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S U M M A R Y 

Ideal magnetohydrodynamic instabilities, as occurring in 

simple plasma-vacuum systems, can be suppressed by replacing 

the vacuum by a force-free magnetic field, that is, a field 

satisfying the relation VxB = aB. Force-free fields of constant 

a are investigated in particular. By proper choice of a the 

gravitational instabilities, of non-local and of surface-layer 

type, are absent in a plane plasma layer supported from below 

by a horizontal force-free magnetic field. For a sharp-pinch 

model of a dense plasma surrounded by a force-free field the 

same conclusion is reached with respect to kinks, surface-layer 

modes, and modes of the force-free region. 

Complete stability criteria are derived from the marginal 

equation of motion and it is shown that this method is equiva

lent to the application of the energy principle. From the mar

ginal-stability analysis the principle of exchange of stabil

ities is derived. This theory 1s applied to constant-pitch mag

netic fields, which are shown to be necessarily unstable. Growth 

rates of the instabilities of these fields are calculated, cor

recting earlier results of Ware. Simple modifications of some 

constant-pitch models, namely Van der Laan's model of a con

stant-pitch force-free field and Alfven's model of a constant

pitch field with parabolic pressure profile, prove to yield com

pletely stable pinch configurations of a sharp or diffuse kind. 



C H A P T E R 

I N T R 0 D U C T I 0 N 

In magnetohydrodynamics a configuration consisting of a 

plasma, a current, and a magnetic field is called force-free 

if the Lorentz force vanishes, so that jxB = 0 or VxB = aB, 
~ ~ ~ -

where a is a scalar function of the position 1
-

10
). Although 

the magnetohydrodynamic stability of force-free magnetic 

fields has been extensively studied 11
-

19
), the problem of the 

influence of such fields on the stability of a neighbouring 

plasma seems to have escaped attention. 

This problem is suggested by the long known instabili

ties that arise in simple plasma-vacuum systems 20 - 21 ). A sys

tem of a homogeneous plasma separated from the outside world 

by a vacuum with the associated magnetic fields is about the 

most simple model one can set up for a hot plasma confined 

for thermonuclear purposes. It is attractive to conserve such 

a simple model as long as no discrepancies turn up with ex

perimental data. For example, the growth rates of kink irtsta

bilities in pinches can be simply calculated from this model. 

However, in experimental studies of the screw pinch the 

thus calculated growth rates and the measured containment 

times did not agree 22
), so that a modification of the model 

became necessary. This modification was provided by Van der 

Laan 23
), who pointed out the importance of the presence of a 
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low-density plasma enclowing the central plasma core. During 

the period of formation of the pinch strong currents are in

duced in this tenuous plasma, resulting in a field which 

strongly deviates from a vacuum magnetic field. Because the 

density and the pressure of this tenuous plasma are very small, 

one can neglect the pressure gradient and the produced field 

must be approximately force-free. Next, the stabilizing in

fluence of a constant-pitch force-free field on the kink in

stability of the dense plasma was demonstrated by Schuurman, 

Bobeldijk, and De Vries 24
). A force-free field with constant 

pitch in space will be formed in the outer region of the pinch 

if a pitch, constant in time, is applied at the wall by means 

of primary currents, assuming that the created field conserves 

its pitch during the inward motion of the field 23
,

25
). On the 

other hand, a force-free field with a varying pitch in space 

will be formed by the application of a field with a time-de

pendent pitch at the wall, when the primary currents are prop

erly programmed. Therefore, the question arises as to which 

force-free field in the outer region of the pinch will be op

timal for stability. This problem is treated in Chapter 6. 

The purpose of this paper is twofold: 

- To work out in detail the stabilizing influence of force

free fields on magnetohydrodynamic instabilities. 

- To develop the marginal-stability analysis for simple cases 

to a level of rigour equivalent to the application of the 

energy principle. 

The starting point will be the equations of ideal mag

netohydrodynamics, as given by Bernstein et alii 26 ) and Kruskal 

and Schwarzschild 20
) (Chapter 2). It will be shown, starting 

from the solution of the marginal equation of motion (w 2 = 0)~ 
how necessary and sufficient stability conditions can be deriv

ed for a plane plasma layer in the presence of gravity (Chap

ter 3)~ and in absence of the latter for a diffuse pinch (Chap

ter 5). For these cases the well-known stability criteria of 

Cowley 27
) and Newcomb 28

) are recovered, showing the equivalence 
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of the application of the energy principle and that of the 

marginal-stability analysis. The demonstration of this equiv

alence was considered necessary because the marginal-stability 

analysis sometimes has been applied inaccurately and, there

fore, has been placed in an unfavourable light 29
). 

These criteria are applied to the gravitational instabil

ity of a plane plasma layer, supported from below by a force

free magnetic field (Chapter 4), and to the instabilities of a 

homogeneous plasma cylinder, surrounded by a force-free magnetic 

field (Chapter 6). Force-free fields of constant a (as defined 

above) are investigated in particular, In some sense this rep

resent~ an extension of the work of Kruskal and Schwarzschild 20
) 

and of Kruskal and Tuck 21
), both of which fit in our treatment 

by the substitution of a= 0 (vacuum magnetic field). For an 

important range of values of a it is found that the instabili

ties described by these authors completely disappear. 

In Chapter 7 some peculiarities with respect to stability 

are discussed for shearless magnetic fields and it is shown 

that these fields (force-free or not) are necessarily unstable. 

Next, the analysis given in Ref. 24 of a pinch surrounded by a 

constant-pitch force-free field (Van der Laan's model) is cor

rected using the derived formulation of the marginal-stability 

analysis. Because of the intrinsic instability of the constant

pitch force-free field the consideration in Chapter 6 of the 

larger class of force-free fields of constant a but varying 

pitch becomes important, theoretically as well as experimental

ly. Finally, a critical discussion is devoted to Alfven's model 

of a plasma cylinder with a constant-pitch field in the pres

ence of a pressure gradient. 

Three appendices are included. The first contains a rig

orous treatment of the singularities of the marginal equation 

of motion for the gravitational instability. The second one is 

devoted to the influence of resistivity on the stability of 

force-free magnetic fields, whereas in the last appendix to

roidal effects on the stability of the pinch are considered. 

Throughout this paper the MKSA system of units is used~ 

5 



C H A P T E R 2 

BASIC EQUATIONS 

Our treatise will be based on ideal magnetohydrodynamics, 

i.e. resistivity will be neglected (apart from a discussion in 

Appendix II). The equations of ideal magnetohydrodynamics are 

given in Refs. 20 and 26, where also the other assumptions and 

approximations underlying these equations may be found. 

For a static equilibrium these equations reduce to 

j X B - 'ilp + pg = 0 ' 
( I ) 

'i7 X B = ~oJ. (2) 

'il.B = 0 ' 
(3) 

where j is the current density, B the magnetic field, p the 

pressure, p the density, and ~ the acceleration due to gravity. 

In the following, ~ will be taken constant. A gravitational 

field is included, since in many cases such a field accounts 

approximately for effects due to the curvature of the magnetic

field lines. The required boundary conditions for a plasma

pressureless plasma interface are 
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(4) 

n.<B> = 0 , (5) 

the angular brackets denoting the jump of the quantity inside 

the brackets when crossing the surface and ~ being the unit 

vector normal to the surface. The condition (5) also holds at 

the enclosing conducting wall. 

In this paper a current-carrying pressureless plasma and 

a space with a force-free magnetic field will in general be 

treated as equivalent. Of course such a magnetic field can also 

exist in the presence of a finite pressure provided that the 

pressure gradient is negligible. However, it will turn out that 

the magnitude of the pressure has little influence on the sta

bility criteria in some important cases (Chapters 4 and 6); the 

pressure will then be neglected altogether. 

The stability of an equilibrium satisfying Eqs. (I) to 

(5) will be investigated by means of the equation of motion in 

Lagrangian coordinates as given by Bernstein et alii 26
): 

F{~} = p (6) 

in which the displacement vector ~ of plasma elements is con

sidered as a function of the initial position E of such an 

element and of the time t and is supposed to be small. The 

force operator F is a functional of ~: 

where g represents the perturbation of the magnetic field at 

the unperturbed position of a plasma element (strictly speak

ing it is an Eulerian variable); g is given by 

Q = Vx(~xB) (6b) 

-
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The boundary conditions at a plasma-pressureless plasma inter

face express the linearized pressure balance 

(7) 

and the continuity of the displacement 

t 
= ~ .n (8) 

p and t referring to the central plasma and the tenuous pres

sureless plasma, respectively. 

The boundary condition at the rigid wall reads: 

l;.n = 0 • 

In cylinder geometry one additional condition is needed: 

~;P finite at r = 0 • 
r 

(9) 

(10) 

In the cases to be dealt with inhomogeneity will be re

stricted to one dimension. Therefore, it will be sufficient to 

conside~ elementary solutions proportional to exp(i~.~-iwt), 

where k is the wavenumber perpendicular to the direction of 

inhomogeneity. For these elementary solutions Eq. (6) reduces 

to a single ordinary sacond-order differential equation for 

the component of I; in the direction of inhomogeneity. Equa

tions (7) to (10) then fix three of the four integration con

stants of the components of §p and ~t in this direction (one 

integration constant being fixed by normalization), and provide 

the characteristic equation. 

Formally, the equations for an incompressible plasma can 

be obtained from the equations above by replacing -ypV.~ by 

p 11 , where p
11 

is the perturbation of the Lagrangian pressure. 

In the first-order approximation with respect to I; this latter 

quantity is connected with the Eulerian pressure p = p
0 

+ p
1 
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according to plL = p 1 + ~.Vp 0 • In the case of an incompressible 

plasma the perturbation of the pressure cannot be found by 

merely integrating a conservation law like the adiabatic law 

and, therefore, the Lagrangian description does not provide us 

with an equation of motion in terms of the displacement vector 

~ alone. In order to be able to remove piL from the equations 

we then need the additional equation V.~ = 0. 

9 



-------------------·------

C H A P T E R 3 

MARGINAL-STABILITY ANALYSIS OF A PLANE PLASMA 

LAYER UNDER THE INFLUENCE OF GRAVITY 

In this chapter the marginal-stability analysis is de

veloped for a plane plasma layer with a magnetic field B 

(B (y),O,B (y)), situated between two perfectly conducting 
X Z 

walls at y = y
1 

and y = y 2 , under the influence of gravity: 

~a (0,-g,O). The coordinate system is the same as that rep

resented in Fig. 1 of Sec. 4. 1, following Kruskal and 

Schwarzschild 20 ). In this example the inhomogeneity,at equi

librium,of the pressure, the density, and the magnetic field, 

is restricted to the y-direction. Differentiation of these 

quantities with respect to this direction is indicated by 

accents. The equilibrium equations (l) to (3) yield 

( 1 1 ) 

There exists an essential difference in the stability analysis 

of an incompressible and a compressible plasma. Therefore, 

both cases will be treated separately. 
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3. 1. Incompressible plasma 

Starting from Eq. (6), performing the substitutions for 

incompressible plasmas mentioned in Chapter 2, and assuming 

elementary perturbations for the magnetic field, pressure, and 

density of the same form as that for the plasma displacement, 

viz. 

~w,k ,k (y) 
X Z 

i(k x + k z - wt) 
X Z 

e 

four coupled ordinarv differential equations are obtained. We 

henceforth drop thecircumflex and indices w,k , and k in order 
X Z 

to avoid a too complicated notation so that, in what follows, 

we understand by ~ expressions of the above form. Equation (6b) 

then gives the following relations between the components g and 

~ for these elementary solutions: 

Qx -(B ~ )' - ik (B ~ - Bz~x) ' X y Z X Z 

Qy = i(k B + k B ) ~ ( I 2) 
X X z z y 

Qz = - (B ~ ) I + ik (B ~ - Bz~x) . 
z y X X Z 

After some algebraic manipulations, also taking into account 

the equations (11) and (12) as well as the condition of incom

pressibility 

i(k ~ + k ~ ) = - ~y' ' 
X X Z Z 

(I 3) 

the x- and z-component of the differential equation (6) finally 

yield the following relations: 

i(B ~ - B ~ ) • (k B - k B )~ 1 

X Z Z X k2 X Z Z X y ' 
(I 4) 

P11 + pg~y (15) 

1 1 



where k 2 = k 2 + k 2 • These relations are basic for our subsequent 
X Z 

analysis. Two further redundant relations, linearly dependent on 

Eqs. (13), (14), and (15), read 

iw 2 p(B ~ + B ~ ) = -(k B + k B )(p
11 

+ pg~ ) , 
X X Z Z X X Z Z y 

(16a) 

i(k ~ - k ~ ) = 0 . 
X Z Z X 

(I 6b) 

In the present incompressible case the direct connection between 

i~ , i~ , and ~y be~omes very simple, 
X Z 

viz. 

k 
i~ = 

X 

X 
~I 

y 
and i~ 

z 

k 
z 

~I • 
y 

Substitution of Eqs. (14) and (15) in the remaining equa

tion of motion in the y-direction yields 

~Y1 J 1 - lw
2
p-(k B +k B )

2
/fJ. +p 1 g]t.: = 0. l X X Z Z 0 y 

(I 7) 

It should be remarked that, although the plasma is incompres

sible, we do not exclude the presence of pressure gradients. 

Thus, a consistent treatment of the thin surface layer for the 

sharp-boundary case with an incompressible plasma (Chapter 4) 

is made possible. 

Equation (17) together with the boundary conditions of 

Eq. (9), t_:y(y
1

) = t_:y(y 2 ) = 0, constitutes an eigenvalue prob

lem for w2
, the sign of w2 determining the stability of the 

concerned k ,k mode(s). Now, we shall show that necessary and 
X Z 

sufficient stability criteria can be obtained from the margin-

al equation of motion 

[ 

(k B +k B ) 2 /fJ. 
X X Z Z 0 

k2 
t.: I J I - [< k B + k B ) 2 I fJ. - p I g] t.: = 0 , 

yo x x z z o yo 

(I 8) 

12 



which follows from Eq. (I7) taking w2 = o.t) 
Equation (I7) can be written in the form (f;')'-h; = O, 

y ,y 
where 

f 

( I 9 ) 

The functions f and h are to be real for the following r~asons. 

First of all k and k should be real since we consider a plas-
x z 

rna which is infinite in the x- and z-directions. Furthermore, 

it has been proved 26
,

31
) that w2 is real, as a consequence of 

the self-adjointness of Eq. (6) with the associated boundary 

conditions. For w2 < 0 the functions f and h ar~ monoton-

ically increasing functions of -w 2
• Then it follows from Sturm's 

fundamental theorem with the modification of Picone (see Ref.30) 

that ; oscillates more slowly (if it oscillates at all) when 
y 

-w 2 increases, i.e. the mutual distance between zero points of 

; increases when -w 2 increases. If, for specified values of k 
y X 

and k , ; represents the solution of Eq. (I8) satisfying 
z yo 

; (yi) = 0, then in general ; (y
2

) f 0, and one has to choose 
~o yo 

w f 0 in order to find a solution ; of Eq, (I7) satisfying 
y 

both boundary conditions. For the time being, we exclude from 

the discussion singularities of Eq. (I8) occurring when 

k B + k B = 0. In that case, if the function ; satisfying 
X X Z Z yo 

;y
0

(yi) = 0 has a zero on the open interval (yi,y 2 ), then, ac-

cording to Sturm's fundamental theorem, a solution to the full 

equation of motion (I7) for w2 < 0 exists satisfying ;y(yi) = 
0. Thus, at least one unstable mode with wavenumbers 

occurs. On the other hand, if ; has no zero points 
yo 

t) The index o marks the solution of the marginal equation of 

motion. In order to avoid a too complex notation this index 

will be dropped generally. 

I 3 



on (y
1
,y 2), no solution of Eq. (17) will exist for w2 < 0 

that satisfies the boundary conditions, and the plasma is 

stable for these perturbations. As a consequence, the ~tabili

ty can be investigated indeed by only considering the marginal 

equation (18). 

Next, the influence of the singularities in the marginal 

equation of motion (18), present where k B + k B = 0, ,will 
X X Z Z 

be discussedt). In the neighbourhood of these singular points, 

ys say, the solution ~ can become infinite; it is then more yo 
convenient to transform to the variable Q , which here becomes 

y 
smaller than ~ by an order of 

y 
magnitude (see Eq. (12)). In 

terms of Q Eq. (17) becomes 
y 

[ 
(w

2
p-F

2 Ill ) ' J 
Q" + 0 - 2 .!..: Q' 

Y w2 p-F 2 /ll . F y 
0 

(20) 

+ FF" - 2 ( FF' J 2 + k 2 + p ' g k 2 J Q = 0 , 
w2 p-F 2 /ll Y 

0 

where F = k B + k B . This equation will be studied for small 
X X Z Z 

negative w2
, after which the limit w2 

+ 0 will be taken, fol-

lowing a procedure analogous to that of Kadomtsev 32
) and Greene 

and Johnson 33
) in their discussion of the diffuse pinch. The 

corresponding simplified treatment is represented here in view 

of its short derivations; a mathematical more rigorous analysis, 

to be giv~n in Appendix I, proves to lead to the same results. 

In the neighbourhood of a singular point y = y in gener
s 

al F ~As, where s = y- y, while A= F'(y) can be reduced 
s s 

(with the aid of the relation F(y ) = 0) to the expression 
s 

A = [ (k/B)(B B' - B B')] • We shall not consider cases in 
X Z Z X y 

s 

t) A study of the singularities of Eq. (17), where w2 p = 

(k B + k B ) 2 /ll can be avoided because we only consider 
X X Z Z 0 

negative values of w2
, defining stability as the absence of 

solutions with w2 < 0. 

14 



which F is not linearly dependent on s near s = 0, the general

ization being straightforward~ In a neighbourhood of y , which 
s 

is large enough to contain a region where -w 2 p << A2 s 2 /v and 
0 

small enough for F to satisfy F ~ As, three regions can be 

distinguished: 

I. -w 2 p >> A 2 s 2 /~ • Equation (20) here becomes approximately 
0 

Q" 2 Q' 2 Q 0 y-s y+Si" y= 

2 having the solutions Qy 1 - s and Qy 2 - s. 

II. -w 2 p- A 2 s 2 /~ • Neglecting the variation of Pin Eq. (20), 
0 

which is not quite correct but does not influence the ar-

gument, one roughly obtains 

1 1 
Q" - - Q' + Q = 0 , 

y s y ~ y 

having the solutions Qy 3 - s and Qy 4 - s ln s. 

III. -w 2 p << A 2 s 2 /~ • The approximation in this region reduces 
0 

to the marginal equation of motion, which transforms for 

small s into 

Q II + 
y Q = 0 . y , 

nl 
it has the solutions Qy 5 - s and Qy 6 -

where n 1 , 2 1/2 !1/2 1 -
4~ p'gk 2 

0 
(plus s~gn for n 1). 

The solutions to the marginal equation of motion behave 

differently according to whether the next inequality is satis-

f ied or not: 

4~ p'gk 2 
0 

1 - > 0 or, equivalently, p'g < 
(B B'-B B') 2 

X Z Z X (21) 

This is the well-known "Suydam" criterion for stability against 

the gravitational instability, in which the competition between 

the driving force of the instability (a density gradient in the 

15 



presence of gravity) and the stabilizing influence of the shear 

of the magnetic-field lines is clearly seen. (See: Cowley 27 ); 

the real Suydam criterion 3 ~) applies to pinch instabilities in 

cylinder geometry). If this criterion is not satisfied n 1 and 

n
2 

become complex, so that the corresponding real solutions 

Q (s) and ~ (s) oscillate, and th~ more rapidly so if s + 0. 
yo yo 

It then follows from Sturm's fundamental theorem that the plas-

ma is unstable. The instabilities which arise here are localiz

ed interchange instabilities. If Suydam's criterion is satis-

fied, the solutions of the marginal equation of motion 
n 1- I 

- s 

( 1 8) in 

the neighbourhood of y can be written as ~ and 
n -1 s s 

~ 1 - s 2 , where the indices s (small) and 1 (large) are intro-

duced, following Newcomb's notation for the diffuse pinch 28
). 

In general both solutions tend to infinity as s + 0, only the 

ratio ~s/~ 1 is always small. Accordingly, QyS is always finite, 

whereas Qy 6 can become infinite. 

Let us assume that the inequality (21) 1s satisfied. If 

then the solutions of the regions I, II, and IIIare joined to

gether by equating the functions and their first derivatives 

at the boundaries of the regions, taking the limit w2 + 0 

thereafter, it turns out that both Qy 1 - s 2 and Qy 2 - s in I 

change in II into Qy 3 - s and this solution in turn smoothly 

changes into QyS in III. Therefore, in the limit w2 + 0 both 

solutions of region I pass in region III into the "small" so

lution QyS - sn 1 of the marginal equation of motion. Next, we 

take as new solutions half of the sum and half of the differ

ence of these two solutions 32
). Because of the fact that the 

original solutions in region I were an even and an odd func

tion, we now obtain one solution which is identically equal to 

zero to the left of the singular point (with the exception of 

a small region of a size tending to zero if w2 + 0) and behav

ing like ~ to the right, and a solution which is identically s 
equal to zero to the right of the singular point and behaving 

like ~ to the left. 
s 
Thus, the effects of the singular points (if any between 

y 1 and y 2 ) on the marginal-stability analysis are twofold: 
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-The interval (y
1

,y
2

) is split into independent subintervals 

(i.e. intervals bounded by y
1

,y
2

, and the singular points), 

which are to be studied separately as far as stability is con

cerned. This results from the fact that the singularities are 

such that the solutions of the marginal equation of motion to 

the left and to the right of the singularity are uncoupled, 

Notice, however, that this does not imply that the sol~tions 

of the equation of motion for w2 ~ 0 are localized in one of 

the independent subintervals. If w2 ~ 0 region I is much larger 

than in limiting situations referring to w2 
+ O, and this re

gion is situated on either side of the singularity. However, it 

is true that for small w2 the perturbation can have a large am

plitude in one independent subinterval and a small amplitude in 

the other intervals. 

- The proper boundary condition to be posed at a singular point 

is that the solution ~ of the marginal equation should be 
yo n -1 

"small" there so that ~ - (y-y ) I . According to Sturm's 
yo s 

separation theorem 30 ) the zero points of the different solu-

tions of Eq. (18) alternate. Newcomb 28
) proved that the pres

ence of a solution which is "small" at a singular point is 

equivalent to the existence of a zero of this solution at an 

ordinary point. In other words, Sturm's separation theorem also 

applies to intervals bounded by singular points, provided that 

a smallness of a solution at a singular point is counted as a 

zero point. In view of the separation property, a solution that 

is "large" at a singular point then will have a zero somewhere 

between this singularity and the next zero point of the "small" 

solution. 

On the basis of the preceding analysis the stability cri

teria can be formulated, starting from the marginal equation of 

motion. It turns out that, quite generally, the marginal equa

tion of motion is identical to the Euler-Lagrange equation fol

lowing from a minimization of the energy, if no normalization 
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is appliedt). Therefore, it is obvious that we shall obtain 

the stability criteria for the gravitational instability, here 

under discussion for an incompressible plasma, in a form anal

ogous to Newcomb's criteria for the diffuse linear pinch 28
), 

which were obtained by means of the energy principle. This 

will not be worked out here, since we only aimed at demonstrat

ing that the application of ,the marginal-stability analysis can 

lead to rigorous results, just as well as the application of 

the energy principle. For that reason we shall not try to find 

an original formulation of the stability criteria and just 

adopt Newcomb's theorem 9 with the necessary modifications: 

Theorem I. For specified values of k and k a plane incompres-
x z 

sible plasma layer under the influence of gravity in the y-

direction is stable if and only if there exist no solutions to 

the marginal equation of motion (18) having more than one zero 

in the interval (y
1

,y 2 ), or in the independent subintervals of 

it if singular points are present. 

Theorem 1 is the general criterion. For applications, 

for example to the sharp boundary case of Chapter 4, it is more 

t) This can easily be seen for the case of an infinite plasma, 

where ow is defined by the following integral over all space: 

1 8 

where F is the force operator g1ven by Eq. (6a). The varia

tion of ow is written as 

where we have first used the linearity of the operator F 

and next its self-adjointness. Then it 1s evident that, for 

arbitrary o~, oW reaches a minimum if F{~} = O, which is 

identical to the marginal equation of motion following from 

the full equation of motion F{~} =-pw 2 ~ by putting w2 = 0. - - -



convenient to bring the criterion in the same form as Newcomb's 

theorem 12, which can here be formulated as the following 

statement: 

Theorem 2. For specified values of k and k a plane incom-x z 
pressible plasma layer under the influence of gravity in the 

y-direction is stable in an independent subinterval (ys 1 ,ys 2 ) 

if and only if, simultaneously: 

1) "Suydam's"criterion (21) is fulfilled at the endpoints y 
s 1 

and ys 2 if they are singular. 

2) If sy
1 

and sy 2 are the solutions to the marginal equation 

of motion (18) satisfying syl "small" at ysl' sy 2 "small" 

at y 
2

, while s 
1 

= s 
2 

at some interior point y of the 
s y y 0 

interval, then syl should not vanish in (ysl'yo) and sy2 

should not vanish in (y ,y 2 ). 
0 s 

at y = y • 
0 

The second theorem is equivalent to the first one, but 

in addition it provides a clear-cut prescription for the in

vestigation of the stability. In order of succession the 

three requirements of this theorem involve, when violated, a 

decreasing number of zero points of the solutions of the mar

ginal equation of motion. Violation of "Suydam's" criterion 

even amounts to an infinity of zero points. The second item 

of theorem 3 is clear from the preceding analysis. The third 

item is necessary in order to prevent that the solution syl 

should have a zero point upon continuation in the interval 

(y ,y 2 ), and similarly for s 2 • The position of the interior 
0 s y 

point yo is arbitrary, but the solutions syl and sy2 can be 

normalized such as to have equal amplitudes there. 

3.2. Compressible plasma 

The derivation of the required equations is fully anal

ogous to that for the incompressible case. Starting from the 
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equation.of motion (6) and taking elementary solutions, again 

of the type considered in Sec. 3. 1, three coupled ordinary 

differential equations are obtained. Two of the three equa

tions, the x- and z-component of Eq. (6), yield expressions 

corresponding to Eqs. (13) and (14), viz. 

(22) 

v.~ = 
N 

(23) 

here we have introduced the abbreviations 

Two further redundant relations, linearly depending on the 

preceding ones and corresponding to Eqs. (16), read: 

(24a) 

w2pt,:'-pgk2t,: 
i(k t,: - k t,: ) = -(k B -k B )F y y 

X z z X X z z X N (24b} 

the first of which will be used in Sec. 7. I. The explicit ex

pressions for it,: and it,: in terms of t,: are much more com-x z y 
plicated than in the incompressible case and are omitted here 

since they are of no use for the further analysis. 

