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CHAPTER 1
INTRODUCTION

Section 1.1
Atomic hydrogen and deuterium gases: Two novel quantum fluids

Virtually all substances solidify at low temperatures. This is due, in particular, to the
universal Van der Waals attraction. During many decades the only known examples of
substances which do not solidify were the helium isotopes He and ‘He. They remain
liguid down to zero temperature because their interatomic Van der Waals attraction is
1o a large extent compensated by the zero-point kinetic energy of the atoms. As the
zero-point motion which prevents them to crystalize has a quantum-mechanical origin,
they are generally called quantum fluids.

As first pointed out by Hecht,¥) hydrogen and deuterium atoms with polarized
electronic spins would constitute even more extreme examples of quantum fluids. Due
to their lower mass, H and D have a larger zero-point energy than the helium isotopes,
while the attraction strength of the triplet potential acting between spin-polarized
hydrogen or deuterium atoms is comparable in weakness to the He-He attraction.
Hecht concluded that whereas due to the quantum mechanical zero-point motion the
helium isotopes do not solidify, spin polarizéd H and D not even liquefy.

Spin-polarized bosonic H and fermionic D would therefore provide us with weakly
interacting gas phase quantum fluids in which the many surprising phenomena which
were discovered with the Bose liquid 4He and the Fermi liquid ®He are expected fo
take place in a much clearer form. This particularly applies to the effects which occur
in the quantum degeneracy regime: the low-temperature, high-density regime where
the thermal De Broglie wavelength of the particles is larger than the interparticle
spacing. For instance, the phenomenon of Bose-Einstein condensation in the
degenerate Bose gas H should occur with a condensate fraction reaching values close to
100%.2) This figure is to be compared to that for the degeneraie Bose system 4He in
which the Bose-Einstein condensation is sharply suppressed by the strong interaction
effects: its condensate fraction is measured to be below 15%.(%)

Moreover, the dilute H and D gases enable comparison of experimental results with
ob initio theoretical results of any desired precision. This in contrast to the dense
quantum fluids 3He and 4He for which no ¢b initio microscopic theories have been
developed. This particularly applies to the Fermi system 3He which, up to now, can
only be described by phenomenological theories.i4) For the Bose liqguid 4He one can
perform Monte Carlo simulations(s} which are however of limited accuracy.

Moreover, comparison between experimental and theoretical results is considerably



facilitated for the H and D systems as the interatomic interactions for these
elementary atoms are known with a very high degree of accuracy.(8) Spectroscopic
experiments have confirmed the accuracy of these ab inifio potentials to high
precision.(” From the experimental point of view an important advantage of spin-
polarized H and D is that with these systems, temperature and density can be
controlled independently over large ranges of values. Furthermore, thanks to their
large {electronic) magnetic moments, H and D can be manipulated using magnetic
fields (see next section). In the bosonic H gas one might expect interesting phenomena
- associated with the dynamics of a non-vanishing nuclear spin (I=}) to occur. This in
contrast to the Bose fluid 4He which carries no spin. The fermionic D gas in this
respect should display very rich behavior: it bears a nuclear spin I=1, {o be compared
to the nuclear spin I=} of the Fermi fluid He.

For many years the idea of Hecht to use spin polarized H or D in order fo create
degenerate quantum gases received little attention as it was by no means clear how to
create spin polarized atomic hydrogen or deuterium gas in stable form. This changed
drastically when two decades after Hecht’s prediction Silvera and Walraven succeeded
in stabilizing spin polarized hydrogen for the first time.!8) Since that time a large
number of experimentalists as well as theoreticians, recognizing the potential richness
of these new quantum systems, put effort in the study of spin polarized quantum
gases. In the next section we discuss the technigques for stabilizing spin polarized
atomic hydrogen and deuterinum which form the basis of all research on these systems.
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Section 1.2
Stabilization of H and D gas

Molecular hydrogen or deuterium can easily be dissociated in an electric discharge.
However, the resulting atoms are at high temperatures, not spin-polarized and usually
very short-dived due to adsorption and subsequent rapid recombination on surfaces.
Experimental attempts to create stable spin-polarized bydrogen or deuterium gases
therefore all focus on the problems of how to polarize their electronic spins and how fo
cool and confine them without inducing a rapid decay.

The use of liquid-helium covered walls formed the key to the successful
stabilization of atomic hydrogen. The first successful stabilization experimentst1,2)
showed that hydrogen and deuterium atoms can thermalize with liquid-helium covered
walls at sub-kelvin temperatures without undergoing a rapid recombination. The use
of liquid-helium lined walls solved the cooling problem, and also the confinement
problem. Furthermore, having cold atoms, the spins can be polarized in a
straightforward manner by exploiting the separation of spin-up and spin-down atoms
in strong magnetic field gradients. This can be understood in more detail by examining
the ground-state hyperfine energy levels for hydrogen and deuterium as functions of
magnetic field strength (Fig.1).
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Fig.1. o) Hyperfine energy levels for the ground electronic state of hydrogen in'a
magnetic field, b) same for deuterium.



The upper half of the hyperfine states are "low-magnetic-field seckers”: their energies
decrease with magnetic field strength as they are essentially electron spin "up" states
denoted by H] or D{. The lower half of the hyperfine states are *high-magnetic-field
seekers": their energies decrease with magnetic field strength as they have essentially
their electron spin in the "down" state: H} or D]. ;

The standard type of experiments utilize this behavior by locating the cell in which
the spin-polarized atoms are to be stabilized in high field, while the dissociator is
located at a low field region (Fig.2). This configuration attracts the "high-field
seekers" to the stabilization cell and repels the "low-field seckers” from it. For large
magnetic fields and cold atoms so that the energy separation between the "high-field
secking" states and the "low-field seeking" states (approximately two times the
electronic Zeeman energy) is much larger than the thermal kinetic energy of the
atoms, this separation is in fact complete. In this way, only the "high-field-seeking”
state atoms (H| or D]} are confined. ‘ '

Experiments showed that this scheme is especially useful in stébilizing atomic
hydrogen. It soon turned out!3.4} that the H| gas consisting of an admixture of a- and
b-state atoms {Fig.1) rapidly purifies into a b-state atom gas: the so—called "doubly
spin-polarized” atomic hydrogen gas, denoted H|{. This H]$ gas is very stable. There
is a decay due to nuclear spin relaxation in two-body collisions, but this decay is
exiremely slow(5) ag the interactions which couple to the nuclear spin are very weak.
Three-body recombination reactions are also very slow, especié,lly at low atom
densities. In fact, at magnetic fields of approximately 8 Tesla and temperatures close
to 0.5 Kelvin three-body loss mechanisms were found to be more than six orders of
magnitude slower than the zero field room-temperature three-body decay.(®
Accordingly, many interesting experiments have been carried out with spin-polarized
hydrogen atoms at high magnetic field (see next section).

For deuterium the situation is quite different. Up to now only two successful
_ experimenis with D} have been reported.2.” In these experiments no high atom
density could be built up, as the samples decayed very rapidly. The origin of this rapid
decay is atiributed t02,7 the building up of a two-dimensional adsorbed D atom gas
on the helium surfaces: As discussed above, liquid-helium-lined walls provide us with a
very efficient means for confining spin-polarized hydrogen gas. This is because a liquid
helium surface has a very small adsorption energy for hydrogen atoms (approximately
1 X in temperature units), which prevents a large building up of adsorbed-atom
density down to very low temperatures. The adsorption energy of deuterium atoms on
a 4He film is measured to be approximately 2.6 X, much larger than the value for
H, so0 that at typical temperatures of a few hundreds of millikelvins a considerable
adsorbed atom density builds up. In combination with an anomalously large two-body
decay rate for adsorbed D} atoms,(" this yields a very rapid decay.
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Although the situation for H] is more favorable to observe degenerate quanium
behavior, the degeneracy regime in which Bose-Einstein condensation should occur has
never been achieved. Attempts to enter this low-temperature, high-densily regime are
also bampered by surface adsorption. This is because, in order o achieve Bose-
Einstein condensation in a bulk gas in thermodynamic equilibrium with an adsorbed
gas, a saturated surface density has to be built up in the latter.(® This surface density
is roughly given by: ng» uBEa/h2 (u is the reduced atomic mass of the H-H system and
E, the adsorption energy), which is approximately 101 atoms/cm? for H on a 4He
film. Such large adsorbed atom densities give rise 0 a very fast decay due to three-
body recombination events.(6.9) Due to this three-body recombination the adsorbed
atoms at saturated density have a mean lifetime of only some tens of microseconds.
The resulting large recombination heat load warms up the sample, thereby preventing
the degeneracy regime to be reached.

Several proposals have been put forward to overcome these difficulties.At
Harvard(!®) experimental efforts are going on which explore the possible existence of a
B-field "window” with a low enough three-body decay rate. Guided by theoretical
results{1t) these efforts aim at very high magnetic fields (B = 25 Tesla).

An entirely new approach is to get rid of the walls by using a wall free confinement
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scheme. This should open up the intriguing possibility of working at very low (sub-
millikelvin) temperatures and low atom densities to reach the degeneracy regime. The
large magnetic moments of the hydrogen atoms could be used as "handles” to
manipulate and confine them with magnetic fields. Unfortunately, the Maxwell
equations forbid a static magnetic field maximum in free space!2). Hence, it is not
possible to trap H| in a static magnetic fidd. A way out might be the use of a
dynamic magnetic trap. This possibility has been analyzed by Lovelace et al.(!3) They
find that fields of the order of 1 Tesla at a few kilohertz are needed to ptévide a trap
for H| of a few millikelvin deep. One may doubi whether such fields can be realized
without excessive eddy-current heating in the refrigeration system. Besides, it is not
clear how the low energetic atoms required to fill the very shallow trap are to be
produced.

Much more promising is the proposal(i¥) to trap H{ atoms (¢ and d atoms, Fig.1)
instead of H| atoms. These "low-field-sceking” atoms can be trapped in a static
magnetic field minimum which can be created in free space. Low-field-seeking H{
atoms can be made using a dissociator located in a high B-field region (Fig.3), so that
the "low-field-seekers", being attracted to the confinement region, are separated from
the "high-field-seekers”. The H{ atoms in the low field region become trapped as they
thermalize amongst themselves in two-body collisions and with the helium covered
walls (at temperatures of 50-100 mK). Working with Hf instead of H| can only be



done at the expense of introducing a rapid decay due to electronic spin relaxation to
"high-field-secking” H| states. It appears that(1%) especially spin-exchange collisions
between two c-state atoms or between 3 c-state and a d-state atom lead to a rapid
relaxation to a- and b-state atoms which are repelled from the trap. Fortunately, very
rapidly these spin-exchange processes become ineffective as they lead to the
disappearance of the c-state atoms, thereby creating a doubly-polarized d-state atom
(H1$) gas. The Lifetime of the H{} gas is limited by dipolar spin relaxation.(1%)
Analyses of the behavior of trapped H{} gas undergoing evaporative cooling and
magnetic compression in the presence of the dipolar relaxation process!i®) indicate
that the degeneracy regime might be reached marginally at temperatures of a few tens
of microkelvins. Most troublesome in this respect is the behavior of the ratio of
thermalization rate (due to elastic collisions between the atoms) over decay rate (due
{o dipolar spin-relaxation collisions). ‘This ratio is proportional to the square root of
temperature, so that at lower temperatures evaporative cooling, relying on a rapid
thermalization of the atoms, becomes less efficient. In fact, the H{} gas cannot be
cooled below a critical temperature typically of the order of a few microkelvin, where
thermalization and relaxation rates become of comparable magnitude.

* In relation to this an interesting novel development is discussed in chapter 2 of this
thesis. In analyzing the behavior of magnetically trapped deuterium atoms (D7) very
exciting possibilities, associated with the Fermi character of D, show up. It appears
that under the influence of fast spin-exchange processes also DT purifies into doubly
spin-polarized deuterium gas: D{$. But, in contrast to the case of trapped H1$, the
dipolar relaxation limited stability of D1% increases with decreasing temperature. Also
the ratio of thermalization rate over relaxation rate increases with lowering .
temperature, making evaporative cooling more and more efficient at lower
temperatures.

Recently, two groups have succeeded in magnetically {rapping spin polarized H
gas.i7? Using evaporative cooling, temperatures of about 1 mX have been realized in
{rapped H1} gas.!!8) Many exciting developments, including optical detection and
manipulation of trapped H and D,1®) may be expected in the near future.
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Section 1.3
Scientific opportunities and applications

In the physical regimes already studied, spin-polarized atomic hydrogen has proven to
be a very rich system (for a comprehensive overview the reader is referred to Refs. 1
and 2). Much has been learned about the decay mechanisms of spin-polarized hydrogen
and deuterium (see previous section). Very interesting experiments have been carried
out which increased our knowledge on the interaction of low energetic H and D atoms
with helium surfaces. Also the exceptional properties of spin-polarized hydrogen gas
have clearly shown up in their transport properties, especially in the observation of
nuclear spin waves.(%)

Yet there remain many interesting scientific opportunities and technological
applications of spin-polarized H and D which have only partially been studied, or even
unstudied. For instance, the interaction of very low energetic H and D atoms with
helium surfaces is still only partially understood. A theoretical analysis(4) leaves a
very large uncertainty in the sticking probability of slow H atoms incident on a helium
film. Having very cold atoms (for instance H{# or D{$ atoms produced in a magnetic
trap) one might experimentally study this problem.

Also associated with the helium film is the possibility of observing nuclear spin
waves in a two-dimensional gas (see chapter 4 of this thesis). Such an experimental
observation should provide direct information on the peculiar effects of the negative
centrifugal "barrier" typical for 2D low energy scattering.() At higher surface
densities the adsorbéd gas becomes degenerate and is expected to undergo a Xosterlitz-
Thouless transition.(® \

In general, the hope {0 observe gas phase degenerate quantum behavior, i.e. the
observation of Fermi-pressure effects in D gas (see chapter 2) and particularly Bose-
Einstein condensation in H gas, are very imporiant motivations for spin-polarized
hydrogen and deuterium research.

One of the most impressive applications of spin-polarized hydrogen is the cryogenic
hydrogen maser. By making use §)f several peculiarities of cold H gas in a helium-lined
cell, a very stable frequency standard can be built. Actual maser oscillation of
hydrogen atoms at sub-kelvin temperatures has been observed by a number of
groups.{? The eryogenic hydrogen maser is extensively discussed in chapter 3.

Another important application is the possibility of doing wultrahigh-resolution
spectroscopy with very cold H or D gases in which all Doppler effects are considerably
reduced. In this respect it is interesting to note that the results of chapter 2 indicate
that with magnetically trapped deuterium unbeard-of low {emperatures can be
reached, far below the cooling limit of a few microkelvin for magnetically trapped
hydrogen.



Other applications involve: the use of spin-polarized hydrogen or deuterium to

create polarized proton or deuteron targets for nuclear and particle scatteriag (possibly
by using doubly-polarized H or D to create solid nuclear-polarized H, or D)), and

the use of doubly spin-polarized deuterium to enhance the efficiency of plasma fusion
reactors.(8)
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Section 1.4
This thesis

The following three chapters of this thesis each treat a different recent development in
the theory of atomic hydrogen or deuterium gas. They have in common that, on a
microscopic level, they deal with collisions between hydrogen (or deuterium) atoms in
their ground electronic state. At first sight, collisions between ground-state hydrogen
atoms might seem a trivial problem, being a standard example in textbooks on atomic
collision theory. However, as will become clear in the next chapters, this is certainly
not the case for the problem of collisions at very low energy. In that case the dynamics
of all four spins involved in the collision is manifest. The quantum-mechanical analysis
of the complicated spin dynamics shows many surprises and provides a challenge
common to the three subjects treated in this thesis.

The above can be illustrated with the phenomenon of nuclear spin waves siudied in
chapter 4. As will be shown, despite the fact that interactions between {wo atoms are
nuclear-aspin' independent, the outcome of an scattering event does depend on the
nuclear spins involved due to particle indistinguishability effects at low collision
energies. This subtle effect gives rise to quantum phenomena on a macroscopic scale
via the occurrence of nuclear spin waves.

The interaction between the nuclear and the electronic spins plays an important
role in the calculation of the decay rates of magnetically trapped H and D gases. As
will become clear in chapter 2, care must be taken in the way the hyperfine interaction
is taken into account in the calculation of inelastic two-body collisions. For instance, a
complete neglect of this hyperfine interaction in the calculation of the decay rates for
HT and D gases yields rates which vanish in the low-temperature limit, whereas the
exact low-temperature rates are large and independent of temperature.

The nuclear spin dynamics plays a very decisive role in spin-exchange collisions
between H atoms in a maser. In chapter 3 it will be shown that the nuclear spin
dynamics due to the hyperfine interaction during spin-exchange collisions puts severe
limits on the frequency stability level achievable with low temperature H masers.

11



CHAPTER 2
MAGNETICALLY TRAPPED ATOMIC DEUTERIUM

Section 2.1
Fermionic D gas versus bosonic H gas

In the past decade a great number of exciting experiments have been carried out with
spin-polarized hydrogen.(t.2) Spin-polarized deuterium however, has attracted
relatively little attention of experimentalists as, even in liquid-helium-lined cells, this
gas was found fo be very hard to stabilize.(3,4 This probably accounts for the fact
that by the time the opportunity of surface-free magnetic confinement was recognized
in the field of spin-polarized hydrogen research,!® nobody put effort in the analysis of
the stability of magnetically trapped deuterium. Yet, a little thinking already reveals
the exceptional properties of such a system. Wall-free confinement of deuterium atoms
not only eliminates surface adsorption and subsequent recombination, which cause the
rapid decay of deuterium in helium-ined cells, but also, if the deuterium atoms are all
in the same hyperfine state, the Pauli exclusion principle suppresses at low
temperatures all collision processes thereby enhancing the stability of the gas. As in
the absence of wall adsorption sample temperatures can be lowered considerably this
suppression of collisions may be very strong.

We show in the present chapter, that the difference in behavior between
magnetically-trapped bosonic H gas and fermionic D gas is remarkable. The decay rate
of magnetically trapped H is fast and, to lowest order, independent of temperature. In
trapped D gas however, the decay rate decreases dramatically with decreasing
temperature. As a result, at sub-millikelvin temperatures the lifetime of trapped D is
orders of magnitude larger than that of {rapped H. Furthermore, in the hydrogen case
the ratio of thermalization rate over decay rate decreases with lowering temperature,
thereby putting a fundamental lower limit on temperatures achievable with trapped H.
This in contrast to the deuterium case where this ratio increases with lowering
temperature yielding the possibility of reaching unheard-of low temperatures, and the
observation of gas-phase degenerate quantum behavior.

By now, iwo groups have reported successful experiments with magnetically
trapped H.(6." Having trapped H, the trapping of D is by no means a trivial
extension. Due to the larger adsorption energy of D on helium films and the higher
surface decay rate, deuterium atoms are more difficult to load in a trap than hydrogen.
Once the problem of loading has been overcome, for instance by using deeper magnetic
traps, magnetically trapped deuterium provides us with a highly ideal gaseous
quantum system. -
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Fig.1. Dimensionless interaction U*(r)=mr2V(x)/h? as o function of interatomic
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interaction much deeper than unity a large number of scaltering resonances
coniribute fo the recombination decay down to very low temperatures,

13



The large difference in behavior between bosonic and fermionic isotopes applies to
all B-field trappable atoms. Hydrogen and deuterium are however unique, as without
any doubt among all B-field-trappable atomic bosons and fermions, they have the
highest intrinsic stability. Other atomic systems such as the alkalis, have the distinct
advantage that they can be laser cooled relatively easily. However, as pointed out by
Vigué,(® due to fast resonance recombination associated with their strong interatomic
interactions and their large atomic masses, the alkalis are considerably less stable.
Fig.1 illustrates the exceptional smallness of interaction effects in magnetically
trapped hydrogen:
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Section 2.2
Spin-polarized deuterium in magnetic traps
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We have calculated the spin-exchange iwo-body rate constants associated with the
population dynamics of the hyperfine levels of atomic deuterium &s a function of magnetic
field in the Bolizmann zerc-temperature limit. Results indicate that a gas of low-field-
seeking deuterium atoms trapped in a static magnetic field minimum decays rapidly into an
ultrastable gas of doubly spin-polarized deuterium. We also discuss the temperature
dependence of various effects.

The interesting physics of the gaseous spin-polarized quanium systems has been
primarily studied for the Bose system spin-polarized hydrogen and the Fermi system
spin-polarized 3He.(!! Although the extreme quantum nature of these spin-polarized
systems has been established in a variety of experiments, the observation of degenerate
quantum behavior so far has been out of reach of the experimentalists. For spin-down
polarized hydrogen (H]) it was established’ that the critical density for Bose-
Einstein condensation (BEC) can only be approached up to a factor 10 due to the
presence of a third-order recombination process which is dominant on the surfaces of
the helium-covered sample cells. Also for gaseous 3He the degeneracy regime (T<<T
where TF is the Fermi temperature) is far out of reach of experiments as a result of
the relatively strong interaction effects which lead to the formation of the liquid
state.()

Spin-polarized deuterium {(D|) has attracted relatively little attention of -the
experimentalists as this gas was found to be much less stable than hydrogen.(3.4)
Nevertheless the theoretical interest in this system is considerable. To establish the
nature of the ground state of D] is a subtle problem which stimulated the use of the
advanced methods of Fermi-fluid theory.(5.#) It is predicted that ithe doubly-polarized
state (D]1) should be gaseous down to T = 0 K. Also the Landau parameters have
been calculated,s! and extensive theoretical effort was put in calculating the transport
properties of gaseous D] as a function of temperature.(”

Recently, surface-free confinement schemes were. proposed(®) which offer new
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prospects to observe BEC by studying spin-up polarized hydrogen (H{) in magnetic
traps similar to those used for confining laser-cooled spin-polarized alkalis.(® In this
letter we show that D1} is especially suited for confinement in a minimum-B-field trap
and may well prove to be the purest experimental realization of the nearly ideal
degenerate Fermi gas in which to a large extent density and temperature can be
controlled independently. As such it is a most interesting model system enabling
comparison with ab initio theoretical results of any desired precision. This in contrast
to dense, strongly interacting Fermi systems as nuclear matter, liquid 3He, and the
electron gas in metals. '

30

BlmT)

Fig.1. Energies of the deuterium hyperfine states as a function of magnetic field.

We discuss the stability of Df, a mixture of the hyperfine states §, ¢, and ¢ (Fig.1),
confined in a static minimum-B-field trap. We calculate both spin-exchange and
dipolar two-body rate constants in the low-field, T=0 K limit, and estimate the
temperature and field dependence of these effects. We show that spin exchange causes
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D1 to decay rapidly towards the doubly-polarized gas D1% of only (-state atoms. This
gas may be cooled with a similar evaporative scheme as proposed(® for H{$., However,
in conirast to the hydrogen case where dipolar relaxation is predicted to be very fast
and, to lowest order independent of temperature, (10 the stability of the fermion D1}
against dipolar relaxation is expected to grow with decreasing temperature becaunse of
the absence of s-wave scattering, ultimately leading to an ultrasteble state. D1} is not
only likely to be the most stable B-field-trappable spin-polarized system (including the
alkalis), but may also be cooled well into the degeneracy regime. We briefly discuss
 how-Fermi statistics affects- th; properties of D1$. As a last point we address the
 stability of D1} aghifiit resanance recomibination.

