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Optimization of Chaotic Micromixers Using
Finite Time Lyapunov Exponents

Aniruddha Sarkar, Ariel Narváez, and Jens Harting

Abstract In microfluidics mixing of different fluids is a highly non-trivial task
due to the absence of turbulence. The dominant process allowing mixing at low
Reynolds number is therefore diffusion, thus rendering mixing in plain channels
very inefficient. Recently, passive chaotic micromixers such as the staggered her-
ringbone mixer were developed, allowing efficient mixing of fluids by repeated
stretching and folding of the fluid interfaces. The optimization of the geometrical
parameters of such mixer devices is often performed by time consuming and expen-
sive trial and error experiments. We demonstrate that the application of the lattice
Boltzmann method to fluid flow in highly complex mixer geometries together with
standard techniques from statistical physics and dynamical systems theory can lead
to a highly efficient way to optimize micromixer geometries. The strategy applies
massively parallel fluid flow simulations inside a mixer, where massless and non-
interacting tracer particles are introduced. By following their trajectories we can
calculate finite time Lyapunov exponents in order to quantify the degree of chaotic
advection inside the mixer. The current report provides a review of our results pub-
lished in [1] together with additional details on the simulation methodology.

1 Introduction

Microfluidics is an interdisciplinary engineering and science branch which connects
physics, chemistry, biology and engineering and has applications in various scien-
tific and industrial areas. Here, we are interested in a common building block for
microfluidic systems, namely micromixers. A micromixer is a microfluidic device
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used for effective mixing of different fluid constituents. A typical example is the
integration as important component of chemical and biological sensors [2]. It can
be used to efficiently mix for example a variety of bio-reactants such as bacteria
cells, large DNA molecules, enzymes and proteins in portable integrated microsys-
tems with minimum energy consumption. It is also used in mixing of solutions in
chemical reactions [3], sequencing of nucleic acids or drug solution dilution. In re-
cent years the demand for highly efficient and reliable micromixers has increased
substantially in research and in industry. Hence, their optimized design has become
an important field of research [4].

Due to the small dimensions of micromixers laminar flows are created inside the
channels causing the mixing performance to be limited. Experiments on channels
with complex surface topology have revealed that microscale mixing is enhanced
by “chaotic advection”, a process which was first reviewed by Aref in 1984 [5]. He
describes how mixing is still possible even at low Reynolds number by repeated
stretching and folding of fluid elements. If properly applied, this mechanism causes
the interfacial area between the fluids to increase exponentially, which can then lead
to an enhanced inter-material transport and thus better mixing [6].

If an external energy source is used to drive the mixing process, then the mi-
cromixer is termed as “active mixer”. These external energy sources could be acous-
tic bubble induced vibrations, periodic variation of the flow rate, piezoelectric vi-
brating membranes, valves etc. The external sources are often moving components
such as micropumps and they require advanced fabrication steps [7]. The second
category of micromixers is based on restructuring the flow profile using static but
sophisticated mixer geometries. These are termed as “passive mixer.” While the fab-
rication of passive micromixers is generally much simpler than producing an active
device, further advantages are increased reliability and the lack of any elements
which generate heat. The absence of heating is an important factor for applications
to biological studies where temperature is a sensitive parameter.

The mixing length and mixing time are defined as the distance and time span the
fluid constituents have to flow inside the mixer in order to obtain a homogeneous
mixture. An effective micromixer should reduce the mixing length and time sub-
stantially in order to achieve rapid mixing. A common practice to achieve this goal
is to design passive micromixers that create alternating thin fluid lamellae. These
result in an interfacial area that increases linearly with the number of lamellae ren-
dering the diffusion process more effective and hence allowing faster mixing [8].
There are many examples of bi-lamellation [9, 10] and multi-lamellation [4], but
the drawback of such devices is that the number of lamellae is generally limited due
to the negative impact on the applied pressure drop caused by the microstructures
inside the channel.

The drawbacks of conventional mixers based on multi-lamination techniques
is overcome in the so-called “chaotic micromixer”. Such a device consists of mi-
crostructured objects such as “herringbones”, placed inside a microchannel. The
staggered herringbone mixer (SHM) shown in Fig. 1 is the first chaotic micromixer
that can be found in the literature. It was developed in 2002 by Stroock et al. [11].
The half cycles of the SHM consist of grooves with two arms which are asymmetric
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Fig. 1 A snapshot from a typical simulation of flow inside a staggered herringbone micromixer
demonstrating the highly regular arrangement of tracer particles at the beginning of the simulation
(left) and a fully mixed state at a late stage of the simulation (right). The fluid itself is not shown

and unequal in length. These arms are inclined at an angle of 45◦ and the pattern
interchanges every half cycle of the herringbone. The peculiar arrangement of the
herringbone structure enhances the mixing process by “chaotic advection” where the
interfacial area between the fluids grows exponentially in time—the most important
advantage over mixers using the concept of multi-lamellation.