Substitution of Eqs. (22) and (23) into the equation of 

motion for the y-direction yields 

(25) 
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The marginal equation of motion here becomes 

.;' J '_ [ (k B +k B ) 2 /11 -p'g- p
2

g
2 

].; =0. 
yo x x z z o yp yo 

(26) 

In the marginal-stability analysis of the compressible 

case an essential difficulty arises. The equation of motion 

(25) 1s much more complicated than the correspondin~ equation 

of motion (17) for the incompressible case. In particular, the 

proof of the monotonic character in -w 2 of the functions f and 

h, corresponding to those of Eq. (19), is complicated because 

of the appearance of a derivative with respect to y in the 

last term of Eq. (25). Therefore, a straightforward applica

tion of Sturm's fundamental theorem, like in Sec. 3. I, seems 

rather intricate. For large values of -w 2 the term in question 

1s negligible in comparison with the term w2 p; in that case it 

is easy to see that f and h are monotonically increasing func

tions of -w 2
• Therefore, for large values of -w 2 the oscillat

ing behaviour of .; certainly will be monotonic in -w 2 

y 
In order to reach the same conclusion for smaller values of -w 2 

it should be proved that a.; ja(w 2
) cannot change its sign at 

y 
a certain value of -w 2

• 

For that purpose we make use of the auxiliary theorem 

stating that the relation k = k(w 2
, • ·), resulting from the solu

tion of the eigenvalue problem of Eq. (25) with the boundary 

conditions (9), can have neither a minimum nor a maximumt); 

the dots in the brackets here mark the other parameters of the 

problem, like k /k , which should be kept constant. The proof 
X Z 

of the auxiliary theorem is simple: Suppose that an extremum 

occurs for some values of the parameters k and w2
, k and w2 

0 0 

say, so that (ak/a(w 2
)) = 0. Then, one obtains for small 

0 

cS(w 2 ) 

t) We owe this theorem and its proof to Dr. M.P.H. Weenink 
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Obviously, one can always choose k - k such that {o(w 2
)}

2 < 0 
0 

and then o(w 2 ), and also w2 ~ w2 + o(w 2
) will be imaginary. 

0 

However, this is in contradiction to the fact that w2 must be 

real, as has been proved by Bernstein et alii 26 ) and Hain et 

ilii 31
), making use of the self-adjointness of the operator 

F{l;}. 

From this theorem it follows that it is impossible to 

have two neighbouring values of -w 2 belonging to the same 

value of k. It then follows in turn that for fixed k and in

creasing -w 2 the mutual distances between the zero points of 

the solution I; of Eq. (25) must increase monotonically, be-
y 

cause otherwise (in view of the fixed size of the interval 

(y
1 
,y

2
) and the boundary condition (9) applied at y

1 
and y

2
) 

neighbouring values of -w 2 should exist belonging to one value 

of k. 

The proof of the splitting of the interval (y
1 

,y
2

) in 

independent subintervals due to the possible presence of sin

gular points (F = 0) here applies almost without change. The 

only difference with the incompressible case is the fact that 

v.~ r 0 if w2 = 0 (as a result of the gravitation); the mar

ginal equation of motion for the compressible case therefore 

differs from that for the incompressible case. As a result 

the stability criteria also will be different. This will turn 

out not to be the case for the pinch (Chapter 5). More-

over, the exponents characterizing the "small" and "large" so

lutions are different from those for the incompressible case, 

viz. 

n 1 , 2 = 1/2 + 1/2 I -
4 k 2 

]Jo [ , + ~] 
.A 2 p g YP 

hence, "Suydam's" criterion here gets the well-known 27 ) form 

n2cr2 
p'g + ..t:,_Q_ 

YP 
< 

(B B'-B B 1
)

2 
X Z Z X 

( 27) 

Therefore, the theorems 1 and 2 of Sec. 3.1 also apply to the 
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compressible case if the following substitutions are made: 

incompressible + compressible, marginal equation of motion 

(18) + (26), "Suydam's" criterion (21) + (27). 

For a magnetic field having the same direction for all 

values of y the equation of motion (25), in contradistinction 

to Eq. (17), proves to develop a singularity for F = 0 over 

the whole interval (y 1 ,y 2 ) if kx and kz satisfy this condi

tion. This degenerate case in the stability analysis was 

treated by Newcomb 35
) by means of the energy principle. The 

corresponding singularity for a constant-pitch f~eld in cylin

der geometry will be treated in detail in Sec, 7.1. 

Now we have completed the marginal-stability analysis 

for the plane plasma layer. The formulation of the stability 

criteria could be provided without any reference to variation

al principles while the use of Hilbert's invariant integral, 

needed by Newcomb in his treatment of the diffuse pinch, could 

be avoided. The discussion of the diffuse pinch in Chapter 5 

will not evoke essential new problems. Thus it is shown that 

the energy principle and the marginal-stability analysis are 

equivalent. There is one advantage associated with the appli

cation of the marginal-stability analysis, viz. the way in 

which the theorems 1 and 2 were obtained provides some insight 

in the form of the real solutions for w2 ~ 0, if those for 

w2 = 0 are known. It is clear, for example, that the most dan

gerous perturbation, i.e. the one having the largest value of 

-w 2
, will have no zero points on the interval (y

1
,y

2
). 
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C H A P T E R 4 

STABILIZATION OF THE GRAVITATIONAL INSTABILITY 

BY FORCE-FREE MAGNETIC FIELDS 

The preceding analysis will now be applied to the gravi

tational instability of a plane incompressible plasma layer, 

supported from below by a current-carrying pressureless plasma 

associated with a force-free magnetic field. The plasma is 

taken incompressible because we are especially interested in 

the analogy with the stability of a compressible pinch. This 

analogy appears most clearly from the gravitational instabili

ty of an incompressible plasma. 

4.1. Equilibrium 

The configuration is shown in Fig. 1. Both a dense plasma 

and a tenuous plasma, separated at y = 0, are situated between 

two perfectly conducting walls at y = a and y = -b. The gravi

tational force is directed along the negative y-axis. The dense 

upper plasma has a constant density pP and the magnetic field 

~P, parallel to the z-axis, has a constant magnitude, whereas 

in the lower tenuous plasma the magnetic field ~t has a con

stant ma&nitude but changes its direction which, however, is 
~ 

always parallel to the xz-plane. Surface currents in the plane 
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Fig. l Plane plasma layer supported by a force-free 

magnetic field. 

y = 0 produce a jump in the magnitude and the direction of the 

magnetic field. 

The equilibrium equation (II) provides the variation of 

the pressure in the dense plasma: 

(28) 

The pressure balance, Eq. (4), provides the magnitude of the 

jump of B according to 

(29) 

The density of the tenuous pressureless plasma is supposed to 

be so small that the effect of the associated gravity force 

on the equilibrium can be neglected. It is true that the term 
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ptw 2 should be taken into account in a normal-mode analysis, 
t and then p should be finite. In the marginal-stability anal-

ysis, however, this term drops again (w 2 = 0) and, therefore, 
t 

the neglect of p does not influence the form of the stability 
t 

criteria (in some important cases, however, the neglect of P 

leads to unphysical results: see Sec. 6.4). 

The condition for the magnetic field Bt to be force-free 

reads ~ x B = aB, or in components: 

B I = -aB B' = aB (30) 
X z z X 

Assuming a constant the field components become 

Bt = Bt sin(~ - ay) 
X 0 0 

(31) 

Bt = Bt cos(~ - ay) ' z 0 0 

where ~ is the angle between Bt and the z-axis. The parameter 
o -o 

a simply represents the amount of rotation of ~t with respect 

to the negative y-direction: ~~ = -a. Although Eq. (30) can be 

solved easily for general a the assumption a = constant is of 

importance because it leads to a great simplification of the 

stability criteria. 

4.2. Stability criteria 

The general problem of the gravitational instability was 

studied by Kruskal and Schwarzschild 20 ) for the special case 

of an infinitely extended compressible plasma, supported by a 

vacuum magnetic field. Meyer 36
) generalized this analysis to 

the case of crossed magnetic fields in the plasma and the vac

uum and then found a pronounced stabilizing effect. However, 

long waves remained unstable. In the following analysis it 

will be shown, for the incompressible case, that a combination 

of conducting walls and crossed magnetic fields (~ 1 0) pro-
o 

duces complete stability. Moreover, this stabilization is en-
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hanced considerably if the vacuum magnetic field (a = 0) is 

replaced by a force-free magnetic field with a properly cho

sen value of a. 

For a stability analysis on the basis of theorem 2 the 

zeros of the solution ~ (or Q ) of the marginal equation of 
yo yo 

motion, as well as the singular points (F = k B 
X X 

should be determined on the following intervals: 

+ k B = 0) 
z z 

(y. ,a) for 
~ 

the dense plasma, (y ,y.) for the surface layer, and (-b,y ) 
e ~ e 

for the tenuous plasma, y = y. and y = y representing the 
~ e 

upper and lower boundary of the transition layer. The surface 

between the dense and the tenuous plasma will be treated as a 

diffuse layer of thickness o, taking the limit o ~ 0, ye ~ 0, 

y. ~ 0 afterwards. For the sharp pinch surrounded by a vacuum 
~ 

magnetic field Rosenbluth 37 ) showed that this procedure, owing 

to the possible existence of singular points in the surface 

layer, leads to more stringent conditions than a procedure 

based on the boundary conditions for a plasma-vacuum system 

as considered by Kruskal and Tuck 21
). For the plane plasma 

layer the same conclusion will be reached. 

On the plasma interval (y.,a) no singular points occur, 
~ 

with the exception of the case k = 0 which, however, follows 
z 

trivially from the case k =f 0 taking the limit k ~ 0. The z z 
equation of motion (17) yields, for the situation assumed here, 

either the Alfven wave: w2 p - k 2 (Bp) 2 /~ = 0 which is of no 
z 0 ' 

importance for the stability analysis, or the equation 

p" 
~ 

y 
0 . (32) 

Hence, the equation of motion is the same as the marginal equa

tion of motion. Its solution 

~p 
y 

C sinh[ (y-a)k] 

has no zero points on the open interval (Y. ,a). 
~ 

(33) 

For the pressureless plasma interval (-b,y ) it is more 
e 

convenient to use Q • Substituting ptw 2 = 0 and using Eq. (30) 
y 
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the equation of motion (20) becomes 

k Bt-k Bt 
k2 + X Z Z X 

k Bt+k Bt 
X X Z Z 

(34) 

The last term in this equation is added only in order to il

lustrate that the problem is much more complicated for a non

constant a. Dropping this term again we obtain the solution 

(35) 

For k 2 < a 2 oscillating solutions are obtained from this expres

sion by performing the substitutions: sinh+ sin, cosh+ cos, 

/k 2 -a 2 + /a 2 -k 2
• The singular points of the marginal equation of 

motion in terms of~ , Eq. (18), are determined by F=k B +k B =0 
y X X Z Z 

or, remembering (31), by 

cos ljJ = cos(x-~) = cos(x-~ +ay) = 0 
0 

(36) 

where X is the angle between k and the z-axis, ~ the angle be

tween Bt and the z-axis, and ljJ that between k and Bt (see Fig.2) 

It is obvious from Eqs. (35) and (36) that no unstable indepen

dent subintervals lying completely in the pressureless plasma 

region can exist, because the solution Q (and, consequently, 
y 

also ~ ) oscillates at most as rapid as sin ay (namely, in case y 
k + 0), i.e. exactly in step with the singular points. There-

fore, these subintervals are at most marginally unstable. At 

the same time it follows that a plane plasma layer with a force

free field (neglecting the gravity or the density) cannot be un

~table. Therefore, only the solution on the interval (-b*,y) 
e 

that is small at y = -b*, viz. 

( 3 7) 

is important for what follows; -b* here represents the position 

of the first singular point in the pressureless plasma or, 
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Fig. 2 Field components and direction of the perturbation (y•O). 

For k lying in the shaded area a force-free magnetic 

field gives enhanced stability. 

if there are no such points, the position of the wall (-b). 

From Eq. (36) it follows that !alb* :5 'IT. 

In the interval (y ,y.) of the surface layer the quanti-
e l. 

ties p,p, and B2 vary noticeably and, therefore, the logarith-

mic derivatives of these quantities are of the order (6/a)- 1
• 

Thus the marginal equation of motion (18) becomes: 

(f ~ 11 ) 1 - h ~ 1 
= 0 ' 

0 y 0 y 
(38) 

where 

f = (k B + k B ) 2 /(~ k 2
) and h ~ -p 1 g . 

0 X X Z Z 0 0 
(39) 

(The upper index 1 refers to surface layer). Integrating Eq. 

(38) through the surface layer one obtains the result that ~l 
y 

is approximately constant in the layer, with the exception of 
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a small £-neighbourhood of a singular point where ~l tends to 
2 y 

infinity. The magnitude of £ is such that (o/a) <<£/a<<o/a. 

The proof of this property is completely analogous to that 

given by Newcomb 28 ) for the case of the surface layer of a 

sharp pinch and, therefore, will not be repeated here. In the 

£-neighbourhood of the singular point the "small" solution 
1 n -1 

is~ (y-y) I where, according to Sec. 3.1, 
y s 

n -1 =-1/2 + l/2 
1 

=-O(o/a) 

which is a small, in general negative, power. The first part 

of the inequality above guarantees that ~l is almost constant y 
on (y ,y -E) and (y +E,y.), while the second part guarantees 

e s s 1 

that the approximation of ~ by the "small" solution is valid 

on (y -E,y) and (y ,y +£), We recall the important fact that 
s s s s 

the solutions on the two last mentioned intervals are indepen-

dent of each other, so that the amplitude factors of the two 

"small" solutions are in general different. 

Knowing the solutions of the marginal equation of motion 

everywhere, the application of theorem 2 is straightforward. 

"Suydam's" criterion (21) is trivially satisfied in both the 

plasma and in the pressureless plasma. This criterion also 

holds in the surface layer because the destabilizing term p'g 

is of the order (o/a)- 1
, and the stabilizing shear term of the 

order (o/a)- 2
, which is one order of magnitude largert). The 

solutions of the marginal equation of motion have no zeros on 

the intervals (y.,a), (y ,y.), and (-b~,a); possible subinter-
~ 1 e 1 

vals of (-b,-b ) are too small to contain more than one zero. 

Therefore, the only way in which instabilities can arise is 

by violation of the third item of theorem 2. 

t) If the magnetic field changes its sense of rotation some

where in the surface layer the shear term vanishes and con

sequently "Suydam's" criterion is not satisfied 28 ), We ex

clude this case from the present analysis. 
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There are two possibilities: 

(1) No singular points exist in the surface layer. The interval 

(-b*,a) then constitutes a single independent subinterval which 

we split at the point y = y., to be taken as the ''point of com-
1 

parison" 
1 

ment ~ , 
y 

y
0 

of item 3) of theorem 2. The surface-layer displace-

the continuation ~t of which vanishes at y = -b*, and 

the plasma 
y 

displacement ~p vanishing at the other end 
y 

y 

~yl and ~y 2 
is found by 

the single interval, should then be used as 

applying theorem 2. The value of (~ 1 ';~ 1 ) 
y y yi 

tion of Eq. ( 38) : 

yi 

::: ~~ I hody + 

Ye 

= a of 

when 

integra-

Assuming that ~ and ~~ are continuous in ye' the stability cri-
y y 

terion becomes 

(40) 

Substituting the values of f
0 

from Eq. (39), transforming to Qy 

by means of Eq. (12), making use of Eq. (30), and taking the 

limits y. 7 0 and y 7 0, we obtain the stability criterion in 
J. e 

terms of Q : 
y 
2 I 

k2BP qP 
L - z _y_ - ppg > 

~ k2 p 
0 Q 

y 

a(k Bt-k Bt)(k Bt+k Bt) 
X Z Z X X X Z Z 

~0 
- R • ( 4 1 ) 

t 
In this inequality the term -p g has been neglected, in accor-

dance with the equilibrium. Here and in what follows we under

stand by the symbols of the quantities in the stability crite

rion their values at the position of the boundary (y = 0) with

out further additional indices. The expression for R also holds 
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for not constant a, where the corresponding solution of Eq. 

(34) should be substituted for Qt. Introducing the angles of 
y 

Fig. 2 and the solutions (33) and (37), remembering that ~p 
y 

and QP are identical apart from a constant factor (see Eq. 
y 

(12)), the stability criterion becomes 

Here, of course, the expression for R is only valid if a = con

stant. 

(2) One singular point y exists in the surface layer. (We ex-
s 

elude the situation in which more singular points exist, be-

cause this implies a magnetic field changing its sense of ro

tation). The interval (-b* ,a) now consists of two independent 

* subintervals (-b ,y) and (y ,a). 
s s 

* (a) We split the interval (-b ,ys) at y = ye (to be taken as y
0 

in item 3) of theorem 2)). Integration of Eq. (38) yields 

(f ~1') 
0 y y e 

Ye Ye 

~ ~~ f body +(fo~~')ys-E ~ ~~ J body 
y -E 

s 

where ~l is the surface-layer solution that is "small" at y , 
y s 

to be compared with the tenuous-plasma solution ~t that van
y 

ishes at y = -b*. The stability criterion becomes 

The expression analogous to Eq. (41) becomes 

s 
p - -p g 
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where ps is the density at the singular point. 

The inequality corresponding to Eq. (42) here reads 

t2 
p _ -psg > - B cos 2w [ /k 2 -a. 2 cotgh(b•/k 2 -a. 2 )+a. tgiP 

~0 0 0 
- R. 

(42a) 

(b) We split the interval (y ,a) at y = y .. The expressions s l. 

analogous to the Eqs. (40a), (41a), and (42a) then are, in suc-

cession: 

y. 
[-pg] l. > (40b) 

Ys 

k2BP 
2 pI 

~ pp g L z > s p - -p g - k2 - ' ~0 Qp 
(41b) 

y 

p2 
L B 

cos 2x.k cotgh(ak) -pPg > s p - -p g - . 
~0 

(42b) 

Notice again that the Eqs. (4Ia) and (41b) also hold for non-

constant a.. 

The derived criteria (42) can further be simplified by 

noticing that the functions k cotgh(ak) and lk 2-a. 2 cotgh 

(b*/k 2 -a. 2 ) are monotonically increasing functions of k if 

k 2 > a. 2 • We remind that la.lb* ~ n, so that for k 2 < a. 2 the 

latter function, transforming into /a. 2 -k 2 cotg(b*/a. 2 -k 2 ), is 

also monotonically increasing with k 2
• For a given direction 

of the perturbation (fixed by X or IP
0

) only the wavenumber k 

appears in these functions, so that long-wavelength perturba

tions are the most dangerous ones. Therefore, a necessary and 

sufficient criterion for the stability of a plane incompres

sible plasma layer under the influence of gravity and support

ed from below by a force-free field, is obtained from the lim

it k ~ 0 (indicated by the subscript o inLand R): 

(1) In the absence of a singular point in the surface layer: 
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L 
0 

(43) 

(2) In the presence of a singular point in the surface layer: 

L > p 
0 

s - -p g > R • 
0 

(43a,b) 

The latter, split, criterion is more stringent than the former. 

4.3. Discussion 

In a study of the sharp tubular pinch by means of the 

energy principle Newcomb and Kaufman 38
) distinguished between 

two types of instabilities: 

- type-! instabilities: those instabilities for which the solu

tion of the Euler-Lagrange equation, following from minimiza

tion of the energy, is continuous across the surface layer in 

the limit o ~ 0, 

- type-II instabilities: those instabilities for which this so

lution is not continuous in the limit o ~ Q. 

In our context this division corresponds to the violation 

of the criterion L > R , resulting in the appearance of type-! 
0 0 

instabilities, and the violation of the criterion L > P > R , 
0 0 

resulting in the appearance of type-II instabilities. Type-! 

instabilities can be treated without special knowledge of the 

structure of the surface layer. They also can be obtained from 

an application of the boundary conditions (7) and (8) (see Sec. 

4.4). However, the splitting of the stability criterion cannot 

be obtained from these boundary conditions. The quantity P here 

depends on the density ps at the singular point and, therefore, 

on the detailed structure of the surface layer. Hence, the pres

ence of type-II instabilities which, for the pinch, were called 

surface-layer instabilities by Rosenbluth 37 ) depends on this 

structure. It will be our task to demonstrate that realistic 
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structures of the surface layer do exist that satisfy the 

split criterion (see below). 

For a vacuum magnetic field (a = 0) in the lower layer 

the criterion (43) for type-I instabilities becomes 

~0 

~0 
> (44) 

In this expression the stabilizing and the destabilizing terms 

are clearly distinguished. The right-hand side represents the 

driving force of the gravitational instability, the left-hand 

side consists of the first stabilizing term due to the internal 

field Bp and the conducting wall at y = a, and the second sta

bilizing term due to the external field Bt and the conducting 

wall at y = -b. Because X = ~ + ¢ , it follows from (44) that 
0 0 

for ¢ = 0 (no field crossing) instability always occurs for 
0 

perturbations with ~ ! ~' in agreement with the results of 

Kruskal and Schwarzschild 20
). Instabilities can neither be 

avoided for long-wavelength perturbations if a or b ~ oo, which 

is in agreement with Meyer's result 36
). Only the combined ef

fects of field crossing (¢ 1 0) and conducting walls can bring 
0 

about complete stability. 

From Eq. (44) it follows that the stabilization for a 

vacuum magnetic field is minimal if k lies in the sector bounded 

by the directions X TI/2, for which the influence of the inter-

nal field vanishes, and ''' ~0 TI/2, for which the influence of the 

external field vanishes (see Fig. 2). However, this dangerous 

sector is covered by the sector for which the stabilization by 

the force-free field ~s more effective than that by the vacuum 

field. According to Eq. (43) a force-free field stabilizes more 

effectively than a vacuum field if k lies in the sector bounded 

* by ~ 0 = ~ol = n/2 or (3/2)TI and by ~ 0 = ~ 02 =arctg{I/(ab ) -

* cotg(ab )}, that ~s, the shaded area in Fig. 2 for which 

R (a 1 0) < R (a= 0). Obviously, the reason for the enhanced 
0 0 

stability is the fact that the perturbations with a wavenumber 

k lying in this sector "see" a magnetic-field component parallel 

35 



to k which is larger in the lower layer, so that the perturb

ed magnetic energy is also larger there. Of course, we choose 

the sign of a such that the sense of rotation of B in the 

force-free region agrees with that in the surface layer. 

Notice that the magnetic field in the force-free region has 

shear, but that its stabilization mechanism has nothing to do 

with the idea of shear (known from Suydam's criterion), 1n 

contrast with the stabilization mechanism for the surface lay-

er. 

We next investigate type-! as well as type-II instabili

ties in a special case. We assume a pressure exclusively due to 
p t2 

gravity: p = p g(a-y). Introducing S = 2~ p /B , where p 
0 0 0 0 

pPga, and a structure factor S = ps/pp for the surface layer, 

and applying Eq. (29), the quantities in Eq. (43) become: 

p 

R 
0 

1 
2 ss ' 

~ 
~ .aa{cotg(ab ) + tg ~ } , 

0 0 

(45) 

where a common 
t2 

factor B /~ a has been dropped. The functions 
0 0 

L , as well as 
0 

tions of S, if 

L -P and P are monotonically decreasing func
o 

the reasonable assumption S ~ I is made. Thus, 

with respect to type-! instabilities, as well as with respect 

to type-II instabilities (possibly equal) critical values of 

S exist above which instability sets in. 

If L > R type-! instabilities are absent. In Fig. 3 
0 0 

the quantities L and R from Eqs. (45) are plotted as a 
0 0 

function of ~ , with the following choice of the parameters: 
0 

a = b; ¢ = TI/4; ab = 0, 0.5, and I; S = 0 and 0.5. For S = 0 
0 

the curve L and the different curves R do not cross, while 
0 0 

throughout, so that the configuration is stable L > R 
0 0 

against type-! instabilities. This is obvious, because the 

driving force of the instability is absent for S = 0. With 

36 



l 
\ I 

\ I 
\Lo(i3=0) / 

\ I ' / ' B / ....... / 

0 ' ~Tt 
',Lo<13=0.5) 

'--·-,..,., 
B' 

.... - ..... 
,. ' 

/' ' I \ 
I \ 

/ \ 
I \ 

/ \ 
I 

Fig. 3 Stability diagram of the plane plasma layer for k ~ 0, 

a = b, ¢1
0 

= TI/4. 

increasing values of 13 the curve L goes down and for 13 = 0.5 
0 

the curves L and R (a = 0) cross, the critical value of 13 
0 0 

for a vacuum magnetic field already being exceeded. If we con_-

sider non-vanishing values of a, it turns out that the curve 

R rotates around the fixed point A for which R = 0 and w = 
0 0 0 

TI/2, that is where k l Bt. For 13 = 0.5 the curve L just pas-
~ -o o 

ses through this point and, therefore, in our numerical exam-

ple this value of 13 is the maximal one admitting stability. 

Accordingly, one can choose a such that this value of 13 is 

marginally stable, i.e. the curves L and R touch in the 
0 0 

point A. If the singular points of the pressureless plasma 

were not effective to the right of w = TI/2 in Fig. 3, we 
* 0 

would have b = b and the dashed parts of the curves R would 
0 
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have physical significance. From the equation aL /a~ = aR /a~ 
0 0 0 0 

at ~ = TI/2 it would follow that ab = 0.5 is optimal for sta-
o 

bilityt). This method to determine the optimal a is not only 

incorrect in the present ideal theory (see, however, Appendix 

II), but also too pessimistic because the singular points 1n 

the pressureless plasma prove to play a stabilizing role, these 

points occurring for values of 

In fact, according to Eq. (36) 

lar point is determined by ~ = 

~ between rr/2 and rr/2 + ab. 0 . 

h . . "' f • t e pos1t1on y = -b o a S1ngu-

~ -ab"' = + rr/2. Therefore, if 
0 -

there are singular points present in the pressureless plasma 

we have cotg(ab"') = - tg ~ , so that R ~ 0 and the dashed 
0 0 

parts of R should be replaced by the solid horizontal parts. 
0 

In Appendix II we will see that resistive effects destroy the 

stabilizing influence of the singular points; in that case the 

dashed parts of the curves R acquire physical significance. 
0 

Within the frame of the present theory, 

have this significance. If ab = n/2 the 

however, they do not 

horizontal part of R 
0 

extends from~ = n/2 to rr,and as soon as ab > n/2 instabili
o 

ties appear for values of ~ immediately to the right of 
0 

~ = 0. These are not instabilities of the pressureless plasma 
0 

(as 

mas 

we shall come across in Chapter 6 for cylindrical plas

if a is large enough), but they are brought about by the 

fact that the above-mentioned stabilization mechanism becomes 

less effective if the layer in which the magnetic field is al

most parallel to ~becomes too thin. Thus, the optimal values 

of ab lie somewhere in the region 0.5 < ab < rr/2. 

Concerning type-I instabilities we recapitulate that 

those, occurring with a vacuum field if ~ < rr/2, are suppres
o 

sed in the case of a force-free field when a becomes large 

enough. The instabilities which threaten to appear for ~ >n/2 
0 

t) Notice that this value of a is independent of the assump-
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t' t tion of a constant a because in Eq. (41) Q /Q only appears 

in the term with the quadratic factor (~.~E) 2 ~nd in the 

vicinity of ~ = rr/2 this term is negligible with respect 
0 

to the linear term containing a explicitly. 



if a becomes too large, are suppressed by the influence of the 

singular points in the pressureless plasma. 

With respect to type-II instabilities we observe that 

the split criterion L > P > R only makes sense for x-values 
0 0 

for which singular points do exist in the surface layer. Assum-

ing that the direction of the magnetic field in the surface lay

er changes monotonically with y, this situation occurs for val

ues of X between TI/2 and TI/2 + ~ • Therefore, for ~ = TI/4, the 
0 0 

quantity P is only relevant in the interval n/4 < ~ 0 < TI/2. If 

~ = n/4 the singular point lies at the upper boundary of the 
0 

surface layer (y =y.), so that S = 1 and P = L according to 
s l 0 

Eq. (45). If~ = TI/2 the singular point lies at the lower boun-o 
dary of the surface layer (ys=ye), so that S = 0 and P = R

0 
ac-

cording to Eq. (45). As a result the curve for P, if represented 

in Fig. 3, would connect the point B (if S = O)or B' (if S=0.5) 

with the point A. A limiting condition restricting the variety 

of possible curves P is: 0 ~ S ~ 1. If S = 0 the curve for P 

simply reduces to the horizontal line AB (P = 0), so that 

L > P > R for all a (this 1s trivial: there is no driving 
0 0 

force for the instability). If S = 0.5 instabilities certainly 

arise for a vacuum field, because L > R is already violated 
0 0 

and no space is left between L and R for the curve P. This 
0 0 

situation changes with a force-free field if ab > 0.5. For in-

stance, if the rate of change of the direction of B is constant 

across th.e surface layer, the position of the singular point y 
. d . d' TI/2-~o ~ . s 
1s connecte w1th ~ accor 1ng to: y = /Z 2u. Then, 1t fol-

lows from Eq. (45) :hat a surface la;er wi:h S=ps/pp>sin{•·y·~:•} 
satisfies L > P. If, at the same time, ab > 0.5, enough space 

0 

will be left for P to satisfy P > R . This very example suffices 
0 

to show the existence of a very large class of realistic surface-

layer structures which are stable against type-II instabilities 

1n the presence of a force-free field. 

