytical properties and the optimization procedure are given. Finally in Subsection 
2.4.3, we describe the experimental setting and provide the results of the numerical 
study. 

2.4.1 Model, Assumptions and Problem Formulation 

We analyze an environment where the MSP operates a repair shop, and is responsible 
for the repair of the failed critical subsystems of a particular type, from many specialized 
systems installed in a region. These systems are in the exploitation phase and we 
assume that the number of the systems that the MSP is responsible for,  , is quite large, 
whereas the probability of the failure of a given system in a unit time is quite low, which 
justifies the modeling approach, where the failures come from an infinite population of 
systems, and the total stream of system failures due to the critical subsystems follow a 
Poisson process with a constant rate:  . This is in line with the existing assumptions in 
the literature, (Sherbrooke 1992) and (Muckstadt 2005), which are already shown to be 
reasonably justifiable if the total number of the systems is large and the mean time 
between failures (MTBF in short) due to the critical parts/units is quite long (compared 
to the down-times).  

In this chapter, the systems are supported by a single warehouse where all spare units 
of the critical subsystem are stocked and there is a single repair shop with a finite 
capacity where the defective subsystems are repaired and refurbished to “ready-for-
use” state, again.  

Upon a system failure, the following procedure is ensued. First the reason of the failure 
is detected. We assume that the detection of the reason of the failure (whether it is 
caused by the critical subsystem defectiveness or not) is performed by the in-house 
engineers of the system owners immediately and there is no moral hazard related risks 
between system owners and the MSP.  

Upon the diagnosis, if the failure is due to the critical subsystem, a ready-for-use unit is 
sent from the stock to the system location, if there is any unit available in the stock. 
After a new unit has arrived to the system location, the defective subsystem unit can be 
replaced with the ready-for-use unit and transported to the repair shop in order to get 
repaired. After the repair process, the defective subsystem unit will be restored to the 
ready-for-use state again, which we assume that it is as good as new. Subsequent to the 
repair and refurbishing, the subsystem is added to the spare unit inventory and is held in 
the stock until it is sent to replace another defective subsystem in the future.  

If a subsystem failure is followed up with an out-of-stock situation, the demand for the 
ready for use subsystem will be backordered. We assume that the replacement times (of 
the defective and ready-for-use critical subsystems) and the transportation times from 
the repair shop to the customer sites, where the systems are located (or vice versa) are 
negligible. Each defective subsystem requires an exponentially distributed service time 
from the repair shop and the repair shop cannot work on more than one repair 
simultaneously. Therefore the defective units that require repair have to wait for their 
turn in order to get serviced in the repair shop. A First-Come-First-Served (FCFS) policy is 
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used for the service order of the defective subsystems. We model the repair shop as a 
single server Markovian queue. The capacity of the repair shop determines the speed of 
the repair service. Therefore the processing rate   is considered as the capacity level of 
the repair shop. 

In this thesis, we suppose that all the defective subsystems can be restored to the as 
good as new condition after the repair. However, in reality, some of the defective units 
can be in an un-repairable situation, where a new subsystem has to be bought from the 
original manufacturer (OEM) of the critical subsystem in concern. We exclude these type 
of situations in our analysis, since the cost burden that they generate are unaffected by 
our control actions and can be incorporated to the existing analysis easily. For instance, 
if we assume that a constant ratio of the defective subsystems are not repairable, we 
can incorporate the existence of un-repairable situations by adding the purchasing costs 
related to the un-repairable units on top of the other cost components of MSP, and by 
analyzing the operations of the repair shop queue with the reduced arrival rate.  

Due to the low demand characteristics for the repair of the defective units, the spare 
unit inventory is controlled by a continuous review base-stock policy with a base stock 
level of  . This policy is commonly used both in academia and industry (see (Feeney & 
Sherbrooke 1966) and (Muckstadt 2005)). 

The capacity cost per unit time is    in this fixed capacity mode since all the repair shop 

capacity is permanent (or supplied indefinitely). We pay   per unit time for each spare 
unit in the stock/in the repair shop. The down-time costs due to the backorder of the 
spare subsystems is equal to   per time unit, and we assume that    . From now on, 
we use the notation of   to denote the capacity policy. In the fixed capacity mode,   is a 
single variable, since the only capacity related decision is the processing rate  . The 
inventory related decision is  . The total relevant cost function,    , can be 

represented by   and  , and is the sum of capacity related costs (   ( )), down-time 

costs (   (   )) and holding costs (  ( )). Given these cost components and the 

decision variables, the problem of the MSP can be formulated as follows: 

 

   
   

   (   )     ( )     (   )    ( ) 

           {       } 

      

(2.1) 

Given the problem formulation above, in the next subsection, we derive the necessary 
cost functions used in (2.1), give the analytical properties of    (   ), and present the 
optimization procedure for the problem.  
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2.4.2 Derivation and Analysis of the Cost Functions, the Solution 
Procedure 

In this subsection, we first derive and provide the analytical properties of the cost 
functions used in (2.1). Afterwards, we give the solution procedure for the optimization 
problem. As it is mentioned previously,    (   ) consists of three cost components: 
   ( ),    (   ) and   ( ).   

For this fixed capacity mode, the capacity related cost per unit time is a linear function 
of the excess capacity:    , since the baseline capacity level, ( ), is unaffected by the 
capacity policy. Per time unit cost of the capacity is constant and equal to   . Therefore, 

we have    ( ) =   (   ). The holding cost per unit time is also a linear function of 

the base stock level  , since we have an additional   number of spare units tied up in 
the stock/ repair shop and the holding cost rate per unit part is   per time. Hence, we 
have   ( )    . 

Per time down-time related cost,    (   ) is derived from the number of defective 
units in the repair shop. Let    denotes the number of defective units in the repair shop 
and  {      } denotes the probability that there are   defective units at an arbitrary 
point of time given that the capacity level is  . Since we model the repair shop as an 
      queue,    is identical to the number of customers in a queue with a traffic ratio 
of      . Hence, we have the following:  

 
 {      }  (   )                           

(2.2) 

The expected number of systems that are in down state due to stock out of spare 
subsystems at an arbitrary point of time can be found from (2.2) as follows: 

 

 ((    )   )  ∑ (   )(   )  

 

     

 
   

(   )
              

(2.3) 

For each system that is down due to the failure and the concomitant shortage of the 
critical subsystem, a cost of   is incurred per unit time. Hence, the average down-time 
related cost per unit time can be found as follows: 

 

     (   )   ( ((    )   ))   
   

(   )
. 

Hence we have the following: 

 

   (   )     ( )     (   )    ( )    (   )   
   

(   )
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(2.4) 

As the total relevant cost rate,    (   ), is derived, next we give two of its analytical 
properties. 

 

Property 2.1 

For a given   >  ,    (   ) is convex in  . 

 

Proof: 

When   >   and     we have:      (   )     (   )     (     )    
   . Note that      (   ) is increasing on its whole domain, and thus    (   ) is 
convex. 

Property 2.2 

For a given   ≥ 0,    (   ) is strictly convex in  . 

Proof: 

For     , we have: 
    (   )

  
      

   

(   ) 
  and  

     (   )

      
   

(   ) 
 

  
       

(   )     
       

(   )     
       (   )

(   )      .     

Similarly, for    , we have:  
    (   )

  
      

 

(   ) 
  and  

     (   )

      
 

(   ) 
  

   . 

 

We use the following solution procedure for the optimization problem. Before starting 
the search procedure, we choose a sufficiently large       value which is an upper limit 
for the spare unit base stock level choice. Then we follow the steps given below:  

Search Procedure-I 

 

1. Let   ( ) =   √
  

  
  denote the   that satisfies: 

    (   )

  
  . Then we have 

  ( ) =   ( ) and     (  ( )  )    (√
  

  
  )  √  (  )  .  

2. For every    {          } follow the steps a and b: 

 

a. Compute   ( ), which is the   that satisfies: 
    (   )

  
  . 



30 

b. We have    ( ) =   ( )  and     (  ( )  )       ( 
  (  )   )  

 
 (

 

  ( ) 
)
 

(   ( )   )
 

3. After finding    (  ( )  ) for all S  {           }, we can find   , and 
   (  ), which give the global minimum cost rate         (  (  )   ) for 
the fixed capacity mode.    can be found as follows: 

 

   (  (  )   )     
   {         }

   (  ( )  ) 

 

In essence, the solution procedure uses the Properties 2.1 and 2.2 of     in order to 
find the single best capacity level for a given base stock level  . After finding the single 
best capacity level,   ( ), for each stock level   up to a confidently large     , the 
optimal    and  *( ) pair can be obtained through a brute force search over different   
values. In the next subsection, we present the results of the numerical study that is 
conducted, where the optimal costs for problem (2.1) are obtained from the Search 
Procedure-I. 

2.4.3 Numerical Study 

In this section, we present the results of the numerical study for the fixed capacity 
mode. First, we describe the experimental design for the computational study. 
Afterwards, we follow the search procedure and obtain the optimal decision parameters 
for every instance in the test bed. Finally, the minimum cost performances, the optimal 
capacity levels and the optimal spare unit stock levels are given in order to generate the 
managerial insights and form a basis as a reference point to assess the benefits of 
capacity flexibility in further capacity modes. 

2.4.3.1 The Base Case Scenario and the Experimental Design 

In our computational study, we take the unit time as a week and normalize the mean 
arrival rate for the sub-system failures (not from one system but the cumulative failures 
in the whole environment)      (failures per week). We have a base case scenario, 
which is described below, and the other 8 scenarios have varying backorder ( ) and 
holding ( ) costs per unit time. The parameter values in the base case scenario are 
based on the following situation:  

Suppose that the capital good has a value of           , and that the value of the 
critical subsystem unit is        . The capital good is used in the production process of 
other products. The economic lifetime of the capital good is assumed to be    years, 
and  the cost of the capital good represents     of the total costs of the products 
produced with it (material costs deduced). Further, suppose that the firm sells the 
products at a price that is   times the total production costs (material costs deduced) 
accumulated during the average machining time used to produce the products (when 
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the capacity of the capital good is used). If the capital good is in use for 16 hours a day, 6 

days a week and    weeks a year, then the capital good related costs are 
          

(          )
 

        per hour and the lost revenue due to down-time is: (
      

    
)            per 

hour. A week (the base time unit) of down-time costs would be              
        . For the cost of the workforce capacity of the repair shop, we will use a wage 
of     per hour per operator  and we assume that a repair of a failed subsystem takes 
about 80 hours. Then the repair of a failed unit/subsystem on average costs      .  
This is much less than the cost price of the subsystem(       ), therefore repairing a 
defective subsystem is a more economical option than scrapping the defective 
subsystem and buying a new one.  

Next, we derive the stock keeping cost per unit time. Assuming a capital rate of 25% per 
year, 365 days a year and 24 hours a day, stock keeping costs of a spare unit are 
           

  
         per week. We scaled the parameter for the cost of workforce per 

repair to one, and expressed the values for the down-time and stock keeping costs as a 

multiple of this normalized parameter (for instance:    
    

    
   ,    

     

    
   and 

stock keeping cost of a sub-system    
   

    
     ). 

 

         

  

      

   

    

    

     

   

    

    

     

   

    

    

Table 2-2: Values of the analyzed   ,   and    instances. 

Having described the cost setting in the base case scenario, where     ,        and 

   , we create the test bed, which consists of a total of   scenarios. These different 

scenarios explore the effects of different 
  

 
  and  

 

 
 ratios around the base case, and we 

assume that both   and     are higher than the holding cost   per unit time. The     

ratios range from       to      and  
 

 
 ratios range from    to    . The values of   and 

   instances that are examined are given in Table 2-2. The base-case scenario that is 

described above is highlighted.   
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2.4.3.2 Results 

After the Search Procedure-I in the previous subsection, is conducted for each of these 
nine scenarios, we find the optimal   ,   (  ) and the resulting total relevant costs per 
unit time. From now on, we use the notation of     

     (      
 ) in order to 

denote the minimum cost rate achieved under the first (fixed) capacity mode for given 
cost parameters. Accordingly,    

  denotes the corresponding optimal stock level for 
spare units and      (  

 ) refers to the optimal capacity choice.   
 ,    (  

 ) and 
    

  values are tabulated in Table 2-3 for all   scenarios:  

 
Table 2-3 The optimal base stock level (  

 ) and capacity level (   (  
 )) decisions and the resulting costs 

(     
  ) for the total of   scenarios. 

From Table 2-3, as it is expected, we can observe that the minimum total relevant cost, 
    

 , increases with   and  . The numerical results suggest that the total cost rate 
increases with   at a higher rate than it increases with  .  

Upon an increase in  , the system responds both with a higher stock level   
  in order 

to increase the spare unit availability and with a higher capacity   (  
 ), in order to 

provide a faster repair service. These two responses counterbalance the negative effects 
of the rising down-time costs due to higher  . 

On the other hand, upon an increase in  , the MSP has a greater incentive to reduce its 
stock level to save from holding related costs. The decrease in spare unit stock level 
(  

 ) is more voluminous for higher backorder costs. As a remedy for the further cost 
consequences of lower stock levels (which would automatically lead to higher down-
time costs), the MSP increases its capacity level so that the MSP can respond faster and 
it can complete the repairs at a shorter time. The latter effect of increasing capacity 
dominates the prior effect of spare unit inventory reduction in terms of costs. 

Integration of the stock level and capacity level decisions brings drastic savings for the 
MSP. For instance, in the zero-inventory case, where    , the repair shop capacity is 
the only parameter that the MSP can tune in order to adapt to different operating 
environments. This leads to very high capacity levels and therefore a lot higher costs. Let 
      

  denotes the optimal total relevant costs in the zero-inventory case (   ). In 

Table 2-4, we demonstrate the percentage cost savings     (
      

      
 

      
 ) and 

capacity savings     (
  ( )   (  

 )

  ( )
) due to the use of the spare unit inventory for the 

critical sub-system in all   scenarios.    
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Table 2-4 Percentage cost and capacity savings of integrated decision making (inventory and capacity) 
compared to the zero inventory case in 9 different scenarios. 

As it can be seen, incorporating the use of the spare unit inventory in order to 
ameliorate the down-time, reduces the total relevant costs between     to     and 
reduces the capacity levels between     to    . The percentage savings of costs (due 
to the spare unit inventory) increase with   and decrease with higher  , which is parallel 
to the response pattern of    

  to different   and   given in Table 2-3. This can be 
explained due to the fact that the total cost savings are correlated to the difference in 
the optimal inventory levels between the integrated and “no inventory” settings. Since 
the inventory level is always “ ” in the latter “no inventory” case, the larger   

  in the 
optimal integrated setting, the higher cost savings become.   

The breakdown of the total costs under the optimal fixed capacity policy can provide us 
further managerial insights. Therefore, we investigate how much each of the three 
components (  : holding cost for spare units,    : capacity related costs,    : down-
time related costs) has contributed to the total relevant costs under the optimal 
capacity & stock level decisions for   different     &   combinations. The percentage 
contributions of each cost component are shown in the pie charts in Figure 2-3. 

As it can be seen from Figure 2-3, the capacity related costs (   ) constitute the biggest 
share of the total relevant costs in   out of the   (  and    ) combinations. Only when 
      , we can see that the holding related costs becomes the biggest cost 
component when          and    .  

Note that each cost result tabulated in Table 2-3 serves us as a reference point to assess 
the prospects of the flexibility options in the other two capacity modes. For each of the 
  scenarios, in order to consider another flexible capacity policy as an economical 
alternative, the minimum total relevant costs that can be achieved under that policy 
must be smaller than the corresponding     

  value from Table 2-3. In the next section, 
we set out our analysis to scrutinize the cost saving possibilities in the second, namely 
periodic two-level, flexible capacity mode 
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Figure 2-3 The breakdown of total relevant costs (    ) to three cost components (  ,     and    ) 

under the optimal capacity & stock level  decisions (       (  
 )  

 
 ) for 9 different (  &    ) 

combinations. 

2.5 Periodic Two-Level Flexible Capacity Mode 
In this section, we analyze the integrated decision making problem of the MSP under the 
second capacity mode. In this two-level flexible capacity mode, a part of the capacity is 
permanent (or, in other words, the capacity agency supplies that amount of capacity 
indefinitely), whereas the other part is contingent, supplied periodically at equidistant 
points in time at a higher cost rate. The decision on the use of the contingent capacity is 
given at each equidistant point with regard to the present workload of the repair shop, 
in terms of the number of defective units in the service or waiting for service.  

Similar to the fixed capacity mode, the MSP has to give the optimal inventory and 
capacity level decisions in order to minimize its    . Characterization and the analysis 
of the cost savings due to the flexible two-level capacity policy in the integrated decision 
making environment, have our utmost priority in this section. Therefore, we aim at 
building a modeling framework and a decision support system for the MSP, operating 
under the periodic flexible two-level capacity mode. In Subsection 2.5.1, we present the 
model, describe the policy under the periodic two-level flexible capacity mode and 
introduce the additional decision variables as well as the problem formulation. In 
Subsection 2.5.2, the derivation and the analysis of the total relevant cost per unit time 
are given and the relevant MDP formulation is provided. Finally in Subsection 2.5.3, we 
describe the experimental setting, the search procedure and provide the results of the 
numerical study with a focus on the sensitivity of cost/policy parameters and the savings 
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under this two level flexible capacity mode compared to the best cost performance 
under the reference, fixed capacity mode     

 . 

2.5.1 Model, Two-Level Flexible Capacity Policy and Problem 
Formulation 

The MSP operates in the same environment that is explained in the previous section. 
Recall that the joint repair shop/ spare unit inventory is modeled as a single-server, 
queue-to-stock system, where the failures occur following a stationary Poisson demand 
and each defective unit requires an exponentially distributed amount of dedicated 
repair service time in the shop in order to regain its good as new status.  

In this section, we assume that the repair shop can make use of capacity flexibility 
options due to the periodic two-level flexible capacity mode. In two-level capacity 
policy, a portion of the total capacity is permanent (i.e. supplied from the capacity 
agency indefinitely or permanently employed by the repair shop) and the other portion 
is contingent. The contingent portion is supplied from the capacity agency at equidistant 
points in time, if it is needed. Suppose   denotes the period length, which is the time 
between two equidistant points. At the start of each period, the number of defective 
units in the system is observed and according to this number, the decision on the use of 
contingent capacity during that period is taken. The dynamics of the effects of wage 
differentials are reflected on the unit contingent capacity cost rate, which is increasing 
with the frequency of capacity usage decisions that take place at equidistant points in 
time. 

Under the queue/inventory formalism, the processing rate of the single server queue 
represents the capacity level of the repair shop. Therefore in the two-level capacity 
mode, the processing rate of the queue is chosen between two values (a high and a low 
one) at equidistant points in time according to the number of defective units waiting for 
repair service. 

A periodic, two-level capacity policy,   = [ ,   ,   ,  ⃗ ], consists of a period length  , a 

low and a high service rate pair (     ) and a policy vector,  ⃗ . The     row of the policy 
vector  ⃗  denotes the action (  or  ) that the repair shop will take when there are ( ) 
defective units in the system for          .  

If   ⃗ ( )     then the repair shop operates with a processing rate of    , and else, if 
 ⃗ ( )   , it operates with a processing rate of    , whenever there are   defective units 
in the environment for          .  

Under policy  ,    can be interpreted as the permanent capacity level and (     ) can 
be interpreted as the contingent capacity level. For the stability, we assume that     .   

Under a given policy   = [ ,   ,   ,  ⃗ ], the number of defective units  is observed at the 
start of each period. If there are   number of defective units and  ⃗ ( )   , then we 
deploy only the permanent capacity:   , and if  ⃗ ( )   , we deploy permanent + 
contingent capacity:   . Figure 2-4 illustrates the system under study.   
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Figure 2-4 Illustration of the system under the second, two level capacity flexible mode. 

Suppose the repair shop operates under a stable policy   = [ ,   ,   ,  ⃗ ] for an infinite 
horizon. Let    ( ) denote the average capacity deployment resulting from the 
capacity policy  . As it is explained in Section 2.3, the per time unit cost for the 
contingent capacity,   , depends on the period length  , and the per time unit cost of 
the permanent capacity,    is constant. Since the baseline capacity level, ( ), is 

unaffected by the capacity policy,     is deduced from the total capacity related costs. 

For given    and    values, the capacity related cost per unit time,    ( ), can be 

directly derived from    ( ) as follows: 

 

   ( )=   (    )     (   ( )    ) 

(2.5) 

The capacity agency offers a set of possible period lengths,  , from which the service 
provider can choose the best period length considering the reflection of wage 
differentials on   . Recall that    is also dependent on   , and  ,   coefficients. We pay 

  per unit time for each spare unit. The down-time costs due to the backorder of the 
spare units is equal to   per time unit, and we assume that      . The inventory 
related decision is  . The capacity related decisions,  , are threefold: 

1) Length of the period:    

2) The size of the permanent and the contingent capacity levels: (            ) 

3) The policy that determines when the contingent capacity is hired:  ⃗  (according to the 
number of defective units). 

The total relevant cost function,    , can be represented by   and  , and is the sum of 

capacity related costs (   ( )), down-time costs (   (   )) and holding costs 

(  ( )). Given these cost components and the decision variables, the problem of the 

MSP can be formulated as follows: 

𝐷  𝐷 

... ... 

𝑛𝐷   defective units 

@ 𝐷 
𝑛 𝐷  defective 
units @  𝐷 

If �⃗� (𝑛𝐷)   : 

 

capacity= 𝜇𝑙  
else: 

capacity= 𝜇  

 

Period 2 

 

 
time 

If �⃗� (𝑛 𝐷)   : 

 

capacity= 𝜇𝑙   

else: 

capacity= 𝜇  

 

... Period 1 Period 3 

 

... 
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   (   )     ( )     (   )    ( ) 

         {       } 

    [         ⃗ ] 

    ,      ,    ,  

 ⃗ ( )  {   } for            

(2.6) 

Given the problem formulation above, in the next subsection, we decompose the 
problem in  (2.6) into smaller sub-problems and re-formulate each of the sub-problem 
as an infinite horizon average reward Markov Decision Process (MDP). The derivation of 
the expected immediate reward and the transition probabilities follow after the 
formulation of the MDP. 

2.5.2 Decomposition and the MDP formulation of the Sub-problem. 

In this subsection, we first decompose the optimization problem in (2.6). For each 
possible          and   , we can write the following sub-problem:  

 

   
 ⃗⃗ 

   (   )     ( )     (   )    ( ) 

           [         ⃗ ] 

 ⃗ ( )  {   }                

(2.7) 

Let  ⃗  (         ) denotes the  ⃗  that minimizes (2.7) for given         and   . If 
 ⃗  (         ) is found for all possible          and   , the optimal solution to problem 
(2.6) can be found from: 

 

   
         

   (   )     ( )     (   )    ( ) 

           {       } 

    [         ⃗ 
 (         )] 

    ,        ,     

(2.8) 

Next, for a given base stock level  , period length    ,    and   , we reformulate the 
sub-problem given in (2.7) as a discrete time, average reward, infinite horizon Markov 
Decision Process (MDP) in order to find the optimal hiring policy   ⃗  (         ) for 
given  ,    ,    and    and other cost parameters (  ,  ,  ,   and  ). In the 

remainder of this section, we will use only  ⃗   to denote the optimal policy vector: 
 ⃗  (         ). Let    denote state space. In our MDP formulation, the state refers to 
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the number of defective units at the repair shop at the start of each period. Therefore, 
we have   {       }.  Similarly, let   denote the action space. At each state, the 
action       determines the action that whether the contingent capacity is deployed in 
that period. Therefore, we have      {   }, where “   ” implies that only 
permanent capacity (  ) is deployed, whereas “   ” implies that permanent + 
contingent capacity is deployed (  ).  

We model the problem under the average cost criteria as follows: 

  

 ( )     ( [         ⃗ 
 ]  )     

 
   
   
   

 

 
   (∑    (     )

 

   

) 

(2.9) 

Here  ( ) indicates the optimal average cost with an initial state     ,  ⃗   is any type 
of policy,        is the state in period  ,       is the discount factor,       is 
the action in period   and  (     ) is the expected period (immediate) costs of taking 
action    in state   . In this section, as it will be shown in the subsequent sub-sections, 
the state information (number of defective parts)   , combined with the action taken 
  , is sufficient enough to derive the expected period costs. By sufficiency we mean that 
any additional information (such as the time information of each of the subsystem 
failures) does not change the expected period costs.  

In this MDP formulation, the optimality equation can be written as below: 

  

 ( )     
   

        { (   )   ∑  (      ) (  )

       

} 

(2.10) 

In (2.10) above,  (  ) is the optimal discounted value starting in state      for the 
infinite horizon problem,  (   ) is the expected immediate cost of taking action      
at state      and  (      ) is the probability that the state will be    in the next period 
given the current state is   and action       is taken. 

 

Theorem 2.1: The underlying MDP in (2.9) is communicating for     . 

 

Proof: Given            ,        ,   (      ) is the probability that the state 
will be    in the next period given the current state is   and action is      . Suppose 
that in the policy  ,     is chosen     . 

For     , we know that  (      ) involves all possible sample paths. Therefore, 
 (      ) is greater than the probability of a specific path, in which no new defective 
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unit has arrived and an exact number of (    ) defective units are repaired. Hence we 
have: 

 

 (      )   {no new defective units arrived   (    ) defective units repaired}   

         (   )(    )

(    ) 
    if       and 

    ∑
     (   ) 

  
   if     

 

   

 

Similarly, for     , we know that  (      ) is greater than the probability of a specific 
unique path, in which no new defective unit has been repaired and (    ) defective 
units have arrived. Hence we have: 

 

 (      )   {no  defective units repaired   (    ) defective units arrived}   

     
    (  )( 

   )

(    ) 
    if     and 

 
    (  )( 

   )

(    ) 
   if     

Hence, it is shown that            s.t.  (      )   , therefore the MDP in (2.9) is  
communicating which implies that it is also weakly communicating (Puterman 1994). 

Theorem 2.2:  

Under average cost criteria, an optimal deterministic policy exists for problem (2.9)  

 

Proof: The reader is referred to Theorem 8.3.2 and 8.5.3 from (Puterman 1994), which 
show the existence of a deterministic optimal policy in (weakly) communicating MDPs. 

 

If the  (   ) and  (      ) values for every        and       are given, the optimal 
capacity policy  ⃗   and the minimum cost rate:  , for each         and    combination 
can be found from the value iteration and/or the policy iteration algorithms from the 
literature. (See e.g. (Puterman 1994)). Therefore, for each base stock level  , period 
length    ,    and    capacity level combinations, we derive:  (      ) and  (   ) 
values for every         and    {   }. 

Recall that the operations at the repair shop level are modeled as a single server 
exponential queue. Without any constraints on the waiting room capacity, the formulas 
used in the MDP formulation would contain infinite sums of Bessel functions, which 
would make the numerical computations intractable, time-consuming and difficult. 
However, it is known from the literature (i.e. (Stern 1979)) that the transient and steady 
state behaviors of a Markovian queue with an infinite waiting room can be 
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approximated with that of the same queue but with a finite waiting room. Hence, we 
model the system as an         queue with periodically adjustable service rates. The 
accuracy of the approximation is dependent on the cost factors, policy parameters, 
traffic ratios and the size of the waiting room  . However, as it will be shown in Section 
2.5.3, the analytical results are verified with an extensive simulation study, which 
suggests that for our numerical test bed, an approximate model with a finite waiting 
room   around       approximates the actual model with an infinite waiting room 
almost perfectly. The accuracy holds even for very high traffic ratios (when    ), 
which can be explained as follows: under the periodic two-level policy, the repair shop 
capacity is adapted according to the workload and even though the average deployed 
capacity,    ( ), is very close to  , the number of defective parts waiting never 
accumulates close to  , because the capacity is already switched to a higher level before 
the workload reaches to jeopardizing levels. The results of the simulation study is 
explicated further in the end of this section. Next, we analyze how the transition 
probabilities are derived.  

2.5.2.1 Transition Probabilities: 

In this subsection, we elucidate how we derive  (      ) for a given base stock level  , 
period length    ,    and    capacity levels. At each period and in each state, we 
have two possible actions:    {   }. When    , then the repair shop’s capacity level 
is     and otherwise it is   . With the finite waiting room approximation, we have the 
state parameters:      {      }, which denote the total number of defective units 
waiting to be repaired. Recall that period length is  .  

For an         system, let   ( ) denote the number of defective units present at 
time  . The service rate is set to    (  ) at the start of period number           if the 
action taken at the start of period  ,    is equal to   (equal to  ). When the service rate 
is set to    (  ), the behavior of   ( ) in this dynamic system is identical to the behavior 
of the number of defective units at time   (   ) in a repair shop under fixed capacity 
regime with a constant service rate of    (  ). Therefore, next we analyze the transient 
behavior of the   ( ) with a constant service rate. 

Let    (   ) indicates the probability that there will be   defective units at time   given 

that there are   defective units at the beginning, when a constant service rate of   is 
used. We will use numerical methods for the computation of the    (   ) values. 

For all                 (   ) satisfies the following Kolmogorov equations: 

if     : 

   (   )     (      )       (      )(     ) 

if       : 

   (   )    (   )(      )      (   )(      )   

    (      )(  (   )  ) 

if     : 
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   (   )    (   )(      )       (      )(     ) 

(2.11) 

After some algebra we obtain the following set of differential equations for   
         :  

if     : 

    (   )

  
    (   )     (   )  

if       : 

    (   )

  
   (   )(   )    (   )(   )     (   )((   )) 

if     : 

    (   )

  
   (   )(   )     (   )  

(2.12) 

The differential equations given in (2.12) can then be represented in matrix 
multiplication form as follows: 

  (   )

  
  (   )    with 

 ( 1) ( 1)

)

0 0

( 0

0 ( ) 0

0 0
K K

Q

 

   

   

 
  

 
 

  
   
 
 
  

 

  

(2.13) 

It is well known in the literature (Kulkarni 1995) that the solution for this equation is 
given by: 

 (   )      ∑
  

  
   

   

  
  (2.14) 

In order to escape from the infinite summation in (2.14), we will use matrix 
decomposition techniques (Neuts 1981). Since   is a tri-diagonal matrix of a birth-death 
process, we know that it has     distinct eigenvalues (Ledermann & Reuter 1954). The 
maximum of these eigenvalues is equal to zero, and the minimum of them is greater 
than (  (   )). Since matrix   has     different real eigenvalues, it has     
mutually independent eigenvectors, as well.  

Let    and    be the  th eigenvalue and its corresponding orthonormal right eigenvector 

for          . Let   denote the diagonal matrix with diagonal entries equal to the 
eigenvalues (   's) of   and   denote the matrix that consists of right eigenvectors ( th 
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column of   is equal to the   ). From matrix eigen-decomposition theory, we can write 

    ( )  . Hence, by using Taylor series expansion, (2.14) can be rewritten as: 

 

 (   )         ( )        ( )  

  

   

 (2.15) 

where     is the (   )  (   ) diagonal matrix, where the  th diagonal element is 

equal to     .  

The derivation of the    (   ) holds for an arbitrary   under a system with a constant 

service rate  . Since we are interested in the transition probabilities of the discrete-
time, infinite-horizon and average cost MDP that is formulated above, we can state the 
following for given period length    , low and high capacity levels    and    and for 
any states (i.e. number of defective units)         {      }: 

 

 (      )       (    )     (      )       (    ) 

(2.16) 

Next, we derive the expected immediate periodic cost rate function:  (   ).  

2.5.2.2 Expected Periodic Cost Rate: 

Here, we derive the cost rate of a period that results from taking action    {   } in 
state   {       }. In the MDP literature these types of costs are called immediate 
costs (rewards) since they are mostly immediate consequences of the state and the 
action combinations. In our problem, the resulting costs are not the immediate 
consequence of the actions; however the expected costs can be directly calculated for 
each state & action combination. 

The relevant costs that have to be included are the holding costs, down-time related 
costs and the capacity related costs. First, note that the holding cost is independent 
from either the state or the action taken. No matter what the state/action is, there are   
spare units in this environment. Therefore   , holding costs per unit time is incurred in 
each period independent from the state and the action. The second part, the capacity 
cost rate per unit time in a period, is only dependent on the action taken at the start of a 
period. For given    and   , if (   ), then the capacity related cost rate,  ( ), in that 
period will be equal to   (    ). On the other hand, if (   ), then the capacity 

related cost rate will be equal to   (    )    (     ). The last part of     is the 

average down-time related cost rate in a period, and it is dependent on both state 
  {       } and the action    {   } taken. 

Recall that we pay   per time unit for each backordered defective unit in the 
environment. For a given base stock level  , given capacity levels (    ,   ) and given 
period length  , the expected immediate down-time related cost rate per unit time: 
   (   ), starting at state   with action   taken, can be calculated as follows: 



43 

 

   (   )  
 

 
∫ (∑  {  ( )       }

 

   

(   ))
 

   

   

 (2.17) 

Here  {  ( )       } is the probability that there are   number of defective units in 
the system after   time units from the start of a period, given the (   ) state-action 
combination at the start of that period. In the following, we provide a practical method 
to calculate (2.17). We can rewrite (2.17) as below:  

   (   )   ∑((   ) ) ∫
 

 

 

   

 {  ( )       }   

 

   

 

 

 
∑((   ) )(  ∫        

 

   

(  )
  )

   

 
 

 
∑((   ) )(   

  ̃(  )
  )

   

 

   

 

   

 

            (2.18) 

In (2.18),    and    matrices are the corresponding eigenvector and eigenvalue 
matrices of the transition rate matrix of a         queuing system with a service rate 
of     if action (   ) and with a service rate    if action (   ) is taken. Therefore, 
we have  {  ( )       }      (    ) for     and  {  ( )       }     (    ) 
for    .  

Note that   ̃ is a different (   )  (   ) sized diagonal matrix than   . Suppose  
{         } are the diagonal entries of the eigenvalue matrix   . In such a case, the 

diagonal entries of   ̃  will be {∫       
 

   
 ∫       

 

   
  ∫       

 

   
}.  

Hence if the eigenvalue  ,      , then the corresponding  th element of  ̃  will be equal 

to  ; whereas if   <0 then the corresponding  th element of  ̃  will be equal to  
 
     

  
.  

Due to the numerical procedures described above, the derivation of expected period 
cost rate   (   )      ( )     (   ) can be found for all states:    {      } , 
for all possible actions    {   }   for given stock level:  , given period length:   and 
given capacity levels:    and   .  

After the computation of all  (   ) values and transition probabilities:  (      ), the 
optimality equation in (2.10) can be solved with the existing value/policy iteration 
algorithms in the MDP literature, in order to find the optimal solution to the sub-
problem in (2.7). The optimal solution of each sub-problem is going to be used in the 
minimization of the global problem in (2.8), in which more upper-level decisions such as 
base stock level  , period length   and capacity levels:    and    are taken. We explain 
the details of the solution procedure for the problem (2.6) in the next subsection. 
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2.5.3 Numerical Study 

In this section, we use the analysis and the results provided in the previous section in 
order to assess the performance of the two level flexible capacity mode. In the end, we 
compare the cost performance of this mode with the minimum cost rate achieved under 
the fixed capacity mode,     

 . The outline of this section is as follows. First, we 
describe the characteristics and the test bed of the computational study. Second, we 
present the search procedure in order to find the near-optimal policy parameters for the 
problem given in (2.6). Afterwards, we assess the potential cost benefits that can be 
gained in two level flexible mode in comparison to the best policy of the reference, fixed 
capacity mode. Finally, we discuss the results of the search procedure, examine the 
sensitivity of and the interactions among the policy and system parameters and the 
accuracy of the finite waiting room approximation. 

