
 

Gaussian queues in light and heavy-traffic

Citation for published version (APA):
Debicki, K. G., Kosinski, K. M., & Mandjes, M. R. H. (2012). Gaussian queues in light and heavy-traffic.
Queueing Systems, 71(1-2), 137-149. https://doi.org/10.1007/s11134-011-9270-x

DOI:
10.1007/s11134-011-9270-x

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/s11134-011-9270-x
https://doi.org/10.1007/s11134-011-9270-x
https://research.tue.nl/en/publications/b5861302-e5e2-4d92-b930-8668e66b9995


Queueing Syst (2012) 71:137–149
DOI 10.1007/s11134-011-9270-x

Gaussian queues in light and heavy traffic
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Abstract In this paper we investigate Gaussian queues in the light-traffic and in the
heavy-traffic regime. Let Q

(c)
X ≡ {Q(c)

X (t) : t ≥ 0} denote a stationary buffer content
process for a fluid queue fed by the centered Gaussian process X ≡ {X(t) : t ∈ R}
with stationary increments, X(0) = 0, continuous sample paths and variance func-
tion σ 2(·). The system is drained at a constant rate c > 0, so that for any t ≥ 0,

Q
(c)
X (t) = sup

−∞<s≤t

(
X(t) − X(s) − c(t − s)

)
.

We study Q
(c)
X ≡ {Q(c)

X (t) : t ≥ 0} in the regimes c → 0 (heavy traffic) and c → ∞
(light traffic). We show for both limiting regimes that, under mild regularity condi-
tions on σ , there exists a normalizing function δ(c) such that Q

(c)
X (δ(c)·)/σ (δ(c))

converges to Q
(1)
BH

(·) in C[0,∞), where BH is a fractional Brownian motion with
suitably chosen Hurst parameter H .
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1 Introduction

A substantial research effort has been devoted to the analysis of queues with Gaussian
input, often also called Gaussian queues [10–12]. The interest in this model can be
explained from the fact that the Gaussian input model is highly flexible in terms of
incorporating a broad set of correlation structures and, at the same time, adequately
approximates various real-life systems. A key result in this area is [18], where it is
shown that large aggregates of Internet sources converge to a fractional Brownian
motion (being a specific Gaussian process).

The setting considered in this paper is that of a centered Gaussian process X ≡
{X(t) : t ∈ R} with stationary increments, X(0) = 0, continuous sample paths and
variance function σ 2(·), equipped with a deterministic, linear drift with rate c > 0,
reflected at 0:

Q
(c)
X (t) = sup

−∞<s≤t

(
X(t) − X(s) − c(t − s)

)
.

The resulting stationary workload process can be regarded as a queue [14]. The ob-
jective of the paper is to study Q

(c)
X ≡ {Q(c)

X (t) : t ≥ 0} in the limiting regimes c → 0
(heavy traffic) and c → ∞ (light traffic).

Under mild conditions on the variance function σ 2(·), Q
(c)
X is a properly defined,

almost surely (a.s.) finite stochastic process. However, if c → 0, then Q
(c)
X (t) grows

to infinity (in a distributional sense), for any t ≥ 0. The branch of queueing theory
investigating how fast Q

(c)
X grows to infinity (as c → 0) is commonly referred to as

the domain of heavy-traffic approximations. In many situations this regime allows
manageable expressions for performance metrics that are, under ‘normal’ load con-
ditions, highly complex or even intractable, see for instance the seminal paper by [9]
on the classical single-server queue. Since then, a similar approach has been followed
in various other settings, e.g., [5, 13, 15, 17, 19] and many other papers.

