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Chapter 1

Introduction

Industrial combustion processes, such as found in gas turbines and industrial
heaters, can display dramatic self-sustained oscillations, which present a serious
threat to the integrity of the systems [56]. Also in cold gas transport networks,
such as that of natural gas, one can observe strong self-sustained oscillations [80].
Similar phenomena has been observed in the main steam lines of nuclear power
plants [162] and in the re-heat steam lines of boilers [38]. The prediction of such
phenomena and the design of remedial measures is the ultimate goal of our re-
search. The present project is part of the European Commission project AETHER
(Aero-acoustical and Thermo-acoustical Coupling in Energy Processes) in which
various aspects of the problem have been considered, ranging from the interaction
of combustion with acoustic waves to the mechanical wall vibrations induced by
flow instability.

1.1 The AETHER project

The AETHER project (Contract nbr. MRTN-CT-2006-035713) is a collaborative
research and training network funded by the 6th Framework Program of the Euro-
pean Commission in the frame of the Marie Curie actions. The project represents
an initiative to strengthen the fundamental scientific work in the multi-disciplinary
engineering field of aero- and thermo-acoustical coupling in energy conversion pro-
cesses.

Important technological progress is required in the combustion processes in
order to meet future worldwide emissions and pollution regulations. In particu-
lar, NOx is a main concern today either to improve air quality or to reduce the
greenhouse effect. The Kyoto protocol, signed with the ambitious societal goal
to improve quality of life, imposes the reduction of 8% of the greenhouse gases
between 2008 and 2012 (compared to the 1990 level). At the same time NOx emis-
sions should be reduced from a current level of 25 ppm to levels below 15 ppm in
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2 Introduction

premix dry fuel gas operation. Lean premixed combustion has been demonstrated
to be an effective way of reducing NOx emissions. However, the realisation of these
environmental benefits is being hampered by combustion-acoustic coupling. This
results in self-excited oscillations that can be so intense that structure damage
occurs. More generally, the need to produce energy at lower costs and pollutant
levels pushes sectors of activity dealing with energy production and/or consump-
tion towards innovative designs in which the thermo-acoustic coupling is better
controlled.

The AETHER network is composed of 6 universities (Instituto Superior Técnico
Lisbon, Katholieke Universiteit Leuven, Lule̊a University of Technology, Eindhoven
University of Technology, Technische Universität München, University of Cam-
bridge), 3 research centers (Centre Européen de Recherche et Formation Avancée
en Calcul Scientifique - CERFACS, TNO Science and Industry, von Karman Insti-
tute for Fluid Dynamics), and 5 industry partners (Arcelor Steel Belgium N.V., Al-
stom Switzerland Ltd., Gasunie Engineering and Technology, LMS International,
Rolls-Royce plc.). Three sectors of activity are targeted: gas turbines for electric-
ity production, industrial heaters for manufacturing industry, and domestic and
district heating systems.

Our contribution to the AETHER project concerns the coupling of acoustic
waves with shear layers formed by flow separation in internal flows. Shear layers
are thin regions of intense vorticity separating a main flow from a stagnant (dead
water) region. Flow separation is a complex process involving non-linear convective
forces and viscous forces. It occurs at any sharp bend in the pipe wall. We consider
here, in particular, the shear layers formed at the opening of closed branches
along a pipe and shear layers formed by grazing/bias flow along/through wall
perforations.

1.2 Thesis outline

Flow induced pulsations in resonant pipe networks with closed branches are con-
sidered in Chapter 2. These pulsations, observed in many technical applications,
have been identified as self-sustained aeroacoustic oscillations driven by the insta-
bility of the flow along the closed branches. In this chapter we provide a literature
review of the fundamental aspects of the flow induced pulsations, with particular
attention to the description of the sound sources. A single mode model for the
prediction of the self-sustained oscillations is discussed, the “energy balance”, and
the main components of this prediction method are presented. In early work, lit-
erature has mainly focused on self-sustained oscillations in system with two closed
side branches either in tandem or in cross configuration. Both these configurations
present a main flow along the main pipe. However, in technical applications there
are commonly pipe systems presenting a main flow entering a side branch or flow-
ing out of a side branch. We present in Chapter 2 an extension of the work in
literature to systems of closed pipe segments involving a bend in the main flow. In
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this chapter we also propose an analytical model providing an order of magnitude
estimate for the influence of wall vibrations induced by an oscillating side branch
and some some countermeasures for the prevention of self-sustained oscillations
are reviewed.

Chapter 3 is dedicated to the particular problem of a large number of shallow
closed side branches along a main pipe. In this case, the shear layer instability
couples with a longitudinal acoustic standing wave along the main pipe. The side
branches are not resonant. The whistling observed in such a system is similar to
that observed in a main steam line along which a row of safety valves is placed. It
is also a model for a corrugated pipe as used in risers for natural gas production.
Using this model we identify the location of shear layers producing sound along
the longitudinal standing wave. A prediction model for the whistling behavior is
proposed, consisting of an “energy balance”, based on the “vortex sound theory”
[105].

In Chapter 4 we consider the other extreme of a row of six equally spaced deep
closed side branches. This mimics the configuration of the compressor station of
Ommen, in which severe pulsations were observed in 1973 [32, 80]. It is this problem
that initiated the research on “aeroacoustics of internal flows” at the Eindhoven
University of Technology (TU/e). The prediction of pulsations in such complex
systems has not yet been proved to be possible, indeed the methods proposed in
literature have been applied to relatively simple geometries, mainly single or double
side branch systems. We propose a semi-empirical prediction model and evaluate
the use of detuning the length of the side branches as a remedial measure.

In IC-engine exhaust mufflers, liners of the aircraft engine and liners protecting
the walls of combustion chambers, perforated walls are used to absorb sound. A
clear understanding of the effect of the flow on the acoustic properties of a perfora-
tion is essential for the design of acoustic dampers. The sound absorption is due to
the interaction of acoustic waves with the shear layers. In Chapter 5 the effect of
a grazing-bias flow combination on the impedance of slit shaped wall perforations
is experimentally investigated by means of a multi-microphone impedance tube
setup. Measurements are carried out for the perforation geometries more com-
monly encountered in technical applications. In application to combustion cham-
bers, the wall perforations are designed to generate cold wall jets which protect the
wall from the flame. In mufflers one usually seeks for simple perforations normal
to the wall. One would furthermore like to know how large perforations should
be chosen to optimize sound absorption. In Chapter 5 we propose a systematic
study of the effect of the ratio of bias to grazing flow velocity and of the acoustic
frequency for different geometries of a wall perforation. Analytical models of the
steady flow and of the low frequency aeroacoustic behavior of a two-dimensional
wall perforation are proposed.

Finally, in Chapter 6 we provide a summary of the main conclusions we can
draw from our study.

The work presented in Chapters 2, 3 and 4 of this thesis has been carried out
by D. Tonon. In chapter 3 some original data obtained by TNO for a corrugated
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pipe is used. The experimental data presented in Chapter 5 have been obtained by
E. Moers during her MSc thesis. The original aspects (not previously published)
of the proposed theoretical analysis are all due to D. Tonon. Chapter 2 has been
written in collaboration with: A. Hirschberg, J. Golliard and S. Ziada. Chapter
3 has been written in collaboration with: B.J.T. Landry, S.P.C. Belfroid, J.F.H.
Willems, G.C.J. Hofmans and A. Hirschberg. Chapter 4 has been written in col-
laboration with: J.F.H. Willems and A. Hirschberg. Chapter 5 has been written
in collaboration with: E. Moers and A. Hirschberg. D. Tonon has been “project-
leader” and first author for all the work presented in all the chapters. Co-authors
have mainly provided either global theoretical support or technical support.



Chapter 2

Aeroacoustics of pipe
systems with closed branches

Abstract
Flow induced pulsations in resonant pipe networks with closed branches are
considered in this chapter. These pulsations, observed in many technical appli-
cations, have been identified as self-sustained aeroacoustic oscillations driven
by the instability of the flow along the closed branches. The fundamental as-
pects of the flow induced pulsations are discussed, with particular attention
to the description of the sound sources. A single mode model for the predic-
tion of the self-sustained oscillations is presented, the “energy balance”. This
model consists of the evaluation of the amplitude of each acoustic mode of
the system by means of a balance between the acoustic source power and the
acoustic power losses. The main components of this prediction method are
discussed; these are the evaluation of the acoustic behavior of a pipe network
and the modeling of the sound sources and the acoustic losses. Several field
and scale model examples of pipe systems displaying self-sustained oscillations
are presented, in order to discuss the parameters influencing the aeroacoustic
behavior of pipe networks. Finally some countermeasures for the prevention
of self-sustained oscillations are reviewed and perspectives for future work are
considered.

2.1 Introduction

2.1.1 Flow induced pulsations

Low frequency acoustic pulsations in pipe networks have been observed in many
technical applications [36, 38, 7, 80, 117, 168, 139, 85, 48, 204, 227]. These pul-
sations are undesirable not only because of the noise produced but also because
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6 Aeroacoustics of pipe systems with closed branches

of the possibility of mechanical failures in the pipe network. The high amplitude
of the acoustic pressure fluctuations results in mechanical stresses that can cause
fatigue failure. Lower pulsation levels can already affect volume flow measure-
ments [201] or trigger vibration control equipment. Even when the vibration and
pressure pulsation levels do not endanger the system safety and can be tolerated,
they still cause additional pressure losses and reduce the efficiency. However small
these losses might seem in percentage terms, they constitute, in absolute values, a
significant amount of wasted energy.

Forced pulsations, like the pulsations driven by compressors, can be predicted
in the design phase by numerical models. A different kind of acoustic pulsations is
the aeroacoustic oscillation caused by the instability of the flow in the pipe systems.
This kind of pulsations is called self-sustained, or self-excited oscillations.

The flow in a pipe past an opening, for example a closed branch, forms a shear
layer, which is one of the main sound sources driving aeroacoustic oscillations
in pipe networks. Self-sustained aeroacoustic oscillations of unstable shear layers
are due to a feedback mechanism between the hydrodynamic (vortical) flow field,
associated with the unstable shear layer, and the acoustic (potential) flow field.
Thus, the essential constituents of this feedback excitation mechanism are the
shear layer oscillations and the resonant acoustic mode. In this case, the resonant
acoustic mode provides the upstream feedback event which strongly enhances the
system oscillations.

2.1.2 Trapped acoustic modes

Acoustic resonance of a pipe system occurs when acoustic energy accumulates into
a standing wave which is called an acoustic mode of the system. The resonance
modes are defined as the eigen-modes of the system [124]. Each mode is described
by a complex resonance frequency and a mode shape, corresponding to the eigen-
value and the eigen-vector, respectively. The real part of each complex frequency
corresponds to the frequency of free oscillation of the system at resonance condi-
tions, while the imaginary part is a measure of the quality factor of the resonance
[150].

The resonance behavior of a pipe system depends on the geometry of the system
and on the boundary conditions at its terminations. Resonance modes involving
the whole system can be defined as global modes [58, 87] of the system and their
response depends strongly on the boundary conditions. By contrast, resonance
modes involving only a sub-set of the pipe system are referred to as trapped (or
localized) modes [58, 87] and are not sensitive to the boundary conditions.

The trapped modes are resonance modes exhibiting zero radiation losses. These
modes rarely exist in pipe networks, but more commonly encountered are the
nearly trapped modes, for which the radiation losses are small. Trapped and nearly
trapped acoustic modes are particularly problematic in industrial applications be-
cause they are very liable to flow excitation and can produce excessively high levels
of pressure pulsations. Thus, the excitation of these modes often causes severe vi-
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bration and noise problems, some of which are briefly discussed in the following
section.

2.1.3 Examples of field experience

From 1940 to 1960, Oklahoma Gas and Electric Company had problems with
the safety valves installed on its boilers. Unusual noise and vibration, coming
from these valves were observed by operators. The problem arose with all the
re-heater safety valves located on a horizontal portion of the re-heat steam inlet
line just before it enters the steam generator, and just downstream of a pipe
elbow. The vibration was so severe that within a few months several valves failed.
These problems promoted a systematic investigation of the flow induced vibrations
in safety valves [38]. This investigation identified the standpipes of the valves,
which form a row of closed side branches along a main pipe, as responsible for the
occurrence of pulsations.

High amplitude pulsations, one order of magnitude higher than maximum pul-
sation levels corresponding to safety norms, were observed in 1973 in a compressor
station (Fig. 2.1-a) of the Dutch gas transport system (Ommen, The Netherlands).
The ratio of the amplitude of the acoustic velocity to main flow velocity reached
0.4. The pressure pulsation amplitude reached 1.5 bar for a static pressure of 60 bar
and for pipe diameters of 42”. These pulsations were identified as aeroacoustic os-
cillations sustained by the instability of the grazing flow along closed side branches
of the pipe system [80]. As the pulsations occurred only above a critical flow ve-
locity, the problem was solved by reducing the local velocity of the flow by means
of a by-pass piping.

Figure 2.1 – Ommen compressor station (a) and main steam piping layout of the
boiling water reactor (BWR) of Quad Cities Unit 2 (b) [48].

Peters and Riezebos [168] reported two other similar problems which occurred
at a regulating station and at a measurement and control station of the Dutch gas
transport system. In the first case, the pulsations occurred in a section of the pipe
network presenting two closed pressure-relieve lines (2” in diameter) along a main
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pipe (4” in diameter). The source of pulsations was identified to be the instability
of the main flow (in the 4” pipe) grazing along the 2” vent lines. The amplitude
of the pulsations, measured at the end of the relieve lines was 1.2 bar with a
static pressure of 60 bar. In the case of the measurement and control station, the
installation where flow induced pulsations were observed consists of two headers
(28” in diameter) and three control sections (8” in diameter). These pulsations
were not due to the instability of a grazing flow, but to the instability of the flow
entering the 28” low-pressure header, leaving one of the 8” control sections.

Gorter [79] also observed strong pulsations on a long (few meters) side branch
of 0.5” diameter along a 12” main pipe. This side branch was used as connection to
a manometer, monitoring the static pressure. Pulsations were detected as a result
of the associated thermal heating on the wall of the side branch. The paint at the
end of the closed side branch would burn off.

In 2002, the steam dryer (Fig. 2.1-b) in the boiling water reactor (BWR) of
Quad Cities Unit 2 (QC2) experienced high cycle fatigue cracks after the reactor’s
maximum power was increased by approximately 17%. Repairing the dryer by
using thicker plates and stronger welds did not resolve the problem, as the dryer
exhibited new cracks upon continued operation [162]. The cracks appeared on the
dryer outer plates, which face the inlet nozzles of the main steam lines (MSLs).
The steam dryer was therefore replaced with a substantially more robust one which
was also instrumented with pressure transducers to provide direct measurements
of the pressure fluctuations at numerous locations. During this course of events,
the safety relief valves (SRVs) on the MSLs were experiencing high vibration levels,
and subsequent inspection for maintenance during a refueling outage showed that
some safety valves had been damaged. The pressure measurements on the steam
dryer indicated that increasing the steam velocity in the MSLs, related to the
increase in the reactor power, excited the acoustic modes in the standpipes of
the safety valves, which are mounted on the MSLs. The resonance was so strong
that it not only damaged some of the valves, but also propagated upstream in the
MSLs and into the reactor dome and damaged the steam dryer. The problem was
solved by changing the standpipe geometry to avoid the acoustic resonance at the
increased rated power [85, 48, 227].

Turbine by-pass steam piping is another example of side branches which is
often encountered in power plants. When the by-pass valve is closed, which is the
normal operation mode, the by-pass steam line forms two closed side branches; one
branch upstream of the valve connected to the fresh steam pipe and a downstream
branch connected to the cold re-heat pipe. Generally, there are multiple by-pass
valves for each turbine and consequently multiple side branches in close proximity
to each other often exist in power plants. Such pipe arrangements can display
trapped or nearly trapped acoustic modes which, as mentioned earlier, are very
liable to flow excitation [229]. Serious vibration problems in power plants caused
by acoustic resonance in multiple closed side branches were reported by Chen and
Stürchler [36] and Gillessen and Roller [74].
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2.1.4 Overview of the chapter

The present chapter is divided into fourteen sections. In the present section we
have introduced the concepts of flow induced pulsations and trapped acoustic
modes, and presented some field experiences where these phenomena have been
observed. In the following four sections we present the fundamental aspects of
the flow induced pulsations in pipe systems with closed branches, these are: the
theory of sound produced by vortical disturbances due to shear layer instability
(Sec. 2.2), the description of the hydrodynamic and acoustic conditions for the
occurrence of self-sustained oscillations (Sec. 2.3), the characteristics of the self-
sustained oscillations due to the instability of a shear layer (Sec. 2.4) and the linear
stability theory of the shear layer (Sec. 2.5). Then, in Sec. 2.6 we present a simple
“frequency domain” model to predict the self-sustained oscillations by means of the
energy balance technique. In Sec. 2.7, we describe the prediction of the acoustic
behavior of pipe networks and introduce some examples of acoustic resonators
displaying self-sustained oscillations. The identification and the modeling of the
sound sources in pipe systems with closed branches are discussed in Sec. 2.11
and Sec. 2.12 respectively. Finally, the last five sections present: a qualitative
description of the hydrodynamic interaction (Sec. 2.13), the role of wall vibrations
(Sec. 2.14), some remedial measures for the prevention of self-sustained oscillations
(Sec. 2.15), the design of scale models (Sec. 2.16) and an overview of some open
questions (Sec. 2.17).

2.2 Vortex sound

The instability of separated flows such as shear layers, wakes and free jets acts
as a source of unsteadiness for flows at high Reynolds numbers. An unsteady
flow induces an unsteady force on the walls, associated to vortex shedding. The
reaction force of the walls to this hydrodynamic force is a source of sound [173].
The vorticity in a flow field is therefore related to the sound produced [174, 98].

