
 

Managing the co-evolution of software artifacts

Citation for published version (APA):
Gabriels, J. M. A. M., Holten, D. H. R., Klabbers, M. D., van Ravensteijn, W. J. P., & Serebrenik, A. (2012).
Managing the co-evolution of software artifacts. In M. Stoelinga, & M. Timmer (Eds.), Proceedings of the 17th
Dutch Testing Day (Enschede, The Netherlands, November 29, 2011) (pp. 15-17). (CTIT Workshop Proceedings
Series; Vol. WP 12-01). Twente University.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/4dcd174a-b1ab-4114-bd90-85ecc0be16be


 15  

Managing the co-evolution of software artifacts  

J.M.A.M. Gabrielsa, D.H.R. Holtenb, M.D. Klabbersa,  
W.J.P. van Ravensteijnb, A. Serebrenikc 

 
aLaboratory for Quality Software, Eindhoven University of Technology 

bSynerScope B.V. 
cModel-Driven Software Engineering, Eindhoven University of Technology. 

 
 
 
 
Software development projects are virtually always carried out under pressure. Planning and 
budgets are tight, room for errors is non-existent and the pressure to deliver is high. Natural 
questions for (test) managers arise, such as: “When have we tested enough?” and “How many 
tests do we have to redo for this new version?'”. The naive answer would be: “when we have 
convinced ourselves through testing that all requirements are satisfied”. Unfortunately, attaining 
maximal confidence with minimal effort is not easy. 
 
In order to convince ourselves that the system does what it is supposed to do, tests are needed. 
Requirements, design and code change during the development of software. As a consequence, 
tests need to change as well. In the end we want to ensure that all requirements and risks are 
adequately addressed with tests. For this, tests at different levels of abstraction and for different 
software artifacts are required and need to be managed. 
 
Traceability matrices are often used to relate user requirements, design, code, and tests. 
Traceability allows to link elements from different software artifacts, like requirements, design 
components and code components, to each other and to test cases. As a result, traceability can 
be used to analyze for example how well software artifacts are covered by test cases. Because a 
requirement leads to design components and eventually to code, tests are needed at each stage. 
Traceability can tell us how well test cases cover different software artifact elements. This 
information can be used to uncover mistakes in software artifacts at an early stage and actively 
manage the development and test efforts. Unfortunately, traceability information is often spread 
out over multiple artifacts and describes only the current situation. 
 
TraceVis, a visual analytics tool based on the master thesis of Van Ravensteijn1 combines the 
traceability information of multiple software artifacts in an interactive way. The tool was 
recently applied to fraud detection in financial transactions 2  and software model 
transformations3, Figure 1 shows the traceability between four, vertically placed, hierarchical 
software artifacts: acceptance test plan (ATP), user requirements document (URD), software 
requirements document (SRD), and architectural design document (ADD). Hierarchy within 
each document is given by its division into chapters, sections and subsections. Each line 
between hierarchies represents a link between elements of two artifacts, e.g., user requirement 
being tested by an acceptance test or architectural component implementing a software 
requirement. The hierarchies can be collapsed and extended and risk levels and priorities can be 
                                                        
1 W.J.P. van Ravensteijn, Visual traceability across dynamic ordered hierarchies, M.Sc. thesis, 2011, 
Eindhoven University of Technology 
2 SynerScope on-line demos: http://www.synerscope.com/demos, and, specifically, SynerScope for Fraud 
http://www.synerscope.com/content/SynerScope%20for%20Fraud1.pdf 
3  M.F. van Amstel, A. Serebrenik, & M.G.J. van den Brand, Visualizing traceability in model 
transformation compositions, 2011, Workshop on Composition and Evolution of Model Transformations,  
London: Department of Informatics, King's College London. 
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visualized by giving the elements different colors. The edge bundling technique bundles similar 
relations in the middle, clearly showing deviations. Furthermore, TraceVis provides a way of 
assessing the evolution of traceability between artifacts though a timeline (lower part of Figure 
1). The timeline shows such events as addition, modification or removal of individual elements, 
e.g., user requirements or tests, as well as addition or removal of traceability links between the 
elements. 
 

 
 
Figure 1: TraceVis tool with traceability information from a student capstone project at the 
Eindhoven University of Technology. The edge bundeling technique makes it easy to spot 
deviations.  
 
Already at first glance, we can see points of attention in Figure 1: a gap in requirement coverage 
(1) and a gap in the timeline (2). The gap labeled (1) shows some medium and low priority user 
requirements not covered by acceptance tests. The gap labeled (2), located in the timeline, 
shows that test cases were added very late in the project. The gap itself relates to 
implementation activities in which there were no changes to the shown software artifacts. 
 
By interactively inspecting the traceability information, we can discover points of interest. 
Figure 1 reveals, for example, that a selected user requirement (URC8) is tested by one 
acceptance test, corresponds to one software requirement and is implemented in one 
architectural component. While this does not seem to be problematic, further inspection of the 
evolution of user requirements closely related to URC8 tells an entirely different story. While 
grouped together in the URD, the corresponding software requirements are spread all over the 
SRD, and implementation involves five out of thirteen architectural components.  
 
Figure 1 also shows outliers; grey lines running off-center between the URD and the SRD (3), 
and between the SRD and the ADD. The core part of the SRD consists of two parts: 
Requirements and Rights table. The Requirements part consists of Functional requirements 
further divided in groups (with 189 requirements in total) and Non-functional requirements (1 
requirement). The Rights table part contains only one element, i.e., the rights table. This means 
that individual functional requirements are nested at depth four, the non-functional requirements 
at depth three and the rights table at depth two. Therefore the rights table is an “outlier” in the 
organization of the SRD. 
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The evolutionary traceability information allows us to see how well tests cover artifacts and 
whether risks are sufficiently tackled. It gives insight in the balance between tests, priorities, 
and risks and can support decision making in assigning test effort. Furthermore, it can help in 
determining which tests need to be redone when a certain component or requirement changes. 
The insight in the co-evolution of software artifacts and associated tests makes it possible to 
actively manage test effort from an early stage on. 
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