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Chapter 1 Introduction

Although the use of graphics in scientific research boomed enormously
since the first examples of this ‘lineal arithmetic’ by William Playfair
appeared in 1786, its use has, for the most part, remained limited to the
static presentation of dara.

According to Bertin (1981), the possibilities of the graphic method by far
surpass the purely static presentation of facts (which he calls graphic
communication). He asserts that graphics are also applicable to the inter-
active analysis and interpretation of information (graphic processing).

However, as an effective tool in the presentation, analysis and inter-
pretation of multivariate and combinatory data, the graphic method has to
meet a number of criteria. The purpose of this thesis is to establish and test
these requirements. In the present study we are principally interested in the
utility of the method in problems of design, planning and decision making
in architecture. The required criteria will be investigated by means of exper-
iments on the perceptive and cognitive levels of human information
processing.

1.1 The present thesis

As already stated, the theory of Jacques Bertin will play a central role here
in. This French cartographer developed a method in which graphically
presented multivariate data and their interactive analysis are combined
(reorderable matrix). The method was originally meant to support both
analysis and decision making with multivariate data and proposes the direct
translation of numerical cell values into elementary graphical symbols, such
as circles, squares or bars. Analysis and decision making are then based on the
visual comparison and interpretation of the graphical elements. As Bertin
claims that his reorderable matrix is suitable for presentation and analysis
and is effective at different levels of information processing, from individ-
ual elements to overall interpretation, the method has to satisfy a large
number of requirements touching on these specific purposes. According to
Bertin, the fundamental difference between the reorderable matrix
method and standard statistical and graphical techniques, such as a t-test or
pie chart, is that they have a restricted, rigidly defined purpose, whereas the
reorderable matrix could be useful for more divergent purposes. The most
important shortcoming of this specific method and, in fact, of large parts of
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Bertin’s whole theory, is the lack of experimental support for this claim and
for many others of his ideas and opinions. The present study investigates
the requirements which have to be met if the method of the reorderable
matrix is to be a practically useful, and above all, an appropriate tool. This
implies, among other things, that it gives a correct reproduction of the
original data and allows the correct interpretation of differences, similarities
and associations. If a number of objects! show the same typical characteris-
tics or features, they should be seen as a group of equivalent items, and the
rating of an overall configuration (overall picture) of graphic symbol
elements in a matrix should correspond to the degree of regularity and
association of the data. The ordered appearance of a graphical display gives a
certain insight into the underlying structure of the information. The
process of analysing data with the help of this tool should be straight-
forward and obvious. Judgements and decisions based on results obtained with
the graphical tool should be verifiable against the original data. The criteria
tested in this study touch upon the processing of graphic information from
a lower level of perception to a higher cognitive level. After operationalisa-
tion they will be tested experimentally for confirmation.

1.2 Information, decision and analysis

If the analysis and the decision-making process are to be based on a number
of previously collected and recorded data, at least three important aspects
are involved:

- type and amount of available or required information

- required judgement or decision

- type of method, model or technique used in the analysis.

These three aspects are mutually related (as schematized in Figure 1.1).

1 a correct comprehension of the concepts “object, characteristic and feature” is of crucial
importance to the present study. The object concept as it used here, covers both “solid
things that can be seen or rouched” as well as “things aimed at, intentions or purposes”.
Thus, all things that have some distinctly visible or measurable features are covered by
this concept. Whereas different types of houses, public buildings and factories, bur also
different persons are all examples of the first explanation, building schemes and town
plans, seasons and months of the year are examples of the second meaning. The conceps,
“features” and “characteristics” stand for the visible or measurable properties of these
objects.
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/

Analysis ——— > Decision/judgment

Information

Figure 1.1 Relation between information, analysis and decision

1.2.1 Information

Multivariate versus combinatorial datasets

In his consideration of the available work on problems of architectural
design, Héffler (1972) made a broad distinction between two types of
information. The first type he referred to in his study, can be designated as
data on the dimensions and features of various objects. This type of data can
be presented in a rectangular table or matrix and is more commonly known
as multivariate data in other disciplines. When for example a number of
features is measured or judged for each of a number of alternatives, the
results can be recorded in the relevant cells of a rectangular table. For
instance, the rent or mortgage, number of rooms, expenditure on
electricity and gas, income and age of the householder are some examples
of features that can be measured for a number of (alternative) houses and
apartments.

Hoffler’s second type of information can be defined as data on
associations and can be presented in a triangular matrix where the cell
values represent a kind of strength of association between objects. A
common example of data presented in a triangular matrix is the table of
inter-city distances in a pocket diary.

In a space planning? project, for instance the distances between depart-
ments or offices of a business can be reflected in the cells of a triangular
matrix in the form of values. By the same procedure, the activity inter-
actions between offices or employees of this business can be recorded (simply
by counting the number of times people visit each other in their offices).
Combining the data of these two triangular matrices by multiplication of
corresponding cells, the total distance that is covered by all employees

2 space planning is primarily concerned with architectural spatial-allocation problems.
These problems can range from the layouc of buildings on a large site to the placement of
equipment and furniture within a single room. Here, it is especially the arrangement of
rooms and facilities within a building that is meant (see e.g. Liggett, 1985; Liggett and
Micchell, 1981; Adams and Daru,1990)
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during a certain time can be computed. This value can be calculated for a
number of different arrangements of employees and offices. When the
criterion is to pursue a minimalisation of the total distance covered by the
complete staff, the comparison of these resulting values can serve as the
starting-point for the distribution of employees or departments over the

building.

Level of measurement

A second possible differentiation of the information is the division into
different levels of measurement. In most introductory books on statistics, a
differentiation is made between the levels of measurement of nominal,
ordinal, interval and ratio data3. Information files in certain disciplines in
architecture, as in town planning and space planning, often contain a
combination of data at different levels (two examples dealing with these
disciplines in architecture will be discussed more extensively in Chapter 2).
Ordinal data are often strongly represented in these space-planning and
town-planning problems, either directly because of the ordinal nature of a
feature or indirectly through categorisation of what were originally inter-
val or ratio-level data. In addition to the specific decision to be made, the
level of data is a determinant of the type of analysis that is required.

Amount of information

As long as the number of items of information is small, solving the
problem should not be too difficult. For example, it will be easy to order the
costs when comparing a small number of building projects, by pairwise

3In nominal scales each distinct class or group can be assigned a number to act as a
distinguishing label, thus taking advantage of the property of identity. As with ocher
scales, all members of a class are regarded as being equal. With nominal scales, the
assignment of numbers to classes however is purely arbitrary. Examples of this are types
of houses or makes of automobiles. In ordinal measurements, the numbers assigned to the
categories utilize the property of rank order. Rank ordering may be regarded as a
classification in quantitative categories, where categories are not necessarily equally
spaced on a scale. The levels of maintenance of buildings or the utility of the ground for
building purposes are examples. The requirement of the interval scale is an equality of
units. This means that the same numerical distance is associated wich the same empirical
distance on some real continuum, for instance the continua of time and temperature.
Ratio scales can be distinguished from other scales in that they have an absolute zero
point. In ratio scales all fundamental numerical operations are possible and meaningful.
Here the examples are numerousness (obrained by counting objects) and size. (See e.g.

Guilford, 1954 and Torgerson, 1958).
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comparisons. When the quantity of data becomes larger or more complex
(the same projects are now judged on 10 or 100 criteria), problems will
occur, such as decisions which can no longer be directly deduced from the
rough measurements. The data have to be processed more thoroughly to
facilitate the decision or selection and results require a clearly structured
presentation. Statistical and graphical methods are called for to deal with
processing and presentation.

1.2.2 Decision

In addition to the type of information, the decisions or judgements that
have to be made are also of major importance when it comes to selecting
the right method of analysis. Sometimes investigations are dependent on
information already collected. All kinds of data are recorded in databanks
nowadays, sometimes by bodies set up for the purpose, such as the Central
Bureau of Statistics. The available information could conceivably place
some restrictions on the required analysis. If one started with a question or
problem and not with already available information, one could actually
specify the type and amount of information (and the method of analysis)
required in order to answer the question or solve the problem. When the
best alternative is to be selected in a multivariate problem, a different type
of analysis must be used than when searching for similarities or differences
between alternatives. With triangular datasets a travelling-salesman?
problem requires a different approach (algorithm) than a space-planning
problem.

When the starting point is the specific purpose of an investigation, at
least three typesS of problems can be distinguished with multivariate data
in a rectangular table.

The first type is that in which the collection and analysis of data should
lead to a selection of one or more best alternatives. Examples of this type
are the selection of the most appropriate location (site) for a new university
(as in example 1 of Chaprter 2) or, given a restricted budget, the selection of

4 In a travelling-salesman problem, the shortest route must be found where a number of
towns, pillar-boxes, businesses, etc. must be visited. End and starting point of the route
are one and the same.

5 We do not claim to give an exhaustive list of all types of problems that can be
distinguished with rectangular mulcivariate sets of data, by distinguishing between three
types of problems . The three types that are mentioned, however are some typical
problems of frequent occurrence within the field of decision making in architecrural
design.
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a number of estates that are to be considered for restoration (one of the
objectives of example 2 in Chapter 2). With this type of problem the
criteria are considered as of differential importance and are weighted
accordingly. The indexed total weight of scores on the criteria determines
the relative position of an object in an ordered list.

A second type of problem is that in which the principal purpose of the
investigation is classification of the objects. This classification into a small
number of existing, predefined typologies has to be based on the specific
scores of an object on the examined features. An example of this type is the
stock-taking of a number of buildings from different periods (public
buildings, factories and houses, all within a restricted area) and the
subsequent classification of these buildings into a small number of
predefined typologies (also one of the objectives of example 2 in Chapter
2). With this type, normally no differential weights are attached to the
criteria, all of which are considered to be of equal importance.

A third area of problems considers investigations of an explorative
nature. Here, as with the first and second type, a number of objects is scored
on a number of criteria or features. However, objects and/or features are
not classified according to some predefined typologies. Instead, the group-
ing of both objects and criteria is based purely and simply on the similarity
and dissimilarity of individual score profiles. Groups in the course of form-
ing do not have to concur with known, predefined typologies, but rather
can lead to the discernment of new typologies or to underlying relation-
ships in the data.

Often relationships between features (displayed in the different rows of
the table) and objects (displayed in the different columns) can be demon-
strated at the same time. A study by Theodorescu (1973) discussed in Bertin
(1981) on some 78 characteristics of 82 lonic capitals, revealed three main
types of relationships between groups of characteristics and varieties of
capitals. The first type could be characterized by a chronologically evolving
change in the design of the capital (becoming more square) and the shaft of
the column (becoming wider). The second type could be characterized by
the size of the volute (small to begin with, then larger, and smaller again at
the end of the period) and an inverse evolution of the overall size of the
capital (large at first, then smaller, and finally large again). A third type
showed features that seemed unrelated to chronology.
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1.2.3 Analysis

As already stated above, the type of analysis is strongly related to the infor-
mation we have and to the kind of problem we want to solve. The use of
statistical techniques in the analysis of multivariate or relational data is
often very useful in solving these problems. When the total amount of data
is too large to be surveyable, when the data are too complex to yield the
required answers directly, or, when in doubt as to whether differences noted
really are obvious, statistics can be very helpful. Sometimes a statistical
measure is desired simply so that a large mass of data may be compactly
summarized. A correctly chosen algorithm or statistical test can indeed
reduce a plethora of information into a few important results that, in
addition, are appropriate to the specific questions raised or decisions to be
made. An algorithm can point out a best choice in a number of alternatives,
a chi-square test can fortify the opinion that differences between a number
of independent groups are significant or more probably based on chance,
and a clustering algorithm can divide a large number of observations into a
small number of more or less coherent groups.

When a statistical or mathematical approach is the aim in the analysis of
multivariate data, the score on different criteria in the file must be compa-
rable. Consensus must therefore be reached on the relative contribution by
the criteria to the final judgement. It is only when consensus can be reached
on the weight of all criteria, that the best alternative can be directly esti-
mated. A number of models have been developed for the comparison of
data on different levels of measurement. When the problem concerns the
selection of the best alternative and the data file contains criteria on several
levels of measurement, the usefulness of these models or algorithms could
be examined. For a more descriptive analytical approach to the data, non-
parametric statistical measures of association, as well as a diversity of cluster-
ing algorithms or multidimensional scaling techniques can be used.
However, it may be difficult to select the right technique(s), especially when
different methods produce results which are at variance with each other.

The analysis of data files containing associative data (triangular matrix)
also require their own statistical algorithms. Here the choice of the correct
method of analysis may even be more dependent on the type of informa-
tion available and on the specific decision that is to be made.
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1.3 Statistical approach

Statistical and mathematical expedients are becoming more and more
common in the analysis of scientific investigations. In the most divergent
disciplines (e.g. cultural anthropology, history of art or architecture) inves-
tigators take refuge in statistics. As the number of statistical models and
tests increases it becomes easier to select one that (more or less) fits the
collected data. Yet a statistical approach doesn’t always have to be the only
or even the best manner in which to analyse information.

1.3.1 Disadvantages of the statistical approach

Sometimes the traditional statistical measures may be unsatisfactory or

even ineffective.

- This is particularly the case when it is desirable or necessary to retain a
presentation of the complete and detailed set of informations items, for
instance, when no consensus can be reached on the relative weight of
different criteria or when the decision rules themselves are unclear.
Fundamental differences between criteria, for example, comparison of
the aspects of cost, aesthetics, safety and environmental pollution show
how important, but also how subjective and sensitive the adjudgement
of a weight factor to a criterion can be. Moreover, the relative
contribution of the adjudged weights can’t be retrieved from the final
results in most cases.

- When the decision rules are unclear it can, in addition, prove difficult to
select between different statistical techniques. When more than one
statistical test is possible, with tests showing different results, for exam-
ple, different approaches in the analysis with clustering algorithms can
result in different clusters. Information on the distribution of data and
on the number and shape of expected clusters would be helpful for
optimal selection of one of the algorithms, but may be unavailable.

- The noncritical use of statistical techniques may lead to overlooking
what is perhaps important information. Aggregating scores on different
criteria may mean that the strong and weak marks of a specific object
add up to an indifferent average. Although this disadvantage can be
relevant to the use of statistics, it is not restricted to it but also can be
applied to graphic techniques (as we will see in Chapter 3).

- When the researcher has information that is not, or can’t be, incorpo-
rated in the data file. Bertin calls such information extrinsic.
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"Extrinsic information, that is the nature of the problem and the interplay
of the intrinsic information (internal relationships revealed by the image)
with everything else. And, by definition, everything else is that which
cannot be processed by machine. Extrinsic relationships cannol, by defi-
nition, be automated. They are, however, of fundamental importance in
interpretation ond decision-making. Thus, the most important stages —
choice of questions and data, interpretation and decision-making — can
never be automated. There is no artificial “intelligence” (Bertin, 1981, p.

9)".

- The investigation could be of a more explorative nature, aiming at the
generation of hypotheses instead of testing them (as, for instance in the
exploratory study by Theodorescu mentioned earlier). There are no
clear-cut hypotheses or questions as a starting point or the investigator
has a multiplicity of goals.

When one or more of the above-mentioned arguments applies, it could
be desirable to rerain a presentation of the complete and detailed set of
information items throughout the whole process of decision making,
without taking the risk of blotting out information by averaging the obser-
vations or pooling two or more characteristics. This detailed display of the
information would also facilitate comparison between alternatives and
would show the effect of subtle changes in emphasis (the relative weights)
of criteria. Subjective preferences (think of more aesthetic aspects) as to the
order of the alternatives could easily be compared and discussed.

A tool which would retain the original information intact and as
surveyable as possible, while leaving the analysing process to the person in

charge, could prove helpful.

1.4 Graphical approach

In addition to a statistical approach in the analysis of multivariate data, a
graphical approach is often used for a clear and concise illustration of the
ultimate results. Graphical displays are considered suitable for illustrating
differences, similarities or associations. It seems only a slight step further to
integrate the graphical approach with the analysing process itself. Using
graphics during the analysis might be considered instead of using one of the
countless graphical formats only when it comes to displaying the results of a
statistical analysis. Jacques Bertin actually put this plan into effect and
proposed an important role for graphics in the analysis of information.
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1.4.1 Requirements of a graphical approach

In order to be actually useful, for example in solving the problems in archi-
tecture that were mentioned earlier, a graphical method would have to
meet a number of requirements. A broad division into two groups of
demands can be made by respectively emphasizing the more communicative
(static) and more analytic (interactive) properties of the graphic method.
Both demands stress the purpose of supporting the process of decision
making. In interactive analysis, all intermediate rearrangements in the
layout of the information as well as the final decisions and judgements are
strictly reserved to the investigator operating the tool. For this purpose, the
total amount of information must be presented in such a way as to display
all items visibly and clearly structured.

As regards the first group of communicative requirements, retrieving
information on different levels should be feasible. Not only should it be
possible to compare individual items but the overall picture should be
interpretable at the same time. Another requirement of the layout is a
graphical translation or reproduction of the original data that allows a
correct interpretation of values, differences, similarities and associations.
The graphical translation of the raw data should not distort the original
values and their proportions. Both these requirements demand a well-
considered but fixed representation of the raw data in a graphical format.

The second group concerns an accessible interactive procedure in the
analysis. In order to be really useful in the analysis of data, identical or
related values can be grouped in a graphical tool, similar profiles of values
of two or more objects can be juxtaposed and compared against a specific
criterion, and relations between the row-and-column components can be
accentuated by forming groups of elements. To be able to judge the results
of a proposed reordering of rows and columns (position of the specific
objects in the rows and their features in the columns in the matrix) the
matrix configuration really changes and visual feedback on the results of
this operation is given. The instructions for desired actions are self-evident
and unambiguous.

Bertin has developed a method which, at first glance, seems to satisfy a
number of the required options. In the present study, Bertin’s method will
be operationalised into a number of testable criteria. Results of the tests will
be implemented in the method with retrospective effect.
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1.5 Contents of the following chapters

Chapter 2 will describe and elaborate some typical problems within the
process of decision making in architectural disciplines. The relation between
information, analysis and judgement will be illustrated with the help of
two practical architectural investigations. The consequences of a possible
graphical approach with these examples will be considered.

The historical development of statistical graphics will be illustrated in
Chapter 3. Different methods of displaying two-dimensional and multi-
variate data will be discussed.

Chapter 4 will be devoted to the very elaborate graphical theory of
Bertin. Questions regarding the more thoroughly investigated part of his
theory (the reorderable matrix) will be operationalised into a number of
testable criteria with respect to different levels of information processing.

Criteria at the levels of early visual processing will be discussed in
Chapter 5. The required differences in size of matrix elements will be
measured, both with stimuli that are presented pairwise and larger groups
of graphical elements. In addition to performance of the discrimination
and sizing tasks, the ease experienced in performing these tasks will be
measured.

The visual estimation of the size of graphical symbols in a matrix will be
measured in Chapter 6. Results will be discussed in comparison with
fundamental psychophysical research on this topic (e.g. Stevens, 1957).
Attention will be paid to the use of a legend or anchor and the effect of this
on the estimation of size.

Chapter 7 treats the recognition of patterns in a graphical matrix. First
it discusses the validity of a model for the evaluation and prediction of
visual clustering on a cartographical map and the utility of this model in a
graphical matrix. Then the concept of visual order in a graphical matrix is
investigated.

Chapter 8 deals with the actual interactive construction of patterns in a
matrix. The process of ordering graphical symbols into more or less coher-
ent patterns is discussed and related to the results of the psychometrically
measured concept of visual order of Chapter 7.

In this experiment on pattern construction an automated computer
version of the reorderable matrix is used.

Chapter 9 gives a summary and discussion of the present study, together
with conclusions reached. The results of the specific experiments and their
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implications will be considered. Finally, some recommendations for
improvement of the reorderable matrix will be proposed.
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Chapter 2 Decision making in architectural design

2.1 Introduction

In a number of disciplines or topics in architectural design, such as in town
planning or space planning, judgements are repeatedly required which are
based on, or at least supported by an often large number of previously col-
lected and registered information items. In processes like research these
judgements may take place at different levels
- decisions (e.g. on the geography of buildings and towns or on the feasi-
bility of projects),
- selections (of a best choice between a number of alternatives) and
- findings (when publishing the more general results of an inquiry, con-
firmations or rejections of hypotheses).
In design processes a similar division can be found in the analysis, synthesis
and evaluation phases. In both types of processes the phase or level in the
decision making has a strong influence on the type of analysis that can be
used.
The required or even possible specific judgement, subsequently depends
on the type and availability of information, as well as on the specific test or
model used in analysis of such information (as was discussed in Chapter 1).

The relation between type of information, decision and analysis in the
process of decision making will be illustrated in two examples. Both are of
the multivariate type (discussed in Chapter 1). Similar examples with com-
binatorial problems could be given. Since the emphasis of the present study
is on a graphical approach to the analysis of multivariate data, an example
of a combinatorial problem is omitted. However, this does not alter the fact
that the graphical approach could not be used with such problems. A
number of studies (e.g. Daru, 1989, Adams and Daru, 1990) actually show
the opposite.

2.2 Example 1: Selection of a location

In a study by Storbeck (1972) the selection of a suitable geographical site for
the establishment of a new university was under discussion. For the benefit
of a well-considered selection, a number of possible sites was compared in
the light of a large number of criteria. The specific problem in that study
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was to select the best site by ordering the alternatives. The optimum
location would have order number 1, the second best order number 2, etc.
Various criteria which were thought to be of importance for the solution of
this problem and the decision-making process preceding it were taken into
account. A division between micro factors (aspects of the specific areal
location) and macro factors (aspects concerning the towns in which these
locations were to be found) was made. All criteria on the micro level were
measured on a 5-point scale (0-4) as shown in Table 2.1 (note that most of
the criteria are ordinal, some are at a ratio level). How the specific values on
this micro level came into being is illustrated for two of the criteria in
Tables 2.2 and 2.3. The actual assessment of the values of objects (by
categorisation) results in specific cell values that are ordinal in nature.
When a decision is to be made on this specific problem, the relative weights
of the various criteria must be assessed. In that study this was done by
allotting the same weight to all measured features. Thus, professional
expenses of a site, the distance to major libraries and the distance to other
universities were all considered equally important. By adding up the marks
obtained on the criteria, the order of the alternatives was easily calculated.

The factors on the so-called macro level were more closely related to the
selected towns than to the precise areal location of the university campus
itself. Some examples of these factors are the number and average size of
houses, the number and diversity of shops, availability and capacity of public
health services, recreational and cultural facilities. All selected building
locations within the same town were given the same macro value
(alternatives 1, 2 and 3 all got the same values as they were all located in
Bielefeld). The criteria on the macro level were subsequently treated in the
same way as those on the micro level, with all criteria receiving the same
weight.

In conclusion, the ultimate choice was determined by adding the two
indexed values of both micro and macro levels. It should be noted that
modern multicriteria evaluation methods generally use a more complex
weighting of the different criteria and are therefore able to give a more
carefully balanced appraisal.

In addition to the relatively easy method of analysis that Storbeck uses,
some other methods might reveal additional information. With a method
that tests the degree of association between features (the y-dimension of the
table) the complete set of variables (in this study there were 19 micro-level
criteria) might be reduced to a smaller amount without, or with only a
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slight, loss of information. In subsequent similar research, this might lead
to a more precise determination of the information and criteria that are
actually required. The more differentiating characteristics could be
separated from criteria that show a more uniform distribution of values.
The same association tests used on the objects (locations on the x-dimension
of the table) could reveal different locations showing similar or opposite
profiles of scores. This kind of information could open up discussion on
specific choices in the decision-making process. With a clustering algorithm
or analysis of correspondence, the complete data set might be grouped into
a small number of clusters, with similar values within each of these clusters.

Table 2.1 Values on 19 features for 13 possible sites for the establishment of a
university

sites
features examined a b ¢ d e f g h i i k I m
applicable bylaws i1 3 0 1 0 1 0 t 4 4 3 4 4
utility restrictions 2 2 2 0 2 1 2 4 2 3 0 2 2
suitability of soil for farming o o o 1 o 1 o0 0O 3 1 4 0 3
proprietary rights o 1t 2 3 o 1 1 0 O 3 1 2 3
present-day use of soil i1 3 2 3 0 4 1 2 0 2 4 3 O
accessibility of the site 2 3 0 11 0 2 2 4 3 1 2 3
professional expenses 4 4 4 2 1 2 4 2 0 2 3 2 3
accessibility by road 2 4 2 3 3 383 1 3 4 4 3 3 4
served by public transport system 3 4 3 2 2 1 1 3 4 4 3 4 3
degree of use of public transport system 3 4 2 2 0 2 0 2 3 2 3 1 2
importance in regional traffic 3 2 0 83 2 3 0 4 0 4 0 2 2
distance to motorway 3 3 4 0 0 1 3 1 0 1 4 0 1
distance to nearest railway station 1 2 1 2 2 3 2 2 {1 1 2 2 3
distance from other universities i 83 0 2 2 2 0 O O 2 O O 4
distance to important libraries i 21 2 1 2 0 2 2 2 0 3 2
urban development plan 2 4 0 3 0 4 1 0 0 2 3 3 4
subject to what hindrances 2 4 0 3 3 1 2 1+ 1 1 1 1 0
location in attractive setting 2 4 0 4 2 1 0 1t 1 1 4 1 3
value of landscape 0 3 1 3 8 3 1 2 3 2 4 1 4
Sum of score: 33 55 24 40 24 36 21 32 32 44 43 36 50
Indexed score: 60 1.0 44 73 .44 65 .38 .58 .58 .80 .78 .65 .91
legend column names:
a: Bielefeld 1 d: Detmold 1 g: Elverdissen j: Paderborn 1 m: Paderborn 2
b: Bielefeld 2 e: Detmold 2 h: Herford 1 k: Sennestadt

c: Bielefeld 3 f: Detmold 3 i: Herford 2 I: Soest
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Table 2.2 Classification of the “suitability of soil for farming” to a 5-point scale

category value
infertile soil (soil value 15 - 30) 4 points
soil of little value (soil value 30 - 40) 3 points
mixed soil of little to average value (soil value 15 - 50) 2 points
soil of average value (soil value 40 - 50) 1 point
fertile soil (soil value 50 and upwards) 0 points

Table 2.3 Classification of “distance to nearest railway station” to a five-point scale

category value
easy to walk (up to 1 kilometre) 4 points
within walking distance (1 to 2 kilometre) 3 points
easy to reach by public transport (2 to 4 kilometre) 2 points
within reach of public transport (4 to 8 kilometre) 1 point
distance upward of 8 kilometre; travel time more then 30 min. 0 points

2.3 Example 2: Classification of estates

In a study by Albers (1987), some 63 estates were compared from an archi-
tectural and culture-historical point of view. A total of 9 criteria, partly of
an architectural nature (e.g. continuity of the function of buildings and
park), partly of a culture-historical nature (level of maintenance, amount
and quality of historical documentation), were selected for this purpose.
The aim of this study was to support policy making in the acquisition,
maintenance and restoration of the estates. Thus the purpose of this study
was not primarily directed to ordering the alternatives, as in the example of
Storbeck but more to a broader evaluation of different methods of analysis
as an aid in the process of decision making. The scale of values for the
various criteria that were used by Albers differed; for some features a 5-
point scale was used (unity of park and buildings), sometimes one or more
categories were omitted. For the criteria “uniqueness” and “quality of the
estate as an example of the style” only categories 5, 4, 3 and 0 were used, for
other criteria only category 1 was left out. In this example, the criteria are
again ordinal. Some examples of the categorized values are summarized in

Table 2.4. The methods of analysis that were used are described in detail in
the study by Albers.



Decision making in architectural design 17

Multicriteria analyses

In the first part of the analysis Albers compared 7 methods of multicriteria
analysis. Four of these methods used previously attached order numbers
(numeric interpretation method, régime method of Israéls-Keller, rank-
order method of Israéls-Keller and régime method of Hinloopen-
Nijkamp). The nine criteria (see legend of Table 2.4) were ordered
according to their importance. This ordering of the criteria was done by
Albers herself. The actual ordering she used was A, B, C, D, E, I, H, G, F.
Hence, characteristic A (oldest visible period), was considered most
important and characteristic F (continuity of the function of the park) least
important. In the other three methods no order number was used (analysis
of concordance, numeric interpretation method and régime method of
Hinloopen-Nijkamp).

Table 2.4 Some examples of the resulting marks on 9 architectural and cuiture-
historical criteria for 63 different estates

criterion
No. Name of the estate A B CDEFGH.
| Velserbeek 7 4 5 4 4 4 4 4 4
Il Waterland 7 4 5 4 5 5 5 4 4
Il Schoonenberg 4 4 4 4 5 4 5 4 3
IV Hoogergeest 6 6 3 0 0 4 0 4 3
\Y Beeckestein 6 6 5 5 5 4 4 4 5
VI Huis te Spyk 77 4 0 0 0 0 0 5
VIl Kennemergaarde 7 0 0 0 2 4 2 5 2
VIl Duin en Kruidberg 3 1 5 4 5 4 4 3 4
IX  Burg. Rijkenspark 3 3 5 4 5 4 4 3 3
X Spaarnberg 3 3 3 3 3 4 2 1 4
LXI Huis te Bennebroek 6 4 5 5~ 3 2 4
Xl Reygersbos 6 4 3 4 2 4 2 2 4
LXIIl Swartsenburg 4 4 4 0 4 4 4 3 4
Criteria:
A. oldest visible period - F. continuity of function of park
B. most important style period G. continuity of function of buildings
C. quality of the estate as an example of the style H. level of maintenance
D. uniqueness I. historical documentation

E. unity park and buildings

The effect of not using an order number is equivalent to the method in
the Storbeck example where all criteria were given the same weight.
Following these two methods (same weights or ordered weights), all multi-
criteria analyses resulted in an aggregated score and an ordering of the
estates by rank. This means that the raw data and the weights (order) of the
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criteria were actually used to obtain an ultimate ordered list of the exam-
ined estates. Results showed that although the position of specific estates in
the ordered lists could vary quite considerably as between the different
methods, the greatest changes occurred in the middle part of the ordered
lists. In the more extreme parts, all seven methods yielded almost equiva-
lent ordered lists.

Additional analyses

In the second part of the analysis, Albers goes further into the matter of
aggregating values to one ultimate ordered list. She states that aggregation
is allowed when (1.) a lower score on one criterion can be compensated by a
higher score on another, or (2.) the considered scores on different criteria
are positively correlated. This means that a high score on one criterion is in
general accompanied by higher values on others. Whether criteria are posi-
tively correlated was, in the first instance, tested. For this purpose a
Kendall’s rank-order coefficient of correlation was used. Only some of the
coefficients were found to reach values of about 0.50, most of them (56 %)
being between 0.0 and 0.1. The results of a subsequently performed
multidimensional scaling analysis were also judged to be of little signifi-
cance. These results led Albers to the conclusion that justification of the
aggregation of scores in this example needed to be based solely on the
willingness to compensate lower marks on one criterion by higher marks on
others.

2.4 Discussion

From comparison of the investigations of Albers and Storbeck we can
conclude that the specific questions in both investigations led to a differ-
ence in analysis. Storbeck restricted his analysis to a weighting of criteria
and measuring an aggregated score because his question was (merely) one of
ordering the alternative locations in order to select the best site (the first
type of problem that was distinguished in Chapter 1). Albers goes further
in the analysis when looking for associations between criteria (second and
third type of problem in Chapter 1). For this purpose she used both a rank-
order correlation technique and a multidimensional scaling analysis. As
these analyses didn’t show any obvious results she had to confine her conclu-
sions to the results obtained from the multicriteria analyses. It would be
interesting to investigate the reason for not finding any associations. Was
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this because of the nature of the data or because it would require a different
approach to and analysis of the data?

In her discussion of the results Albers notes that some estates produced
lower order numbers than she expected (before analysing the results, Albers
herself made a list of ten estates that she thought were the most
important). She states that although one of these estates had a low level of
maintenance, its restoration would be relatively easy. She then continues by
saying that in her own preference list she had unwittingly taken into
account some aspects that were not included in the criteria, such as ‘the
possibility of restoration’ and ‘the value of the landscape’.

Not finding any relations with the help of a statistical approach, not
being able to involve extrinsic information in the analysis and missing an
opportunity to open up the discussion on specific choices or decisions could
be three arguments for trying an interactive graphical approach in these
examples.
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Chapter 3 Statistical Graphics

3.1 Abstract

The historical development of statistical graphics is followed by a treatment
of the various methods of graphically reflecting multivariate data. These
methods can be assessed in accordance with the different aspects of the data
that they stress, such as the relative importance of the measured criteria for
each of the objects or the strength of relations between criteria which apply
to the complete set of objects. It is shown that each of the graphical formats
has its own advantages and disadvantages as far as the overall analysis of
information is concerned and that this characteristic restricts the usefulness
of the formats to a specific part of the overall analysis of information. Each
graphical technique is optimally suited to answer a specific type of question
or hypothesis on the data, but is less useful for alternative analyrtical
approaches. A second general disadvantage of the graphical methods is their
primarily static nature. Most graphical formats are only used to communi-
cate the final results of a previously performed statistical analysis of the data
and therefore have a more illustrative (communicative) purpose than an
analytical one. In contrast with these methods, Bertin’s reorderable matrix,
which will be discussed in Chapter 4, claims to overcome the disadvantages
of both restrictive use and static nature.

3.2 Historical development of statistical graphics
Two major breakthroughs

In the origin of graphical methods, two major conceptual breakthroughs
can be identified whose impact remains visible and useful even in present-
day graphical presentations!. The first was the depiction of mathematical
functions in Descartes’ coordinate system in 1637. Descartes was the first to
systematically combine the principle of coordinates and the idea of mathe-
matical functionality by showing a general manner of characterizing a
curve by the relation between each of its points (Funkhouser, 1937). In this
way every mathemartical equation could be depicted by a curve in the
coordinate system. Soon after Descartes’ invention, Cartesian curve fitting

I'A more elaborate account of the historical development of the graphical representation
of statistical data can be found in Funkhouser, 1937. Parts of the first two sections of this
chapter are based on his historical account.
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was used for plotting all kinds of series of physical observations as a function
of another series to disclose the laws which governed these related phenom-
ena. In addition to the line chart, the best known and most used graphical
format, scatter plots are also based on the Cartesian system.

The second breakthrough originated in England in an economic con-
text as opposed to Descartes’ mathematical and physical environment and
interests. William Playfair’s attention was directed more to simple, but
accurate methods of displaying (previously gathered) collections of
economic and demographic data. He tried to interpret economic and polit-
ical trends and to improve the general understanding of these complex
matters with a number of excellent and highly inventive graphical formats.
In his Commercial and Political Atlas of 1786 and subsequent works,
Playfair invented and presented a large part of the elementary statistical
graphical repertoire that is still in use today. Of these methods, the bar
chart, the histogram and polygon, and the circle diagram or pie chart (see
Figure 3.1) are the most important, the best known and most widely used.

A number of other new graphical formats followed in the first half of
the nineteenth century. Statisticians and statistical organizations began to
realize the unique possibilities of the new graphics for the representation,
investigation and analysis of data. These newly discovered graphs and plots
include:

the cumulative frequency curve of Fourier (later called ogive by Galton);

- the normal probability curve. According to Funkhouser this curve was
first drawn by de Morgan in 1838;

- different kinds of cartograms, with which the distribution, for instance
of various kinds of soil, minerals, religions, types of people were entered
on geological maps. Elementary symbols, such as dots, squares and
spheres were used on these maps to represent quantities;

- graphical time tables.

No consensus of opinion on standards

At the meetings of the International Statistical Congress (1853-1876) first
attempts were made to embody the different graphical and cartographical
methods and the signs and colours that they used, in a more uniform
theory of graphical representation. Although there was whole-hearted
agreement on the need for standardization apart from some minor, vague
resolutions, no unanimity could be reached on the recommendations. This
interferential dissension persisted at later meetings of the congress and
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eventually led to the break-up of the International Statistical Congress. For
the time being, the layout of maps and diagrams remained in the hands of
the experienced designers with their divergent opinions. Even though the
International Sratistical Congress and its successor, the International
Institute of Statistics, were not very effective in drawing up standards
governing the layout of maps and diagrams, they had a positive effect on
the accepration and the growing use of statistical graphics. It became more
and more common practice to append graphical displays to official publica-
tions and it was not long before atlases appeared that were almost entirely

devoted to these graphical displays.
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Figure 3.1 Example of a bar chart (top left), a pie chart (top right), a histogram
(bottom left) and a frequency polygon (bottom right). In the bar chart and pie chart a
fictitious division of a family budget (variable on the x-axis at nominal scale) into
seven expense items is given (with expense items in % of total expenditure). In the
bottom panr, the variable “size” (variable on the x-axis at ordinal scale) is plotted to
frequency of occurrence.