We first discuss the various relaxation processes in a gaseous mixture of &, e, and
(-state atoms 4(DT). ‘The lifetimes of these low-magnetic-field seekers are primarily
limited by inelastic spin-exchange relaxation events. Dipolar relaxation only becomes
competitive at high magnetic fieldst?®) (B>0.2 Tesla for D]) and as such is not
relevant in the current context. As in the hydrogen case an important exception fo
this rule is collisions between fully polarized atoms ({-{ collisions) which are
unaffected by spin-exchange. Considering the low values of the relevant temperatures
and Fermi-Dirac statistics only low energy s-wave scattering between atoms in
antisymmetrical spin states occurs. We therefore calculated the eighteen rate
constants corresponding to the allowed downward spin exchange {ransitions between
the fifteen antisymmetrized spin states (af-Ba)/V2, .. , (e(~(e)/v2 for s-wave
scattering in the Boltzmann zero-temperature limit. These rate constants can be
expressed in terms of the two-body spin-exchange T-matrix elements for vanishing
kinetic energy in the incoming channel. When the splittings of the internal energy
levels are not too large, we may also assume that the kinetic emergy in the final
channel vanishes. This approximation(10’ applies when the time interval in which the
interaction associated with the internal degrees of freedom is interrupted by the
exchange interaction is small compared to the time scales at which precessions
associated with the internal-energyevel splittings take place. For low collision
energies, this interruption iime is determined by the time interval in which the
colliding atoms can be localized within the interaction range: At = pro?/h (u being the
- reduced atomic mass and ro the range of the interaction). Using the above
approximation, we find that the relaxation rates in the Boltzmann zero-temperature
limit can be expressed in terms of the triplét and singlet scattering lengths ay and ag:

‘ 2
Gy = 4 vg[2128] [t Prpsli) 2,

in which |i> and |f> are normalized antisymmetric two-body spin states, Py (Ps) is
the projection operator on the triplet (singlet) spin subspace, and v=[2(B-Ep)/u]3 is
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the relative velocity in the final spin chanuel.

Using the above expression in case of spin exchange relaxation in atomic hydrogen
with ar=1.342 and ag=0.32a; we reproduce the values of the H+H spin-exchange
relaxation rates obtained with a coupled channel calculation!®) within a few percent
up to magnetic field strengths of 0.1 Tesla. In case of atomic deuterium we calculate
ar=-6.8a; and as=13.0a; and obtain the values for the 18 zero-temperature spin-
.exchange relaxation rates displayed in Fig.2. Interesiingly enough for the present
purposes, these rates are typically two orders of magnitude larger than the H+H spin-
exchange rates.(i? This is due to the larger value for |ar-ag| entering in the
expression for the rates.

We now consider low-field-seeking deuterium atoms in a magnetic trap. If we use
the notations n & e and n, for the densities of these states, and assume all high-field-
seeking atoms and a fraction P of the low-field-secking atoms formed in inelastic spin-
exchange events to escape to a perfect adsorber outside the trapping region, the
population dynamics of the various hyperfine levels is described by

5= ~(Gseaaet Opp) 26¢ ~ (Cengyt Coeapet P Coensat Coesped 26 e

ﬁe =- G(e—*(a ReBe— (G5€4C‘7+ P Gﬁe—’ﬁe+ G65-+§a+ G&e-»ﬂa) D5le

+ (1“‘P) G&C"}ae n5n<,

Be= =P Greota ¢~ (Cgpuaet P Gprpngne + (1P) Ggeny nsme

In general, a decay described by these equations yields a stable state consisting of one
single hyperfine component. Which hyperfine state will survive depends on the relative
magnitudes of the various decay rates, as well as on the the escape probability P and
on the ratios befween the initial populations. Substituting the above calculated
_ relaxation rates, we find a preferential decay of § and ¢ atoms. Hence, equal initial
populations will lead to a irapped gas of { atoms ("doubly spin-polarized" deuterium).
The fraction of ¢ atoms which survive the spin-exchange decay process when starting
with equal initial populations decrezses with increasing P: At B = 0.1 T, we find that
88 % of the initial number of { atoms survive for P = 0, while for P = 1, this figure is
12 %. :

The trapped (-atom gas will be ultralong lived as, in the zero-temperature limit,
two-body collisions can be ruled out because of the Pauli principle. For nonzero
temperatures, two-body electronic dipolar relaxation is dominant. Using plane-wave
Born expressions(12) we estimate the corresponding cross section to be grex (E/E)V2
x10-22 m?, with E (E’) the kinetic energy in the initial (final) spin channel. For low
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Fig.2. The zero temperature spin exchange relazation rates Gi-»f as a function of
magnetic field. The curves correspond to the following rates, i~f: 1: (e~Ca, 2:
6C-ae, §: 8C-P¢, 4: Bl=ae, 5: be=(v, 6: besfe, T: benba, 8: bemPe, 9: (yeB, 10:
(yba, 11:{v-Pa, 12: fe-ab, 18: Pe=fa, 14: abaf, 15: e 8p, 16: eyan, 17:
Béany, 18: bvf7.
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collision energies, E' tends to a constant yielding the dipolar relaxation rate at low
temperatures to be proportional to temperature. For B~0.1T we estimate Gaip/T «
10-t4 cm3%-tK-t (T<0.05 K). Notice that this energy dependence favors relaxation of
fast atoms leading to a self-cooling contribution associated with relaxation which is
absent in the hydrogen case. '

Interestingly enough, though the thermalization rate also vanishes in the low-
temperature limit, we find that the system still achieves thermal equilibrium on a time
scale substantially smaller than the dipolar lifetime of D1$. Thermalization of the
trapped ¢ gas may occur through elastic triplet potential scattering or via elastic
dipolar collisions. At low temperatures (T<0.03 K) dipolar thermalizing collisions
dominate because the short-ranged triplet potential becomes ineffective due to the
Pauli principle. Again using plane-wave Born expressions!!?) we estimate the dipolar

collision cross section to be o aip® 10°22 m2. At higher collision energies, where the

Pauli principle becomes less effective, gas-phase thermalization takes place
predominantly through elastic scattering via the strong short-ranged triplet potential.
A phase-shift analysis yields the corresponding cross section to be proportional to the
energy squared: gih rip/E%e 10-18 m?K-2, For density n = 1014 cm-? and temperature
equal to the corresponding Fermi temperature T, « 39 4K, the above expressions yield
a lifetime due to dipolar relaxation of several hours and a gas-phase thermalization
time of several seconds. Under similar conditions the lifetime of H{} is some
seconds.(1®) In contrast to the case of H]} where in the limit T - 0 the ratio of the
thermalization rate to the relaxation rate vanishes, in case of D1} this ratio increases
as T-¥/2, This shows the possibility to use evaporative cooling as an efficient means for
cooling the trapped gas down to the degeneracy regime.

In the foregoing, degeneracy effects were left out of consideration. An accurate
description of such effects depends in a subtle manner on the evaporation scheme and
requires a detailed analysis. In a naive picture, the Fermi pressure limits the density
for decreasing temperatures, in contrast to the hydrogen case where higher densities
are favored, ultimately leading to BEC. In conirast to relaxation, the thermalization
rate is affected by blocking effects in the final state. Still, the evaporative cooling
scheme may be expected to be very efficient, if we take into account that, for low
temperatures, the differences in occupation of the single-particle levels, compared with
the T=0 state, are concentrated at the highest energy levels near the Fermi energy.
Cooper pairing in D1} is way out of reach as only p-wave pairing i3 possible,(19
requiring extremely high densities.

Resonance recombination(!® and resonance-enhanced relaxation, which are
probably the dominant decay mechanisms in magnetically trapped alkalig, are not
expected to disturb the above described decay of D]. The (v=21, j=0) and the (v=21,
j=1) molecular levels are just bound, so that resonance recombination can play a role
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in the decay of D|. In DY, however, recombination via these levels is inefficient thanks
10 the positive sign of the Zeeman energies for the low-field-secking states. Unbound
singlet states also play a negligible role at temperatures of inferest as the lowest
resonant state {v=20, j=6) is calculated to be 10 K above threshold. Also the slow
decay of D}$ is not disturbed by resonance-enhanced processes as collisions pioceed
via the triplet potential which does not support (almost) bound states.

In the foregoing we discussed the behavior of the trapped gas in some detail but we
did not treat the problem of the loading of the trap and only mentioned some facts
relevant to the cooling of the trapped gas. As in the hydrogen case, the development of
an efficient filling and cooling scheme is a major project, which is left as a challenge to
experimentalists.

This work is part of a research program of the Stichting voor Fundamenteel
Onderzoek der Materie (FOM), which is financially supported by the Nederlandse
organisatie voor Zuiver Wetenschappelijk Onderzoek (ZWO). '
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Section 2.3
Spin-exchange decay of magnetically trapped deuterium atoms

In the previous section it was shown that under certain conditions fast spin-exchange
processes lead to the purification of magnetically trapped D] gas into potentially
ultrastable D14 gas. In this section we examine this purification process in a more
" accurate and more realistic way. First, we relax some of the approximations made in
the calculation of the spin-exchange rates: here it is no longer assumed that
temperatures are sufficiently low to make the zero-temperature limit applicable, and
also the low B-field restriction is somewhat relaxed. Secondly, we take into account
the trap filling in the description of the D1} purification process.

: Spin—exchange decay rates

As discussed in the previous section the hyperfine population dynamics of magnetically
trapped gaseous mixtures of &, e, and (state atoms (D7) is dominated by spin-
exchange processes. As a result of the low values of the relevant collision energies and
Fermi-Dirac statistics, only s-wave $cattezing between atoms in antisymmetrical spin
states occurs. Here we derive closed expressions describing the low temperature and
low magnetic field dependence of all rate constants corresponding to the 18 allowed
spin-exchange iransitions between the 15 antisymmetrized two-body spin states.

In order to do this we make use of the fact that for not too high B values the
hyperfine energy-level separations have a very small influence on a collision quyantity
which has a finite value in the limit of vanishing initial and final kinetic energies {see
previous section and section 4.3). For s-wave spin-exchange scattering the T-matrix
provides us with such quantities. Neglecting the influence of the energy-level
separations by calculating the s-wave spin-exchange T-matrix elements for common
initial and final kinetic energies chosen halfway!? between their exact values, we find
that the rate comstants Gi ¢ Split up in a magnetic field dependent spin-matrix

element and a "universal" rate constant G, depending on the specific transition and =

the magnetic field strength only via a dependence on ¢~¢;, the spin energy released in
the transition (Cf. Eq. 49, section 3.3):

Gy {B.T) = |<f|Pr-Psi>|? Go(ge,T) . ¢

Here, |i> and |f> are normalized antisymmetric spin states (](af-Ba)/{2>, ...,
[(e¢~Ce)/v2>), and P1(Ps) is the projection operator on the triplet (singlet) spin
subspace. The reduced rate constant Gy can be written as a thermal average over a
cross section ¢y times the relative velocity in the final spin-state (for a derivation see
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section 4.3):

GAT) = </ 2(B+A)/u ao(B+18) >, @)

in which p denotes the reduced mass of the colliding D atoms, while the thermal
(Boltzmann) average < > is given by

<{(E) >p = (2/@0]'3:: % xt f(xkT) . @

Equation (2) only applies for positive A (downward hyperfine transitions). The
Teduced rate for upward transitions is related to that for downward ones via a simple
Boltzmann factor:

-A[kgT
Go(-A,T)= e Go(A,T) . 4
The cross section oy is determined by

o) =~ sin(83()-83(1)) o

in which 49 (62) is the s-wave scattering phase shift for triplet (singlet) potential
scattering. In this way we have reduced the problem of calculating the spin-exchange
rate constants to a standard phase-shifts calculation.

In order to arrive at closed expressions for the rate constants we apply another
approximation. Making use of the smooth behavior of the quantity which is to be
thermally averaged [the term between averaging brackets on the right-hand side of (2)]
as a function of collision energy, we may apply a one-point generalized Gauss-
integration based on the weight function w(x) = xV2%xp(x) in Eq.(3) on the interval
[0,m):

<I(E) > > {fkaT) (®)

to the right-hand side of Eq.(2), yielding:

GlA,T) = 24 + fkeT)/i a4 + k) . Y]
Taken together, Eqs.(1), (4), (5), and (7) provide us with closed expressions for the
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rate constants in terms of the triplet and singlet phase shifts. At low magnetic fields
and low temperatures the resulting rate constants are fairly accurate. When applied to
the case of spin-exchange relaxation in atomic hydrogen, we reproduce the values of
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the H+H spin-exchange relaxation rates obtained with a computationally elaborate
coupled-channels calculation within 1% for B<0.1T and T<50mK. At higher B-field
strengths and higher temperatures the above expressions become less accurate. For
Bx1.5T and T+0.3K we find a 13% accuracy. For D+D spin-exchange relaxation we
expect approximately the same degree of accuracy.

In the zero temperature limit and for small A values Eq.(7) reduces to the
expression used in the previous section for the description of the Di$ purification
process:

Gl 0) = J28/u rarask, ®

in which ar(ag) is the triplet(singlet) scattering length. Note furthermore that a
complete neglect of the hyperfine energy-level separations in the calculation of the
relaxation rates (A=0) yields very bad approximations as it leads to vanishing rates in
the zero-4temperature limit: Go(0,T) ~ T3, This is probably the reason why a neglect
of the splitting between internal states is often thought to be a typical high-energy
approximation. As may be clear from the above this is not the case: if the separation
of the internal levels is neglected in a suitable way, the resulting expressions are
accurate down to zero collision energy.

In order to facilitate the analysis of experiments with magnetically trapped
deuterium, we parameterized the o cross section as a function of collision energy:

ao(E) » 3.46x10-18 m2 (1 + 3.6 E), (9)

with E in temperature units. The errors introduced in using this parameterization do
not affect the above mentioned accuracy levels.

To illustrate the B-field and temperature dependence of the relaxation rates
calculated according to the above scheme, two of the rates involved in the hyperfine
population dynamics of trapped Dt are shown in Fig.1 as functions of magnetic field
strength for a temperature of 0.3 K (drawn curves) and in the zero-temperature limit
(dashed curves). This figure clearly shows that the rates can have a considerable
dependence on temperature, especially when the internal energy released in the
transition is small (as for the transition fe-{v at low B fields).

Purification into D1$
We now consider the creation of DI} by spin-exchange processes. In the previous
section we assumed the trap to be filled with &, e and (-state atoms (Df) and
considered the subsequent evolution to a (-state atom gas (D1}). In actual
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experimental situations it is more likely that the trap is filled with DT until a steady
state is reached between filling flux and the flux of atoms escaping from the trap after
spin relaxation events. We take this into account by including filling flux terms in the
rate equations. Furthermore, by using the spin-exchange rate constants derived in the
present section, we no longer work in the zero temperature limit but at typical trap-
filling temperatures of a few hundreds of milli-kelvins.

Assuming the "high-field-seeking" atoms (D]) formed in spin-relaxation events to
escape to a perfect adsorber outside the trapping region, the population dynamics of
the trapped hyperfine states is described by

5= 18/V = (Ggerp1#CgepetCoespal® e = (Cocaact Cogape®iR e
ﬁe = }8/V- (G664(7+G66-v60:+665-+ﬁa)n§ne + G&(—taenén ¢ GCE-?(anfnC’

1.1<= 5(}‘?/V+G&_’ﬁnéne—Gac_mengc. (10)

In these equations n, is the density of atoms in hyperfine state i, & is the trap filling
flux (atoms/s) assumed to be equally divided over the three "low-field-seeking” states,
and V is the effective trap volume. Evaporative losses of atoms are not included in the

above equations as they may be avoided during the filling stage by proper design of
~ the experimental setup.2) Note furthermore that only downward (exothermic)
transitions enter in the rate equations due to the absence of upward (endothermic)
spin-exchange transitions with an initial s-wave state comsisting of two "low-field-
secking" atoms.

The time-evolution equations for n ¢ and ng can be combined to give

. 1 T .

with 1=G S¢a /G 5¢-B¢ So, even when the f-atom density saturates (i g=0), the (- ‘
atom density still grows without limit. Such an unlimited growth of n , is possible only
if the & and e-atom densities decay away. In the long-time limit the above rate
equations yield that n ¢ Brows at a rate {(®/V)/(1+1), while n;and n_decay away via
an inverse proportionality to n, Notice that the resulting D% purification is
independent of the actual values of the spin-exchange rate constants. Only the
effective (-atom filling rate depends on the values of the spin-exchange rate constants
via the proportionality factor (1-+1)1, representing the fraction of { atoms which, after
being loaded in the trap, survive the spin-exchange decay and stay trapped. In Fig.2
this dimensionless factor is shown as a function of magnetic field for a temperature of
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Fig.2. The proportionality factor 1/(1+t) entering the effective (-atom filling
rate as a function of magnetic field strength for T=0.3K (full curve) and T=0K
(broken curve).

0.3 X (drawn curve) and in the zero-temperature limit (dashed curve). As is evident
from this figure, this ratio has only a weak B-field dependence and an almost negligible
temperature dependence.

Of course, a real unlimited grow of » ¢ is unphysical. As high (-atom densities are
built up, decay processes due to magnetic dipolar spin relaxation occurring in
collisions between (-state atoms (predominantly {(»(a and ((~aa, see next section)
become important and ultimately limit the {-atom density. We included this effect by
adding a dipolar relaxation term (G ¢ oT2G (¢ a‘a)n €2 on the right hand side of
the time-evolution equation for n,. Dipolar relaxation is relatively very slow. Having
rates of the order of 10-14cm3s-1 for temperatures of a few hundreds of millikelvins (see
next section), the dipolar processes affecting the (-atom density are three orders of
magnitude slower than typical spin-exchange processes affecting the trapped atom
densities. Solving the rate equations including the dipolar relaxation term to lowesi
order in the ratio of dipolar relaxation rates over spin-exchange relaxation rates, we
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find a steady state with atom densities

[ {2/v j i
n, = i<t N
¢ UGt 26

G 2G :
n, = LGadat T on iy nes
Ceta

G +2G
ng= (C-+la" " "((raa

n,. (12)
Cocap¢

We conclude that the steady state 6~ and e-atom densities are about three orders of
magnitude smaller than the (-atom-density. After turning off the filling flux the § and
¢ atoms decay away rapidly in spin-exchange collisions with { atoms, leaving the (-
atom density relatively unaffected. In this way D1} gas with density of the order of
10t%atoms/cm3 (assuming &/V to be of the order 1013atoms/s) is obtained.
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We have calculated the magnetic dipolar spin-relaxation rates of magnetically trapped
doubly-spin-polarized atomic deuterium gas, The results are expressed in a simple closed
formula describing the dipolar-relaxation-limited stability in the Boltzmann {T>>Tg), the
degeneracy (T<<Ty), and the crossover (TTf) regimes. In the degeneracy regime we
typically find lifetimes of some hours. We also discuss the dipolar decay of magnetically
trapped spin-polarized fermionic alkali-metal atoms.

| Introduction

In the past decade dramatic progress has been made in the stabilization of spin-
polarized atomic hydrogen. The observation of several exceptional properties in a large
number of experiments on this new quantum gas( strongly overshadowed the few
experimental results® on its fermionic counterpart: spin-polarized deuterium. The
reason that deuterium has come into prominence to a much lesser amount is that the
standard scheme to stabilize hydrogen,(¥ i.e,, confinement at high magnetic field in a
cell with liquid-helium covered walls, is rather inefficient when applied to deuterium:
even on superfluid-helium surfaces deuterium atoms undergo a strong adsorption and
subsequent recombination.

Recently, we made an analysis(® of the hyperfine population dynamics of surface-
~ free confined deuterium atoms in a trap similar to those used for confining laser-cooled, -

spin-polarized alkali-metal atoms(4’ and spin-polarized hydrogen atomst®). It appears

that fast two-body spin-exchange processes acting on the trapped electton spin "up"’
deuterium atoms (D7) lead to the formation of a gas of atoms in one single hyperfine

state in which also the nuclear spins are polarized. Thig gas of doubly-spin-polarized
deuterium atoms (D1%) is extremely stable at low temperatures. Not only are surface
recombination processes eliminated but also collision processes leading to a decay of
the deuterium atom gas are strongly suppressed thanks to the Pauli exclusion
princlple. In contrast to the case of the magnetically trapped boson gas H{$ where
two-body dipolar relaxation is predicted to be very fast and, to lowest order,
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independent of temperature,(® the stability of the fermion gas D1} against dipolar
relaxation is expected to grow with decreasing temperature.(3) Applying an
evaporative cooling scheme similar to that proposed for H{%$,(" will ultimately lead to
an ultrastable low temperature D} gas. The dipolar relaxation limited stability of
D14 was estimated in Ref.3 for temperatures well above the Fermi temperature Tp-

Here we describe a more general theory for the dipolar relaxation of the D{$ gas
which also applies to the degeneracy regime (T<<TF) and the crossover regime
(TzTF). The results are given in the form of a simple closed expression which, in the
relevant regimes, describes the temperature and magnetic-field dependence of the
effective decay rates within a few percent. This expression also determines the dipoiar
decay rates of magnetically trapped fermionic alkali-metal atoms. For a degenerate
(T<<Tg) D14 gas with density 104 atoms/cm? at magnetic field B = 0.1 T we find a
lifetime as large as 5x10% s. This figure even grows with increasing magnetic field.
Therefore, magnetically trapped D1# offers a unique possibility for the experimental
observation of gas-phase degenerate quantum behavior.

Decay rates

In principle, a wealth of processes may cause a gas of doubly-spin-polarized
magnetically trapped atoms to flip an electronic or nuclear spin. Such spin-
depolarization processes lead to a decay of the gas as atoms are formed which are
directly ejected out of the trap (because they acquire the released energy in the form of
kinetic energy and also because they are formed in hyperfine states which are repelled
from the minimum-B-field trap) or because atoms are formed in hyperfine states which
disappear out of the trap due to a subsequent strong two-body spin-exchange process.
In view of the extreme diluteness of trapped atom gases [highest density achieved up
to now: ~ 3x1014 atoms/cm? with H1$ Ref.5)] the first type of spin-depolarization
processes to discuss are single-atom processes. These are commonly considered to be
negligible or at least to be made so by judicious selection of the experimental
parameters. For instance, the lifetime due to spontaneous emission at hyperfine
frequencies is enormous, and nonadiabatic spin-flips (Majorana transitions) can be
reduced below any desired rate by a careful trap design.

Under these circumstances, two-atom processes determine the lifetime of doubly-
spin-polarized trapped atom gases. As in the doubly-spin-polarized state the electronic
spins of two colliding atoms are parallel, spin-exchange plays no role in the decay of
the gas. Precession of the spins in the dipolar magnetic fields of other atoms, however,
does lead to spin flipping, which results in a decay of the sample. Spin depolarization
due to the magnetic dipole-dipole interaction is the dominant loss mechanism for
trapped H{$(¢) and D1$3! gases. For magnetically trapped doubly-spin-polarized
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alkali-metal atoms other decay processes such as resonance recombination are
important.(8) At very low temperatures, however, also for trapped alkali-metal atoms
dipolar relaxation may be the dominant decay process.

From now on we restrict ourselves {o the case of dipolar relaxation in doubly-spin-
polarized gases of deuterium atoms and assume the relevant collision energies to be
small compared to the splittings between the various hyperfine energy levels. We
denote the one-atom hyperfine states ¢, 8, 9, §, ¢, and ¢ in order of increasing energy
(see inset Fig.1), so that the trapped doubly-polarized state is denoted by (. Assuming
all atoms formed in dipolar relaxation events either to be in a hyperfine state with
predominantly electron spin-down and hence to be ejected from the minimum-B-field
irap, or to have acquired enough energy to escape from the trap and stick to a wall

_outside the trap region, we find for the decay of the (-atom gas

d_ 2y
aTnC- “211(2 Gcc_)xy’ (1)
{xv}
with n, denoting the {-atom density, and the summation X} running over all

distinct pairs of hyperfine states not equal to ((. Siarting from the quantum-
mechanical Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy we find that
the relaxation rate G (oxy @0 be expressed as an ensemble average of the relative
velocity 2hk/m times an effective cross section Tty

Gty = (u)-soj 40K F (1) %’;2 T oy - )

In this equation F C(k) is the distribution function for the relative wave number k
defined as

Fel)= (208 [UK 3K + KD IFK-KI), (3)

in which {(k)}, the distribution function for the single atom wave numbers, is assumed
to be isotropic and normalized as (27)-3/d%k f C(k)= 1. In Eq. (2) no Pauli blocking -
terms of the form (l"fx)(l_fy) appear because the atoms in hyperfine state x and y
formed in a dipolar relaxation event undergo no blocking effects as the internal states
x and y are unequal to ¢ or otherwise because they have acquired enough kmetlc
energy to prevent any blocking effect to occur.

