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Chapter 1 

INTRODUCTION 

1.1 DOWNSCALING OF BIPOLAR TRANSISTORS 

In its evolution from the point-contact transistor, invented by Bardeen 
and Brittain in 1947 [ 1.1], to a modern IC building-block the bipo1ar 
transistor has been subjected to a wide variety of technological inno
vations. Not only has the semiconductor material changed from ger
manium to silicon and GaAs, but innovations in the field of doping 
techniques, lithography and etching techniques have also had their im
pact on transistor development. In addition, the impravement in our 
understanding of device physics played a role in this device develop
ment. Perhaps the most striking feature in the development of bipolar 
transistors is the reduction of the dimensions ( downscaling) of the ac
tive regions from the sub-millimetre range to the sub-micron range. 

The major driving forces behind downsealing are speed improve
ment, reduction of power consumption and improverneut of packing 
density. While the latter quantities are improved by lateral downscal
ing, reduction of the vertical dimensions (viz. junction depths) of the 
transistor is especially important for the improvement of the speed ca
pabilities of the transistor. The speed of the transistor is usually char
acterized by the bias-dependent, common-emitter cut-off frequency fr 
which is, roughly speaking, the frequency at which the current gain of 
the device has decreased to unity. This cut-off frequency increases with 
decreasing vertical dimensions of the active regions. This is due to a 
reduction of the stored minority charge without a corresponding de
crease in the collector current. Although all active transistor regions 
may significantly contribute to the charge storage, the thickness and 
doping profile of the base region are particularly important for the 
speed capabilities of the device [ 1.2]. In actdition to a reduction of 
junction depths a corresponding increase in doping density is required 
in order to maintain proper electrical characteristics with downscaling. 
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a) 

b) 

collector 

Fig. l.I. Schematic cross-section of a conventional vertical n-p-n transistor (a) 
and an advanced self-aligned transistor (b). 

Due to the conesponding increase of the electric field at the junction, 
however, tunnelling effects may adversely affect the reverse and !ow
forward characteristics of the emitter-base diode. Therefore, in general 
a trade-off between various electrical parameters appears necessary 
[1.3]. 

At present, the state-of-the-art in commercially available vertical 
n-p-n transistors is a planar structure as sketched in fig. l.la. Such a 
device is at present widely used as an elementary building-block in in
tegrated circuits. The emitter-base and collector-base junction deptbs 
are in the sub-micron range, while the lateral dimensions of such a de-
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vice are in the order of microns. These lateral dimensions, such as the 
separation between the base contact and the emitter, are limited by the 
minimum lithograpbic rules. 

The base current consists of two components, viz. the ideal current 
and the non-ideal current. The most important component is the ideal 
current which dominates at medium and high forward base-emitter 
junction voltages. This component, which is caused by the recombina
tion of electrans and holes in the quasi-neutral regions, is called ideal 
because it is proportional to exp (qVbefkT), where Vbe is the junction 
voltage, T is the absolute temperature, q is the elementary charge and 
k is Boltzmann's constant. The non-ideal current is proportional to 
exp (q VbefmkT), with m~2. This component, which dominates at low 
bias, is caused by recombination in the emitter-base depletion layer. 
The i deal current in a device as sketched in fig. 1.1 a is caused mainly 
by hole injection from the base into the emitter. These holes recombine 
either in the bulk or at the contact. For shallow emitters where the 
recombination length is much larger than the emitter depth the majority 
of the holes recombine at the contact. Such an emitter is called "trans
parent". Bulk recombination in the base can usually be neglected. 

Since the lateral dimensions of the above transistors are much lar
ger than the vertical dimensions, the hole flow in the emitter will be 
mainly vertical and injection through the emitter siclewall can be neg
lected. The electron injection from the emitter into the base will also 
be mainly vertical. This implies that siclewall effects directly related to 
minority-carrier injection will be fairly small in these devices. 

Recent developments in silicon bipolar transistor technology have 
also made possible a significant lateral downsealing of bipolar devices 
[1.4- 1.6]. Lateral downsealing has several important benefits. First 
of all, due to the reduction of the junetion areas the parasitic junction 
capacitances are reduced, which increases the eut-off frequeney. Be
cause the base current mainly flows laterally in the base region, the base 
resistanee also decreases when the emitter width He (see fig. 1.1) and the 
distanee between the emitter and the base contact are redueed. Another 
very important motive for lateral downsealing is that for VLSI appli
eations it is not only the speed eapabilities which are important, but 
also its power dissipation. Since the power dissipation is proportional 
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to the collector current, at a given bias voltage the dissipation scales 
roughly with the emitter area. 

The key step towards lateral downsealing bas been the introduetion 
of a technique by which the active transistor areas are formed utilizing 
only one lithograpbic step. All the other steps in the formation of the 
active regions are self-aligned to this step. Such a self-aligned scheme, 
tagether with the use of sophisticated dry-etching techniques, makes it 
possible to achieve very compact structures. In addition, the emitter 
stripe width has decreased due to the impravement of lithograpbic 
techniques (e.g. Electron-beam Lithography [1.7,1.8]). In fig. l.lb 
such a self-aligned transistor is sketched. 

In these self-aligned devices sirlewall effects are expected to influ
ence the device characteristics significantly for two main reasons. The 
first reason is the simple fact that due to lateral downsealing the two
dimensional minority-carrier injection near the emitter periphery plays 
a relatively large role. The second reason is related to the self-alignment 
of the process. The proximity of the base contact to the emitter can 
give rise to additional recombination at this contact [ 1.9]. In addition, 
the high base doping concentration at the emitter sirlewall can influence 
the device characteristics. 

Next we briefly discuss various new self-aligned processes. These 
can be divided roughly into three types (see fig. 1.2): 
- Double-poly type [1.4] 
- Sidewall-contacted base configuration [ 1.6] 
- Single-poly type [ 1.10, 1.11] 

All three types are self-aligned, but the major differences lie in the 
metbod of contacting the base and, therefore, in the possibilities of re
ducing the base resistance and the dimensions of the parasitic regions. 
In both the double-poly structure (fig. 1.2a) and the sidewall-contacted 
base structure (fig. 1.2b) two deposited polysilicon layers are used to 
contact the base and the emitter. The extrinsic-base dopant and the 
emitter dopant are diffused from polysilicon layers, while the intrinsic 
base is usually formed by ion implantation. In the single-poly concept 
(fig. 1.2c) only the ernitter is diffused from poly. The base is contacted 
by silicidation of the extrinsic base region. In this way a low extrin
sic-base resistance can be obtained. The most sophisticated class of 
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collector 
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c) 

Fig. 1.2. Three types of advanced bipolar processes: (a) double-poly, (b) side
wall-contacted base and (c) single-poly. 
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devices is the sidewall-contacted base structure (fig. 1.2b). The base 
resistance of this device is further minimized by lateral diffusion of 
boron from the polysilicon layers located above the buried oxide. As 
can be observed from fig. 1.2b, the parasitic regions in such a mesa 
structure are minimized and the active part of the transistor closely re
sembles a one-dimensional device. 

One of the key technological issues of these self-aligned processes 
is the control of the lateral diffusion of the extrinsic-base dopant to 
optimize the link-up between intrinsic base and extrinsic base [ 1.12]. 
This control is needed to achieve a low extrinsic-base resistance without 
introducing peripheral effects such as tunnelling and current-gain re
duction due to the increased base doping concentration near the emitter 
edge. Other important technological issues are the properties of the 
polysilicon- monosilicon interface in the emitter and the control of very 
shallow vertical profiles [ 1.13 ]. 

1.2 PHYSICAL MODELLING PROBLEMS RELATED TO 
DO\VNSCALING 

Downsealing of bipolar transistors has given rise to several problems 
in the description of the electrical behaviour of such devices.. These 
problems can be divided into two categories. One category comprises 
problems related to numerical device simulations, while the second ca
tegory comprises compact modelling problems. 

In numerical simulations, Poisson's equation 

NA +p-n), 

and the continuity equations for electrous ( n) and holes (p) 

6 

on 1 
ar -q"·ln- R, 

êJp 
= 

1 
-q"·lp R, 

(1.1) 

(1.2a) 

(1.2b) 
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are solved for a given set of boundary conditions. In (1.1), t/t is the 
electrostatic potential and NA and N/J are the ionized acceptor and 
donor concentrations, respectively. e0 is the permittivity of vacuum and 
er is the static dielectric constant of the semiconductor. In (1.2) :lp and 
ln are the hole and electron current densities, while R is the net elec
tron-hole recombination rate. The current densities are given by 

(1.3a) 

(1.3b) 

where J.ln and J.lp are the mobilities and Dn and DP are the diffusion 
constants. E (E = - Vt/t) is the electric field and nie is the intrinsic car
rier concentration. The current densities consist of a drift term which 
is proportional to the carrier concentration and a diffusion term which 
is proportional to the gradient of the carrier concentration. The second 
term on the right-hand side of (1.3) is the part of the drift term which 
takes into account the spatial variation of the bandgap due to an in
homogeneous dopant distribution [ 1.14]. The numerical solution of 
these equations, for instanee for a two-dimensional problem as sketched 
in fig. 1.3, consists of three steps. Firstly, the space domain is mapped 
onto a grid of discrete points. Secondly, after applicatîon of some dis
cretization scheme (finite differences or finite elements) the problem is 
transformed into a set of non-linear algebraic equations. Thirdly, this 
set of equations is solved to yield the unknown quantities t/t,n and pat 
the discrete points. Obviously, reliable results, even qualitatively, can 
only be obtained if all the relevant physical phenomena are properly 
incorporated into the equations. 

With downsealing of bipolar devices several new physical effects 
have come into play. For instance, because of the increased electric 
field at the junctions (especially at the emitter-base junction) tunnelling 
effects have become important and must be taken into account in the 
net recombination rate R [ 1.15 - 1.17]. Hot-carrier behaviour is also 
important and this is often modelled by adding two energy-balance 
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Fig. 1.3. An example of a space domain for the numerical simulation of a verti
cal n-p-n transistor. 

equations to the above set of equations to obtain the carrier temper
ature or by the incorporation of a Monte-Carlo type of calculation into 
the simulations [1.18]. Furthermore, the description of the minority
carrier mobility and bandgap narrowing are important issues for the 
modeHing of downscaled devices [1.19]. Finally, interface properties 
and the translation of these properties into appropriate boundary con
ditions are also important. For instance, due to the preserree of inter
face states the recombination rate at an interface usually deviates from 
that in the bulk. In addition, the carrier mobility close to the interface 
may he different from the bulk value. The interfaces between monosi
licon and polysilicon or a silicide in the emitter and base regions can 
have a strong influence on the device behaviour [ 1.9]. Also the inter-
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faces between monosilicon and insulating matcrials in the active tran
sistor regîons can strongly influence device behaviour [ 1.20, 1.24]. 

Compact modelling is the description of the electrical transistor 
behaviour by means of a set of analytical expressions. Such a compact 
model is used to describe the transistor behaviour in numerical simu
lations of electrical circuits. The compact model expressions are based 
on an approximate regionat solution of the basic semiconductor 
equations (1.1) and (1.2). Often the continuity equation for the minority 
carriers is solved in a certain quasi-neutral region (i.e. a region outside 
the depletion layers) of the device. The required additional boundary 
conditions are then obtained from a relation between · the minority
carrier density at the edge of tbc depletion layer and the applied junc
tion voltage (sec for instanee [ 1.21 ]). Obviously, this approach requires 
an in-depth understanding of the device behaviour. An excellent review 
of the state-of-the-art in compact modelling can be found in [ 1.21]. 

Downscaling-related problems in compact modelling can be di
vided into problems that are purely related to geometrical effects, i.e. 
relatcd only to the reduction of the dimensions, both vertical and lat
eral, and problems related to the incorporation of distinct physical 
phenomena into compact models. An important example of compact 
modeHing problems purely related to the rednetion of the transistor 
dimensions is given by sirlewall effects on the ideal base and collector 
currents (both d.c. and a.c.) in bipolar transistors. Existing models for 
these currents are usually basedon a one-dimensional (vertical) analysis 
of the transistor. For instance, along cross-section A-A in fig. 1.3 the 
minority-carrier injections into both the eruitter and base regions are 
expected to be nearly vertical and a one-dimensional analysis will be 
sufficient there. However, near thc eruitter edge the minority-carrier 
injection will definitely not be vcrtical and will give rise to sirlewall ef
fects on both d.c. and a.c. currents [ 1.22 - 1.25]. The new self-aligned 
technologies, especially the proximity of the base contact to the emitter, 
can also give rîse to additional recombination current near the eruitter 
sidewall [1.9,1.26]. Until now, these sirlewall effects have been treated 
merely as lower-order correction terms. However, these effects, which 
do not scale with the eruitter area, are expected to become increasingly 
important when the eruitter area is reduced. Another example of com-
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pact modeHing problems purely related to geometrical effects is the 
description of transit times in various regions of the transistor. 

Compact modeHing problems related to distinct physical phenom
ena are, for instance, the modelling of avalanche- and tunnelling cur
rents in p-n junctions [ 1.15 - 1.17, 1.27]. These effects have become 
important because of their strong dependenee on the electric field 
around the junction which increases with increasing doping density. 
This is particularly the case near the emitter sidewall where the doping 
density and, hence, the electric field can be very high due to the lateral 
diffusion of the extrinsic-base dopant. 

1.3 A SHORT OVERVIEW OF THE WORK DESCRIBED IN THIS 
THESIS 

This thesis deals with various aspects related to the modeHing of cur
rents and charges in downscaled silicon vertical n-p-n transistors. 

Chapter two describes the sidewall effects on the ideal d.c. base and 
collector currents, i.e. geometrical effects on the conventional ideal 
currents. In the classification as given above this is therefore a compact 
modeHing problem related to geometrical effects. These ideal currents 
are very important for the transistor behaviour and determine, for in
stance, the maximum attainable current gain of the device. The pur
pose of the work described in Chapter two is to reveal the relations 
between the sidewall effects on the ideal d.c. currents and the main 
process parameters (such as junction depths, emitter-base contact 
spacing, contact materials) and to present these relationships in the 
form of practical expressions which are consistent with 2D numerical 
simulations. These expressions, which are based on analytica! calcu
lations on a simplified structure, may serve as a starting point for a 
compact model description of these effects. To this end the expressions 
descrihing the sidewall effects are formulated using an effective perim
eter area so that the relative importance of the corresponding effect can 
immediately be seen from a comparison of this area with the emitter 
bottorn area. The implications of these sidewall effects on the varia ti on 
of the current gain with the lateral emitter geometry are also discussed 
and a comparison is made between the experimentally observed de-
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pendenee of the current gain on the emitter dimensions and that ob
tained from the calculations. 

Chapter three discusses the modeHing of a physical phenomenon 
which becomes important with increasing doping density around a p-n 
junction, viz. tunnelling in forward- and reverse-biased junctions. In 
reverse-biased junctions this phenomenon is usually referred to as 
band-to-band tunnelling or Zener tunnelling [ 1.28]. In forward-biased 
junctions it is known as trap-assisted tunnelling, or as the so-called ex
cess current, because this current is in excess of the normal diode cur
rent [ 1.28]. These effects are important at the emitter-base junction 
where the electric field can reach values as high as 108Vfm. Band-to
band tunnelling determines the emitter-base leakage current, while the 
excess current contributes to the non-ideal base current and, therefore, 
adversely affects the current gain at low and medium bias conditions. 
Because of the high base dopant concentration at the emitter periphery, 
tunnelling can cause strong sirlewall effects on the reverse and non-ideal 
forward base current. This particularly applies in modern self-aligned 
structures, such as those sketched in fig. 1.2, where the proximity of the 
base contact to the edge of the emitter-base junction may result in a 
very high base dopant concentration at the emitter periphery. These 
tunnelling effects may well prove to be one of the ultimate limitations 
to the downsealing of bipolar devices [ 1.15]. The primary goal of the 
work described in this chapter is to obtain model descriptions of these 
tunnelling effects which are suitable for incorporation into a numerical 
device simulator and which can provide a basis for a compact model 
description. This chapter also gives the physical basis for a compact 
model descrihing the full I-V characteristics of reverse-biased junctions. 
Besides tunnelling, this model includes avalanche generation and 
Shockley-Read-Hall generation. The implications of tunnelling effects 
on device behaviour, such as sirlewall effects on the non-ideal base 
current, have not yet been investigated but will be the subject of future 
research. 

Chapter four deals with the modeHing of the a.c. transistor prop
erties. The work described in this chapter can also be classified as a 
compact modeHing problem related to geometrical effects. This chapter 
deals mainly with the determination of a.c. quantities (such as the a.c. 
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base and collector currents and the cut-off frequency) on the basis of 
a quasi-static analysis. In both compact modeHing and numerical de
vice simulations this approach is frequently used to obtain low-fre
quency a.c. parameters from a d.c. analysis [ 1.29 - 1.31]. Most 
treatments of the foundations of this quasi-static approach date from 
more than a decade ago when the dimensions of the devices were such 
that the maximum cut-off frequency was almost entirely determined by 
the base region. As a consequence, most of these treatments are con
fined to the base region. Nowadays, however, because of downsealing 
not only the base region but also other regions can contribute signif
icantly to the a.c. properties of the device. In view of this downsealing 
the foundations of the quasi-static approach are reviewed in this chap
ter and the relating expressions for the small-signal a.c. base and col
lector currents are derived from the time-dependent continuity 
equations. The validity of the approximations involved is also dis
cussed. It will be shown that in the case where the emitter transit time 
plays a significant role in the cut-off frequency, the approximations on 
which this approach is based are not fully justified. Section 4.3 gives a 
mathematically more rigarous low-frequency description of a.c. cur
rents, based on a perturbation analysis of the time-dependent continuity 
equations. Unlike the conventional quasi-static approach, this method 
also yields internal a.c. quantities such as minority-carrier densities and 
current densities. This offers the possibility to add to the usual post
processing routine for the calculation of the cut-off frequency from a 
numerical d.c. device simulation, a routine which calculates the phase 
shift of the collector current in the base region. This so-called excess 
phase shift can be an important quantity in high-frequency applica
tions. Finally, the use of the quasi-static cut-off frequency as a figure 
of merit to characterize the high-frequency properties of advanced de
vices is discussed. Results from quasi-static calculations are also com
pared with those obtained from numerical small-signal a.c. solutions 
of the continuity equations. 

In chapter five some final remarks are made and an outlook for 
future work is presented. 
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Chapter 2 

SIDEWALL EFFECTS ON THE D.C. BASE AND COLLECTOR 
CURRENTS 

2.1 INTRODUCTION 

In this chapter we investigate the sidewall effects on the ideal d.c. base 
and collector currents in vertical n-p-n transistors. These ideal currents 
are caused by the minority carrier injections in the neutral base and 
emitter regions of the device. To investigate the sidewall effects on 
these ideal currents we consider the self-aligned structure as sketched 
in fig. 2.1. The main process parameters, such as junction deptbs 
( We, Wb), spacing between emitter sidewall and base contact (tb), type 
of emitter contact (poly or metal) and base contact (poly or silicide), 
are denoted in this figure. 

Sourees of sidewall effects on the ideal base current are: 
(1) Hole injection from the extrinsic base (i.e. the base region outside 

the emitter area) into the emitter. Roughly speaking, the injected 
hole current density becomes larger with decreasing distance be
tween the emitter-base junction and the emitter contact because the 
gradient of the hole concentration becomes larger with decreasing 
distance. This implies that the injected hole current density at the 
sidewall can become larger than that at the bottom. A relatively 
large sidewall effect is therefore expected for this term. 

(2) Recombination at the base contact of injected electrans in the ex
trinsic base [2.1]. This term becomes important with the use of 
self-aligned techniques because the spacing between this contact 
and the emitter-base sidewall junction has been reduced to deep 
submicron dimensions. The contact material (viz. polysilicon or a 
silicide) is also important. 

(3) Recombination at the oxide-silicon interface, both of injected holes 
in the emitter and of injected electrous in the extrinsic base [2.2]. 
With the use of improved oxide formation technologies this term 
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can be expected to become less important because the oxide quality 
has improved and the number of interface states has therefore de
creased. 
The sirlewall effect on the collector current originates from electron 

injection into the extrinsic base. The distance between the eruitter-base 
junction and the reverse-biased collector-base junction is larger for the 
extrinsic base than for the intrinsic base, so the situation is opposite to 
that in the eruitter and a relatively small sirlewall effect is expected. 

In sections 2.2 and 2.3 the above sirlewall effects are investigated 
in several ways. Analytica! calculations are made for a simple two-di
mensional structure. In order to obtain practically useful analytica! re
sults the transistor is represented by rectangular regions with a constant 
doping level. See fig. 2.2 for a sketch of this simplified structure. The 

n 

Fig. 2.1. Cross-section of a modern bipolar transistor. The relevant model pa
rameters are also denoted. The interface recombination veloeities at the emitter 
contact, the base contact and at the oxide-silicon interface are denoted by 
Se, Sb and Sox respectively. 
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structure is symmetrie about the line x = 0. By means of numerical si
mulations the resulting functional relations between the sidewall effects 
and the process parameters are tested for more realistic inhomogene
ously-doped structures. To this end we have used different doping 
profiles with different combinations of we and wb ( 0.05 J.lm < we < 
0.3 J.lm and 0.05 J.lm < Wh < 0.3 J.lm) which cover the range of most 
practical vertical doping profiles used in modern devices. Geometrical 
sealing rules for the base and collector currents are presented in section 
2.4. Based on the calculations presented in sections 2.2 and 2.3, simple 
expressions are given for the sidewall effects on these currents which 
may serve as a starting point for a compact model description of these 
sidewall effects. In section 2.5 ways of measuring the sidewall effects 
are discussed and a comparison is made between the experimentally 
observed dependenee of the current gain on the lateral emitter dimen
sions and that obtained by calculations. 

2.2 THE BASE CURRENT 

2.2.1 Hole injection into the emitter 

In order to calculate the hole injection into the emitter we consider 'the 
ideal structure as sketched in fig. 2.2. The emitter is represented by a 
rectangular uniformly-doped region with a constant diffusion length 
LP= JrP DP, where rP and DP are the recombination lifetime and dif
fusion constant, respectivcly. Since we have assumed a uniformly 
doped emitter, the electric field is negligibly small outside the space
charge regions and the hole current density consists of a diffusion term 
only. Expression (1.3b) reduces to 

(2.1) 

Combination of the stationary hole continuity equation (from (1.2b)) 
and the expression for the hole diffusion current (2.1) yields the fol
lowing diffusion equation for the excess hole concentratien in the 
emitter: 

Sidewall effects on the d.c. base and collector currents 17 



(2.2) 

The excess concentratien is given by p = p - p0 , where p0 is the equi" 
librium concentration. In (2.2) we have used the common expression 
for the recombination rate R pf'r:r The boundary conditions are as 
follows: 
" The surface recombination rate at the emitter contact can be described 

by an effective surface recombination velocity Se, so that the excess 
hole concentration at the contact satisfies the following equation: 

(2.3) 

- At the emitter surface outside the contact region no normal current 
density is assumed, so opfoy = 0 there. 
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Fig. 2.2. Geometry of the transistor as used for the analytica! calculations. The 
structure is symmetrie a bout the line x= 0. 
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- Along the emitter-base junction the excess hole concentration is con
stant and its magnitude 'P.i is given by the usual boundary condition 
'P.i Po ( exp (qVbefkT)- 1). 

For the one-dimensional hole current density JP 1 the one-dimen
sional (no x-dependence) solution of (2.2) yields: 

(2.4) 

where a= SeLp/Dr Fora metal contact Se c::d0
4m/s, which implies that 

fora highly doped emitter a is in the order of 10, while fora poly layer 
on top of the emitter Se é::!!.l03mfs, which implies that in that case a is 
in the order of unity. In both situations the current density becomes 
independent of LP in the case of a shallow emîtter (i.e. We /Lp< < 1), 
which means that the current density is determined by surface recom
bination only. In such a case the emitter is called "transparent" because 
aH injected holes reach the contact. For deep emitters (We>> Lp) bulk 
recombination dominates and JP 1 is virtually independent of a. 

The solution of (2.2) in the two-dimensional case can be obtained 
by separation of variables [2.3]. The result is: 

_ --{I= [ Ansinh(w[We-y])+Bnsinh (wy)] 
p(x,y) - Pj . h ( ) cos (mx) 

sm wWe 
n=O 

with 

and 

I 2n 
m=(n+z-) H , 

e 
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(2.6) 
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(2.7) 

In the above expressions We and He are the emitter thickness and width, 
respectively. It is shown in appendix 2A that the Fourier coefficients 
Bn of this expression for p(x, y) can be obtained by solving a set of li
near equations, while An can be solved directly. Once a sufficient 
number of coefficients has been calculated (usually between 10 and 50), 
the hole current density can be calculated by using (2.1 ). 