Empirical studies testing the merits of graphic presentation

The first studies on the subject of statistical graphics that used an empirical
approach appeared in the 1920s. In particular the apparent superiority of
bar charts compared to circle and pie charts (comparisons of length were
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thought to be more easily and surely made by eye than comparisons of area
or volume) received a great deal of attention in those experimentally based
studies (see Figure 3.1).

In his discussion of the bar-and-circle controversy, MacDonald-Ross (1977)
gives an enumeration of these early empirical studies on this subject, with
their respective shortcomings and advantages. The general tendency of the
results obtained in these early studies is that comparisons based on bar charts
are more accurate than those based on circles and squares. These last-
mentioned symbols, in turn allow a more accurate estimate of relative size
than comparisons based on cubes and spheres. After some decades of
diminished research activity on the subject of visual discrimination and
sizing, the discussion again flared up in the fifties and sixties (e.g. Stevens,
1957). As aspects of discrimination and sizing of elementary symbols are of
importance to the present study, newly accessed insights of this period will
be more thoroughly discussed in Chapter 5 on discrimination of graphical
symbols and Chapter 6 on visual estimation of size.

Function and declining use of statistical graphs

Fienberg (1979) showed that the use of statistical graphs in two important
statistical journals (Journal of the American Statistical Association and
Biometrika) declined almost constantly between 1921 and 1975. The second
major conclusion of his study was that the predominant type of utilization
of graphics for these two journals was for display and communication, not
for analysis. Averaged over the years between 1921 and 1975 and over the
two journals, 68% of the number of charts and graphs, and of the space
they occupied were used for display and communicative purposes. A total of
15% in number and 13% in space was filled by analytical charts and graphs.
The rest of the graphs and charts contained elements of both
communication and analysis. According to Fienberg, this decline is largely
due to “the relative increase in statistical theory and nongraphical
methodology”. In this context he notes that pioneering works of
Hotelling, Pearson, and in particular, R.A. Fischer were published in the
1920s and 1930s.

Schmid (1983) also mentions the importance of R.A. Fischer’s Statistical
Methods for Research (1925) in the decline of the utilization of graphics.
According to Schmid, this book ushered in a new era in which analytical
and inductive methodology superseded the more traditional approach. This
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change in emphasis and orientation inevitably resulted in a downward shift
in graphical presentation.

As the number of statisticians trained in “modern” statistics increased,
graphic presentation came to be regarded as more and more irrelevant
to what was considered to be the proper domain of statistics. As fime
went on, this became the predominant point of view and was reflected
in textbooks, statistical journals, and courses in statistics. (Schmid,
1983, p. 5)

Although the decline in the use of graphics since 1920 seems obvious, an
astonishing increase in innovative graphical formats for the display and
analysis of (mainly multivariate) data can be seen, particularly between 1960
and 1980. This innovative boom seems to be closely related to the rise and
rapid spread of computers in statistical analysis.

3.3 Graphical representation of multivariate data

The rapid spread of the use of computers in scientific research in the sixties
offered the facility of more complex statistical analyses on larger and more
complexly designed sets of multivariate data. This, in turn, created a need
for statistical graphics capable of dealing with these large numbers of vari-
ables and their complex relations. In the case of multivariate data, a large
number of features are measured for a large number of persons or objects.
One can recall the second example in Chapter 2, where 9 architectural and
culture-historical criteria were measured for a total of 63 estates. The most
elementary representation of these data is by a data table or matrix. The
same purpose can be fulfilled, however, by a number of visually more
expressive graphical methods. One way to divide these methods is through
the specific aspects of the information they accentuate. Some methods will
be discussed in which the objects (glyphs, weather vanes, stars) or features
(inside-out plot) are themselves taken as a starting point. Other methods
emphasize the relations between these objects (trees, castles) or the relations
between their features (symbolic scatter plots and displays). The specific
message one wishes to transmit and the particular graphical method
selected for this purpose are often causally related. When a specific type of
relation has to be demonstrated, a graphical method that is optimally
suited for displaying this type of relation is automatically selected.
Restrictions of this same method, however, obstruct alternative approaches
to the information. An alternative approach accentuating different aspects
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of the information calls for a different graphical method. In the following
paragraphs, some of these methods, with their advantages and shortcom-
ings, will be discussed. In this discussion a restriction is made to two-way
displays, both because three-and-more-way displays mostly result in compli-
cated graphs which are difficult to interpret and presenting three or more
variables at a time is not a structural solution but, in the case of most
multivariate problems, merely eyewash.

Graphics accentuating the examined objects

Some methods have the common characteristic that each of the displayed
symbols represents one examined object, with different parts or features of
the symbol representing the differenc features of this object.

A first method of graphically displaying multivariate data is through
glyphs (Anderson, 1960). A glyph consists of a number of rays emanating
from a circle of fixed size with concentric rays (see Figure 3.2). The length
of the rays corresponds to the values of the displayed variables, with each ray
representing one of them (in Anderson’s original version only three
different lengths of rays were used). These glyphs are often used as points in
a scatter plot. In this way the two most important aspects (and their
relation) can be accentuated by depicting them on the x and y-axes of the
plot. In addition, the total number of variables that can be displayed is
extended to k+2 (with k: number of rays). Such plots, where the two most
important characteristics are generally depicted on the x and y-axes, are

called metroglyphbs.

~

Figure 3.2 Glyph, depicting a number of features of one object. Each of the rays
represents one feature, with the length of the rays corresponding to the size of the
original values.

A variant on Anderson’s glyphs are weather vanes (Cleveland and Kleiner,
1974). Meteorologists use these plotting symbols to simultaneously show a
number of weather conditions, such as cloud cover, wind direction, wind
speed and temperature (see Figure 3.3).
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Figure 3.3 Weather-vane symbol. Wind direction and speed are shown by the
direction of the flag and the length and number of bars. The shading of the circle
shows the amount of cloud cover.

Siegel, Goldwyn and Friedman (1971) also developed a graphical method
based on glyphs. They proposed an even distribution of rays over the 360° of
a circle as well as connecting the end points of the rays of these glyphs.
Originally the rays themselves were omitted, showing only the outline of a
polygon in the course of formation. These so-called k-sided polygons or stars
were thought to be more suitable for a quick comparison of the specific
distribution of values by comparing the shapes of the resulting polygons
(Figure 3.4 and 3.5).
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Figure 3.4 Key showing the assignment of automobile variables to the rays of a star
(this figure and subsequent figures also using these automobile data are after
Chambers et al., 1983).
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Figure 3.5 Star number plot of all twelve variables of some of the automobile data.
Each star or glyph represents one model. Thirty models, 15 light ones (top three
rows) and 15 heavy ones (bottom three rows) are shown. This selection is the same
as in Figures 3.8 and 3.11.

Andrews (1972) suggested the use of a Fourier plot. With this method the k-
sided polygon or star is, so to speak, unfolded and the measured variables
shown in the stars as end points of the rays (or the principal components
instead of the original observations) are here depicted as crests and troughs
of a wave in the course of formation (Figure 3.6).
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Figure 3.6 Fourier or function plot. Each of the curves represents one object with
crests and troughs showing the characteristics or principal components.

In profiles, the features are represented by vertical bars, each bar having a
height proportional to the value of the corresponding feature. All bars are
juxtaposed, rendering a profile of tops and allowing easy and fast compari-
son of the different heights or the important and insignificant characteris-
tics. This profile format is comparable to a histogram. Another slightly
different method connects the bar-top centres. The shape of the resulting
format can be compared with a frequency polygon, see Figures 3.7 and 3.8.
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Figure 3.7 Two slightly different versions of the profile symbol. Bars (right-hand part)
or end points (left-hand part) symbolise the variables, the height indicating the score
on these variables. In this figure the key which assigns automobile variables is shown
once more. Here the automobile variables are assigned to different horizontal
positions along the profile.
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Figure 3.8 Profile-symbol plot of all twelve variables of the automobile data. Each
profile depicts a car model. (For different graphical presentations of the same data
see also Figures 3.5 and 3.11)

A completely different approach was proposed by Chernoff (1973). He used
cartoon faces as symbols with data values coded into the facial features
(Chambers et al., 1983). In this method, Chernoff relied on human ability
to perceive and remember even slight variations in the structure of the
human face (Wainer & Thissen, 1981). A quick glance at a face would
suffice to serve as a mnemonic device for recalling major conclusions. In
measuring speed and accuracy in a card-sorting task, Jacob (1978), found
that although cards containing faces or glyphs were both sorted more
quickly than those containing digits, sorting faces exclusively was more
accurate in addition. According to Jacob, faces not only allowed fast and
accurate clustering by visual processing abilities, but also induced their
observer to integrate the display into a meaningful whole, a single
“Gestalt”. An important advantage of this, compared to other methods, is
the possibility of detecting slight, barely measurable differences. On the
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other hand, in circumstances where they are not important, relatively great
differences might go unnoticed. Thus noninformative data could be
ignored by filtering out insignificant visual phenomena. Useful informa-
tion could be searched out by focussing on potentially important facial
features. Bruckner (1978) considers the subjective assignment of facial
features to variables to be an advantage of the Chernoff face method,
although he is alive to the danger that its abuse can induce an erroneous
impression. As many as 18 characteristics can be presented using features,
such as size of the eye and pupil, curvature of eyebrows and mouth, length
of the nose and shape of the face.

ORUARTRRGART
OROARGRRURRY
OAIORRUARORRT

Figure 3.9 Chernoff faces. Each object is represented by a face with facial features
showing the different characteristics of the object (after Jacob, 1978).

Graphics accentuating the comparison of objects

In the above-mentioned methods, one distinct symbol was taken as a graph-
ical representation of each object and its characteristics. The position of
characteristics in the symbol was more or less arbitrary, although some
studies suggest grouping characteristics within the graphics dealing with
the same aspects (aspects of cost, environmental aspects, etc.). Systematically
changing these positions would, at every turn, result in quite different
pictures.

With methods that focus on the comparison of objects, such as trees and
castles (Kleiner and Hartigan, 1981) the position of the features in the
plotting symbol is determined by their relation or clustering. In these
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methods, Kleiner and Hartigan work out a hierarchical clustering
algorithm of the variables (they propose a complete linkage or farthest-
neighbour method) and use the resulting dendrogram as the basis for their
tree-and-castle symbols.

As with the previously mentioned methods, each object is portrayed by one
symbol (tree or castle), all trees having the same topology as the tree of
variables obtained by hierarchical clustering (see Figures 3.10 and 3.11).
Each variable of the data set is assigned to a branch of the tree. The branch
length corresponds to the relative value it represents, the thickness is
proportional to the number of variables above it in the hierarchy. The
extremities of the trees are all of the same width. The angle between the
branches reflects the distance between the variables.

The data displayed in Figure 3.11 can be analysed and trees grouped by
comparing the contours of complete trees or their main branches. The top
three rows of this figure comprise relatively small, thick trees with a
marked, large branch protruding to the right. The bottom three rows
consist of relatively high, thin trees.
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Figure 3.10 Key showing the assignment of ten automobile variables to branches of
a tree symbol and to the towers of a castle symbol. The position of the variables
within the symbol is determined by hierarchical clustering of the variables.
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Figure 3.11 Tree-symbol plot of the automobile data. Each tree depicts one car

model. For different graphic representations of the same data, see also Figures 3.5
and 3.8.

Graphics accentuating the relation between fearures

All the above methods have an important characteristic in common. The
measured object is considered as a starting point and is represented by a
symbol, face or curve. All features of the object are shown by different
aspects of these specific symbols, faces or curves. The number of measured
objects equals the number of plotting symbols and a specific characteristic is
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represented by the same feature in all symbols. In addition to these object-
based methods, other approaches could also be advocated. Chambers et al.
(1983) propose some that are more consistent with the traditional presen-
tation of points or curves in a (Cartesian) coordinate system. Here the
different objects no longer form the basis of a more or less abstract plotting
symbol. Instead, the pairwise relations between characteristics define the
basic unit of the display; the x-y coordinate system. Multidimensional data
can be displayed by using different plotting symbols in one (two-dimen-
sional) coordinate system (or window) or by using a multiwindow display. A
consequence of this shift from objects to relations between features is that
the objects become anonymous in the resulting display. It is no longer
possible to directly recover a specific object in a scatter plot unless the
plotting symbols are themselves the names of the objects (or there is
another one-to-one relation between plotting symbol and object name).
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Figure 3.12 Symbolic scatter plot. 1978 Repair record is plotted against price with
two variables encoded in the symbols (type of the symbol shows nationality: dots for
U.S. cars and crosses for foreign cars, diameter of the symbols show weight of the
automobile). After Chambers et al., 1983.

The methods elaborated by Chambers et al. are of two kinds. The first is
that of the symbolic scatter plot (see Figure 3.12), in which two characteristics
are displayed on, respectively the x and y-axes and other features are
encoded into the presented symbols, for example by their form, size or
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colour. A maximum of about 4 to 5 characteristics can be presented
simultaneously by this method. In Figure 3.12 can for instance be seen that
the larger U.S. cars (bigger dot symbols) are the most expensive ones, as they
are mainly located in the right-hand part of the figure, whereas foreign cars
(cross symbols) are cheaper (left-hand part of the figure), smaller (small
symbols) and score higher on the 1978 repair record (mainly located in the
top part of the figure).
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Figure 3.13 Draughtsman’s Display. Two variables are shown in each of the
component plots. After Chambers et al., 1983.

The second method is that of the draughtsman’s display and uses multiple
windows (see Figure 3.13). Each of the windows presents a scatter plot of a
pairwise combination of two features. Thus, a total of (k-(k-1))/2 windows is
required to cover all possible combinations (where k equals the number of
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object features). By combining the symbolic scatter plot and the draughts-
man’s display, the number of windows needed can be reduced.

The scattered distribution of dots in the first two columns of component
plots in Figure 3.13 shows that the variables, repair record 1977 and 1978
are barely correlated with all other variables. The variables, mileage (-MPG),
length, weight and displacement (RT. DISPL), on the other hand, all show
large mutual positive correlations as the dots in each of matching
component plots show a distinct distribution from the lower-left-hand
corner towards the upper-right-hand one.

Table 3.1 Inside-out plot showing the scores of ten American states on five “social
indicators”. In each of the columns the relative positions of the states on these social
indicators are revealed by their specific row numbers.

Life # Days below

value | expectancy Income Literacy rate Population 0° Celsius
-2.5| PA MS SD CA

-2.0 CA VT OR

-1.5| AL MS VT NH

-1.0| NH NH SD PA MS IA- OR (0]

-0.5| OH

0.0 IA-OR AL |AL OH NH OR OH PA SD
0.5|SD CA OR | PA SD IA VT CA NH VT

1.0/ VT OH PA AL

1.5 OH MS

2.0 MS

25| 1A CA AL
AL: Alabama MS: Mississippi PA: Pennsylvania VT: Vermont
CA: California NH: New Hampshire OR: Oregon
IA: lowa OH: Ohio SD: South Dakota

Graphics accentuating features

A third starting point in the presentation of multivariate data is provided
by inside-out plots (Ramsay, 1980). These inside-out plots start from the
features. In such a plot, each of the features is presented by a separate
column in the table. After the column variables are standardized and row
effects are subtracted, the y-component (or row) of the table is used as a
scaled measuring staff for plotting the objects. The score of an object on a
specific characteristic is marked by entering the name of the object in the
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specific column and row of the table. All object names can thus be read in
each of the columns, the y-position reflecting the original value of the
object. This type of plot is especially suitable for the analysis of residuals
(Tukey, 1977) and recognition of local extremes (disproportionately high
or low values on a criterion). As the absolute position of the object in a
column depends on a complex of original values and corrections, the
method is unsuitable for judgements on original values or relationships
between characteristics.

3.4 Some remarks on two-way displays of multivariate data

A number of aspects of the various graphical methods will be discussed
below. The first concerns the number of objects or features that can be
displayed by the diverse methods. The second aspect deals with the level of
communication and analysis of each method. The level ranges from a
retrieval of original individual values to a correct overall impression of the
arrangement of all objects and features and their mutual relations. A third
aspect involves the different approximations of the graphical methods.
Since each of the methods accentuates a specific aspect of the original data,
some relations or features are more pertinent than other relations or
features. A fourth aspect stresses the specific layout of the plotting symbol
and the location of features within it. The fifth aspect touches on the
amount of statistical analysis related to each of the methods. Whereas some
methods plot the raw data almost directly into a graphical format, others
require an extensive statistical analysis of the original information before
turning to the actual graphical presentation. The sixth aspect concerns the
relation between graphical method and measurement level of the original
data. Ability to recognize the specific characteristics and objects in the
graphical display is the seventh aspect. The last concerns the empirical basis
of the various methods. Only some of the methods appear to have been
experimentally investigated.

The number of objects or features that can be displayed

The number of features that can be surveyably displayed depends on the
method used. With weather vanes and symbolic scatter plots quite a small
number of variables is shown usually (up to approximately 5). Glyphs, stars
and Fourier plots can probably handle a maximum of two to three times as
many variables, although the strength of the image diminishes rapidly
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when the number of variables reaches this upper limit. A fixed total of 18
characteristics can be drawn with the original Chernoff faces. Because of
the symmetry of the Chernoff face, Flury and Riedwyl (1981) proposed a
face in which the left and right-hand parameters could be varied separately.
Thirty-six instead of 18 variables can be represented in this new,
asymmetrical face. Kleiner and Hartigan (1981) note that up to some 50
variables can be handled by their tree-and-castle drawings.

With all two-way displays that are suitable for the presentation of a
variable number of features, there is obviously a positive relation between
the required size of the plotting symbol and the number of variables that
can be conveniently displayed. With the draughtsman’s display, for exam-
ple, the number of windows to be drawn increases by k-1 with every new
characteristic added (k: number of characteristics). The number of columns
in an inside-out plot and bars in a profile equals the number of variables of
the object. Although the total number of characteristics that can be
displayed by these methods is theoretically unlimited, their use should be
restricted to the display of a relatively small number of variables, for reasons
of surveyability and legibility.

The same comment applies to the number of objects that it is desired to
display, as most of the discussed methods use a separate symbol (face, tree,
star or curve) for each of the objects. The symbolic scatter plot and the
draughtsman’s display are an exception to this rule. When there is a
relation between two pairwise presented variables, the image becomes
clearer, the greater the number of objects that is presented. A weak relation
or the lack of a relation between two variables also becomes clearer as the
number of objects increases. The same advantage also applies, at least to a
certain extent, to inside-out plots. Recognition of individual objects, on the
other hand, decreases as the number of objects increases.

Level of communication and analysis

The strength of a graphical format is not restricted to a merely inventive
and surveyable graphical display of features and objects, but also offers the
possibility of analysing the presented information at different levels rang-
ing from the recognition or estimation of individual values to an overall
impression of all values and relations between them.

If they are to be suitable as tools for the analysis of darta these graphical
methods of representing multivariate data should be capable of answering a
number of questions an analyst might ask or show interest in.
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- It should be possible to retrieve original values from the chart or graph,
or at least have some indication of the relative height of the values. This
requirement implies a graphic presentation of all distinct values that
were measured.

- Comparison of a specific characteristic shared by two or more objects
should be possible, at least at a level of ranking the objects by this crite-
rion, but preferably at a higher level allowing an interpretation of the
relative differences.

- The same type of comparison should be possible within objects, that is
between features of the same object allowing enumeration of its strong
and weak features.

- Comparison of complete objects (that is, of all values of one object
compared with all values of another) might be desired. This type of
comparison might lead to the conclusion that a specific object has a
(noticeably) higher overall score than another object.

- Comparison of a number of features at a time might be desired.
Comparing different variables, all touching on a specific aspect (e.g. the
cost aspect), might allow quick division of all objects into two or more
groups of alternatives (the cheaper and dearer objects). This type of
comparison stipulates the possibility of changing the position of the
variables within the object. Concentrating the price-related variables in
the first quadranc of a glyph or in the left part of a profile facilitates this
type of comparison.

- The last two possibilities mentioned could be combined into a simulta-
neous comparison of all objects and features. By this we mean a division
of the total number of objects into a small number of groups, each with
a specific division into relatively strong and weak features. This compari-
son corresponds to an impression of the overall distribution of dara, and
the ability to divide the total number of values into more or less coher-
ent groups.

- The chart or graph should also be useful in the detection of relations
between characteristics (the primary function of trees and castles as well
as of symbolic scatter plots and draughtsman’s displays). For some graphic
methods, however, this requires the option to change the configuration
of the characteristics within the graph. When values are standardized
within characteristics, comparisons between characteristics are probably
directed more to recognition of a possible relation between them.
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What pertinent questions can be answered by the different methods?

When different, easily recognizable features of one distinct symbol repre-
sent the variables or characteristics of an object, comparison of variables
between these objects should not be too difficult. For example, this means
comparing the shape of the mouth as between different Chernoff faces or
the 270° peaks in a number of stars. Comparisons become more difficult
when the number of characteristics increases or objects cannot be properly
arranged. When characteristics are organized within a symbol in accordance
with a previously performed statistical method, a number of characteristics
between objects or even the complete set of objects can be compared at the
same time. All peaks in the first quadrant of two glyphs could be compared
or a certain large branch could be matched with a number of smaller twigs
as between two trees. The possibility of comparing or categorizing complete
objects depends on the organization of variables within the plotting symbol
and the specific method used. Mezzich and Worthington (1978) in fact,
found a number of these graphical representations of multivariate data to
be more or less successful when 44 cards, representing archetypal psychiatric
patients, had to be arranged into 4 equal groups. Not only did the subjects’
success in retrieving the diagnostic groups vary considerably between the
different methods, but great differences were also found in the perceived
difficulty of the classification task.

Summarizing, these methods are mainly useful for the comparison of
specific characteristics or groups of characteristics between objects. In order
to fulfil the second possibility of groupwise comparisons or classifications,
the desired method has to be well considered and moreover, relating
variables should be placed together within the plotting symbol.

With scatter plots and draughtsman’s displays it is neither possible to
compare different features within the same object nor to match a specific
variable between different objects, unless the object names are plotted into
the display or are otherwise unequivocally related to the plotted symbols.
The main strength of these methods is to provide a general view on the
relations existing between two features at a time.

The strength of inside-out plots lies in marking the deviating values.
Different variables within the same object can be compared by checking out
the vertical positions of the object in the different columns. The same
features between different objects can easily be compared within the same
column but, once again, these utilities are more appropriate for the more
deviating values.
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Layout of the plotting symbol

A third observation concerns the location of the features within the plot-
ting symbol. In the case of trees and castles, these locations are fixed by the
selected clustering algorithm. This property, however only turns out well if
the performed hierarchical clustering technique is indeed the one that best
describes the distances between the variables. It might be necessary to
compare the results of different algorithms thoroughly before turning to
the actual graphical display of the data. As regards Chernoff faces, the
assignment of object characteristics to facial parameters needs to be even
more carefully considered and should certainly not be capricious. In a study
by Chernoff and Rizvi (1975) it was shown that the effect of a random
permutation in the assignment of facial parameters affected the error rate
in a classification task by a factor of 25 percent. Huff and Black (1978)
found the ability of people to replicate a statistically derived typology solely
on the basis of perceived similarities among faces to be a function of the
assignment of variables to facial features. They claimed that facial differ-
ences were perceived on the basis of a small number of special facial features
which people deem more important than other features. Size and position
of the eyes and the shape of the mouth were considered more important in
differentiating the faces from one another than length and width of the
nose and size of the ears. When the aspects explaining large parts of the
total variance were assigned to features considered to be most important
(subjects had to rank the facial features in terms of how important they felt
each was in differentiating the faces from one another), the correspondence
between actual and expected groupings increased considerably compared to
a random assignment of features to the variables. This means that perfor-
mance in this kind of grouping experiments strongly depends on aspects of
the experimental design. In addition, Bruckner (1978) found that, while
some of the interpretations of facial features depend only on the input
data, other facial features are to some extent interrelated. The results of
these dependencies can be deceptive and give an erroneous impression.

The same observation on the location of features within the plotting
symbol also holds for the other methods discussed. The expressly chosen
and, for the most part, fixed configuration of variables may counteract the
message the data structure is trying to convey (Wainer and Thissen, 1981).
This problem is usually tackled by careful analysis of the data and the
relations between them before passing on to the actual display of the data
in the graphical format. Which brings us to the next observation.
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Amount of prior statistical analysis

Almost all the mentioned methods require a thoroughgoing analysis and
classification (or standardization) of the data before turning to the actual
graphic presentation.

Where graphics focus on the objects (stars, profiles, faces), it is not only
preferable to categorize the original values of the features (remember that
in Anderson’s glyphs, originally only three different ray lengths were used),
but that features also need to be scaled in such a way that comparisons
between different ones can be made. In addition, in the case of some of
these object-accentuating methods, the distribution of characteristics over
the features of the object needs to be well thought out (and tested) before
drawing the symbols (especially with faces). Putting related characteristics
together, for example will make the image appear stronger and simplify
comparisons between characteristics and objects.

Combination of related characteristics to strengthen the graphic image
is precisely what is called for in the methods that accentuate the relation
between objects. However, this means that, besides categorization and
scaling of the characteristics, some clustering algorithm or other is required
in addition to define the relative position of the characteristics in the
graphic display.

Methods centring on the relation between features demand relatively

little analysis before plotting values into the scatter plot or draughtsman’s
display. No categorization of features is required and scaling is restricted to
calibration of the axis of the plots. The inside-out plot (graphic focussing
on features), on the other hand, demands very extensive analysis.
The amount of analysis required before plotting the graphics should be
considered in relation to the purpose of the display as an analytical tool.
When a number of complex methods is required before a certain graphical
method highlighting some aspects of the data can be used, other simpler
and more direct methods revealing the same aspects deserve preference.

Level of measurement of the original data

Not every method is equally appropriate to one and the same level of
measurement and the actual values of the original data. Most of the
methods require (or are specially attuned to) data of an interval or ratio
level with values equal to or greater than zero. Features containing exclu-
sively negative values can be “turned over” by multiplying them by a nega-
tive value. Moreover, it is preferable to rescale the data so thart all variables
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point in the same direction. A symbolic scatter plot can handle data of
ordinal or nominal level (by using plotting symbols of a different shape or
colour).

Information on the displayed features and objects

Only some of the graphical methods permit recognition of the different
objects and features in the display. Recognition of individual elements, for
example is possible in a table by looking at the column or row labels. With
other methods the objects and/or features become anonymous in the
graphic display. When recognition of an object or feature is desired, these
methods require a legend or labelling of the features in the graphic itself.
This disadvantage applies to all discussed methods (except to some extent to
inside-out plots). Quick and easy shifting of attention to different aspects
requires a previously learned legend. The possibility of rearranging features
within a symbol acts as a disadvantage. With each change in the configura-
tion of the symbol the legend has to be consulted again.

Empirical basis of the design of the various methods
Although the methods of graphically displaying multivariate data that

originated in the sixties and seventies have provided a number of inventive
graphical formats (as was the case for the methods displaying more simply
structured and univariate data mentioned in the first paragraphs of this
chapter), again consensus on a standard display and empirical support of the
methods, has, for the greater part not been reached. Some empirical
support for Chernoff’s faces has been found (Wang, 1978) but at the same
time some very serious disadvantages of this method are stressed in a
number of investigations. Empirical research on other methods remains
practically restricted to some comparisons of different methods within a
very restricted task context (e.g. Mezzich & Worthington, 1978). A
systematic study on these promising methods is needed.

Conclusion

In summarizing the observations it becomes clear that all the discussed
graphical methods have their own specific advantages and shortcomings
when it comes to displaying specific features of the raw data or the relations
between them. Even though the graphical methods are aimed at a better
understanding of the underlying structure of the data, as compared to the
numerical tables, they are often unsuccessful in their efforts. The images
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they present frequently remain unclear and an attendant disadvantage is
the prejudice to specific features of the image (Chernoff faces).

We could say that the usefulness of the selected method in displaying or
communicating a certain message depends on the specific purpose of the
designer. However, in order to be useful as a general tool for the analysis of
information, the method should meet some additional generic require-
ments. When more pertinent and divergent questions on different levels of
the information (individual elements, groups, overall impression) can be
answered by way of a specific graphic display, then that method is more
suitable for a general analysis of data, features, objects and their mutual
relations.

3.5 Purpose of the graph or chart

Of course, there were many reasons other than self-conscious defen-
siveness for the development and use of “high-powered” statistical tech-
niques. Often such techniques were desperately required. This need
provided the impetus for the development of rigorous, formal statistical
models, but deemphasized the need for descriptive methods: methods
whose aims were exploratory rather than confirmalory. (Wainer &
Thissen, 1981, p. 192)

Although Wainer and Thissen claim in their 1981 article (p. 193), that they
limit their discussion of graphics to the analytical or processing aspects and
refrain from discussing its many other possibilities, including the
communicative purpose, they are not clear about the specific and unique
aspects of these applications. Whether a graph is used as an analytical tool or
its purpose is illustrative seems to be more a matter of diverting the
emphasis to one of the functions of a specific (multipurpose) graph than of
the actual selection of a graphical method. Whereas their one-way displays
of one-way data still show the original data or transformed values and thus
in a real sense describe them (thereby directly offering the possibility of aid
in the analysis and interpretation), this is no longer valid for some of their
two-way displays of one-way data, as in the case of box plots. From their
examples we gather that the display of all original data or even showing
them in a converted form is not considered (by Wainer & Thissen) to be a
prerequisite for usefulness of the method as an analytical tool. When the
complete set of original darta is not displayed, but only some derived aspects
are shown instead, as in the case of residuals in an inside-out plot or a func-
tion plot, this automatically leads to a restriction of possibilities in the
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analysis of the information. Information in an analysis can only be
retrieved when it has previously been put into a specific graphical format
and is identifiably displayed. The meaning of the word “analysis” in the
article by Wainer and Thissen is therefore, at least with a number of
graphical formats that they discuss, no more than a static communication
or illustration of specific results or characteristics. In addition, a number of
examples of analytical graphical formats that are discussed by Wainer &
Thissen are also described by other authors, but then as communicative
graphics (Schmid, 1983; MacDonald-Ross, 1977; Tufte, 1983; Fischer,
1982).

Schmid (1983, p.3) notes that, in actual practice, the functions of
analysis and presentation may be so inextricably interrelated that
differentiation is difficult, if not impossible. Fienberg (1979) is more
explicit on the distinction between communication and analysis. His
division of the communication-analysis continuum into three categories is
mainly based on the type of chart, graph or plot. He further notes that “it
was clear to us that the placement of graphs into categories was a function
of our current perspective and our personal biases”. Bertin (1981 p.22),
however, seems to be on a promising path in making a distinction between
graphic processing and graphic communication

Graphic processing involves two imperatives which do not apply to
graphic communication:

it must transcribe all the data from the table, that is, the
“comprehensive” data;
- it must answer all the pertinent questions and allow the two components
of the table to be simplified.
Graphic processing poses problems of dimensions and manipulations.

Graphic communication involves transcribing and telling others what you
have discovered. lts aim: rapid perception and potentially, memorization
of the overall information. Its imperative: simplicity. This simplicity of
forms authorizes the superimposition of images. Graphic communication
poses problems on the level of simplification and selectivity.

With this division he accentuates the need for analytical graphics as being
able to answer all pertinent questions an analyst might ask for, or be inter-
ested in. We could regard the purpose of the graphic, the complexity of its
underlying data structure and the empirical basis of its method as three
distinct gradational aspects of each specific graphical method. The purpose
of a graphical technique can shift from a purely illustrative one to a mainly
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analytical one. The number of variables that are depicted in the graphic are
an indication of the complexity of its data structure and the empirical basis
of the method varies according to the amount and extent of empirical
research on which its practical use is based. Playfair’s first statistical graphics
were restricted to a small number of variables, were of an explorative nature
and mainly served an illustrative purpose. The main point of the diverse
multivariate graphical methods, on the other hand, is to depict and analyse
more complex data structures whereas their empirical basis still varies
considerably from one method to another. In the present thesis we will try
to explore the possibilities of Bertin’s reorderable matrix method as a
communicative and analytical tool and extent its empirical support by
investigating and testing the guidelines and rules on which it is based.

3.6 Conclusion

Most of the graphical methods discussed in this chapter that are used to
display multivariate data, were initially intended to reveal specific features
of the measured objects or similarities, differences or relations between
them. These methods owe their usefulness to the specific, often well-orga-
nized, way in which they display these features or relations. At the same
time, however, their use should be restricted to the particular characteristics
that they were intended to display. They are therefore less suitable for an
explorative, unbiased or multipurpose analysis of multivariate data. A
second constraint of the graphical methods in this chapter is their static
nature. It is often very difficult, if not impossible, to reorganize the infor-
mation once it is displayed in graphical format. Both limitations of these
methods are averted in the graphical interactive method of Bertin that will
be discussed in the next chapter.
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Chapter 4 Bertin’s theory

4.1 Abstract

In order to understand the idea of the reorderable matrix method in its
context, some general concepts in Bertin’s theory and their relations are
discussed in this chapter. It is shown that each of the three major types of
graphic formats (distinguished by Bertin: the permutation matrices,
reorderable network and topography, all have their own specific applica-
tions. Selection of the correct type depends on the structure and size of the
original set of data and the statistical level of measurement of the objects
and characteristics involved. The most thoroughly discussed type of permu-
tation matrix, the reorderable matrix, for instance makes the correct choice
when the objects and characteristics are of a nominal nature.

Because of its compact graphic reproduction of all distinct original items
of information and the ease with which objects and characteristics can be
reorganized, the reorderable matrix permits analysis of the information on
different levels, from the level of the individual items to that of the overall
picture. In addition, the reorderable matrix allows of testing the a priori
hypotheses as well as the a posteriori explorative approach.

In order to transcribe relations of resemblance, order and proportion,
graphical signs have at their disposal eight types of variation that the eye
can perceive. Of these, the variables “value” (greyness) and, in particular,
“size” are shown to be the most powerful when quantitative information
on a higher level of measurement is involved. The power of the variable
“size” warrants further investigation. This research will be worked out in
Chapters 5 and 6.

A number of requirements of an effective reorderable matrix is distin-
guished and further elaborated in the last section.

4.2 Introduction

Some important principles and starting points of the theory of the French
cartographer Jacques Bertin will be briefly discussed here. Bertin’s compre-
hensive theory on the graphical display of data and the processing of this
information is enunciated in two books; Sémiologie Graphique which
appeared in 1967 and La Graphique et le Traitement Graphique de
IInformation (1977). Both have been translated into English in 1981 and
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1983, respectively. The most pronounced message in Bertin’s theory on
graphics and graphical information processing is his plea for the image,
whose power he assumes to be largely unused. Both his books are full of
illustrations and even statistical principles are, where at all possible,
explained, or at least somewhat clarified by graphical means.

According to Bertin, the data table forms the fundamental basis of all
graphical constructions. In his opinion it is the only construction that
always enables one to discover groupings, relations or order along the x and
y-dimensions, marked by the z-data.

X

Figure 4.1 The image has three dimensions: x, y and z. Any point in an image can
be perceived as the correspondence between a position along x, a position along y
and an elevation in z. The set of points can be perceived as the set of correspon-
dences among three dimensions, x, y and z (after Bertin, 1981).

In his theory Bertin therefore uses the data table as a starting point and
tries to stick as closely as possible to this specific layout in his graphical
approach to data presentation and data analysis. Within the matrix con-
struction, the classification and grouping of similar graphical elements by
permutation of rows and columns is the appropriate way to solve informa-
tion problems graphically. Grouping of elements is based in this case on the
highly developed human qualities of pattern recognition and pattern
formation. By translating numerical data into visual properties of elemen-
tary matrix symbols, on one hand, and allowing a reorganization of objects
(the different columns of the table) and their characteristics (the rows of
the table) on the other, the original mathematical information problem is
converted into a problem of pattern recognition and pattern optimization.
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4.3 Permutation matrices, reorderable network, topography
4.3.1 Permutation matrix

There are three major types of graphics around which Bertin’s theory of
graphics is built and that continually recur in his work, that is the permuta-
tion matrix, reorderable network and topography (or ordered network).
The first construction and, because of its versatility, the most elaborate and
important one, is that of the permutation matrix, which reveals the
relationship between two different sets of variables. The elements of these
sets are projected as rows and columns on the x and y-dimensions of the
table. In the permutation matrix the original data-table layout is preserved
by direct conversion of numerical data into graphic symbols.

Figure 4.2 Original matrix permutator as developed by Bertin. Rows and columns
can be interchanged manually. Intermediate positions were saved by putting the
whole matrix on a photocopier.