In a dilute gas of identical fermions in one single internal state the
antisymmetrization requirement prevents the fermions to approach one another at
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distances much smaller than the thermal wavelength. As the thermal wavelength
scales with the inverse square root of the temperature it follows that at low
temperatures fermions experience only the long-zange parts of their muinal
interactions. Therefore, in our calculation the short-ranged triplet interaction is
neglected and the dipolar interaction, of which only the very weak long-range part
contributes, is taken into account to lowest order. We find .

xIm2k’

O oy ) = jdiidi' IV 0 4y BRI 0

4r

In this equation k'=k'k’ denotes the final-state wave vector, and the V matrix element
is the antisymmetrized momentum representation of the dipolar interaction

Vi gy k) = [ %{mﬁ&-k')-ﬂ—-expli&w}v“,{xy}@, 3)

with {xy} denoting a symmetrized and normalized spin state (xy+yx)/ [2(1+8xy)]V2
Using the fact that the hyperfine energy splittings are much larger than typical kinetic
energies 5o that hk << hk'« {m(?eg-ex—ey)}ﬂﬁ with ¢_the hyperfine energy of x-state
atoms, and taking into account only the electron-electron part of the dipolar
interaction, which by far dominates over the electron-deuteron and deuteron-deuteron
contributions, we find

2 ..
2
Teeany® = Toe i 1< fr}> 12 (®)

In this equation the electtonic—dipola.r length scale

Be = Mpgud/h2, ' » (M

which when the deuterium atom mass is substituted for m takes the value B =
3.26x10"1'm, and the spin-matrix element <({(|%ee|{xy}> describes the coupling of
the electron spin-operators o a spin-operator of rank two. This matrix has
nonvanishing off-diagonal elements for xy = (¢, ¢¢, (o, €a, and ae, with absolute
values 2/3sin(4.), 2/65in2(4.), 2y/3cos(8.), 2/3sin(24.), and 2,Bcos?(0.), respectively.
Here, the mixing angle 0, is determined by the relation vZcot(26.)=(pe+un)B/ans+},
in which ge () is the electronic {nuclear) magnetic moment, and ays is the hyperfine
constant (for deuterium: apr= 1.446x10-25 J).

Using the identity (24)8/4rk2dk (Wk2/m)F CC(k) = (27)-3/4xk2dk (h2k2/2m)f ((k)
in the right-hand side of which we recognize <Eyxin>, the average kinetic energy per -
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atom, we find

GCC"XY = ggc_’xy <Eyin> ) (8)

with the reduced relaxation rate depending only on the magnetic-field strength B
given by

2
a2
B¢y = a7 T | <GCIEF I Gd> 1 (©)

The average kinetic energy per atom depends on the precise form of the
distribution function f,. At low kinetic energies the dipolar interaction is much more
effective for elastic collisions {¢(¢~+{¢) than for inelastic ones {{({-xy), as the energy
released in a hyperfine transition reduces the overlap between initial and final states.’
As a result, the translational degrees of freedom may be assumed to be in thermal
equilibrium so that { §(k) is given by the Fermi-Dirac distribution which depends on
temperature and density. For practical purposes the mean free particle energy for a
Fermi-Dirac distribution can be parameterized as

/1.7
<Exin(n,T)> = [(g T + ¢ kBT)1~7] / , (10)

with kp the Boltzmann constant and T =h(672n ()2/ 3/(2mkg) the Fermi temperature.
This parameterization reduces to the well-known expressions in the Boltzmann limit
(T>>T;) and in the degeneracy limit (T<<Tp), and is accurate within 2% over the
whole range of T/Ty, values.

Equation (8) together with the expression (9) for the reduced relaxation rate and
the parameterization (10) for the mean kinetic energy per atom constitute a simple
closed expression for the relaxation rates in a deuterium atom gas.

Implications for magnetically trapped D1%

An important feature of the above results is that the fermionic character of the
deuterium atoms manifests itself in the relaxation rates as a proportionality to the
mean kinetic energy of the atoms [Eq.(8)] so that the stability grows with decreasing
temperature. This is not so for hydrogen atoms which behave like bosons. The same
analysis applied to bosons in essence yields an eguation similar to Eq.(8) but with
<Exin> replaced by the final-state energy Wk'2/m, yielding relaxation rates
independent of temperature. Hence, we expect the fermion D1# to be much more
stable than the boson H{$ at temperatures which are small compared to their
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Fig.1. The reduced dipolar relazation rates g,,  as funciions of magnetic
field. The curves correspond to xy = 1:(e, 2:¢¢, 8: (o, {: €, 5: aa. The
dashed curve represents the sum of the five rates. Inset: the ground-state
hyperfine energy levels of atomic deuterium.

hyperfine level splittings.

Another aspect worth mentioning here is that, with exception of the Boltzmann
(T>>T}) regime, the relaxation rates G Clixy not only depend on the magnetic field
strength and temperature but via a dependence on T also on atom density. For
instance, in the degeneracy limit (T<<Ty), the relaxation rates are proportional to
n2/3 yielding a decay 1 ¢" n2/3. This behavior makes it possible to determine the
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trapped gas temperature, and more specifically to signal degeneracy, slmply by
monitoring the trapped atom density.

Using Eq.(8) we have calculated the various reduced dipolar-relaxation rates
B¢ (xy and the sum rate I x¥} 8¢(axy for deuterium as functions of ma,gnetiq field.
The results are displayed in Fig.l. A prominent feature of this figure is the rapid
decrease with increasing magnetic field of the rates having an e-atom in the final state.
This is because these rates have Iee matrix elements which vanish at high magnetic
fields. The rates (¢+(a and ((-aa diminish much more slowly as they are not reduced
by their Iee matrix elements which go to a constant for B-ico, but only by their
inverse proportionality to the final-state momentum hk’. For not too low magnetic
fields, the sum rate is proportional to the inverse square root of the magnetic field. For
B>0.02T we find T 38, & 80 B2 with a relative error not exceeding a few
percent for go = 1.16x10-¥ cm3s1TV2K- Using this expression and the
parameterization (10) we find for the characteristic decay rate I'qsp =~ gJn

P 117
Taip ¥ 20 n, B2 g T [1 + (g T/TF)I‘?} . (11)

For n,= 10t4cm-3 and B= 0.1 T kinetic energies are small compared to the relevant
hyperfine level separations up to temperatures of a few tens of millikelvins. At T= 10
mK we find Tq;pu0.15"% At the same density and magnetic field but for T=TF:39;;K,
Eq.(11) yields Tqjp® 5x10-4s1, while for T<<Tp the decay rate reaches its minimum
value Tggpx 221074571

Equations (8) and (9) not only apply to the case of D{$, but also to any doubly-
spin-polarized fermionic alkali-metal atom gas, provided the relevant kinetic energies
are small in compariéon with the hyperfine energy-levels separation. As the reduced
relaxation rates depend on the atomic mass m as ~ m3/2 we expect the alkali-metal
atoms to be more unstable against dipolar relaxation than deuterium. Using the above
expressions we find doubly-spin-polarized 6Li to be most stable of all fermionic alkali-
metal atoms with a total reduced dipolar-relaxation rate gy ~ 6.2x10-14 ¢cm3s-1T1/2K
for magnetic fields B>0.02T. Hence, even without taking into account decay due to
resonance recombination, which is absent in D7$(® but effective in magnetically

trapped doubly-spin-polarized alkali-metal atoms(®!, deuterium is more stable than the
alkali-metal atoms.
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Section 2.5
Evaporative cooling limit and Cooper pairing in D{$ gas.

In section 2.2 we discussed the temperature dependence of the decay rate and the
thermalization rate of magnetically trapped deuterium atoms in the Boltzmann
regime., We found that both decrease with decreasing temperature: the decay rate and
thermalization rate being proportional to temperature and the square root of
" temperature, respectively. A parameter of utmost importance is the ratio of
thermalization rate over decay rate: as long as this parameter is well above unity the
gas remains in thermal equilibrium during decay. Furthermore, by forcing the most
energetic particles to escape from the trap at a rate faster than the decay rate, but
slower than the thermalization rate, the trapped gas can be cooled (forced evaporative
cooling(t ). As the ratio of thermalization raie over decay rate increases as T-V/2 with
lowering temperature, we concluded that evaporative cooling is an effective means for
cooling the trapped gas down to the degeneracy regime. ‘

However, in the derivation of these resulis it is assumed that the temperature is
well above the Fermi temperature. In the previous section we saw that the decay rate
for temperatures T<TF is no longer proportional to temperature. In this section we
investigate the thermalization rate in the degeneracy regime T< <Tp. As a result we
are able to show that trapped D gas can be cooled by forced evaporation to unheard—of
low temperatures considerably below the Fermi temperature and far below
temperatures achievable with trapped H.

This result puts into focus the question: ‘Can Cooper pairing occur in magnetically
trapped deuterium gas, and if so, what is the critical temperature?’. This is the second
subject of the present section. '

Evaporative cooling limit
Below a few tens of millikelving the dominant thermalization process of the trapped D
gas is elastic scattering due to the long-ranged interatomic magnetic dipolar
interaction. Using plane-wave Born expressions‘®) we find for the thermalization rate
in the non-degenerate regime(3);

2 f
Gip v 2ge ¥ kgT/m (1)

with ace as defined in the previous section (Eq.7). Combined with the Boltzmann-
regime decay rate {see previous section)

33



G ~a B @)
el “ee !
J m,ueB
we find
y= B0 JuB [ kT, (3)
el :

For thermal kinetic energies far below the Zeeman splitting (p B is typically of the

order 0.1 K) the atoms undergo many thermalizing elastic collisions before they get
involved in an inelastic spin-flipping collision.

As we saw in the previous section in the degeneracy regime (T<<T) the decay
“1ate is no longer proportional to temperature:

knT :
2 "B°F
Grer™ Be ———- )

JmpeB

Also the thermalization rate is in the degeneracy regime no longer described by the
Boltzmann expression. At (T<<Tg) due to Pauli blocking elastic scattering is
restricted to the vicinity of the Fermi surface. A simple phase-space argument shows
that in the degeneracy regime the thermal velocity distribution in the neighborhood of
the Fermi surface is restored at a rate which is essentially the Boltzmann
thermalization rate (1) multiplied by the cube of the ratio of thermal wavenumber
over Fermi wavenumber. This yields a thermalization rate proportional to the
temperature squared:

2 2 /
Using the theory of Vogel ef al.14) this result can be derived in a more rigorous way.

Combining Egs.(4) and (5) we find that in the degeneracy regime the average number
of elastic collisions per spin-flipping collision is given by

7o (@B [Ty ©)

When 7 is close to unity, forced evaporative cooling is no longer effective in reducing
the temperature. The evaporative cooling limit Tyiy is therefore
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Fig.1. Degree of degeneracy nAd (A3=2ah2/mkpT) versus temperature. The

_ regions in which magnetically trapped D and H stay in thermal equilibrium and
ot the same time have o lifetime longer than several seconds are located below
the full end the dashed curve, respectively.

L [kBTF] 1/4T )
min ”eB ! F-
For nx 10t cm™® and Bx 0.1 T we have T~ 0.39 4K and a very low cooling limit
Taninv 0.05 T, 20 nK. As Tain is proportional to n®¢ we find even lower limiting
temperatures at lower densities. The minimum atom density is set by the detection
Himit. This minimum density can be very low: using optical (Lyman-a) techriques 107
atoms can easily be detected.(® ‘
The above derived evaporative cooling limit should be compared to that for
magnetically trapped H. In that case we have

G g e aieJ uB/m , (8)
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and a thermalization rate which is dominated by elastic s-wave triplet potential
scatiering:

Gih~ uip ¥ kpT/m s+ (9

with the elastic triplet scattering cross section oyrip= 6.3x10-20m?. In the same way as
above we now find for the evaporative cooling limit of magnetically trapped H:

2 2

2| Bl (10)
GPtrip

. N
mm[

which typically is of the order of 14K and independent of atom density. The in some
sense opposite behavior of trapped H and D gases is visualized in Fig.1 which shows
the achievable degree of degeneracy nA2 (A is the thermal wavelength) for HT and DY
as a function of temperature. As is evident from this figure, a much larger
experimental ‘window’ to observe degeneracy effects is available for Df.

¥ pairin

Cooper pairing is a phenomenon which occurs in degenerate Fermi fluids. It manifests
itself as a phase transition at some critical temperature T¢ below which an energy gap
exists between the ground state and the first exited states. Roughly speaking, the gap
arises as the particles profit from an attractive part of their mutual interaction by
forming correlated pairs {(Cooper pairs) with zero total momentum. Associated with
Cooper pairing is the phenomenon of flow without resistance as in superfluid 3He and
superconducting materials. The scattering which gives rise to resistance in a normal
Fermi fluid is absent in a Cooper-paired Fermi fluid due o the gap energy required to
excite the system.

In general, it is very difficult to predict the critical temperature T¢ at which a
Fermi fluid undergoes a phase transition to the Cooper-paired state. This is becaunse
the critical temperature depends exponmentially on the effective interparticle-
interaction strength which as a rule is not well-known. An illustrative example is
formed by the large scatter of the predicied values of T, for liquid 3He before it was
experimentally shown to be 2.7 mK (6): these values ranged from 2 mK tc 1 K (). In
one case the critical temperature can be predicted. That is for a dilute gas of fermions-
interacting via a central two-body interaction for which the low-energy scattering
phase shifts are accurately known. In such a system Cooper pairing into pair states
with an angular momentum quantum number £ is possible if the phase shift §7(k) at
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Fig.2. The régz'm below the evaporative cooling limil line indicates the density-
temperature region which i3 in principle accessible with magnetically trapped
deuterium. The region where Cooper pairing should occur is way out of reach..

relative wave number k=ls:F is positive. In that case the critical temperature is given
by(?.&)

T, Ty exp{ § cotlo )]} - (1)

Doubly-spin-polarized deuterium atoms interact via the central triplet interaction. For
low atom densities ky is very small and the largest @(kF), and hence the largest T,
occurs for the lowest &value allowed: {=1. The low energy £=1 phase shifts can be
expressed in terms of the scattering length a, for £&=1 D+D triplet scattering!®,
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cot §k) = -3/(a;k)3. (12)

The scattering length a; is numerically determined to be —5.1x10-19 m, Substituting .
Eq.(12) and the expression for the Fermi wavenumber k.= (622n)¥* in Eq.(11) leads
to

T, ~ Tpexp{l/(4main)} ~ Tp exp{-6x102cm-/n)} . | (13)

An anslogous equation for £=0 pairing in non-nuclear spin-polarized D} was
considered by Leggett.(19) Due to the exponential dependence on —1/n the value for T
drops dramatically when the atom density is lowered. This is shown very clearly in
Fig.2: Cooper pairing is only possible for atom densities not too far below 1020cm-3. As
is evident from this figure Cooper pairing is way out of reach in experiments with
trapped Dn‘ since in the regime where Cooper pairing should occur the atoms cannot
be held in thermal equilibrium. '

One could argue that the above-derived values of T. are too pessimistic. As
discussed in section 3.2 in cold dilute D1} gas the atoms experience only the long-
range part of their mutual interactions. For large interatomic separations the magnetic
dipolar interaction dominates over the triplet interaction, so one might expect the
attractive part of the dipolar interaction to give rise to larger values for T.. We
investigated this possibility by calculating what is likely to be an upper limit for the
- dipolar induced T.. To this end we calculated T¢ for a gas of atoms with an isotropic
13 attraction and a short-ranged hard core repulsion. The strength of the -3 atiraction
was chosen to be equal to the magﬁetic dipolar interaction for deuterium atoms with
their magnetic moments in line, and the range of the hard core was chosen 10 be
comparable to that of the repulsive part of the triplet inferaction. The resulis of this
calculation confirmed the above expectations. We find an expression for T which does
not contain the inverse of the density in the exponent, but instead the inverse cube
root of the density. Hence, this 18 attraction induced T, dominates at low density
over the triplet induced T.. However, this dominance occurs only for atom densities
below approximately 10:7 cm-3 at which T is unobservably low anyway.

-We conclude that for systems of fermions with interactions falling off with -3 or
faster Cooper pairing is a high density phenomenon, which therefore is unobservable in
magnetically trapped D1$ gases.
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CHAPTER 3
HYDROGEN MASERS:
INSTABILITY DUE TO SPIN-EXCHANGE COLLISIONS

Section 3.1
Potential advantages of low-temperatire hydrogen masers

Almost thirty years after its first realization by Goldenberg, Kleppner, and Ramsey,(V
the hydrogen maser continues to be the most stable of all atomic frequency standards.
For measuring times of about one hour the relative frequency instability is observed to
be below one part in 1015 (Fig.1). This extreme stability makes the hydrogen maser a

very valuable research tool in fields as diverse as physics, astronomy, geodesy, and
metrology. '
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Fig.1. Predicted relative frequency stability'®) of the cryogenic hydrogen maser
(dashed curve) versus averaging time compared to that of o high-performance
quartz crystal oscillatort®) (curve Q) end other atomic frequency standards
{curve Rb: commercial rubidium gas-cell standard® , curve Cs: state-ofthe-art

cestum beom standard®}, curve H: state-ofthe-art room temperature hydrogen
maseri®) ),
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The principle of hydrogen maser operation is shown in Fig.2. Molecular hydrogen is
dissociated into atomic form in an rf discharge. The H beam which is formed at the
output of the dissociator, is state-selected by an axially symmetric multipole magnet.
This magnet focuses the atoms in the upper hyperfine states (the "low-ficld-seekers")
on a small entrance hole in a teflon coated quartz storage bulb, while it defocuses the
atoms in the lower hyperfine states (the "high-field-seekers"). As a consequence, a
beam of atoms with an inverted hyperfine population enters the storage bulb. This
bulb is.situated in a microwave cavity tuned to the low-field Am =0 (c~a) transition,
with a frequency of about 1420 MHz. When the intensity of the atomic beam entering
the bulb is large enough, a selfsustained oscillation develops in which the atoms are
stimulated to radiate at the AmF=0 transition. Some of the microwave power is
coupled out of the cavity by an electrical coupling loop.

cavity

state selector

}g< v

storage bulb

dissociator

signal

Fig.2. Basic set-up of a conventional hydrogen maser.

The extreme frequency stability of the H maser is mainly due to the fact that the
hydrogen atoms are confined in the storage bulb for times as long as one second,
leading to a very small observation time limited atomic linewidth. This is essential for
achieving high frequency stabilities, particularly because a small atomic linewidth
reduces cavity pulling effects. Cavity pulling (Fig.3) originates from a competition -
between the atomic hyperfine frequency and the cavity resonance frequency in
determining the maser oscillation frequency. Under conditions of selfsustained maser
oscillation the resulting frequency is not equal to the atomic frequency, but is rather a
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Watom “maser Weavity

Fig.8. Cavity pulling: the maser oscillation frequency ts shified from the atomic
transition frequency by a pulling of the covity resonance frequency. Using the
fact that the atomic and the cavily line profiles have a similar (Lorenizian)
shape it follows that, if both profiles are drown so as to be normalized to the
same height, the maser oscillation frequency is located ot the frequency af which
these profiles intersect. The atomic linewidth is usually orders of magnitude
smaoller than the covity resonance width. In the absence of noise the maser signal
has zero bandwidth.

trade-off between atomic frequency and cavity frequency, in that the difference
between oscillation frequency and atomic frequency measured in units of the atomic
linewidth equals the difference between maser frequency and cavity frequency
measured in units of the cavity linewidth (Fig.3). Evidently, a small atomic linewidth
reduces the dependence of the oscillation frequency on the relatively unstable cavity
resonance frequency.

‘A small atomic linewidth also suppresses the frequency instability due to the
various sources of noise. This is becaunse the fractional frequency stability due to noise
is given by the fractional atomic linewidth divided by the signal-to-noise ratio. As the
signal-to-noise ratio Sp=(7P/kpT)V? increases as 2 function of measuring time r and
oscillation power P, the long-term frequency stability is, for large enough power, not
limited by instabilities due to noise but rather by instabilities in the atomic linewidth
angd cavity frequency which couple to the maser frequency via the cavity pulling effect.

Collisions of the atoms with the storage bulb walls perturb the hydrogen atom and
thereby shift the hyperfine transition frequency (Fig.4). Although this wall shift very
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strongly limits the accuracy of the hydrogen maser, it does not seriously limit the
stability as this shift is sufficiently stable at temperature stabilities under which
hydrogen masers are typically operated.

=11

6-10 T I T T T T x|s:ns
- bHe - ' FEP120 ' .
RIS - .
0 ! S SO tolorrid

0.1 ’ 10 100 1000

TIK)

Fig.4. Temperature dependence of the fractional maser frequency shift due to
collisions of the hydrogen etoms with the wall atoms. Right part: observed shift
with a 15 cm diameter teflon (FEP120) coated bulb'13), left part: predicted for o
15 em diometer helium coated bulb(5}, ‘

As pointed out a decade ago,'2.9) a hydrogen maser operating at liquid helium
temperatures would have a2 much higher intrinsic frequency stability than a
conventional (room-temperature) hydrogen maser. This is mainly due to the much
smaller collisional H-atom line broadening at lower temperatures, allowing for a larger

- radiating atom density, and hence for a larger power P without increasing the atomic
linewidth above the room-temperature value. Furthermore, lower femperatures.
increase the signal-to-noise ratio by decreasing kT, and help to get a better control
over the cavity resonance frequency. At that time, the lack of a wall coating suitable
for confining cold hydrogen atoms prevented the realization of a cryogenic hydrogen
maser. A conventional maser, with Teflon-coated walls can be operated down fo
approximately 80 K, but only at the expense of introducing a large wall shift (Fig.4)
and a large atomic line broadening. Wall coatings of solid neon and solid molecular
hydrogen surfaces can be used down to lower temperatures, but they also introduce
severe wall shifts and line broadenings. An important breakthrough was the success of
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the spin-polarized hydrogen stabilization experiment of Silvera and Walraven,4
which showed that H atoms do not enter a superfluid helium film. Of decisive
importance for the feasibility of low-temperature hydrogen masers with increased
stability was the discovery(®) that the frequency shift due fo collisions of the hydrogen
atoms with the He-coated walls and the He-vapor goes through a minimum as a
function of temperature (Fig.4). Operation at this temperature of about 0.5 K, should
produce a very high thermal stability. Berlinsky and Hardy predicted!®) that with
such types of cryogenic hydrogen masers an improvement in frequency stability of
about three orders of magnitude over that of a room-temperature hydrogen maser
should be realizable.

Up till now we did not include the frequency shifts due to collisions between
hydrogen atoms in our discussion. Analyses of the effect of spin-exchange collisions(?
showed that it shifts the maser frequency in the same way as the cavity pulling does:
via a proporiionality to the atomic linewidth. Therefore, in some sense, the spin-
exchange frequency shift introduces no new difficulties. In this chapter we will show
tkat this is definitely not true in case of low temperature hydrogen masers. The above
mentioned papers discussing the spin-exchange frequency shift all ignore the effect of
the hyperfine energy levels separation during the spin-exchange collisions. This is an
essential omission in the case of cryogenic H-masers where, as we will show, the effect
of the hyperfine interaction during collisions introduces large maser frequency shifts
which strongly limit the achievable stability.