In fig. 2.3 the hole current density JP at the emitter-base junction, 
divided by the one-dimensional hole current density ~I> is plotted as a 
function of the distance I along that junction. The origin in fig. 2.3 
corresponds to the point (He /2, We) in fig. 2.2. The result in fig. 2.3a 
is calculated fora fairly deep emitter (We= 0.3J1m). This is done for two 
limiting cases for the emitter width, i.e. A: He<< 2LP and B: 
He > > 2LP . The peak of the current density at the surface is due to 
recombination at the contact edge and, as expected, is found to be 
strongly dependent on the values of te (see fig. 2.2) and Se. For both 
an increasing value of Se and a decreasing value of te the gradient in 
the x direction of the hole density at the surface between the junction 
and the contact increases, which leads to an increase in this peak value 
of the current density. The dip in the current density near the corner 
originates from the hole injections from both the horizontal and the 
vertical junctions. These injections influence each other in such a way 
that within a distance in the order of the hole diffusion length from the 
emitter corner the gradient of the hole density is lower than in the 
one-dimensional case. From fig. 2.3a it can also be seen that in the 
middle of the device (i.e. at the origin in fig. 2.2) JP equals JP 1 for case 
B (He> 2Lp), while for case A JP is considerably lower than Jp!. In the 
latter case a linear sealing rule for the base current with the emitter 
width is not valid! Fig. 2.3b shows a similar plotfora shallow emitter 
(We= O.lpm). In this case the bottorn current density reaches its one
dimensional value within a distance from the emitter siclewall which is 
much less than the diffusion length. In this case a linear sealing rule for 
the base current breaks down at a much sma11er emitter width than in 
the case of a deep emitter (fig. 2.3a). This will be discussed further at 
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Fig. 2.3. Normalized hole current density along the emttter·base Junctlon for two 
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Fig. 2.4. Normalized hole current density along the emitter-base junction for two 
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The other parameters are equal to those in fig. 2.3a. 

a later stage. In fig. 2.4 JP is plotted for a 0.15/tm deep emitter for two 

values of the surface recombination velocity. From this figure we see 

that a reduction of Se greatly reduces the value of the current density 
through the sirlewall near the surface, while the shape of the bottorn 

current density is more or less unaffected. The reason for this is that 

the injected current density through the junction is virtually independ

ent of the surface recombination velocity when Se > > DP fd, where d 

is the distance between the junction and the contact. For 

103 <se< 104mfs this is true for the injection through the bottorn in 

this case but not for the lateral injection through the sirlewall at the 

surface. The physical interpretation of this effect is that when 



Se> DP fd the hole injection into the emitter is limited by the hole 
transport, while forSe< DP fd the limiting factor is surface recombina
tion. 

Since the above analytica! results are based on the assumptions of 
homogeneously-doped regions, numerical calculations on structures 
with more realistic doping profiles have been made. These calculations 
show that the hole current distribution along the emitter-base junction 
behaves in roughly the same way as the analytically calculated current 
distribution. As an example in figs. 2.5 and 2.6 the numerically calcu
lated hole current density along the emitter-base junction is given for 
two cases. In these figures the current densities are normalized to their 
one-dimensional (vertical) value. The doping profiles in figs. 2.5b and 
2.6b are along cross-section A-A as given in fig. 1.3. In figs. 2.5 and 
2.6 we can recognize the two striking features of the hole current den
sity, i.e. the peak in the current density at the surface and the dip in 
the current density near the corner of the emitter-base junction. This 
dip is less pronounced than in the analytical results. This is due to the 
fact that in the numerical calculations we have a rounded corner instead 
of a sharp corner. The dip in the current density makes a negative 
contribution to the sirlewall effect on the hole injection current Ibe• 
while the peak of the current density at the surface makes a positive 
contribution. For a wasbed emitter, where te is determined only by the 
lateral diffusion of the emitter dopant, the net result is, rather surpris
ingly, a small sidewall effect. In fig. 2.6 we can again observe the fact 
that for a relatively deep emitter the current density at the bottorn does 
not reach the one-dimensional value JP 1 when He< 2LP' 

In the rest of this section we examine the above observations in 
greater detail. First we will look at the bottorn part of the hole in
jection current in the case where the intlucnee of surface recombination 
on the bottorn current is negligible, i.e. for fully non-transparent emit
ters. For the two limiting cases as shown in fig. 2.3, viz. He>> 2LP 

and He < < 2LP simple expressions for bottorn hole current as a func
tion of the emitter width will be presented. After that we will take a 
closer look at the sidewall part of the hole injection current. Finally, 
we investigate the geometry dependenee of the hole current in the case 
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where the emitter is very shallow and can be considered to be trans
parent. 

First we look at the bottorn part of the hole current. This part of 
the hole current lbeb (per unit length in the third direction) can be ob
tained from the following relation: 

heb= 
fHe/2( op ) 

2qDP jo oy y=O dx. (2.8) 

When the influence of surface recombination on the bottorn current is 
negligible (u<< tanh (We/Lp) or We>> Lp) simple approximate ex
pressions for lbeb can he obtained. When u<< tanh (We/Lp) the non
diagonal elemen ts Mnj (n =f:. j) in (2A.ll) vanish and Bn = zn I Mnn' In the 
case where We>> LP the coefficients Bn are much smaller than An and 
can be neglected. Substitution of the resulting expressions for An and 
Bn in (2.5) and subsequent substitution of the partial derivative of this 
expression in (2.8) gives for the bottorn part of the hole injection cur
rent 

(2.9) 

with 

(2.10) 

where m is given by (2.6). The term Rn approximately equals unity for 
mLP tanh (We/Lp)<< 1, while for mLP tanh (We/Lp)>> 1 this term is 
approximately inversely proportional to n. 
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For wide emitters (He> 2Lp), we can approximate (2.9) by replac
ing the term Rn by a step fnnction which is eqnal to 1 for 
mLP tanh (We/Lp)< 1 and eqnals zero for mLP tanh (We/Lp)> 1. The 
cnrrent then becomes 

N 
8~ 1 4 we 

lbeb=JpJHe-
2 
~ 2 ~Jp 1 [He-nLPtanh(L)],(2.11) 

n n=O (2n + 1) p 

where N = trnnc[He/(2nLP tanh (We/Lp))] . This resnlt can be fonnd 
in [2.4] by nsing the asymptotic expression for the first derivative of 
the digamma fnnction. For He > 6LP the error introdnced by the ap
proximations leading from (2.9) to (2.11) is less than 2%. An illnstra
tive approximation of (2.11) is given in figs. 2.3 and 2.4, where the 
approximate valne of lbeb as obtained from (2.11) is given by the eer
responding area below the dashed line. 

For narrow emitters (He < < 2Lp), it holds that 
mLP tanh {Wel LP) > > 1 for all valnes of n. In that case we can ap
proximate (2. 9) by replacing the term J 1 + (mL/ in (2.1 0) by mLP and 
take into account only the first term of the series. This yields 

") 

8 H; tanh { 1t We/ He) 
lbeb = ~-3 Jpl L tanh (W fL) n p e p 

(2.12) 

In fig. 2. 7 the approximations (2. 1 1) and (2.12) are plotted as a fnnction 
of He/Lp for We/Lp= 1. To show the validity of these approximations 
relation (2.9) is also plotted. The valnes of lbeb are normalized to 
JplHe. 

From the above analysis it follows that the qnantity 
LP tanh (We/Lp) is an important parameter for the bottorn current, be
canse within a di stance of a bont LP tanh (Wel Lp) from the siclewall the 
bottorn cnrrent density is strongly diminished as compared with the. 
one-dimensional solntion. This implies that when He is in the range of 
2LP tanh (We/Lp) or less, the bottorn cnrrent is mnch less than He Jpl> 
which is the valne of lbeb rcsnlting from a simple one-dimensional 
analysis. Furthermore, from (2.12) it can be seen that when the emitter 
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Fig. 2.7. Expressions (2.9), (2.11) and (2.12) as a function of He/Lp for 
Wel LP = 1. The values of Ibeb are normalized to JP 1He. 

width is in this range the bottorn current does not scale linearly with 
He and, hence, such a linear sealing rule of the base current with the 
emitter area current is no Jonger valid. 

The sidewall part of the hole injection current /bes is given by 

lwe( op) 
[bes = 2qDP OX dy . 

0 x=He /2 

(2.13) 

For large values of the surface recombination velocity the base current 
through the sidewall !bes strongly depends on the distance between the 
sidewall junction and the contact edge, especially when We < < LP' This 
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is illustrated in fig. 2.8. The normalized sidewall current Ibesf(Jp1 We) 

can be considered as the ratio of the average current density through 
the sidewall and lpt· From fig. 2.8 we abserve that for these cases the 
average current density through the sidewall is approximately equal to 
or less than the average current density through the bottom. When 
We< LP and te> LP (the lower curve of fig. 2.8 for te~0.3pm) this ratio 
is much less than unity because in that case the sidewall current is 
mainly determined by bulk recombination, while the bottorn current is 
mainly determined by surface recombination. In [2.5] an approximate 
analytica! expression for this sidewall current is given. 
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Fig. 2.9. Contours of the emitter region in the complex z-plane (a) and in the 
complex w-plane (b). The quantities k and vare determined from the dimensions 
of the region in the z-plane. 

In modern emitters which are almost transparent (We<< Lp) bulk 
recombination is less important. If we neglect bulk recombination, the 
diffusion equation (2.2) reduces to the Laptace equation 

Y .. ?Ji(x, y)= 0. (2.14) 

When both an infinite surface recombination velocity and a homoge
neous dope is assumed, the hole current can be determined analytically 
by conformal mapping, using a Schwarz-Christoffel transformation 
[2.17]. This technique has the advantage that closed analytical ex
pressions for the current can be found instead of infinite series such as 
in a Fourier expansion technique. For the geometry as given in fig. 2.9a 
the solution can be obtained by mapping the emitter region onto the 
upper half plane in fig. 2.9b. The analysis is given in appendix 2B and 
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yields expression (2B.12) for lbe· In the case where He> > We this ex" 
pression reduces to: 

(2.15) 

where we can observe the linear sealing of the hole current with the 
emitter width. However, this rule breaks down when He< 2We. For 
wasbed emitters the ratio te /We is approximately constant, so the side" 
wall effect is proportional to we. 

For non"washed emitters, where te is much larger than in the case 
of a wasbed emitter, the situation is different. For te /We>> l the 
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Fig. 2.10. Numerically and analytically calculated fringing effect as a function 
of the emitter depth we. 
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sictewall junction plays no role and the hole injection is confined to the 
region under the contact. In tha t case (2J 5) reduces to 

(2.16) 

whcre H, is the contact width (H, =He· 2t,). The second term on the 
right-hand side of (2.16) accounts for the fringing effect near the edge 
of the contact. By means of numerical simulations it is found that for 
W, < 0.2 p.m the above equation also gives a good indication for real
istic emitter doping profiles and for a finitc surface recombination ve
locity. This is shown in fig. 2.10 where the second term on the 
right-hand side of (2.16) (i.e. thc fringing effect Fr= 2 ~ 2 W,) is 
plotted, logether with the corresponding numerical results. 

2.2.2 Recombination at the base contact 

The recombination current at the base contact is also calculated ana
lytically by means of conformat mapping. To this end we use the stm
plified, rectangular base geometry as skctched in fig. 2.2. If a constant 
base doping level is assumed and bulk recombination in the base is nc· 
glected, the differential equation which governs the electron injection 
into the base is the Laplace equation. If we take an infinite surface re
combination velocity at the base contact, the boundary condition for 
both the base contact and the reverse-biased collector-base junction is 
n = 0. Inslead of imposing the boundary condition iJn{flx = 0 at x 0 
we have taken a single vertex at x · oo (see lig. 2.lla). As shown be
low, this enables us to derivc a simple expression for the sictewall effect, 
while for H, > 2We the above-mentioned boundary condition is auto
matically satisfied to a high degree of accuracy. Using the boundary 
conditions denoted in fig. 2.lla, the Laplace equation is solved by 
conformal mapping, using a Schwarz-Christoffel transformation. By 
means of this transformation the base geometry in the complex z-plane 
(fig. 2.11 a) is mapped onto the upper half w-plane (fig. 2.11 b ). In ap
pendix 2C it is shown that for tb > Wb the recombination current at the 
base contact Ibb (per unit length in the third dimension) is given by 
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with a Wb/( Wb + W,) . In (2.!7) Dn is the diffusion constant for elec
t rans. From (2.17) it is observed that this eurrent depends exponen
tially on the spacing tb with a characteristic length f<J = ; (Wb + W,) . 

Physically speaking we can interpret this result as follows: Both the 
base contact and the reverse-biased collector-base junction, which can 
also be considered as a contact with an infinite surface recombination 
velocity, act as a sink for electrons. When the base contact is much 
farther away from the emitter sidewall than the collector-base junction 
is from the silicon surface, i.c. tb>> (We+ Wb), the electron flow in the 
external base is almast entireiy determined by the collector-base junc-
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obtained value of n1 at the top dope in the extrinsic base is taken for the ana
lytica! calculations. 

ti on and few electroos wiJl recom bine at the base contact. In the op
posite case, tb< ( W, + Wb), a large amount of the electrons will 
recombine at the base contact. 

As an example, analytically and numerically calculated values of 
lbb are plotled as a function of the spacing tb in fig. 2.12. No te that the 
numerically calculated values of lbb are much smaller than the analyt
ically calculated values. This is due to both the presenee of an addi
tional base dopani under the contact and a finite surface recombination 
velocity at the base contact in the numerical case. Notice that for both 
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types of calculations an exponential relation between /bb and tb is found, 
though with a slightly different slope. We will come back to this in 
section 2.4. 

2.2.3 Recombination at die silicon-oxide interface 

To model recombination at the oxide-silicon interface we use a linear 
relationship between the current and the excess minority concentration 
at the interface ( i.e. Jn = qS,,x (11 - nol in the base region). In the above 
exprcssion Svx is an effective surface recombination velocity. AlthougJ-. 
there are more elaborate models for descrihing recombination at the 
oxide-silicon interface [2.13], we use this well-known expression 
[2.6] in order to arrive at a simple analytica! result. The analytica! 
model for this sidewall effect is based on the following three consider
ations: 
- Because the doping level in the emitter region is mucli higher than in 

the base. the injected minority concentration at the silîcon-oxide in
terface is much lower in the emitter than in the base. Recombination 
at the silicon-oxide interface in the emitter is therefore neglected. 

- From numerical simulations it is observed that for Sox < 103 m/s the 
recombination current is proportional to Sox or, in other words, the 
electron charge in the extrinsic base is not significantly affected by the 
oxide recombination. 
In practical situations also the presence of the base contact does not 
significantly affect the electron charge in the base regîon. 

The oxide recombination current (per unit length in the third dimen
sion) can therefore be written as (see fig. 2.2) 

(2 18) 

and the above inlegral can be evaluated using the original boundary 
conditîons as gîven in fig. 2.2, i.e. for n (x,y) we use the solution found 
for Sox = 0. This results in (see appendix 2D) 
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• • • numerical • 
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Fig. 2.13. Analytically and numerically calculated values of !,ex as a function of 
the oxide recombination velocity. For this device W, = 0.1 pm and the quasi
neutml base widtll Wh = 0.1 pm. The numerically obtained value of n1 at the top 
dope in the extrinsic base is taken for the analytica! calculations. 

(2.19) 

where G is the Catalan constant (G 0.91596 ... ). As an example, fig. 
2.13 shows the linear dependenee of the numerically calculated oxide 
recombînatîon currenl on the oxide recombinatîon velocity up to values 
of S,.< ,."J03m/s, logether with the analytica! results obtained from 
(2. I 9). 
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2.3 THE COLLECTOR CURRENT 

To calculate the siclewall effect on the collector current we use the 
simplified structure given in fig. 2.11a. Since in practical cases the re· 
combination current at the base contact is much less than the collector 
current we can derive the expression for the collector current in the 
absence of the base contact (tb~ oo). In that case the quantity k (see 
fig. 2.11) equals unity, as can be observed from (2C.8), where 
y = k - 1. In appendix 2E it is shown that the collector current (per unit 
length in the third dimension) is given by 

(2.20) 

where the one-dimensional current density is given by 

(2.21) 

The second term in the right-hand side of (2.20) can be considered as 
the siclewall effect on the collector current. As expected, this effect in
creases with increasing value of the ratio Wel Wh. This can be seen from 
fig. 2.14 where the normalized collector current Icf(Jn 1He) is plotted as 
a function of Hef Wh for three values of we I Wh. No te that for we = 0 
solving the Laplace equation for electroos in the base region is the same 
problem as solving the Laplace equation for holes in the emitter region 
in the case where te~ oo ( fig. 2.9). Therefore, under these circum
stances we have the same mathematica! problem for the electron current 
in the base as for the hole current in the emitter. As can be seen from 
(2.20), in that case the expression for the collector current reduces to 
an expression similar to (2.16), as it should do. 

Fig. 2.15 shows the normalized electron current density Jn fJnl 
along the base-emitter junction. The parameters are equal to those of 
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fig. 2.3a, while We fWb = 2. The electron current density appears to di
verge at the sharp emitter corner. At this point it is interesting to note 
a striking analogy: If we replace the concentration n_; by the electrostatic 
potential and consider the emitter and collector regions as electrical 
conductors we have obtained an electrastatic capacitor-like problem. 
In this analogy the current density is replaced by the electric field. 
Problems of this kind have been intensively dealt with analytically in 
the first half of this century in conneetion with electrastatic breakdown 
phenomena in electrical machines and transfarmers [2. 7] . From these 
analyses it appears that the singularity at the corner disappears when 
this corner is rounded off. In ref. [2. 7] it is shown that the maximum 
electric field (current density) depends on the ratio rfWb, where ris the 

3.0 
Ie 

Jn1He 

I 2.5 
We 
wb =2 

2.0 

0.5 

1.5 

2 4 6 8 10 

' Fig. 2.14. Normalized collector current Ic/(J111 He) plotted as a function of 
He /Wh for We/Wf1 = 0.5, 1 and 2, respectively. 
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Fig. 2.15. The normalized electron current density along the emitter-base junc
tion. In this case Wel Wh 2. 

radius of the rounded corner. This effect, of course, also occurs in re
alistic transistors, as shown below. 

When we compare the numerically and analytically calculated 
electron current distributions along the emitter-base junction (see fig. 
2.16) we can observe two effects which tend to rednee the sidewa11 effect 
on the collector current, as compared with the analytica} model. First, 
as already mentioned before, we have a rounded corner (r/Wb~l) in
stead of a sharp corner. The maximum of the current density is about 
15% higher than Jn 1 and the location of this maximum is shifted slightly 
towards the centre of the device. This is in accordance with the obser
vations in ref. [2. 7]. The secoud deviation from the analytica} solution 
is that the numerically calculated electron current density through the 
sidewall is considerably lower. This is mainly caused by the fact that in 
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a realistic structure the base doping increases towards the surface and, 
therefore, the injected minority carrier density near the junction rl:i de
creases. 

2.4 GEOMETRICAL SCALING RULES 

In practice the total base current can be written as follows: 

(2.22) 

where Yb is defined as 

(2.23) 

4.0 

2.0 

1.0 -----

0.2 0.4 0.6 0.8 1.0 
-Z{IJm) 

Fig. 2.16. Numerically calculated electron current density along the emitter-base 
junction for the same device as that for which the results are presented in fig. 
2.6. The dotted Line gives the corresponding analytica! result. 
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The quantities Ybe• Ybb and Ybox account for hole injection into the 
emitter, recombination at the base contact and recombination at the 
silicon-oxide interface, respectively (see also section 2.1 ). Ae is the bot
torn area of the emitter (Ae =HeLe, where Le is the lateral emitter di
mension in the third direction) and Pe is the emitter perimeter 
(Pe = 2 (He+ Le)). JP 1 is equal to the bottorn base current density for 
an infinitely large emitter area. The product PeYb can be considered 
as an effective emitter sidewall area, which accounts for the sidewall 
effects on the base current. This way of descrihing the sidewall effect 
has the advantage that its relative importance can immediately be seen 
from a comparison of Yb with the emitter dimensions. The above ex
pression is valid in cases where the sidewall effects are equal for the four 
emitter sides or where the emitter width is much smaller than its length 
(He< < Le). By means of numerical simulations it bas been verified that 
in practical cases the three contributions are indeed additive, so that 
(2.23) is valid. It should be noted here that in section 2.2.1 it is shown 
that when the emitter width He is in the range of 2LP tanh ( Wef Lp) or 
less, the bottorn current Ibeb is much less than He Jpt> which is the value 
of Ibeb resulting from a simple one-dimensional analysis. In that case 
the bottorn base current does not scale linearly with He and, hence, a 
linear sealing rule for the base current of the form of (2.22) is no Jonger 
valid. 

Similarly, the collector current can be written as 

(2.24) 

where Jn1 is equal to the bottorn collector current density for an infinite 
emitter area. Yc accounts for the sidewall effect on the collector current. 
From figs. 2.15 and 2.16 it can be seen that a linear sealing rule for the 
collector current is valid down to very narrow emitter widths. 

In the rest of this section we present simple expressions for 
Ybe, Ybb• Ybox and Yc which may serve as a starting point for a compact 
model description of these sidewall effects. 

First we consider hole injection into the emitter. For a washed 
emitter, where te is determined only by the lateral diffusion of the 
emitter dopant, the ratio te f We can be assumed to be constant. It can 
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be seen from (2.15) that in this case Ybe is proportional to We. So we 
write 

(2.25) 

The value of Kbe depends on the detailed lateral doping profile. For 
tel We = 0.5, which is a realistic value for washed emitters, and error
type lateral profiles, a good indication for Ybe is obtained with the va
lues of Kbe as given in table 2.!. For te I we= 0.5, it follows from (2.15) 
that the proportionality constant is 0.09, while from the numerical ca1-
culations this constant is found to be 0.2 for a metal contact. The dif
ference is caused by the fact that in the numerical calculations the 
lateral diffusion causes the doping concentration near the contact edge 
to be lower than under the contact far from the edge. The injected 
minority concentration at the contact edge is therefore higher than in 
the analytica! case. Note the resulting negative value of Ybe for the case 
of a polysilicon emitter contact. This is due to the fact that the relative 
height of the peak current density at the surface is strongly reduced, as 
compared with the case of a metal contact, while the shape of the bot
torn current density is more or less unaffected. This is i11ustrated in fig. 
2.4. As discussed insection 2.2.1, Ybe consistsof two contributions, i.e. 
a negative contribution from the dip in the bottorn current density near 
the emitter edge and a positive contribution from the hole injection 
through the sidewall. The net result is a fairly small effect, which turns 
out to be slightly positive in the case of a metal contact and slightly 
negative for a poly contact. 

For non-washed emitters, for which te is much larger than in the 
case of a washed emitter, the sictewall effect becomes negative because 
the hole injection is confined to the region under the contact. Using 
(2.16), we obtain 

Y _ 2ln 2 W 
be- 1t e- te. (2.26} 

As shown in sectîon 2.2.1 the above expression also gîves reasonable 
results for inhomogeneously-doped emitters, provided that 
we < 0.2/J}n. 
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Table 2.!. Values for the prefactors in the expressions for Ybe• Ybb• Ybox and 
r;, for different values of the emitter recombination velocity Se, base contact re
combination velocity Sb and for the top dope of the base under the contact 
p++. 

Kbb Kbox Kbe Kc 

p + + ( m-3) 

1025 5.1025 1026 

Sb = 104 m/s (metal) 0.14 0.08 0.06 

Sb = 103 m/s (poly) 0.04 0.025 0.02 0.5 0.2 

se = 104 m/s (metal) 0.2 

se = 103 m/s (poly) -0.2 

To derive the contribution of the recombination at the base 

contact to the siclewall effect Ybb• Ibb is written in the desired form 

Jpi Ybb by using /3= = JnifJpi> which gives Jpi = qnj Dn /(f3cxoWb) . The re
sulting expression for Ybb can be obtained from (2.17). This gives 

(2.27) 

with 

(2.28) 

In order to make the above equation applicable to practical situations 

with an inhomogeneously-doped base, a reduced emitter depth We is 

defined by the introduetion of a quantity r, according to we= r we. 
The value of r, which is defined as the ratio of the injected minority 
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concentration at the peak dopant concentration in the extrinsic base to 

that in the intrinsic base, i.e. r = (ni; fN)extf(n~ JN)int• lies between 0.5 
and 0.8 in practical situations. The resulting expression for Ybb is: 

with 

0.5 

0.4 

0.3 

0.2 

0.1 

x Sb= 104 m/s p++ = 5 1025 m-3 

• Sb= 104 m/s p++ = 1026 m-3 

oSb=103 m/s p++=51025 m-3 

-- analytica! 

(2.29) 

(2.30) 

o~---L----L----L----L---~----~--~~--~~ 

0 0.1 0.2 0.3 0.4 

----l•~ tb (IJm) 

Fig. 2.17. Calculated values of Ybb as a function of the distance between the 
emitter siclewall and the base contact tb. For this device We= 0.1 J1.m and the 
quasi-neutral base width wb = 0.1 J1.m. Poo = 130. 
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In (2.29) the term Kbbr replaces K {o:). The weak dependenee of K (o:) 
on the ratio We /Wb (through o:) is neglected, which is suftïcient for our 
purposes. The prefactor Kbb is determined from numerical results and 
is given in table I for two values of the base surface recombination ve
locity and for three values of the top of the base dope under the con
tact. Note that the values of Kbb are much smaller than K(o:). As 
already pointed out in section 2.2.2, this is due to the fact that both the 
presence of an additional base dopant under the contact and a finite 
surface recombination velocity at the base contact deercases the value 
of Ibb , as compared with the analytica! solution. As can be seen from 
(2.30) the value of the characteristic length t0 is slightly reduced due to 
the presence of the inhomogeneous base dope. This can also be seen 
from fig. 2.12 where the numerical calculations give a smaller charac
teristic length than the analytica! calculations. As an example, in fig. 
2.17 the results, both numerical and analytica), are given for a structure 
as sketched in fig. 2.1. Expressions (2.29) and (2.30) are used for the 
analytica} calculations, together with the values of Kbb from table 2.1. 

Following the procedure used to obtain (2.27) with subsequent 
transformation to the situation with an inhomogeneously doped base, 
we obtain from (2.19) for Ybux : 

(2.31) 

where the factor J(l- o:2)/o:2 bas been approximated by We /Wb. The 
constant Kbax bas been determined numerically and is given in table 2.1. 

Initially it might seem surprising that Ybb and Ybax are proportional 
to Poo· This is due to the fact that these parts of the sidewall current 
are determined by the electron injection into the base, whereas the 
bottorn base current is determined by the hole injection into the emitter. 
Hence, a large value of Poo means a relatively low value of the bottorn 
base current and, therefore, a relatively large sidewall effect. 