One can qualitatively understand this feature by considering the familiar case
of the singing wire: the tone generated by a cylinder of diameter Dcyl in a steady
cross flow of velocity U . When we assume a potential flow around the cylinder,
there is no net force applied by the flow on the cylinder because of the symmetry
of the flow field. However, due to viscous effects, vorticity shedding in the cylinder
wake breaks the symmetry of the flow field. Above a critical Reynolds number
ReDcyl > 50 based on the diameter of the cylinder, instability of the wake is
observed which results in the formation of periodic vortex shedding at a frequency
fvk ≈ 0.2U/Dcyl. This so called von Karman vortex street [16, 18, 190] is associated
to an oscillating lift force applied by the fluid on the cylinder [14]. The reaction
force of the cylinder to this lift force is the source of tone generation, which was
studied first by Strouhal [202, 19].

It is essential to realize that the cylinder walls do not need to vibrate in order to



10 Aeroacoustics of pipe systems with closed branches

generate the sound. However, if a mechanical vibration of the cylinder is induced
by the oscillating lift force, this can significantly enhance the spatial coherence
of the vortex shedding along the cylinder and result into a stronger tone. This is
likely to occur when the cylinder mechanical resonance frequency is close to the
natural Strouhal vortex frequency fvkDcyl/U ≈ 0.2.

A similar lock-in can occur with an acoustic standing wave (resonant mode)
when the cylinder is confined in a duct or in a cavity [69, 232, 21, 18]. This
enhances even more the sound radiation, because the acoustic standing wave pro-
vides improved radiation impedance to the sound source. The resulting high am-
plitude acoustic oscillation controls the vortex shedding. This is an example of a
self-sustained oscillation. The global behavior of these kind of oscillations can be
described in terms of a feedback loop (Fig. 2.2-a) consisting of an amplifier (flow
instability) coupled to a narrow band filter (acoustic resonance). Reviews of self-
sustained oscillations involving a coupling between flow instability and a resonant
acoustic field are provided by Rockwell [182], Rockwell and Naudascher [183, 184],
Blake [14], Blake and Powell [15], Powell [175], Howe [101, 103, 104] and Gloer-
felt [75]. These reviews also consider hydrodynamic instabilities in which acoustic
resonance is absent, such as edge tones or shallow cavities oscillations. We restrict
ourselves to resonant cavities for which the coupling with an acoustic mode is es-
sential. Please note that we selected the example of the cylinder because it is clear
that in this case there is no impingement of the separated flow on a sharp edge.
Actually, the concept of sound produced by impingement of a separated flow (such
as a shear layer) used in early literature is rather misleading. In contrast to the
vortex sound theory described below, it is a verbal conjecture without quantitative
predictive value.

Figure 2.2 – Feedback loop characterizing the self-sustained oscillations (a) and
double side branch system in cross configuration (b).

A formal relationship between vortex shedding and sound generation has been
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first established for free field conditions by Powell [174] and generalized by Howe
[98, 100, 105]. Howe [100] proposes to use a Helmholtz decomposition of the flow
field ~u to define the acoustic field:

~u = ∇ (ϕ0 + ϕ′) +∇× ~ψ (2.1)

where ϕ0 is a steady scalar potential, ϕ′ is the unsteady scalar potential and ~ψ is
the stream function. The acoustic field ~u′ is defined by Howe [100] as the unsteady
irrotational part of the velocity field:

~u′
def
= ∇ϕ′ (2.2)

The ambiguity in the Helmholtz decomposition is in practice removed by the
boundary conditions which we impose to the acoustic field.

We consider flows with a high Reynolds number and a low Mach number so that
we can neglect friction and heat transfer. Assuming a homoentropic flow (uniform
entropy), we can use the formulation of Crocco for the momentum equation:

∂~u

∂t
+∇B = −~ω × ~u (2.3)

where B = |~u|2 +
∫
dp/ρ is the total enthalpy and ~ω = ∇× ~u is the vorticity.

At low Mach numbers, we can neglect the convective effects on the propagation
of sound waves. With this assumption one finds the wave equation:

1

c20

∂2B

∂t2
−∇2B = ∇ · (~ω × ~u) (2.4)

where c0 is the speed of sound.
The last equation shows that the Coriolis force density ~fcoriolis = −ρ0 (~ω × ~u),

where ρ0 is the fluid density, acts as source of sound.
As proposed by Howe [100], the time-averaged acoustic source power 〈Psource〉

can be estimated using the low Mach number |~u| /c0 � 1 approximation:

〈Psource〉 = −ρ0

〈∫
V

(~ω × ~u) · ~u′dV
〉

(2.5)

where V is the volume in which ~ω is not vanishing and the brackets 〈· · · 〉 indicate
time averaging. The fact that we integrate over space and average over one oscilla-
tion period makes this formulation quite robust. Furthermore, it is quite successful
because it stresses the dipole character of the sound source, which is dominant in
the cases considered [92].

The power transfer from the hydrodynamic field to the acoustic field is due to
the pressure difference across the source region which is in phase with the acoustic
velocity ~u′. The pressure difference in phase with the acoustic acceleration d~u′/dt
will act as an added mass to the acoustic resonator. This corresponds to the so
called “end correction” to the length of the pipe segments, used to predict acoustic
resonances of pipe systems by means of a plane wave model [171].
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2.3 Acoustic and hydrodynamic modes

The flow induced pulsations of double closed side branch systems in cross configu-
ration (Fig. 2.2-b) have been extensively studied [229, 166, 222, 223, 136, 234, 51,
197, 198, 163, 164, 5]. We consider two closed side branches of equal length Lsb

and diameter Dsb connected to a cross-junction with the main pipe of diameter
Dp. We use this relatively simple configuration in order to introduce the basic
concepts of acoustic and hydrodynamic modes.

The amplitude of the acoustic pressure |p′max| measured [136] at the closed
end of the side branches and the corresponding whistling frequency f are pre-
sented as function of the main flow velocity U in Fig. 2.3-a. The different reso-
nant acoustic modes, corresponding to acoustic standing waves with frequencies
fn ≈ (2n− 1) c0/ (4Lsb), n = 1, 2, 3, . . ., are clearly observed in Fig. 2.3-a. Only
the odd acoustic modes, consisting of odd multiples of a quarter wavelength in
each branch, are resonant because they have a pressure node at the junction.

The resonance modes display an anti-symmetric spatial distribution of the
acoustic pressure amplitude at the junction which does not generate plane waves
in the main pipe. For frequencies below the cut-off frequency fcut for propagation
of non-planar modes in the main pipe, the odd acoustic modes do not radiate into
the main pipe. Therefore, these modes are trapped modes, exhibiting negligible
radiation losses. In addition, the maximum acoustic velocity of these modes occurs
at the branch opening, where the shear layer vortices are formed. Since these
vortices are also convected with the flow in a direction which is normal to the
acoustic velocity oscillation, the acoustic power production, according to Eq. (2.5),
is at its maximum. These unique features of negligible radiation losses and efficient
sound power production make the well-tuned double closed side branch systems
in cross configuration very liable to strong flow excited acoustic resonances.

As can be seen from Fig 2.3-a, the flow induced pulsations occur in certain
intervals of the Strouhal number SrW eff = fWeff/U based on the effective cavity
width Weff. Within each of these intervals, the Strouhal number at which the
acoustic pressure |p′max| displays a maximum is referred to as the optimal Strouhal
number SrW eff,opt. While the optimal Strouhal number is useful to indicate the
conditions of maximum pulsation amplitude, in engineering practice one often uses
the critical Strouhal number SrW eff,cri, that indicates the conditions for the onset
of the pulsations, i.e. the highest velocity before the onset of pulsations.

The relevant length scale in problems concerning the aeroacoustic behavior of
pipe systems with closed side branches has been identified by Bruggeman et al.
[32] to be the effective cavity width Weff of the side branch at the junction. For
a side branch with rectangular cross section Weff ≈ Wsb + rup, where Wsb is the
width of the side branch and rup the radius of curvature of the upstream edge of
the junction. For side branches with circular cross section of diameter Dsb, the
effective width is Weff ≈ πDsb/4 + reff, where πDsb/4 is the average width of the
side branch cross section. This is the width (dimension along the flow direction) of
a rectangular opening with the same surface area and the same depth (dimension
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normal to the flow direction) as the circular opening. Experiments by Bruggeman
et al. [32] indicate that for circular cross sections, reff is the minimum radius of
curvature rup of the upstream edge of the junction.

Figure 2.3 – Acoustic measurements [136] (a) and flow visualizations [166] (b) in a
double side branch system in cross configuration with sharp edges. The acoustic mea-
surements have been carried out in a system with circular cross section of the pipes
and with side branch diameter Dsb = 2.5 cm, main pipe diameter Dp = 3 cm and
side branch length Lsb = 20 cm. The flow visualizations have been carried out in a
system with square cross section of the pipes and with side branch width equal to the
main pipe width Wsb = Wp = 6 cm and side branch length Lsb = 56.4 cm. The third
hydrodynamic mode, observed in the flow visualizations, corresponds to very low
pulsation amplitudes so that it has not been reported in the acoustic measurements.

As can be seen in Fig. 2.3-a, pulsations occur at a certain acoustic mode n
within several, but limited ranges of flow velocity, which correspond to the so
called hydrodynamic modes of the shear layer and are referred to in the Fig. by the
integersm = 1, 2, . . .. The order of the hydrodynamic modem indicates the number
of vortices formed by the shear layer between the upstream and downstream edges
of the side branch opening.

The first hydrodynamic mode m = 1, corresponding to one vortex in the
side branch opening (Fig. 2.3-b), appears usually at an optimal Strouhal num-
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ber SrW eff,opt ≈ 0.4. The convective velocity of the vortex is about Ucon ≈ 0.4U
[32], hence the travel time of the vortex across the opening is one oscillation period
T = 1/f . Please note that at high amplitude oscillations, such as shown in Fig.
2.3-a, one observes a decrease of SrW eff,opt down to 0.3 [166, 223, 136, 51]. This is
due to a decrease of the convective speed as the vortex enters deep into the side
branch.

For the second hydrodynamic mode m = 2, two vortices are present at the
same time in the opening of the side branch (Fig. 2.3-b), and the time needed
by a vortex to travel across the junction is then two oscillation periods, which
corresponds to SrW eff,opt ≈ 0.8. A third hydrodynamic mode m = 3 has been
observed by Peters [166] (Fig. 2.3-b), but it corresponds to very low pulsation
amplitudes. It has therefore not been reported by Kriesels et al. [136].

For similar cavity flows, other researchers [182, 183, 75] observed experimentally
up to the fifth hydrodynamic mode of the shear layer. Modes higher than the fifth
might not appear due to merging of successive vortices in the shear layer, as
observed in free shear layers [182, 75, 93].

From Fig. 2.3-a, it appears that the sound source is most effective when it
is operating at the first hydrodynamic mode m = 1. Indeed, most of the severe
pulsations observed in field experiences correspond to m = 1. When the flow
velocity is increased gradually, the higher order hydrodynamic modes m > 1 are
observed before observing the first hydrodynamic mode m = 1. Fig. 2.3-a clearly
depicts this feature: each specific acoustic mode (n = 1, 2, 3, . . .) is first excited by
the second hydrodynamic mode m = 2 and then by the first hydrodynamic mode
m = 1.

In principle, each hydrodynamic mode m could couple with each acoustic mode
of the system n. The amplitude of the pulsations increases with the acoustic mode
number n simply because, at a fixed Strouhal number SrW eff = fWeff/U (fixed
hydrodynamic mode m), a higher frequency implies a higher flow velocity. Hence
more flow power 1/2ρ0U

3
(
πD2

sb/4
)

is available to drive the pulsations [30].
In order to compare the amplitudes of the pulsations, they should be presented

in a dimensionless form. It appears that the physically most relevant dimensionless
form is to compare the acoustic velocity amplitude

∣∣~u′jun

∣∣ at the sound source with
the steady main flow velocity U . In the particular case of a resonant closed branch,
this corresponds to the ratio |p′max| / (ρ0c0U) of the pressure amplitude |p′max| at
a pressure antinode in the closed branch (i.e. at the closed branch termination)
divided by the product ρ0c0U of the characteristic impedance ρ0c0 of the fluid
with the main flow velocity U . When presented in this form, the dimensionless
amplitude of the pulsations for the first hydrodynamic mode of Fig. 2.3-a appear
to be of order unity, while the pulsation amplitude for the second hydrodynamic
mode appears to be an order of magnitude lower.

Based on this dimensionless form, Bruggeman et al. [32] introduced the concept
of low, moderate and high amplitude pulsations, which we will discuss in section
2.11.3.
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2.4 Free, forced and self-sustained oscillations

Self-sustained oscillations of unstable shear layers can be described by means of a
lumped element model as the instability of a feedback loop (Fig. 2.2-a) involving
the unstable hydrodynamic (vortical) flow field and the acoustic (potential) flow
field [62, 70, 65, 161, 132].

Since self-sustained oscillations involve often only one dominant mode, these
kind of oscillations can be described considering a single mode model of the acous-
tic behavior of the pipe system. Drawing a parallel between the oscillations of
mass-spring-damper systems and the aeroacoustic pulsations in pipe systems, each
acoustic mode of the pipe system will be described by discussing the oscillations
of an independent mass-spring-damper system [86].

We consider a mass M at position x attached to an ideal spring, with elastic
constant K and rest length L0, and to an ideal damper, with damping coefficient
R. The other extremity of the system is at position x0. The mass can move in
the x-direction only, so that the mass-spring-damper is a one degree of freedom
system. The equation of motion of the mass is:

M
d2x

dt2
+K [x− (x0 + L0)] +R

dx

dt
= Fext (2.6)

where Fext is the external force applied to the mass.
We call the motion of the mass a free oscillation when there is no external

force Fext = 0 and when x0 is constant. The solution of the equation of motion, in
complex notation, is:

x′ = x− (x0 + L0) = x̂exp (iωt) (2.7)

where x′ is the deviation from the rest position, x̂ is the oscillation amplitude,
ω = 2πf is the radial frequency and i2 = −1. Substitution of the solution into the
equation of motion yields: (

−Mω2 + iRω +K
)
x̂ = 0 (2.8)

This equation has only a non-trivial solution x̂ 6= 0 if
(
−Mω2 + iRω +K

)
= 0.

This implies that ω is a complex number:

ω = ωr + iωi =

√
K

M
−
(
R

2M

)2

+ i
R

2M
(2.9)

If K/M > (R/2M)
2

the solution:

x′ = x̂exp (−ωit) exp (iωrt) (2.10)

corresponds to a harmonic oscillation of frequency ωr and with an amplitude which
decays exponentially following a time constant 2π/ωi = 4πM/R. The amplitude
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x̂ of free oscillations is determined by the initial conditions. When (ωr/ωi)
2 � 1

the oscillation frequency is close to that of the (frictionless) mass-spring system
ωr ≈ ω0 =

√
K/M . As strong flow induced pulsations do in general occur when

the acoustic mode of the pipe system is not strongly damped, it is a reasonable
approximation to assume ωr = ω0.

A forced oscillation of the mass-spring-damper system can be obtained by
means of an external time dependent force Fext or by means of a time dependence
of x0. The vortex shedding at discontinuities in a pipe system corresponds to an
external force, while the drive of a pipe system by a piston compressor corresponds
to a fluctuation of x0. Until now we considered free oscillations which appear only
at specific frequencies ω = ωr + iωi. We now consider forced oscillations under the
influence of a harmonically oscillating external force Fext = F̂extexp (iωt). Since
the fluctuation is now imposed, the frequency ω is now real. It is fixed by the
external excitation rather than by the mass-spring-damper system. Substituting
the steady solution (Eq. (2.7)) into the equation of motion of the forced system
yields the oscillation amplitude:

x̂ =
F̂ext

−Mω2 + iRω +K
=

F̂ext

M (ω2
0 − ω2 + 2iωiω)

(2.11)

The amplitude and phase responses of a forced mass-spring-damper system are
represented in Fig. 2.4 in terms of the velocity of the mass dx/dt = iωx̂exp (iωt).
The amplitude of this response has a maximum at a frequency ω close to the
natural frequency of the free oscillation regime ω0. This maximum corresponds
to the resonance condition of the forced oscillation regime. The quality factor Q
is defined as the ratio ω0/∆ω of the resonance frequency and the width of the
resonance peak 3dB below the peak amplitude. We find by considering Eq. (2.11)
that ∆ω ≈ R/M so that:

Q =
ω0

∆ω
≈ ω0

2ωi
(2.12)

The phase ϕac between the excitation force Fext and the velocity of the mass dx/dt
changes from ϕac = −π/2 at low frequencies, where the response x′ of the mass
is quasi-static, towards ϕac = π/2 at high frequencies, where the mass movement
x′ is opposite in sign to the excitation. When there is no damping, the phase
transition is abrupt and occurs at ω0. As the damping increases (the quality factor
Q decreases) the transition becomes more gradual. This phase transition around
the resonance frequency is essential to understand the behavior of self-sustained
oscillations.