The following two sections  both deal witk this hyperfine-induced spin-exchange
frequency shift. Section 3.2 gives a short account of the consequences of this shift on
the operation of the cryogenic H maser. Section 3.3 is much more detailed. It gives a
complete discussion of the combined effects of the spin-exchange and hyperfine
interactions on frequency shift, line broadening and hyperfine relaxation effects in an
oscillating H maser. It also discusses these effects for a room-temperature hydrogen
maser.

For background information on atomic frequency standards the reader is referred
{0 the review papers by Audoin and Vanier,(8) and Hellwig(®). A recent review on the
conventional hydrogen maser can be found in Ref10. A detailed discussion on
experiments with a cryogenic hydrogen maser is given in Ref.11.
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Section 3.2
Hyperfine Contribution to Spin-exchange Frequency Shifts in the Hydrogen Maser

B.J.Verhaar, J.M.V.A Koelman, H.T.C.Stoof, O.J.Luiten, and S.B.Crampton*-

Department of Physics, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands
*Department of Physics and Astronomy, Williams College,
Williamstown, Massachusetts 01267

[Published in Phys. Rev. A 35, 3825 (1987)]

We have rigorously included hyperfine interactions during electron-spin-exchange collisions
between ground-state hydrogen atoms and find additional frequency shifts which are
significant for low-temperature atomic hydrogen maser oscillators,

Introduction

Electron-spin-exchange collisions between ground-state paramagnetic atoms are
usually treated in a degenerate-internal-states approximation, which ignores hyperfine
interactions relative to electron-exchange interactions during collisions.(tB) Such
calculations predict small shifts of the AmF=0 hyperfine transition frequency in
ground-state atomic hydrogen proportional to the rate of collisions with other
hydrogen atoms and to the difference between the two Aszo level populations. (4.8
Because of the proportionality to the level population difference, such shifts can be
éliminated from the frequency of an atomic hydrogen maser oscillating in weak
magnetic field on the AmF=0 transition by tuning the maser microwave cavity so that
there is no change of oscillation frequency with collision rate.t® A -semiclassical
treatment by one of us of hyperfine effects during collisions to first order revealed a
small additional shift of the AmF = 0 hydrogen maser oscillation frequency not
compensated for by cavity mistuning.(”) Both the degenerate-internal-states shift and
the additional hyperfine<induced shift have been confirmed near room
temperature,i%.8) and the degenerate-internal-states shift down to liquid-nitrogen
‘temperatures.®)

Recently, hydrogen maser oscillation has been achieved at 9 to 10.5 K using solid-
neon storage surfaces,(10.1) znd at 0.3 to 0.6 K us’ing superfluid-helium storage
surfaces.(12-14) For cryogenic masers operating with reduced thermal noise and
potentially greater radiated power, the instability due to thermal noise may bet1s-10)
as low as two parts in 1018 The actual instability minimum will be determined by
mechanisms which couple the maser frequency to instabilities of other maser
- parameters. Understanding the ma.gnitudes and level population dependencies of any
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uncompensated hyperfine-induced spin-exchange-collision frequency shifts is therefore
potentially important to using cryogenic hydrogen masers as frequency standards and
spectroscopic tools. At cryogenic temperatures the effects of atom identity and
- quantization of collision angular moments are significant, so that it is essential that
calculations be fully quantum mechanical. Berlinsky and Shizgal have extended the
quantum-mechanical degenerate-internal-states calculations to 10 K and below.!i8 We
report here a quantum-mechanical treatment of frequency shifts and broadening due to
B-H spin-exchange collisions at low temperatures, including hyperfine-induced effects.
We find effects which are large compared to the potential thermal instabilities of
cryogenic hydrogen masers, but may also provide a sensitive probe of nonadiabatic
contributions in hydrogen-hydrogen atom-atom interactions at low collision energies.

- Method
Our starting point is the evolution equation for the spin density matrix,

dp ’ 3 i
.H!:_N_. = «.%(EK-E&')"M' - %[Hi(t))p]m’
A T N I (TUIN (TR ORI RO L
PruPuy V0% KA b pv'

A);") y!}“’u' t’m! ! "m

« ( oy tm, G S{r e v} e ~ S (s S A vy Pm)

dpm,
+ 3| l (1)

the quantum-mechanical Boltzmann equation for a homogeneous system, which we
have derived from the fundamental Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy for the distribution matrices. In this equation Greek subscripts
take values a,b,c,d, the 1s hyperfine states in order of increasing energy E, (Fig 1).
The operator H(t) represents any (iime-dependent but position-independent)
magnetic field operating on the atoms. The last term represents all relaxation terms
except for the relaxation due to the two-body collisions taken into account in the
previous term. The hydrogen atom density is denoted by n, the atomic mass by m,,
and the wave number in the entrance channels of the S-matrix elements by k. The
notation {af} implies normalized symmetrization (antisymmetrization) of two-body
spin states for relative orbital angular momentum £ even (odd) having z component m.
The brackets < > denote thermal averaging with the same velocity distribution for
each of the spin states, assuming dominance of thermalizing elastic collisions with the
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Fig.1. Atomic hydrogen ground—state energy levels vs applied magnelic field
strength in units (hwy)/(te—pp) (=0.102 T).

walls or between atoms relative to inelastic collisions between atoms.

Considering situations with coherence only between the a and c levels, we have a
4x4 spin density matrix with only one pair of nonvanishing off-diagonal elements pgc =
pea*. The collision terms in Eq.(1) contributing to the time development of pye have
the form

=226, @

with rateconstant-like!®) coefficients G,.

Let us now look more closely at the nature of these coefficients on the basis of some
symmetry considerations. The S-matrix elements follow from the Schrodinger equation
for two-body scattering. This contains a central interaction Ve consisting of singlet
and iriplet potentials

Ve = PgVs(r) + PrVa(1), 3

Pg(Pr) standing for a projection on singlet (tnplet) subs'paces In addition, it contains
the intra-atomic hyperﬁne interactions,
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Vhf = Mo(§§'ll+§.2 ‘12)) (4)

in which wy is the hyperfine frequency, while §; , and I; ; are the electron and proton
spins of the two colliding atoms. We consider only the case of very weak external
magnetic fields and so léave out Zeeman terms in calculating the S-matrix elements.
Although these terms, the interatomic hyperfine interactions, and the spin dipolar
interactions can be included in our coupled-channel calculations,29) their effects are
negligible compared to the exchange and intra-atomic hyperfine interactions. We leave
them out both in the discussion of symmetries and in the later first-order treatment so
as to keep the physics as transparent as possible.

Each of the coefficients G, then contains a sum of products S {aa}t {av}e
S+ {ca}t{cv}e? independent of m. It turns out tha.t only elastic S-matrix elements
contribute. For odd £ this follows from the selection rule AmF = 0, taking into account
that antisymmetric spin states {a} and {cv} can be formed simultaneously only for »
= b or d. For even {it is due to assuming zero magnetic field: All five symmetric spin
states consisting of {wo different hyperfine states, at least one of which is a or ¢, have
unmixed S=1, so that no coupling by V¢ (or Vi{} occurs within this set or to aa and
cc. The five S=1 spin states having elastic S-matrix elements exp(zié% ), with &f the
triplet phase shift, the S-matrix products within G, are canceled by the corresponding
products of Kronecker deltas for v = b or d. Therefore, in Eq.(2) the » = b and d
terms have contributions from odd £ only, the v = a and ¢ terms from even { only.

The collision problem shows symmetry under a 180° combined rotation of the two
electron spins and two proton spins about an axis perpendicular to the weak magnetic
field. This rotation exchanges b and d while leaving a and ¢ alone. We conclude that
the S-matrix elements for the ab and ad spin states are equal, as are those for the spin
states cb and cd. The result is finally that G, = <vA> = <v>2A, with <v> the
thermal average collision speed and X, the thermal average of the ), "cross section"
defined in simplified notation as '

_2 L (gl -
%= 7 2 e .00 ac) fac)

Y= %%r ¢ %venwﬂ)[Sfac},{ac}(sgc,cc) -1 )
Yo =da= 17, 3 OO g0y Ole o) -1 v =berd

We stress that all of the S-matrix elements in Eq.(5) are to be calculated for a
common value of kinetic energy in the particular elastic channel.
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Substituting

Pac(t) = pac(0)expli(wot SwifTs)t]

and using g, pw = 1, we find for the frequency shift

bw = 0<v>[(poe-paa)Xo+(pectPaa) At A, (6)
in which
Ao = Im[(Ac-2a)/2],
Ay = Im{(ActAa)/2-2b], (™
Az = Im(Ap).

At this point it is interesting to indicate how these results reduce to those of
Balling et ol. when the hyperfine splitting is turned off. The channels can then be

decoupled by transforming to the triplet and singlet channels, leading to the
expressions

S{of oy = <o) ELPWAEL PRI (®)

for the S-matrix elements in the degenerate-internal-states approximation as
expectation values in (anti)symmetric spin states depending on £ Alternatively, we
may note that without VBf the Hamiltonian for the two-body problem no longer
depend on the proton-spin degrees of freedom. A combined rotation of proton spins by
180° about the magnetic field direction as an additional symmetry operation now
exchanges a and ¢ while leaving b and d alone. We then find

(0) e l.. i
N =L %m (2t+1)sin[2( 65-8)],

A§°} = Aé") = 0. ©)

The frequency shift Sw thus reduces to the well-known expression for the case of
vanishing hyperfine splitting (ASO) = —A*/4 of Ref. 18).
To determine the various A quantities without neglecting hyperfine splitting, we
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have to calculate the elastic S-matrix elements in Bq.(5). This can be done by

integrating the coupled radial equations describing the H-H scattering wave functions

* in the various channels: the so-called coupled-channels {CC) approach,(20.2} which in
principle yields exact results. This is one of the methods we have used.

Calculating the frequency shift by the CC approach over the wide tempera.ture
interval needed for thermal averaging would be rather time consuming. Instead, it is
attractive to use an approach which exploits the weakness of the hyperfine interaction
(Mg ¥ 0.068 K) in the form of a calculation that takes into account the hyperfine
interaction as a first-order correction to the degenerate-internal-states approximation.
However, a simple Born-type approach for the hyperfine interaction yields volume
integrals which do not converge. This difficulty stems from the fact that the hyperfine

_interaction does not fall off at large distances. Yet as pointed out in Ref. 22, 2 first-
order treatment is possible and leads to a Born-iype integral resiricted to a finite
volume beyond which the singlet and triplet poteniials are negligible, accompanied by
a Wronskian surface term which in & way accounts for the nonvanishing hyperfine

" interaction in the outer volume. We use this method to calculate the various elastic S-
matrix elements including the finite energy separation of other hyperfine energy levels.
from the hyperfine energy level associated with the particular elastic channel under
consideration. The first-order corrections then arise from back and forth transitions fo
other hyperfine levels during a collision, as in the semiclassical treatment.(?? We find
that the corrections to the degenerate-internal-states S-matrix elements are given by

As{aﬁ} (o} = <L} (B-PQ)(V" L E)(PrPg){es}> 25 (10)

i.e., a simple spin-matrix element times a quantity AtE given by

al= ;hgka[kj [0k, r)—u%“‘)(k o) 12ar + 2(55(0)-8%(0))2 Wio(xe) 520 )] Ij,
| (11)

with the Wronskian W defined as W{ ,g] = {dg/dr—gff Or. The radial wave functions
«9) are normalized so as to have agsymptotic behavior

crilke—4tm) _ gllo)i(ke—tm)

and OY(kr) is a Hankelike free outgoing wave with asymptotic behavior ¢!(* 7).
Expression (11) is independent of ry under the condition that the triplet and singlet
potentials are zero for r > 1.

56



Substituting the S-matrix elements including the first-order corrections into (5), we
find for the right-hand side of (7):

1] 1
X = A( ) - -8
Ap=AA -5, (12)
Ay=48A,

with the corrections to the degenerate-internal-states 2 valves of Eq. {9) given by

AN, =T 5 (at+1)Im(2a5" 50,
T O
(13)
Ax_=Ty S (26 1)Im([A L s{04 540y,
0

Equations (6), (7), and (5) represent our final formulation of the spin-exchange
frequency shift including the hyperfine contributions. In the following section these
equations form the basis of a coupled-channel calculation. Likewise, Eqs. (12), (13),
and (11) are used for a first-order calculation.

Results
Both in the CC calculation and in the first-order approximation we have used "state-
of-the-art" singlet and triplet potentials.23.24) Details of the CC calculation are given
in Refs. 20 and 21. With respect to nonadiabatic effects, two types of calculations have
been carried out. The first incorporates the departure from the Born-Oppenheimer
approximation together with relativistic and radiative effects only as first-order
corrections to the singlet and triplet potentials, as in Ref. 24, Sec. HII. This approach is
commonly called the "adiabatic" approximation. Wolniewicz (Ref. 24, Sec. IV) has
devised a method for including the departure from Born-Oppenheimer in the bound-
state energies to second order {usually referred to as "nonadiabatic" corrections), but
this method does not apply to the continuum. Our own calculations and those of Ref.
25 indicate that the second-order corrections to the bound-state energies nearest the
continuum can be reproduced by simply replacing the reduced proton mass jmy, by the
reduced atomic mass fm, in the first-order calculation. In the second type of
calculation we incorporate nonadiabatic effects into the continuum calculation by
replacing the reduced mass g = jmp by g = Jm, in the radial Schrodinger equation.
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Results show a remarkable sensitivity to this introduction of nonadiabaticity, far
greater than would be expected from the relative change of the reduced-mass
parameter p from fmp to jma. In view of the large collection of results involved, we
restrict the following figures to results calculated using s = jm,. In discussing these
figures, the most important differences with the adiabatic results will be indicated.

In Fig.2 we give the contributions of the partial waves £= 0,1,2,3 to A;, and of the
partial waves £= 1,3 to Xy, as functions of energy. The hyperfine-induced correction to
Ap is small and does not seem to be significant. Note that the low-energy behavior in
Fig.2 is proportional to EH, in accordance with expectations. This figure makes clear
that the first-order treatment is indeed of considerable help in covering the large

1 621

cross section (m2)

20

1 i )
0005 05 50 50
E(K)

1

Fig.2. Partial contributions of the first four partial waves to the hyperfine-
induced frequency shift cross sections as functions of energy: -A{ forevenland -
Af = —z\f for odd L Solid lines, CC calculation; dotted line, first-order
calculation where it differs significantly from the CC calculation.

58



energy range and the large number of partial waves needed to calculate Boltzmann-~
averaged values over the temperature range of interest: Comparing the CC results
with the first-order results, the first-order calculation gives very accurate results
except at low energies in the £ = 0 partial wave. The deviation takes the form of a
prominent cusp in the CC curve due to the threshold of the cc channel felt in the aa
channel at E = 2hwp. This threshold behavior is easily understood by noting that each
of the S-matrix elements involved is a regular analytic function(2®) of the wave
number in the channel opening up at the threshold. Purely imaginary values for this
wave number below threshold, changing into real values above, explain the calculated
result that the path which is followed by Sf?e in the complex plane shows a 909 kink.
The latter gives rise to the cusp behavior in Fig. 2. 1t is understandable that it cannot
be reproduced by a first-order treatment based on the idea that the hyperfine
interaction has a small effect. However, it is clear that the hyperfine separation of the
aa and cc thresholds is of primary izhportance at low energies. In 2 classical picture the
hyperfine-precession angle of spins during a collision is no longer small for collisions
with a longer duration at threshold.

From the same argument one might expect similarly large difference of CC and
first-order results close to resonances, and that turns out to be the case. Calculations
using reduced mass g ---'gm;; show a pronounced resonance behavior of the A quantities
in the £ = 4 partial wave due to the 14,4 vibration-rotation state in the continuum at
1.3 K. Close to resonance, the first-order treatment greatly overestimates the A
quantities, and Bolizmann averaging then leads to appreciable contributions by the
resonance. The CC calculation shows two much weaker resonances with a 2hwy
hyperfine separation, corresponding to the energies at which the aa and cc channels are
resonant. Boltzmann averaging these leads to a much smaller contribution by the
resonance. Using s = jm,, the ¥ = 14, j = 4 resonance shifts to lower energies in the
continuum or even below the aa threshold,?” depending on the radial extent of the
0.2 cm-! "nonconvergence" correction of Ref. 24. In both cases the influence of the
resonance is negligible.

Our earlier discussion of the £ = 0 partial wave dealt only with the difference
between the CC and first-order results. The £&=0 curve shows a remarkable sensitivity
to 4. Replacing g = jm, by the very nearly equal value my, leads to changes of up to -
50% in Fig.2. Even after Bolizmann averaging this difference is expected to be
observable.

Figure 3 shows the iemperature dependence of the thermally averaged guantities
Xj and Xy. For completeness we have also added X, 71 = }(o+~ 7.), and 7, = §o., with
7.(7.) the thermal average spin-exchange broadening cross section(18.28) for even (0dd)
£ Our values for 7y, G2, and X differ significantly from those of Refs. 18 and 28. This
is not due to hyperfine-induced contributions, which are negligible, but to differences
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Fig.3. Thermally averaged values of the various frequency shift and broadening
cross sections as functions of temperature. To combine the advaniages of o
logarithmic plot for larger values of the cross sections and a linear plot for
small values, the vertical scale is taken to be linear in z = arcsinh(c;/1022m2)
and z = arcsinh(Xy /1022m2), respectively. The horizontal scale is logarithmic.
Solid lines, CC calculation; dotted line, first-order calculation where it differs
significantly from the CC calculation.

in the potentials used to calculate them. Note that the high CC values of A; below the
cusp result in significant deviations of the first-order values close to the important
temperature 0.5K. ‘

Significance for hydrogen masers

Although X; and X; are several orders of magnitude less than X, at the temperatures of
interest to cryogenic hydrogen masers, they are significant because of the different
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combinations of level populations p,,, that accompany their contributions to AmF=0
{ransition frequency shifts. Under conditions of self-excited maser oscillation, pec~paa is
fixed by the requirement that the power radiated by the atoms be equal to that
dissipated in the microwave cavity and other electronics. Assuming a single Lorentzian
microwave cavity mode and using the methods of Ref. 6 we find

AV (1+A2)

e (14)
pouB 2nQVy 0y

Pec ~ Paa =
with A = Q(uc/ww/w) twice the ratio of cavity mistuning to cavity resonance
width, pp the Bohr magneton, 7Vp/V, a filling factor relating the 1f energy density to
the amplitude of rf field driving the Am_=0 transition,®® and 1/#r; the full
frequency width (in Hz) of the Am=0 transition. Substituting (14) into (6) and
including the direct frequency pulling due to cavity mistuning,

bw = [A+aXo(14+A2))/ 72 + n<v>[Xy(pect paa) + A2l (15)

with a = (<v>/u)(Mup2)}(Ve/nQVe). The largest potential instability is due to
cavity mistuning. Assuming linewidth 1/%72 of order 1 Hz, cavity instabilities of parts
in 105 of the cavity width would produce frequency instabilities of the order of parts in
104 of the oscillation frequency, large compared to the 10-15 instabilities of room-
temperature hydrogen maser standards(i”’ and very large compared to the potential
thermal instabilities of cryogenic masers. In practice the cavity tuning must be reset
by monitoring it either electronically, using external sources and detectors, or using
variations of the oscillation frequency ifself as some maser parameters are varied.
Assuming linear dependence of the oscillation frequency on 1/7, values of oscillation
frequency measured for different values of 1/7; and different values of A for A << 1
can be used to correct the oscillation frequency to its "tuned" value: the value it would
have if the cavity were tuned to produce no variation of oscillation frequency with
1f7s. Such methodst3®) of setting the maser cavity are relatively insemsitive to
instabilities of coupling to external microwave sources and detectors. Moreover, in the
absence of the frequency shifts proportional to X; and X; the tuned oscillation
frequency would be unshifted by either cavity mistuning or collision effects. Because of
the hyperfine-induced collision effects, such tuning methods may leave significant
frequency offsets which can convert linewidth instabilities to instabilities of the tuned
maser oscillation {requency.
To illustrate these effects we make use of

1/73 = 1/70 + 8<v>[Gy(pectpas)+54), (16)
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the second term of which is obtained by a derivationts) similar to that of (6), bui
ignoring hyperfine-induced effects which are negligible. Here 1/7g includes all
contributions to the linewidth not due to gas-phase spin-exchange collisions. Surface
spin-exchange and recombination effects are small because the surface gas density is
very low under cryogenic maser operating conditions, so that 1/ is dominated by the
rate at which atoms flow in and out of the maser storage voiume, plus any relaxation

by motion through magnetic field gradients. Using (16) to eliminate n<v> from (15),
we find

bw = [A+aXo(14+A2-0)/ 72 + Q/f 7o, )
with
_ mix(?cc"f'ﬂaa)'*'fz B (18)
o poctpaa)to2

The dimensionless quantity Q generally depends on 1/7; in a complicated way via a
1/7; dependence of pce+paa. However, there are several important cases when the 1/72
dependence of ) can be neglected. At very low temperatures X;<<X; and 03<<7,,
- yielding @ = ~ X/7, independent of pect+paa. If any single relaxation rate greatly
exceeds all others, pec+paa and {I are approximately constant as relaxation processes
vary. To get an impression of the likely instabilities of maser oscillation frequency due
to hyperfine-induced collision effects, we therefore neglect the 1/7; dependence of Q.
In this approximation dw varies linearly with 1/7; as the density is varied. Correcting
the oscillation frequency to the value it would have with the cavity tuned for no
variation of oscillation frequency as the density is varied then leaves the tuned
oscillation frequency offset by the last term in (17). Figure 4 gives  as a function of
temperature for the choices pectpaa= 0.5 and 1.0. We include values of o) calculated
assuming (7QVy/Ve)=1000, a value intermediate between its value in the first
cryogenic masers(10-13) and its likely value in actual cryogenic maser standards. The
very large increase of  relative to aX; as the temperature is lowered illustrates the
much greater importance of hyperfine-induced frequency shifts at cryogenic
temperaf.ures, for example, at 0.5K and peetpaa=0.5, Q=0.07. Even this small value
puts sevére limits on maser parameter stabilities required to achieve maser frequency
instability as low as 2 parts in 1018. For { = 0.07 the maximum allowed instability of
1/7q would be 3 x 10-7s1, :

Note that measurements of changes of residual offset frequency with changes of
1/ could be used both o reduce the hyperfine-induced frequency offsets and to
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Fig.{. The dimensionless Jrequency offset parameters aX, and § as functions of
temperature. 1 i3 given for pectpaa (total fraction of atoms in a or ¢ states)
equal to 0.5 and 1.0, and aXy is given for nQVu/ Ve = 1000.

measure A; and Xy, as in the high-temperature investigations of hyperfine-induced
spin-exchange frequency shifts.(?) Considering the sensitivity of the low-temperature
spin-exchange cross sections 7y2 and Xg,1,2 to details of the H-H interaction, in
particular to nonadiabatic effects, such experiments may yield interesting results.
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We have calculated the spin-exchange shifts of the ground state Amg=0 transition of a gas
of hydrogen atoms in sero magnetic field from sero temperature up to temperatures of
1000K. Taking into account the hyperfine interaction during spin-exchange collisions we
find shifts nonli in the atomic linewidth and not compensated for by the usual methods
of tuning the microwave cavities of oscillating hydrogen maser frequency standards. At
room temperatures these shifts affect the H-maser stability at the level of dw/fw & 10715, At
cryogenic temperatures these shifts are large compared to the potential thermal instabilities
of liquid-helium-lined hydrogen masers. A detailed study of these nonlinear shifts reveals
several ways to reduce these new sources of frequency instability.