Numerical calculations with realistic doping profiles show that the 
siclewall effect on the collector current is fairly small and depends on 
the detailed doping profiles of the intrinsic and extrinsic base. An in
dication of the magnitude of this effect can be obtained from: 
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(2.32) 

In the above formula the term of {2.20) between brackets has been re
placed by a constant, which is sufficient for our purposes. This is jus
tified by the consideration that for we~ wb the major part of that term 
accounts for the singularity in the electron current density which occurs 
at the sh_arp edge of the emitter-base junction of the model given in fig. 
2.2. In practical situations this singularity is largely removed. From 
the value of Kc in table 2.1 it can be seen that this sidewall effect is small 
in practical situations. 

2.5 MEASUREMENTS 

2.5.1 Ways of measuring the sidewall effects 

A problem which confronts us when we want to measure the sidewall 
effects is that the actual emitter dimensions are usually not accurately 
known. The only data normally available are mask dimensions or, with 
the use of SEM photographs, estimates of the emitter dimensions. 
Unfortunately, the uncertainties in the emitter dimensions are generally 
not much smaller than the values of Yb and Y0 which in most cases are 
in the order of a few tentbs of a micrometre. The interpretation of the 
measurement results therefore requires careful consideration. In this 
respect we look at two ways of measuring the sidewall effects. The first 
one is to measure the individual currents as a function of the emitter 
dimensions in order to determine Yb and Yc [2.8,2.9]. However, tbc 
apparent sirlewall effects, i.e. the measured values of Yb and Yc, strongly 
depend on the estimated values for Pe and Ae. As shown in appendix 
2F, the base current can be written as 

(2.33) 

where Le, He, Ae and Pe are the estimated values of Le, He, Ae and Pe 
respectively, and AL and AH are the errors in the estimated emitter 
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dimensions (see appendix F). As can beseen from (2.33), an underes
timation of the emitter dimensions (viz. AL and AH are positive) will 
result in a large apparent sidewall effect, while an overestimation of the 
emitter dimensions will yield a small or even negative sidewall effect. 
Unless the uncertainties in the emitter dimensions are significantly less 

than I Ybl and • Ycl, the above method will therefore be less suitable for 
the characterization of the sidewall effects. 

The second method is to consider the current gain fJ ({J ;:;::: Iel Ib) as 
a function of the emitter dimensions [2.8,2.10]. As shown in appendix 
2F, by means of a first-order expansion the reciprocal current gain can 
be written as 

(2.34) 

with Poo =JndJpJ· In appendix 2F it is shown that the above expression 
is valid in cases where i Y6 , i Ycl and the errors in the assumed emitter 
dimensions are much smaller than the emitter dimensions. This method 
therefore has the advantage that the results depend only on process 
parameters because errors in the assumed emitter dimensions are ap
proximately cancelled out. It is thus more suitable for process charac
terization and will be used here. However, the drawback of measuring 
fJ or its inverse as a function of Pel Ae is that it only yields the difference 
in sidewall effects (Yb- Yc), as can be seen from (2.34). 

At this point we introduce the characteristic length 

(2.35) 

which quantifies the current gain variation with lateral emitter sealing. 
The physical meaning of Hp is that for a relatively long emitter 
(He < < Le), Hp is a measure for that emitter width at which fJ/ Poo = 
1/2 in the case where the current gain deercases with decreasing emitter 
dimensions. Now (2.34) becomes 
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Fig. 2.18. An example of the redprocal current gain measured as a function of 
Pe /"/(, (process see table 2.Il). 

(2.36) 

The value of Hp can be detennined directly from measuring the slope 
of p-I versus Pe / Ae, while f3oo can be measured from the intersection 
of this line with the vertical axis. The above procedure works quite 

well in practice. This is shown in fig. 2.18, where the measured recip
rocal current gain is plotted versus P11 /Ae for process E. Since Hp is 
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approximately independent of the eruitter dimensions, this quantity can 
be used as a tigure of merit for the characterization of the lateral sealing 
properties of the current gain for a certain process. A positive value 
of Hp means a decrease in the current gain with decreasing emitter di
mensions, while a negative value of Hp means an increase in the current 
gain with decreasing dimensions. The larger the absolute value of Hp, 
the larger the current gain variation with lateral sealing. 

2.5.2 Results 

The measurements were performed on five different processes. The re
levant parameters are listed in table 2.II. Processes A-D are in-house 
processes and E is taken from the literature [2.11]. Process A is a 
modern double-poly process (see fig. 1.2a). B is a fairly conventional 
process with about the same eruitter profile as A, but with a much 
thicker base. This structure has two versions, i.e. with n-poly on the 
implanted emitter and with metal on top of the emitter. In the latter 
case we have investigated the effect of a non-washed emitter. To this 
end an oxide spaeer is applied after the eruitter is implanted, so that te 

is larger than in the washed-emitter case. By means of SEM photo
graphs the value of te is measured to be approximately 0.22 Jlm for case 
B2 (see fig. 2.19). Process C is a self-aligned high-speed process with a 
silicide base contact (see fig. 1.2c) Three values of tb are investigated. 
Process D is a conventional one with rather deep junctions (see fig. 
1.1 a). The narrow emitters of process E are fabricated by using elec
tron-beam lithography. 

The measured values of f3oo and Hp (from similar plots as given in 
fig. 2.18) as well as the calculated values of Hp are listed in table 2.III. 
For the calculations we have used the measured values of f3oo· The val
ues of the parameters are r = 0. 7 and Kbb = 0.025 for device A and 
0.08 for devices C (see table 2.I). In fig. 2.20 both the measured and the 
calculated values of f3ff3oo are plotted as a function of AefPe. So, the 
value of 0.5 11m on the horizontal axis holds not only for a very long 
and 1 Jlm wide emitter but also, for instance, for a 2 Jlm square emitter. 
From table 2.III and fig. 2.20 we can abserve the following: 
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Fig. 2.19. SEM picture of the extra spaeer in process B2. 

Metol contact 

Extra spaeer 

Emitter 

- In the absence of both recombination at the base contact and oxide 

recombination the current gain increases slightly with decreasing 

eruitter dimensions for a device with a poly eruitter contact (process 
B 1) and deercases slightly for a roetal eruitter contact (process E). 

- For the self-aligned processes (A and C) the current gain deercases 

with decreasing eruitter dimensions due to recombination at the base 

contact. This effect is greater for process C, which has a silicide base 
contact, than for the double-poly process A. For C the calculated 

values of Hp are considerably lower than the measured ones (see fol

lowing discussion). As expected, the siclewall effect increases with 
decreasing spacing between theeruitter siclewall and the base contact. 

- A substantial increase in the current gain with decreasing eruitter di

mensions can be obtained by using an extra spaeer to reduce the 

siclewall hole current (process B2). 
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Fig. 2.20. Measured and calculated values of fllfloo versus the area-to-perimeter 
ratio of the emitter. 

- For process D the measured value Hp 0.8 pm is rnuch higher than 
the calculated one. This difference is most likely due to recombination 
at the Si3N4 passivated interface between Si02 and < 1 I I > ori
ented silicon. This will he discussed at a later stage. 
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Table 2.II. Different processes and their parameters (see also fig. 2.1). 

r process w w te tb contact 
(pfrz) w:n) (/im) (/im) 

emit. base 

A 0.15 0.15 w 0.15 p p 

BI 0.35 0.15 w > 1.0 p m 

B2 0.35 0.10 0.22 > 1.0 m m 

Cl 0.15 0.10 w 0.15 p m 

C2 0.15 0.10 w 0.25 p m 

C3 0.15 0.10 w 0.35 p m 

D 0.30 0.35 w > 1.0 m m 

E 0.15 0.20 w > 1.0 m m 

F 0.30 0.35 w > 1.0 m m 

w: wasbed emitter p: poly contact m: roetal contact 

Table 2.III. Results 

process measured I calculated 

Poe Hp 
(/im) 

Hp 
(/im) 

A 270 0.15 0.25 

BI 100 -0.2 -0.15 

B2 25 -0.3 -0.4 

Cl 165 1.3 0.5 

Cl 160 0.7 0.15 

C3 160 0.4 0.0 

D 90 0.8 0.15 

E 130 0.1 0.05 

F 90 0.5 0.15 
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2.6 DISCUSSION AND CONCLUSIONS 

From the analysis in sections 2.2 and 2.3 it follows that, in principle, 
a sidewall effect exists on both the base and collector current. It is 
shown that not only do the sidewalls contribute to Ib and Ie simply by 
the current flowing through the sidewall junction but, more generally, 
that both currents are affected by the two-dimensional nature of the 
carrier injection in the regions near the sidewall. For the sidewall effect 
on the base current we can distinguish three possible contributions, i.e. 
hole injection into the emitter, recombination at the base contact and 
recombination at the Si- Si02 interface. 

It is shown that for shallow emitters (We< Lp) the hole current 
through the emitter sidewall is mainly determined by surface recombi
nation near the contact edge and therefore strongly depends on the 
surface recombination velocity and the distance between the contact 
edge and sidewall junction. In fact, a part is played not only by this 
distance but also by the exact shape of the two-dimensional doping 
profile. Since this two-dimensional doping profile is not well-known, 
it is impossible to determine this sidewall effect accurately. From both 
the analytica! and numerical calculations it follows that the net sidewall 
effect on the hole injection into the emitter is proportional to the 
emitter depth but, rather surprisingly, it is small. From numerical cal
culations with te f We = 0.5 and error-type lateral profiles it is found that 
in the absence of both recombination at the base contact and oxide re
combination the current gain increases slightly with decreasing emitter 
dimensions for a device with a poly emitter contact and deercases 
slightly for a metal emitter contact. This is confirmed by the measure
ments on devices B 1 and E, where the other possible contributions to 
the sidewall effect on the current gain are expected to be small. 

For self-aligned processes the current gain deercases with decreas
ing emitter dimensions due to recombination at the base contact. From 
calculations it follows that this effect is greater for a silicide base con
tact than for a polysilicon base contact because of the higher surface 
recombination velocity of a metal contact. This is in agreement with 
the measurement results on processes A (double -poly) and C (silicide 
base contact). For process C the calculated values of Hp are consider-
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ably lower than the measured ones. This may be due to lateral en
croachment of the base-link implantation into the intrinsic base region. 
This base-link implantation, which connects the extrinsic base with the 
intrinsic base, may cause an increased base dopant concentration at the 
edge of the intrinsic base and, hence, a negative siclewall effect on the 
collector current [2.12]. Another possibility might be that the surface 
recombination velocity at the silicide contact is higher than the assumed 
value of 104mfs. This is used because reported measured values of the 
surface recombination velocity at a metal contact usually lie around this 
value. However, no measurements on the surface recombination ve
locity at silicide contacts are known. lt has been found theoretically 
that the recombination current at the base contact depends exponen
tially on the spacing between the emitter siclewall and the base contact. 

The numerical analysis of the recombination at the silicon-oxide 
interface shows that this effect is proportional to the recombination 
velocity at this interface and is unimportant for the ideal currents if 
Sox < < 100 mfs. The main problem, however, is that the value of the 
interface recombination velocity is usually unknown and, moreover, 
may depend not only on the interface-state density but also on the de
tailed potential profile near the interface [2.13]. This potential pr'ofile, 
for instanee due to oxide charge, can vary as a function of time (e.g. 
as aresult of heat treatments and stressing). For device D the difference 
between the measured and calculated siclewall effect is most likely due 
to recombination at the Si3N4 passivated interface between Si02 and 
< 1 1 1 > oriented silicon. Such an interface has a high interface state 
density [2.2,2.14]. If we attribute the difference between the measured 
and calculated values of Hp to interface recombination and use the ex
pression for Ybox as given by (2. 31 ), we arrive at a value of Sox = 

2.102 mf s. This value is quite high, though not unlikely for a measured 
interface state density of about 1016 m - 2 for < 1 0 0 > oriented 
Si3N4 - passivated interfaces [2.15]. In fact, the measured value Hp 
= 0.8 pm agrees quite well with measurements on similar devices as 
given in [2.2]. From the reported Aef Pe - dependenee of {3, a value of 
Hp = 0.6 - 0.8 pm can be deduced for an emitter depth of 0.2 J.tm. A 
strong change of Hp during accelerated life tests is also reported in 
[2.2]. 
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The collector current mainly flows through the bottorn part of the 
emitter-base junction and, unlike the base current, the sidewall effect 
on Ie in our analytica! model is determined only by the geometry of the 
device. In more realistic structures this sidewall effect is reduced, when 
compared with the analytica! model, because of the non-uniform dop
ing of the extrinsic base. As indicated above, sidewall effects on the 
collector current can also be due to a base-link implantation which 
connects the extrinsic base with the intrinsic base. This implantation 
may cause an increased base dopant concentration at the edge of the 
intrinsic base and, hence, a negative sidewall effect on the collector 
current [2.12]. 

For very narrow emitters (viz. He< 2LP tanh (We/Lp)) an interest
ing phenomenon occurs, i.e. the hole current through the bottorn of the 
emitter deercases rapidly with decreasing emitter width, while the hole 
current through the sidewall remains much more constant. In this case 
the base current does not scale linearly with the emitter width. In such 
a situation it is also possible that the major part of the base current 
will flow through the sidewall or recombines in the extrinsic base. This 
can have two implications for device design considerations. The first 
one is that reduction of the emitter width in order to reduce the d.c. 
base resistance parameter is not very effective in that case. The second 
one is related to the coupling between base resistance and collector 
current. In conventional devices with a relatively large emitter area the 
d.c. base resistance parameter is strongly coupled with the intrinsic base 
thickness and doping profile (more generally: with the base Gummei 
number) and is therefore coupled with the current gain and base transit 
time. The reason for this is that the major part of both the base and 
collector current flows through the intrinsic base. However, from the 
above analysis it follows that at very small emitter widths the base re
sistance parameter will mainly be determined by the doping profile of 
the extrinsic base, while the collector current is mainly deterrnined by 
the thickness and doping profile of the intrinsic base. This implies that 
the base resistance parameter and the collector current become inN 
creasingly decoupled when the emitter width decreases. 

With respect to the measurement of these sirlewall effects we have 
seen that, unless the emitter dimensions are known to a high accuracy, 
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it is almost impossible to measure the siclewall effects on lb and Ie sep
arately. When Yb and Yc are measured from the geometry dependenee 
of the corresponding current, the result largely depends on the error in 
the assumed emitter dimensions. When the siclewall effect on the cur
rents is determined from the geometry dependenee of the current gain, 
only the difference between Yb and Yc is measured. The advantage of 
the latter method, however, is that the result is approximately inde
pendent of the errors in the assumed emitter dimensions. A quantity 
Hp is introduced as a figure of merit for the current gain varia ti on with 
lateral emitter sealing. This quantity can be measured from the de
pendence of the current gain on the lateral emitter dimensions. 
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APPENDIX 2A 

Equation (2.2), together with the boundary conditions as denoted in fig. 
2.2 and eq. (2.3), can be solved as follows: Consider only the right half 
of the structure in fig. 2.2. The additional boundary condition is then 
opfox = 0 at x= 0. Let us first assume that the excess concentration at 
the surface (y = We) is given by the function ~ y(x). This function will 
be determined later on. The problem can now be solved by a standard 
separation technique. The result is: 

p(x, y) = ~{n~=O [ _A_n_si_n_h_(w_[ W_e _-_y-:-]_) _+-:-B_n_st_·n_h_(_w_y_) ] cos (mx) 
~ sinh (wWe) 

with 

cosh ( ~ ) 
+ 'P 

cosh ( He ) 
2LP 

( 1 ) 2n: m= n+ H, 
e 

The coefficients An and Bn are: 

cosh ( Lx ) 
A = __!_ lHe /2 1 - ___ __;;_'P_ 

n He 0 He 
cosh ( ) 

2L 
'P 
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(2A.l} 

(2A:2) 

(2A.3) 

cos (mx) dx 
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=-
4 ( -tt 

(2A.4) 

cosh ( Lx ) 
_ _i_ rHe/2 'P 

Bn- H J y(x)- -----::-::"--

e o cosh ( 2L ) 
p 

cos (mx) dx. (2A.5) 

Using (2A.l) with y = We , the function y(x) can be written as 

oo cosh ( ~ ) 

y(x) =I Bn cos (mx) + /j 
n=O cosh ( 

2
l ) 

p 

(2A.6) 

To determine Bn consider the dimensionless surface recombination (j to 

be a (step-) function of x, which equals zero for He /2 <x< He /2. The 

product y(x) fJ(x) can be expanded in 

00 

y(x) fJ(X) = I En cos (mx). 
n=O 

Substitution of (2A.6) in (2A. 7) gives 

_ 4(} iHc/2 
En- H 

e 0 

where 

cosh ( ~ ) = 
___ _;;_P_+ IBjcos (vx) cos (mx) dx, 

h ( He ) COS j=O 
2l'p 
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( . 1 ) 2n 
V= J+2 H. 

e 
(2A.9) 

Substitution of (2A. 7) and (2A.8) into the right-hand side of (2.3) and 
of the derivative of (2A.l) into the left-hand si de of (2.3) leads, after 
some manipulation, to the following set of linear equations for Bn: 

with 

2aWe 

HeLp 

x [ m sin 

60 

{ 

00 

LMnjBj= Zn, 
j=O 

sin[ ; He (m + v)] 
+ 

sin[+ He (m- v)] 

m+v m-v 

Z= 
4wWe c -1r 

n He sinh ( w We) 2 ( -2 2) LP m LP + m 

- { ~H,cosh 4aWe 

( He ) (L -2 2) 
2L P +m 

p 

mHe He 1 mHe 
( -

2
-) cosh( 

2
L ) +LP- cos ( -

2
-) sinh 

p 

(2A.10) 

n=j 

} n =I i 

(2A.ll) 

( 2~ )]} 

Chapter 2 



(2A.12) 

This set of equations can be solved by a standard technique, taking only 
a finite number of equations into account. 

APPENDIX 2B 

By using the following Schwarz-Christoffel transformation 

(2B.l) 

the emitter in fig. 2.9a is mapped onto the upper half plane in fig. 2.9b. 
By inlegration of the above expression in the w - plane along the u -
axis from 0 to I we obtain 

He = - 2CkK(k), (2B.2) 

where K(k) is the complete elliptic integral of the first kind. Similarly, 
by integration from u= 1 to u 1/k and using (2B.2), we obtain 

(2B.3) 

Finally, integration from u= 0 to u= v yields 

He 
v = sn ( K(k), k), (2B.4) 

where sn(C,k) is a Jacobian elliptic function [2.16]. 
Now we consider the geometry in the complex t plane as given 

in fig. 2B.l. With the use of the transformation 

dt 
dw 
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the geometry of fig. 2B.l is mapped onto the upper half plane in fig. 
2.9b. By intcgrating the above expression in the t- plane axis from 
t = 1 +je to t =je we obtain 

-1 
D = K(v) . (2B.6) 

Integration in the t plane from t -l +je to t = -1 yields 

. K(v') 
c = K(v) ' 

(2B. 7) 

with v' =,} 1 -i . Now we have, indirectly, mapped the original ge
ometry of fig. 2.9a onto the geometry as given in fig. 2B.l. It is a gen
eral property of conformat transformations that the salution of the 
Laptace equation in one plane is also a salution of this equation in the 
other plane [2.17]. Because we have obtained a quasi one-dimensional 
problem in the t- plane the salution can easily be found to be 

P ~ (1 . ) c +}t, (2B.8) 

where P (r,s) = p (r,s) + j O(r,s) is the complex hole concentration. 
The hole current lbe can be determined as follows: The current 

density in the z - plane is : 

(2B.9) 

Using the Cauchy-Riemann equations it can be shown that [2.17] 

( 
d P )cc ( dP dt )cc 

J =- qDP ~ = - qDP dt dz , (2B.l0) 

where the superscript cc denotes the complex conjugate of the corre
sponding number. The hole current is 
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-1 

Fig. 2B.l. Contours of the emitter region in the complex t -plane. 

fHcf2 Ix=Hc/2 
he= JY dx = IJl dz. 

-Hc/2 x=-Hc/2 

By substitution of (2B.l0) in (2B.ll) we obtain 

l
t=J+jc 

d p cc 

[be = qDP ( dt ) 
t=-I+jc 

2qDpPj 
dt = _ _;;__..:.._ 

c 

1' 

(2B.ll) 

(2B.l2) 

When He>> we' both V-'.!> 1 and k-'.!> 1. In [2.16] it can be found that 
in this case 
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K(v) ~ _1 In ( 16 )· 
K(v'} n 1- v2 

(2B.l3) 

Substitution of (2B.13) m (2B.l2), usmg (2B.4) and 
sn\,, k) = 1 - cn2(C k) gives 

with 

He 
Ç = H K(k). 

e 

Using 

.. 1 k'2 
. 

cn(c,,k) ~ cosh ( - 4 smh Ç, 

K(k') ~ 2 In 2 - In k', 

and using (2B.13) for ~~}) gives 

for k - 1. After some manipulation (2.15) is obtained. 

APPENDIX 2C 

(2B.14) 

(2B.15) 

(2B.16) 

(2B.l7) 

(2B.18) 

To solve the Laplace equation together with the boundary conditions 
denoted in fig. 2.lla, we use the following Schwarz-Christoffel trans
formation: 
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dz = dw 
---:-w._b_~ ~1 . 
n(w + k) ....J -;=I 

(2C.l) 

By this transformation the geometry in the complex z-plane ( fig. 2.11 a) 
is mapped onto the upper half w-plane ( fig. 2.11 b ). Integrating (2C.t) 
from u = -1 to u = 1 gives [2.18] 

(2C.2) 

with 

(2C.3) 

and 

(2C.4) 

A second re1ation for determining the unknowns t and k is obtained 
from the distance between 2' and 2" in the z-plane [2.17]: 

t + k -2 
~-=a. 

l+k 
(2C.5) 

We now put k= 1 +y. For tb> (We + Wb) it is found that y < < l. In 
that case v0 becomes 

v0~1 +- ---y ( t 1 ) 
4 t + 1 

(2C.6) 

and 

(2C.7) 

Substitution of (2C.6) and (2C. 7) in (2C.2) finally gives 
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( 
t + 1 ) [ ntb ( 1 + a ) ] y~8 ""t"=T exp we + wb - a ln 1 - a . (2C.8) 

The complex concentration in the w - plane can be found in standard 
textbooks [2.17] as 

N=n1 ( ~ arccosh(w)+1). (2C.9) 

By using a procedure similar to that described in appendix 2B, differ
entiation and subsequent integration of (2C.9) gives for the current at 
the base contact 

qDn r;· 
hb = n arccash (1 + y). (2C.l0) 

Using 

arccash (1 + y) =In [1 + y + J2y + l J~J2Y (2C.ll) 

and 

t + 1 --,....., _..;:__:-

t- 1 - 1- a2 
(2C.l2) 

for y < < 1, we obtain (2.17). 

APPENDIX 2D 

To evaluate the integral of (2.18) we assume no base contact, sok= 1. 
The total electron concentration at the surface can now be written as 

n101 = [X> n (x, We) dx. 
He/2 

(20.1) 
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By the substitution of (2C.l) and (2C.9) in (20.1) we obtain 

If we put u= cos (Ç) then 

t- cos (Ç) dÇ 
1 +cos (Ç) . 

By using the identities cos (Ç) = l - 2 sin2 (Ç/2) and 
cos (Ç) =-cos (11:- Ç) we find 

J2 ~ wb ln (11: - Ç)/2 df: 
ntot = 1'1:2 o -J t- cos (Ç) sin (n- Ç/2) ~,. 

(20.2) 

(20.3) 

(20.4) 

If we replace J t - cos (Ç) by ~ , which is justified by the fact 
that t > > 1, and put (11: - Ç)/2 = 0 we obtain 

2)2t _ 2 n1 wb Ln'2 0 
ntot ~ 1'1:2 sin (0) dO. 

In [2.19] it can be found that 

ln/2 0 
---dO 20. 

0 sin (0) 

Substitution of this result in (20.5) gives (2.19). 
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APPENDIX 2E 

Differentiation and subsequent integration of (2C.9) gives for the col
lector current (per unit length in the third dimension): 

(2E.l) 

where the value of um is given by the relation : 

(2E.2) 

with 

(2E.3) 

The above relation is obtained by integrating (2C.l) along the u - axis 
from u= t to u= um. For He> 2Wb , um turns out to be much larger 
than t, so (2E.2) can be significantly simplified by using the following 

. . 
senes expanswns: 

(2E.4) 

and 

(2E.5) 
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After snbstitntion of the resnlting expression for Urn in (2E.l) we obtain 

(2.20). 