Analogously, one can ask what happens in the light-traffic regime, i.e., c → ∞;
then evidently Q

(c)
X decreases to zero. So far, hardly any attention has been paid to the

light-traffic and heavy-traffic regimes for Gaussian queues. An exception is [8], where
the focus is on a special family of Gaussian processes, in a specific heavy-traffic
setting. The primary contribution of the present paper concerns the analysis of Q

(c)
X

under both limiting regimes, for quite a broad class of Gaussian input processes X.
We now give a somewhat more detailed introduction to the material presented in

this paper. It is well known that under the assumption that σ(·) varies regularly at
infinity with parameter α ∈ (0,1), for any function δ such that δ(c) → ∞ as c → 0,
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there is convergence to fractional Brownian motion in the heavy-traffic regime:

X(δ(c)·)
σ (δ(c))

d→ Bα(·), as c → 0. (1)

We shall show that an analogous statement holds in the light-traffic regime, that is,
if σ(·) varies regularly at zero with parameter λ ∈ (0,1) (i.e., x �→ σ(1/x) varies
regularly at infinity with parameter −λ), then for any function δ such that δ(c) → 0
as c → ∞,

X(δ(c)·)
σ (δ(c))

d→ Bλ(·), as c → ∞. (2)

Assuming that X satisfies some minor additional conditions, both (1) and (2) apply
in C(R), the space of all continuous functions on R.

Our paper shows that the statements (1) and (2), which relate to the input pro-
cesses, carry over to the corresponding stationary buffer content processes Q

(c)
X . That

is, we identify, under specific conditions, a function δ(·) such that

Q
(c)
X (δ(c)·)
σ (δ(c))

d→ Q
(1)
Bα

(·), as c → 0

and

Q
(c)
X (δ(c)·)
σ (δ(c))

d→ Q
(1)
Bλ

(·), as c → ∞,

both in the space C[0,∞) of all continuous functions on [0,∞).
This paper is organized as follows. In Sect. 2 we introduce the notation and give

some preliminaries. Section 3.1 presents the results for the heavy-traffic regime,
whereas Sect. 3.2 covers the light-traffic regime. We give the proofs of the main
theorems (i.e., Theorems 1 and 2) in Sect. 4.

2 Preliminaries

In this paper we use the following notation. By id : R → R we shall denote the
identity operator on R, that is, id(t) = t for every t ∈ R. We write f (x) ∼ g(x) as
x → x0 ∈ [0,∞] when limx→x0 f (x)/g(x) = 1. Let RV ∞(α) and RV 0(λ) denote
the class of regularly varying functions at infinity with parameter α and at zero with
parameter λ, respectively. That is, for a non-negative measurable functions f,g on
[0,∞), f ∈ RV ∞(α) if for all t > 0, f (tx)/f (x) → tα as x → ∞; g ∈ RV 0(λ) if
for all t > 0, g(tx)/g(x) → tλ as x → 0.

2.1 Spaces of continuous functions

We refer to [3] for the details of this subsection. For any T > 0, let C[−T ,T ]
be the space of all continuous functions f : [−T ,T ] → R. Equip C[−T ,T ] with
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the topology of uniform convergence, i.e., the topology generated by the norm
‖f ‖[−T ,T ] := supt∈[−T ,T ] |f (t)| under which C[−T ,T ] is a separable Banach space.
Therefore, by Prokhorov’s theorem, weak convergence of random elements {X(c)} of
C[−T ,T ] as c → ∞ is implied by convergence of finite-dimensional distributions
and tightness. A family {X(c)} in C[−T ,T ] is tight if and only if for each positive ε,
there exists an a and c0 such that

P
(|X(c)(0)| ≥ a

) ≤ ε, for all c ≥ c0; (3)

and, for any η > 0,

lim
ζ→0

lim sup
c→∞

P

(
sup

|t−s|≤ζ

s,t∈[−T ,T ]

∣∣X(c)(t) − X(c)(s)
∣∣ ≥ η

)
= 0. (4)

For notational convenience, we leave out the requirement s, t ∈ [−T ,T ] explicitly in
the remainder of this paper.

Finally, let C(R) be the space of all functions f : R → R such that f|[−T ,T ] ∈
C[−T ,T ] for all T > 0. The above definitions extend in an obvious way to C[0, T ],
C[0,∞) and convergence as c → 0.

For γ ≥ 0, let Ωγ be the space of all continuous functions f : R → R such
that limt→±∞ f (t)/(1 + |t |γ ) = 0. Equip Ωγ with the topology generated by the
norm ‖f ‖Ωγ := supt∈R |f (t)|/(1 + |t |γ ) under which Ωγ is a separable Banach
space, so that Prokhorov’s theorem applies. The following property can be found
in [6, Lemma 3] or [7, Lemma 4].