In our computational study, we normalize the arrival rate for the subsystem failures in 
the whole environment,     (failures per time unit) as well as the unit permanent 
capacity cost per time unit,     . The other parameters are scaled according to 

normalized   and   . Similar to Section 2.4.3, we analyze a total of 9 scenarios with   

different     values and 3 different   values, which are already demonstrated in Table 
2-2. For each of these   scenarios and different (   ) combinations, we execute our 
solution procedure to find the capacity policy parameters, (         ) and   that yield 
the minimum total costs. 

We use a different solution procedure for the optimization problem than the procedure 
for the fixed capacity mode. However there are many similarities in between these two 
procedures. For instance, in Search Procedure-II, we also have an arbitrarily large      

value as an upper limit for the spare unit base stock level choice. In addition, the fixed 
capacity results obtained from the Search-Procedure-I, not only serve as reference 
points to assess the overall cost performance, but also help us to develop a method for 
generating meaningful candidate value sets in our search procedure for permanent and 
permanent plus contingent levels in the two-level flexible capacity mode settings.  

Previously, we have discussed that the capacity agency can supply the agreed amount of 
contingent capacity at a given frequency. This frequency is driven by the period length, 
which is chosen from  , the set of candidate period lengths offered. In our thesis we 
assume   {                 }. These values are scaled to the normalized inter-

arrival time: 
 

 
    .  Thus, a period length of     corresponds to the mean inter-

arrival time of system failures due to the part in concern. Next, we give our search 
procedure followed by the description of its underlying mechanism. 

Search Procedure-II 

 

 

0. Follow steps   &  : 
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a. Let   ( )   λ+√
  

  
  denote the   that satisfies: 

    (   )

  
   from 

   (   ) in Equation (2.4) when    . 

b. For every   {           } :  

Set   ( ) , which is the   that satisfies: 
    (   )

  
   from 

   (   ) in Equation (2.4). 

 

1. For every    {             } follow the steps    &  : 

 

a. Create the    and    sets from   ( ) values as follows: 

     {
 

  
  ( ) 

 

  
  ( ) 

 

  
  ( )   

 

  
  ( ) 

 

  
  ( )} 

     {
  

  
  ( ) 

  

  
  ( )  

  

  
  ( )   

  

  
  ( ) 

  

  
  ( )} 

b. For every    ,         and         solve the sub-problem (2.7) and 
obtain the corresponding  ⃗  . 

2. After solving the sub-problem (2.7) for all    ,         and        ,  we can 
find the minimum cost for given  ,    (  ( )  ) as follows:   

 
   (  ( )  )     

                

(   (   )      [         ⃗ 
 ])  

 

3. After    (  ( )  ) for all    {             } are found, we can find   , and  
  (  ) = [  ,   

 ,   
 ,  ⃗  ] values as follows: 

   (  (  )   )     
   {             }

   (  ( )  ) 

 

2.5.3.1 Explanation of the Search Procedure-II, Some Key Observations 

In the search procedure above, at step  , we find a reference capacity level for every  : 
  ( ), which is the capacity level that results in the minimum     for a given 
   {          } from the single, fixed capacity model. This reference capacity level is 
used later to determine the permanent (  ) & permanent + contingent (  ) capacity 
levels, which will be used in the two-level flexible capacity policy,     [         ⃗ ].  

After the reference point   ( ) is found for each base stock level    {          } 
from the derivative of Equation (2.4), we are ready to construct the sets     and   , 
which contain the low and high capacity levels (   and   ), respectively. Note that for a 
given   and given period length  ,    and    should satisfy:      ( )    . Otherwise 
the resulting total costs under two level capacity:    (   )  will be already more than 
the total cost under fixed capacity of   ( ).  
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Actually, there can be an infinite number of (  ,   ) possibilities. However, for 
computational time reasons, we limit ourselves to a total of    (  ,   ) possibilities. For 

a given stock level  , we have tested 8 equidistantly scattered (with a distance of: 
  ( )

  
) 

   candidates that are lower, and 8 equidistantly scattered (with a distance of: 
  ( )

 
)    

candidates that are higher than    ( ). The reasons for these particular (  ,   ) choices 
can be explained as follows: 

1)    is bounded by  , whereas    is not bounded from above, therefore the 
distance between    candidates is twice higher than the distance between    
candidates. 

2) Permanent and contingent capacity costs per unit time (   and   ) are a lot 

higher than the holding cost per unit time  . (
  

 
  varies from 4 to 40) This makes 

the choice of    and    much more sensitive compared to the choice of  . 

Therefore, we have    {
 

  
  ( ) 

 

  
  ( ) 

 

  
  ( )      

 

  
  ( )} and    

{
  

  
  ( ) 

  

  
  ( )  

  

  
  ( )   

  

  
  ( ) 

  

  
  ( )}, which lead to a total of 64 (   , 

  ) pairs for each  , where       and      . 

For each base stock level  , period length     and (  ,   ) pair, sub-problem (2.7) is 
solved in step 2, where the optimal policy  ⃗   is found with the help of the MDP 
formulation of the sub-problem in (2.9) 

After (2.7) is solved with the MDP formulation of (2.9) for given:         ,    ,     
   and       , we find the optimal parameters (  ,   ,   

  and   
  ) by brute force 

search in steps 2 & 3 from the Search Procedure-II. These steps complete the solution 
procedure for the optimization problem (2.6). 

Before starting the discussions, we would like to give one of the key observations 
concerning the threshold structure of the optimal policy:  ⃗  , which appear ubiquitously 
in the results of our numerical study. 

This observation is in line with the current structural optimality results in the queuing 
control literature (See (StidhamJr 2002) for an extensive overview), which mostly use 
event based dynamic programming techniques. The periodicity of the capacity action 
taking points in our study hinders us to use event based dynamic programming 
techniques to prove threshold optimality. However the ubiquitous appearance of this 
threshold optimality occurrence heartens us to postulate this structural property of 
threshold type policies as a conjecture.  

Conjecture  2.1: For any given stock level  , given permanent & permanent + contingent 
capacity levels (        &      ) and given period length    , the optimal policy: 
 ⃗   is always of a threshold type policy and can be characterized with a single, non-
negative integer switching point:   . Under this optimal policy:   ⃗  , at the start of each 
period length  , if there are less than    defective parts in the repair shop, the repair 
shop uses only permanent capacity:    (   ) otherwise, the repair shop uses both 
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permanent and contingent capacity, (   ), and       is hired on top of the 
permanent capacity until the next period.    

 

After postulating this conjecture, we continue with the discussion on the results of the 
numerical study that is conducted, where the optimal costs for (2.6) are obtained from 
the Search Procedure-II, which is described above. 

2.5.3.2 Discussions on the Results of Numerical Study 

In this subsection we discuss the results of our numerical study. We first present the 
total savings in total relevant costs when the best two level flexible capacity policy is 
employed compared to the best fixed capacity system (    

  in short). Afterwards, the 
discussion on the savings is followed by the sensitivity analyses of the cost and the 
optimal policy parameters and the discussion on the simulation study which inspects the 
accuracy of the finite waiting room approximation. 

2.5.3.3  Savings of Two-Level Capacity Policies Compared to the Single Level 
Capacity (     

  ) 

In this subsection, we contemplate the potential savings that two level capacity 
flexibility brings compared to the     

 . Total costs can be reduced up to a great extent 
due to the two-level capacity policy. From our numerical results, we have witnessed that 
up to     savings can be achievable in total costs due to the two-level flexible capacity 
mode compared to the minimum cost that can be achieved in the single capacity mode 
     

 .  

In Table 2-5, we give the maximum percentage savings that two level flexible policies 
can bring for all   different        scenarios (which are already listed in Table 2-2) with 

               and   and         and  , when    is an inversely proportional, 
exponential and linear function of the period length. Suppose for given cost parameters 
(       and  ), and a functional form for    ,     

  represents the minimum total costs 

that can be achieved from Search Procedure-II. After      
  is found, the percentage 

savings in Table 2-5  can be calculated from:  
(     

       
 )

     
  .  The parameter sets, which 

result in higher percentage savings are highlighted with a darker gray tone. 

From Table 2-5, we can observe that the percentage savings seem to decrease with 
holding cost rate  . This is due to the fact that for higher holding cost rate  , although 
two level capacity mode can achieve more cost savings, percent wise it is smaller, since 
the reference cost parameter,      

 , is greater and the share of the holding costs (  ) 
in      

  is bigger. We also observe that the savings increase with the elasticity factor 
 . The more elastic the wage is with respect to the period length, the cheaper the 
contingent capacity gets for longer period lengths. Similarly, the maximum opportunity 
cost  , increases the price of the contingent capacity, which leads to a decline in the 
percentage savings, as well. The down-time related cost rate   seems to increase the 
percentage savings in general, however there are some contradictory instances where 
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the percentage savings decrease with higher  . The interaction between   and savings 
in     needs further research. 

In the table, we can see that the best two-level flexible capacity policy outperforms the 
best single level capacity for all instances (with different  ,  ,   and   values). From the 
other extrapolated numerical studies which are not listed on the table, we observe that 
two level capacity flexibility starts to become costlier compared to the fixed capacity 
mode, when the cost of the contingent capacity is very high compared to the permanent 

capacity cost (i.e: 
 

  
   ) and when the contingent capacity is rather insensitive to the 

period length (i.e.       and lower). The reason of such an underperformance is due 
to the fact that in the two level policies, even if the contingent capacity is prohibitively 
expensive, the use of the contingent capacity cannot be avoided, since the permanent 
capacity level is too low when deployed alone.  

However, in the specialized system environment, the realistic cost parameters for 
contingent capacity are in the area where the contingent capacity is reasonably priced 

(i.e. 
 

  
  ) and therefore using optimal two-level flexibility is always more economical 

for all the cost-parameter scenarios in the numerical test bed. It can be concluded that 
the two level capacity policies bring savings compared to      

 , at different 
magnitudes, especially with low max. opportunity costs ( ) and high elasticity 
parameters (    ). 

The functional form for the contingent capacity cost structure affects the optimal 
capacity policy   , the inventory decision   , and the percentage of the savings if there 
is a wage differential effect (      ). With the same cost parameters, under optimal 
policy   , linear    structure results in greater savings compared to other cost structures 
(exponential and inversely proportional) in the cost scenarios investigated. The 
differences in the total cost can be up to     between linear and exponential cost 
structures and can be up to 12%  between exponential and inversely proportional cost 
structures. The differences in percentage savings decrease with higher  . The 
percentage differences between the savings of two level policy when    has exponential 
form and an inverse proportional form, increase with    as well as  . On the other hand, 
the differences in percentage savings when    has linear form and an inversely 
proportional form increase with  , however first increase and then decrease with  . This 
can be explained due to the fact that when    has an exponential structure, it 
monotonically decreases with  , however when    has a linear structure, it stays the 
same and equal to the permanent capacity cost,      after some  . Therefore the 

difference between percentage savings can be the biggest, when    is equal to    for the 

first time in the linear contingent capacity cost function. 

Finally, we explore further how the optimal policy parameters change under the optimal 
two-level periodic capacity flexible mode compared to the single level capacity mode for 
different cost parameter settings. In Table 2-6, we show how the optimal two level 



49 

capacity mode policy parameters (  ,   ,   ,   
  and   

 ) differ with various (   ) 
combinations and         scenarios. 

The data in Table 2-6 illustrate that under the optimal policies pertaining to the two 
level capacity mode, the cost savings compared to      

  come from both less capacity 
deployment as well as less spare unit inventory holding costs. It can be seen that for 
each of the 4       scenario and (   ) combination,    under the two level capacity 
mode is less than or equal to the    

 , which is the optimal stock level under the single-
level capacity mode. The differences in spare unit stock levels are higher for lower   and 
higher  , lower   , and higher   parameters. In Table 2-6, it can be seen that the 
smallest period length      , is chosen as the optimal period length in most of the 
instances. However, for lower   values, high    and positive elasticity (   ), higher 
period lengths (     ) can be optimal, as well. Although two level capacity policies 
cause savings in capacity related costs (   ) due to less deployed average capacity, 
   ( ), the optimal capacity policy parameters in Table 2-6  (  ,   

  and   
 ) can 

provide further insights.  

From Table 2-6, we can observe that in the two level capacity mode, the choice on the 
optimal permanent capacity   

  is considerably lower in comparison to optimal capacity 
level in the single capacity mode   (  

 ). Generally,    
  changes parallel to   , but 

apart from    , it is also dependent on (   ) parameters, as well. We can see that    
  

increases with   and decreases with  , which suggests that the repair shop hedges risk 
by deploying more permanent capacity when the contingent capacity becomes more 
expensive and its price gets more insensitive with respect to the period length. We do 
not observe a monotonic relation between the choice of   

  and the other cost 
parameters. We observed that in the Search Procedure-II, not only the maximum but 
also the intermediate values of    are chosen in   , which gives us an enough 
confidence on the validity of the construction of   . It is remarkable that the contingent 
capacity volume always exceeds the optimal capacity level in the single capacity mode 
  (  

 ), however it is less frequently deployed, especially for high  , which leads to 
higher threshold values   . 

These inter-relations between the capacity and cost parameters will be further 
explicated in the next section, where a list of sensitivity analyses are conducted on 
policy and cost parameters. The cost parameter values used in the next section differ 
from the core experimental setting explained in Table 2-2, due to the following reasons:  

1) In the sensitivity analysis for the specialized system environment, numerical test-bed 
of the commoditized system setting is used in order to compare the performance of 
different down-time service strategies (keeping spare unit inventory vs. hiring a 
substitute from rental/3rd party supplier) under the same capacity mode.  

2) In the specialized system experimental setting (Table 2-2), the down-time ( ) and 
capacity costs (  ,   ) per unit time are strongly higher than the holding cost per unit 

time ( ) , which can blanket over some of the interactions between capacity and spare 
unit inventory related decisions. On the other hand, the effects and the sensitivity of the 
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policy parameters are clearer and can be crystalized in a more concrete way in the 
numerical test bed of the commoditized setting. 

3) In some of the search procedures that are going to be generated in Chapter 3, insights 
from the sensitivity analysis results from Chapter 2 will be used. 

2.5.3.4 Sensitivity Analysis of the Optimal Policy Parameters 

In this subsection, we discuss the inter-relations among the cost and optimal policy 
parameters. We first focus on how the optimal switching point    is affected by other 
cost/policy parameters. Afterwards we investigate the role of the period length on     
and on the choice of other policy parameters. Finally, we examine how the base stock 
level   affects     and other parameters.  

2.5.3.4.1 The Optimal Switching Point:    

Our main concern in this subsection is how the optimal switching point   , changes with 
different policy and cost parameters. Therefore in Table 2-7, we tabulate how the    
value from the policy  ⃗   from problem (2.8) responds to changes in permanent and 
contingent capacity levels (  ,   ), period length   and base stock level   when     , 
    ,     and    .  

In short, the results from Table 2-7 suggest that, ceteris paribus: 

 The lower   , the earlier (i.e. smaller number of parts at the repair shop) we 
switch from low to high capacity (or vice versa). 

 The higher   , the later (i.e. larger number of parts at the repair shop) we switch 
from low to high capacity (or vice versa). 

 The larger  , the earlier we switch from low to high capacity. 

 The higher  , the later we switch from low to high. 
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Table 2-5: The percentage cost savings of two level flexible capacity policy compared to the fixed capacity 
policy when    has an inversely proportional, exponential and linear structure, when             and 
   ,               and     , for                and   &       and  . 
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These trends are general, no matter which cost function is chosen (linear, inverse 
proportional or exponential) for the contingent capacity. These behaviors can be 
explained as follows: as the permanent capacity (or contingent capacity) gets higher, the 
repair shop would hire contingent capacity less frequently and at higher workloads. On 
the other hand, shorter period lengths enable more frequent capacity updates, in other 
words enable faster recourse actions, which incentivize the repair shop to use 
contingent capacity at higher workloads. In a similar vein,    increases as   increases, 
although   ( ) is decreasing with  .  This is due to the fact that a larger spare part 
inventory may decrease the     (down-time related costs) too much, such that 
trimming the capacity usage of the repair shop by hiring contingent capacity at higher 
workloads is cost beneficial.  

After discussing the interactions between    and the other policy parameters, now we 
investigate the effects of capacity cost parameters (  and  ). To illustrate the impacts of 
  and  , we present Table 2-8, where the    are tabulated for     ,     ,     

and     under different   and   values with   different capacity cost structures. 

What we observe from Table 2-8  is the following: as the contingent capacity becomes 
more expensive, the repair shop has more incentive to use only permanent capacity 
more frequently and at more workloads. Therefore the switching point    gets larger. 
For the same period length  , the cost of the contingent capacity becomes more 
expensive as   increases. On the other hand when the time-elasticity factor,   increases,  

the contingent capacity gets cheaper, which yields to a more frequent hiring of the 
contingent capacity, thus a lower   .   

The cost structure of contingent capacity determines how expensive the capacity related 
cost rate is and how fast it decreases. From Table 2-7 and Table 2-8, we observe that 
under exponential cost structure, we have the same or lower optimal switching points 
compared to the    values under 2 other cost structures. However, it can change under 
different   and   values.  

Having completed our discussion on how    is affected by various parameters, next we 
summarize our findings on the bidirectional relations between period length,  ,     
and other policy parameters. 
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Table 2-6: The optimal two-level capacity mode policy parameters (  ,   ,   ,   

  and   
 ) under different   

      scenarios (1:            2:             3:             and 4:             ) and 
various (   ) combinations when     . 

 

 
Table 2-7: The optimal switching point (  ) derived from (2.9) when     ,     ,     and     for 

different        and     values   3 different capacity cost structures (taken from Table 2-1). 
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Table 2-8: The optimal switching point (  ) derived from (2.9) when for     ,     ,     and    . 

2.5.3.4.2 Period Length:   

The period length   plays a central role in this capacity mode, as it induces the level of 
the adaptability of the repair shop capacity to the workload and it determines the per 
time unit cost of the contingent capacity due to the capacity provision mechanism. 
Accordingly, in this part we investigate the sensitivity of the total costs and the optimal 
policy parameters to the period length   under different contingent cost functions with 
3 different structures and   and   parameters.   

In order to pursue an investigation on the effects of period length per se, we worked on 
a scenario when the capacity agency supplies the agreed amount of capacity only at a 
given frequency (i.e.     { }, a set that consists of a single period length) and we run 
the search procedure described above in order to optimize other policy parameters (  

 , 
  

  and   ). We follow these steps for increasing values of period length by the order 
of:                  with different   and   values. Therefore note that the      
notation in this part is used for the optimal total costs for a given period length. In 
Figure 2-5, the behavior of the optimal      at increasing period lengths, under 2 level 
capacity policy is illustrated for                 and         and   , when    

function has exponential (left) and inverse proportional (right) structure. 

In Figure 2-5, it can be observed that in the two level capacity mode, all optimal      
values at given period lengths   from     to   for the chosen   values (    and   ) 
engender smaller total cost realizations compared to the optimal cost in the single 
capacity mode,     

 . Of course this occurrence can take a different turn for even 
higher values of   coupled with a low elasticity  , or even longer period lengths (   ). 
Therefore, any meaningful and viable two-level capacity mode alternative at a given 
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period length   should yield a total cost value within a region that is bounded by 
    

  from above. 

 

 
Figure 2-5 The behavior of the optimal      at increasing values of  , under 2 level capacity policy for 
                 and         and   , when    has exponential (left) and inversely proportional 

(right) structure. 

Furthermore, we can observe from Figure 2-5 that the minimum total costs with positive 
  are higher than the minimum total costs when      . This is self-evident, since the 
per time unit cost for contingent capacity,   , is the cheapest and equal to    when 

     , no matter what structure that the    function has. In such a case choosing the 
shortest possible period length will be the optimum, since more frequent updating 
possibilities would increase the responsiveness of the repair shop capacity to its 
workload, and thus a more economic use of its resources without any added cost 
factors. On the other hand, for      , due to the wage differential reflections of the 
contingent capacity costs,      gets higher at short period lengths, which stimulates 
the choice of a longer period. That’s the reason why the gaps between      with 
different   values are widest when      , which is the shortest period length that is 
analyzed. On the contrary,      for different   overlap each other at longer period 
lengths, since the effects of the wage differentials slim down to a negligible extent after 
some  . This overlapping take place at an earlier stage (after    ) when    has an 
exponential structure compared to the case when it has an inverse proportional 
structure (after    ). Actually, it can be observed that for each      , the      
values that pertain to the inverse proportional    functional structure resemble the 
magnified and horizontally stretched version of a piece (between     and    ) 
from the corresponding      values pertaining to the exponential    functional 
structure. This magnifying effect can be explained by the fact that the logarithm of the 
exponential form is quite similar to the inverse proportional form, and when we use the 
same (   ) parameters for both of the functional forms, the elasticity of the capacity 
costs to the period length is smaller in the inversely proportional case.   

Despite the slight resemblance of the exponential and inverse proportional cost 
structures for the contingent capacity,      can behave quite differently with different 
period lengths when    has a linear structure. In order to comprehend the dynamics of 
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the interplays between the period length, total costs and cost parameters at a deeper 
level, we present Figure 2-6, which illustrates      values under 2 level capacity mode 
at increasing period lengths (  from     to  ), when    has a linear structure for      
and     . The figure on the left emphasizes the effects of different   values (    and 

  ) when       and the figure on the right emphasizes the role of the elasticity, by 
illustrating      with         and   when      . 

 

 
Figure 2-6 The behavior of the optimal      under 2 level capacity mode at increasing values of period 
length  , for            and when    function has the linear structure. Left:       and         and 

  . Right:      and         and   . 

In the linear cost structure,    equates to    for period lengths bigger than or equal to 

    values. For        , all      values with     coincide with the      values 
with    . In comparison to those of the inverse linear and exponential cost structures, 
     curve pertaining to the linear cost structure is much more flat, except for the 
carving around    . This carving is important because it mostly determines the optimal 
period length for    . From Figure 2-6, we can observe that the optimal period length 
is the smallest possible   for     and it is equal to:     for     (unless        ). 
The other characteristics of      with linear cost structure are similar to those of the 
previously mentioned      values with exponential and inverse proportional 
structures. After discussing the role of   on the behavior of     , next we can scrutinize 
the effects of different time elasticity factors:   on the behaviour of     . 

The time elasticity of per time unit contingent capacity cost is the other important factor 
that determines the behavior of the minimum capacity costs in response to the period 
length  . What we can first conclude from the right figure in Figure 2-6 is the following: 
for a given    ,      values decrease with increasing  , because for a given period 
length  ,  the contingent capacity gets cheaper for increasing elasticity, when every 
other cost parameters remain unchanged.  Two extreme values that elasticity factor   
can take are   and   respectively. If    , the contingent capacity is perfectly elastic, 
and at the start of a period if it is communicated to the capacity agency that the 
contingent capacity is not needed for that period, the capacity agency can immediately 
find another substitute task until the next period which is equivalent in terms of 
financial returns. This would vanish the cost burden due to the lost opportunities and 
wage differentials, therefore the optimal total costs would behave as      with      . 
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On the other hand, when    , the provider cannot assign the contingent capacity for 
any other task, hence the wage differentials remain the same and the contingent 
capacity costs are inelastic and not affected by the period length. Given a certain    , 
any intermediate   value between   and   will result in an optimal total cost that is 
located in this band, bounded by      curve with     from below and      curve 
with     from above. It can be further observed that, in all capacity cost structures, 
with     and an intermediate   value,      gets closer to the above mentioned upper 
bound for shorter period lengths (as   goes to  ) and on the contrary, it gets closer to 
the lower bound (even completely overlaps in the linear cost structure case) for longer 
period lengths  . 

For completely elastic (   ) and completely inelastic (     ) contingent capacity cost 
structures, we observe that      values display a monotonically increasing behaviour 
with the period length  . However, for the other mid-values of  ,      displays a U-
shaped structure; where both   and   parameters are critical in determining the 
steepness of the curve. Therefore the optimal period length choice (  ) is affected by 
these cost parameters to a great extent.  In order to understand the nature of the 
dynamics between the optimal choice of the period length    and the contingent 
capacity cost parameters (   ), we present Table 2-9, where the optimal period length 
choices are tabulated under different contingent capacity cost structures for         
and    when       (above) and for           and   when     (below). 

                            

Inverse           

Linear           

Exp           

                                   

Inverse                 

Linear               

Exp               

Table 2-9 The optimal period length:    when      and      for inverse, linear and exponential cost 

structures when       and    for     (above) and when         and   for     (below). 

 

From the first tabular in Table 2-9, we can see that, when   remains constant,    
increases with  . This increase is most evident for linear contingent capacity cost 
structure and least evident for inverse linear contingent capacity cost structure. On the 
other hand, for the response of    to an increase in  , we can draw different 
conclusions. Generally speaking, we can say that    first increases and then decreases 
with  , when   is positive. In the second tabular in Table 2-9, this behavior can be 
obviously seen for linear and exponential cost structures, whereas     is insensitive to 
an increase in   for the inverse linear cost structure. However, different cost parameter 
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selections (with higher values of  ) result in the suggested trend for the effects in 
response to  , for the inverse proportional cost structure, as well.  

After finishing the analysis of the bi-directional relations between the period length   
and     , next we discuss the effects of the base stock level decision:  . 

2.5.3.4.3 Base Stock Level   

In this part, we discuss how the base stock level decision affects the optimal total costs 
and other policy parameters and vice versa. Note that in this part,      corresponds to 
the minimum costs that can be achieved for a given base stock level  . In order to 
conduct the analysis of the effects of the base-stock level per se, we fix a base-stock 
level  , and find the optimal capacity policy parameters for that base stock level   
according to the Search Procedure-II described above. Three figures in Figure 2-7 
illustrate how      changes with increasing values for base-stock levels for     , 
     and for different   values (    and   ) and exponential, inverse proportional 

Figure 2-7      for increasing base-stock levels   with          ,       Clockwise direction: 
exponential, inverse proportional and linear contingent capacity cost structures with         and       
in linear contingent capacity cost structure. 

 

and linear contingent capacity cost structures when (   ). The last figure in Figure 2-7 
shows the behavior or      with increasing base stock levels but for different   values,  
(     ) for linear cost structure, for given    . 

The data in Figure 2-7 suggest that      is a convex function of  . It is already discussed 
that total costs are convex with base stock level for a given policy  . It seems that 
optimizing the parameters of capacity policy at each base-stock level  , does not distort 
this behavior of     . As expected, increasing contingent capacity costs (higher   or 
lower  ) increase      values, however at a moderated extent due to the freedom of 
optimizing of other policy parameters. We observe that increase in   at lower   values 
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affect      more than increase in   at higher   values. Since the      function is quite 
flat around its minimum, variations in   or   hardly changes (at maximum   unit) the 
optimal base-stock level decision.  In Table 2-10, we tabulate how the optimal base-
stock level changes under different capacity cost structures when            for 

      and    for    (above) and for        and   when     (below). 

From the first tabular in Table 2-10, similar to the response of   , we can see that    
increases with  , when   remains constant. This increase is most evident for linear 
contingent capacity cost structure. On the other hand, the response of    to an increase 
in   for a given   is different. From the second tabular in Table 2-10, we can say that    
first increases and then decreases with  , when   is given and positive. The choices on 
the base stock level and on the period length are inter-connected. 

 

 *                          

inverse 3 3 3 

linear 3 4 4 

Exp 3 3 4 

 *                                     

Inverse 3 3 3 3 

Linear 3 4 4 3 

Exp. 3 4 3 3 

Table 2-10 The optimal base-stock level:    under different contingent capacity structures when      and 
     for         and    for     (above) and for         and   when      (below). 

 

Figure 2-8 can be helpful to understand the interplay between period length   and the 
base stock level  .  

The figure on the left demonstrates that the optimal period length,   , increases for 
higher values of stock levels, whereas the in figure on the right, we can see that the 
optimal stock level    increases with period length  . The data in  

Figure 2-8 suggests that in the presence of wage differentials (     ), spare unit 
availability and capacity update frequency are complementary to some extent. As the 
frequency of capacity updates is higher, less spare units in the stock are needed, 
whereas if we have more spare units waiting in the stock, it can be compensated with 
less frequent capacity updates with cheaper contingent capacity costs.  
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Figure 2-8 Left: optimal base-stock levels for increasing period lengths. Right: the optimal period length for 
increasing base-stock levels when     ,      for     and    . 

 

This concludes our sensitivity analysis section. In the next subsection, the accuracy of 
the finite waiting room approximation in the analytical method is examined with an 
extensive simulation study. 

2.5.3.5 Accuracy of Finite Waiting Room Approximation 

In this subsection, we examine the accuracy of our finite waiting room approximation by 
comparing the total cost rate of the proposed analytical model (having a finite waiting 
room of 40) with the cost rate obtained by simulating the real environment having a 
repair shop that has an infinite waiting room. In our simulations, we used a run length of 
              defective unit arrivals (when    ) in a single replication, where the 
average total cost rate     is calculated under a policy:     [         ⃗ ]. 

We investigated a total of     different scenarios with different        and   and 

resulting optimal policy parameters from Search Procedure-II. The percentage error, 
    , of using the approximation for     in a scenario can be found as: 

 

         
(             )

      
 

       (2.19) 

Here,        is the total relevant costs obtained from the simulation and        is the 

total relevant costs obtained from the analytical model. Table 2-11 summarizes the 
accuracy of the approximations. 

average %|err| min %err median %err max %err 

0.13% -0.42% -0.02% 0.38% 

Table 2-11 Accuracy of the approximation for the     values 

In Table 2-11, the absolute value, minimum, median and the maximum for the 
percentage errors are listed, respectively. From the table, we can see that the 
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approximation can mimic the performance of the original, infinite waiting room 
environment almost perfectly, which demonstrates the accuracy of our method. 

This simulation study finalizes this section for the second capacity mode. In the next 
section, Section 2.6, we set out to analyze the third (and last) capacity mode. The 
conclusive remarks on the second and third capacity modes will be provided in the 
overall conclusions section, Section 2.7. 

2.6 Periodic Capacity Sell-back Mode 
In this section, we analyze the integrated decision making problem of the MSP under the 
third, sell-back capacity mode. In this capacity mode, the failed units are sent to the 
repair shop at regular intervals in time. Due to this admission structure, when the repair 
of all the failed units in the shop are completed in a period, it is known that there will 
not be any job left at least until the start of the next period. This synchronization of the 
arrivals allows for a contract, where the capacity agency supplies a fixed amount of 
capacity at regular intervals in time, covering for the whole interval duration. However, 
if all the repairs in the shop are completed before the end of an interval, the capacity 
can be temporarily sold back to the capacity agency, at a reduced price, until the next 
interval. The capacity agency can then deploy the sold capacity temporarily for 
external/other tasks. In this setting, all capacity used in the repair shop can be 
interpreted as contingent and the idle time notion will be cancelled.  

In this mode, at the start of each period, the agreed capacity is ready for the use at the 
repair shop during that period. However, when the capacity becomes idle, it is 
immediately assigned to other tasks through the capacity agent. Frequent task 
switching, searching/ assigning alternative tasks for the idle capacity, and the risk of not 
finding an appropriate ad-hoc assignment for the idle repair shop capacity, all create an 
economic factor that leads to an opportunity cost, which decreases with the period 
length. Due to this opportunity cost, unit capacity cost in this mode,   , is higher than 
the original permanent capacity price   .  

On the other hand, in this capacity mode, when all the repairs are completed, i.e. when 
the repair shop becomes idle, the agency buys back the capacity temporarily until the 
start of the next period at a reduced price, which is lower than   . The other effects 

arising from the periodic admission structure, such as the down-time related costs due 
to the pre-admission delay of a failed unit and the burstiness due to the clustering of 
failed unit arrivals have indirect effects on the total relevant costs, and are analyzed 
thoroughly in the later sections of this chapter. 

Similar to the previous capacity modes, MSP has to give the optimal inventory and 
capacity level decisions in order to minimize its    . The relevant capacity decisions in 
this mode are the period length   and the reserved capacity level  . It is of paramount 
importance to characterize and analyze the cost effects due to the sell-back option 
enabled in this third mode. Therefore we aim at building a modeling framework and a 
decision support system for the service provider operating under the periodic capacity 
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sell-back mode. In Subsection 2.6.1 we describe the dynamics of the periodic admission 
and the capacity sell-back option, introduce the additional decision variables as well as 
the problem formulation. In Subsection 2.6.2, the derivation and the analysis of the total 
relevant cost per unit time are given. Finally in Subsection 2.6.3, we describe the 
experimental setting, the search procedure and provide the results of the numerical 
study with a particular focus on the savings under the capacity sell-back mode compared 
to the best cost performance under the reference, fixed capacity mode      

 . This part 
is followed by an elaborate sensitivity analysis of the cost/policy parameters and a 
simulation study for the accuracy check of the analytical approximations used.  

2.6.1 Periodic Admission and Capacity Sell-back Structure and 
Problem Formulation 

The MSP operates in the same environment that is explained in the previous sections. 
Recall that the joint repair shop/ spare unit inventory is modeled as a single-server, 
queuing to stock system, where the failures occur following a stationary Poisson 
demand and each defective subsystem requires an exponentially distributed amount of 
dedicated repair service time in the shop in order to regain its good as new status.  

In this section, there are two major differences in the repair shop compared to the 
reference, single level capacity model that is described in Section 2.4. The first deviation 
is in the admission structure of the failed units to the repair shop, and the second 
deviation is in the capacity sell-back option. 

In this third mode, upon a subsystem failure in one of the systems, a new ready-for-use 
unit from the stock is sent to the system, if there is any available in the stock. However, 
that failed subsystem is not sent to the repair shop immediately, but the shipment is 
postponed until the start of the next regular interval. The length of each interval,  , is 
an important decision parameter. For a given interval length  , periodic admission 
points to the repair shop are introduced at equidistant times:              

In such a case, all the subsystem units that failed within an interval are sent to the repair 
shop at the end of that interval simultaneously and the operations at the repair shop 
level resulting from the periodic admission structure can be modeled as a        
queue, where the processing rate of the single server queue represents the capacity 
level of the repair shop, and   is a discrete random variable which represents the 
number of parts failed within an interval. Due to the Poisson arrival stream for the part 
failures,   also follows a Poisson distribution with mean   . Note that as   goes to  , 
this model reduces to the reference       model. The analysis and the characteristics 

of this gated,        type of queues are given in Subsection 2.6.2.                                     

A periodic, capacity sell-back policy,   [   ], consists of a period length  , and a 
processing rate of  . Under policy  , the capacity agency supplies the agreed capacity 
level   indefinitely, at a price of   , and the failed units are sent to the repair shop at 
regular intervals of length  . Similar to the previous capacity mode,    is higher than or 
equal to   , decreases with   and goes to    as   goes to infinity. If all the failed units in 
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the shop are repaired before the end of an interval, or if there is no unit to be repaired 
at the start of an interval, the shop capacity is sold back to the capacity agency at a 
reduced price of    , for      . After the capacity is sold back, it is temporarily re-

assigned to other task(s) until the start of the next interval. The operations at the repair 
shop level and the interactions with the capacity agency are illustrated in Figure 2-9. 