Introducti

The unparalleled frequency stability of the hydrogen maser gives rise to numerous
interesting scientific experiments and techniques. Important achievements such as
submillisecond-of-arc angular resolutions in radio astronomy(! and the detection of
drifts of the earth’s tectonic plates as small as a few centimeters per annum are
unthinkable without the verydong-baseline interferometry technique which is founded
on the ultra high frequency stability of hydrogen masers. Also for physicists the
hydrogen maser has developed into an important research tool. State-of-the-art
hydrogen maser ‘instabilities as low as one part in 10! are essential in experiments
such as the determination of the Stark ghift of the hydrogen hyperfine splitting, (3! and
accurate verifications of general relativity theory.()

Despite these impressive accomplishments, even more stable frequency standards
would be extremely welcome, not only to improve upon the above-mentioned
experiments and techniques, but also to open up new horizons in fields as diverse as
metrology, physics, astronomy and geodesy. An illustrative example is the fact that
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the best atomic clocks available are not sufficiently stable to determine any
irregularities in the period of the fastest millisecond pulsar discovered.(s

As pointed out a decade ago,!®? a cryogenic hydrogen maser might improve
considerably upon the frequency stability of a conventional (room-temperature)
hydrogen maser, thanks to the reduced thermal noise and cavity pulling at lower
temperatures.- In 1984 Crampion ef ol.(7) reported maser operation of a solid-Ne-
coated hydrogen maser at 10 K. Two years ago Hess et ol., Hiirlimann et ol. and
Walsworth et al. reported(®} the first observations of maser oscillation with liquid-4He-~
coated walls at temperatures near 0.5 K. For this type of eryogenic hydrogen masers a
f.requency—instabﬂity limit due to thermal fluctuations as low as two parts in 1018 was
anticipated by Berlinsky and Hardy,'®! leading to the exciting possibility for an
improvement in the state-of-the-art of frequency stability with almost three orders of
magnitude. However, as we pointed out already briefly in a previous publication,!10)
one may cast doubt on the realization of that large stability improvement because of
frequency instabilities associated with hydrogen atom spin-exchange collisions.

Spin-exchange collisions between the hydrogen atoms radiating in a hydrogen
maser frequency standard affect the maser frequency in two distinct ways. They
dikrectly shift the transition frequency, and they broaden the atomic linewidth, which
increases the frequency pulling due to cavity mistuning. The usual theoretical
treatment of hydrogen atom spin-exchange collisions,(!! which treats the hyperfine
energy levels during the collisions as degenerate, predicts that the direct spin-exchange
frequency shifts are proportional {o the atomic linewidth, as are frequency shifts due
to cavity mistuning.(2) Tuning the cavity so that the oscillation frequency is
independent of atomic linewidth ("spin-exchange tuning") is predicted by that
treatment to cancel the direct spin-exchange shift against the cavity mistuning shift
and hence to leave the oscillation frequency independent of collision rate.(13} As the
collision rate is one of the most difficult parameters to stabilize, such "spin-exchange
tuning” methods have been important to the development of hydrogen maser
standards. :

Including the hyperfine energy-level splitting to first order in a semi-classical spin-
exchange collision calculation, predicis additional direct frequency shifts not
proportional o the total atomic linewidth, but rather proporiional to the collision part
of the linewidth.t4) This leaves the spin-exchange tuned oscillation frequency
independent of collision rate but offset by an amount proportional to that part of the
atomic linewidth not caused by collisions.(14) Measurements of this offset in a room
temperature hydrogen maser agreed within errors with the semiclassical estimate of
the effect.(14) The offset predicted by that calculation does not adversely affect the
stability of hydrogen maser standards unless something happens to affect that part of

~ the linewidth not due to collisions, such as a change of relaxation by motion of the
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atoms through magnetic field gradients or a change of relaxation due to interactions
with the storage surface.

We have recently done a fully quantum-mechanical calculation of the direct shifts
for cryogenic temperatures taking into account the nonzero hyperfine energy levels
splitting.(1) We found new effects which are nonlinear in the collision rate and so
produce not only an offset of the spin-exchange tuned oscillation frequency, but also a
variation of the oscillation frequency with collision rate even after spin-exchange
tuning. '

In this paper we present a more complete description of the formalism. In addition,
we extend the results for the additional direct shifts to a much larger temperature
interval so that their implications for hydrogen maser frequency standards operating
at room temperature can be investigated. Near room temperature these additional
direct shifts are small, but in contrast to the semiclassical result, are highly nonlinear ,
in the collision rate. We show that the semiclassical approximation used for the
calculation of the direct shifts breaks down when the influence of the exchange
interaction on the orbital degrees of freedom cannot be neglected. At collision energies
large in comparison to the strength of the exchange interaction we show that the
quantum-mechanical and semiclassical results agree, in which case both predict direct
shifts linear in the collision rate.

A third aim of the present paper is to investigate in detail the variation of the
spin-exchange tuned oscillation frequency with collision rate at cryogenic and room
temperatures. Although near room temperature the additional direct shifts are small,
the variations of the spin-exchange tuned oscillation frequency are large emough to
affect the relative stability of the maser at the 10-15 level. At cryogenic temperatures
variations of the spin-exchange tuned oscillation frequency are orders of magnitude
larger than the potential thermal instabilitiest®) of liquid-helium-temperature maser
standards. ‘

In examining the variation of the spin-exchange tuned frequency with collision rate
we are able {o propose various sirategies to minimize these new sources of frequency
instabilities. Several modifications of cryogenic hydrogen-maser designs potentially
reduce the dependence of the spin-exchange tuned oscillation frequency on the atomic
linewidth by some orders of magnitude, yielding the possibility of cryogenic hydrogen-
maser frequency standards with long term frequency instabilities close to the potential
thermal instability limit of 2 parts in 1018, '
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Spin-exchange frequency shifts in oscillating hydrogen masers
Our starting point for the derivation of the direct frequency shifts is the evolution
equation for the spin-density matrix

d i . Co. .
HTpm"'";i(en"en') Prgt = pmc’lrad + pmc'lo + pm’lc’ _(1)

In this equation p is the 4x4 one particle spin-density matrix in which the Greek
subseripts take values a,b,c,d, the ground-state hyperfine levels in order of increasing
energy €, (see Fig.1). The first term on the right-hand side of Eq.(1) is the radiation
teryo resulting from the interaction of the atomic magnetic moments with the of cavity
magnetic field. The second term on the right-hand side represents all time-independent
one-atom terms such as wall collisions, finite cavity residence time, and interactions
with magnetic field inhomogeneities.

&
1 "

%

0 )
Erhw 1/8 1o $5~€b
° B/ i)
. |Amg=0
-3

Fig.1. Atomic hydrogen ground-state energy levels.

The third term on the right-hand side of Eq.(1), the collision term, may be derived
as follows. We start with a system of N ground state hydrogen atoms mutually
interacting via a central spin-dependent (singlet or triplet) interaction enclosed in a
large but finite volume L3. At the end of this derivation we take the limit L-oo. The
time evolution for the single-particle distribution matrix F' can be expressed in terms
of the pair-distribution matrix F* via the first equation of the quantum-mechanical
Bogoliubov-Born-Kirkwood-Yvon (BBGKY) hierarchy(!%), which in some suitable
single-particle basis can be written

a ] i ] [ — _i » .
'akak' + EE(Hkapk'_kaHpk') - R E (Vkp,mnan,k'p ka,mnvmn,k'p)' (2)
P pmn
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Here H represents the single-particle hamiltonian and V the pair interaction. This
equation may be converted to a closed equation for the single-particle distribution
matrix by expressing the pair matrix at the right-hand side in terms of the single-
particle distribution matrix. To first order in the hydrogen atom density and assuming
at times long before a binary collision the absence of any correlation between the
atoms not due to particle indistinguishability (molecular chaos assumption), the pair
density matrix in Eq.(2) may be written

' 58
Fkl mn 2 Qﬁl .Pq (Fpr qs e Fps qr) Qr§ mn ®)
pqrs

in which (¥ is the causal two-body Mgller wave operator,(18) while the statistics sign
e=+1 for a gas of hydrogen atoms, being {composite) bosons (e=-1 applies to the case
of fermions). To be more definite we work in a single-particle basis {|n>} in which the
single-particle Hamiltonian is diagonal (H|n> = E{|n>). Furthermore, we restrict
ourselves to spatially homogeneous systems so that these single-particle states are
common eigenstates of the momentum operator and the hyperfine spin hamiltonian,
|n> = |k ,v>. We have E{ = hk2/2m, + ¢, {m, is the atomic mass) and the
single-particle density matrix is diagonal in the momentum indices. Transforming to
the interaction representation: Fy - = Fy exp{i(EQ-EQ)t/], we find

‘HEFkk"‘ h 2 [Vklmn mnpq(Fpr qs+ers qr)nf'gik'l
mnpgrst

1’ i
- Off pq(Fpr qs+ers qr) rs mn mnk'l exP(KAE’t)’ (4)

The “energy inelasticity™ AEEEﬁ-Eﬁ,+E§-E§+E§—-E& in the exponent on the right-
hand side can only receive a contribution due to the hyperfine energy-level separations
since F, being diagonal in momentum, does not couple between different kinetic
energies. Terms with AE#0 average out on time scales long in comparison with the
hyperfine precession time scale h/AE. So, in the long-time limit, we may restrict the
summations on the right-hand side of Eq.{4) to values Eﬁ«i-E{’;i—]i%:‘ilﬁ,—i—Ef)+E{°1 and
- replace the exponent by unity. Assuming a dominance of either thermalizing collisions,
with the walls or elastic collisions between the atoms relative to inelastic collisions,
the translational degrees of freedom are Boltzmann distributed as

Fon=F =NP_ (k i(e ¢ Jt/h
mn = Fepiew ™ N Pm ) ek A RGN, 6)
with the single-particle spin-density matrix p normalized to unity, E Poe =1, and
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P (k) the Boltzmann distribution for free atoms with mass m also normalized to
unity, & P (k )= 1. Using the identity P (k) P (k') = P, (k+k') P «}m(*(l‘-'l-(-'))
and center of mass momentum conservation we may carry out the summation over the
center of mass momenta. Taking the limit N » o, L = », N/L3 = n = constant, and
after performing the angular integrations, we finally arrive at

1/2

;m,;c=: ) Pmy%[(1“‘5,;,\)(”%)(”%)(”"p'w}] g(zm)
A w!

T *
(2 St im Bty ® - opguilienywn))) - ©

In this equation the prime oa the summation sign indicates the subsidiary condition
€.+ e“.-i— €, = € te€ F+£V’ while Greek subscripts between brackets are a short-hand
notation for normalized (anti)symmetri¢c two-body spin states,

‘ Eaé-i— e!-—l!léa’ 7
{af} AT (M

which for a gas of hydrogen atoms (e=+1) leads to (anti)symmetric spin states for
{odd) even angular momentum numbers £ The S-matrix elements, defined for the
various angular momentum numbers so as to form 2 unitary matrix in spin space, are
to be evaluated for a common kinetic energy E,=h?%k?/m, in the enirance channels
{w} and {p'»'}, and the brackets <...> denote thermal averaging over the wave
number k. The final result, i.e., the collision contribution to the spin evolution
[Eq.(6)], has already been presented in Ref.10.

We study situations in which the atoms are stimulated to radiate at one specific
transition as—f. In that case the only nonvanishing off-diagonal elements of the spin-
density matrix are pog and pop=pep*. The one-particle and collision terms in Eq.(1)
contributing to the time development of pog are of the form: '

9&510 = ~(Tg-ibusy) paﬁ : ®

bggle=1s o8 P ; ,/(1+5aA)(1+.sﬁ,\)(1+am,)(u-aﬁp) Gogprs (@

in which the complex coefficient I'y-idw, generally depends in a complicated way on
the values of the diagonal spin-density matrix elements pyy, but is independent of pop.
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The complex coefficients G P describe the contribution of collisions in which a 1~
state atom makes a fransition to the A state in colliding with an atom which isin a
coherent superposition of the ¢ and § states. These ratelike coefficients may be
expressed in terms of complex effective "cross sections" o af,mA using

Copun= (Y oapun(®): (10)

with v=2Rk/m, being the relative collision velocity. In turn these "cross sections" are
given in terms of S-matrix elements via:

T o (Eid) = 2;.2%(2&1) [sfa‘\}{ a}E) sﬁ‘”} {ﬁv}(Ek)—ﬁAy] .
Upon snbstituting

paﬂ(t) = paﬁ(o) exp[i(eﬂ-ea)/h + ifw - Tt (12)

together with Eqs.(8) and (8) in Eq.(1) for x'=af and neglecting for a moment the
radiation term, we find for the direct frequency shift fw and the atomic linewidth I':

bw= buwp+ Sue, (13)
= Pc + rc 3 (14)

in which the direct frequency shift fw. and line broadening I'¢ due to spin-exchange
collisions are related to the "cross sections" & A via:

» 1/2
ibucTe = n <v>) pw}j[(1+aak)(1+5m)(1+aay)(1+5ﬁu)] Tt (15)
v A

Here we have introduced the modified thermal averaging ¢ = <vo>/<v>, with the
thermally averaged collision velocity <v>=(16kpT/7ma}V2

In a hydrogen maser oscillating at low magnetic field on the Am -0 trans:tzon
with unperturbed atomic frequency wy=(ec—€s)/h there is only coherence between the
a and ¢ states. Substituting aff=ac in the preceding expressions we find at zero
magnetic field Gac,v—»)\ =6, Gac =), (D0 contribution from inelastic processes) and -

Gye,bab = Gac,gudy Yielding
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1l

Sug= 1 <v> [(pecpaa)Xo + (Pectpaa)hi + %o , (18)

Te

n <v> [(fecpaa)oo + (Pcctpas)or + 73], an

with the real spin-exchange shift and broadening "cross-sections” A; and o3 defined in
terms of the o coefficients by ”

ac,pv
iAoy = ”ac,cac - Uac’a_.a s (18)
o= Tac,co¢ +aac,a—va " Tac,d-d (19)
iApor = "ac,d—»d . (20)
The elastic S-matrix elements occurring in the expressions for o follow from

ac, iy
the Schrbdinger equation describing H+H scattering with an effective central two-

body interaction consisting of singlet and triplet potentials,

<{af}|Ve(m)[{rs}>= §  <{af}|Ps|{A}> Vs(r), (21)
=0,1

with Vo(Vy) being the singlet{triplet) potential and Pg standing for the projection
operator on the subspace with total electron spin S. Since these projection operators
are nondiagonal in the |{af}> basis we have to deal with sets of coupled radial
equations describing the H+H scattering wave function in the various channels.
Calculations of this kind are easily carried out®!? at the low temperature of 0.5 K,
where the liquid-4He-covered cryogenic hydrogen maser is to operate: S-matrix
elements need to be calculated only at a relatively small number of energy values. For
calculations at higher {emperatures, such as those necessary to obtain thermally
averaged frequency-shift cross sections for room temperature hydrogen masers,
however, a coupledchanne! approach becomes a tedious task. Fortunately, in this
regime it is possible to circumvent this task by means of the degenerate-internal-states
(DIS) approximation which neglects the internal energy-evel separation and replaces
the various internal emergy levels ¢, by a common constant e, in which case the
equations can be decoupled in transforming to a basis in which the total electron spin

S is a good quantum number. Splitting off factors containing the low energy behavior
this leads to the result(18.10
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| »
Sl(DIS) (E_e — )_ § 2163(E"‘2€o)

frillodl e P Gifall= } & <UFsl{a>. @2
[./ E—e,y—eb- JE—£a~eﬂ ] : ‘

8$=0,1

Notice that we have some freedom in choosing a value for e;. When dealing with
elastic. S-matrix elements S{ {aB} a suifable choice is to set 2¢; equal to the
internal energy in the specific channel under consideration {2¢;=¢4+¢g), which leads
to the evaluation of singlet or triplet phaseshifts at an energy equal to the kinetic

energy in the elastic channel considered. Substituting expression (22) with this choice

of ¢ for the elastic S-matrix elements in the o, coefficients on the right-hand side
of Eqs.(18)-{20) yields
A{EDIS) = -2-;-'5 X (2841) sin(?éf-—?&é) , (23)
{ even
API) = A(PS) g, (24)
USDIS) =0, ' (25)
oA = {‘2% (-0 (2641) sin*(sf-65) , (26)
o§P18) = _;"5 Y e sin’(eésh) (27)
L odd

in which the phase shifts 6§ are to be evaluated at a collision energy Ek=h2k3/ma.

These equations are in agreement with the results obtained by Balling et al.

On the basis of previous experience(!s.17) one might expect that treating the
hyperfine energy levels during collisions as degenerate yields a wvery accurate
description of hydrogen atom spin-exchange collision processes down to zero collision
energy, so that the direct frequency shift due to spin-exchange collisions is accurately
described by the well-known DIS result:

Jw‘(:ms) = n<v> X((}ms)(pcc—paa) , (28)

rendering the more complicated Eq.(18) of less interest. However, as pointed out
previously,10) although X; and X; are indeed small compared to Xy, in a H-maser
Ai{pectpaa) and X, may be large compared t0 Xo{pcc—Paa). The reason for this is that
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in having self-sustained maser oscillation pec-paa is strongly reduced by transfer of
energy to the cavity electromagnetic field, yielding a strongly suppressed DIS direct
frequency shift. Moreover, retaining the radiation term in Eq.(1) for xx'=ac shows
n{pecpas) to be proportional to the total atomic linewidth(2)

1(pec-pas) = Y1+ADT, (29)

in which 7 is a constant dependenfon cavity parameters, and A is twice the ratio of
cavity mistuning to cavity resonance linewidth. This yields the possibility to
compensate the DIS direct shifts against shifts due to cavity mistuning.t13) These
considerations make it necessary to take into account hyperfinedinduced effects in the -
calculation of the direct frequemcy shifts. On the other hand, in the equation
describing spin-exchange line broadening [Eq.(17)], only the terms having a
nonvanishing DIS contribution have o be retained. This is because even when the
hyperfine-induced cross section oy is comparable in magnitude to @y, the quantity
(Pcc—paa) o can still be neglected compared to (pectpaa)dy because |poc—paal <<1.

The shift Aw in the maser frequency is the sum of the direct shift fw and the shift
' A due to cavity mistuning.(12) In view of the previous paragraph the direct shift due
to spin-exchange collisions is calculated using expression (16) with the result (29)
substituted and Eq.(17) with pec—paa=0 substituted. For later use it is convenient to
split the oscillation frequency shift Aw as a sum of a shift Awy independent of collision
rate and a shift Aw, vanishing at zero-collision rate,

Aw= Auwy+ Awe= (Swp + {i Tg) + (1 - O)Tc, ~ (30)

with the dimensionless parameters {2 and {} defined as

Q= - fl(ﬂcc*‘ﬁaa)*'zz ’ @1)
01(pectpas)+ 02
= A+ <v>X(1+A%). (32)

Here fuw, is the direct frequency shift due to one atom processes which in most cases is
dominated by the shift due to wall collisions. The combined effect of the shift due to
cavity pulling and the direct shift due to almost-pure spin-exchange collisions on the
H-maser frequency is described by the parameter {}. The parameter  is a measure for
the additional effects of hyperfine induced spinexchange shifis on the H-maser
frequency. The DIS value for Q vanishes (A=2,=0), in which case spin-exchange
tuning the cavity, i.e. setting A so as to make Aw independent of collisional linewidth,
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yields the frequency shift purely determined by the shifts due {0 one-atom processes
 such as wall collisions: Aw=fwy. Taking into account the hyperfine level separation in
a semi-classical picture(¥) yields @ to be nonzero but independent of pcetpaa
(A\=01=0). In this case the spin-exchange tuning procedure leads to an oscillation
frequency shift being the sum of a shift due to one-atom processes and a shift
proportional to the contribution of one-atom processes to the linewidth:
Aw=§uwy+QI'y. According to the preceding analysis () is nonzero and depends in a
complicated way on collision rate via the collision rate dependence of the level
population sum pectpaa, yielding the oscillation frequency shift to depend on the
collision rate even after spin-exchange tuning.

H ne-level ion dynamics
As is evident from Eqs.(30)-(32), the evaluation of the frequency shift Aw requires
knowledge of the value of pectpas, We determine this parameter starting from Eq.(1),
but now for the time evolution of the diagonal spin-density matrix elements. We start
by investigating the rate of change of pect+pas. Using Eq.(6) we find for the collision
term on the right-hand side of Eq.(1) at zero magnetic field:

(Pectpaa) lc/ n= QI(de..ac'*'de-;aa,'i'de-tcc)p bbPdd ~ Gcc—»bdpcé

=G,y bafad — CacbalPaalect |Pac! N - (33)

Using the unitarity property of the § matrix, the downward spin-exchange relaxation
rates are given by(t?)

(27rh

Cops = (2‘“)‘3{76}{:1;9}(""9 aen’) 09

Again using the dominance of thermalizing elastic collisions over inelastic collisions,
~the upward relaxation rates G S0 are related to the corresponding downward
relaxation rates G aByb via a Boltzmann factor

, -(e +e.e —€)[kgT
76"@“ € ACE ﬂ ' Gaﬁ—vyﬁ' (35)

The level populations pgq on the right-hand side of Eq.(33) may be expressed in terms
of pec—paa, PectPaa, and pga—pyy. Furthermore we use the fact that in oscillating H
masers 4T'/n is a small parameter (typically y~10%m-3) yielding |pec—paal <<1 and
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| pac}2< <1 50 that Eq.(33) can be approximated by

(beetPaa)lefrg = HOpgaCopad(ectrya)? + 1Cpg ll-2oeetpaa{pgqrp)

(36)
with Ghg+= Opduac T Cbduaa * Chduce ® (37)
Gba = Cacbd + Caasbd * Cecbd - (38)

We now turn to the remaining terms in Eq.(1) contributing to the rate of change of
the level population sum geetpaa. No contribution comes from the radiation term. The
one-body term, however, does contribute. An important contribution to this term
arises from atom flow in and out of the maser bulb. Of the many possible other one-
body processes that may affect the level populations, we include transitions due fo
motion through magnetic field gradients both as an example of the complications
introduced by additional hyperfine transition processes and as an example of the

opportunities t0 use these processes to diagnose or even "tune out" frequency
instabilities. We thus have(1s)

Paalo = Ty (pgg gd) =T (PggPec) » (39)

Peclo = ~Tb (PecCe) = T (PocPrp) = Trn (Pecrag) (40)
Poblo = ~Tp (PyyP5p) ~ Iy (PpPee) » (41)

Paale = Ty (Pyaray) » (42)

in which I'y, and I'y are the contributions of atom flow and magnetic field gradients to

the atomic linewidth T and 93:.« are the fractional hyperfine level populations of atoms
entering the maser bulb.