To compare different micromixers and to develop better ones, it is important
to develop schemes to quantify their performance. Efficiency and mixing quality
have been studied by various methods in the past. These include the analysis of the
probability density function of the flow profiles, studying the stretching of the flow
field, the Poincaré section analysis, or the intensity of segregation as introduced by
Danckwerts in 1952 [6, 12]. Here, an alternative numerical optimization procedure
is presented which is tailored for the optimization of chaotic micromixers and which
is able to harness the power of today’s high performance computers for the applica-
tion to a highly practical problem. It is based on lattice Boltzmann (LB) simulations
to describe the flow inside complex mixer geometries together with a measurement
of finite time Lyapunov exponents (FTLE) as obtained from trajectories of massless
tracer particles immersed in the flow. The Lyapunov exponent provides a quantita-
tive measure of long term average growth rates of small initial flow perturbations
and thus allows a quantification of the efficiency of chaotic transport [13, 14]. We
apply Wolf’s method to calculate the FTLE since the systems of interest are finite
and simulations are limited to a finite time span [8]. The numerical scheme has
the potential to assist an experimental optimization since geometrical parameters
or fluid properties can easily be changed without requiring a new experiment. To
demonstrate its applicability, the scheme is applied to evaluate the optimal parame-
ters of the staggered herringbone mixer. Figure 1 depicts two typical snapshots from
our simulations. The left figure shows a snapshot of the tracer positions just after the
start of the simulations. The fluid itself is not shown. One can see that the tracer par-
ticles which are initially placed at the inflow plane of the SHM start to travel with
the flow. As shown on the right hand side, towards the end of the simulation all
tracer particles are homogeneously distributed throughout the mixer demonstrating
that the system is fully mixed.
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2 Simulation Method

For a description of the fluid flow inside the micromixer, we apply the lattice Boltz-
mann method, a simplified approach to solve the Boltzmann equation in discrete
space, time and with a limited set of discrete velocities [15]. The Boltzmann equa-
tion, given as

∂t f + c ·∇ f = Ω( f ), (1)

describes the evolution of the velocity distribution function by molecular transport
and binary intermolecular collisions. f (r,c, t) represents the distribution of veloc-
ities in continuous position and velocity space, r and c respectively. The position
x at which f (x,ck, t) is defined, is restricted to a discrete set of points on a regular
discrete lattice with lattice constant Δx. The velocity is restricted to a set of veloci-
ties ck implying that velocity is discretized along specific directions. Δ t denotes the
discrete time step. The model we adopt is a D3Q19 model which is a 3 dimensional
model with 19 different velocity directions, k = 0,1, . . . ,18 [16]. The right hand
side of the above equation represents the collision operator which is simplified to a
discretized linear Bhatnagar-Gross-Krook (BGK) form [17] that can be written as

Ωi = −ω( fk(x, t)− f eq
k (x, t)). (2)

Here, ω is one over the relaxation time of the system, which controls the relaxation
towards the Maxwell-Boltzmann equilibrium distribution f eq

k (x, t). By considering
small velocities and constant temperature, a discretized second order Taylor expan-
sion of the above equilibrium distribution function can be written as

f eq
k (x, t) = ζk

ρ
ρ◦

(
1+

ck ·ueq

cs
2 +

(ck ·ueq)2

2cs
4 − ueq ·ueq

2cs
2

)
, (3)

where ζk are the lattice weights, ρ is the density, ρ◦ a reference density, and cs =
(1/

√
3)Δx/Δ t is the speed of sound. ueq is the equilibrium velocity of the fluid,

which is shifted from the mean velocity by an amount g/ω under the influence of
a constant acceleration g. The evolution of the LB process takes place in two steps:
the collision step where the velocities are redistributed along the directions of the
lattice and the propagation step by which they are displaced along these directions.
This leads to the discretized Boltzmann kinetic equation:

fk(x+Δ tck, t +Δ t)− fk(x, t) = −ωΔ t
(

fk(x, t)− f eq
k (x, t)

)
. (4)

Here, the macroscopic fluid density is given by

ρ(x, t) = ρ◦∑
k

fk(x, t) (5)

and the macroscopic fluid velocity in the presence of external forcing is given by
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u(x, t) =
ρ◦

ρ(x, t) ∑
k

fk(x, t)ck −
Δ t
2

g. (6)

It can be shown by a Chapman-Enskog expansion that the macroscopic fields u and
ρ from the above equations fulfill the Navier Stokes equation in the low Mach num-
ber limit and for isothermal systems [15]. In order to simulate a fluid flow through
microchannels, periodic boundary conditions are implemented along the flow direc-
tion (see Fig. 1) and no-slip bounce back boundary conditions are imposed at the
channel walls.