From Figure 2-9, it can be seen that all the subsystem units that failed in the first period 
are admitted to the repair shop at time  . After all the repairs are completed during the 
second period, the capacity is immediately sold back to the capacity agency, where it is 
re-assigned to other tasks until   . At   , upon the admission of the newly failed units, 
the capacity is returned back to the repair shop in order to work on the repair of the 
failed units again. 

Due to this admission structure, when the repair of all the failed units in the shop are 
completed in a period, it is known that there will not be any job left in the repair shop at 
least until the start of the next period. This partial certainty on the idle times of the 
repair shop capacity allows for a contract, where the capacity agency buys the repair 
shop capacity at a reduced price during its idle times.  

  
Figure 2-9 Illustration of the system under the third: capacity sell-back mode. 

2.6.1.1 Updated Capacity Provision/Buying Mechanism 

Under this contract, the capacity is provided to the repair shop indefinitely, however 
frequent job switching and searching for ad-hoc assignments for the idle capacity create 
an economic factor that lead to an opportunity cost   (     ). This opportunity cost 
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decreases with the period length and is dependent on two other cost parameters:   and 
 . The cost structure of   (     ) is  similar to the structures described in Table 2-1 
and Figure 2-2. Due to the   (     ), the unit capacity cost rate for the repair shop   ,  
is greater than or equal to the   . When all the part repairs in the shop are completed 

before the end of an interval, the capacity is temporarily sold to the capacity agency 
until the next interval. The sell-back price is lower than   :    , where      , 

because we assume that there is a risk of not finding an appropriate ad-hoc task and 
even in the presence of a temporary task, that temporary task can be less profitable 
than the core repair shop activity. Having discussed the contract particular to this 
capacity mode, next we elaborate the problem formulation for the MSP. 

2.6.1.2 Problem formulation 

Suppose the repair shop operates under a stable (i.e.      ) policy,     [   ], for an 
infinite horizon. For a given per time unit permanent and contingent capacity costs,    

and   , and a given capacity sell-back cost reduction rate   (for       ), the average 
capacity related costs,    ( ) can be directly calculated as follows: 

 

   ( ) =          (   )(   )  (      )     (   ) 

(2.20) 

In (2.20), we excluded the costs pertaining to the baseline costs (   ) from the amount 

that is paid to the capacity agency (    ), for deploying   level of capacity. The repair 
shop capacity is sold to the capacity agency during the idle times. Therefore the repair 
shop gains a revenue of: (   )     per time unit. 

We assume that the capacity agency offers a set of possible period lengths,  , from 
which the service provider can choose the best period length considering the pros and 
cons of periodic admission and capacity sell-back options. We pay   per unit time for 
each spare unit in the stock / in the repair shop. The down-time costs due to the 
backorder of the spare parts is equal to   per time unit, and we assume that    . The 
inventory related decision is  . The capacity related decisions,  , are twofold: 

1) Length of the period:    

2) The size of the repair shop capacity level:   

The total relevant cost function,    , can be represented by   and  , and is the sum of 
capacity related costs (   ( )), down-time costs (   (   )) and holding costs 
(  ( )). Given these cost components and the decision variables, the problem of the 
MSP can be formulated as follows: 

   
   

   (   )     ( )     (   )    ( ) 

           {       } 

    [   ] 

   ,     ,  
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 (2.21) 

Motivated by the problem formulation above, in the next subsection, we derive the 
necessary cost functions used in (2.21) and give some of the analytical properties of the 
components of    (   ). 

2.6.2 Derivation & Analysis of the Cost Functions 

In this subsection, we derive the components of the total relevant costs per unit time. 
The capacity related costs per unit time,    ( ), for given cost parameters (   ,    and 

 ) and policy parameters (  and  ) are already derived in (2.20). Also, the derivation of 
the holding costs for a given stock level  ,   ( )     , remains unchanged compared 
to the previous capacity modes.  

Finally, in order to derive the last remaining cost component, which is the down-time 
related costs per unit time,    (   ), we need to delve into the detailed modeling of 
the operations at the repair shop level.  

We know from the previous sections that    (   ) can be derived from the expected 
number of backordered repair demands,  ((    )   ), where    is the random 
variable that corresponds to the number of defective units at an arbitrary point of time, 
both in the repair shop waiting for (or in the) service and outside the repair shop, 
waiting to be admitted. 

We analyze the performance characteristics of the        queue in order to obtain 
 ((    )   ). For the sake of consistency with the queuing terminology, from now 
on “defective units” and “customers” are being used interchangeably.  

2.6.2.1 Analysis of the        Queue 

In the        model, at any time point  , the number of customers,   ( ), is the sum 
of the number of customers in the queue (including the one in the service),   ( ), and 

the number of customers outside the queue,   ( ), waiting to be admitted. The 
capacity mode related parameters may affect   ( ), whereas the latter part,   ( ), 

which follows a discrete Poisson distribution, is independent of the capacity level choice 
 , but is dependent on the failure arrival rate   and the period length  .  

At the start of each period, all customers outside the queue are admitted into the queue 
based on their arrival order, therefore we have   (  )    (  ) and   (  )     for 

          To have a better understanding of the interrelations between   ( ),   ( ) 

and   ( ), their behaviors are illustrated on a sample path for        in Figure 
2-10. 

From Figure 2-10, it can be seen that   ( ) increases at each failure arrival and resets 
itself to zero at the start of each period (at times:         and   ). At these period 
start points, the failed subsystem units are admitted to the repair shop simultaneously, 
which results in the abrupt increases in   ( ). Similarly, at each repair completion, 
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  ( ) decreases by one.   ( ) is the sum of these two variables and therefore increases 

with a failure arrival and decreases with a repair completion. 

Recall that     (   ) =  ( ((    )   )), and that  ((    )   ) can be derived 

from the time average probabilities of the number of defective units (i.e.  {    } for 
         ), which are obtained in the following two steps: 

The first step is the derivation of the steady state probability vector,  ( ), for the 
number of customers at the start of a period in the queue. This requires the analysis of 
the behavior of   (  ) for            

After the derivation of  ( ), we can proceed to the second step, which is the generation 
of the time average probabilities for the number of defective units in the environment, 
consisting of the defective units both in and out of the repair shop. 

 

 
Figure 2-10 The illustration of the behavior of   ( ),   ( ) and   ( ) for the given sample event sequence. 

2.6.2.2 Steady State Probabilities for the Number of Customers at the Start of 
a Period 

Suppose   (  
 ) denotes the number of customers outside the queue at time   , but 

just before the customer admissions. As mentioned above, for all               
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  (  
 ) follows a Poisson distribution with mean:     As can be seen from Figure 2-10, 

these customers are admitted into the queue immediately after time   , and therefore 
we have   (  )   .  

In a similar manner, suppose that   ( ) is a random variable, which represents the 
number of service completions in “ ” time units after the start of the  th period, 
provided that there is an infinite number customers waiting for service at time   . Due 
to this assumption,   ( ) simply follows a Poisson distribution, having a mean of    for 
any      .  

In the light of the discussions above, we can write the following recursive relation for 
  (  ) for any             : 

  (  )     (  
 )    (  

 )   (  ((   ) )    ( ))
 
   (  

 )  

(2.22) 

Here ( )    if      ,  and ( )    otherwise. In essence, (2.22) demonstrates the 

Lindley-type (Lindley 2008) recursive relation between   (  ) and   ((   ) ), 

where   (  
 ) and   ( ) are independent from each other and independent from 

  ((   ) ), therefore,   (  ) has the Markov property for             

We assume that  (   ) is the transition probability matrix for the   (  ) process 
under the capacity policy:     [   ], when         With a period length  , 
   (   ) denotes the probability that there will be   defective units at the start of the 

next period, given that there are   defective units at the start of the current period.  

For a given capacity policy     [   ],    (   ) can be derived from the recursive 

behavior in (2.22) explicitly for all         as below: 

 

   (   )   ∑  {(    ( ))
 
 (   )}  {  (  

 )    }

 

     (     )

 

(2.23) 

 

Here, for all               , we can write: 

 

 {(    ( ))
 
    }    

    (  )(  (   )) 

(  (   )) 
 for              and 

 {(    ( ))
 
  }  ∑

    (  ) 
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The rationale behind (2.23) is to sum up the probability of all possible combination of 
events (repair completions and new unit failures) where the number of defective units is 
“ ” at the start of this period, and becomes “ ” at the start of the next period.   

After    (   )  is found from (2.23) for all          , we can construct  (   ), the 

transition probability matrix of the   (  ) process for          under policy 
    [   ]. Let  ( ) be the steady state vector of the probabilities for the number of 
defective units at the start of a period under policy     [   ].  ( ) can be easily 
derived from  (   )from the following equations: 

 ( )   ( ) (   ) 

∑   ( )    
     

  (2.24) 

After deriving the  ( ) vector, we can proceed to the next step, which is to generate the 
time average probabilities for the number of defective units in the environment both in 
and outside the repair shop.  

2.6.2.3 Time Average Probabilities for the Number of Defective Units in the 
Environment 

Next, we derive the time average probabilities for the number of customers, both in and 
outside the queue. In order to derive the time average probabilities, we first need the 
time-dependent probabilities for the number of customers, not only at the equidistant 
admission points, but also for all of the other intermediate time points in between.  

Therefore, let   [   ) denote the time elapsed until the start of the current period. 
Then we have   (    ), which corresponds to the random variable that indicates the 

number of customers in the whole environment,   time units after the start of the     
interval.  As discussed previously,   (    ) consists of two independent random 
variables:   (    ), which is the number of customers in the queue (or in the service) 

and   (    ), which is the number of the customers outside the queue, waiting to be 
admitted. 

  (    ) can be generated from   (  ) following the same reasoning of (2.23), 

since it is the remnant number of customers from   (  ),   time units after the     
admission point. With the help of the previously defined   ( ), the probability of having 

  customers remnant in the queue,   time units after the  th admission,  {  (    )  

 } can be formulated as follows: 

 

 {  (    )   }   {(  (  )    ( ))    }   

∑ {(  (  )    ( ))       (  )   } {  (  )   }  
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∑ {(    ( ))    } {  (  )   }

 

   

 

(2.25) 

Suppose we have the following limiting probabilities for any           :  

 

 {  
   }         {  (    )    } , and 

 

 {  
   }     

   
 {  (    )    }      

   
 {(  (  )    ( ))     }   

 

   
   

∑ {(    ( ))    } {  (  )   }

 

   

  

∑    
   

( {(    ( ))    } {  (  )   })  

 

   

∑ {(   ( ))    }  ( )

 

   

 

          (2.26) 

 

In (2.25) and (2.26),  {(    ( ))
 
  } defines the probability that “ ” number of 

defective units are left at time “    ”, given that there were “ ” defective units at the 
start of the  th period, for      .  

From these definitions, we can write the following for    , under     [   ]: 

 

 {(    ( ))
 
  }    

    (  )(   ) 

(   ) 
 for            and 

 {(    ( ))
 
  }  ∑

    (  ) 

  

 

   

 

 

In the light of discussions above, with the help of the newly derived  {  
   } and 

 {  
   } values, we can obtain  {  

     }  which is the probability that there will 

be “ ” defective units after “ ” time units from the start of an arbitrary interval, under 
policy     [   ], as follows: 

 {  
     }  ∑ {  

     } {  
   } 

 

   

 

          (2.27) 
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From (2.27), we can proceed on deriving the time average of the instances, when there 
are “ ” defective units as below: 

 

 {      }  
∫  {  

     }  
 

   

 
 ∫
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∑
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       (2.28) 

Note that the integral given in (2.28) is easily computable since they can reduce to some 
lower incomplete gamma functions after some algebra. After  {      } is obtained 
for all            , we can obtain the average down-time related costs per time, 

   (   )   ( ((    )   )) below.  

Recall that the  ((    )   ) is the expectation of the number of backordered units at 
an arbitrary point of time given the inventory level   and the capacity policy     [   ]. 
We can write  ((    )   ) and    (   ) as below: 

 

 ((    )   )   (    )     ((    )
   )

 ∑( ) {      }   

 

   

 ∑(   ) {      }

 

   

 

 

   (   )     ( )     (   )    ( )

     (      )     (   )    ( ((    )   )) 

       (2.29) 

 

Next, we examine some of the properties of the    ( ,  ) function. These properties 
are useful since their implications can be exploited during the numerical search 
procedure that will be given in the next section. 

2.6.2.4 Analytical Properties of Total Relevant Cost Function 

 

Theorem 2.3: For a given stock level  , and period length  ,    (   )      

(      )     (   )    ( ((    )   )) is convex in capacity level  . 
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Proof: Proof of the theorem is given in the Appendix (Chapter 6) 

Theorem 2.4: For a given capacity policy   [   ]     (   ) is unimodal with  . 

Proof: Let      (   )     (   )     (     ) for           Then we have: 

    (   )     ∑(   )

 

   

  {      }   ∑ (     )

 

     

  {      } 

      {      } 

       (2.30) 

As can be seen from (2.30),     (   ) increases with  , and changes sign once from 
negative to positive. Therefore, the optimal stock level    for a given capacity policy   
will be the largest  , where      (   ) is still negative. 

 

These properties will help us to search for the optimal policy parameters more 
efficiently. In the succeeding section, we provide the design of our test bed, details and 
the results of the search procedure applied on the instances from the designed test bed 
and finally a critical discussion over the results. 

2.6.3 Numerical Study 

In this section, we use the analysis and the results provided in the previous section in 
order to assess the performance of the third, capacity sell-back mode. We compare the 
cost performance of this mode with the minimum cost rate achieved under the fixed 
capacity mode,      

 . The outline of this section is as follows. First, we describe the 
characteristics and the test bed of the computational study. Second, we present the 
search procedure in order to find the optimal policy parameters for the problem given in 
(2.21). Finally, we discuss the results of the search procedure, starting from assessing 
the potential cost benefits that can be gained in the capacity sell-back mode in 
comparison to the best policy of the reference, fixed capacity mode. Afterwards, we 
examine the interactions among the policy and system parameters. 

2.6.3.1 Numerical Test Bed and the Search Procedure 

In our computational study, we normalize the arrival rate for the subsystem failures in 
the whole environment,     (failures per time unit) as well as the unit permanent 
capacity cost per time unit,     . The other parameters are scaled according to the 

normalized   and   . Similar to Sections 2.4.3 and 2.5.3, we analyze a total of 9 

scenarios with   different     values and   different   values, which are already given 
in Table 2-2. For each of these   scenarios and different   (       )   (     ) as 
well as   (          ) combinations, we execute our solution procedure to find the 
capacity policy parameters, (   ) and   that yield the minimum total costs. 

We developed a new solution procedure, Search Procedure-III, for the optimization 
problem in (2.21). Similar to the previous search procedures, we also have an arbitrarily 
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large      value as an upper limit for the spare unit inventory level choice. The periodic 
admission determines the frequency of defective subsystem unit admissions as well as 
the frequency of the possible capacity sell-back actions. This frequency is determined by 
the period length, which is chosen from  , the set of candidate period lengths offered. 
In our thesis we assume     {                 }, which are scaled according to the 

normalized inter-arrival time  
 

 
    .    

Note that all the derivations/equations in Section 2.6.2 pertain to infinite state variables, 
which may create hindrances during the computational study. Many performance 
measures of similar batch arriving queuing models to        are shown to possess the 
geometric tail property (Tijms 1994). In the numerical results, it is observed that the 
steady state probabilities of the defective units follow the geometric tail property 
ubiquitously. Therefore, we truncate the infinite state system of equations to largely 
enough finite (with a large waiting room of  ) ones. Simulation studies that we conduct, 
which will be discussed at the end of this subsection, suggest that the analytical finite 
system approximation mimics the performance of the infinite state system almost 
perfectly. 

Having mentioned this, subsequently we give our search procedure followed by the 
description of its underlying mechanism.  

Search Procedure-III 

 

 

0. For each inventory Level    {             } follow the steps from a to b: 

 

a. Given  , for each period length     follow the steps I & ii: 

 

i. Find the capacity level   (   )={     : 
     (   ) 

  
  } , where 

   (   ) is from (2.29) 

ii. Suppose    [    (   )]. Then calculate:  

   (   )

    (      )    (   )     (   )

   ( ((    )   )) 

b. After following step   for all    ,  we can find the minimum cost for a 
given  ,    (  ( )  ) as follows:   

 
   (  ( )  )     

   
(   (   )     [    (   )]) 

(2.31) 
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1. After    (  ( )  ) for all    {             } are found, we can find   , and 
  (  )   [  ,  (     )] values, which would give the global minimum cost 
rate         (  (  )   ) for the capacity sell-back mode.    can be found 
from brute force search as follows: 

   (  (  )   )     
  {             }

   (  ( )  ) 

 

2.6.3.2 Explanation of the Search Procedure-III 

In the search procedure above, at step  , we start with a certain stock level    
{          } and a certain period length    .  

Afterwards, in sub-step      , for the chosen   and   parameters, we find the capacity 
level that minimizes the total relevant costs    (   ) for a given   and a given  . Due 
to the convexity of    (   ) with respect to  , the optimal capacity level,   (   ), for 

given   and   can be found from  , which yields the  
     (   ) 

  
   result for the 

   (   ) from Equation (2.29). 

Subsequent to finding the optimal capacity level   (   ), for a given   and  , then we 
proceed to calculate    (   ) for that   and capacity policy      [ ,   (   )].  

These steps in 0-a are repeated for all      Then, we can find the optimal capacity 
policy,   ( ), for a given stock level   from (2.31), by employing a brute-force search 
over possible   values in  . Finally, in the last step, step  , the global optimal policy 
parameters: (  ,   , and   ) are searched over all possible stock level candidates 
  {             } , which finalizes the search procedure.   

Next, we present and discuss the results of the numerical study that was conducted, 
where the optimal costs for problem (2.21) are obtained from Search Procedure-III.  

We first present the total savings in total relevant costs when the best periodic sell-back 
capacity policy is employed compared to the best fixed capacity system (    

  in short). 
Afterwards, the sensitivity analysis results of the cost and the optimal policy parameters 
will be discussed in detail, and finally the accuracy of the finite waiting room 
approximation will be discussed through the results of the simulation study. 

2.6.3.3 Possible Savings of Capacity Sell-back Policies Compared to the Single 
Level Capacity (     

  ) 

In this subsection, we contemplate the potential savings that the capacity sell-back 
policy can bring compared to the     

 . Total costs can be reduced up to a great extent 
due to the capacity sell-back policy. From our numerical results, we have witnessed that 
up to     savings can be achievable in total costs due to the capacity sell-back mode 
compared to the minimum cost that can be achieved in the single capacity mode 
     

 . However, in some of the cost parameter instances, for instance, when the 
maximum opportunity cost is high and  insensitive and there is no (or very limited) sell-
back opportunity, the capacity sell-back policy may lead to drastic increases (up to 
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174%), rather than savings in costs, in comparison to      
 . Therefore the 

implementation of the third capacity mode and the feasibility of it have to be scrutinized 
additionally, taking the cost parameters into account, due to the potential serious 
consequences.   

In Table 2-12, we give the maximum percentage savings that capacity sell-back flexible 
policies can bring for all   different        scenarios (which are already listed in Table 
2-2) with                and   and         and  , when      and    is an inversely 

proportional, exponential and linear function of the period length respectively, for 
                and  . Let     

  represent the minimum total costs that can be 
achieved from Search Procedure-III, for given cost parameters (         and  ), and a 
functional form for   . After      

  is found, the percentage savings in Table 2-12 can 

be calculated from:  
(     

       
 )

     
  . The cells are color coded according to their 

percentage saving values. If     
  is higher than      

 , the corresponding cell is 
white, on the other hand, if     

  results in savings, the corresponding cell is shaded in 
gray, where the higher percentage savings have darker gray tones. 

From Table 2-12, we can observe that the periodic capacity sell-back mode is 
outperformed to the fixed capacity mode, especially for low sell back rates (e.g. 
       ), high opportunity cost factors (e.g.     ) and low time elasticity (e.g.   
 ). 

The percentage savings/losses seem to decrease with holding cost rate  . This can due 
to the fact that for higher holding cost rate  , although the absolute change in costs due 
to the sell-back capacity mode gets bigger, percent wise it gets smaller, since the 
reference cost parameter,      

 , is greater and the share of the holding costs (  ) in 
     

  is bigger for larger  . Parallel to our observations before, the percentage savings 
increase/percentage losses decrease with the elasticity factor  . This can be explained 
as follows: the more elastic the contingent capacity cost gets (with respect to the period 
length  ), the cheaper contingent capacity becomes, which leads to additional savings 
or alleviation of the losses. On the other hand, the maximum opportunity cost,  , has an 
adversary effect, since higher   causes the contingent capacity to be more expensive, 
which leads to an increase in total costs ,      

 .  

From Table 2-12, the exact effect of the down-time related cost rate,  , is unclear. For 
some instances, when all the cost parameters stay the same except for  , we can see 
that an increase in   can accompany both an increase as well as a decrease in 
percentage savings. The dynamics between the backorder cost rate   and percentage 

savings 
(     

       
 )

     
  seem to be indirect and may be related on many other factors, 

therefore further research is needed on this interaction. 

The possibility of selling the capacity back to the provider makes the     less sensitive 
with respect to   and  . This generally holds true, as the flexible capacity policies make 
the systems more robust, not only to the changes/wrong estimates for the cost 
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parameters, but also to the changes/ wrong estimates for the demand rate, as well. This, 
we will mention more specifically, later in Chapter 4.       

The functional form of    seems to play an important role in the cost performance of the 
capacity sell-back mode when      and    , because when there is no maximum 
opportunity cost, or when the capacity cost is inelastic to the period length, all three 
functional forms yield to the same    . On the other hand, when both      and    , 
for given  ,  ,   &   , the linear functional form appears to be the form that results in 
the biggest savings (or smallest loss) and the inverse proportional form appears to be 
the form that results in the smallest savings (or biggest loss).  

From Table 2-12, it is remarkable that in all of the     &   combinations and all of the   
&   settings, the sell-back rate   is the primary determinant of the cost savings (losses). 
For each  ,  ,   &   quartet, when    , the     

  is always surpassed by     
  (the 

% difference can be up to -174%), and as   increases, the gap between     
  and 

     
  decreases. When    , there is a threshold   value, after which     

  starts 
to outperform      

 , and the cost savings of the capacity sell-back policy increases 
after that threshold   value. This threshold   value is lower, when the capacity price ,    
is lower, i.e. when   is small, when   is high and when     has a linear cost structure.  

Finally, we explore further how the optimal policy parameters change under the optimal 
capacity sell-back mode compared to the single level capacity mode for different cost 
parameter settings. In Table 2-13 we show how the optimal periodic sell-back capacity 
mode policy parameters (  ,    and   ) differ with various (   ) combinations and   
different       scenarios. The   and    values from the periodic sell-back capacity 
mode, which are higher than the reference optimal   

  and   (  
 ) values from the 

optimal single-level capacity policies are highlighted. 

The data in Table 2-13 illustrate that, under the optimal policies pertaining to the 
periodic sell-back capacity mode, the spare unit inventory holding costs can be higher or 
lower than the holding costs under the optimal single-level capacity policy, depending 
on the cost parameters. This is different in two-level capacity mode, which always 
engenders lower (or the same)    values compared to the   

  in the single-level capacity 
mode.  

The optimal stock levels under the sell-back capacity mode tend to decrease with higher 
holding cost rate   (parallel to other capacity modes) and with higher sell-back rate   
values. The latter tendency of decreasing   values can be attributed to the fact that 
higher sell-back rate   motivates the MSP to buy higher capacity, which necessitates 
less spare units. However, no matter how high the capacity level is, the need for spare 
units never disappears. Even in one of the instances, when (   ) and the sell-back rate 
  is 1, the optimal capacity level appears to be  , however optimal stock level is still 
greater than zero, despite the fact that repairs are conducted instantaneously.   

The reason for the need for the spare unit, even in the presence of infinite capacity, can 
be explained as follows. In this hypothetical scenario, MSP would choose to buy as much 
capacity as possible, since they can sell it back to the agency with no penalty. However, 
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even in this case, system requires additional spare units, in order to cover for the 
availability during the delays due to the periodic admission structure (pre-admission 
delays).      
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Table 2-12 The % cost savings of the capacity sell-back mode compared to the fixed capacity policy, when 
            ,      and           ,     for                ,1,      ,  when 
               ,   when    has inverse linear, exponential and linear structure. 
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In Table 2-13, it can be seen that the smallest possible period length,      , is chosen 
as the optimal period length   , especially for the instances, when there is no 
opportunity cost (   ), or when    is inelastic (   ). What we can further observe 
that the optimal period length    tends to increase with  , and first increase and then 
decrease with  . These interactions of    under the periodic sell-back mode are parallel 
to the interactions of    under two-level capacity mode. Additionally, we can also see 
that    decreases with higher   and increases with higher  , but it is rather insensitive 
to the changes in   only.  

In the two level capacity mode, the percentage cost savings with respect to      
   

result from both lower stock levels,   , and lower capacity deployment (   ( )) in 
comparison to the single-level capacity mode (Table 2-6). However, in Table 2-13, it is 
remarkable that under the periodic sell-back capacity mode, at least one of the optimal 
stock level   , or the optimal capacity    is higher than the optimal reference values 
under the single level capacity mode. Although    from the third capacity mode can be a 
lot higher than the   (  

 ) from the single-level capacity mode, one should always keep 
it in mind that, in the periodic sell-back capacity mode, more capacity does not always 
lead to higher capacity related costs (   ), since the excess idle capacity can be sold 
back to the agency and due to this sell-back opportunity, it may be more profitable to 
deploy higher capacity compared to the   (  

 )  from the fixed capacity mode.          

These inter-relations between the capacity and cost parameters will be further 
explicated in the next section, where a list of sensitivity analyses are conducted on 
policy and cost parameters. After the sensitivity analysis subsection, we check the 
accuracy of using the finite waiting room approximation for the analysis of the repair 
shop operations, by comparing the results from the analytical computation with the 
results from the simulation. 

2.6.3.4 Sensitivity Analysis of the Cost and Optimal Policy Parameters 

In this subsection, we discuss the interrelations among the cost and optimal policy 
parameters. We first focus on how total relevant cost per time,    , responds to 
changes in capacity level   under different cost/policy parameters. Afterwards, we 
investigate the effect of the period length   on     as well as on the choice of the 
other policy parameters. Finally, we examine how the base stock level decision   
influences the     and other parameters.  

2.6.3.4.1 The Capacity Level:   

Recall that in the previous section, we have proved the convexity of     with respect to 
 . In this sub-section, we first elaborate further on the behavior of     with increasing 
capacity levels,  . Afterwards, we discuss how the optimal capacity level    changes 
with different cost/policy parameters. 
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Table 2-13: The optimal periodic sell-back capacity mode policy parameters (  ,    and   ) under different 
        scenarios (1:            2:             3:             and 4:             ) 
and various (   ) combinations when      and         and  . 
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How     responds to changes in the capacity level is greatly dependent on other 
policy/cost parameters. In order to have a better understanding of the effects of the 
capacity level on total costs, we plot the     as a function of   in Figure 2-11. In this 
figure, we analyze the response of     to increasing values of  , under the fixed 
capacity mode (    ) as well as under the capacity sell-back mode with different sell-
back reduction rates (        and  ) when: Left:    ,       ,     ,    , 

      and     Right:    ,       ,     ,      ,    ,       and     . 

From Figure 2-11, we can observe a general tendency of the response of     to 
increasing values of  . For a constant stock level   and a constant period length  , if the 
capacity sell-back cost reduction rate   is strictly less than  ,     first decreases and 
then increases with the capacity level  . This is in line with the convexity result, which 
we have proven in the previous section. Note that the difference between the fixed 
policy line (    ) and the line when there is no capacity sellback option (   ) shows 
the additional costs due to the delays/burstiness in the periodic admission. It can be also 
observed that, in case there is no opportunity cost for the flexible workforce (    ), the 
    gradually transmutes itself to a decreasing function from a U-shaped one as   goes 
to  . However if (    ),     is still a U-shaped function of  , when    .  

In the first extreme case, when      in the optimal solution, the repair shop operates 
in an hypothetical environment, where the capacity agency is always able to assign any 
amount of capacity to another task during the idle times in each period, and these 
alternative tasks are at least as profitable as the core activity of the repair shop, so that 
the provider agrees to pay back the full amount of    in order to employ the repair shop 

capacity for the alternative tasks during its idle times. In such a case, when there is no 
opportunity cost (   ),     decreases with the capacity level  , and for any period 
length   and any stock level  ,     would be optimal. 

The other extreme is when    , i.e. when the repair shop capacity is not sold back to 
the provider during the idle times. In such a case, the fixed capacity mode (    ) 
outperforms the sell-back mode for every  , since the periodicity of the admission 
structure causes unnecessary repair delays as well as burstiness in the defective unit 
arrivals to the repair shop. A financial return is only possible for    , when the 
provider agrees to employ the repair shop capacity for another task during the idle 
times in exchange for an amount of     per time unit. That financial return, for each  , 

implies a break-even capacity level, after which the capacity sell-back mode outperforms 
the fixed capacity mode. That break-even capacity level gets higher for lower   values. 
We also observe that the effects of the sell-back reduction rate   on     are much 
more visible for higher levels of capacity. This can be explained by the fact that a higher 
capacity level results in more idle time; therefore the differences in     due to the 
selling the capacity back to the agency between different   values materialize more 
when the capacity level   is higher.  

A higher   value not only reduces costs but also stimulates the repair shop to install 
more capacity due to the financial regains from capacity sell-back possibilities during idle 
times. Note that even if there was no financial gains from capacity sell-back (i.e.    ), 
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the repair shop would already require a higher capacity than the fixed capacity mode in 
order to neutralize the negative effects on performance of the periodic admissions. 
These effects can be observed in Table 2-13, where the best capacity levels are 
tabulated under the single capacity mode as well as in the periodic sell-back capacity 
mode with increasing values of   for a given period length (     ), when there is no 
opportunity costs (   ) and when (                 ), (          

       ) and (                  ) respectively. 

 

 

Figure 2-11: :     as a function of   under fixed capacity mode (    ) and under capacity sell-back mode 

when: Left:    ,       ,     ,    ,       and     Right:    ,       ,     ,      , 

   ,       and      and    has an inverse proportional form. 

From Table 2-13, we can observe that under the capacity sell-back mode, the capacity 
choice   (  

 ) gets higher as   increases, and when     or when a   and   
combination cancels the opportunity costs and make    equal to   , (for finite period 

lengths, only possible in linear cost structure),   (  
 )  finally goes to infinity for full 

sell/back rate, i.e.    . 

The pure influence of deploying periodic admissions becomes clear when we compare 
the optimal capacity under the single capacity mode with the optimal capacity under the 
sell-back mode for    . The latter is always higher, especially for lower    and lower 

 , both of which magnify the repair shop’s capacity response to the periodicity of 
defective part admissions. A higher sell-back rate (   ) amplifies this capacity 
response further; and in order to identify the pure gains from sell-back due to the higher 
        under     should be compared with the    under    .  
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Table 2-14 Optimal   for the single capacity mode and the periodic sell-back capacity mode with increasing 
  for given period length (     ), when     and when 1-(                 ), 2-(      

           ) and 3-(                  ), respectively. 

Similar to the second capacity mode, period length   plays a very central role in the sell-
back capacity mode, as well. Therefore, in the following subsection, we summarize our 
findings about the effects of the period length   on    ,    and    and we discuss how 
the optimal period length    changes with respect to other cost parameters.     

2.6.3.4.2 Period Length   

Similar to the second capacity mode, the period length   plays a very central role also in 
this capacity mode, since it determines how frequent the defective parts are admitted 
to the repair shop as well as the opportunity costs incurred to the contingent capacity 
price.  

Firstly, note that the capacity sell-back mode with periodic admissions transmutes itself 
to the continuous admission, single capacity mode when the period length   goes to   
for     and    . If    , the single capacity mode outperforms the periodic sell-
back mode, since there is no regain from selling the capacity back to the agency during 
the idle times. Furthermore, a longer period length   can only be better for     and 
   . Otherwise, when there is no opportunity cost, or if the opportunity cost is 
inelastic, MSP would choose the smallest possible period length, since there is no 
additional benefits of a longer intervals for the periodic admission and longer   
amplifies burstiness effect in the repair shop. 

In order to understand the effects of the period length on the total cost rate     as well 
as on the other policy parameters (   and  ), we present Table 2-15, where the    ,    
and    values under different scenarios are given for increasing values of period length 
  when               and     . In Table 2-15, under the first column, we 

show the response of     to increasing values of   when     and        , which 
are the optimal stock,   

  and capacity level,   (  
 ) under the single capacity mode.  

Afterwards, the capacity level is relaxed and it is optimized at each period length for 
   . These optimal   ( ) levels and the resulting     values are given in the  nd and 
the  rd columns. Finally, the stock level decision is also relaxed and both stock and 
capacity levels are optimized for each period length  . The resulting optimal    &    
levels and the corresponding     values for each   are given in  th,  th and  th columns 
respectively.  
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Table 2-15: Under                  and     : Column 1:     for increasing values of   when 

    and        . Columns      :    and     values for increasing values of   when    . Columns 
         :    

,    and     values for increasing values of  .` 

The data in the first column confirms our expectations about the effects of the 
periodicity and the period length on total costs. The     values with     are higher 
than     with     (a.k.a     ), especially for long period lengths (e.g. when 
     ,     is more or less twice as higher than     ). Under the  nd and  rd columns, 
the capacity level   is optimized to minimize     for each period length, while keeping 
the stock level unchanged at    . We observe that the optimized capacity level,    
increases with the period length; however we also observe that this optimization brings 
about a very minor cost reduction compared to the     with constant    and  . By 
contrast, if the capacity level is optimized jointly with the stock level for each period 
length  , the reduction in the total costs is a lot higher, which can be seen from the last 
column. When we have a closer look on how     and    change with different period 
lengths, we can conclude that it is primarily the stock level decision that responds to an 
increase in the period length, and decreases the     to a great extent; whereas the 
capacity level does not necessarily increase with  , but plays a secondary, fine-tuning 
role. One important reason of this behavior is due to the fact that the capacity cost is   
times higher than the cost of holding one more unit part in the stock.    

Next, we analyze how the cost parameters  ,   and   affect the behaviour of     
under different period lengths,  . For each period length  , the capacity and stock 
levels are simultaneously optimized in order to minimize     with different sell-back 
reduction rates and contingent capacity costs. The response of the optimal     to 
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increasing period lengths when     and        for different  ,   and   values are 
illustrated in Figure 2-12. 

From the upper left chart in Figure 2-12, we can see that     first decrease and then 
increase with different   values. Note that the    , as a function of  , with different   
values are almost parallel to each other. When     , each     that is sufficiently 
large, begets a break-even point for the period length. The single capacity mode 
outperforms the sell-back mode operating under a period that is longer than this break-
even point. The break-even point for the period length gets bigger for larger values of  .  

The right upper chart in Figure 2-12 illustrates the response of the     values to 
increasing period lengths under different maximum opportunity costs (          and 1) 
when     and    , when    has an inverse proportional form. If     , then the 
optimal period length is always the smallest possible one, which is     in our numerical 
study. On the other hand, a positive transaction cost     , increases the     values 
significantly, especially for short period lengths, and changes the structure of     in 
response to  , from an increasing pattern to a U-shaped pattern (Note that when    , 
    increases for    ). 