Proposition 1 Let a family of random elements {X(c)} on Ωγ be given. Suppose that
the image of {X(c)} under the projection mapping pT : Ωγ → C[−T ,T ] is tight in
C[−T ,T ] for all T > 0. Then {X(c)} is tight in Ωγ if and only if for any η > 0,

lim
T →∞ lim sup

c→∞
P

(
sup
|t |≥T

|X(c)(t)|
1 + |t |γ ≥ η

)
= 0. (5)

2.2 Fluid queues

Let Q
(c)
X ≡ {Q(c)

X (t) : t ≥ 0} denote a stationary buffer content process for a fluid
queue fed by a centered Gaussian process X ≡ {X(t) : t ∈ R} with stationary incre-
ments, X(0) = 0, continuous sample paths and variance function σ 2(·). The system
is drained at a constant rate c > 0, so that for any t ≥ 0,

Q
(c)
X (t) = sup

−∞<s≤t

(
X(t) − X(s) − c(t − s)

)
.

Additionally, an equivalent representation for Q
(c)
X (t) holds [16, p. 375]:

Q
(c)
X (t) = Q

(c)
X (0) + X(t) − ct + max

(
0, sup

0<s<t

(−Q
(c)
X (0) − (

X(s) − cs
)))

. (6)
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Throughout the paper we say that X satisfies:

C: if σ 2(t)| log |t ||1+ε has a finite limit as t → 0, for some ε > 0;
RV0: if σ ∈ RV 0(λ), for λ ∈ (0,1);

RV∞: if σ ∈ RV ∞(α), for α ∈ (0,1);
HT: if both C and RV∞ are satisfied.
LT: if both RV0 and RV∞ are satisfied.

Remark 1 In our setting (X has stationary increments), the assumption that X is con-
tinuous is equivalent to the convergence of Dudley’s integral; see Sect. 2.3. This is
immediately implied by condition C; see [1, Theorem 1.4]. However, the real im-
portance of condition C lies in the fact that if in addition X satisfies RV∞, then X

also belongs to Ωγ , for every γ > α. This is pointed out in Sect. 3.1. Finally, note
that C is met under RV0. Indeed, since σ ∈ RV 0(λ), then t �→ σ(1/t) belongs to
RV ∞(−λ), thus σ 2(1/t)tλ → 0 as t → ∞. Equivalently, σ 2(t)t−λ → 0 as t → 0,
implying limt→0 σ 2(t)| log |t ||1+ε = 0, for any fixed ε > 0. Furthermore, RV∞ im-
plies that X(t)/t → 0 a.s., for t → ±∞, so that Q

(c)
X is a properly defined stochastic

process for any c > 0; see [7, Lemma 3]. Lastly, the assumption that X has continuous
sample paths implies that σ is continuous.

Due to the stationarity of increments, all finite-dimensional distributions of X are
specified by the variance function, since we have

Cov
(
X(t),X(s)

) = 1

2

(
σ 2(s) + σ 2(t) − σ 2(|t − s|)). (7)

Recall that by BH ≡ {BH (t) : t ∈ R} we denote fractional Brownian motion with
Hurst parameter H ∈ (0,1), that is, a centered Gaussian process with stationary in-
crements, continuous sample paths, BH (0) = 0 and covariance function

Cov
(
BH (t),BH (s)

) = 1

2

(|s|2H + |t |2H − |t − s|2H
)
. (8)

As mentioned in the introduction, if c → 0, then, for any t , Q
(c)
X (t) → ∞ a.s., which

is called the heavy-traffic regime. On the other hand, if c → ∞, then Q
(c)
X (t) → 0

a.s., which is called the light-traffic regime.

2.3 Metric entropy

For any T ⊂ R define the semimetric

d(t, s) :=
√

E
∣∣X(t) − X(s)

∣∣2 = σ
(|t − s|), t, s ∈ T.