We simulate a fluid which is hydrodynamically similar to water, flowing inside a
SHM with a cross section of 96 µm × 192 µm. The length of the channel is of the or-
der of 1536 µm, but can be varied in order to always accommodate a full cycle of the
herringbone structure. For computational efficiency we have chosen a lattice resolu-
tion of Δx = 3 µm. Such a resolution is sufficient for a comparably simple geometry
as studied in this report. However, if more sophisticated mixer geometries are to
be optimized the resolution needs to be increased. Further, if mixing of multiple
phases is to be simulated, periodic boundary conditions cannot be applied requiring
the simulation of the full length of the mixer. In the LB method, the kinematic vis-
cosity is related to the discrete time step through the expression ν = cs

2 (ω −Δ t/2).
Δ t/ω is chosen to be 1 and the simulated fluid has the kinematic viscosity of water,
ν = 10−6 m2 s−1. This implies for the current choice of Δx that Δ t = 1.5×10−6 s
and cs = 1.15ms−1. The Reynolds number Re = uL/ν is set to the values 0.4 and
1.3, where L =

√
H2 +W 2 is the characteristic length of the channel. H denotes the

height of the channel and W denotes the width of the channel.
Trajectories of massless and non-interacting tracer particles introduced into the

flow are obtained by integrating the vector equation of motion

dR j

dt
= u(R j), j = 1, . . . ,P (7)

where R j denotes the position vector of an individual tracer particle. The velocity
u(R j) is obtained from the discrete LB velocity field through a trilinear interpolation
scheme. After the flow simulation has reached its steady state, P = 1,000 particles
are introduced at fluid nodes in the inlet and then their velocities are integrated at
each time step.

A general feature of chaotic systems is that two nearby trajectories diverge ex-
ponentially in time. The rate of divergence can be related to the strength of the flow
field to create conditions for chaotic mixing. The Lyapunov exponent is a possible
measure for this effect since it is related to the rate of stretching of the trajectories.
It is defined by

λ∞ = lim
t→∞

1
t

ln

(
D(t)
D(0)

)
, (8)

where D(t) is the distance between two trajectories at time t. λ∞ gives the value of
the Lyapunov exponent as t tends to infinity. Since any real system is finite it is not
possible to implement this definition to quantify mixing. Also, when two trajectories
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separate from each other, this definition does not allow to understand the ongoing
stretching and folding dynamics. A quantitative measure of mixing based on the
Lyapunov exponent can be obtained by using the FTLE instead [18, 19]. It is defined
as [20]

λFTLE =
1
δ t

ln

(
D(t +δ t)

D(t)

)
, (9)

where t is any particular instant of time and δ t is a finite time after which the FTLE
is measured. The same process is repeated over N times. For large N the average
FTLE converges to the Lyapunov exponent [19]

lim
N→∞

〈λFTLE〉N = λ∞. (10)

Wolf et al. suggested a method to calculate the FTLE from a set of experimental
data [8, 21]. Following Wolf’s approach, we implement the following equation to
quantify the mixer performance on the basis of the average FTLE as

〈λ 〉N =
1
N

N−1

∑
i=0

1
τi

ln
D(ti + τi)

D(ti)
, (11)

where ti is the ith time when a FTLE is evaluated, D(ti + τi) and D(ti) are the dis-
tance at time step ti + τi and ti, respectively. τi is a multiple of Δ t and N is the total
number of times the particle positions are re-adjusted. If 〈λ 〉N has a positive and
non-zero value the distance between two nearby particles diverges at an exponential
rate. Particle pairs which are initially very close to each other are chosen to eval-
uate the FTLE (i.e. with a distance Δx). When these particles evolve in time, the
distance between them either increases or decreases. If the separation is greater than
a maximum distance which is half the minimum dimension of the system H/2, the
distance between the particles is re-adjusted to the initial distance D(t0) and one of
the particles is placed along the line of separation in order to avoid errors due to
orientation. If a replacement point cannot be found due to a surface node present
at the location, a nearby fluid node is selected instead. If even such points cannot
be found, the replacement is postponed to a later time step. For the implementation
of the scheme, for every particle pair one of the trajectories is chosen as the fidu-
cial path, while the position of the other particle is replaced if the distance becomes
larger than the threshold value.