APPENDIX 2F 

In principle, the sirlewall effects Yb and Yc can be obtained by nsing of 
eqnations (2.22) and (2.24). However, the problem is that the actnal 

valnes of Ae (Ae = HeLe) and Pe (Pe = 2 (He + Le)) are not known. All 
we know are (at a certain bias condition) Ib and Ie (and therefore {3) for 

a number of transistors with different emitter dimensions. We denote 

the estimated valnes of Le, He, Ae and Pe by Le, He, Ae and Pe, respec
tively. Now we consider two ways of measnring the sirlewall effects, as 

given in section 2.5.1: 

1) Measuring the individnal valnes of Yb and Yc . We denote the mea

sured valnes of Yb by Yb . The errors in the estimated emitter dimen
sions are given by: 

!iL = (2F.l) 

(2F.2) 

Eq. (2.22) now becomes 

(2F.3) 

or, to first order (this means that prodncts snch as ALAH and ALYb 
are neglected) 

(2F.4) 

Using Ae =HeLe and Pe = 2 (He+ Le) , (2F.4) can be written as 
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(2F.5) 

From (2F.5) it can be seen that when there is a significant spreading 
of AH and AL between the different emitter geometries, a straight line 
is generally not obtained when Ib/ Ac is plotted vs. the estimated ratio 
Pel Ae. When AH and AL are approximately independent of the emitter 
geometry, the measured value of Yb can be obtained from the slope of 
the line. This gives 

(2F.6) 

So, the measured siclewall effect on Tb is strongly dependent on the er
rors in the estimated emitter dimensions. For Yc an analogous ex
pression can be derived. 
2) When we consider the current gain, substitution of (2F.3) and the 
equivalent expression for Ie in p-1 Ibflc gives, after a first-order ex
pansion of Ic- 1

, 

(2F.7) 

To first order (same approximation as in (2F.4)) this becomes 

(2F.8) 

So, when plotting p- 1 versus P(.JAe we obtain a straight line with a slope 
of fJ:01(Yb- Yc). This means that the measured value of Hp (see eq. 
(2.35)), i.e. Hp , is to first order equal to 2(Yb- Yc), which is the actual 
value of Hp. This shows that the measured value of Hp is indeed much 
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less sensitive to errors in the assumed emitter dimensions than when Yb 
and Yc are measured separately. 
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Chapter 3 

TUNNELLING EF:FECTS IN P-N JUNCTIONS 

3.1 INTRODUCTION 

In this chapter we investigate various aspects of the influence of tun
nelling processes on the reverse and non-ideal forward characteristics 
of a heavily-doped diode. The processes considered here are usually 
referred to as tunnelling, because unlike the ordinary generation-re
combination mechanisms such as the Shockley-Read-Hall and Auger 
processes, these processes involve transitions of electroos and holes be
tween spatially separated states in the conduction and valenee bands. 
Two different mechanisms can be distinguished, i.e. band-to-band tun
nelling and tunnelling via impurity states in the gap. The former me
chanism gives an I-V curve according to the solid line in fig. 3.1 and is 
important in the reverse-bias regime and, at extremely high dopant 
concentrations, in the low forward-bias regime [3.1]. The second me
chanism gives an I-V curve according to the dashed line in fig. 3.1 and 
is most important in the low and medium forward-bias regime. This 
current is called excess current because it is in excess of the normal di
ode current [3.2] . As pointed out in chapter one, in bipolar transistors 
these effects influence the non-ideal forward and reverse characteristics 
of the emitter-base junction. Due to the proximity of the base contact 
to the edge of the emitter-base junction these effects are especially im
portant in modern self-aligned structures such as those sketched in fig. 
1.2. Band-ta-band tunnelling delermines the emitter-base leakage cur
rent, while the excess current contributes to the non-ideal forward base 
current and, therefore, adversely affects the current gain at low and 
medium bias conditions. The primary goal of the work described in 
this chapter is to obtain model descriptions of these tunnelling effects 
which are suitable for implementation in a numerical device simulator 
and which can serve as a basis for a compact model description. 

In section 3.2 we investigate the feasibility of the well-known ex
pression for band-to-band tunnelling (e.g. see [3.1 ]) as a model for 
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Fig. 3.1. I-V characteristic of a heavily-doped diode. The total current, including 
the normal ideal current, is denoted by the dotted line. 

band-to-band tunnelling in reverse-biased junctions. Section 3.3 de
scribes a model for the recombination rate, taking account of trap-as
sisled tunnelling. This model is based on a simple quantum-mechanical 
description of a p-n junction using the so-called envelope-function ap
proach. The physical basis for a compact model descrihing I he J-V 

characlerislics of reverse-bîased junelions is gîven in seclion 3.4. Be
sides band-lo-band tunnellîng, Ibis model also includes avalanche gen
eration and tunnelling-enhanced SRH gencralion. 

Wc now qualitatively discuss the tunnelling processes at zero tem
perature, using the simplilled band structures of a p-n junction as 
sketched in fig. 3.2. The semiconductor material is assumed to be very 
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highly doped so that the quasi-Fermi levels !ie within the bands. To 
understand the solid I-V curve as given in fig. 3.1 we consider the tun
nelling current per unit energy as a product of three quant i ties, i.e. 

The density of occupied stales D1 (E) on the side from which an 
electron tunnels. 

- The density of unoccupied states D1 (E) on the side to which an 
electron tunnels. 

- The probability per unit time of an electron with that energy tun-
nelling through the gap. 

At zero. bias voltage (fig. 3.2a) the tunnelling current obviously equals 
zero because the product D; (E)D1 (E) is zero for all energies. Fig. 3.2b 
shows an electron tunnelling from the valenee band at the p-side into 
the conduction band at the n-side when a reverse bias is applied. The 
increase in the tunnelling current with increased reversed bias voltage 
can be understood in terms of a tunnelling distance. This tunnelling 
distance, which is equal to EK/qF, deercases with increasing reverse bias 
due to the increase in the electric field F. When a smal! forward bias is 
applied (fig. 3.2c) the tunnelling probability deercases monotonically 
because the electric field deercases monotonically. The peak in the I-V 
characteristic, however, occurs because the energy interval in which 
both unoccupied stales in the valenee band at the p-side and occupied 
stales in the conduction band at the n-side are present, shows a maxi
mum with increasing forward bias. In other words, the product 
D1 (E)D1 (E) integrated over all energies shows a maximum. Notice that 
this peak can only occur in very highly doped samples where the qua
si-Fermi levels !ie within the bands. The tunnelling process cao be ei
ther direct or phonon-assisted. Direct tunnelling involves purely elastic 
transitions and dominales in direct semiconductors such as GaAs and 
InP. Phonon-assisted tunnelling occurs in indirect semiconductors such 
as Si and Ge where the valenee-band maximum and conduction-band 
minimum do nol occur at the same point in k -space. 

The excess currenl, which is experimentally observed at high dop
ing levels or at low temperatures, oecurs in a situation where elastic 
tunnelling is impossible. This phenomenon is thought to he due to 
tunnelling via impurily statesin the gap [3.2]. It is therefore also called 
trap-assisled tunnelling. The basic process is a tunnelling transition of 
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slope = qF 

(a) (b) 

T/7'7: T/?T/7 

/ 

(c) (d) 

Fig. 3.2. Simplilled energy-band diagrams of a heavily-doped diode at equilib
rium (a). at reverse-biased condition (b), forward-biased such that the peak cur
rent is obtained (c) and forward-biased such. that elastic tunnelling is impossible 
(d). 

an electron from the conduction band to an cmpty impurity state, fol

Iowed by a transition from an occupied impurity state to an empty state 
in the valence. band (sec fig. 3.2d). For holes the reverse process occurs. 

This process can be considered equivalent to the ordinary Shockley
Read-Hall process via deep states. The ditTerenee is the character of 
the stales frorn which an electron makes a transition to a trap. In the 
ordinary SRH process the initia! state is a non-localized (Bloch) state 
in the conduction band, while for the tunnelling process the initia! state 
is a decaying state in the gap. 
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3.2 BAND-TO-BAND lTiNNELLING IN REVERSE-BIASED 
JUNCTIONS 

3.2.1 Introduetion 

To outline the theoretica! concepts given in the literature, we start with 
the expression for the net tunnelling current density in the energy range 
[E.E +dE], allowing tunnelling in either direction. This expression, 
as found in standard textbooks, is [3.1] 

dJhbt ~ (f',, (E) .t;, (E))T, Ne (E) N, (E) dE, (3.1) 

where .fn (E) and .t;, (E) are the Fermi-Dirac electron occupancy factors 
at the n- and p-sides respectively (sec fig. 3.3), while Ne (E) and N, (E) 

are the density of stales in the conduction band and valenee band, re
spectively. In the above expression we can recognize the three compo
nents of the tunnelling current density as given in section 3. I, i.e. the 
tunnelling probability T1 per unit time and the density of (un)occupied 
stales on either side of the junction. The limits for E are the band 
edges. 

The calculations of the tunnelling probability, as given in the lit
erature, are hased either on the application of the WKB approximation 
to tunnelling through a potential harrier or, more elaborately, on a di
rect solution of the Schrödinger equation. In hoth cases the electric field 
around the junction is assumed to be constant, i.e. a corresponding 
potenrial which depends linearly on the position x (see fig. 3.3). In the 
WKB approximation the tunnelling probability is given by [3.3]: 

T, ~ex{ -2 r l~<'(x) idx J (3.2) 

where xt and x2 are the turning points (sce fig. 3.3). The imaginary wave 
vector of the electron in the gap ~<:(x) depends on the shape of the po
tential harrier according to: 
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K(x) = 
2mx 

-
2
- [U(x)- (Eper}], 

h 
(3.3) 

where U(x) is the potential harrier, Eper is the energy associated with the 
motion perpendicular to the junction interface and mx is the effective 
mass of the electron. However, it is not quite clear what form the po
tential harrier should take in the case of an electron tunnelling through 
the gap. Since K(x) must be zero at the band edges, it is supposed that 
K(x) varies in a continuons way through the gap and has a maximum 
somewhere near the middle of the gap [3.3]. When Tt is calculated by 
means of a direct salution of the Schrödinger equation, a term qE..r. is 
added to the Hamiltonian of the system. For the direct case these cal
culations have been carried out by Kane [3.4] and fortheindirect case 
by Keldysh [3.5]. In [3.3- 3.5] it can be found that all the above 
approaches lead to an expression for ~ of the following form: 

p 

E 
-q lf/(X) 

1 
,_ ______ _ 

0 _ ____..,. .... x 

Fig. 3.3. A sketch of the assumed potential energy around a p-n junction. The 
metallurgkal junction is at x= 0. 
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(3.4) 

where F is the electric field. The parameter F0 is proportional to 
P and E/'2

, where Eg is the bandgap. Due mainly to different va
lues of the effective mass, different theoretica} values of F0 have been 
reported, ranging from 2.109 Vlm to 3.109 Vlm [3.6- 3.8]. It is shown 
in [3.9] that expression (3.1) for the current density per unit energy can 
now be written in the following form: 

(J 

dJbbt = c I Fl D (F,E, Vj) exp (- F0 I I Fl) dE, (3.5) 

where (j is a numerical constant ((j = 1 for direct tunnelling and 
(j = 312 for phonon-assisted tunnelling). The function D (F,E, Vj), 
which contains the occupancy factors and a term associated with the 
motion parallel to the junction interface, is practically unity for energy 
values more than a few times kT away from the quasi-Fermi levels. V; 
is the junction voltage, which is taken to be negative in reverse bias. 
At a sufficiently high reverse-bias the term D (F,E, Vj) can be set equal 
to one in our case. 

An expression which is often used to describe band-to-band tun
nelling in reverse-biased p-n junctions [3.1,3.6- 3.8] takes the follow
ing form 

(J 

Jbbt = q cbbt V; I Fl exp (- Fo I I Fl). (3.6) 

Eq. (3.6) is obtained from (3.5) by assuming that all electrous with an 
energy between the quasi-Fermi levels have the same tunnelling proba
bility, i.e. F is constant. In that case cbbt = c. In practice the electric 
field around a junction is far from constant (see fig. 3.4) and the ques
tion arises as to which value of F to use in the above expression. 
Among the few papers which discuss tunnelling in reverse-biased silicon 
p-n junctions in quantitative terms this question has received little at
tention, but it is of particular importance when consiclering using (3.6) 
as a model description of tunnelling for device simulations and compact 
modelling. Sometimes it is tacitly assumed that the maximum field 
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Fig. 3.4. A sketch of the actual potential and electric-field distribution around 
a p-n junction. The electrical junction is at x = 0. 

Fmax has to be used [3.6,3.7], but other suggestions have also been 
made, such as the average field Fav = (Vdiff- J7.i)/W [3.3,3.9], where 
Wis the depletion layer width and Vdiff is the diffusion voltage. In this 
section we concentra te on the feasibility ·of expression (3.6) as a model 
for tunnelling in reverse-biased p-n junctions and, in particular, on 
what value should be used for Fin (3.6), Fmax or Fav· 

3.2.2 Measurements 

To test the expression (3.6) Fmax and Fav must be determined exper
imentally. By the application of Gauss' law, the value of Fmax can be 
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Fig. 3.5. Experimentally determined ratio of the average field and the maximum 
field as a function of the applied voltage for four devices. 

determined by a numerical integration of the measured depletion ca
pacitance C (Jij), as described in [3.10] (see also section 3.4.3). The 
average electric field Fav> as defined above, can also be determined from 
the measured depletion capacitance by using the relation 
W(Vj) = e0e,A1 /C (Jij), where A, is the junction area. Fig. 3.5 shows the 
measured ratio of the average field and the maximum field for four 
different devices. Devices A and B are Zener diodes, C and D are the 
bottorn part of the emitter-base junction of a bipolar transistor (D is 
from the Jiterature [3.l0 ]). This ratio, which is around 2/3 for A and 
B and around 1/2 for C, indicates that A and B have linearly graded 
junctions and C can he considered to have an abrupt junction. For 
device D this ratio shows a different behaviour which is due to the fact 
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Fig. 3.6. The ratio of the tunnelling current density and the applied voltage as 
a function of the redprocal electric field for two cases. (a) the average field and 
(b) the maximum field. 
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that the boron distribution in the base falls off rapidly, resulting in a 
strong decrease in the depletion capacitance with increasing reverse 
bias, as explained in [3. 10]. 

In order to test expression (3.6), the rneasured values of the ratio 
of the current density and the applied voltage are plotted logarith
mically against the reciprocal measured electtic field for two cases, i.e. 
the average field and the maximum field, as shown in fig. 3.6a and fig. 
3.6b respectively. If the model is correct for either F mnx or F., the eer
responding rneasured points, when plotted as described above, should 
all follow a single curve, which is approximately a straight 1ine with a 
slope of- F0 log e (the actual slope is sornewhat larger than this value 
and not exactly constant because of the field-dependent prefactor). As 
can be clearly seen from fig. 3.6, this is true for the case where Fmax is 
used and not for the case where F.,. is used. The solid line in fig. 3.6b 
represents eq. (3.6) with f 0 = 1.9 I09Vjm, a= 3/2 and cbb1 = 1.6 10 15 

s- 1 m- 112 v-512 • Fig. 3.6b also gives a plot of the measur~d tunnelling 
currents as presenled in [3.6]. The value of F0 is in reasonable agree
ment with the theoretica! values as given in the preceding section. The 
rneasured value of the prefactor cbht is about three decades lower than 
the calcu1ated va1ue for direct tunnelling [3.9]. The difference can be 

Table 3.1. Measured and calculated temperature dependenee of the tunnelling 
currents. 

d(1n IJbb,l )/dT (10-3/K} 

Measured Calcu1ated 

A 5.5 3.2 
B 5.5 3.9 
c 7.4 7.1 
D 10.1 6.0 
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Fig. 3. 7. Measured temperature dependenee of the tunnelling currents. The ap
plied voltage is 2 V for devices A and B and 1.8 V for devices C and D. 

understood by realizing that there is an additional factor involved in 
the indirect case, namely the probability of an electron being scattered 
by phonons [3.3]. In fact, this measured value of cbbt agrees with the 
rough theoretica} estimation for the indirect case as given by Kane 
[3.9]. It is important to notice that in the case where all devices would 
have the same constant ratio between the average field and the maxi
mum field it would have been impossible to determine the most ap
propriate choice for the electric field in (3.6). In that case the measured 
points would also have foliowed a single curve when plotted against 
Fa-; 1, but with another slope and, correspondingly, a smaller value of 

Fo. 
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The tunnelling nature of the measured currents has been verified 
by measuring the temperature dependenee of the eurrents. The ob
served small positive dependenee of the current on the temperature (see 
fig. 3. 7) is assumed to be mainly due to the temperature dependenee 
of F0 (through the temperature dependenee of the bandgap) [3.6]. 
With this assumption it ean easily be shown that 

d (ln I Jbbr I ) 
dT 

= 
3 dEg F0 -----

2Eg dT IFI . (3.7) 

Table 3.I presents the measured and the ealeulated values of 
d (In I Jhhtl )fdT, where the almast linear dependenee of the bandgap 
on the temperature, as given in [3.6], has been used. The reasanabie 
agreement between the measured and ealculated temperature depend
enee virtually excludes the possibility of other meehanisms (avalanehe 
multiplication and thermally aetivated processes sueh as those summa
rized in [3.1 ]) being responsible for the 1-V eharacteristics observed. 

3.2.3 Interpretation of measurement results 

The experiments clearly show that the results can satisfactorily be de
scribed by the conventional expression for Zener tunnelling, provided 
that Fmax is used in that expression. In other words, in actual situations 
where the electric field is far from constant, the tunnelling probability 
is effectively determined by the maximum field and nat, as one might 
intuitively expect, by an average field. In this seetion we show theore
tically that an evaluation of (3.5), taking account of the actual electric 
field distribution, does indeed lead to a voltage dependenee of the tun
nelling current which can effectively bedescribed by (3.6), provided that 
f:Wx is used in that equation. To this end we consider the tunnelling 
current density per unit energy as given by eq. (3.5). In practice, the 
tunnelling probability bas a sharp maximum at a certain energy level. 
In order to find the actual relation between F and E, let us consider an 
electron with a certain energy, say E" entering the gap at x= x1 and 
leaving it at x= x2 (see fig. 3.4). For this electron we take as a value 
for F in (3.5) the electric field in the middle of the gap, t.e. 
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F = F (x1/2 + x2/2} . The reason for choosing the midgap electric field 
is that from a WKB analysis it follows that the largest contribution to 
the tunnelling probability comes from the region near the middle of the 
gap [3.3], where the potential can be approximated by 
1/Jë:::: -x F (x1/2 + x2j2) . 

In practical cases the value of F0 is much larger than the maximum 
electric field. This implies that the function dJhbtfdE has a very sharp 
maximum around the energy value E = Em at which the midgap electric 
field is maximum or, equivalently, where the tunnelling distance 
I x2 - x1 I is minimum. So, in effect only electrons with an energy near 
Em contribute to the tunnelling current. We make use of this fact in 
order to integrate (3.5) analytically. In appendix 3A it is shown that 
this leads to the following expression for the tunnelling current density 

I Fmaxl ) exp 
Fo ( 

-Fo ) 

IFmaxl · 

(3.8) 

In the above equation qa = (dp/dx)x=O> i.e. the gradient of the space 
charge density at the electrical junction which, for reverse-biased junc
tions, is virtually equal to the gradient of the dope at the electrical 
junction. The accuracy of the analysis leading from (3.5) to (3.8} is 
tested by numerical inlegration of (3.5), using the relation between F 
and E as obtained from a 1 D device simulator. A comparison of the 
numerically obtained value of the current density and the analytically 
obtained value (expression (3.8)) gives a maximum difference of 4% for 
practical doping profiles and for values of Fmax up to 2 10 8 Vjm. Apart 
from the low voltage regime, where both models become inaccurate 
because the term D (F,E, Vj) is set equal to one, the models show similar 
J-V curves. A comparison between (3.8) and (3.6) confirms the exper
imental results, i.e. the difference between the case of a constant field 
and the actual case lies in a different prefactor, which can be interpreted 
effectively as a smaller number of electrons involved in the tunnelling 
process, rather than in a different tunnelling probability, which would 
be the case if Fav had to be used. 
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3.3 TUNNELLING IN FORW ARD-BIASED JUNCTIONS 

3.3.1 Introduetion 

In forward bias where the bands are "uncrossed" (i.e. beyond the point 
where the conduction band minimum at the n-side is at the same energy 
level as the valenee band maximum at the p-side, sec fig. 3.2d) elastie 
tunnelling is no Jonger possible. Despite this, at high doping levels or 
at low temperatures the measured forward diode current is considerably 
in excess of the normal diode current [3.2,3.11 - 3.13]. This diode 
current is believed to be primarily caused by a tunnelling process since 
its dependenee on temperature and pressure parallels the dependenee 
of the band-to-band tunnelling current on these quantities [3.2]. The 
possible mechanisms leading to the excess current can be divided into 
two classes, i.e. that which requires statesin the forbidden gap and that 
which does not. In the latter case the electrous can lose energy by 
emîtting photons, phonons or in Auger processes. Kane [3.9] has 
considered several of these hypotheses theoretically and has concluded 
that they are unlikely to account for the excess current. Moreover, the 
pbonon emission hypothesis has been tested experimentally but no evi
dence for this meehanism could be found [3.2]. The former case, i.e. 
tunnelling via deep states in the gap, is believed to be the most likely 
(sec fig. 3.8). This meehanism was first suggested by Yajima andEsaki 
[3.11] and, subsequently, several authors have obtained strong confir
mation of it by showing that the magnitude of the excess cm-rent can 
be altered by changing the trap density, either by suitable doping or 
by radiation damage [3.2,3.12,3.15]. It is interesting to note the strik
ing analogy between the trap-assisted tunnelling processes and the or
dinary Shockley-Read-Hall recombination processes. Not only do the 
two classes of transitions (band-to-band and via deep states) occur in 
botb processes, but in the case of tbe SRH process the transitions via 
deep impurity states are also most likely [3.14]. 

Several authors [3.2,3.13] give a semi-empirical relation between 
the trap-assisted tunnelling current density and a certain function 
h (V) of the applied voltage Vf of the following form 
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Fig. 3.8. Schematic energy-band diagram of a forward-biased junction. Both the 
conventional SRH process and the trap-assisted tunnelling process are denoted. 

h (V;) 
Jtat = Ctat e · (3.9) 

The idea behind these models is that the current is proportional to a 
tunnelling probability T1, given by 

T . h(~) 
t"'e . 

In [3.2] , h (fj) is adapted from Franz [3.16] to be 

h (V.)= .! 

88 

4..ji;1" AE312 

3qhiFI 

(3.10) 

(3.11) 
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Fig. 3.9. Potential harriers as assumed to obtain expressions (3.11) (a) and (3.12) 
(b). 

In [3.16] the above expression is obtained from the denvation of the 
probability that an electron will make an elastic transition from an 
irnpurity state to the conduction band. In this application I!..E is the 
height of the tunnelling harrier for an electron that tunnels from one 
side of the depletion layer to the other (see fig. 3.9a). This harrier 
height is assurned to be I!..E = q (Vdif.f- Vj). In [3.13], h Oj) is obtained 
frorn the tunnelling probability through a rectangular harrier of width 
Wand height I!..E = q (Vdif.f- V;) (see fig. 3.9b). In that case 

(3.12) 

lt can easily be shown that, although the physical approach to the 
denvation of h (Vj) is different, the roodels exhibit equal dependenee 

of Jtat on Vj. 
However, when we consider formulation (3.9) as a basis for a 

physical model in numerical device sirnulations, it suffers frorn the fol
lowing drawbacks: 
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- The magnitude of the proportionality constant c1a1 cannot be obtained 
from the model but must be determined by fitting the experimental 
I-V curves. 

- A model that describes the tunnelling effect in the form of a current 
density is less suitable for incorporation into a numerical device sim
ulator. To this end the tunnelling contribution must be given in the 
form of a recombination term in the continuity equations. 

Furthermore, for these models it is assumed that only electroos at 
x= 0 (and similarly holes at x= W) contribute to the tunnelling current 
and they therefore neglect the possibility of injected electroos in the 
depletion layer (e.g. at x1 in fig. 3.8) tunnelling to a trap. This might 
be particularly significant in a transition region where both conven
tional SRH recombination and trap-assisted tunnelling are important. 

In the next section we present a rather beuristic recombination 
model which includes both SRH recombination and trap-assisted tun
nelling. As will be shown, this model does not suffer from the above
mentioned drawbacks. 

3.3.2 A recombination model including trap-assisted tunnelling 

Basically, SRH recombination and trap-assisted tunnelling are similar 
mechanisms, i.e. recombination via impurity states. The difference lies 
in the character of the state from which the electron makes a transition 
to a trap state. In the conventional SRH process the initial state is a 
non-localized (Bloch) state in the conduction band, and in the tunnel
ling process the initia! state is a tunnelling state in the gap. In our 
model the electron and hole concentrations in the depletion layer are 
considered to consist of two contributions;i.e. 

n = nsc (x) + n1un (x), (3.l3a) 

P = Psc (x) + Ptwz (x), (3.13b) 

where nsc and Psc are the conventional, semi-classica} electron and hole 
concentrations (i.e. from states in the bands) while ntun and Ptun are the 
concentrations due to tunnelling. If we make no distinction in the 
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capture processes between carriers in the band and tunnelling carriers, 
the net recombination rate is given by an SRH-like expression 

R= (3.14) 

In the above expression 1:P and rn are the recombination lifetimes, while 
n1 and p1 are the carrier concentrations at equilibrium. 

The expressions for the carrier concentrations are obtained by the 
application of the so-called envelope-function formalism, first devel
oped by Slater [3.17] and frequently used, for instance, in solving 
heterojunction problems and for obtaining impurity energy levels 
[3. 18]. In the unperturbed situation the bottorn of the conduction 
band everywhere in the device is at E = 0. The perturbation potential 
is due to both the built-in potential and the applied voltage. This po
tential equals zero for x< 0 and is equal to q (Vdiff- V;) for x> W. The 
total electron concentration in the depletion layer n (x) is given by 

loc 2 
n (x) 

0 

N(E)f(E) </Je (x) dE, (3.15) 

instead of the semi-classical expression 

nsc (x)= Joo N(E)f(E) dE. 
Ec(x) 

(3.16) 

In the above expressions N(E) is taken to he the unperturbed density 
of statesin the conduction band and.f(E) is the Fermi-Dirac occupancy 
factor. </Je (x) is the envelope wave function which is the eigenfunction 
of the effective-mass Schrödinger equation 

[ n
2 

d
2 

] ---x -
2 

+ U( x) <P E (x) = E <P e(x). 
2m dx 

{3.17) 
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For a linearly varying potential in the depletion layer as sketched in fig. 
3.8 ( U(x) = qFx), (3.17) can be written in the following form 

(3.18) 

with Ç = yx and 

(3.19) 

The solutions of equations of the type of (3 .18) are the Airy functions 
Ai and Bi [3.19]. Since for (Vdiff- ~) > > kTfq we can assume that 
only the decaying function Ai is allowed, the solution of (3.17) is 

(3.20) 

with x 1 = E/(qF). As can be seen from fig. 3.10, for x > x1 the Airy 
function decays and represents the tunnelling behaviour, while for 
x < x1 the Airy function oscillates and represents the non-localized be
haviour. The exact value of the effective mass m x to be used is not clear 
and, moreover, depends on the crystal orientation. Experiments and 
theoretica! treatments on Zener tunnelling suggest a value between 0.1 
and 0.2 [3.6,3.7,3.20]. 