Summarizing: force-free fields with properly chosen value 

of a can stabilize type-I as well as type-II instabilities up to 

a value of S which is higher than S 't corresponding to a vac
crl 
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uum field. This result will turn out to be strongly anal6gous 

to the results to be obtained in Chapter 6 for the sharp pinch. 

In that case it will lead to more spectacular results, because 

a pinch surrounded by a vacuum field is already unstable for 

8 = o. 

4.4. Growth rates 

Finally, we shall show that the stability criteria and 

the growth rates of type-I instabilities can be obtained from 

the boundary conditions (7), (8), and (9), giving 

PIL 
+ ~p. [gP + ~P.v~PJ = ~t.egt + ~t.v~t] ( y=O) ' (46) 

flo flo 

~p = ~t (y=O), (4 7) 
y y 

~p = 0 (y=a), 
y 

(48) 
~t 

y 
= 0 (y=-b). 

B-y dividing Eq. (46) by Eq. (4 7)' while using Eqs. ( 1 2) - ( 1 5) , 

we obtain 
2 p' (k Bt+k Bt) 2 t ' w2pP-k2BP I flo ~ ~ -pPg + z X X Z Z ( y= 0) • (49) = 

k2 ~p fl k2 ~t 
y 0 y 

Here, ~p and ~t are the solutions of the 
y y complete equation of 

solutions ~p and ~t motion, which differ in general from the 
yo yo 

of the marginal equation of 

interval that the solutions 

cause the magnetic field is 

motion. It was shown for the plasma 

coincide, ~p = ~p (Eq. (33)), be-
y yo t 

homogeneous. In case the density p 
t 

neglected the solutions ~ and 
y 

appears in the equation of motion 

of the pressureless plasma ~s 

~t also coincide, because w2 
yo 

only in the combination ptw 2 , so that it does not make any dif-

ference whether pt or w2 is neglected. For the same reason the 
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proof of the splitting of the pressureless plasma interval in 

independent subintervals is valid for pt + 0. Therefore, the 

solution st is obtained from Eq. (37), using Eq. (12). 
y 

Substituting these solutions and the angles of Fig. 2 into Eq. 

(49) we obtain for the growth rates of type-! instabilities: 

gk 
cos 2 X 

cotgh(ak) 

+ 
cotgh(ak) 

k 
(L - R) (SO} 

pp cotgh(ak) 

The corresponding approximation for small values of k reads 

= (L - R ) 
0 0 

(51) 

The stability criterion L > R for type-! instabilities fol-
o 0 

lows immediately from this expression. At the same time it 

becomes clear how the conducting wall at y = a influences the 

stability. If a + oo the growth rate of the gravitational in

stability is given by the well-known expression -gk. It is 

true that the growth rate is small for small k, but it domi

nates the magnetic terms which are proportional to k 2
• There

fore, long-wavelength perturbations are always unstable if a 

tends to infinity. As a result of the introduction of a con

ducting wall the growth rate for small k becomes -gak 2
, and 

now the magnetic terms can compete with the gravitational 

terms, thus making the stability of long waves possible. 

We point out that the stability analysis by means of the 

boundary conditions is of limited applicability in comparison 

with the marginal-stability analysis. It is not possible to 

treat type-!! instabilities in this way. Moreover, we were 
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forced to neglect the density of the pressureless plasma in 

order to be able to solve the equation of motion. This approxi

mation was also made in the preceding sections, but there it 

was only of importance for the equilibrium and did not play a 

role in the stability analysis. In the analogous treatment of 

the pinch (Chapter 6) the density of the pressureless plasma 

has no influence on the equilibrium and then it will not be 

necessary to neglect it. 
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C H A P T E R 5 

MARGINAL-STABILITY ANALYSIS OF A 

DIFFUSE LINEAR PINCH 

The marginal-stability analysis will now be developed 

for a plasma with a distributed current in a cylinder with 

radius R. surrounded by a perfectly conducting wall. The anal

ysis is fully equivalent to that of Newcomb 28
), who started 

from the energy principle. Here, we can shorten the derivation 

of the stability criteria considerably , making use of the 

analogy with the plane case (Chapter 3). 

The geometry of the configuration suggests to introduce 

cylinder coordinates r,e, and z. Inhomogeneity of the pressure, 

the density, and the magnetic field will be restricted to the 

r-direction. Accents mark differentiation with respect to r. 

The equilibrium can be described in terms of p = p(r) and B = 
(O,B 8 (r),Bz(r)), which are connected with each other accord

ing to 

B2 
+ ___ e 

~ r 
0 

0 . (52) 

In this case no essential difference exists between the 

stability analysis for a compressible and an incompressible 
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plasma. Because the equations for the incompressible case can 

easily be derived from those for the compressible one, and not 

the other way round, we shall give the stability analysis for 

a compressible pinch. 

Starting from Eq. (6) and taking elementary solutions of 

the form 

i(mEl+kz-wt) 
I; <€r,mk(r), €El,mk(r), ~z,mk(r)) e 

three coupled ordinary differential equations are obtained. 

Again we drop the circumflexas well as the lower indices m and 

k, and henceforth understand by ~ expressions of the above 

form. The relation between g and ~' as given by Eq. (6b), be

comes 

Qr = i(mB 8 /r + kB ) s z r ' 

QEl = -(B I;)' - ik(BEll;z - 8 zi;El) , (53) El r 

Qz (rB I; ) 1 + im 
(BEll;z 8 zt,;El) = - - . r z r r 

With the aid of the Eqs. (52) and (53), the El-and z-com

ponents of the equation of motion (6) can be reduced, after 

some tedious algebraic calculations, to 

N 
(54) 

(w 2 p-F 2 /~ )(rl; )'/r+2kB8 (mB /r-kB
8

)t,; /(~ r) 
v.t;;=w2p 0 r z r 0 

- N 
(55) 

here, we introduced the abbreviations 
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and 

Two further redundant relations, linearly depending on the 

preceding ones, read 

= 
F -w 2 p(mBz/r-kB 8 )(r~r)'/r-2kB 8 {w

2 p-yp(m 2 /r 2 +k 2 )}~r/r 

N 

the first of which will be used in Sec. 7.1. 

(56a) 

(56 b) 

Substitution of Eqs. (54) and (55) in the equation of 

motion in the r-direction yields 

_ -2-:-: [B~ ]' _ 

0 . 

The boundary conditions associated with Eq. (57) are 

r~ = 0 at r = 0 and at r 
r 

... 
R 

(57) 

(58) 

The equations (55) and (56) were previously derived by Ware 39 ) 

and Eq. (57) by Hain and Lust~ 0 ). The equation of motion for 

the incompressible pinch, which was derived by Freidberg~ 1 ), 

can be found heuristically from Eq. (57) by taking the limit 

y + 00 
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Again the equation of motion (57) can be represented by 

(f~')' - h~ = 0. Just as for the compressible plasma layer 
r r 

(Sec. 3.2) the last term of Eq. (57) prevents a simple proof 

of the monotonic character in -w 2 of the functions f and h. 

The difficulty is removed in ilie same way as before by using 

the auxiliary theorem stating that the relation k=k(w 2 ,.,) or 

m=m(w 2
, •• ), following from the eigenvalue problem of the equa

tions (57) and (58), can have neither a maximum nor a minimum. 

From this theorem it follows again that the zero points of ~ 
r 

must move away from each other when -w 2 increases, at least if 

w2 < 0. Also the splitting of the interval (O,R) in independent 

subintervals can be proved along the lines of Sec. 3.1. There

fore, the applicability of the theorems 1 and 2 of the plane 

plasma layer can be extended to the diffuse pinch, if some nec

essary modifications are made (see the theorems 3 and 4 below). 

The marginal equation of motion, following from Eq. (57), 

reads 

( f l:l )'- h 1: = 0' 
o"'ro o"'ro (59) 

where f and h can be written, with the aid of Eq. (52), in 
0 0 

conformity with Newcomb's expressions 28
): 

h 
0 

f 
0 

= 

In the vicinity of a singular point r , F ~ 
s 

s = r- r and;\=- [kB ]..1 1 /]..1] with ]..1 = 
s z r 

(59 a) 

(59b) 

As in general, where 

B
8

/(rB
2
). 

s 
n -1 

Just as in Sec. 3.1 the power of the "small" solution~ _ s 1 
s 

follows from the indicial equation belonging to Eq. (59), viz. 
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1/2 + 1/2 (59c) 

The well-known Suydam criterion 33
) requires that the expres

sion underneath the square root sign should be positive: 

rB2 2 
p' + Bllz [ll~J > 0. 

0 

(60) 

The following theorems 3 and 4 are analogous to the pre

ceding theorems 1 and 2 and almost identical to the theorems 9 

and 12 of Newcomb. 

Theorem 3. For specified values of m and k a diffuse linear 

pinch is stable if and only if there exist no solutions to the 

marginal equation of motion (59) having more than one zero in 

the interval (O,R) or in the independent subintervals of it, 

if singular points occur. 

Theorem 4. For specified values of m and k a diffuse linear 

pinch is stable in an independent subinterval (rsl ,rs 2) if and 

only if: 

1) Suydam's criterion (60) 1s fulfilled at the endpoints rsl 

and rs 2 if these are singular. 

2) If sr 1 and srz are the solutions of the marginal equation of 

motion (59) satisfying sri "small" at rs1' i;r2 "small" at rs2' 

while s 1 = s 2 at some interior point r of the interval, then r r o 
I; 1 should not vanish in the interval (r 1,r) and s 2 not in r s o r 
the interval (r ,r 2). 

0 s 

r = r . 
0 

The marginal stability analysis, which was applied by 

Rosenbluth 37
) on the sharp pinch in a heuristic manner, has now 

acquired an exact basis. It is clear that it will lead to the 

same results as an application of the energy principle does. 

47 



~~--~~~~~~~------------------------------ -

Therefore, it cannot be subject to the criticism which was 

given some time ago by Tayler 29
) on a certain use of the prin

ciple of exchange of stabilities in the work of Dungey and 

Loughhead~ 2 ,~ 3 ). The latter principle (see Ref. 44 and Sec. 

7.3) is a special method of applying the marginal-stability 

analysis, which leads to the same results. In Chapter 7, where 

constant-pitch magnetic fields are discussed, we shall have 

the opportunity to deal with Tayler's criticism. In the case 

of a constant-pitch magnetic field Eq. (57) develops a singu

larity when simultaneously k = -~m (or F ~ 0) and w2 = 0, so 

that N ~· 0 on the whole interval (O,i). This is a degenerate 

case in the marginal-stability analysis, deserving special 

treatment. 

It appears from Eq. (55) that ~.~ = 0 if w2 = 0. As a 

result the marginal equation of motion (59) is valid for com

pressible as well as for incompressible perturbations. There

fore, the stability criteria do not depend on the compress

ibility (for the present we make an exception for the degener

ate case of a constant-pitch field, which will be treated in 

Chapter 7). For the compressible plane plasma layer under the 

influence of gravity, ~.~ is different from zero for the mar

ginal modes (see Eq. (23)). If, in this case, we neglect grav

ity it follows that ~.~ = 0 for w2 = 0 and again the stability 

criteria are independent of the compressibility (Eq. (18) and 

(26) are identical if g = 0). In the above-mentioned criticism 

Tayler also objected to the fact that Loughhead~ 3 ) claims to 

demonstrate that for a pinch with distributed current~ 2 ) and 

for a plane plasma layer in the absence of gravity 43
) stabili

ty does not depend on the compressibility of the fluid. It is 

clear by now that this criticism is unjustifiedt). The stabil-

t) On the other hand, it is rather remarkable that Tayler did 

not notice the fact that the main conclusion of Loughhead's 

article~ 3 ) is incorrect, viz. that a plane plasma layer in 

the absence of gravity can be unstable. This can be seen 

from the expression of the energy corresponding to Eq. (18) 

or (26) with g = 0: 



ity criteria are influenced by compressibility only if gravity 

is introduced. 

Some further remarks are to be made in connection with 

the compressibility of the diffuse pinch. The property that 

V.~ vanishes for w2 = 0 (marginal stability) corresponds to 

the fact that ow is minimized by v.~ = 0 in the application of 

the energy principle, without normalization of the functions. 

Owing to this, some authors are te~pted to believe that incom

pressible modes are the most dangerous perturbations. However, 

from Eq. (55) it is evident that V.~ f 0 if w2 f 0 (which is 

in general the case for the most dangerous modes, viz. those 

having the largest value of -w 2
). It is true that minimization 

of the energy yields V.~ = 0, but in case the functions are 

not normalized one can only judge about the sign of oW and not 

about the "danger" of the perturbations. Another misconception 

is that an unstable incompressible pinch can be made stable by 

the introduction of compressibility, because V.f appears qua

dratically in ow. The transition from instability to stability 

takes place, however, via w2 = 0 and then V.~ = 0. Therefore, 

compressibility can only alter the growth rates of the insta-

which can never be negative. Loughhead concludes to instabili

ty because he finds oscillating solutions to the marginal equa

tion of motion. However, in Sec. 4.2 we mentioned that a plane 

plasma layer with a force-free field of constant a and in the 

absence of gravity cannot be unstable, because the singular 

points alternate more rapidly than the zero points of ~ do. 
yo 

According to the above expression this conclusion turns out to 

be generally valid. Loughhead does not take into account the 

stabilizing influence of the singular points, however, and 

consequently his incorrect condition for instability (Eq. (54) 

of his paper) is just the condition which ensures the exis

tence of singular points. 
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bilities, but not their unstable character. A more detailed 

and general discussion on compressibility, from the point of 

view of the energy principle, is given in Refs. 45 and 46. 
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C H A P T E R 6 

STABILIZATION OF PINCH INSTABILITIES BY 

FORCE-FREE MAGNETIC FIELDS 

The theory of Chapter 5 will be applied to a sharp pinch 

with a dense inner plasma, surrounded by a pressureless plasma 

associated with a force-free field. This problem is suggested 

by the experimental and theoretical work on the Jutphaas screw 

pinch 22
-

25
). Especially the results of this section represent 

an extension of Ref. 24. Some conclusions of this and the next 

section were published before~ 7 ,~ 8 ). 

6.1. Esuilibrium 

In Fig. 4 the configuration is· shown. A dense plasma of 

radius r
0

, embedded in a longitudinal magnetic field ~P, is 

surrounded by a tenuous plasma with a helical magnetic field 

occupying an annular region r
0 

< r < r
1

. The wall at 

r = r
1 

is perfectly conducting. The inner dense plasma has a 

constant density pP, a constant pressure p, and the magnetic 

field Bp has a constant magnitude and direction. In the pres

sureless plasma the magnitude as well as the direction of the 

magnetic field Bt vary, but B vanishes throughout. As custom-
r 

ary in the theory of the sharp pinch 21
), infinitely large cur-

5 I 



rent densities are allowed at the position of the plasma sur

facer= r (surface currents), which produce a jump in the 
0 

magnitude and the direction of the magnetic field. The allow-

ance of currents in the outer region of the pinch represents 

an extension of the theory of Kruskal and Tuck. This extension 

is justified and necessary on account of the experimental 

Fig, 4 Sharp linear pinch confined by a force-free magnetic 

field. 

data 25
). The following quantities vanish at equilibrium: the 

electric field, the current density in the inner plasma, the 

charge density, and the velocity of the plasma. 
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The jump in the magnitude of B is given by Eq. (4): 
2 t 2 

sP Bo 
p + ~ = ~ ' (61) 

0 0 



where the index o 

The quantity 

8 = 
2~ p 

0 

in Bt marks the value at the place r = 
0 

2~ p 
0 --p = 

B 
0 

1 -

r • 
0 

(62) 

which characterizes the confining quality of the pinch, con

stitutes an important parameter. 

The magnetic field in the outer region of the pinch has 

to be force-free because the density is so low that the pres

sure and, therefore, the pressure gradient can be neglected. 

For the following stability analysis, however, only the ne

glect of the pressure gradient is essential. In fact, in the 

marginal equation of motion (59) che pressure itself does not 

appear, so that the stability criterion does not depend on 

the magnitude of the pressure. The addition of a constant pres

sure in the inner and outer region of the pinch therefore does 

not change the following stability criteria, which will be de

rived while assuming pt = 0. On the other hand, no force is 

associated with a finite density (like in the plane case with 

gravity) and, consequently, it will not be necessary to neglect 

the density in the pressure~ess plasma. 

Force-free fields having translational and rotational 

symmetry (8/8z = a;ae = 0, a;ar ~0) can be fixed in three pos

sible ways, viz. by prescribing the profile of one of the 

functions: I) a= a(r), 2) ~ = ~(r), or 3) B2 = q(r). Each of 

these three quantities has a physical significance: a is the 

ratio between the current and the magnetic field (apart from a 

factor ~ 0 ), ~the reciprocal pitch of the field lines (apart 

from a factor 2n), and q the magnetic-energy density (apart 

from a factor 2~ 0 ). The field components B8 and Bz can be de

rived from these quantities with the aid of the relations de

fining a, ~' and q, viz. ~ x B = aB, ~ = B
8
/(rBz), and q = 

B~ + B~. These relations involve the following ones, which are 

convenient for an explicit derivation of the magnetic field 

from one of the three profiles a(r), ~(r), and q(r): 
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(.!.- ~}B' 
B I 

1 ) B" + + a 2B = 0 and Be 
z = 

z r a z z a 
(63) 

2) B I + 
]..l(J.1r2) I 

B = 0 and Be ]..lrB ' z l+]..lzrz z z (64) 

3) B /q + !rq' z 
and Be = /-!rq' (65) 

With the description ~n terms of q, which was introduced by 

Schluter 3
), one must impose the conditions q' S 0 and 

(r 2 q) 1 ~ 0. The following relations exist between a, ]..l, and q: 

a= 2]..l+]..llr ' a= 
l+]..lzrz 

3q'+rq" 

2/-rq I (2q+rq I) 
' ]..l r~ v-~ 

(66) 

Here, the second equation is the correct relation between a 

and q, replacing the incorrect version reported in Ref. 3. 

The three ways of description are equivalent. In addi

tion to Eqs. (63) and (64), proper boundary conditions should 

be posed which, however, can be chosen as wanted. The descrip

tion in terms of q seems to be the most attractive one because 

it does not require to solve a differential equation. The de

scription in terms of ]..l was used in Ref. 24, in which the con-

stant-pitch force-free field was treated. In that case, the 

choice of ]..l fixes the function a(r) as well as the value ]..l(r ). 
0 

In the present work we shall prescribe the magnitude and the 
t direction of B at r = r (and therefore ]..l(r) and q(r )), 

0 0 0 

just like in the plane case; we then still need a free param-

eter in order to enable an optimal choice for the force-free 

field. The simplest class of force-free magnetic fields fit

ting these requirements is that with a = constant. Given values 

of ]..l and q at r = r then yield the necessary boundary condi-
o 

tions for Eq. (63), while a can be chosen freely. In this way, 

a class of fields is obtained having the same value of ]..l(r ) 
0 

and q(r ), but different values of a. Furthermore, the equa-
o 

tions for the perturbed quantities prove to have analytical 

54 



solutions if a= constant (Sec. 6.2). 

If a = constant the solutions of Eq. (63) are 

B 
z 

= A1J
0

(Ialr) + A2N
0
(Ialr) , 

B8 =(a/ I a I ) [A 1 J 1 (I aIr) + A2 N 1 ( I aIr) ] ( 6 7) 

J and N being the Bessel and Neumann functions. For A2 = 0 the 

well-known field of Lundquist 1
•

11
) is obtained. The stability 

of this field was investigated by Voslamber and Callebaut 17
). 

In our case the force-free field is situated in an annular re

gion and, therefore, the Neumann functions need not be excluded, 

at the same time providing us with the required extra parameter. 

The pitch of these fields is given by 

f.! = 
o: Jl <lo:lr)+(A2/AI)N1 <lair) 

r lal Jo(lo:lr)+(A2/Al)No(lo:lr) 

For given values of 

from E q. ( 6 8) : 
r ' 0 

f.l(r )r J <lair )-(o:/io:i)J 1 (Io:lr) 
0 0 0 0 0 = 

f.!(r )r N (j'o:lr )-(o:/lo:i)N 1(1alr) 
0 0 0 0 0 

(68) 

(69) 

The field and pitch distribution can now be calculated from 

Eqs. (67), (68), and (69). The magnitude of the magnetic field 

(q(r )) need not be given because the stability criteria only 
0 

depend on f.l(r ), o:,S,r , and r
1

• 
0 0 

In Fig. 5 the pitch and field profiles are given for a 

certain choice of f.l(r ), r , and r
1

, and for a number of values 
0 0 

of the parameter o:. The stability criteria, to be derived in 

Sec. 6.2, will be illustrated in Sec. 6.3 for this choice of 

the parameters. Here, o: = 0 represents the vacuum field (no 

currents in the outer region, but there may be a plasma present~ 

a = - 24.6 m- 1 gives a field which is close to a constant-pitch 

field (the dashed line in Fig. 5), a=- 35 m- 1 represents the 

Lundquist field (A 2 /A
1 

= 0), while a=- 50 m- 1 is chosen for 
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reasons made clear later on. 

l.l(ni,) Bz,Be 

t t Bz(f3=0) 

-40 
Bz<P =0.2) 

-20 

or------------++-------------4 
0 

I 

Fig. 5 

0.06 

-r(m) I -r(m) 

Field configuration for ~ = constant, r • 0.03 m, 
0 

r
1 

= 0.06 m, ~(r0 ) = -20 m- 1
• 

0 

-50 

Another reason exists why from all other possible force

free fields the choice of the fields with a = constant is in

teresting. Force-free fields of constant a have been studied 

extensively 1 '~- 7 , 13 ' 1 ~, 17 - 19 ), and in general authors attribute 

more physical significance to these fields than to those with 

non-constant a. Occasionally one gets the impression thae the 

reason for this is the mathematical simplicity of these fields. 

However, in resistive magnetohydrodynamics, i.e. replacing 

Ohm's law E + v x B = 0 by~= a(~+ v x B), a restriction for 

the possible choices of force-free fields is to be imposed. 

In the absence of plasma motion (v = 0) Ohm's law in the lat--
ter representation, with an isotropic and constant conductivity 

a, leads for the resistive fields to an evolution equation for 

a force-free field ~(E,E): 
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aB 
- -a 2 B Va X B ~0 a = -t (70) 

and another such equation for a(!,t): 

a a a V2 a + 2Va.VIBI 
~0 = t I B I 

(71) 

From Eq. (70) it follows that only force-free fields with 

Va = 0 can decay exponentially without change of direction 1
'

9
), 

From Eq, (71) it is obvious that then also aa/ot = 0. Converse

ly, one can prove that 8a/8t = 0 implies Va = 0. Therefore, in 

resistive magnetohydrodynamics only quasi-static force-free 

fields with either a = constant, or a a function of both r and 

t remain possible~ 9 , 50 ). 

Reference 50 brings a new element into the discussion of 

possible force-free fields. It is proved there that a field 

which is force-free at all times has to satisfy, in view of 

Eq. (70), the relation 

B x (Va.V)~ = 0 . (72) 

Together with the relations 

V x B = aB (73) 

and 

V.B = 0 or B.Va = 0 , (74) 

Eq. (72) puts a strong restriction on the possible force-free 

fields with a f constant. For example, in cylindrical symmetry 

the Eqs. (72) and (73) lead to a field of the form 

(75) 

where A and C may be functions of t. In Ref. 50 this field is 

rejected because it blows up at r + 0. This argument does not 
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hold for an annular region, but all the same this field can be 

excluded because the function a following from Eq. (75) does 

not satisfy Eq. (71) for any value of cr. Finally, the discus

sion about the possibility of force-free fields with a not 

constant is nicely brought to an end by Jette 51
), who quite 

generally proves that the Eqs. (72), (73), and (74) are incom

patible in this case. Thus, '~n resistive magnetohydrodynamics 

the only force-free magnetic fields ~ which remain force-free 

in time are those for which a is constant in space and time". 

Jette's result implies that a force-free field with a 

varying in space and, therefore, also a constant-pitch force

free field, cannot exist. However, it is doubtful whether this 

result is relevant for the present discussion. The creation of 

a force-free field with a # constant in a pinch configuration 

cannot be excluded because Jette's theory only applies to plas

mas at rest (v = 0~. It is true that after the formation of 

the pinch only a force-free field with a = constant can exist 

in the presence of resistivity, but inevitably this field de

cays. As a result, the whole pinch configuration will desin

tegrate, so that the problem of the evolution of the dense in

ner region of the pinch is just as important as that of the 

evolution of the force-free outer region of the pinch. There

fore, as yet we do not think that more physical reality should 

be attached to force-free fields of constant a than to force

free fields with a varying in space (for example, the constant

pitch force-free field of Ref. 24), at least not for the case 

of the outer region of the pinch. However, we shall meet other 

reasons to prefer force-free fields of constant a rather than 

force-free fields of constant ~. In this paper we shall neglect 

resistivity altogether and our point of view will be that the 

class of force-free fields of constant a just provides a class 

of possible field distributions. The most stable of these dis

tributions should be aimed at in order to obtain a pinch which 

is optimally stable during time intervals for which resistivity 

can be neglected. 
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6.2. Stability criteria 

The kink instability of a sharp pinch was discussed first 

by Kruskal and Schwarzschild 20
). Later this analysis was extend

ed to a pinch with an internal magnetic field and surrounded by 

conducting walls 21 ' 52 ' 53 ' 5 ~). In these investigations a vacuum 

field was assumed between the plasma column and the wall. 

Schuurman, Bobeldijk, and De Vries 2 ~) found a pronounced stabi

lizing effect on the kink instability by replacing this vacuum 

field by a constant-pitch force-free field. This effect will 

turn out to be conserved and even enhanced if force-free fields 

of constant a are considered. 

For a stability analysis on the basis of theorem 4 the 

zeros of the solution ~ (or Q ) of the marginal equation of 
ro ro 

motion, and the singular points (F = mB
9
/r + kBz = 0) .should 

be determined for the following intervals: (O,r .) for the 
0~ 

dense plasma, (r .,r ) for the surface layer, and (r ,r 1 ) for 
o~ oe oe 

the tenuous plasma. Again, the boundary surface between the 

plasma and the pressureless plasma will be considered as a limit

ing case of a diffuse layer of thickness o. For a sharp pinch 

Rosenbluth 37
) showed that this procedure leads to stability cri

teria which cannot be satisfied for a pinch surrounded by a vac

uum magnetic field. This result will be changed in a favourable 

sense if the vacuum field is replaced by a force-free field of 

constant a. 

From the preceding remarks and from the experience with 

the plane case one could get the impression that force-free 

fields always stabilize. This is not the case, however. An im

portant difference with the plane layer is that in a cylinder 

the pressureless plasma itself can be unstable. As an example 

we mention the instabilities of a Lundquist field if aR > 3.176, 

which were described by Voslamber and Callebaut 17 ). Another 

example concerns the instabilities of a constant-pitch force

free field, which will be discussed in Sec. 7.4. 