For stationary oscillation the total rate of change of peetpaa must be zero, which
again using | pec-paa| <<1 leads to

2 (GpgCipa)(Pectryy)! + 0 Cpg (1200 Fp, HPaqPpp )
= 2Ty (o +p, P2 +03 )] 2 Ty [2peetp,,)-1] = 0. (43)

Using the fact that the difference between the d- and b-level populations ig only
affected by relaxation due to atom flow and magnetic gradients (not by the interaction
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with the rf cavity magnetic field nor by spin-exchange collisions), we have

PaaPub = 0gaPpp) T/ (Ty+Tpy)- (44)

Using this result, Eq.(43) reduces to a quadratic equation in the single unknown
Pec+Paa. Eliminating n in favor of T using Eq.(17) with (pee—paa)oo « 0 leaves this
equation quadratic in pectpas with the partial relaxation widths entering the
coefficients only in the form of their ratios. We conclude that pec+paa (and hence (1)
depends on I'y, I'y, and T'¢ only in the form of a dependence on two of their ratios, for
instance, I'¢/Tp and Ty /Ty,

The various spin-exchange relaxation rates contributing to G—-»b d and Gb 4o T8Y be
calculated using the DIS expression (22) in Eq.(34). A somewhat cruder
approximation,(t! a high-energy version of the DIS approximation, consists of a
complete neglect of the difference between the channel energies €+ € € 7+e g and 2¢
in Eq.(22) which, when substituted in Eq.(34), yields

- = —(DIS)
Gpgaac = Gacba = <> "’é J (45)

- _ _ _ — (DIS), — (DIS)
Chgaaa = Casbd = Obdace = Coeabd = <v> (o7 + 05 )/2, (46)

and

Gpg, = Gpq = <v>(@")425,(0)), @

leading to a vanishing quadratic term in Eq.(43), with the corresponding simple
solution :

108G, (P gqppp)?] + 2y (03 +03,) + 20

PoetPoy = 48
cc aa ? nGhd_‘ + Pb -+ 21‘m ( )

This high-eneigy approximation is valid only at collision energies which are large in
comparison with the internal energy-levels splittings. Since at the operating
temperatures of liquid-helium-ined hydrogen masers (T=0.5 X) typical collision
energies are comparable in magnitude to the internal enmergydevel splittings
[(eb+ea—ca—ea)/kp = 2hus/kp = 0.14 K], the solution of the more complicated Eq.(43)
rather than Eq.(48) must in general be used as a closed formula for pec+paa.
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Methods of calculation
As is clear from the preceding sections, to determine the H-maser frequency shift
(Eq.30), we have to calculate several spin-exchange collision cross sections and
relaxation rates. We start with the inelastic processes. Substituting the DIS expression
(22) in Eq.(34) we findu®

24+1
sin’(6(B{)-04 (B )

21‘;& Q[ Ek J Ek+£a+§g‘€ "55

G =} (2t+1) LT
afé m,k El
L k

x | <{aB}| PPyl {18}> |2 (49)

with Eé: Ek+e ot 65—260. As in Eq.(22), we have some freedom in choosing the value
of 2¢5. The evaluation of the relaxation rates amounts to a standard phase-ghift
calculation for singlet- and triplet-potential scatiering. In these and all further
calculations we use "state-of-the-art" singlet and triplet potentials,2® including
adiabatic, relativistic, and radiative corrections. Nonadiabatic corrections are taken
into account simply by replacing the nuclear mass occurring in the adiabatic equations
by the atomic mass mj. @419 Choosing 2¢q in Eq.(49) halfway between the initial and
final channel energies, i.e., 2ep = §(eatep+eytes), yields good agreement with coupled
channelt1?) results (typical deviations below 1%).

The calculation of elastic processes is somewhat more involved. In particular, the
hyperfine-induced spin-exchange frequency shift and broadening "cross sections" (A,
A2, and oy) require the evaluation of elastic S-matrix elements taking into account the
hyperfine energy-evel separation. This can be done by taking the hyperfine energy-
level separation into account as a first-order correction to the DIS approximation,(22,

10}

S{a}as) = S{oBlon + OS{atiiasy 0

When choosing 2e¢=¢q+ €g in Eq.(22) the DIS elastic S-matrix elements reduce to:

{(DIS)

StapHon®) = L

2

Sé(Ek) <{afi}|Pg|{af}>, (51)
1 .

with

dmp=e S, (52)
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and the first-order correction takes the form
¢ ¢ 2 € +€ 6—5 a—f ‘
A5{opHag)Fi) = & (Ek){}:é} I<(a}Py-Pol{nap> 1 L, (s3)
i ) .

with the dimensionless quantity Ag defined by

. Lo 2
24E) = gih"j: [kJ [nfu] e + Jsp-sy? W(o‘,ago‘)m”] N
Here W( , ) is a Wronskian, ot a Hankeldike free outgoing wave with asymptotxc
behavior € *47), and the radial smglet(tnple) wave functions uf (ud) are
normalized so as to have the outgoing part - Ss O" In a classical picture the first-
order correction ASt arises due to the finite separation of other hyperfine
energy levels (ey+e¢5) from the total hyperfine energy eot+ep associated with the
particular elastic channel under consideration, which is felt when making back and
forth transitions to other hyperfine levels during the time that the exchange
interaction is active.

Using Eqs.{(50){53) we find for the hyperfine-induced frequency shiff and
broadening cross sections:

Y= M) -2 +2g) (55)

- i‘*’% (at+1) m[asEsdyz + (0'alestashi] . o)
Ay = ;%g(zm) [+ Im[A‘* (sf+s§)/2] , (57)
);(mz) [1+(-1)§ Re[Af“ s‘} (58)

o= o™ -3y, | (59)

7y= o’ (60)

Classically speaking, this first-order treatment breaks down when the collision time
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becomes large compared to the precession frequency associated with the internal
energy-level splitting. The collision duration is large at low collision energies and at
narrow resonances, occurring in the singlet channel at certain collision energies.(23)
We were able to find out about the range of applicability of the first-order approach
under various circumstances in comparing the first-order results with results obtained
with the coupledchannel analysis. This comparison fully confirmed the preceding
classical expectation: the agreement of the first-order approach with the coupled-
channel method turned out to be excellent except for the dominating {=0 partial wave
at the low energies relevant for the cryogenic H maser and at energies and £ values at
which narrow resonances for singlet scattering occur.

The low-energy deviation for /=0 is most prominent at collision energies below
2hwo, due to the fact that the path in the complex plane which is followed by the
elastic S-matrix element sﬁ?‘?aa when varying the energy shows a 90° kink at

=2€,+2hwy originating from the threshold in the cc channel felt in the aa channel at
this energy. This behavior is absent in the first-order calculation which leads to S-
matrix elements which all follow smooth paths in the complex plane.

The deviation at singlet resonances turned out to be most prominent for resonance
widths roughly comparable to or smaller than the hyperfine energy-level splitting
2hwy. The quantity A™(E) characterizing the hyperfine-induced correction to the
elastic S-matrix elements is then no longer small compared to unity, yielding a large
overestimation of hyperfine-induced effects. Fortunately, we were able to avoid a time-
consuming coupled-channel calculation at narrow resonances by devising a modified
zeroth-order approach. This approach is based on the fact that we have some freedom
in choosing a value for ¢y in Eq.(22) so as to make the first-order contribution to the
elastic S-matrix elements as small as possible. As is clear intuitively, a good choice for
€p at narrow singlet resonances appears to be one which gives the first-order correction
to the two-body Hamiltonian

V=) [{18)>(extes2e0)<{7}| (61)
{1}

a vanishing expectation value in singlet spin space. The calculation of the elastic S-
matrix elements occurring in the expression for Tac v in zeroth order using this
choice for €q leads to the evaluation of singlet or triplet phase shifts at energies shifted
from the kinetic energy in the particular elastic channel under consideration [Eq.(22)].
In view of the result that all narrow resonances occur at energies which are large in
comparison with the internal energy levels splitting (a typical narrow resonance being
the v=11, =13 resonance at E ~ 276K), we may neglect the energy difference

o+ €a~2¢€¢ compared to typical kinetic energies in the denominators of Eq.(22). This
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leads to an expression for the elastic S-matrix elements of the form of Eq.(51) but with
the energy argument of the singlet or triplet S matrix on the right-hand side replaced
by Ek+ea+ep—2eo. Using this expression for the elastic S-matrix elements in the
Tac, coefficients on the right-hand sides of Eqs.(18)-(20) gives rise to nonvanishing
hyperfine-induced frequency shift and broadening cross-sections. Comparison with
coupled-channels results reveals that at narrow resonances these modified zeroth-order
results are almost indistinguishable from the exact results.

It is of interest to compare the semiclassical results for the hyperfine-induced
frequency-shift cross sections of Ref.14 in some detail with our quantum-mechanical
results. In the semiclassical straight-line calculation spin-exchange collisions are
modeled as spin evolutions under the influence of time-dependent spin interactions
originating from the triplet and singlet potentials as the particles move along the
undeflected classical trajectories. Defining the singlet (triplet) spin propagators G
(Gy) as

a{t**)bE) = exp[d \t/;(b,t)dt : (62)
3
t.

with b the impact parameter, and neglecting hyperfine-induced effects we find for the

semiclassical (SC) elastic S-matrix elements

222?{2%}@1}) 2 G('H’"m)(b E) <{of}|Ps|{cf}> (63)
=0,1

[cf. Eq.(51)]. The first-order corrections to the elastic S-matrix elements take the form
of Eq.(53) with A{E) replaced by

A(b E) ==L w Tm[c;{w,e)_ggw.t)] [G{t,—m)_Go(t»‘“’)] dt, (64)
-0

leading to the semiclassical expression for the hyperfine induced frequency-shift cross
section Ay(E), -

o0
ASOV(E) = H Im[A*(b,E)[G§+“’"°°)(b,E)+Gé""’"“’)(b,E)]] arbdb  (65)
G L

[cf. Eq.(57)]. The analogous expression for /\SSC)(E) is identical to the right-hand side
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of Bq.(65) except for the replacement of the plus sign by a minus sign. However, it can
be shown that the imaginary part of A*GT®®) is just equal to the imaginary part of
A*GS‘“"’"""), so that ASSC) vanishes. The origin of this cancellation can be traced back
1o the neglect of the influence of the exchange interaction on the orbital degrees of
freedom: generalizing the preceding calculation scheme 50 as to take into account the
difference between the classical singlet and triplet scattering trajectories would yield
non-vanishing values for ,\ssc).ﬂ“ This picture is confirmed by the numerical resulis
presented in the following section.

Numerical results
We first consider the spin-exchange frequency shift and broadening cross sections.
Although the cross sections Mg, 01, and o have already been calculated by several
authors,(24.25) we include them here because these previous values for ¢, differ
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Fig.2. Spin-ezchange frequency shift and broadening cross sections for low
collision energies.
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quantitatively and qualitatively from our values due to the neglect of hyperfine-
induced effects at low collision energies. Also due to the use of improved potentials,
our results for Aq, 0y, and o, differ at low collision energies from previous results.

In Fig.2 the frequency and broadening cross sections are given as functions of
relative collision energy. A prominent feature of Fig.2 is the occurrence of cusps in the
Ay, oo, and oy cross sections at E-= 2hwy = 0.14 K. As discussed in the previous
section, the origin of this behavior can be traced back to threshold effects in the ¢=0
partial wave. The corresponding cusp in the A, cross section is invisible at the scale of
this figure since the main contribution fo this cross section comes from the DIS term
which behaves smoothly as a function of energy. The A, and ¢, cross sections vanish at
zero collision energy and show no cusp behavior as they have no &0 contribution. All
_other cross sections diverge as E-/2 at low collision energy. For the oy cross section
this is in contrast to the finite value at zero collision energy, expected@5! on the basis
of DIS considerations.

In Fig.3 the thermally averaged frequency-shift cross sections are shown as
functions of temperature. The low-temperature behavior in this figure corresponds to
the low-energy behavior in Fig.2. The cross section o is strongly reduced at high

TR T P T TITTtTTVTTTI

cross section (mZ)

Fig.8. Thermally averagéd values of the frequency shift and broadewing cross
sections.
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temperatures due to a cancellation of contributions from subsequent { values [see
Eq.(19)]. Although a semiclassical theory predicts X; to vanish,(1¥ we find X; to be
comparable in magnitude to X, even at temperatures as high as 1000 K. This in
contrast to oy, which is negligible compared to oy at T= 1000 K, which by itself would
suggest that the semiclassical theory predicting &y to vanish is applicable at this
temperature. Calculating A; and Ay fully quantummechanically as well as A» semi-
classically assuming straight-ine trajectories, we find that Ay as well ag the difference
between the semiclassical and quantummechanical values for A, both become small in
comparison with A, (Fig.4) when collision energies become large in comparison with
the typical strength of the exchange interaction (a few eV), as may be expected from
the picture described above. In this way we arrive at the conclusion that the
ap;ilicahi]ity of the semi-classical straight-line calculation scheme is resiricted to
collision energies above a few eV (corresponding to temperatures « 105 ).

109
TIK)

10 10

Fig.6. Dimensionless frequency-shift parameters {} (for A=0 and y=10%cm3s)
and © (for pectpaa= 0.5, 1.0} as functions of temperature.

To determine the effective spin-exchange relaxation rates Gy 4, and G , playing '
a role in the dependence of pectpaa on H-atom density, we have to calculate the DIS
values of several spin-exchange relaxation rates G afn b In Fig.5 the rate constants
corresponding to the allowed dowaward spin-exchange transitions at B=0 are
presented as functions of temperature. Also, the effective rates de ,and G Lbd 3¢
. shown. The figure clearly shows that the rate constants involving odd £ values only are
completely negligible at sub-kelvin temperatures, but become increasingly important
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at temperatures above 1 K. Note that the difference Gyg—C_pgr Which vanishes in
the high-energy approximation, is negligible compared fo de_, only at temperatures
well above 1 K.,

Using the values of Xy, X3, 01, and oy displayed in Fig.3, we are able to determine
the dimensionless frequency-offset parameter Q [Eq.(31)]- Figure 6 shows Q for two
different values of pec+pza a5 a function of temperature. In order to compare this
hyperfine-induced frequency-offset parameter with the DIS frequency offset parameter
{} we also show the latter as a function of temperature for A=0 and a typical value 7=
109 cm3s. Figure 8 shows very clearly that hyperfine-induced spin-exchange frequency
shifts become increasingly important at lower temperatures. Both frequency-offset
parameters have a finite zero-temperature limit. We find Q(T=0)=3.4 and
{(T=0,A=0) well below unity but depending on the precise value for 7.

To get an idea whether hyperfine induced effects lead to important new sources of
frequency instabilities we simulated the opération of hydrogen-maser frequency
standards at various temperatures. To begin with, we restricied ourselves to the
collision-rate-dependent oscillation frequency shift Aw, which potentislly causes the
largest instabilities since the collision rate is difficult to keep constant in an oscillating
H maser. Using Eqs.(30)(32), (43), (44), and the calculated values of the various spin-
exchange collision quaniities we determined the variations of the oscillation frequency
with varying collision rate for various cavity tunings. Since the dependence of 2 on I'y,
Ty and T can be written as O(T'¢/T'y,l'a/Ts), Eq.(30) shows that the offset Aw, of the
oscillation frequency from its value at zero collision rate when expressed in units of T
also depends on the various contributions to the hyperfine relaxation rates as
Awe(Te/Ty,Tn/Ty). Figure 7 displays Awe/T'y as a function of T'¢/Typ for a maser
operating at 0.5K with I'y=0 at various cavity frequency seitings. As is evident from
this figure, the oscillation frequency varies nonlinearly with T'¢, because of the
dependence of Q on the level populations sum pee-tpaa, which is itself dependent on
collision rate. Even when applying the usual "spin-exchange tuning" procedure, i.e.,
tuning the cavity so that the oscillation frequency is the same at the minimum
collision rate at which self-sustained oscillation can be obtained and the maximum
collision rate available, there remains an appreciable variation of oscillation frequency
in between these two values. Because it is difficult to reproduce and keep constant the
collision rate in a hydrogen maser, these variations of the "spin-exchange tuned"
oscillation frequency with I'c pose severe problems to the realization of ultrastable
cryogenic hydrogen microwave standards: due to the large slopes present in Fig.7
variations of the collisional linewidth T as small as 0.01 st lead to variations of the
fractional oscillation frequency offset Aw/w of the order 10-15, which is very large when
compared 1o the potential thermal instabilities of cryogenic masers. Of course, when
working at very low atom densities the collisional linewidth can be kept stable within
a much smaller interval. However, this can only be done at the expense of increasing
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the oscillation frequency instabilities due to thermal noise. (6.9 In the next section we
investigate strategies which reduce the frequency instability due to variations in the
coilisional linewidth while leaving the potential thermal instabilities at a level of 2
parts in 1018, )

At room temperatures these problems are much less serious. Figure 8 shows the
oscillation frequency shifts for various cavity frequency seftings as functions of the
collisional linewidth for T = 300 K. The nonlinear variations of oscillation frequency
are three orders of magnitude smaller in comparison with the cryogenic results, thanks
to the much smaller value of @ (Fig.6). When the cavity is tuned so that the
oscillation frequency is the same at the minimum and maximum collision rates at
which maser oscillation occurs, it leaves a fractional variation of frequency with
collision rate typically of order 10-15 per Hz of collisional linewidth. In order to keep
fractional variations of oscillation frequency due to the nonlinear dependence of
linewidth safely below the 10-15 level, marking the state of the art of room temperature
hydrogen-maser relative frequency instabilities, the variations in collision rate then
need only to be kept below the 10% level.

Strategi inimizing the nonlinear direct shifl

Since the instabilities in the maser frequency due to the nonlinear dependence of the
oscillation frequency on collision rates seems to be prohibitive in improving
substantially upon the stability of room temperature hydrogen masers using cryogenic
hydrogen masers, it is necessary to develop technigues for minimizing this nonlinear
dependence. We can distinguish three different approaches to accomplish this. First,
we may reduce (or even remove) the slope of the cavity frequency as function of
collision rate at ambient collision frequency by some refinement of the spin-exchange
‘tuning procedure. Secondly, we can reduce the dependence of the frequency-offset
parameter £} on the level population sum pectpaa. As a third possibility we can reduce
the dependence of the relative level population sum pectpaa 0On collision rate.

The first strategy amounts to using 2 smaller range of T'¢ variations to set the
cavity tuning. The optimum spin-exchange tuning procedure clearly would be the one
which eliminates the slope of the collision frequency with collision rate at a certain
collision rate. However, even the most refined spir-exchange tuning procedure cannot
annihilate any nonlinear dependence on collision rate. Indeed, differentiating Eq.(30)
twice with respect {0 the collisional linewidth I'¢ while keeping the linewidth not due
to collisions I'y constant yields

PAw a  aa

T D T, 66
or .2 oT, oTc2 (66)
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which can not be eliminated by any cavity frequency setting since it is independent of
A. Using the fact that pec+pas, and hence O, depends only on the relative magnitudes
of the various hyperfine relaxation conmtributions, it is easily seen that also the
dimensionless quantity T8Aw/T? depends only on the ratios of I'p, I'y, and I
Figure 9 shows the nonlinearity parameter & = I'c| #Aw/dTc2| for Te=I", at various
temperatures with varying I'n/Tp. A very prominent feature of Fig.9 is the sharp
decrease of the nonlinearity parameter with increasing temperature: at room
temperature E is typically 3 orders of magnitude smaller than at T=0.5K. At T=0.5K
the parameter Z is of the order 2x10-3 for the linewidth due to collisions roughly equal

2 300
1 66 1 i | N

0 02 0.4 0.6 038 10
M/ Th

itrprul

Fig.8. Nonlinearity parameter E for I'e/Tv=1 and T= 0.5K, 10K, 300K as
Junctions of Ty /Tp.

to the linewidth due to atom flow and a small contribution of magnetic field gradients
to the radiative linewidth. Assuming T'c 25-1 variations of the collision rate of 1% lead
i0 variations of the fractional oscillation frequency shift Aw/w of approximately
2x10-t7, still an order of magnitude larger than the potential thermal instabilities of
liquid-helium-lined hydrogen masers. Moreover, it seems unlikely that {he optimum
spin-exchange tuning procedure can be realized in practice, as such a tuning procedure
requires small I'; variations to set the cavity tuning, which leads to a decrease in the
accuracy of the cavity-tuning procedure. In the following we nevertheless make use of

the nonlinearity parameter Z since it provides a fundamental lower bound to
instabilities in the oscillation frequency due to variations in the collision rate

90



‘We have only the temperature as a single adjustable parameter available to reduce
the nonlinear direct shifts by the second strategy, reducing the dependence of Q on
PectPaa. As is already clear from Fig.9, higher cryogenic temperatures of about 10 K
reduce the nonlinearity parameter roughly by a factor-of 10. In this respect neon-
surface hydrogen masers operating near 10 K hold some promise although solid neon
surfaces are harder to reproduce and maintain than superfluid helium surfaces. The
dependence of § on peetpan can be completely eliminated at temperaiures at which
X10-01X, vanishes. This occurs at very low and very high temperatures, as well as at
T= 7.6 K and T= 77 K (Fig.6). From these, the low-temperature limit and the 7.6 K
{emperature would in principle hold some promise for achieving an ultrastable
hydrogen-maser standard because at these temperatures spin-exchange relaxation cross
sections are low enough that collisions are not likely to limit the radiated power at
achievable hydrogen atom fluxes. However, the operation temperature of 7.6 K is
unsuitable for hydrogen-maser standards as it seems uiﬂikely that any wall coating
suitable for operation at this particular temperature exists. Also, the Tw0 limit is
unsuitable not only because of the problem of confining ultracold atoms without
disturbing the hyperfine frequency, but also because in this limit the magnitude of Q
exceeds unity, yielding for the cavity mistuning parameter required by the spin-
exchange tuning condition {}=0 a value of order 1, which is unrealistic since the
cavity mistuning A is limited to values |A|<<1.
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Fig.10. Nonlinearity porameter £ with varying I'v/(Tv+Ty) for various values
0fTe/(Tv+Ta) at T=0.5 K.
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There are several ways to reduce the dependence of the maser frequency on
collision rate using the third strategy, reducing the dependence of peet-paa on collision
rate. For instance, when working at high atom densities 80 that nGpg-+>>I'p+Iy,
Eq.(43) yields a strongly reduced dependence of pectpaa on collision rate. This can be
seen clearly in Fig.10, which shows the nonlinearity parameter for various values of
Te/(To+ln) as functions of I'y/(Tp+Tw): for fixed values of T'p/(Tp+Ta) the
nonlinearity parameter decreases sharply with increasing I'c¢/(Tp+Ta). Another
important feature of Fig.10 is the large dip in the nonlinearity parameter for
Tp/(Ty+Ta) = 0.35. This dip results from the fact that at this value for I'y/(Tp+Tu)
for pJa—pon=1/2 the level population difference 2{pag—pus) = 0.35 [Eq.(44)] which is
just equal to the value of

V(GG 50/ Gpa
at T=0.5 K. Substituting

2paapvn) =V (Gpq G pa)/ Cpa,

together with pQc+p%= 1/2 in Eq.(43) yields the level population sum pectpaa= 1/2
independent of collision rate. This gives rise to a modified tuning procedure which in
principle annihilates the collision-rate-dependent oscillation frequency shift Aw,
completely. The essence of this tuning procedure is first to set the magnetic field
inhomogeneities so as to make {}-Q [Eq.(30)] independent of collision rate before
applying the usual spin-exchange tuning procedure. The dependence of {i-Q on T can
be monitored by determining the oscillation frequency and the total linewidth {whick
can be determined experimentally from variations Aw of oscillation frequency with
cavity mistuning A, as shown by Eqs.(30) and (32)] at three different collision rates: if
the oscillation frequency depends nonlinearly on total linewidth at these three points,
{3-Q still has some dependence on collision rate. For {3-Q independent of collision rate
the usual spin-exchange tuning procedure yields {}=0 and hence a vanishing collision
rate dependent shift, Awe=0.

Even when Auw is completely removed, we still have to deal with the collision-rate-
independent shift Awy = fwy + £ Ty = dwy + © Ty. For a ‘Helined hydrogen maser
operating at a temperature T=0.5K Berlinsky and Hardy predicted(® that the shift
Swy could be kept constant against thermal instabilities to within 1 part in 1018, The
* second term contributing to Awy seems more critical. For peetpas= 1/2 and T = 0.5
K we have Q = 0.07 (Fig.6). This value implies a maximum allowed instability in the
linewidth not due to collisions as low as 6T'¢=3x10"7s"1 in order to achieve a frequency
instability of 2 parts in 1018, It seems unlikely that all line-broadening processes
contributing to Ty (atom flow, motion through magnetic field gradients, wall
collisions, Doppler broadening, etc.) can be kept stable within this Timit.