In order to make the result suitable for incorporation into a con
ventional numerical device simulator we must express n (x) as a func
tion of the conventional electron concentration nsc (x). This can be 
accomplished by putting N(E}f(E) !lE ~- (dnscfdx1)!lx1 (see appendix 
3B). We obtain 

-2 100

( dnsc(x)) '[ J n (x)= Ai (0) - dx Ar y(x - x 1) dx1• (3.21) 
0 X=X] 

Note that the upper limit of the above integral has been put equal to 
oo, which is a good approximation only when (Vdiff- ~) > > kTfq. The 
contribution of the integration interval [ O,x] is the tunnelling contrib-
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ution, while the contribution of the interval [x, oo] corresponds to the 

semi-classical injected electron density. In order to be consistent with 

expression (3.16) for nsc (x), (3.21) is rewritten as 

d nsc (x) ) 
dx 

X=Xt 

The second term on the right-hand side of the above expression is the 
tunnelling contribution. The physical meaning of the term 

Ai 2[ y(x - x1) ]/ Ai\0) is the probability that an electron at x1 will tun
nel to a trap at x. It should be noted that, since only electrons at an 

energy level above the trap level contribute to the recombination, in the 

Ai (z) 
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Fig. 3.10. A plot of the Airy function Ai (z). 
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Fig. 3.11. The normalized contribution from x1 to the tunnelling electron con
centration at x = W/2 for three valnes of the electric field. T = 300K and 
vdiff J1f = o.s v. 

case of shallow impurities, i.e. Er< q I Fl x, the lower bound of the in

tegral in (3.22) must be replaced by x-: Er f(q I Fl ), where Er is the trap 

level measured from the conduction band. In fig. 3.11 the normalized 

contribution from x1 to the tunnelling electron concentration in the 

middle of the depletion layer (i.e. the integrand of (3.22) for x = W/2, 

divided by nsc ( W/2)/ W) is plotted as a function of xtf W for three val u es 

of the electric field. This plot shows where the maximum contribution 

to the tunnelling electron density at x= W/2 originates. We see that for 

high fields the largest con tribution comes from x1j W = 0, i.e. from the 

edge of the depletion layer. For low fields the largest contributîon 

comes from the region close to xt> while for intermediale fields the 
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Fig. 3.12. Ratio of the calculated current obtained using the proposed modeland 
that obtained with the conventional SRH model as a function of the zero-bias 
depletion layer width. The junction voltage is 0.3 V and T 300K. 

maximum contribution comes from the regiOn somewhere between 
xJIW 0 and xtfW = 0.5. 

For holes a similar procedure leads to 

fx( dPsc (x) ) Ai
2 

[y(xl - x)] 
p (x)= Psc (x)+ - dx -----:'---- dx1.(3.23) 

W x=xl Ai2(0) 

lt is interesting to note that when only tunnelling from one side 

of the depletion layer to the other is considered, i.e. (x x1) = W, the 
asymptotic expansion of the Airy function yields 
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(3.24) 

This expression is identical to the tunnelling probability as used by 
Chynoweth et al. (see (3.11)) to obtain an expression for the current 
density. Furthermore, for a reverse-biased junction, where the tunnel
ling distance is Eg/(q I Fl ), the asymptotic expansion of the Airy func
tion yields the well-known field dependenee of elastic tunnelling, viz. 

AP (yEg/q I Fl) "'exp - g • ( 4~E3/2) 3qli I Fl 
(3.25) 

3.3.3 Results and comparison with experiments 

Because (3.22) and (3.23) apply to a linear potential we have approxi
mated the potential in the depletion layer by a straight line. We have 
used the average electric field and not the field at the electrical junction 
because, unlike the conventional SRH process, in the case of tunne1ling 
the whole depletion region contributes to the values of n and p at the 
electrical junction. A standard model for the recombination lifetime is 
used [3.21], tagether with the Slotboom-De Graaff model for band
gap-narrowing [3.22]. The current density is obtained by numerically 
solving the stationary continuity equation (1.2) for either holes or 
electrons. This yields 

J = - q Lw R(x) dx. (3.26) 

From the calculations it follows that the ratio of the current obtained 
using the proposed model and that obtained with the conventional 
SRH model, depends strongly on the zero-bias depletion width W0 or, 
equivalently, on the electric field. This is shown in fig. 3.12 where this 
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Fig. 3.13. Measured (dots) and calculated I-V characteristic for a diode with a 
linearly-graded junction at T 294K (a) and T = 96K (b). 
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ratio is plotted for two values of the effective mass. Furthermore, from 
this figure it is apparent that irrespective of the exact value of the ef
fective mass, the tunnelling effect increases strongly when the zero-bias 
depletion width is less than about 300Á. In the case of a two-sided ab
rupt junction this value corresponds to a doping level of 3 1 024m - 3

. This 
is in rough agreement with experîments [3.13]. Forthese calculations 
we have used the dependenee of Won J;} for a linearly graded junction. 
The results are not essentially different for an abrupt junction. 

In order to test the model, we have compared calculated results 
with measurements on diodes having a linearly graded junction and 
used the dependenee of Won J;j as obtained from capacitance meas-
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Fig. 3.14. Measured and calculated (including tunnelling) non-ideal diode cur
rent density as a function of the zero-bias depletion width at 0.3 V junction vol
tage and at room temperature. The squares are own measurements and the dots 
are from [3.13]. 
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Fig. 3.15. Measured and calculated non-ideal diode currents as a function of 
temperature at 0.3 V junction voltage. Different symbols denote different diodes 
while the calculations are performed for the diode denoted by the solid dots. 

urements. In these calculations an effective mass of 0.15mo is used. In 
fig. 3.13 the measured and calculated J-V characteristics are plotted for 
a diode with a 185Á zero-bias depletion layer width at two temper
atures. Note that the difference between, on the one hand, the con
ventional!y calculated current and, on the other hand, that obtained 
by the proposed model and the measurements is more than one decade 

at low bias at room temperature. Although this difference is most 
striking, it is not the most fundamental one because it might be due to 

a wrong estimation of the lifetimes 'l:n and rP' resulting in a wrong ab
solute value of the current density. These lifetimes are inversely pro
portional to the trap density. Although the roodels for the lifetimes 
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Fig. 3.16. Measured and calculated non-ideality factors for a number of diodes 
as a function of the zero-bias depletion layer width. T 294K. 

assume a direct correspondence of these lifetimes with the doping den
sity, the trap density and therefore the lifetimes are believed to be very 
process-dependent. This is illustrated in fig. 3.14 where measured 
non-ideal diode currents are plotted as a function of the zero-bias de
pletion width for diodes having slightly different doping profiles. Note 
the large spread between the various measurements. In this tigure the 

corresponding calculations are also denoted. 
Figs. 3.15-3.17 show two characteristic features associated with 

trap-assisted tunnelling which are satisfactorily described by the pro
posed model and cannot be explained by a possible erroneous choice 
of the recombination lifetimes, viz. 
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Fig. 3.17. Measured and calculated non-ideality factors as a function of tem
perature. 

- The temperature dependenee of the currents is much weaker than that 
predicted by the conventional SRH model (fig. 3.1 5). In fig. 3.15 the 
calculations are performed for the diode from fig. 3.13 represented 
by the solid dots. The other symbols denote different diodes with a 
slightly different depletion width. The solid triaugles are from 
[3.13]. As can be observed from fig. 3.15, the difference between the 
current obtained with the proposed model and that obtained with the 
conventional SRH model may be as much as six decades at 150K. 
This is due to the weak temperature dependenee of the tunnelling 
contribution to the carrier density. 

- If J is expressed as J- exp (q ~fmkT) the non-ideality factor m is 
larger than two, whereas the conventional SRH model prediets a va-
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lue less than two. In fig. 3.16 this non-ideality factor is plotted as a 
function of the measured zero-bias depletion layer width while in fig. 
3.17 m is plotted as a function of temperature. In both figures the 
calculations are performed for the diode in fig. 3.13 represented by 
the solid dots. Especially at low temperatures the difference becomes 
more pronounced. In fact, for these devices the tunnelling term pre
dominates and the slope of the I-V characteristics is therefore virtu
ally independent of temperature, resulting in a value of m which is 
almost inversely proportîonal to T. 

3.4 A COMPACT DIODE MODEL INCLUDING TUNNELLING 

3.4.1 Qualitative discussion 

In this section the physical basis for a compact model descrihing re
verse-biased diode currents is presented. Present diode models such as 
those implemented in the circuit-simulation packages PHILPAC and 
SPICE give poor results in the reverse bias regime [3.23,3.24]. The 
model in PHILPAC gives a constant Iow leakage current at each reverse 
bias point, while the model in SPICE gives a constant leakage .current 
up to the breakdown voltage and beyond breakdown the negative for
ward characteristic is taken. To illustrate the problems in modeHing the 
reverse characteristic, fig. 3.18 shows both the measured forward and 
reverse I-V characteristics of three different Zener diodes. From this 
figure it is apparent that while the forward characteristics are virtually 
equal, the reverse characteristics are quite different. Not only do the 
values of the current at a certain voltage differ by several orders of 
magnitude, but the shape of the characteristics is also different. Ac
cm·ding to standard textbooks (e.g. [3.1]) tunnelling predominates 
when the breakdown voltage Vbr is less than 4Eg/q. For junctions with 
a breakdown voltage in excessof 6Eg/q, Shockley-Read-Hall generation 
together with avalanche multiplication predominates, while for inter
mediate values of Vbr all three mechanisms may be important. A 
common way to discriminate between the three mechanisms is to in
vestigate the temperature dependenee of the characteristics. The SRH 
generation mechanism has a strong (exponential) positive temperature 
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Fig. 3.18. Forward and reverse 1-V characteristics of three different types of 
Zener diodes. The absolute value of the current is plotted on the vertical axis. 

dependence, the band-to-band tunnelling mechanism has a very weak 
positive temperature dependenee and the avalanche mechanism has a 
negative temperature dependenee [3.1]. In figs. 3.19-3.21 the I-V 
characteristics of the above diodes at various temperatures are given. 
These measurements support the above-mentioned rule which relates 
the different underlying physical mechanisms to the breakdown voltage, 
i.e. in diode K tunnelling predominates, while in diode M SRH gener
ation is predominant. In the case of diode L we can clearly distinguish 
two regions. In the low-bias regime a strong temperature dependenee 
is observed, indicating that SRH generation is predominant, while in 

the high bias regime tunnelling predominates. 
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Fig. 3.19. Reverse I-V characteristics of diodeKat various temperatures. 

Based on these qualitative observations we infer that (at least) 

three generation mechanisms must be taken into account, viz. 

- SRH generation in the depletion layer 

(p n- n,l) 
(3.27) 

- avalanche multiplication 

(3.28) 

- band-to-band tunnelling 
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Fig. 3.20. Reverse I-V characteristîcs of diodeLat various temperatures. 

I J~~l b(x). (3.29) 

Expressions {3.27) and (3.28) can be found in standard textbooks while 
Jbhl is the tunnelling current density as given by (3.6) and .5 (x) is the 

Dirac delta function. The origin x= 0 is at the location of the maxi
mum electric field. The tunnelling mechanism is taken into account as 
a generation term for the following reason: basically, band-to-band 

tunnelling is the generation of electron-hole pairs by tunnelling of 

electrans from the valenee band to the conduction band, leaving a hole 
bebind. These electron-hole pairs can subsequently be accelerated to 

cause avalanche multiplication. This is taken into account by the above 
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description of tunnelling as a delta-function generation of electron-hole 
pairs at the location of the maximum electric field. 

3.4.2 Model derhation 

We consicter a one-dimensional diode as sketched in fig. 3.22. Taking 
account of the three generation mechanisrns given in the previous sec
tion, the hole and electron current densities behave as sketched in thîs 
figure. In order to derive thc diode current Jd we have to solve the 
continuity equation for either holes or electrons. The stationary hole 
continuity equation ( 1.2b) for this structure reads 

dJP 
dx = -qRsRH (x)+ "'• (x) J. (x)+ rx.P (x) JP (x)+ Jbb, b(x), (3.30) 
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Fig. 3.21. Reverse 1-V characteristics of diode M at various temperatures. 
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.... x 

Fig. 3.22. Distri bution of the hole current density around a one-dimensional p-n 
junction. Notice the discontinuity of the current density due to tunnelling gen
eration. 

whcre Jbbt is taken to be positive. The boundary conditions are 

(3.31) 

and 

(3.32) 

The current densities Jpn and Jnp are caused by recombination in the 
regions outside the depletion layer at the n and p side of the diode, re
spectively. The sum of these term J5 is the saturated ideal current 
density. Using the above houndary conditions, together with the re

lation 
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(3.33) 

the above first-order differential equation can be solved and the fol
lowing expression is obtained 

Jd = f , (3.34) Xp 

1 - cxn 4J(x) dx 
-x" 

with 

(3.35) 

Breakdown occurs when the denominator equals zero, which is equal 
to the breakdown condition as given, for instance, in [3.1]. From the 
denominator in (3.34) it can be seen that this condition is determined 
only by the ionization integrals of cxn and cxP, hence by the electric field 
distribution in the depletion layer. This means that the breakdown 
voltage is entirely determined by the avalanche effect while the other 
effects (SRH generation and tunnelling) only serve as "source" terms for 
avalanche multiplication. Tn other words, in principle all three terms 
can contribute to the magnitude of Jd whereas Vbr is determined by the 
avalanche effect alone. 

It is obvious that expression (3.34) for the diode current is far too 
cornplicated in a circuit sirnulation environment and that essential 
sirnplifications have to be made. These fairly rigorous sirnplifications 
must be such that, on the one hand, the result is a simple analytica! 
expression which can be used without rnuch computational effort, while 
on the other hand the physical basis of the model is maintained. These 
simplifications are as follows: 
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1) A symmetrical step junction is assumed, so RsRH (x) is constant in 
the depletion layer, having a value of 

R ( ) n; (I q v/kT) G 
SRH X = - e 1 E - SRH• (3.36) 

except within a distance of W0/2 from the depletion layer bounda
ries, where RsRH = 0 [3.25]. Expression (3.36) is obtained from 
(3.27) by neglecting n and p in the denominator, which is justified 
by the fact that in reverse bias these concentrations are much less 
than ni. In the numerator the relation pn = n/ exp (qVj fk1) is used 
in order to maintain zero generation at zero bias. Furthermore 1:P 

and T:n are replaced by an effective lifetime r. For the saturated ideal 
current it holds that Jpn Jnp = ls/2. 

2) The dependenee of an on the electric field is given by the commonly 
used expression [3.26] 

(3.37) 

and aP is taken to be proportional to am i.e. aP = et.n/2. 
After a number of additional mathematica! simplifications (sec appen: 
dix 3C) we arrive at the following expression 

with 

and 

Jbbt e- llav + VsRH + Js) (1 + e - 2flav)/2 

1 - 2J.Lav (1 + e -2flav) 

llav = 0.5 dav Ct.n 00 exp (- bn /I Fmax I), 

(3.38) 

(3.39) 

(3.40) 

where dav is an effective length for avalanche multiplication (see (3C.3)). 
W is the depletion layer width and W0 is the depletion layer width at 
zero bias. Both (3.34) and (3.38) reflect the physical mechanism that 
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Fig. 3.23. A comparison of model results and numerical calculations. The con
tributions of the SRH generation and band-to-band tunnelling, as given by the 
compact model, are also indicated. 

the two "source" terms, i.e. tunnelling and SRH generation, are subject 
to avalanche multiplication. The multiplication factor for the two terms 
is slightly different due to the fact that GsRH is a homogeneously dis
tributed generation term while the tunnelling generation term is local
ized. Breakdown occurs when the denominator of (3.38) becomes zero, 
so 2Ji.av (1 + e ~21lav) = l. This gives for Ji.av at breakdown a value of 
Jl.av,br~0.3295. Substitution of this result into (3.40) gives 

Jl.av 0.3295( :rnax )

2 

exp( 
max,br 

(3.41) 
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Fig. 3.24. The doping profile of the diode as used in the numerical simulations 
from fig. 3.23. 

This expression has the advantages that the unknown dav is eliminated 
and that Jd becomes infinity at exactly the measured breakdown volt
age. 

Equation (3.38) together with (3.6), (3.36), (3.39) and (3.41) form 
the basis of the model. The strategy for obtaining the 1-V characteristic 
is as follows: 
1) Determine W (T'j) and Fmax (T'j) from capacitance measurements as 

will be described in section 3.4.3. 

2) Determine Vbr from measurements and subsequently Fmax,br can be 
determined. 

3) Determine Jlav (T'j) from (3.41). 
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4) Determine Jbbt from (3.6). 
5) Determine J8 from the forward characteristic. For silicon this term 

is negligible in reverse bias at around room temperature. 
6) The diode current density Jd can now be calculated from (3.38). 
In this procedure the unknown constant GsRH is obtained by fitting the 
calculations to the measurements. 

In order to show the validity of the simplifications involved, fig. 
3.23 presents a comparison of model calculations with results of l D 

numerical ,simulations. In the numerical simulations, at each bias con

dition the quantities RsRH and F are calculated at each mesh point in 
the discretized domain. Subsequently, expression (3.34) is evaluated 
numerically. The doping profile of this diode is given in fig. 3.24. The 
numerically calculated values of W and Fm at each bias point are used 

to obtain the compact model results. The quantities GsRH and Vbr are 
also taken from the numerical simulations. 

3.4.3 Comparison with measurements 

Totest the physical significanee of the resulting model we compared t~e 
model results with the measurements given in section 3.4.1. To this end 
the depletion layer width W(V,.) and the electric field Fmux (Vj) have been 
obtained from measurements following a standard procedure as given, 
for instance, in [3.27]. The measured depletion capacitance is fitted to 
the following expression: 

Co c (V.)= ----p-' 1 
(1 Vj I vdiff) 

(3.42) 

where the zero-bias depletion capacitance C0, the grading coefficient p 

and the diffusion voltage Vdiff are fitting parameters. For the three di
odes p is measured as ~0.33, i.e. linearly-graded junctions, while 

Vdiff 0.5- 0.6V. By using Gauss' law and dQfdV = C, we obtain 
[3.27] 
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I Fmax (Vj) I l JY] C (V)dV + I Fmax (Vdiff) I 
AJ· Boe, v 

d!(f 

V: )I-p 
V ;iff ' 

(3.43) 

where it is assumed that 

(3.44) 
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Fig. 3.25. Measured and calculated reverse characteristics at room temperatur:e. 
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The quantity Ai is the effective junction area, i.e. the area of the region 
where the electric field is largest. In our case we have large planar 

junctions with sictewall effects eliminaled by guard rings. However, in 
general the effective junction area will not be precisely known. For 
instanee in the case of an emitter-base junction it is most probably the 

edges which determine the reverse characteristics and not the bottorn 
part ·of the junction. It should be emphasized that, strictly speaking, 

Fma.:v: (Jij) can be determined in this way only apart from an additional 
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Fig. 3.26. The diode current Id as a function of the temperature. Por the diode 
K Jij = 4 V while for diode M fj 6 V. Curve L,a is in the SRH generation re
gime (fj = 1 V), and curve L,b is in the tunnelling regime (fj 5 V). 
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Fig. 3.27. The breakdown voltage of diode M as a function of the temperature. 
The straight line is a least-square fit. 

constant Fmax(Vdiff), which is assumed to be negligible. The depletion 
layer width is given by 

A e0e 
W(V) = 1 r 

J c (Vj) 
(3.45) 

Using this procedure, together with that described at the end of the 
previous section, we obtain the calculated results as shown in fig. 3.25. 
For the tunnelling constants we used the values given in section 3.2.2, 
while bn 1.23 108 Vfm. From fig. 3.25 we can abserve that, despite the 
fairly large deviations between the model results and experiments at 
certain bias points, the overall shape of the measured characteristics is 
rather well reproduced by the model. Even the transition between SRH 
generation and tunnelling of diode L is reproduced, although the tran
sition in the calculations is much steeper than measured. Possible 
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causes for the deviations between the model results and the measure
ments are discussed in sectien 3.5. 

For the temperature dependenee of the model we have assumed: 
- The tunnelling current depends on temperature as given in sectîon 

3.2.2, i.e. only the bandgap is temperature-dependent. 
- The quantity nJi has the temperature dependenee of n; (i.e. it is pro-

portional to T 312 exp ( Eg/2kT) for midgap states [ 3.1 ]). 
In fig. 3.26 the current in the tunnelling regions of the diodes K and L 
at a certain voltage is plotted as a function of temperature. The solid 
lines are the theoretica! curves according to the temperature rules as 
given above. The currents in the thermal generation regions of diodes 
L and M are also plotted. Note the clear distinction in temperature 
behaviour between the two regions, which is as it should be. In fig. 3.27 
the measured breakdown voltage is plotted as a function of temper
ature. This breakdown voltage increases with temperature due to the 
increasing electron-phonon interaction with increasing temperature 
[3.1]. Note that the temperature dependenee ofthe breakdown voltage 
can be approximated reasonably well by a straight line. 

3.5 DISCUSSION AND CONCLUSIONS 

In sectien 3.2 it is shown experimentally that the conventional ex
pression for Zener tunnelling can be used as a model for tunnelling 
currents in reverse-biased p-n junctions, provided the maximum electric 
field at the junction is used in that expression. Theoretically this find
ing is made plausible by taking the actual behaviour of the electric field 
near the junction into account in the denvation of the dependenee of 
the tunnelling current on the applied junction voltage. The resulting 
expression (3.8) shows roughly the same dependenee of the current 
density on the maximum electric field as the conventional model (3.6). 

· However, expression (3.8) is less suitable for implementation in a nu
merical device simulation package and for compact modelling purposes, 
because: 
- Expression (3.8) involves the determination of one extra parameter, 

i.e. the doping gradient a. 
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- Expression (3.8) does not cover the situation of a mathematically 
abrupt junction (a= oo), which may occur in a simulation. 

The valnes of the parameters cbbt and F0 obtained experimentally 
are in rough agreement with the theory and give a reasonable fitfora 
wide range (more than eight decades) of currents and for different types 
of junctions. 

Expression (3.6) is used in the compact diode model, as described 
in section 3.4. It is also implemented in a two-dimensional device si
mulation package [3.28] as a post-processing routine. In this routine 
the maximum electric field around the metallurgical junction is deter

mined in each mesh of the grid and subsequently Jbbr is deterrnined. The 
total tunnelling current (per unit length in the third dimension) is ob
tained by the multiplication of the current density by the conesponding 
length of the segment, followed by a summation over all segments. The 
above post-processing procedure is justified only when the tunnelling 
currents are so low that they do not significantly influence the solution 
of the Poisson problem frorn which the electric field is calculated. If 
this is not the case, the band-to-band tunnelling effect must be taken 
into account as a recornbination term in the continuity equations (1.2), 
which are solved together with Poisson's equation. As pointed out in 
section 3.4.1, also in cases where avalanche rnultiplication of electron
hole pairs generated by tunnelling is important, a description in terms 
of a current density is unsuitable. In these cases, too, the tunnelling ef
fect should be taken into account irnplicitly by a recombination term 
in the current continuity equations. 

Band-to-band tunnelling can be formulated as a recombination 
rate as follows: Using the relations dE=- q dl/I and E - Vl/1, ex
pression (3.5) for dJbbtfdE can be transformed into a recombination 
rate, defined by 

1 
Rbbt = - q V ·hbt· (3.46) 

This gives 
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l ( dl!Jbt ) ( dl!Jbt ) Rbbt=- q ~.S!_l/1 =- -;JE·E · (3.47) 

Substitution of (3.5) into the above expression gives 

u+ I 
Rbbt =- c I Fl D (F,E, Vj) exp (- F0/l Fi ). (3.48) 

An expression for D (F,E, V1) which is suitable for implementation in a 
device simulator can be obtained from [3.8]. This gives 

1 D=------------
exp[q (Vp 1/t)fkT] + 1 

1 -------, (3.49) 
exp[q (Vn -1/t)/kT] + 1 

where VP and Vn are the applied voltages at the contacts of the p and 
n regions, respectively (Vj = VP- Vn). This tunetion approximately 
equals 1 for Vj < < kTfq and -1 for Vj > > kTfq, while for zero bias 
it equals zero. In the above transformation from dl!Jbt to Rbbt tunnelling 
of an electron at a certain energy, say E1 (see fig. 3.4), between x1 to 
x2 is represented by the generation of an electron-hole pair in the middle 
of the gap (x1 + x2)/2. 

The proposed model for recombination including forward-biased 
tunnelling, presented in section 3.3, effectively describes the character
istic features associated with the non-ideal diode current of highly
doped devices. These features are (a) a temperature dependenee of the 
current which, on the one hand, is much weaker than that predicted 
by the conventional SRH recombination model and, on the other hand, 
is definitely stronger than that of band-to-band tunnelling and (b) a 
non-ideality factor m which is larger than two and almost inversely 
proportional to the temperature. As already pointed out in section 3.3 
these effects cannot be due to an erroneous assumption for the recom
bination lifetimes. However, the absolute value of the non-ideal current 
is not always predicted accurately by the model, as shown in fig. 3.14. 
From this figure it is also clear that great differences occur between the 
measurement results from different processes. 
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The major advantages of the proposed model over the existing 
roodels [3.2,3.13] are: 
- The proposed model, unlike the existing models, basically contains 

no unknown fitting parameters such as cwt in (3.9). However, the 
exact value of the effective mass to be used is nat known. Although 
the overall features of the model do nat significantly change within 
the range of physical meaningful valnes of mx, the exact value of the 
current density at high doping concentrations depends fairly strongly 
on mx. This is shown in fig. 3.12. After more or less fitting the value 
of mx to the measurements we arrive at a value of around O.l5m0• 

This is in reasanabie agreement with the valnes obtained exper
imentally for band-to-band tunnelling [3.6,3.7,3.20] . 