The solutions of the marginal equation of motion will be 

determined in succession for the three above-mentioned inter

vals. 
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No singular points (apart from k = 0) exist in the plas-
2 

rna interval (O,r .). Defining v 2 = yp/pp and vA2 = Bp /~ 0 pP, Ol. S 

the equation of motion (57) can be solved even for the ~on-

marginal case. It leads to the Alfven wave: w2 = k 2 v~, which 

l.S not important here, and to the differential equation 

[ r(r~P)' J r 
~r 0 - = . 

(k 2 -w 2 /v~)(k 2 -w 2 /v:) 
m2 + r2 

(76) 

k2-w2/v2-w2/v2 
A s 

The solution that satisfies the boundary condition at r 0 

was given by Kruskal and Tuck 21 ): 

~~ = C I~ [ 
(k 2 -w 2 /v~)(k 2 -w 2 /v!) r) 

k2-w2/v2-w2/v2 
A s 

(77) 

where I is the modified Bessel function of the first kindt). 
m 

This expression will be used in Sec. 6.4. For the stability 

analysis the solution of the marginal equation of motion is 

needed, viz. 

~p 
r 

C I'(kr) 
m 

it has no zero points on the open interval (O,r .). 
Ol. 

(78) 

In the pressureless plasma interval (r ,r
1

) it proves 
oe 

to be more convenient to use g. Moreover, we shall make the 

derivation somewhat more general than is needed for the pres-

ent problem by starting from Eq. (6) with 
t w2 0 ' 0 ' p = p = 

and ~ = 0 • Using I/ X B = a.B this equation becomes 

t) Notice that accents denote differentiation of the functions 

~ith respect to their complete arguments. Only for Bessel 

functions the argument, as indicated in the brackets, is 

different from r, so that the accent denotes something else 

than d/dr. 
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'V x g - ag = AB (79) 

where A is a scalar function of r, which is of first order in 
~ 

~ 18 ). Taking the curl of Eq. (79), also using the equation it

self, we obtain the wanted second-order differential equation 

for Q: 
~ 

(80) 

Taking the divergence of Eq. (79), using IJ.B 

we get 

0 and IJ.Q = 0, 

- 'Vct.Q = IJA.B (81) 

We return to cylinder symmetry, but still for a general 

r-dependence of a. Taking into account the 8- and z-dependence 

of A, which is necessarily the same as for Q, Eq. (81) yields 

ct' 
i Q 

F r • 
(82) 

The required marginal equation Qf motion is the r-component of 

Eq. (80), which must be written in terms of Qr alone •. The com

ponents Q8 and Q can be expressed in terms of Q by using the z r 
r-component of Eq. (79) as well as 'V.g = 0: 

kctr 2 Q +m(rQ )' 
r r = 1 

-marQ +kr(rQ )' 
r r (83) 

The r-component of Eq. (80), with A from Eq. (82) and Q
8 

from 

Eq. (83), next yields 

(84) 

The stability of force-free fields with ct ~ constant can be 
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studied by means of this equation. For example, the basic equa

tion (16) of Ref. 24 follows by introducing the value of a for 

~=constant, that is, a= 2~/(1+~ 2 r 2 ). The coefficients of 

Eq. (84) also can be written in terms of~,~', and~" instead 

of Be and Bz by using the Eqs. (64) and (66), or in terms of 

q,q',q", and q"'by using the Eqs. (65) and (66). In the above 

form the components Be and Bz must be determined from Eq.(63). 

For non-constant a the equation (84) has a singularity when 

mBe + krBz = 0, which can be treated in the same way as done 

in Sec. 3.1. Only in the case of~= constant this singularity 

gives rise to serious problems (see Sec. 7.4). 

We now return to force-free fields with constant a. From 

Eq. (82) it then follows that A = 0 while, according to Eq. 

(79), the perturbation of the magnetic field g of the marginal 

modes satisfies the equation for force-free fields. Of course 

this does not mean that the perturbed state is also force-free 

for the non-marginal modes, because this would exclude any per

turbed motion. The marginal equation (84) is considerably s~m

plified by the choice a = constant, because then the term with 

a' drops and the solution can be written in terms of Bessel 

functions. This solution can be found indirectly from the z

component of Eq. (80), viz. 

Q" + .!_ Q' + 
z r z 

This equation has the solution 

:::: 0 . (85) 

(86) 

from which the proper expressions for a 2 < k 2 are found by the 

substitutions 

J -to I ' m m 
N -to K 

m m (87) 

where I and K are the modified Bessel functions of the first m m 
and second kind. The components Qr and Qe follow from the r-
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and 8-components of Eq. (79), taking A= 0: 

i -I [km J = -- +a ' · 2 2 r Qz Qz • 
a -k 

(88) 

Therefore, the solution Q of the marginal equation for con
r 

stant a reads 

One of the constants D
1 

and D
2 

is fixed by the condition 

that the solution Qt, needed for the application of theorem 4, 
r 

should be "small" either at a singular point or at the wall. 

In a force-free region the "small" solution must have the form 

Q
t _ n1 _ . 
r -- s , where n 1 - I , ~ n vi e w o f p 1 = 0 in E q . ( 5 9 c ) , s o that 

the condition "small" in this case really means small: ~ .., 1 
s 

(~s does not tend to infinity). The other constant is not im-

portant (it is fixed by normalization). The corresponding so

lution for ~tis found from Eq. (53): 
r 

where Q~ is given by Eq. (89), while Eqs. (67) and (69) yield 

=A 1 [ ~ ~ J 1 ( I a I r) + kJ ( I a I r )l +A 2 [ ~ !!!. N 
1 

( I a I r) + kN ( I a I r) J 
Ia! o ~ - lal r o 

=Aif~(r )r N <lair )-~N 1 <lair >}{~ !!!.J 1 (jalr)+kJ <lair>} U o o o o lal o Ia! r o 

-{~ (r ) r J (I aIr ) -~ J 1 (I aIr ) }{~ !!!. N 1 (I aIr) +kN (I aIr)} J · 
o o o o lal - o lal r o 

(90) 
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The value of the constant A is irrelevant because the absolute 

magnitude of the magnetic field is not important for the sta

bility criteria. 

The solution ~l in the surface layer (r . ,r ) is found r 01 oe 
in the same way as in Sec. 4.2. The logarithmic derivatives of 

p,p, and B2 are all of the order (o/r )- 1
• Therefore, the mar

o 
ginal equation of motion (59) becomes 

(f ~ 11 ) 1 
- h ~ 1 

= 0 ' · o r o r 

where 

f = 
0 

.and h 
0 

(91) 

pI o (91a) 

Analogous to Newcomb's 28 ) derivation one finds by integra

t ion of E q . ( 9 1 ) .through the surface 1 aye r that ~ 1 
is appro xi-

r 
mately constant in the layer, with the exception of a small 

£-neighbourhood of a possible singular point r , where the so-
s n -1 

lution may be "small", that is, proportional to (r-r ) 1 • 
s 

The magnitude of E is such that (6/r ) 2 << E/r << o/r , and 
0 0 0 

according to Eq. (59c) the exponent n
1
-1 is given by 

~2p' 2~ ~2p' [ 
n -1 =- 1/2 + 1/2 ~ 0 --o ~] 

I (~')2 r B2(~')2 - r 0 
0 z 0 z 

in view of the usually 

The solution ~l has no 
r 

negative value of p' in the surface layer. 

zero points in the surface layer if there 

in the latter, because then ~l is approxi
r 

is no singular point 

mately constant. If, on the other hand, a singular point exists 

the corresponding "small" solutions neither have zero points in 

(r .,r) nor in (r ,r ), because these solutions consist of a 
01 s s oe 

constant part and a part which tends to infinity in the £-neigh-

bourhood of r • 
s 

The solutions of the marginal equation of motion now being 

known everywhere, the application of theorem 4 becomes straight

forward. The first condition of theorem 4, Suydam's criterion, 

is satisfied trivially both in the plasma and in the pressure-
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less plasma in view of the vanishing pressure gradient. Suydam's 

criterion is also satisfied in the surface layer because the 

destabilizing pressure gradient (order proportional to 6- 1 ) is 

dominated by the stabilizing shear term (order proportional to 

6- 2
) in the limit 6 + 0 .(We exclude cases in which the shear in 

the surface layer changes sign). The second condition of theorem 

4 is satisfied for the plasma and for the surface layer. For the 

pressureless plasma it leads to conditions which refer to the 

stability of the force-free field itself. Here,an essential dif

ference with the plane case turns up. In cylinder geometry, in 

contrast to the plane case, it is possible that for certain val

ues of the parameters the zero points alternate more rapidly 

than the singular points. The third item of theorem 4, finally, 

leads to conditions analogous to (40), (41), and (42) of the 

plane case. 

For the application of the items 2) and 3) of theorem 4 

the independent subintervals and, therefore, the singular points 

must be determined first. In the pressureless plasma the singu

lar points are determined from the equation Ft(r) = 0, where Ft 

is given by Eq. (90). The first singular point in the interval 

(r
0
e,r 1 ) will be called r7, while r7 = r 1 if no singular points 

exist. The solution of the marginal equation of motion on 

(r ,r*
1

) is given by Eq. (89), where rQt has to be "small" (in 
oe * r 

this case zero) at r = r
1 

and therefore: 

= - ( 9 2) 

The solution rQt can have zero points on the open interval r 
(r ,r*

1
). Similarly, the solutions on the possibly existing in-

oe * 
terval (r 1,r 1), or on the independent subintervals of it, can 

show more than one zero point. According to item 2) of theorem 4 

or according to theorem 3 this implies instability on account 

of the pressureless plasma itself. From Eq. (89) it is clear 

that these instabilities should be expected for lkl < lal if ar 
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1s large. This is in agreement with the results of Voslamber 

and Callebaut 17
) for the Lundquist field: them= 1 mode is 

unstable for lk/al < 0.272 if aR > 3.176. In our problem we 

have to do with an annular region and, consequently, an extra 

parameter in the problem. Therefore, we cannot give similar 

general results for the stability of the force-free field and 

a further discussion is postponed to Sec. 6.3. We shall find 

that instabilities of the force-free field may be absent for 

practical values of ~(r ) , a,r , and r 1 . 
0 0 

The further application of theorem 4, viz. item 3) for 

the interval (O,r7), proceeds completely analogous to that 

for the plane case. The following possibilities arise: 

(1) No singular point exists in the surface layer. The inter
ll' 

val (O,r
1

) then constitutes an independent subinterval which 

we ~plit at the point r = r .. The value of 
01 

1' 1 
(l;r /l;r)r . is 

found by integration of Eq. (91): 
r . 

01 

I 
r 

oe 

h dr + (f s11
) 

o o r r 

01 

oe 

Assuming that l; and l;' are continuous at r for the rele-
r r oe 

vant "small" solutions, substituting h from Eq. (91a), and 
0 

taking r at r ., the third item of theorem 4 becomes 
0 01 

p ' 

[:; l r . > 
r 01 

1 I 

[
l;r

1 
] 1 

:::: f ( r . ) 
l;r r . o 01 

01 

r . 

J 
01 

p + 
r 

f ( r ) 
o oe 

f ( r . ) 
0 01 

oe 

(93) 

By transforming to rQ by means of Eqs. (53) and (73), substi
r 

tuting f (r ) and f (r .) from Eq. (91a), eliminating 
o oe o 01 p(r .)-

01 
p(r ) with the aid of Eq. (61), and the magnetic fields oe by 

applying Eqs. (62) and (64), and taking the limit o + 0, we 

finally find 
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L (I-S) 

> 
)l 2 r + ar(k+)lm) (k)lr 2 -m) 

l+)l2r2 (m2+k2r2)(l+)l2r2) 
- R • 

(94) 

Of course the values of all quantities in this stability con

dition are to be taken at r = r • From Eq. (78) we obtain 
0 

k2r2 ( r qP) ' I (kr) 
r k 

m 
(95) 

m2+k2r2 rQP I'(kr) 
r m 

for the expression entering in L. 

Until now no use has been made of a = constant and, 

therefore, the condition (94) also holds for a # constant. 
t 

In that case the solution rQ of Eq. (84) should be taken. 
r 

For example, substitution of a= 2)l/(l+)l 2 r 2 ) yields the sta-

bility criterion for the constant-pitch force-free field 

(Eq. (48) of Ref. 24). 

For a = constant the Eqs. (89) and (92) give 

x {-kr [a 2-k 2 _m
2
JJ (/a 2-k 2 r )+ma/a 2-k 2 J 1 (/a 2 -k 2 r )} 

o r2 m o m o 
0 

- {maJm(/a 2-k 2 r7)+kr7/a 2-k 2 J~(/a 2 -k 2 r7)} 

x {-kr [a 2 -k 2 - m
2

JN (/a 2-k 2r )+ma/a 2 -k 2 N'(/a 2-k 2 r )} J o 2 m o m o r 
0 
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- {maJm(/a
2
-k

2
r7)+kr7/a 2-k

2 J~(/a 2 -k 2 r7)} 

x {maNm(/a 2-k 2 r
0

)+kr
0
/a 2-k 2 N~(/a 2 -k 2 r 0 )} J (96) 

where r7 is either the first zero of Ft(r), given by Eq. (90), 

or r
1

• For lkl > Ia! the substitutions (87) should be made. 

(2) A single singular point r occurs in the surface layer. 
s 

(We exclude structures of the surface layer having more than 

one singular point, because these structures violate Suydam's 

criterion). The interval (O,r7) then consists of two indepen-
• dent subintervals (O,rs) and (rs,r 1). 

(a) The interval (~,r) can be split at r .. Integration of 
s 01 

Eq. (91) yields 

r 
oi 

r 
oi 

1 I ~1 f h dr + 
1 I - ~1 I (fo~r )r :::: (fo~r )r - h dr . 

oi r 0 -e: r 0 
s r -e: r 

s s 

Substituting h from Eq. (9la) item 3 of the stability criteo 
rion of theorem 4 becomes 

pI 1 I 

[:;.]r . > [:; lr . " 
r 01 r 01 

The expression analogous 

f (r . ) 
0 01 

to Eq. (94) 

k2r2 (rQP) 1 
r k 2r 

L - (1-13) > 
m2+k2r2 rQP m2+k2r2 

r 

reads 

P J roi 

r s 

(I-SS) - p 

(9 3a) 

' ( 94a) 

where a structural factor S for the surface layer has been intro

duced, which is defined by 
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t2 2 
B - Bs 

s 0 = t2 p2 
B B 

0 

s B represents the magnitude of the magnetic field at the sin-

gular point. 

(b) The interval (rs,r7) will be split at 

analogous to Eqs. (93a) and (94a) become 

r oe The expressions 

p -

> 

:::: 
f ( r ) 

o oe 
> ['~·] 

sr roe s 

(I-SS) > 

(rQt), 
_....:.].l_

2_r_ + a r ( k + J.l m) ( k J.l r 2 -m) + __ ___.;r:;..2~( .:;.;;k_+..J::]J;.::;m:..::)_2__ __r __ 

I + J.l 2 r 2 ( m 2 + k 2 r 2 ) ( I + J.l 2 r2 ) ( m 2 + k 2 r 2 ) ( I + J.l 2 r 2 ) r Q t 
r 

(93b) 

:; R ' 

(94b) 

where for constant a the last factor in R is given by Eq.(96). 

Summarizing: the stability criteria for a sharp pinch, 

surrounded by a force-free field of constant a are: 

- No solutions should exist for the marginal-mode equation 
t for Q , 
r 

0 

(9 7) 

having more than one zero in the outer region (r
0

,r
1
), or ~n 

the independent subintervals of it. Here,the solutions of Eq. 

(97) are given by Eq. (89), while the endpoints of the indepen

dent subintervals are the zeros of Ft(r), Ft being given by 

Eq. (90), and r
1

• 

- The following inequalities should hold at the plasma boun

dary ( r ) : 
0 
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1n the absence of a singular point in the thin surface layer: 

L > R, but if such a point does exist the criterion is split: 

L > P > R. Here the expressions L,P, and R are given by the Eqs. 

(94), (94a), (94b), (95), and (96). 

For a ~ constant the following modifications should be 

made: Eq. (97) is to be replaced by Eq. (84), while the end

points of the independent subintervals are to be determined 

from a modified function Ft, which depends on the field distri

bution belonging to the chosen function a= a(r). Further, in 

the expression R the solution Qt of Eq. (97) is replaced by 
r 

that of Eq. ( 84) • 

6.3. Discussion 

The application of the above-mentioned stability criteria 

is considerably simplified by applying a theorem of Newcomb 28 ) 

stating that a pinch is stable for all m and all k if and only 

if it is stable for m = 0, k + 0 and for m = I, all k. We no

ticed that Suydam's criterion is satisfied for the sharp pinch 

surrounded by a force-free field of constant a, so that the 

pinch is stable against interchanges. Thus, according to the 

mentioned theorem only the study of the sausage (m = 0) and of 

the kink (m = I) instabilities remains necessary. 

The study of the sausage instability can be restricted 

to k + 0. Instabilities of the pressureless plasma itself do 

not arise because Qt oscillates more slowly than Ft, which 
r 

follows from an application of Sturm's comparison theorem (see: 

Ince 30
)) to the equations for Qt and Ft for the case m = 0, 

r 
k + 0. In view of Eq. (84) and an application of ~q. (63) to 

the definition of F these equations here read 

t" t I 

[a 2 I J t 0 Qr + - Qr + - ~ Qr = ' r 

t" t I a 2Ft 0 F + - F + . r 
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Form = 0 no singular points occur in the surface layer, 

at least not if the magnetic field in the surface layer is as

sumed to have a uniform sense of rotation. Therefore, a con

sideration of the split criterion L > P > R can be omitted. 

Consequently, m = 0 instabilities can only arise in case the 

criterion 

2(1-S) 
]J2r a)Jr 

L > 0 + 0 = 1+]J2r2 1+]J2r2 r 
0 0 0 

I al Jo(ialro)NI <lalr7) - N
0
(ialr

0
)J 1 <lair~) 

R ' (98) + 
J1(ialro)N1(ialr7) - N1 (1alr

0
)J 1 (ialr7) 1+JJ2r2 

0 

is violated; here r7 equals r
1 

or the first zero of B~ as given 

by the equations (67) and (69). In the special case of Fig. 5, 

with JJ(r) =- 20 m- 1
, r = 0.03 m, and r 1 = 0.06 m the candi-

a o 
tion (98) provides the following critical values of S at which 

stability passes into instability for m = 0: 

s . 
cr~t 

0 100 % 

-24.6 

-35 

-50 

98.9% 

74.4% 

58.8% 

The maximal allowable value of S thus decreases with increasing 

values of -a. The reason for this is clear from Fig. 5: at in

creasing values of -a the B -field in the outer region decreases z 
and hence the stabilization of the sausage instability becomes 

less effective. It will turn out that S . for m = 1 is much 
cr~t 

smaller than S .t form= 0 (at least for the values of ]J(r ) 
cr~ o 

which are considered here), so that the sausage instabilities 

do not constitute a serious threat to the stability of this 

configuration. 
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Just as for the plane case it is useful for the study of 

the kink instabilities to distinguish between type-I and 

type-II instabilities 38
), depending on whether L > R or 

L > P > R is violated. Moreover, a third type of instabiliiies 

can exist if the solutions of Eq. (97) have more than one zero 

in an independent subinterval. The latter type of instabili

ties will be called type-III instabilities. Usually the name 

kink is used for type-I instabilities. Type-II instabilities 

are also called surface-layer instabilities, whereas type-III 

instabilities are of the type which were studied by Voslamber 

and Callebaut 17
). 

This classification of instabilities ~s based upon the 

behaviour of the marginal modes, which provides us roughly 

with the following picture. If -w 2 is small, i.e. in the v~

cinity of marginal stability, type-I instabilities cause a 

displacement of the plasma extending over the whole interval 
liE 

(O,r
1

) or (O,r
1
). In that case, type-II instabilities are lo-

* calized in one of the intervals (O,r ) and (r ,r
1

) and, par-
s s 

ticularly, in the thin surface layer, whereas type-III insta-

bilities are mainly localized in the interval (r ,r
1
). If 

oe 
-w 2 is not small there is no question of loc~lization of the 

instabilities in one of the subintervals, and this classifica

tion of instabilities loses its sense. Especially in a diffuse 

pinch the difference between type-I and type-II instabilities 

disappears. At the same time this demonstrates that it is not 

justified to assume that type-II instabilities are unimportant 

in experimental circumstances. 

Type-I instabilities are the most disastrous ones for 

plasma confinement in a pinch. For a vacuum magnetic field in 

the outer region (a= 0) the criterion (94), with (95) and 

(96), yields 

L = (l-8)k 
I (kr ) 

m o 

I'(kr ) m o 

> 

(k+]Jm) 2 
I <lklr )K'(Iklr 1 ) - K <lklr )I'(Iklr

1
) m o m m o m + 

I'(lklr )K'(Iklr 1)- K'(lklr )I'(Iklr
1

) m o m m o m 
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This is a well-known expression 53
) in which the stabilizing and 

destabilizing effects can clearly be distinguished. The left

hand side L is positive definite and shows the stabilizing in

fluence of the plasma magnetic field, which vanishes if 6 ~ J 

or k ~ 0. The first term of the right-hand side R represents 

the driving force of the instability, viz. the curvature of 

the magnetic field lines at the plasma boundary. The second 

term of R is negative definite and represents the stabilizing 

influence of the vacuum magnetic field and the conducting wall; 

this contribution vanishes if k ~ -~m. Just as for the plane 

plasma layer (Eq. (44)) there exists no direction of the per

turbation for which both stabilizing terms vanish. An essential 

difference, however, is the fact that even for 6 ~ 0 (vanishing 

plasma pressure) the driving force of the instability is pre

sent. For a vacuum magnetic field (a = 0) this usually implies 

instability, even for vanishing small values of 6. According to 

Eq. (99) the most dangerous perturbations have directions some

where between those perpendicular to Bp and to Bt respectively. 
- -o 

It will be shown that these instabilities can be stabilized by 

force-free fields with constant a. 

In Fig. 6 the quantities 1(6 = 0) and R according to Eq. 

(94) are plotted as functions of k for m = 1 and for the choice 

of the parameters of Fig. st). The curve L comes down with in

creasing 6, as is evident from Eqs. (94) and (95). Hence, a 

critical value of B exists above which type-! instability shows 

up. For the vacuum field (a = 0) the curves L and R cross each 

other, even for B = 0, so that a plasma surrounded by a vacuum 

field is unstable for all values of S. (The reason why part of 

the curve R(a = 0) has been dashed will become clear below). 

For increasing values of -a the curve R rotates counterclockwise 

around the fixed point A for which k = -~, where the value of 

R is independent of the choice of a. The best choice for the 

force-free field is therefore the one for which the mode k=-~ 

becomes the most dangerous one. Thus, substituting k=-~ and m=l 

t) These numerical results were obtained by means of the comput

er program for constant~ (Ref. 24), which was modified for 

constant a. 
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in Eq. (94) the maximal allowable value of 6 for type-I in

stabilities turns out to be 

6crit = I -

L,R 

t 

B 

0 

l-!r
0 

Ii(l1r
0

) 

l+l1 2 r~ I 1 (l-!r 0 ) 

20 25 

-k(m-1) 

Fig. 6 Stability diagram for a a constant, m = I, r
0 

r
1 

• 0.06 m, ].J(r
0

) = -20 m- 1
• 

(100) 

#(-50) 

-50 

0 

0.03 m, 

For l-!(r ) =- 20 m- 1 and r = 0.03 m the value of 8 't is o o cr1 
about 20%. For 8 = 8 . the pinch is marginally stable with cr1t 
respect to type-I instabilities if a is properly chosen. 

The proper choice of a is complicated by the presence 

of singular points in the pressureless plasma. As a result 

the curves R are deflected (see for example the curve 

R(a =-50) to the right of k = 20 m- 1 ). In fact, the singular 

points cause a modification of the boundary condition for the 

solution rQt of Eq. (97), viz. rQt = 0 at r~1 • If singular 
r ~ r 

points occur, so that r
1 

< r
1

, the wall is effectively dis-
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placed inward as far as stability is concerned. If we would 

neglect this effect by taking r~ = r 1 in the equations (94) 

and (96), the curves R would not be deflected and the optimal 

choice of a(a t) would be the one for which L(S .t) would op cr~ 

touch R(a ) at k = -~. In that case a t would follow from opt op 

Using Eqs. (94) and (95) for m =· 1 this equality would give 

1+~ 2 r~ I 1 (~r 0 ) 

r
0 

I)(~r 0 ) 
( 1 0 I ) 

For small ~r Eq. (101) would imply that a t ~ 2~(r) and ac-o op o 
cording to Eq. (66) a constant-pitch force-free field would be 

about the optimal choice for 

the choice of the parameters 

a t would op 
become -36.7 m- 1

, 

small ~r . On the other hand, for 
0 

of Fig. 5 ( 1J = -2 0 m - 1 
, r = 0 • 0 3 m) 

0 

i.e. close to the Lundquist field. 

Finally, the field distribution corresponding to a = a t would op 
be the only one allowing stability for values of S up to S 't' 

cr~ 

This picture is modified considerably in the correct 

treatment, in which the stabilizing effect of the singular 

points in the tenuous plasma (where ~ = -k when m = 1) is taken 

into account. (See, however, Appendix II, where it is shown 

that this stabilizing effect is destroyed by resistivity). The 

position of the singular points for a certain value of k can be 

determined easily from Fig. 5 by drawing a horizontal line in 

the plot of 1J = ~(r) at the height of ~ = -k. The points of 

intersection of this line with the curve ~(~ give the posi

tions of the singular points. For instance, for a= 0 a singulM 

point occurs fork-values from 5 to 20 m- 1
• Consequently, for 

this region of k-values the curve R for a pressureless plasma 

without currents is considerably below the dashed curve of Fig.6, 

which gives the function R(a = 0)~ neglecting the singular 

points (that is, taking r7 = r
1
). For a= 0 the neglect of the 
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singular points can have physical significance, because in this 

case Qne can consider the force-free region as a vacuum instead 

of. a ~ressureless plasma without currents 26
,

28
). In the case of 

a vacuum ~ has no physical significance (there is no plasma) 

and the singular points, entering in the problem only due to 

the differential equation for ~' also can have no effect. The 

dashed part of the a = 0 curve in Fig. 6, therefore, represents 

the function R for a vacuum. In the opposite case, if one con

siders the force-free region with a = 0 as a pressureless plas

ma without currents, the dashed part of R(a = 0) shoul~ be re

placed by a curve which is just above L(S = 0) for k = 5 to 

9.3 m- 1 and below L(S = 0) fork= 9.3 to 20 m- 1
• The new curve 

R(a = 0) then has discontinuous tangents at k=5 and k=20 m- 1 t). 
Fork-values from 5 to 9.3 m- 1 instability is not removed for 

all values of S, but the stabilizing influence of the singular 

points in the current-free pressureless plasma still provides a 

strong stabilizing effect. This effect might explain some 

(though not all) of the discrepancies found in pinch experimen~ 

with regard to the empirical containment times and the growth 

rates of kink instabilities, as calculated from the model of a 

sharp pinch surrounded by a vacuum. 

For a = -24.6 m- 1 the curve R in Fig. 6 only displays ef

fects due to singular points in a small neighbourhood of k 

20 m- 1
, as can be understood as follows. According to Fig. 5 

the pitch distribution for this value of a is close to that of 

a constant-pitch field, so that singular points only exist for 

k-values in the vicinity of k 20 m- 1 • As a result R(a=-24.6) 

has small dips on either side of k = 20 m- 1 , which are not vis

ible on the scale of Fig. 6. Notice that the singular points 

also involve that the last term of the expression R of Eq.(94) 

is no longer an order of magnitude smaller than the preceding 
. . 

term in the neighbourhood of k + ~m = 0, (rQt)'/rQt then be
r r 

coming very large. Hence, the simple derivation of Eq. (101) 

is incorrect. From a= -36.7 m- 1 on the curve R is again smooth 

t) In order not to make the picture illegible this curve is not 

shown in Fig. 6. For the same reason the curve R(a = -35) is 

omitted. 
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to the left of k = 20 -1 
m ' but the right part is deflected 

rather strongly. This effect is shown clearly for R(a=~SO). 