We say that S ⊂ T is a ϑ -net in T with respect to the semimetric d , if for any t ∈ T

there exists an s ∈ S such that d(t, s) ≤ ϑ . The metric entropy Hd(T, ϑ) is defined as
log Nd(T, ϑ), where Nd(T, ϑ) denotes the minimal number of points in a ϑ -net in T

with respect to d . Later on we use the following proposition; see [2, Theorem 1.3.3]
and [2, Corollary 1.3.4], respectively.
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Proposition 2 There exists a universal constant K such that for a d-compact set T

E

(
sup
t∈T

X(t)
)

≤ K

∫ diam(T)/2

0

√
Hd(T, ϑ)dϑ

and for all ζ > 0

E

(
sup

(s,t)∈T×T

d(s,t)<ζ

∣∣X(t) − X(s)
∣∣
)

≤ K

∫ ζ

0

√
Hd(T, ϑ)dϑ.

The quantity
∫ ∞

0

√
Hd(T, ϑ)dϑ is called the Dudley integral.

3 Main results

In this section we formulate the result for the heavy-traffic and light-traffic regime,
respectively. It is emphasized that these results are highly symmetric. Let us first
introduce a function δ, such that for every c > 0

cδ(c)

σ (δ(c))
= 1. (9)

By the continuity of σ , we can choose δ as δ(c) = inf{x > 0 : x/σ(x) = 1/c}.
From the definition of δ it follows that δ ∈ RV 0(1/(α − 1)) under RV∞ and
δ ∈ RV ∞(1/(λ − 1)) under RV0.

3.1 Heavy-traffic regime

In the heavy-traffic regime we are interested in the analysis of Q
(c)
X as c → 0,

under the assumption that X satisfies HT. The following statement follows from
[7, Theorems 5 and 6].

Proposition 3 If X satisfies HT, then

X(δ(c)·)
σ (δ(c))

d→ Bα(·), as c → 0,

in C(R) and Ωγ , for any γ > α.

In fact, Theorem 3 holds for any function δ(c) such that δ(c) → ∞ as c → 0.
Condition C (which is one of the requirements of HT) plays a crucial role in proving
tightness both in C[−T ,T ], for some T > 0, and in Ωγ .

Combining Theorem 3 with the definition of δ leads to the following statement.

Corollary 1 If X satisfies HT, then

X(δ(c)·) − cδ(c) id(·)
σ (δ(c))

d→ Bα(·) − id(·), as c → 0,

in C(R).
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Now we are in the position to present the main result of this subsection.

Theorem 1 If X satisfies HT, then

Q
(c)
X (δ(c)·)
σ (δ(c))

d→ Q
(1)
Bα

(·), as c → 0, (10)

in C[0,∞).

We postpone the proof of Theorem 1 to Sect. 4.

Remark 2 Theorem 1 extends the findings of [8, Theorem 3.2] where, under the
heavy-traffic regime, the weak convergence in C[0,∞) of Q

(c)
X (δ(c)·)/σ (δ(c)) as

c → 0 was obtained for the class of input processes having differentiable sample
paths a.s., i.e., of the form X(t) = ∫ t

0 Z(s)ds, where {Z(s) : s ≥ 0} is a stationary
centered Gaussian process whose variance function satisfies specific regularity con-
ditions.

3.2 Light-traffic regime

In the light-traffic regime we analyze the convergence of Q
(c)
X as c → ∞, under the

assumption that X satisfies LT. We begin by stating the counterpart of Proposition 3.

Proposition 4 If X satisfies RV0, then

X(δ(c)·)
σ (δ(c))

d→ Bλ(·), as c → ∞,

in C(R). If, moreover, X satisfies LT, then the convergence also holds in Ωγ , for any
γ > max{λ,α}.

Analogously to Proposition 3, Proposition 4 holds for any function δ(c) such that
δ(c) → 0 as c → ∞. As in the heavy-traffic case, combining Proposition 4 with the
definition of δ leads to the counterpart of Corollary 1.

Corollary 2 If X satisfies RV0, then

X(δ(c)·) − cδ(c) id(·)
σ (δ(c))

d→ Bλ(·) − id(·) as c → ∞,

in C(R).

The main result of this subsection is now stated as follows.

Theorem 2 If X satisfies LT, then

Q
(c)
X (δ(c)·)
σ (δ(c))

d→ Q
(1)
Bλ

(·) as c → ∞, (11)

in C[0,∞).
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We postpone the proof of Theorem 4 and Theorem 2 to Sect. 4.