However, it is remarkable that the increasing parts of the U-shaped     curves for 
     are almost flat, which suggests that operating with higher than optimal period 
length does not increase the costs dramatically since the capacity sell-back and the wage 
differential mechanisms counterbalance the negative effects of higher period lengths. 
This change in the cost response structure stimulates the repair shop to choose a period 
length longer than     due to the possible savings from capacity costs. Note that the 
gaps between the curves of     with different   are the highest for small   values, 
since the    variations start to diminish for longer   if     due to the wage 
differentials.  

The lower chart in Figure 2-12 illustrates the behavior of     under different elasticity 
factors. It can be seen that when    ,     increases with  , therefore       is the 
optimal period length for this case. However for positive elasticity,     first decreases 
with  , which shifts the optimal period length further (     ). These are parallel to 
the observations in  the previous, two-level capacity mode. However, we observe that 
the differences between the     curves for     and     are almost identical, and 
the gap in between them diminishes for longer  . We also observe that the     
response to longer   values in Figure 2-12 are a lot more robust compared to the two-
level mode, which is due to the fact the very high sell-back rate   hedges the adverse 
effects of longer period lengths in Figure 2-12.  

The optimal period length choice (  ) seems to be very sensitive to the cost parameters. 
In order to understand the nature of the dynamics between the optimal choice of the 
period length   , and the capacity cost parameters (    and  ) we present Table 2-16, 
where the optimal period length choices are tabulated for Top:         and   when 
    and      ; Between:     when         and   and      ; Below: 
      when     and         and  , when    has an inverse proportional, linear 
and exponential structure respectively. 
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Figure 
2-12:     as a function of  , with optimized    and    for each     {           } when     and 
       Upper left:                        and  . Upper right:                     and  . 
Lower:                   , ;   : inverse proportional. 

 
Table 2-16 The optimal period length:    when    ;       for Top:         and   when    ; 
      Between:     when         and   and        Below:       when     and         
and  ; for   : inverse proportional, linear and exponential structure respectively. 

From Table 2-16, it can be seen that    is at its lowest when    has a linear structure 
and at its highest when    has an inverse proportional structure. It can be further 
observed that the responses of    to increasing   and   in the sell-back mode resemble 
the    responses in the two-level capacity mode. In both of these capacity modes,    
increases with higher opportunity costs, and it first increases and then decreases with 
higher elasticity factor. In the tabular below, we can see that    is rather insensitive to 
the changes in  .  It can be interpreted that its mode of effect on the capacity level,   , 
works more or less the same for different period lengths. Only when    has an inverse 
proportional cost structure, optimal period length    is changed to the closest larger 
period length when    , which can be explained due to the fact that the sell-back 
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possibility with high return incentivizes to buy more capacity, which hedges the risks of 
the adverse effects of higher  . 

After finishing the analysis of the bi-directional relations between the period length   
and     , next we discuss the effects of the base stock level decision:  . 

2.6.3.4.3 Base Stock Level   

In this part, we discuss how the base stock level decision affects the optimal total costs 
and other policy parameters and vice versa.  

Our first observation is the following: a higher stock level   makes the total costs more 
insensitive to changes in other policy parameters. This is due to the fact that a higher 
stock level curtails the effects of a change in capacity level and/or the period length. We 
can distinguish this curtailing effect easily in Figure 2-13, where on the left chart the 
response of     to different   is illustrated for     and      when        

           ,        and       and on the right chart the response of     to 
different   is shown for for     and      when    ,               
               . 

Figure 2-13: On the left: response of     to different   for     and      when              

     ,        and      . On the right: The response of     to different   for     and   
   when    ,                                

 

Next, we want to analyze how     behaves with different stock levels when the 
capacity policy parameters   and   are optimized at each stock level  . Figure 2-14 
illustrate how     changes with increasing values of base-stock levels for    ,    

 ,        and for different   values (      and  ) when (     ,    ) on the left 
chart and for different   values (       ) when (     ,    ) on the right. Note that 
in both of the charts,    has an inverse proportional structure. 

The data in Figure 2-14 suggest that     is a convex function of the stock level when 
      are optimized at each  . It is already discussed that when all the parameters of a 
capacity policy   is given, total costs are convex with the base stock level. It seems that 
optimizing the parameters of capacity policy at each base-stock level  , does not distort 
this convexity property. 
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As expected, lower sell-back rates,  , and higher capacity max. opportunity costs,  , 
increase the     values, especially for lower values of  . We also observe that a change 
in one of the cost parameters can alter the optimal stock level decision significantly. It is 
evident from Figure 2-14 that the adversary changes in the cost parameters (i.e. lower 
sell-back rate or higher opportunity costs for contingent capacity) make the MSP hold 
more spare parts in the stock. 

This tendency can be more clearly seen in Table 2-17, where the optimal base-stock 
levels,   , under different capacity cost parameters (        ) are tabulated when 
   ,      and       , when    has an inverse proportional, linear and 

exponential structure respectively.   

Figure 2-14: The response of     for increasing values of base-stock levels   for    ,     ,        

and for different   values (      and  ) when (     ,    ) on the left chart and for different   values 
(       ) when (     ,    ) on the right. 

 

From Table 2-17, we can see that    is at its lowest when    has a linear structure and at 
its highest when    has an inverse proportional structure.    increases with higher 
opportunity costs and lower elasticity factor. These responses can be explained as 
follows: a higher contingent capacity cost gives impetus to a higher period length and 
less installed capacity, both of which necessitate a higher stock level to compensate the 
negative effects of the periodic admissions and insufficient capacity. Both higher   and 
lower   engenders a more expensive capacity cost. 

On the other hand, the response of    to an increase in   for given     is different. 
With a higher  , the repair shop is encouraged to install more capacity, which 
attenuates the need for additional spare units, therefore the stock level    faces a 
decrease. This decrease is more evident when    has a linear structure, because when 
   , optimal capacity level is infinite, but the MSP still holds an inventory for the 
availability of the spare units due to the pre-admission delay.  
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Table 2-17: The optimal stock level:    when     and         for Top:         and   when     and 
      Between:     when        ,   and        Below:       when     and        ,  ; 
when   :  inverse proportional, linear and exponential structure respectively. 

 

This concludes our sensitivity analysis. In the next subsection, the accuracy of the finite 
waiting room approximation in the analytical method is examined with an extensive 
simulation study. 

2.6.3.5 Accuracy of Finite Waiting Room Approximation 

In this subsection, we examine the accuracy of our finite waiting room approximation by 
comparing the total cost rate of the proposed analytical model (having a finite waiting 
room of    ) with the cost rate obtained by simulating the real environment having a 
repair shop that has an infinite waiting room.  

In our simulations, we used a run length of               defective part arrivals (when 
   ) in a single replication, where the average total cost rate     is calculated under 
a policy:     [   ]. 

We investigated a total of     different scenarios with different            and 
resulting policy parameters. The percentage error,     , of using the approximation for 
    in a scenario can be found as: 

         
(             )

      
 

       (2.32) 

Here,        is the total relevant costs obtained from the simulation and        is the 

total relevant costs obtained from the analytical model. Table 2-18 summarizes the 
accuracy of the approximations. 

In Table 2-18, the absolute value, minimum, median and the maximum for the 
percentage errors are listed, respectively. From the table, we can see that the 
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approximation can mimic the performance of the original, infinite waiting room 
environment almost perfectly, which evinces the accuracy of our method. 

 

average %|err| min %err median %err max %err 

0.05% -0.14% 0.03% 0.25% 

Table 2-18 Accuracy of the approximation for the     values 

This simulation study finalizes this section for the second capacity mode. In the next 
section, Section 2.7, we discuss and summarize our findings in a nutshell and provide our 
conclusive remarks on the applicability of these capacity modes in the specialized 
environment and build the links to the commoditized environment which we will cover 
in Chapter 3. 

2.7 Concluding Remarks 

2.7.1 Summary 

In this chapter, we studied the integrated inventory and capacity problem of a MSP who 
is running a repair shop and is responsible for the availability of different specialized 
systems in an environment, each of which contains a common critical subsystem that is 
prone to failure. In order to decrease the down-time costs, the repair shop keeps an 
inventory for the critical subsystem units, such that a failed critical subsystem unit can 
be replaced with a spare one immediately, if it is available. In this specialized system 
operating environment, the MSP is offered the possibility to close a contract with a 
capacity agency that allows him to make use of different sorts of capacity modes for the 
repair shop. 

In the first capacity mode, the repair shop capacity is deployed once and its level is fixed. 
We use the optimal cost performance of this fixed capacity mode as a reference to 
assess the cost performance of the other two capacity modes.  

In the second capacity mode, two-level flexible mode, the MSP is offered the possibility 
to close a contract with a capacity agency that allows him to periodically hire a pre-
specified amount of capacity during the next period. By closing such a contract, the MSP 
creates a capacity volume flexibility in the repair shop. The tactical decision problem the 
MSP faces is setting the spare unit inventory level, the repair shop permanent capacity 
level, and the terms of the contract with the capacity agency (which includes the 
decisions on the contingent capacity level, period length and the workload in which the 
contingent capacity is hired). 

In the third capacity mode, the failed subsystems are admitted to the repair shop 
periodically, which creates a level of certainty on the duration of the idle time of the 
repair shop capacity (from the start of an idleness to the end of a period). Due to this 
partial certainty, the MSP is offered the possibility to close a contract with a capacity 
agency that allows him to sell the idle capacity back to the provider at a reduced price 
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until the start of the next period. By closing such a contract, the MSP is able to sell back 
his idle capacity to the agency, and the capacity agency assigns the idle capacity to other 
external tasks until the start of the next period. The tactical decision problem this MSP 
faces then, is setting the spare unit inventory level and the terms of the contract with 
the capacity agency (which includes decisions on the capacity level, and the period 
length). 

In both second and third capacity modes, the period length plays a very central role. It is 
a flexibility metric in both of the capacity modes. A shorter period length enables a 
better tailoring of the repair shop capacity to the workload. However, in both of two-
level and sell-back modes, the unit time cost of a unit of contingent capacity provided 
from the capacity agency is higher for shorter period lengths, due to the opportunity 
costs caused by the differential effects of the wages of the contingent capacity.  

In the second (two-level) capacity mode, the use of the contingent capacity is decided by 
the repair shop at the start of each period with regard to the workload situation. Since 
this decision cannot be known in advance with certainty, this uncertainty on the use of 
the periodically provided capacity creates an economic factor that causes an 
opportunity cost, because that capacity could be used somewhere else if it was not 
reserved for that period. In the third capacity mode (capacity sell-back), the provided 
capacity is deployed at the repair shop at the start of each period. However, in this 
capacity mode, additional uncertainty factor is the time during which the provided 
capacity will stay at the repair shop, because the capacity will be sold back to the agency 
in order to be assigned to another external task, as soon as it becomes idle. This 
uncertainty on the duration of the deployment in the repair shop and frequency of job 
switching (between the repair shop and the other external tasks that the capacity 
agency assigns) create an economic factor that causes an opportunity cost due to the 
required additional skills as well as the extra cognitive load generated from task 
switching as well as the transportation/ transaction costs of the shop capacity. The 
opportunity costs are assumed to decrease with period length duration in both of the 
capacity modes.   

We developed a decision support system for both two-level and sell-back capacity 
modes which integrates the down-time and capacity decisions of the MSP in order to 
minimize its total relevant costs. We compared the savings and the optimal policy 
parameters of both of these capacity modes with the optimal fixed capacity mode 
results first, and with each other afterwards.  

For both two-level and periodic sell-back capacity modes, we analyze the performance 
of the MSP and develop computational approaches based on the decomposition of the 
overall problem in a number of sub problems that can be solved as infinite period 
Markov decision problems or convex optimization problems. Moreover, we performed a 
computational study to investigate the possible benefits of closing a contract with a 
capacity agency given certain values for the cost parameters (down-time costs, 
inventory holding costs and permanent/ contingent capacity costs) for both of the 
flexible capacity modes. 
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2.7.2 Results  

2.7.2.1 Cost Savings of the Flexible (2 Level and Periodic Sell-back) Capacity 
Modes 

In the two-level capacity mode, the results show that maximum savings (with respect to 
the costs under the optimal fixed capacity policy) can range from     to    . These 
maximum savings occur when there is no opportunity cost for the contingent capacity. 
The data further show that these maximum savings are quite sensitive to the holding 
cost rate: the higher the holding costs, the lower the percentage savings, and they are 
quite insensitive to the down-time costs, at least for the range of down-time costs 
studied.  

A substantial part of the relative cost savings is maintained in case of nonzero capacity 
flexibility costs. As could be expected, lower cost savings, (as low as    ), are obtained 
if maximum opportunity costs for the contingent capacity is high (i.e. as high as the 
permanent capacity costs) and is inelastic to the period length. However, for most of the 
nonzero opportunity cost realizations, high cost savings, in the range around    , can 
be obtained, especially if the opportunity cost has a linear cost structure and a high 
elasticity to period length. Most of the time, the percentage savings are the least for 
inverse proportional cost structure in the specialized environment. 

In the periodic sell-back capacity mode, the cost-savings of the optimal periodic sell-back 
capacity policy seem to be much more volatile than the two-level capacity policy. The 
numerical study indicates that the maximum savings can vary from negative values (i.e. 
higher costs than fixed capacity mode) to saving values of    . In this mode, all of the 
capacity is considered as contingent, since it is assigned to other tasks as soon as the idle 
time starts, and these maximum savings occur when there is no opportunity cost for the 
contingent capacity. However, it is remarkable that even if there is no opportunity cost 
for the capacity, the periodic sell-back capacity mode can still perform worse than the 
fixed capacity mode, especially for low sell-back rates (when the sell-back rate is less 
than    ). This underperformance can be attributed to the burstiness caused by the 
periodic admission. Similar to the two-level capacity mode, the data from the numerical 
results further illustrate that the maximum savings are rather insensitive to the down-
time costs, and quite sensitive to the holding cost rate. It seems that higher holding cost 
rates lead to lower percentage savings for the periodic sell-back capacity mode, as well.      

Our decision system optimizes the decision variables in the flexible capacity contract, 
being the period length, and lower- and upper capacity level, to minimize the sum of 
down-time costs, capacity costs, and inventory costs. Our results show that there seems 
to exist a complex, non-intuitive relationship between the optimal control values and 
the cost parameters of the decision problem. If flexible capacity costs are independent 
of the choice of the period length, which is the case when there is no max. opportunity 
cost, or when there is perfect or none period length elasticity period, the system 
chooses the shortest period length offered and sets the capacity levels accordingly. If 
flexible capacity cost decrease with period length, we see that the system chooses a 
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larger period length and operates at a lower permanent capacity level, resulting in less 
frequent but larger changes in capacity. However, this relationship is not strict. We 
observe that if flexible capacity costs strongly depend on period length, the system 
further decreases the permanent capacity level, but chooses a somewhat smaller period 
length, resulting in more frequent and still larger changes in capacity. Thus the choice of 
the period length of the flexible capacity contract is obvious and should be based on a 
careful study of its effect on total costs. Further research of this complex interaction is 
needed. 

A last remarkable observation from our study is that, the stronger the flexible capacity 
costs go down with period length, the smaller the optimal base stock level tends to be. 
This suggests that cheaper flexible capacity results in lower stock keeping costs. 

2.7.2.2 Intra-Environment, Inter-Mode Comparisons 

In this section, we wrap up our findings and worked on the integrated down-time 
service and capacity management problem of a MSP operating in a specialized system 
environment under different capacity modes. First, we observe that, under the fixed 
capacity mode, keeping a stock of the critical subsystem and integrating the stock level 
decision with the capacity level decision reduces the total relevant costs of the MSP 
substantially, compared to the situation in which the MSP does not hold a spare unit 
stock but optimizes its capacity level only. The intervention of the stock level can 
decrease the total relevant costs up to 80%. Capacity relevant costs compose the biggest 
slice of the total relevant costs, therefore the cost saving prospects of the flexible 
capacity modes are explored. Among the investigation of the three capacity modes, it is 
witnessed that the optimal performance of the fixed capacity mode is surpassed by the 
optimal two-level capacity policy in all of the cost parameter realizations in the studied 
test-bed. Beyond the regular test-bed, some stress testing scenarios are conducted, and 
it is observed that the two-level capacity modes are exceeded by the fixed level capacity 
mode only after when the maximum opportunity costs become extraordinarily higher in 
comparison to the permanent capacity cost (e.g. 10 times or more expensive). We 
observe that the cost savings of the two- level capacity mode(with respect to the fixed 
capacity mode) in the total costs derive from both lower stock levels and lower capacity 
deployment. 

When we have a closer look at the cost performance of the periodic sell-back capacity 
mode, the first characteristic that we have detected is its hazard, hazard of being the 
least economical capacity mode among the listed capacity modes. This cost under-
performance gets especially critical when there is no or limited sell-back prospects, low 
period length elasticity and high opportunity costs. However, as the capacity sell-back 
rates increase and the opportunity costs start to lessen, the periodic sell-back capacity 
mode begins to save costs and it comes to be the most economical capacity mode under 
the full sell-back rate option when there is no opportunity cost. 

When making a pair-wise comparison between the two-level and periodic sell-back 
capacity modes, one should pay attention on the comparability between the maximum 
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opportunity costs in two different modes. The factors that are driving the maximum 
opportunity costs in two level capacity mode are different than those in the periodic 
sell-back capacity mode. We can posit the task insecurity of the contingent capacity as 
the leading compensation factor in the two level capacity mode, whereas the frequent 
task switching would be the main compensation factor in the periodic sell-back capacity 
mode. Based on these two maximum opportunity costs, if the elasticity and the other 
cost parameters are the same, the MSP is recommended to choose the two level 
capacity mode when the maximum opportunity cost in the periodic sell-back capacity is 
higher. When these two opportunity costs are the same, the MSP is again recommended 
to choose two-level capacity policy if the sell-back rate is less than    . There is a 
threshold between     and  , after which the periodic sell-back capacity mode beats the 
other two modes. If the opportunity cost of the periodic sell-back capacity mode starts 
to become smaller than the opportunity cost of the two-level mode, the afore-
mentioned threshold value for the sell-back rate gets smaller. 

In both two-level and periodic sell-back capacity modes, for given cost parameters, the 
total relevant costs are the minimum when the contingent capacity costs follow the 
linear cost structure and maximum  when the contingent capacity follow the inversely 
proportional cost structure.  

In the periodic sell-back capacity mode, there can be an implication of savings in the 
shipment costs due to the periodic admission of the defective subsystem units to the 
repair shop. This structure in the periodic sell-back capacity mode may create milk-run 
occasions, which facilitate the collection and produce pooling possibilities in the 
transportation of the defective subsystems. Other modes do not have this saving 
prospect since the defective subsystems are admitted continuously. Therefore, the 
shipment costs are necessary to incorporate in intra-environment inter-mode 
comparisons, especially if the shipment costs are high or is contracted to a 3PL. 
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3 Commoditized System Environment 

3.1 Introduction 
 

Due to the increasing technology and the effective communication mediums, the 
commoditization of products/processes has been accelerated. Commoditization is a 
process during which a non-commodity product becomes more like a commodity, for 
which there is demand, but is supplied without significant qualitative differentiation 
across a market.  

In this chapter, we focus on the integration of capacity and maintenance related 
decisions in the (partly) commoditized system environment, where there are different 
types of capacity flexibility options available. The systems in this environment fall more 
to the right half of the commoditization continuum represented in Figure 1-1. We are 
especially interested in systems that are sort of capital-goods, which are utilized during 
the realization of the production and service activities for the system owners’ 
businesses. Trucks, cranes, printers, photocopy machines, forklifts, refrigerated cargoes, 
computer systems, heavy duty vehicles, cooling towers, some common medical 
equipment (i.e. anesthesia machines, ultrasound devices, etc.) can be examples of such 
(partly) commoditized systems. Note that rather than being commoditized as a whole 
system, in some situations, it is possible that only some of the components/parts from a 
system can be commoditized. For instance, although a specific military aircraft as a 
whole cannot be considered as a commoditized system, some components of that 
aircraft such as the engine and the gas turbine can be considered as commoditized 
subsystems, since there are numerous manufacturers/suppliers of these types of 
components/subsystems, and the lease market of aircraft parts is quite vibrant. The 
modeling framework developed for the individual commoditized systems, which is 
described in Section 3.4, can be replicated for the commoditized components/parts, as 
well.  

There are a number of characteristics that are particular to commoditized systems. First, 
a (partly) commoditized system is much less specialized than the systems under concern 
in Chapter 2, which probably indicates that it has been designed and built in order to 
meet the specifications that are shared by a much more populous number of potential 
end-users. Second, in the commoditized system environment, the technological and the 
financial barriers for a competing manufacturer to design and produce a similar system 
is significantly lower compared to those in the specialized system environment. This 
lower barrier enables the small-medium sized enterprises’ (SME’s) entry to the 
maintenance market of commoditized systems. This barrier for SME’s is a lot higher for 
the maintenance market of specialized systems, in which semi-autonomous business 
units from the OEMs have much more competitive advantage. As a result, the 
maintenance market of the commoditized systems (forklifts, trucks, cranes, etc.) is more 
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fragmented than the maintenance market of the non-commoditized systems. The 
characteristics listed above have important consequences, particularly in the realm of 
system availability. For instance, a higher number of potential end-users and the 
presence of numerous alternative manufacturers both contribute to the increase in 
demand for both long and short-term use of the commoditized systems. This leads to an 
increase in the short term supply/operating lease options, which enhances the short-
term availability options for the commoditized system under concern. In our research, 
we assume that the short-term availability is realized through rental/other 3rd party 
supply channels in the market. These 3rd party suppliers can immediately provide a 
substitute of a (partly) commoditized system/commoditized component with identical 
functionality via short-term supply agreements (via rental/leasing).  

In this chapter, we consider that a MSP takes care of the repair and the availability of 
many commoditized systems installed in a region, in exchange for a service fee. In order 
to realize the repair process, the MSP operates a repair shop. In order to improve the 
overall system availability, rather than keeping a stock of commoditized systems, the 
MSP makes use of a new down-time service strategy, namely, hire upon failure strategy, 
which is begotten from the improved short-term availability of the commoditized 
systems.  

In this strategy, it is assumed that a short term supply agreement is signed between the 
MSP and one of the 3rd party supply channels, where the supply channel agrees to 
provide a substitute system, upon a system failure, for a fixed duration, at a constant 
price rate. These sorts of arrangements are common for industrial equipment via 
operating lease agreements, where the equipment is acquired on a short-term basis. 
Some of the advantages of such a short-term hiring strategy include: less initial 
investment compared to the keeping spare stocks for the substitute systems (requires 
buying the substitute systems first), improved cash flow and tax-deductibility, since the 
hiring costs for the substitute are considered as an operating costs. This is a very 
attractive option for the players in the fragmented commoditized maintenance market, 
since most of the MSP’s in the commoditized market are also SME’s, and the initial 
investment to build its own stock of the spare systems, in order to sustain the 
availability during the down-times, can be non-affordable for a SME, due to the scale 
and the cash-flow limitations.   

The capacity of the repair shop determines the speed of the repair process of a failed 
system. Similar to Chapter 3, our objective in this chapter is to minimize the total 
relevant costs (   ) of the MSP, which consists of the three components listed below 
with their abbreviations in parentheses: 

1. Capacity related costs of the repair shop (   ) 

2. Down-time costs of a system that is failed and not supplied with a substitute 
system from the supply channel anymore since the repair of that system is still 
not complete when the hiring duration is expired (   )  

3. Hiring costs for the substitute commoditized system (  ) 
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Given the cost components above, the MSP takes the capacity and down-time service 
related decisions simultaneously in order to minimize its    .  

Similar to Chapter 2, the MSP can make use of periodic capacity flexibility options while 
integrating its repair shop capacity and down-time service related decisions. The reasons 
behind the periodicity of capacity flexibility were already discussed in Chapter 1. Also 
the structure of flexible capacity options and the actors involved were already described 
in detail in Chapter 2. 

In Figure 3-1, we depict the relations between the repair shop, the capacity agency (can 
be either internal or external), rental channel and the commoditized systems that are 
prone to failure. 

In the light of the discussions above, three capacity modes are investigated in this 
chapter. These modes are: 

1. Fixed Capacity Mode (Reference) 

2. Two-Level Flexible Capacity Mode 

3. Periodic Sell-back Capacity Mode 

 
Figure 3-1: The relations between the maintenance service provider, the capacity agency, the rental channel 
and the commoditized systems through contractual agreements. 

In each of the three modes above, the capacity related decisions and the capacity cost 
structures are different. We aim to model the maintenance service network for 
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commoditized systems, which embodies all the active/passive actors listed above in 
order to analyze the interplays between the 3rd party supply channel, the capacity 
agency and the repair shop. With the analysis, we can derive the cost performance 
characteristics and develop a decision support system that integrates the capacity and 
the down-time service related decisions in order to minimize     of the MSP under 
different capacity flexibility options. In addition, the developed modeling framework in 
this chapter enables the researchers/practitioners to foresee how much cost savings can 
be realized through the use of capacity flexibility compared to the best practice under 
the fixed capacity setting. 

The outline of this chapter is as follows. In Section 3.2, we provide a brief literature 
review about the rental environment models in the operations management literature. 
The details of the structure of the short term supply/rental agreement and its 
justifications are explained in Section 3.3. In Section 3.4, we model and analyze the 
integrated decision making problem under the fixed capacity mode, which serves as a 
reference model for the further modes. In Section 3.5 and in Section 3.6 we explain, 
model and analyze the same problem framework under two-level flexible capacity and 
periodic sell back capacity modes, respectively. Finally in Section 3.7, we draw overall 
conclusions over the performance of capacity modes, interpret the differences and 
finalize this chapter. 

3.2 Literature Review 
 

In Subsection 1.1.5, the studies on commoditization literature have already been given. 
Recall that we have enclosed that subsection, by reasoning how the commoditization 
process may lead to the rentalization process, where the rental availability of a system 
(or a substitute) becomes more common, more widely reachable and more economic. 
The consequences of the rentalization process have mainly shaped the reasoning behind 
our model. Therefore, in this section, we review the relevant literature on rental 
systems and their implications on the operations. Note that we exclude studies on 
leasing, and focus on short-term rental in our literature search. 

The early studies for rental systems include (Tainiter 1964), which uses a queuing 
framework to model rental situations by showing the correspondence between service 
systems and queuing loss systems. Later, (Whisler 1967) formulates a discrete-time, 
finite-horizon, dynamic programming model to find a cost optimal policy for the rental 
equipment inventory.  

Most of the latter studies focused on the operations of rental stores in specific sectors. 
These specific sectors include vehicle/car rental and video rental stores.  

In the video rental industry, we mostly observe a vertically separated structure 
(including a rental store and a DVD/cassette supplier) and a non-stationary and 
temporal demand pattern, where the rental demand for a new cassette/DVD is very 
high initially but then declines significantly over time. Due to this demand behavior, the 
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major problem of the video rental systems is to deal with the left over cassettes after 
the peak season has elapsed. Therefore many studies in the literature focused on 
contractual agreements between the rental store and the DVD/cassette supplier. It has 
been shown several times that price/revenue sharing contracts are coordinating and 
create a win-win situation for both of the parties in various settings (see e.g. (Gerchak et 
al. 2006), (van der Veen & Venugopal 2005), (Dana Jr & Spier 2001)).   

Different from video rental stores, in vehicle/car rental systems, most of the time, the 
size of the rental fleet size appears to be the biggest decision problem. (Parikh 1977) 
uses a queuing system for modeling rail car rental systems by using an       queue 
with backorders to determine the steady-state distribution of the number of rail cars in 
use and the optimal fleet size and structure under a service-level constraint. (Turnquist 
& Jordan 1986) address the fleet-sizing problem for a container network by assuming a 
deterministic demand but allowing for stochastic transportation times. (Du & Hall 1997) 
approach the fleet-sizing problem from an inventory theory perspective by analytically 
deriving the optimal fleet sizes and a method of balancing empty and loaded flows in a 
transportation network. (Love 1985) develops a source/sink type of inventory control for 
vehicle rental systems, where the rented vehicle could be returned to another location 
than the rental store. In (Geraghty & E. Johnson 1997), an implemented revenue 
management project in National Car Rental is described, where the revenue of National 
Car Rental is increased drastically. In (Pachon et al. 2003) a tactical planning model for 
the vehicle fleet management is developed, where the daily tactical plan is further 
decomposed into a fleet deployment and a transportation model. In (Savin et al. 2005) 
the capacity management of a rental system is studied through a loss system with two 
customer classes, and where the optimal capacity rationing decision is studied under 
Poisson arrival and exponentially distributed service times assumption. Later, (Papier & 
Thonemann 2008) develop and solve analytical models for fleet planning of a rail car 
rental system. In a later study, (Papier & Thonemann 2009), the use capacity rationing in 
a stochastic rental system in the presence of advanced demand information (ADI) is 
investigated by using stochastic dynamic programming techniques. 

Besides the studies mentioned above, there is a stream of literature on closed-loop 
supply chains, where the quantitative formalisms that are used to model re-
manufacturable product supply chain can be also applicable to model the rental 
systems. We refer the interested reader to (Fleischmann 1997), for a comprehensive 
literature review.  

We have found only a few papers that analyze generic, sector non-specific rental 
situations. Among these, we are particularly interested in (Tang & Deo 2008), where the 
problem on determining the optimal rental price and duration is studied under retail 
competition. Motivated from many observations in the industry, they assume pre-
specified, certain (fixed) rental duration to be decided upon. In this chapter, we also 
follow that approach and assume that the rental duration is fixed and to be determined 
in the rental agreement. We do not consider competition among different rental stores, 
but rather focus on a setting where the rental duration is a part of the integrated 
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decision making process for the MSP. The further details of the structure of the rental 
agreement and its justifications are explained in the next chapter.      

3.3 Short Term/Rental Substitute Provision Mechanism 
 

In this section we detail out the short term rental substitute provision mechanism. Note 
that in this section, where we analyze the maintenance network of the commoditized 
systems, the MSP’s agreement with a 3rd party/rental supplier takes the place of the 
strategy of keeping a spare stock for systems/subsystems. Similar to the capacity 
agency, it is assumed that the 3rd party supplier is a reactive agent in the decision 
making process. Upon a part/ system failure, the 3rd party supplier provides a substitute 
system for a certain duration for a fixed hiring rate.  

In the industry, we see that a lot of companies provide integrated solutions by 
integrating rental/lease & repair services for their customers (for example see 
www.crepa.nl or www.dremed.com). In practice, many of the rental suppliers may allow 
the customer to specify the rental duration at each rental instance, according to their 
needs. This is for sure a more convenient solution for a one-time customer. 

However, due to a number of reasons listed below, a rental supplier may choose to rent 
its products for a fixed, specified duration, even possibly at a reduced price, to some of 
its contracted, long-term customers. Firstly, fixed rental duration increases the 
utilization of the rental units by effectuating a better control of the return processes. 
Secondly, the long term contracted customer may require a timely service, in particular, 
no occurrence of stock-outs/delays, which may trigger the rental retailer to invoke upon 
some rationing policies within its rental unit stock. In such a case, a fixed rental duration 
would eliminate the rental duration variance for the corresponding units, and would 
eventually decrease the necessary number of allocated rental units for the contracted 
customer as well as the number of possible emergent measures in case of stock-out 
instances. Thirdly, if the transportation tasks of the rental units belong also to the rental 
supplier, fixed rental duration provides certainty about the returning time, therefore 
facilitates the planning of collecting items and may lead to savings in transportation 
costs. Finally, a uniform rental duration is also attractive for the MSP, because in that 
situation, the rental duration is decided in the beginning, once  and for all, which would 
drastically reduce the decision making burden on the MSP.  

Owing to the reasons above, we assume that the rental supplier agrees to provide a 
substitute upon each system failure for a fixed duration,   , at a fixed hiring cost rate    . 
In leasing environments, it is often witnessed that the leasing rate decreases with the 
leasing duration. However, in our thesis, we assume that   is considerably short 
compared to the capital leasing durations and therefore we assume that    is constant 
no matter how short/long the hiring duration   is. The short-term supply agreement 
brings liabilities for both parts. Upon a system failure, the 3rd party supplier has to 
provide a substitute system to the MSP immediately. This brings the responsibility of the 

http://www.crepa.nl/
http://www.dremed.com/
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substitute system availability upon a failure to the 3rd party supplier, which may 
necessitate to keep more rental units in the store and also to take other emergent 
actions upon stock-out instances.  

Upon the receipt of the substitute, the MSP transfers the rental substitute to the failed 
system’s location immediately. On the other hand, after   time units, the MSP must 
return back the hired substitute system, irrespective of whether the repair of the 
corresponding failed system is completed or not. Therefore, the MSP has to consider an 
additional safety time while deciding on the uniform hiring duration  .  

The role of the hiring duration   for the system availability in the commoditized 
environment is analogous to that of the spare part stock level   in the specialized system 
environment. In the former environment, as soon as a system fails, the failed system is 
sent to the repair shop and a substitute system hired from the 3rd party supplier 
immediately resumes the system owners’ operations. The hired substitute remains in 
use for another   time units. If the repair of the failed system is not finished after   time 
units, the system owners’ operations are halted until the repair completion. Therefore, 
after a failure, in this strategy, it is only possible to have a down-time after the rental 
duration is elapsed. On the other hand, in the specialized system environment, upon a 
system failure (due to the critical subsystem failure), if there is a spare unit in the stock, 
it is immediately sent to the failed system location to replace the failed critical unit so 
that the operations of the system owner can continue. If there is no spare unit available 
in the stock, the demand for this unit is backordered, and the operations are halted until 
the repair of that backordered unit is completed and sent to the failed system’s location. 
Therefore keeping a spare unit inventory doubtlessly improves the system availability; 
however the randomness of the system availability upon a failure instance still remains. 
On the contrary, by having a fixed supply agreement with a 3rd party supplier, upon a 
system failure we have guaranteed system availability for another   time units after the 
failure.   

Having discussed the rental provision mechanism, in the next section, we start with 
analyzing the fixed capacity mode in the (partly) commoditized environment. In the next 
section, the capacity is provided to the repair shop indefinitely and the minimum cost 
performance achieved will act as a reference point to judge the performance of the 
service providers using flexibility options in further modes.   

3.4 Fixed Capacity Mode 
 

In this section, we analyze the integrated decision making problem of the service 
provider under the fixed capacity mode, where all of the capacity is permanent and 
ready for use in the repair shop. Recall that different from Chapter 2, the MSP does not 
hold a stock of spare parts, but rather hires a substitute for the failed system upon a 
failure for a fixed hiring duration. This mode serves as a reference point for the other 
two capacity modes, necessary to assess the benefits of further flexibility options.  
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The MSP has to determine the optimal hiring duration and capacity level decisions in 
order to minimize its    . This section aims at building a modelling framework and a 
decision support system for the service provider operating under the first capacity 
mode. Therefore in Subsection 3.4.1 we present the model, assumptions and the 
problem formulation. In Subsection 3.4.2, the derivation of the total relevant cost per 
unit time as well as the analytical properties and the optimization procedure are given. 
Finally in Subsection 3.4.3, we describe the experimental setting and provide the results 
of the numerical study. 