Reorderable matrix

The most thoroughly discussed type of permutation matrix is the reorder-
able matrix. In this type, both sets of variables on the x and y-axes are of a
nominal nature, allowing a reorganization of the structure of elements by
moving the rows and columns of the matrix. In the original version of this
dynamic matrix (which was called the “domino” apparatus) Bertin used
small plastic cubes that had small symbols painted on top. Rods were
threaded through both rows (x) and columns (y) of these plastic cubes. For
example, to exchange two columns of cubes, first the x-rods had to be
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removed and then the two columns could be switched. Finally the x-rods
were replaced.

Intermediate configurations were preserved by placing the complete collec-
tion of linked rods on a photocopier (the domino apparatus is illustrated in
Figure 4.2).

Because the reorderable matrix maintains the same structure of the data
table and also fulfils the requirements of graphical translation and reorga-
nization, it is very suitable for the graphical analysis of information prob-
lems. In addition to the reorderable matrix, some other types of rectangular
permutation matrices can be distinguished, such as the image file and the
weighted matrix. These types also preserve or approximate to the layout of
the data table but are more restricted in their reorganization. According to
Bertin, the graphical matrix is the only legible way of retaining the overall
picture when the number of elements of the sets along the x and y-axes of
the rable increase. “In data tables of three rows or less, each of the rows can
be represented by one of the three dimensions of the image”. This type of
presentation as in scatter plots directly reveal the relationships and group-
ings that are present in the data. When the number of characteristics is
more than three, the graphical presentation of the data has to return to the
fundamental principle of all data constructions, the (graphical) matrix.

Weighted matrix

In the weighted matrix individual values are not directly categorized or
translated into a graphical format (Figure 4.3 I). First, the total of each
column is indexed to 100% and the percentages of the cells in the columns
are calculated (Figure 4.3 II). Next, the percentages obtained are repre-
sented by bars and the emanating rows and columns of bar symbols are
reordered as in the reorderable matrix (Figure 4.3 III). Now, the width of
the bars is made proportional to the original row totals (Figure 4.3 IV).
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Figure 4.3 Stepwise construction of a weighted matrix. From the original table (I) the
vertical percentages are calculated (). Values are then translated into height of bars
and a graphical drawing is constructed (l11). Lastly, the width of the columns is made
proportional (IV) to the totals per column of the original table. The dotted lines in parts
Il and IV show the means per row. All black parts of the bars thus represent values
that exceed the mean per row (after Bertin, 1981).

As the weighted matrix is a drawn image in which the principle of
equally sized table cells is abandoned and width and height of the bars are
significant, its use is restricted to relatively small tables. The width of a bar
gives an indication of the relative importance of the object, its height repre-
sents the relative importance of the characteristic. This construction allows
an easy ordering of objects.



52 Chapter 4

Image file and matrix file

The image file and matrix file are constructions for data tables, one of
whose components is ordered or contains too many elements to be easily
ordered. These types of construction are used to get an impression of the
ordering of elements along one of the components, the orderable one.
When the number of elements of the reorderable component is not too
large (Bertin mentions a number of 30 elements), the categories or values
can be represented on a piece of cardboard by small juxtaposed bars (Figure

4.4).
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Figure 4.4 Image file. For each of the characteristics (not-ordered component) an
object-value profile (ordered component) is drawn on a separate card . Cards can be
rearranged according to the images of the different profiles. Black bars represent
values higher than a predefined criterion, white bars represent the lower values (after
Bertin, 1981).

Bars that are larger than some predefined criterion can be made black
(usually che bars representing the values above the mean are made black).
These separate cards can subsequently be rearranged according to the specific
profiles (images) or distinguishing marks within these profiles. An alterna-
tive to the image file is the so-called array of curves. Instead of profiles,
curves that connect the different values on the ordered component are
drawn on separate cards (the same distinction between profiles and curves
was discussed in the preceding chapter and can be compared to the layout of
the frequency polygon and the histogram).

With a large number of orderable variables the values of the ordered
components can be drawn as strips on the side of a card. With dichotomous
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data, the presence or absence of a darkened strip indicates respectively the
presence or absence of a characteristic; in the case of data of a higher level,
the length of the strips represents the height of the measured values.
Object names are mounted on separate cards and all cards are lined up

(Figure 4.5).

3N EEN 0 NEE 0§
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Figure 4.5 Matrix file. For each of the objects (numbers, not-ordered component),
values scored on the different characteristics (characters, ordered component) are
drawn as strips on the side of a card. The cards are lined up and can be rearranged
in the not-ordered (object) dimension. C, D, E and F, G represent groups of related
features (after Bertin, 1981).

As with the image file, in this matrix file only the position of a card in the
line can be changed. The different strips (bars in the profile) are fixed and
identically positioned on each of the cards. In both constructions, pattern
recognition and pattern formation can be used in the analysis of the
information.

Ordered tables

The last construction belonging to the set of permutation matrices is that
of the ordered table. In ordered tables both x and y-components are ordered,
so that the position of rows and columns is tied. Normally this type is used
when two characteristics, instead of two sets of characteristics are compared.
Each of these characteristics, which is of an ordinal or higher level of
measurement, is placed along one of the axes of the table. This type of table
can only reveal the relationship between two characteristics; a differently
organized triangular construction can maximally represent three variables
at a time. Other methods have to be found for more than three character-
istics, for example the superimposition of tables. This type of construction
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and its difficulties were mentioned in the preceding chapter where the
draughtsman’s display and the symbolic scatter plot were discussed.

4.3.2 Reorderable networks

In the matrix representation of a reorderable network, the second construc-
tion, there is only one set of variables which is placed on the x and the y-axis
of the table. A network shows the presence or strength of associations
between the elements. In the paragraph on multivariate versus combinato-
rial data sets in Chapter 1, some examples of networks or combinatorial
data sets were given. Normally only half of the square matrix (the triangu-
lar part to the left or to the right of the diagonal) is used to show the
presence, or reveal the strength of the relationships among the elements. In
order to discover and show the hierarchical scructure of the elements, the
data table or matrix layout has to be abandoned and other constructions,
such as flow charts, organigrams or dendrograms are needed (see Figure

4.6).
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Figure 4.6 Triangular matrix and dendrogram showing the relations and
hierarchical structure of some 7 objects (A to G inclusive). The dots in the matrix
represent the existence of a relationship between the objects in the relevant row and
column of the matrix. In the middle part connections between objects are represented
by lines. In the right-hand part the arrangement is visually simplified.

Bertin notes that, although networks are by definition reorderable, just like
the reorderable rectangular matrix, their graphical analysis poses more of a
problem. The analysis of networks, by graphical representation of the data
and subsequent simplification of their elementary structure by transforma-
tions of the patterns (comparable with the permutations of rows and
columns in the rectangular matrix), proves to be more complex a problem
than is the case with rectangular data structures. The actual configuration
resulting from permutations of rows is more complex and more difficult to
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predict in the case of networks than the same type of operation in a reorder-
able rectangular matrix. In a study on the solubility of graphs, Daru (1989)
has, however, shown that the same principles of pattern recognition and
pattern formation as used in the reorderable matrix, are also found to
function in a triangular matrix. Depending on the type of problem to be
solved (e.g. travelling-salesman or space-planning problem) different types
of patterns must be sought. In the triangular graphical representation of a
network, the problem of the solubility of graphs can be reduced to recogni-
tion of two easily identified patterns. When one of these patterns is present
in the original configuration of the matrix, or can be created by mathemat-
ically correct transformations of the layout, the graph is in principle not
soluble, and indirect ways have to be found to remove the junctions in the
hierarchical structure.

4.3.3 Ordered networks: Topography
The third type of graphic that Bertin distinguishes is the topography. In

topographies, as in reorderable networks, the set of elements can be put into
a triangular matrix, with the same set of elements on both axes of the
matrix. As opposed to reorderable networks, the elements in a topography
are ordered and are not allowed to move along an axis. Cartographical and
themartical maps are examples of a topography. In cartographical maps the
order is, for instance defined by the geographical location of the individual
elements. Solution of the information problem in topographies can there-
fore only use pattern recognition, as opposed to pattern formation!, which
requires an interactive, reorderable construction of the data. The graphical
construction of a topographic network consists of two stages. In the first,
topographic stage, the natural arrangement of cerrain elements of an
object are represented on a drawn base map (a set of cities, towns and villages
is correctly positioned in a geographical area). In the second, the thematic
stage, the theme of the network is added by transcribing the quantity z to
each object on the map, with its fixed x and y-positions so that the correct

"With pattern formation, we mean the classification of a large number of objects into a
relatively small number of clusters or groups. This classification is based on the
similarity of the individual objects. This interpretation of pattern formation and pattern
recognition is only one of the many intellectual enterprises usually grouped under this
heading (Watanabe,1985). Watanabe correctly notes that the classification of objects to
unknown classes (as is the case in our interpretation) is an act of cognition rather than a re-
cognition, as opposed to identifying an object as a member of an already known class.
“It is taking cognizance of the existence of a group of similar objects” (page 6).
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size, colour or shape of each individual city, town and village are
determined.

4.4 Stages of graphic perception, types of questions and level of

information
Stages of graphic perception

As opposed to the perception of a pictograph, which requires a single stage
of perception? (what does the presented sign or pictograph signify?), the
perception of a graphic requires two stages. The first concerns labelling the
information offered in the graphic. What (set of) characteristics of what
(set of) objects are displayed by the graphic? What is the topic of the
graphic? Bertin calls this the stage of external identification because it
requires the identification or isolation of the specific sets of elements out
of the inexhaustible domain of possible sets shown in a specific graphic. A
drawn figure requires a caption, a table requires row-and-column names,
plus a heading explaining the dimensions of the presented image. This
external identification must be immediately legible and comprehensible.
In addition to this stage of recognition of the displayed sets, graphics
demand a second stage of internal identification. At this stage, the true
domain of graphics, the relationships among the elements can be discov-
ered. Graphics utilize visual variation and similarity between the signs to
indicate relationships, resemblances and differences, or the order of the
elements. Visual variables that are suited for this purpose are discussed in a
separate section.

Types of questions

According to Bertin there are, in any data table, two types of questions,
those pertaining to the x or characteristic component (how many rooms has
building A?) and questions introduced by the y or object component (what
building has the steepest slope of the roof?). This does not mean that the
dara table is only suitable for answering predefined questions, taking a fixed
level of the x or the y-component as a starting point. As well as testing these

2What Bertin calls stages of perception should not be confused with the levels of
information processing that are used in psychology. It should be obvious that a number of
information-processing levels (such as detection, discrimination, recognition) are
required before the meaning of the pictograph is grasped by an observer.
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a priori hypotheses, one can also try to detect relationships between objects
and characteristics by just looking at the displayed data. This a posteriori or
visual method has the potential of revealing quite unexpected relationships
or leading to new questions and hypotheses. Analogous to the above-
mentioned questions pertaining to the x and y-components we could call
this exploration pertaining to the z-component (see Figures 4.1 and 4.7). In
addition to making a distinction within the analytical approach between
these three different directions in which we can look at the data, another
line of approach concerns the level of information one is interested in. The
data table can be examined at different levels of the information.

Level of information

At the elementary level, one is interested in the value of one single element
of the data table. At this level there are as many items of information as
there are entries in the table.

At the intermediate level, interest is directed to a subset of objects and a
corresponding group of characteristics. What are the distinctive characteris-
tics of buildings A, B and C that all belong to the same set of architectural
objects? The subset of elements to which attention is directed can be
defined in two ways. The buildings in the group or set can all belong to the
same architectural style, were all built in the same period or all have the
same public function. When interest is specifically directed to the
architectural styles, building period or functionality, this means that the
subset is specified and verbally defined a priori. The subset can also be
constructed by the data. When analysing the image visually, groups of
similarly sized elements may strike the eye. In this case the subset is defined
a posteriori and visually.

The highest level of information refers to the overall image of the data
table. This highest level of knowledge that can be attained from the data
table concerns the overall relationship between the two components of the
data table, that is the set of objects on the x-axis and the set of characteris-
tics along the y-axis. Bertin notes that this overall level is the main purpose
of graphics because it is needed for decision making. Type of question and
level of information are illustrated in Figure 4.7.
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Figure 4.7 Levels of information and types of approach to the information. In addi-
tion to the a priori and verbal approach in x and y, the information can also be anal-
ysed a posteriori and visually (in z). in the top three matrices, one or more objects are
considered as starting-point in the analysis, whereas the analysis starts at one or
more features in the middle three matrices. In the three bottom matrices the investiga-
tor is guided by the visual image only and abstracts from knowledge of objects and
features. The graphical representation of the first two a priori approaches is taken
from Bertin. The bottom row of graphical matrices is not given by Bertin.
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4.5 Visual variables and their properties

There are some methods in which similarities or differences between signs
can be expressed visually. Bertin notes that, in order to transcribe relation-
ships of similarity, order and proportion, graphic signs have at their disposal
eight types of variation that the eye can perceive. These eight variables are:
the x and y-positions of the sign in the plane, the size and the value of the
sign, its texture, colour, orientation and shape. All these characteristics of
the displayed signs can be used to transmit information to the observer with
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regard to the elements presented and their similarities and differences.
When two symbols can be visually distinguished for instance by their shape
or texture, these variables (shape and texture) can be used to reveal actual
differences between objects. These eight variables are not all equally suitable
for different types or levels of information. The strength of each of them
depends on the type of information they have to transmit. The actual
choice of one of these variables should therefore depend on the informa-
tion that is to be shown. Bertin distinguishes four different properties of
the visual variables, comparable with but not completely parallel to the four
levels of measurement that are generally distinguished in statistics. Figure
4.8 shows the eight visual variables and their properties.

X,Y dimensions Quanlitative
of the plane Q O # = {propoitional
‘ Size Q O # # O Ordered
Selective
Value O # # (differential)
T T —= Associative
Testie (@) # = | T {(constont visibility)
| Dissocialive
Colour # = i (variable visibility)
Orientation # | =
Shape ‘ E;'

Figure 4.8 Eight different variables of the image and their properties

Association and dissociation

The property lowest in order is that of association and its complementary
dissociation. A variable is called associative if all elements can be seen to be
the same. For example, in a symbolic scatter plot, where two different
symbol shapes are used to present two different classes of objects, an overall
indication of the relation between the x and y-components can be denoted
when all objects are considered as equal. The total number of elements is
treated as one group of equal elements, differences being left out of consid-
eration. With the exception of size and value, all variables are associative.
Bertin notes that the reason for being unable to abstract from the proper-
ties of value and size visually, is because symbols of unequal size or value also
differ in visibility; the larger and darker elements will spontaneously give a
visual dominance over the smaller and lighter elements. When the variables
of size and value are combined with one of the other visual variables, size
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and value will again dominate over the others, always resulting in visually
different symbols of inconstant visibility.

Selectivity

The second property of the visual variables is that of selectivity. A variable is
called selective when all elements of one category (one distinct colour or
size) can spontaneously be visually isolated from the other elements. One is
able to regard the image that is built up from elements of one single cate-
gory of interest, by abstracting from elements of different categories. In
tests on colour blindness, for example, this property of selectivity
(discriminating between objects) is used. According to Bertin, the visual
variable, shape, lacks the property of selectivity. When signs of different
shapes are mixed within the image, all signs of the same shape cannot be
covered in one glance because each of them (target and non-target) is itself
a graphical image and therefore needs attention as is illustrated in Figure
4.9. For problems concerning the rapid identification of similar areas
(similar in use or quality, not in size) such as are found on thematic maps,
shape is unsuitable. In an experiment by Williams (1967) it was found that
when subjects knew the shape of the target they had to fix on, the
frequency of fixating stimuli of the correct shape was only little above the
level expected by chance (see also Engel, 1976). Knowing colour or size of
the target resulted in more correct eye fixations.

Besides using shape for the recognition of similarities and differences
between elements (nominal level of measurement), the variable of shape,
however, has a second unshared efficacy. The property of shape can be used
to give an element a symbolic meaning, thus facilitating its external iden-
tification. Thanks to this virtue, pictographic symbols are, despite the
above-mentioned imperfection, often used on thematic maps. In other
applications, such as road signs and pictorial symbols, symbolic meaning of
shapes is also used to facilitate external identification. As opposed to shape,
all other mentioned properties of a visual element are suitable as differen-
tial variables.

Order and quantity

When data of a higher level of measurement (ordinal, interval or ratio
level) have to be shown graphically, only five of the eight variables remain
available. The variables orientation, colour and shape do not meet the
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Figure 4.9 lllustration of the associative and selective properties of different visual
variables (from top to bottom: size, value, texture, orientation and shape)

requirements of higher levels of measurement and only position in the
plane, size, value and texture remain to be utilized to mark an order of
categories. In the case of texture, the number of categories to be differenti-
ated depends most of all on the available area. When texture is used to
order a number of larger areas on maps, a fair number of categories can be
managed; in the smaller cells of a graphical matrix this number decreases
dramatically to some three to five, depending on the absolute size of the
cells. This makes the property of texture relatively inefficient in displaying
data of a higher level. Another legitimate reason for not using texture as a
variable feature of elements in the cells of a matrix is because of the illu-
sionary or distorting effects that may appear when a number of areas with
different textures are juxtaposed. Since the x and y-positions in the plane
are, of course, also impracticable in a matrix, value and especially size seem
to be suited to this specific application on a smaller scale.
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4.6 Practical application of the reorderable matrix

The first rectangular, adjustable matrix construction is that of the reorder-
able matrix. Objects in the columns as well as characteristics of these objects
in the rows are at a nominal level of measurement.

For example, consider a number of buildings, differing in architectural
style, for each of which a number of features are measured. Each of the
individual measurements, the contents of the cells of the martrix, can be
dichotomous (gable roof or no gable roof), ordered (gable roof with a weak,
moderate or steep slope) or numerical (slope of the roof in degrees between
0 and 90). In its most simple form, with dichotomous data, Bertin proposes
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Figure 4.10 Graphical representation and analysis of a dichotomous data table. In
the top pan, presence or absence of a feature are represented by, respectively, black
and white cells. In the middle part, the elements are ordered according to their visual
characteristics and in the bottom part the table is clarified by interpretation of the
extrinsic information (external identification).
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to leave the cells of the graphical matrix empty when the characteristic is
absent or make the cell completely black when the characteristic is present
(Figure 4.10).

When the data are at an ordinal level or have a numerical value, visual
properties of both value and size can be used to clearly indicate the order of
the original measurements or represent their numerical values (see para-
graph on visual variables). When value is used, the complete area of the
matrix cell is “coloured” with a certain greyness, in the case of size, it is an
elementary graphical symbol, such as a dot or square, of a certain area which
is placed in the cell of the matrix. With ordered dara, a higher category
should be represented by a larger symbol or a darker cell. Not until the data
are at the ratio or interval level, do the precise size of the symbol, the grey-
ness of the cell and differences in size and greyness become important. The
visual estimate of relative size or greyness should be equal to the actual
numerical (or categorized) values they represent and to the differences or
ratios of said values.

According to Bertin, the difference between two (greyness) values is not
equal to the simple ratio of two amounts of black but to a ratio of ratios.
He claims that the value of a cell that has a grey level of 20% will not be
estimated as twice the value of a cell that has a grey level of 10%, but as 2.25
times as much, because this equals the ratio of black to white of the first cell
(20/80) divided by the ratio of black to white of the second cell (10/90).
When the grey level shows a uniform increase (as in the series 10%, 20%,
30%, 40%, etc.) we will not get equidistant estimated values between the
elements of this series. The estimated differences at the upper and lower
ends of the scale will be greater than in the middle of the range. Only with
a uniform increase in the ratio of ratios will an equidistant sequence be
obtained. The estimated quantities corresponding to this corrected
sequence show an arithmetic progression (a uniform increase in simple
ratios of grey levels will result in geometric progression of estimates). When
the lowest value (ratio of black and white or grey level) is known as well as
the number of steps required, the consecutive values can be calculated as

n-1
r= \/% (4.1]

where r: the ratio of ratios of two consecutive steps,
n: the number of steps required
S: the grey level of the highest value
W: the grey level of the lowest value.
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In the case of size, the perceived difference between two signs equals the
simple ratio of their areas. Bertin notes that “whenever this ratio conforms
to the general law of perception, constant proportionality, the surface area
of the signs has a geometric progression” (1981, p.198). Estimating the
areas of a geometrical range of symbols, a corresponding logarithmic
progression can be expected. Bertin notes further that the absolute size of
the signs in an accumulation (as, for example on maps or in a matrix) must
be “sufficiencly” large if they are still to be perceived as distinct signs and
not as the shading or grey level of an area.

Within a series of symbols where the surface area of the largest one is ten
times that of the smallest, a tortal of 20 steps provide slight but still percep-
tible differences. This means that the areal ratio of two successive symbols in

a series must be ar least 2356 =1.122. The series can be extended at either
end with two restrictions toward the bottom. The first restriction is che
above-mentioned absolute size of a symbol that is required to be still
perceived as a distinct symbol. The second restriction concerns the threshold
of differentiation. When the area of a symbol decreases below a certain abso-
lute value (Bertin does not state which value) the areal difference from the

next symbol in the series (23/1_0 ) drops below the threshold of
differentiation, so that greater differences are needed. How much greater
the difference must be is, again, not revealed. The subject of the threshold
of differentiation will be further elucidated in the next chaprter.

4.7 An experimental approach to the reorderable matrix

Theory and empirical support

In contrast to the theoretically restrictive methods of graphically displaying
multivariate data that were discussed in Chapter 3, Bertin's method of the
reorderable matrix is based on an extensive theory of graphics. In his theory,
Bertin discusses a number of visual variables and their specific properties,
different types of graphic construction with their own sphere of activity,
diverse levels of information in the analysis of data and differences between
external and internal identification. Last, but certainly not least, Bertin is
one of the very few who makes a clear-cut distinction between the graphical
functions of display and analysis.

Compared to the methods in Chapter 3, on the other hand, Bertin’s
methods also lack empirical support. There is no experimental verification
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of many of the rules mentioned. This lack can be explained in part by
assuming that Bertin simply doesn’t mention the sources he used. From
examination of some of the rules, it may be concluded that Bertin really is
informed about research that has been done on the specific subject. To some
extent, however, sources are missing because no explicit research on the
subject has been accomplished (at least, could not be found). These rules are
assumed to be based purely on experience. Particularly those theoretical
parts can be queried that are concerned with the analysis of the graphical
matrix by recognition and construction of visual patterns.

In order to corroborate and test the theory of the reorderable matrix in
particular, some important aspects of the graphic presentation and analysis
will be examined experimentally.

Man-machine interaction

The “man-machine interaction” approach has been chosen for investigat-
ing the reorderable matrix method. On the “man” side of this approach,
human possibilities and restrictions in the task context or environment
must be taken into account (Falzon, 1984) in which the levels of visual
perception, motor operations and cognitive information processing are the
main concerns. On the “machine” side, the possibility of automating and
computerizing Bertin’s original manual domino method (see Figure 4.2)
will be investigated by using a computer system with an interactive graphi-
cal display. In the task of graphical information processing, it is important
to know what part of the task can be taken over by the computer, and what
is best left in the hands of the user (Daru and van Gils, 1987). Both
“partners” have specific capacities and shortcomings; the latter should be
mutually compensated, the former mutually enhanced. In this interaction
a need can be distinguished for compatibility between operator and system,
which is effective on three levels, that is early visual processing, motor oper-
ations and cognitive processing of information. Detection, discrimination
and recognition of visual information depend heavily on physical character-
istics of the graphical elements in the display. On this basic, perceptive level
the compatibility between stimulus characteristics and visual perception
should be investigated. On the second level, compatibility between man and
machine with regard to operations that people have to, or want to carry out
has to be ensured. Exchanging rows and columns of the matrix and other
modifications in the configuration of matrix elements should be realised by
means of simple, obvious operations. The computer system must be
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optimally adjusted to such operations. On the level of cognitive
compatibility the stages of human information processing (structuring),
the strategies that are used in the structuring process and the mental
representation of the image must be isomorphic with the structure of
information in the design of the computer program.

Reaching the fuzzily defined goals attached to to these [perceiving,
memorizing, decoding and inferpreting] tasks is an iterative and dynamic
process. People use various strategies to attain these goals. It is essen-
tial that computer systems should be as compatible as possible with the
actual thinking and problem-solving strategies of real-world users. (Daru
and van Gils, 1987, p. 920)

Requirements of the tool

Having distinguished these three levels of compatibility, criteria need to be
developed and tested that measure the relative suitability of the method of
the reorderable matrix and its actual computerized implementation. At
the first level there is, for example, the extent to which the display aids in
the sensory processing of the information. At the second level, a possible
criterion could be the degree to which people are able to carry out elemen-
tary structuring operations, or the rate at which this can be done. A more
general criterion for evaluating the relative effects of different display
methods could be the extent to which the display provides scenic realism or
gives a visually comfortable experience.

In Chapter 5 the proposed size ratio of 1.12 that Bertin considers neces-
sary for the discrimination of elementary graphic symbols will be examined.
In the same chapter it will also be necessary to investigate whether this ratio
is sufficient for ordering larger sets of graphical symbols. Actual perfor-
mance on this sorting task will be compared to the complexity experienced
in its execution.

Chapter 6 deals with estimation of the size of graphical symbols in a
matrix. Although this task is more complex than those in Chapter 5
(because it requires the interpretation of size and differences in size between
objects) it is also a task that is mainly enacted at the level of visual percep-
tion. As mentioned earlier, the graphical translation of the original or
categorized data should allow correct interpretation of values and differ-
ences. The graphical translation should not distort the original values and
their proportions.

Recognition of visual clusters will be discussed in Chapter 7. The visual
recognition and interpretation of more or less coherent patterns of
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graphical symbols in a matrix will be compared with a cartographic model
on the prediction of visual clusters on graduated circles on maps. In this
model the visual perception of clusters is considered to be based solely on
some elementary physical characteristics of the graphical elements and their
distribution across the map.

Chapter 8 concerns the higher levels of motor operations and cognitive
information processing. It contains not only aspects of interactive construc-
tion of patterns, but also aspects of strategy in solving a graphical matrix.
Definitive solutions to these tasks as well as those concerning intermediate
configurations during the process of structuring, will be recorded and
validated to more objective statistical measures.
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Chapter 5 Discrimination and Sizing of Elementary
Graphical Symbols

5.1 Abstract

Research on size judgement of elementary graphical symbols lacks clear
findings as to the actual ratio in area between symbols that is required to
make them perceptibly different. Weber already noted that the required
increase in area of a stimulus is equal to a constant fraction of its original
size (for instance see Engen, 1971).

In his theory on graphic information processing, Bertin claims that a size
ratio of 1.12 is necessary for visible discrimination of two circular dots. In
the experiments discussed in this chapter, the ratio factor of Bertin was
tested for three different symbol shapes, dots, squares and bars. Results
showed that, for these symbol shapes, a size ratio of 1.12 is more than suffi-
cient for visual discrimination of two stimuli in a pair, and for sizing a
larger number of stimuli in a small matrix. Whereas performance in this
more complex sorting task reached a maximum at relatively slight differ-
ences between the stimuli, the subjectively experienced ease of executing
this task increased as differences grew larger. For reasons of efficiency and
ease it is, moreover strongly recommended to use differences between
graphical elements that are a number of times greater than the required
ones as a minimum. Finally, it was shown that the actually required ratio
between graphical stimuli depends on the shape of the symbols used and the
number of dimensions in which stimuli are different.

5.2 Introduction

An important potential advantage of the use of graphics in cartographical
maps is their inherent ability to portray the essential information in a
straightforward, easily interpreted way by using symbols of elementary
shape, such as dots, wedges, squares and bars. On maps, these symbols often
give numerical information on a specific object or geographical location.
But, whereas the use of single graphical symbols is mainly restricted to
thematical maps, this cartographic domain is only one of the possible appli-
cations. In a different format, the data table, not only can graphics be used
to obtain the same type of link between an object (or, to some extent, a
geographical location) and its value, but can also be used in this tabular
format. While a graphic representation of values on a map is quite
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commonly accepted, in a table, on the other hand, values are still solely
expressed numerically. In this study we will combine the data-table
construction and the use of graphical symbols by projecting these symbols in
the cells of a matrix or table, creating a graphical matrix, table or data base
in which the graphical symbols replace the normally presented numbers.

Bertin (1981) postulates some important advantages of graphical
symbols in a matrix compared to the common numerical tables. Imagine a
replacement of numerical values by graphical elements where the size of
the elements corresponds to the height of the original number. Within this
raphical matrix it is possible to see at a glance where the higher values are
Incated. To get the same kind of impression in a numerical matrix, the
contents of cells have to be compared sequentially. Especially when two or
more values have an equal number of digits, which decreases or even rules
out the possibility of comparing these numerical values visually, pointing
out the larger one will be a time-consuming task.

A crucial assumption underlying the use of graphics for the purpose of
picking out the higher values is that subjects are able to detect and correctly
discriminate between the projected symbols. Size differences therefore
should at least be so large as to be perceptible but, for reasons of ease and
efficiency, preferably larger. Distinguishing between symbols when differ-
ences between them are small, not only resules in a larger number of errors
and requires longer response times, but, in addition, the task itself rapidly
becomes tiresome and subjects dissatisfied. So far, little empirical research
has been conducted to test the size ratios that have to be used in this type of
practical application. Directly usable clues have still to be derived on the
absolute or relative size of a difference in area between symbols needed to
make them discriminative. The purpose of a first series of experiments,
discussed in this chapter, is therefore to gain more insight into the size
differences of symbols of elementary graphical shapes that are required for a
perceptible difference.

The representation of numbers by elementary graphical symbols has
been mainly explored in four different areas of research, namely, (1) the
work of the French geographer Bertin, (2) cartography, (3) psychophysics,
and (4) exploratory data analysis.

First, a summary of research is given on this topic in these four areas. This
short review is followed by a section on the outline of the design of the
experiments and their results. In the last part of this chapter, results are
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discussed and compared with previous findings and some recommendations
are made on the practically useful size ratios of graphical symbols.

5.3 Different approaches compared

Although the work of Bertin (1981, 1983) gives a very comprehensive and
coherent body of theory on several aspects of the display of information in a
graphical format and the processing of this graphical information, there is
still a lack of empirical evidence. A large number of rules stated by Bertin
still lack empirical verification. Cartographic and explorative statistic
research, on the other hand, are characterized by an often too practical
approximation to the problem. Testing method (ratio estimation versus
magnitude estimation!), instructions, the stimulus range used and the
presence and size of a reference or standard, vary considerably between
examined cartographical studies and form an obstacle to general statements
and rules.

The same practical approach by studies in the field of explorative statistics
(with their often very creative graphical formats) also militates against the
generalization of individual experimental findings. The approach in
psychophysical studies, on the other hand, is mostly very theoretical.
Although interested in the verification of certain more general
psychophysical laws, the findings of these psychophysical studies are mostly
restricted to a large number of specific laboratory-like conditions, which
makes practical application very difficult to assess.

Bertin’s Graphical Sign System

According to Bertin (1981) seven differential variables can be distinguished
when using graphics on a map. These are respectively, shape, orientation,
colour, texture, value (grey tone), size, and location (on the x-y plane). The
actual choice of one or more of these variables is dependent on the kind of
information that is to be displayed (see Chapter 4 and Chang, 1978). If the
information is on a low, nominal measurement level, variables, such as
shape, orientation or colour can be used. If the information is on an ordinal
level, the texture or value variables (with categories of grey tones) can be
used. If the information is on an even higher measurement level (interval

! In the case of ratio estimation the experimenter presents two or more stimuli and asks
the subject to state the ratio between them. In magnitude estimation subjects must assign
numbers to a series of stimuli when instructed to make the numbers proportional to the
apparent magnitudes of the sensations produced.
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or ratio) only value, size and location can be used correctly as variables of the
image. An object that is twice as heavy as another object can be represented
by a symbol that is twice as large (but not twice as “dark”, as we have seen in
Chapter 4).

Since the information of interest in the present study is mainly on a
high measurement level and the projection of symbols in a matrix implies
the impossibility of using location as a variable, attention is directed to the
symbol size as a variable.

Thewatic Cartography and Graphical Symbols

1 ne use of graphics is almost inherent in the field of cartography. Even the
elementary display of areas on a map makes use of shape as a graphical
variable. Graphical variables in cartography are very widespread, ranging
from the use of colour to indicate the difference between land and sea for
example, or outstanding symbols to indicate country borders, to the use of
variable sizes of arbitrary symbols to suggest different quantities.
Cartographers have systematically studied the judgements of perception
and size regarding some elementary graphical symbols, particularly over the
past three decades. The circle or dot, in particular, has received close atten-
tion as a graphic representation of numerical information. The extent to
which map readers can make quantitatively accurate comparisons of the size
or area of graphical symbols, is emphasized in many of these studies (e.g.
Dobson, 1974; Cox, 1976; Chang, 1977, 1978; Flannery, 1971; Meihoefer,
1969, 1973).

Chang (1980) notes three factors that have an influence on this accuracy
of comparison. The first concerns the testing method, in which the accuracy
of judgement depends on whether the method is one of magnitude
estimation (e.g. Cleveland et al., 1982; Chang, 1977) or ratio estimation
(e.g. Flannery, 1971; Crawford, 1971). The second factor relates to the
instructions that are given to the subjects (e.g. is there emphasis on the area
or the size of the symbol? Teghtsoonian, 1965) and the presence and size of
a standard symbol as reference (e.g. MacMillan et al., 1974; Meihoefer,
1969, 1973; Cox, 1973). The third factor concerns the range of stimulus
sizes and the sequence in which they are presented or their estimates are
obtained.

It should be clear that almost all cartographical studies using graphical
symbols direct their attention to the interpretation of the size of these
symbols and not to thei' mere discrimination. The differences in size of the
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symbols actually used are therefore much greater than the minimum
required for visual discrimination. Most of these studies conclude that the
estimation of the size of a symbol compared to a reference symbol is more
or less correct, given that absolute differences in size between the symbols
are ‘sufficiently large’. What is meant by sufficiently large unfortunately
remains unclear.

Psychophysics

The first systematic research on detection, discrimination and size estima-
tion of physical stimuli in the field of psychophysics actually dates from the
last decades of the nineteenth century when Weber and Fechner were
interested in determining the threshold values of sensation on a number of
stimulus dimensions. Weber discovered that the amount of change in
stimulus intensity (AI) that is necessary to allow detection of this change is
approximately proportional (C: Constant) to the size or intensity of the
standard (I). This finding has become known as Weber’s Law, (Al/I=C).
Fechner saw in this law a means of measuring sensation quantitatively. His
equation, derived from Weber’s law, stated that the magnitude of a
sensation (S) grows with the logarithm of the initiating stimulus (I); S=
c(log I). The majority of psychophysical studies that followed emphasized
such quantitative measurements of sensations (see the next chapter in the
present thesis) and moved away from Weber’s law, not least because constant
Weber fractions were never observed throughout any stimulus dimension.
At relatively low stimulus intensities (near the threshold of perception) and
for some stimulus dimensions also at the upper end of the stimulus range,
the Weber fraction was found to increase. The Weber fractions only remain
more or less constant for various stimulus dimensions in the middle of the
stimulus range.

Within psychophysical research there is therefore a very extensive range
of experiments on the interpretation or estimation of stimulus size, which
is comparable to the same type of experiments carried out within the area
of thematic cartography. Research on stimulus discrimination, however, is
mainly restricted to more theoretical investigations on the behaviour of
Weber’s constant and Fechner’s Just Norticeable Difference (JND) or
Difference Limen (DL) within different ranges of the stimulus (for a
description of these and related ideas see e.g. Guilford, 1954; Torgerson,
1958; Engen, 1971; d’Amato, 1970). Most of these studies confirmed

earlier findings that the constant increases when the absolute intensity of
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the stimulus decreases and approaches the threshold of perception. It
turned out to be difficult to find practically useful indications on the
required areal difference of dot symbols ranging from about one to a few
millimetres in section.

Exploratory Data Analysis

Explorative statistics inquire into the applicability of a number of different
kinds of graphs. Scatter plots, traditional pie and bar charts, and compli-
cated plotting symbols such as Chernoff faces (Chernoff, 1973), glyphs
\rauctson, 1960) and trees (Kleiner and Hartigan, 1980) have been tested
wor their specific advantages or merits (see also Chapter 3; Wainer &
Thissen, 1981; Tukey, 1977 and Chambers et al, 1983). Simply shaped
symbols (dots and squares) which are used in our study also belong to the
range of investigated possibilities studied in the field of exploratory data
analysis (Cleveland et al., 1983; Chambers et al., 1983). As with
cartographical studies, however, the areal differences between graphical
symbols that are used generally are clearly beyond the level of mere discrim-
ination. The magnitude of minimally required differences have scarcely
advanced further.