Self-sustained oscillations occurs when the movement x′ induces a force Fext

which maintains the oscillation. The most simple case of self-sustained oscillation
corresponds to a force proportional to the velocity of the mass, so that it can
maintain self-sustained oscillations:

Fext = C
dx

dt
(2.13)
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Figure 2.4 – Amplitude response (left) and phase response (right) of a forced mass-
spring-damper system for different values of the quality factor Q = 2.5, 5, 10. The
dimensionless amplitude |dx/dt| / (x0ω0) and the phase arg (dx/dt) of the velocity
oscillations are presented in function of the dimensionless frequency ω/ω0.

with C > 0. This is the case of the self-sustained oscillations subject of this study.
The vortex shedding at discontinuities in a pipe system corresponds to an external
force Fext. This force is triggered by the acoustic velocity and it maintains the
oscillations. Substituting Eq. (2.13) into the equation of motion (Eq. (2.6)) and
assuming again a harmonic solution, yields:[

−Mω2 + i (R− C)ω +K
]
x̂ = 0 (2.14)

If C < R the system is stable (ωi > 0), so that initial perturbations are damped.
If C > R the system is unstable (ωi < 0), so that an initial perturbation growth
exponentially in time. It should be clear that as we have assumed that all the
parameters are constant (M , K, R, x0, C) we cannot predict a finite amplitude
of self-sustained oscillation. A finite oscillation amplitude and a corresponding
steady state is reached by non-linear behavior. A non-linear saturation mechanism
is essential to obtain a stable periodic oscillation at finite amplitude [70].

For periodic oscillations the total time delay along the feedback loop is an
integer number of the oscillation period. From this oscillation condition we can
determine the whistling frequency f of the self-sustained oscillations:

2πfWeff

Ucon
+ ϕac = 2πm (2.15)

where the first term of the left side is the phase delay due to convection and
ϕac is the phase between the excitation force due to vortex shedding (which can
be expressed as a source pressure related to the sound source) and the acoustic
velocity at the source position.
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The convective velocity Ucon depends on the amplitude of the oscillation. For
high amplitudes the vortex path enters deep into the closed branch, resulting
into a decrease of the convective velocity. This decrease results into a lowering
of the Strouhal number for maximum pulsation level (optimal Strouhal number)
[166, 223, 136, 51]. As explained in section 2.2, the flow also involves an acoustical
inertia. This inertia corresponds to the added mass term experienced by an oscil-
lating object placed in a flow [8]. In our case the added mass term is taken into
account by the end corrections to the length of the pipe segments (section 2.7.2).
We neglect the amplitude dependence of these end corrections. This implies that
the observed oscillation frequency at maximum pulsation level will differ slightly
from the passive resonance frequency in the absence of main flow.

The optimal oscillation condition corresponds to acoustic resonance f ≈ fn
and implies ϕac ≈ 0. When the flow velocity U is changed the phase delay due
to convection is modified because the convective velocity Ucon ∝ U changes. Fur-
thermore the oscillation condition (Eq. (2.15)) is not satisfied anymore at the
resonance frequency fn. By adjusting the oscillation frequency f , the system can
reach any phase in the range −π/2 < ϕac < π/2 which leads to the matching of
the oscillation condition (Eq. (2.15)), allowing whistling within a finite velocity
range (Fig. 2.3-a) for a given hydrodynamic and acoustic mode. By shifting away
from the resonance, the amplitude of the response of the system is reduced. For
a given mode, the oscillation frequency f increases gradually with increasing flow
velocity. For velocities below the value for optimal oscillation condition, the os-
cillation amplitude increases with increasing the flow velocity. When the optimal
flow velocity is reached a further increase implies a decrease of the response of
the acoustic mode and, as a consequence, a reduction of the pulsation amplitude.
When losses become too large, the oscillation stops or an oscillation involving other
hydrodynamic or acoustic modes can appear (Fig. 2.3-a).

When the resonator has a high quality factor Q, the frequency change due
to change in flow velocity U remains very small for a given acoustic mode. We
therefore observe a typical stepwise increase in frequency f (Fig. 2.3-a) rather than
a gradual increase of frequency f with increasing flow velocity U . The changes in
hydrodynamic and acoustic modes can display hysteresis [223, 32]. This implies
that the oscillations modes will appear, respectively disappear, at different flow
velocities U . This is common for non-linear systems.

2.5 The shear layer instability and saturation

The shear layer instability is the source of unsteadiness that acts as the amplifier
in the feedback loop generating self-sustained oscillations (Fig. 2.2-a). The growth
of vortical disturbances in the shear layer separating the main pipe flow from the
stagnant fluid in the closed side branch has been extensively studied by means of
the linearized stability theory since Rayleigh [179].

The effect of finite momentum thickness of the velocity profile of the mean flow
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on the spatial amplification and convective velocity (phase speed) of hydrodynamic
waves in an inviscid parallel free shear layer has been predicted by Michalke [148].
The nature of the coupling between the shear layer and the acoustic field at the
flow separation point at x = 0, where the shear layer is formed, is not addressed
in the analysis of Michalke [148]. For a given initial harmonic perturbation of the
vorticity field at position x = 0, the theory predicts an exponential spatial growth
exp (−αix). The predicted influence of the mean flow velocity profile on the spatial
growth of unstable waves has been confirmed by experiments [72]. The predicted
spatial amplification exponent −αiϑs [148] is shown in Fig. 2.5 as a function of
the Strouhal number Srϑ = fϑs/U based on the shear layer momentum thickness
ϑs.

Figure 2.5 – Amplification rate −αiϑs for a shear layer with finite thickness as
function of the Strouhal number based on the shear layer momentum thickness Srϑ
[148].

For low frequencies or thin shear layer compared to the hydrodynamic wave-
length, the theory predicts an integral amplification over one wavelength by a
factor exp (2π). This low frequency limit is indicated by the dotted line in Fig. 2.5.
Furthermore, the theory predicts that for frequencies above:

fϑs
U

= 0.04 (2.16)

the perturbations are not amplified. Therefore, hydrodynamic waves with wave-
length λh = 0.4U/f shorter than about ten times the shear layer momentum
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thickness ϑs are not amplified by the shear layer and cannot be self-sustained.
This implies that when the main flow velocity is increased monotonically, the
highest hydrodynamic mode to appear is determined by the critical ratio λh/ϑs of
hydrodynamic wavelength λh to momentum thickness ϑs, as discussed above. The
Strouhal number above which −αiϑs < 0 has been confirmed experimentally [72].

The exponential growth of vorticity perturbations with increasing distance from
the flow separation point is only observed as long as the shear layer perturbations
are very small. For large perturbations, the shear layer is observed to roll-up into
coherent vortex structures as can be seen from the flow visualizations in Fig. 2.3-b.

The concentration of the shear layer vorticity into discrete vortices, clearly ob-
served in Fig. 2.3-b, is the non-linear saturation mechanism which explains the sta-
bilization of the feedback loop oscillation at finite pulsation amplitude [5, 70, 121].
As the perturbation amplitude becomes very large,

∣∣~u′jun

∣∣ /U = O (1), another
non-linearity appears, which is caused by the acoustically induced flow separation
at the downstream edge and the amplitude dependence of the rate of vortex shed-
ding at the upstream edge. This effect is referred to as “vortex damping” and has
been predicted by Howe [103] and by Disselhorst and van Wijngaarden [55]. Fur-
thermore, it has been experimentally demonstrated by Graf and Ziada [82, 83] and
Ziada [223]. At yet higher amplitudes, non-linear wave steepening, which generates
radiation losses, can become significant [166, 136, 51, 90, 94]. This wave steepening
leads eventually to the formation of acoustic shock waves [166, 51, 90, 94].

2.6 Energy balance

In general, prediction of the self-sustained oscillations can be achieved by means
of the classical “time-domain” approach, in which the equations of motion are
integrated numerically. However, if the oscillations are harmonic, we can use a
“frequency-domain” approach, in which we consider the steady oscillations in the
frequency domain. In the following we describe two “frequency-domain” methods,
the single mode model of Bruggeman et al. [32] and the less formal energy balance
approach.

A formal procedure to determine the self-sustained oscillation behavior of a pipe
system with closed branches has been obtained by Bruggeman et al. [32, 31]. This
consists of a single mode model for the low frequency sound production by vortical
non-homogeneities in a pipe system with low Mach number flow. The propagation
of low frequency sound in a two-dimensional duct system was studied by means
of the method of matched asymptotic expansions [31]. An integral formulation of
the problem of sound produced by aeroacoustic sources in T-junctions was derived
using the formula of Green. The Green’s function was determined as proposed
by Howe [98, 106] by coupling a locally incompressible potential flow model at
the junctions to a plane wave model (section 2.7.2) in the pipe segments. The
Green’s function was expanded in terms of modes of the pipe system. The resulting
expansion was solved with the method of van der Pol and the source terms were
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modeled analytically. This results into a set of coupled second order differential
equations, one for each mode. This approach has been inspired by the approach
proposed by Fletcher [70] for wind instruments. Assuming that a single mode is
dominant yields a single second order equation as used by Bruggeman et al. [32, 31]
and by Dequand et al. [51].

A less formal method for the prediction of the self-sustained oscillations is the
energy balance approach. This method assumes that at fixed flow conditions only
a single acoustic mode of the pipe network is dominating and that each resonance
has a high quality factor so that the oscillation frequency f corresponds, in first
approximation, to that of an acoustic mode fn of the system. The evaluation of
the mode amplitude, that is the amplitude of the steady harmonic oscillation, is
carried out through a balance between the time-averaged acoustic source power
〈Psource〉 and the time-averaged acoustic power losses 〈Ploss〉, in order to satisfy the
acoustic energy balance of the whole system. The acoustic source power 〈Psource〉
is modeled by using the formulation of Howe (Eq. (2.5)). Acoustic losses 〈Ploss〉 are
due to different contributions, the most important are: radiation of acoustic waves
〈Prad〉, visco-thermal dissipation by friction and heat transfer 〈Pv-th〉, non-linear
radiation losses due to wave steepening 〈Prad-nl〉, energy transfer to wall vibrations
〈Pwall〉 and sound absorption by vortex shedding 〈Pvort〉 at pipe discontinuities.
In principle, the last effect is included in the theory of vortex sound (Eq. (2.5)).
However, in some cases, simplified (quasi-steady) theories can be used, which do
not involve details of the flow [186, 187, 44, 60].

2.7 Global acoustic behavior of a pipe system

2.7.1 Closed branches as acoustic delimiters

We consider self-sustained acoustic pulsations in pipe systems involving a resonant
acoustic field. This resonant field can be described in first approximation as a
standing wave of the system. This standing wave is localized in space by acoustic
delimiters.

Acoustic delimiters in a pipe system are discontinuities in the system inducing
strong reflections. These can be for example a sudden area expansion, an open pipe
termination, a closed branch, an orifice or a chocked valve. The acoustic response
of such delimiters has been extensively discussed in literature [186, 187, 44, 60,
110, 34, 46, 167, 25, 26, 178, 131, 24, 129].

An interesting type of acoustic delimiter is the closed branch. This is com-
posed by a pipe segment connected on one side to a junction (usually a T-junction
or a cross-junction) and closed at the other side. A closed branch with a cross
section Scb placed along a main pipe of cross section Sp will only be an iso-
lated resonator on its own when it is narrow Scb � Sp. However, resonances
of the closed side branch are crucial even when Scb/Sp = O (1) because such
a resonant side branch is a perfect reflector for waves traveling along the main
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pipe. A closed branch of length Lcb acts as “perfect” reflector at frequencies
fn ≈ (2n− 1) c0/ [4 (Lcb + δcb)], n = 1, 2, 3, . . .. The so called end correction δcb

takes into account the inertia of the acoustic flow at the junction. In absence of
mean flow this end correction has been evaluated by Benade [12], Keefe [119, 120],
Nederveen [159], Bruggeman [31] and Dubos et al. [59]. For these critical frequen-
cies fn below the cut-off frequency for non-planar waves fn < fcut, the standing
wave patterns display a pressure node at the junction.

2.7.2 Low frequency modeling

For a global prediction of the standing wave pattern of a complex pipe system, we
assume that the relevant oscillations have frequencies below the cut-off frequency
fcut for non-planar wave propagation, so that only plane waves propagate in the
various pipe segments composing the system. Within pipes with circular cross
section, the first evanescent pipe mode decays in space, for low Helmholtz numbers
HeD = 2πfD/c0 � 1 based on the pipe diameter D, as exp (−2πfcutx/c0) ≈
exp (−3.68x/D). Hence, the plane wave assumption is quite accurate within one
diameter from the junction.

When calculating the standing wave behavior of a pipe system (resonance
modes), we neglect the sound sources in the system. Then, for low Helmholtz
numbers HeD � 1, at each junction in the pipe system the difference in fluctua-
tions of the total enthalpy B′ between points in different sections of the junction,
at about one pipe diameter from the junction, is negligible. This result is derived
by using the linearized form of the Bernoulli equation (integral of momentum
equation along a streamline assuming a potential acoustic flow):

p′1
ρ0

+ U1u
′
1 =

p′2
ρ0

+ U2u
′
2 = . . . =

p′N
ρ0

+ UNu
′
N (2.17)

where 1, 2, . . . N are the indices of the different pipe segments meeting at the
junction, p′ and u′ are the acoustic pressure and the acoustic velocity of the plane
waves, U is the main flow velocity and ρ0 is the fluid density.

The set of equations is then complemented by the linearized integral mass
conservation law:

N∑
j=1

(
ρ0u
′
j +

p′j
c20
Uj

)
n̂jSj = 0 (2.18)

where the index j refers to the different pipe segments meeting at the junction, n̂
is the unit vector of the different sections of the junction (directed outwards the
junction), S is the cross sectional area of each pipe meeting at the junction and
c0 is the speed sound.

To obtain more explicit results we assume harmonic waves so that the d’Alembert
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solution for plane waves in pipe segments can be introduced in the form:
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(2.20)

where ω = 2πf is the angular frequency, p± is the complex amplitude of the wave
traveling in the positive/negative direction and k± = ω/ (c0 ± U) is the wave
number.

In these equations, we assume the origin of the coordinates of each pipe segment
to be at the junction which we consider. The positive direction is chosen outwards
from the junction. The set of equations is mathematically closed by imposing the
acoustic boundary conditions at the boundaries of the pipe system.

The visco-thermal losses can be taken into account in the model by incorporat-
ing them in the wave number k±, in absence of main flow as discussed by Kirchhoff
[125], Rayleigh [179], Tijdeman [208], Kergomard et al. [122, 123] and Pierce [171]
and in presence of main flow as proposed by Ronneberger and Ahrens [189], Peters
et al. [167] and Allam and Åbom [2]. The radiation losses can be included in the
boundary conditions by imposing a radiation impedance. Other acoustic losses, as
the wall vibrations, the non-linear losses due to wave steepening and the vortex
shedding at pipe discontinuities are difficult to model analytically.

Using linear models for the acoustic boundary conditions at the boundaries of
the pipe system, one obtains a homogeneous set of linear equations. Non-trivial
solutions of this system of equations correspond to eigen-values fn for which the
determinant of the homogeneous set of equations vanishes.

As mentioned in Sec. 2.6, we adopt a single mode approach for the descrip-
tion of the aeroacoustic behavior of a pipe system. Furthermore, we assume that
the oscillation frequency of each mode is well approximated by the real part
Re (fn) of the corresponding eigen-value fn. Justification for this assumption is
that we are mostly interested in oscillations with a high quality factor Q, so that
Re (fn) /Im (fn)� 1. We will further use the spatial distribution of each mode, the
eigen-vector, to calculate the acoustic power generated by the sources 〈Psource〉 and
the acoustic power losses 〈Ploss〉. This provides an energy balance, which allows
the prediction of the amplitude of a stable limit cycle oscillation (Sec. 2.6).

2.8 Single closed branch resonator

2.8.1 Single deep side branch

Considering a single closed side branch of diameter Dsb along an infinite main pipe
of diameter Dp, at low frequencies, the pressure reflection coefficient Rp for plane
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waves traveling in the side branch towards the junction p−sb is:

Rp =
p+

sb

p−sb
=
D2

sb − 2D2
p

D2
sb + 2D2

p

(2.21)

where p±sb is the complex amplitude of the reflected/incoming wave and we assumed
anechoic pipe terminations of the main pipe.

In the limit of small side branch diameter compared to the main pipe diameter
Dsb � Dp, the pressure reflection coefficient (Eq. (2.21)) is close to that of an
ideal open end Rp = −1, so that the closed side branch can be considered as an
isolated resonator. At the frequencies corresponding to the resonances of the closed
side branch fn ≈ (2n− 1) c0/ (4Lsb), n = 1, 2, 3, . . ., the system can be excited,
displaying self-sustained oscillations.

Deep and narrow closed side branches are widely used for pressure measure-
ments along gas transport systems. Gasunie has experienced strong flow induced
pulsations in these kinds of configurations (Sec. 2.1.3).

In studies on the aeroacoustic behavior of single deep side branch resonators
[85, 48, 5, 193, 230], measurements are often carried out on a deep side branch
(Lsb/Dsb > 1) placed in the test section (Dp/Dsb > 1) of a closed loop wind
tunnel. When Lsb/Dp < 1, the system is acoustically similar to a cavity radiating
sound into a free space [65]. In that case, the radiation impedance Z of this side
branch can be approximated by the radiation impedance of a flanged open pipe
termination:

Z

ρ0c0
=

1

8

(
2πfDsb

c0

)2

(2.22)

The pressure reflection coefficient Rp for plane waves traveling in the side
branch towards the junction p−sb is then:

Rp =
Z/ (ρ0c0)− 1

Z/ (ρ0c0) + 1
(2.23)

In the single deep side branch resonators, near the transverse acoustic reso-
nances of the system composed by the closed branch and the main pipe fn ≈
1/2nc0/ (Dp + Lsb), n = 1, 2, 3, . . ., strong deviations from the free field condi-
tions, described above, are observed. In particular, the acoustic field displays a
localized (trapped) mode.

Flow induced resonance in deep cavities has been reviewed, among others, by
Rockwell and Naudascher [183], Rockwell [182] and Gloerfelt [75]. The related
whistling of a Helmholtz resonator in grazing flow has been studied by Panton
[165] and Dequand et al. [52, 50]. These papers provide a systematic discussion of
the influence of the geometry of the cavity edges on the whistling behavior.