The upper dashed part is the continuation of R(a=-50) to the 

right of k = 20 m- 1
, neglecting the singular points, whereas 

the solid line below represents the correct curve R(a=-50). 

In Fig. 7 the curve R(a=-50) is shown once more, togeth

er with L for the critical value a = 20%. It is clear that the 

same favourable situation arises as for the plane case: the 

type-I instabilities, which are present for a vacuum field for 

k < 20 m- 1 , are suppressed by increasing -a and the instabili

ties which then threaten to appear are suppressed by the in

fluence of the singular points. Owing to this property, a pinch 

surrounded by a force-free field is stable against type-I in

stabilities for a < a •t not only when a cr1 
= a , as given by 

opt 
Eq. (101), but even for a range of values for which -a>-a . 

opt 
= -36.7 m- 1 • The val-For the parameter values of Fig. 6, a 

opt 
ue a = -50 m- 1 is chosen as representative for the range of 

a-values which are stable against type-I instabilities. 

As to type-II instabilities, the split criterion L>P>R 

(Eqs. (94a) and (94b)) only makes sense for values of k for 

which singular points exist in the surface layer. Assuming 

that the magnetic field has a uniform shear in the surface lay

er this is the case fork-values from 0 to -~(r ). Fork= 0 
oe 

the singular point lies at the inner side of the surface layer 

(r = r .), so that S = I and according to Eq. (94a): P=O=L. s 01 

For k = -~(r ) the singular point lies at the outer side of 
oe 

the surface layer (r = r ), so that S = 0 and P = ~ 2 r/(l + s oe 
~ 2 r 2 ) = R. As a result, in Fig. 6 the curve P connects the 

point A with the point B along a path which is determined by 

the special structure of the surface layer. The only limiting 

condition on the possible structures is: S ~ 0. If in addition 

we make the restriction that B2 should be monotonous in the 

surface layer, then S ~ I. In that case it is easily shown 

that the functions L-R, as well as P-R are monotonously de

creasing functions of a, so that a critical value of e with 

respect to type-II instabilities exists. Notice that the defi

nition of s has been chosen such that s is indepe~dent of a. 
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From Fig. 6 it is obvious that a pinch surrounded by a 

vacuum magnetic field, being unstable against type-I instabil

ities, has to be unstable against type-II instabilities as well. 

In fact, if L < R there simply is no space left for P to satis

fy the split criterion L > P > R. This is the well-known result 

of Rosenbluth 37
). For increasing values of -a, however, the 

curve R rotates counterclockwise around the fixed point A, thus 

giving, from a certain value of -a (viz. -a= 36.7 m- 1
) on, 

passage to the curve P. Therefore, for values of -a > 36.7 m- 1
, 

surface-layer structures exist which are stable against type-II 

instabilities. At the same time the stabilizing influence of 

the singular points in the tenuous plasma causes an absence of 

type-I instabilities for these higher values of -a. An example 

of this situation is shown in Fig. 7. The depicted curve P for 

a = 20% is calculated while making the arbitrary assumption 
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that the fields vary linearly in the surface layer, as indicat

ed in Fig. 5, and taking the limit 6 ~ 0 afterwards. For this 

structure of the surface layer L > P > R holds for a=-50 m- 1 

and 8 = 20%. This one example is sufficient to show that in the 

presence of force-free fields with properly chosen a realistic 

surface-layer structures may exist for which type-II instabili

ties are absent. It is clear that the critical value of 8 for 

type-II instabilities is the same as 8 . for type-I instabil-
crlt 

ities (See Eq. (100)). 

Finally, we are left with a discussion of possible type

III instabilities. To put it shortly: numerically it was check

ed that for the parameter values of Fig. 5, viz. ~(r )=-20 m- 1
, 

0 

r
0 

= 0.03 m, r
1 

= 0.06 m, a = 0, -24.6, -35, and -50 m- 1 , the 

solution rQt of Eq. (97) has no zero points on the interval 
r 

(r
0
,r

1
). This is more than sufficient for the stability of the 

pressureless plasma. Of course this method is too rough if such 

zero points occur on (r
0

,r
1
); the influence of the singular 

points must then be taken into account by investigating the be

haviour of rQt on the independent subintervals of (r ,r
1
). 

r o 
However, if the values of ar are not roo large it will often 

suffice to show the absence of type-III instabilities with the 

aid of the first mentioned rough method. 

Summarizing, we have proved by numerical construction 

(the examples of Figs. 5,6, and 7) that a sharp pinch surrounded 

by a force-free field with a properly chosen constant a, is 

stable against sausage instabilities, kinks, surface-layer in

stabilities, and instabilities of the pressureless plasma 47
). 

An additional advantage of this configuration is the fact that 

the magnetic fields in the outer region of the pinch have shear. 

Therefore, Suydam's criterion will be satisfied for a refined 

model in which moderate pressure gradients are taken into ac

count. This advantage is not shared by a constant-pitch force

free field (Sec. 7.4). 
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6.4. Growth rates 

Just as for the plane case (Sec. 4.4), it is possible to 

derive the growth rates of ~pe-I instabilities from the boun

dary conditions (7), (8), (9), and (10), viz. 

~p = ~t 
r r 

r~P = 0 
r 

(r=r ) , (103) 
0 

( r=O) , 

(104) 

(r=r
1
). 

Dividing Eq. (102) by Eq. (103), while using the expressions 

(53), (54), and (55), the following characteristic equation is 

obtained: 

= ---

t t t 2 

(mB /r-kB 8 )B Ill 
z 0 

(r=r ). 
0 

(105) 

Here ~p and ~t are the solutions to the complete equation of r r 
motion, subject to the boundary condition (104). The solution 

~~is known: see ~q. (77). We do not know the analytical form 

of the solution ~ of Eq. (57) for a pressureless plasma with r 
associated force-free field. Neglecting, however, the density 

pt of the pressureless plasma ~t is again the known solution of 
r 

the marginal equation of motion. The boundary condition (104) 
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at r = r 1 must then be replaced by the condition that ~t is 
* r "small" at r = r
1

, since for the proof of the splitting into 

independent subintervals it makes no difference whether w2 =0 

or pt = 0. Further, substituting w2 pt = 0, ~p from Eq. (77), 
r 

a from Eq. (62), ~from Eq. (64), v~ and v~ from Sec. 6.2 

(just above Eq. (76)), and transforming to rQt by means of 
r 

Eqs. (53) and (73), Eq. (105) becomes 

(t-tD 
I'(kr) 

m 

= ~ 2 r + et.r(k+~m) (kttr 2 -m) + (k+~m) 2 r 
l+~2r2 (m2+k2r2) (1+~2r2) (m2+k2r2) (1+~2r2) 

... 
where k = , while 

(r=r ) 
0 

(106) 

follows from 

Eq. (96) for profiles with constant et., and from the solution 

of Eq. (84) for Ct. ::f:. constant. 

The growth rates of type-! instabilities can be calculat

ed from the implicit relation (106). For the incompressible 

pinch an explicit expression for w2 can be obtained from this 

relation by taking the limit y + oo (or v 2 
+ 00 ). The result reads 

s 

kvA2 I' (kr ) m o 
= 1-a I ( k r ) (R - L) ' 

m o 
( 1 07) 

where Rand L are the known expressions of Eq. (94). The appror 

imation of incompressibility is reliable if -w 2 << k 2v!, so that 

the growth rate should not be too large. From Eq. (107) the 

well-known stability criterion L > R is obtained again. In agree

ment with the statement in Chapter 5 the stability criterion is 

independent of the assumption of incompressibility, since the 

marginal equation corresponding to Eq. (106) is independent of 

v • 
s 
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A stability analysis on the basis of Eq. (106) is neces

sarily restricted to type-I instabilities. Type-II instabili

ties cannot be obtained from an application of the boundary 

conditions (102) and (103), since these were derived from the 

assumption that ~ is continuous through the surface layer. 
r 

A serious limitation also represents the fact that, in order 

to obtain a solution of the equation of motion, it was neces

sary to neglect the density of the pressureless plasma. This 

neglect is completely unjustified when type-III instabilities 

are present. In fact, a finite amount of perturbation energy 

is then available for the instability of the pressureless plas

ma, so that the neglect of pt would imply an infinite value of 
2 f f" " 1 f 2 t Th' " 1 b h b b -w or a LnLte va ue o -w p . 1s LS a so roug t a out y 

Eq. (105), which contains ~tin a denominator of the right-
r 

hand side. If type-III instabilities show up ~t oscillates, so 
r 

that the right-hand side blo~up every time ~t has a zero at 
r 

r = r . Therefore, when using Eq. 
0 

(106) for the calculation of 

growth rates of type-I instabilities, one should make sure 

that the pressureless plasma itself is stable. We shall return 

to this point in Sees. 7.3 and 7.4. 
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C H A P T E R 7 

MARGINAL-STABILITY ANALYSIS OF 

SHEARLESS MAGNETIC FIELDS 

The marginal-stability analysis, as given in Chapters 3 

and 5, requires a further elaboration for magnetic fields of 

constant direction in the plane case and for magnetic fields 

of constant pitch in the cylindrical case. For these fields 

difficulties arise which are connected with the fact that the 

isolated singular points, which played an important role in 

the marginal-stability analysis, are absent here; instead, 

the whole interval becomes singular when ~ 1 ~· The following 

discussion will concern the difference between kinks and in

terchanges for constant-pitch magnetic fields, and the as

sociated significance of Suydam's criterion. Next, the growth 

rates of the instabilities of constant-pitch magnetic fields 

will be calculated in the local approximation (Sec. 7.2). 

The marginal-stability analysis will be reformulated in Sec. 

7.3 in a discussion of the principle of exchange of stabili

ties, which principle can be applied in a simple way to con

stant-pitch fields. In Sec. 7.4 we come back to the sharp-pinch 

model of a dense plasma surrounded by a pressureless plasma as

sociated with a force-free field, which then will have a con

stant pitch (VanderLaan's model). Finally, this model will 
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be modified in Sec. 7.5 by providing the inner dense region of 

the pinch with a uniform current distribution associated with 

a parabolic pressure profile (Alfven's model). 

7.1. Discontinuities of the stability criterion 

In the stability theory of the diffuse pinch usually lo

calized interchanges are distinguished from non-localized 

kinks, where "localized 11 is meant in the sense of being effec

tive over a limited donain in radial direction. This distinc

tion can be based on theorem 4 for instance. The first item of 

theorem 4, Suydam's criterion, is obtained from the solution 

of the marginal equation of motion in the neighbourhood of a 

singular point. If Suydam's criterion is violated this solu

tion has an infinite number of zeros in the vicinity of this 

singular point. Accordingly, the interchange modes are local

ized in the vicinity of such a singular point. Intuitively, 

this is clear from the fact that the wavevector k of these 

modes is approximately perpendicular to the local direction of 

~' so that the field lines are little bent by the perturba

tion. The second and third item of theorem 4 concern the solu

tions of the marginal equation of motion on the whole indepen

dent subinterval. If any of these solu~ions has one or more 

zeros the pinch is unstable with respect to kink modes extend

ing over the whole independent subinterval, i.e. they are much 

less localized than the interchange modes. Since the kinks are 

not localized in the neighbourhood of a singular point, the 

corresponding wavevector k will in general have a direction 

differing from perpendicular to ~' so that the field lines are 

bent considerably by the perturbation. 

Similar considerations hold, in view of theorem 2, for 

a plane plasma layer under the influence of gravity. Therefore, 

gravitational instabilities can also be divided in localized 

gravitational interchanges if 11 Suydam's" criterion is violated, 

and non-localized gravitational instabilities, if the items 2) 

or 3) of theorem 2 are violated. 
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It will be clear that the distinctinn between kinks and 

interchanges on the basis of the localization of the modes is 

of limited applicability. Consider, in particular, a constant

pitch field; here Suydam's criterion is violated in the case 

of a negative pressure gradient (see Eq. (60)) and interchanges 

are possible which are not localized, because ~ can be perpen

dicular to B over the complete r-domain in which the pitch is 

constant. Apart from the difficulty that kinks and interchanges 

cannot be distinguished clearly in constant-pitch fields, an

other difficulty arises (associated with the first), viz. that 

the stability criteria for modes with k.B = 0 differ from those 

for which k.B ~ 0. The reason for this discontinuity is that 

in the equation of motion for the diffuse pinch (Eq. (57)) the 

denominator N ~ 0 in the marginal-stability analysis (w 2 ~ 0) 

ifF~ 0 (on the whole interval!). As a consequence, the sta

bility criterion obtained depends on whether the limit w2 ~ 0 

or F ~ 0 is taken first. The same exchange of limits arises in 

the plane compressible case for a field with constant direc

tion, because the equation of motion (25) also contains a de

nominator N which tends to zero if both w2 ~ 0 and F ~ 0. 

The above-mentioned difficulty does not arise in the 

plane incompressible case. The equation of motion (18) here 

leads to the following equations: 

F2 /ll 
~;]' + in the limit w2 0' F ~ 0: [ k2 ° p'g~ 0 y ' (108) 

in the limit F = 0' w 2 ~ 0: ( w2 p ~ 'r -p'g~ = 0 ' k2 y y (109) 

in which the indicated dominating contribution of the coeffi

cients preserves the second-order character of the equation. 

In the first case the ordinary marginal equation of motion is 

obtained which shows, for small F, solutions with infinitely 

rapid oscillations if p'g > 0. Hence, the stability criterion 

here requires: p'g < 0. In the second case the equation of mo

tion must be used in the limit of small w2 , because the mar-
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ginal equation of motion itself degenerates. For w~ < 0 oscil

lating solutions then result if p'g > 0, so that the stability 

criterion again requires p'g < 0. In this case no question of 

discontinuity arises and the obtained stability criterion is 

simply "Suydam's" criterion (21) in the absence of shear. 

Discontinuities of the stability criterion do show up 

when a finite compressibility is taken into account. This was 

shown by Newcomb 35
) for the plane compressible case with a 

magnetic field of constant direction. The equation of motion 

(25) then leads to the following equations: 

in the limit w2 0, F -+ 0: [-'-2_,_]1..,;;,0 t;: I ) I + ( p I g + .e...:s...:.J t;: = 0 ' 
k2 Y YP Y 

(I 1 0) 

in the limit F = 0 . 

( 1 1 I ) 

In the first case the stability criterion amounts to "Suydam's" 

criterion (27) in the absence of shear, viz. 

p222 
p'g + ..t::.__..5?_ < 0 • 

YP 
(I 1 2) 

In the second case the well-known 35
) stability criterion for 

pure interchanges is found, viz. 

( 1 I 3) 

Making use of an expansion with respect to a reciprocal 

scale length of the equilibrium Newcomb shows that the discon

tinuity of the stability criterion results from the existence 

of two types of modes for small k.B f 0. These modes are cal

led type-1 and type-2 quasi-interchanges and correspond to 

the two possibilities admitted by Eq. (24a) if F = k.B-+ 0: 

I) w2 f 0 and B.t;: -+ 0, leading to type-1 modes which transform 

into pure interchanges if F = 0. 
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2) ~·~ ; 0 and w2 ~ 0, leading to type-2 modes which transform 

into pure translations if F = 0. 

It turns out (see Newcomb 35
)) that for values of p'g violating 

inequality (113) and, therefore, also inequality (112), type-1 

modes (including the pure interchanges) are unstable and type-2 

modes are stable. For values of p'g satisfying Eq. (113) but 

violating Eq. (112), type-2 modes are unstable and type-1 modes 

are stable. The unstable type-2 quasi-interchanges have their 

largest growth rate for small but non-vanishing values of k.B, 

whereas they are marginally stable for k.B = 0 because then 

they are pure translations. Therefore, the discontinuities of 

the stability criteria for F = 0 are not of practical impor

tance, since the growth rates do not exhibit a similar discon

tinuity. 

The stability conditions for the compressible pinch with 

a constant-pitch magnetic field also show a discontinuity for 

F 0, as has been observed by Tayler 55
) and by Ware 56

•
57

•
58

). 

The equation of motion (57) of the diffuse pinch leads to the 

following equations: 

1n the limit w2 = 0' F ~ 0: 

[ rF 
2 /~ ~; ]' -

2k 2 

m2/r2+:2 
p'~ 0 ' m2/r2+k2 r 

( 1 1 4) 

in the limit F = 0, w2 ~ 0 : 

[ w2p 
( r~r) '] 

2B 2 

[pI+ 
2ypB~/t~ 0 

] ~r e 
+ -- 0. ( 1 1 5) m2/r2+k2 r rB 2 r(yp+B 2 /t~ ) 

= 
0 

In the first case Suydam's criterion (60) 1n the limit t~' ~ 0 

is obtained: 

pI > 0 ' ( 1 1 6) 

in the second case the stability criterion is relaxed to 
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p' + 
2ypB~/il 0 

r(yp+B 2 /il ) 
0 

> 0 • (II 7) 

Notice that the latter criterion depends on the compressibility 

through the factor yp, whereas in all other cases the stability 

criteria of the diffuse pinch are independent of the compres

sibility. This is in agreement with Eq. (55), from which it 

follows that ~.~ ~ 0 in the limit F = 0, w2 + 0. An analysis of 

the discontinuity of the stability criteria, similar to that 

given by Newcomb 35
) for the plane plasma layer, has been worked 

out by Ware 58
). Here, too, type-1 and type-2 modes appear in 

accordance with the two possible limiting cases of Eq. (56a) for 

F + 0: either w2 ~ 0 and B.~+ 0 or B.~ ~ 0 and w2 + 0. If the 

inequality (116) is violated, whereas inequality (1 17) is satis

fied, type-2 modes prove to be unstable and type-1 modes are 

stable. If Eq. (117) is violated, type-! modes are unstable and 

type-2 modes are stable. 

We now return to the starting point of the discussion, 

viz. the distinction between kinks and interchanges. For a con

stant-pitch field Ware 56
'

57
) introduced the following objective 

criterion as a definition for kinks and interchanges: F = 0 for 

"interchanges", and F ~ 0 for "kinks". On the basis of this def

inition inequality (116) is called the stability criterion for 

"kinks" and (117) that for "interchanges 11
• Since criterion (116) 

is more stringent, one must expect that these "kinks" will turn 

up in pinch discharges with a constant-pitch magnetic field and 

a small negative pressure gradient. However, Ware arrives at a 

different conclusion from an analysis of the experimental re

sults of Zeta and other slow pinch discharges. In these experi

ments the core of the discharge shows an approximately constant 

pitch. The Duter region has a varying pitch, but this region is 

not taken into consideration.(As a matter of fact, this is not 

quite correct if one has to do with non-localized modes). Most 

remarkable about these experiments is their gross magnetohydro

dynamic stability, i.e. violent kink instabilities associated 
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with large field perturbations are absent. Moreover, according 

to a crude approximation the observed pressure gradients agree 

with negative values for which inequality (117) is marginally 

satisfied. Ware concludes from these data that "kinks" (i.e. 

type-2 modes) do not appear, whereas "interchanges" (i.e. 

type-1 modes) limit the pressure gradient to the negative val

ue following from (117). An explanation for the absence of 

"kinks" would then be the small growth rate of these instabil

ities if F is small, so that finite Larmor-radius effects would 

enable a stabilization. 

We raise some objections against Ware's nomenclature. 

First of all, type-1 modes also exist if ~·~ ~ 0; then they 

should be called "kinks", according to Ware's definition, al

though these modes still transform into the pure interchanges 

if k.B + 0. Furthermore, the definition can be used only for a 

field with strictly constant pitch, since in a field having 

some shear the wavevector of the perturbation in general makes 

an angle with the field lines differing slightly from a right 

angle because of the finite localization width of the pertur

bation. Finally, it is not consistent to call interchanges the 

instabilities which are present in a shear field if Suydam's 

criterion is violated, and kinks those which are present in a 

shearless field under exactly the same conditions. For this 

reason we prefer Newcomb's designation of quasi-interchanges 

for type-1 as well as type-2 modes. Type-1 and type-2 insta

bilities only can be distinguished if k.B is small and even - -
then, strictly speaking, not very clearly because the unstable 

type-2 modes change continuously into the unstable type-1 

modes if p 1 is lowered. Finite Larmor-radius stabilization 

then would apply for type-2 as well as for type-1 modes, or 

for neither of them. This argument will become more clear in 

Sec. 7.2, where we shall discuss in more detail the calcula

tion of the growth rates of these modes. 

Finally, the difficulties about the stability criterion 

completely disappear for fields having some shear. The old 

scheme then applies again and we talk about interchanges if 
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Suydam's criterion is violated. If we consider constant-pitch 

fields as limiting cases of fields having shear, Suydam's 

criterion applies in the limit ~' + 0 and the marginal-stabil

ity analysis of Chapter 5 holds without any change. The con

clusion that the stability criteria of a diffuse pinch do not 

depend on compressibility then also remains valid. At the same 

time this point of view looks the most realistic one, because 

some shear always occurs in real experiments. 

The mentioned point of view implies that Kadomtsev's 

treatment 32
,

59
) of the diffuse z-pinch should undergo a modi

fication. In the z-pinch B = 0 and Kadomtsev obtains criterion 
z 

(117) with B =Be for them= 0 modes; this corresponds to the 

limit F = 0, w2 
+ 0. If m ~ 0 and k + oo (so that F ~ 0) the 

following stability criterion is obtained from the marginal 

equation of motion: 

pI + 
m2B2 e > 0 • 
2~ r 

0 

(I 1 8) 

It depends on the value of 2~ 0 p/B~ whether criterion (117) 1s 

more stringent than this one, m = 0 modes then being unstable, 

or whether criterion (118) is more stringent, involving un-

stable m = modes (according to Kadomtsev). However, if we 

consider the z-pinch as a limiting case of a pinch with a 

small B -field and next take, for m ~ 0, the limit B + 0 and z z 
k + oo such that F + 0, we again obtain the criterion (116), 

which is more stringent than both (117) and (118). Therefore, 

according to ideal magnetohydrodynamics a diffuse z-pinch 

with p' < 0 is always unstable with respect to quasi-inter

changes with m ~ 0. 

7.2. Growth rates of instabilities 1n a constant-pitch magnetic 

field 

Our objections against Ware's treatment of constant-pitch 

magnetic fields mainly concerned the nomenclature, in which 

type-2 quasi-interchanges were called "kinks". We shall now 
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show in addition that, if -2ypB 8
2 ;[jl r(yp+B 2 /~ )] < p' < 0, 

0 0 

quasi-interchanges arise which cannot be stabilized by finite 

Larmor-radius effects. As a matter of fact, the finite size 

of the ionic gyration radius in general favours stabilization 

when the growth rates of the instabilities are not too large. 

Ware's argument, that no instabilities arise in the mentioned 

p 1 interval, so that Suydam's criterion (116) should be re

placed by the less stringent stability criterion (117), is 

based upon the fact that type-2 quasi-interchanges have small 

growth rates, enabling finite Larmor-radius stabilization. 

We shall show that the distinction between type-! and type-2 

modes makes no sense for the most important modes, viz. those 

having the largest growth rates; moreover, it will turn out 

that those modes have no small growth rate at all. 

The growth rates of instabilities can be calculated 

from the complete equation of motion, that is, from Eq. (25) 

for the plane case and from Eq. (57) for the cylindrical case. 

In general, these equations can be solved only numerically. 

Newcomb 35 ) calculated the growth rates of the quasi-inter

changes for the plane case with a magnetic field of constant 

direction by introducing a local approximation, based on the 

scale length of the equilibrium. For the cylindrical case the 

growth rates of the quasi-interchanges for the constant-pitch 

field were calculated analogously by Ware 56 ). Our treatment 

will be based on Eq. (57) and will differ from Ware's treat

ment Ln principle only by the fact that the analogy with 

Newcomb's paper is traced further. In doing so, however, we 

shall reach other conclusions than Ware. 

The equilibrium equation (52) suggests to introduce a 

scale length L defined by 

= 
L r(yp+B 2 /~ ) 

0 

( 1 1 9) 

From this equation it appears that r just as well as L can be 

used as a scale length if Be ~ Bz. Hence, the quantities 
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p,B
8

, and Bz vary appreciably over distances of the order L- r. 

Quasi-interchanges occur for small values ofF= k//B. There

fore, we shall assume that k// << k. Furthermore, we restrict 

our attention to kr >> I and to loc~l instabilities, i.e. so

lutions of Eq. (57) with w2 < 0 which vary rapidly over dis

tances much smaller than L, so that p,B
8

, and Bz may be con

sidered as approximately constant. The equation (57) then has 

solutions of the form: rl; - exp(iqr), with qr >> I. The lat-
r 

ter assumption will be justified on the basis of the final re-

sult. With these approximations (k// << k, kr >> I, qr >> I) 

and assuming lw 2 pl << (m 2 /r 2+k 2 )B 2 /]J Eq. (57) gives 
0 

+ 

(I 2 0) 

From the equilibrium equation (52) and the condition of con

stant pitch it further follows that 

Bl = 
z 

Bl e 

B 
z 

B2/]J 

Be 

B2/]J 

[pI + 

0 

[pI + 

0 

2 
2B 8 ) 
].1 r 

0 

2B 2-B 2 ( I 2 I ) 

~ r J 
0 

Using these relations, Eq. (120) yields, after some straight

forward algebraic reductions, the following quadratic for pw 2 : 

+ 
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2yp+B 2 /]J 
0 

(q2r2+m2+k2r2)B2 



4mB
8
p'F 

+ F 2 I~ - ---------
0 (q2r2+m2+k2r2)B2 

m2+k 2 r 2 2B 2 

[ q2r2+m2+k2r2 rB~ p' 

(122) 

If qr - kr the orders of magnitude of the various terms of this 

equation can be represented as follows: 

( 1 2 3) 

the derivation of the various terms assumes that the local val

ues of p are of the order of B 2 /~ , in accordance with situa-
o 

tions realized in pinches. This equation shows which terms of 

Eq. (122) can be neglected for the different limiting cases. 

In the limit F = k// B + 0 the terms O(kf/ r 2 ), O(k// /k), 

and O(kf/ /k 2 ) are negligible in comparison with the terms 0(1). 

Neglecting these terms and using the relation 

(124) 

which holds if k II << k, Eq. ( 122) provides the growth rates 

of type-1 and type-2 quasi-interchanges, viz. 

[ 
2ypB~/~ ] 

pI + 0 

r(yp+B 2 /~ ) 
0 

(125) 
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YP (126) 

The latter expression is only valid for values of p' for which 

the denominator is not small. In th~ transition region where 

(127a) 

the two types of modes pass into each other, while the two val

ues of pw 2 can be approximated there by: 

F . (I 2 7b) 

Equations (125) and (126) are the expressions derived by 

Ware for the growth rates of the quasi-interchanges, from which 

the stability criteria (116) and (1 17) follow immediately. IfF 

is small pw~ is also small, so that type-2 modes with small k// 

will in general be stabilized by finite Larmor-radius effects. 

However, Ware's argument that, as a consequence, the stability 

criterion (116) should be replaced by (I 17) (so that diffuse 

pinches with a constant-pitch magnetic field could be stable in 

the presence of a small negative pressure gradient) is incor

rect. Equation (126) shows that the largest growth rates of 

type-2 quasi-interchanges are reached for large values ofF, so 

that the approximations made above are not allowed for the modes 

with the largest growth rates. 

We shall continue the analogy with Newcomb's paper at the 

point where Ware did break it off. Starting from Eq. (122) we 

ask for the value of kfi for which the maximum growth rate is 

obtained. This will turn out to be the case for k//r = 0(1), so 

that the terms O(k///k) and O(kj;/k 2
) can be neglected in Eq. 