5.4 The discrimination of symbols on size

When comparing the results from these four sources, we note first that
although much research has been done on the judgement of the size of
graphical symbols in the fields of cartography, psychophysics and explorative
statistics, very few studies give any clues to the absolute or relative size of a
difference between symbols that is needed to make them discriminable.

The main question underlying many of the studies in the above-men-
tioned fields is one on the impression of size of a presented symbol
compared to a reference symbol of known size. The question in this chapter
however, is what the required difference (in length or area) between
symbols has to be in order to make them discriminable. On practical consid-
erations (the smaller the symbols, the more data can be presented in a
matrix of a certain size) the main interest is on the ‘just noticeable differ-
ence’ in symbol sizes that are only a few millimetres in section. Whereas the
conclusions of certain previously discussed studies are restricted to the claim
that differences in size between symbols have to be ‘sufficiently large’, the
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first series of experiments in this chapter investigates whether anything
more specific can be said about the absolute size of this necessary difference.

A second inconvenience that is particularly conspicuous in the carto-
graphical literature on the use of graphical symbols in maps, is the lack of a
standard range of stimulus sizes. Different studies use very divergent ranges
and within these ranges a different number of tested symbols (see Chang,
1980; MacMillan et al., 1974). As the aim of the present study is to test
graphical symbols for future use in a rectangularly shaped matrix, it is,
within this context of application, very important to reduce the absolute
size of the largest symbol to a minimum. Diameters of several centimetres,
quite common on cartographical maps, are very impractical when large data
files are to be presented.

Bertin gives us some more hold on the actual difference in size that is
needed to be detectable. When using circular dots of proportional size as
quantities, Bertin (1981) states that, in order to provide a slight but still
perceptible difference between two successive dots, the ratio between their
areas must be approximately 1.12. With this ratio it is possible to discern as
many as 20 steps that provide a perceptible difference between two dots A
and B where the surface of A is 10 times that of B (1.122%° = 10). With a
larger number of steps, the differences would become invisible according to
Bertin. This ratio is not operative for the complete range of perceptible
symbol sizes. When the absolute size of symbols becomes smaller, the differ-
ences need to be even larger to allow discrimination. Since very small dots
require a ratio larger than 1.12 (Bertin, 1981 p. 207), the absolute size of
dots that can be used is limited toward the bottom. Although not explicitly
stated, we presume that these absolute sizes relate to a “normal” reading
distance of some 30 centimetres.

So, in recommending an absolute ratio of about 1.12, Bertin is much
more specific than the “sufficiently large” difference in size that was
requested by some studies in the fields of cartography and explorative
STatistics.

Although the observation of a required constant ratio by Bertin is in
accordance with Weber’s Law (AI/I=C) as is the increase in ratio when the
absolute values become smaller, this specific factor of 1.12 has, as far as we
know, not been empirically tested by Bertin.

The same lack of empirical evidence applies to the larger ratio factors that
are claimed to be necessary with very small dots.
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Three observations on the value of 1.12.

In the first place, this value is of approximately the same size as the
exponents which are found in the estimation of the area of circles in the
context of the power law (this theme will be discussed in Chapter 6 of the
present thesis). The detection of differences in size, on one hand, and the
estimation of the ratio between the size of a variable circle and a standard
(reference) circle, on the other are, however, not directly connected.
Starting from the principle of the power law and its relevant exponent, it is
not posrcible without further preface, to calculate how large the just notice-
avic uifference between two areas has to be.

Second, it should be noted that it is, at least, remarkable that, with an
enlargement of an area by a factor of 10, there are exactly 20 steps that
provide a perceptible difference. Wouldn’t it be possible that this specific
factor originates from a more practical point of view?

The third observation concerns error tolerance. In a visual discrimina-
tion task the proportion of incorrectly answered trials will gradually
decrease as the differences between the stimuli become larger. Bertin
neither mentions the minimum proportion of correct answers he deems
necessary, nor the proportion of errors he expects will be made at a ratio of
1.12.

Considering the above, the following questions are pertinent:
1. Is a ratio of 1.12 between the area of two graphical symbols, as found by

Bertin, sufficient for the discrimination between these symbols?

2. Does the human ability to discriminate between graphical objects of

different size depend on the shape of the symbols used?

To test these questions, symbols of three different shapes were used in an
experiment, namely, circles (dots), squares and bars. As the differences
between two circles or squares are two-dimensional (area) whereas that
between two bars is one-dimensional (height) the required difference
between bars may be expected to be smaller than those between circles or
squares. It remains to be seen, however, whether it is indeed easier to
compare symbols differing in size in one dimension than in two or more.

In the first experiment the factor of 1.12 mentioned by Bertin was used
as a fixed enlargement factor. The height of subsequent bars increased by
this fixed enlargement factor whereas the diameter of circles and the side
length of squares increased by the square root of this factor (an increase in
area of a circle or square by a factor of n gives an increase in diameter or side

length of Vn).
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The line of approach of the present study stands midway between the
more practical approach, for example that followed in cartographical
studies and the more theoretical approach that is found in psychophysical
studies. In view of our interested in a clear, practical application of certain
simple graphical symbols, a selected number of specific conditions, for
example the testing method found useful in various cartographical studies,
was used. In addition to these methodological considerations, the series of
symbol sizes proposed by Bertin in his Graphics and Graphic Information
Processing (1981), was chosen as the object of the study. Within these limits,
the intention is to follow a conventional experimental method used in
psychophysical research, as far as possible.

5.5 Experiment 1

The objective in the first, short paper-and-pencil experiment was to check
whether the proposed ratio of 1.12 was sufficient to allow a correct discrim-
ination between two stimuli presented pairwise. In this “pilot-like” experi-
ment, three series of differently shaped symbols were used, dots (circular),
squares and bars. Each series contained 24 symbols of different size. All the
symbols were black. The ratio in surface area between two consecutive
stimuli in a series was equal to 1.12, that proposed by Bertin. Stimuli were
presented pairwise on paper cards with the underside of the symbols verti-
cally aligned and a horizontal distance of 5 mm. between the centres.

Figure 5.1 Examples of the stimulus material presented in experiment 1

Fifteen pairs of stimuli were drawn on each of the cards. Each of the
symbols was compared to the nearest three larger and nearest three smaller
symbols in the series, that is symbols that were 1.12, 1.122 (= 1.25) and 1.123
=~ 1.40) as large or as small, as well as to a symbol of exactly the same size.
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The surface area of the symbols ranged from about 1.4 mm?2 to about 19.6
mm?2, which corresponds to respectively about 15 minutes of arc and about 1
degree of arc at a reading distance of 30 cm.. These sizes correspond to
stimulus sizes recommended by Bertin. A total of 22 students participated
in this self-paced experiment. The test was performed by 6 subjects at the
same time and took 20 to 30 minutes. All subjects judged all possible
stimulus combinations with all three symbol shapes, a total of 270 trials.
The total of 270 pairs of siimuli was distributed over 18 cards, 6 for each of
the symbol shapcs. Presentation of cards was counterbalanced across subjects.
The rask of the subjects was to determine the larger stimulus in each pair.
Usr this purpose they had three response categories; right-hand stimulus is
larger, left-hand stimulus is larger, stimuli are equal in size.

Table 5.1 Percentages of errors for each of the symbols and the ratios between
them. W.S. indicates “wrong symbol” and gives the percentage of trials in which the
smaller symbol was considered larger. Percentages: number of trials wrongly
answered/total number of trials in this category.

ratio dot square bar

in area W.S F.A. Miss WS FA_ Miss WS F.A.  Miss
0.00 10.3 - = 18.2 - - 40 -
1.12 03 — 27.1 05 -- 21.7 0.2 - 4.2
1.122 - 1.2 1.4 - 0.2
1.123 = 0.4 e s

Results and discussion

For an areal ratio of adjacent stimuli of 1.12, the percentages of incorrectly
answered trials were 27.4, 22.2 and 4.4 for, respectively dots, squares and
bars2 (see Table 5.1). For an areal ratio of 1.122 these percentages were,
respectively 1.2, 1.4 and 0.2. Although the total number of incorrect
responses for the ratio of 1.12 is rather large, this was probably due to the

2Experiments in which a relatively large number of subjects is used and in which an
inclination towards averaging of results over subjects can be seen, are in contrast to
experiments in which the number of subjects is restricted. As we are interested most of
all in the practical usefulness of a graphical tool, a relatively large group of subjects is
used for the different experiments. This does not mean chat results of subjects or even of
individual trials were added or averaged without due consideration. When only averages
are displayed and no reference is made to individual differences, chis means either that
these individual differences were not significanc or chat they were not systematic.
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presence of the response category “stimuli are of equal size”. Subjects could
deal with the experimental task easily by showing a tendency to answer that
stimuli were equal in size.

In Table 5.1, it can be seen that 98.1% of all incorrect responses in trials in
which the ratio in areas between stimuli was 1.12, fell into this category of
“misses” or type-I errors ((27.1 + 21.7 + 4.2) / (0.3 + 27.1 + 0.5+ 21.7 + 0.2 +
4.2)). In the remaining 1.9% (100 - 98.1) the smaller symbol was considered
the larger.

Decision

equally large  different size

type- |
different size error "Hit"
“Miss"
stimuli
fype- I
"Correct glror
equally large reject” .
False
Alarm"

Figure 5.2 The four cases generated by combinations of two decisions with two
actual situations. Errors of types | and Il are identified in two cells of the table. In this
presentation it holds that HO: stimuli are equal, and the alternative H1: stimuli are
unequal.

Most of the errors in the experiment were of type 1. The second largest
source of errors was in trials where similar stimuli were judged as being of
different size (type-II error or “False alarm”). Of the total number of trials
where stimuli in a pair were of the same size, 10.8% was incorrectly
answered. Only a small number of errors was made where the ratio was
1.1220r1.123.

Type-I and type-II errors represent different response strategies. Whereas
the error of seeing differences between symbols of precisely the same size
(type II) indicates risk-taking behaviour (low criterion value), the error of
not seeing differences between two symbols of unequal size (type I) are
rather to be expected with subjects who show cautious response behaviour
(high criterion value). For a discussion of response strategies and
corresponding criterion values see Massaro, 1975. Some subjects judge two
symbols only as being different when the difference is obvious to them.
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These subjects often judge symbols to be of the same size when they actually
differ slightly, thereby making a type-I error. The same subjects, however,
will rarely make errors of type II. Other subjects only need a very slight
difference before deciding that two symbols are not of the same size. These
subjects make very few type-I errors but a relatively large number type-II
errors.

Of the total of 22 subjects, only 4 were responsible for half of the type-II
errors, whereas 6 others were responsible for the greater part of the type I
errors. Errors maae by the other 12 subjects were more evenly distributed
- = ~“e two error categories.

The slight differences between the presented symbols can be expected to
have an influence on the decision processes or the risk-taking behaviour of
certain subjects and will be reflected in their criterion values. When these
subjects become aware that the differences are very slight, it is very likely
that the criterion on which they decide that one of the two symbols is
larger, in fact becomes lower. This aspect has also to be considered when
deciding what sizes and heights of symbols can be used in a graphical data
matrix.

Gilmartin (1981) discusses the predisposition of a subject in an exper-
imental context to respond in a particular manner or to attend selectively
to some aspect of the stimulus. According to Gilmartin, this increases the
probability of a certain kind of response which may introduce a bias in the
results of an experiment. She warns that predispositions in response
behaviour are not only created deliberately by the researcher as part of the
experimental design, but that they can also occur unintentionally.

In addition to these two major causes of discrimination errors, momen-
tary lapses in attention on the part of the subjects can also account for some
of the errors made. It is very probable that this kind of error occurs equally
often with stimulus pairs that have a very slight difference in size, thus
demanding the same continuously high level of attention, as with stimuli
of the same size.

In conclusion, the results of the first experiment indicate that even
though a ratio of 1.12 seems to be on the low side, this can be due to a
number of characteristics of the experimental design, in particular the
introduction of the response category; “stimuli are of equal size”. In a
second experiment, therciore, this response category will be omitted, oblig-
ing subjects to make a more conscious and serious choice between one of the
stimuli in a pairwise presenration.
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5.6 Experiment 2

Stimulus material and environmental conditions

Stimuli were black symbols, presented on a white CRT screen. Three series
of differently shaped symbols were used, circles (dots), squares and bars
(columns). The reference stimuli (Ss) were presented alongside and had to
be compared to a variable stimulus (Sv). Each series contained 7 different
standards, varying in size from 9.8 mm. to 50 mm in diameter. The size of
9.8 mm. corresponds to about 11 minutes of arc at the applied distance
between subject and screen of 3 metres and is about equal in visual arc to a
symbol of 1 mm. in diameter at a reading distance of 30 cm. A size of 50
mm. corresponds to a visual angle of 1 degree of arc and is comparable to a
stimulus of 5 mm. in diameter at reading distance. The horizontal heart-
to-heart distance between the stimuli was 9.5 cm. (at the applied distance of
3 metres this corresponds to 1 degree 50 minutes of arc).

In about half the trials the Ss was presented to the left of the Sv, in the
other half on the right-hand side. The position of the Ss was randomized.
For dots and squares, the ratio in surface area between standard stimulus
and variable stimulus ranged from 0.79 to 1.21 in steps of 0.03. For bars
these ratios varied from 0.88 to 1.12.

Because a standard Macintosh 72-dots-per-inch screen was used, the
subjects were seated at a distance of 3 metres from the screen. At this
distance, differences in length and width of a stimulus of about 24 seconds
of arc can be secured and dots do not appear jagged but have a smooth
circular shape.

Due to this restricted resolution of the screen of 72 dots per inch not all

ratios could be used with each of the standard sizes as dots and squares had
to be perfectly circular, respectively square.
The room in which the experiment took place was completely shielded
from daylight and illuminated exclusively by 2 spotlights and the computer
screen itself. Conditions of illumination were measured before the experi-
ment started and were constant during all the experimental sessions (the
contrast between the white screen and the black stimuli was about 50:1).

Instruction

Before the actual experiment took place, subjects were informed about the
experiment and the task they had to perform. “Compare the two stimuli
that are presented pairwise in each trial. When the right-hand one is larger,
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answer “yes” by pressing the “j” key on the keyboard, otherwise answer “no”
by pressing the “n” key”. As soon as one of these buttons was pushed, the
two stimuli on the screen were erased and the next two stimuli appeared. In
that way, the experiment was self-paced and the duration of stimulus
presentation was controlled by the subject. Incorrect responses could be
corrected by pressing the f (false) button. The complete trial was redone, the
stimuli of this erroneous trial were again presented on the screen. At each
25th trial subjects were informed as to the number of trials they had
finished, each 1C9 trials there was a pause of 10 seconds and after the first
and second session there was a short break of about 10 to 15 minutes. The
instruction and a number of test trials took about 10 minutes, During this
period, subjects could get used to the lighting conditions. After the instruc-
tion, but before the actual experiment started, the eyesight of the subjects
was tested using a “Landolt” test (see section on subjects).

Experimental design

The experiment comprised three sessions. At each of the sessions 360 (bars)
or 400 (dots and squares) pairs of stimuli were presented on the screen.
Within a session all stimuli were of the same shape. Sessions were counter-
balanced between subjects. The task of the subjects was to decide whether or
not the stimulus on the right was larger than that on the left. The response
itself consisted of pushing the j (yes, the right stimulus is larger than the
left stimulus) or n (no, the stimulus on the right side is not larger than the
stimulus on the left) key on the keyboard.

Subjects

Nine male subjects participated in the experiment, all students or staff
members of the Faculty of Architecture, Building and Planning. Subjects
were paid for participating. The complete experiment, including instruc-
tion, eyesight test and breaks took about two and a half to three hours per
subject. Before the actual experiment started, the eyesight or corrected eye-
sight (some of the subjects wore glasses or contact lenses) of the subjects was
tested using a “Landolt” test. All subjects had a visible acuity of 1.0 or better.
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Figure 5.3. Proportion of trials in which the right-hand stimulus (Sv: closed symbols
and Ss: open symbols) is estimated larger than the the left-hand one.

Results

In Figure 5.3 the total number of trials is divided according to the position
of the Sv in the stimulus pair. On the x-axis, the ratio in areal surface
between Sv and Ss is given. In the curves marked by the closed symbols, the
Sv was presented to the right of the Ss. For ratios in areal surface Sv/Ss that
are larger than 1.0 (the variable stimulus is larger than the reference) these
curves show the percentages of correct responses or hits because the Sv was
correctly judged larger than the Ss. For the Sv/Ss ratios of 1.0 and smaller,
these curves show the percentage of incorrect responses. The Sv was equal to
(ratio 1.0) or smaller than (ratios <1.0) the Ss, but was still judged larger.
The responses by the subjects to these “closed symbol” trials were “yes, the
right-hand stimulus is larger” whereas they should have been “no, the
right-hand one is not larger”.

The same description applies to the curves marked by the open symbols
(the curves declining from left to right). These curves represent the trials in
which the Sv was presented to the left of the Ss and responses were “yes, the
right-hand stimulus is larger”. For all ratios Sv/Ss that are smaller than 1.0
these curves show the hits. The standard stimulus was correctly judged
larger than the variable stimulus. For ratios that are equal to or larger than
1.0 these curves again show the percentages of incorrect responses as, in
these trials, the Ss was judged larger when in fact it was equal in size to the
Sv (ratio 1.0) or smaller (<1.0). The two types of curves are nearly symmetri-
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cal around the x-value of 1.0. This means that the position of the Sv in the
pair of stimuli appears to be insignificant and, what is more important, that
subjects have no preference for the right-hand or left-hand stimulus.

It can furthermore be seen that the curves representing the bar symbols
are steeper than those of dots and squares. Obviously, the discrimination of
rectangular symbols is easier than that of circular and square symbols.
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Figure 5.4. Proportion of trials in which respectively Sv (closed diamonds) or Ss
(closed triangles) are judged to be the larger dot symbol in the pair. The percentage
of trials in which both dots Sv and Ss are considered equally sized can be deduced
from these curves (square symbols).

In Figure 5.4 the right-hand part of the dot symbol curve of Figure 5.3

is shown (that is, only Sv/Ss ratios larger than 1.0).
The top curve (marked by the closed diamonds) gives the proportion of
trials in which the larger symbol was correctly judged larger. The bottom
curve (indicated by the closed triangles) shows the proportion of trials in
which the smallest symbol was considered larger. When we add up the
percentages of both curves at each of the areal ratios (Sv/Ss) and subtract
this total from 100% we have deduced the percentage of trials in which the
symbols would be estimated as equally large, whereas one of them was in
fact larger than the other (indicated by open square symbols in Figure 5.4).
Such errors are the “misses” or type-I errors (see Figure 5.2).

As Figure 5.3 shows that there was no preference for left or right, and
curves were symmetrical around the x value of 1.0, the proportions of type-I
errors can be easily calculated for all ratios and for all three symbols.
Connecting the proporricns for all ratios (also those equal to and lower
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than 1.0) would give a curve that inclines towards the value of 1.0 and levels
off when the difference in size between Ss and Sv increases.

An even distribution of these errors over the response categories (1), left-
hand stimulus larger and (2) right-hand stimulus larger, in a two-alterna-
tive forced-choice task results in a standard “frequency-of-seeing function”;
a graphical description of the changes in the perceiver’s detection response
as a function of the physical variable being manipulated in the experiment
(Haber & Hershenson, 1980). This drawing is shown in Figure 5.5.
Presentation of results in this way allows for a calculation of the D.L.
(Difference Limen: minimum amount of stimulus change required to
produce a sensation difference 50% of the time). By linear interpolation,
for instance, we get ratio values of 0.038, 0.038 and 0.036 respectively for
dots, squares and bars.
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Figure 5.5. Derived frequency-of-seeing function. The curves show the
(hypothetical) proportion of trials in which the right-hand stimulus would be judged
larger in a two-alternative forced-choice task. Dotted lines at 25% and 75% are used
to interpolate the Ditference Limen.

In Figure 5.6 a more profound graph of the Weber ratio for size discrimi-
nation is presented. The graph shows that the D.L./Ss ratio decreases as a
function of the magnitude of the standard stimulus. In this figure the
Difference Limen is defined as

DL =(U.L.-LL)/2 [5.1]

where the Upper Limen (U.L.) is the performance at the 75% level in a
two-alternative forced-choice task and the Lower Limen (L.L.) at the 25%
level.
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For the dot and square symbols, separate curves are drawn for both increase
in area of the standard stimulus and increase in diameter (dot) or side
length (square). The D.L. curves for area show that the values for bars are
lower than those of dots and squares, which indicates that differences
between bars are éasier to detect than those between dots and squares.
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Figure 5.6. Weber ratio for size discrimination. The Difference Limen is the
minimum amount of stimulus change required to produce a sensation difference in
50% of the trials.

Although overall differences in performance between subjects were not
significant, we can note some differences in decision strategies between
subjects corresponding to the cautious and risk-taking behaviour already
mentioned in the discussion of experiment 1.

Subject A.G for instance was very careful in judging Sv larger than Ss.
He tended to respond “no, the right-hand symbol is not larger” which he
actually did in 62% of all trials. This cautious behaviour results, in fact, in a
relatively small number of false alarm trials but also in a small number of
hit trials. A strategy that is more or less opposite to that of A.G. was shown
by subject G.H. This subject is more inclined to respond “yes, the right-hand
symbol is the larger one”, which results in more correct responses (hits)
when the right-hand symbol is indeed the larger one of the two, but results
in more incorrect responses when, in fact, both symbols are of equal size
(false alarms) or the left-hand symbol is the larger one. Subject G.H.
responded “no” in 55% of the trials.

Whereas the decision behaviours of these two subjects differed consider-
ably, they resulted in a comparable overall performance. The rates of hits
and false alarms for each »f the subjects at an Sv/Ss ratio level of 1.03 are
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shown in the receiver operating characteristic (R.O.C.) plot in Figure 5.7.
Even though subjects differed in their decision strategies, all trade-off
points are close together.

Concluding the results of this experiment, we note that even though
Bertin’s ratio factor of 1.12 appears not be based on the Weber ratio (a D.L.
of about 0.03 to 0.07 was found, see Figure 5.6), it is shown to be a very
acceptable ratio between areas of two juxtaposed symbols, especially when
high performance is required (a ratio of 1.12 resulted in a proportion
correctly answered trials of about 0.9, see Figure 5.5).

It turned out that performance, as based on the Difference Limen,
increased still more at symbol sizes of 1 degree of visual arc and beyond.
Bar symbols are easier to discriminate than circular dots and squares.
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Figure 5.7. Receiver operating characteristic plot, resulting from plotting the hit rates
and false-alarm rates for each of the subjects at a Sv/Ss ratio of 1.03. Absolute
performance increases according as the plotted points draw closer to the upper-left-
hand corner of the figure. Due to a disproportionate distribution of combinations of the
Sv/Ss=1.0 ratio (required in calculating the F.A. rate) and the size ot the reference
stimuli only the Sv/Ss ratio of 1.03 could be plotted.

Comparison of experiments 1 and 2

The results of both experiments showed that, when comparing graphical
symbols, the discrimination of two differently sized and juxtaposed bar
symbols appears to be easier than the discrimination of dot or square
symbols. In a total of 21.7% (squares) and 27.1% (dots) of the trials in exper-
iment 1 in which the ratio in size between standard and variable stimulus
was 1.12, subjects actually responded that these stimuli were of the same size
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(“misses”). A proportional allocation of these percentages to the two
categories of a two-alternative forced-choice task results in, respectively
10.85 and 13.55 percent incorrectly answered trials. To these we have to add
the 0.3 and 0.5 percent of the trials in which the smaller symbol was
estimated to be the larger one (see Table 5.1). This results in a total of,
respectively 13.85% and 11.35% incorrectly answered trials for, respectively
circles and squares. Changing the response categories and forcing the
subjects to make a more weighted response (two-alternative forced choice
instead of a three-alternative forced choice) resulted in a decrease in these
Lo atages to about 10 (Figure 5.5). Due to some differences in
performance between subjects, these percentages do not differ significantly
from the results of the second experiment (for both circles and squares
p>.10). In addition, it is at least doubtful whether it is correct to divide the
misses equally between the two alternative categories in a two-alternative
forced-choice experiment (Engen, 1971, p. 30; Guilford, 1954, p139-142).
This decrease could be due to differences in the experimental design of the
two experiments. Furthermore, the results of the second experiment allow
weighting a required percentage of correctly answered trials to obtain a
ratio in size between two juxtaposed graphical symbols.

In the second experiment it was not possible to use each of the size ratios
with each of the sizes of the standard stimulus, as already mentioned in the
section on the design of the experiment. A more detailed analysis of the
specific size ratios at each of the standard sizes showed the same tendency
for all standard stimuli: performance clearly improved when the difference
between the two stimuli in a pair increased. The best results, however, were
obrained by the largest standard sizes, as could be seen in the Weber curves in

Figure 5.6.

5.7 Experiment 3

In a third experiment the interest was in the visual discrimination of
graphical stimuli in a more complex sorting task. In a reorderable graphical
matrix, normally a large number of stimuli are presented that have to be
visually compared and sized before it is at all possible to put similar stimuli
into a group or cluster.

A second point of interest in this experiment was the subjectively
experienced complexity (or ease) in completing the sorting task. An equal
performance on two different tasks does not necessarily imply that both
tasks are experienced as « | ally difficult and, in practical situations, where a
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large number of visual comparisons have to be made, differences in symbol
size that are only just large enough for a correct discrimination, might
prove to be tiring in the course of time and eventually lead to a deteriora-
tion in performance or to a dislike of doing the task.

By a selection of differences between stimuli that are a number of times
greater than the minimum required, the occurrence of these problems
could be prevented.

Stimulus material

Three different sets of symbols were used as stimulus material: circular dots,
squares and bars. All symbols were solid black. Stimuli were presented on a
black-on-white standard Apple Macintosh 72-dots-per-inch computer
screen. In each of the trials, 6 stimuli were presented in a 2 (rows) - 3
(columns) format (see Figure 5.8). This group of 6 stimuli consisted of
three different pairs, with each pair containing two identical stimuli. The
ratio in area between the largest stimuli and the middle stimuli was equal
to the ratio between the stimuli in the middlemost pair and smallest
stimuli.
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Figure 5.8. Layout of the stimuli as presented on the computer screen (left-hand
part) and matrix with feedback on the responses that the subjects made by pressing a
sequence of keys on the keyboard (right-hand part).

Actual ratios in area that were used were 1.06, 1.09, 1.12 and 1.15. The
position of each of the 6 symbols in the 2 - 3 matrix was randomized. A
total of 4 different sizes of the reference (middlemost) stimulus was used.
With subjects seated at 3.5 metres from the computer screen, the stimulus
sizes corresponded to respectively about 25, 35, 42 and 48 minutes of visual
arc. The horizontal and vertical distance berween the centres of the stimuli
was about 63 minutes of visual arc. Height of the standard bars was 1.5
times its width. Lighting conditions were the same as in experiment 2.

Instruction

Before the actual experiment started, subjects were informed abourt the
experiment and the tasks they had to perform.
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The six stimuli had first to be ordered according to size, from small to large.
This task was to be completed by pressing a sequence of keys on a 3 - 2 key
pad. The layout of the keys of the key pad corresponded to the layout of the
stimuli on the screen. Subjects received feedback on the responses they
made; for the first two key presses the character k (klein: small) appeared on
the screen at the selected positions, with the next two key presses the charac-
ter m (midden: middle) was drawn and with the last two responses the char-
acter g (groot: large) filled the last two cells of the 3 - 2 matrix (see Figure
5.8). :

The presentation of stimuli on the screen lasted 4 seconds, after which
~zriod the screen was wiped, a 3 - 2 empty matrix was drawn and subjects
were allowed to type their responses. Responses during the presentation of
the stimuli were not accepted and this was indicated by a short tone
whenever that was the case.

After sizing the stimuli, subjects had to give their opinion as to the
complexity of the sizing task by answering “it was very difficult to sort the
stimuli” or “it was very easy to sort the stimuli” on a 9-point scale ranging
from 1 (difficult) to 9 (easy). Before the answers to each part of the response
(sizing and opinion on complexity) were actually recorded they had to be
confirmed by pressing a key on the key pad. Therefore, as long as a specific
response was not confirmed, it was possible to make corrections during the
trial. Trials in which subjects responded too early and trials in which correc-
tions were made were recorded.

Design

Each subject had to respond in 960 trials in all, distributed over two sessions.
Each session contained three sections of 160 trials each. In each of the
sections all stimuli were of the same shape. The sequence of the three
sections was counterbalanced within the session, trials were randomized
within sections. Every 10th trial the trial number was shown on the screen.
After every 40 trials there was a pause of 1 minute, and after every section
of 160 trials, a break of a few minutes.

The time interval bertween the two sessions was at least 4 hours and at
most 2 days. The complete experiment took 3 to 4 hours.
Environmental conditions and tests of the eyesight of subjects were the
same as described in experiment 2.
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Subjects

Six subjects (three male, three female) participated, all students of the
faculty of Architecture, Building and Planning. The complete experiment
took 3 to 4 hours. Subjects were paid for participating. Eyesight of subjects
was tested using the Landolt test. All subjects had a visible acuity of 1.0 or
better.

Results

Performance

A four-way analysis of variance (with factors: subjects, session, symbol shape
and ratio in size between Ss and Sv) was accomplished on the average
performance (performance was averaged over 10 identical trials in each of
the sections). This analysis showed a significant effect for all main factors
and for the interaction between ratio and shape of the symbol (see Table
5.2). Although the differences in performance between subjects were signif-
icant (overall performance ranged from 47.1 % correct for subject 6 to
85.3% correct for subject 5) none of the interactions with the factor subjects
was significant (all p>.08).

Table 5.2. Results of a four-way analysis of variance on the average performance
(over 10 identical trials) of sizing 6 stimuli in a small matrix

Factor d.f F value p value
Subjects (A) 5 83.49 0001 "
Session (B) 1 20.60 000t *
AB 5 00.64 66
Symbol shape (C) 2 68.16 0001 *
AC 10 1.42 a7
BC 2 0.54 58
ABC 10 0.53 87
Ratio (D) 3 228.23 0001 *
AD 15 1.61 .08
BD 3 0.58 62
ABD 15 1.08 37
CcD 6 9.09 0001 *
ACD 30 0.74 83
BCD 6 0.59 73
ABCD 30 0.74 84

*: high level of significance

This means that the distribution of performance values across combinations
of symbol shape and ratio levels were the same for all subjects. As we were
mainly interested in the relative performance on the different symbol
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shapes, ratios and sizes of the standard stimulus, and because differences in
absolute performance between subjects were significantly large, the average
performances were standardized? (converted into standard z-values) for each
of the subjects and the factor “subjects” was no longer considered in subse-
quent analyses (the z-values were treated as repeated measures).

The same procedure applied to the factor “session”. Although overall
performances were better in the second session, the increase in performance
was found to be relatively the same for all subjects, ratio levels, symbol
shapes and comuinations of the three (all p>.37). Performances were there-

~nn averaged over the two sessions and the factor “session” was no longer
-cnsidered in subsequent analyses.

Next, a three-way analysis of variance (symbol, ratio, size of the Ss) was
performed on the z-values obtained (Table 5.3). This analysis showed a
significant effect for all main factors and for the interactions between
symbol and ratio and between ratio and size of the Ss.

Table 5.3. Results of a three-way analysis of variance on the z-values of perfor-
mance in sizing 6 stimuli in a small matrix.

Factor d.f F value p value
Symbol shape (A) 2 100.15 0001 *
Ratio (B) 3 335.28 0001 *
AB 6 13.71 0001~
Size of reference, Ss (C) 3 65.53 0001 *
AC 6 1.50 18

BC 9 4.71 .0001 "
ABC 18 1.42 12

In Figure 5.9, performance in standard values (y-axis) is plotted to the
ratio in size between Sv and Ss (x-axis). Each curve shows the results for one
of the symbol shapes. This figure shows that the significant interaction
between the factors symbol shape and ratio is largely due to the combina-
tion of high ratios and the bar symbols. The bar symbol shows better
performance accompanied by a more profound “levelling off” than
performance on dots and squares. Differences between bars, on the one
hand, and dots and squares on the other, were significant at all values of the
ratio (all p<.05).

3Analysing the results of this experiment we have the options of standardizing the
original data (within subjects) into z-values before averaging across subjects, or directly
averaging the original values. We have chosen the first alternative in order to be able to
compare the normal distribution of errors (across the independent variables) between the
subjects. Additional analyses, using the second option, revealed that the results of the two
methods did not produce sign.i -ant differences.
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Figure 5.9. Performance (in z-values on the y-axis) for the three different symbol
shapes, plotted to the different ratios in size between standard stimulus and variable
stimulus

In Figure 5.10, size of the standard stimulus (in minutes of arc on the x-

axis) is plotted to performance (in z-value on the y-axis) for each of the
ratio levels. In this figure, performance is averaged over the three shapes of
the symbols. Some distinctive features can be seen. Whereas performance is
generally better for the larger stimuli, since all four curves incline towards
the right, it also shows that differences in performance between ratios
decrease at greater standards (differences in y-values drop).
Furthermore, a greater increase in performance at lower ratio levels than at
higher ones can be seen since the two bottom curves (curves marked by the
open and closed diamonds) show a greater increase toward the right than
the two top curves (open and closed square marks).



94 Chapter 5
17 o
o . __D///.
/ .-/
— D ./
— o fe)
O T ' /
z-value ©
performance |
o ./.‘
14
¢ Ss/Sv ratio
T o 1.06® 112
o 1090 1.15
.2 1L e
25 35 47 48

Diameter (dots), side length (squares) or height (bars) of the Ss

in minutes of arc

Figure 5.10. Performance on the sizing task (in z-value on the y-axis) plotted to the
size of the standard stimulus in minutes of arc (on the x-axis). Each of the curves
represents the performance for a single Ss/Sv ratio level at different standard sizes.

Results are averages over dots, squares and bars.

Table 5.4. Results of a four-way analysis of variance on the average judgement
(over 10 identical trials) of sizing 6 stimuli in a small matrix

Factor d.f F value p value
Subjects (A) 5 479.85 0001 *
Session (B) 1 4.67 03 .
AB 5 4.18 o001t *
Symbol shape (C) 2 85.19 0001 *
AC 10 5.13 .0001 *
BC 2 0.54 58
ABC 10 4.16 0001 *
Ratio (D) 3 155.52 0001 *
AD 15 3.30 0001 *
BD 3 0.45 VAl
ABD 15 0.70 .78
CD 6 1.79 10
ACD 30 0.58 96
BCD 6 1.60 15
ABCD 30 0.83 69
Judgement

A four-way analysis of variance on the average judgement of the factors
subjects, session, symbol shape and ratio, showed a significance for all main
factors and for all second-order interactions involving the factor “subjects”



Discrimination and sizing 95

(Table 5.4). This means that subjects tended to differ in their judgements
for the two sessions, the three symbol shapes and the four levels of ratio.

The interaction between subjects and session was due to a differential
judgement of the subjects for the two sessions. Some showed, on average, a
lower judgement for the trials in the second session, whereas others judged
trials to be easier or equally difficult in the second session.

Although the interaction between subjects and symbol shape was also

found to be significant, all subjects clearly showed the same tendency in
their judgements on sizing symbols of different shapes. Whereas dots and
squares were considered about equally difficult to order, all subjects clearly
found it easier to size bars.
The interaction between subjects and ratio levels was due to differences in
the steepness of the judgement curves (plotting judgement to size ratio).
Although the slopes of the curves differed between subjects, they all judged
the trials to be easier according as ratios between Ss and Sv increased.

Since subjects showed the same tendency in their judgements, these
response values were first standardized (converted to z-scores) for each of the
subjects and treated as repetitions in addition.

As none of the interactions of session (except the interaction with
subjects) was found to be significant, judgements were also averaged over
sessions.

A three-way analysis of variance on z-values of the judgement showed a
significant effect for the three main factors and for the interaction between
symbol shape and ratio level (Table 5.5).

Table 5.5. Results of a three-way analysis of variance on the z-values of
judgements on the sizing of 6 stimuli in a small matrix

Factor d.f F value p value
Symbol (A) 2 146.63 .0001 *
Ratio (B) 3 227.89 0001 *
AB 6 3.01 007 *
Size of standard (C) 3 97.04 .0001 *
AC 6 0.67 .67
BC 9 1.93 19
ABC 18 0.56 .92

This interaction is shown in Figure 5.11. Differences between bars and
dots/squares were significant at all ratio levels (p<.01) while the difference
between dots and squares was only significant at a ratio of 1.12 (p<.05; for
all other pairwise comparisons between dots and squares p>.05).
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Figure 5.11. Interaction between ratio level and symbol shape for mean judgement
on task complexity. Each of the three curves show the judgements for a specific
symbol at various ratio levels.