2.8.2 Impact of boundary conditions

We now consider a pipe system (Fig. 2.6) composed of a single T-junction forming
a closed side branch with Dp/Dsb ≈ 1. The pipe system is furthermore delimited
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upstream by a settling chamber and downstream by an open pipe termination.
When the side branch diameter is of the same order of magnitude as that of

the main pipe Dp/Dsb ≈ 1, the closed branch is not an isolated resonator on its
own because the pressure reflection coefficient Rp for waves traveling in the side
branch towards the junction p−sb is very low. In this particular case, the reflection
coefficient is Rp ≈ −1/3, which implies that only 10% of the wave energy is
reflected. Since the rest of the energy is radiated into the main pipe, the upstream
and the downstream acoustic boundary conditions of the main pipe are clearly
critical.

Figure 2.6 – Single side branch resonator with open pipe termination presenting
sharp edges (a) and a rounded edges (b).

For length Lj (j = 1, 2, 3 . . .) of the pipe segments composing the system of the
same order of magnitude, it is interesting to note that the acoustic modes of the
system will not necessarily involve a resonance of the closed side branch segment
Lsb = L2.

The global acoustic behavior of this pipe system is strongly influenced by the
upstream and the downstream acoustic boundary conditions of the main pipe. In
a well designed (smooth) nozzle of the settling chamber, acoustic losses due to
convective effects are negligibly small. The upstream boundary condition is then
a reflection coefficient of unity for the acoustical energy [178, 112]:

RE,up =

(
B−1
B+

1

)2

= R2
p,up

(
1 +M

1−M

)2

≈ 1 (2.24)

where B±1 is the complex amplitude of the total enthalpy fluctuation of the incom-
ing/reflected waves at the main pipe inlet and M = U/c0 is the Mach number of
the flow through the main pipe.

At the downstream side, when the pipe termination has sharp edges, the acous-
tical energy reflection coefficient for plane waves traveling in the main pipe towards
the open end is [178, 112]:

RE,down-sharp =

(
B−3
B+

3

)2

= R2
p,down-sharp

(
1−M
1 +M

)2

≈
(

1−M
1 +M

)2

(2.25)

where B±3 is the complex amplitude of the total enthalpy fluctuation of the incom-
ing/reflected waves at the main pipe outlet.
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We see from Eq. (2.25) that even moderate Mach numbers will result into strong
sound absorption at a downstream open pipe termination with sharp edges. As
demonstrated by Bechert [10] and Hofmans et al. [95, 96], convective absorption
can be used to design an orifice plate which at low Strouhal numbers behaves as
an anechoic pipe termination for a critical Mach number. A multiple orifice config-
uration can be used to obtain an anechoic behavior in a wide range of flow Mach
numbers and acoustic frequencies [60]. This is a robust way to avoid pulsations,
at the cost of significant pressure losses.

Figure 2.7 – Effect of the downstream pipe termination on the dimensionless pulsa-
tion amplitude |p′max| / (ρ0c0U) of the quarter wavelength resonance f ≈ c0/ (4L2).
Single side branch system of figure 2.6-a (L1 = 0.18 m, L2 = 0.59 m, L3 = 1.21 m,
W1 = W2 = W3 = 0.06 m) with square cross section of the pipes and sharp edges of
the junction (dashed line) [32]. Single side branch system of figure 2.6-b (L1 = 0.12 m,
L2 = 0.44 m, L3 = 0.82 m, W1 = W2 = W3 = 0.06 m, rnozzle = 0.03 m) with square
cross section of the pipes and sharp edges of the junction (solid line) [94].

A small rounding rnozzle of the edges of the downstream pipe termination dra-
matically modifies the aeroacoustic behavior of such a termination. At low Strouhal
numbers SrW eff the acoustic losses are globally reduced. In this case the acoustical
energy reflection coefficient of the downstream termination is close to unity [167]:

RE,down-round =
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B−3
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3

)2

= R2
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1−M
1 +M

)2

≈ 1 (2.26)
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For Strouhal numbers based on the radius of curvature of the rounded termi-
nation Srr = frnozzle/U ≈ 0.2, acoustic energy production can be observed at this
termination [14, 94, 167, 89].

When the downstream main pipe segment has a length L3 related to the closed
branch length L2 by:

L3 =
2j

2n− 1
L2, j = 1, 2, 3, . . . , n = 1, 2, 3, . . . (2.27)

the acoustic standing wave in the single side branch system has a pressure node
at the T-junction and the resonance frequencies are fn ≈ (2n− 1) c0/ (4L2). If
the upstream main pipe segment L1 has an arbitrary non-resonant length, then
the resonant acoustic field is localized in the side branch L2 and the downstream
pipe segment L3. This means that the upstream acoustic boundary condition does
not influence the acoustic modes. This is the geometry of the single side branch
systems whose whistling behaviors are presented in Fig. 2.7.

For a single side branch resonator, in Fig. 2.7 we compare the pulsation am-
plitude observed with a round edged downstream termination, obtained by means
of a lip-shaped nozzle, with the pulsation amplitude observed with a sharp edged
termination [94]. An order of magnitude difference between these amplitudes is
observed.

We conclude that one should be careful in drawing any conclusion from single
side branch experiments for which there is not detailed information about the
acoustic boundary conditions and about the geometry of the pipe terminations.

2.9 Double closed branch resonator

A double closed branch resonator is formed by two T-junctions placed along a
main pipe, with each a closed pipe segment, or by a cross-junction with two closed
branches (Fig. 2.8). In such a system the acoustic field can display trapped modes
which are limited to the closed branches and the pipe segment between them. This
occurs at the resonance frequencies fn = (2n− 1) c0/ (4L2) when:

L3 =
2j

2n− 1
L2, j = 0, 1, 2, . . . , n = 1, 2, 3, . . .

L4 =
2i− 1

2n− 1
L2, i = 1, 2, 3, . . . (2.28)

In order to have trapped modes the lengths L2, L3 and L4 should be taken by
including the end corrections at the junctions. Since we do not take into account
these corrections, the systems presented in Fig. 2.8 will display nearly-rapped
modes.

The configurations usually studied in literature are the system with two closed
side branches in tandem configuration (Conf-t1, n = i = 1, j = 1) and the system
with two side branches in cross configuration (Conf-c1, n = i = 1, j = 0). Both
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these configurations present a main flow along the main pipe. However, in technical
applications there are commonly pipe systems presenting a main flow entering a
side branch or flowing out of a side branch [168].

Figure 2.8 – Double closed branch systems in tandem (Conf-t1/t9) and in cross
(Conf-c1/c2) configurations. Experiments on configurations Conf-t1/t4 have already
been presented by Peters and van Bokhorst [169].

Since junction elements with Dsb/Dp = O (1) are common in technical appli-
cations, we restrict our study to configurations presenting side branches with a
diameter equal to the main pipe diameter Dsb = Dp.

The closed branches have a length L2 = L4 = 100 mm, the inlet pipe has a
length L1 = 63 mm and the outlet pipe has a length L5 = 73 mm. The segment
between the two closed branches has a length L3 = 200 mm for the tandem
configurations, while it is L3 = 0 for the cross configuration. All the pipes have
an internal diameter of D = 336 mm. Each junction element presents rounded
edges (Fig. 2.16) with radius of curvature redge = 0.1Dsb, as commonly found in
industrial applications. The terminations of the closed branches are equipped with
flush mounted microphones.

As the pipe diameter D to segment length L ratio D/L is rather high 0.165 ≤
D/L ≤ 0.33, the visco-thermal losses in all the pipe segments will be low. The
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whistling behavior observed will therefore be representative for the whistling be-
havior expected in high pressure industrial pipe systems, such as natural gas trans-
port systems [211].

The outlet of the closed branch system is open to the laboratory (a large room
of 15 m × 4 m × 4 m) and presents sharp edges; it is, acoustically, an unflanged
open pipe termination. The inlet is connected to a high pressure air supply system.

2.9.1 Impact of main flow and acoustic flow configurations

The impact of the main flow direction and the acoustic flow configuration on the
pulsation behavior in a pipe system with two closed branches has been determined
experimentally [213]. Experiments have been carried out for all the configurations
shown in Fig. 2.8. These configurations represent all the possible double closed
branch resonators for the case of a tandem configuration with L2 = L4 ≈ L3/2
(i = n and j = 2n − 1) and for the case of a cross configuration with Lsb =
L2 = L4 and L3 = 0 (i = n and j = 2n − 1). The differences between the
various configurations, exhibiting the same acoustic behavior, are a difference in
the direction of the main flow and a difference in the local acoustic flow at the
junctions.

Flow induced pulsations are observed in the configurations of Fig. 2.8 when air
is blown through this closed branch systems. In Figs. 2.9 and 2.10 the measured
dimensionless pulsation frequency HeL = fLsb/c0 and dimensionless pulsation
amplitude |p′max| / (ρ0c0U) are presented as function of the Mach number M =
U/c0 of the main flow. These measurements have been conducted by monotonically
increasing the flow velocity U . The dimensionless frequency corresponds to the
Helmholtz number based on the pulsation frequency f , the length of the closed
branches Lsb and the speed of sound c0. The dimensionless pulsation amplitude
corresponds to the pressure amplitude at a pressure antinode (i.e. a closed branch
termination) in the closed branch resonator |p′max| divided by the product ρ0c0U
of the characteristic impedance ρ0c0 of the fluid (ρ0 is the fluid density) with
the main flow velocity U . In the particular case of a resonant closed branch, this
corresponds to the ratio of the acoustic velocity amplitude

∣∣~u′jun

∣∣ at the sound
source with the steady main flow velocity U .

By varying the main flow velocity U , different resonant modes are excited. They
can be divided in nearly-trapped (localized) and non-trapped (global) modes. The
nearly-trapped modes correspond to standing waves in the closed branch systems
with frequencies fn ≈ (2n− 1) c0/ (4Lsb), n = 1, 2, 3, . . .. All these modes present
a pressure node at the junction, so that, for frequencies below the cut-off frequency
fcut for propagation of non-planar modes in the pipe system, the radiation losses
into the main pipe sections L1 and L5 are negligible. This leads to resonant modes
liable to display high levels of pulsations, as can be observed by noticing that
the highest pulsations measured in the configurations of Fig. 2.8 are associated to
nearly-trapped acoustic modes (Figs. 2.9 and 2.10).

Among all the systems tested, the highest levels of flow induced pulsations are
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Figure 2.9 – Dimensionless pulsation frequency HeL = fLsb/c0 and dimensionless
pulsation amplitude |p′max| / (ρ0c0U) as functions of the Mach number M = U/c0
of the main flow. Double closed branch systems of Fig. 2.8, configurations: Conf-t1,
Conf-t2, Conf-t3, Conf-t4, Conf-t5 and Conf-t6. The amplitude |p′max| is measured
at the end of the two closed branches: |p′max| = |p′max|2 = |p′max|4.
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Figure 2.10 – Dimensionless pulsation frequency HeL = fLsb/c0 and dimensionless
pulsation amplitude |p′max| / (ρ0c0U) as functions of the Mach number M = U/c0 of
the main flow. Double closed branch systems of Fig. 2.8, configurations: Conf-t7,
Conf-t8, Conf-t9, Conf-c1 and Conf-c2. The amplitude |p′max| is measured at the end
of the two closed branches: |p′max| = |p′max|2 = |p′max|4.
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observed in configuration Conf-t1 for the case of tandem closed branches and on
configuration Conf-c1 for the case of cross closed branches. These configurations
have been extensively studied in literature and have been recognized to lead to
strong flow induced pulsations. Besides these cases, it is interesting to note that
strong flow induced pulsations have been measured also for other configurations.

Figure 2.11 – Dimensionless pulsation amplitude |p′max| / (ρ0c0U) as function of
the Mach number M = U/c0 [229]. The amplitude |p′max| is measured at the end of
the two closed branches: |p′max| = |p′max|2 = |p′max|4. Double side branch system in
cross configuration Conf-c1 of Fig. 2.8 (L1 = 5.05 m, L2 = L4 = 2 m, L5 = 1.7 m,
D1 = D5 = 0.089 m, D2 = D4 = 0.051 m) with circular cross section of the pipes and
sharp edges. Double side branch system in tandem configuration Conf-t1 of Fig. 2.8
(L1 = 5.05 m, L2 = L4 = 2 m, L3 = 0.119 m, L5 = 1.7 m, D1 = D3 = D5 = 0.089 m,
D2 = D4 = 0.051 m) with circular cross section of the pipes and sharp edges.

Typical pulsation amplitudes in double side branch systems in tandem con-
figuration (Conf-t1) are lower than those of double side branch systems in cross
configuration (Conf-c1). While the two systems exhibit similar acoustic and hy-
drodynamic characteristics, the visco-thermal losses in the pipe segment L3 and
the differences in the aeroacoustic sources, due to diversities in the local acoustic
field patterns at the junctions, are responsible for the lower pulsation amplitudes
in the tandem configuration.

Measurements carried out on the configuration Conf-c2 show that, even if the
pulsation amplitude is a factor 3 lower than the amplitude measured in the refer-
ence case of configuration Conf-c1, this configuration presents high levels of flow
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induced pulsations.
An interesting result, obtained by Ziada and Bühlmann [229], is that two closed

side branches in close proximity L2 = L4 � L3 have an aeroacoustic behavior very
similar to that of the double side branch system in cross configuration (Fig. 2.11).

Figure 2.12 – Pulsation amplitudes of double side branch systems in tandem con-
figuration presenting respectively a long outlet main pipe L5 (left) and a long inlet
main pipe L1 (right) as function of the length of the upstream side branch L2. The
pipes have circular cross section of diameter 30 mm, the junctions have rounded edges
rup,down = 3 mm and the measurements have been carried out at 10 bar [199]. The
dimensionless pulsation amplitude |p′max|2 / (ρ0c0U), measured at the closed end of
the upstream side branch L2, is presented as function of the dimensionless whistling
frequency HeL = fL2/c0. Downstream or upstream pipe resonances are indicated
by the empty arrows.

2.9.2 Effect of the resonance of the upstream and down-
stream main pipe segments

Resonances of the upstream L1 or the downstream L5 pipe segments can sig-
nificantly affect the response of a non-symmetric resonant double closed branch
system. As an example, we show in Fig. 2.12 the pulsation amplitudes of two
double side branch systems in tandem configuration presenting respectively a long
outlet main pipe L5 and a long inlet main pipe L1. The experiments have been
carried out for each system by varying the length of the upstream side branch L2

at fixed length of the downstream side branch L4 [199]. The acoustic resonances
of the upstream pipe segment L1 and of the downstream pipe segment L5 are
clearly observed in Fig. 2.12 as dips in the evolution of the pulsation amplitude as
function of the length L2. The same effect has been found in the field experiments
at Westerbork (Fig. 2.13) [199]. In these experiments we observe a dip in the am-
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Figure 2.13 – Pulsation levels |p′max|2 as function of the flow velocity U and the
length of the upstream side branch L2 in the field experiments of Westerbork [199].
The pressure fluctuation is measured at the closed end of the upstream side branch
L2. The pipes have circular cross section, the junctions have rounded edges rup,down =
2.5” and the measurements have been carried out at 60 bar. We observe dips in
amplitude each time the length L2 of the upstream side branch corresponds to a
resonance mode of the upstream pipe of 165 m length and 30” diameter. Resonances
of the upstream pipe are indicated by the empty arrows.
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plitude of the pulsations measured at the end of the upstream side branch each
time the length of this side branch L2 matches a resonance frequency of the 165 m
long pipe of 30” diameter placed upstream of the double side branch system (Fig.
2.13).

Figure 2.14 – Section of the compressor station Ommen [80] displaying flow in-
duced pulsations (a). Pulsation frequencies f and dimensionless pressure fluctuation
amplitudes at the closed end of side branch 1 |p′max|1 / (ρ0c0U) and side branch 3
|p′max|3 / (ρ0c0U) of the suction and the discharge sides of the compressor section
(b). The gas compressed at the station is natural gas from Groningen [73] with
pressure p0 = 60 bar and temperature T0 = 278 K. The edges of all the junctions
are rounded rup,down = 9.1 cm. The Strouhal number is based on the side branch
diameter SrD = fDsb/U .

2.10 Multiple closed branch resonator

2.10.1 Multiple deep side branches

The global acoustic behavior of multiple deep side branch systems with more than
two side branches is difficult to predict intuitively. These systems display some
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acoustic similarities with single or double side branch systems. However they show
some peculiarities so that they cannot be acoustically reduced to a collection of
simpler elements [211].

In Fig. 2.14-b we show a survey of pulsation frequencies and dimensionless
amplitudes observed in a section of the compressor station of Ommen [80, 73].
This section presents two separate sets of six equally spaced closed side branches
along a main pipe, formed respectively at the suction side and at the discharge side
of six compressors (Fig. 2.14-a). The investigation of the aeroacoustic behavior of
the discharge side of the compressor station has been carried out by Tonon et al.
[211] in an atmospheric pressure scale model with pipe diameters of Dp = Dsb =
3.36 cm. These scale model experiments provided a good prediction of maximum
pulsation amplitudes observed in field data. Furthermore, higher Strouhal numbers
were observed than in field experiments.

One would expect that the very strong pulsations, observed in the six side
branch systems described above, are due to the fact that the side branches have
all exactly the same length. Detuning the length of the side branches seems a logical
approach to avoid strong pulsations. As discussed in Sec. 2.15.1 this approach does
not always reduce sufficiently the pulsation levels. Using spoilers, as discussed in
Sec. 2.15.2 is a promising alternative to detuning.