3.4.1 Model, Assumptions and Problem Formulation 

 

We analyze an environment, where a service provider operates a repair shop, and is 
responsible for the repair of the failed systems, from a population that involves 
numerous (partly) commoditized systems installed in a region. Similar to the specialized 
system environment, in this chapter we also assume that the systems are in the 
exploitation phase, therefore the failure occurrences are stationary and we also further 
assume that the number of the systems that the service provider is responsible for,  , is 
quite large, which justify the modeling approach, in which the failures come from an 
infinite population of systems and follow a Poisson process with a constant rate  .  

In this chapter, the service provider does not keep a spare item stock for critical 
systems, but makes an agreement with a rental/ 3rd party supplier. Upon a system 
failure, the following procedure is applied. Immediately after the failure, a substitute 
system is sent from the rental supplier to the failed system’s location and the failed 
system is shipped to the repair shop. After   units of time, the rented substitute system 
is returned back to the 3rd party supplier. If the repair of the failed system is finished 
before   units of time, the operations of the system owners can continue without any 
interruption. On the other hand, if the repair of the failed system is not finished, the 
system owners’ operations are halted until the repair of the failed system is completed.  

We assume that the replacement and the transportation times from the repair 
shop/rental store to the customer sites where the systems are located (or vice versa) are 
negligible. Each defective system requires an exponentially distributed service time from 
the repair shop and the defective systems that require repair have to wait for their turn 
in order to get serviced in the repair shop. We model the repair shop as a single server 
Markovian queue. The capacity of the repair shop determines the speed of the repair 
service. Therefore the processing rate μ is considered as the capacity level of the repair 
shop. 

In this thesis, we suppose that all the defective systems can be restored to the as good 
as new condition after the repair.  

The capacity cost per unit time is    in this fixed capacity mode, since all the repair shop 

capacity is permanent. We pay    per unit time for each substitute system in use. The 
down-time costs due to the halted operations of the system owner is equal to   per 
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time unit, and we assume that     . From now on, we use the notation of   to 
denote the capacity policy. In the fixed capacity mode,   is a single variable, since the 
only capacity related decision is the processing rate  . The rental duration related 
decision is  . The total relevant cost function,    , can be represented by   and  , and 

is the sum of capacity related costs (   ( )), down-time costs (   (   )) and hiring 

related costs (  ( )). Given these cost components and the decision variables, the 

problem of the MSP can be formulated as follows: 

   
   

   (   )     ( )     (   )    ( ) 

           

      

(3.1) 

Given the problem formulation above, in the next subsection, we derive the necessary 
cost functions used in (3.1), give the analytical properties of    (   ), and present the 
optimization procedure for the problem.  

3.4.2 Derivation and Analysis of the Cost Functions, the Solution 
Procedure 

 

In this subsection, we first derive and provide the analytical properties of the cost 
functions used in (3.1). Afterwards, we give the optimal decision variables that minimize 
total relevant costs. As it is mentioned previously,    (   ) consists of three cost 
components:    ( ),    (   ) and   ( ).   

The capacity related cost per unit time is a linear function of  , since the capacity policy 
is solely the processing rate and per time unit cost of it is constant and equal to   . 

Similar to the previous analyses, we exclude the baseline capacity costs:     . Therefore, 

we have    ( ) =   (   ). Similarly, the rental hiring cost per unit time is also a 

linear function of the hiring duration  , since upon each failure, a substitute system is 
hired from the rental supplier for   units of time. Hence, we have:   ( )        . 

Per time down-time related cost,    (   ) is closely related to the sojourn time 
distribution of a defective system in the repair shop. Let    denotes the sojourn time of 
a defective system in the repair shop and  {      } denotes the probability that the 
defective system will spend more than   time units in the repair shop under the capacity 
policy   {  }, when    . Since we model the repair shop as an       queue,    is 
exponentially distributed with a rate of    . Hence, we have the following:  

 

 {      }    (   )                      

(3.2) 
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Let    
(   )  

 (   {      })

  
. The expected down-time that the owner of a failed 

system will face due to the elapse of rental duration  , given capacity   can be found 
from (3.2) as follows:  

 ((    )   )  ∫(   )

 

   

   
(   )   ∫(   )

 

   

(   )  (   )    

 
  (   ) 

(   )
   

(3.3) 

Each system that is down due to the failure of a system in concern is incurred   per unit 
time. Hence, the down-time related cost per unit time can be found as follows: 

   (   )    ( ((    )   ))    
  (   ) 

(   )
 

Hence we have the following: 

   (   )     ( )     (   )    ( )    (   )   (     
  (   ) 

(   )
) 

(3.4) 

As the total relevant cost rate,    (   ), is derived, next we give some of its analytical 
properties. 

 

Property 3.1 

For a given      ,    (   ) is strictly convex in  . 

Proof: 

If      , we have: 
    (   )

  
         (   )   and  

     (   )

   
   (  

 )  (   )         

 

Property 3.2 

For a given   ≥ 0,    (   ) is strictly convex in  . 

Proof: 

For      , we have: 
    (   )

  
       (

  (   ) 

(   ) 
 

   (   ) 

(   )
) and 

     (   )

     

  (
    (   ) 

(   ) 
 

    (   ) 

(   ) 
 

    (   ) 

(   )
)    .     

 

Property 3.3 
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   (   ) is jointly convex in both   and  . 

Proof: 

We know that in order to prove the joint convexity of    (   ), we need to show that 

both of the eigenvalues of the Hessian matrix of    (   ),   (   (   )) are non-

negative. We have: 

 (   (   ))  

[
 
 
 
 
     (   )

   
     (   )

    

     (   )

    

     (   )

   ]
 
 
 
 

  

  [

(   )  (   )    (   ) 

   (   ) (
   (   ) 

(   ) 
 

    (   ) 

(   ) 
 

    (   ) 

(   )
) 
] 

We know that if 
     (   )

   
 

     (   )

    
     (   )

    
 

     (   )

    
 , then  (   (   )) is a 

positive semi-definite matrix (Horn & Johnson 1985).  In our case, the above inequality 

holds, therefore  (   (   )) is positive semi-definite, therefore both of the 

eigenvalues are non-negative. 

 

Property 3.4 

For a given population failure rate  , and cost parameters  ,    and    , we have the 

optimal rental  hiring duration    
   (

  
 
)

√
   (    (

  
 ) )

  

  and optimal capacity level       

√
   (    (

  
 
))

  
 .  

Proof: 

For a given capacity level  , we can find the optimal hiring duration for that given 

capacity level,   ( )   
   (

  
 
)

(   )
  which is the   that satisfies: 

    (   )

  
|
   

  .  

Similarly we obtain 
    (   )

  
       (

  (   ) 

(   ) 
 

   (   ) 

(   )
) . If we plug    ( ) into this 

function and solve the capacity level   that satisfies 
    (   )

  
  , then we obtain 

       √
   (    (
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 as well as      (  )  
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√
     (    (

  
 ) )

  

  . 
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In the next subsection, we present the results of the numerical study that is conducted, 
where the optimal costs for problem (3.1) are obtained from the analytically derived 
optimal parameters    and    that are introduced above.  

3.4.3 Numerical Study 

In this section, we present the results of the numerical study for the fixed capacity 
mode. First, we describe the experimental design for the computational study. 
Afterwards, we obtain the optimal decision parameters for every instance in the test 
bed. Finally, the minimum cost performances, the optimal capacity levels and the 
optimal hiring durations are given in order to generate managerial insights and form a 
basis as a reference point to assess the benefits of capacity flexibility in further capacity 
modes. 

3.4.3.1 The Base Case Scenario and the Experimental Design 

In our computational study, we take the unit time as a week and normalize the mean 
arrival rate for the system failures (not from one system but the cumulative failures in 
the whole environment)      (failures per week). We have a base case scenario, which 
is described below, and the other 8 scenarios have varying backorder ( ) and hiring 
(  ) costs per unit time. The parameter values in the base case scenario are founded on 
the following situation:  

Suppose that the capital good has a value of         . This amount is lower than the 
value in the previous specialized system environment. The capital good is used in the 
production process of other products. The economic lifetime of the capital good is 
assumed to be    years, and the cost of the capital good represents     of the total 
costs of the products produced with it (material costs deduced). Further, suppose that 
the firm sells the products at a price that is   times the total production costs (material 
costs deduced) accumulated during the average machining time used to produce the 
products (when the capacity of the capital good is used). If the capital good is in use for 
    days per year and   hours per day, then the capital good related costs are 
        

(        )
        per hour and the lost revenue due to down-time is: (

     

   
)      

        per hour. A week (the base time unit) of down-time costs would be     
               . For the cost of the workforce capacity of the repair shop, we will 
use a wage of     per hour per operator  and we assume that a repair of a failed 
subsystem takes about    hours. Then the repair of a failed unit/subsystem on average 
costs      . This is much less than the cost price of the system(        ), therefore 
repairing a defective system is a more economical option than scrapping the defective 
system and buying a new one.  

Next, we derive the hiring cost per unit time. We assume that the 3rd party supplier adds 
on a     premium on top of the capital good related costs. Therefore, the hiring cost 

per week is equal to: 
           

     
            per week. 
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We scaled the parameter for the cost of workforce per repair to one, and expressed the 
values for the down-time and stock keeping costs as a multiple of this normalized 

parameter (for instance:    
    

    
   ,    

    

    
   and hiring the substitute system 

for a week,      
      

    
     ). 

 

           

  

    

  

   

   

    

  

   

   

  

  

   

   

Table 3-1: Values of the analyzed   ,    and    instances. 

Having described the cost setting in the base case scenario, where     ,       , and 

       , we create the test bed, which consists of a total of   scenarios. These 
different scenarios explore the effects of different   and       ratios around the base 
case, and we assume that both   and     are higher than the hiring cost    per unit 

time. The    ratios range from     to   and       ratios range from   to   . The values 
of   and    instances that are examined are given in Table 3-1. The base-case scenario 

that is described above is highlighted. 

3.4.3.2 Results 

From the analysis and the properties given in the previous subsection, we can find the 
optimal policy parameters,     and     for each of these nine scenarios and the resulting 
total relevant costs per unit time. From now on, we use the notation of      

 ,    
  

and    
   in order to denote the minimum cost rate, optimal hiring duration and the 

optimal capacity under the first (fixed) capacity mode in the commoditized environment 
where the rental availability of a substitute system is present. In Table 3-2,      

 ,    
  

and      
   values are tabulated for all 9 scenarios, when we have        :  
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Table 3-2: The optimal rental hiring duration (   
 ) and the capacity level (    

 ) decisions and the 
resulting costs (      

  ) for the total of   scenarios, when        . 

From Table 3-2, as it is expected from the analytical representation, we can observe that 
the minimum total relevant cost,      

 , increases with   and    . Upon an increase in 
 , the system responds with a higher rental duration    

 , in order to increase the 
system availability ; and with a higher capacity    

 , in order to provide a faster repair 
service to balance the negative effects of the increasing down-time costs. 

On the other hand, upon an increase in   , we can see that the MSP has a greater 
incentive to reduce its hiring duration to save from the hiring related costs. In order to 
remedy for the further cost consequences of shorter rental hiring durations (which 
would automatically lead to higher down-time costs), the service provider increases its 
capacity level.  

Integration of the hiring duration and capacity level decisions brings drastic savings for 
the MSP. For instance, in the no-hiring case, where    , the repair shop capacity is the 
only parameter that the MSP can tune in order to adapt to different operating 
environments. This leads to inflated capacity levels and therefore very much higher 
costs. Let        

  denotes the optimal total relevant costs in the no-hiring case (  

 ). In Table 3-3 , we demonstrate the percentage cost savings     (
       

       
 

       
 ) 

and savings in capacity level     (
  ( )    (  

  )

  ( )
) due to the integration of the rental 

hiring option to the capacity decision in all   scenarios.    

 

Table 3-3 Percentage cost and capacity savings of integrated decision making (hiring duration and capacity) 
compared to the no hiring case in 9 different scenarios. 

As it can be seen, incorporating the use of the hiring option in order to ameliorate the 
down-time, reduces the total relevant costs between     to     and reduces the 
capacity levels between     to    . The percentage savings of the costs (due to the 
hiring of a substitute in the integrated decision making framework) are lower than the 
savings in the specialized system environment, which were displayed in Table 2-4  This 
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change in savings arise from the different cost parameters used in the test bed for the 
commoditized system environment, as the      ratio in the specialized system 

environment is higher than the       ratio in the commoditized setting.  

It is remarkable that the percentage cost savings of integrated decision making is 
insensitive to    when      is kept constant. This can be explained by the fact that 
when      is kept constant, both      

  and        
  increase with    multiplicatively 

at the same rate, and during the calculation of the percentage difference, the effect of 
   cancels out. Similarly, the increase of the savings with   under the same    can be 

explained due to the fact that the (       
       

 
) increases faster with   

compared with        
  alone. 

The breakdown of the total costs under the optimal fixed capacity policy can provide us 
further managerial insights. Therefore, we investigate how much each of the three 
components (  : hiring rental cost for a substitute system,    : capacity related costs, 
   : down-time related costs) has contributed to the total relevant costs under the 
optimal capacity & stock level decisions for 9 different      &    combinations. The 
percentage contributions of each cost component can be seen from the pie charts given 
in Figure 3-2. 

 
Figure 3-2:  The breakdown of total relevant costs (     

 ) to three cost components (  ,     and    ) 
under the optimal capacity & rental hiring duration (  =    

 ,    
 ) decisions for   different ( /   &   ) 

combinations.  

It is remarkable that under the fixed capacity mode in the commoditized system, the 
ratio of capacity related costs to     is always     under the optimal capacity and the 
optimal rental hiring duration decisions. In addition, we also observe that the cost 



112 

breakdown of the total costs does not change with different   , when      remains 
constant. 

For higher   values, we observe that the      in     decreases and     in      
increases. We can also deduce these general behaviors from the    (   ) formula in 

(3.4) when we plug the optimal    
   (

  
 
)

√
   (    (

  
 ) )

  

  and optimal 

       √
   (    (

  
 
))

  
  from Property 3.4, we obtain 

   (     )  √(     )(√    (
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)

√    (
  
 
)

).  

In this equation above, the first term in the parentheses corresponds to the    , the 
second to the     and the last term to the   .  

Each cost result tabulated in Table 3-2  serves us as a reference point to assess the 
prospects of the flexibility options in the two other capacity modes. Similar to the 
analysis in Chapter 2, for each of the   scenarios, in order to consider another flexible 
capacity policy as an alternative, the total relevant costs resulting from that policy must 
be smaller than the corresponding      

  value that is tabulated in Table 3-2. In the 
next section, we set out our analysis to scrutinize the cost saving possibilities in the 
second, namely two-level, flexible capacity mode. 

3.5 Two-Level Flexible Capacity Mode 
 

In this section, we analyze the integrated decision making problem of the MSP under the 
second capacity mode. This two-level flexible capacity mode is same as the capacity 
mode described in Section 2.5, where a part of the capacity is permanent (or, in other 
words, the capacity agency supplies that amount of capacity indefinitely), whereas the 
other part is contingent, supplied on demand periodically at equidistant points in time at 
a higher cost rate. The decision on the use of the contingent capacity is given at each 
equidistant point with regard to the present workload of the repair shop, in terms of the 
number of defective systems in the service or waiting for service.  

Similar to the fixed capacity mode, the MSP has to decide on the optimal rental hiring 
duration and the capacity level in order to minimize its    . Characterization and the 
analysis of the cost savings of flexibility due to the integration of the capacity and 
maintenance related decisions under the duality of the capacity provision, have our 
utmost priority in this section. Therefore we aim at building a modeling framework and 
a decision support system for the service provider operating under the two-level flexible 
capacity mode.  
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Since the capacity mode is identical to the mode described in Section 2.5, we skip re-
introducing the capacity mode, but briefly mention about the model and the decision 
problem of the service provider. In Subsection 3.5.2, the derivation and the analysis of 
the total relevant cost per unit time as well as the sojourn time distribution in the repair 
shop are provided. Finally in Subsection 3.5.3, we describe the experimental setting, the 
search procedure and provide the results of the numerical study with a focus on the 
sensitivity of cost/policy parameters and the savings under this two level flexible 
capacity mode compared to the best cost performance under the reference, fixed 
capacity mode      

 . 

3.5.1 Model, Two-Level Flexible Capacity Policy and Problem 
Formulation 

 

The MSP operates in the same environment that is explained in the previous section(s). 
Recall that the repair shop is modeled as a single-server queue where the failures occur 
following a stationary Poisson demand and each defective system requires an 
exponentially distributed amount of dedicated repair service time in the shop in order to 
regain its good as new status.  

In this section, we assume that the repair shop can make use of capacity flexibility 
options due to the two-level flexible capacity mode. Recall that a periodic, two-level, 
capacity policy,   = [ ,   ,   ,  ⃗ ], consists of a period length  , a low and a high service 
rate pair (     ) and a policy vector,  ⃗ , which is the probability vector that consist of 
the probability values for the repair shop deploying the higher service rate at each state, 
which is the number of defective parts in the system. The details of this capacity mode 
and the policy ,   = [ ,   ,   ,  ⃗ ],  is described previously in Section 2.5.1. 

Suppose the repair shop operates under a stable policy   = [ ,   ,   ,  ⃗ ] for an infinite 
horizon.  

The capacity agency offers a set of possible period lengths,  , from which the MSP can 
choose the best period length considering the reflection of wage differentials on   . 
Recall that    is also dependent on   ,   and   coefficients. We pay    per unit time for 

the substitute system during the rental hiring duration. The down-time costs due to halt 
of the operations is equal to   per time unit, and we assume that      . The hiring 
related decision is the rental hiring duration  . The capacity related decisions,  , are 
threefold: 

1) Length of the period:    

2) The size of the permanent and the contingent capacity levels: (           ) 

3) The policy that determines when the contingent capacity is hired:  ⃗  (based on the 
number of defective systems). 

The total relevant cost function,    , can be represented by   and  , and is the sum of 

capacity related costs (   ( )), down-time costs (   (   )) and hiring related costs 
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(  ( )). Given these cost components and the decision variables, the problem of the 

MSP can be formulated as follows: 

   
   

   (   )     ( )     (   )    ( ) 

           

    [         ⃗ ] 

    ,      ,     ,  

   ⃗ ( )                   

(3.5) 

 

Given the problem formulation above, in the next subsection, we analyze the problem in  
(3.5) and analyze each of the sub-problems. The derivation of the performance 
characteristics necessary for the analysis of the sub-problems are also given in the 
subsection 3.5.2. 

3.5.2 Analysis and the Derivation of Necessary Functions. 

 

In this subsection, we first analyze the optimization problem in (3.5). Note that in this 
problem, we need to explain a few more additional steps since the optimization 
problem (3.5) differs greatly from the problem (2.6) in Section 2.5.  

Firstly, time requirement for solving problem (3.5) is a lot more demanding than time 
requirement for solving problem (2.6). The continuous nature of the rental duration 
enables us to set any positive value of  , and cancels out the sclerotic behavior of the 
stock level, which can take only integer values. Although this brings about an added 
flexibility, it also increases the computational burden tremendously, in such a way that it 
is numerically infeasible to search for the real optimal decision variables (especially, in 
terms of rental duration) globally.  

In addition, the problem (3.5) cannot be decomposed into and formulated as 
conventional discrete time, infinite horizon Markov Decision Process problems in its 
current format, because the state information, which is the number of defective systems 
in the repair shop at the start of a period, is not detailed enough to derive the 
expectation of the immediate periodic reward (cost). This is due to the fact that the 
contribution of the down-time related costs to the immediate periodic reward 
necessitates not only the number of defective systems in the repair shop at the start of a 
period, but also the failure time records of each defective system, because the down-
time costs are incurred after   time units following each failure. Since the failure times 
of the systems are not recorded, only the number of defective systems can be used in 
the capacity decision making process. Henceforth, rather than tackling the optimal 
policy structure problem for the MSP, we propose a prescriptive approach for the 
periodic capacity policy structure in (3.5). In this section, we focus on two-level 
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threshold type policies and assess the possible savings of two-level capacity mode in the 
commoditized environment with regard to the total costs under the optimal fixed 
capacity policy,      

 .  

A two level threshold-type policy includes a switching point  , which implies that the 
contingent capacity is deployed ( ⃗ ( )   ) in a period, only if there are at least   
number of defective systems in the repair shop at the start of that period (   ).  Note 
that   can also be a non-integer number. In such a case, we have a randomized action 
taking in the capacity policy            as follows: at the start of a period, if there are more 
(less) than ⌊ ⌋ defective systems in the repair shop, the contingent capacity is (not) 
deployed and if there are exactly ⌊ ⌋ number of defective systems, the contingent 
capacity is deployed with a probability of:    (  ⌊ ⌋).  

In the light of discussions above, we can reformulate (3.5) as follows: 

   
           

   (   )     ( )     (   )    ( ) 

             

    [         ⃗ ] 

    ,      ,      

 ⃗ (⌊ ⌋)     (  ⌊ ⌋) 

 ⃗ ( )    if   ⌊ ⌋    ⃗ ( )    if   ⌊ ⌋ for      {⌊ ⌋} 

 (3.6) 

It is known that the optimal rental hiring duration    has to satisfy the following first 
order condition: 

    (   )

  
   (      {       })      {       }  

  

 
 

(3.7) 

Therefore, if   {       }  
  

 
  is added to (3.6) as a constraint, there will not be any 

implications for the optimal solution, since the optimal hiring duration would already 

satisfy  {       }  
  

 
. On the other hand, it may have important consequences in 

terms of decomposability. Note that rather than investigating all possible computations, 
we investigate a finite number of rental duration ( ) and period length ( ) candidates as 
well as a limited number of permanent & contingent capacity level combinations (     ) 
due to the computational burden. Suppose  ⃗   denotes the threshold type policy with a 

switching point   , where  {       }  
  

 
  when      [         ⃗ ], for given     , 

    and (     ). 

Note that in all of our numerical results, for given         and    , we observe that 
 {       } is increasing with  . We can observe this behavior in  

Figure 3-3, where the  {       } values are given for increasing values of   levels, for 
                              and    .  
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Therefore, if we have  {        }  
  

 
  (i.e.    ) and  {        }  

  

 
  (i.e. 

   ), then we can find a    such that  {       }  
  

 
, since we can also choose 

non-integer switching points. After     is found for all    ,      and (      ) 
candidates, the overall optimal policy parameters can be found from (3.8): 

 

   
         

   (   )     ( )     (   )    ( ) 

            

    [         ⃗ 
 ] 

    ,      ,      

(3.8) 

 

 
Figure 3-3: The figure depicts how  {       } values are increasing for increasing values of   levels, when 
                             and     are given. 

 

Next we derive the components of total relevant costs    (   ) as well as the sojourn 
time distribution  {       } for given   and capacity policy:     [         ⃗ ]. 

3.5.2.1 Derivation of Cost Components 

Here, we will derive the cost components of the total relevant costs    (   ) for given 
  and      [         ⃗ ]. First, the rental hiring related costs are the same as the 
previous, fixed capacity mode, which is   ( )      . Next, we will analyze the 
capacity related costs,    ( ).  

Recall that in Section 2.5, the transition probability matrix  (   ) was derived for    , 
where    (   ) denotes the probability of having   defective systems in the repair shop 

𝑘 
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after   time units, given that there were   defective systems at the beginning. From 
 (    ) and  (    ) matrices, we can obtain  (   ), which is the transition probability 
matrix for the number of defective systems in the repair shop at the start of a period, 
under a threshold type capacity policy,   = [ ,   ,   ,  ⃗ ], with a switching point:  .  

Suppose  ⃗⃗  (   ) denotes the  th row of the  (   ).Then we can write: 

 ⃗⃗  (   )   ⃗⃗  (    )       ⌊ ⌋ 

 ⃗⃗  (   )   ⃗⃗  (    )       ⌊ ⌋ 

 ⃗⃗  (   )  (  ⌊ ⌋)   ⃗⃗  (    )  (    ⌊ ⌋)   ⃗⃗  (    )       ⌊ ⌋ 

(3.9) 

Having constructed  (   ) completely, one can obtain the steady state probabilities for 
the number of defective systems in the repair shop at the start of a period,  (   ), 
from the equalities below: 

 (   )   (   )    (   ) ∑   (   ) 
        

(3.10) 

From  (   ), we can obtain the average capacity deployment    ( ), which will be 
used in deriving the capacity related costs    ( ), resulting from capacity policy  .  

   ( )  ∑   (   )    ⌊ ⌋(   )((  ⌊ ⌋)   (    ⌊ ⌋)  )

⌊ ⌋  

   

 ∑   (   )  

 

  ⌊ ⌋  

 

(3.11) 

Recall that in the two level capacity mode, there is an external capacity agency which 
provides the contingent capacity periodically at a higher price than permanent capacity 
(i.e.      ), where    is sensitive to the period length   due to the (   ) coefficients. 

Similar to the previous capacity modes, we exclude the costs related to the baseline 
capacity level:    .  For given    and    values, the capacity related cost per unit time, 

   ( ), can be directly derived from    ( ) as follows: 

   ( )    (    )   (   ( )     )   

(3.12) 

Next, we focus on deriving the sojourn time distribution of a defective system in the 
repair shop,  {       }, which is needed both in the derivation of    (   ), as well 

as it is used in the constraint:  {       }  
  

 
. 

3.5.2.2 Sojourn Time Distribution 

In order to derive an explicit formula for the sojourn time distribution of a defective 

system, we first define an extended Markov Process, ( ( )  ( )), where  ( ) denotes 
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the number of defective systems in the repair shop at time  , and  ( ) denotes the 
position of a tagged defective system in the queue (including the one that is under 
service) at time  . 

Recall that the repair shop is modeled as a         queue with a sufficiently large  . 

Suppose   denotes the set of all states of the stochastic process ( ( )  ( )). Then we 

have              (   )    
(   )  

 
, which is the cardinality of set  .  

Since the repair shop employs a      priority rule, we always have    ( )   ( )  
 , since the number indicating the position of a tagged defective system cannot exceed 
the total number of defective systems in the system. Also, the      rule provides that 
 ( ) is non-increasing in  , because the position of the tagged defective system 
decreases one by one as the repairs of the defective systems before the tagged system 
are completed. When  ( )   , the tagged system’s repair is literally finished. 

Therefore, any (   ) is an absorbing state of the ( ( )  ( )) process for       

 . Note that upon a failure at time  , if there are already     defective systems in the 

queue, then we have ( ( )  ( ))  (   ) for all    . Due to the capacity policy 

    [         ⃗ ], the service rate of the queue can change at the start of each period. 

Therefore, we first characterize the transient behavior of ( ( )  ( )) under a constant 

service rate of  , which will help us to analyze the ( ( )  ( )) process under  . The 

state diagram of the ( ( )  ( )) under a constant service rate   is given in Figure 3-4.  

Note that states     (    ) are absorbing states of this process. After constructing   
for an arbitrary  , we can analyze the transient probability behaviour of the 
( ( )   ( )) process under constant service rates      and     .  

Let   ( ) and   ( ) denote the transition probability matrices of the ( ( )   ( )) 
process in   time units, under constant service rates      and     , respectively. 

These matrices contain     
 ( )  (    

 ( ) ) values, which denote the probability that 

the system will be in state  , ( ( )      ( )    ), given that it was in state   in the 
beginning: ( ( )      ( )    ), when the service rate is    (  )  throughout time  .  
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Figure 3-4: The state diagram of the ( ( )  ( )) process under a constant service rate  . 

 

                                   for              and       for        ; 

                                  and                 for       ,        ; 
        ∑                                      for all non-absorbing state  ; 
                        for all other (   ) pairs.  

                     (3.13) 

We can find   ( ) (  ( ) ) matrices from the transition rate matrix  , with the help of 

the uniformization technique. The idea behind the uniformization technique is to make 
the stay time in each state exponential with the same mean. For a given service rate  , 
the leaving rate    ∑         is found for each state    . Then we take the 
uniformized event occurrence rate, which is         . After the uniformization 
procedure, the time between two transitions in the modified process is exponentially 
distributed with rate  , and given that a transition occurs, the probability that the 

transition is from state   to  , under a constant service rate  , is denoted as  ̃     and it 
satisfies: 

 ̃    
    

 
     , where        if     and         otherwise, for every      .  

Property 3.5:  Let  ̃ denotes the uniformized         transition probability matrix that 

consists of  ̃    values, which are defined above. Then we can write:   ( )  

∑      
    

(  )   

  
 ( ̃)

 
    when      and   ( )  ∑      

    
(  )   

  
 ( ̃)

 
    when 

     

Proof: The proof and the reasoning behind can be found in (Kulkarni 1995). Also, several 
numerical approximation techniques are available in the literature (e.g. (Kulkarni 1995)) 
in order to escape from the infinite sum. 
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After finishing the analysis under the constant service rate, next we focus on the 
( ( )   ( )) process under policy  , at the start of each period (              
         ). Note that the ( (  )   (  )) process has the following property for 
           

 

Property 3.6: For any period length  , ( (  )   (  )) under capacity policy 
    [         ⃗ ] satisfies the Markovian property. 

 

 

Now, let  (   ) be the         transition probability matrix of the ( (  )   (  ))  
process under capacity policy     [         ⃗ ] with period length   and for positive 
integer   values. This matrix consists of     (   ) values, which denote the probability 
that the system will be in state s=(     ) at the end of a period (which means there will 
be    defective systems in the repair shop and the tagged system’s position will be   ), 
given that it was at state   (     ) at the start of that period (which means there are 
    systems in the repair shop and the tagged system’s position was   ).  

    (   )   { ((   ) )  ((   ) )  (     ) ( (  )  (  ))  (     )} 

for   (     )  and   (     ) where      . 

 

Since   is a two-level threshold type of policy with a switching point (not necessarily an 

integer) of  , from the definition of the   ( ) and   ( ) matrices, we have     (   )  

    
 ( ) if    ⌊ ⌋ and     (   )      

 ( ) if    ⌊ ⌋ and     (   )  (  

⌊ ⌋)    
 ( )  (    ⌊ ⌋)     

 ( ) for all   (⌊ ⌋   )   (     )   .  

Recall that    is the sojourn time of a defective system in the repair shop. After 
analyzing the transient behavior of ( ( )  ( )) process under capacity policy 
    [         ⃗ ], we can start deriving  {       } for an arbitrary    . In order to 
obtain  {       }, we investigate the possible trajectories that the ( ( )  ( )) 
process follows in   time units after an arbitrary failure. 

Property 3.7: For any value of  , the trajectory of the ( ( )  ( )) process for     
follows one of the following four patterns: 

 )  spreads over  ⌈   ⌉ periods and initial service rate is    

2)   spreads over ⌈   ⌉  periods and initial service rate is    

3)   spreads over ⌈   ⌉    periods and initial service rate is    

4)   spreads over ⌈   ⌉    periods and initial service rate is   . 

Proof: The sketch of our proof is as follows. Suppose it is known that there has been a 
failure in a period. For the sake of the convenience, let the beginning point denote the 
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start of the period that the failure realizes. If the number of defective systems in the 
repair shop at the beginning point is less than ⌊ ⌋, the initial service rate is equal to   , 
otherwise, if it is more than ⌊ ⌋, it is equal to   . When there are exactly ⌊ ⌋ number of 
defective systems, the service rate is    with probability (  ⌊ ⌋) and    with 
probability (    ⌊ ⌋). 

Let   denote the time between the failure of a system and the end of the first period 
after the failure. From the Conditional Distribution of the Arrival Times (Ross 1983), it is 
known that   is uniformly distributed over (   ). If a failure occurs between (  ⌈  
 ⌉   ) in a period, then the duration   spreads over ⌈   ⌉  consecutive periods, 
whereas if the failure occurs between (⌈   ⌉     ), then   spreads over ⌈   ⌉    
periods.  

 

For each of these four trajectory patterns, the probability vector for the number of 
defective systems in the repair shop, upon a new failure is generated. If upon a failure, 
there are already   defective systems (   ) in the repair shop, the extended state of 
the system, ( (   )  (   )), upon that failure will be (       ) and the 
transient behaviour is traced throughout   from that time point of failure. 

Note that upon a failure, if there are already   other defective systems in the repair 
shop, that failed system is not accepted due to the modeling assumption of the 
        system. Let   denote the probability of such a hypothetical event.   can be 
calculated from: 

  
 

 

(

 
 
( ∑   (   )

⌊ ⌋  

   

 (  ⌊ ⌋)   ⌊ ⌋(   ))  ∫    (      )

 

   

  

 ((    ⌊ ⌋)   ⌊ ⌋(   )  ∑   (   )

 

  ⌊ ⌋  

)  ∫    (      )

 

   

  

)

 
 

 

(3.14) 

While deriving  {       },  we condition the probability that a failed system is 
accepted to the shop for repair. Arbitrarily small values of the non-accepting probability 
  can be obtained by assuming large enough   in the         model. The accuracy 
of the finite waiting room will be further assessed by a simulation study later in this 
section. The mathematical formulation of the above sketch is given in Property 3.8 
below:  
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Property 3.8:    {       } for       when     [         ⃗ ], a two-level 
threshold type policy with a switching point  , can be written as: 

 

 (   )
∑ ∑  {      (   (   ))}           

Where: 

 )      {      (   (   ))}    ∑   (   )

⌊ ⌋  

   

∑ ∫    (      )

 

   

  ̅
(   )

( )  

   

   

 

 ((  ⌊ ⌋) ⌊ ⌋(   )) ∑ ∫ ⌊ ⌋ (      )

 

   

  ̅
(   )

( )  

   

   

 

 )      {      (   (   ))}

 ∑   (   )

⌊ ⌋  

   

∑ ∫    (      ) ⃗⃗ (       )

 
( )

 

   

 ̅(   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

 ((  ⌊ ⌋) ⌊ ⌋(   )) ∑ ∫  ⌊ ⌋ (      ) ⃗⃗ (       )

 
( )

 

   

 ̅(   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

        )      {      (   (   ))}  ∑   (   )

 

  ⌊ ⌋  

∑ ∫    (      )

 

   

  
̅̅ ̅(   )

( )  

   

   

 

  ((    ⌊ ⌋) ⌊ ⌋(   )) ∑ ∫  ⌊ ⌋ (      )

 

   

  
̅̅ ̅(   )

( )  

   

   

 

       )      {      (   (   ))}

 ∑   (   )

 

  ⌊ ⌋  

∑ ∫    (      ) ⃗⃗ (       )

 
( )

 

   

 ̅(   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

  ((    ⌊ ⌋) ⌊ ⌋(   )) ∑ ∫  ⌊ ⌋ (      ) ⃗⃗ (       )

 
( )

 

   

 ̅(   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

  (3.15) 

 

Property 3.9: In a similar manner,  {       } for (   )       if     when 
    [         ⃗ ], a two-level threshold type policy with a switching point  , can be 
written as: 

 

 (   )
∑ ∑  {      (    (   ))}

            

 

Where: 
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      )      {      (    (   ))}   

∑   (   ) ∑ ∫    (      ) ⃗⃗ (       )

 
( )

 

    (   ) 

( (   ))
   

  ̅(  (   )   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

⌊ ⌋  

   

  

((  ⌊ ⌋) ⌊ ⌋(   )) 

∑ ∫  ⌊ ⌋ (      ) ⃗⃗ (       )

 
( ) 

 

 

    (   ) 

( (   ))
   

  ̅(  (   )   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

      )      {      (    (     ))}   

∑   (   ) ∑ ∫    (      ) ⃗⃗ (       )

 
( )

  (   ) 

   

( (   ))
   

  ̅(  (   )   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

⌊ ⌋  

   

 

((  ⌊ ⌋) ⌊ ⌋(   ))   

∑ ∫  ⌊ ⌋ (      ) ⃗⃗ (       )

 
( ) 

  (   ) 

   

( (   ))
   

  ̅(  (   )   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

   

   

 

      )      {      (    (   ))}   

∑   (   ) ∑ ∫    (      )  
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   ⃗⃗ (       )
 
( )( (   ))

   

  ̅(  (   )   )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    
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∑ ∫  ⌊ ⌋ (      )       ⃗⃗ (       )

 
( ) 

 

    (   ) 

( (   ))
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  (3.16) 

 

Above, in (3.15) and (3.16),     is the transpose of any vector  ,  
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     )) 

Where  (       )   ̅ 
 
( )   {    }, for          (    ) when   ⌊ ⌋ and 

 (       )   ̅ 
 
( )   {    }, for          (    ) when   ⌊ ⌋ and finally 

 (⌊ ⌋      )  (  ⌊ ⌋) ̅ 
 
( )  (    ⌊ ⌋) ̅ 

 
( ).  