Remark 3 The assumption LT excludes the class of input processes of the structure
X(t) = ∫ t

0 Z(s)ds, with {Z(s) : s ≥ 0} being a centered stationary Gaussian process
with continuous sample paths a.s. (since λ = 1 in this case). In [8, Theorem 4.1] it was
shown that, for this class of Gaussian processes, Q

(c)
X (0)/σ (δ(c)) does not converge

weakly to Q
(1)
Bλ

(0) as c → ∞.

4 Proofs

In this section we prove our results, but we start by presenting an auxiliary result.

Lemma 1 If X satisfies LT, then for any ε > 0, there exist constants C,a > 0, such
that for all x ≤ a and t > 0,

σ(tx)

σ (x)
≤ C ×

{
t t ≤ 1,

tu t > 1,

where  := min{λ − ε,α + ε} and u := max{α + ε,λ + ε}.

Proof Take any ε > 0, then because σ ∈ RV 0(λ), there exists an a ≤ 1 such that

σ(tx)

σ (x)
≤ 2tλ−ε, for all x ≤ a and tx ≤ a. (12)

Moreover, there exists a constant K1 such that σ(x) ≥ K1x
λ+ε for all x ≤ a.

Because σ ∈ RV ∞(α), there exist constants A,K2 > 0 such that σ(x) ≤ K2x
α+ε

for all x ≥ A. Because σ is continuous, we can in fact find a K2 such that σ(x) ≤
K2x

α+ε for all x ≥ a. Therefore

σ(tx)

σ (x)
≤ K2(tx)α+ε

K1xλ+ε
=: Ktα+εxα−λ, for all x ≤ a and tx ≥ a.

Note that, if α − λ ≥ 0, then we have

σ(tx)

σ (x)
≤ Kaα+ε tα+ε, for all x ≤ a and tx ≥ a. (13)

If α − λ < 0, then

σ(tx)

σ (x)
≤ Kaα−λtλ+ε, for all x ≤ a and tx ≥ a. (14)

Combining (12)–(14), we conclude that there exists a constant C > 0, such that

σ(tx)

σ (x)
≤ C max

{
tλ−ε, tα+ε, tλ+ε

}
, for all x ≤ a and all t > 0. �
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In what follows, we will use the following notation. Let

X(c)(t) := X(δ(c)t)

σ (δ(c))

and denote the variance of X(c) by (σ (c))2, that is,

σ (c)(t) := σ(δ(c)t)

σ (δ(c))
.

Proof of Theorem 4 We begin by showing the convergence in C(R). To this end, we
need to show the convergence in C[−T ,T ] for any fixed T > 0.

Convergence in C[−T ,T ]: From the fact that σ ∈ RV 0(λ), it is immediate that
the finite-dimensional distributions of X(c) converge in distribution to Bλ as c → ∞,
cf. (7)–(8), which also implies (3). Therefore, the weak convergence of X(c) in
C[−T ,T ] follows after showing (4).

By the Uniform Convergence Theorem, see [4, Theorem 1.5.2], for any t ∈ (0, ζ ],
we have σ (c)(t) ≤ 2ζ λ. Thus, Proposition 2 yields, for some universal constant
K > 0,

P

(
sup

|s−t |≤ζ

∣∣X(c)(t) − X(c)(s)
∣∣ ≥ η

)
≤ P

(
sup

σ (c)(|s−t |)≤2ζ λ

∣∣X(c)(t) − X(c)(s)
∣∣ ≥ η

)

≤ 1

η
E

(
sup

σ (c)(|s−t |)≤2ζ λ

∣∣X(c)(t) − X(c)(s)
∣∣
)

≤ K

η

∫ 2ζ λ

0

√
H(c)

([−T ,T ], ϑ)
dϑ,

where H
(c)([−T ,T ], ·) is the metric entropy induced by σ (c).