(122), but not the terms O(k~r 2 ). The value of kVbelonging to 

the maximum growth rate is found by differentiatiqn with re-
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spect to F of the solutions of Eq. (122), with the mentioned 

approximations. This gives 

F = 0 , (128) 

m2+k2r2 2B 2 [ yp+B 2 /~ { 2ypB~/~ 2yp+B 2 /~ 0 } F2= - e 0 p' + 0 

q2r2+m2+k2r2 rB 2 B 2 /~ r(yp+B 2 /~ ) B2/~ 
0 0 0 

2yp+B 2 /~ 2 
0 

ypBe [p' + 2:::~]] (129) 
B2/~ rB 2 

0 

It appears from Eq. (129) that k~ r = 0(1) for the modes with 

the largest growth rate, while F 2 is positive and non-vanish

ing if 

2ypB~/~ 0 
r(yp+B 2 /~ ) 

0 

2yp+B 2 /~ 
0 < p' < 0 • (130) 

For this p' range the most dangerous modes are quasi-inter

changes with a value of k~ ~ 0, following from Eq. (129). 

Substitution of F 2 from Eq. (129) in Eq. (122) yields the 

growth rates for these modes: 

~- 2ypB~) J 2 • 

rB 2 

( I 3 I ) 

This expression becomes extreme, just as the expression for 

the pure interchange modes (Eq. (125)), for q 2 r 2 << k 2 r 2
• 

Summarizing, we have derived: 

if 

-2yp(2yp + B 2 /~ )B 8
2 /[~ r(yp+B 2 /~ )

2 J < p' < 0 , 
0 0 0 

quasi-interchanges, with k// given by Eq. (129), are the most 

dangerous modes. Their growth rate is given by 
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rB2 (P' + 2ypB~] J 2 

2ypB~ rB 2 
(132) 

which reduces, for small negative p 1
, or for incompressible 

(y ~~)modes, to 

(133) 

If 

p 1 < -2yp(2yp + B2 /]J )B 8
2 /[J.l r(yp + B2 /]J ) 2 J 

0 0 0 

pure interchanges (k// = 0) are the most dangerous modes. Their 

growth rate is given by 

( 
2ypB~/]J J 

p' + 0 

r(yp+B 2 /]J ) 
0 

(134) 

We notice that the distinction between type-1 and type-2 

modes can no longer be made for the modes with the largest 

growth rate. Furthermore, quasi-interchanges with F ~ 0 are the 

most dangerous modes for p' ::: -2ypB
8
2 I [J.l r(yp+B 2 /]J ) J and this 

0 0 

is still the case for more negative values of p', so that the 

inequality (117) loses its sense in this respect. Finally, it 

turns out that, even for small negative values of p' and prac

tical values of p and B, the expression (132) in general yields 

such large growth rates that finite Larmor-radius effects can 

provide no effective stabilization mechanism. Thus, we are led 

to the same conclusion as that of the preceding section, viz. 

that the correct stability criterion for a diffuse pinch with 

a constant-pitch magnetic field is Suydam's criterion: p' > 0. 

Violation of this criterion leads in first instance to unstable 

quasi-interchange modes; pure interchange modes arise only if 

the criterion in question is strongly violated. 

The assumption qL >> 1 has been made in the preceding 

discussion, as well as in that of Newcomb 35 ) and that of 
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Ware 58 ). This is a fundamental and serious limitation of the 

treatment, considerably decreasing its reliability. The as

sumption was needed in order to be able to solve the equation 

of motion in a simple way. In this way growth rates of local 

instabilities are obtained. These are instabilities which ap

pear also in a very thin plasma layer, since they correspond 

to solutions of the equation of motion which oscillate so rap

idly that the boundary conditions can be satisfied, even if 

the walls are very close together. Accordingly, the precise 

position of the walls is not very important for these modes. 

In reality, however, we have to do with an interval which'is 

so large that the solutions ~ that correspond to local insta-r 
bilities have more than one zero in the interval. According to 

Sturm's fundamental theorem (see Chapters 3 and 5), other in

stabilities then exist for the same values of m and k which 

have a ~ without zero points in the open interval (O,R) and, r 
therefore, a larger growth rate than the local instabilities. 

However, exactly the instabilities having the largest growth 

rate and, therefore, not the local instabilities but those 

for which the precise position of the wall is important, are 

of interest to us. Using Newcomb's method the only information 

we get about these instabilities is that the growth rates are 

larger than the values following from the equations (132) and 

(134). For special cases of constant-pitch magnetic fields the 

stability of non-local modes will be discussed in Sees. 7.4 

and 7.5. 

7.3. The principle of exchanse of stabilities 

Before we return to the force-free magnetic fields, es

pecially constant-pitch force-free fields, we shall discuss 

the principle of exchange of stabilities in connection with 

the marginal-stability analysis. This is of interest in view 

of the criticism which was given by Tayler 29
) on an improper 

use of this principle. Tayler's criticism is relevant to the 

modification of the stability analysis of Van der Laan's 
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model 24 ), which will be given in Sec, 7.4. 

The principle of exchange of stabilities will be shortly 

described below (we base our discussion on Chandrasekhar's 

treatment 44 )). An equilibrium or stationary state of a system 

is described by a number of time-independent parameters 

x
1
,x 2 , •• Xj. These parameters contain the equilibrium quanti

ties like the pressure distribution (one of the parameters 

will be a functional of p(r)), the geometry of the problem, 

the field components, etc. Next, the first-order quantities 

representing the perturbation are expanded in a set of normal 

modes, which are labelled with a vector k. The time dependence 

of these modes is assumed to be of the form: exp(-iwkt). 

States which are marginal with respect to a mode k are then to 

be determined from the condition: 

0 . (135) 

This condition fixes a locus 1n parameter space: 

(136) 

separating the states which are stable with re~pect to a spe

cial mode k from the unstable ones. 

Unstable dissipative systems may be divided into those 

for which, at onset of instability, Re wk ~ 0 and those for 

which Re wk = 0. In the former case the marginal states ex--hibit oscillatory motion and the system is said to be over-

stable. In the latter the marginal modes (Im wk = 0) are non

oscillatory (Re wk = 0) ,and the principle of exchange of 

stabilities holds; that is, the locus (136) can be found, 1n

stead of (135), from the condition 

wk (X 1 , •• X j ) = 0 • (137) 

This implies a significant simplification of the stability 
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analysis, because now one can find the locus (136) just by 

substituting w = 0 into the equations of motion, solving the 

boundary-value problem only for this specific value of w. 

For conservative (self-adjoint) systems w2 is always 

real 26
,

31
) and, consequently, wk is either purely imaginary 

or purely real. In this case the-marginal modes are also non

oscillatory, so that the principle of exchange of stabilities, 

as formulated above, is always applicable. Marginal states 

with respect to a mode k can then also be determined from a 

condition like (137), which in the same way fixes a locus in 

parameter space of the form (136). Finally, the locus separat

ing the stable states from the unstable ones with respect to 

all modes is the envelope of the loci Ek: 

For continuous k this locus consists of a single smooth curve, 

whereas for discrete k it is composed of adjacent parts of 

smooth curves. Quite generally, it is the purpose of a stabil

ity analysis to determine the locus (138), 

The determination of the locus Ek (X) = 0 (from now on ,m 
X represents the whole set x

1 
, •• Xj) for a diffuse pinch is not 

completely straightforward, as will become clear presently. 

Let us consider solutions ~ of the equation of motion (57) of 
r 

the diffuse pinch on the interval (O,r
1
). The equations (57) 

and (58) constitute a boundary-value problem, fixing the eigen

values of w2
• We split the interval (O,r

1
) at an arbitrary 

point r = r
0

; let ~ 1 (r) be a solution of Eq. (57) on (O,r
0

) 

satisfying the boundary condition (58) at r = 0, and ~ 2 (r) 
the solution of Eq. (57) on (r

0
,r

1
) satisfying (58) at r = r

1 

the amplitudes of ~I and ~2 may be chosen such that the two 

solutions join at r = r
0

, so that~~ (r
0

) = ~ 2 (r 0 ). For an ar

bitrary value of w2 the functions ~I and ~ 2 in general cannot 

be joined together with a continuous tangent. If for a certain 

value of w2
, ~i(r 0 ) = ~z(r 0 ) holds in addition to ~ 1 (r 0 ) = 

~ 2 (r 0 ),then the composite function ~r is smooth on (O,r
1
), 

and w2 constitutes an eigenvalue. The conditions for continuity 
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of ~ and ~~ can be represented by 
r r 

D (w 2 
, k , m , X) 0 • (139) 

This characteristic equation contains solutions of the 

complete equation of motion and, therefore, it is difficult to 

solve in general. Sometimes, however, it can be solved for 

w2 = 0; in any case the equation is simplified considerably 

by this substitution. For certain configurations (for example 

a plasma-vacuum system 60 )) it can be proved that D is a mono

tonically decreasing function of w2 • In those cases one ar

rives at the necessary stability criterion 

D(w 2 = O,k,m,X) > 0 , (140) 

because then there exists no solution of Eq. (139) for w2 < 0. 

Comparing this criterion with theorem 4 of Chapter 5, it 

is clear that it cannot be complete for general cases. First 

of all, the singular points (F = 0) complicate the picture, 

b·ut this effect can be taken into account in the same way as 

done in Chapters 3 and 5. The singular points are not essential 

for the present discussion and they will not be considered 

here. For example, one can think of a constant-pitch field 

where the singular points are absent and where the case F = 0 

is ignored in the same way as in Sec. 7.1 (one considers the 

limit F + 0 only). A more serious defect of criterion (140) 

is the fact that it only yields item 3) of theorem 4. Thus, 

the items 1) and 2) of theorem 4 are overlooked. The reason 

for this is that D(w 2 ,k,m,X), considered as a function of w2 , 

tends to infinity every time ~ 1 or ~ 2 has a zero in r = r
0

• 

Therefore, in general the function D has branches and it may 

be that D is monotonous in w2 for every individual branch, 

but the inequality (140) then no longer guarantees that Eq. 

(139) has no solution for w2 < 0. The different branches of 

the function D(w 2 ,k,m,X) can be labelled with a p~rameter n, 
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which equals the total number of zero points of ~ 1 and ~ 2 on 

the open intervals (O,r
0

) and (r
0
,r

1
),respectively. The val

ues of w2 ,k,m, and X being chosen, n is alsn fixed by means 

of the equation of motion (57) and the boundary conditions. 

From theorem 4 it follows that the criterion (140) is suffi

cient for stability (at least in the absence of singular 

points) if and only if the given values of k,m,X, while w2 =0, 

involve n = 0. For values of n ~ 1 the criterion (140) is 

not relevant and the pinch is unstable. 

The connection of the preceding discussion with the 

principle of exchange of stabilities and with Tayler's criti

cism is the fact that the condition 

D(w 2 = O,k,m,X) = 0 ( 1 4 1 ) 

not simply provides the locus Ek (X) = 0 that separates the ,m 
s tab 1 e s tate s ( w i t h res p e c t to the modes k , m) from the u n-

stable ones. Instead, a number of loci Ek (X) = 0 is ob-. ,m,n 
tained, of which only the locus Ek _

0
(X) = 0 separates 

,m,n-
the stable from the unstable states. Therefore, if we know 

·a solution of Eq. (141) for certain values of k,m, and X, it 

is not certain whether there do not exist modes besides this 

one, belonging to the same values of k,m, and X (but with a 

lower value of n), which are solutions of Eq. (139) for w2 <0 

and which, therefore, are unstable. This is essentially the 

warning of Tayler against a careless application of "the prin

ciple of exchange of stabilities 11 expressed by Eq. (141). 

The reason of this difficulty (Tayler fails to observe this 

and Chandrasekhar is not very explicit about this point) is 

the fact that in Eq. (141) a parameter is lacking, correspond

ing to a kind of wavenumber k in radial direction. This wave-
r 

number cannot be defined for an inhomogeneous problem, but the 

parameter n plays a similar role for these problems. Thus, the 

locus Ek (X) = 0 is found from the condition ,m 

D(w 2 = O,k,m,n = O,X) = 0 ( 1 4 2) 
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which represents the true principle of exchange of stabilities. 

This formulation is in agreement with Chapters 3 and 5: the 

most unstable solution ~(w 2 ) of the boundary-value problem is 

that one for which n = 0 (n decreases with increasing -w 2
} 

Therefore, Tayler's criticism is fully taken into account 

by the introduction of the parameter n into the problem. If, 

in addition, the influence of the singular point is also prop

erly taken into account, there can be no objection to the ap

plication of the principle of exchange of stabilities. The ap

plication of this principle thus proves to be identical to that 

of theorem 4. 

7.4. Constant-pitch force-free magnetic fields (Van der Laan's 

modeU 

We return to the force-free magnetic fields and compare 

the stabilization of magnetohydrodynamic instabilities of a 

sharp screw pinch by force-free fields of constant a (Chapter 6) 

with the stabilization by force-free fields of constant ~' 

which was considered earlier in Ref. 24. In both cases the outer 

region of the pinch consists of a perfectly conducting plasma 

~ith a low density, in which currents are present. During the 

period of formation of the pinch these currents cause inward 

moving field lines, the pitch of which is constant in the mov

ing coordinate system 23
). Thus, a force-free field of constant 

a can be produced by applying a field at the wall which varies 

in time in a properly prescribed way. In Vander Laan's model a 

constant-pitch force-free field is generated because the ap

plied field has a pitch which is constant in time. In general, 

the latter field configuration can be realized easier than the 

former. 

The field components of a constant-pitch forc~-free field 

are given by 24
) 

c C~r 
(143) 
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where the constant C is fixed by the required magnitude of the 

magnetic field at the plasma boundary. Chosing the same values 

for the parameters r ,r
1

, and ~(r ) as in Fig. 5 for the fields 
0 0 

of constant a, the equations (143) provide a single field for 

which ~ = constant = -20 m- 1 (the dashed line for ~ in the left 

part of Fig. 5; the field components are the same as in the 

outer region of Fig. 9 of Sec. 7.5). On the average, this field 

deviates little from that with a= constant= -24.6 m- 1
• This 

will be reflected by the corresponding stability criteria. 

Sections 7.1 and 7.2 led to the conclusion that, in prac

tice (p' < 0), a constant-pitch field is always unstable with 

respect to quasi-interchange instabilities because Suydam's 

criterion is violated. However, in a constant-pitch force-free 

field ~' = 0 as well as p' = 0, so that Suydam's criterion de

generates. In this case the question about the stability is 

still open. 

Schuurman, Bobeldijk, and De Vries 24
) base their stabili

ty analysis of Van der Laan's model on the boundary condition 

for a plasma-pressureless plasma interface. This boundary con

dition (Eq. (35) of Ref. 24) may be obtained from our Eq.(l06) 

by the substitution of the a-value for a constant-pitch force

free field, viz. a= 2~/(1+~ 2 r 2 ). Equation (106) is of the 

form D(w 2 ,k,m,X) 0 and, therefore, suitable for the applica-

tion of the principle of exchange of stabilities. This equa

tion has been derived from Eq. (105) and the latter can in 

turn be derived from Eq. (139) by starting from a diffuse pin~ 

consisting of an inner region with a longitudinal magnetic 

field, a surface layer of thickness 6, and an outer region 

with a force-free field, and taking the limit 6 ~ 0 afterwards 

(in the same way as in Sec. 6.2, but now using solutions of 

the complete equation of motion). Bobeldijk 60
) has shown that 

the left-hand side of Eq. (106) is a monotonically decreasing 

function of w2 • Next, it is stated in Ref. 24 that the right

hand side of Eq. (106) is independent of w2
, so that the sta

bility criterion is represented by D(w 2 = O,k,m,X) > 0, where 

D = L-R, L and R being the expressions of Eq. (94). 
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On the other hand, in Sec. 7.3 we arrived at the conclu

sion that the criterion D(w 2 = O,k,m,X) > 0 i~ incomplete in 

general, because it does not take into account the possibility 

that D = D(w 2 ,k,m,X) as a function of w2 has branches if the 

functions ~I and ~ 2 have zero points (n ~ 1). A comparison 

with the stability conditions of the sharp pinch surrounded by 

a force-free field with non-constant a, given at the end of 

Sec. 6.2, shows that this implies that the stability analysis 

of Ref. 24 overlooks instabilities of the pressureless plasma 

itself (type-III instabilities)t). The reason for this is that 

the starting point of Ref. 24, Eq. (106), only follows from Eq. 

(105) when neglecting the density pt of the pressureless plas

ma. In Sec. 6.4 we pointed out, however, that this neglect ~s 

not allowed if type-III instabilities are present. In that case 

the starting point of the analysis must be the more correct Eq. 

(lOS), the right-hand side of which is a function of w2 and, 

therefore, leads to branches. 

Obviously, the preceding discussion only makes sense if 

these type-III instabilities actually show up in Van der Laan's 

model. It had already been remarked in Ref. 24 that the quanti-

ty R tends to infinity for certain values of the parameters. 

From Eq. (94) it is obvious that this happens if t 
rQ (and, r 

t 
therefore, ~ ) has a zero at r 

r 
= r , which implies that for 

0 

those values of the parameters type-III instabilities really 

arise. We shall investigate these instabilities in more detail 

with the aid of the marginal equation of motion for a constant

pitch force-free field in terms of rQt, following from Eq.(84): 
r 

m-kJJ r 2 a.' J rQ~=O, 
k+JJm 

(144) 

where \J =constant and a= 2JJ/(I+JJ 2 r 2 ). This equation agrees 

with Eq. (16) of Ref. 24 but, since pt was neglected, it had 

t) Type-II instabilities also are not discussed in Ref. 24, but 

this is inherent to a stability analysis on the basis of the 

boundary conditions of a sharp pinch. 
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been used there as the complete equation of motion. It fol

lows from Eq. (144) that an oscillating behaviour of the so

lutions of the marginal equation of motion and, therefore, 

the existence of type-III instabilities cannot be avoided in 

this model; this has been noticed already by Freidberg, 

Weitzner, and Weldon 61
). In fact, the last term of Eq. (144) 

contains the constant factor k+~m in the denominator, so that 

this term tends to +00 or -oo depending on whether k tends to 

-~m-0 or to -~m+O (we assume that -~m > 0). Thus, at one of 

the two sides of the point k = -~m an interval of k-values 

always exists for which the solutions of Eq. (144) oscillate, 

and the more rapidly so according as k approaches -~m. The 

pressureless plasma is unstable for k-values in that interval. 

We observe that the oscillating behaviour of the solu

tions of Eq. (144) is connected with the appearance of the 

constant factor k+~m in the denominator of Eq. (144) for a 

constant-pitch field. This behaviour is not inherent to the 

fact that a is not constant. It is true that the factor in 

question also appears in the denominator for every other 

field for which a' ~ 0 (and~' ~ 0), but in that case it is 

not constant and if k+~m = 0 we again have a singular point 

of the well-known type. The presence of shear then ensures 

that Suydam's criterion is satisfied in the neighbourhood of 

the singular point, so that for force-free fields with ~ ~ 

constant the mentioned instabilities do not arise. 

Notice that the type-III instabilities which ariae in 

force-free fields with ~ = constant can be regarded as a lim

iting case of Suydam-type instabilities (interchanges). The 

type-III instabilities which arise in force-free fields with 

constant a if the value of lal is too large (described by 

Voslamber and Callebaut 17
)), are of another kind, for which 

Suydam's criterion is not relevant and for which the name 

kinks is appropriate. 

Although the stability criterion D(w 2 = O,k,m,X) > 0 

or L > R is not correct with respect to instabilities of the 

pressureless plasma, a picture of L and R as a function of k 
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can yet reveal these instabilities. This is because R blows up 

every time rQt has a zero point (see Eq. (94)) and, as a con
r 

sequence, the plot of R as a function of k also exhibits 

branches. These branches of the function R R(k) can be la-

belled with the same parameter n as used for those of the 

function D = D(w 2
). 

In Fig. 8 the corrected stability diagram of Van der 

Laan's model is given, showing L(B = O) and R as functions of 

L,R 

t 

0 15 25 

n=1 n=2, ....... 

Fig, 8 Stability diagram for~= constant, m = I, r
0 

r
1 

= 0.06 m, ~ = -20 m- 1
• 

0.03 m, 

k form= 1, ~ = -20 -1 
m ' and the other parameters as in Fig.5. 

Due to the fact that the field with ~ = constant = -20 m- 1 de

viates little from that with a = constant = -24.6 m- 1 , the sta

bility diagram of Fig. 8 is almost identical to the diagram of 

Fig. 6 for a= -24.6 m- 1
, at least in the region of k-values 

where type-III instabilities are absent. The function R exhib-

its branches for k-values from 18.4 to 20 

106 
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the branches n = 0 and n = 1 are shown. An infinite number of 

branches accumulate immediately to the left of k = 20 m- 1
• 

The presence of these branches shows that the pressureless 

plasma is unstable, but the value of the quantity R - L by it

self has no physical significance in this regiont). So, we do 

not have transitions from infinite instability to infinite 

stability for the values of k where R blows up, but the whole 

region from k = 18.4 m- 1 (the first point of intersection of 

L(S = 0) with R) to 20 m- 1 ~s unstable for S = 0. For higher 

values of S this region is somewhat larger and, because of the 

presence of the branches, the critical value of 8 with respect 

to type-I instabilities is difficult to calculate. A comparison 

with R(a = -24.6) of Fig. 6 shows, however, that the critical 

value of 8 is certainly not 20%, which according to Eq. (100) 

could be reached by an optimal choice of the force-free field 

(for a= constant= -24.6 m- 1
: S 't = 16%). The assumption of 

cr~ 

Ref. 24 that "a constant-pitch region outside the plasma column 

is almost optimal for stability" turns out to be valid only if 

~r · << I and if the instabilities of the pressureless plasma 
0 

are neglected. Therefore, Fig. 3 of Ref. 24, where S 't is 
cr~ 

plotted as a function of ~r according to the relation (100), 
0 

needs a correction for higher values of ~r and is only ap-
o 

plicable with respect to type-I instabilities. On the other 

hand, the picture provides the correct relation for the maximum 

allowable value of S for force-free fields in general, for 

example force-free fields ~ith a = constant with properly chos~ 

value of a. 

The instabilities of the constant-pitch force-free field 

show up in the situation for which Suydam's criterion degener

ates (p' = 0, ~~ = 0) and so one expects the growth rates to be 

t) In the region of k-values where branmes are absent the value 

of R - L is proportional to the growth rate of incompressible 

type-I instabilities according to Eq. (107). 
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small. Using aga1n the local approximation we can calculate 

the growth rates in order to see whether this is justified. 

We start from Eq. (122) and drop terms with p'. Just as in 

Sec. 7.2 one can look either to the growth rates of the quasi

interchanges ifF= k//B + 0, or to the growth rates of the 

most dangerous quasi-interchanges. In the first case, if 

k//r + 0, two modes are again obtained from Eq. (122): a stable 

type-) mode with pw~ given by Eq. (125) with p' 0, and an un

stable type-2 mo~e. The growth rate of the latter is given by 

a higher order term which is neglected in Eq. (126): 

pw2 = -
2 

mrF 3 /';J. 
0 

(145) 

where Eq. (124) has been used for the approximation on the 

right-hand side. This growth rate is by an order k// /k smaller 

than the growth rate of the type-2 quasi-interchanges in the 

presence of a pressure gradient (Eq. (126)). In accordance with 

the stability diagram of Fig. 8 instabili .. ty turns up only if 

k// < 0, in contrast to the situation in the presenc~ of a 

pressure gradient. We notice that both the property of the so

lutions of the marginal e~uation of motion to oscillate with 

an infinite rapidity if k// + 0 and the resulting accumulation 

of an infinite set of branches in the stability diagram of 

Fig. 8 to the left of k = 20 - 1 
m ' have no direct consequence 

for the growth rates. On the contrary, if k// + 0 also the 

growth rates tend to zero according to Eq. (145)! This one 

example illustrates the weakness of the marginal-stability anal

ysis and, therefore, of the energy principle: one obtains sta

bility criteria, but no information about the danger of the in

stabilities. The stability criteria can even be rather mislead

ing, as is evident from Fig. 8. 

The problem dealing with the k// value associated with 

the maximum growth rate is more important. This maximum turns 

out to occur for k//r = 0(1/(kr)), so that the terms O(k// 2 ) 

and O(k///k) in Eq. (122) become of the same order. Only the 
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terms O(k;/lk 2 ) and those containing p' then can be dropped in 

Eq. ( 122). By a differentiation of the solutions of Eq. ( 122) 

with respect to the variable F we then obtain the following 

values of F = k// B for which pw 2 has an extremum: 

F = (146) 

( 14 7) 

F (148) 

The first value of F corresponds to the minimum of the curve 

of pw 2 as a function of k// for the stable modes. The second 

value of F corresponds to the inflection point in the curve of 

pw 2 as a function of k// for the unstable modes. The third 

value of F is the required one for which the growth rate of 

the unstable modes has a maximum. From Eq. (148) it follows 

that, for these modes, k;;r- 0(1/(kr)). Substitution ofF 

from Eq. (148) in the solution pw 2 of Eq. (122) gives the 

growth rate of the most dangerous quasi-interchanges: 

-mr 

m2+k2r2 3 

(q2r2+m2+k2r2] 
( l 4 9) 

where Eq. (124) has been used to obtain the approximation on 

the right-hand side. The maximum of this growth rate, obtained 

when q 2 r 2 << k 2 r 2 , follows from 

(150) 

This expression for the growth rates of quasi-interchanges 
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in a constant-pitch magnetic field has some unpleasant features 

which makes it of little practical use. First of all, the ex

pression is strongly dependent on the local value of ~r. If, 

for example, ~r- 0.1 the growth rate is negligible for practi

cal values of p and B~ whereas for ~r - the growth rate can 

be rather large. Secondly, it follows from the presence of k~ 

in the denominator of Eq. (150) that the growth rates are 

largest for small k, so that the local approximation here breaks 

down completely (see also the end of Sec. 7.3). Thirdly, the 

derivation of Eq. (150) strongly depends on the assumptions 

p 1 = 0 and ~· = 0. 

The latter point concerns the properties of the model it

self and, therefore, it is not very useful to try to remove the 

first two points of criticism by a more refined calculation of 

the growth rates (for example numerically). VanderLaan's mod

el is very successful in explaining the gross stability of the 

screw pinch, i.e. the absence of kinks (type-! instabilities), 

but the situation with respect to the instabilities of the 

force-free outer region compells us to make a minor modifica

tion of the model. Two modifications are possible, depending 

on whether one finds experimentally instabilities for which one 

wishes to calculate the growth rates,or whether one wishes to 

design a theoretically stable model which one tries to realize 

experimentally: 

I) One drops the restriction p' 0 and considers an 

outer region of constant pitch, where a small negative pres

sure gradient gives rise to instabilities for which the growth 

rates are given by Eq. (133) in local approximation. The small 

pressure gradient will not result in a strong deviation of the 

field from a force-free field, so that the conclusions with 

respect to type-! instabilities are conserved. 

2) One drops the restriction~· = 0 and considers other 

force-free fields, e.g. with a = constant. A comparison of 

Fig. 6 with Fig. 8 shows that the small shear of the field 

with a = constant = -24.6 m- 1 is sufficient to remove the in-
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stabilities of the pressureless plasma. Here one should remember 

that the force-free fields with a = constant also yield results 

which are strongly dependent on the assumption p' = 0 if ~' 

vanishes anywhere in the interval. This happens, for example, 

in the case a= -24.6 m- 1 • Because this field has a mimimum in 

the function ~ = ~(r) (see Fig. 5) Suydam-type instabilities 

will develop at the position of the minimum, even in the pres

ence of a very small pressure gradient. For these instabilities 

Eq. (133) is again a good approximation for the growth rates. 