2.10.2 Multiple shallow side branches

A row of shallow closed side branches, presenting length comparable with the
diameter Lsb/Dsb = O (1), placed along a main pipe of length Lmp with both
terminations open, displays self-sustained oscillations very similar to those found
in corrugated pipes [210, 155, 156]. The low frequency pulsation amplitudes will be
typically of the order |p′main| / (ρ0c0U) = O

(
10−2

)
and appear around SrW eff = 0.6

(Fig. 2.15).
At low frequency, the acoustic modes of the multiple shallow side branch sys-

tems correspond to the longitudinal global pipe modes of these systems [210, 155,
156]. These modes have frequencies fn ≈ nceff/ (2Lmp), n = 1, 2, 3, . . ., where the
effective speed of sound [67] is:

ceff = c0

√
Vmp

Vmp + Vc
(2.29)

This formula is obtained assuming that the inertia in the acoustic flow is not
affected by the side branches, while the cavity volume Vc is added to the main
pipe volume Vmp to account for the effect of the compressibility [210, 156].

An interesting aspect of the multiple shallow side branch systems is that, as the
main flow velocity U increases, one reaches a Brillouin zone and finds a frequency
gap in which the system does not whistle [210].

As in the case of the single closed branch resonator (Sec. 2.8.2), the system
of multiple shallow side branches excites a global mode rather than a trapped
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mode. It is therefore very sensitive to the upstream and downstream boundary
conditions.

Figure 2.15 – Pulsation behavior of a multiple shallow side branch system composed
by 15 side branches of 3.36 cm depth along a main pipe of Lmp = 1.5 m length [210].
The side branches are equispaced along the main pipe and the junctions present
sharp edges. The pipes have circular cross section with diameter of 3.36 cm. The
dimensionless whistling frequency HeL = fLmp/c0 and the dimensionless pulsation
amplitude |p′main| / (ρ0c0U) are presented as function of the flow velocity U . The
pressure fluctuation amplitude |p′main| is the amplitude of the longitudinal global
pipe mode of the system.

2.11 Sound sources

2.11.1 Main flow configurations

Main flow configurations of a T-junction

The main geometrical characteristics of a T-junction (Fig. 2.16-a) are the diam-
eter of the main pipe Dp, the diameter of the side branch Dsb and the radius of
curvature rup,down of the edges of the junction. The three pipe segments meeting
at the T-junction are called upstream main pipe (segment 1), downstream main
pipe (segment 3) and side branch (segment 2).

T-junction elements with Dsb/Dp = O (1) are common in pipe systems [117,
168, 229, 166, 222, 32, 82, 83, 94, 169, 233]. We therefore start our discussion on
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the main flow configurations of a T-junction by considering side branches with
diameter Dsb close to the main pipe diameter Dp. A commonly used ratio is
Dsb/Dp = 0.8.

When one of the pipe segments (branches) is closed, flow separation occurs at
the T-junction and a shear layer is formed. Coupling of the shear layer instability
with the acoustic field provides a mean to transfer energy between the steady
main flow and the acoustic flow. Acoustical energy can be produced or absorbed
depending on the flow and acoustic conditions.

Figure 2.16 – Main geometrical characteristics of a T-junction (a) and of a cross-
junction (b).

In most technical applications of pipe networks, the pipes have circular cross
sections. Practical exceptions are air conditioning systems, in which rectangular
cross sections are not unusual. Also for research purposes (flow visualization, laser
Doppler anemometry, ...) experiments have been carried out in pipes with rect-
angular cross sections. While the flow within circular pipes is essentially three
dimensional, the global aeroacoustic behavior is the same as for rectangular pipes
[32] when Dsb/Dp is close to unity. For example, the optimal Strouhal number
SrW eff,opt for the maximum of pulsation amplitude for circular pipes can be trans-
lated into that for rectangular pipes by introducing the concept of effective (aver-
age) cavity width Weff (Sec. 2.3). The observed pulsation levels for circular pipes
are, in the moderate amplitude range (Sec. 2.11.3), typically a factor two lower
than for rectangular pipes. For high amplitudes (Sec. 2.11.3), the geometry of the
cross sections will mainly affect the amplitude as a result of the stronger sensitivity
of rectangular cross sections to wall vibrations. The coupling with wall vibrations
tends to lower the pulsation levels [32], as discussed in Sec. 2.14.

At each T-junction we can distinguish three main flow configurations, depend-
ing on which of the pipe segments is closed (Fig. 2.17-a) [168, 94, 169, 233].
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Figure 2.17 – Definition of main flow configurations (a) and acoustic flow limit
cases (b) in a T-junction.

In flow configuration (T-a) the side branch is closed. The main flow travels
from the upstream pipe 1 to the downstream pipe 3 and it separates from the
upstream edge to form a shear layer between the main flow and the stagnant fluid
in the closed side branch.

In flow configuration (T-b) the main flow turns from the upstream pipe 1 into
the side branch 2 because the downstream main pipe segment 3 has closed pipe
termination. In this case, flow separation can occur at three places: the upstream
edge, the downstream edge and on the wall opposite to the side branch. When
the edges of the junction are sharp rup,down/Dsb = 0 flow separation will certainly
occur at both edges and a free jet will be formed into the side branch. For values of
rup,down/Dsb ≥ 0.1 [20] the flow separation at the edges is strongly reduced. The
flow separation at the wall opposite to the side branch always occurs because of
the deceleration of the flow in the closed downstream pipe 3. The position at which
this separation occurs is difficult to predict. In contrast to separation at a sharp
edge, this separation point is expected to move under the influence of acoustic
perturbations.

In flow configuration (T-c) the upstream main pipe 1 is closed. The main flow
turns from the side branch 2 into the downstream main pipe 3 and flow separation
occurs at the outer side of the flow bend (upstream edge). Flow separation at the
interior of the flow bend will occur if the downstream edge is sufficiently sharp. In
view of the associated energy losses, separation at the inner side of the flow bend
is usually avoided by choosing a large radius rdown/Dsb. In that case, due to the
Coanda effect, the jet flow formed by separation at the upstream edge is expected
to remain attached to the wall at the inner side of the bend.
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In the case of side branches with diameter Dsb considerably smaller than the
main pipe diameter Dp, the main flow configurations are different from those
described above. The main difference between narrow side branches Dsb/Dp � 1
and wide side branches Dsb/Dp = O (1) is that in the main flow configuration (T-
c) a free jet is formed in the main pipe. Furthermore, in technical applications, the
radius of curvature rup,down of the edges of a T-junction with a narrow side branch
are usually relatively large compared to the side branch diameter Dsb, values of
rup,down/Dsb = O (1) are common. These cases have not yet been studied.

The evaluation of the efficiency of the main flow configurations described above
as sound sources can be qualitatively (roughly) carried out by evaluating the ex-
perimental results of closed branch systems. From the experiments on the double
closed branch resonators presented in Sec. 2.9, it is evident that the configuration
(T-a) is the major pulsation driver, since the highest pulsations are observed only
in systems presenting this main flow configuration in one of the junctions. How-
ever, these experimental results do not provide information about the efficiency
of flow configurations (T-b) and (T-c) as sound sources. A quantitative and more
complete evaluation of the sound sources can be obtained only by means of source
modeling.

Main flow configurations of a cross-junction

The main geometrical characteristics of a cross-junction (Fig. 2.16-b) are the di-
ameter of the main pipe Dp, the diameter of the side branches Dsb and the radius

of curvature ru,l
up,down of the edges of the junction. The four pipe segments meeting

at the cross-junction are called upstream main pipe (segment 1), downstream main
pipe (segment 4), upper side branch (segment 2) and lower side branch (segment
3).

Figure 2.18 – Definition of main flow configurations in a cross-junction.

At each cross-junction we can distinguish three main flow configurations, de-
pending on which couple of pipe segments is closed (Fig. 2.18). We start our
discussion on the main flow configurations of a cross-junction by considering side
branches with a diameter Dsb close to the main pipe diameter Dp, as commonly
found in technical applications Dsb/Dp = O (1).

In flow configuration (C-a) both the side branches are closed. The main flow
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travels from the upstream pipe 1 to the downstream pipe 4 and it separates from
the upstream edges to form two shear layers between the main flow and the stag-
nant fluid in the two closed side branches. This configuration is, from the hydro-
dynamic point of view, similar to the main flow configuration (T-a) of T-junction
elements (Fig. 2.16-a).

In flow configuration (C-b) the main flow turns from the upstream pipe 1
into one of the side branches (2 or 3). The downstream main pipe segment 4
and the other side branch (3 or 2) have both a closed pipe termination. Due to
the geometrical symmetry of the cross-configuration, there are no fluid dynamic
differences between the cases in which the main flow enters the upper side branch
2 or the lower side branch 3.

In flow configuration (C-c) the main flow turns from one of the side branches
(2 or 3) into the downstream main pipe 4. This configuration is similar to flow
configuration (C-b) for Dsb/Dp = O (1).

In the case of narrow side branches Dsb/Dp � 1, the flow configuration (C-c)
is substantially different from flow configuration (C-b). The main difference is that
a free jet is formed in the main pipe. This configuration has not been studied until
now.

Analyzing the results of the experiments on the double closed branch resonators
presented in Sec. 2.9 we can observe that the configuration (C-a) is a driver of high
amplitude oscillations. However, a quantitative and more complete evaluation of
the sound source can only be obtained by means of source modeling.

2.11.2 Local acoustic field of T-junctions and cross-junctions

As defined by Howe [98, 100, 105], the acoustic field is a potential flow (Eq. (2.2)).
At low frequencies, only plane waves propagate along straight pipe segments. At a
distance of about one pipe diameter from a junction, the acoustic field is uniform
and can be described in terms of two plane waves traveling in opposite direc-
tions (Sec. 2.7.2). This uniform acoustic velocity field drives within the junction a
potential flow, which in first order approximation is incompressible.

It is important to realize that the shape of the edges is crucial in the local
acoustic field distribution. At a sharp edge, the acoustic velocity is locally singu-
lar. This is a consequence of the definition of the acoustic flow as potential flow.
Furthermore, the edge shape is crucial in the aeroacoustic behavior because it
determines the flow separation and the consequent vortex shedding.

From the energy corollary of Howe (Eq. (2.5)) we see that at a sharp edge
we combine the ideal conditions for a strong interaction between the acoustic
and the hydrodynamic flow fields. We need therefore an accurate description of
the acoustic field near such singularities. A modal expansion of the solution of
the equation of Helmholtz as proposed by Keefe [119] and Dubos et al. [59] will
diverge at such singularities. This is therefore not a suitable approach. Assuming a
locally incompressible two-dimensional potential flow one can obtain some insight
by using complex function theory with conformal mapping [32]. This corresponds
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to the use of a low frequency Green’s function as proposed by Howe [98, 106].
For a more general case, as for pipes with a circular cross section and junctions
with rounded edges, one has to use a numerical method to determine the detailed
acoustic flow.

An important result, concerning the effect of the edge shape on the aeroacous-
tic behavior of junction elements, was obtained by Bruggeman et al. [32]. This was
the demonstration of the crucial role of the shape of the upstream edge of the T-
junctions for a tandem of two closed side branches. A sharp upstream edge con-
siderably reduces the pulsation amplitudes. In contrast with this, the downstream
edge geometry was found to be less critical. The effect observed by Bruggeman et
al. [32] on T-junctions has been confirmed for cross-junctions [166, 136] and for
Helmholtz resonators in grazing flow [52, 50].

Acoustic flow limit cases of a T-junction

The acoustic flow distribution in T-junction elements is usually quite complex.
For the sake of simplicity some authors [94, 169] distinguish three limit cases.
These acoustic flow limit cases, presented in Fig. 2.17-b, consist of an acoustic
flow oscillating between two of the three pipe sections of the T-junction.

The strongest pulsations in double closed branch systems in tandem configu-
ration display type (T-2) and (T-3) cases. The type (T-1) case (grazing acoustic
flow) is dominant in the case of a long row of shallow closed side branches.

The main flow configurations (T-a), (T-b) or (T-c) (Fig. 2.17-a) combined with
the acoustic flow limit cases (T-1), (T-2) or (T-3) (Fig. 2.17-b) form nine limit cases
which we denote by (T-a1), (T-a2), (T-a3), (T-b1), (T-b2), (T-b3), (T-c1), (T-c2)
and (T-c3).

For wide side branches, Dsb/Dp = O (1), the limit case (T-a2) presents a local
acoustic field near the edges that is essentially different from that of the case (T-
a3). This is due to the much larger acoustic velocity at the interior of the bend
than at the exterior. As shown by Bruggeman [30], the (T-a2) limit case with
sharp edges has a local acoustic velocity at the upstream edge that is a factor 3
higher than at the downstream edge. This is the opposite for the (T-a3) limit case.
A spoiler placed at the upstream edge of the limit case (T-a2) will therefore be
much more efficient than a spoiler at the upstream edge of the limit case (T-a3)
[32]. This asymmetry disappears for narrow side branches Dsb/Dp � 1.

Acoustic flow limit cases of a cross-junction

As for the case of T-junctions, in cross-junction elements we can distinguish many
limit cases of acoustic flow distribution.

Despite the variety of the combinations between the main flow configurations
(Fig. 2.18) and the acoustic flow limit cases that can be obtained for a cross-
junction, the only case discussed in literature is the limit case of an acoustic flow
oscillating normal to the main flow, which is grazing along two opposite closed
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side branches. We will refer to this case as the (C-a1) limit case. The acoustic flow
is symmetric with respect to the side branch axis, which is quite different from all
the cases discussed for the T-junction. We therefore expect a different aeroacoustic
source behavior.

2.11.3 Low, moderate and high amplitude oscillations

From the analysis of the aeroacoustic behavior of a T-junction presenting a main
flow grazing along a closed side branch (configuration (T-a) in Fig. 2.17), Brugge-
man et al. [32] observed three different behaviors of the shear layer depending on
the dimensionless pulsation amplitude

∣∣~u′jun

∣∣ /U = |p′max| / (ρ0c0U).

For low acoustic velocities at the sound source
∣∣~u′jun

∣∣ /U � 1, the amplitude
of the perturbations of the shear layer increases exponentially with the distance
x from the upstream edge of the junction. This amplification is of the order of
exp (2πfx/Uc), where Uc is the convective velocity of the vorticity in the shear
layer. This corresponds to an amplification by a factor exp (2π) ≈ 535 over one
hydrodynamic wavelength. Hence, perturbations in the main flow velocity as small
as
∣∣~u′jun

∣∣ /U = O
(
10−3

)
induce perturbations in the velocity field of the shear layer

of order unity for the first hydrodynamic mode m = 1. For such large perturba-
tions, a linear theory is not valid. This provides the condition

∣∣~u′jun

∣∣ /U < 10−3

for a linear behavior of the shear layer upon acoustic perturbations for m = 1.
For higher hydrodynamic modes m > 1, this condition is even more restrictive,∣∣~u′jun

∣∣ /U < 10−3m.

Figure 2.19 – Energy balance of the self-sustained oscillations. Qualitative repre-
sentation of the acoustic source power 〈Psource〉 (solid line) and the acoustic power
losses 〈Ploss〉 (dashed line) in the linear (very low amplitude) regime (a) and in the
low amplitude regime (b).

In the linear regime (very low pulsation amplitudes) the strength of the sound
source is linear with the pulsation amplitude, this implies that the acoustic source
power 〈Psource〉 scales quadratically with the pulsation amplitude

∣∣~u′jun

∣∣. The acous-
tic power losses 〈Ploss〉, due to visco-thermal damping 〈Pv-th〉 and acoustic radia-
tion 〈Prad〉 also depend quadratically on the pulsation amplitude

∣∣~u′jun

∣∣. In general,
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one would therefore expect the system to be either stable (〈Psource〉 lower than
〈Ploss〉) or unstable (〈Ploss〉 lower than 〈Psource〉). This implies either an exponen-
tial decay respectively growth in time of perturbations. An exact balance between
acoustic source power 〈Psource〉 and acoustic power losses 〈Ploss〉, if it is achieved,
implies neutral stability (Fig. 2.19-a). Hence an energy balance, if satisfied at one
amplitude, would be satisfied at any other amplitude.

In the low amplitude regime
∣∣~u′jun

∣∣ /U = O
(
10−3

)
, the strength of the sound

source is almost linear with the pulsation amplitude and the acoustic source power
〈Psource〉 is almost quadratic with the pulsation amplitude

∣∣~u′jun

∣∣. The acoustic

losses 〈Ploss〉 remain quadratic with the pulsation amplitude
∣∣~u′jun

∣∣. The balance
between acoustic source power 〈Psource〉 and acoustic power losses 〈Ploss〉 deter-
mines the pulsation amplitude (Fig. 2.19-b). However, the acoustic pulsations in
the low amplitude regime are quite unstable. A marginal increase of the acoustic
losses can make them disappear.

Pulsation amplitudes of 10−2 <
∣∣~u′jun

∣∣ /U < 10−1 have been defined by Brugge-
man et al. [32] as the moderate amplitude regime. For moderate amplitudes, non-
linearity induces a concentration of the vorticity, shed at the upstream edge, into
coherent vortex structures. These discrete vortices are clearly observed in flow vi-
sualizations (Fig. 2.3-b) [183, 184, 166, 223, 136, 30, 160, 127, 143] and numerical
simulations [166, 136, 51, 94, 169, 177, 157, 154].

In the moderate amplitude regime, the perturbation of the shear layer at the
upstream edge is relatively small O

(
10−1

)
, so that the acoustic field only triggers

the concentration of vorticity into discrete vortices. The amount of vorticity shed
(circulation of the vortices) and the path of the vortices are not strongly affected
by the amplitude of the acoustic pulsation and the source strength is therefore
almost independent on the amplitude of the acoustic field.

Figure 2.20 – Energy balance of the self-sustained oscillations. Qualitative repre-
sentation of the acoustic source power 〈Psource〉 (solid line) and the acoustic power
losses 〈Ploss〉 (dashed line) in the moderate amplitude regime (a) and in the high
amplitude regime (b).