By Potter’s bound [4, Theorem 1.5.6] for any ε, ζ > 0, ε < λ and t ∈ (0, ζ ] and
sufficiently large c (corresponding to small δ(c)), we have σ (c)(t) ≤ 2tλ−ε . Hence

H
(c)

([−T ,T ], ϑ) ≤ H
d̃

(
[−T ,T ], ϑ

2

)
,

where d̃ is a semimetric such that d̃(s, t) = |t − s|λ−ε . The inverse of x �→ xλ−ε is
given by x �→ x1/(λ−ε), so that

H
d̃

([−T ,T ], ϑ) ≤ log

(
T

ϑ1/(λ−ε)
+ 1

)
≤ C log

(
1

ϑ

)
,

for some constant C > 0 and ϑ > 0 small. It follows that
∫ 2ζ λ

0

√
H(c)

([−T ,T ], ϑ)
dϑ ≤ √

C

∫ 2ζ λ

0

√

log

(
2

ϑ

)
dϑ = 2

√
C

∫ ∞

ζ−λ

√
logϑ

ϑ2
dϑ.

Summarizing, we have

lim sup
c→∞

P

(
sup

|s−t |≤ζ

∣∣X(c)(t) − X(c)(s)
∣∣ ≥ η

)
≤ 2K

√
C

η

∫ ∞

ζ−λ

√
logϑ

ϑ2
dϑ;

we obtain (4) by letting ζ → 0.
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Convergence in Ωγ : To show the convergence in Ωγ , we need to verify (5). Ob-
serve that

P

(
sup
t≥ek

|X(c)(t)|
1 + tγ

≥ η

)

≤ 1

η

∞∑

j=k

E supt∈[ej ,ej+1] |X(c)(t)|
1 + ejγ

≤ 1

η

∞∑

j=k

E|X(c)(ej )|
1 + ejγ

+ 2

η

∞∑

j=k

E supt∈[ej ,ej+1] X(c)(t)

1 + ejγ

=: I1(k) + I2(k).

I1(k) and I2(k) are dealt with separately. According to Lemma 1, for large c (that is,
small δ(c)), we have

σ (c)(t) ≤ C ×
{

t t ≤ 1,

tu t > 1,

where  and u can be chosen such that ,u < γ . Therefore,

I1(k) ≤ 1

η

∞∑

j=k

σ (c)(ej )

1 + ejγ
≤ C

η

∞∑

j=k

eju

1 + ejγ
,

and the resulting upper bound tends to zero as k → ∞.
Now focus on I2(k). For some universal constant K > 0 and because of the sta-

tionarity of the increments of X, Proposition 2 yields that I2(k) is majorized by

2K

η

∞∑

j=k

∫ ∞
0

√
H(c)([ej , ej+1], ϑ)dϑ

1 + ejγ
= 2K

η

∞∑

j=k

∫ ∞
0

√
H(c)([0, ej (e − 1)], ϑ)dϑ

1 + ejγ
.

We will estimate the integrals under the sum by splitting the integration area into
ϑ ≤ 1 and ϑ ≥ 1.

Observe that, for some constants C1,C2 > 0 (that is, not depending on j ),

∫ 1

0

√
H(c)

([
0, ej (e − 1)

]
, ϑ

)
dϑ ≤

∫ 1

0

√

log

(
ej (e − 1)

2ϑ1/
+ 1

)
dϑ

≤
∫ 1

0

√

C1 + j + 1


log

(
1

ϑ

)
dϑ

= e(C1+j)

∫ ∞

C1+j

√
ϑe−ϑ dϑ

≤ e(C1+j)

∫ ∞

0

√
ϑe−ϑ dϑ = C2e

j .
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Recall that  < γ , so that

lim
k→∞

∞∑

j=k

∫ 1
0

√
H(c)([0, ej (e − 1)], ϑ)dϑ

1 + ejγ
≤ 2K

η
lim

k→∞

∞∑

j=k

C2e
j

1 + ejγ
= 0.

So it remains to show the analogous statement for the integration interval [1,∞).
Using a similar argumentation as the one above, one can show that

∫ ∞

1

√
H(c)

([
0, ej (e − 1)

]
, ϑ

)
dϑ ≤ C3e

uj ,

for some constant C3 > 0, from which the claim is readily obtained. �

Since the proof of Theorem 1 is analogous to the proof of Theorem 2, we choose
to focus on the light-traffic case only.

Proof of Theorem 2 The proof consists of three steps: convergence of the one-
dimensional distributions, the finite-dimensional distributions, and a tightness argu-
ment.