- The proposed model camprises both tunnelling effects and conven
tiona] SRH recombination, and the gradual transition between the 
two regimes (around 300Á zero-bias depletion width), both in bias 
dependenee and in temperature dependence, is automatically ob
tained. The existing roodels contain only the tunnelling term. 

- Since these effects occur in the forward-bias regime, the tunnelling 
effect must be incorporated into a numerical device simulator in the 
farm of a recombination term in the continuity equations. A model 
formulated in terms of a current density is not suitable. However, it 
must be remarked that the proposed model in the form of expressions 
(3.22) and (3.23) is also nat readily suitable for implementation be
cause these expressions not only contain local variables, but also 
non-lacal variables such as the average electric field and an integral 
over the depletion layer. 

It is found that irrespective of the exact value of the effective mass, 
the tunnelling effect increases dramatically when the zero-bias depletion 
width is less than about 300Á. In the case of a two-sided abrupt junc
tion this value corresponds to a doping level of 3 1024m - 3

• This is in 
reasanabie agreement with experiments [3.13]. 

Consiclering the compact diode model described in section 3.4, we 
have seen that, despite the fairly rigarous assumptions, the model re
sults agree quite well with the numerical simulations. The overall shape 
of the measured characteristics is also reasonably well reproduced by 
the model. However, especially at low bias there are quite large dis-
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parities between the measurements and the calculations. There might 
be several reasans for this. 

The first one is that the electric field depends on the diffusion 
voltage (see eq. (3.43)). The measured valnes of Vdiff are 0.5 -0.6V. 
These valnes are rather low for such a highly-doped junction. In fact, 
they are much lower than those obtained from numerical calculations 
on this type of junction, which yield 0.9V < Vdiff< l.OV for such highly 
doped devices. Consequently, the electric field obtained from capaci
tance measurements might be lower than the actual electric field, which 
would result in an underestimation of the tunnelling current. Obviously, 
this effect is most important at low bias. A horizontal shift to the left 
of around 0.4V of curve L in fig. 3.25 would indeed bring the calcu
lations more into agreement with the measurements. 

Another possible cause for the deviations at low bias, where SRH 
generation dominates over band-ta-band tunnelling, is the fact that we 
have neglected electric field-enbaneed emission from traps which causes 
the generation lifetimes to deercase with increasing electric field. The 
physical origin of this effect is as follows: The emission probability 
from traps is proportional to exp ( - Eb/ k1) where Eb is an energy 
harrier for electrans or holes to be emitted from the the trap. Due to 
high electric fields, the effective emission harrier can be lowered 
[3.29]. This may be either an actual barrier lowering due to 'the so
called Paoie-Frenkel effect for a Coulomb trap, or a virtual harrier 
lowering due to phonon-assisted tunnelling from a trap. In [3.30] it 
is shown that these effects can be effectively modelled by an additional 
trap-assisted tunnelling current density of the form 

Y [ ( Fmax 
2

) ( FmaxWo 
2

)] qG1a1W- exp ( 
1 

) -exp ( W ) . 
IFmaxl Y 

(3.50) 

The quantity G1ar depends on the intrinsic carrier concentration and 
carrier lifetime, while y depends on the temperature and the effective 
mass. Similarly to the band-to-band tunnelling effect, in [3.30] the 
trap-assisted tunnelling effect is taken into account as a b function 
generation term, because the eauesponding electron-hole pairs are 
generated in a narrow high-field region around the junction. This effect 
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yields an enhancement of the increase in the SRH generation current 
with increasing bias and explains the gradual transition measured be
tween the SRH generation regime and the tunnelling regime of diode 
L. 

For practical use of the diode model the problem arises that, 
strictly speaking, the electric field can be obtained from capacitance 
measurements only for a one-dimensional problem. For large planar 
junctions without siclewall effects this is not expected to be a problem. 
However, for junctions where for some reason the electric field along 
this junction is not constant, the tunnelling and avalanche currents will 
mainly flow in those regions where the electric field is highest. The 
tunnelling current density is an especially sensitive function of the 
electric field. For instance, at an emitter-base junction in a bipolar 
transistor the electric field will be highest at the sidewalls, because there 
the base doping concentration is higher than at the bottom. Moreover, 
the field will not be constant at the sidewall, but will vary continuously 
along the junction. In such cases it is impossible to obtàin the electric 
field distribution from capacitance measurements. A common practice 
then is to treat the most sensitive parameters which depend on the 
magnitude of the electric field, such as the ratio F0fFmax, as fitting pa
rameters, i.e. the voltage dependenee is obtained from capacitance 
measurements while the magnitude is fitted. This can be accomplished 
by treating the effective junction area Aj in expression (3.43) for the 
electric field Fmax (Jij) as a fitting parameter, i.e. the voltage dependenee 
of the electric field is obtained from capacitance measurements while 
the magnitude, determined by the zero-bias capacitance per unit area 
c0 (c0 = C0/Aj) in (3.43), is obtained from the I-V curve. Other param
eters which must be treated as fitting parameters are GsRH and Gtat• 

both depending on the intrinsic carrier concentration and the recombi
nation lifetime in the depletion layer. In particular, the value of the 
lifetime which not only depends on the doping concentration but also 
on process characteristics, is usually unknown. As an example, fig. 3.28 
shows the result of such a fitting procedure [3.30]. The trap-assisted 
tunnelling current has been taken into account as a o- function gen
eration term and is added to Jbbt in expression (3.38) for the diode 
current. The following parameters are used: the prefactors GsRH• Gtat 
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Fig. 3.28. A comparison of model results with measurements on three diodes. In 
these cases the effective junction areas are treated as fitting parameters. 

and c661, the capacitance c0 and V6, (all from the reverse characteristics). 
The saturated ideal current /8 is obtained from the forward character
istic, while the grading coefficient p and the diffusion voltage Vdiff are 
obtained from the capacitance measurements. Note that in this case the 
diode current is fitted and not the current density, so the prefactors also 
camprise the effective junction area. The resulting values of the pa
rameters GsRH and Gw1 yield a value of :r of around 5ps, both for diodes 
B and C. The resulting effective junction areas are 3.53 10-8m2

, 

2.43 10-8m2 and 2.72 10-8m2 for diodes A, Band C respectively, while 
the macroscopie junction areas are 4.16 10-8m2 forA and 3.24 10-8m2 

for diodes B and C. The saturated ideal current has proved to beun
important in reverse bias at room temperature. 
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APPENDIX JA 

In order to integrale (3.5) analytically, we replace dE, by -q dl/I and 
subsequently transform it to an inlegration over F (the electric field is 
taken to be positive). The desired relatión between dl/I and dF can be 
obtained by ex panding F (x) around its maximum: 

(3A.!i 

We truncate the above series after the second-order terw. By differen
tiation of Poisson's equation and using F =- dl/ffdx, we obtain after 
some manipulation: 

dl/I --=+ dF . 
9J e, F2 
2aq Fmllx- F' 

(3A.2) 

where t11e + sign holds in the region x > 0 and the - sign holds for 
x < 0. Substitution of (3A.2) into (3.5) gives: 

FaJF dF 
' 

(3A.3) 

where the lower bound F1 must be sufficiently far from Frnax- By the 
substitution of 

(3A.4) 

(3A.3) beeomes 
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(3A.5) 

where y1 must be sufficiently far from 0. Since the largest contribution 
to the inlegral co mes from the region where y < < J, and because the 
inlegrand deercases strongly with increasing y, we can use Taylor series 
ex.pansions to evaluate (3A.5). By using (J- /)- 1"'1 + / and 
(I -·/Ju+! ""I- (u+ I)/ for y <<I and subsequently putting 
y 1 = =, eq. (3A.5) is transformed into a sum of two standard integrals 
and can be evaluated to yield (3.8). 

APPENDIX 38 

To investigate the validity of approx.imating N(E)j(E) AE by 
- (dnscfdx1) Ax1 , we write (see fig. 38.1) 

{3B.I) 

and 

n,c(.'"!:t + Axtl =I~ N(E' -E- AE)f(E') dE'. 
E+!J.E 

(3B.2) 

From the above expressions it follows that 

dn,c I~ --Ax1 = N(E' -E)f(E')dE' 
dxl E 

-I~ N(E' -E- AE)j(E') dE'. 
E+AE 

(3B.3) 

126 Chapter 3 



Fig. 3B.l. A graphical representation of the transformation from the inlegration 
variabie E to the variabie x 1• 

When we write e E' !lE and expand 

. df 
/(e + ilE) = f(e) + I!.E di, (3B.4) 

(3B.2) becomes 

(3B.5) 

After substitution of this expression înto (3B.3) we obtain 
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Fig. 3B.2. A comparison of the function values F given by (3B.8) and (3B.9). 
The solîd line gives the function to be apy,roximated and the dasbed line gives 
the approximation. The prefactor c (kT) 1 2 exp (Ep /kT)!!.E has been put equal 
to one in both cases. 

dn,c 1= df - --.:h1 = - ~E N(e - E) - th. 
dx1 E de 

(3B.6) 

When we write e- E = y, (38.6) becmnes 

dn" 1= -d- ~x1 = - ~E N(v) 
x, 0 

df(y + E) dy 
dy . (3B.7) 
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Assuming the electron gas is not degenerated, which is a good as
sumption in the depletion layer, f (y + E) = e- (y+E-Ep)fkT. Using 

N(v) = cJY, (3B.7) becomes 

(3B.8) 

On the other hand 

N(E) f (E)!J.E = c.j E e- (E- Ep)/kT AE. (3B.9) 

According to our assumption the right-hand side of (3B.9) is approxi
mated by the right-hand side of (3B.8). From a comparison of these 
expressions it is obvious that. apart from a different prefactor, the ex
ponential dependenee on EfkT is equal. In fig. 3B.2 both functions are 
plotted versus EfkT. In practical cases the energy interval is from 0 to 
q (Vdiff- V,.) and therefore the interval for EfkT at room temperature 
is from 0 to 30-40. We see that the energy dependenee of 
N(E)f(E)AE is reasonably well described by- dnscfdx1 Ax1• 

APPENDIX 3C 

In order to arrive at (3.38) we rewrite rxn in (3.37) as a function of x. 
We expand the expression for the electrical field around a symmetrical 
step junction around its maximum 

F (x) = Fmax (1 -1--=-qN_x I), 
Fmax BoB, 

(3C.l) 

where Nis the dopant concentration. Substitution of (3C.l) in (3.37) 
gives after a tirst-order expansion of the exponent 
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(3C.2) 

with 

(3C.3) 

In (3.35) the following integral occurs 

(3C.4) 

When we consider r.xP to be proportional to r.xm i.e. rxP = s r.xm substitution 
of (3C.2) into (3C.4) gives 

I (x) = 1-'av (2 - ex/dav) x<O, (3C.5) 

-xfd 
=11 e av r-av x;;::: 0, 

where 1-'av is given by 

1-'av = (1 -s) dav rxn 00 exp (- bn I I Fmax I). (3C.6) 

Because usually dav<< W (for a two-sided abrupt junction 
dav fW = Fmaxf2bn), we can approximate 

x< 0, (3C.7) 

x =0, 

x>O. 
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When we assume the junction to be symmetrical, substitution of (3C. 7) 
into (3.35) and subsequent integration of (3.34) gives 

(3C.8) 

Assuming s = 1/2, we arrive at (3.38). 
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Chapter 4 

MODELLING OF SMALL-SIGNAL A.C. 
TRANSISTOR PROPERTIES 

4.1 INTRODUCTION 

The small-signal a.c. behaviour of bipolar transistors is often described 
by means of a quasi-static analysis of the currents and charges in the 
transistor. This type of approach was initiated in 1957 by Beaufoy and 
Sparkes [ 4.1 ], mainly as a new way to describe the large-signal tran
sient behaviour of a bipolar transistor. The essence of this metbod is 
the relationship it makes between the terminal currents and the stored 
d.c. charge in the device. One of the most important results of using 
this quasi-static approach is that the small-signal a.c. common-emitter 
current gain can be approximated by 

-
lc hFEO hFE = -;:;:;- = __ ....;;",;;;.;;__ __ 
jb 1 + jwhFEO Tqs ' 

(4.1) 

where the transit time <qs is given by 

(4.2) 

In (4.1), hFEO is the low-frequency current gain (hFEO dlcfdlb) and wis 
the angular frequency. In ( 4.2) Q is the total integrated d.c. hole or 
electron charge in the device at a certain d.c. bias condition denoted 
by V0. So, for the a.c. current gain the device can be considered as a 
first-order system and the characteristic parameters hFEO and rqs can be 
obtained from a static (d.c.) analysis. The quasi-static common-emitter 
cut-off frequency frqs is related to rqs by frqs = (2nrqs)-

1
. As can beseen 

from (4.1 ), frqs is that frequency at which the current gain approaches 
unity, provided that the d.c. current gain hp'EQ is much larger than unity, 
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i.e. frqs is obtained by extrapolation of the relation m I hFE I t qs = l to the 
unîty-gain frequency. 

This quasi-static result is often used both in numerical device sim
ulations and in compact modelling. Since frqs is a very important tigure 
of merit used in the characterization of the high-frequency behaviour 
of bi po lar devices, relation ( 4.2) is often used to calculate frqs from a 
static numerical device simulation [ 4.2,4.3]. This is done by a post
processing routine which calculates frqs by determining dQfdV and 
dlcfdV at a certain bias condition. The total transit time and, therefore, 
the cut-off frequency then fellows from (4.2). Moreover, the total 
charge dQ/dV is often split up into contributions from the different 
quasi-neutral regions and the space-charge regions in the device, simply 
by the integration of dnfdV and dpfdV over the corresponding volume 
[ 4.5]. Therefore the total transit time can also be decomposed into 
contributions from different regions (the so-called regionat approach). 
This offers the possibility to investigate numerically the contributions 
of the different transistor regions to the cut-off frequency and to reveal 
the relationships between process parameters (junction depths, doping 
profiles) and the small-signal a.c. behaviour of the device [ 4.2,4.3]. 

In compact rnadelling we can distinguish between two basically 
different approaches. In one approach, foliowed in the compact model 
Mextram [ 4.5], the collector current and base minority charge are 
modelled independently, assuming a certain type of doping distribution 
in the base. The base transit time follows from the relation 
th = dQbfdlc, and is not necessarily constant. The other approach, fol
Iowed for instanee in the well-known Gummei-Poon model, is based 
on the so-called Charge-Control concept which, in turn, is also based 
on the quasi-static approximation leading to ( 4.1) and ( 4.2). However, 
in the Charge-Control concept an additional assumption is made which 
finds its origin in the work of Beaufoy and Sparkes [ 4.1]. They showed 
that under low injection conditions a linear relation exists between the 
d.c. collector current and the d.c. base minority charge, viz. Qbflc = 

constant Tb, and they used this relation, tagether with the quasi-static 
assumption, to descri he the large-signa! transient behaviour of a bipolar 
transistor. The essence of the Charge-Control concept is that, once the 
transit time in the quasi-neutral regions is obtained (e.g. from transient 

134 Chapter 4 



or a.c. measurements), the relation between the total minority charge 
in a quasi-neutral region and the terminal current is at each bias point 
given by this transit time. In the Gummei-Poon model such a constant 
transit time is used to calculate the total minority charge in the. quasi
neutral regions from the collector current by using Qmin = •lc• where the 
transit time •r is a model parameter. 

In this chapter we will only deal with the quasi-static appproach 
teading to ( 4.1) and ( 4.2) and not with the validity of the additional 
assumption of a linear relation between the charge and the current, as 
is made in the Charge-Control concept. 

Although an outline of the theoretica! basis of the quasi-static 
method has been given in many papers (see for instanee [ 4.4,4.6]), a 
straightforward derivation of (4.1) and (4.2), together with a clear in
dication of the assumptions involved, is rarely discussed. Moreover, 
most treatments of the foundations of this method date from more than 
a decade ago, when the dimensions of the devices were SlJ.Ch that the 
maximum cut-off frequency was almost entirely determined by the base 
region. As a consequence, most of these treatments are confined to t}1e 
base region. Due to downscaling, however, nowadays not only the base 
region but also other regions contribute significantly to the cut-off fre
quency [ 4.7]. In view of this downsealing it therefore seems interesting 
to revisit the foundations of this quasi-static approach and to analyse 
the validity of this concept for downscaled devices. 

In section 4.2 the quasi-static expressions for the small-signal a.c. 
base and collector currents are derived from the time-dependent conti
nuity equations. The assumptions are also discussed. A different 
treatment of the small-signal a.c. currents, based on a perturbation 
expansion of the time-dependent continuity equations in one dimen
sion, is given in section 4.3 in order to investigate the validity of the 
approximations made in the conventional quasi-static analysis. As will 
be shown the results of this analysis can be used to remedy two of the 
shortcomings of the quasi-static approach. Based on the results of the 
analysis in sections 4.2 and 4.3, the use of the quasi-static fTqs (from eq. 
(4.2)) as a figure of merit tor the characterization of high-frequency 
properties of advanced devices is investigated in section 4.4. In addi-

Modelling of sma/1-signal a.c. transistor properties 135 



tion, the results are compared with exact numerical a.c. solutions of the 
continuity equations for some representative downscaled devices. 

4.2 DERIVATION OF THE QUASI-STATIC RELATIONS 

We consider a vertical n-p-n transistor as sketched in fig. 4.1. The 
currents at the four contacts are also denoted in this figure. Also in
dicated is the recombination current at the silicon-oxide interface for 
whiéh, of course, the hole and electron current densities are equal. The 
time-dependent continuity equation for the majority carriers in the base 
of a n-p-n transistor reads (cf. expression (1.2b)) 

op 1 
Tt+ R +-qV.lp=O, (4.3) 

where p is the hole concentration, lp is the hole current density and 
R(r, t) is the net recombination rate. After inlegration of the above 
equation over the volume of the device and subsequent application of 
Gauss' law we obtain 

J i dr + J R dr + ~ J lp.dg = o. 
Vol t Vol Surf 

(4.4) 

The last term on the left-hand side of the above equation is the total 
hole flow at the cantacts (including recombination at the oxide-silicon 
interface). When we define Q P (t) as the total integrated hole charge 
in the device we obtain from ( 4.4), after interchanging the time deriva
tive and the volume integral, the following first-order differential 
equation 

~ dQP J i....Jlpm = -d + q R dr. 
m t Vol 

(4.5) 
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In the above equation Ipm is the hole current through contact m which 
is defined positive for an inflowing current. So, by integration of the 
continuity equation the functional dependenee on the spatial coordi
nates is removed and (4.5) is obtained, giving a relation between the 
sum of the terminal hole currents and the stored hole charge in the 
device. 

Up to now no approximation has been made and (4.5) is generally 
valid. However, in order to obtain a useful result from (4.5) the fol
lowing essential approximation is made: 

p (r, t) = p (r, V (t) ), (4.6) 

and similarly for the electron concentration. This means that the con
centrations instantaneously follow the applied voltage V(t) without any 

Emitter 

Base 

Collector 

Substrate 

Fig. 4.1. Schematic cross-section of a vertical n-p-n transistor. 
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time delay or, equivalently, without any phase shift. This is the so
called quasi-static approximation. Since the recombination rate R only 
varies with time through the electron and hole densities, we can also 
write R(!, t) = R(!, V(t) ). Equation ( 4.5) now becomes 

~lpm (t) = ( :~ a;;) v, + q L/(!:, V(t)) dr. (4.7) 

In the above equation V0 represents the d.c. bias condition of the de
vice. U sing ( 4. 7), it is possible, in principle, to determine the time-de
pendent sum of hole currents from a static analysis since both dQp/dV 
and R(!, V(t)) can be determined from a static simulation. Now we turn 
to a small-signal a.c. analysis, i.e. the applied voltage varies with time 
as 

(4.8) 

where V0 is the d.c. bias condition. The a.c. amplitude v is taken to be 
very small, i.e. qvjkT < < 1, so we can apply a first-ordcr Taylor ex
pansion: 

. ( op ) - Jwr p (!, V(t)) p (!, Vo) + fJV v e , 
Vo 

(4~9) 

and similarly for n (!, V(t)) and R(!, V(t) ). Substitution of these ex
pansions into (4.7) and subtracting the d.c. solution (w = 0) we obtain 
the following expression for the amplitude of the a.c. hole terminal 
currents 

(4.10) 
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As can be seen from the above equation the amplitude of the a.c. cur
rents consists of both a real and an imaginary part. The real part cor
responds to a conductance, while the imaginary part corresponds to a 
capacitance, i.e. the stared charge in the device. 

It is interesting to note that, in fact, the quasi-static assumption 
leads to an inconsistency, which can beseen as follbws: As mentioned 
above, from ( 4.1 0) it can be seen that the sum of the amplitudes of the 
a.c. hole current through the cantacts has an imaginary term, eerre
sponding to the charge storage. On the other hand, we have assumed 
a quasi-static behaviour of the carriers (eq. (4.6)) from which it follows 
that the amplitude of the a.c. hole concentratien is in phase with the 
a.c. voltage, i.e. the amplitude of the a.c. hole density has no imaginary 
component (see (4.9)). From the general drift-diffusion expression for 
the hole current density (e.g. eq. (1.3b)) it then follows that the hole 
current density has no out-of-phase term and therefore the sum of the 
amplitudes of the a.c. currents at the contact cannot have an imaginary 
part. This is in contradiction with ( 4.10). The origin of this con tra
dietion lies in the fact that the quasi-static assumption for n and p is 
made after integration of the hole continuity equation over the device 
in order to take explicit account of lhe charge-starage term dQp/dt in 
the sum of the terminal currents, i.e. after eq. (4.5) is obtained. 

Starting with the continuity equation for electrans and following 
a procedure similar to that above, we arrive at 

'\:'':" = -"'( dlnm ) _ . ~( dQn die ) 
L./nm V~ dV }OJV dl dV ' 
m m v0 c v

0 

(4.11) 

where an inflowing current is again regarcled as positive. 
Up to now we have made only one essential assumption, viz. the 

quasi-static assumption. However, in order to arrive at the commonly 
used expression (4.1) tagether with (4.2), one more assumption must 
be made. This assumption is inherently related to the fact that in the 
quasi-static approach it is impossible to delermine the current through 
a single contact; by the application of Gauss' law only the net hole or 
electron current through the boundary of a certain region is determined. 
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This means that we can only calculate the total hole or electron current 
associated with the stored minority charge in a certain region, but we 
cannot determine the distribution of the associated inflowing current 
over the various contacts of that region. Unfortunately, it is the total 
current through a single contact that we really are interested in, i.e. 
Ib = lpb + lnb and lc = lpc + lnc· So, in principle it is impossible to cal
culate the base and collector currents from a quasi-static analysis and 
we have to make an additional assumption about the supply of the 
slored charges in the device in order to arrive at ( 4.1 ). This assumption 
is that the stored hole charge in the device is supplied entirely through 
the base contact, while the stored electron charge in the device is sup
plied entirely through the emitter contact. So, except for lpb and l 11e it 
is assumed for all currents that 

'";' - ( dl ) 
l =V dV ' 

Vo 

(4.12) 

i.e. the a.c. current through the contact is in phase with the applied a.c. 
voltage. In that case, by writing 

(4.13) 

and similarly for the corresponding a.c. currents, we obtain from (4.10) 

(4.14) 

In ( 4.13) lnb is the electron current at the base contact and lpox is the 
hole current due to recombination at the silicon-oxide interface. 
lpe' ~c and lps are the hole currents at the emitter, collector and subs
trate contacts, respectively. 

It is in teresting to notice that the condition under which ( 4.1 0) re
duces to ( 4.14) is slightly less restrictive than that sametimes mentioned 
in the literature. For instance, in [ 4.4] and [ 4.8] it is stated that (4.10) 
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reduces to ( 4.14) only when the current at the base contact consists only 
of holes and that the currents at all the other contacts consist of elec
trous only. As we have seen above, it is sufficient that this condition 
holds only for the capacitive part of these currents. Since we have also 
assumed that 

(4.15) 

~ ~ 

di vision of ie by ib yields the desired re lation ( 4.1 ). 
All the above-mentioned assumptions can be summarized by the 

following assumptions concerning the a.c. behaviour of the minority 
charges injected into the regions which are bounded by a forward-bi
ased junction and either a reverse-biased junction (when the base region 
is considered) or a contact (when the emitter or collector region is 
considered): 
1) The quasi-static assumption, i.e. the minority carrier density is in 

phase with the applied junction voltage (eq. (4.6)). 
2) The stored minority charge is entirely supplied and reclaimed 

through the forward-biased junction, i.e. no imaginary current 
through the contact or the reverse-biased junction. 

Recently, two proposals have been made in the literature 
[ 4.9,4.10] for dealing with the imaginary collector current. It is espe
cially the phase shift between the a.c. junction voltage and the a.c. 
collector current, i.e. the so-called excess phase shift, which can be im
portant in high-frequency applications. To this end Fossum and 
Veeraraghavan [ 4.9] derive the correcting term from a one-dimen
sional integration of the time-dependent electron current density over 
the base region of a n-p-n device, while Klose and Wieder [ 4.10] use 
a time-dependent version of Gummel' s approach. Except for the case 
of a homogeneously-doped base these methods give different results, 
as will be shown below. Te Winkel [ 4.11] also obtained low-frequency 
results for the imaginary collector current analytically by using a Tay
lor-series expansion of the exact solution of the continuity equation for 
an exponentially doped base. 
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In tbe next section tbe validity of tbe two above-mentioned as
sumptions is investigated analytically. To tbis end a perturbation-ex
pansion tecbnique is introduced to obtain a low-frequency solution of 
tbe time-dependent continuity equation. Tbis metbod is not based on 
tbe quasi-static assumption or on tbe integratioii of tbe continuity 
equations and tberefore does not involve tbe previous assumptions 1 
and 2. As we will see, tbis metbod bas tbe advantage tbat it bas a 
sound matbematical.basis, wbile tbe results can be presented in sucb a 
way tbat tbey are easy to compute from a d.c. solution. Moreover, 
unlike tbe conventional quasi-static metbod, it also yields internat a.c. 
device quantities sucb as minority carrier densities and current densities. 