3 Implementation

During the last twelve years, our massively parallel 3D LB code (LB3D) was devel-
oped. LB3D is based on Shan and Chen’s multiphase LB model [22, 23], which can
be utilized to simulate a number of miscible or immiscible fluids. In addition, am-
phiphiles were added to the model [24]. Interactions between different fluid species
are modeled by a mesoscopic force between the phases. The code was applied to a
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large number of problems to study for example the behavior of binary and ternary
fluid mixtures under shear [25], the formation of surfactant mesophases [26, 27], or
flow in porous media [28, 29]. Collaborations with computer scientists and software
developers led to a large number of improvements to the simulation code. These
include computational steering facilities, which allow the transparent access to a
running simulation over the network and to change parameters or visualize output
data on the fly from the user’s workstation [30]. Recently, LB3D was extended to
simulate typical problems arising in microfluidics including fluid flow along rough
and hydrophobic surfaces [31–34]. Our group has a long standing reputation and
experience in simulating suspensions using different hybrid methods consisting of
an MD solver for the particle motion and various solvers for the fluid solvent [35–
39]. Within the last three years our lattice Boltzmann code LB3D was combined
with a parallel MD code which is also the base of the results presented in this re-
port. Within the same activity, a model for red blood cells (RBC) in plasma was
implemented [38]. The cells are described as hard ellipsoids interacting with the
hydrodynamic field. It was demonstrated that the code allows to describe systems
containing several million RBCs on current supercomputers.

The code was ported to most available supercomputer platforms and shows a
very good performance and scaling behavior. The Edinburgh parallel computing
center has awarded an earlier version of LB3D with its gold medal for scaling al-
most linearly to 1024 processors already in 2004. Recently, improvements in the
MPI communication code allowed to demonstrate strong scaling for up to 262144
cores on the BlueGene/P system Jugene in Jülich [40, 41]. The code was the main
application within the TeraGyroid project where it was used on a prototype com-
putational grid consisting of all national supercomputers in the UK and a number
of machines in the US and received various prizes. See Fig. 2 for a comparison of
the performance on the XC2 (Karlsruhe), HECToR (Edinburgh), Huygens (Ams-
terdam) and Juropa (Jülich). It is interesting to note that even though the XC2 is

Fig. 2 Scaling and performance comparison of LB3D on the XC2 at SSC Karlsruhe, HECToR at
EPCC, Huygens at SARA, and JUROPA at JSC. The studied system is comparably small which is
the reason for the less good scaling compared to what we generally observe
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the oldest available platform it still performs reasonably well and has proven as a
reliable workhorse during the last years. The scaling behavior in the presented plot
is not very good on larger core counts because of the too small system used for the
benchmark.

4 Results

In this section we present how FTLE can be utilized for an optimization strategy for
chaotic micromixers. As an example, the influence of different parameters which
directly affect the performance of the SHM is evaluated. These are the ratio of height
of the grooves to the height of the channel α , the ratio of the horizontal length of
the long arm to the channel width β , the ratio of distance between the grooves to the
length of the channel γ and the number of grooves per half cycle n. While keeping
all other parameters fixed, the width fraction (β ) is varied within the range of 0.22
and 0.82 and the distance fraction (γ) from 0.04 to 0.11. The width of the grooves
is kept fixed at 24 µm for all simulations. Then, the number of grooves per half
cycle (n) is varied from 2 to 10 and the height fraction (α) from 0.125 to 0.343. One
has to take care of a thorough convergence of the simulations since 〈λ 〉N fluctuates
before finally converging to a particular value after∼ 6.0×105 time steps. Therefore,
simulations are run until the FTLE have thoroughly converged before evaluating the
tracer trajectories. The effect of the geometry can be measured by comparing the
average of the converged FTLE which is denoted by λ . The error bars in Figs. 3 to 4
are given by the standard deviation of the data from the point where it has converged.
A possible reduction of the required computing time can be achieved by stopping
the lattice Boltzmann simulation when a steady state flow field has been obtained
since the computational effort for the tracer particles is small compared to time

Fig. 3 Left: A maximum of the variation of the maximum averaged finite time Lyapunov exponent
λ with different width fraction β can be obtained for a width fraction of β = 2/3. While the
position of the maximum is not affected by changing Re, the absolute values change. Right: The
FTLE rises with the increase of the distance fraction γ until it reaches a distinct peak. Then, the
curve decreases demonstrating an optimized performance of the mixer at γ = 0.07 [1]
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Fig. 4 Left: The variation of λ with the number of grooves per half cycle (n) shows that the SHM
with n = 5 performs best. Right: A variation of the height fraction (α) indicates that the maximum
FTLE can be obtained for α = 0.25 [1]

required for the fluid solver. However, for complex geometries and chaotic flows
several hundred thousand timesteps can be required to obtain the steady state and a
thorough convergence study would be needed for every different channel geometry.