Correlation coefficients between the z-values of the two dependent
variables, performance and judgement and two of the independent
variables, ratio level and size of the standard, are given in Table 5.6.
Correlation coefficients of dots and squares are much alike, with the ratio
factor showing a strong correlation with performance (about 70% of the
variance in performance is explained by this factor) while the influence of
standard “size” on performance is much less (size of the Ss only explains 7%
to 11% of the variance in performance)4.

Regarding the judgement values on dots and squares, the size of the
standard appears to have a greater influence, while that of the ratio level
happens to decrease. For bars, the correlation coefficients between indepen-
dent variables and performance and judgement are less divergent, both
factors have a more or less similar explanatory value when it comes to pre-
diction of performance or judgement.

4In Figure 5.14 it can be seen that actual relations between ratio and performance or
judgment are not linear because the drawn functions show a levelling of performance and
judgment values with larger ratio factors. A quadratic equation would therefore result in
a better fit of the actual relation. As values in Table 5.6 are based on a linear equation,
these values are underratings of actual correlations between independent (radio facror) and
dependent (performance and juu, ment) variables (Cohen and Cohen, 1983, p.224-230).
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There is, furthermore, a strong correlation between performance and
judgement. The judgement values seem to be a fairly reliable reflection of
expected performance.

Table 5.6. Correlation coefficients between the independent variables, ratio and
size of the standard, the dependent variables, performance and judgement and

mutual correlations between performance and judgement. Coefficients are given for
each of the symbol shapes.

Perf. Perf. Perf.
Dependent variables  Ratio Ss Dots Squares Bars
Performance dots 0.83 0.26
Performance squares 0.84 0.33
Performance bars 0.61 0.50
Judgement dots 0.78 0.47 0.86
Judgement squares 0.77 0.44 0.86
Judgement bars 0.63 0.52 0.76

Discussion of experiment 3

Both performance and judgement on the ease of executing a complex
sorting task show that Bertin’s recommended ratio of 1.12 can be consid-
ered sufficiently large for sizing simple shaped graphical symbols. As
performance reaches its maximum value of 100% at higher ratios (see
Figure 5.9), the performance curves level off and differences between the
three symbol shapes more or less disappear. Judgement on the ease of the
task, however, keeps improving with big differences between stimuli, and
bars are still considered easier to size than dots and squares. Therefore,
greater differences than are necessary from the performance point of view,
besides using bars as symbols in the matrix, could be recommended.

In addition to the ratio in size of the stimuli used, their absolute size
also appears to have an effect on both performance and ease of sorting. As
regards the sorting of stimuli, the recommendation is to use larger stimuli,
especially when the differences between the stimuli are slight.

Correlation coefficients between dependent and independent variables
are very high. Performance as well as judgement can be predicted very accu-
rately (particularly with dots and squares), when only ratio level and size of
the standard are known.

5.8 Conclusion

Results of all three experiments on the discrimination of two or more
graphical symbols show a better performance for bar-shaped symbols than
for circular dots or squares. In addition, subjects also judged the sorting task
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to be easier when bars had to be discriminated. Differences between bars on

one hand, and dots and squares on the other are twofold.

- First, a change in the size of a bar is reflected in only one of the dimen-
sions of the symbol (the other dimension is fixed). With dots and
squares, changes in size are evenly distributed over both dimensions.
Therefore the relative change in the variable dimension of a bar is a
larger one, compared to unidimensional changes of dots (diameter) and
squares (side length).

- Second, and wiosely related to the first observation, the difference in area
herween bar symbols is accompanied by a difference in shape between the
symbols; one of the bars in the pair of stimuli is relatively more elon-
gated or in the opposite case, thicker. With dots and squares the shape
remains unchanged when there are changes in areal size.

The second explanation, however, is not sufficient to explain the differ-
ences found in performance between bars and dots/squares. Although two
differently sized bars might be easier to know apart, their mere discrimina-
tion does not yet indicate which of the two symbols is the larger. In order to
point out the largest or smallest symbol, heights or height-width ratios still
have to be compared and evaluated.

The second explanation of unidimensional change for differences in
performance between bar symbols and dot symbols, is illustrated in Figure
5.12. On the x-axis, the differences in height (not area) between the
standard and variable stimuli are shown and performance (or performance
corrected for chance) is given on the y-axis. For bar symbols increase in area
is linearly related to increase in height, for dot symbols an increase in area
equals the squared increase in height.

Trials in which dot symbols had to be sized show better performance
than the bar trials. Obviously, subjects not only look at the pertinent differ-
ence in height between dot shaped symbols but also consider other aspects
(e.g. size), when ordering these symbols.

The value of 1.12, proposed by Bertin, has not been derived directly from
the Weber ratio, as this last is much smaller for a visual discrimination of
two symbols of elementary shape. Results of the experiments described in
this chapter, however, show that the value of 1.12 is a very reasonable one.
First, a ratio of this value results in good performances in ordering tasks, as
it is a number of times greater than the Weber ratio. Second, it allows for
tasks that are simple and easy to perform.
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Figure 5.12. Comparison of the performance in a complex sizing task (sizing 6
graphical elements in a 3-2 matrix, exp. 3) and corrected performance in an easy
sizing task (a two-alternative forced choice visual discrimination task, exp. 2). Actual
performance on the y-axis (see also explanation of Figure 5.13) plotted to ratios in
size between standard and variable stimuli.

A second contribution in our check on the proposed ratio of Bertin is a
trade-off between performance and differences in size. The second and
third experiments showed a smooth, continuous function between these
two factors. Depending on the proportion of errors that are allowed in a
particular experimental context, an optimum difference in ratio between
graphical elements can be determined for each of the three tested symbol
shapes. In the first instance, results of both experiments are not completely
comparable. When only two symbols have to be compared, pointing out the
larger one by chance is 1/2. Selecting the right order of 6 elements (3 pairs
of 2 identical stimuli) by chance is only 1/905. This chance factor can be

5 With two correct alternatives out of 6 (because the two smallest symbols had to be
pointed out in the first and second guess, only the selection of these ewo result in a correct
answer), the chance of selecting a correct one at the first guess is 1/3. The chance of
subsequently selecting the second correct alternative, with 5 items left, is 1/5. For the
two middle-sized stimuli that had to be pointed out next, the chances become
respectively 1/2 and 1/3. Now only the two largest symbols are left, so these are
automarically selected correctly. Selection of all 6 items in the correct order becomes

1/3 - 1/5 - 1/2 - 1/3 -1/1 -1/1 = 1/90.
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ruled out by a correction of the results of the simple task. Original and
corrected performance for dot symbols on the easy task and performance on
the complex sizing task are compared in Figure 5.13. Differences only occur
at a ratio level of 1.06, at higher ratios both tasks are equally difficult to
perform.
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Figure 5.13. Comparison of the performance for dot symbols in experiment 2 (a
two-alternative forced choice visual discrimination task) and experiment 3 (sizing of 6
graphical elements in a 3-2 matrix)

5.9 Further Research

Since error rates with symbol discrimination showed a dependence on the
shape or dimension of the symbol, it would be interesting to devote more
research to this relation between just noticeable visual differences and the
dimension of this difference (length, area, content).

That such a table has a far-from-neglible practical value is shown, for
example in a study by Vroon (1978). In this study it was experimentally
confirmed that too small a difference in size berween a current coin and a
new coin that was brought into circulation in the Netherlands caused a lot
of confusion. Experimental results showed that in about 15% of the
presentations, one of the coins was mistaken for the other. The practical
consequence of the introduction of the new coin was that within a short
time the new coins appeared all over the country with small round stickers
glued to them.
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Chapter 6: Visual estimation of size of some graphical
symbols in a matrix

6.1 Abstract

Although graphical symbols are often found to be a strong visual aid in the
presentation of numerical information, the actual use of individual graph-
ical elements is almost entirely restricted to cartographical maps. This
chapter investigates the possibility of extending their use to a matrix
context which means that location and meaning of the presented graphical
symbols are uncoupled. By analogy with a number of discussed cartographi-
cal and psychophysical studies, some differently shaped graphical symbols
are presented in a matrix in our experiment. Subjects had to estimate the
relative sizes of these symbols and base their estimations on a small number
of reference symbols.

Results show that the size of bars is estimated fairly accurately. Estimation
of the size of squares and circular dots presented in a matrix shows an aver-
age overrating of actual symbol size. Exponents of power functions
(between the logarithm of the actual stimulus size and the logarithm of
the estimated size) were very close to 1.0. The use of grid lines separating
rows and columns in the matrix had an ambiguous, detrimental effect on
the accuracy of estimation and should therefore be abandoned as far as
judgement of size is concerned.

6.2 Introduction

Although the use of graphical symbols for presenting numerical informa-
tion has come in for much attention and research in the last three decen-
nia, this phenomenon has, for the greater part, remained restricted to
cartographical applications. Only recently has awareness grown that the
visual strength of elementary symbols, such as circles and squares can also be
applied beyond the context of cartographical maps. Cleveland, Harris and
McGill (1982, 1983) for instance showed that circles could also be used on
statistical maps where location of the presented symbols is of minor
importance. Bertin (1981) even went further in proposing to project little
graphical elements into the cells of a table-shaped matrix. Here a certain
point symbol is marked with the labels of the row and column in which it is
located, but the position of the symbol within the matrix is quite arbitrary.
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Because the use of graphical symbols as advocated by Bertin differs in
both layout and purpose from the well-known cartographical applications,
it is necessary to make some further inquiries into the different stages of
this transition. As for Bertin, an imperfection in the execution of his
theory can be perceived at this point because his experiences with the use of
graphics in a cartographical environment are too easily transferred to the
different context of a graphical matrix. Therefore additional cartographi-
cal and psychophysical reszarch on this subject will be studied in order to
make good the deficiencies in Bertin’s theory. Whereas cartographical
research on the use of graphical symbols on a map is mainly performed in
order to warrant a certain course of action, psychophysical research on
graphics is primarily interested in the verification of certain more general
psychophysical laws.

A first requirement in the use of graphical point symbols was discussed
in Chapter 5. It was shown that a certain ratio in size between pairwise
presented symbols is necessary in order to be able to discriminate between
them. With a size ratio of 1.12, as was proposed by Bertin, a correct discrim-
ination in about 90% of the stimulus presentations can be warranted. In
this chapter, a second requirement, the correct estimation of the intended
numerical value of graphical symbols will be investigated. In Chapter 4 it
was shown that data of an interval or ratio type can only be correctly
displayed graphically with the variables of size or, to a lesser extent, of value
(grey tone). Therefore, the “size” variable seems to be the best one to use
when it comes to estimation of intended numerical value.

In the following sections some practical implications of the translation
of numerical values into the size of graphical point symbols will be
discussed. First of all, the graphical elements must be visually discriminable,
as we already noted. Second, to counteract too great a loss of information in
the translation from numerical value to graphical symbol, as many discrim-
inable symbol elements as possible should be used. Third, in order to keep
the presentation of large data sets surveyable, the largest symbol to be used
must be restricted in absolute size. The smaller the symbols, the more “data”
can be presented in a graphical matrix of a given size. A fourth demand
concerns the adequacy of judgement of the symbol sizes. It must be possible
to correctly estimate the intended value or information of all separate
elements that are used in the matrix. With these requirements in mind,

the theory of Bertin can be studied in the light of cartographical and
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psychophysical research on the use of size of graphical symbols as an alter-
native method in the presentation of numerical information.

6.2.1. Detectability of differences in size

First of all, elements in a graphical matrix must be discriminable. When the
original numerical values are translated into graphical point symbols, all
“important” differences between these numerical values must also be
discriminable in their graphical counterparts. In addition, the sizes of all
graphical symbols that represent different categories or values must be iden-
tifiable.

In the cartographical literature there are two important methods of
presenting and comparing quantitative data in a graphical format.
The first method is that of a direct conversion from basic quantitative value
into the size of a graphical symbol, revealing a monotonous relation
between authentic quantitative value and symbol size. Every change in
numerical value, however small, results in a change in size of the symbol
representing it. This is called the graduated method.
The second method is that of range-graded symbols. The total range of
values is first divided into a number of categories, followed by attaching a
symbol of a fixed size to every category and thus also to every value within a
certain category. Both methods, as Meihoefer (1973) noted, have some
advantages and disadvantages, the most important disadvantage of the use
of graduated symbols being that slight increments in circle size make them
difficult to distinguish. It is therefore probably even more difficult to
attach correct numerical values to these symbols. Although there is a loss of
information when the range-graded method is applied, this seems to be the
more useful and effective one.

6.2.2. Number and maximum size of different elements

The demands governing a large number of different elements and
restricted absolute size of the largest symbol are interrelated and are there-
fore discussed at the same time. Comparing a number of cartographical
studies, it can be seen that although there is some degree of variation in the
range of stimulus sizes used, the smallest circles generally have diameters of
2 to 3 millimetres. The size of the largest stimuli used is more subject to
variation, with ratios of max. area/ min. area ranging from less than ten to

several hundred (see Chang, 1980). Projecting these larger symbols in the
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cells of a matrix would require matrix cells with a side length of several
centimetres, a very inefficient size for the presentation of large data sets. As
regards the useful size of symbols, the cartographical studies don’t offer a
workable proposal. Bertin (1981), on the other hand, gives a more suitable
maximum symbol size as a starting point. From a very practical standpoint,
the size of circles on prefabricated plates, he proposes to restrict the size of
the largest circle to one with a diameter of 5.0 millimetres. In chapter 5 of
this thesis some experimer:s were discussed in which circles ranging in size
from 0.2 mm?t> 19.6 mm? (diameters ranging from 0.5 to 5.0 mm.) were
rested for discriminability (In some of the experiments of Chapter 5,
srimuli were presented on a computer screen. The actual sizes of these
stimuli were much greater in centimetres but not in visual angle).
Although the ratio between two discernible circles was related to their abso-
lute size, results showed that a ratio in area of 1.12 was sufficient to keep
the error rate of discrimination as low as about 10%. This would mean that
with the largest circle having a diameter of only 5.0 mm. and the smallest
stimulus having a diameter of say 1.0 mm., at least 15 circles could be
differentiated (1.12'4 = 5.0).

6.2.3. Judgement of size of individual symbol elements

The demand as to the possibility of judging the size or value of individual
graphical symbols used in a matrix to represent numerical values is the most
extensively studied of all the above-mentioned demands. It also is the most
important and intricate one. Whereas testing symbols as to discriminability
only requires a methodologically simple experiment, selecting a number of
circles whose judged size equals its intended size requires a methodologi-
cally more intricate investigation. In discrimination tasks, differences in
size between stimuli can always be made greater than necessary in order to
play safe, but in the estimation of size, perceived differences need to be in
accordance with actual differences. We will subsequently discuss some of the
major findings regarding the estimation of size of various graphical
symbols within areas of psychophysics, cartography and exploratory data
analysis.

Psychophysics

In his famous 1957 article, Stevens made a distinction between two classes

of perceptual continua (1957, p.154):
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Continua having to do with how much belong to what we have called
Class 1, or prothetic; continua having to do with what kind and where
(position) belong to Class Il, or metathetic. Class | seems to include,
among other things, those continua on which discrimination is mediated
by an additive or prothetic process at the physiological level. An exam-
ple is loudness, where we progress along the continuum by adding exci-
tation to excitation. Class Il includes continua on which discrimination is
mediated by a physiological process that is substitutive, or metathetic.
An example is pitch, where we progress along the continuum by substi-
tuting excitation for excitation, i.e., by changing the locus of excitation.

The perceptual continua of length and area belong to the first group, Class
I. In a large number of experiments that were performed or cited by
Stevens, he showed that, for the Class-I continua, the relation between a
subjective sensation (S) and the corresponding stimulus magnitude (I) could
be described by a power function,

S=¢«I" (6.1]

(where S is perceived sensation, I the actual stimulus magnitude or inten-
sity and ¢ the constant).

This power function can be more easily expressed in terms of logarithms.
Using logarithms, this function can be represented as

log S =logc+nlogl [6.2]

(This linear equation is of the formy =b +a-x)

An exponent n smaller than 1.0 would mean that, in a comparison between
two stimuli, the perceived difference in magnitude of these stimuli will be
underestimated.

Stevens distinguishes four methods for the construction of ratio scales of

subjective magnitude:

- ratio estimation (the experimenter presents two or more stimuli and
asks the subject to name the ratio between them);

- ratio production (the subject is allowed to adjust a stimulus to produce a
prescribed ratio to a reference or the subject must answer whether two
stimuli meet a predescribed ratio);

- magnitude estimation (subjects must assign numbers to a series of
stimuli under the instruction to make the numbers proportional to the
apparent magnitudes of the sensations produced);
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- magnitude production (subjects must adjust stimuli to produce propor-
tionate subjective values).

Stevens already noted a dependence between the magnitude of the
power in the power law and the method used in the experiment. In addi-
tion, the value of the exponent was dependent on the perceptual contin-
uum that was measured. Exponents ranged from 0.3 for loudness to 2.0 for
visual flash rate. The exponent for visual length that is mentioned by
Stevens is 1.1, whereas the «xponent for visual area varied from 0.9 to 1.15.
Although these values seem to indicate that the size of stimuli can be
e<timated fairly well, other experiments of Stevens (1975) and Stevens &
(nirao (1963) revealed exponents that were considerably less than unity.

In a study by Ekman & Junge (1961) the subjective length of lines, area
of squares and volume of solids and drawn cubes were measured. The
exponents of the power functions for these four conditions were respec-
tively: 1.11, 0.91, 1.01, and 0.79. A second series of experiments within the
same study investigated the influence of the stimulus range on the expo-
nent. Squares and circles were used, with areas ranging from 1:2.1 to 1:9.5.
In the case of squares, the power function exponents of the series appeared
to increase somewhat with range (exponents ranged from 0.98 to 1.06),
exponents of circles did not appear to vary with stimulus range. In all the
experiments a ratio estimation of the presented stimuli was used. In some
of the experiments the stimuli were presented pairwise, in others a larger
number of stimuli were drawn on a chart. The symbol that was marked had
to be used as a reference.

Whereas some studies confirmed the results of Ekman et al., also
yielding high exponents for size judgements (e.g. 0.96, Sjoberg, 1971; and
0.99, Baird, 1965), others found considerable underestimation of the actual
area of circles (as e.g 0.75, Marks & Cain, 1972; 0.70 - 0.76, Mashour &
Hosman, 1968; and 0.76, Teghtsoonian, 1965).

MacMillan et al. (1974) proposed that the differences in the exponents
that were found in different studies were mainly due to the presence or
absence of a reference. Their own experimental results showed larger
exponents when a reference figure was presented during judgement of the
size of the stimuli. The effect seemed to occur in both magnitude
estimation and magnitude production and was independent of the relative
size of the reference (compared to the size of the estimated stimuli).

In a study comparing two kinds of subject instruction, Teghtsoonian
(1965) found that an instruction emphasizing the areal property of circles
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gave more accurate judgements of size than an instruction emphasizing
apparent size. The slopes of the power functions were respectively 1.03 and
0.76. Thus, when subjects were asked to judge the apparent size of two-
dimensional figures, the exponents of the resulting power functions were
appreciably less than unity.

How repeatable Steven’s power law exponent is for individual subjects
was investigated by Teghtsoonian and Teghtsoonian (1971). Only at very
short time intervals between sessions, were correlation coefficients (Pearson
r) between individual power functions found to be significant. The authors
concluded that the low correlation values indicated that at least 90% of the
variance in individual exponents should be attributed to chance factors. The
real individual differences in exponents that were found could not be
regarded as enduring individual characteristics.

Range of Stimuli Distance from Position of
] Threshold SM. Standard
Mod.
- Y low Med Hi, MM
Threshold Stim  Stim ~ Stim
Distance of Infinite /Finite Size of Modulus
first Variable Numbers
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S, S Mult .
#
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Figure 6.1 Different models showing the influence of independent variables upon
the function obtained by magnitude estimation. (S.M: Subjective magnitude, Ph.M.:
Physical magnitude, Mod.:Modulus, Stim.: Reference Stimulus (after Poulton, 1968)

Poulton (1968) did not concentrate on the influence of one single aspect
in the estimation of symbol size, but systematically changed a number of
aspects that could possibly have an influence on the exponent in the power
law. He discussed 6 models that describe the relation between values of
various independent variables and magnitude estimation (see Figure 6.1).

1. Range of experimental stimuli. A shorter range of stimuli produces a
steeper function than a longer range of stimuli.
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2. Distance from the threshold. The slope of the function appears to be
steeper near the threshold.

3. Position of the reference. When the physical magnitude of the reference
is near the lower end of the range, variables smaller than the reference
give steeper slopes than those larger than the reference. The opposite is
found when the reference is near the upper end of the range; now the
variables that are larger than the reference result in the steeper slopes.
Poulton suggests selecting a reference in the middle of the range, such
that the slopc for the variables larger than the reference is the same as
the slope for the variables smaller than the reference.

4 Distance of the first variable from the reference. The steepness of the
function is dependent not only on the distance from the reference,
whether the variable stimulus is larger or smaller than the reference, but
also on the past experience of the observer.

5. Infinite versus finite sets of stimuli. Using only multiple stimuli
(stimuli larger than the reference) and an infinite set of numbers avail-
able to the observer, gives steeper slopes than fractional estimartes
(stimuli smaller than the reference) which are limited at the end of the
set by zero. When a combination of both multiple and fractional stimuli
are used, an intermediate slope is found, less steep than the multiple
estimate function and steeper than the fractional estimate function.

6. Size of the modulus (number given to the reference). Increasing the
modulus increases the set of numbers available for fractional estimates,
and thus increases the slope. Conversely, it reduces the set of numbers
that are commonly used for multiple estimates, and thus decreases the
slope.

Concluding this enumeration of studies, it is found that the estimation of
size of visually presented stimuli can be adequately described by Steven’s
power law. The exponent of the specific functions, however, is largely
dependent on a number of methodological characteristics of the experi-
ment. In addition there is some evidence that the exponent is a decreasing
function of the number of spatial dimensions of the stimulus.

Cartography

Whereas psychophysical studies regarding the estimation of size of visually
presented stimuli were mainly interested in investigation, description and
explanation of psychological and perceptual functions, the cartographical

object of studies on ihi- ropic is that of the adequacy and accuracy of
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judgement. Running parallel to psychophysical studies, in the area of
cartography the first experiments which give evidence of underestimation
for a number of point symbols which vary in areal size, date back to the late
1950s.

When graduated circles were presented on cartographical maps, Flannery
(1956) found a power function exponent of 0.87 in the estimation of
differences (ratio estimation) between these circles. These findings were
apparently so convincing to Robinson and Sale that they decided to insert a
table in their (standard) book on cartography (Elements of Cartography,
1968) to simplify the conversion of the actually intended size of circles to
their apparent estimated size. This conversion rule was directly based on
Flannery’s power function exponent. Others were obviously less convinced
by the results of Flannery’s study, as there has been no widespread
acceptance of this system.

In a number of experiments, performed with the intention of not only
retesting earlier found exponents, but also comparing the effectiveness of
circles to other point symbols, Flannery (1971) again showed a consistent
underestimation of circle symbols on thematic maps. Exponents that were
found in these experiments, 0.86 for circles and 0.82 for wedges, showed a
close resemblance to the results of earlier studies. Wedges were considered to
be less effective than circles because the estimation of their size was not as
consistent, due to a greater variance. Tests on the apparent size of bars
showed no underestimation, the percentage of overratings being about
equal to the percentage of underestimations. In these studies the method
of ratio estimation was again applied.

In a study by Crawford (1971), the experiments of Flannery were
replicated except for the grey tone of the symbols. Whereas stimuli in the
Flannery experiment were solid black circles, Crawford varied the
percentages of grey tone of the symbols between conditions. Results indi-
cated that all grey tones (these grey tones varied from 30% to 60% black)
transmitted visual signals that were not statistically different from the
visual signal transmitted by black graduated circles.

One of the first experiments that started to show some attention to
methodological aspects of the experimental design was performed by
Meihoefer (1969, 1973). In his experiments he studied the effect of a
systematic change in the number and size of reference stimuli. In the first
experiment it was shown that underestimation of the size of a circle
increased as the difference in size from the reference circle (the smallest
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circle acted as a reference in this experiment) became greater. A following
experiment, using a more extended standard containing the two extreme
values, showed an improvement in the estimation of circle size compared to
the first experiment. In a third experiment, in which a map legend was
used that contained all circles that appeared on the map, the error in circle
size estimation was either zero or clustered around zero. It seems obvious,
therefore, that the provision of more information by using more circle sizes
in the legend results in lcss ambiguity or a smaller error in estimation.
These findings 22 confirmed in other studies (e.g. Dobson, 1974; Cox,
1976). When using a reference symbol, Cox claimed that two counter-
nroductive effects of the reference symbol are operative in size judgement: a
contrast effect resulting in a displacement of judgement away from the
reference (overestimation of circles larger than the reference and under-
estimation of circles smaller than the reference) and an assimilation effect
tending to a displacement of judgements in the direction of the reference
(underestimation of circles with a small reference and overestimation with
a large one). Results indeed showed a greater underestimation when a small
reference was used, a slight overestimation when a large reference was used
and fairly accurate estimates with a middle-sized one or with all three refer-
ence circles. Again, the results are in accordance with one of the models of
Poulton (1968). The standard deviation in the condition using three
legend circles was significantly smaller than that in the condition using the
middle-sized reference. Concluding the role of the reference, it can be
confirmed that an extensive reference containing the extreme circle sizes,
as well as some intermediate circles, will give boch the most accurate overall
judgements and the least variance in size judgements.

Comparison of a number of studies that used the method of magnitude
estimation with a prescribed modulus (what is the size of a test circle
knowing that a reference circle has a size of 100?) with studies using direct-
ratio estimation (how much smaller/larger than the reference circle is the
test circle?) by Chang (1980) showed that magnitude estimation is more
difficult than ratio estimation. With ratio estimation the power function
exponents were closer to a value of 1.0, which corresponds to a correct
judgement of size. Other factors mentioned by Chang, that are of influ-
ence on the exponent are given below.

- Instruction given to the subject. It seemed that the subject’s awareness of
the areal property of circles could result in better estimates and thus
increase the exponent.



Visual estimation of size 111

- Role of the reference. Chang notes that an extension of the number of
keys in the reference changes the task of the subject from magnitude
estimation to a twofold task. In the first part the stimuli are grouped
according to categories formed by the standard keys. In the second part
magnitude estimates are made.

- Stimulus range. An increase in the stimulus range can result in a
decrease in the exponent.

- Sequential effect. Estimation of a given stimulus can be influenced by
the magnitude of the previous stimulus or stimuli that are estimated
(Cross, 1973). This effect is found to be strikingly effective when a
number of stimuli have to be estimated sequentially and the reference is
only shown at the beginning.

Other factors possibly influencing size judgement that are not further

discussed here are, for instance the effect of surrounding circles on the size

estimation of a target circle, the so-called Ebbinghaus illusion (discussed for
example in Massaro & Anderson, 1971), effect of experience or the role of
training and feedback (Olson, 1975b) and of repeatability of results or the
session-to-session correlations of size judgement on subjects (Teghtsoonian

& Teghtsoonian, 1971).

Exploratory Dara Analysis

Cleveland, Harris and McGill (1982, 1983) used circles of different sizes on

statistical maps. Subjects were told that these circles represented the average
daily long-distance telephone charges of different companies. The size of
one marked circle represented $100 and subjects were asked to estimate the
charges of a number of circles on the map (magnitude estimation).
Although there was a large variability across subjects, results showed fitted
power functions for individual subjects that were mostly close to 1.0 (the
median exponent was 0.96, upper and lower quartile 1.00 and 0.84 and the
range of exponents 0.58 - 1.27). Furthermore, no differences were found
between a group of scientifically trained subjects and high-school students,
between a map-like (grid ticks, labels, scale, border) and no map-like
condition or between the instruction to estimate dollars versus the
instruction to estimate the area of the stimuli.

Towards an experimental design

Reviewing the demands made on characteristics of symbol elements a
number of pertinent questions can now be examined in the present study.



112 Chapter 6

The first concerns the question as to the possibility of giving correct
estimates of the size of small symbols presented in a matrix. This is a varia-
tion on most psychophysical and cartographical studies in the size and
configuration of the stimuli. In our experiment, relatively small symbols
(0.5 -5.0 mm. diameter) will be used in a strict marrix format. In accordance
with a number of studies which use an extended legend, a legend of 5
symbols, including the two extremes, is used in the present study. It is to be
expected that overall estimarion errors will be quite small as, in addition to
the use of a legend, differences in size of the range-graded symbols used will
he made large enough to be correctly detectable (see Chapter 5).

When studying the raw data and median estimates of a number of
studies (e.g. Meihoefer 1973, Crawford, 1971, Cleveland et al., 1983) we
noted a tendency in subjects to use whole numbers or even multiples of five
or ten in their estimation of stimulus size. In the study by Crawford (1971)
for example, actual size differences of 3.45 and 3.32 resulted in a median of
estimates of 3.00, and differences of 5.97 and 6.18 in a median estimate of
5.00. This would mean thac slight variations in the exponent can be
obtained by careful selection of the size of the stimuli used. This finding is
also associated with Chang’s (1980) observation that subjects tend to group
stimuli according to categories before making actual magnitude estimates.
It would be wise to take account of this tendency when selecting various
sizes of point symbols for use in a matrix.

Another question concerns a variable not hitherto mentioned— the
grid line. The question is whether the presence or absence of grid lines in a
matrix has a differential effect on the precision of size estimations. The
possible influence of the use of grid lines is an interesting one, because this
method is not accessible in a map-like context. In a matrix, on the other
hand, it is possible to use grid lines next to a legend or standard, as a second
kind of reference when estimating the size of a symbol. Not only can the
symbols in the matrix be compared with each other or with the key values
in the legend, but the distance from the outer edge of a stimulus symbol to
the grid line enclosing its matrix cell or the amount of white space
surrounding the symbol in the cell can also be used in gathering informa-
tion on the correct size of the stimulus. This added source of information
could also be very helpful when comparing different cells or symbols in the
matrix. It is therefore expected that the presentation of grid lines will have
a positive effect on the accuracy of estimates of graphical symbols in the
matrix. This expectation is contrary to the results of an experiment by
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Dobson (1980). In a matching task in which the size of a tachistoscopically
presented fixation symbol had to be compared with the size of two identical
targets presented at equal distances to the left and the right of the target,
Dobson found a detrimental effect of grid lines. Accuracy of matching
decreased as a function of the graphical information content (cell, line or
map noise) of a fixated scene and as a function of the distance separating
the targets and the fixation symbol. With tachistoscopically presented
stimuli, the addition of extra information apparently acts as a disturbing
factor. Because there is no time limit in the experiment discussed below, a
positive effect from the amount of graphical information is nonetheless
expected.

A third question concerns the shape of the symbols. Is there a difference
in the estimation error between symbols of different shapes? It is quite
possible that the size of some symbol shapes can be more accurately
estimated than that of other shapes. A number of studies showed that size
judgements of “unidimensional” shapes, such as the length of a line or the
height of a bar are more accurate than judgements of “two-dimensional”
shapes, such as circles or squares. Unidimensional estimates generally result
in a power exponent closer to 1.0 compared to two-dimensional estimates.
In other words, the power function exponent is a decreasing function of
the number of spatial dimensions (Teghtsoonian, 1965). Studies comparing
two and three-dimensional shapes, such as cubes and spheres showed an even
greater estimation error for the three-dimensional shapes (Ekman &
Junge, 1961; Ekman, Lindman & William-Olsson, 1961). Since bars, as well
as circles and squares will be used in this study, it is expected that the
estimation of bars will show a slight error rate compared to those of circles
and squares.

6.3 Experiment 1

Stimulus material

Three sets of symbol shapes were used; circles, squares and bars, each set
consisting of 16 elements of different size. All elements were solid black.
Thirty elements of the same shape were presented in a 6 - 6 matrix (or 36 in
a 6 - 7 matrix in order to present each symbol the same number of times
overall) with cell sizes of 5 mm square. One cell was left empty in each row
and column of the 6.6 matrix. Sizes of the symbols were randomly assigned
to the cells of a matrix, with the restriction that no stimulus size occurred
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more than three times within a certain matrix. All symbol sizes were
presented 6 times. Furthermore, two conditions were used. In condition 1,
the symbols were presented in a 3 - 3 c¢m. square, with horizontal and
vertical grid lines projected between the 0.5 - 0.5-cm- square cells. In condi-
tion 2, no grid lines were drawn, leaving only the contour lines of the
square. Examples of the two conditions as presented in the experiment are
given in Figure 6.2. With all subjects getting the same 18 matrices in two
sessions in a counterbalar.ced order, the design of the experiment can be
defined as a crccoed, counterbalanced, repeated-measurements design.

condition 1 condition 2
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Figure 6.2 Examples of matrices with legend key as presented in the experiment

About four inches below the matrices a legend was given, consisting of 5
symbols covering the complete range (including the minimum and maxi-
mum sizes). The legend was not projected directly beneath the matrix to
make an eye movement necessary in the comparison of legend symbols and
matrix symbols, so that the matrix symbols nearest the legend are not
advantaged compared to the matrix symbols further away from the legend.
Dobson (1977) notes that, “while fixating a map at a reading distance of 12
inches, a subject can clearly see an area approximately 1.47 inches in
diameter. In order to view a new area outside of this foveal cone of clear
vision (of about 7 degrees of visual arc) the eye must move to that location.”

The area of the smallest circle and square and the height of the smallest
bar were given an arbitrary value (modulus) of 1. All other symbols had a
value directly proportional to the size of these smallest symbols. Hence the
largest bar, square and circle with values of 100 were exactly 100 times as
large as the smallest ones. The symbols were respectively 2.5, 5, 7, 10, 15, 20,
25, 30, 40, 50, 60, 70, 8" 90 and 100 times as large as the smallest symbol.
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This means that the ratio of subsequent elements in the series ranged from
2.5 (2.5:1) to 1.11 (100:90) These values are in accordance with correct
discrimination of stimuli of 90% or more (see Chapter 5).

Procedure

The experiment was a self-paced paper-and-pencil test. In each of the two
conditions (grid and no grid) a booklet containing nine cards was offered,
three cards for each of the symbols (dots, squares, bars). The order of the
cards was counterbalanced. Subjects were asked to study the matrices sequen-
tially and estimate the sizes of the symbols projected in the cells.
Estimations were entered in the cells of a table on a response form. Except
for the empty cells of this response table, it was identical to the test matrix.

Subjects

Twenty-one subjects from different faculties of the Eindhoven University
of Technology participated in this study. For every subject the experiment
consisted of two sessions, with an interval of at least one day between
sessions. The conditions or sessions were counterbalanced across subjects.
Within conditions, all subjects received the same matrices in a counter-
balanced order. Subjects were advised to take short breaks after each matrix,
but not to linger too long in their judgements of the individual stimuli.
Each condition took 45 to 65 minutes. Subjects were paid for participation.

Results and Discussion

1. Power law exponents

In the first part of the analysis log-log functions between actual and
estimated symbol sizes were calculated. The exponents of individual power-
function exponents were all found to be very close to the optimum of 1.00.
In Table 6.1 some examples of the exponents for various subjects are given,
together with the maximum and minimum exponents, the mean of
exponents and standard deviation.
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Table 6.1. Exponents of power functions for 5 of the 22 subjects (columns 1 to 5
inclusive), the range of exponents for all subjects (maximum and minimum), their
mean and the standard deviation of the mean. These values are shown for each of
the experimental conditions.

Subjects
condition 1 2 3 4 5 Min  Max Mean S.D.
dots grid .99  1.00 .97 1.02 .95 92 1.02 .99 .025
dots no grid 1.01 .96 1.01 .95 .91 .91 1.02 .99 .031
squares grid .99 .95 1.01 .96 1.00 .94 1.04 .98 .030
. ~~rm3no grid .95 .99 1.00 1.00 .97 .88 1.03 .98 .038
_ais grid .93 .87 .90 .86 .93 .84 197 .92 .033
_bars no grid 1.02  1.00 .99 .99  1.01 91 104 100 .025

In Figure 6.3, power functions are given for each of the three symbol
shapes. Functions are obtained by including estimates of both grid and no-
grid conditions. Exponents are very close to the value of 1.0, and the two
symbols, representing the grid and no-grid conditions, that are plotted at
each of the stimulus scale values nearly all coincide, indicating only a slight
difference between these two conditions. The correlation coefficients
between the log values of the actual size and the log values of all individual
estimates for the dots, squares and bars were respectively 0.98, 0.98 and 0.97,
which means that almost the complete variance of the estimates is associ-
ated with the actual symbol size. The standard error of estimates were,
respectively 0.08, 0.09 and 0.08 (all p<0.001).