4.3 A PERTURBATION ANALYSIS OF THE A.C. CONTINUITY 
EQUATIONS 

4.3.1 Derivation of the basic relations 

We start witb tbe following generalized Moll-Ross expression for tbe 
minority current density [ 4.12] 

2 
q niO dY 

J (x) = ± G(x) dx ' (4.16) 

wbere Y = n(x)p(x)fnfe (x), q is tbe elementary charge and n (x) and 
p (x) are the electron and hole densities respectively. The intrinsic car
rier densities of undoped and doped silicon are denoted by niO and 
nie (x), respectively. The plus sign in (4.16) holds for electrons and the 
negative sign for holes. For the hole current density, G(x) is defined 
by 

(4.17) 

while for the electron current density, G (x) is 
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(4.18) 

D (x) is the diffusion constant of the minority carriers. Eq. (4.16) is 
generally valid, provided that the gradient of the majority carrier qua
si-Fermi level is much smaller than the gradient of the minority carrier 
quasi-Fermi level. 

Now we turn to a small-signal a.c. analysis. At x= 0 an a.c. volt
age is applied according to ( 4.8). The quantity Y(x,t) varies with time 
as 

Y(x,t) = Y0 (x)+ y(x)ejwt, (4.19) 

where Y0 (x) is the d.c. component of Y(x,t) and y(x) is the complex 
amplitude of the a.c. component. Combining ( 4.16) with the eerre
sponding continuity equation the following differential equation is ob
tained for y (x): 

d
2
y 1 dG dy -------

dx2 G(x) dx dx 

y(x) . y(x) ----= JW ...;..__ 
D (x) -r,(x) D (x) 

(4.20) 

where •r (x) is the recombination lifetime. The above equation holds 
for both electrans and holes. The boundaries of the interval in which 
(4.20) is to be solved are at x= 0 and x= W. Forthebase region of a 
bipolar device x W corresponds to the edge of the collector-base de
pletion region and for the emitter region x = W denotes the location 
of the emitter contact. The boundary x = 0 denotes the corresponding 
edge of the emitter-base depletion layer. The boundary conditions for 
y(x) are 

~ -
y(O) V 

Vr Yo (0) 
_v_e~·fVr 

VT 
(4.21) 

and 
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( -b- dy ) 
y dx 

x=W 

-s 
D(W) 

(4.22) 

where S is the saturated drift velocity when this i~ applied to the base 
region [ 4.16] and S is the surface recombination velocity if x= W 

corresponds to the emitter contact. If we consider the term on the 
right-hand side of the above equation as a perturbation term, (4.20) can 
be solved by means of a perturbation expansion [ 4.13]. To this end 
we first apply the following coordinate transformation: 

with g (x)= G(x)/G(O). Eq. (4.20) now becomes 

with 

d2y y(Ç)W2 y(Ç) 

-dÇ-2 - D (Ç) rr(Ç)i(Ç) = 
6 ~(Ç)i(Ç) ' 

. w2 JW 
8 

= D (0) ' 

and b(Ç) D (Ç)/D (0). The a.c. current density reads 

2 -- qn;o dy 
j ± WG(O) dÇ . 

We now write the solution of (4.24) as a power series in e: 
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(4.23) 

(4.24) 

(4.25) 

(4.26) 
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co 

y(Ç, e) =Dm (Ç) em. (4.27) 

m=O 

Substitution of ( 4.27) into ( 4.24) gives 

Since the coefficient of each power of e must equal zero, the following 
infinite set of differential equations is obtained: 

(4.29) 

m>O. (4.30) 

Note that (4.29) is equal to the equation for the d.c. solution Y0(x). To 
solve (4.30) for Ym (Ç) we must have two independent solutions of the 
corresponding homogeneaus equation. One solution is, of course, 
y0 (Ç) and the secoud salution Ys (Ç) can be expressed in terms of the 
other salution y0 (Ç) as follows [ 4.14 ]: 

(4.31) 

If we consider the fact that the boundary condition (4A.3) at x= W 
also holds for the d.c. salution Y(Ç), then it is obvious that .Vo (Ç) can 
be written as 
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~ 

~ V 
Yo (Ç) = Vr Yo(Ç), (4.32) 

where Vr is the thermal voltage kTfq. 
For low frequencies we can truncate the series (4.27) after the 

second term, i.e. a first-order expansion in jw. Using the boundary 
conditions (4.21) and (4.22) it is shown in appendix 4A that the general 
first-order solution is given by 

+ (4.33) 

The general first-order salution (4.33) can now be expressed in terms 
of the d.c. salution Y0 (Ç). Application of this result implies that we 
must know the d.c. minority carrier density which, in general, can only 
be determined by a numerical device simulation. However, for two 
cases it is possible to obtain analytica} results. The first case is for a 
homogeneously-doped region. This case is of limited practical value but 
can be used to study the approximations involved in the conventional 
quasi-static methad as given in section 4.2. The second case for which 
analytica! results can be obtained is when bulk recombination is neg
lected. Neglecting bulk recombination in both the emitter and base 
regions is a reasonably good approximation for high-speed devices with 
shallow junctions. This is especially so at frequencies higher than 
(2m;,)- 1 because in that case the bulk recombination mechanism makes 
no contribution to the a.c. current, i.e. the region becomes transparent. 
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4.3.2 Application to a homogeneously-doped region 

When we apply the above procedure to a homogeneously-doped region, 
the coordinate Ç becomes xf W. The quantity y (x) now becomes 

_ v [ jmL
2

( Y'0 (x) T . x)] 
y(x) = VT Y0 (x) 1 + 2ïJ x Yo (x) + Yo (x) smh ( L) , (4.34) 

with 

T (4.35) 

and 

h( w- x) . h(' w x) cos L +a sm L 
Y0 (x)= e~fVr. (4.36) 

cosh( ~ ) +a sinh( ~ ) 

In the above equations L and a are the diffusion length and normalized 
recombination velocity or saturated drift velocity (a SLfD) respec
tively, while V; is the junction voltage. 

We now investigate the two assumptions involved in the quasi
static approach. Differentiation of (4.34) and subsequent substitution 
of this result into the expression for the amplitude of the a.c. current 
density ( 4.26) gives 

J (0) = ;T [J (0) + jm</>-r:qsl (0)] (4.37) 

and 
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7 (W) = ~T [J (W)- jWIXTqsJ (0)] 

where the transit time rqs is given by 

Q L
2 

( Y'o(W)) 
Tqs = J (0) = D l - Y' 

0 
(0) · 

The coefficients IX and <P are given by 

and 

WY0 (W) 
----:---+ 
L 2 Y'0 (0) 

Y'o (W) T ( W) 
Y'

0 
(0) + LY'

0 
(0) cosh L 

IX=------------------'--
2 ( Y'o (W) - 1) 

Y' 0 (0) 

1 T 
</> = + L Y' o (0) 

2 ( 1 - Y' o (W) ) 
\ Y'0 (0) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

According to the quasi-static assumption (assumption 1 at the end 
of sectLon 4.2 ) ,!t can be obtained from ( 4.1 0) that the difference be
tweenj (0) andj (W) is given by 

j (0) ~ ( W) =..i_ J (0)[ 1 - _J_(W)_ + jwrqs]· 
Vr J (0) 

(4.42) 

According to the quasi-static result, the term jwJ (O)Tqsv'f V T is the total 
imaginary current associated with the stored a.c. charge in the quasi
neutral region. Therefore <P and IX are the fraction of this imaginary 
current actually flowing through the forward-biased junction and the 
contact (or reverse-biased junction), respectively. As we have seen 
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above, according to the quasi-static assumption (assumption 1 at the 
end of section 4.2 ) 4> + oe 1. 

The second essential assumption involved is that the whole charge 
is supplied through the forward-biased junction, so oe 0. In fig. 4.2 the 
values of 4> and 4> + oe are plotted as a function of the norrnalized width 
WfL for two values of the surface recornbination velocity. Frorn this 
figure it can be observed that the quasi-static assurnption 4> + a = 1 is 
valid only in the region WfL < < 1, i.e. with negligible bulk recornbi
nation. The reason for this is as follows: As can be seen frorn ( 4.34) the 
rnînority carrier concentration is out of phase with the applied voltage. 
This phase shift is proportional to w and is negative due to the propa
gation delay of the carriers. Because of this phase shift the a.c. bulk 
recornbination, whîch in neutral regions is proportional to the rninority 

--s-= 
--- S "'10 3 m/s 

0.6 

0.4 

0.2 

0.0 L,_ __ _;_ _____ c...._ __ ....J_ _____ L,_ __ _J 

0 5 
---!,...,...WIL 

Fig. 4.2. The parameters <Pand <P +a: plottedas a function of W/L for two val
nes of the recombination velocity. D = 2 10-4m2/s, which is a typical value for 
an emitter region. 
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carrier concentration, also has an imaginary component. This means 
that not only the stored charge, but also bulk recombination, contrib~ 
utes to the imaginary terminal currents. Since these terms are opposite 
in sign they partly compensate each other so, <jJ +oe< 1. We can i11us~ 
trate this effect with an often discussed cxample. Consider a homoge~ 
neously-doped n~side of a long diode (i.e. W/Lp- ex>). In this case 
(4.34) reduces to 

p(x) = ;T p (x)( I - jw1:P 2~P } (4.43) 

where p(x) and p (x) are the a.c. and d.c. hole concentrations respec~ 
tively. From the above equation it can be seen that the a.c. hole con~ 
centration does indeed have a negative phase shift. This phase shift 
varies linearly with x. When we substitute (4.43) into the following a.c. 
continuity equation for holes 

d lp (x) ~ ( 1 . ) 
dx = -qp(x) T; + JW , (4.44) 

we obtain (to first order in jw) 

dip (x) v { 1 . ( x )} 
dx = -q Vr p (x) ( T; + JW 1 - 2LP · (4.45) 

-In an interval L\x around a certain location xb !J.}p equals 

(4.46} 

with AQ (x1) = qp (x1)Ax. This shows that the imaginary part of 
L\'i (x1) not only consists of the charge starage term jwAQ(x1)v I Vr. but 
also of a term which is the current due to recombination of the out
of-phase hole concentration. As can be seen from fig. 4.2, in this case 
(W/L > > 1} 4J- 0.5 and oe- 0. This reflects the well~known result 
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that in a very wide diode the minority-carrier current flows only 
through one contact and the imaginary component is only one-half of 
the quasi-static result [ 4.15]. 

With respect to the validity of the two assumptions mentioned at 
the end of section 4.2, the case of a fully transparent region 
(W/L < < 1) is opposite to the case of a fully non-transparent region 
( W/ L > > 1). In the former case the quasi-static assumption (i.e. 
ex + <P = 1) is valid, but the assumption that the stored charge is sup
plied entirely through the forward-biased junction (i.e. ex= 0) does not 
apply. In the latter case the stored charge is indeed supplied through 
the forward-biased junction, but in that case the quasi-static assump
tion is not valid. 

4.3.3 Application to a recombination-free region 

When bulk recombination is negligible the perturbation analysis as 
outlined in section 4.3.1 can also be analytically applied to an arbi
trarily-doped region. In appendix 4B it is derived that the a.c. currents 
can be written as 

-
j (0) = ;T J(O)[l + jm(l- ex)rqs], (4.47) 

and 

-
j (W) = ;T J(O)[l- jmcxrq8 ], (4.48) 

where ex is given by 

ex= 
k r c (x{ r G(x')dx}x 

Lwc (x)dx 

(4.49) 
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In (4.49) c (x) is the minority carrier concentration (see eq. (4B.9)) and 
Gt is the Gummei number, i.e. the integral of G(x) over the interval 

'[0, W]. See (4B.3) fora definition of k. 
If we apply the above analysis to the base region of a bipolar de

vice, then ( 4.48) gives the collector current and a in (4.49) gives the 
fraction of the stored minority-carrier charge in the quasi-neutral base 
which is supplied from the collector. When the above analysis is ap
plied to the emitter, (4.48) gives the hole current density at the emitter 
contact. In both cases the parameter x has to be obtained from ( 4.49). 

In order to obtain a simple expression for a in the base region, 
defined as rxb, we adopt the widely used exponential approximation for 
the base doping profile N(x) = N0 exp (- rtx/ JV}. Assuming that Dn 
and nie are x - independent, the analytica! evaluation of ( 4.49) is 
straightforward and results in: 

rt(l + DfWS)- 2 
IXb = 7J(l + D/WS)- 1 

(4.50) 

for 11 > > 1 and WS/D > > 1. Note that for the base region S denotes 
the saturated drift velocity of the carriers. For Yf = 0, rxb becomes 

(4.51) 

In fig. 4.3 the value of rxb is plotted for two cases: S = 105mfs and 
S--+ oo. We sec from fig. 4.3 that for the latter case with 
Yf = 0, ab 1/3, as it should do [4.15]. Fora homogeneously-doped 
base (i.e. 71 = 0) the major part of the base charge is supplied from the 
emitter while in the case of modern transistors, for which 4 < 11 < 8, the 
major part of the base charge is supplied through the collector. The 
reason for this is that the minority-carrier flow is enhanced by the 
built-in field towards the collector-base junction, together with the fact 
that the minority-carrier distribution is shifted towards the collector
base junction. At this point it is interesting to campare the obtained 
results with the results in [ 4.9,4.10,4.11,4.15]. lt can be shown that, in 
the case of negligible bulk recombination, Klose and Wieder [ 4.10] 
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Fig. 4.3. The parameter rxb as a function of 11 forS--+ oo and forS= 105mfs. The 
dashed line is obtained by adopting the result of [ 4.9], and using S--+ oo. 

arrive at the same general expression ( 4.49) for ab. However, Fossum 
and Veeraraghavan [ 4.9] have used the weighting function for a 
homogeneously-doped base in their expression for the currents, instead 
of the more general function G(x)/G, (see eq. (4.49)). In the case of an 
exponentially doped base this leads to a great underestîmation of ah, 

as can be seen in fig. 4.3. The results in both [ 4.11] and [ 4.15] are 
based on an exact salution of the continuity equation in an exponen
tially doped region with S - oo. The result for ctb is then obtained by 
a series expansion of this solution. For '1 > > 1 this yields expression 
(4.50) with S- oo, as it should be. 

An important parameter which is not accounted for in the con
ventional quasi-static approach is the phase of the transconductance 
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Fig. 4.4. The phase (a) and nonnalized amplitude (b) of the transconductance 
for an exponentially-doped region with 17 = 5 and S -+ (X). The exact results, as 
given in [ 4.15], arealso denoted. 
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] (W)/v, i.e. the excess phase shift. The above analysis yields 
- arctan(wab1:b) for this phase. In fig. 4.4a this phase is plotted as a 
function of wrb for 11 = 5 and S ~ (X). The exact phase, as given in 
[ 4.15], is also denoted. We sec that this phase is accurately described 
by our tirst-order expansion for frequencies up to (2nTb)~ 1 • Note that 
the frequency (2m:b)~ 1 is usually considerably higher than the cut-off 
frequency fT because rb is only a part of the total transit time. How
ever, when we consider the amplitude of the transconductance (fig. 
4.4b) we see that the first-order solution increases considerably near 
w = rt;1

, while the exact salution decreases. By including a secoud-order 
term, i.e. m = 2 in ( 4.30), this differcnce can be significantly reduced 
(sec fig. 4.4b). Application of the procedure as outlined in sectien 4.3 
yields 

(4.52) 

with 

(4.53) 

for 11 > > 1 and WS/D > > I. In [ 4.5] the higher-order effects on the 
collector current are taken into account by a differential operator. After 
transforming this operator to the frequency domain and expanding this 
expression around w = 0, we arrive for 11 > > 1 at (4.53). 

For the emitter region we assume a Gaussian profile for 0 <x< d 
and a constant doping level N0 for d:::;; x< W. Sec fig. 4.5 for a plot 
of the profïle. The characteristic length of the Gaussian profile can be 
determined from the ratio N(O)/ N0. Typically, for modern emitters this 
ratio is around 0.01. In fig. 4.6 the dasbed line gives ae as a function 
of d/W for S ~ oo. At a high doping density (N0 1026m~3) the as
sumption of constant bandgap narrowing over a two-decade fall-off in 
the doping density is very inaccurate. In the doping range of 
I 024 1 026m ~J the bandgap narrowing can be expressed as a power 
function of the dope [ 4.17]. This implies that when N(x) is a Gaussian 

Modelling of small-signal a.c. transistor properties 155 



function, G(x) is also Gaussian. The characteristic length of G(x) can 
also be obtained from G(O)/G0. In the doping range given above, 
G(O)/G0 =O.i. Taking this into account, we obtain the solid line in fig. 
4.6. From this figure we see that a proper inclusion of the dopant de
pendence of bandgap narrowing in the calculation of rxe is important. 
Obviously, forS -7 oe and d = 0, rxe = l/3. We sec that fora non-uni
formly doped emitter the value of rxe is lower than in the case of a uni
formly-doped emitter. The reason for this effect is that the polarity of 
the built-in field is such that the minority carriers are driven towards 
the base-emitter junction. This is the opposite of the situation in the 
base. In the case of a non-uniformly doped base rxb is higher than in a 
homogeneously-doped base, as shown in fig. 4.3, because the minori
ty-carrier flow is enhanced by the built-in field towards the collector-

1.0 

NIN0 I 

i 0.5 I 
I 

I [ x d2} ~ NIN0 =exp -(-i-) 
0.2 

I o 

I 
I 

0.1 I 
I 
I 

0.05 I 
I 
I 
I 

0.02 I 
I 
I 

0.01 
0.0 0.2 0.4 0.6 0.8 1.0 

-x/W 

Fig. 4.5. Plot of the Gaussian emitter profile. The origin corresponds to the edge 
of the emitter- base depletion layer in the emitter. 
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Fig. 4.6. The parameter rxe as a function of d/W forS -...t oo and N(O)/No = 0.01 
with (solid line) and without (dashed liil.e) inclusion of the dope dependenee of 
the bandgap narrowing. 

base junction. As we can see in fig. 4.6, the value of ae deercases 
strongly when dfWis increased from zero. The reason for this is shown 
in fig. 4. 7 where the minority carrier density is given for df W = 0.1 
(solid lines) and for the homogeneons case d = 0 (dashed line). We see 
that the extra minority charge is almost entirely located in the region 
0 < x< d near the emitter-base jun,ction. This extra minority charge 
near the junction, together with the aiding built-in field in that region, 
causes a significantly larger part of the emitter charge to be reclaimable 
through the emitter-base junction when d/W is increased from zero. 
This effect is more pronounced in the case of constant bandgap nar
rowing because, as can be observed from fig. 4. 7, the peak of the mi-
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Fig. 4.7. The minority carrier density in the emitter as a function of xfW. The 
values are normalized to the density at x = 0 for the case of a homogeneously
doped emitter. The dasbed line gives the result for a homogeneously-doped 
emitter, while the solid lines give the results for d/W = 0.1 and N(O)fN0 = O.Ol. 
Furthermore, S = l04m/s and W = O.lJUn. 

nority carrier density is then a factor 10 higher than in the case of 
dope-dependent bandgap narrowing. To indicate the inflnence of the 
emitter surface recombination, in fig. 4.8 the valnes of ae (inclnding 
dope-dependent bandgap narrowing ) are shown as a function of d/ W 
for three valnes of the surface recombination velocity S. 

4.4 DISCUSSION AND CONCLUSIONS 

In section 4.2 we have seen that the quasi-static approach, on which 
( 4.1) and ( 4.2) are based, involves two assumptions: 
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l) The minority carrier density is in phase with the applied junction 
voltage (eq. (4.6)), i.e. the quasi-static assumption. 

2) The stored minority charge in the emitter and base regions is entirely 
supplied through the emitter-base junction. 

As a result of the first assumption the sum of the imaginary terminal 
currents for either holes or electrans is determined only by the stored 
charge in the device. In section 4.3. we have seen that this is true only 
when bulk recombination is negligible. If this is not the case, the im
aginary terminal currents also consist of a term due to bulk recombi
nation. The second assumption is necessary because, due to the 
integration of the continuity equation over the volume of the device, 
this approach only yie~ds the _sum of the terminal currents. In order to 
obtain expressions for i6 and ie, an additional assumption must be made 

0.5 

/Xe I 0.4 

0.3 

0.2 

0.1 

2 4 6 8 
___... d!W 

10 

Fig. 4.8. The parameter rxe as a function of d/W forS~ (X) (A), S = 103mfs (B) 
and S = 5 102m/s (C). In these cases G(O)/G0 =O.I. 
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about the distribution of the total hole and electron currents over the 
contacts. In fact, assumption 2 is arbitrary and, as we have seen in 
section 4.3, is generally not valid. 

In section 4.3 we have presented a completely different approach 
to the determination of thc small-signal a.c. currents from the results 
of a d.c. calculation. This metbod is not based on the quasi-static as
sumption or on the integration of the continuity equations and there
fore does not involve the previous assumptions. Unlike the quasi-static 
approach this metbod also yields internal a.c. quantities such as the 
complex carrier densities and current densities. As a result of the fact 
that we have taken account of only the first-order term in jw, the results 
presented are low-frequency approximations. A drawback of the 
method, as presented here, is that only ca1culations for a one-dimen
sional problem can be performed. 

In view of the above considerations, in the rest of this section we 
discuss the use of the quasi-static cut-off frequency frqs (from (4.2) as 
a tigure of merit for the characterization of high-frequency properties 
of advanced transistors. We confine ourselves to the common-emitter 
configuration, which means that the a.c. voltage difference between 
emitter and collector is zero (see fig. 4.9) . In this case the imaginary 
base current consists of terms associated with hole starage and recom
bination in the emitter, base and collector regions. The imaginary 
emitter current consists of terms associated with electron starage and 
recombination in the emitter and base regions, while the imaginary 
collector current is due to electron starage and recombination in the 
base and collector regions. 

From bath sma11-signal a.c. measurements and small-signal a.c. 
simulations (non-quasi-statie) it is found that the current gain as a 
function of frequency does indeed accurately follow a first order re
lation of the form 

1 + }WhFEO 't' AC , 
(4.54) 

provided the d.c. current gain hFEO is much larger than unity 
[4.18,4.19]. The quantities hFEo and the characteristic time constant 
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Fig. 4.9. Common-emitter configuration. 

r AC can be extracted from the measured or simulated curve. An ex
ample is given in fig. 4.10, which shows the current gain as a function 
of the frequency at Vbe 0.825V and Vee 3.825V as obtained from 
one-dimensional numerical a.c. simulations. The corresponding doping 
profile is given in fig. 4.11 b. Both the numerical a.c. results and the 
first-order approximation (4.54) are plotted. The measured (or simu
lated) quantity hFEo gives information about the low-frequency behavi
our of the device, while the measured (or simulated) value of rAc 

provides information about the high-frequency behaviour. The meas
ured ( or simulated) cut-off frequency fr is related to r AC by 
fr = (2nr Ac) -I. Th is cut-off frequency 'is used as the tigure of merit for 
the characterization of the high-frequency behaviour of the device. The 
interesting question now is how accurately the quasi-static cut-off fre
quency frqs approximates to the actual cut-off frequency fr. To this end 
we compared the value of fT as extracted from numerical small-signal 
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Fig. 4.10. Modulus of the current gain as a function of the frequency. 
Vbe = 0.825 V and Vee 3.825 V. Both the numerical a.c. results and the first
order approximation (4.54) are denoted. 

a.c. calculations with the quasi-static cut-off frequency for two profiles 

and three emitter widths. In fig. 4.11, fr and frqs' both obtained from 
2D numerical simulations, are plotted for three emitter widths, viz. 
He 0.5pm, 2pm and oo. For the case of an infinitely wide emitter the 
collector current density is multiplied by 2pm. In fig. 4.12 the same 
curves are given for a shallow device. From figs. 4.11 and 4.12 we ob
serve that also for laterally downscaled devices the quasi-static ex
pression ( 4.2) gives a fairly good indication of fr and can therefore be 
used as a figure of merit for the characterization of the a.c. properties 
of downscaled devices. From both figures it is observed that, especially 
at high bias conditions, the quasi-static quantity frqs is slightly less than 
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Fig. 4.ll. frqs and fr as a function of the collector current for three emitter 
widths, viz. He = 0.5f.1m, 211m and oo (a). The vertical doping profile, i.e. along 
cross-sectionA-A in fig. 1.3, is shown in (b). The solid lines denote/rqs and the 
symbols denote Ir· 
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Fig. 4.12. fTqs and fr as a function of the collector current for three emitter 
widths, viz. He 0.5J.lm, 2J.lm and oo. The vertical doping profile is given in (b). 
The solid lines denote frqs and the symbols denote fr· 

164 Chapter 4 



fT, which would he the cut·off frequency as obtained from a.c. meas· 
urements or a.c. simulations. 

In view of the analysis in sections 4.2 and 4.3 we will now investi· 
gate the discrepancy between fT and fTqs· First we investigate the base 
current. If the emitter transit time plays a significant role in the total 
transit time, the quasi-static expression ( 4.14) for the base current may 
not be valid for two reasons: 
1) Unlike the situation in the base region, in the emitter region the hole 

recombination length is not much larger than the emitter depth, so 
the emitter cannot considered to he fully transparent. This implies 
that for the emitter region the quasi-static assumption (assumption 
1) is not fully justified. 