Note that the     element of  ⃗⃗ (       )

 
( ) ( ⃗⃗ (       )

 
( )) above denotes the 

probability that after   time units from the failure, the number of defective systems will 
be   

 , ( ( )    
 ), and the position of the system that has failed at time     will 

be   
  after   time units, ( ( )    

 ), for       (    ). 

Here, the formula in (3.16) generalizes the formula given in 3.15 for      by keeping 
the track of the extended state of a defective system in the shop throughout a period 
with the help of the  (   ) matrix. 

As we have derived the sojourn time distribution of a defective system in the repair 
shop, we can find  {       } for any     and any policy  .  

Let    
(   )  

 (   {         })

  
. We can obtain    

(   ) by redefining   (       )  

  
 ( ) when   ⌊ ⌋ and  (       )    

 ( ) when   ⌊ ⌋ and  (⌊ ⌋      )  

(  ⌊ ⌋)  
 ( )  (    ⌊ ⌋)  

 ( ), where   
 ( ) is the density of 

         (    ) and   
 ( ) is the density of          (    )  at  . 

In the light of discussions above, we can derive    (   ), since we have: 

   (   )    ( ((    )   ))    ∫(   )

 

   

   
(   )   

As we have derived all the necessary performance measures, in the next section we can 
discuss about the procedure and present the results of the numerical study that is 
conducted. 

3.5.3 Numerical Study 

In this section, we use the analysis and the results provided in the previous section in 
order to assess the performance of the two level flexible capacity mode under rental 
availability. In the end, we compare the cost performance of this mode with the 
minimum cost rate achieved under the fixed capacity mode with rental availability, 
     

 . The outline of this section is as follows.  

First, we describe the characteristics and the test bed of the computational study. 
Second, we present the search procedure in order to find the near-optimal policy 
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parameters for the problem given in (3.6). Finally, we discuss the results of the search 
procedure, examine the sensitivity of and the interactions among the policy and system 
parameters and finally assess the potential cost benefits that can be gained in two level 
flexible mode in comparison to the total costs under the optimal policy under the fixed 
capacity mode with rental availability. 

In our computational study, we normalize the arrival rate for the system failures,     
(failures per time unit) as well as the unit cost per time for the unit permanent capacity 
costs,     . The other parameters are scaled according to these normalized   and    

parameters. Similar to 3.4.3, we analyze a total of   scenarios with three different      
and three different     values, which are already given in Table 3-1. For each of these   
scenarios and different (   ) combinations, we execute our solution procedure to find 
the capacity policy parameters, (         ) and the rental duration   that yield the 
minimum total costs. 

The capacity agency can supply the agreed amount of contingent capacity at a given 
frequency. The frequency is determined by the period length, which is chosen from  , 
the set of candidate period lengths offered. In our thesis we assume     

{             }, which are scaled to the normalized inter-arrival time: 
 

 
    . 

Correspondingly, a period length of     corresponds to one capacity update 
opportunity in two inter-arrival times of system failures on the average. 

We develop a solution procedure, which is specifically designed for the optimization 
problem in (3.6). The fixed capacity results (   

     
 ) obtained from Subsection 3.4.3 

not only serve as a reference point to assess the overall cost performance (savings of 
two level capacity flexibility with respect to      

 ), but also help us to generate 
meaningful candidate parameter sets in our search procedure for the permanent and 
permanent plus contingent capacity levels as well as a meaningful set for rental hiring 
durations.  

Unlike the fixed capacity mode, we cannot find the optimal hiring duration and the 
optimal capacity policy parameters that minimize the total costs in problem (3.6) 
analytically. What we can do for this capacity mode is to derive the total relevant costs 
   (   ) for a given capacity policy   and a given hiring duration  . Time requirements 
for computing the total cost performance under this capacity mode, especially for the 
down-time related costs,    (   ) is quite demanding. While computing analytically 
 {       } for a given   is quite efficient, it becomes computationally non-economical 
to calculate    (   ) analytically, since it requires the numerical integration of 
 {       } over  , from   to infinity. 

Therefore, we used analytical computational approach to find the threshold policies 
which satisfy  {       }       . After finding the candidate policies for the optimal 
solution, the total costs under these candidate policies are obtained from discrete event 
simulation. 

Recall that for the search procedures in the specialized system environment, we have 
specified a      value, which is taken large enough to make sure that the optimal base 
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stock level,   , is smaller than      for all the problem instances. Due to the normalized 
failure arrival rate (   ),      values would be affordable for an enumerative search 
of    in {             }. On the other hand, in the commoditized environment, rental 
hiring duration   is a continuous decision variable. In addition, the computational 
requirements in this section enforces us to focus on a limited number of hiring duration 
possibilities. Therefore, an affordable set for candidate hiring durations has to be 
generated before performing the search procedure developed to solve (3.6). 

3.5.3.1 Generation of Candidate Sets for Hiring Durations 

Next, we describe the generation of the set of candidate hiring durations,  (    ), for 

each of the   different (    ) combinations given in Table 3-1. These  (    ) sets are 

going to be used in the search procedure to find the optimal parameters for (3.6). For a 
given (    ) pair, the set  (    ) consists of equidistant points (we took a distance of     

in our thesis), that are symmetrically dispersed around    
 , which is the optimal hiring 

duration under the same (    ) pair, in the fixed capacity mode.  

The half-length of the set  (    ) is driven by the sensitivity of    with regard to 

different   and   capacity cost parameters under the same (    ) combination in the 
two level capacity mode for the specialized system environment. The sensitivity of    to 
different   and   values (  from   to    and   from   to  ) can be collated from the 
results given in Section 2.5. The reason that we use the sensitivity of    while creating 
the candidate set for  , is due the fact that both spare stock in the specialized system 
environment and the rental hiring duration in the commoditized system environment 
serve to the same purpose, which is to alleviate the down-time related costs by 
improving the overall system availability. In addition, in fixed capacity mode results, we 
have observed similarities between the effects of (       ) on the optimal stock level 

(  ) and effects of (       ) on the optimal hiring duration (  ) decisions. In addition, 

the interrelations between the capacity policy   and the hiring duration   resemble 
those between   and  , only the response of the stock level decision is more sclerotic 
than the hiring duration decision since   is a positive integer by definition. Therefore, for 
each of the nine (    ) combination, we designated the  (    ) set in such a way that, it 

contains the    in the middle and it contains a hiring duration candidate that is at least 1 
unit less than the smallest    value (  

   ) as well as a hiring duration that is at least 1 
unit more than the largest    value (  

   ) that are encountered for these (    ) 
values, under the two level capacity policy of the specialized system environment, with 
different   and   capacity cost parameters. In Table 3-4, for each of the 9 (    ) pairs, 
we give the    

 ,   
    and   

    values as well as the  (    ) sets, which include the 

candidate hiring durations that will be explored in the following search method. The 
   

  for each (    ) is the central and bold member of the  (    ) set. 
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Table 3-4 The candidate hiring duration sets   (    )  with    

  , in the middle with bold font and 

(  
   ,   

   ) values encountered in Section 2.5 with the same (    ) pair under different (   ) values 
and    :linear, inverse linear and exponential; for          ,    ;           , .    

As we have determined the candidate hiring duration sets,  (    ), next we give our 

search procedure followed by the description of its underlying mechanism. 

Search Procedure-IV 

 

 

0. Follow steps a & b: 

a. For every    (    ) : 

Set   ( )    
   (

  
 
)

 
 , which is the   that satisfies:  (       )  

  

 
 

under single capacity mode. 

 

b. Choose a period length    . 

c. Create the    and    sets from   ( ) values as follows: 

     {
 

  
  ( ) 

 

  
  ( ) 

 

  
  ( )   

 

  
  ( ) 

 

  
  ( )} 

     {
  

  
  ( ) 

  

  
  ( )} 

d. For every    ,         and         find the    that satisfies the 

 {       }   
  

 
 , where     [         ⃗ 

 ], and   ⃗   is the threshold 

policy with a threshold point of   . 

1. After finding    (and therefore  ⃗  ) for all    ,         and        ,  we can 
find the minimum cost for given  ,    (  ( )  ) as follows:   
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   (  ( )  )     
                

(   (   )      [         ⃗ 
 ])  

 

2. After    (  ( )  ) for all    (    ) are found, we can find   , and   (  ) = 

[  ,   
 ,   

 ,  ⃗  ] values, which would give the global minimum cost rate for 
problem (3.6):         (  (  )  ) for this two level flexible capacity mode.  

   can be found from brute force search as follows: 

   (  (  )   )     
   (    ) 

   (  ( )  ) 

 

 

3.5.3.2 Explanation of the Search Algorithm 

In the search procedure above, at step  , we find a reference capacity level for every  : 
  ( ), which is the capacity level that results in the minimum     for a given 
   (    ) in the single, fixed capacity model. This reference capacity level is used later 

to determine the permanent (  ) & permanent + contingent (  ) capacity levels, which 
will be used in the two-level flexible capacity policy,     [         ⃗ ]. For a given  , 

the reference   ( ) is found from   ( )    
   (

  
 
)

 
, which is the capacity level   that 

satisfies:  {       }  
  

 
 .  

After the reference point   ( ) is found for each candidate hiring duration     (    )  , 

we are ready to construct the sets     and   , which contain the low and high capacity 
levels (   and   ), respectively. Note that for a given   and period length  ,    and    
should satisfy:       ( )     . Otherwise the resulting  {       } due to the 

capacity policy   will never be equal to 
  

 
.  

From a previous related study, (Buyukkaramikli et al. 2011-a), we have observed that the 
choice on the permanent capacity level plays a more important role in determining the 
savings from average capacity deployment. Therefore, in our thesis, we put more 
emphasis on the decision on the permanent capacity level during the search procedure. 
For that reason, for a given hiring duration  , among a number of equidistantly 
scattered capacity alternatives around the reference   ( ) value,     of them are 
taken smaller and the remaining     are taken larger than   ( ). Actually, there can be 
infinite number of (   ,   ) possibilities. However, for computational time reasons, we 
limit ourselves to a total of 10 equidistantly scattered capacity alternatives, where 

   {
 

  
  ( ) 

 

  
  ( ) 

 

  
  ( )   

 

  
  ( ) 

 

  
  ( )} and    {

  

  
  ( ) 

  

  
  ( )}, which lead to a total of 16 (  ,   ) pairs for each  , where         and      

  . 
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For each hiring duration  , period length     and (  ,   ) pair, we find the   , which 

satisfies  {       }   
  

 
, where     [         ⃗ 

 ], and  ⃗   is the threshold policy 

with a threshold point of   . After    is found for every:    (    ),    ,        and 

      , we find the optimal parameters ( *,  *,   
* and   

* ) by brute force search in 
steps 1 & 2. This search completes the solution procedure for our problem. 

Next, we present and discuss the results of the numerical study that is conducted, where 
the optimal costs for problem (3.6) are obtained from the search procedure that is 
described above. We first present the savings in total relevant costs when the best two 
level flexible capacity policy is employed compared to the best fixed capacity system 
(     

  in short). Afterwards we conduct a sensitivity analysis of the system and the 
optimal policy parameters. After discussing the interrelations, we provide the results of 
the simulation study where the accuracy of the finite waiting room approximation was 
assessed.  

3.5.3.3 Savings Compared to the TRC under the Optimal Single Level Capacity ( 
     

  ) 

Total costs can be reduced up to a great extent due to the two-level capacity flexibility. 
From our numerical results, we have witnessed that up to a     savings can be 
achievable in total costs due to the two-level flexible capacity mode compared to the 
minimum cost that can be achieved in the single capacity mode:       

 .  

In Table 3-5, we give the maximum percentage savings that two level flexible policies 

can bring for all 9 different  
 

  
     scenarios with     ,                and   and 

        and  , when    has the linear, exponential and inverse proportional functional 
form. Suppose for given cost parameters (       and  ), and a functional form for   , 
      

  denotes the minimum total costs that can be achieved under all two level 
capacity policies in the commoditized environment that Search Procedure-IV goes 
through. After       

  is found, the corresponding entry in Table 3-5 can be calculated 
from:  (      

        
 )/      

 . 

We first observe that, although the same permanent capacity cost,      is used for 

both environments, the percentage savings in the commoditized environment is lower 
compared to the savings of the 2-level policy in the specialized setting, which was given 
in Table 2-5. This can be explained by the fact that the cost parameters related to the 
operating systems differ greatly for the commoditized setting from the specialized 
setting. For instance the unit time holding cost per a critical subsystem is lower than the 
unit time hiring cost of a substitute system and down-time costs are higher in specialized 
system environment. Higher     and      ratios (compared to       and      ) make 

the role of the flexible capacity policies in the specialized system much more critical than 
in the commoditized system.    

From Table 3-5, we can observe that the percentage savings seem to decrease with the 
hiring cost rate   . This is due to the fact that the reference cost parameter       

  
increases with    faster than the cost savings (      

        
 ) increase with   , 
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since an inflated    means that a higher portion of the total costs is hiring costs (  ), 
and therefore less sensitive to the changes in capacity policy than the other cost parts 
(    and    ).  

Some of the trends we have seen in Table 2-5 are also observable here, too. For 
instance, the savings in total costs increase with the period length elasticity   and 
decrease with maximum opportunity cost factor  . Similar to the specialized system 
environment, under the same capacity cost parameters, linear cost structure for the 
contingent capacity results in the most savings, and the inverse proportional results in 
the least. Down-time cost factor seems to increase the percentage savings, however 
contradictory instances, where a higher   leads to lower savings, exist, which 
necessitates a further enquiry. 

Finally, we explore further how the optimal policy parameters change under the optimal 
two-level periodic capacity flexible mode compared to the single level capacity mode for 
different cost parameter settings. In Table 3-6, we show how the optimal two level 
capacity mode policy parameters (  ,   ,   ,   

  and   
 ) differ with various (   ) 

combinations and          scenarios. 

The data in Table 3-6 illustrate that under the optimal policies pertaining to the two 
level capacity mode, the cost savings compared to       

  come from both less capacity 
deployment as well as less hiring costs due to the shorter hiring durations. It can be seen 
that for each of the           scenario and (   ) combination,    under the two level 
capacity mode is less than or equal to the   

 , which is the optimal hiring duration 
under the single-level capacity mode. The differences in hiring durations are generally 
higher for lower    and higher     , lower   , and higher   parameters. In Table 3-6, it 
can be seen that the smallest period length      , is chosen as the optimal period 
length in most of the instances. However, for lower   values, high   and positive 
elasticity (   ), higher period lengths (     ) can be optimal, as well. Although two 
level capacity policies cause savings in capacity related costs (   ) due to less deployed 
average capacity,    ( ), the optimal capacity policy parameters in Table 3-6  (  ,   

  
and   

 ) can provide further insights.  
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Table 3-5 : The % cost savings of two level flexible capacity policy compared to the fixed capacity policy 
when    : inversely proportional, exponential and linear structure, when          ,   ,            , , 
for                and   &      ,  in the commoditized system environment. 
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From Table 3-6, we can observe that in the two level capacity mode, the choice on the 
optimal permanent capacity   

  is considerably lower in comparison to optimal capacity 
level in the single capacity mode    

 . We can see that    
  increases with   and 

decreases with  , which suggests that the repair shop hedges risk by deploying more 
permanent capacity when the contingent capacity becomes more expensive and its 
price gets more insensitive with respect to the period length. We do not observe a 
monotonic relation between the choice of    

  and the other cost parameters. 

The threshold value    can take non-integer values as well.    tends to increase with   
and decrease with  , which is parallel to the risk-hedging behavior of the repair shop 
when capacity is more expensive. These inter-relations between the capacity and cost 
parameters will be further explicated in the next section, where a list of sensitivity 
analyses are conducted on policy and cost parameters. 

 

Table 3-6 : The optimal two-level capacity mode policy parameters (  ,    and   ) under different          
scenarios (1:            2:            3:             and 4:            ) and various 
(   ) combinations when     . 

3.5.3.4 Sensitivity Analysis of the Optimal Policy Parameters 

In this subsection, we discuss the inter-relations among the cost and optimal policy 
parameters. We first focus on how the optimal switching point    is affected by other 
cost/policy parameters. Afterwards we investigate the role of the period length on     
and on the choice of other policy parameters. Finally, we examine how the hiring 
duration   affects     and other parameters.  
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3.5.3.4.1 The Optimal Switching Point:    

In this subsection, our main concern is how the optimal switching point   , changes with 
different policy and cost parameters. Recall that    is the switching point that satisfies  

 {       }  
  

 
, where     [         ⃗ 

 ], and  ⃗   is the threshold policy with   . 

Therefore unlike the specialized system environment,    in this section is the same for 
all contingent cost function structures (e.g. linear, inverse linear and exponential) and 
for all capacity cost parameters   and  . In Table 3-7, we tabulate how    value 
responds to changes in permanent and contingent capacity levels (  ,   ), period length 
  and hiring duration   when     ,     .   

 
Table 3-7 The optimal switching point (  ) when     ,      for different        and   .  

In short, the results from Table 3-7 suggest that, ceteris paribus: 

 The lower   , the earlier (i.e. smaller number of defective systems at the repair 
shop) we switch from low to high capacity (or vice versa). 

 The higher   , the later (i.e. larger number of defective systems at the repair 
shop) we switch from low to high capacity (or vice versa). 

 The larger  , the earlier we switch from low to high capacity. 

 The longer  , the later we switch from low to high. 

These trends are general, no matter which cost function is chosen (linear, inverse or 
exponential) for the contingent capacity or what the cost parameters   and   are. These 
behaviors can be explained as follows: as the permanent capacity (or contingent 
capacity) gets higher, the repair shop would hire contingent capacity less frequently and 
at higher workloads. On the other hand, shorter period lengths enable more frequent 
capacity updates, in other words enable faster recourse actions, which incentivize the 
repair shop to take more risks by using contingent capacity at higher workloads. In a 
similar vein,    increases as   increases, although   ( ) is decreasing with  .  This is due 
to the fact that a higher rental hiring duration may decrease the     (down-time 
related costs) too much, such that trimming the capacity usage of the repair shop by 
hiring contingent capacity at higher workloads is cost beneficial.  

Having completed our discussion on how    is affected by various parameters, next we 
summarize our findings on the bidirectional relations between period length,  ,     
and other policy parameters. 
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3.5.3.4.2 Period Length   

The period length   plays a central role in this capacity mode, as it induces the level of 
the adaptability of the repair shop capacity to the workload and it determines the per 
time unit cost of the contingent capacity due to the capacity provision mechanism. 
Accordingly, in this part we investigate the sensitivity of the total costs and the optimal 
policy parameters to the period length   under different contingent cost functions with 
  different structures and   and   parameters.   

In order to pursue an investigation on the effects of period length per se, we worked on 
a scenario when the capacity agency supplies the agreed amount of capacity only at a 
given frequency (i.e.     { }, a set that consists of a single period length) and we run 
the search procedure described above in order to optimize other policy parameters (  , 
  

 ,   
* and  *). We follow these steps for increasing values of period length by the 

order of:                  with different ∆ and α values. Therefore note that the 
     notation in this part is used for the optimal total costs for a given period length. In 
Figure 3-5 the behavior of the optimal      at increasing period lengths, under two 
level capacity policy is illustrated for                 and         and   , when 

   function has exponential (left) and inverse linear (right) structure. 

 
Figure 3-5: The behavior of the optimal      at increasing values of  , under 2 level capacity policy for 
                 and         and   , when    has exponential (left) and inverse (right) structure. 

In Figure 3-5, it can be observed that in the two level capacity mode, all optimal      
values at given period lengths   from     to   for the chosen   values (    and   ) 
engender smaller total cost realizations compared to the optimal cost in the single 
capacity mode,     

 . Of course this can be reverse for even higher values of   coupled 
with a low elasticity  , or even longer period lengths. Therefore, any two-level capacity 
mode alternative at a given period length   should yield a total cost value less than 
    

 . 

Furthermore, we can observe from Figure 3-5 that the minimum total costs with positive 
  are higher than the minimum total costs when      . This is self-evident, since the 
per time unit cost for contingent capacity,   , is the cheapest and equal to    when 

     , no matter what structure that the    function has. In such a case choosing the 
shortest possible period length will be the optimum, since more frequent updating 
possibilities would increase the responsiveness of the repair shop capacity to its 
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workload, and thus a more economic use of its resources without any added cost 
factors. On the other hand, for      , due to the wage differential reflections of the 
contingent capacity costs,      gets higher at short period lengths, which stimulates 
the choice of a longer period. That’s the reason why the gaps between      with 
different   values are widest when      , which is the shortest period length that is 
analyzed. On the contrary,      for different   overlap each other at longer period 
lengths, since the effects of the wage differentials slim down to a negligible extent after 
some  .  

     can behave quite differently with different period lengths when    has a linear 
structure. In order to comprehend the dynamics of the interplays between the period 
length, total costs and cost parameters at a deeper level, we present Figure 3-6, which 
illustrates      values under 2 level capacity mode at increasing period lengths (  from 
    to  ), when    has a linear structure for      and     . The figure on the left 

emphasizes the effects of different   values (    and   ) when       and the figure on 
the right emphasizes the role of the elasticity, by illustrating      with         and   
when      . 

 
Figure 3-6 : The behavior of the optimal      under 2 level capacity mode at increasing values of period 
length  , for            and when    function has the linear structure. Left:       and         and 

  . Right:      and         and   . 

In the linear cost structure,    equates to    for period lengths bigger than or equal to 

    values. For        , all      values with     coincide with the      values 
with    .      curve pertaining to the linear cost structure has a carving around    , 
which is important because it mostly determines the optimal period length for    . 
From Figure 3-6, we can observe that the optimal period length is the smallest possible 
  for     and it is equal to:     for    , unless        . The other characteristics 
of      with linear cost structure are similar to those of the previously mentioned 
     values with exponential and inverse linear structures. After discussing the role of 
  on the behavior of     , next we can scrutinize the effects of different time elasticity 
factors:   on the behaviour of     . 

The time elasticity of per time unit contingent capacity cost is the other important factor 
that determines the behavior of the minimum capacity costs in response to the period 
length  . What we can first conclude from the right figure in Figure 3-6 is the following: 
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for a given    ,      values decrease with increasing  , because for a given period 
length  ,  the contingent capacity gets cheaper for increasing elasticity, when every 
other cost parameters remain unchanged.  Two extreme values that elasticity factor   
can take are   and   respectively. If    , the contingent capacity is perfectly elastic, 
and at the start of a period if it is communicated to the provider that the contingent 
capacity is not needed for that period, the capacity agency can immediately find another 
substitute task until the next period which is equivalent in terms of financial returns. 
This would vanish the cost burden due to the lost opportunities and wage differentials, 
therefore the optimal total costs behave as      with     . On the other hand, when 
   , the provider cannot assign the contingent capacity for another task, hence the 
wage differentials remain the same and the contingent capacity costs are inelastic and 
not affected by the period length. Given a certain    , any intermediate   value will 
result in an optimal total cost that is located in this band, bounded by      curve with 
    from below and      curve with     from above. It can be further observed 
that, in all capacity cost structures, with     and an intermediate   value,      gets 
closer to the above mentioned upper bound for shorter period lengths (as   goes to  ) 
and on the contrary, it gets closer to the lower bound (even completely overlaps in the 
linear cost structure case) for longer period lengths  . 

 

                            

inverse           

linear           

exp           

                                   

Inverse                 

Linear               

Exp               

Table 3-8: The optimal period length:    when      and      for inverse, linear and exponential cost 

structures when       and    for    (above) and when         and   for     (below). 

For completely elastic (   ) and completely inelastic (     ) contingent capacity cost 
structures, we observe that      values display a monotonically increasing behaviour 
with the period length  . However, for the other mid-values of  ,      displays a U-
shaped structure; where both   and   parameters are critical in determining the 
steepness of the curve. Therefore the optimal period length choice (  ) is affected by 
these cost parameters to a great extent.  In order to understand the nature of the 
dynamics between the optimal choice of the period length    and the contingent 
capacity cost parameters (   ), we present Table 3-8, where the optimal period length 
choices are tabulated under different contingent capacity cost structures for         
and    when       (above) and for           and   when     (below). 
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From the first tabular in Table 3-8, we can see that, when   remains constant,    
increases with  . This increase is most evident for linear contingent capacity cost 
structure and least evident for inverse linear contingent capacity cost structure. On the 
other hand, for the response of    to an increase in  , we can draw different 
conclusions. Generally speaking, we can say that    first increases and then decreases 
with  , when   is positive. In the second tabular in Table 3-8, this behavior can be 
obviously seen for linear and exponential cost structures, whereas     is insensitive to 
an increase in   for the inverse linear cost structure. However, different cost parameter 
selections (with higher values of  ) result in the suggested effects in response to  , for 
the inverse linear cost structure, as well. Note that    values in Table 3-8 are the same 
as the    values in Table 2-9, which suggest that the availability strategy (whether the 
availability upon system breakdown is from a spare part stock or a rental agreement) 
does not affect the response of period length choice to different capacity cost 
parameters, significantly. 

After finishing the analysis of the bi-directional relations between the period length   
and     , next we discuss the effects of the rental hiring duration decision:  . 

3.5.3.4.3 Rental Hiring Duration Length    

In this part, we discuss how the rental hiring duration length affects the optimal total 
costs and other policy parameters and vice versa. Note that in this part,      
corresponds to the minimum costs that can be achieved for a given rental hiring 
duration  . In order to conduct the analysis of the effects of the rental hiring duration 
per se, we fix a rental hiring duration length  , and find the optimal capacity policy 
parameters for that   according to the Search Procedure-IV described above. The first 
three figures in  

Figure 3-7 illustrate how      changes with increasing values for hiring durations for 
    ,      and for different   values (    and   ) and exponential, inverse linear 

and linear contingent capacity cost structures when (   ). The last figure in  

Figure 3-7 shows the behavior of      with increasing   but for different   values,  
(     ) for linear cost structure, for given    . 

The data in  

Figure 3-7 suggest that      resembles a convex function of  . It is already discussed 
that total costs are convex with   for a given policy  . It seems that optimizing the 
parameters of capacity policy at each hiring duration length  , does not distort this 
behaviour of     . As expected, increasing contingent capacity costs (higher   or lower 
 ) increase      values, however, the increase is moderated due to the optimization of 
other policy parameters. We observe that increase in   at lower   values affect      
more than increase in   at higher   values. In Table 4.8, we tabulate how the optimal 
rental hiring duration changes under different capacity cost structures when   
         for       and    for    (above) and for        and   when     

(below). 
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Figure 3-7 : Optimal total cost      for increasing hiring duration lengths   with          ,       and 
for clockwise direction: exponential, inverse linear and linear contingent capacity cost structure and with 
        and       in linear contingent capacity cost structure. 

                            

Inverse 2.33 2.33 2.83 

Linear 2.33 3.33 3.33 

Exp 2.33 2.83 3.33 

                                       

Inverse 2.83 2.83 2.83 2.33 

Linear 2.83 3.33 3.33 2.33 

Exp. 2.83 3.33 2.83 2.33 

Table 3-9: The optimal base-stock level:    under different contingent capacity structures when      and 
     for         and    for    (above) and for         and   when      (below). 

From the first tabular in Table 3-9, we can see that    increases with  , when   remains 
constant. On the other hand, the response of    to an increase in   for a given   is 
different. From the second tabular in Table 3-9, we can say that   first increases and 
then decreases with  , when   is given and positive. Note that the     values in Table 3-
9, are always less than the    values for the two level capacity mode with the same ( , 
 ) combinations in Table 2-10. 

The choices on the hiring duration and on the period length are inter-connected. Figure 
3-8 can be helpful to understand the interplay between period length   and the hiring 
duration  . 
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Figure 3-8: Right: the optimal period length for increasing hiring durations. Left: optimal hiring duration 
lengths for increasing period length when     ,      for     and    . 

The figure on the left demonstrates that the optimal period length,   , increases for 
higher values of hiring duration length  , and similarly the in figure on the right, we can 
see that the optimal hiring duration    increases with period length  . The data in Figure 
3-8 suggest that in the presence of wage differentials (     ), availability due to 
hiring duration length and capacity update frequency are complementary to some 
extent. As the frequency of capacity updates is higher, a shorter rental hiring duration is 
sufficient, whereas if we have a high rental hiring duration, the system would try to cut 
costs by less frequently capacity updating with cheaper contingent capacity costs.  

This concludes our sensitivity analysis section. In the next subsection, we check the 
accuracy of using the finite waiting room approximation for the repair shop. 

3.5.3.5 Accuracy of Finite Waiting Room Approximation 

In this subsection, we examine the accuracy of our finite waiting room approximation by 
comparing the Average Capacity Deployed (   ( )) and the  {        } values from 
the analytical model (having a finite waiting room of 40) with the (   ( )) and the 
 {        } values obtained by simulating the real environment having a repair shop 
that has an infinite waiting room.  

In our simulations, we used a run length of               defective part arrivals (when 
   ) in a single replication, where the average total cost rate     is calculated under 
a policy:     [         ⃗ ]. 

We investigated a total of      different scenarios with different            and   

and resulting policy parameters. The percentage error,     , of using the analytical 
approximation for     and  {        }in a scenario can be found as: 

    (   )      
(             )

      
   

    ( {        })      
( {        }     {        }   )

 {        }   
 

       (3.17) 
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Here,        ( {        }   ) is the average deployed capacity (probability that the 
time until repair is higher than the rental hiring duration length) obtained from the 
simulation and        ( {        }   ) are the same statistics derived from the 

analytical approximation.  Table 3-10 summarizes the accuracy of the approximations. 

 

 average %|err| min %err median %err max %err 

    0.017% -0.13% -0.002% 0.13% 

 {        }   0.29% -1.96% -0.01% 1.96% 

Table 3-10 : Accuracy of the approximation for the     and  {        } values 

In Table 3-10, the absolute value, minimum, median and the maximum for the 
percentage errors are listed, respectively. From the table, we can see that the 
approximation can mimic the performance of the original, infinite waiting room 
environment almost perfectly, which demonstrates the accuracy of our method. We can 
observe that the percentage of the errors in  {        } are higher than those of 
   . This is partly due to the fact that most of the  {        } values are less than 
   , therefore although the real differences are quite small, the percentage errors seem 
to be conflated. Furthermore the event of    being larger than   is not as frequent as 
the capacity deployment points, which happen at the start of each period, which may 
require a longer simulation length for more accurate results.    

This simulation study finalizes this section for the second capacity mode. In the next 
section, Section 3.6, we set out to analyze the third (and last) capacity mode. The 
conclusive remarks on second capacity mode will be provided in the overall conclusions 
section, Section 3.7. 

3.6 Periodic Capacity Sell-back Mode 
 

In this section, we analyze the integrated decision making problem of the service 
provider under the third capacity mode. This capacity mode is same as the capacity 
mode described in Section 3.6, in which the failed parts are sent to the repair shop at 
regular intervals in time. Due to this admission structure, when the repair of all the 
failed parts in the shop are completed in a period, it is known that there will not be any 
job left at least until the start of the next period. This synchronization of arrivals allows 
for a contract, where the capacity agency supplies a fixed amount of capacity at regular 
intervals in time, covering for the whole interval duration. However, if all the repairs in 
the shop are completed before the end of an interval, the capacity can be temporarily 
sold back to the capacity agency, at a reduced price, until the next interval.  

In this mode, we assume that the provider supplies the capacity at the original 
permanent capacity price   . On the other hand, when all the repairs are completed, i.e. 

when the repair shop becomes idle, the provider buys back the capacity temporarily 
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until the start of the next period at a reduced price, which is lower than   . There is also 

a fixed set-up cost, incurred at the start of each period due to the preparation of the 
capacity as well as the additional transactions due to the temporary re-assignment of 
the sold-back capacity.  

Similar to the previous capacity modes in the commoditized system environment, we 
assume that the rental availability of a substitute system upon failure is possible through 
rental providers. Distinctive from the previous modes, in this mode, a rental hiring 
duration consists of two parts. The first part, the pre-admission hiring part, starts 
immediately from the system failure and includes the time until the start of the next 
interval, when that failed system is admitted to the repair shop. The second part, post-
admission hiring part, starts from the admission into the repair shop and targets to 
alleviate the down-time costs during the time that the defective system spends in the 
repair shop. The pre-admission hiring duration is variable and non-controllable, whereas 
the post-admission hiring duration is fixed and to be determined by the MSP. The rental 
provider agrees to provide a substitute system for both pre-admission and post-
admission hiring durations, but charges different prices for them. Under these 
circumstances, the MSP has to give the optimal post-admission rental hiring duration 
and the capacity level decisions in order to minimize its    . The relevant capacity 
decisions in this mode are the period length   and the reserved capacity level  . We aim 
at building a modeling framework and a decision support system for the MSP operating 
under the periodic capacity sell-back mode in the commoditized system environment. In 
Subsection 3.6.1 we describe the dynamics of the pre-admission and post-admission 
rental hiring as well as the capacity sell-back option, and introduce the additional 
decision variables and give the problem formulation. In Subsection 3.6.2, the derivation 
and the analysis of the total relevant cost per unit time are given. Finally in Subsection 
3.6.3, we describe the experimental setting, the search procedure and provide the 
results of the numerical study with a particular focus on the sensitivity of the cost/policy 
parameters and the savings under this capacity sell-back mode compared to the best 
cost performance under the reference, fixed capacity mode in the commoditized 
environment       

 . 

3.6.1 Model, Capacity and the Problem Formulation 

 

The MSP operates in the same environment that is explained in the previous sections. 
Recall that the repair shop is modeled as a single-server queuing system, where the 
failures occur following a stationary Poisson demand and each defective system requires 
an exponentially distributed amount of dedicated repair service time in the shop in 
order to regain its good as new status.  