On the other hand, force-free fields of constant a having a 

larger value of -a are more favourable with respect to Suydam's 

modes, because these fields satisfy Suydam's criterion more 

than marginally. Moreover, in Sec. 6.3 we came to the conclu

s~on that these field configurations (e.g. a = -50 m- 1 ) are 

also the most favourable ones with respect to type-I and 

type-II instabilities. 

Summarizing, we consider the instabilities of a constant

pitch force-free magnetic field as a limiting case of Suydam

type instabilities, which can easily be removed by replacing 

the constant-pitch force-free field by a force-free field of 

constant a. 

7.5. Constant-pitch magnetic fields in the presence of a pres

sure gradient (Alfven's model) 

One special model with a constant-pitch magnetic field 

and a negative pressure gradient (therefore, not force-free!) 

is known which can be solved analytically without making use 

of the local approximation. This is Alfven's model, for which 

the stability was analyzed by Dungey and Loughhead 42 ). The 

paper of Dungey and Loughhead was one of the first stability 

calculations in magnetohydrodynamics by means of the normal

mode analysis. Unfortunately, this paper was criticized by 

Tayler 29
) because of an incorrect use of the principle of ex

change of stabilities. We shall see, however, that this crit

icism was unjustified. Since Alfven's model provides some 
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additional insight in the stability of constant-pitch fields, 

we shall consider it briefly. Moreover, we shall use this 

model to replace the rather unrealistic rectangular pressure 

profile of the sharp-pinch model 'by a more diffuse profile. 

The model o£ Alfv~n was introduced as a possible mecha-
. h . . . f. ld 9 6 2 6 3) n1sm for t e generat1on of cosm1c magnet1c 1e s ' ' . 

The idea is that in a plasma tube with an initial longitudinal 

magnetic field (Bz), an azimuthal field (Be) will develop as 

a result of motion of the plasma. This motion may be, e.g., a 

differential rotation due to convection in a rotating plasma. 

The resulting motion of the magnetic-field lines is analogous 

to the twisting of an elastic string. This analogy suggests 

that the magnetic field as a whole will form a loop if the 

twist of the field lines exceeds a certain limit. Alfv~n show

ed that such a loop may cause an amplification of the initial 

B -field. If this process is repeated several times a longitu-z 
dinal field Bzf is finally created having an order of magnitude 

given by 

2}.l 
0 

( I 5 I ) 

where v is the differential velocity of the plasma, R the radms 

of the plasma tube, and l.J the critical value of l.J (which is a 
c 

measure of the twist of the field lines) above which loop for-

mation sets in. 

Alfv~n's model will be considered as static as far as 

stability is concerned. In particular, the tube with the magne

tic-field lines is given a uniform twist in this model. Fur

thermore, the longitudinal current producing the Be-field is 

also assumed uniform, so that Be varies linearly with r. Con

sequently, the various equilibrium quantities are given by 

J J 2 

p = constant, j = constant, 
z 

B == constant z (I 52) 



..... 
The pressure decreases parabolically to zero at r = R, where 

the tube of field lines is assumed to be bounded. Some mate

rial pressure must balance the magnetic pressure there (the 

origin of this material pressure, however, is not discussed 

in Alfven's papers). 

Dungey and Loughhead investigated the stability of this 

model describing loop formation as the simultaneous presence 

of an m = and an m = -I instability. The criterion for loop 

formation according to this definition ~s: ~R > 2. This result 

was found earlier by Lundquist 11
) for the instability of a 

twisted magnetic field with respect to a specific type of dis

placement. Substitution of the critical value of ~R from this 

criterion in Eq. (151) yields a reasonable value of Bzf' Alfven 

used the result of Dungey and Loughhead in his later papers 9
'

63
) 

without noticing, however, that the criterion for loop forma

tion gives a finite value of ~R indeed, but that Dungey and 

Loughhead also found that other instabilities arise in Alfven's 

model for every value of ~ and, therefore, already for infini

tesimal small ~ (see also Ref. 64). By now these instabilities 

are very well known to us: they are, in the local approximation, 

the quasi-interchange instabilities which are present in a con

stant-pitch field in the presence of a negative pressure gra

dient for k-values in the neighbourhood of k = -~m. Therefore, 

the mechanism proposed by Alfven for the generation of cosmic 

magnetic fields cannot work in the described way, if the tube 

of field lines is given a uniform twist. If one wishes to con

serve the essential properties of Alfven's model for the gener

ation of cosmic magnetic fields it will be necessary either to 

take into account the development of the quasi-interchange in

stabilities during their non-linear phase or to drop the re

striction of uniform twist and to consider fields which are 

twisted such that Suydam's criterion is satisfied. 

The analysis of Dungey and Loughhead is restricted to 

incompressible perturbations of the equilibrium fixed by the 

equations (152). The required equation of motion for incom

pressible perturbations can be derived heuristically from 
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Eq. (57) by taking the limit y -+ oo, In this way one finds the 

equation derived by Freidberg~ 1 ). Substituting the quantities 

of Eq. (152) this equation proves to read 

4k2r2A2F2/~2 
_________ o ___ J ~ r =0 ' 

(m2+k2r2)(w2p-F2/~ ) 

where F = rnA + kB = constant. 
z 

0 

(153) 

(154) 

Using the expressions of Dungey and Loughhead the solution of 

this equation that satisfies the boundary condition at r = 0 

can be written: 

r~ r 

where 

(155) 

(156) 

The solution of the marginal equation of motion contains Bessel 

functions of the form J (kr/4A 2 /F 2-I) and it is obvious that 
m 

for F-+ 0 this solution oscillates with an infinite rapidity, 

thus excluding stability of this model (as known from Sees. 7.1 

and 7.2). Here, as opposed to the constant-pitch force-free 

field, instabilities arise for k-values on either side of 

k = -~m. If the plasma is bounded by a metallic wall at r = r
1 

one obtains from Eq. (155) the growth rates of the instabili

ties from 

r1~r(rl) = 0. ( 15 7) 

Of course, for astrophysical plasmas the assumption of a metal

lic wall is undesirable. In those cases, instead of Eq. (157), 

one should impose the condition that ~ (r) vanishes at infinity. 
r 
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Then, the following discussion applies without change. Equation 

(157) can only be satisfied if r~ contains oscillating Bessel r 
functions, so that the next inequality must hold: 

For F-+ 0 this implies -pw 2 < 2IAIIFI/11 and it follows that 
0 

the growth rate tends to zero if F -+ 0 (just as in the con-

stant-pitch force-free field). This is in agreement with the 

expression (127b) for the local instabilities. In fact, equa

tion (127b) applies to Alfven's model because p 1 +2B~/(1J. 0 r)=O, 
so that p' exactly has the value for which incompressible type-1 

and type-2 modes transform into each other according to the 

limit y-+ 0 for the expression (127a). For qr << kr andy-+ oo 

Eq. (I 2 7) provides the growth rates of the local quasi-inter-

changes in the limit F -+ 0: 

pw2 + 
2B~/"'t1 0 F = . - rB (158) 

This expression shows that instabilities arise for k-val

ues on either side of k = -lJ.m. Owing to the property that the 

modes change their character when F passes through zero (the 

stable mode becomes unstable and vice versa) the curve of pw 2 

as a function of k for the unstable modes exhibits a typical 

break (discontinuous tangent). This break was noticed previous

ly by Tayler 53
), who remarked that this effect is the result 

of the assumption of incompressibility. This is only true in 

so far as the break vanishes for Alfven's model if compres

sible perturbations are considered, since then the condition 

(127a) is no longer satisfied (so that Eq. (125) or (126) 

gives the growth rate in the limit F-+ 0); on the other hand, 

the break remains present for the compressible perturbations 

of other equilibria satisfying this condition. 

An important limitation for the determination of the 

growth rates from the equations (155) and (157) is the restric

tion to incompressible modes. As a matter of fact, it appears 
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from the local approximation that the growth rates of the com

pressible modes for constant-pitch fields are larger than those 

of the incompressible ones. This can be verified from an ex

pansion of Eq. (132) in orders of 1/y. The zero order expres

sion (133) gives the growth rates of the incompressible modes 

and the next order term, accounting for the influence of the 

compressibility on the growth rate, is negative. Hence, in this 

case compressibility destabilizes. 

Tayler 53
) used Plfven's model and the solutions of Eq. 

(155) for a model of a diffuse pinch consisting of an inner re

gion (r < r ) with a uniform current distribution and a para-
a 

bolic pressure profile and an outer region (r > r and extending 
0 

up to 00 ) with a vacuum magnetic field. We shall modify this 

model in the same way as that of Kruskal and Tuck 21 ) (Chapter 6), 

viz. by replacing the vacuum outer region by a force-free field 

bounded by a conducting wall at r = r
1

. Just as in Sec. 6.4, 

the characteristic equation for this configuration can be deriv

ed by starting from the boundary conditions (7)-(10). Performing 

the substitution -yp~.§p + p
11 

for the incompressible inner re

gion we obtain Eq. (105) with a modified left-hand side: 

2mAF/ll 
-A 2 /ll 0 + 

0 m2+k2r2 

t2 
Be 

= 

llo 
r2 

r(wzpp-Fz/ll ) (r~p)' 
0 r + 

m2+k2r2 r~P 
r 

2kBt t t t 2 
(mB /r-kB

8
)B Ill 

e z 0 

llo 
r2 wzp t -(m2/r2+k2)Bt 1'110 

, ( r=r ) 
0 

(159) 

where A 1.s given by Eq. (152), F by Eq. (154), r~p by Eq. (155), 
r 

and r~t by the solution corresponding to the solutions rQt of 
r r 

Eq. (84), satisfying the usual boundary condition r~t "small" 
~ r 

at r = r 1 (or zero at r = r
1
). 

Neglecting the density of the outer region (as done in Sec. 6.4; 

however, observe the remark made there with respect to type-III 
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instabilities) we obtain the following characteristic equation~ 
replacing Eq. (106): 

t2 
B 

0 = ---
~ r 

0 

"' * k ri'(kr)-
m 

t2 
B 

0 ---
~ r 

0 
R ' ( 16 0) 

where R is the known expression for force-free fields (Eq.(94)). 

The following stability criterion of the form L > R results 

from Eq. (160) after the substitution w2 = 0 in the left-hand 

side: 

p2 
B 

0 
L - --rz 

rB 
0 

> R, 

( I 6 1 ) 

where ~p A/B and k"' = 
z 0 

Here too, like in Sec. 7.4, the criterion L > R is not 

sufficient for stability. In fact, zero points of ~P(w 2 =0) may 
r 

occur in the open interval (O,r ) in addition to the zero 
0 

points of~~ (w 2 =0) in the open interval (r
0
,r 1), so that the 

function L = L(k) can have branches in the stability diagram 

t) This equation was derived earlier by Dr. W. Schuurman (un

published). 
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just as well as the function R = R(k). Therefore, the stability 

criterion L > R should be supplemented with the conditions that 

~P(w 2 =0) and ~t(w2 =0) should have no zero points in the open 
r r 

intervals (O,r J and (r ,r
1
),respectively. Notice that, conse-

o 0 

quently, the division of the instabilities in type-!, type-II, 

and type-III instabilities, made in Sec. 6.3, must undergo a 

further s~litting. Type-! instabilities can now be divided into 

two kinds, depending on whether they are connected with a viola

tion of L > R or with oscillations of the function ~~(w 2 =0). 
r 

Dungey and Loughhead~ 2 ) implkitly applied this enlarged, 

correct stability criterion in their treatment of the pure 

Alfven model. In this model no magnetic field is assumed in the 

outer region (Bt = 0), so that the relevant criterion follows 
0 

from Eq. (161) by putting R = 0. The corresponding equation 

L = 0 (the dispersion equation for this model in which w2 = 0 

is substituted) was used by Dungey and Loughhead as a starting 

point of their stability calculations. For given values of 

~P,k, and m this equation has a solution for a number of values 

of the radius R of the plasma tube, "the smallest of which will 
.... 

be called R II (quoting the authors). Next, it l.S stated that 
0 

"the condition for instability l.S expressed by the inequality 

R > R ". However, the determination of the smallest value of 
.... 0 
R is fully equivalent to the determination of the solution 

~P(w 2 =0) of the marginal equation of motion that has no zero 
r 

points (n=O) on the open interval (O,R). This shows that 

Dungey and Loughhead took the required care in the application 

of the principle of exchange of stabilities and that Tayler's 

criticism with respect to this paper is unjustified. Tayler 

illustrates his criticism with the special case B = 0, showing 
z 

that the m = I modes are always unstable. Indeed, from Fig. 2 
.... 

of Dungey and Loughhead's paper it appears that R = 0 for 
0 

B = 0, m = 1, and arbitrary k, so that the same conclusion is z 
reached! 

The inequality (161) contains, apart from the parameters 

k and m characterizing the perturbation, the following equilib

rium quantities which can be chosen arbitrarily: r
0
,r

1 
,~P ,~t, 
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Bp/Bt, and possiblyt) a. Thus, comparing with the model treated 
0 0 

in Chapter 6, one additional parameter enters, viz. ~P. The 

model of Chapter 6 fits in the present treatment by the choice 

~p = 0, and that of Tayler 53
) by taking a = 0. The parameter 

Bp/Bt fixes the jump of the magnetic field at the plasma boun-
o 0 

dary (r = r ) and, therefore, also the jump of the pressure by 
0 

means of the equilibrium condition (4). The functions p(r) and 

S(r) are then fixed according to 

p 

s = 
p 

p+B 2 /(2~ ) 
0 

1 -

(162) 

(163) 

A completely diffuse model is obtained by taking ~p = ~t 
and Bp/Bt = 1. In this case the pressure decreases to zero at 

0 0 

r = r and surface currents producing a jump in the magnetic
a 

field components at r = r are absent. This model seems to re-
- 0 

present a good approximation to many diffuse profiles found 

experimentally. On the other hand, theoretically, it has thedis

advantage to be unstable for a large region of k-values. More

over, the singular behaviour due to the modes of the inner plas

ma cannot be distinguished in the stability diagram from the 

singular behaviour due to the modes of the force-free region. 

In view of these remarks it looks most instructive to 

treat an example of a mixed sharp-diffuse pinch, displaying a 

jump of the pressure and of the field components at r = r . In 
0 

order to make the model maximally pathological we shall also 

t) The parameter a(r ) is fixed if ~t = constant and it can be 
0 

chosen arbitrarily if a= constant. In the other cases, 

where a f constant t 
and ~ f constant, the expression R 

pends, in addition to the parameters a(r ) and 
0 

on the complete profile a= a(r) via Qt. 
r 

t 
~ (ro)' 

de-

also 
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assume a constant pitch for the field lines 1n the outer re

gion. For this model p,B
8

, and Bz are shown as a function of 

r in Fig. 9 for the following choice of the parameters: 

t 

0 0.03 0.06 

I I -r(m) I 

Fig. 9 Configuration for ~p and ~t = constant, r
0 

= 0.03 m, 

r
1 

= 0.06 m, ~p = -10 m- 1 , ~t = -20 m- 1
, Bp/Bt = 0.98. 

0 0 

~p = -10 m- 1 , Bp/Bt = 0.98, and the other parameters as 1n 
0 0 

the model of Sec. 7.4. The stability diagram form= I is 

given in Fig. 10 (L dashed, R drawn). The value of the para

meter Bp/Bt has been chosen such that L = R fork= 20 m- 1 

0 0 

(the interchange value of k for the outer region). According 

to Eq. (163) the above value of Bp/Bt gives a S decreasing 
0 0 

from 8(0) = 18.3% to S(r ) = 4%, i.e. on the average con
a 

siderably below the value of 20% which was allowed for the 

stability of the sharp-pinch model of Chapter 6. 

Figure 10 displays three unstable regions: I) the re

gion of k-values around k =- ~p = 10 m- 1
, 2) the region of 

k-values from 15 m- 1 to 18 m- 1
, 3) the limited region of k-

values to the left of k = -~t 20 m- 1
• The instability of 

the first and the third region is caused by the fact that 

the pitch of the magnetic-field lines is constant. A compari

son with Fig. 6 shows that the instability of the second re-
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L,R 

t 

0 

Fig. 10 Stability diagram for llp and llt = constant, m = I, 

r
0 

= 0.03 m, r
1 

= 0.06 m, llp = -10 m- 1
, llt = -20 m- 1

, 

Bp/Bt = 0.98. 
0 0 

gion is the result of a too small current density in the force

free region (for increasing values of -u the curve R rotates 

counterclockwise around the point with abscissa k = 20 m- 1
) 

and also that the instability of the second and third region 

of k-values can be simply removed by replacing the constant

pitch force-free field by a force-free field with a properly 

chosen value of u =constant (e.g. u =-50 m- 1
). Thus, only 

the instability of the first unstable region remains and this 

suggests that this instability will also be removed if the 

field and pressure distribution of the inner region of Fig. 9 

are modified in such a way as to satisfy Suydam's criterion. 

(It is not difficult to see how this must be done). This as

sumption is justified by the fact that the pressure and field 

profiles thus obtained look very similar to the diffuse pro-
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files observed in Zeta during the period of improved stabili

ty65); it was proved numerically that these profiles are com

pletely stable according to Newcomb's stability criteria. 

The construction of the high-beta toroidal-pinch experiment of 

Culham 66 ) is based on this fact. 

Finally, we want to emphasize that the choice of the pa

rameters of the examples of Chapters 6 and 7 was such (~r - 1) 

that the optimal choice of the force-free field with respect 

to type-I and type-II instabilities gave a field which strongly 

deviates from a constant-pitch force-free field. In the present 

screw-pinch experiments at Jutphaas the value of ~r - 0. I, so 

that the optimal choice of the force-free field deviates little 

from a constant-pitch field. Then, one should expect quasi

interchange instabilities of the constant-pitch force-free mag

netic field to play an unfavourable role. However, for these 

low values of ~r it becomes important to remember that the 

actual experimental configuration is not an infinitely long cyl

inder but a torus (see Appendix III). 
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C H A P T E R 8 

CONCLUSIONS 

In this paper some problems of the stability theory of 

plasmas were treated while starting from the equations of ideal 

magnetohydrodynamics, i.e. the equations of a fluid of infinite 

conductivity in the presence of a magnetic field. Two classical 

examples were considered, viz. a plane plasma layer in a grav

itational field and a cylindrical plasma confined by means of 

the pinch effect. For these cases the linearized magnetohydro

dynamic equations were reduced to one differential equation 

for the component of the displacement vector ~ in the direction 

of inhomogeneity. This equation (called ''the equation of motio~') 

contains all information about waves and instabilities for the 

mentioned cases. The stability was investigated by means of the 

marginal equation of motion which follows from the general equa

tion of motion by substituting w2 = 0, where w fixes the time

dependence of the normal modes. It was shown that this equation 

is equivalent to the Euler-Lagrange equation following from the 

minimization of the energy. As a consequence, the singular 

points of the marginal equation of motion have the same influ

ence as they have in the energy principle and the stability cr 

teria for the marginal-stability analysis can be represented 

analogous to Newcomb's stability criterion for the diffuse 

pinch. 
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Using the thus formulated stability criteria the stabili

ty was investigated for a plane plasma layer in a gravity 

field, supported from below by a force-free field of constant a. 

The gravitational instabilities which can arise are of two 

types: type-I instabilities involving a displacement of the 

plasma as a whole, and type-II instabilities which are more or 

less localized in the thin surface layer which separates the 

plasma from the force-free region. Both types of instabilities 

occur 1n a layer which is supported by a vacuum field (a = 0) 

and they can be stabilized by a force-free field with a proper

ly chosen value of a = constant. Here, an increase of ial 
(higher current density in the force-free region) and the in

fluence of the singular points cooperate favourably. 

The same favourable situation arises in a similar model 

for the screw pincti, viz. a homogeneous plasma cylinder sur

rounded by a force-free field of constant a. Although the equa

tions and stability criteria show a strong analogy with the 

plane case, one additional type of instabilities is possible in 

this case, namely kink instabilities of the force-free region 

itself. It was shown how these type-III instabilities can be 

stabilized by a proper choice of a, just as well as type-I and 

type-II instabilities. This model of a sharp-screw pinch thus 

proved to be completely magnetohydrodynamically stable up to a 

S of the order of 20%. This conclusion was reached while con

tinuing a line of research started by Van der Laan 23 ) and by 

Schuurman, Bobeldijk, and De Vries 2 ~). 

It was shown that constant-pitch magnetic fields have 

some peculiarities which are partly of a physical and partly of 

a mathematical nature. The stability criteria for constant

pitch fields (not necessarily force-free) show a discontinuity 

for values of the wavenumber in the vicinity of the interchange 

value (wave vector perpendicular to the applied magnetic field). 

Contrary to Ware's results, we showed that from the two obtain

ed stability criteria (viz. for k// -+ 0 and for k// = 0, respec

tively) only one is physically significant, viz. Suydam's cr

terion in the limit ~ 1 -+ 0 (being the criterion fork// -+ O). 
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This latter criterion, viz. simply p' > 0, is nearly always 

violated for constant-pitch fields in experimental conditions. 

The growth rates of the instabilities then arising (quasi

interchange instabilities) were calculated in a local approxi

mation and it was shown that they may be rather large. Even in 

the idealized case of a constant-pitch force-free field, where 

p' = 0, instabilities arise, which can be considered as limit

ing cases of Suydam-type instabilities. However, these remaining 

instabilities can be removed rather simply by replacing the 

constant-pitch force-free field by a force-free field of con

stant ~. Finally, Alfven's model was discussed. This model has 

a parabolic pressure profile and a constant-pitch magnetic 

field and, as a consequence, it involves quasi-interchange in

stabilities. Because of the presence of the latter the mechanism 

for the generation of cosmic magnetic fields, proposed by 

Alfven on the basis of this model, cannot work. However, for 

laboratory plasmas a stable model can be obtained by modifying 

the pressure profile and the magnetic field such that Suydam's 

criterion is satisfied, and possibly by surrounding the whole 

configuration by a force-free field of constant ~.t) 

Summarizing: the sharp-pinch model of a dense plasma sur

rounded by a force-free magnetic field of constant ~ is com-

t) Here, we want to emphasize that the basic difference between 

astrophysical and laboratory plasmas, as far as magnetohydro

dynamic stability is concerned, results from the presence of 

a conducting wall for the latter situations. Throughout the 

present paper force-free fields only acted stabilizing when 

accompanied by such a wall. It was shown by Anzer 67 , 66 ) that 

force-free fields which smoothly transform into vacuum fields 

extending up to infinity are necessarily unstable. Hence, t~ 

presently discussed stabilizing role of force-free fields is 

only relevant for laboratory plasmas. However, this does not 

exclude the fact that force-free fields, even if unstable, 

may be important in astrophysical situations. 
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pletely magnetohydrodynamically stable if a is properly chosen. 

The model contains enough free parameters to serve as a useful 

approximation for experimental situations, e.g. the high-beta 

toroidal-pinch experiment of Culham (~r-1 and a force-free mag

netic field with large shear) and the screw pinch of Jutphaas 

(~r-0. I and a force-free magnetic field with small shear). 
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A P P E N D I C E S 

Some mathematical and physical approximations, applied 

in the text, will be justified or replaced in the following 

appendices. First of all, the treatment of the marginal equa

tion of motion for the plane incompressible layer (Sec. 3.1) 

will be given in a mathematically more rigorous form. Next, 

the main physical approximations, viz. the neglect of resis

tivity and toroidicity, will be dropped partly and it will 

be investigated to what extent the obtained solutions are 

relevant for a resistive plasma and for a toroidal configura

tion. 

APPENDIX I 

Exact treatment of the marginal equation 

of motion in the neighbourhood of a 

singular point 

In this appendix the influence on the stability analysis 

of a singular point (F = ~·! = 0) of the marginal equation of 

motion will be treated more rigorously than in Sec. 3.1. Here, 

we shall use the property that, in the neighbourhood of F = 0, 

the complete equation of motion for the plane incompressible 
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plasma layer can be solved in terms of known special functions, 

so that the joining conditions for the solutions in the three 

regions I, II, and III can be obtained exactly (see also 

Ref. 33). In the neighbourhood of a singular pointy= y the s 
solutions of the marginal equation of motion (18) 

can be obtained by introducing the loc~l approximations 

p'g :::: c 

with the constants c and b = A 2 /~ , 
. 0 

3.1). The solutions s-~I 1 (ks) are 
\l+2 

the singular point, \l being defined 

equation 

\l(\l +I)+ c = 0, 

where 

c = = 
(B B'-B B') 2 

X Z Z X 

(I. 2) 

while s = y - y (see Sec. 
s \l 

proportional to s near 

as a root of the index 

(I. 3) 

In accordance with Eq. (12) the indices v
1 

and v
2 

of ~yo are 

smaller by 1 than the indices n 1 and n 2 of Qyo' as introduced 

in Sec. 3.1: 

v 1 , 2 = - 1 /2 + I I 2 /1 - 4 c = n 1 , 2 - I • (upper sign 

for v
1

) 

(I. 4) 

Here and in the following, we assume that "Suydam's" criterion 

(21) is satisfied, so that 1 - 4c > 0, involving real indices 

v
1 

and v
2

• Hence, the "small" and the "large" solution of the 

marginal equation of motion are 

·~ -s and (I. 5) 

These solutions can be brought into a dimensionless form by 

129 



the introduction of a small distance L in the problem, which . E 

we define as the distance up to which the approximations (I.2) 

are justified. This distance is a small fraction E of the 

scale length L of inhomogeneities of the magnetic field B and 

the density p(LE = EL). The general solution of Eq. (I.I) then 

becomes as follows in the neighbourhood of y = y : 
s 

(I. 6) 

This expression is reliable in the regions to the left and to 

the right of the singular point in so far as the approximations 

(I.2) hold, i.e. up to distances of the order LE. The basi~ 

problem then concerns the determination of the constants A and 
+ 

B for a solution to the right of the singular point, once A 

and B for the solution to the left have been given, and vice 

versa. 

Rather than trying to find the joining conditions from 

analytic continuation of the solutions we take a physical point 

of view and use the additional information that Eq. (I.I) is 

obtained from the complete equation of motion (17), v1z. 

by taking w2 = 0. However, it is known that the limit w2 + 0 

gives 

right 

small 

results different 

away, if singular 

neighbourhood of 

from those 

points F = 

such a point 

obtained when taking w2 

0 occur. In a sufficiently 

the term w2p will always 

0 

dominate the term F 2 /~ , even if w2 p is very small. Therefore, 
0 

in the presence of singularities of the marginal equation of 

motion it is more appropriate to study, instead of Eq. (I.I), 

Eq. (I. 7) in the limit w2 + 0. In a vicinity Is I < Lt.: around 

y = ys the approximations (I.2) hold, while we may also write 

there 

(I. 8) 

in which a may be considered as a positive constant since we 
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are looking for instabilities. Because a and bs 2 are small in 

the domain under discussion, we have a + bs 2 << lei and Eq. 

(I.7) becomes to a good approximation 

(I. 9) 

In terms of the dimensionless quantities t = lb/a s and c = 
k 2 c/b this equation can be represented by 

+ c 0 . (I.IO) 

Here, it should be noticed that c = 0(1), as follows from the 

equations (I.3) and (II), and tha~ the regions I, II, and III, 

which were introduced in Sec. 3. l, correspond to t << I, t - I, 

and t >> ),respectively. Passing to the complex variable 

z = it and substituting c = -v(v+J), we finally obtain Legendre~ 

differential equation 

= 0 • (I. II) 

The solutions of this equation are the well-known 69
) Legendre 

functions of the first and second kind, which are exactly suit

able for our purpose. 