2) According to the results in section 4.3.3 the imaginary hole current 
at the emitter contact is not equal to zero. This means that, in 
principle, assumption 2 is not valid either. 

By analogy with (4.37) we write for the a.c. hole current injected into 
the emitter 

(4.55) 

where lbe is the d.c. hole current injected into the emitter and 
'fe (dQe/dlbe)v

0
• According to the analysis insection 4.3.3, <Pe = 0.5 for 

a homogeneously-doped wide emitter (We> LP) and <Pe = 1 - ae, where 
ae is given by (4.49), for a transparent emitter. According to the con
ventional quasi·static approach as described in section 4.2, <Pe = 1. In 
order to estimate the magnitude of this effect on the cut-off frequency 
we assume lbe lb, i.e. the d.c. base current consists of hole injection 
into the emitter only. Now the conventional quasi·static result for the 
base current (4.14) is replaced by: 

(4.56) 
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where re, by analogy with the definition (4.2) of Tqs' is gtven by 
•e = (dOefdlc)vo· So, Te= re /hFEO· 

The quasi-static expression for the collector current ( 4.15) is re
placed by 

(4.57) 

with Tb= (dQbfdlc)v
0 

and ab being given by (4.49). The additional time 
constant •eb is associated with the transit time through the collector
base depletion layer. By combining (4.56) and (4.57) we obtain the 
following modified expression for the current gain 

(4.58} 

For the case of a homogeneously-doped transparent emitter, for which 
1- <Pe = 1/3, such an expression has already been given in [ 4.18]. 

When we compare (4.58) with (4.1) we observe two differences: 
1) In ( 4. 58) the imaginary component of the collector current causes a 

deviation of the first-order behaviour for w;;:::: (rcb + ab't"b)-
1
. How

ever, since Tcb + abrb is smaller than Tqs' this deviation will be sig
nificant only at frequencies around fT or higher. 

2) In the denominator the time constant 't"qs in ( 4.1) is replaced by 
tqs- (1 - <Pe)te. This, of course, yields no deviation from the tirst
order behaviour but it implies that the cut-off frequency resulting 
from ( 4.58) is larger than the quasi-static cut-off frequency fTqs· This 
is in agreement with the observations from figs. 4.11 and 4.12 that 
the actual cut-off frequency is somewhat larger than fTqs· 

In fig. 4.13 the current gain is plotted as a function of wr using the 
conventional expression (4.1) and the modified expression (4.58). It is 
assumed that •e =Tb= r/3 and rcb = •qs/6, while the depletion capaci
tances can be neglected. These are reasonable values at a bias condition 
around which the maximum cut-off frequency is obtained for modern 
devices. The value of <Peis taken to be 2/3, while ab 1/3, i.e. the val-
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according to 
(4.58) 

10-1 L-----~------~------L-----~------~ 
10-4 

----I ..... WTqs 

Fig. 4.13. Modulus of the current gain as a function of wrqs according to (4.1) 
and (4.58). The d.c. current gainis 100, while 1:b re= 'Cqs /3 and rcb = 'Cqs /6. 

ues for the case of homogeneously-doped transparent regions. The 
dasbed line is obtained by using (4.1) and the solid line is obtained from 
(4.58). We see that the modified expression (4.58) gives a 10 % larger 
value for the cut-off frequency than the conventional expression ( 4.1 ). 
However, except for epitaxially-grown emitters, the assumption of a 
homogeneously-doped emitter is not a very practical one. As we have 
seen in section 4.3.3, in the case of diffused or imp1anted emitters the 
major part of the emitter minority charge is located near the emitter
base junction. This, together with the fact that the polarity of the 
built-in field in the emitter is such that the minority carriers are driven 
towards the emitter-base junction, causes 4>e to be even larger than 2/3. 
As an indication, from fig. 4.8 a value of around 0.85 is found for 4>e 
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Fig. 4.14. The ratiosfrqslfr. ref•qs and hFEOihFEOm plottedas a function of base
eruitter voltage. The collector-base voltage is 3 V. hFEom is the maximum value 
of the low-frequency current gain as a function of Vhe· Case a) is for the doping 
profile given in fig. 4.11 and b) for the doping profile in fig. 4.12. 
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(in this case f/>e = 1 cxe)· Under the assumptions 1:e = 1:b = 'l:qs /3, this 
would give an increase of around 5% for the cut-off frequency. This 
increase is in the same range as found for the numerical calculations 
shown in figs. 4.11 and 4.12. This can be more clearly seen in fig. 4.14 
where the ratio frqs/fr is plotted as a function of the base-emitter volt
age. In this tigure we also see that the difference between fr and frqs 
increases with increasing base-emitter voltage. Using the modified ex
pression (4.58) for the current gain, this can be understood as follows: 
As explained above, the emitter transit time 'te is given by 'te= "iefhnJh 
where "ie= dQ

1
"fdlb. Since the emitter is highly doped, high-injection ef

fects play no significant role in that region and is virtually constant 
up to very high bias conditions. However, hFEO deercases at a high 
base-emitter voltage due to high injection in the base or quasi-satura
tion. This is shown in fig. 4.14. As aresult 1:e increases and the relative 
contribution of the emitter transit time to the total transit time also 
increases (see fig. 4.14). Hence, from ( 4. 58) it follows that the difference 
between the cut-off frequency and frqs increases. Nevertheless, we can 
conclude that at all practical bias conditions the quasi-static cut-off 
frequency frqs gives a good indication of the actual cut-off frequency 
and can therefore be used as a tigure of merit for the characterization 
of the a.c. properties of downscaled devices. 
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APPENDIX 4A 

The general solution of (4.30) reads [ 4.14] 

- · j;/)!5-J (J:') -2( Vf)dP 
X Ym-Jls <" g Ç <" , (4A.l) 

which is a recurrence relation between the functions Ym(Ü ànd Ym- 1(Ç). 
The constauts Am,l and Am.z can be deterrnined from the boundary 
conditions for y(Ç, e). These are 

-- V 
y(O, e) = Vr Y0 (0) 

V V1 fVT -e· 
Vr ' 

(4A.2) 

and 

where S is the saturated drift velocity when this is applied to the base 
[ 4.16] and S is the surface recombination velocity if x= W corre
sponds to the emitter contact. The coordinate Ç equals Ç w for x = W. 
In the case of low frequencies we can truncate the series ( 4.27) after the 
second term, i.e. a first-order expansion in jco. We choose y0 (0) = y (0), 
so Ys (0) = 0 and (4A.2) holds both for y0 (Çw) and Ys (Çw). From 
Ys (0) = 0 and (4A.l) it fellows that Am,J = 0. Expression (4A.l) now 
becomes: 

y(Ç) = y (Ç){l + jwW2 [(A + 1çyz(Ç')g-2(Ç')b-t(Ç')dÇ')lç dÇ' 
0 D (0) m,2 0 0 0 ji(Ç') 
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The application of boundary condition ( 4A.3) gives 

(4A.5) 

Substitution of the above expression into (4A.4) gives (4.33). 

APPENDIX 4B 

In the case of negligible bulk recombination ( 4.29) reduces to the La
place equation and yields for Y0 (Ç): 

Y0 (Ç) = (1 -a Ç) e'ifVr, (4B.l) 

with 

kWG(O) 
a= G, 

(4B.2) 

and 

k 1 (4B.3) 
l G(W)D (W) 
+ G S 

t 

Using (4.32) and (4.31) we find 

-
- ) V V.{V Yo (Ç = Vr (1 -a Ç)e J r. (4B.4) 

and 
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(4B.5) 

Differentiation of (4.33) yields: 

- Jio'(Ç) fv:. (Ç') Yo (Ç')g -'<nr'(Ç')dÇ' J (4B.6) 

From the above expression it fellows that 

Substitution of ( 4B.4) and ( 4B. 5) into ( 4B. 7) gives 

V V}fVT [1 -a-e 
Vr 

After transformation to the variabie x and using 

2 Y0(x) niO 
c (x) = G(x)D (x) 
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2 V fV~ t 0 

( 

I- ~ ix G(x')dx' ) 

= nio e ' , G(x}D (x} ' (4B.9) 

and 

(4B.10) 

we arrive at 

_ v [ Jwqk f w (fx ) ] i (W) = Vr J (0) I - [J(O)iGt 
0 

c (x) 
0 

G(x') dx' dx . (4B.Il) 

In the above expressions c (x) is the minority-carrier density and .J (0) 
is the d.c. current density, given by (4.16) and differentiation of (4B.l). 
The transit time rqs is, as usual, defined as: 

q Lwc (x)dx. 
IJ(O)I 

(4B.l2) 

If we define ex as 

(4B.l3) 

(4B.ll) can be written as 
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-
i ( W) = ; T J (0)[ 1 - iWO:'t"qs]. (4B.14) 

Similarly, by the substitution of (4B.4) and (4B.5) into (4B.6) for 
Ç = 0 we arrive at 

-'(0) - V VJ /Vr y --a-e -
Vr 

(4B.l5) 

Substitution of (4B.8) into (4B.l5) gives: 

Using (4.26) and subsequent transformation to the variabie x gives: 

- ,_ V 
i (0) -i ( W) = V T iwJ (0)-rqs' (4B.l7) 

so i (0) can be written as 

-
](0) = ;T 1(0)[1 + iw(l- o:)-rqs]. (4B.18) 
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Chapter 5 

EPILOGUE 

In chapter one we distinguished between downscaling-related problems 
in the field of numerical device simulations and in the field of compact 
transistor modelling. In the numerical simulations the problem is to 
incorporate all relevant physical phenomena properly into the differ
ential equations and boundary conditions. In compact modeHing we 
can distinguish between problems related to the incorporation of dis
tinet physical phenomena into the models and problems related purely 
to geometrical effects, i.e. related only to the transistor dîmensions. 

The topic of chapter two, sidewall effects on the d.c. currents in 
bipolar transistors, is a clear example of the latter category. In order 
to obtain practically useful expressions from the two-dimensional ana
lytica} calculations in this chapter, we had to make fairly rigorous as
sumptions, such as uniformly-doped rectangular regions. These 
assumptions are even more rigorous than those required in a one-di
mensional calculation. For instance, as we have seen in chapter three, 
analytica] expressions for the one-dimensional current density and mi
nority-carrier density can also be obtained for an arbitrary dopant dis
tribution. An analogous approach for a two-dimensional region with 
an arbitrary dopant profile (e.g. the base region) has not succeeded. 
By using a coordinate transformation similar to that used in chapter 
four, an attempt has been made to remove the first-order term (i.e. drift 
term) from the continuity equation so that in steady-state the resulting 
differential equation is a Laptace equation. However, in that case the 
boundaries of the region are no longer rectangular and, therefore, a 
conformat mapping technique does not lead to useful results. 

Despite the rigorous assumptions in chapter two, the functional 
relations between process parameters and sidewall effects are found to 
be equally applicable to the case of a realistic dopant distribution. 
These expressions provide an insight into the influence of process vari
ables on the sidewall effects ori the currents and, hence, on the current 
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gain variation with lateral emitter sealing. They can be used, for in
stance, in a so-called process block in a circuit simulator. Such a pro
cess block contains all the necessary information about the sealing 
properties of the electrical transistor parameters in order to enable the 
circuit designer to choose the desired device geometry. 

An interesting aspect of the above sidewall effects is that they 
cannot be uniquely defined, i.e. their magnitude depends on which part 
of the transistor is attributed to the sidewall and which part to the 
bottom. For instance, if in chapter two we had not defined the emitter 
area as the total area of the n + + region (see fig. 2.1 ), but as the contact 
area (which is easier to measure), the total sidewall effects on the base 
and collector currents would have been larger. This holds riot only for 
sidewall effects on the currents, but also for other sidewall effects such 
as those on the capacitances and charges. This implies that a statement 
about the magnitude of a sidewall effect without a corresponding defi
nition of the sidewall is meaningless. However, as we have seen in 
chapter two, the ratio of two quantities which scale with the emitter 
bottorn area, such as the current gain, does not suffer from measure
ment uncertainties, because errors in the estimated emitter dimensions 
are approximately cancelled out. Because such a ratio depends only 
on process quantities it can be used as a figure of merit for process 
characterizatîon. An example of such a quantity is the characteristic 
emitter width Hp for the characterization of the sealing properties of the 
current gain. 

Sidewall effects on the capacitances, charges, cut-off frequency and 
Early voltage are not treated in this thesis. As discussed above, the 
determination of the sidewall effects on the capacitances and charges, 
which scale with the emitter area too, suffer from the same problem as 
the sidewall effects on the d.c. currents. However, the cut-off frequency 
can possibly be defined as the ratio of two quantities which scale with 
the emitter area, as can be seen as follows: In chapter four we have 
shown that a quasi-static approach for the total transit time and, 
therefore, for the cut-off frequency can also be used for downscaled 
devices. Similar to the approach for the d.c. currents used in chapter 
two, it might be possible to describe the total charge in the device as 
the sum of a term which scales with the bottorn area and a term which 
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scales with the perimeter length. Using the relation ( 4.2), i.e. 
rqs = dQfd/0 it might then be possible, similar to the definition of Hp, 
to define a characteristic emitter width Hh which characterizes the 
sealing properties of the cut-off frequency for a certain process. An 
approach such as this might also be possible for the Early voltage. 

Chapter three deals with a distinct physical phenomenon, namely 
tunnelling in p-n junctions. Tunnelling becomes important due to the 
increase in doping level required for properly downscaled devices. This 
chapter deals both with the incorporation of these effects into a nu
merical device simulator and with the compact modelling of tunnelling 
effects in a p-n junction. The incorporation of a quantum-mechanical 
effect such as tunnelling into a conventional numerical device simulator 
is an inherently difficult task because we have to incorporate a pure 
wave aspect of matter into a semi-classica], particle-based description 
of the e1ectrical behaviour of semiconductors. This chapter presents the 
basis for a recombination model containing both conventional Shock
ley-Read-Hall recombination and trap-assisted tunnelling. Unlike pre
viously publisbed roodels for trap-assisted tunnelling (e.g. ref. [3.13]), 
this model is based on the recognition that, basically, trap-assisted 
tunnelling and SRH recombination are the same recombination mech
anisms, i.e. recombination via traps. The difference is in the character 
of the initial state of the electrons and holes. This recognition enabied 
us to unify the two mechanisms into one expression. However, in order 
to arrive at a model readily suitable for implementation in a device si
mulator the following additional work has to be done: 
I) The recom bination ra te at a certain location, as given hy (3.14) to

gether with (3.22) and (3.23), depends on the average electric field 
and contains an integration over a part of the depletion layer. This 
means that the recombination ra te at a certain mesh point j not only 
depends on local quantities (e.g. ll_j, pj, t/Jj, ~),but also on quantities 
at other mesh points. In addition, the boundary of the depletion 
layer must also he determined and an integration from this bound
ary to mesh point j must be carried out. This would be fairly time
consuming in a numerical simulation. The expressions for the 
tunnelling carrier densities therefore have to be simplified in order 
to depend on local quantities only. 
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2) As discussed in section 3.5, generation due to band-to-band tun
nelling and tunnelling-enhanced emission from traps must also be 
included. These effects are important under reverse-bias conditions. 
Band-to-band tunnelling can easily be included by an additional 
term of the form of (3.48). Tunnelling-enhanced emission from 
traps, which can be considered as the inverse process of capture by 
tunnelling, must be incorporated into the expression for transitions 
via traps (cf. expression (3.14)). 
The implications of tunnelling effects on device behaviour, such as 

sidewall effects on the non-ideal base current due to tunnelling, have 
not been discussed in chapter three. The reason for this is not that they 
are considered to be unimportant but the lack of adequate physical 
models. Befare investigating these sidewall effects we had to establish 
physical models for these tunnelling effects, which are necessary for 
acquiring an insight into the importance of these effects in bipolar 
transistors, both qualitatively and quantitatively. 

The work described in chapter four can also be classified as a ma
delling problem related to geometrical effects. In view of downscaling, 
the foundations of the quasi-static approach to determine a.c. quanti
ties on the basis of a quasi-static analysis are reviewed and the validity 
of the approximations involved is discussed. Furthermore, a math
ematically more rigarous low-frequency description of a.c. currents is 
given, based on a perturbation analysis of the time-dependent continu
ity equations. 

From a practical point of view the work described in this chapter 
might seem less valuable. However, the condusion that for downscaled 
devices the quasi-static approach remains a good approximation for the 
cut-off frequency is important for rnadelling the sealing properties of 
the cut-off frequency. The quasi-static approach is also important for 
our insight into the contributions of the different transistor regions to 
the a.c. properties of the device. In fact, relation ( 4.2), i.e. 
'Cqs = dQfdlc, offers the possibility to investigate the contributions to 
1:qs from the different transistor regions. If (4.2) were nat valid, and 
our insight into the a.c. behaviour of a bipolar transistor therefore had 
to be acquired from small-signal a.c. simulations alone, this would be 
a very difficult task. 
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SAMENVATTING 

Ten gevolge van de schaalverkleining van IC-processen wordt de 
beschrijving van het elektrische gedrag van bipolaire transistoren 
ingewikkelder. Bij de modellering van dit gedrag kan men onderscheid 
maken tussen problemen van verschillende aard. Eén klasse omvat 
problemen die voortvloeien uit het optreden van fysische verschijnselen 
die tot dusver onbelangrijk waren. In het bijzonder de noodzakelijke 
verhoging van de doteringsniveaus en de hiermee gepaard gaande sterke 
elektrische velden leiden bij schaalverkleining onder meer tot het 
optreden van tunneleffecten en het ontstaan van hete ladingsdragers. 
Een andere klasse van modelleringsproblemen is uitsluitend het gevolg 
van de verkleining van de transistorafmetingen. Als gevolg van de 
laterale schaalverkleining kan men bij geavanceerde bipolaire processen 
niet meer volstaan met eendimensionale beschouwingen, maar moet 
men overgaan op tweedimensionale berekeningen. In dit proefschrift 
komen beide soorten problemen ter sprake. 

In hoofdstuk 2 worden randeffecten op de statische basis- en 
collectorstroom in verticale npn-transistoren beschreven. Met behulp 
van een eenvoudig tweedimensionaal transistormodel zijn analytische 
berekeningen uitgevoerd om inzicht te verkrijgen in het verband tussen 
deze randeffecten en procesparameters, zoals transistorafmetingen en 
doteringsniveaus. Deze berekeningen hebben, tezamen met numerieke 
simulaties, geleid tot praktische formules die ook voor meer 
ingewikkelde transistorstructuren gelden. De berekeningen tonen aan 
dat het randeffect op de gatenstroom in de emitter niet alleen het gevolg 
is van de gateninjectie vanuit de emitter-basis-overgang aan de 
emitterrand, maar dat ook de gateninjectie vanuit de bodem van deze 
overgang, binnen een zekere afstand tot de rand, een compenserende 
werking heeft op dit randeffect. De berekeningen laten ook zien dat 
de recombinatiestroom aan het basiscontact exponentieel afneemt met 
de afstand tussen dit contact en de emitterrand. Vervolgens worden 
de verkregen relaties tussen procesparameters en randeffecten getoetst 
aan metingen aan verschillende typen van bipolaire transistoren. 
Hierbij wordt ook nader ingegaan op de experimentele methoden ter 
bepaling van deze randeffecten. Uit zowel metingen als berekeningen 
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is gebleken dat, als gevolg van deze effecten, bij verkleining van de 
laterale emitterafmetingen de stroomversterking van sommige typen 
van transistoren toeneemt en van andere afneemt. 

In hoofdstuk 3 worden tunneleffecten in een pn-overgang 
beschreven. Het tunneleffect is een quanturnmechanisch verschijnsel 
waarbij deeltjes door een potentiaaldrempel heen dringen ("tunnelen"). 
In dit geval zijn de deeltjes elektronen en de wordt de potentiaaldrempel 
gevormd door de verboden zone tussen valentie- en geleidingsband. 
Voor bipolaire transistoren zijn deze effecten belangrijk bij de 
emitter-basis overgang. Met name aan de emitterrand, waar de 
basisdatering het hoogst is, kunnen als gevolg hiervan relatief grote 
stromen lopen. Zowel tunnelen van band naar band als tunnelen via 
energietoestanden in de verboden zone (recombinatiecentra) komen in 
dit hoofdstuk aan de orde. Experimenteel en theoretisch is onderzocht 
of een bekende formule voor tunnelen van band naar band, afgeleid 
voor het geval dat het elektrische veld constant is, gebruikt kan worden 
voor de beschrijving van de tunnelstroom in een pn-overgang, waarbij 
het elektrische veld niet constant is. Het blijkt dat deze formule 
inderdaad toegepast kan worden, mits hierin voor het elektrische veld 
de maximale waarde bij de overgang wordt gebruikt en niet de 
gemiddelde waarde. Vervolgens wordt een nieuw recombinatiemodel 
voorgesteld dat, naast het conventionele Shockley-Read-Hall 
recombinatieproces, ook het tunnelen via recombinatiecentra beschrijft. 
Een vergelijking van metingen met numerieke simulaties laat zien dat 
het voorgestelde model de experimenteel gevonden spannings- en 
temperatuurafhankelijkheid van de niet-ideale diodestroom goed 
beschrijft. Ten slotte wordt de fysische basis voor een nieuw compact 
diodemodel ter beschrijving van de stroom-spanningskarakteristiek van 
een gesperde pn-overgang besproken. Dit model berust op een 
analytische oplossing van de continuïteitsvergelijking m het 
ruimteladingsgebied rondom een pn-overgang en beschrijft zowel 
tunneleffecten als lawinevermenigvuldiging. Uit een vergelijking van 
metingen met modelberekeningen volgt dat in het model, naast tunnelen 
van band naar band, ook tunnelen via recombinatiecentra meegenomen 
moet worden. 
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In hoofdstuk 4 zijn, met het oog op schaalverkleining, de 
aannamen in de quasi-statische beschrijving van het klein-signaal 
wisselspanningsgedrag van verticale npn-transistoren onderzocht. Ook 
wordt een nieuwe methode voor de berekening van dit gedrag 
besproken. Deze methode berust op een eerste-orde storingsrekening 
en kan dienen om, naast de gebruikelijke berekening van de 
afsnijfrequentie, ook op een eenvoudige manier faseverschuivingen en 
interne wisselspanningsgrootheden (zoals complexe stroomdichtheden 
en concentraties) te verkrijgen uit een statische berekening. Ten slotte 
zijn quasi-statische berekeningen van de afsnijfrequentie vergeleken met 
de resultaten van niet-quasi-statische simulaties van het 
wisselspanningsgedrag voor kleine signalen. Hieruit blijkt dat, ook 
voor moderne transistoren, de quasi-statische afsnijfrequentie goed 
overeen komt met berekeningen van de afsnijfrequentie uit 
wisselspanningssimulaties. 
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De methode van Fossum en Veeraraghavan voor de berekening van de 
niet-quasi-statische collectorstroom is alleen juist voor een transistor met een 

homogeen gedoteerde basis. 
J.G. Fossum and S. Veeraraghavan, IEEE Electron Device Lett., EDL-7, p. 652 

( 1986) 

2 

Het model dat Woo, Plummer en Stork voorstellen om de invloed van het 
Poole-Frenkel-effect op het Shockley-Read-Hall-recombinatieproces te 
beschrijven, is niet juist. 
J.C.S. Woo, J.D. Plummer and J.M.C. Stork, IEEE Trans. Electron Devices, 

ED-34, p. 130 (1987) 

3 

"Zener breakdown" bestaat niet. 

4 

Ten onrechte beweert Bennett herhaaldelijk dat de conventionele fysische 
modellen voor device-simulatie, met daarin realistische waarden van de 
parameters, niet toereikend zijn om de gemeten stroomversterking van bipolaire 
transistoren zelfs maar bij benadering te berekenen. 
H.S. Bennett, IEEE Trans. Electron Devices, ED-30, p. 920 ( 1983) 

H.S. Bennett and D.E. Fuoss. IEEE Trans. Electron Devices, ED-32, p. 2069 

(1985) 

H.S. Bennett, Solid-State Electron., 30, p. 1137 ( 1987) 

5 
De invloed van lawinevermenigvuldiging m de externe basis van moderne 
transistoren op de Early-spanning en de collector-emitter-doorslagspanning dient 
nader onderzocht te worden. 



6 

Het model dat Jo en Burk voorstellen om de interne basisweerstand van een 
bipolaire transistor te beschrijven, berust op een foutieve uitdrukking voor de 
spanningsafhankelijkheid van de basisstroom. 
M. Jo and D.E. Burk, IEEE Trans. Electron Devices, ED-37, p. 202 ( 1990) 

7 
Om onhandige formuleringen te vermijden, dient het werkwoord "tunnelen", 
voor de beschrijving van de quanturnmechanische doorboring van een 
potentiaalberg door een deeltje. in de Nederlandse taal ingevoerd te worden. 

8 

De toenemende projectmatige aanpak van wetenschappelijk onderzoek, met de 
bijbehorende subsidieregelingen en mijlpalen, bewijst de wetenschap een slechte 
dienst; niet alleen omdat vaak op vooraf vastgestelde tijdstippen vooraf 
omschreven resultaten moeten zijn behaald, maar ook omdat het onderzoekers 
vaak teveel afhoudt van hun eigenlijke taak. 

9 

Bij de beoordeling van wetenschappelijke prestaties aan de hand van de Science 
Citation Index verkrijgt men een beter beeld indien verwijzingen die verschijnen 
binnen een zekere tijd na publicatie van het betreffende artikel (bijv. 2 à 3 jaar) 
minder zwaar meegerekend worden. 

10 

Mededelingen op automatisch bewegende deuren dienen op enkele meters 

af~tand daarvan leesbaar te zijn. 