In this final mode, upon a system failure, a substitute system is sent immediately from 
the rental provider. However, the defective system that has failed is not sent to the 
repair shop immediately, but its shipment is postponed until the start of the next regular 
interval. The length of each interval,  , is an important decision parameter. For a given 
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interval length  , periodic admission points to the repair shop are introduced at 
equidistant times:              

In such a case, all the parts that failed within an interval are sent to the repair shop at 
the end of that interval simultaneously and the operations at the repair shop level 
resulting from the periodic admission structure can be modeled as a        queue, 
where   is a discrete random variable which denotes the number of parts failed within 
an interval. Due to the Poisson arrival stream for the part failures,   also follows a 
Poisson distribution with mean   . Note that as   goes to  , this model transmutes 
itself to the reference       model. The analysis and the characteristics of this gated 
queue type were already given in the previous chapter, Subsection 2.6.2. Further in this 
section, we will provide an extended analysis that will yield us the distribution of the 
time that a failed system spends in the repair shop, which is a key performance measure 
to be used in the service providers’ decision making. Under this queuing formalism, the 
processing rate of the single server queue,  ,  represents the capacity level of the repair 
shop, which is sustained by the capacity agency indefinitely.  

Recall that a periodic, capacity sell-back policy,     [   ], consists of a period length 
 , and a processing rate of  . Under policy  , the MSP closes a contract with a capacity 
agency. Under this contract, the capacity is provided to the repair shop indefinitely, 
however frequent job switching and searching for ad-hoc assignments for the idle 
capacity create an economic factor that lead to an opportunity cost   (     ). This 
opportunity cost decreases with the period length and is dependent on two other cost 
parameters:   and  . The cost structure of   (     ) is  similar to the structures 
described in Table 2-1 and Figure 2-2. Due to the   (     ), the unit capacity cost rate 
for the repair shop   ,  is greater than or equal to the   . When all the part repairs in the 

shop are completed before the end of an interval, the capacity is temporarily sold to the 
capacity agency until the next interval. The sell-back price is lower than   :    , where 

     , because we assume that there is a risk of not finding an appropriate ad-hoc 
task and even in the presence of a temporary task, that temporary task can be less 
profitable than the core repair shop activity.  

Suppose the repair shop operates under a stable (i.e.      ) policy,     [   ], for an 
infinite horizon. For a given per time unit permanent and contingent capacity costs,    

and   , and a given capacity sell-back cost reduction rate   (for       ), the average 
capacity related costs,    ( ) can be directly calculated as follows: 

 

   ( ) =          (   )(   )  (      )     (   ) 

(3.18) 

In (3.18), we excluded the costs pertaining to the baseline costs (   ) from the amount 

that is paid to the capacity agency (    ), for deploying   level of capacity. The repair 
shop capacity is sold to the capacity agency during the idle times. Therefore the repair 
shop gains a revenue of: (   )     per time unit. 
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We assume that the capacity agency offers a set of possible period lengths,  , from 
which the service provider can choose the best period length considering the pros and 
cons of periodic admission and capacity sell-back options.  

The rental provider agrees to provide a substitute system during the pre-admission and 
post-admission hiring durations. The pre-admission hiring duration is random, 
uncontrollable but it is dependent on the period length  . On the other hand, the post-
admission hiring duration,  , is controllable and is a uniform rental hiring duration that is 
to be determined by the MSP. The rental provision mechanism and the underlying 
principles of the uniform rental hiring duration/pricing were already discussed in Section 
3.3. Parallel to this provision mechanism, it is assumed that the rental provider charges 
   per unit time for the post-admission hiring duration, whereas, particular to the 
periodic sell-back capacity mode, for the pre-admission hiring duration, a higher rate of 
    is charged, due to the uncertainty in the duration length. Due to the differentiation 
between pre- and post-admission hiring durations, the reader is strongly recommended 
to keep in mind that pre-admission hiring duration should not be overlooked during a 
comparison of hiring durations among different capacity modes in the commoditized 
environment.   

The down-time cost rate is equal to   per time unit, and we assume that          . 
The hiring rental duration decision is the post-admission hiring duration  . In this 
section, we assume that all of the down-time during the random pre-admission time is 
serviced by a substitute hired from the 3rd party supplier at an inflated cost.  The 
capacity related decisions,  , are twofold: 

1) Length of the period:    

2) The size of the repair shop capacity level:   

The total relevant cost function,    , can be represented by   and  , and is the sum of 
capacity related costs (   ( )), down-time costs (   (   )) and hiring related costs 
(  ( )). Given these cost components and the decision variables, the problem of the 
MSP can be formulated as follows: 

   
   

   (   )     ( )     (   )    ( ) 

    

    [   ] 

   ,     ,  

 (3.19) 

Motivated by the problem formulation above, in the next subsection, we derive the 
necessary cost functions used in (3.19) and give some of the analytical properties of the 
components of    (   ). 

3.6.2 Derivation & Analysis of the Cost Functions 
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In this subsection, we derive the components of the total relevant costs per unit time. 
The capacity related costs per unit time,    ( ), for given cost parameters (   ,     

and  ) and policy parameters (  and  ) are already calculated in (3.18), from the 
previous subsection. In the previous subsection, we have discussed that a defective 
system first spends time outside the queue until it is admitted, and afterwards it spends 
time in the repair shop until the repair of that system is completed. The pre-admission 
hiring time covers for the first waiting time outside the repair shop and the post-
admission hiring time covers for the time when the defective system spends in the 
repair shop. The pre-admission time is different for each case, whereas the post-
admission time,  , is uniform and fixed.  For a given  , and capacity policy      [   ], 
hiring related costs can be written as follows:  

  ( ) =  (   
 

 
    ). The first part of   ( ) corresponds to the pre-admission 

hiring duration. Since the system failures occur according to a Poisson process, given a 
failure occurs, time until the start of the next interval follows a uniform distribution 
between (   ) (Ross 1983). Therefore the average pre-admission duration length is 

equal to  
 

 
 units of time. The second part of   ( ) is related to the post-admission 

hiring duration. Although the time that a defective system spends in the repair shop is 
unknown, a substitute system is hired from a rental supplier for   time units to alleviate 
the down-time related costs. 

Finally, in order to derive the last remaining cost component, which is the down-time 
related costs per unit time,    (   ), we need to delve into the detailed modeling of 
the operations at the repair shop level such as the sojourn time distribution of a 
defective system in the repair shop,  {        } under a given capacity policy,   . 

3.6.2.1 Sojourn Time Distribution in a        Queue 

Next, we analyze the sojourn time distribution of the        queuing model. The 
analysis on the sojourn time distribution builds on the preliminary analysis given in 
Section 2.6.2, therefore we use the same notation in this part. Note that in this part, 
“customers” refer to the number of defective systems and the capacity level of the 
repair shop corresponds to the processing rate of the queue.  

Recall that at any time point  , the total number of customers,   ( ), is the sum of the 
number of customers in the queue (including the one in the service),   ( ), and the 

number of customers outside the queue,   ( ), that are waiting to be admitted. At the 
start of each period, all customers outside the queue are admitted into the queue based 
on their arrival order, therefore we have   (  )    (  ) and   (  )     for 

           

In Section 2.6, from equations (2.25-2.28), we have already derived  {  
   } and 

 {  
   }, which are the limiting probabilities that there will be “ ” customers after “ ” 

time units from the start of an arbitrary interval, in the queue and outside the queue 
waiting to be admitted, respectively, under policy     [   ] for           and    .  
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In the derivation of the sojourn time distribution of an arbitrary customer, we are 
primarily interested in the number customers when:     , i.e. at the end of an 
interval, just before the admission time point. From the previous analysis in Section 2.6, 

we can derive  {  
  

  } under any capacity policy     [   ]. We also know that 

 {  
  

  } is independent from the capacity level   and is Poisson distributed with a 

mean equal to   . 

The position of an arbitrary arriving customer in the queue, determines that customer’s 
sojourn time in the queue. The position of an arriving customer in the queue depends on 
the number of customers left over from the previous period as well as the size of the 
group of customers, which the arriving customer belongs to. Under a given capacity 
policy   = [   ], if the position of a given arriving customer in the queue is  , then the 
sojourn time of that arriving customer is the sum of   service times in the queue. Since 
the service time of each customer is exponentially distributed with mean (   ), the 
sojourn time of an arriving customer whose position in the queue upon arrival is  , will 
be       ( ,  ) distributed. Due to its critical importance in the derivation of the 
sojourn time distribution, next we derive the steady state probability that an arbitrary 
arriving customer’s position in the queue is  .  

Lemma 3.1.  Suppose   denotes the size of the group of customers that an arbitrarily 
chosen customer belongs to. The probability that an arbitrary arriving customer belongs 
to a group of customers that has a size of  ,  {   } can be written as:     

 {   }   
   (  

  
  )

 (  
  

)
 

  
    (  ) 

  

  
 

(3.20) 

Proof: Suppose the number of the customer group sizes that are admitted to the queue 
are recorded during a large number ( ) of intervals. By the law of large numbers (Ross 

1983), for large enough  , the fraction of the groups of size   would go to  {  
  

 

 }, the number of groups having a size of   would be equal to    {  
  

  }, and 
the total number of customers coming from a group having size   would be      

 {  
  

  }. Similarly, the sum of all of the customers from these   groups would be 

∑      {  
  

  } 
   . Without loss of generality, assuming that (

 
 
)   , if   

goes to infinity, and a randomly customer is picked, the probability that the picked 
customer is coming from a group of size   can be written for           as below: 

 {   }      
   

(     {  
  

  }

 
)

(
∑      {  

  
  } 

   

 
)

 
  

    (  ) 

  

  
 

From Lemma 3.1, we can proceed to the derivation of the probability of the order of an 
arbitrary arriving customer. 
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Theorem 3.1.  Suppose   denotes the position of an arbitrary arriving customer in the 
queue. The probability that an arbitrary arriving customer’s position is equal to   for 
    can be written as follows:  

 {   }  ∑ ∑  {  
  

  }

   

   

 {   }
 

 
 

 

     

∑ ∑  {  
  

  }

   

   

    (  ) 

  

  

 

     

 

(3.21) 

 

Proof: The position of an arriving customer in the queue consists of the number of 

customers who are left over from the previous period (  
  

) and the newly arrived 

group of customers,  , of which the corresponding customer belongs to. In order to 

have an arriving customer having a position of  , we need to have   
  

   and 

   (    
  

)  and the order of the arbitrary customer in the arriving group should 

be equal to   (    
  

). Note that if the size of a group is equal to   (   ), the 

probability that a given customer’s order is (    
  

)  within that group is    . By 

summing all possible   
  

 and   combinations, we obtain  {   } in 3.21. 

 

From Theorem 3.1, we can derive  {        } for any given   = [   ] as follows: 

 {        }   ∑  {   } {              }

 

   

 ∑ ∑ ∑  {  
  

  }

   

   

    (  ) 

  

  

 

     

 {              }

 

   

 

(3.22) 

Where (             )  ∑     (  ) 

  
   
    , which is the tail distribution of an 

      ( ,  ) distributed random variable.  

Let    
(   )  

 (   {        })

  
.    

(   ) can be obtained from 3.22 easily. In the light of 

discussions above, for a given   and   , we can derive    (   ): 

   (   )    ( ((    )   ))    ∫(   )

 

   

   
(   )   

(3.23) 
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which finalizes the derivation of    ( ,  ). Next, we examine some of the properties of 
the    ( ,  ) function and the optimization problem in 3.19. These 
observations/properties are useful since their implications can be exploited during the 
numerical search procedure that will be given in the next section. 

3.6.2.2 Analytical Properties of Total Relevant Cost Function 

We know that the optimal rental hiring duration    has to satisfy the following first 
order condition: 

    (   )

  
    (      {        })      {        }  

  

 
 

(3.24) 

Therefore, if   {        }  
  

 
  is added to the optimization problem in (3.19) as a 

constraint, there will not be any implications on the optimal solution, since the optimal 

hiring duration would already satisfy  {        }  
  

 
. On the other hand, it may have 

important consequences in terms of decomposability.  

Note that in all of our numerical results, given   and  , we observe that  {        } is 
increasing with  . We can observe this behavior in Figure 3-9, where the  {        } 
values are given for increasing values of   levels, for         and      .   

 

 
Figure 3-9: The figure depicts how  {        } values are increasing for increasing values of   levels, when 
        and       are given. 

 

Suppose    denotes the capacity, where  {        }  
  

 
  when     [    ], for 

given      and     . For a given  , we can always find a     such that  {   

     }  
  

 
, when   [    ]. After    is found for all    ,      candidates, the 

overall optimal policy parameters can be found from (3.25): 



148 

   
   

   (   )     ( )     (   )    ( ) 

            

    [    ] 

     

(3.25) 

3.6.3 Numerical Study 

 

In this section, we use the analysis and the results provided in the previous section in 
order to assess the performance of the capacity sell-back mode under rental availability. 
In the end, we compare the cost performance of this mode with the minimum cost rate 
achieved under the fixed capacity mode with rental availability,      

 . The outline of 
this section is as follows.  

First, we describe the characteristics and the test bed of the computational study. 
Second, we present the search procedure in order to find the near-optimal policy 
parameters for the problem given in (3.25). Finally, we discuss the results of the search 
procedure. First we assess the potential cost benefits that can be gained in capacity sell-
back mode in comparison to the total costs under the optimal policy under the fixed 
capacity mode with rental availability. Afterwards, we examine the sensitivity of and the 
interactions among the policy and system parameters afterwards, the accuracy of the 
finite waiting room approximation in the analytical calculations will be assessed. 

In our computational study, we normalize the arrival rate for the system failures,     
(failures per time unit) as well as the unit cost per time unit for contingent capacity, 
    . The other parameters are scaled according to these normalized   and    

parameters. Similar to 3.4.3, we analyze a total of 9 scenarios with three different      
values for 3 different    values. The test bed  are already given in Table 3-1.  

For each of these 9 (
 

  
    ) scenarios and different (     ) and     combinations, we 

execute the Search Procedure-V to find the capacity policy parameters, (   ) and the 
rental duration   that yield the minimum total costs. 

The periodic admission   determines the frequency of defective system admissions as 
well as the frequency of the capacity sell-back actions, which is chosen from  , the set of 
candidate period lengths offered. In our thesis we assume     {                 }, 

which are scaled to the normalized inter-arrival time  
 

 
    .   

Note that all the derivations/equations in 3.6.2 pertain to infinite state variables, which 
can be a limitation of the predictive power of the computational study. In the numerical 
calculations the infinite state system of equations is truncated to a large enough finite 
(with a large waiting room of  ) ones. Simulation studies that we conduct, which will be 
explained at the end of this subsection, suggest that the analytical finite system 
approximation mimics the performance of the infinite state system almost perfectly. 
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Unlike the fixed capacity mode, we cannot find the global optimal hiring duration and 
the optimal capacity policy parameters that minimize the total costs in problem (3.25) 
analytically. Therefore, we develop a solution procedure, which is specifically designed 
for the optimization problem (3.25). The fixed capacity results (   

     
 ) obtained 

from Subsection 4.4.3 serve as a reference point to assess the overall cost performance 
(savings performance of capacity sell-back mode with respect to      

 ).  

In this capacity mode, we can derive the total relevant costs    (   ) for a given 
capacity policy   and a given hiring duration  . Due to the fact that the optimal capacity 
policy satisfies  {        }      , we use this constraint to decompose the main 
optimization problem into the sub-problems with different   and  . Each sub-problem 
finds the   (   ) that satisfies  {        }        for given   and  . After   (   ) 
is found for all possible   and  , their total cost performance under these candidate 
policies are obtained from discrete event simulation, because it is computationally more 
economical to analytical computation of    (   ), which requires numerical 
integration until infinity. 

In the commoditized environment, rental hiring duration   is a continuous decision 
variable. The computational requirements for deriving the total cost performance in this 
section is more demanding than the previous chapter, which enforces us to focus on a 
limited number of hiring duration possibilities. Therefore, an affordable set for 
candidate hiring durations has to be generated before performing the search procedure 
developed to solve (3.25). In this section, we use a uniform candidate hiring duration set 

  for each of the   different (
 

  
    ) combinations, which consists of equidistant points 

(we took a distance of     in our thesis), in the (      ) interval. We take        . 
Considering the similarity and the correspondence between stock level   and the hiring 
duration  ,         can be considered as a safe maximum cap. As we have 
determined the candidate hiring duration set,  , next we give our search procedure 
followed by the description of its underlying mechanism. 

Search Procedure-V 

 

 

0. For every (   ) combinations in      and    : 

a. Find    (   ) such that  {        }  
  

 
, when   [     (   )] 

1. After finding    (   ) for all    , we can find the minimum cost for given  , 
   (  ( )  ) as follows:   

 
   (  ( )  )     

    
(   (   )      [     (   )])  
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2. After    (  ( )  ) for all     are found, we can find   , and   (  ) = [  , 
   (     )] values, which would give the global minimum cost rate for problem 
(4.25):         (  (  )   ) for capacity sell-back mode.  

   can be found from brute force search as follows: 

   (  (  )   )     
    

   (  ( )  ) 

 

 

In the search procedure above, at step  , we find the    (   ) that satisfies:  {   
     }, when   [     (   )] for a given    . After    (   ) is found for each 
candidate hiring duration      and for each period length    , we find the optimal 
parameters (  ,    and    (     )) by brute force search in steps 1 & 2. This search 
completes the solution procedure for our problem. 

Next, we present and discuss the results of the numerical study that is conducted, where 
the optimal costs for problem (3.25) are obtained from the Search Procedure-V that is 
described above. We first discuss the savings in total relevant costs when the best 
capacity sell-back policy is employed compared to the best fixed capacity system where 
the rental availability is present (     

  in short), afterwards the accuracy of the finite 
waiting room will be checked via a simulation study. 

3.6.3.1 Savings Compared to the TRC under the Optimal Single Level Capacity 
(    

 ) 

In this section, we envisage the cost saving prospects of the periodic sell-back capacity 
mode. Therefore the optimal costs achieved under the third capacity mode will be 
compared to the     

   achieved from the single capacity mode. It has been observed 
that, the capacity sell-back option can reduce the total costs up to      Even under the 
hypothetical case where the provider agrees to pay the total of    per unit time during 

the repair shop’s idle times (i.e.    ), the reduction can be up to   % under some 
instances. On the other hand, for some of the cost parameter instances, especially when 
the maximum opportunity cost is high and  insensitive to the period length and when 
there is no (or very limited) sell-back opportunity (i.e.    ), the capacity sell-back 
policy may lead to losses rather than savings in    . The cost increase can be drastic 
(up to    %), therefore the implementation of the third capacity mode and the 
feasibility of the cost parameters have to be scrutinized additionally, taking the cost 
parameters into account, due to the potential serious consequences.   

In Table 3-11, we give the maximum percentage savings that capacity sell-back flexible 
policies can bring for all   different        scenarios (which are already listed in Table 
3-1) with                and   and         and  , when       , and when    is an 
inversely proportional, exponential and linear function of the period length respectively, 
for                 and  . Let      

  represent the minimum total costs that can be 
achieved from Search Procedure-V, for given cost parameters (             and  ), 
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and a functional form for   . After       
  is found, the % savings in Table 3-11 can be 

calculated from:  
(      

        
 )

      
  . The cells are color coded according to their 

percentage saving values. If       
  is higher than       

 , the corresponding cell is 
white. On the other hand, if       

  is smaller, the corresponding cell is shaded in gray, 
where the higher percentage savings have darker gray tones. 

From Table 3-11, similar to the specialized system setting, we can observe that the 
periodic capacity sell-back mode is outperformed to the fixed capacity mode, especially 
for low sell back rates (e.g.        ), high opportunity cost factors (e.g.     ) and 
low time elasticity (e.g.    ). 

The effects of the cost parameters on the cost performance of the optimal sell-back 
capacity policy in the commoditized system environment seem to resemble the effects 
of the cost parameters on the optimal cost performance under sell-back mode, in the 
specialized system environment. For instance, percentage savings/losses seem to 
decrease with hiring cost rate   . This can due to the fact that for higher hiring cost rate 
  , although the absolute change in costs due to the sell-back capacity mode gets 
bigger, percent wise it gets smaller, since the reference cost parameter,       

 , is 
greater and the share of the holding costs (  ) in       

  is bigger for larger   . Parallel 
to our observations before, the percentage savings increase/percentage losses generally 
decrease with the elasticity factor  . This can be explained as follows: the more elastic 
the contingent capacity cost gets (with respect to the period length  ), the cheaper 
contingent capacity becomes, which leads to additional savings or alleviation of the 
losses. On the other hand, the maximum opportunity cost,  , has an adversary effect, 
since higher   causes the contingent capacity to be more expensive, which leads to an 
increase in total costs ,       

 .  

From Table 3-11, we can also see that an increase in   most of the time accompanies an 
increase in percentage savings / a decrease in the percentage losses.   

The functional form of    plays an important role in the cost performance of the capacity 
sell-back mode when      and    , because in the absence of the maximum 
opportunity cost, or absence of the elasticity to the period length, all three functional 
forms yield the same    and therefore the same     

  . On the other hand, for      
and    , under all  ,   ,       &   , the linear functional form appears to be the form 
that results in the greatest savings (or the least loss) and the inverse proportional form 
appears to be the form that results in the least savings (or greatest loss).  

From Table 3-11, it is remarkable that in all of the     &    combinations and under all 
of the   &   parameters, the sell-back rate   is the primary determinant of the cost 
savings (losses). For each  ,   ,   &   quartet, when    , the     

   is always 
surpassed by     

   (the % difference can be up to -147%), and as   increases, the gap 
between     

   and      
   decreases. When    , there is a threshold  , after 

which     
   starts to outperform      

  , and the cost savings of the capacity sell-
back policy increases after that threshold   value. This threshold   value is lower, when 
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the capacity price ,    is lower, i.e. when   is small, when   is high and when     has a 
linear cost structure.  

Unlike in the two-level capacity mode, in the periodic sell-back mode, we notice that the 
percentage cost savings are higher in the commoditized system environment than the 
cost savings in the specialized system environment given in Table 2-12. This can be 
misleading, because in the commoditized system environment, in Table 3-11, the hiring 
in the pre-admission period is charged identically as the post-admission period (i.e. 
      ). However in real-life environments, we may expect that       , since the 
pre-admission hiring duration is uncertain and ad-hoc. Therefore, the savings in Table 
3-11 should be interpreted as upper bounds, instead.  

To give a more representative idea on the savings from periodic sell-back capacity 
policy, we can also describe an upper bound for the     

  , when we set      . As it 
can be seen in Table 3-12, when      , the percentage cost savings have decreased 
substantially compared to the cost savings in Table 3-11 for the exponential cost 
structure. A similar decrease in costs is also evident for linear and inverse proportional 
cost structures, as well. Yet, we present the percentage savings of the sell-back capacity 
mode only for the exponential cost structure due to the space limitations.  

If we compare the percentage savings of the commoditized environment with the 
specialized environment when      , we observe that, parallel to the two-level 
capacity mode, the percentage savings in the commoditized environment are lower 
compared to the savings in the specialized setting, which can be traced back in Table 2-
12. This can be explained by the fact that the cost parameters related to the operating 
systems differ greatly for the commoditized setting from the specialized setting. For 
instance the unit time holding cost per a critical subsystem is lower than the unit time 
hiring cost of a substitute system and down-time costs are higher in specialized system 
environment. Higher     and      ratios (compared to       and      ) make the role 

of the flexible capacity policies in the specialized system more critical than in the 
commoditized system.  

Finally, we explore further how the optimal policy parameters change under the optimal 
capacity sell-back mode compared to the single level capacity mode for different cost 
parameter settings. In Table 3-13 we show how the optimal periodic sell-back capacity 
mode policy parameters (  ,    and   ) differ with various (   ) combinations and   
different       scenarios. The    and    values from the periodic sell-back capacity 
mode, which are higher than the reference optimal    and     values from the optimal 
single-level capacity policies are highlighted. 

The data in Table 3-13 illustrate that, under the optimal policies pertaining to the 
periodic sell-back capacity mode, the rental hiring duration is not necessarily lower than 
the rental hiring duration under the optimal single-level capacity policy. Contrary, we 
observe that when the sell-back rate   is low, the sell-back capacity policy most of the 
time leads to higher rental durations than the fixed capacity policy. For longer   
parameters, the rental hiring duration tends to decrease and when    , if there is no 
maximum opportunity costs, the optimal post-admission rental hiring duration goes to 
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 . The pre-admission rental hiring still exists, because it is independent of the capacity 
level, but is affected by only the failure arrival rate and the period length.  

The declining of    with   is actually due to the incline of    with  . The optimal 
capacity level,    increases with  , because when there are more selling-back 
possibilities, the MSP is incentivized to buy more capacity in the periodic sell-back 
capacity mode than it would necessitate under the fixed capacity mode. An interesting 
hypothetical case is when there is no opportunity cost and when the full sell-back rate is 
possible, the MSP would choose to install infinite amount of capacity to achieve 
instantaneous repair, since the idle capacity can be immediately sold back without loss 
of any revenue.  

In the two-level capacity policy, we have observed that both the average deployed 
capacity (   ( )) and the optimal hiring duration are lower than the optimal capacity 
level   

  and the optimal hiring duration    
  under the fixed capacity mode. This is 

different in the periodic sell-back capacity mode, where at least one of the optimal 
capacity and the hiring duration is higher than the optimal fixed capacity parameters.  

The response of the optimal hiring duration to different cost parameters resemble the 
response of the optimal stock level under sell-back capacity mode in specialized system. 
   tends to decrease with higher     and higher α (parallel to other capacity modes) and 
with higher sell-back rate   values; and tends to increase with higher   and  . The 
optimal capacity level    under the periodic sell-back capacity mode tends to increase 
with almost all cost parameters (  ,  ,  ) except for the maximum opportunity cost  . 
Although    from the periodic sell-back capacity mode can be a lot higher than the   

   

from the single-level capacity mode, one should always keep it in mind that, in the 
periodic sell-back capacity mode, more capacity does not always lead to higher capacity 
related costs (   ), since the excess idle capacity can be sold back to the agency and 
due to this sell-back opportunity, it may be more profitable to deploy higher capacity 
compared to the   

    from the fixed capacity mode. The main explanation of these 

responses is as follows: when the changed cost parameter is increasing,  the capacity 
unit cost per time directly, MSP installs less capacity, which leads to longer hiring 
duration to cover the halted operations of the system-owner. Similarly if the changed 
cost parameter is directly increasing the hiring unit cost per time, MSP would hire a 
substitute for smaller periods which leads an increase in the capacity level to 
compensate for shorter hiring lengths. Besides these, there can be cost parameters that 
do not directly affect neither the capacity nor the hiring duration costs, but increase    , 
   simultaneously. 

After this brief comparison between the optimal policy parameters of the fixed capacity 
policy and the periodic sell-back capacity policy, in the next subsection, we check the 
accuracy of using the finite waiting room approximation for the repair shop. 
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Table 3-11 The % cost savings of the capacity sell-back mode compared to the fixed capacity, when 
          ,   and           and   ,         for               and  ,       and   when 
               ,   when    :inverse proportional, exponential and linear structure. 
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Table 3-12: The % cost savings of the capacity sell-back mode compared to the fixed capacity, when 
           and   and           and   ,        for               and  ,       and   when 
                and   when    has exponential structure.  
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Table 3-13: The optimal periodic sell-back capacity mode policy parameters (  ,    and   ) under different   
       scenarios (1:            2:            3:             and 4:            ) and 
various (   ) combinations when      and         and  . 
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3.6.3.2 Accuracy of Finite Waiting Room Approximation 

In this subsection, we examine the accuracy of our finite waiting room approximation by 
comparing the  {       } values from the analytical model (having a finite waiting 
room of 40) with the  {       } values obtained by simulating the real environment 
having a repair shop that has an infinite waiting room.  

In our simulations, we used a run length of 5             defective part arrivals (when 
   ) in a single replication, where the average total cost rate     is calculated under 
a policy:     [   ]. 

We investigated a total of      different scenarios with different       ,  and   

resulting policy parameters. The percentage error,     , of using the analytical 
approximation for  {       }  in a scenario can be found as: 

 

    ( {       })      
( {       }     {       }   )

 {       }   
 

 

       (3.26) 

Table 3-14 summarizes the accuracy of the finite waiting room approximations using the 
 {       }  generated from simulation. 

 

 average %|err| min %err median %err max %err 

 {       }   0.18% -1.29% -0.02% 1.76% 

Table 3-14 Accuracy of the approximation for the  {       }  values 

In Table 3-14, the absolute value, minimum, median and the maximum for the 
percentage errors are listed, respectively. From the table, we can see that the 
approximation can mimic the performance of the original, infinite waiting room 
environment almost perfectly, which demonstrates the accuracy of our method.  

This simulation study finalizes this section for the sell-back capacity mode. In the next 
section, Section 3.7, we discuss and summarize our findings in a nutshell and provide our 
conclusive remarks on the applicability of these capacity modes in the commoditized 
environment and link our findings to the previous chapter, retrospectively. In the next 
chapter we will briefly summarize the future research topics and extensions that are 
strongly related to the thesis. 

3.7 Concluding Remarks 

3.7.1 Summary 

In this chapter, we studied the integrated down-time service and capacity management 
problem of a MSP who is running a repair shop and is responsible for the availability of 
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different commoditized systems in an environment. In order to decrease the down-time 
costs, the repair shop closes a contract with a 3rd party supplier, and upon each system 
failure the 3rd party supplier agrees to lend a substitute to the MSP straightaway, for a 
uniform hiring duration length, at a fixed hiring price that is given. If the repair of a 
substitute system takes longer than this hiring duration, the down-time during this 
residual time is not covered (or covered with the same substitute system with an 
inflated price). In this commoditized system operating environment, the MSP is also 
offered the possibility to close a contract with a capacity agency that allows the MSP to 
make use of different sorts of capacity modes for the repair shop. The fixed, two-level 
and sell-back capacity modes have already been explained in the specialized system 
environment.   

In this section, we developed a decision support system for both two-level and sell-back 
capacity modes which integrates the down-time and capacity decisions of the MSP in 
order to minimize its total relevant costs. We compared the savings and the optimal 
policy parameters of both of these capacity modes with the optimal fixed capacity mode 
results first, and with each other afterwards. Different from the specialized system 
environment, the down-time service decision of the MSP in this environment is the 
hiring duration of the substitute system.  

For both two-level and periodic sell-back capacity modes, we analyze the performance 
of the MSP and develop computational approaches based on the decomposition of the 
overall problem in a number of sub problems that can be potentially solved as convex 
optimization sub-problems. Moreover, we performed a computational study to 
investigate the possible benefits of closing a contract with a capacity agency given 
certain values for the cost parameters (down-time costs, substitute hiring costs and 
permanent/ contingent capacity costs) for both of the flexible capacity modes. 

3.7.2 Results 

3.7.2.1 Cost Savings of the Flexible (2 Level and Periodic Sell-back) Capacity 
Modes and Intra-Environment, Inter-Mode Comparisons 

In this section, we wrap up our findings on the cost performance of the capacity modes. 
First, we observe that, under the fixed capacity mode, in the commoditized system 
environment, contracting with a 3rd party supplier to provide a substitute for a hiring 
duration, during the system down-time, immediately after a failure, is the preferred 
strategy of a small-medium sized MSP. Integrating the hiring duration decision with the 
capacity level decision reduces the total relevant costs of the MSP substantially, 
compared to the situation in which the MSP does not hire a substitute but optimizes its 
capacity level only. The intervention of the hiring duration can decrease the total 
relevant costs up to 55%. In the commoditized system environment, under the optimal 
capacity policy, for all down-time and hiring cost parameter combinations, the capacity 
relevant costs always compose half of the total relevant costs. Therefore the cost saving 
prospects of the flexible capacity modes are explored. 
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In the two-level capacity mode, the results show that the maximum savings (with 
respect to the costs under the optimal fixed capacity policy) can range from     to 
   . The biggest savings occur when there is no opportunity cost for the contingent 
capacity and when the hiring costs are the lowest. In case of positive maximum 
opportunity costs, the relative savings start to decrease, but even when it reaches its 
greatest value (i.e. when opportunity costs get as high as the permanent capacity costs), 
a substantial part of the savings (    to    ) are still maintained. 

In the periodic sell-back capacity mode, the cost-performance of the optimal periodic 
sell-back capacity policy seem to be much more unstable than the two-level capacity 
policy. In addition, the performance of the periodic sell-back capacity mode is highly 
dependent on how much mark-up the 3rd party supplier puts on the post-admission 
hiring rate during the provision in the pre-admission duration. Our numerical study 
reveals that the maximum savings can vary from negative values (up to twice higher 
costs than fixed capacity mode) to saving values of    . The maximum savings occur 
when there is no opportunity cost for the contingent capacity. However, for  sell-back 
rates lower than    , even if there is no contingent capacity cost, the periodic sell-back 
capacity mode can be still outperformed by the fixed capacity mode, due to the 
burstiness of arrivals caused by the periodic admission. Similar to the two-level capacity 
mode, the data from the numerical results further illustrate that the cost performance 
of the sell-back mode improves with lower pre-admission & post-admission hiring rates  
and with lower maximum opportunity costs for the contingent capacity.  

For both two-level and periodic sell-back capacity modes, linear contingent capacity cost 
structure leads to the highest savings and the inverse proportional structure leads to the 
smallest savings.  

Among the investigation of the three capacity modes, it is witnessed that the optimal 
performance of the fixed capacity mode is surpassed by the optimal two-level capacity 
policy in all of the cost parameter realizations in the studied commoditized system 
environment test-bed. We observe that the cost savings of the two- level capacity mode 
(with respect to the fixed capacity mode) in the total costs derive from both shorter 
hiring durations and lower capacity deployment.  

In contrast, there are a lot of cost parameter instances, which lead to an 
underperformance of the periodic capacity sell-back mode. A typical instance is where 
the sell-back rate is zero or very small, periodic sell-back capacity mode is always the 
least economical mode. As the sell-back rate increases, the gap between the costs of 
two capacity modes decrease and after a threshold value, periodic sell-back capacity 
mode starts to outdo the fixed capacity mode. Contrary to the two-level capacity mode, 
in the periodic capacity sell-back mode, at least one of the capacity policy parameters 
(capacity or hiring duration) is higher than those in the optimal fixed capacity mode. 
However, since the capacity can be sold back in the sell-back mode, a higher capacity 
does not necessarily mean underperformance.  

When making a pair-wise comparison between the two-level and periodic sell-back 
capacity modes, we observe that pre-admission hiring rate is an important driver. If the 
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pre-admission hiring rate is close to the down-time cost, then periodic sell-back mode 
hardly never surpasses the two-level capacity mode. On the other hand, if the pre-
admission hiring rate is similar to the post-admission hiring rate, we observe that under 
high sell back rates (higher than 90%) the sell-back capacity mode becomes the most 
economical capacity mode among the three. 

As it was discussed in the specialized system environment, the comparability of the 
maximum opportunity costs between two capacity modes should be checked, since 
there can be different explaining factors behind. Similarly, if there are shipment costs, 
the milk-run/shipment pooling possibilities arising from the periodic admission should 
be reflected in the calculations. In the next section, we set out to compare the results in 
between two environments, speculate over a scenario where hiring a substitute and 
holding a substitute per unit time have identical unit costs and introduce the hybrid 
down-time strategy in which both hiring and stock keeping options can be utilized 
simultaneously. 