The presence of an extended legend containing both maximum and
minimum, as well as some intermediate stimulus sizes appears to be suffi-
cient to avoid a general tendency to underestimation of differences
between stimuli.
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Figure 6.3 Log values of the estimated size of the for dots, squares and bars plotted
against the corresponding logs of actual values. At each stimulus-scale value the
average subjective values of grid and no-grid conditions are plotted. Each of the
three y-axes belongs to one of the symbol shapes.

2. Estimation error

Estimation errors as percentages of the real areal symbol size were calculated
as the crucial dependent variable in this second part of the analyses.
Estimation error can be defined as the ratio of the subjectively judged size
(Xs) minus the objective real size (X,) of a stimulus (X - X,) and the objec-
tive real size. In order to get percentages, this ratio has to be multiplied by
100.

Estimation error, x = )% 100 [6.3]

A positive estimation error therefore means an overestimation and a nega-
tive value an underestimation of the real stimulus size.

In addition to these relative estimation errors, their absolute values
(absolute estimation error) were also used in several analyses because the
direction of the estimation error sometimes acted as a kind of confounding
variable. Averaging large overestimations and underestimations can result
in 2 mean correct estimation, thus with an mean error of nil.
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Absolute estimation error, Ix| = l%- 100 [6.4]

In Table 6.2, mean estimartion errors, mean absolute estimation errors and
their respective standard deviations are shown for each of the experimental
conditions.

Table 6.2. Means and standard deviations of the estimation error, x, and absolute
estimation error, x|, for each of the experimental conditions.

Statistics
~ondition Mean of x St. Dev of x Mean of IxI St. Dev of Ix!
Ants grid 8.2 17.5 11.0 16.83
dots no grid 4.9 15.5 9.9 14.1
squares grid 9.8 16.6 12.7 15.2
squares no grid 5.1 17.4 11.8 15.3
bars grid 3.1 15.6 8.0 12.6
bars no grid -0.7 12.0 6.6 10.1

Grid versus no-grid condition

For the mean estimation error, the differences between grid and no-grid
were significant for all three symbol shapes (all p<.001). For the absolute
mean estimation error for only the bar symbols, the difference between
these conditions was significant (bars, p<.01; dots and squares, p>.02).

In the left-hand part of Figure 6.4, grid and no-grid condition are
compared for the three symbol shapes separately. In this figure it can be
seen that the mean overestimation is greater for the grid condition with all
symbol shapes. These findings seem to be contrary to the hypothesis that
the presence of grid lines has a positive effect on the size of the estimation
error. In the right-hand part, the mean absolute estimation error is shown
for all conditions. Differences between grid and no-grid conditions are
slighter.
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Figure 6.4 Average estimation errors (left-hand part) and average absolute estima-
tion errors for the grid and no-grid conditions for each of the three symbol shapes.
Estimation error and absolute estimation error are expressed as percentages of the
real size of the symbols.

Differences between symbols

All pairwise comparisons of symbols revealed significant differences (all
p<.01) except for the difference in mean estimation error between dots and
squares (p>.1). The most striking differences, however, are those between
bars on the one hand and circles and squares on the other. The mean
absolute estimation error of 6.6 for the bar, no-grid condition, shows that, on
average, estimations of subjects deviated 6.6% from the real areal size. Since
the mean estimation error for the same condition is -0.7, there were appar-
ently more underestimations than overestimations for this condition. For
all other conditions the number of overestimations exceeded the number
of underestimations.

Another noteworthy result is elucidated in Table 6.3. In this table the
frequency of estimation errors is distributed across the different stimulus
sizes. The sizes of the errors are almost all round values, as were the real sizes
of the different symbols presented. From this table it can be concluded that
the subjects in the experiment had a disposition to using round numbers
(multiples of 5 or 10) when estimating the areal sizes of graphical symbols
in the matrix. Stimuli with an actual relative size of 7 were, for example
estimated correctly in only 15% of the presentations. In not less than 38%
the estimated size of these stimuli was 10 and in 22% the estimated size was
5. These findings are in accordance with our hypothesis and the previously
mentioned observation of Chang (1980). It should be noted that, apart
from the sizes of the symbols in the legend, subjects were not informed
about the different symbol sizes used in the experiment, nor did they know
whether graduated or range-graded symbols were used.
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Table 6.3 Distribution of estimation errors in percentages, averaged over dots,
squares and bars and over grid and no-grid conditions

Actual stimulus size
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In Figure 6.5 a distribution of estimation errors is given for each of the
different symbol sizes (sizes of the symbols varied from 1 to 100 inclusive).
Errors are shown for grid (gray bars in the figure) and no-grid (white bars)
conditions. The estimation errors are averaged over dots, squares and bars.
The curve in this figure displays the differences between the values of grid
and no-grid conditions. It can be seen that the largest errors (in percentages
of the actual symbol size) were made with the smaller symbols, and notably
in the grid condition. From size 20 upwards the size of the estimation error
is quite stable. Differences between values of the grid and no-grid condi-
tions are relatively slight near the legend values (encircled values on the x-
axis) and increase as the difference in size between stimulus and nearest key
value increases.
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Figure 6.5 Estimation error for each of the symbol sizes on the x-axis, for both the
grid (gray bars) and no-grid (white bars) conditions. Values are obtained by averag-
ing over the symbol shapes. The curve indicates the difference between the values of
the grid and no-grid conditions. Encircled numbers on the x-axis indicate the values
that were included in the legend.

6.4 Conclusion

Subjective estimates of the size of symbols can be very well described by a
power function. All exponents of the curves for the dots, squares and bars
are close to an optimum of 1.00 and standard deviations of residuals
(portion of estimated values not associated with the actual values) can be
neglected.

As the exponents of the power functions were all close to a value of 1.00,
it is very improbable that Bertin’s value of 1.12 is deduced from power func-
tion exponents.

If estimation errors are expressed as percentages of the actual stimulus
size, bar symbols provide the most accurate estimations. The size of dots and
squares is generally slightly overestimated. Linear measures (bars) are proba-
bly easier to estimate than areal measures (dots and squares).

The presentation of an extended reference key is recommended, as the
size of the estimation errors decreases near the values of the reference keys.
When all sizes of the symbols used are included in the reference key, the
task of subjects changes from an actual estimation of the size of a stimulus
by interpolation to one of comparing and correctly recognising target
stimuli and legend keys.
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Subjects show an obvious tendency to use round numbers, for instance
multiples of 5 or 10, in their estimations of the size of graphical symbols.
This disposition seems to be less dependent on the actual size of the
presented symbols. The tendency to use round numbers links up with and
can be satisfied by application of the range-graded method.

The use of grid lines has to be discouraged, as it results in larger estima-
tion errors of the actual size of stimuli compared to the condition in which
these grid lines are absen:.
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Chapter 7. Structure and pattern recognition within a
graphical matrix

7.1 Abstract

The functioning of the graphical matrix at the intermediate (groups or
clusters of circle symbols) and overall (complete matrix) level of informa-
tion processing is investigated in this chapter.

First an experiment tested whether subjectively perceived clusters in the
matrix could be predicted by what was originally a cartographic model based
on three characteristics of the map and the symbols displayed on it. The
three model variables are based on Gestalt principles. Results showed that
all three variables of the model were related to the perception of clusters
although this relation was not strong enough to correctly predict all matrix
elements as either clustered or unclustered. In particular, many of the
perceived unclustered elements were wrongly estimated as they were
predicted to be part of a cluster. As most of these wrongly predicted groups
were either notably smaller than the perceived clusters or of a shape that
can be regarded as irregular, variables related to the number of symbols in a
group and to the continuity in shape of the clusters, respectively, might
prove to be useful. At the overall level, two experiments were performed on
the subjective ordering and rating of orderliness of matrices. Results
revealed that there is notable agreement between subjects and between
sessions regarding this orderliness. In addition, subjective ratings were accu-
rately predicted by a simple model that is based on geometric distances
(differences) between graphical symbols in adjacent matrix cells.

7.2 Introduction

We have demonstrated in the preceding chapter that subjects are able to
give fairly correct estimates of the size of graphical symbols when these
symbols are presented in a matrix and are accompanied by a number of keys
in an appended legend. A mere correct identification of individual symbol
elements, however, does not seem to provide too much of a surplus value of
the graphical matrix compared with a numerical matrix. Ordering differ-
ently sized symbols takes less time but depends on bigger differences
between the considered elements compared to the ordering of numerical
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values. Sizes of graphical elements can be estimated fairly easily and accu-
rately, but here again, the numerical counterparts are far more accurate.

We could conclude that, as long as precise ascertainment and discrimina-
tion of individual elements is essential, numerical presentation indubitably
has some surplus value compared with a graphical presentation. When,
however, the exact values of the items are less essential, when a large
number of comparisons has to be made, or when the time required to
discriminate elements is ot importance, then the graphical matrix seems to
provide the better option. The scale clearly turns in favour of the last-men-
.i22.d alternative when the processing of information at higher levels is
arawn into the comparison. The relative efficacy of the graphical matrix
becomes more obvious when we consider the information within the
matrix at the intermediate and overall levels.

We have already stated in Chapter 1 that one of the requirements of the
graphical matrix is the possibility of a fast, correct interpretation of the
overall picture or the total information that is displayed in the matrix.

Bertin (1983) claims that information presented in a graphical matrix

can be processed at various levels. Besides an analysis at the elementary level
(see also Chapter 4) interest can also be directed at (the hypothesis stated a
priori) or attracted to (the a posteriori or visual method) a particular matrix
subset. When elements of various sizes are scattered all over a matrix, a
contiguous group of symbols of similar size is not only bound to draw the
attention of the observer, but also brings a kind of order into the chaotic
whole. At the level of the overall image, the complete matrix can be evalu-
ated by rating the general distribution of individual elements.
A more practical description of the presence of coherent groups of similar-
sized graphical symbols is a situation in which some juxtaposed objects (in
the columns of the table) contain analogous profiles of scores on the charac-
teristics (in the rows). The same could apply to the characteristics compo-
nent; when the strongly related characteristics (showing the same profiles
along the object’s component) are juxtaposed within the matrix, this will
result in coherent groups of similar symbols.

In this chapter, the possibilities and strength of the graphical matrix at
the intermediate and overall levels of information processing will be inves-
tigated. At the intermediate level, visual recognition of clusters or patterns
of similar symbols wiil be further explored. We will check whether certain
psychophysical properties of the symbols in the matrix efficaciously explain
the patterns perceived -here. At the overall level we will investigate
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whether the visually estimated degree of overall structure of a matrix is
either a more general concept agreed upon by a majority of judges, a more
ambiguous notion varying uncertainly between various judges, or merely a
changing nuance of opinion in the mind of one and the same critic.

7.3 Recognition of clusters

When graphical symbols are presented in a matrix, some of them probably
seem to belong together because of some visual properties of the symbols
themselves and of their immediate environment on the map. When more
or less similar symbols are concentrated in a particular part of the matrix,
subjects tend to label this collection of symbols as a more or less coherent
group, cluster or pattern. In this section we will look more closely into this
phenomenon.

A study by Jenks (1975) inquired into several aspects of the visual
interpretation and comparison of maps. Some of the problems investigated
in this study and specifically of interest to our study concern
- the attributes of map symbolization and design that assist readers in

perceiving spatial patterns and
- individual differences in the perception of clusters. Do map readers as a

group see similar patterns on a map or is the regionalizing process
highly individual?
In the first experiment of Jenks’s study, 20 groups of experimentally
controlled dyads (pairs of symbols) or triads (groups of 3 symbols) of circles
were constructed. In both triads and dyads the circles were either presented
tangentially or radially spaced (See Figure 7.1).
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Figure 7.1 Dyads and triads created to give different visual impressions of cluster-

ing. A and B are examples of radially spaced dyads, C and D of tangential dyads, E
and F are radially spaced triads and G and H tangentially spaced triads.

The total amount of black (a summation of the areas of the symbols) was
the same in all triads; for the dyads it varied from one set to the other. Sets
of circles were presented at the same time and their degree of clustering had
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to be rated on a five-point scale (ranging from 5 (very clustered) to 1 (very
unclustered)). The resulting ordering of sets was more or less the same as in
the following series, decreasing in cluster strength, that is tangent triads,
tangent pairs, spaced triads and, lastly the set of spaced pairs. The results
indicated that map readers did, in fact, see sets of circles in clusters, as all sets
had median or mean values that were clearly greater than 1. An even more
important result was that map readers were reasonably consistent in their
visual ranking.

In a second experiment within the study, proportional circles were
=i cted on cartographical maps. The total amount of black was approxi-
.uately the same for all maps, whereas the total number of circles on each
map and their respective sizes varied considerably.

In this experiment, respondents were directed to create clusters by drawing
lines around a group of elements that all belonged to a region or “area of
sameness” (p. 316, see also Figure 7.2). The percentage of subjects that
selected the individual circles as being part of a cluster were calculated for
each of the circles by examining and comparing isolines, each isoline repre-
senting the decision of an incremental 10 percent of the sample. Isolines
are lines on a map joining places (here, graphic elements) of the same
height (here, percentage clustered). Jenks concluded that, in accordance
with the results of his first experiment, the group of subjects again saw
distinct regions in the proportional circle maps and showed a high degree of
agreement on the boundaries of the visual regions (examples of the isoline
method are given in Figures 7.2 and 7.4). In order to further quantify these
results, the relation between the perceived clustering and two physical
characteristics of the maps and their symbols were investigated. The first
hypothesis tested whether frequency of clustering was related to the poten-
tial surface (Stewart, 1947) of the symbols for any of the presented maps.
The potential surface is a derived measure that involves the size of, and the
distance between circles on the map. Correlations between the frequency
with which stimuli were clustered and their potential surface value ranged
from 0.62 to 0.92, with a mean of 0.81. The second variable measured the
total amount of blackness in the immediate environment of each of the
circles. The idea behind this hypothesis is that readers are unable to see
details over the whole area of the map in a single (eye) fixation.

Lines around regious therefore have to be drawn in segments. Jenks
proposes that these segments of boundaries fall within areas that can be seen
with a high degree ¢f -larity during a single fixation and that these
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boundaries are probably drawn between areas with significantly different
degrees of blackness (Jenks, p. 318-319). The relation between the number
of groupings of circles and the blackness of the fixated environment
produced correlation coefficients ranging from 0.69 to 0.91, with a mean of
0.85. Combining the results of both measures, it was concluded that
distance between circles, area of circles and the immediate environment
around a given circle all play a part in verbal clustering. It is unfortunate
that Jenks failed to examine the correlation between the two measures that
he used. When we compared the two correlation coefficients that were
found for each of the 6 different maps, it showed that their orderings were
nearly identical. This could mean that both measures are very strongly
interrelated and are, in fact measuring the same underlying concept.
Slocum and Gilmartin (1979) noted another restriction in the isoline
method used by Jenks. This method is based on how often individual
elements (circle symbols) are regarded as part of a cluster, but does not
indicate the cluster or clusters to which the symbols belong (see Figure 7.2).

50%

o 50% o
A B C

Figure 7.2 Within the group of elements presented on the left-hand side, two sepa-
rate clusters, A and B, are encircled in 50% of the presentations of the stimulus set. If
the isoline method were to be applied to display the clusters found in this set of
elements (right-hand side), only one large cluster, C, would be encountered.

The isoline method is suitable for correct demarcation of clusters so long as
the location of these groups is set wide apart on the map, with a number of
circles clustered less often in between. Whenever two clusters are in the
neighbourhood on a map, the isoline method will no longer recognize the
two as being separate groups but will regard them as a single one. To get
round this restriction, Slocum and Gilmartin proposed a new method for
marking the intensity of a relation between elements on a map. This
method is based on Thiessen polygons and geometrically related Delaunay
triangles (Figure 7.3). In this approach, the analysis is no longer based on
individual circles but rather on the linkage between two circles in a pair (see

Figure 7.4).
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,,,,,,, Delaunay friangles
Thiessen polygons

Figure 7.3 An example of the construction of Thiessen polygons and Delaunay
triangles. With Thiessen polygons the geometrical plane is divided into polygons
around the circle symbols which are situated at the centres of gravity. Every location
within the resulting boxed polygons is closer to its own centre of gravity than to any
other centre. Delaunay triangles are created by connecting the central points of all
neighbouring Thiessen polygons.
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Figure 7.4 Two methods of displaying clusters on a circle map: the isoline method
(left) and the Delaunay triangle method (right). In the isoline method, the curved lines
surround areas in which circle symbols are grouped in clusters by the same percent-
age of subjects. Each of the curves represents the responses of a specific percentage
of the subjects. In the Delaunay method the line width represents the percentage of
subjects that regard the connected stimuli as belonging to the same group.

The frequency of occurrence at which individual circles are perceived as
being part of one or the other cluster are not counted, but how frequently
adjacent elements are regarded as belonging to one and the same cluster.
Pursuing this approach to the symbols in a rectangular matrix would mean
having to consider all pairs of adjacent cells in the horizontal, vertical and
perhaps even diagonal directions. The analysis of the perceived clusters is
not further elaborated ... ‘he Slocum and Gilmartin study. Apart from
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counting how frequently circle pairs are clustered and marking the number
of times on the map by means of graduated line widths between Thiessen
neighbours, no methods for a further analysis are proposed.

A 1983 study by Slocum can be regarded in this respect as a sequel to the
study by Slocum and Gilmartin. The design of this study was comparable to
that previously discussed, subjects had to draw lines around visual clusters on
a number of graduated-circle maps (a total of 14 different maps showed the
distribution of various socioeconomic and agricultural phenomena). In
addition, the perceived clusters had to be rated on a 6-point scale ranging
from extremely poorly defined clusters (rating 1) to extremely well defined
clusters (rating 6). For each of the individual subjects (n=61), pairs of circles
were only considered clustered if the pair was part of a region on the map
around which a line was drawn in the first part of the task and this cluster
was given a rating of four or more in the second part. As in the Slocum and
Gilmartin study, the degree of clustering was defined as the percentage of
subjects who gave the above response. Pairs of stimuli were determined by
Thiessen polygons and Delaunay triangles.

Three hypotheses, based on both intuition and previous work of psycho-
logists and cartographers were developed to explain the location of
perceived clusters.

First hypothesis

The first hypothesis was that readers cluster circles that are in close proxim-
ity to one another. This hypothesis is based on the Gestalt principle of
proximity. A ratio of the edge-to-edge distance (bjj) and centre-to-centre
distance (c;j) of the individual circles in all pairs (i,j) was calculated as a
simple measure of proximity (pj; = bjj/ci;). This measure was then standard-
ized for the map environment, resulting in

py = DB [7.1]
J

where p’j; is the standardized proximity measure for the ith pair on the jth

map, pjj is the simple proximity measure computed above for the 7th pair

on the jth map, pj is the mean of all ratios on the jth map and sj is the

standard deviation of the ratios on the jth map.
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Second hypothesis

The second hypothesis was that readers cluster circles that are similar in size.
This hypothesis is based on the Gestalt principle of similarity of size. The
ratio of smallest to largest symbol in each pair of Delaunay neighbours was
calculated, resulting in a set of ratios ranging from 0 (when one of the
counties on the map contained no circle symbol) to 1 (the symbols of two
neighbouring counties are of equal size). This similarity measure was also
standardized comparable to the above-mentioned proximity measure,
giving

=SS 7.2]

cij= Sj

where €'jj is the standardized equality or similarity measure.

Third hypothesis

A third hypothesis concerned the immediate environment of clustered
circles. Map readers were thought to cluster circles within a region having a
high ratio of circle area to white background. A pair having a relatively
large sum of diameters (compared to the diameters of the circles in the
environment of this pair) would have a higher percentage of subjects
clustering it. This measure can be compared to the Gestalt principle of
figure and ground. In the analysis of this measure both the local map
environment and total map environment have to be considered. Inclusion
of the total environment was needed to account for the effects of the scale
of the map. A map X that contains circles that, on the average, are larger
than those of another map Y does not necessarily contain a larger number
of clustered pairs. If, however the sum of diameters is not considered
relative to the total map environment, then maps on larger scales would
necessarily have larger sums of diameters and the likelihood of clustering
would be correspondingly greater. The local environment was considered on
the basis of a two-step procedure. First the diameters of all circles within a
visual circle were summed. This visual circle measured 1.5 inch in diameter
and was centred on the midpoint between each pair of Delaunay neigh-
bours. The visual circle represents an area that can be seen with a high
degree of clarity during fixation at a normal reading distance. In the second
step, the sum of diameters within the visual circle was divided by the
proportion of the visual circle within the map boundary. This second step in
the environment justificau. 1 was deemed necessary in order to counteract
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the possibility of a relatively small number of perceived clusters near the
boundary of the map. The sum of diameters for visual circles that partly
cross the map boundary will be proportionally less than those that are
completely within these boundaries. The effects of local and total environ-
ment are combined by dividing the local environment measure by the sum
of diameters for all circles on the map (Slocum, p. 66). The resulting figure-
ground measure for a circle pair (fjk) becomes

n
Ddi
=1

where dj represents the diameter of circle i, n is the number of circles
within the visual circle, p is the proportion of a visual circle within the map
boundary and N is the number of circles on the map. The visual circle is
centred on the midpoint between stimulus j and stimulus k.

A logit analysis was used to test the three hypotheses. Results showed
that all three measures were significant at the 0.001 level, indicating that
each measure was explicitly related to the perceived clusters. The squared
correlation coefficient! for the figure-ground measure was found to be as
large as 0.26, for the measure of proximity a p2 of 0.15 was calculated and
the logit analysis of the similarity measure revealed a p2 of only 0.01. That
even this low p2 value was found to be significant is largely due to a very
large sample size of 2184 stimulus pairs. In this respect we note that Slocum
probably added all 156 stimulus pairs or Delaunay neighbours from all 14
maps to calculate only one single p2 for each of the three measures.

Because the model used by Slocum gives a reasonably good description of
the visual properties involved in the perception of spatial patterns and it
resulted in a 92% correct prediction of all circles as clustered or unclustered,
we will use a similar design in the following experiment, in which we try to

1A p correlacion was calculated for all three hypotheses, with  p2 = 1-[L*(B)/L*C].
L*(B) is the maximized log likelihood for each of the single explanatory variables and
L*(C) is the maximized log likelihood for the model with the best constant. The p2

represents the degree to which the hypothesized model improves upon the model with
only a constant.
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determine the influence of the above-described measures on the perception
of clusters in a graphical matrix.

7.3.1 Experiment 1

Stimulus material

Seven different matrices were used in our experiment. The size of each of
the matrices was 20 rows Ly 20 columns. The matrix cells were filled with
circle symbols. Tor bar symbols, the edge-to-edge and centre-to-centre
Aisrances are different for horizontal and vertical stimulus pairs. As this
almost certainly affects clustering, we will, for the time being, use only
circle symbols. The sizes of the individual circles were equal to those used in
the size estimation experiment discussed in the preceding chapter, and were
randomly determined for each of the 400 cells of the matrix. Because of
this randomization, we may expect an amount of blackness that is about
equal for the 7 matrices. The context of this experiment differs somewhat
from that of Slocum. In a rectangular matrix it is much easier to define the
relevant pairs of stimuli. All pairs of cells which are neighbours in horizon-
tal and vertical directions can be regarded as Delaunay neighbours. In addi-
tion to these horizontal and vertical pairs, it is also possible to cluster diago-
nal pairs, so that these also have to be included. In this way, a total of 1482
different pairs can be distinguished on each of the maps.

Procedure

Seven cards, each containing a different matrix, were compiled into a book-
let. The order of the cards in the booklets was counterbalanced across
subjects. Subjects were asked to draw lines around “visual clusters”, groups of
circles that appear to belong together and form a visual unit. This instruc-
tion is similar to those in previously discussed studies (Jenks, 1975, Slocum
and Gilmartin, 1979, Slocum, 1983). When the subjects were finished with
this first part of the task, they had to return to the first matrix and rate the
previously drawn clusters on a five-point scale (ranging from 1: poorly
defined cluster to 5: well defined cluster). Subjects were not allowed to
indicate new clusters on the maps while performing the second part of the
task. By separation of the two tasks we expected to get a more consistent
rating of the specific ciusters across the 7 cards.

In order to be considered as clustered, a circle pair had to meet two
requirements. For an iiid"-*dual subject, both stimuli in the pair were part
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of a group around which a line was drawn in the first part of the rask and
this group was rated with a value of three or more in the second part. For
the entire set of subjects, the degree of clustering for a specific circle pair was
the percentage of subjects that made the above response.

Subjects

Twenty-two subjects participated in the experiment. All subjects were
students of the Faculty of Architecture, Building and Planning of the
Eindhoven University of Technology. Subjects were paid for participation.

Results and Discussion

Analogous with the study by Slocum (1983) percentages clustered were
transformed to a logistic curve. In an ordinary least-squares regression
analysis the effects of proximity, similarity and figure-ground on the
perception of clusters were analysed.

Results showed that although the figure-ground measure gave the best
prediction of perceived clusters, there was a considerable difference in the r2
values between the different matrices (see Table 7.1). The 2 of this figure-
ground measure, for instance, ranged from 0.13 to 0.35. All r2 values of
Table 7.1 are highly significant (p<0.001) which is partly a function of the
large sample size? of 1482. The overall 12 including all stimuluspairs of all 7
matrices was 0.24. The same overall measures for similarity and proximity
were respectively 0.20 and 0.19.

Table 7.1 Regression values (r2) for each of the independent variables and for a
combination of all three measures. All r2 were significant at 0.001.

Matrix number

Independent variables 1 2 3 4 5 6 7

figure-ground (A) 0.31 0.18 0.27 0.35 0.13 0.25 0.23
proximity B) 0.22 016 0.19 024 0.15 0.18 0.21
similarity ©) 0.18 0.16 019 025 020 0.16 0.29
total (A+B+C) 0.40 0.30 0.36 0.46 0.31 0.35 0.40

2 Magnitudes of p2 values are much lower than 2 values obtained for the same data.

Slocum (p. 64) mentions that the highest p2 value of 0.28 that he obtained for the data in
his experiment corresponded to an r2 value of 0.68 for the same data. When we consider
that differences between these two types of correlation coefficients can be of this
magnitude, the r2 values in Table 7.1 are, although significant, rather low.
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Although Slocum does not separately analyse the various maps that he used
in his experiment, he makes it appear that the correlation values did not
differ between the various maps. In our experiment some clear-cut
differences in correlation coefficients between maps were found.

In order to explain the differences in the explanatory power of the
independent variables between maps, we visually studied the different maps
presented to the subjects. This inspection showed that, in spite of random-
ization of circle sizes, the circles in some of the maps seemed to be some-
what better orga.iized. Even with a randomization of circles of various sizes,
cizbiects appear to recognize clusters and, the same ones, at that. For exam-
nle, this can be disclosed by measuring the correlation (r2) between the
number of subjectively perceived clusters in a matrix and the corresponding
“total” correlation value, A+B+C of the same matrix (as shown in Table
7.1). This correlation was 0.84, which means that the explanatory power of
the independent variables is related to, and increases with, the number of
perceived clusters. Clusters apparently become easier to predict when the
circle symbols are better organized in a matrix.
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Standardized figure ground value (see Equation 7.3)

Figure 7.5 Plot showing the distribution of logit values of percentage perceived
clustering to the values of one of the independent variables: the figure-ground
measure (equation 6.3). Displayed data are from one of the matrices (matrix number
4 of Table 7.1) presented in the experiment. Circle symbols in this figure represent
the 1482 stimulus pairs of the matrix.

A second observation is on the method of Slocum. He adds the different
cards and estimates only one average p2 value for each of the independent
variables. Of the total nu. "er of incorrectly predicted circles as clustered or
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unclustered in the Slocum study, 37% were located on two of the 14 maps,
whereas another 8 maps contained only 24% of these wrongly predicted
circles. This unequal distribution of incorrectly predicted elements is in line
with the differences in r2 between matrices found in our experiment and
makes Slocum’s method of simply adding all stimulus pairs of different
maps highly questionable. Thus, the p2 might vary more between maps
than Slocum expects.

When we look at the scatter plot in Figure 7.5 that displays the relation
between logit values on the y-axis and the figure-ground values on the x-
axis we note two things (in this figure, results of only one of the matrices,
namely matrix number 4 are shown). First, we can see that all stimulus
pairs, represented by circles in the figure, that are perceived to be clustered
(by a large number of subjects) are concentrated in the right half of the
figure. This means that the figure-ground measure (equation 7.3) is
definitely related to the perception of clusters. If we were to use the figure-
ground measure to predict the location of the perceived clusters, by requir-
ing a minimum figure-ground value, we would not miss too many of those
actually perceived. The second conspicuous aspect of this figure is that even
in the right half of the display there are many stimulus pairs that have a
low logit value. A prediction of the perceived clusters would result in a large
number of stimulus pairs that, in fact were not visually recognised as
clusters. The same phenomenon applies to the measures of proximity and
similarity and to a less extent also to the total value (A+B+C in Table 7.1)
that includes all three independent variables.

To explore these results further, some computer print-outs of the origi-
nal matrices were made in which lines were drawn between all stimuli of
the stimulus pairs that were perceived to be clustered by 25% or more of the
subjects3. In a similar set of print-outs, all stimuli of the pairs that were
predicted to be clustered, as based on the figure-ground measure, were
connected. When the stimulus pairs of these two drawings are visually
compared, two remarkable differences can be noted.

1. A large number of the groups of circle symbols that are predicted to be
clustered, but perceived to be unclustered, contains only a small number
of elements. For matrix nr. 4, a total of seven of the predicted clusters

3 The value of 25% is based on a visual inspection of the plots in which logic values were
plotted either to one of the independent variables or to an aggregated value of all three
independent variables. An example of such a plot is shown in Figure 7.5.
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consisted of only 2 or 3 elements. The average number of elements in
the perceived clusters is 7.5.

2. The perceived clusters generally have a regular shape, whereas a large
number of the predicted clusters shows all kinds of irregular protrusions.
This is illustrated in Figure 7.6. In this figure a small part of martrix
number 4 is shown. In the left part of this figure the stimulus pairs that
were perceived to be grouped assume an almost rectangular shape. The
predicted pairs are shown in the right-hand part.
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Figure 7.6. A comparison between perceived stimulus pairs and pairs predicted by
the figure-ground variable (equation 7.3). Lines that are drawn between the circle
symbols indicate that these symbols were either predicted to be clustered or
perceived to be so by 25% or more of the subjects.

Stimulus pair AG-B5 is one of the predicted pairs, but AG-AS and AG-B6 are
not considered to belong together. The same effect can be seen with respect
to stimuli E4 and E5. Although each of them is connected with D4, they
are not connected with each other. In the string B4-C3-D2-D3, each of the
elements is only connected with the following one, but this string is not
continuous. In the perceived clusters these irregular-shaped clusters seldom
occur. Some of the continuous or less continuous strings of elements even
linked a number of more coherent clusters. Thus large, irregular-shaped
groups of symbols could be seen.

These two apparent characteristics of wrongly predicted pairs make them
traceable. Introduction of the correct control variables would diminish the
occurrence of such groups and would reinforce the predictive power of the
model. The effect of irregularly shaped clusters could be diminished by
tracking the contour line of the cluster (and examining its convexities) or
by counting the number of connections between a specific element of the
group and its other =lements. Criteria could be drawn up governing the
minimum number of required connections before an element could be
considered as part of a cluster. These criteria would have to take account of
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the position of the stimulus within the cluster; as an element is surrounded
by a larger number of other elements, it also needs more connections in
order to be regarded as a fully qualified member of the cluster. The number
of circles in a cluster seems to be a second useful control variable. To intro-
duce both these variables would mean that requirements of proximity,
similarity and figure-ground are not restricted to the immediate Delaunay
neighbour(s) of a specific circle stimulus but would also include other
elements which, though not Delaunay neighbours, are nonetheless located
in the immediate environment.

Some observations are called for on the comparison of our experiment
with that of Slocum. Slocum states that 82 percent of all neighbouring
pairs were chosen in either the 0-25 or the 76-100 percent category. The
results of our experiment are even more extreme, only 530 stimulus pairs
(5.1%) were clustered by more than 25% of the subjects and given ratings of
3 or more, whereas all other pairs fell within the 0-25 percent category.

Another major difference between the cartographical maps of the previ-
ously discussed studies and the matrix in our experiment is the kind of data
that are shown. Actual socioeconomic and agricultural phenomena were
shown on cartographical maps. In the matrix, on the other hand, the sizes
of circles were determined randomly. It is not illogical to assume that at
least some of the phenomena shown on the map are inherently less
uniformly distributed across the counties of a state, which would be
reflected in more and larger coherent groups of similar-sized stimuli on the
map and lead to easier perception of these groups. In the matrix, the occur-
rence of large, coherent groups is less obvious.

On examining the particular maps of subjects, we noted that some
subjects had drawn lines around similar-sized but very small symbols, around
strings of adjacent circles that showed a continuous increase in size from
one end of the cluster to the other, or around groups of circles in which a
certain type of symmetry was to be seen. These stimuli might seem to
belong together from an aesthetic point of view, but were not really
intended to be clustered. Obviously, our intention was not followed
properly by these subjects. Another possibility is that they naturally tended
to employ other criteria of grouping.

The nonoptimal explanatory power of the independent variables
definitely calls for an increase in the number of independent variables. To
be more specific, how do the stimulus pairs perceived to be clustered in the



138 Chapter 7

right-hand part of Figure 7.5 differ from the stimulus pairs not perceived
to be clustered in the same part of the figure? The previously mentioned
“minimum number of circles in a cluster” and “contiguity of the shape of a
cluster” could prove to be rewarding additions.

7.4 Rating of structure

The second object of this chapter involves the processing of information at
the overall level. We can divide this problem into two questions, one regard-
ing the perception and subjective interpretation of the overall distribution
of elements in the matrix (or in brief, the order of the martrix) and the
other concerning an objective measure about the organization of elements
in a matrix.

Objective measure

To start with the second issue, we could ask ourselves the question whether
there are any standard statistical or other objective mathematical measures
that give an indication of the subjective ordering of different elements in a
rectangular whole. The structural information theory (Leeuwenberg, 1971,
van der Helm, 1988), for example, aims at describing complex visual
patterns in a concise coded format containing as few elements as possible.
The (objective) minimum number of elements needed to describe a
graphical matrix and the subjectively rated orderliness could very well be
related. In order to attain this code, the structural information theory
introduces a number of coding rules (based on previous work of, among
others, Attneave, 1957 and Garner, 1974). Experimental research has
shown that an important role is played by three types of regularity, that is
iteration, symmetry and alternation (van der Helm, 1988). These types of
regularity, however, do not fit in with our interpretation of the concept of
structure.

We have to bear in mind that our graphical matrix represents a number of
characteristics that are plotted to a number of objects. When one or both
sets (objects and/or characteristics) are ordered, this means that character-
istics or objects having the same values are juxtaposed within the matrix.
The amount of structure or order is, on that account, directly related to the
number of elements that are classified in groups, where there is as little
variance as possible between the elements in a group. The regularity types of
symmetry and alternation of the structural information theory are there-
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fore not in accordance with this interpretation of the structure concept.
Moreover, the structural information theory does not take the size of
differences into account. Elements are either the same or different. In our
interpretation, the size of differences matters positively. The intensity of
the relation between two graphical elements shows a continuous decrease as
the difference increases.

A more valid measure of ordering is given by the statistical distance
measures. The Euclidean and the city-block metrics, for example, give an
indication of the distance between two projected points on a two-dimen-
sional plane. A comparable measure can be introduced in a rectangular
matrix. If the distance between two adjoining elements (i,j) and (i,j+1) in
the horizontal direction or (i+1,)) in the vertical direction is defined as (ni,j
- nj,j+1) or (ni,j - nj+1,j), where (nj,j is the frequency or size of the element
in cell 1,j) a measure of distance (d) of a specific configuration of elements
in a matrix is obtained by

k-1 r r-1 k

d= 3 T njj-nijell+ T3 |nij-niclj| [7.4]
j=1 =1 1=1 =1

J
An index of order (0) can then be defined as

0=

[7.5]

o f—

In equation 7.4, the first component of the right-hand part expresses the
total distance between columns, the second component indicating the total
distance between rows. The size of the specific elements is equal to nij which
normally stands for the frequency in the jjth cell. The variable r equals the
number of rows and k is number of columns.