At moderate amplitudes, the formation of a new vortex is observed [32, 233,
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200] each time that the acoustic velocity changes direction from outside the side
branch towards the inside of the side branch at the upstream edge of the junction.
The vortical structures are then convected downstream with a velocity propor-
tional to the main flow velocity Ucon ≈ 0.4U [32]. For the limit cases (T-a2) and
(T-a3), this determines the Strouhal condition for maximum pulsations amplitude
SrW eff,opt ≈ 0.4. The acoustic source power 〈Psource〉 is linear with the pulsation
amplitude

∣∣~u′jun

∣∣, while the acoustic power losses 〈Ploss〉 are still quadratic. Hence,
the oscillation amplitude is stable (Fig. 2.20-a).

Figure 2.21 – Periodic vortex formation in a double side branch system in cross
configuration with sharp edges and square cross section of the pipes (Lsb = 0.564 m,
Dsb = 0.06 m, U = 35 m/s, f = 1/T = 156 Hz, SrWeff = 0.27,

∣∣~u′jun

∣∣ /U = 0.76)
[166]. The time at which the acoustic velocity changes direction from outside the side
branch towards the inside of the side branch at the upstream edge of the junction is
t/T = 0. Please note that the vortex does not impinge on the downstream edge of
the junction.

High pulsation levels, with acoustic velocity at the sound source of the order of
magnitude of the main flow velocity

∣∣~u′jun

∣∣ /U = O (1), are usually observed in pipe
systems with negligible visco-thermal and radiation losses. Under such conditions,
the pulsation amplitude becomes almost independent of the static pressure in the
system and details of the geometry of the junction become essential. As explained
by Howe [103], in the limit of such high pulsation levels, there is a balance between
sound production by vortices 〈Psource〉, that scales linearly with the pulsation am-
plitude

∣∣~u′jun

∣∣, and sound absorption by vortex shedding (vortex damping) 〈Pvort〉,
that scales with the third power of the pulsation amplitude

∣∣~u′jun

∣∣. This is due to
the effect of the acoustic field on the amount of vorticity shed at the upstream
edge and on its effect on the path of the vortices. Also the sound absorption due to
“spurious” vortex shedding at the downstream edge becomes increasingly impor-
tant at large pulsation amplitudes. Besides vortex damping, the transfer of energy
to higher harmonics as a result of the non-linear wave steepening can result into
acoustic losses 〈Prad-nl〉.

These high pulsation levels are likely to occur when the upstream edge of the
junction is rounded [136, 51, 197, 32], because the initial sound absorption due to
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vortex shedding (vortex damping) is lower with a rounded edge than with a sharp
edge (section 2.11.2). In some cases, however, configurations with sharp edges can
display high pulsation levels (Fig. 2.3-a).

In the high amplitude regime the path of the vortices (Fig. 2.21) are signif-
icantly influenced by the amplitude of the acoustic field [166, 136, 51, 32]. The
vortices enter quite deep into the side branch rather than following the line of
the unperturbed shear layer. This may qualitatively explain the decrease of the
optimal Strouhal number SrW eff,opt observed by Bruggeman et al. [32] and by Zi-
ada [223]. Deeper in the side branch the convective velocity of the vortices Ucon is
lower than at the junction. This increases the travel time of the vortices across the
junction for a given main flow velocity U . A higher flow velocity U is then needed
to make the vortex reach the downstream edge of the junction within an oscilla-
tion period. This implies a decrease of the optimal Strouhal number for maximum
pulsations, that, for high amplitude pulsations, is typically SrW eff,opt ≈ 0.3.

In the high amplitude regime, the pulsations continue below Strouhal numbers
for which they would have disappeared at low or moderate amplitudes. As a con-
sequence hysteresis is observed [223, 32]. This means that the strong pulsations of
a given mode (acoustic and hydrodynamic) disappear at a higher velocity upon
flow acceleration than the velocity at which they reappear upon flow deceleration.
Furthermore, these transitions are abrupt (on-off).

At high amplitude oscillations, the phase of the oscillation period, at which a
new vortex is shed, changes compared to the case of moderate amplitude oscilla-
tions. This shift in phase for the generation of a new vortex can almost reach a
quarter of the oscillation period [166].

In field experiments, as high Reynolds numbers are not unusual, one should
suspect the occurrence of turbulence in the acoustic boundary layers in the closed
branches. For an acoustic laminar boundary layer thickness δv, turbulence is ex-
pected when ρ0δv |~u′| /µ > 350 [216], where µ is the dynamic viscosity of the
fluid. The transition from laminar to turbulent acoustic boundary layers has been
reported as potential amplitude limiting effect in thermoacoustic devices [198].
However, this effect has never been reported in laboratory experiments on flow
induced pulsations.

2.12 Source modeling

2.12.1 Experimental characterization of the sound sources

The whistling of a flute presents many similarities with the pulsation of a pipe
system with closed branches. In a flute, the sound is generated by the instability
of the free jet formed by blowing across the mouth of the instrument. The jet
oscillation couples with the acoustic resonances of the pipe, leading to a feedback
mechanism similar to that occurring in pipe systems with closed branches.

The early models of the aeroacoustic behavior of a flute, based on the assump-
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tion that the jet and the resonant acoustic field form a feedback loop, consist of
predicting the oscillations condition (oscillation threshold) by means of the linear
theory. These models have been established by imposing a match between the
resonator impedance and the source impedance.

A first method to determine the source impedance in a flute has been in-
troduced by Coltman [39]. Assuming a harmonic oscillation, he generalized the
impedance balance to non-linear systems. He developed a measurement technique
to measure the source impedance, defined as the pressure difference across the
mouth of the instrument divided by the acoustic volume flux through the mouth.
In these experiments, the frequency and the amplitude of the acoustic field have
been imposed by a loudspeaker placed at the end of the pipe of the flute. Measure-
ments have been carried out as a function of the acoustic frequency, the amplitude
of the acoustic field and the velocity of the jet at the mouth of the flute. In a
complex representation the measured impedance is, for a given amplitude of the
acoustic field, a spiral in the complex plane around the origin. The real part is in
phase with the acoustic volume flow oscillation and therefore provides the energy
transfer between the flow field and the acoustic field.

An experimental technique to characterize the sound source in a single side
branch configuration (Fig. 2.6-a, L1 � L2 ≈ L3/2), in which the (T-a3) limit case
prevails, has been proposed by Bruggeman et al. [32, 30]. This method consists
of applying an energy balance between sound production and acoustic dissipation
(Sec. 2.6). The acoustic source power 〈Psource〉 is then determined by measuring the
acoustic power losses 〈Ploss〉. These losses are evaluated by using a two microphone
method to measure the acoustic radiation at the main pipe terminations 〈Prad〉
and the theory of Kirchhoff [125] to estimate the visco-thermal damping 〈Pv-th〉.
By carrying out this kind of measurements for various values of radiation losses at
the downstream termination, Bruggeman et al. [32, 30] found that, at moderate
amplitudes, the acoustic source power 〈Psource〉 scales linearly with the acoustic
amplitude

∣∣~u′jun

∣∣ (Sec. 2.11.3).
For a double side branch system in cross configuration (Fig. 2.8, Conf-c1),

Peters [166] and Kriesels et al. [136] obtained, by means of the technique introduced
by Bruggeman et al. [32, 30], an acoustic source power 〈Psource〉 showing saturation
at high amplitudes.

Using a method similar to that used by Coltman [39], Graf and Ziada [82, 83]
carried out measurements for characterizing the source impedance in double side
branch systems in cross configuration [82] and tandem configuration [83]. A unique
feature of these experiments is that the source impedance was determined for
circular branches exposed to fully developed turbulent flow in the main pipe, which
is similar to the geometrical and flow conditions in industrial applications. In
these experiments, a loudspeaker was used to excite the system at the resonance
frequency of the branches, and each series of measurements was carried out at fixed
pulsation amplitude, while the Strouhal number was varied by changing the flow
velocity in the main pipe. The source impedance Zs = 2∆ps/

(
ρ0U

∣∣~u′jun

∣∣), where
∆ps is the acoustic source pressure across the shear layer and ~u′jun is the acoustic
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velocity at the branch opening, results in a spiral evolution in the complex plane
(Fig. 2.22).

An important aspect of the experiments carried out by Graf and Ziada [82, 83]
is the quantitative evaluation of the non-linear saturation of the shear layer dis-
turbances (Sec. 2.11.3). Furthermore, the results indicate, in the moderate ampli-
tude regime, a square root dependence of the acoustic source power 〈Psource〉 on
the pulsation amplitude

∣∣~u′jun

∣∣, rather than a linear dependence, as proposed by
Bruggeman et al. [32, 30]. Using the empirical data of Graf and Ziada [82, 83]
allows predicting the pulsation behavior of double side branch systems, for var-
ious depths of the side branches and static pressures. Typical accuracy of these
predictions is about 20% in amplitude. Since the measurements of Graf and Ziada
[82, 83] have been carried out only for junctions with sharp edges and in view of
the accuracy in the prediction of pulsation amplitudes, this would call for a sys-
tematic reproduction of these measurements for T-junctions and cross-junctions
with rounded edges, which are common in industrial applications.

Figure 2.22 – Complex representation of the source impedance of the (C-a1) limit
case for small and moderate pulsation amplitudes. The solid lines are spirals of
constant acoustic velocity

∣∣~u′jun

∣∣ /U , the dashed lines represent constant Strouhal
number SrWeff and the symbols indicate measured data points. Measurements have
been carried out in a double side branch system in cross configuration with sharp
edges and circular cross section of the pipes. L2 = 0.64 m, L4 = 0.68 m, L5 = 2.1 m,
D1 = D5 = 89 mm, D2 = D4 = 51 mm [82].
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More recently, Oshkai and Yan [163] and Oshkai et al. [164], proposed a com-
bination of digital particle image velocimetry (DPIV), acoustic pressure measure-
ments and phase-locking techniques in order to provide insight into the mechanism
of acoustic power generation in a double side branch system in cross configuration.

2.12.2 Linear models

The first attempt to predict self-sustained oscillations was to use the results of
Michalke’s theory [148] in linear models applied to flow induced cavity noise [62,
65, 187, 181, 63, 188]. In these models, a Kutta-like condition has been used at
the upstream edge, where flow separation occurs, to estimate the perturbation
of the shear layer due to acoustic oscillation. The spatial amplification of the
perturbation has been calculated by using the stability theory of Michalke [148]
for inviscid parallel free shear layers (Sec. 2.5). The source of sound has been then
assumed to be a dipole located at the downstream edge and resulting from the
“impact” of the shear layer disturbances on this edge. These linear models do
not explain essential effects, such as the influence of the shape of the upstream
edge of the cavity on the pulsation behavior. One should furthermore realize that
the impingement of the shear layer disturbances on the downstream edge is not
essential for the sound production (Sec. 2.2 and Fig. 2.21).

An alternative linear model has been introduced by Elder [64], in which the
shear layer is assumed to act as an oscillating “membrane” driving the cavity
oscillations.

Möhring [149], Crighton [41] and Howe [103] proposed various formulations
to predict the linear response of an infinitely thin shear layer. The formulation
of Howe [103], considering the case of grazing flow along a thin walled orifice,
combines the membrane concept of Elder [64] with an integral formulation of the
Kutta condition at the upstream edge of the orifice. In agreement with exper-
imental evidence, the singularity at the downstream edge does not seem to be
crucial in the predicted source of sound. Furthermore, this formulation does pre-
dict the occurrence of limited Strouhal ranges for sound production, as confirmed
by measurements carried out by Kooijman et al. [130]. These experimental results,
in terms of source impedance, are however quite different from the results of the
formulation of Howe [103]. Furthermore, they show a strong dependence of the
Strouhal ranges for sound production and of the acoustic amplitude on the struc-
ture of the boundary layer upstream of the separation point and on the shape of
the edges of the cavity. A quantitative theoretical prediction of the effect of the
boundary layer structure on the source impedance is not yet available.

Recently, Åbom et al. [29] and Karlsson et al. [118] proposed to include the
effect of vortex-sound interaction in linear multi-port models in order to predict
self-sustained oscillations. Multi-port models are linear aeroacoustic models, which
split the problem in a passive part, the scattering matrix, and an active part
describing the sound sources. The active part, representing the vortex-sound in-
teraction has been included as part of the passive data expressed by means of
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the scattering matrix. This approach leads to scattering matrices that contains
information about linear damping or amplification of sound by vortex-sound in-
teraction.

2.12.3 Single vortex model

Single vortex model with calculated path and circulation

The model of Howe [98], for the aeroacoustic behavior of a flute, presents a first
attempt to describe the sources of sound in a flute in terms of vortex sound. In his
model, Howe [98], focused on the effect of vortex shedding at the sharp downstream
edge of the mouth of the flute, the labium. Assuming that the vorticity can be
concentrated into a single line vortex, the circulation of the vortex is determined
by a Kutta condition imposed at the edge of the labium. While Howe [98] predicts
that this vortex produces acoustical energy, experiments show that it absorbs
sound [68, 215].

The idea of Howe [98] has been applied by Bruggeman et al. [32, 30] to a T-
junction with sharp edges, in order to describe the vortex formed at the upstream
edge. This model fails because the vortex circulation and its convective speed
diverge as the vortex approaches the downstream wall of the T-junction. Attempts
by Peters [166] to improve this single vortex model were not successful. While this
model is not able to describe the vortex formed at the upstream edge, it can
however be used to predict the sound absorption at high amplitudes by vortex
shedding at a sharp downstream edge of the T-junction.

Single vortex model with imposed path and calculated circulation

Based on detailed flow measurements in the opening of a Helmholtz resonator,
Nelson et al. [160] proposed a simplified vortex model in which a line vortex is
assumed to be formed, at the upstream edge of the cavity, each time the acoustic
flow turns into the cavity. The circulation of this vortex is assumed to correspond to
the integral of the vorticity shed at the upstream edge and the vortex is assumed to
be convected downstream at a constant speed Ucon, along a straight line between
the upstream and the downstream edges. As the vortex flow is assumed to be
independent of the oscillation amplitude this is a moderate amplitude model. Using
this vortex model in combination with vortex sound theory [98], Nelson et al. [161]
provide a qualitative explanation of the sound generation in a Helmholtz resonator.

An attractive aspect of the model of Nelson et al. [160, 161] is that it opens
the way for analytical models of the sound sources at junction elements. A first
analytical solution has been obtained by Hirschberg and Rienstra [91] by assuming
a uniform acoustic flow normal to the vortex path. This corresponds roughly to
the condition found at T-junctions and cross-junctions with rounded edges.

Combing the model of Hirschberg and Rienstra [91] with analytical models
for the acoustic losses yields a surprisingly reasonable prediction of the pulsation
amplitude for the first hydrodynamic mode. However, for higher hydrodynamic
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modes, this model tends to overestimate drastically the pulsation amplitudes. Fur-
thermore, the model does not predict the amplitude dependence of the optimal
Strouhal number SrW eff,opt. In fact, this Strouhal number is imposed by the con-
vective velocity Ucon which is introduced in the model as an empirical parameter
[51, 91].

For the case of a sharp edged T-junction, Bruggeman et al. [32, 30] used the
vortex model of Nelson et al. [160, 161] in combination with vortex sound theory
[98] to explain the essential differences in the aeroacoustic behavior of the (T-
a1), (T-a2) and (T-a3) limit cases (Fig. 2.17). This model provided a qualitative
explanation of the effect of the edge shape on the whistling behavior of a double
side branch system in tandem configuration (Fig. 2.8, Conf-t1, L2 = L4 ≈ L3/2).

Single vortex model with imposed path and distributed vorticity

While the model of Nelson et al. [160, 161] in combination with vortex sound theory
[98] provides a good insight in the aeroacoustic behavior of junction elements, it
fails to give accurate quantitative predictions. The sharp edges imply a singularity
of the acoustic field, which in combination with the imposed straight path of
the vortices results into an overestimation of the acoustic source power 〈Psource〉
by almost a factor of five. This interaction between the singularity in the vortex
model (line vortices with concentrated vorticity) and the singularity in the acoustic
field can be avoided by assuming a distributed vorticity along a line segment,
as proposed by Bruggeman [30], or by removing the downstream singularity in
the acoustic flow distribution, as proposed by Dequand et al. [51]. Both these
modifications reduce the overestimation by about a factor two.

Kook and Mongeau [132] proposed a modified model of Nelson et al. [160, 161]
in which, in order to take into account the diffusivity of the vortices traveling
downstream, a vortex concentration parameter has been introduced. This empirical
parameter has been estimated, for the case of a Helmholtz resonator, by using
absolute cavity pressure amplitudes obtained experimentally over a range of free
stream velocities. This vortex model has been then implemented in a feedback
loop model, where the flow excitation and the acoustic response are approximately
modeled as a forward gain function and as a backward gain function respectively.

Quasi-steady limit

An essential limitation of the single vortex models is that they are not suitable
to describe the low Strouhal number limit SrW eff � 1. In this limit one can use
a quasi-steady model in which the sound source is defined as the steady linear
perturbation in total enthalpy across the junction ∆Bs.

An attempt to predict the aeroacoustic behavior of T-junctions at low Strouhal
numbers has been done by Hofmans [94]. He developed analytical models for the
quasi-steady behavior of sharp edged T-junctions, which provide predictions in
good agreement with experiments from literature [113].
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2.12.4 Models based on the numerical solution of the flow
field

Source models based on the numerical solution of the flow field have been developed
by many authors. These models consist of two main steps. The first step is to solve
numerically the flow field, imposing the acoustic field as boundary condition. The
second step is to use the solution of these numerical calculations to evaluate the
sources of sound.