3.8 Inter-Environment Comparisons 
In this section, we first briefly mention about the inter-environment comparison of the 
capacity modes. First we evaluate the saving performance results of the capacity modes 
in the specialized system environment and in the commoditized system environment. 
Afterwards, in order to understand the differences between the operating dynamics of 
two strategies, we speculate over a scenario where hiring a substitute and holding a 
substitute per unit time have identical unit costs. Then, we compare the results of 
choosing one of the two strategies and explain the differences between them. Finally we 
introduce the hybrid down-time strategy, in which both hiring and stock keeping options 
can be taken simultaneously. 

When we explore the cost performances in the specialized and in the commoditized 
environments, the key findings that we come across can be listed as follows: 

1. In the fixed capacity mode, the percentage savings of the integration of the capacity 
and the down-time service decisions is higher in specialized system environment (with 
respect to adjusting only the capacity level) 

2. For the two level capacity mode, the relative performance of the total costs with 
respect to the fixed capacity mode is better in the specialized system environment 

3. When the pre-admission hiring rate is expensive, the periodic sell-back capacity also 
performs better (in terms of total costs relative to the fixed capacity mode) in the 
specialized environment, however if the pre-admission hiring is the same as the post-
admission hiring rate, one can observe that the savings in the commoditized setting 
becomes slightly higher. 

These differences in percentage savings are explainable by the differences in the test 
beds. The holding cost in the specialized system setting is quite lower than the hiring 
cost in the commoditized system setting, which makes the base reference costs in the 
specialized system setting lower. Therefore, even though the differences in the nominal 
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savings between two environments are not that wide, the percentage savings’ gap 
increases due to the differences at the baseline. Only in periodic sell-back capacity 
mode, if the pre-admission hiring rate is the same as the post-admission rate, periodic 
sell-back capacity mode may generate slightly better percentage savings, however  we 
create an unfair situation for the specialized system, which suffers from such a safety 
net in case of stock-outs.    

The sensitivity and the interactions of the hiring duration and the stock level are very 
similar in all of the three capacity modes. Given a capacity mode and policy, bot hiring 
duration and stock level decisions can be modeled as newsvendor problems. However 
the level of controllability  and how these two strategies work are different from each 
other. That’s why, given the identical arrival rates, the comparison of the optimal total 
relevant costs between two strategies (    

  is the cost resulting from keeping a spare 
unit stock strategy and      

  resulting from using the rental hiring strategy), under the 
same   and    cost parameters and identical holding cost and hiring rental rates 

(    ),  can provide interesting managerial insights. 

In particular it is necessary to distinguish the differences between the guaranteed 
availability due to the agreed rental hiring option and the expected availability due to 
keeping additional stock is very interesting. Therefore, in Table 3-15, we first give the 
  

 ,   (  
 ) and     

  which are calculated from the Search Procedure-I in Section 2.4, 
for     , and for   and   values follow Table 3-1 when (    ).  

 
                

 
  

    (  
 )     

    
    (  

 )     
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 )     

  

                                              

                                               

                                               

Table 3-15 :   
 ,   (  

 ) and     
  which are calculated from the Search Procedure-I in Section 2.4, for 

     , and for         values from Table 3-1, when     . 

Afterwards, in Table 3-16, we give the nominal (    
       

 ) and percentage cost 

differences     (
    

       
 

    
 )  between the total relevant costs due to the rental 

hiring option and keeping stock option for   different           scenarios when 
(    ) and       .  

From Table 3-16, for the identical failure arrival (   ),      and           

scenarios when (    ), we can see that the optimal total relevant costs in the 
commoditized setting, with the rental availability, (     

 ) is always less (up to 
      ) than the optimal total relevant costs in the specialized setting, with stock 
availability, (    

 )  These differences can be explained as follows. Firstly, the rental 
hiring of a substitute system brings about a guaranteed and certain availability during 
the rental duration, whereas keeping a stock may bring about the same availability on 
the average, but without any certainty on the availability times. 
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Nominal  Percentage  Nominal  Percentage  Nominal  Percentage  

                                                    

                                                      

                                                     

Table 3-16: The nominal (    
       

 ) and percentage differences     (
    

       
 

    
 )  between 

the optimal total relevant costs due to the rental hiring option and keeping stock option for   different 
          scenarios when     . 

Secondly, the rental hiring duration   cancels out the sclerotic response of the stock 
level decision since    can take only positive integer values. The ability of   to take any 
positive values contributes to the controllability of the environment. We observe that 
both the nominal and percentage differences between the costs in two environments 
grow larger for higher   and higher   . Because of the controllability advantages of the 
rental hiring of a substitute system, even at a more expensive unit rental hiring rate 
compared to the unit holding cost rate (    ), the optimal total relevant costs under 
the rental availability,      

  can still outperform the optimal total relevant costs under 
the stock availability     

 . In , we give the maximum affordable rental cost rate for 
each of the   ( &   ) scenarios, above which keeping stock becomes a more 

economical alternative when    . 

 

                

                       

                        

                        

Table 3-17: The upper limits for the rental hiring cost rate   , above which the total relevant costs with 
stock availability,     

 , becomes more economical compared to renting a substitute. 

 

It is noteworthy that the MSP would afford more expensive rental availability (can be up 
to 95% more expensive compared to the holding cost rate    ), especially when   is 
higher and     is lower.  Next we set out to describe the hybrid down-time strategy. 

3.8.1 The Hybrid Down-time Strategy 

In the previous sections, we have analyzed two different system environments which 
resulted in two different availability strategies. Namely, in Chapter 2, we focused on the 
MSP’s operations in a specialized system environment and in the previous sections of 
this chapter, we focused on the same problem in the (partly) commoditized system 
environment. 
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In the specialized system environment, we assumed that the repair shop keeps a spare 
part inventory whereas in the commoditized environment, we assumed that the service 
provider purely makes use of the rental providers and tries to cover the down-time of 
the defective systems by uniform rental hiring of another substitute system for a fixed 
duration of time.  

In this section we introduce a hybrid strategy, where the repair shop holds a spare part 
stock but in the case of a stock-out, if a failure occurs, a new substitute system/part is 
sent to the customer for a fixed duration length. The rented substitute system stays until 
the end of the hiring duration no matter when the repair of the corresponding defective 
system is completed. The down-time costs are incurred if there is no inventory on hand 
and the repair time took longer than the hiring rental duration. In this section, we 
analyze only the fixed capacity mode, as we believe that it will give the main message 
behind the hybrid mechanism. Also we believe that the analysis of the hybrid 
mechanism under other flexible capacity policies will be rather more involved. 

The capacity cost per unit time is    in this fixed capacity mode since all the repair shop 

capacity is permanent (or supplied indefinitely). We pay   per unit time for each spare 
part in the stock/in the repair shop. The down-time costs due to the backorder of the 
spare parts is equal to   per time unit, and we assume that    . We also assume a 
fixed cost of    per unit time in order to hire a substitute from the rental shop.  

From now on, we use the notation of   to denote the capacity policy. In the fixed 
capacity mode,   is a single variable, since the only capacity related decision is the 
processing rate  . The inventory related decision is the base-stock level of the spare part 
inventory ( ), and the hiring related decision is how long to hire a rental substitute ( ) 
when there is no spare in the inventory. The total relevant cost function,    , can be 
represented as a function of  ,   and   and it is the sum of capacity related costs 

(   ( )), down-time costs (   (     )), holding costs (  ( )) and hiring related 

costs (   (     )). Given these cost components and the decision variables, the 
problem of the MSP can be formulated as follows: 

   
     

   (     )     ( )     (     )    ( )     (     ) 

           {       } 

    

      

(3.27) 

Given the problem formulation above, we first derive the necessary cost functions used 
in (3.27), give the analytical properties of    (     ), and present the optimization 
procedure for the problem.  

The capacity related cost per unit time is a linear function of the excess capacity    , 
since the baseline capacity level, ( ), is unaffected by the capacity policy. Per time unit 
cost of the capacity is constant and equal to   . Therefore, we have    ( ) =   (  

 ). The holding cost per unit time is also a linear function of the base stock level  , since 
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we have an additional   number of spare parts tied up in the stock/ repair shop and the 
holding cost rate per unit part is   per time. Hence, we have   ( )     . 

We hire a substitute part/system when there is no stock in the inventory. If there are 
more than   defective systems/parts, then we know that there is no part/system in the 
stock. From (3.2), we know that the number of defective parts/systems in the repair 
shop, when    , can be calculated from:  {      }  (   )   . Due to the 
PASTA property, the probability that there is no spare part/system in the stock upon a 
new failure can be found from: 

 {        }  ∑(   )  

 

   

    

(3.28) 

Hiring from rental takes place upon a “No Stock” event and each hiring endures   units 
of time. Therefore we have the following Hiring Related Costs (   (     )         ). 

The down-time also occurs upon a “No Stock” event, as well. However due to our hybrid 
strategy, we can take a remedy action upon being a backorder instance and hire a rental 
substitute for a fixed duration  . Down-time happens, if the repair of a new part is 
delayed more than   time units after the stock-out. Let     denotes the time that a 
customer waits for a new part to arrive after a stock-out.  

The sojourn time in the repair shop is exponentially distributed. Due to reversibility 
(Kelly 1979) and the memoryless property of the exponential distribution, the wait time 
of a customer given there is a stock-out,     is also exponentially distributed with rate 
(   ).  

An alternative explanation of the derivation of the distribution is as follows: 

Let  {              } denote the probability that a customer is going to wait more 
than   time units. Similarly let   {          } denote the probability that a 
customer is going to wait more than   time units given he sees   other customers in the 
queue upon arrival.  

Then we have: 

 {              }  
∑  {          } 

    (    )

 {        }

 
∑  {        } 

   (   )  

  
 ∑  {    }

 

   

(   )    

   (   )  

(3.29) 

Where             distributed random variable. Then we have the following for per 
time down-time related cost,    (     ): 

   (     )    ( {        } ) ((     )   )      
  (   ) 

(   )
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Hence, we have the following:  

   (     )       (   )             
  (   ) 

(   )
   

(3.30) 

Note that for a given   >  , and  ,   (   )  
   (

  
 
)

(   )
  minimizes the    (     ). If we 

plug this   (   ) into (3.30) then we would obtain: 

   (      (   ))       (   )       (
    (

  
 )

(   )
)   

(3.31) 

If we use    (      (   )) rather than    (   ) defined in (3.4) in the Search 

Procedure I, we can obtain the optimal   ,    and   (     ) parameters. 

Table 3-18, we give the optimal   ,    and   (     ) and the minimum total costs 
(    

  ) for        and    and        and    for        (top) and          

(bottom). 

 

 

                 

 

S* L* μ* TRC* S* L* μ* TRC* S* L* μ* TRC* 

      1 1.21 2.33 3.17 1 2.43 1.66 1.34 2 3.59 1.45 0.93 

       1 1.57 2.46 3.38 2 3.51 1.66 1.42 3 5.05 1.46 0.99 

       1 1.90 2.58 3.56 2 4.23 1.71 1.49 3 6.12 1.49 1.04 

 

 
                 

 

S* L* μ* TRC* S* L* μ* TRC* S* L* μ* TRC* 

      1 0.82 2.46 3.38 2 1.83 1.66 1.42 3 2.64 1.46 0.99 

       1 1.16 2.63 3.64 2 2.59 1.73 1.53 3 3.75 1.51 1.06 

       1 1.45 2.78 3.87 3 3.70 1.7 1.60 4 5.19 1.50 1.11 

Table 3-18 : The optimal   ,    and   (     ) and the minimum total costs for        and    and 
       and    for        (top) and          (bottom). 

When we compare the data in Table 3-18 to the data in Table 3-15 and Table 3-2, we 
can immediately see that the hybrid policy results in remarkable savings in total costs 
    

   compared to the      
  in the specialized environment and     

   in the 
commoditized environment. 
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Compared to the specialized system environment, hybrid policy results in lower base-
stock values and lower capacity levels. Compared to the commoditized environments, 
hybrid policy results in higher rental durations and lower capacity levels Compared to 
the specialized system environment, hybrid policy results in lower base-stock values and 
lower capacity levels. Compared to the commoditized environments, hybrid policy 
results in higher rental durations and lower capacity levels. 

Keep in mind that hiring rental is less frequent in the hybrid policy, since it occurs after a 
stock-out, whereas in the commoditized environment hiring is the only availability 
action.The savings of the hybrid policy     

   compared to the      
  in the 

specialized environment and     
   in the commoditized environment are tabulated in 

Table 3-19 with       and       . 

 

commoditized (    ) specialized (    ) 

 

                                  

      1.82% 7.51% 9.38% 16.28% 15.66% 15.33% 

       7.02% 12.44% 13.81% 24.99% 21.86% 20.95% 

       10.95% 16.39% 18.01% 30.02% 26.72% 25.87% 

 

commoditized (      ) specialized (      ) 

 

                                  

      7.04% 12.47% 13.83% 10.77% 10.16% 9.37% 

       12.61% 18.06% 19.80% 19.13% 16.12% 15.62% 

       16.65% 22.28% 24.18% 23.96% 20.92% 20.42% 

Table 3-19 Percentage savings of the hybrid policy in total costs in specialized and commoditized 
environments 

From Table 3-19, we can see that the percentage savings increase by   both  compared 
to commoditized (    

       
  )      

   and specialized (    
      

  ) 
     

  environments. We observe that percentage savings compared to commoditized 
environment costs:  (    

       
  )      

  ,  increase by    and compared to 

specialized environment costs: (    
      

  )      
 ,  decrease by   . In general, 

the hybrid policy seem to display significant cost savings and can be thought in other 
contexts, as well. 
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4 Conclusions and Future Research 

4.1 Overview of Results 
In this thesis, we studied the integrated capacity and the availability management of a 
MSP, which is running a repair shop and is responsible to keep the systems’ operations 
going. The systems are prone to failure, and operated by different customers. We 
primarily focused on two environments.  

In the first environment, the systems are partly specialized and they include a common 
critical part. We assume the service provider is responsible for the repair and the 
availability of this critical part and keeps a stock of spare parts near the repair shop. 
Upon a system failure, a new (non-defective) part is sent immediately to the failed 
system to replace the defective part, where the defective part is sent to the repair shop 
to be repaired. After the repair, the repaired part is restored in the spare part stock as 
an “as good as new” part, to be sent to another failed system in the future.  

In the second environment, we assume that the systems are partly commoditized, 
therefore there are rental suppliers available where a substitute of the failed system 
with almost the same functionality can be hired. We assume that a long-term 
agreement is achieved with a rental supplier, which provides a rental substitute system 
for a fixed duration at a fixed hiring rate. This uniform hiring upon system failure 
replaces the spare part holding strategy in the commoditized environment.   

The repair shop capacity determines how fast the defective parts/systems are repaired. 
In most of the cases, capacity related costs constitute the biggest component of the 
total costs, therefore we analyzed the saving prospects of the capacity costs due to 
capacity volume flexibility arrangements. We assume that actions which lead to capacity 
flexibility can be taken at periodic instances, and an external/internal capacity agency is 
needed for the coordination/transaction of these actions. We primarily focused on three 
capacity modes, which are fixed capacity mode, two-level capacity mode and capacity 
sell-back mode. In the fixed capacity mode, the capacity is deployed once and its level is 
fixed. We used the optimal cost performance of the fixed capacity mode as a reference 
to assess the cost performance of the other two capacity modes.  

In the two-level flexible capacity mode, the repair shop capacity is classified into 
permanent and contingent capacity, and the contingent capacity is supplied from the 
capacity agency at equidistant intervals for the whole duration of the interval. The 
length of the interval determines the per time price of the unit contingent capacity. A 
shorter length implies more frequent decision making and less job security for the 
contingent capacity, therefore it increases the per time price of the unit contingent 
capacity. The deployment decision of the contingent capacity is taken by the repair shop 
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at the start of each period, and is based on the number of defective parts/systems 
waiting to be repaired. 

In the capacity sell-back mode, the defective systems/parts are admitted to the repair 
shop at regular intervals. Due to this periodic admission structure, once the repair shop 
is finished with the repairs on hand, it is known that the shop capacity will remain idle at 
least until the start of the next period. This idle time certainty enables the realization of 
the capacity sell-back mode, in which the capacity agency acts as the trader of the repair 
shop capacity at its idle times. The capacity agency buys the idle capacity at a reduced 
rate and assigns the idle capacity for external tasks, if available. There is a fixed 
opportunity cost per period due to the emergent task search (since the start of the idle 
time is not known in the beginning) and the risk of not being able to find an external 
task. 

From the analysis we have observed that the integrated management of the availability 
(spare part stock in the specialized environment and the rental hiring duration in the 
commoditized environment) and the repair shop capacity in the presence of capacity 
flexibility can lead to remarkable savings in costs. Mostly, in the two level flexible 
capacity mode, savings compared to the best fixed capacity are more significant with 
lower contingent opportunity costs and higher time elasticity. In the capacity sell-back 
mode, the savings compared to the best fixed capacity are more visible for higher sell-
back rates and lower opportunity costs. However in both of the capacity modes, we can 
observe cost parameter combinations, in which the best fixed capacity policy 
outperforms other policies in the other flexible modes.  

The period length plays a central role and determines the frequency of the capacity 
actions. In our thesis, we observe that the capacity actions should be taken rather 
frequently with respect to the mean inter-arrival times.  We observe that when the 
period length is more than 10 times higher than the mean inter-arrival time, in many 
instances, the cost savings due to the flexibility start to disappear. In our thesis, we 
focused on the repair-maintenance environments, which are most of the time lower-
demand environments (for instance compared to the consumer goods/products 
environment). Therefore the findings of our thesis are adaptable to other make-to-
order/make-to-stock settings with some reservations, however the implications of the 
profitable period length/mean inter- arrival time ratio should be assessed realistically. 
Another important aspect is that our analyses are conducted in the stationary demand 
environment. This can be realistic to some extent for the maintenance environments, 
however in many real-life situations, we see non-stationary demand patterns. We 
expect that the savings in total costs would increase in the non-stationary demand 
environment since the workload will be more erratic in the non-stationary environment, 
which would require a higher baseline capacity in the fixed capacity mode, and the 
flexibility options enable us to adapt the capacity to the workload better.     

Next we briefly discuss over the future research topics. 
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4.2 Discussion and Future Research 
In the remainder, we summarize the most important findings in the bullet points and 
afterwards, we will elaborate on the future topics.  

First we wrap up the key findings 

 Specialized system environment and the commoditized system environment are 
different from each other.  

 Due to the commoditization and the following rentalization, the systems in the 
commoditized market can be replaced by a substitute covering for the agreed hiring 
duration. This can be attractive for a small-medium sized MSP, who doesn’t want to  

 The hiring costs (for a specialized system) are quite high compared to keeping a unit 
of spare critical part. 

 Hiring duration and stock level decision parameters responses to cost parameters 
are very similar. 

 In the single level capacity mode, capacity related costs constitute the major part of 
the costs. 

 Two-level capacity policy outperforms the fixed capacity level costs in both of the 
environments. However the percentage saving figures are stronger in the specialized 
system environment. (up to 75%) 

 The savings of the two level capacity mode are due to lower stock/hiring duration 
and lower average deployed capacity.  

 The performance of the periodic sell-back capacity mode improves with the sell-
back rate. When there is no sell-back rate possibility , it is the least economical 
option of the three. After a threshold value of the sell-back rate, it starts to surpass 
the fixed capacity mode, and if the same opportunity and time elasticity is applied 
for both of the capacity modes, there exists a second threshold, after which the 
periodic sell-back capacity becomes the most economical option. 

 Under the optimal periodic sell-back rate policy, at least one of the decision 
parameters (i.e. stock level, hiring duration or capacity level) is higher than the 
optimal decision parameters under the fixed capacity mode. 

 In the commoditized system environment, pre-admission hiring rate determines 
whether the periodic capacity sell-back is cost-effective. If it is close to down-time 
costs, it is surpassed by the two-level two-level capacity mode. 

 The opportunity costs in the two-level and in the sell-back capacity mode can be 
caused by different factors. One has to be sure about the opportunity costs’ 
compatibility before comparing the capacity modes.  

 If choosing either one of the down-time service strategies is mandated, and the 
costs for keeping a stock or hiring for a system are the same, the hiring strategy 
results in better costs due to increased/more refined controllability 
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 In the hybrid policy, both options can be used simultaneously and the resulting cost 
performance is better than both of the previous experiences 

 Period length plays a central role in the cost performance of a flexible capacity 
policy. If there is no opportunity cost or no elasticity of the capacity costs, the 
shortest possible period length is most of the time optimal, otherwise, intermediate 
period lengths can be optimal, as well.    

 

Besides the points mentioned under the bullet points above, now the possible future 
research questions will be elaborated 

 

 Extension to multi-item/multi-echelon structure for the specialized system 
environment 

 Robustness tests of the results for each capacity mode (i.e what are the implications 
if the demand rate is miscalculated & how much worse the resulting costs would be 
than the costs under the optimal policy) 

 Dynamic hiring durations based on the number of defective systems, rather than 1 
uniform hiring duration. Using the information on the number of  

 Analytical approaches to calculate the performance of the existing policies 
approximately. Some more efficient approximations can be explored 

 Cost saving opportunities due to the shipment of defective and repaired systems in 
the periodic sell-back capacity mode 

 Performance of the Flexible capacity mode under the hybrid strategy 

Further research can be directed towards one of the topics that is listed above. 
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Appendix 

Proof for Theorem 2.3 
Note that for a given  , total holding related cost,   , is constant and (      )  

   (   ) part is linearly increasing with  . Therefore, for proving the convexity of 

   (   ) with  , it is enough to prove that  ((    )   ) is convex in  .  

For the convexity proof, we use the stochastic convexity and sample path stochastic 
convexity concepts introduced by (Shaked & Shanthikumar 1994). The following 
definitions are taken from (Shaked & Shanthikumar 1994): 

Definitions 

In the following definitions                             , and so forth, stand, 
respectively, for stochastically increasing, stochastically convex, stochastically concave, 
stochastically increasing and convex, stochastically increasing and linear, stochastically 
decreasing, stochastically decreasing and concave, and so forth. 

Let { ( )      } be a set of random variables.  

 

(1) { ( )      }       [or   ] if  ( ( ( ))) is increasing [or decreasing] for all 
increasing functions  , 

(2) { ( )      }        [or    ] if  ( ( ( )))  is convex [or concave] for all convex 
[or concave] functions  , 

(3) { ( )      }         [or     ] if { ( )      }       and  ( ( ( )))  is 
increasing convex [or concave] in   for all increasing convex [or concave] functions  , 

(4) { ( )      }         [or     ] if { ( )      }       and  ( ( ( ))) is 
decreasing convex [or concave] in   for all increasing convex [or concave] functions  , 

(5) { ( )      }        if { ( )      }       and  ( ( ( )))  is increasing convex 
in   for all increasing convex functions  , and is increasing concave in   for all increasing 
concave functions  , 

(6) { ( )      }        if { ( )      }       and  ( ( ( )))  is decreasing 
convex in   for all increasing convex functions  , and is decreasing concave in   for all 
increasing concave functions  . 
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Next we discuss the sample path convexity definitions. In the following definitions 
  (  )    (  )    (  )     (  )    (  )    (  )     (  ), and so forth, stand, 
respectively, for stochastically increasing, stochastically convex, stochastically concave, 
stochastically increasing and convex, stochastically increasing and linear, stochastically 
decreasing, stochastically decreasing and concave, and so forth. 

Consider a family { ( )      } of random variables. Let                      be any 
four values such that              and                . 

If there exist four random variables  ̂               defined on a common probability 

space, such that  ̂      (  )            , and 

(7) ( )    [ ̂   ̂ ]    ̂  a.s. (almost surely) and (  )  ̂    ̂    ̂   ̂  a.s., then 
{ ( )      } is said to be stochastically increasing and convex in the sample path 
sense (denoted by { ( )      }        (  ))  

(8) ( )  ̂     [ ̂   ̂ ] a.s. and (  )  ̂   ̂    ̂   ̂   a.s. , then { ( )     } is 
said to be stochastically increasing and concave in the sample path sense (denoted by 
{ ( )      }       (  )); 

(9) ( )  ̂      [ ̂   ̂ ] a.s. and (  )  ̂   ̂   ̂   ̂  a.s., then { ( )      } is 
said to be stochastically decreasing and convex in the sample path sense (denoted by 
{ ( )      }        (  )); 

(10) ( )  ̂      [ ̂   ̂ ] a.s. and (  )  ̂   ̂   ̂   ̂  a.s., then { ( )     } is 
said to be stochastically decreasing and concave in the sample path sense (denoted by 
{ ( )      }        (  )); 

(11) ( )    [ ̂   ̂ ]   ̂   a.s. and (  )  ̂   ̂    ̂   ̂  a.s., then { ( )      } is 
said to be stochastically increasing and linear in the sample path sense (denoted by 
{ ( )      }       (  )); 

(12) ( )  ̂      [ ̂   ̂ ]  a.s. and (  )  ̂   ̂    ̂   ̂  a.s., then { ( )      } is 
said to be stochastically decreasing and linear in the sample path sense (denoted by 
{ ( )      }       (  )). 

 

After these definitions, we give the following reformulation:  

 ((    )   )      
   

∫
 

 
 ((  (    )   )   )

 

   

  

 ∫
 

 
 (    

   
(  (    )   )   )   ∫

 

 
 ((  

   )
 
  )   
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We start with proving the convexity of   ((  
   )

 
  ) for any           This can 

be accomplished by showing that   (  )       (  ), and then   (    )  
    (  ) for any            

Recall the recursive relation of   (  )  in (2.22) for             

  (  )   (  ((   ) )    ( ))
 
   (  

 )  

(A.1) 

It is known that the   ( ) and   (  
 ) in this recursive relation are independent 

Poisson distributed random variables with means of (   ) and ( λ ) respectively. From 
8.A.1 on p.358, (Shaked & Shanthikumar 1994), we know that    ( )      (  ), as a 
Poisson random variable with a mean linearly increasing with  . Therefore we can also 
deduce that:  

   ( )      (  ). Also, for any initial number of defective parts,   ( ), is 
unaffected by   and therefore   ( )      (  ). This also holds true for   (  

 ), 
since   is fixed and unaffected.  

Now suppose   ((   ) )      (  ). Since ( )  is an increasing convex function, 

Theorem 8.B.10 and 8.B.8 on p.370, (Shaked & Shanthikumar 1994) jointly imply the 
following: 

   (  )    (  ((   ) )    ( ))
 
   (  

 )      (  ).  

Therefore, for any           we have proved that   (  )       (  ) by induction. 

From   (  ), we can proceed to   (    ) for          as follows:  

  (    )    (  (  )    ( ))
 
   (    ) 

(A.2) 

Similar to   ( ),   ( ) is also a Poisson distributed random variable, having a mean of 
   , which is linearly increasing with  . Therefore, we have    ( )      (  ), as 
well. Likewise,   (    )       (  ) due to the fact that   is fixed and not 
dependent to  . Since we have shown that   (  )      (  ), we can see from (6.2) 
that   (    )      (  ), following the same reasoning used in proving the 
stochastic convexity of   (  ).  

Since the base stock level   is a given positive integer,  (  
 ( )   )      (  ) 

holds true, too. From Proposition 2.11 in (Shaked & Shanthikumar 1988), we can 
conclude that the limit of (  (    )   )  , which is: 

   
   

((  (    )   )   )  (  
   )

 
     . 

Finally, the last result leads us to the convexity of:  ((  
   )

 
  ) with  , which is 

deduced from the stochastic convexity definition. The convexity property is preserved 
after the integral operation, therefore we can state that 
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∫
 

 
 ((  

   )
 
  )    

 

   
 ((    )   ) is convex in   for a given period length   

and a stock level  . QED 
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Summary 

In the last decades, after-sales services have become increasingly important since 
service is a source of differentiation as well as a lucrative business opportunity due to 
the substantial amount of revenue that can be generated from the products in use 
throughout their life cycle. Following this trend, many after-sales service providers have 
emerged in the market or evolved as semi-autonomous units within the OEM (Original 
Equipment Manufacturer) companies.   

In this thesis, we focus on the maintenance aspect of after-sales services. We assume 
that a maintenance service provider (MSP) is running a repair shop in an environment 
with numerous operating systems that are prone to failure. The MSP is responsible for 
keeping all systems in an environment up and working. We mainly focus on two types of 
environments: 1) Specialized System Environment 2) Commoditized System 
Environment.  

The systems in the first environment are highly customized. They are designed and built 
specifically following the owners’ precise requirements. Defense systems, specific 
lithography systems, mission aircrafts or other advanced/complex, engineer-to-order 
capital goods are examples of such specialized systems. Due to the diversity of owners’ 
requirements, each system develops many unique characteristics, which make it hard, if 
not impossible, to find a substitute for the system, in the market as a whole. 

In the second environment, the systems are more generic in terms of their functionality. 
Trucks, cranes, printers, copy machines, forklifts, computer systems, cooling towers, 
some common medical devices (i.e. anesthesia, x-ray and ultrasound machines, etc…), 
power systems are examples of such more commoditized systems. Due to the more 
generic features of the owners’ requirements, it is easier to find a substitute for a 
system in the market, with more or less the same functionality, for short-term hiring 
purposes.   

Upon a system breakdown, the defective unit (system/subsystem) is sent to the repair 
shop. MSP is responsible for the repair and also liable for the costs related to the down 
time. In order to alleviate the down-time costs, there are chiefly two different downtime 
service strategies that the MSP can follow, depending on the environment the repair 
shop is operating in. In the specialized system environment, the MSP holds a spare unit 
inventory for the critical subsystem that causes most of the failures. The downtime 
service related decision in such a case would be the inventory level of the critical spare 
subsystems. On the other hand, in the commoditized system environment, rather than 
keeping a spare unit inventory, the MSP hires a substitute system from an agreed rental 
store/3rd party supplier. The downtime service related decision in this case is the hiring 
duration.  
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Next to the above downtime service related decisions, repair shop’s capacity level is the 
other primary determinant of the systems’ uptime/availability. Since maintenance is a 
labor-intensive industry, the capacity costs constitute a large portion of the total costs. 
Increasing pressure on profitability and the growing role of External Labor Supplier 
Agencies motivate service provider firms to scrutinize the prospects and possibilities of 
capacity flexibility by using contingent workforce. For various reasons, flexible capacity 
practices in real life are often periodic, and the period length is both a decision 
parameter and a metric for flexibility.  

A shorter period length implies more frequent adapting possibilities and a better 
tailoring of the capacity. On the other hand, the flexible capacity cost per unit time is 
higher for shorter period lengths due to the compensating wage differentials, which 
models the relation between the wage rate and the unpleasantness, risk or other 
undesirable attributes of the job. Certainly, short period length in this context is an 
undesirable attribute for the flexible capacity resource, as it mandates the resource to 
switch tasks and to be ready/available more frequently, without the guarantee that s/he 
will be actually employed. Therefore, we propose several empirically testable functional 
forms for the cost rate of a flexible capacity unit, which are decreasing with the period 
length and, in the limit, approaches to the cost rate of a permanent capacity unit from 
above.    

In the light of discussions above, we investigate three different capacity modes in this 
dissertation: 

 Fixed Capacity Mode: In this mode, all of the capacity is permanent and ready 
for use in the repair shop.  This mode serves as a reference point in order to 
assess the benefits of other flexible capacity modes. The relevant capacity 
decision in this mode is the single capacity level of the repair shop.  

 Periodic Two-Level Capacity Mode: In this mode, we assume two levels of repair 
shop capacity: permanent and permanent plus contingent capacity levels. The 
permanent capacity is always available in the system, whereas the deployment 
of the contingent capacity is decided at the start of each period based on the 
number of units waiting to be repaired in the shop. The relevant capacity 
decisions in this mode are the permanent and contingent capacity levels, the 
period length and the states (in terms of number of defective units waiting) 
where the contingent capacity is deployed.  

 Periodic Capacity Sell-Back Mode: In this mode, the failed units are sent to the 
repair shop at regular intervals in time. Due to this admission structure, when 
the repair of all the defective units in the repair shop are completed in a period, 
it is known that no new defective parts will arrive to the shop at least until the 
start of the next period. This certainty in idle times allows for a contract, where 
the repair shop capacity is sold at a reduced price to the capacity agency where 
it is assigned to other tasks until the start of the next period. The original cost of 
the multi-skilled repair shop capacity per time unit is higher than the permanent 
capacity cost that is mentioned in previous modes due to the compensation 
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factors such as additional skills, frequent task switching and 
transportation/transaction costs. Similar to the previous capacity mode, the 
compensation decreases with the length of the period length. The relevant 
capacity decisions in this mode are the capacity level and the period length. 

The primary goal of this thesis is to develop quantitative models and methods for taking 
optimal capacity decisions for the repair shop in the presence of the capacity modes 
described above and to integrate these decisions with the other downtime service 
decisions of the MSP for two different types of system environments (specialized vs. 
commoditized). After the introduction of the problem, concepts and literature review 
are given in Chapters 1.  

In Chapter 2, we focus on the use of capacity flexibility in the repair operations of the 
MSP in specialized system environment. The capacity related decisions are integrated 
with the decision on the stock level of the spare unit inventory for all three capacity 
modes. In Chapter 3 we investigate the same three capacity modes in a (partially) 
commoditized system environment, where hiring a substitute system for a pre-
determined, uniform duration becomes the conventional method upon a failure. In this 
chapter the decision on the hiring duration is integrated with the other capacity related 
decisions. Then we provide some preliminary analysis and give the early results on the 
hybrid strategy where both “keeping stock” and “hire substitute” strategies are 
followed. Finally in Chapter 4, we summarize our results, give the conclusion and discuss 
the topics covered in this thesis with a brief exploration on the future research. 

The numerical results reveal that, in both specialized and commoditized system 
environments, substantial cost savings (up to 70%) can be achieved under periodic two-
level capacity and periodic capacity sell-back modes compared to the fixed capacity 
mode. However, both period length and the compensation scheme of the capacity 
resources greatly influence the savings, even in some cost instances, flexible modes 
(periodic two-level and capacity sell-back) become less economical compared to the 
fixed capacity mode. Cost parameter instances in which each of the 3 capacity modes 
becomes cost-optimal, the characteristics of the cost savings and the sensitivity analysis 
of cost/policy parameters are investigated in both of the system environments in 
Chapter 2 and Chapter 3, respectively. 

In the commoditized system environment, under the same cost parameter settings, the 
hiring substitute from an external supplier for a fixed duration causes a better, more 
refined and certain control compared to keeping an inventory. Hybrid strategy, in which 
a substitute is hired after a stock-out instance, is applicable in commoditized as well as 
commoditizing (previously specialized systems that are in the ongoing commoditization 
process) system environments. Hybrid strategy outperforms both "only keeping stock" 
and "only hiring substitute" alternatives; however, in the commoditized system 
environment, a MSP may still have a proclivity to employ the "hiring substitute" strategy 
only, because it does not require any initial investment, which is convenient for SMEs. 
These issues will be explicated further in Chapter 5. 
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We believe that the framework, the design and analysis of the problems addressed as 
well as the results and the insights obtained in this dissertation can help and motivate 
other researchers/practitioners to further investigate the cost saving prospects from 
capacity flexibility in maintenance service operations. We also anticipate that the 
commoditization framework described in this thesis will be increasingly useful in the 
future, since the commoditization of the parts/machines will be much more widespread, 
pushing all the after-sales service providers to compete on the efficiency of their 
operation
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