Step 1: Convergence of one-dimensional distributions. In this step we show that,
for a fixed t ≥ 0,

Q
(c)
X (t)

σ (δ(c))

d→ Q
(1)
Bλ

(t), as c → ∞.

Since Q
(c)
X is stationary, it is enough to show the above convergence for t = 0 only.

Observe that, due to the time-reversibility property of Gaussian processes,

Q
(c)
X (0)

d= sup
t≥0

(
X(t) − ct

) = sup
t≥0

(
X

(
δ(c)t

) − cδ(c)t
)
.

Upon combining Corollary 2 with the continuous mapping theorem, for each T > 0,

sup
t∈[0,T ]

(
X(δ(c)t) − cδ(c)t

σ (δ(c))

)
d→ sup

t∈[0,T ]
(
Bλ(t) − t

)
, as c → ∞.

Thus it suffices to show that

lim
T →∞ lim sup

c→∞
P

(
sup
t≥T

(
X(δ(c)t) − cδ(c)t

σ (δ(c))

)
≥ η

)
= 0, (15)

for any η > 0. Recall the definition of X(c), so that

P

(
sup
t≥T

(
X(δ(c)t) − cδ(c)t

σ (δ(c))

)
≥ η

)
≤ P

(
sup
t≥T

|X(c)(t)|
η + t

≥ 1

)
,

where we used (9). Proposition 4 implies that the family {X(c)} is tight in Ωγ , for
some γ ≤ 1. Now (15) follows from Proposition 1.
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Step 2: Convergence of finite-dimensional distributions. The argumentation of this
step is analogous to Step 1. First note that for any ti ≥ 0, ηi > 0 and si < ti , where
i = 1, . . . , n, for any n ∈ N, it follows that

P

(
Q

(c)
X (δ(c)ti)

σ (δ(c))
> ηi, i = 1, . . . , n

)

= P

(
sup

s≤δ(c)ti

(
X(δ(c)ti) − X(s) − c(δ(c)ti − s)

σ (δ(c))

)
> ηi, i = 1, . . . , n

)

≤ P

(
sup

s∈[si ,ti ]

(
X(δ(c)ti) − X(δ(c)s) − cδ(c)(ti − s)

σ (δ(c))

)
> ηi, i = 1, . . . , n

)

+
n∑

i=1

P

(
sup
s≤si

(
X(δ(c)ti) − X(δ(c)s) − cδ(c)(ti − s)

σ (δ(c))

)
> ηi

)
.

Now the same procedure can be followed as in Step 1.

Step 3: Tightness in C[0, T ]. In this step, for any T > 0, we show the tightness of
{Q(c)

X (δ(c)·)/σ (δ(c))} in C[0, T ]. Given that we have established Step 2 already, (3)
holds so we are left with proving (4), with s, t ∈ [0, T ]; the remainder of the proof is
devoted to settling this claim.

Stationarity of Q
(c)
X implies that {Q(c)

X (δ(c)t) − Q
(c)
X (δ(c)s) : t ≥ s} is distributed

as

{
Q

(c)
X

(
δ(c)(t − s)

) − Q
(c)
X (0) : t ≥ s

}
,

so that it suffices to prove (4) for s = 0 only. Furthermore, cf. (6),

sup
0<t≤ζ

∣∣Q(c)
X

(
δ(c)t

) − Q
(c)
X (0)

∣∣ ≤ 2 sup
0<t≤ζ

∣∣X
(
δ(c)t

) − cδ(c)t
∣∣.

From Corollary 2 it follows that

sup
0<t≤ζ

|X(δ(c)t) − cδ(c)t |
σ(δ(c))

d→ sup
0<t≤ζ

∣
∣Bλ(t) − t

∣
∣, as c → ∞.

Now notice that for ζ < η/4, by the self-similarity of Bλ,

P

(
sup

0<t≤ζ

∣∣Bλ(t) − t
∣∣ ≥ η

2

)
≤ 2P

(
sup

0<t≤1
Bλ(t) ≥ η

4
ζ−λ

)
.

Now it is straightforward to conclude that the last expression tends to zero as
ζ → 0. �
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