Vortex blob simulations

Early work [207, 97, 206] on models based on the numerical solution of the flow
field has been carried out using frictionless flow simulations based on discrete vor-
tex methods. These models, applied to various resonators (parallel plates, double
diaphragm, Hartman generator), successfully determine the Strouhal conditions
for optimal sound production by vortex shedding SrW eff,opt.

Solving the flow field by means of the vortex blob method as developed by
Chorin and Bernard [37] and used by Krasny [134, 135], several authors [166, 136,
94, 169] obtained predictions of the acoustic source power 〈Psource〉 in T-junctions
and cross-junctions for various main flow configurations and acoustic flow limit
cases.

Figure 2.23 – Experimental setup used by Bruggeman [30] to measure the pulsation
levels of a single side branch system as function of main flow velocity U and pressure
reflection coefficient Rp (a). Dimensionless pulsation amplitude |p′max| / (ρ0c0U) at
the end of the closed side branch as function of the main flow Mach number M =
U/c0 for various reflection conditions Rp (b). The pipes have square cross section
and the junction has sharp edges. Experimental results by Bruggeman [30] (stars)
and predictions by means of an energy balance implementing the numerical results
of the vortex blob method of Hofmans [94] (empty circles).

Assuming a moderate amplitude behavior (Sec. 2.11.3), Hofmans [94] obtained
the Strouhal number dependence of the acoustic source power 〈Psource〉 for all the
nine limit cases of a T-junction with sharp edges. In these calculations, Hofmans
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[94] neglected the effect of vortex shedding at the downstream edge. Simulations
in which this effect was taken into account did not indicate this was an important
effect at moderate amplitudes.

For the (T-a3) limit case in a single side branch system (Fig. 2.23-a), at mod-
erate amplitudes, the pulsation amplitudes predicted using the results of the sim-
ulations [94] in an energy balance, agreed within 10% with the measurements of
Bruggeman [30] (Fig. 2.23-b). For the (T-a1) limit case in a multiple shallow side
branch system, the model of Hofmans [94] implemented in an energy balance pre-
dicts exactly the observed optimal Strouhal number SrW eff,opt but overestimates
the pulsation amplitude by a factor four [210].

Figure 2.24 – Dimensionless pulsation amplitude |p′max| / (ρ0c0U) at the end of
the closed side branch of the single side branch system of Fig. 2.6-b (L1 = 0.12 m,
L2 = 0.44 m, L3 = 0.82 m, W1 = W2 = W3 = 0.06 m, rnozzle = 0.03 m) with
square cross section of the pipes and sharp edges of the junction, as function of the
Strouhal number based on the effective cavity width SrWeff. Experimental results
(solid line) and predictions by means of an energy balance (circles) implementing the
numerical results of the vortex blob method of Hofmans [94]. The energy balance is
implemented without non-linear losses due to wave steepening (full circles) and with
non-linear losses due to wave steepening (empty circles).

The moderate amplitude assumption used by Hofmans [94] implies to assume
the acoustic source power 〈Psource〉 to be linearly proportional to the acoustic
amplitude

∣∣~u′jun

∣∣. For low and high pulsation amplitudes this is not a correct as-
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sumption, so that when the pulsation amplitude becomes small or large, separate
calculations should be carried out for various amplitudes. Using such simulations in
combination with an energy balance, Hofmans [94] predicted the pulsation ampli-
tude for a single side branch configuration terminated by a horn (Fig. 2.6-b). The
acoustic response of the horn placed at the downstream open termination 〈Prad〉
was measured by means of a two microphone method. The visco-thermal losses
〈Pv-th〉 were calculated following the theory of Kirchhoff [125] and the acoustic
losses due to non-linear wave steepening 〈Prad-nl〉 were estimated. The predicted
pulsation amplitude agrees within 30% with the experimental results (Fig. 2.24).
Hofmans [94] assumes that these discrepancies are due the sound absorption by
wall vibrations (section 2.14).

Figure 2.25 – Dimensionless time-averaged acoustic source power
〈Psource〉 /

(
ρ0U

2Ssb

∣∣~u′jun

∣∣), where Ssb is the cross sectional area of the side
branch, as function of the Strouhal number SrW based on the side branch width
Wsb for the (T-a1), (T-a2), (T-a3) and (C-a1) limit cases with various shapes of the
edges. Results of the vortex blob simulation carried out by Kriesels et al. [136].

Using the same numerical method as Hofmans [94], Kriesels et al. [136] obtained
a prediction of the effect of the rounding of the edges on the acoustic source power
〈Psource〉 generated by vortex shedding in T-junctions and cross-junctions. In these
simulations, the flow separation point was taken to be fixed at the end of the
upstream main pipe segment, just before the upstream edge. The results of the
simulations are shown in Fig. 2.25 for moderate pulsation amplitudes. At high
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pulsation amplitudes the simulations did not give reasonable results because the
fixed separation point assumption fails for rounded edges. The results obtained
for moderate amplitudes agree qualitatively with the experimental observations of
Dequand et al. [51].

The same vortex blob method as the one of Hofmans [94] and Kriesels et al.
[136] has been used by Peters and Bokhorst [169], by means of which they obtained
the prediction of the acoustic source power 〈Psource〉, at moderate amplitudes, for
the (T-c1) and (T-c2) limit cases with sharp and rounded edges (Fig. 2.26).

Figure 2.26 – Dimensionless time-averaged acoustic source power
〈Psource〉 /

(
ρ0U

2Ssb

∣∣~u′jun

∣∣), where Ssb is the cross sectional area of the side
branch, as function of the Strouhal number SrW based on the side branch width
Wsb for the (T-c1) and the (T-c2) limit cases with sharp and rounded edges. Results
of the vortex blob simulation carried out by Peters and Bokhorst [169].

Laminar and incompressible numerical simulations

Using a commercial solver, for the laminar, incompressible and two-dimensional
Navier-Stokes equations, Mart́ınez-Lera et al. [144] predicted the sound sources in
sharp edged T-junctions for the limit cases (T-a1), (T-a2) and (T-a3). The use
of incompressible simulations limits the validity of this approach to low frequen-
cies, but it avoids the appearance of spurious numerical resonances when using a
limited numerical domain. This approach eliminates then the extreme difficulty to
implement non-reflecting boundary conditions at the limits of the numerical do-
main. The Reynolds number based on the side branch diameter ReDsb = UDsb/ν
for which the calculations have been carried out is low, ReDsb < 3000. As the
simulations are two-dimensional, the effect of turbulence has been excluded. The
encouraging results of these simulations, summarized below, call for further work
along this line.

In a first step, Mart́ınez-Lera et al. [144] considers the Strouhal dependence
of the source impedance Zs in the linear (very low amplitude) limit. The results
obtained are very similar to the experimental results of Graf and Ziada [82, 83]
discussed in Sec. 2.12.1. Furthermore, these results display a dependence of the
source impedance Zs on the boundary layer thickness of the main flow, similar
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to that observed for an orifice subjected to grazing flow [131, 129]. An interesting
aspect of the method introduced by Mart́ınez-Lera et al. [144] is that the full range
of acoustic frequencies is obtained in a single numerical simulation by means of a
random perturbation of the steady solution.

In a second step, Mart́ınez-Lera et al. [144] calculates the acoustic source power
〈Psource〉 for different pulsation amplitudes

∣∣~u′jun

∣∣ /U . The simulations clearly show
the saturation effect predicted by Bruggeman [30] and observed by Graf and Ziada
[82, 83]. The moderate amplitude case with

∣∣~u′jun

∣∣ /U = 2 · 10−1, for the (T-a3)
limit case, does agree well with the vortex blob simulations of Hofmans [94].

Using a methodology similar to that introduced by Mart́ınez-Lera et al. [144],
Nakiboglu and Hirschberg [158, 154] investigate the dependence of the optimal
Strouhal number SrWeff,opt on the diameter ratio Dsb/Dp for the (T-a1) limit
case. It appears that the ratio of boundary layer thickness to pipe diameter deter-
mines the optimal Strouhal number SrWeff,opt. Predicted optimal Strouhal num-
bers agree well with the available experimental data [156, 13]. The effect of bound-
ary layer thickness also agrees with the observation of Elder et al. [65] and Golliard
[77] on orifices subjected to grazing turbulent boundary layer flow. The method
used by Nakiboglu and Hirschberg [158, 154] is also successful in predicting the
effect of cavity edge geometry on the acoustic source power 〈Psource〉 [157, 154].

Unsteady, turbulent and compressible numerical simulations

Numerical simulations of the flow field in sharp edged cross-junctions have been
carried out by Radavich et al. [177] by means of an unsteady, turbulent and com-
pressible solver. The results of these numerical simulations have been then pro-
cessed by means of the analogy of Howe [100], in order to identify the regions of
sound production. The results of these simulations, compared with experiments
on a double side branch systems in cross configuration, show that the method is
capable of reproducing the physics of the flow-acoustic coupling and of predicting
the flow conditions when this coupling occurs.

Recently, Föller et al. [71] investigated the aeroacoustic behavior of T-junctions
with flow configuration (T-a) by means of Large Eddy Simulations (LES) in com-
bination with system identification techniques (SI). The coefficients of reflection
and transmission of plane acoustic waves and the production and absorption of
acoustic energy due to the interaction of the unstable shear layer with the im-
pinging acoustic waves, determined through the LES/SI methodology, compares
favorably with available experimental data [118]. A drawback of the compressible
simulations is that special care should be taken in implementing non-reflecting
boundary conditions at the limits of the numerical domain.

2.12.5 Full numerical models

Full numerical models for the aeroacoustic behavior of pipe systems are based on
the numerical solution of the flow by means of CFD codes, in which the solution
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includes both the main flow field and the acoustic field.
The aeroacoustic behavior of cavities subjected to grazing flow have been re-

cently studied by Gloerfelt et al. [76] by means of direct numerical simulations
(DNS). Besides the great advantage to have an accurate solution of the flow, in-
cluding the main flow field and the acoustic field, a clear disadvantage is that
these simulations are computationally expansive and are limited to resonators of
limited size. Such simulations have not yet been achieved for T-junctions or cross-
junctions. However, DNS does not seem suitable to compute the aeroacoustic be-
havior of complex pipe systems where the sources are compact and the resonators
can typically extend over several acoustic wavelengths.

Using a dedicated compressible Euler solver, Dequand et al. [51] obtained a
prediction of the pulsation behavior of a double side branch system in cross con-
figuration. In these numerical simulations, both sharp edges and chamfered edges
have been considered. An interesting observation, confirmed by experiments, is
that the chamfered edges behave as the rounded edges.

The numerical simulations of Dequand et al. [51] predict pulsation amplitudes
which are 40% higher than the amplitudes observed experimentally in pipes with
square cross section. This is partially expected to be due to the effect of wall
vibrations in experiments.

The modeling of self-sustained oscillations in T-junctions and cross-junctions
by solving the Euler equations gives reasonable results because, apart from the up-
stream boundary layer, self-sustained cavity oscillations are essentially non-viscous
phenomena. Furthermore, the imposed description of the upstream boundary layer
into an Euler model leads to a satisfactory description of the phenomenon. A clear
advantage of this kind of simulations is the reduced computational cost, compared
to a DNS.

Using another Euler code, Lafon et al. [139] studied numerically the self-
sustained oscillations in a steam line with a cavity (isolation valve). In this work
two different computations have been carried out. In the first one a uniform mean
flow profile was assumed at the inlet of the numerical domain. In the second one,
a boundary layer obtained from experimental data was introduced in the numeri-
cal computation as an upstream boundary condition. This boundary layer profile
appears to be essential to recover the experimentally observed coupling between
the shear layer instability and the acoustic modes of the pipe system.

2.13 Hydrodynamic interaction

Hydrodynamic interaction between two side branches in close proximity has been
observed by Ziada and Bühlmann [229]. This interaction results into a dependence
of the pulsation amplitude on the angle between the planes defined by the main
pipe and each side branch separately. This effect has been observed to be weak.

The influence of the distance between two side branches in tandem configu-
ration on the pulsation amplitude, which has been reported in literature [229], is
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mainly due to an increase of radiation losses rather than to hydrodynamic inter-
action. In a study of the interaction between two Helmholtz resonators, Derks and
Hirschberg [54] observed that the hydrodynamic interaction becomes important
only for distances lower than the width of the cavity opening.

When two closed side branches are placed in a cross configuration, they can
produce a pulsation level which is higher than that of a tandem of two closed
side branches placed next to each other. This is expected to be due to the reduced
sound production of the downstream side branch in the tandem configuration, that
presents a (T-a2) limit case (Fig. 2.25). In a cross configuration, if the side branch
diameter is comparable to the main pipe diameter Dsb/Dp = O (1), a significant
hydrodynamic interaction can be observed between the two shear layers at the
junction between each side branch and the main pipe [163, 164].

A strong hydrodynamic interaction has been observed [234] between a bend
with a radius of curvature 3Dp of three pipe diameters and a closed side branch,
placed just downstream of the bend. This is due to the formation of a jet in
the bend. This non-uniformity of the flow influences the effective grazing flow
velocity at the junction between the main pipe and the closed side branch for
distances up to 10Dp downstream of the bend. When the closed side branch is
placed in the direction of the interior of the bend, the effective grazing flow velocity
is decreased and this results into a reduction of the optimal Strouhal number
SrW eff,opt, the critical Strouhal number SrW eff,cri and the dimensionless pulsation
amplitude. When the closed side branch points towards the exterior of the bend,
the effective grazing flow velocity is increased and this results into an increase of
the optimal Strouhal number SrW eff,opt, the critical Strouhal number SrW eff,cri

and the dimensionless pulsation amplitude. The same effect has been observed to
occur for a tandem of two side branches downstream of a bend [229]. However,
this effect is less important for a system of two side branches in cross configuration
downstream of a bend [222, 234]. Coffman and Bernstein [38] observed strong
hydrodynamic interaction between a row of closed side branches (standpipes of
safety valves) and an upstream sharp bend.

Our recent experiments on double side branch systems in tandem and cross
configuration show a strong reduction of the pulsation amplitude when these sys-
tems are placed a few pipe diameters (≈ 3Dp) downstream of a sharp bend with
radius of curvature of Dp/2. We expect this effect to be similar to that of an orifice
plate, discussed by Ziada [222] (Sec. 2.15.3).

2.14 Influence of wall vibrations

Wall vibrations can be significant amplitude limiting losses. In laboratory experi-
ments with pipes with rectangular cross sections one should suspect them because
rectangular cross sections are easily deformed by pressure fluctuations. In full scale
pipes, wall vibrations can also become crucial because pipe walls become relatively
thin as one increases the pipe diameter.
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Large scale experiments carried out by Gasunie at Westerbork [80, 79] confirm
the significant role of wall vibrations as amplitude limiting losses. These experi-
ments have been carried out measuring the pulsation level in a double side branch
system in tandem configuration with and without stiffening elements. By increas-
ing the rigidity of the setup, the pulsation amplitude was increased by about 50%
(Fig. 2.27). This confirms the hypothesis that wall vibrations have a significant
effect.

Figure 2.27 – Effect of the wall vibrations on the pulsation level of the double
side branch system in tandem configuration of Westerbork [80, 79]. The pipes have
circular cross section and the junctions have rounded edges (L2 = L4 = 3.73 m,
L3 = 7.29 m, D1 = D3 = D5 = 0.305 m, D2 = D4 = 0.254 m, rup,down = 0.25D2,
ρ0 = 54 kg/m3 and c0 = 388.5 m/s). The dimensionless pulsation amplitude
|p′max|2 / (ρ0c0U), measured at the closed end of the upstream side branch L2, is
presented as function of the Strouhal number SrWeff for the system without stiffen-
ing elements (circles) and with stiffening elements (squares). Measurements on the
stiffened system could not be carried out below SrWeff ≈ 0.33 for safety reasons.

An accurate prediction of pulsation amplitudes in pipe networks where the wall
vibrations are significant requires an estimation of the transfer of acoustic power
from the acoustic field to the pipe structure 〈Pwall〉. We propose here a simple
model for the evaluation of the order of magnitude of these losses.

At low frequencies the coupling between the acoustic waves and the pipe wall
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vibrations is limited at discontinuities. At such points the acoustic pressure is not
uniform and can drive lateral displacements of the pipe. We focus on the case of
a system composed by a closed side branch along an infinitely long free pipe (Fig.
2.28).

If we assume a quarter wavelength resonance in the side branch f ≈ c0/ (4Lsb),
the junction between the main pipe and the side branch is at a pressure node while
the end of the side branch is at a pressure antinode. The fluctuating pressure p′max

at the end of the side branch induces a periodical force Fvib = Ssbp
′
max, which is

transmitted by the side branch walls and pulls the main pipe periodically. This
force is not compensated by pressure fluctuations at the junction because there is
a pressure node at this point (Fig. 2.28).

Figure 2.28 – System composed by a closed side branch along an infinitely long
free pipe. In the condition of a quarter wavelength resonance of the side branch, the
fluctuating pressure p′max at the end of the side branch induces a periodical force
Fvib = Ssbp

′
max, which is transmitted by the side branch walls and pulls the main

pipe periodically.

The time-averaged acoustic power transferred from the acoustic field to the
pipe structure 〈Pwall〉 is found from:

〈Pwall〉 =
1

T

∫ T

0

Ssbp
′
max

dy (x = xsb)

dt
dt (2.30)

where T = 1/f is the period of the acoustic oscillation, y (x = xsb) is the lateral
displacement of the main pipe at the side branch position x = xsb.