The left part of Fig. 3 depicts the variance of λ and as such the performance
of the SHM with respect to β for two different Reynolds numbers, Re = 0.4 and
1.3. Due to the symmetry of the mixer geometry, only values for β ≥ 0.5 are plot-
ted. The datasets peak at β = 2/3 implying that the degree of chaotic advection is
maximized for this particular value of the width fraction β . The measurements at
different Reynolds numbers depict that changing the driving force does change the
absolute value of λ , but has no influence on the general shape of the curve. This is
confirmed by similar studies of the Re dependence for other geometrical parameters
and various different driving forces. Therefore, we restrict ourselves to Re = 1.3
for all further simulations. Our findings are consistent with the original experimen-
tal work of Stroock et al. [11] as well as numerical optimizations by Stroock and
McGraw [42]. Both publications show that β = 2/3 generates a maximum swirling
motion of the fluid trajectories. However such analysis with dyes or concentration
profiles does not allow to obtain an insight into the behavior of the flow field, while
the FTLE does.

In the right inset of Fig. 3 data from a set of simulations with β fixed at the
optimized value of 2/3 and the distance fraction γ being varied from 0.04 to 0.11 is
shown. It can be observed that after a moderate increase of λ with γ , the curve has a
sharp peak at γ = 0.07, which corresponds to a value of d = 105 µm for the current
choice of Δx. Afterwards, λ decreases in a similar fashion as for small γ , but still at
higher absolute values.

In the following the number of grooves per half-cycle n is varied from 2 to 10.
It can be understood from the left inset of Fig. 4 that a variation of n has the largest
impact on the performance of the mixer as compared to β or γ . For the current setup,
by variation of n it is possible to change the value of λ by a factor of 2.3 as compared
to 1.2 for β and 1.3 for γ . The data clearly demonstrates that a staggered herringbone
mixer with n = 5 performs best. Similar to our work, Li and Chen performed LB
simulations and used tracers to follow the flow field [43]. They, however, quantify
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mixing by computing the standard deviation of the local tracer concentration and
conclude that mixers with n = 5 or n = 6 perform best. This result is in agreement
with our finding, but the FTLE analysis clearly shows that the channel with n = 5
performs better than the one with n = 6.

The final parameter to be considered is the ratio of the half depth of the grooves
to the height of the channel α . Figure 4 (right) depicts the average value of the
converged Lyapunov exponents for α between 0.125 and 0.343. After a strong in-
crease of the curve the data has a maximum at α = 0.25. For larger α the value of
λ decreases again. Our result are confirmed by the original experimental analysis of
Stroock et al. [11].

5 Summary

Passive chaotic micromixers can be successfully applied to improve mixing at the
microscale where turbulence is absent and only diffusion can be used for mixing.
These mixers provide a large fluid-fluid interface by repeatedly stretching and fold-
ing of these interfaces. The performance of such mixers depends on the rate at which
“chaotic advection” of the fluid takes place. In this work we have demonstrated an
efficient numerical scheme which allows the quantification of “chaotic advection”
and thus the performance of a micromixer. The scheme is based on our well devel-
oped massively parallel LB solver LB3D to describe the time dependent flow field in
complex mixer geometries combined with Wolf’s method to compute FTLE from
passive tracer trajectories. We have utilized the XC2 in Karlsruhe to demonstrate
the applicability of the quantification method by applying it to optimize the geom-
etry of the staggered herringbone mixer. By performing a systematic variation of
the relevant geometrical parameters we obtained a set of optimal values α = 0.25,
β = 2/3, γ = 0.07 and n = 5 which is consistent with literature data published by
others. An important feature of the method presented here is that it allows optimiza-
tion of the mixing performance by direct investigation of the underlying dynamical
process [1]. Currently we are extending our method to make use of the multiphase
and multicomponent capabilities of our lattice Boltzmann implementation in order
to study the mixing of multiphase flows in microchannels. This is of course a more
realistic scenario which has received surprisingly little attention in the literature so
far. A possible explanation for the small number of publications on this topic is the
complicated interaction between the process of chaotic advection together with the
parameters determining the diffusion between different fluid species.
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