At room temperature £) ~ 0.0002, more than two orders of magnitude smaller than
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at T= 0.5 K. In order to achieve a frequency instability of 1 part in 1015 the linewidth
not due {0 collisions must be kept stable within approximately 0.05 s-t.
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CHAPTER 4
SPIN WAVES IN DILUTE H} GAS

Section 4.1
Spin waves in dilute gases

Among the many fascinating properties of spin-polarized hydrogen gas, the spin-wave
phenomenon takes & prominent place. Of course, spin waves are rather commonplace
in dense systems such as liquid *He and electrons in ferromagnetic metals. In dilute
hydrogen atom gas however, the observation of spin waves!l! came as a surprise.
Although the possibility of coherent spin oscillations in dilute non-degenerate gases
was predicted by Bashkin? and independently in considerable detail by Lhuillier and
Lalog,’® workers in the field were rather skeptical about the observability of spin
waves in such systems. It was believed that the exchange effects which are at the
origin of the spin-wave phenomenon, to be effective, require a dense degenerate phase
such as in the Fermi liquid *He.

The success of the Cornell spin-wave experiment for H gas () and a related
experiment with %He gas,4) showed that this skepticism was too pessimistic. In fact,
these experiments showed very convincingly that spin waves can propagate in any
system of identical pariicles independent of particle statistics or particle density, as
long as there is some degree of spin-polarization, and if temperature is low enough.
This last requirement can be stated more precisely as follows: If the thermal De
Broglie wavelength of the constituent particles is considerably longer than the range of
the interparticle interaction.

The theoretical description of spin waves in dilute gases differs from that in dense
systems, in that no adjustable phenomenological parameters are required. This nice
feature, typical for theories on dilute systems, makes it possible to predict the spin-
wave modes for any experimental geometry. Such modes, calculated for the Cornell
experimental geometry by Lévy and Ruckensteint® agreed excellently with the
experimental results.

The hydrogen gas in which the spin waves are observed is in a high magnetic field
(B= 6-10 T), so0 that only the high-field-secking a- and b-states are populated (sect.1.2,
Fig.1). At high magnetic field these hyperfine states both have their electron spin
antiparallel to the magnetic field, but differ in their nuclear spin orientations, which
are parallel (state b) or antiparallel (state a) to the electron spin. In the Cornell
experiment, siarting from a doubly polarized gas, the nuclear spins were tilted by
applying an NMR pulse at the a—b transition frequency. This gave rise to collective
oscillations of the nuclear magnetization, although the gas was dilute and had no
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significant nuclear-spin-dependent interactions. Egsential for the occurrence of these
spin waves is the large initial polarization of the nuclear spins, which originates from
preferential recombination of the a-state atoms (sect. 1.2).

In the next section we give a simple model which makes plausible that spin waves
can propagate in a dilute system with spin-independent interactions if the spins are
polarized. The remaining two sections are devoted to the possibility of exciting spin
waves in the two-dimensional H| gas adsorbed on a superfluid helium film. Section 2.3
gives a derivation of the spin wave equation from first principles, valid for any number
of spatial dimensions d>2. Using these results, we discuss the possibilities for observing
spin waves in 2D H| gas.
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Section 4.2
A simple microscopic picture

How can spin waves originate in a rarefied Boltzmann gas of particles with spin-
independent interactions? Here, we want to give an answer to this question in the form
of a simple microscopic model which, although it may have some tentative aspects
(like any simple description of 3 complicated phenomenon), does give reasonable
results and certainly has its merits in giving some physical insight into this subtle
: phenomenon.

We consider a gas of identical particles (bosons or fermions) with two
degenerate(!) internal states (spini particles). In particular we study the spin
~ evolution due to two-particle collisions occurring in the gas. Such collisions are
described by a wavefunction which is a combined spin-spatial wave function. We
-choose the bisector of the spin-axes of the two colliding particles as the spin
quantization axis (z-axis), p as the angle of the x-axis with the plane spanned by the
two spinvectors, and © as the angle between the spins and the z-axis (Fig.1). For gases
in which the mean free path of the particles is much shorter than the length scale over
which the spin-orientation varies appreciably, only scattering between particles with
almost parallel spins (|©|<<1) occurs. For small angle ©, we may work out all

expressions to first order in @, so that the spin functions of the particles take the
form@

Ix(1)> = e 11> o P |5,
()
1x(2)> = e 11> + 30 eTHY |5,

The two-particle spinfunction consists of a symmetric (triplet) part and an
antisymmetric (singlet) part:

1x(L,2)> = €32111> + 10 111-11>. @)

The magnitude and direction of the transverse spin component of a particle is given by
the magnitude and phase, respectively, of the expectation value of the spin operator
o+=»}(ox-+ioy), which satisfies the rules o,|{>=0, and 0.||>=|1>.

Now, we take the spatial degrees of freedom into our consideration. Taking into
account s-wave scattering (dominant at low temperatures) due to a central spin-
independent interaction, some textbook scattering theory(3) gives for the asymptotic
form of the symmetric (&.) or antisymmetric (®.) scattering wave function in relative
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coordinates:

o, (k) '2® [2%2] m[eiﬁ'i ekl (1:&1){0(1{}9;] , 3)

with the s-wave scaitering amplitude fo(k) given in terms of the s-wave phaseshift
&(k) by '

fo(k) = ﬁf[ez“"’(")a]. (4)
Notice that, consistent with the s-wave scattering assumption, according to Eq.(3)
only the spatially symmetric component undergoes scatiering. Depending on whether
the particles obey Bose-statistics {e=+1), or Fermi-statistics {e=-1), the total

wavefunction must be symmetric or antisymmetric, respectively, under permutation of
the particles. For the total wavefunction we therefore write

¥ (kD) = 2,00 11> + 8_ (k1) 40 |T1-11>. ®)
* Using the expression for the asymptotic form of the plane wave(®

ik. . L S
kI 2o ﬂ%;{e‘kf 8(ier) - ¢7KT §(k+r)}, )

with 6(;) defined via the relation [ 47rd;c 6(;:-:10) f(;:) =f(;:o), we can split up the wave
functions 2 in incoming (%) and outgoing (%}) parts:

8, (kp) "2° 33k + 21 (L), @

with

* »~ -~ . ~ » 2i60 (k)_ » R .
#lp) 20 %g.[ﬁf] { f(k-uz) + jo(k+ar) + 5 L 6, e—ﬁ_l}emkf, (in==)
‘ ‘ : (8)

In the same way the total wave function [Eq.(5)] can be split in an ingoing and an
outgoing part: ‘

v (kp) "2 ¢ kn) + ¥H(k), ©)

98



with

—]

Velen) "2 (k) > + 82 (k) 40 [11-11>. (10)

We define the expectation value

1) q{¥} = g (900, (1(520) - (G2¥)e, ()0 (11)

- which gives the radial flux of the transverse spin component (ra.di"al spin .cmrent) of
particle 1 for a wavefunction ¥. By changing ¢.(1) into ¢4(2) and r into —r the right-
hand side of {11) changes into the definition of the radial spin flux of particle 2. For
the total radial spin flux of both particles we have

3,400} = 30) {0} + 3(2), 4 {9}
= 1 rys 8 g :
= e o, (-0, OG0 - GRello, (o, e (12)
Calculating the radial spin current for the ingoing (¥;) and the outgoing (23

wavefunctions by combining Eqs.(8-10,12), we find them to differ for asymptotic -
values by a term AJ _:

+q I :
Lol Ve =" Lg{¥ e + 81, v (13)
The AJraq term can be interpreted as the net radial spin current at location r due to
the scattering. It receives a non-vanishing contribution only from the interference term -

between the transmitted waves [proportional to §(k=r)}, and the spherically scattered
wave:

: I3 271 ~2ie60_ RN T ip
Blpyl9) 2° 20 (720 [ar-R-tia+)) @6, (149)

Integrating over the surface of a sphere with radius r, we find for the difference
between the total outgoing spin current and the total ingoing spin current:

4Jr2d; Blog( = £ [0elP 2Pl _od¥] i, (15)
This result can be interpreted as follows. It describes a change in the spin current
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Fig.1. Visualization of the spin-rotation effect in low-energy collisions between
identical particles. '
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Fig.2. Spin wave modes, a: right traveling spin wave, b: left traveling spin wave,
and ¢: standing spin wave (superposition of a and b).



given by a rotation of the plane in which the spinvectors are located around the vector
of the total spin over an angle —2¢89(k) [Fig.(1)]. Due to the factor k this total spin
current is only in the direction of the transmitted wave. The factor 4x/k? is the
effective cross section for this "spin-rotation™ process. At low tiemperatures, .
| 8(k) | <<1 for all relevant k-values. In that case, the spin rotations are in the same
direction. It thus becomes clear intuitively that, although collisions occur at random
times, subsequent spin rotations add up and form, at a macroscopic scale, & coherent
oscillation of the spin magnetization (Fig.2). A formalism for the discussion of such
coherent oscillations is considered in the following section.
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Section 4.3
Spin waves in 2D and 3D gases

Derivation of the spin wave equation
Our starting point for the derivation of the spin diffusion equation is the quantum
mechanical BBGKY hierarchy for a system of N identical particles in a large but finite
volume Ld (d is the number of physical dimensions) with periodic boundary
conditions. The lowest equation of this hierarchy describes the time evolution of the
single particle distribution matrix F’ (normalized as Tr[F’}=N ) in terms of the pair
distribution matrix F* (normalized as Tr[F*]=N(N-1) )

a ¥ i 1] + _"i » 7
7 Tl +52(Hkapk'_ka Hpk’) - R z (Vkp,mnan,k’p ka,mnvmn,k'p)‘ (1)
P pmn

Here H represents the single-particle Hamiltonian and V the pair interaction. This
 equation may be converted to a closed equation for the single particle distribution
matrix by expressing the pair matrix at the'right hand side in terms of the single-
particle distribution matrix. To first order in the hydrogen atom density and assuming
at times long before a binary collision the absence of any correlation between the
atoms not due to particle indistinguishability (molecular chaos assumption), the pair
density matrix in Eq.(1) may be written(®

- — ‘ + [ + t 1'
Fkl,mn - Z ﬂfxf),pq (Fpr Fqs +e Fps qu) Qg ),mn @)
pqrs

in which Q% is the causal two-body Mglier wave operator,2) while the statistics sign
e=+1 for a gas of bosonic hydrogen atoms {e=~1 applies to the case of fermions). To
be more definite we work from now on in a single-particle basis {|a>} in which the
single-particle hamiltonian is diagonal (H|n> = E,|n>). Defining the T-operator as
T=VQ(+, and using some relations for the Mgller wave operator from scattering
theory,®) we find ‘

d o, i v
‘a"t‘" Fkko + K(Ek"Ek;) Fkk. =

"i B ] 2 ] i ] i 4 ’ 1'
3 lekl,pq(Fpk'Fql'i' FoFa) + 5 zl(FkrFls'*' FieFi0)Trs 11
bq I8

—-— i ] I3 : H v ‘f 1 - 1 V
|3 pzrslTki,pq(Ferqs'*'EFpqur)Trs,k'l [Ers'Ek‘l"m EP q~Ek1+xq] ®)
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in which # is a small positive constant. We will take the limit %~ 0 after going to the
limit L - oo. At this point in the derivation the limit # -+ 0 cannot be taken as for
finite L the value for n is bounded from below by the requirement(®! 5 >> huwy with e
the mean traversal frequency for motion through the volume Ld.

Using the fact that inhomogeneities of the system show up only over macroscopic
distances of order L we can write out the indices labelling the single-particle states in
terms of wave vectors (underlined characters) and internal-state labels (Greek
subscripts):

E, » Ek)+E,
Fiye Faa'('ls’-lg)’

with E(k) = 7%k?/2m. For spin-indepeﬁdent interactions and splitting off the center of
mass momentum we find for the T-matrix:

Tepia” Traprifer = TERID §yn1ya bog by,

After working out the resulting expression we take the thermodynamic limit: N - o,
L-o00, N/Ld = n = constant, so that summations over wavevectors change into
integrations. Taking also the limit # - 0, and applying the Wigner transformation

ik'r
fopn) = (20)% [dk' e F gtk ki), ®
while using the fact that the gas is only slightly inhomogeneous, we find:
a h i
‘af faﬁ(k’.l;) + E‘l_{'!rfaﬂ(]_(?z) + %{EQ(E)—Eﬂ(E)] faﬂ(.k_!g) =
% 2 (2r)-4a1 [T(k-i.%'l)fqg(k,z)fw(l,z) - T LD (e DF, (D)

+ e TAAFBIF , (LOF, k) - e T (A DF , ()F WeE: _)]
E(z:}-sa dljdgjdg_ (26429 o kP fo0IF, (a)

+ e'rc_-l 20T g l-UF , (pOF, 3] He+a-k-d) KE(HEW-E0-E()
(%)
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Using the optical theorem(® this may be re-written as
faﬁ(g_,_) + = k v aﬁ(—-’-) + E[E ()-Eﬂ(_) faﬂ(k,;) =

5 en<fa Re{T(;c.-z,g-m%[Fa,,(ggF.,ﬁ(Lz)-F@a.;)F,,g@z)]

3%(21)'3‘1&1_]62](13

|01 %) [FokIF,, (LD-F (BF, (a0)]
it

- (), wr“(w—wz[ oy BT 40 = 4F o (0T, 41D
-wa,,(z,z)x«:,ﬁec_,g]] Hptak-D) HE@HE(Q-EW-EQ). (®)

We define the spin density as the zeroth-order moment of the distribution function
with respect to k:

Tofd) = (27)9[dk F (lkn) ™
From Eq.(6) a spin density conservation equation can be derived:
a’?‘aaﬂ+!r-laﬂ+%(Ea—Eﬁ)oaﬂ= 0, (8)

with the spin current defined as the first-order moment of the distributionfunction
with respect to k:

= (20)4[di N/ F ). @

Equation (8) has precisely the form ome should expect for a system with spin-
independent interactions. However, it is not a closed equation as it contains the spin
current. Just as for the spin density we may derive from Eq.(6) an evolution equation
for the spin current. However, this equation would contain a second order k-moment of
the distribution function f. In this way a hierarchy of equations describing the time
evolution of the k-moments of the disiribution function arises. We may ¢ut off this
hierarchy wusing the Chapman-Enskog scheme.(t Physically this means that we
suppose, as a first approximation, local thermal equilibrium, i.e. that in each separate
- region of the gas thermal equilibrium is reached, whereas the gas as a whole is out of
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equilibrinm. Mathematically this amounts to ireating the drift term at the left hand
side of Eq.(6) as a small perturbation compared to the collision term at the right hand
side. Neglecting for a moment the drift term, Eq.(6) describes a rapid relaxation to a
local equilibrium situation:

LD = £,g() 0,0, o)

with feq(k) the Boltzmann distribution function satisfying the detailed balance
condition {e(klsl)=foa(P)aola) for k¥l=ptg, and ED+EQ=B(RMEQ).

Linearizing around local equilibrium, i.e., writing

foglnt) = T (Wl frt)+eg gknt]s (11)

and working out all terms in Eq.(6) to first order in g o EXEP for the drift term
which is worked out to zeroth order in g of e find that the first order correction to
the distribution function is given by g aﬂ(g,g,t) = (h/kgT)(k.J aﬂ)' For the spin-
current evolution equation we find

kgT V(E _E
a5+——--v aaﬁ+ﬁ(E B ﬂ+:zg_§_;._§2,aﬁ___

MQX (adygLan"yp) =) Tyylop (12)
7

To derive this result, we applied the s-wave approximation to the T-matrix in which
case the T-matrix depends only on the magnitude of the wavenumbers: T(kk') =
To(k)/A for k=k’ (on the energy shell). The normalization constant A = 274/2/T(d/2)
is the area of a d-dimensional "sphere" with unit radius. The s-wave approximation is
justified for a gas of hydrogen atoms at temperatures of a few hundreds of millikelvins
or less. The spin-transport coefficients O and K in Eq.(12) can be expressed as thermal
averages over the real part of the T-matrix and the squared modulus of the T-matrix,
respectively.
The T-matrix can be written in terms of the s-wave phase shift §(k):

2

To(k) = 2 —_"._2 8) gin[so(x)]. (13)

Using this equation we find for the spin transport coefficients 2 and K:
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- dm

¢ 5(20) cos[ (/7 &/0)] sin[O(VIF £/0)]  (14)

2d/2, )8~y ® 2

K = __d_m__ojdg eS¢y [sin{sﬂ(ﬂa‘r £/A)]]

(15)
with A=(27h2/mkgT)V/2, the thermal De Broglie wavelength of the particles.

We reduce the above-derived coupled equations (8) and (12) describing the spin
transport to one single spin-diffusion equation in the following way. First, we define
the *rotating” spin polarization {dimensionless spin density):

P aﬂ(g,t) = ei(E&—E%) Hh o*aﬁ(g,t)/n (16)

and the "rotating" spin-polarization current:

§aﬁ(trt) = ei(E&"Eﬁ)t/f" l&ﬂ(-r-’t)/ B (17)

In these equations E 9 is the energy of the hyperfine level o averaged over the volume.
In agreement with experimental circumstances we suppose the deviations E a(g):
E a(Q'Egz small compared to thermal energies, and also small compared to RK.
Physically this means that inhomogeneities in the external field do not influence the
thermal motion of the particles, and that the spin currents relax at time scales much
shorter than the time scale needed to dephase them in the field inhomogeneities.
Furthermore, within a few interatomic collision times the spin current is relaxed to its
(local) equilibrium value, while the spin density (a conserved quantity during
collisions) changes significantly only over much longer time scales. Therefore, the spin
current follows adiabatically the varying spin density. Mathematically this means that
we may substitute the stationary value of the spin current following from the spin
current evolution equation in the evolution equation for the spin density. Using the

above assumptions we find that this quasi-stationary value of the spin current satisfies
the equation

P S (ORI PR
7

with the spindiffusion constant Dy = k‘BT/mK,m and the dimensionless coefficient p
= /K. We obtain a single transport equation when we construct a'closed expression
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for § of satisfying Eq.(18), and substitute it in the time evolution equation for the
spinpolarization: . ‘

[Cf. Eq.(8)]. In the absence of oscillating external fields, the polarization matrix is
diagonal, P aﬂ(g,t) = P (5t)é op © that Eq.(18) yields a diagonal spin-current
matrix, which when substituted in Eq.(19) yields

do  _ ;
7 Pag=Do WPy (20)

For weak external oscillating fields (small tipping-angle pulses) we may linearize
around this unperturbed situation, and write

P og(0t) = PY(5t)0,0+ Pognt), (21)

with |P',|<<1. To first order in P, we find a solution to Eq.(18) which,
substituted in Eq.(19), gives the desired spin-diffusion equation

P+ KB EQP fg = (22)

— i
l-eu(P-PY of

This so-called linearized spin-wave equation is a direct generalization of the
corresponding equation for two-evel systems in 3D derived by Lhuillier and Laloé.t®
Notice that the form of this equation is independent of the number of spatial
dimensions, only the values of the spin-transport coefficients Dy and g depend on the
dimensionality. Equation (22) is a diffusion equation with a complex diffusion
constant. It describes very well the results of the Cornell spin-wave experiment!?) on
bulk (3D) atomic hydrogen gas. Thereby the theoretical values of 4 and Dg obtained
for a 3D H|-atom gas by Lhuilliert® were confirmed. In the following we will calculate
these parameters for a 2D H]-atom gas.

First, we show that the dimensionless coefficient p is related to the quality factor
Q of the spinwaves. To do this, we assume homogeneous external fields, so that the
Larmoz-precession term on the left-hand side of Eq.(22) vanishes, and by substituting
P aﬂzexp[i(k.g+w(k)t)] we easily obtain the spin-wave dispersion relation,

_ 2

0 ¢
O ey P
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Hence, off-diagonal elements of the polarization matrix undergo damped oscillations
with quality factor

o= U2 - egepl.

In experiments with atomic hydrogen the spin-polarization is almost complete,

|P&—P %| ¢ 1, and the spin-wave quality factor is given by the absolute value of the
coefficient p.

Spin—-wave quality factor in 2D and 3D
. As we are interested in the possible occurrence of spin waves in the two-dimensional
hydrogen gas adsorbed on a superfluid helium film, we study p for general spatial
dimensionality d 2 2. Using Eqs.(14) and (15) we find

Q  <cos &(k)sin fo(k)>
P = e = ) (23)
K <sin28%(k)>

with thermal averaging

<t(k)> = ﬁg e £ ¢/2). (24)

In order to get a closed expression for s, we use the effective range expansion for
general dimension d > 2 as introduced by Verhaar et al.,(9 '

_i rz(dgz) [i‘j"ﬁ]d 2{1 + 0(k2)], d>2,

2 2

cot o(k) =
= [-’r + In[m]] [1+00?%), d=2

(25)

2

with ag the scattering length and 7 = 0.57721... Euler’s constant. For dimension d > 2
this leads to the low-temperature imit (1)

3 df2py qd-2
o SRR

which for d=3 reduces to the well-known result(®)
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p= 32 d=3. | 27)

The u-coefficient for d=2 cannot be obtained from the limit d-2 in Eq.(26) [notice that
this would lead to the result g - oo, i.e., undamped spin waves}. A closed expression
describing the low-temperature behavior of ¢ in 2D can be obtained from Eq.(23) and
Eq.(25) for d=2, when making use of the slow variation of #(k) for small k-values.
Thanks to this slow variation the thermal integrals in Eq.(23) can be approximated
using a one-point generalized Gauss-integration formula. This leads to the result (10 ‘

b= %[7-—111(4 xj‘}e)]» (28)

In the relevant regime A>>aq, Eqs.(26) and {27) show that spin waves are more
darmped in lower spatial dimensions. In the zero-femperature limit we find that p
diverges as ~ T-d-2/2 for d>2, and ~ In(T) for d=2. In Fig.l p is shown for bulk
{d=3) and adsorbed (d=2) H| gas as a function of temperature. The full curves
represent the values obtained by numerical thermal averaging in Eq.(23) using
effective range expansions for cot(4°) including the effective range [O(k2)] term,®) and
the dashed curves represent the simple expressions (27) and (28) with the calculated
values as= 1.22x10-®m and a;= 0.71x10-®m. A3 can be seen very clearly in Fig.1, the
simple expression (26) very accurately describes the spin-{ransport coefficient p in 2D

) T F T VTTT§ 1 | P S

T
-y

TvTTT

-0

i
H

‘lllllii
Lada g 1ot

Fig.I. Coefficient i versus temperature for two- and three-dimensional H] gas. Full

curves: including effective-range terms, dashed curves: without effective range terms
[Bgs.(27) and (28)].
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H| gas for all relevant temperatures (T< 0.4 K). The above analysis makes clear that,
in principle, spin waves can propagate in 2D gases of adsorbed H| atoms. The low Q
value associated with 2D spin waves makes clear, however, that these spin waves will
be much less pronounced than in 3D gases. The possibilities for observation of spin
waves in 2D H| gas will be discussed in detail in the next section.

¢4
)

&3]

4)

(5)

8
(44

&)
{8)

(19)
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Section 4.4
Spin waves in H| adsorbed on a superfluid 4He film
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[Published in Phys. Rev. B. 32, 7195 (1985)]

The possibilities for observation and the properties are discussed for two-dimensional spin
waves in a nondegenerate spin-polarized atomic hydrogen gas adsorbed on a superfluid
helium film. We present results for the spin-iransport parameters Dg en Ji, based on two-
dimensional effective-range theory. The spin-wave quality factor is an order of magnitude
smaller than in the volume case.