This measure includes only the differences between neighbouring elements
in the horizontal and vertical directions, which is in accordance with our
interpretation of the concept of ordert. Whereas the distance functions
originally give an indication of metric distances between two projected
points on a two-dimensional plane, in our context this measure expresses

4In the pattern-recognition experiment, neighbouring elements in a diagonal direction
were also reckoned with in setting up the standardized similarity and proximity
measures. By analogy, the order equation can be extended by inclusion of these diagonal
paits. As the centre-to-centre distance between diagonal pairs is greater than that between
horizontal or vertical pairs, these pairs should be weighted accordingly. These weights
could, for example, be calculated using the Euclidean distance measure or the city-block
metric (Everitt, 1978).
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the areal size differences between two juxtaposed circle symbols in a matrix.
A disadvantage of this measure is that it is tied to the matrix at issue.
Different matrices will return different values of ordering and the measure
does not permit direct comparison of matrices that contain different sets of
elements. This disadvantage continues when we are in search of the best
solution or configuration. Although the orderliness indicator accepts the
better ordered matrix pointed out in a series, it cannot tell whether this
relatively best matrix is alsu absolutely the best one attainable.

Subiortive measure

A first impression of the subjective interpretation of order is obrained
through an experiment in which a set of cards had to be ordered. A number
of subjects had to align a set of cards on the semantic differential “ordered -
unordered” (rank them according to the amount of clustering of the
symbols in the matrix). Comparing and judging matrices is a task analo-
gous to an evaluation of similarities between cartographical maps presented
in pairs or triads. A large number of studies has shown that subjects are very
capable of performing this type of task (Lloyd and Steinke, 1976,1977,
Muller, 1975, Olson, 1975a). In a second experiment, subjects had to rate
the difference in orderliness of two pairwise presented matrices on a
continuous scale. Results of these experiments can be used, not only to test
the generality of the concept of structure, but also validate the measure of
“order” used in the analysis.

7.4.1 Experiment 2

Stimulus material

Three series of cards were presented to six subjects in this experiment. Each
card contained a drawn 25 - 25 matrix with a number of cells filled with
dot-like symbols. An example of a card, as presented in this experiment, is
shown in Figure 7.7. Two series (A and B) consisted of 8 cards, the third
series (C) had 10 cards. Circles of two different sizes were used in series A,
that is, 125 small dots and 102 large dots. In series B the circles were of 3
different sizes, with 44 small, 60 medium and 79 large dots. Four different
categories were used in series C, with each category containing 125 circles.
Cells that didn’t contain a circle symbol were left empty. All cards within a
series contained the same circle elements, the only difference being the
location of the circles 1i: "' e matrix. The different configurations (= cards)
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within a series were obtained through a number of consecutive exchanges
of a variable number of rows and columns of the same basic matrix.
Statistically, this means that all cards within a series have the same %2 value.

Procedure

Subjects had to order the cards or matrices of each series according to the
“orderliness” of the circles in the matrix. In this instruction, orderliness was
defined as the degree to which elements of similar size appeared to be

grouped.

Subjects

Six male students of the Faculty of Architecture, Building and Planning
participated in this experiment. The experiment was combined with
another in which circle symbols had to be interactively grouped. This group-
ing experiment will be discussed in the next chapter. The card-sorting task
was performed twice; preceding and following upon the grouping experi-
ment. Each of the two sessions took only about 5 minutes; the time interval
between the sessions was two to three hours.

Results

The association or correlation between the ranking of the series by the
different subjects was measured by Kendall’s coefficient of concordance, W
(Siegel and Castellan, 1988, p.262). Results of the 12 sets of ranking (the
two sessions of each individual were regarded as results from different
subjects) showed coefficients of 0.98, 0.97 and 0.95 for the three different
series of respectively 8, 8 and 10 cards. All three values were highly signifi-
cant (p<.001). Separate measurements of the sessions before and after the
grouping experiment gave similar results. Comparing (the separate rank-
ings of) the two sessions for all three series and all subjects showed signifi-
cant results for all comparisons, with rg (Spearman rank-order correlation)
values ranging from 0.83 (p<.05) to 1.0 (Table 7.2). Finally, correlation
coefficients between every subjective ranking and an objective ranking
(based on equation 7.5) were calculated (also rs). All coefficients were

significant, with values ranging from 0.78 (p<.05) to 1.0.
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Table 7.2 Rank-order correlation coefficients (rg) between the two sessions (range
of the individual coefficients in the second and their mean in the third column) and
between the objectively defined measure and the subjective performance (fourth and
fifth columns)

between-session reliability reliability between obj. and subj. measure
series range mean range mean
series A 0.83 - 1.00* 0.95 0.78 - 1.00* 0.97
series B 0.95 - 1.00** 0.98 0.95 - 1.00*" 0.98
series C 0.92 - 1.00"** 0.98 0.95 - 1.00*** 0.98

ol .0.05; " all p<0.005; *** all p<0.001

Discussion

The results of this experiment indicate that the concept of orderliness of

graphical circle elements in a matrix is

- a generally accepted concept which can be confirmed by the high degree
of “between subjects” agreement.

- a consistent phenomenon, which is confirmed by the high degree of

“within subjects” agreement (between sessions).

The objective measure based on the “distances” between the elements in the
matrix (equations 7.4 and 7.5) seems to give a fairly accurate description of
the underlying concept and results in a high correlation between the objec-
tive statistical measure and the subjective performance.

This last point merits an observation. In the validation of the objective
measure we related an ordinally scaled variable (order number of a card in a
series) with a variable that was originally at an interval or ratio level
(objective value of orderliness). After comparing two cards in a series, we can
only conclude that one of them was, subjectively considered, more ordered,
whereas the objective measure allows a more exact specification of the
difference or ratio in orderliness between the two cards. If the subjective
opinion were to be measured at a higher level of measurement, the valida-
tion of the objective criterion might become stronger. This was done in the
following experiment.

7.4.2 Experiment 3

Stimulus material

In this experiment, two graphical matrices were presented at the same time
on a computer screen. I.._ same 3 series of cards were used as in the preced-
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ing test. One of the matrices (the reference matrix) was the same through-
out the whole series. The relative orderliness of the reference was moderate,
so that some targets were better ordered, while others had lower values of
objective arrangement. To prevent too easy recognition of the reference
matrix in the pairwise presentations, the reference matrix was randomly
alternated with its mirrored or rotated image, on the hypothesis that these
operations did not change the perception. In addition, the position of
target and reference matrix in the display (right or left) was randomized. A
target matrix was displayed beside the reference matrix. Target and
reference were always of the same series.

Procedure

The task of the subjects was to mark the difference in orderliness between
the target and reference matrix. For that purpose they had to mark two
points on vertical lines, one point and vertical line for each of the matrices.
A higher position on the scale indicated a better ordered matrix. Subjects
were instructed to choose the marking points in such a way that these
expressed both orderliness of the individual martrices as well as the
difference between them. The lines were projected midway between the
reference and target (see Figure 7.7).

The rating of differences in amount of structure between matrices in a
series is a more demanding cognitive task than rank-ordering the same
series of matrices on their amount of structure. As compared to the rank-
ordering task, rating of differences requires an additional determination of
the exact magnitude of the difference and a subsequent translation of this
magnitude into a numerical value, or here, to a difference in height on
yardsticks. In each trial of the rating task, however, only one pairwise
comparison has to be made and decisions for each pair of matrices are
independent, whereas the rank-ordering task requires a multitude of
related comparisons (Lloyd and Steinke, 1976, 1977). In addition to the
previously discussed distance values, the response time of the trials was also
recorded. Response time is defined as the time between the presentation of
the matrices on the screen and the second response of the subject on one of
the yardsticks. A new trial started and another pair of matrices was
presented on the screen three seconds after this second response had been
given. There were no time restrictions in this self-paced task.
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Figure 7.7. Example of a pair of matrices with yardsticks and trial number as
presented on the screen during the experiment. Matrices had to be rated by pointing
to the yardsticks at lengths proportional to the orderliness of the matrices.

Subjects

Six subjects participated in this experiment, 5 male and 1 female. All were
students or staff members of the Faculty of Architecture, Building and
Planning. The three series were presented sequentially and were counter-
balanced between subjects. Two of the subjects performed the task twice, at
an interval of at least one day. The other subjects participated once.
Performance of the task took 10 to 15 minutes. Subjects were not paid for
participation.

Results

In the analysis, the relation between two subjective and two corresponding
objective values were calculated. One set of values consisted of the objective
and subjective differences in orderliness. Objective difference was estimated
by subtracting the orderliness of the reference and the target matrices,
calculated according to equation 7.5. The subjective difference was the
simple difference in y-value of the two points indicated on the vertical
measuring staffs. The other set contained the objective and subjective ratios
in orderliness which were estimated in the same way. Correlation coeffi-
cients (Pearson r) for the differences and ratios are given in Table 7.3.
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Table 7.3 Correlation coefficients between objective measures and the subjective
performance for their differences and ratios. Range of individual coefficients with their
mean, median and standard deviations are shown.

differences ratios

series  range mean _median St dev range mean median St dev

seriesA  091-096 0.94 0.95 0.02 0.73-097 0.88 0.90 0.09
seriesB  0.77-095 0.89 0.90 0.06 074-093 0.87 0.89 0.07
seriesC  0.83-0.97 0.91 0.91 0.05 0.79-098 0.87 0.86 0.07

The objective differences and ratios between target and reference matrix
were closely related to their corresponding subjective counterparts. The
value indicating the difference between matrices seems to be somewhat
more consistent than the ratio indications when subjects are compared. This
is expressed by a shorter range and a lower variance of the first-mentioned
correlation coefficients. Within-subject consistency was calculated by
correlating the subjective responses of both sessions. The two subjects that
performed the task twice turned out to be fairly consistent in their ratings,
as correlations for the different series ranged from 0.92 to 0.95 for the
differences and 0.89 to 0.96 for the ratio measure.

Finally, the relation between response time and the actual differences in
orderliness was calculated between target and reference matrix.
Correlations varied considerably between subjects and series and most of
them failed to reach significance, but on the average, a slight negative
tendency could be noted. For the actual differences, the correlations with
response time ranged from +0.13 to -0.62, yielding an average of -0.28 (St.
Dev., 0.19). For judged differences, the range was from +0.58 to -0.21, with
an average of +0.23 (St Dev 0.22). Greater differences between the pairwise
presented matrices generally resulted in a slightly (n.s.) shorter response
time.

7.5 Conclusion

The results of the experiments on recognition of patterns and order are
very promising. Although the variables of proximity, similarity and figure-
ground are still not sufficiently elaborated for an optimal prediction of
perceived clusters in a graphical matrix, they appear to provide an appropri-
ate starting point for a more extensive model. Inclusion in the predictive
model of some perceptively distinguishing characteristics of these clusters,
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such as the number of circles in a perceived cluster and their regularity of
shape, would positively increase its explanatory power. Coherent groups
that contain only a few elements are generally not perceived as a cluster.
The same is true for discontinuous strings of circle symbols or those
elements of a group that can be considered as irregular protrusions. In order
to include the variables “number of elements in a cluster” and “contiguity
of cluster shape” we have, at least partially, to leave the stimulus pair or
Delaunay neighbour as starting point in the sampling network. Next-door
neighbours and perhaps even next-to-next-door neighbours of each stimu-
wil L. the matrix have to be taken into consideration. To give a more
actailed account of the influence of these variables on the subjective percep-
tion of clusters, further research on the variables themselves and their rela-
tion to those previously discussed is certainly needed.

As regards orderliness in the distribution of circles of various size in a
matrix, there is strong consistency in its evaluation or rating, both in time
and as between different subjects. A simple objective difference between two
points, based on geometric distance functions, shows a strong correlation
with the subjectively noted order. These two consistencies make this
method broadly suitable for demonstrating and rating improvements in
the structure of tabulated data.

In practice, the results of the experiments described in this chapter open
up avenues for the graphical presentation of data tables and warrant the use
of the graphical matrix for this purpose. Intended groups of circles will be
generally perceived as such by the map reader and tables in which data are
more coherently organized will also be perceived to be more structured, and
be rated accordingly. It should be noted that even in matrices in which
graphical symbols were assigned at random to the matrix cells, as in experi-
ment 1, subjects appear to mark clusters. A large part of these clusters are,
moreover, identified by a preponderance of subjects.

Once more, the main advantage of graphical presentation of data tables
is the immediacy with which their contents are revealed on the interme-
diate and higher level of information processing. Graphical presentation of
data tables by means of the graphical matrix could save much time for
people scrutinizing large numerical tables in search of patterns and order.
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Chapter 8 Construction of patterns

8.1 Abstract

The interactive aspect of the reorderable matrix is further elaborated in this
chapter. In an experiment, subjects were required to structure a collection
of circle elements that had been mixed together before presentation on a
visual display terminal. Two aspects had to be considered in this structuring
task. The first was to place the scattered circle symbols in groups or clusters,
the second involved joining the developing groups along a continuously
increasing or decreasing line (function) within the matrix.

In the easier experimental conditions matrices were presented which could
be reconstructed into a number of clear-cut rectangular groups with little
overlap between them. They were all easily dealt with by the subjects, even
though the number of operations needed to achieve the optimum differed
widely. With the more difficult matrices, results were more divergent.

As not all of these matrices were solved, the number of operations and the
rated end results differed between subjects and specific experimental condi-
tions. Study of the structuring process itself showed that the best results
were obtained when both ordering and association aspects were under
review throughout the process. The number of operations needed to reach
practically optimum end results depended on the complexity of the actions
carried out by the diverse subjects. In this strict experimental context, some
standard clustering algorithms proved useful in putting the subjects on the
right road.

8.2 Introduction

The results of the experiments that were discussed in Chapter 7 yielded two
important results.

First, it was found possible to roughly predict groups of elements in a
matrix that map readers actually perceive to be clustered. The second major
result refers to the general level of information processing. At this level,
the perceived orderliness or amount of structure in a matrix proved to be
very consistent. At the same time, the concept could be accurately described
by a simple model. The implication of these two findings is that the graphi-
cal matrix offers some very interesting possibilities as a tool for the
presentation of tabulated data.
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On one hand, the display remains close to the original data set in present-
ing all its individual items. On the other, the matrix proves to be suitable
for fast and easy processing, not only of individual elements but also of
larger chunks of information, coherent clusters of symbol elements or even
the complete picture (read matrix). The matrix can therefore be regarded as
both a large collection of small graphical symbols and as one visual image
with possibly some conspicuous properties. The complete image and the
clusters, as its outstanding parts, are easily recognized and rated as such on
the semantically aifferential concept of structured - unstructured.

T+ nrder to be useful in the analysis of information, the graphical matrix

“zs to meet a second major requirement, that is the possibility of actively
organizing data. Multivariate data, gathered in order to substantiate deci-
sion making in architectural and planning problems, mostly originate in a
large unorganized collection of information items. The data are not always
specially collected for a specific investigation, but can be (partly) copied form
existing data bases. We can think of possible information sources, such as
the geographic location of building sites, demographic information on
town development and knowledge about city traffic. In these sources objects
and their characteristics, for example, may be originally ordered alphabeti-
cally or chronologically. In order to make decisions that are based on, and
verified by, the original information, the original layout of objects and
characteristics often have to be reorganized. Before similarities, contrasts
and relationships between objects can be brought to light, the information
needs to be given a more structured appearance and groups with elements
of similar size have to be made conspicuous. Translated into the matrix
format, this would mean that we have to rearrange rows and columns of
the matrix. If map (matrix) readers could indeed discover similarities,
contrasts and relationships within the matrix by active organisation and
clustering of its elements, it would be clear that the graphical matrix is not
only suitable as a presentation tool but also as an analytical tool. When the
hypothesis “the graphical matrix is a usable tool in the active organisation
(relationships) and clustering (similarities and contrasts) of multivariate
data” is at stake, two issues arise. The first concerns an operationalisation of
the specific task laid on the subjects (the definition of the verbs to organize
and to cluster, stated in the preceding sentence), its validation and the eval-
uation of its results. The second issue concerns the tool or program itself.
To test the hypothesis, we have to create a tool that is optimally adapted to
the interactive task that it has to execute. Since we do not know in advance
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what strategies people will use and what specific actions they want to
perform, we can, for the time being, only offer them some basic, mathe-
matically legitimate options in the ordering process.

8.3 Operationalisation of the structuring task

Structuring the information in a rectangular data matrix requires us to
distinguish two different aspects in the task. The first has to do with group-
ing or clustering equivalent elements and will be discussed in the next
section on orderliness. The second aspect, concerning the overall organisa-
tion, moves somewhat more in the direction of interpretation of data and
has to do with trying to discover underlying relationships between the two
components of the matrix, the objects on one axis and their features on the
other axis. This aspect will be discussed in the section on association.

8.3.1 Orderliness

In Chapter 7 the perceived orderliness of elements in a matrix was evalu-
ated by comparing the subjective ratings of matrices to an objective
measure. This measure, based on the “distance” between elements, gives an
indication of the “degree of grouping” in elements of similar size in
clusters. As this degree of grouping is also equivalent to the degree of adja-
cency of objects and features with similar profiles in the matrix, there is a
direct functional relationship between the distance measure and the group-
ing of equivalent objects and features. One of the purposes of the reorder-
able matrix is to discover similarities and contrasts between different objects
or between various features. As far as this purpose is concerned, our distance
measure seems to provide a correct bench-mark in the analysis of authentic
multivariate data.

There is, however, one important restriction to this measure, it gives a
description or a relative appraisal of a specific configuration of elements in
a matrix, but is not suitable for seeking an optimal solution in an eventual
search. Although we could theoretically calculate the orderliness of each
possible configuration, in practice this method is coarse and time-consum-
ing. We should bear in mind that the number of possible configurations
equals the product of the factorials of the number of rows or features and
columns or objects (N=r! - k!, where r equals the number of rows, k equals
the number of columns and N equals the number of possible configura-
tions). With a matrix of 25 rows and 25 columns there are about 2.4 . 1050
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possible and unique ways of ordering the rows and columns. Thus the search
space (e.g. Gick and Holyoak, 1979) for large sets of data (long x and y-
components) becomes extremely large.

It is also difficult to attain the optimum configuration of the row and
column variables by more intricate statistical or mathematical analyses.
Analyses normally used with problems related to the present one, often
require additional information on the displayed items, such as the number
of clusters that are to be expected and the permissible maximum within
cluster variance. I'he shape of the clusters created by different clustering
«chiliques depends on the specific algorithm used. Selection of the right
aigorithm, in turn, depends on the hypothesis to be tested and the charac-
teristics of the data set itself. If this information were at hand, we could, in
a very derailed elaboration and operationalisation of the hypothesis,
compare the results of some of the corresponding clustering algorithms to
results obtained in a subjective interactive approach. The results of these
analyses could be compared with the earlier described measure of ordering.
Some of the disadvantages of the statistical approach have been briefly
discussed in Chapter 1.

8.3.2 Association

In addition to the ordering of equivalent elements in the matrix, a second
aspect of a well-organized table is the way it reveals a tentatively present
association between the two components of the table (the x and y-compo-
nents or the objects and features along the axes). This search for an associa-
tion that is operative between the whole line of the two components of the
matrix and not just between a small number of objects or features, in the
form of clusters, is often enacted on the transitional area between analysis
and interpretation. In a study on the formalization of the Gestalt rule of
proximity in pattern description, van Oeffelen and Vos (1983) make a
distinction between pattern recognition at the perceptive and cognitive
levels. They note that, whereas perceptive processes encompass the extrac-
tion of features and the detection of simple objects, “cognitive-level
techniques mostly deal with formal aspects of picture syntax and scene
analysis in so far as they are based on symbol structure manipulation”. At
this level, pattern recogrition depends heavily on the availability of know-
ledge based on past experiences. For, as far as an analysis of data is no longer
based exclusively on visual features, but involves external knowledge on the
dara displayed, that is, wu.n the data are no longer considered as anony-
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mous, the cognitive level of interpretation has been reached. We should
take care not to confuse this cognitive level of interpretation with the
cognitive (or strategic) aspects involved in the actual process of analysis itself.
The latter are a description of the interaction of options provided by the
(analysis) tool and the formalized intentions and plans of the subject.

An association between the two components of the matrix can be
visually represented by linking the discovered clusters along a continuously
descending or ascending line. The aim is thus to maximally differentiate
objects across the features component and the latter across the former
simultaneously. The fictitious example in Figure 4.10 of the present study,
on page 62, gives precisely such a clear-cut, but still very simple, linear
association between the objects component (columns of the table) and the
features component (rows). Three groups were distinguished in both
directions, the exterior ones being each others’ opposite. A relationship of
such simplicity could also be revealed by analysis based solely on visual
characteristics of the display or perhaps even revealed by a specific clustering
algorithm. The relationships that Theodorescu revealed in his actual data
on ionic capitals (Chapter 1) are much more intricate. To discover a
combination of a greater number of simultaneous relationships between
the complete x-component and large parts of the y-component might
require, not only considerable experience with a tool that enables the
reordering of data in a matrix, but also of some extrinsic information on
the specific objects and features displayed in the matrix.
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Figure 8.1 Numbered départements, ranked according to population working in
manufacturing industry (left column, A) and working in tertiary industries (right
column, B). The number of intersecting lines is an indication of the degree of
dissociation between the two variables (after Bertin, 1967).

Presenting these data in a matrix yields another manner of reflecting the
relationship between two ordered variables. Assume that the column num-
ber in the matrix is appointed by the order number on the first variable
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Figure 8.2. Altemnative graphic representation of the data in Figure 8.1. The order
numbers of a specific département on both variables determine its respective row-
and-column number in the matrix (starting at the top left-hand corner and increasing
towards the bottom right-hand corner). This layout thus corresponds to that of a table.
In this way, each département (denoted by characters) is assigned to one unique cell
in the matrix. The number of intersections, indicated by the black dots in the right
hand part, indicates the degree of dissociation between the two variables.

(population working in manufacturing industry as the x-component) and
the row number as fixed at the order number of the second variable
(population working in tertiary industry on the y-component). An example
of this method is shown in the left-hand part of Figure 8.2. Carrying out
this procedure for every object, each département in our example is assigned
to a specific and unique cell of the matrix. Connecting the filled cells with
the topmost row and the rightmost column by straight lines again results
in a number of intersections. In this type of display, an intersection
corresponds to the crossing of a vertical and a horizontal line (see the right-
hand part of Figure 8.2). The number of intersections, divided by the
maximum number of intersections (=N(N-1)/2) gives a measure of
association of the two variables A and B. This measure, as used by Bertin, is
in fact a graphically obtained version of Kendall’s rank-order-correlation
coefficient T.

In this example, only two characteristics of a number of objects
(départements) were recorded, namely, percentages of the population work-
ing in manufacturing and tertiary industries. As a result, each column and
each row of the matrix representation contains only one single element.
The graphical matrix offers the possibility of recording, displaying and
analysing a much larger number of characteristics of these objects. The same
principle and related statistical techniques can also be used in this graphical
matrix, which can be regarded as a frequency distribution or cross-classifica-
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tion table with ordered variables. In a cross-classification table, the cells of
the matrix contain occurrence frequencies of values Xj of variable X and

values Yj of variable Y. With these cross-classification tables, it is assumed
that the values of variable X are ordered in magnitude by their subscripts,
that is, X1<X2<...<Xk. Variable Y is assumed to be similarly ordered,
with Y1<Y2<...<Yy (Siegel & Castellan, 1988). In the graphical matrix
of the example, this means that a disclosure of the tentative present
association consists in ordering both the départements and the characreris-
tics at the same time. Starting at a specific cell in the matrix, the lower
rdi~q] numbers (the ordinal number “5” is lower than the ordinal number
“2”) need to be located as far as possible in cells that have both a higher
column number (more towards the right of the matrix) and a higher row
number (more towards the bottom of the matrix). The strength of the asso-
ciation is in proportion to the number of cells (and their contents) that
meet these requirements. When the two components along the axes of the
matrix are of a nominal or categorical nature, but the position of the
specific categories in the matrix is a relevant one, we can treat them as
ordinal variables and use the same measures of association as in the ordinal
variables.

When we group cells according to contents and chain the developing
groups along one of the diagonals of the matrix, we are actually treating
the rows and columns as variables of an ordinal scale. As the relative number
of intersections also gives an indication of the continuity in the course of
one of the components across the other one in the matrix, there is a direct
functional relationship between the above-mentioned association principle
and the overall association between objects and features. The discovery of
association between the two matrix components corresponds to the second
purpose of the reorderable matrix, so that our association measure, as it is
based on the number of intersections, is held to provide a second valid
bench-mark in the analysis of authentic multivariate dara.

Just as in the orderliness problem, there is also no fast and easy way to
attain the optimum configuration (association) of the row-and-column
variables by way of statistical or mathematical analyses. It is only by calculat-
ing standard measures of association as, for example the Gamma statistic G
and Kendall’s Tau-b, with every possible configuration of the rows and
columns, that we would have a means of discovering an optimum solution.
Hence, the statistical measures of association are also of a descriptive nature
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and do not automatically reveal the ideal solution to the problem of
association.

As the measures of orderliness and association are both descriptive in
nature, we could compare different configurations that are attained in the
interactive analysis of a specific matrix problem and order them according
to their “rightness”.

Methods of analysis

In the following experiment we will use the Gamma statistic G as a
measure of association (Goodman & Kruskal, 1954 & 1977; Agresti, 1984;
Loether & Tavish, 1974). This is a relatively easily used index that is closely
related to Kendall’s T. Although this measure does not allow us to find the
optimum solution to ordering, it seems a promising one because the
method has proved to be appropriate for measuring the relation between
two ordinally scaled variables. Moreover, we are interested in a distribution
of frequencies providing a continuous increasing or decreasing function
and the Gamma statistic G results in a value of 1 as long as there are no
“disagreements” in the ordering of both variables.

The gamma statistic G is defined as

# agreements - # disagreements

“# agreements + # disagreements 18.1]
where the number of agreements equals
C=2X X njnrk (8.2]

i<r j<

(C is the number of agreements or concordant pairs, n;; the frequency in

ij
the 7jth cell, r the number of rows, k the number of columns) see Figure 8.3,

and the number of disagreements is

D=3 I njjnik [8.3]

i<r j>k

(D is number of disagreements or discordant pairs).

In both equations we will treat njj as the size of the graphical symbol in the
ifth cell in the contingency table. Instead of weighting by the frequencies in
the ijth cells, we will weight them by the sizes of the symbols in the
respective cells.
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Figure 8.3. lllustration of the method by which the total number of agreements or
concordant pairs (part A) and the the total number of disagreements or discordant
pairs (part B) of a matrix can be calculated. For each of the four matrices in part A, the
number of agreements can be obtained by muitiplying the value of cell njj (black cell)
by the sum of the cells for which the row number is larger than i (r>i) and the column
number is larger than j (k>j) (gray cells). These four positions are the only ones in
which at least one of the cells lies both below and to the right of cell njj. The same

method can be used in part B to calculate the number of disagreements or discordant
pairs.

Operationalisation of task aspects

With the distance measure, giving an indication of the degree of grouping
on one hand, and the Gamma statistic G as an indicator of the degree of
association between the two components on the other, we have two objec-
tive, statistical measures that can be used to compute and evaluate all the
individual configurations obtainable in an ordering task. These measures
can be regarded as an operationalisation of the respective task aspects of
clustering and organization, be used to actually test the ordering process,
and check whether subjects are able to improve or solve a graphical matrix.
Throughout the process of ordering a matrix in the experimental situation
we could test performance and results of the subjects by measuring associa-
tion and ordering values. After a fixed number of operations, or an agreed
period of time, we could calculate and compare the results of these
measures. Practically speaking, we can take the line that, so long as subjects
are able to improve the distribution of the data by using the interactive
ordering method, there is no need to calculate the rejected less-than-
optimum distributions.
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Qualitative analysis

If subjects appeared to be unable to solve the presented randomized matrices
either completely or partially, the ordering process should be examined
more thoroughly by study of the actually performed displacements of rows
and columns. Such examination could provide some insight into the
specific problems that arise while performing this specific task. But even
when subjects succeeded in solving these matrices we could learn something
by analysing the ordering process. The various techniques or strategies that
are used by different subjects and in different practical contexts could be
compared and the best ones used for improving the instrument.

8.3.3 Evaluation of process and results.

As the measures of association and orderliness not only give an objective
evaluation of the distribution of elements in a matrix, but also cover the
two aspects to be found in the purpose of the reorderable matrix, these
objective values prove to be valid in the evaluation of the process of order-
ing and its results. Strictly speaking, it would suffice to record and evaluate
the end product of the structuring process attained by a subject performing
the task. Depending on the end result, we could conclude whether the
specific tool fulfilled our initial intention, which was to structure the
information graphically displayed in a matrix, in such a way that it leads to
drawing the right conclusions regarding local similarities, contrasts and
global relationships.

There nevertheless remain some problems with this proposition. The
first major problem concerns the evaluation of the end resule. We have
already said that, in practical situations using actual data, it is often diffi-
cult, if not practically impossible, to mathematically calculate the optimum
solution to the structuring problem. In a matrix, this would mean the visu-
ally optimum configuration of the graphical symbols. Its practical conse-
quence is that we often do not have an objective “optimum solution” to use
as a yardstick with which we can compare practically attained subjective
results. This also means that the hypothesis concerning the use of the
graphical matrix as an analytical tool needs some readjustment. We cannot
test whether the rearrangement of data by means of the reorderable matrix
does lead to an optimum solution (except in some very restricted experi-
mental environments), because the optimum solution of practical problems
remains unknown. What we can test is whether a rearrangement by
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displacements of rows and columns leads to a better or a worse configura-
tion. Only in a strict experimental context, where a fictitious ideal data set
is randomized before it is presented to the subjects (see Figure 4.10), could
we examine the possibility of reaching the optimum solution by using the
reorderable matrix. And, even then it must be postulated that the original
configuration is also the optimum solution. This also means that
improvements and deteriorations in the structure are always relative and
can only be measured at an ordinal level of measurement. In addition,
performance by different subjects can only be compared within a specific
dara set and not between initially different sets of data. This leads to the
cecond major problem.

For a subject performing the task it is also difficult, if not impossible, to
decide whether or not an attained configuration is capable of improve-
ment. At a specific moment in the process he/she will (has to) decide that
the organisation of elements in the matrix cannot be further improved.
When, within a strict experimental context, the optimum solution is
reached each time the subject decides to stop the process, we could conclude
without much ado that the tool suited the purpose, at least in this specific
setting. The program obviously offered the possibility of easily finding the
best solution to our ordering problem. The question remains whether this
result of an ideal, necessarily simple example is transferable to much more
complex practical situations.

If, however, the optimum solution is not reached, there are two possible
reasons for it. The subject might think that further improvement is impos-
sible, or he might be dissatisfied with the solution he has found, but is
practically unable to improve on it. The first reason can be considered as
valid, if the subject performing a practical or experimental task does not
know what the real optimum solution is, and the experimenter instructing
him in the task cannot or does not tell him. The second reason comes in
when a subject tries a number of displacements to improve on a specific
configuration, but all his efforts lead to a deterioration of the result.
Although he is not content with the result, he decides to make no further
attempts.

When the process is stopped by a subject because he thinks that further
improvement is impossible, the tool has at least met the needs of our
subject and can be qualified to his satisfaction. Whether this result is also
satisfactory to the experimenter, depends on the discrepancy between
various subjective end results or between the subjective result and the objec-
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tive one that was put in previously. In the second case, when unsatisfactory
situations cannot be improved, the tool is not quite what it should be,
although even now it is not correct to attach direct blame to the program.
This situation is more complex than it looks at first sight. As the practical
problems that can possibly set in are difficult to describe and are best
explained with the help of some actual examples, we will refrain from
doing so at this moment and deal with it in the section on the results and
discussion of the experiment.

8.4 A computerized and interactive reorderable matrix

The principle and the original implementation of the reorderable matrix
were discussed in section two of Chapter 4. In addition to the originally
manual method, Bertin (1983) already developed a primitive computerized
version of the reorderable matrix. This idea was further elaborated at our
faculty into a user-friendly interactive program. This program will be used
in the next experiment in which the analytical possibilities of the
reorderable matrix principle will be further investigated. In this program, a
rectangular matrix is drawn on a computer screen. The original data to be
analysed are read-in and displayed as circle symbols in the cells of the matrix,
where the sizes of the circles are in proportion to the original numerical
values. Specific cells can now be selected and moved to another position
within the rectangular matrix. Rearranging takes place by first selecting a
cell or group of cells and then moving this selection to a new position
within the matrix. The “mouse” is used for selecting, as well as moving the
cells. Immediate feedback is provided upon selection of a certain region, all
dots located within the selected area become grey and a contour line is
drawn around the activated area. When the selection is moved across the
matrix, the contour line moves along with the movements of the mouse.
As soon as the mouse button is released the matrix will be redrawn, showing
the selected part in its new, correct position. As all elements within a
specific column or row belong to a particular object or one of its features,
this means that only complete rows and columns can be moved. When one
cell is selected and moved in the vertical direction the complete row will
move along with it; when the movement of the cell is in the horizontal
direction, all elements of the same column will also be displaced in the same
way. In addition to strictly horizontal or vertical displacement, a selection
can also be moved along a sloping line, displacing the respective columns
and rows along with it.
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All actions undertaken are recorded and stored by the program. The
purpose of this is twofold. For the user of the program it first creates the
chance to “undo” performed actions. When an action or a sequence of
actions does not produce the expected results, one can return to a configu-
ration of the symbols in the matrix that was attained a number of “steps”
earlier. This extended version of the undo function, which is a standard
option of most programs that run on Apple Macintosh computers, can be
regarded as part of the compatibility between program (or interface) and
user. It partly oflsets the fear of making mistakes and provides the possibil-
‘v of having a look at the effect of a specific action without being tied to it.
The second reason for recording the performance of subjects in the process
of structuring the information, is to use such information in the analysis of
the experimental data. In section 4.6 we stressed the compatibility between
the provided system, program or tool and the human approach to the
specific task that has to be performed. By studying the complete ordering
process as reflected in the recorded “steps” or displacements, we expect to
discover some of the strategic aspects used by subjects in their performance
of the experimental task.

8.5 Experiment 1

Procedure

In this experiment a total of 8 experimentally determined sets of dichoto-
mous data were used. As yet, we have used only dichotomous data because
the interaction between the specific task aspect of clustering and the
weighting of differently sized symbols would probably, at least at this
moment, be too complex and therefore a disturbing factor in the experi-
mental context. The solutions to the 8 sets that had to be structured were
more or less ideal. The sets had to be structured according to both the pre-
viously defined principles of orderliness and association. The two tasks
(clustering and linking the groups along a continuously increasing or
decreasing function) could be performed simultaneously by starting to
group dots in one corner of the matrix and chaining the second and subse-
quent groups to the first one. Although subjects were not informed on the
“correct” original configuration of the data, they were told that all
randomized sets could be turned into a more or less regular configuration.
After they had studied the extensive written instructions, subjects were
allowed some 5 minutes to pick up the specific features of the program,
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such as selecting and moving a group of cells and reverting to a previous
state of the matrix. In the instructions, the concepts of association and
orderliness were elucidated and operationalised to the matrix context. In
order to explain the practical applications of this somewhat abstract tool,
the example in Figure 4.10 was embodied in the instruction. All subjects
had to solve the same 8 matrices. Apart from the first matrix, which was the
easiest one to solve, the matrices were counterbalanced between subjects.
Subjects were instructed not to spend more than about 15 minutes on each
of the matrices and were free to take a short pause whenever they liked. The
complete experiment took about two to two and-a-half hours.

Stimulus material

The size of each matrix was 25 rows by 25 columns. A varying number of
cells contained dot-like symbols, all other cells were empty. The number of
dots in the different matrices ranged from 94 (about 15% of the total
number of cells) to 156 (=25%). The size of the martrix cells was 0.5 c¢cm
square. All dots were the same in size, with a diameter of about 0.4 cm.
Cells were visually bordered by dotted grid lines. In the original matrices,
the symbols were divided across the matrix according to a predefined
pattern, giving a more or less coherent and grouped distribution along the
diagonal (right-hand part of Figure 8.4a). Before the matrices were
presented to the subjects in the experiment, the rows and columns were
randomized (left-hand part of Figure 8.4a). The matrices were presented on
an Apple Macintosh computer screen, with contour of the matrix, grid
lines and symbols black against a white background.

Subjects

Six male students of the Faculty of Architecture and Building participated
in this experiment. Subjects had acquired some experience with the
computer system in an architectural design course, but were not familiar
with the reorderable matrix program. The subjects were paid for
participation.