Two independent solutions of Eq. (I. I I) are given by the 

Legendre functions of the first kind: 

Pv(z) = F(-v, v+l; 

P (-z)= F(-v, v+l; v 

I 
2 

I z) 
2 

I;.!_+ I z) 
2 2 

F being the hypergeometric series, which here converges for 

lz-II < 2 and lz+lj < 2,respectively. Both functions thus are 

well defined along the sections between z = i/3 and z = -i/3 

of the imaginary z-axis, that is, for j t j < /3. 
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--··~---------------------------

Two other independent solutions are the following Legendre 

functions of the second kind, the power series for each of 

which converges when lzl > 1: 

Qv(z) 
-v-1/TI r(v+l) -v-1 I I 1 3 z-2) = 2 7T z F(2V+I, -v+-· V+-· 

r(v+~) 2 2' 2' ' 

Q-v-1 (z) 2 v liT r(-v) v I 1 1 1 z-2). = z F(-2V+2, --v· -v+-· 
1 2 ' 2' 

r (-v+-) 
2 

Since v
1 

= -v
2
-l and v

2 
= -v

1
-1, the following relations exist 

between the Legendre functions: Pv = P_v _ 1 = Pv ; Qv = 
I I 2 I 

We require real solutions ~ which suggests to take the 
y 

real parts of the preceding solutions. In our case, however, 

z = it, so that the real parts of the Legendre functions of the 

first kind are not independent: Re{P (it)} = Re{P (-it)}. v v 
Therefore, we take as 

inary part of Pv(it), 

-Im{P (-it)}. We thus 

the second independent function the imag

which turns out to be odd: Im{P (it)} = v 

v arrive at the following independent real 

solutions of Eq. (1.10) for I tl < /3 

Re{Pv(it)} Re{F(-v
1

, I ; 
I I 

i It I ) 1 = -v . 
' 2' 2 2 

(1.12) 

Im{Pv(it)} t Im{F(-v
1

, 1 ; 1 1 ijtj)} = ItT 
-v . 

2 2 2. • 

which can be supplemented, for ltl > I, by the other solutions 

Re{Qv (it)} 
2 

VI r(-v
1

) I vI I 1 1 I -ltl-2), =2 liT cos(2Tiv 1) ltl F(-2VI+2, --v . -v +-· 
r(-v +-) 2 I ' I 2 ' 

I 2 

Re{Q 
VI 

(it)} 

v2 r(-v
2

) I v2 I I I I =2 liT cos(2 Tiv 2 ) It I F(-2V2+2, --v . -v +-· -ltl-2). 
r(-v 2 2' 2 2' 

2 
(1.13) 
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Obviously, the latter functions behave, respectively, like 
v1 vz 

ltl and ltl when t >> 1, i.e. like the "small" and the 

"large" solution of the marginal equation of motion. It should 

be noticed that the expressions (1.5) for the "small" and 

"large" solutions are only valid if s :S L , so that t is re-
£ 

stricted to t ~ lb/a 1£. This does not imply, however, that 

t >> 1 is impossible, because we are discussing small values 

of a and, finally, we shall even take the limit a ~ 0, while 

keeping b and L fixed. 
£ 

In the present treatment the solutions 1n the regions I 

and II, introduced in Sec. 3.1, are given by Eq. (1.12), and 

those in region III by Eq. (I.I3). In view of the existence of 

an overlapping of the domains of convergence of the correspond

ing series we can match the two sets of solutions (e.g. at 

t = 1.5) by applying the known 69
) connection formula 

p ( z) 
\) 

= tg(nv) 
TT (1.14) 

It has yet to be shown that in the limit w2 ~ 0 (or a~ 0) 

both solutions of the inner region Cltl < /3) transform into 

the "small" solution of the outer region (It I > I). The solu

tions (I.12) of the inner region are even and odd respectively; 

we shall label them ~e and ~ 0 accordingly. It then follows 

from Eqs. (I. 14) and (I. 13) that ~e and ~ 0 tend to the following 

asymptotic expressions when t >> I: 

~e Re { P (it) } ~ 
tg(nv 2 ) [z v 1 

f(-v 1) 1 \) 1 
= c 0 s ( 2TT \) 1 ) I t I 

\) I1T 1 f(-v +-) I 2 

\)2 f(-v 2 ) 
I v2 J -2 

I c 0 s ( 2TT \) 2 ) I t I (1.15) 
f(-v +-) 2 2 

~0 Im{P (it)} ~ t tg(nv 2 ) 
[2 vI 

rc-v 1) I v I 
= TtT sin(2nv 1) jtj 

\) ITI" f(-v +-) I 2 

(I.l6) 
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We next transform back to the variable s, which measures the 

geometrical distance from the singular point and, therefore, 

is not affected by the limiting process a + O. In terms of s 

the even solution ~e may be written in the domain s > la/b as 

where 
1 

f(-v )f(-v +-) 
1 2 2 

1 
f(-v )f(-v +-) 

2 1 2 

1 
cos<-rrrv1) 

1 
cos(21Tv

2
) 

(1.17) 

Next, we take the limit w2 + 0 (a+ 0); since v
1
-v

2
=/1-4c > 0, 

Ae e 
we find lim-- = ro, so that ~ 

e 
a+O B 

+ AeiL:I\)
1 ~ . Likewise, the odd 

solution also proves to transform into the "small" solution 

if the limit w2 + 0 is taken: ~ 0 + A
0 fsT IL:I\JI . 

Incidentally, we notice that the limit w2 + 0 of the ex

pression Ae/Be in Eq. (I.17) is mainly determined by 
\)1-\)2 

(lb/a L ) , because the factor in front of it is in general e; 

of the order unity. However, if ~ = 0 the indices become v 2 = 
e e -I and v

1 
= 0, so that f(-v

1
) and, consequently, A /B blows up 

already before the limit a + 0 is taken. This difficulty 1s as-

sociated with the fact that for c = 0 the approximation 

a+ bs 2 << lei is incorrect, so that Eq. (1.9) no longer holds. 

One can get around this difficulty by considering small values 

of ~ and still smaller values of a + bs 2
, subsequently taking 

the limit a + 0 and next the limit c + 0. Alternatively, one 

could try to solve the correct equation of motion for c = 0 

right away. 

Finally, we choose as new independent solutions half the 

sum and half the difference of the, properly normalized, even 

and odd solution: 

+ _ l [~e ~OJ ~ -- -+-
. 2 Ae Ao 
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v 

< • ± [:: - ~:] ~ t [I - f.r]l <I I (1.19) 

The right-hand sidesof the equations (I.18) and (I.19) are the 

solutions of Eq. (I.7) in the limit w2 + 0, which thus repre

sent independent solutions of the (nearly) marginal equation 

of motion. These solutions hold for ltl >> 1, or la/b<<lsl$1£, 

where the left inequality no longer presents a restriction 

since a+ 0. Therefore, in this limit, the size of the inner 

region shrinks to zero and the following behaviour results for 

the solutions of the marginal equation of motion: the solution 

~+ only differs from zero to the right of the singular point 

(s > 0), where it behaves like~ , whereas~ only differs 
s 

from zero to the left of this singular point (s < 0), also be-

having there like ~ • This can be interpreted by stating that 
s 

a singular point of the marginal equation of motion splits the 

interval (y
1

,y
2

) in two independent subintervals (y
1 

,ys) and 

(ys,y 2 ), which are to be studied separately as far as stabili

ty is concerned. Stated differently: the two intervals (y
1 

,ys) 

and (ys,y 2 ) are separated by a virtual wall, where the boun-

dary condition ~ is "small" should be posed. 
yo 

APPENDIX II 

Resistive effects 

The addition of a small resistivity to the plasma model 

strongly modifies the stability results 70
,

71
). This situation 

is in many respects similar to that for the marginal equation 

of motion, where the addition of the small inertia term w2 p 

led to the important effects described in Sec. 3.1 and Appen

dix I, viz. a splitting of the plasma interval and the pres

ence of a kind of virtual wall at the singularity (F = 0). 

In the marginal equation of motion the displacement ~ (for 
y 

the plane layer) or ~ (for the pinch) may tend to infinity 
r 
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in the vicinity of a singular point of this equation. Therefore, 

since all perturbations of the physical quantities involved can 

be expressed in terms of s, it is not surprising that the per

turbation of the current also may blow up there. It is obvious 

that a resistivity n, no matter how small, will then play the 

important rol~ of keeping the current finite. Thus, like in the 

ideal case for small w2
, one can define, in the resistive case 

for small n, an inner region (now called the resistive layer) 

centered around the singular point (F = 0) where both inertia 

(w 2 p) and resistivity (n) are important, and an outer region 

where these effects can be neglected. The problem of solving 

the resistive equations in the limit of small n now amounts to 

joining the solutions of the inner resistive layer with those 

of the outer ideal region. 

The full resistive problem requires an analysis well be

yond the present one, but one important result of the resistive 

theory can be applied straightforwardly to the configurations 

dealt with in Chapters 4 and 6. Here, we have in mind the 

theorem, proved in Refs. 72 and 73, that the stability criterion 

for a constant-pressure plasma with respect to resistive tear

ing modes (new non-localized modes appearing as a consequence 

of the finite resistivity) is the same as that which would be 

found from the energy principle of ideal MHD if the resistive 

layer were replaced by a vacuum. Intuitively, this is clear 

from the fact that resistivity allows the lines of force to 

break and join, which process naturally occurs in a 

vacuum region. Thus, starting from the mentioned theorem, a 

simple method may be obtained to determine the stability of 

force-free fields with respect to tearing modes 7 ~' 75 ). Since 

these modes are closely related to kinks, their investigation 

appears to be particularly important for the type of pinch 

configuration considered in Chapter 6. 

In order to illustrate what happens to the singular points 

of the marginal equation of motion when a finite resistivity is 

introduced, let us consider a plane plasma layer with a force

free field situated between two conducting walls at y = y
1 

and 
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y = y
2 

(the model of Chapter 4 without the upper layer; there 

is no gravity). Here, we follow the analysis given in Ref. 75, 

omitting details. The force-free field is assumed to have a 

constant value of a, so that its components are given by Eq. 

(31), in which ~ 0 may be chosen arbitrarily. Let us look at a 

mode, specified by k and k ,and let us assume that the inter-
x z 

val (y
1

,y
2
) contains only one singular point ys. It can then be 

deduced 72
'

73
) from the above-mentioned theorem that the stabili

ty criterion for the (k ,k ) tearing mode is given, in the limit 
X Z 

n + o, by 

(~] Qyl y -0 > 
s 

(~] 
Qy2 y +0 ' 

s 

(II. I) 

where Qyl and Qy 2 are solutions of the marginal equation of 

motion (34) with a' = 0, that satisfy the boundary conditions 

Qyl = 0 at y = y 1 and QY 2 = 0 at y = y 2 . 

Comparing the inequality (II.l) with.item 3) of theorem 2 

(Sec. 3.1) we notice that it has the same form, apart from the 

fact that ~ is replaced by Q and that the point of comparison 
I y y 

y now is a singular point y • Because we have restricted the 
0 s 

discussion to force-free fields of constant a, the solutions 

Qy' as given by Eq. (35), are well-behaved in the whole inter

val (y
1

,y
2
). In fact, the force-free fields of constant a are 

the only ones for which the singularities at F = k B +k B = 0 
X X Z Z 

disappear from the marginal equation of motion in terms of Qy, 

as can be seen from Eq. (34). Therefore, there is no difficulty 

in continuously extending the solution Qyl (being defined only 

in (y 1 ,ys)) to the interval (ys,y 2 ) and vice versa for Qy 2 to 

(y
1
,ys). The condition (II.l) then implies that none of these 

continued solutions possesses a zero in the open interval 

(y 1 ,y 2 ). Provided that both Qyl and QyZ' including their men

tioned continuations, do not have zeros in the open interval 

(y
1

,y
2
), it follows from Sturm's separation theorem 30

) that 

no solutions whatever will exist which have more than one zero 

in (y
1

,y 2 ). We then can state the following theorem. 
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Theorem. For specified values of k and k a plane plasma lay-x z 
er with a force-free magnetic field of constant a is stable 

with respect to tearing modes, in the limit of low resistivity, 

if and only if there exist no solutions to the marginal equa

tion of motion in terms of Q which have more than one zero in y 
the interval (y

1
,y

2
). 

In this way, operating in terms of the variable Q iny 
stead of ~ , the singular points lose their significance for 

y 
the stability analysis and one can simply ignore them. We had 

to restrict the above theorem to force-free fields of constant 

a; it is not quite clear how it should be generalized for more 

general fields. However, for the present purpose the restric

tion is not too serious. 

The solutions Q , given ~n Eq. (35), only oscillate if 
y 

k < lal and, consequently, only long-wavelength perturbations 

can be unstable. From the above theorem and Eq. (35} we now 

immediately obtain the criterion for stability with respect to 

tearing modes: 

< TI ' (II.2) 

with b = y
2 

- y
1

• In view of the k-dependence this criterion 

simply reduces to 

lalb < n • (II.3} 

Remembering that a is the ratio between the current density 

and the magnetic field, we observe that this relation puts a 

limit to the total current flowing along the field lines, 

above which the layer is unstable due to long-wavelength 

tearing modes. We recall that there was no such a limitation 

in the ideal case and that the layer was perfectly stable in 

the absence of gravity (see footnote Chapter 5 and Ref. 75). 

Having obtained a simple method to get rid of the sin

gularities for plane force-free fields of constant a, we re

turn to the problem of the stabilization of the gravitational 
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instability by these fields (Chapter 4). If we admit tearing 

modes in the force-free field supporting the gravitating 

plasma layer (Fig. 1), the stability analysis of Sec. 4.2 is 

slightly simplified. In fact, ignoring the singular points 

in the lower interval (0,-b), the boundary condition Qt = 0 
y ¥ 

for the solutions (35) should no longer be posed at y = -b 
¥ • 

but at y = -b. As a result, b should be replaced by b 1n the 

expressions R entering the stability conditions (42) and (43). 

This amounts to a strongly destabilizing effect, as can be 

seen from Fig. 3 where the dashed parts of R were obtained by 
0 

assuming this modified boundary condition (which was not jus-

tified in the context of Sec. 4.3). 

In Sec. 4.3 a discussion was already devoted to the value 

of a for which stability of the configuration of Fig. I be

comes optimal. It was stated there that this value can be found 

from the condition that the curves L (S . ) and R touch in 
o cr1t o 

the point A of Fig. 3. Because the curves R were not smooth 
0 

in the ideal theory this led to a range of values of a for 

which stability is obtained. In the present discussion the 

dashed parts of the curves R have got physical significance, 
0 

so that the relevant curves R are smooth. As a result, a 
0 

well-fixed value of a is obtained for which stability is opti-

mal. For the numerical example of Fig. 3 this a is given by 

ab = 0.5 and it is clear that stability is still possible, in 

spite of the destabilizing influence of the resistivity of the 

force-free region. 

For the cylindrical force-free field of constant a a 

stability criterion similar to (II.l) can be obtained, replac

ing Q by Q and y by r • This leads to a stability theorem y r s s 
of the same form as that for the plane case. The only impor-

tant difference is the fact that a cylindrical force-free 

field of constant a may already be unstable in the absenc~ of 

resistivity. Therefore, one cannot decide from an oscillating 

behaviour of Q alone whether one has to do with an ordinary 
r 

kink (of the type described by Voslamber and Callebaut 17 )) or 

with a tearing mode. Here, the close relationship between 
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kinks and tearing modes becomes particularly manifest. Mathe

matically, the rel~vant difference between the two types of 

modes concerns the property that tearing modes do not respect 

singular points and independent subintervals, whereas kinks do. 

Physically, both types of modes can be distinguished on the 

basis of their time-behaviour; tearing modes have a growth rate 

proportional to n 3 15
, whereas this growth rate is of course in

dependent of n for kinks. This property implies that the sta

bility criteria obtained on the basis of ideal MHD do not be

come entirely irrelevant if resistivity is included, because 

the resistive tearing modes grow much slower than kinks if n 
is small. On the other hand, for the time being experimental 

values of n in pinches are not yet such as to justify the ne

glect of tearing modes. 

Next, we recon~ider the stability criteria obtained in 

Chapter 6 in order to include a finite resistivity of the outer 

Jorce-free region of the pinch. Again, ignoring the singular 

points there, we find that the proper boundary condition to 

be posed for the solutions rQt, given by Eq. (89), reads 
r 

rQ! = 0 at r = r 1 • This implies that r7 should be replaced by 

r 1 1n the expression (96) for (rQt)'/rQt entering in the 
r r 

stability condition (94). For the stability diagram of Fig. 6 

this means that, e.g., the curve R(a =-50) is no longer de

flected to the right of the point A, so that the dashed part 

of it (labelled with (-50)) acquires physical significance. 

As a consequence, the new (smooth) curve R(a = -50) will cross 

the curve L(S = 20%) and a pinch, consisting of a dense inner 

region with S = 20%, surrounded by a force-free field of a = 
-1 

const•nt = -50 m , will be unstable with respect to tearing 

modes• We remark that these modes are made possible by the re

sistivity of the outer region, but that they are by no means 

entirely localized in that region. In fact, they involve a 

motion of the dense plasma column as a whole (in this respect 

they are just kinks), but in the outer region they induce 

strong currents in the resistive layer centered around the sin

gular point, so that the growth rate is reduced to that given 
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by the resistive theory and vanishes in the limit n ~ 0. Never

theless, it is clear that those modes should be taken serious 

and that it is not safe to rely upon the stabilizing influence 

of the singular points. 

Taking the resistive effects into account in this way, 

we are led to a well-fixed value of a giving optimal stability 

of the pinch. This a is given by Eq. (101); for the numerical 

example of Fig. 5 this equation gives a t = -36.7 m- 1
• For 

op 
this value of a the pinch is stable, up to S = 20%, with re-

spect to ideal type-! modes and, in addition, to tearing modes. 

It is clear, however, that this choice for the optimal a spoils 

the advantageous situation with respect to type-II instabili

ties, since the curves L and R now touch each other and very 

little space is left between them. On the other hand, once 

having given a more refined picture of the plasma motion about 

the singular points in the outer region, one should also modify 

the treatment of the surface-layer instabilities, since these 

also involve singular points. For the surface layer, however, 

we do not have available a simple theorem like that stated in 

Refs. 70 and 71 and we shall leave this point to future cal

culations. Moreover, it is known 71
) that other types of resis

tive instabilities (viz. resistive interchanges) are present 

if p' < 0, because resistivity makes the shear term in Suydam's 

criterion ineffective. Consequently, the surface layer will 

always be unstable with respect to resistive interchanges. 

However, this layer being thin, single-particle effects like 

finite gyration radii should be taken into account also. 

Another, completely different, resistive effect concerns 

the influence of the resistivity of the conducting wall sur

rounding the plasma 54 ). In general, the resistivity of the 

wall is neglected in stability calculations, so that the per

turbation of the normal component of the magnetic field should 

vanish <g-~ = 0). Taking into account the resistivity of the 

conducting wall this boundary condition no longer holds and 

the field lines can be pushed through the wall. This effect is 

a strongly destabilizing one. It will be treated elsewhere 76 ). 
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APPENDIX III 

Toroidal effects 

In this appendix we shall discus~ the relevance of the 

stability results obtained for a cylindrical pinch to the 

stability of a toroidal plasma. Although the neglect of toroidi

city might introduce errors of the same order of magnitude as 

those made in neglecting resistivity, the former neglect is 

much more conspicuous since even a glance at an experimental 

device suffices to notice the difference with an infinite cyl

inder. In fact, it is even rather surprising that infinite

cylinder theory can be applied at all to tori. 

The most simple and also most important toroidal correc

tion to infinite-cylinder theory is the introduction of a peri

odicity condition 54 ) for the longitudinal wavelength of the 

modes, so that one only considers cylindrical modes which 

would fit the circumference of the torus if it were straighten

ed out. If Rt represents the major radius of the torus, this 

leads to the condition 

( I I I . I ) 

where ·n is an integer (having nothing to do with the parameter 

n used in Sec. 7.4 to label the branches of the curve R!). 

This condition can be represented in the stability diagram of 

Fig. 6 by drawing vertical lines (labelled with n) with abscis

sae given by (III. 1). For a torus the stability condition L > R 

only needs to be satisfied for those discrete k-values, so that 

L should be compared with R at the vertical lines. It is clear 

that this represents a strongly stabilizing effect. This proce

dure was applied by De Vries at alii 77 ) for a pinch consisting 

of a dense plasma surrounded by a constant-pitch force-free 

field. It was shown that sharp maxima occur in a plot of S . 
cr1t 
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against I~IRt for values of I~IRt such that k-values, admitted 

by Eq. (III. 1), occur on either side of k = -~. For example, 

at I~IR = 1.3 a value of~ 't of some percents, allowed by 
t cr~ 

infinite cylinder theory, was found to increase to more than 

20%. Applying the periodicity condition (III. 1) to the con

stant-a model of Chapter 6 approximately the same results as 

described in Ref. 77 will be found, since for low values of 

1~1Rt (where toroidal corrections are important) the difference 

between a constant-pitch field and the optimal constant-a 

field is negligible (see Eq. (101)). On the other hand, for 

higher values of I~IRt' better stability results can be ob

tained with the constant-a model, but in that case toroidal 

effects are less important. 

The well-known Kruskal-Shafranov limit 54
) (the maximal 

toroidal current admitting stability in connection with the 

twisting of the magnetic-field lines around the magnetic axis) 

results from an application of the periodicity condition to a 

configuration consisting of a dense plasma surrounded by a 

vacuum field. Needless to say then that this limit has no sense 

for a screw pinch. On the other hand, the model is applicable 

to a Tokamak, because there the presence of limiters prevents 

force-free currents to flow in the outer region. The Kruskal

Shafranov limit can be understood on the basis of the stabili

ty diagram of Fig. 6. For a vacuum field (a = 0) the unstable 

k-region is situated there to the left of k = -~. Therefore, 

in order to get rid of the dangerous m = 1 instabilities, o~e 

should choose the value of I~IRt such that the first k-value 

admitted by the periodicity condition (III.I) lies to the 

right of k = -~. This gives exactly the Kruskal-Shafranov 

limit: 

(III.2) 

Since ~ is related to the surface currents this condition 

puts a limit to the total current I flowing in the z-direction, 

i.e. along the torus. If this current is assumed to be concen-
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trated on a shell with radius r 
0' 

it will be connected with 1.1 

relation 
t 2nr 2 1.1Bp/1.1 where according to the I = 2 'lT r B Elo til ::::: 

0 0 o z o' 
we have put Bt ~ Bp (as justified by Fig. 5) • Thus, in terms 

zo z 
of the current I, the condition (III.2) becomes 

< I . (III.3) 

This restriction on the current flowing along the torus is im

portant for Tokamaks, because it limits the temperature to be 

obtained by means of Ohmic heating. The value of 1.1 to be sub

stituted in Eq. (III.2) for a diffuse configuration is of 

course rather vaguely defined. Therefore, in general one takes 

care that all local values of 1.1 across the tube satisfy Eq. 

(III.2). 

Although posing the periodicity condition is the most 

straightforward and obvious way to take into account the toroi

dal geometry, it seems to be a rather crude method to neglect 

the more refined effects connected with toroidal curvature al

together. Yet there exists strong evidence that this procedure 

yields reliable results for the stability theory of a pinch, 

at least as far as non-localized kinks are concerned. To sup

port this statement we refer to Refs. 78,79, and 80. Ware 78
) 

divided modes occurring in a torus into those driven by j~ 

(or Vp) and those driven by jH. This classification corre

sponds more or less to the usual division into localized inter

changes and non-localized kinks. Starting from the energy 

principle he found that toroidal effects on the stability of 

the j 11 -driven modes disappear to first order in the small pa

rameter r 1 /Rt (the inverse aspect ratio of the torus). Next, 

it was shown by Shafranov 79
) on the basis of some rough cal

culations involving the forces driving the instabilities and 

those associated with toroidal curvature, that toroidal ef

fects only act as a small correction on the stability of kinks. 

Finally, on the basis of a normal-mode analysis, it was shown 

by Schuurman and Bobeldijk 80
) that there is no change in the 
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growth rate of a kink mode, as calculated from cylinder theo

ry, up to first order in r
1
/Rt. All these investigations sug

gest that it is a good approximation to study kink instabili

ties with the aid of solutions obtained from infinite-cylinder 

theory, taking into account the toroidicity by posing the 

periodicity condition. 

On the other hand, no such conclusion holds for localiz

ed interchange modes. Here, toroidal curvature is extremely 

important. This can be seen from the generalized Suydam cri

terion for toroidal plasmas. This generalization was obtained 

first by Mercier 81
) and a lot of work has been done since then 

by many workers. For our purpose, however, the clear representa

tion of the toroidal criterion for localized interchanges as 

given by Shafranov and Yurchenko 82
) is most suitable: 

I 
( q~ J 2 

2~ p' 
+ 

0 
( I q2) > 0 4 - ' rB 2 

(III.4) 

z 
where 

rB 
z 

q = 
~Rt RtB6 

(III.5) 

Here, the coordinates r,e, and z represent, respectively, the 

distance to, the azimuthal angle around, and the distance 

along the magnetic axis. On purpose we used this specific nota

tion, since it transforms into that of the ordinary cylinder 

coordinates in the limit Rt + oo, In this limit q 2 + 0 and cri

terion (III.4) reduces to the cylindrical Suydam criterion 

(60). Because, in general, p' < 0 the following sufficient 

criterion for stability against interchanges is obtained: 

(III.6) 

Close to the magnetic axis this criterion is necessary because 

there the first term of Eq. (III.4) is negligible compared 

with the second term (at least for reasonable current distribu

tions). The remarkable feature of Eq. (III.6) is the stabiliza-
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tion of interchanges by toroidal curvature, independent of the 

magnitude of p'. Another remarkable property of this criterion 

is that it coincides with the Kruskal-Shafranov limit (III.2), 

although both conditions are related to completely distinct 

toroidal effects. 

Our interest ~n the toroidal Suydam criterion here con

cerns the comparison with the cylindrical case for which we 

have found that the sharp pinch consisting of a dense plasma 

surrounded by a constant-pitch force-free field (Van der Laan's 

model, Sec. 7.4) has to be unstable with respect to quasi-inter

changes. These quasi-interchanges occurred in the situation 

that Suydam's criterion was degenerate. The same degeneracy ~s 

seen to arise for toroidal constant-pitch force-free fields 

(q' = 0, p' = 0). The unfavourable property of the constant

pitch field to have no shear turns out to be less dangerous in 

the toroidal case, since criterion (111.4) suggests that this 

field can yet be stable with respect to interchanges if q 2 >1, 

even in the presence of a large pressure gradient. Even above 

the Kruskal-Shafranov limit the term with the pressure gradient 

is less effective in the toroidal case than it would be in the 

cylindrical case. This might explain why the instabilities of 

the constant-pitch field, which are clearly predicted by infi

nite-cylinder theory (Sec. 7.4), are less unequivocally ob

served experimentally. 

Finally, we remark that criterion (111.4) only holds 

for toroidal plasmas for which the magnetic surfaces have a 

circular cross section. This will be approximately true if the 

cross section of the conducting wall is circular and the aspect 

ratio of the torus is not too large. However, one can show that 

the local stability criterion is modified considerably if the 

magnetic surfaces are given a non-circular cross section 83 • 84 ), 

e.g. by properly shaping the conducting wall enclosing the 

plasma. For example, by triangularly shaping the magnetic sur

faces, the magnetic well can be deepened substantially 85 ), so 

that the condition (111.4) is to be replaced by a much less 

stringent condition. This is important for Tokamaks, since it 
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implies that the Kruskal-Shafranov limi~ may be surpassed 

without evoking localized interchange instabilities. The in

fluence of shaping the surfaces on the non-localized kinks 

is not yet investigated. For the screw pinch, on the other 

hand, there is no need to introduce this complication, be

cause the Kruskal-Shafranov limit is not relevant for this 

plasma-confinement scheme, at least not if the force-free 

field in the outer region of the pinch is taken into account. 
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