, Introduction

Spin waves in ferromagnets and other dense systems have been known since the 1850s.
In such systems the De Broglie wavelength of the constituents is at least comparable
~ to the distance between nearest neighbors. The associated quantum exchange
interaction generated by identical-particle symmetrization is known to play a crucial
role in the propagation-of spin waves. Some years ago Bashkin'l! and Lhuillier and
Lalo&?) pointed to the less obvious possibility of spin waves in very dilute
nondegenerate gases. The existence of spin waves was demonstrated a year ago in spin-
polarized atomic hydrogen.4) and at about the same time!®) in spin-polarized ¥He.
This discovery led us to investigate the possibility of such waves propagating in the .
two-dimensional H} gas adsorbed on a superfluid helium film.

Such surface spin waves would be interesting for their own sake, but also from a
moze general point of view. Taking into account the important role of surface atoms in
the decay of H] in stabilization experiments, it is of vital importance to confirm the
accepted picture that the collisions of adsorbed H atoms are not influenced
significantly by the dynamics of the helium film. By now it becomes clear(®} that the
decay of the atomic density at the surface is not primarily due to two-body dipolar
relaxation and thus the latter process does not produce the useful information on the
above-mentioned properties which would otherwise have been obtained. The three-
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body surface collision processes which one now tends to hold responsible for the decay
are probably too complicated to yield such reliable information. On the contrary,
surface properties derived from one- and two-body processes such as spin waves are
indispensable for reliable calculations(?) of three-body decay at the surface. When it is
possible to measure specific transport coefficients such as Dy and p (see below) for
surface spin waves, this would yield valuable information on the H| + H]| surface
scattering. A preliminary report on the present work was presented in Ref. 8.

Previous detailed enquiries(? into the extent of three dimensionality of the H-H
collision process at a superfluid 4He surface, as well as the development of a two-
dimensional effective-range theory,(19} provide us with sufficient insight to calculate
the properties of spin waves in adsorbed H| a.Ssﬁming a static 4He surface. Recently,
Bashkin(it) also discussed the possibilities for observation of spin waves in adsorbed
H]. He used a scaling procedure to relate the two-body surface scatiering process to
that in three dimensions. The premisses for applying this scaling transformation are
certainly not fulfilled for H| on 4He, in which we are primarily interested in this paper
in view of the experience from Ref. 9: the width d of the atomic wave functions
perpendicular to the surface is of the order of the range of the H-H triplet interaction.
If one would nevertheless apply it to that case, the result for the spin-wave quality
factor is of the order of d/a independent of temperature, where a is the three-
dimensional (3D) scattering length. This value is a factor of 5 larger than that to be
obtained in the following from a more reliable approach, a factor which may be of
‘crucial importance in connection with the prospects for observation of surface spin
waves on ‘He. Contrary to Bashkin we shall also pay attention to the consequences of
the adsorption-desorption kinetics for the observability of surface spin waves.

Surface spin waves

On the atomic scale H| spin waves are due to the "identical spin rotation" (ISR)
effect: In the case of complete polarization and small tipping angles the effective spins
precess in a two-body collision about their sum over an angle —2¢8°(k), where ¢ = +1
(1) for bosons (fermions) and #(k) is the s-wave phase shift calculated for a spin-
independent potential. Low temperatures are essential for the ISR to lead to a
coherent spin transport through the medium. On one hand to avoid collisions with k
values for which |28%k)| = O(1). On the other hand, to avoid p and higher waves
which also perturb the simple ISR behavior.

On the macroscopic scale the collective spin dynamics is described by spin-wave
equations in which two important parameters are Dy, the spin-diffusion constant in the
unpolarized gas, and p, measuring the influence of the particle indistinguishability on
the spin transport properties. In d dimensions we have for a nondegenerate spin-
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Fig.1. Two-dimensionel spin—iransport coefficients nsDy and p versus
temperature. The broken line indicates the low-temperature limit for u which
depends logarithmically on temperature

polarized gas,

14D = 27dh

sl Pras{ecE ]

(1)
ojmds e’ngﬁcos [60(@ f)] sin [60(1%7r §)] "
== \ 2
o[mdf & om0 ) | |

where X is the thermal wavelength and ng is de d-dimensional particle density
Turning to d = 2 we use the effective-range expression(10)

cot[fo(k)] = = ['y+1n(§ka)] r2k2 {3)
with v = 0.57721... = Euler’s constan{, while a = 2.3a; and I, = 14.3a, the two-
dimensional scattering length and effective range, respectively. These values were

calculated using a potential obtained by averaging the H-H iriplet potential over the
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finite extension of the atomic wave functions perpendicular to the surface (so-called
24D model® ). Figure 1 ghows n.Dg and g as functions of temperature. For low
temperatures (T < 0.2 K) these coefficients go to the values ‘

2 (2/7)[1+In(37a/44/21)),

and

nng (#h/2mA2)/sin?(arceot | p] ).

The value for 4, as well as the corresponding spin-wave quality factor, following from
the first of these equations, is considerably smaller than the bulk value. Note,
furthermore, that 4 shows a weak temperature dependence, which is due to the typical
logarithmic k dependence of the phase shift in two dimensions.

To investigate under what conditions H| spin waves might be observable in the
adsorbed phase we consider a Corneli-type NMR experiment using a cell with a large
surface to volume ratic and most of the surface parallel to the (linear) magnetic field
gradient in the x direction. Of the remaining small surface part one end is at x = 0
and the other at x = L. Following Ref. 4 we denote the component of the polarization
along B by oy and its positive circular component in the frame rotating with the
Larmor frequency at x = 0 by §o.. For the geometry considered we are interested in
the lowest transverse (yz-independent) mode, being the only transverse mode coupled
to the NMR resonator. We thus have §o(r,t) = F(x,t), where F satisfies the bounda.ry
condition, based on the smallness of the end surfaces,

oF aF
F =0, 4
?‘Elx:f} '632] x=] @
and the mode expansion
Flxt) = S FE(e, (5)
" in which Fk(x) satisfies
daFk _ Spoo Gx| gk
d2Fk - : 6
axz D, KR @

and the boundary conditions (4). In Eq. (6), Gx/h is the shift of the Larmor frequency
due to the field gra,chent
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Without epoy term, Eq. (6) represents spin diffusion in an inhomogeneous field.
The euo, term arises from the ISR effect. Its form can be understood qualitatively by
considering the net effect on a spin of competing ISR precessions around neighboring
spins. Clearly, this net effect vanishes for spatially constant or linearly varying
polarization ¢{x,i). The first nonvanishing contribution comes from the second
derivative. This can be visnalized by studying the behavior of a single spin due to two
neighboring spins. The net ISR effect vanishes when the latter are tilted over the same
angle in opposite directions relative to the first one. Only -deviations from this
situation contribute. The corresponding molecular field term in the equation for dg/&t
gives rise to the above-mentioned epoy term in Eq. (6).

For frequencies ux small relative to L|G| /N the solutions of Eqs. (6) and (4) can
be expressed(®) in Airy functions Ai, each of which corresponds to a {complex)
spinwave eigenfrequency,

Wy =% ag

D,G?/h7) /3
| .

|nao| i

with ax defined as the kth zero of Ai’, being negative real for all values k = 1,2,... . In
Eq. (7) and in the following the upper sign refers to the case eugy > 0 and the lower
sign t0 euop<0. Writing wx 38 Qx—~iT'y, fx and Ty are products of ay and k-independent
quantities:

Oy = 2ayAcos®, Iy = -axAsin®. (8)

The distance between eigenfrequencies is determined by the constant

D3G* 141/
A= |, 9

while the quality factor Q = || /T'x = cot® is determined by the constant
© = } arccot | poy|. (10)

The observed spectrum associated with Eq. (5) is a sum over Lorentz profiles centered
at the frequencies lx with half-width T'x. Notice that w=0 corresponds 0 the highest
(lowest) Larmor frequency in the sample in case euoy>0 (<0). Hence for negative
polarization (o¢<0) and repulsive (u<0) bosons (e=-+1) the spin-wave frequencies Qx
of the most weakly damped spin waves add positively to the mean Larmor frequency,
so that the sharpest spin-wave peaks appear on the high-frequency side of the
resonance spectrum.
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Adsorption rption kinetics
In the foregoing analysis we assumed the surface spin transport to be decoupled from
that in the bulk. In what circumstances does the adsorption-desorption kinetics allow
for such a decoupling? We consider the following two time scales: 74 = 1/Ty, i.e,, the
damping time of the most weakly damped surface wave, and the mean residency time
of atoms on the surface:

amA? '
Tres = 3Ty eEB/kET « (11)
We take(13) the sticking probability & equal to 0.03 and the binding energy(!4) in
temperature units Ep/kp equal to 1.0 K.

The adsorption-desorption kinetics does not influence the surface spin-wave
phenomenon if

Tres >> Td- (12)

We define the auxiliary time constant 7" = (ns}/2h/ | G|. This is the time which would
be needed by two H atoms at the average interparticle distance to undergo a relative
spin precession of 1 rad. For typical densities na # 109 cm2 and field gradients |¥YB| »
104 T cm-l, 7 is of the order of 1s.

For complete polarization we then have

1)/
a;(n;Do)ll3 sin(%- arccot|u|)

T4 =

(13)

Figure 2 shows 7q for various values of 7, as well as 7ves, 35 a function of temperature.
Clearly, for the above mentioned nj and |YB| values condition (12) is fulfilled for
temperatures below 0.08 K. Considéring from now on this regime, the spin-wave peaks
have a typical width 74t = 102 s-t. This value is comparable {0 that for bulk spin
waves, as is the total width L{G|/k = 10¢ st (dimension L % 1 cm) of the NMR
absorption spectrum. Due to the lower |p] value, however, the quality factor is an
order of magnitude smaller than for bulk spin waves. Thus, surface spin-wave pesks in
the spectrum are ag narrow as in the volume case, but their mutual distance is smaller.

From the point of view of observabilify it is also of importance to point out that
the surface resonance spectrum is shifted over 2.5x104 Hz by the surface hyperfine
frequency shift relative to the volume spectrum. For the overall intensity of the
surface signal the total number of atoms is of interest. It is larger or comparable to the
number of volume atoms for surface to volume ratios A/V > 7 ecmt (T ~ 0.08 K).
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Fig.2. The times 74 and Tyes 68 a funciion of temperature (vertical scale in
seconds) for v = 10 s (curve a), 1 8 (eurve b), end 0.1 s (curve c).

With a high-field (~ 8T) NMR spectrometer the minimum detectable number(!) of H
atoms is of order 3x101%. For detection of spin waves using small tipping angles,
substantially larger quantities are required. This implies the necessity of large surface
area within the resonator, possibly a large number of sheets or a ribbon. It seems
questionable whether sufficient surface area may be realized in practice. In principle, a
large gain in sensitivity may be realized by working at B = 0.65 T, where the NMR
frequency is field independent {o first order.t®) Since this implies a different
excitation and detection scheme it is not further discussed here. We also have 1o take
into account the requirement that 74 should be small relative to the recombination
time for H atoms at the surface. The experimental value!®) for Lg indicates, however,
that this requirement is amply fulfilled.
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CHAPTER 5
CONCLUDING REMARKS

This thesis deals with collision phenomena in atomic hydrogen and deuterium gases.

‘Substantial insight has been obtained into the role played by the nuclear spin

dynamics during collisions between low energy ground state hydrogen (deuterium)

atoms. On the basis of this insight several new effects have been predicted:

¢ The formation of an ultra-stable nuclear spin-polarized state due to spin-exchange
collisions between magnetically trapped deuterium atoms.

+ Shifts of the hydrogen maser frequency due to the nuclear spin dynamics during

H+H spin-exchange collisions.

s Nuclear spin waves in two-dimensional atomic hydrogen gas due to the spin-
rotation effect associated with low energy collisions between identical particles.

Of course, these predictions have to prove their value while confronted with

experimental results. In this respect it is promising that these predictions form a

strong enough challenge for experimentalists to put effort in their experimental

verification.

For instance, the Amsterdam group working on spin-polarized quantum gases is
currently working() on the trapping of deuterium atoms. In a preliminary attempt by
the Amsterdam group!® to load deuterium atoms in a magnetic frap no clear signal of
{rapped deuterium atoms was observed. This was probably due to the specific trap
geometry used, which was optimized for trapping hydrogen atoms and which was not
deep enough to decouple the strénger adsorbing denterium atoms from the walls. By
using deeper traps and/or optical manipulation techniques(®), some intéresting
experimental results with magnetically confined deuterium atoms may be expecied in
the near future,

Also the predicted H-maser frequency shifts are likely to be confronted with
experiments in the near future. The U.B.C. group is currently improving the
frequency-stability measurements of their cryogenic hydrogen maser by using two
reference room-temperature hydrogen masers.!3) This should make it possible to study
experimentally the collision frequency shifts of the cryogenic H maser predicted in this
thesis. ,

The M.IT. group studied two-dimensional hydrogen atom -gas adsorbed on a
fritted glass "sponge" covered with superfluid 4He.t9 They did not observe the surface
spin waves predicted in this thesis. This negative result is understandable taking into
account the very rapid decay of the hydrogen atoms observed in this experiment. The
anomalously short lifetimes of the atoms is attributed® to spin relaxation by
magnetic impurities inside the "sponge". The same experiment with a better
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characterized substrate should make it possible to observe spin waves in 2D hydrogen
atom gas. ‘
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SUMMARY

Collision phenomena are of outmost imporiance in spin-polarized atomic hydrogen and
deunterium gases. On the one hand, it appears that low energy collisions between even
such simple particles as H atoms give rise to a very rich variety of physical
phenomena. On the other hand, via the occurrence of interatomic collisions, nature
puts very strict limits to the physical regimes which can be explored with these
quantum gases. .

As an illustration, the decay due to interatomic collisions thwarted till now all
attempts to reach the low-temperature, high-density regime where effects due to
degeneracy are expected to show up. In chapter 2 of this thesis a simple way out is
presenied for the case of Fermi gases: In spin-polarized Fermi systems at very low
temperatures collisions are much less effective than in Bose systems. Working out
these ideas for the Fermi gas consisting of magnetically confined deuterium atoms
some interesting possibilities show up. It appears that fast spin-exchange collisions
automatically lead to a completely spin-polarized gas for which the spin-relaxation
limited lifetime increases dramatically with decreasing temperature. As also the ratio
of internal thermalization rate over decay rate increases with decreasing temperature,
this gas can be cooled by forced evaporation down to unheard-of low temperatures.

In chapter 3 it is shown that interatomic collisions also play a decisive role in
determining the frequency stability of cryogenic hydrogen masers. Especially the
hyperfine-interaction induced dynamics of the nuclear spins during collisions, which
inevitably shows up at lower collision energies, strongly limits the improvement in
frequency stability attainable by H masers operating at lower temperatﬁres. This is
because of frequency shifts associated with this nuclear spin dynamics, which are
nonlinear in the atomic linewidth. These shifts are not compensated for by the usual
methods of tuning the microwave cavities of oscillating hydrogen-maser frequency
standards which eliminate only the shifts proportional to the atomic linewidth. At
room temperature these nonlinear shifts are much less prominent but still measurable
with state-of-the-art hydrogen masers.

In chapter 4 the phenomenon of spin waves is studied. These collective oscillations
of the nuclear spins occurring in a hydrogen-atom gas with polarized electronic spins
are also associated with the nuclear spin dynamics during collisions. In contrast to the
nuclear spin dynamics relevant for H masers, this dynamics of the nuclear spins is not
induced by an interaction which couples to the nuclear spin degrees of freedom, but
instead by particle indistinguishability effects. It is shown that the resulting spin
waves are not restricted to bulk (3D) gases, but can also propagate in 2D gases
adsorbed on a substrate. In adsorbed gases the spin-wave characteristic coefficients
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acquire a logarithmic temperature dependence typical for 2D. The case of a 2D
hydrogen-atom gas adsorbed on a superfluid 4He film is considered in some detail.
Taking into account the adsorption-desorption kinetics the regime where spin waves
should be observable in adsorbed H gas is determined.

SAMENVATTING

Botsingsverschijnselen zijn van groot belang in spingepolariseerd atomair waterstof gas

. en deuterium gas. Enerzijds blijkt dat lage energie botsingen tussen zo eenvoudige
deeltjes als waterstofatomen aanleiding geven tot een zeer rijke verscheidenheid aan
fysische verschijnselen. Anderzijds limiteert de natuur, door middel van interatomaire
botsingen, in zeer sterke mate de fysische regimes waarin deze quantumgassen
onderzocht kunnen worden.

Dit laatste kan geillustreerd worden aan de hand van het verval ten gevolge van
interatomaire botsingen. Tot op heden verijdelt dit verval alle pogingen tot het
bereiken van het lage-temperatuur, hoge-dichtheid regime waar effekten tengevolge
van degeneratie verwacht worden waarneembaar te 2zijn. In hoofdstuk 2 van dit
proefschrift wordt een eenvoudige uitweg gepresenteerd voor het geval van Fermi-
gassen: bij zeer lage temperaturen zijn botsingen in spingepolariseerde Fermi-systemen
veel minder effectief dan in Bosesystemen. Een aantal interessante mogelijkheden
treden naar voren wanneer we deze ideeén uitwerken voor het Fermi-gas bestaande uit
magnetisch opgesloten deuteriumatomen. Het blijkt dat snelle spin-exchange botsingen
vanzelf leiden tot een compleet spingepolariseerd gas waarvan de door spin-relaxatie
gelimiteerde levensduur drastisch toeneemti met afnemende temperatuur. Dit gas kan
door middel van geforceerd afdampen gekoeld worden tot ongekend lage temperaturen,
aangezien bij afnemende temperatuur ook de thermalisatie-snelheid tén gevolge van
interatomaire botsingen toeneemt ten opzichte van de vervalssnelheid.
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In hoofdstuk 3 wordt aangetoond dat interatomaire botsingen ook een beslissende
rol spelen met betrekking tot de frequentie stabiliteit van cryogene waterstof-masers.
Met name de door de hyperfijnwisselwerking geinduceerde dynamika van de nucleare
spins gedurende botsingen, welke onvermijdelifk de kop opsteckt bij lagere
botsingsenergieén, limiteert sterk de verbetering in frequentie stabiliteit die haalbaar is
 met H-masers werkend bij lagere temperaturen. Dit vanwege de met de nucleare

spindynamika geassocieerde frequentieverschuiving, welke niet-lineair is in de atomaire
lijnbreedte. Deze verschuiving kan niet geélimineerd worden met de gebruikelijke
“methoden voor het afstellen van de microgolf tritholten van oscillerende waterstof-
masers: deze elimineren alleen verschuivingen die evenredig zijn met de atomaire
lijnbreedte. Bij kamertemperatuur is de niet-lineaire verschuiving minder opvallend
maar, met de huidige stand van zaken op het gebied van waterstof masers, nog altijd
meetbaar.

In hoofdstuk 4 wordt het verschijnsel spingolven bestudeerd. Deze collectieve
oscillaties van de nucleare spins die waargenomen zijn in een gas bestaande uit
waterstof atomen met gepolariseerde electronenspins zijn eveneens geassocieerd met
nucleaire spin dynamika tijdens botsingen. In tegenstelling tot de nucleare spin
dynamika relevant in H masers, is in dit geval de dynamica van de nucleare spins niet
geinduceerd door een wisselwerking welke koppelt met de nucleare spin vrijheids-
graden, maar in plaats daarvan door deeltjes-ononderscheidbaarheids-effekten. Er
wordt aangetoond dat de resulierende spingolven mniet beperkt zijn tot drie-
dimensionale {3D) gassen, maar ook kunnen propageren in 2D gassen geadsorbeerd aan
een substraat. In geadsorbeerde gassen verkrijgen de karakieristieke spingolf-
coéfficienten een logaritmische temperatuur afhankelijkheid typisch voor 2D. Het geval
van 2D atomair waterstofgas geadsorbeerd aan een superfluide ‘He film wordt in detail
beschouwd. De adsorptie-desorptie kinetiek in de beschouwing betrekkend wordt het
regime bepaald waarin spihgolven waarneembaar zullen zijn in geadsorbeerd H gas.
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1. Dubbel spin-gepolariseerd atomair deuterium is het meest stabiele magnetisch
opsluitbare neutrale gas.

Dit proefschrift, hoofdstuk 2.

2. Geforceerd afdampen wvan wandvrij opgesloten deuteriumatomenr in een
magneetveldminimum biedt de mogelijkheid tot het bereiken van ongekend lage
temperaturen,

Dit proefschrift, hoofdstuk 2.

3. In een willekeurig tweedimensionaal gebied met opperviakte §Ny3 (N geheel
positief) kunnen N+1 punten geplastst worden zodanig dat de afstand tussen ieder paar
punten groter dan of gelijk is aan 1.

4. De nuldoorgangen van de botsingsdoorsneden welke de verschuiving van de H+H
21cm-ijn karakteriseren, kunnen in principe gebruikt worden voor de definitie van een
temperatuurschaal die vanuit theoretisch cogpunt voordelen biedt tem opzichie van
bestaande temperatuurschalen.

F. Lalog, privé mededeling.

5. De door Berlinsky en Hardy voorspelde frequentiestabiliteit van de cryogene H-
maser van 2 op 1018 is niet realistisch.

A.J. Berlinsky and W.N. Hardy, Proc. 15th Annual Precise Time and Time Interval
SDPTT Applications and Planning Meeting, Washington D.C. 1982 [NASA Conf.
ubl. No. 2220, 1982, p. 5{7).

6. Gesloten uitdrukkingen voor vervalsconstanten en transportcoéfficienten in 2D en
3D quantumgassen kunnen gevonden worden met behulp van gegeneraliseerde Gauss-
Laguerre integratie.

Dit proefschrift, hoofdstuk 2 en 4.

7. De invloed van afwijkingen van de adiabatische Born-Oppenheimer benaderihg 6p
H+H of D+D botsingen kan eenvoudig afgeschat worden door in de uitdrukkingen
gebaseerd op de adiabatische benadering de kernmassa te vervangen door de atoom-
massa. :

P.R. Bunker, C.J. McLarnon and R.E. Moss, Mol. Phys. 38, 425 {1977);

Dit proefschrift, hoofdstuk .

8. De "ontaarde interne toestanden benadering" geeft, mits op de juiste grootheid
toegepast, zelfs bij willekeurig lage botsingsenergieén een zeer nauwkeurige beschrijving
van botsingen tussen grondtoestands H atomen.

Dit proefschrift, hoofdsiuk 2 en 8.



8. Op een separabele Hilbertruimte is gegeven een verzameling positieve operatoren
{Ryj} met de eigenschap dat Zij Ry; = I. Indien de marginale operatoren Py = Xj Roj
en éan = Ij Ry niet commuteren zijn beide geen projecties. Dit resultaat geeft san dat
de introductie van gemeenschapelijke metingen van incompatibele observabelen in de
guantummechanica impliceert dat meetresultaten van een enkelvoudige observabele in
het algemeen niet door middel van projecties kunnen worden gerepresenteerd.

W.M. de Muynck and J.M.V.A. Koelman, Phys. Lett. 984, 1 (1983).

10. In het "mozaiekbeeld" zoals dat in een groot aantal centrale antenne inrichtingen
eimplementeerd is kunnen fractale objecien waargenomen worden met Hausdorff-
imensies variérend van 0.50 tot 1.95. Dergelijke mozaiekbeelden zijn bij uitstek geschiki

om de leek begrip van fractalen bij te brengen.

B.B. Mandelbrot, " The fractal geomeiry of nature", W.H. Freeman and company,
New York, 1983

11. Ter onderdrukking van randeffecten verdient het aanbeveling het oosterse bordspel
Go te spelen met gebruikmaking van periodieke randvoorwaarden.

12. Ter vermijding van kostbare hardwarema‘si%’e oplossingen dan wel arbeidsintensieve

permutatiehandelingen, verdient het aanbeveling om tekstverwerkingspakketten te

voorzien van de mogelijkheid om printers zodanig aan te sturen dat een dokument

gfestga}ﬁge uit meergere pagina’s in volgorde van afnemend paginanummer wordt
ge t.