Results and Discussion

Configurations at the end of the ordering process

The initial configurations and “correct” solutions of the 8 matrices are
presented in Figure 8.4. A clear-cut division into two groups can be made.
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The first group consists of matrices whose optimum configuration contains
some distinct rectangular clusters. These clusters have only a small overlap
(matrix €) or no overlap at all (matrices a and g). The other matrices contain
clusters that show considerably more overlap. The groups in these remain-
ing matrices are still rectangular in shape (matrices d and f) or they are
more difficule to distinguish because of a gradual transition from one
group to another. Because of this gradual transition, the elements of these
matrices practically lie along one line. Only the width of the connecting
line varies (matrix p versus c and h).

Thue on the one hand we have introduced a shift of distinct rectangular
ciusters towards groups that are more difficult to delimit, while on the
other hand, the position of the individual elements close in on the centre
of a continuously increasing or decreasing line. In the first group, the aspect
of ordering is emphasized, in the last group the accent is on the overall
association between the two components. The three matrices of the first
group were solved by all subjects (in 14 to 66 steps, with an average of 35.7
steps). Of the other matrices, b (range 35 to 126 steps; average 81.8), f (range
46 to 151; average 88.3) and h (range 39 to 105; range 77.8) were each
completely solved by 2, subjects whereas ¢ (range 38 to 142; average 70.3)
and d (range 28 to 151; average 80.2) were not solved by anybody. There
were some considerable differences in the solutions submitted by the various
subjects.

Using Kendall’s coefficient of concordance, W, we tested whether rank
ordering of the 6 subjects on each of the matrices in the set were in agree-
ment. The number of steps required by each subject to solve the matrix were
ranked for each of the 3 easy matrices (solved by all), the final subjective
solutions (difference between attained scores and optimum) were ranked, for
each of the 5 unsolved matrices. For the three matrices that were solved, the
coefficient of concordance was found to be significant at p<0.05 which
means that rankings are not independent or that some subjects are system-
atically faster in solving these easy matrices while others are continually
slower. Kendall’s W was also found to be significant (p<0.01) for the 5
unsolved matrices. Relative performance of a subject (as compared to
others) on one of the matrices is not independent of his relative perfor-
mance on other matrices. Some subjects manage to continually reach better
performances.



163

Construction of patterns

JQCEYDAILXVLXPBBORTPIOUV IAY

APCOEFORIUXLXNOPQROTUVYIY

YVOKKXKBPCODARIOQOPURRETILEVO

Figure 8.4 a

AWCDEroOX 13 XLNNOPOQAGTUV WY

L2ARIANARR

Figure 8.4 b

JKNPRQYSCBEVINRIAOTIDUVOL

MYBJIKULOCTPNIVAXEROQ I ®OA

R

ABCDETOY I IXLNNOPQARITUY WIY

IATL2BRANAAR

o
<
@

()

~—

=}
>
[V

ABCDET ORI IKLNNOPOQRSTUV VI Y

Figure 8.4 d



164 Chapter 8

ABCDITORIIKLENOPORSTUV Y IY

NOBWSDELITNIAGIVUPCIKYSQR

scozgeevevacy- i

¥ G

rEN

Figure 8.3 e

==
JrIncra

Figure 8.4 g

Figure 8.4 h

Figure 8.4 Original configurations as presented to the subjects (left-hand parts) and
solutions to the matrices (ri~~*-hand part)



Construction of patterns 165

Some typical practical solutions are shown in Figure 8.5. Although only
one example is shown for each of these typical final configurations, all
could be observed several times, both with different subjects as well as with
different matrices.

In Figure 8.5a (subject nr. 1 matrix f) the main axis of the clusters runs
from the upper-left corner towards the lower-right one. The groups in the
middle part, however, run from the lower left to the upper right. If the
clusters in this middle part were simply turned over, the result would be
much improved, and principally result in a higher score on the association
value.

In Figure 8.5b (subject nr. 2 matrix b) the largest part of the symbols is
grouped as a continuously decreasing function. One large group in the
lower-left corner does not fit in with the rest. When the ordering process is
studied, it can be seen that subjects have tried to link this “out-of-tune”
cluster with the upper-left or lower-right part of the matrix, that is the
parts with which the group has some elements in common on either the x
or the y-axis. In both cases the situation deteriorates. The solution to this
typical situation is that the complete collection of groups has to be moved
up along the diagonal of the matrix. The groups located at the corners of
the matrix are not correctly positioned and need to be moved towards the
middle part of the matrix. When this is done correctly, the cluster that was
out of place automatically fits in with the rest. Problems of this type can
usually be solved by one single displacement.

In Figure 8.5¢ (subject nr.3 matrix f) the continuously decreasing
function and diverse, coherent local clusters can be clearly distinguished.
Some individual elements or small groups could not be joined with the rest
as they apparently did not fit in. The solution to this problem is comparable
to the previous one. It can be seen that the matrix can be divided into a
small number of groups that show a slight overlap or none at all. Some
simple interventions in which the relative positions of these groups are
changed, normally result in a distribution that can easily be solved. The
main point in the solution of this and the previous type of configuration is
that subjects seem to be guided too much by local aspects of the matrix.
They want to join the out-of-tune elements or groups directly to the rows
or columns that have some elements in common. This is done by displace-
ment of such element or group in either the strictly horizontal or vertical
direction. The right solution is a change in the position of the diverse
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groups. For example, groups that are located at the end of the string in one
of the corners of the matrix should be positioned more towards the middle.

The clustering task has been carried out fairly well in the matrix of
Figure 8.5d (Subject nr. 4 matrix f). A final linking of the clusters appar-
ently presented some more problems. Despite some effort by the subject in
linking groups from the upper-left towards the lower-right corner, most of
these groups are not correctly positioned. The solution to this type of
configuration raises some more problems. This is mainly due to the relative
position of the specific rows and columns within a cluster. In addition to a
«carrangement of the groups, the mutual position of rows and columns
within the cluster also has to be changed. Subjects have mainly considered
the clustering aspect of the task and did not take the joining of these
clusters into account until the end of the ordering process. Solving these
clusters therefore might require quite a number of operations. In some of
these departures from the optimum situation, one or more actions that
lead away from the objective are required before the objective can be
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Figure 8.5 Some typical subjective solutions to the matrices. Matrices a, ¢ and d are
the solutions by different subjects to matrix “f” of Figure 8.4, matrix b is the solution by
one of the subjects to matrix “b” in Figure 8.4
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attained. This “means-end analysis” strategy can be observed in various
problem-solving tasks (e.g. see Kohler, 1925, Chapters 1 and 2; Mayer, 1983;
and The General Problem Solver of Newell and Simon, 1972).

Results of a statistical clustering analysis

In addition to the subjective solutions to the ordering process, some statisti-
cal clustering algorithms were tried, such as direct joining, k-means, single,
median and complete linkage (Hartigan, 1975; Everitt, 1980). Of these
methods, the single-linkage algorithm, generally provided the most
satisfactory results. This method tends to produce long, stringy clusters. Of
the matrices used in the experiment, a, e and g were solved by this method
(although the correctly discovered groups still had to be joined), the results
in some of the other matrices are presented in Figure 8.6.
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Figure 8.6 Some examples of resulting matrices after a single linkage clustering.
The matrices a, b and ¢ are the single-linkage solutions to the respective matrices d, f
and h of Figure 8.4.

The ordering process

Of all assignments, the measures of disorder (d) and association (G) were
calculated with every change in the arrangement of elements.

k-1 r -1k
d=3 Slnijjnije1l+ S S |nijnil 8.4]

j=1 1=1 =1 j=1

In this equation, the distance between two adjoining cells, in the
horizontal direction between nj; and ni,j+ 15 in the vertical direction
between nj,; and Nisl,] is defined as |ni’£1- ni,j+1|’ respectively |ni,j - ni+1,j|
where (“i,j > Nij+ 1 and nj.1,j are the frequencies or the sizes of the

elements in the respective cells).
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The first component of the right-hand part expresses the total distance
between columns, the second indicates the total distance between rows. The
variable r equals the number of rows and k is the number of columns (see

also equation 7.4).

Y2 X myng - ¥ ¥ onyong
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In this equation { 'Zr 'Zk njj nrk) is the number of agreements or concor-
I< J<

dant pairs and ( i}ir Jgk njj nrk) is the number of disagreements or

discordant pairs (see section 8.3.2).

The resulting values of one of the easier matrices are given in Figure 8.7.
Curves of the results of three subjects are shown. Even though all three
subjects reached the minimum orderliness value, or the optimum solution
to this problem, there are considerable differences in effectiveness. Subject
nr. G reached the optimum configuration after 23 steps. The curve of his
performance, represented by white triangles, shows a constant increase.
Subject nr. 5 took almost twice as many steps, his performance showing a
curve that is less steep over the whole range, even sometimes flat in parts.
The curve of subject nr. 3 lies midway between the previous two. His effec-
tiveness is comparable to that of subject nr. 6 in the first part of the process
but, the two curves gradually separate in the second part. The black symbols
in this figure represent the association value in each of the configurations.
Some interesting differences can also be noted here. The association curve
of subject nr.6 shows a constant increase, which means that this subject is
constantly improving the relative position of the clusters. The performance
curve of subject nr. 5 is more irregular. During the first part of the process,
the association value remains more or less at the level of the starting posi-
tion; only after some 20 steps does the value show a gradual increase.
Subject nr.3 scarcely pays any attention to the association value until the
end of the ordering process. Some irregular improvements and deteriora-
tions can be noted in the first part, the last 5 steps showing a rapid increase
from the starting level to optimum performance. Obviously, this subject
first arranged the individual elements in clusters before linking these
clusters to a string.
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Figure 8.7 Values of ordering and association at each step in the structuring of a
matrix. The results of three subjects are shown.

The same phenomena can be noted in Figure 8.8. This figure represents
one of the more difficult matrices. The performance on the aspect of order
by subject nr. 3 shows a very steep incline at first, but levels off after some 30
operations and very soon afterwards the subject stops the process. This
subject again does not start linking the clusters until after some 35 steps. At
the end of the process the optimum has not yet been reached. The resulting
configuration in his case is the same as that presented in Figure 8.5c. As the
matrix still contains some outstanding elements, the relative positions of
the clusters are not completely correct. Subject nr. 5 is more persistent in
trying to attain an optimum configuration. Neither of his two perfor-
mance curves reaches the maximum value and the last 40 steps hardly bring
any improvement to the results. After this subject corrected a serious drop
in the association value he decided to stop the ordering process. Subject nr. 6
is again the most successful; he reaches the highest order and association
values in the fewest number of steps.

The results of other matrices are comparable to those in Figures 8.7 and
8.8 (and are therefore not shown here). Performance by the other three
subjects (numbers. 1, 2 and 4) stood more or less midway between that of
subjects 6 and 5. Relative effectiveness (increase in order and association
values divided by the number of steps in the analysis) of the diverse subjects
was very consistent across the experimental conditions (matrices). The
results of subject nr. 3, for example, were consistently better than those of
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other subjects. His relative effectiveness, which has been demonstrated in
the resulting configurations after ordering, and in the curves that show the
progress of the two important ordering aspects in the process itself, can be
supported further by a number of typical, deviating actions in the ordering
process. This subject often moved selections diagonally as opposed to the
mainly strictly horizontal or vertical displacements of a selection by other
subjects. A second remarkable action could be seen when one deviating row
or column split an otherviise coherent group in two. Instead of selecting
one of the partc of the group and moving it towards the other (as most
subiects normally did), this subject just selected the deviating part and
moved it towards a similar row or column. In this way the planned cluster
was also obtained and at the same time the deviating part was positioned at
the right location. Apparently this subject could correctly survey the results
of his relatively complicated actions.
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Figure 8.8 Association and ordering values after each change in the layout of
elements in the matrix. Results of the ordering process of three subjects are shown.

8.6 Conclusion

Subjects are fairly capable of visually and interactively structuring the
elements of a graphical matrix. The specific actions used for this purpose
largely determine the effe-tiveness of the ordering process. Strategies used
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by diverse subjects proved to be quite consistent throughout the experi-
ment. The process can be considerably increased, even maximised, when
more complicated actions are used, such as moving selected areas diagonally.
Since the resulting configurations of elements are, however more difficult
to survey with these actions, there should be investigation into whether
correct prediction of the effects of specific actions is feasible.

It is recommended that the ordering of elements in groups and linking
the groups should be carried out from the very beginning of the process.
Postponing the second aspect to a later stage in the process can require too
many actions if the relative positions of rows and columns within a group
happen to be incorrect.

When restricted, but more or less optimal sets of data are used, the
results of some simple clustering algorithms can prove helpful in organis-
ing the data. The applicability of these algorithms to specific practical situa-
tions should be further investigated.
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Chapter 9 Conclusions and Implications

9.1 Introduction

In this final evaluation we first discuss the method of the reorderable
matrix and its implications in the presentation and analysis of multivariate
data. This necessarily consists mainly of a summarized enumeration of the
discussion sections of Chapters 3 to 8 inclusive. In the second part,
attention will be claimed by computerization of the tool that enables
graphical elements in a rectangular matrix to be reorganized. The practical
implications of method and tool in the decision-making process are
discussed in the third part.

9.2 Evaluation of the method
9.2.1 Aspects of presentation at the level of individual elements
Discrimination

In order to be able to visually detect a difference between objects, the
minimum size of such difference has to be a specific fraction of the size of
one of the elements. Psychophysical research on this problem shows that the
percentage of correct detections of a difference gradually changes as a
function of the actual relative difference (Weber Law). This rule appeared
to be perfectly applicable to graphical elements, both when two of them
were presented pairwise and when a larger number of these elements were
displayed in a matrix.
Results of the experiments of Chapter 5 showed that the size ratio of 1.12,
proposed by Bertin, has not been derived directly from the Weber ratio. A
much smaller ratio suffices for a visual discrimination between two symbols
of elementary shape. From a size ratio of about 1.10 upwards, the
performance of a simple detection task (a pair of elements) and a complex
detection task (larger group of symbols in a matrix) run almost parallel,
provided. that both functions are corrected for chance. At this specific ratio,
a corrected performance of about 90% correct can be noted for circle
symbols. These results imply that graphical symbols are perfectly suitable for
a discrimination task, provided that their differences are not too small.
When, however, original numerical values cover a broad range and at the
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same time very small differences need to be detectable, a direct graphical
translation must be discouraged.

The translation of numbers into a graphical format offers two major
improvements. The speed at which graphical symbols can be visually
compared is much higher than visual comparison of numbers, since a
processing of the graphical information at a lower level suffices. In
addition, large graphical symbols are much more conspicuous than large
numbers.

Graphical syiubols that show a unidimensional growth (e.g. bars), require
smaller differences in areal size than symbols that grow simultaneously in
~vo directions (e.g. circles and squares). Bars are therefore to be preferred to
circles or squares in discrimination tasks.

Estimation

The usefulness of graphical symbols in detection tasks can be pursued when
retrieval of original values is at stake. The size of graphical symbols can be
accurately estimated, provided that the matrix is accompanied by a legend
which covers the complete range of symbol sizes. Power function exponents,
calculated to describe the estimation of symbol sizes, were very close to an
optimum value of 1.0. This value applied to simply shaped graphical
symbols, such as bars, dots and squares. Bertin’s value of 1.12 therefore,
seems not to be derived from the exponent of the power law. Two things
should be noted in addition.

- Although the size of graphical elements can be determined fairly
accurately, slight overratings and underestimations often occur. Unless a
very precise determination of represented values is essential, graphical
symbols are quite a practical alternative to numbers. When precise
determination is required, graphical symbols could be combined with
their numerical counterparts in a standard graphical display with the
exact value they represent “repayable at call”. This notion should be
considered against the observation on the minimum required difference
that was previously made.

- Subjects tend to use round numbers (e.g. multiples of five or ten) when
estimating the size of graphical symbols. This tendency calls for a
categorization of original values and a matching range-graded method
in their graphical translation.
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Separation of matrix cells by grid lines had an ambiguous and detrimental
effect on the accuracy of estimation. As far as judgment of size is concerned,
the use of grid lines should be rejected.

9.2.2 Aspects of presentation at the intermediate and overall level of
the matrix

Intermediate

A model correctly predicting subjectively perceived groups of graphical
elements displayed on thematical maps, appeared to be inadequate for the
prediction of similar groups in a matrix. However, most of the symbol pairs
that were predicted, but not perceived as clustered, showed some specific
characteristics that were not met by the perceived pairs. This offers the
possibility of elaborating the original prediction model to one that is also
useful in a matrix context. The specific characteristics mentioned, refer to
the number of elements in a group and the contiguity of its outline.
Incorporation of these variables implies that the original starting point of
the stimulus pair (based on the principle of Delaunay neighbours) has to be
abandoned. Larger groups than a simple pair of nearest neighbours in the
sampling network have to be taken into account.

Overall

There is a high level of agreement between subjects when it comes to rating
the overall structure of graphical circle elements in a matrix. When the best
alternative layout has to be selected this allows a very fast and accurate
decision. In addition, subjects seem to be able to give rather a precise rating
of differences and ratios between pairwise presented symbol configurations.

A fairly correct prediction of perceived clusters and an even more
accurate prediction of subjectively estimated structures make the graphical
matrix very useful as a means of condensing the communication of large
amounts of data. A close resemblance between intended messages and the
reader’s impression of spatial information are a first gain and allow fruitful
discussion when making decisions.

Validation

Subjective impressions of the coherence of elements in groups and the
overall structure of elements in a matrix showed a highly significant
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correlation with objectively defined measures of order (groups) and
association (overall structure). '

The, relatively simple, objective measure of order was based on the
geometric distance between elements (city-block metric distance function),
standard statistical measures of association, just as the coefficient of
concordance and the gamma statistic G were used as the yardstick for rating
the subjective impression of overall structure. As both objective measures
showed a direct functional relationship to the practical purposes of the
reorderable mai.ix, they seem to provide valid criteria in the analysis of
~urhentic multivariate data. Thus, a correlation between subjective
‘mpressions and objectively defined statistical measures validate the use of
the reorderable matrix as an accurate communicative device in the
presentation of information at the intermediate and overall levels of a
matrix.

9.2.3 Aspects of analysis

The reorderable matrix seems to be one of the very few graphical methods
that truly warrants its claim to being an analytical tool. The utility of most
of the methods discussed in Chapter 3 is, on the contrary, restricted to one
of graphic communication. The reorderable matrix first transcribes all the
data from the original numerical table and second, its interactive nature
allows of an investigation into all pertinent questions and the involvement
of extrinsic information. Taken alone, these two prerequisites are not
sufficient to enable one to appreciate the reorderable matrix as practically
useful and attainable. At the higher level of information processing
especially (the level that Bertin calls “a simplification of the two
components of the table”) we have to exercise the greatest caution.
Simplification is admittedly necessary, but sufficient is still a far cry from
genuine simplification.

When the interactive aspect is introduced, the potentialities of the
reorderable matrix are extended; mere visual detection and recognition
tasks are supplemented by problem-solving tasks. Heuristic strategies have
to be developed to “solve” the configurations of graphic elements. The
experiment described in Chapter 8 revealed considerable differences in the
heuristic strategies being followed.

The analytical possibilities of the reorderable matrix seem to be
promising. At least one of the subjects appeared to follow an effective
(correct) heuristic strate,, and solved most of the matrices. The matrices
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that were not solved, either by this subject or others, could be roughly
assigned to a few categories, with all categories showing some typical
departure from the optimum solution. For each of these categories it
proved to be possible to indicate the specific actions to be performed in order
to reach a more or less optimum solution after all. In addition, some aspects
in the strategies of the more effective and more ineffective subjects were
demonstrably related to the (in)ability to solve the structuring problems.
Use of more complicated actions, shifting attention from local to global
aspects and working at two tasks at a time (clustering elements and joining
clusters) were characteristics that could improve the effectiveness of the task
performance when used correctly.

It remains to be investigated as to how far subjects are able to survey or
predict the results of performed or intended actions and to what extent this
insight can be acquired. The relative contribution of visual and
interpretative aspects in different phases of the analysis also have to be
further examined. If the purely visual parts could be accurately
operationalised, it would be possible to support them by specific statistical
algorithms.

9.3 Evaluation of the tool

The practical application of the computerized version of the reorderable
matrix was restricted to one single experiment. Nonetheless, it was
evidently shown that subjects generally used only the most elementary,
simple options that the program provided. Whereas some of the incorrect
or ineffective actions should be put down to inexperience, others seem to be
more related to spatial insight and the possibility of predicting the outcome
of intended actions. Further research on subjects’ progress in performance,
acquired through experience or through instructions, is needed before
preparations are made to extend the program to include sophisticated but
untried options.

All things considered, the reorderable matrix appears to be a useful tool as it
is based on starting points experimentally found to be correct. As the data
in most experimental conditions, however, were restricted to experimen-
tally defined sets and most participants in the experiments can, as students
of Architecture, be regarded as more or less visually oriented, the extent of
the tool’s suitability in realistic situations has to be further investigated.
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9.4 The role of the reorderable matrix in decision making

The method of the reorderable matrix should not, in the first place, be
considered as an alternative to statistical methods; the respective approaches
differ fundamentally and should be used within their own contexts. The
reorderable matrix is principally suited to less stringent inquiries, where
ascertainment of a statistical significance is not the primary purpose.
Exploratory study of data where interest is directed towards various levels of
the information (individual elements, groups, overall association) can be
very properly performed by this graphical, interactive approach as well as
research where extrinsic information on the displayed objects and their
characteristics is, or can be an important factor. The matrix can also be used
in combination with statistical techniques. Preliminary work, such as
organization and structuring of the data (based on visual characreristics)
and generation of hypotheses (based on extrinsic information) can be
reserved to visual interactive analysis, whereas eventual tests of accurately
defined hypotheses could be done by applying the appropriate algorithms.

In addition to research where the statistical and graphical interactive
approach can be used side by side, the last-mentioned approach has some
specific characteristics that certify its usefulness as a stand-alone tool in
decision making. As all individual information items are available
throughout the analysis, pros and cons of a nominated alternative can be
directly and easily weighed against one another. This opens up the
possibility of discussing specific subjective choices and decisions and allows of
an investigation of considerations that determined these choices and
decisions.
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Summary

Graphics are generally recognized and appreciated as expedients in the
presentation or communication of information (graphic communication).
In addition to this function graphics are, in the present study, also asserted
to be applicable as important tools in information analysis and decision
making (graphic processing). Especially if the total of recorded information
has to remain intact and clearly visible throughout these processes, for
example in investigations of an explorative nature (generation of
hypotheses as compared to testing them), or when weighing up different
criteria is inconclusive (importance of safety and aesthetical aspects in
comparison with cost of construction), graphics can be regarded as useful in
discovering and clarifying underlying relationships. The French
cartographer Jacques Bertin has developed a graphic tool which, he claims,
meets the more traditional requirements of correct and surveyable
presentation of the authentic information as well as its more innovative,
simple and obvious interactive analysis. This “reorderable matrix” method,
particularly suited to the analysis of multivariate data, is based on direct
translation of individual numbers into simple graphical symbols, such as
dots or squares. These symbols, whose sizes are in accordance with the
original scores they represent, are restored in the cells of a data matrix or
table and presented on a computer screen. The symbol in each matrix cell
represents the score of a feature (in the rows of the table) on a specific
object (in the columns). When the number of bedrooms (feature) in a
specific house (object) equals 4, this value, or a symbol of corresponding
size, is recorded in the relevant cell of the matrix. In the analysis of the
data, the layout of the information can be rearranged by moving a selected
part of the matrix, containing one or more of its rows and columns, to a
new position. The matrix construction lends itself well to such,
mathematically correct, “permutations”. As the matrix is redrawn on the
computer screen after this movement, immediate visual feedback is given
and the effectiveness of manipulations can be interactively assessed. In this
method, complex cognitive processes in the analysis and interpretation of
information are thus operationalised into tasks of visual discrimination,
pattern recognition and interactive pattern formation, that are highly
developed in people. Visually oriented subjects, such as architects, geogra-
phers in particular, should be able to profit from this graphical tool.
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In the present study, the required aspects of presentation (correct
reproduction of the original data, allowing an accurate interpretation of
individual values, differences, similarities and associations) and analysis
(leading to a simple and obvious reorganisation of the information) in the
reorderable matrix were experimentally tested.

In Chapter 2 a possible domain of application is outlined with the help

of two architectural examples.
The reorderable matrix method is, in chapter 3, compared to a number of
graphical methods, all developed to present multivariate data. The various
merhods are examined for their potentialities in the presentation and, in
carticular, the analysis of multivariate information.

Chapter 4 is devoted to the graphical theory of Bertin and the different
graphical constructions he proposes. Each of these instruments can be
applied with, and is especially suitable for the presentation and solution of
specific, sets of data, matrices or networks. One of these, the reorderable
matrix, is further elaborated in the present study.

Experiments testing the different requirements of the reorderable
matrix are described in Chapters 5 to 8 inclusive.

Criteria at the early-visual-processing levels of discrimination and
recognition are discussed in Chapters 5 and 6. As regards the
discrimination and interpretation of individual symbols of simple shape it
was found that people are fairly accurate in these tasks of discriminating
between, sorting and estimating the individual sizes of graphical symbols.
Even though Bertin’s recommendations regarding required size
differences were found to be not directly derived from psychophysical laws,
such as the Weber law or power law, for reasons of efficiency and ease, they
proved to be practically useful.

Groups of elements that are similar in size and therefore recognized as
forming a coherent cluster or pattern, could not be predicted very
accurately by an initial model based on Gestalt principles, discussed in
Chapter 7. Some obvious characteristics of the perceived patterns, however,
offer prospects for a more efficient extension and refinement of this
model.

Subjective ratings of the overall configuration of elements in a matrix,
the overall image, were found to be very consistent both in time and as
between subjects. The visually estimated degree of overall structure of a
matrix thus proved to be a concept that is generally agreed upon. In
addition, this subjectively noted order was found to be strongly correlated
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with objective differences, measured by elementary geometric-distance
functions. Subjective ordering therefore corresponds to the objectively
measurable degree of regularity and association of the data.

As to the interactive ordering of graphic matrix elements, subjects were

found to be able to improve significantly on their original disarray. Even
though there were considerable differences between subjects in the
efficiency and speed of task execution, all subjects attained or came close to
the experimentally defined initial layout.
All things considered, the reorderable matrix appears to be a useful tool as
it is based on starting points experimentally found to be correct. As the
data in most experimental conditions were restricted to experimentally
defined sets, the extent of the tool’s suitability in realistic situations,
however, has to be further investigated.
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Samenvatting

Grafieken worden algemeen erkend, gewaardeerd en veelvuldig gebruikt
als hulpmiddel in de presentatie en communicatie van informatie (grafische
communicatie). In deze studie wordt aangetoond dat grafische voorstellingen
naast bovenstaande functie ook een belangrijke bijdrage kunnen leveren bij
de analyse en interpretatie van informatie in beslissingsprocessen (grafische
verwerking). Wanneer de totale hoeveelheid geregistreerde informatie
zoveel mogelijk intact en zichtbaar moet blijven tijdens de analyse, zoals bij
exploratief onderzoek (hypothese vormend in tegenstelling tot hypothese
toetsend) of in geval de criteria en hun gewichten onduidelijk zijn (het
belang van veiligheid en esthetische aspecten in vergelijking tot
bijvoorbeeld bouwkosten), kunnen grafische hulpmiddelen een belangrijke
ondersteuning vormen in het ontdekken en verduidelijken van
onderliggende relaties in de data-structuur.

De franse cartograaf Jacques Bertin heeft een grafische methode
ontwikkeld die, naar hij beweert, zowel voldoet aan de vertrouwde eisen van
een correcte en overzichtelijke presentatie van gegevens, als aan de meer
innoverende eisen van eenvoudige en eenduidige interactieve analyse. Deze
herordenbare matrix methode (reorderable matrix), met name geschike voor
de analyse van multivariate gegevens, is gebaseerd op directe transformatie
van meetgegevens in grafische symbolen van eenvoudige vorm, zoals
stippen en vierkanten. De symbolen, waarvan de grootte correspondeert
met de hoogte van de ruwe scores die ze vertegenwoordigen, worden
geplaatst in de cellen van een tabel of matrix en gepresenteerd op een
computer scherm. Elk van de symbolen vertegenwoordigt de score van een
object (in de kolom van de matrix) op een bepaald kenmerk (in de rij).
Wanneer bijvoorbeeld een huis (object) een viertal slaapkamers heeft
(kenmerk), wordt deze waarde (vier) in de bijbehorende cel van de matrix
geplaatst en vertaald in een daarmee corresponderend grafisch symbool.

Bij analyse van de gegevens kan de structuur van de matrix worden
gewijzigd door het selecteren en vervolgens verplaatsen van rijen en
kolommen. Een rechthoekmatrix leent zich uitstekend voor dergelijke,
mathematisch correcte, permutaties. Omdar de gewijzigde matrix meteen
na de verplaatsing opnieuw op het scherm wordt getekend, kan de
effectiviteit van de handeling aan de hand van deze visuele feedback
worden beoordeeld. Met deze visueel-interactieve methode worden



198

complexe cognitieve processen in de analyse van informatie
geoperationaliseerd in eenvoudiger taken als visuele discriminatie,
patroonherkenning en patroonvorming. In vergelijking tot computers zijn
mensen erg goed in het uitvoeren van deze taken en met name voor visueel
georiénteerde personen zoals bijvoorbeeld architekten en geografen lijke dit
grafisch hulpmiddel daarom zeer bruikbaar.

In deze studie worden de, aan de reorderable matrix te stellen, eisen van
presentatie (correcte weergave van de originele meetgegevens waardoor een
nauwkeurige inicrpretatie van, en verschillen, overeenkomsten en relaties
russen individuele elementen mogelijk is) en analyse (een simpele en
~enduidige structurering van de informatie), experimenteel getoetst.

In Hoofdstuk 2 wordt een tweetal voorbeelden van multivariate
vraagstukken, uit het toepassingsgebied van de architectuur, gegeven.

De “reorderable matrix” wordt, in Hoofdstuk 3, vergeleken met een aantal
grafische methoden, ontwikkeld voor de presentatie van multivariate
gegevens. De voor- en nadelen van deze methoden, bij presentatie en
analyse van multivariate gegevens, worden toegelicht.

Hoofdstuk 4 is gewijd aan de verschillende grafische constructies die in de
theorie van Bertin worden beschreven. Elk van deze methoden kan worden
toegepast bij, en is afgestemd op, presentatie en analyse van een bepaald
type van gegevens. Eén van deze, de reorderable matrix, is verder
onderzocht in deze studie.

De experimentele toetsing van de verschillende criteria zijn beschreven in
de hoofdstukken 5 tot en met 8.

In de Hoofdstukken 5 en 6 worden de resultaten besproken van een aantal
discriminatie-, sorterings- en schattingstaken. Deze resultaten wijzen uit
dat mensen deze taken vrij nauwkeurig kunnen uitvoeren. Het door
Bertin aanbevolen verschil in grootte van grafische symbolen blijke niet
rechtsrecks gebaseerd op psychofysische wetmatigheden, zoals de constante
uit de Weber-wet en de exponent van de machtsfunctie van Fechner
(Stevens, 1957). Praktisch gezien is Bertin’s aanbeveling, uit oogpunt van
eenvoud en efficientie, wel bruikbaar.

Een cartografisch model, gebaseerd op Gestalt-principes, bleek in
Hoofdstuk 7 de subjectief waargenomen clusters van gelijkwaardige
elementen, niet optimaal te kunnen voorspellen. Visuele analyse toonde
aan dat deze clusters zich op een aantal kenmerken onderscheiden van
voorspelde, niet waargenomen clusters. Hierdoor is een effectiever model
mogelijk door uitbreiding van het aantal variabelen.
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Subjectieve beoordelingen van de mate van geordendheid van een
configuratie van elementen in een matrix (overall image) waren zeer
consistent, zowel in tijd als tussen individuen. De gestructureerdheid van
een matrix lijkt hiermee een algemeen aanvaard concept. Deze subjectieve
maat van geordendheid blijkt daarnaast sterk te correleren met een
objectieve maat, gebaseerd op elementaire geometrische afstandsfuncties.
De subjectieve impressie correspondeert hierdoor met een objectief
meetbare regelmaat in de datastructuur.

In Hoofdstuk 8 wordt aangetoond dat individuen in staat zijn om, met

behulp van de reorderable matrix, de structuur van een, oorspronkelijk
ongeordende matrix, aanzienlijk te verbeteren. Hoewel er duidelijke
verschillen tussen de individuen waren in de efficientie en snelheid
waarmee ze deze opdrachten uitvoerden, benaderden allen, in hun
eindoplossingen, de experimenteel bepaalde optima.
Hiermee is in deze studie aangetoond dat in het algemeen is voldaan aan
de uitgangspunten of criteria van de reorderable matrix. Deze grafische
methode blijkt daarmee potentieel bruikbaar in de analyse van gegevens in
multivariate beslissingsprocessen. Gezien het experimenteel karakter van
een aantal onderzoeken dat binnen deze studie is verricht, is nader
onderzoek naar de draagwijdte van dit instrument in uiteenlopende
praktisch situaties, gewenst.
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1. De ontwikkeling van grafische technieken voor de presentatie en analyse
van gegevens is sterk achtergebleven bij de ontwikkeling van mathematisch-
statistische technieken. Dit is in belangrijke mate veroorzaakt door het
gebruik van computers bij de laatstgenoemde manier van bewerking van
gegevens en niet door het verschil in kwaliteit tussen de technieken

(Fienberg, 1979; Schmid, 1983).
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pp- 165-178.

Schmid, C.F.
Statistical Graphics. John Wiley, NY, 1983.

2. Het door Wainer & Thissen (1981) gehanteerde begrip "analysis” in hun
"Graphical Data Analysis” is onzorgvuldig. Hoewel sommige van de door
hen besproken grafisch-analytische methoden inderdaad de mogelijkheid
bieden tot een meer diepgaande exploratie van de gepresenteerde gegevens en
de structuur van hun onderlinge relaties, zijn andere beperkt tot de
communicatie of illustratie van enkele, specifieke resultaten of kenmerken.

Wainer, H. & Thissen, D.
Graphical Data Analysis. Annual Review of Psychology, 1981, vol. 32, 191-
241.

3. Het oegankelijker worden van geavanceerde statistische analyse
technieken werkt het onzorgvuldig gebruik ervan in de hand.

4. Wanneer men grafische methoden van weergave wil gebruiken om
gegevens te analyseren, zijn methoden die weinig voorbewerking vereisen,
zoals de "herordenbare matrix methode” (Bertin, 1981), meer geschikt dan
methoden die veel voorbewerking vereisen, zoals de "Kleiner-Hartigan tree"

symbolen (Chambers, Cleveland, Kleiner & Tukey, 1983).
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York, 1981.

Chambers, .M., Cleveland, W.S., Kleiner, B. & Tukey, P.A.
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5. In het interaktief herordenen van een grafische data-matrix is het bij het
positioneren van de grafische elementen mogelijk om zogenaamde



extrinsieke informatie te gebruiken (informatie over de geregistreerde
objecten die niet is opgenomen in de data-matrix maar vaak wel bij de
gebruiker bekend is, Bertin, 1981). Hoewel deze mogelijkheid niet altijd
zal leiden tot duidelijker herkenbare patronen van grafische elementen geeft
hij wel informatie over specifieke beslissingen van de gebruiker in het
ordeningsproces. De herkenbaarheid hiervan maakt het beslissingsproces
bespreekbaar.

6. Een computerprogramma dient vooral beoordeeld te worden op zijn
gebruikersvriendelijkheid, het gemak waarmee de gebruiker met het
programma zijn doelen kan realiseren, en minder op zijn
gebruiksvriendelijkheid, het gemak waarmee de gebruiker de
mogelijkheden van het programma kan benutten.

7. Op door gebruikers te volgen routes kunnen naast keuzepunten (punten op
een route waarop een keuze over de voortzetting van de route mogelijk is)
ook beslispunten (punten op een route waarop de gebruiker een bewuste
afweging maake over de voortzetting van de route) worden onderscheiden.
Indien de keuzepunten en de beslispunten op een route niet samenvallen,
verdient het de voorkeur het aanbieden van verwijzingsinformatie te
concentreren op de beslispunten en minder op de keuzepunten (Joanknecht en
Venemans, 1985).

Joanknecht, J.W. & Venemans, P.J.
Hoezo Bewegwijzering? Een inventarisatie van de problemen met de
bewegwijzeringssituatie van een groot ziekenhuis. Intern rapport, Katholieke
Universiteit Brabant, 1985.

8. Zolang een groot aantal mensen moeite heeft met het lezen en begrijpen
van plattegronden, is de functie van langs de straat opgestelde stads- en
wijkplattegronden er vooral een van expressionistische stadsverfraaiing.