The lateral displacement y of an infinite pipe under the influence of a point
force Fvib applied at x = xsb has been evaluated by Morse [150]. Introducing the
results of this theory in Eq. (2.30), the time-averaged acoustic power transferred
to wall vibrations can be expressed as:

〈Pwall〉 =
2πfSsb

8EIpk3
p

|p′max|
2

(2.31)
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where E is the Young’s modulus of the pipe, Ip is the second moment of inertia
of the pipe axis and kp is the wave number of the wall vibrations along the main
pipe. This wave number is given by:

kp =

(
ρpSp

EIp

) 1
4 √

2πf (2.32)

where ρp and Sp are respectively the density and the cross sectional area of the
main pipe.

In most cases the mass of the side branch or the mass of a compressor attached
to the side branch will significantly affect the movement of the system. This mass
mp can be taken into account in the expression of the periodical force which
is transmitted by the side branch walls and pulls the main pipe periodically, so
that Fvib = Ssbp

′
max − mpd

2y (x = xsb) /dt2. The time-averaged acoustic power
transferred to wall vibrations, taking into account the attached mass, is then:

〈Pwall〉 =
1

2
S2

sb

2πf
(
4EIpk

3
p

)(
4EIpk3

p + 2πfmp

)2
+ (2πf)

4
m2

p

|p′max|
2

(2.33)

As a first order approximation in a complex system we will assume the vibration
losses of each individual side branch to be independent of those of the other side
branches.

2.15 Remedial measures for the prevention of the
self-sustained oscillations

Self-sustained aeroacoustic pulsations can appear either in new pipe networks or in
existing networks when the operation conditions are modified. A typical example
is the appearance of flow induced pulsations as a consequence of the increase in
the operational flow speed in gas transport systems. Indeed, severe self-sustained
oscillations are more likely to occur at high velocities than at low velocities. Pul-
sations are expected to occur in any pipe system containing closed branches when
the flow velocity exceeds a critical value.

A proper aeroacoustic design of a pipe network avoids the operational condi-
tions which may lead to the occurrence of self-sustained oscillations. This can be
achieved by following the aeroacoustic design charts, as those presented by Ziada
and Shine [223] and Bruggeman et al. [32]. These charts are constructed by us-
ing the results obtained in scale model experiments. Each scale model (i.e. single
closed branch, double side branch system, etc.) is tested to investigate the effects
of the flow and design parameters on the critical Strouhal number SrWeff,cri at
which acoustic resonances are initiated. The use of the design charts is useful to
determine the flow velocity in the system above which self-sustained oscillations
can be expected.
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Whenever design rules (design charts) cannot be fulfilled, or in the case of mod-
ification of the operational conditions, the maximum pulsation amplitudes should
be estimated. If this amplitude is not acceptable, additional remedial measures
can be implemented to mitigate the pulsation intensity or eliminate it altogether.
These remedial measures are: detuning the branches by making them of differ-
ent lengths, inserting anti-vortex elements in the branch inlet or adding upstream
spoilers in the main pipe. Active control methods have also been shown to be ef-
fective, however, to date, only under laboratory conditions. In the following, these
remedial measures are briefly discussed.

2.15.1 Detuning of the length of the closed branches

If resonance conditions cannot be avoided for piping systems with closed branches,
the pulsation intensity can be reduced by detuning the length of the branches,
by making one branch shorter (or longer) than the other. However, the effect
of detuning the branches is strongly dependent on the specific geometry of the
piping system, including the diameter ratio Dsb/Dp, the distance between the
closed branches, the branch arrangement (i.e. whether the pipe system includes
double or multiple branches and whether they are in the tandem or the cross
configuration) and the geometry of the upstream and downstream pipe segments.

For double side branch systems arranged in the tandem [229, 222] and in the
cross configurations [82, 83], the pulsation amplitude has been observed to decrease
by an order of magnitude when the lengths of the branches were detuned by about
10% (Fig. 2.29-a). In all these experiments, two absorption silencers were installed
at both ends of the test section to make the main pipe acoustically less reactive
and, therefore, reduce the influence of the main pipe on the acoustical response of
the side branches.

For the case of short side branches with small diameter ratios Dsb/Dp, which
are liable to resonance even in the single configuration, detuning the branches may
be less effective. For example, Arthurs and Ziada [5] showed that introducing a
relatively small offset in the length of two branches generates two distinct tones,
corresponding to the different lengths of the branches. Although the tone ampli-
tudes of the detuned branches were reduced to about 25% of those observed for
tuned branches, this reduction may not be sufficient, especially when the higher
order acoustic modes are of concern for short side branches with small diameter
ratio Dsb/Dp.

In some cross configurations (Fig. 2.29-b) with rounded edges and diameter
ratio Dsb/Dp = 1, Tonon et al. [212] found that even a change of 30% in length
of one of the side branches (L2 was changed while keeping L4 = 13 cm) was not
sufficient to reduce by an order of magnitude the pulsations of the system. The
robustness of these resonators has been found to be due to the influence of the main
pipe on the acoustical response of the side branch system. In these experiments
the main pipe terminations were acoustically reflecting (open ends). An increase of
the length of the downstream pipe segment, from L5 = 7 cm to L5 = 17 cm, led to



2.15 Remedial measures for the prevention of the self-sustained oscillations 63

a resonator in which the pulsation amplitude decreased by an order of magnitude
when the branches were detuned by 10%. It is interesting to note that in the case of
a cross configuration with L1 = 49 cm and L5 = 7 cm, detuning the side branches
by 10% resulted in a 20% increase of the pulsation amplitude (Fig. 2.29-b).

Figure 2.29 – Dimensionless pulsation amplitude |p′max|2,4 / (ρ0c0U) at the closed
end of side branch L2 (crosses) and L4 (circles) in asymmetrical double side branch
systems in cross configuration. (a) Side branch system with circular cross section
of the pipes (D1 = D5 = 89 mm, D2 = D4 = 51 mm) and sharp edges. The
length of one side branch is increased/decreased in steps while the other branch is
shortened/elongated accordingly by an equal length (L2 +L4 = 1.57 m) [82, 83]. (b)
Side branch system with circular cross section of the pipes (D1 = D2 = D4 = D5 =
33 mm) and rounded edges (ru,l

up,down = 3.3 mm). The length of one side branch L2 is
decreased in steps while the length of the other branch is kept constant L4 = 13 cm.
The length of the upstream and downstream main pipe segments is L1 = 49 cm and
L5 = 7 cm [212].

For the special case of double side branches in tandem configuration separated
by a well-tuned main pipe segment (Eq. (2.28)), experiments by Bruggeman [30]
indicate that detuning the length of the side branches becomes effective only for
asymmetry of more than 20% (Fig. 2.30).

In the case of multiple side branches, the effect of detuning is more difficult
to assess. Detuning the length of all the branches leads in general to a reduction
of the pulsation amplitude. However, as shown by Tonon et al. [211], detuning
the length of one side branch in a system composed by six side branches does
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not reduce much the pulsation levels. In 1958 Anderson [4] predicted that when a
crystal is disordered enough (filled with a high concentration of defects) electron
diffusion will cease. The phenomenon, called Anderson localization, explains the
phase transition in a material that changes from a conductor to an insulator as
disorder is increased and its electrons transform from diffusive, delocalized waves
into localized, or trapped, wavepackets [220, 140]. Dépollier et al. [49] observed
that random irregularities in the length of the side branches of a multiple side
branch systems induce acoustical Anderson localization, so that the system still
displays trapped modes in spite of the randomness.

Figure 2.30 – Influence of side branch length on the amplitude of self-sustained
pulsations in the double side branch setup in tandem configuration of (Conf-t1, Fig.
2.8). The pipes have circular cross section (D1 = D3 = D5 = 30 mm, D2 = D4 =
25 mm) and both upstream and downstream edges of the junctions are rounded
rup,down = 0.12D2. The dimensionless pulsation amplitude |p′max|2 /

(
1/2ρ0U

2
)

is
measured at the closed end of the upstream side branch L2, varying the length of
one side branch Li, at fixed length of the other side branch. The solid line represents
the results obtained with L3 = 2L4 = 0.597 m and varying the length L2, while the
dashed line represents the results obtained with L3 = 2L2 = 0.597 m and varying
the length L4.

Finally, the length of the side branches can be designed in order to eliminate
specific resonances [147]. This leads to the cancellation of the pulsation for specified
conditions. An example of industrial application is the use of an additional side
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branch in safety valves to detune the resonance [227].

2.15.2 Anti-vortex insert

Jungowski and Studzinski [116] developed and patented several anti-vortex devices
which can be inserted into the mouth of closed branches. They consist of a single
splitter plate, two plates in a cross configuration or three plates in a triangular
arrangement. These inserts represent an attractive solution because they are very
effective in suppressing the flow induced pulsations, do not interfere with the main
flow and do not cause substantial increase in the pressure loss when the flow is
diverted into the branches. The excellent performance of these inserts in suppress-
ing flow induced pulsations appears to be due to several effects. They can reduce
the formation of vortices inside the branch mouth; they change the length scale of
the separated shear layer; and they introduce strong three dimensional effects.

2.15.3 Spoiler, sharp trailing edge and orifice plate

Spoilers can be used to reduce self-sustained oscillations due to flow separation in
T-junction and cross-junction elements [222, 32]. Besides the advantage of reducing
the pulsation amplitudes, they have the disadvantage of inducing flow losses.

Figure 2.31 – Influence of the static pressure of the gas p0 on the dimensionless
pulsation amplitude |p′max|2 / (ρ0c0U) measured at the closed end of the upstream
side branch L2. Double side branch system in tandem configuration (Conf-t1, Fig.
2.8, L3 = 2L2 = 2L4 = 0.597 m). The pipes have circular cross section (D1 = D3 =
D5 = 30 mm, D2 = D4 = 25 mm). Both upstream and downstream edges of the
junctions are rounded rup,down = 0.12D2 in the reference configuration (solid line).
Several remedial measures for the prevention of the self-sustained oscillations have
been tested: a spoiler placed 1D2 upstream of the upstream T-junction (circles), a
spoiler placed at the upstream edge of the upstream T-junction (squares), a spoiler
placed at the upstream edge of the downstream T-junction (diamonds) and a sharp
trailing edge of the downstream T-junction (triangles).
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The sharp trailing edge (upstream edge) suggested by Bruggeman et al. [32] is
a type of spoiler that is very effective and only induces flow losses when the flow
is turning into the side branch. In principle its effectiveness depends on the length
ls of the edge formed by a plate compared to the side branch diameter Dsb. In the
experiments carried out by Bruggeman et al. [32] a ratio ls/Dsb ≈ 0.2 appeared
to be very effective (Fig. 2.31).

An improvement of the spoiler, observed by Bruggeman et al. [32, 30] consists
in using a zigzag edge rather than a straight edge normal to the flow. This reduces
the coherence of the vortex shedding [3].

The effect of an upstream orifice plate on the acoustic resonance of side branches
in tandem and cross configurations was investigated by Ziada and Bühlmann [229].
When an orifice plate was positioned 5.5Dsb upstream of the branches, the pulsa-
tion amplitude was reduced to about 30% of its original value without the orifice
plate, for both the tandem and the cross arrangements. In addition, the pulsations
at the second hydrodynamic mode were eliminated for the tandem branches. Ziada
and Bühlmann [229] attribute this mitigation effect to increased turbulence level
in the main pipe, which disturbs the formation of coherent vortices at the branch
mouth. A sharp bend, with a radius of curvature of Dp/2, appears to behave in a
similar way as an orifice plate when it is placed few diameters upstream of a closed
branch system. The drawback of these countermeasures is the increased pressure
loss due to the restriction of the flow area.

2.15.4 Active control techniques

Active control of flow induced pulsations has received considerable attention over
the past two decades. Ffowcs Williams and Huang [219], Huang and Weaver [108]
and Welsh et al. [218] used loudspeakers to counteract the resonant sound field
of different types of resonators and thereby suppress the resonant oscillations.
Later on, active suppression of flow induced pulsations in shallow cavities has been
demonstrated, with a varying degree of success, by means of perturbing the shear
layer at its separation location with the aid of oscillating flaps [192, 145], pulsed
mass injection [192], piezoelectric actuators [109], or synthetic jets [226, 231]. It is
also possible to use active control means to suppress acoustic resonances of closed
branches, as demonstrated by Ziada [222, 225].

There are three different methods proposed in the literature to suppress self-
sustained oscillations by active means. The first involves externally forcing the
shear layer at frequencies which are substantially different from that occurring
during the resonance [192, 145]. In this approach, a continuous high level of power
is needed to force the shear layer oscillation at a frequency different from the fre-
quency of its natural instability. The other two active control methods are similar
in that they employ a feedback control strategy, but differ in the type of the used
actuator. In the first feedback control method [222, 219, 108, 218, 224], loudspeak-
ers are used to counteract the acoustic resonance and thereby reduce the acoustic
particle velocity below the critical level required to organize and synchronize the
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shear layer oscillation. This approach can be classified as active damping control of
the acoustic mode because the actuator acts on the resonant acoustic mode rather
than on the shear layer. In the other feedback control method [226, 231, 225], the
shear layer is directly excited at the separation location to counteract the feed-
back generated by the resonant acoustic mode. This techniques, therefore, can be
described as feedback control of the shear layer oscillation. Since the actuators in
both feedback control methods are activated by the system response, the energy
consumption by the actuators decreases sharply after a short time period which
is needed to suppress the resonance. This is in contrast with the external forcing
of the shear layer at frequencies which are substantially different from that occur-
ring during the resonance, which necessitates continuous high power level for the
actuator.

2.16 Scale models

Scale model setups are convenient because they are more flexible and less expansive
than real field setups. As the weight of a setup scales with the third power of the
linear length scale, a reduction of the length scale by a factor 10 reduces the cost
of experiments by at least a factor 103.

2.16.1 Similarity

The key idea of scale modeling is that the dimensionless amplitude of self-sustained
oscillations is a function of dimensionless parameters in which some of these param-
eters, such as the Mach numberM = U/c0 and the Reynolds numberReD = UD/ν
(D is the pipe diameter and ν is the kinematic viscosity of the gas), are not critical.

The square of the Mach number M2 indicates the importance of compressibility
on a steady flow. The Reynolds number ReD indicates the importance of viscosity
on the flow at the junction between the main pipe and a closed branch. For typical
industrial gas flows, M ≤ 0.3, and therefore the flow will not depend significantly
on the Mach number. Furthermore, the Reynolds number is typically ReD ≥ 105,
so that the flow is turbulent and does not depend critically on the specific value
of the Reynolds number.

The choice of the dimensionless representation of experimental results is not
unique. For a pipe system with resonant closed branches of diameter Dcb and
length Lcb, the pressure p′max measured at an antinode, such as the closed end,
can be written as a function F of the key dimensionless numbers: the Strouhal
number SrW eff = fWeff/U based on the effective cavity width Weff (Sec. 2.3), the
Helmholtz number HeL = fLcb/c0 based on the closed branch length Lcb, the
product αLcb of the branch length Lcb and the damping coefficient α for plane
waves, and geometrical functions, such as the ratio r/Dcb of edge radius r to closed
branch diameter Dcb of the junction between the closed branch and the main pipe
(Fig. 2.16) and the ratio Dcb/Dp between the diameter of the closed branch Dcb
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and that of the main pipe Dp:

|p′max|
ρ0c0U

= F (SrW eff, HeL, αLcb, r/Dcb, Dcb/Dp) (2.34)

For a laminar acoustic boundary layer, the damping coefficient α for plane
waves [125] is given by:

α =
δvπf

Dcbc0

(
1 +

γ − 1√
Pr

)
(2.35)

where γ is the Poisson ratio cp/cv of specific heats at respectively constant pressure

and constant volume, Pr is the Prandtl number and δv ≈
√
µ/ (ρ0πf) is the

thickness of the viscous acoustic boundary layer.
For a resonant closed branch, the Helmholtz number is HeL = (n+ 1/2) /2,

with n = 0, 1, 2, . . .. In such a case the dimensionless pressure |p′max| / (ρ0c0U)
is a measure for the ratio

∣∣~u′jun

∣∣ /U of the amplitude of the acoustical particle

velocity
∣∣~u′jun

∣∣ at the junction (sound source) and the main flow velocity U . From
experiments on recorder flutes [215, 53] and Helmholtz resonators [52], it appears
that the ratio

∣∣~u′jun

∣∣ /U at the sound source (shear layer) is indeed a very good
dimensionless representation of the pulsation amplitude.

As explained in Sec. 2.11.3, when visco-thermal and radiation losses become
negligible, one reaches a high amplitude limit which is determined by geometrical
parameters such as r/Dcb and the flow configuration. The amplitude

∣∣~u′jun

∣∣ /U is
then independent of αLcb. A scale model experiment will then accurately predict
pulsations as long as geometrical details are accurate enough. Prediction is much
easier for trapped modes than for global modes, because global modes require the
accurate modeling of the acoustical boundary conditions of the pipe system (Sec.
2.1.2). This is not easy in scale model experiments.

In contrast to high amplitudes,
∣∣~u′jun

∣∣ /U is not predicted by scale model ex-
periments at low amplitudes. At these amplitudes, as discussed in Sec. 2.11.3, the
local hydrodynamic pressure fluctuations induced by the shear layer oscillation
are proportional to the acoustical forcing amplitude

∣∣~u′jun

∣∣. The power balance de-
termining the pulsation amplitude is extremely sensitive to minor changes in the
experimental setup, because both the sound production and the sound dissipation
are quadratic functions of

∣∣~u′jun

∣∣.
In the following sections we will discuss the prediction of moderate amplitude

pulsations by means of scale model experiments and some other aspects of scale
modeling. Before doing so, we should stress the fact that exact geometrical scaling,
including surface roughness, is not possible.

2.16.2 Predicting moderate amplitude pulsations

At moderate amplitudes one expects that the sound source is only weakly de-
pendent on the pulsation amplitude (Sec. 2.11.3). In such a case, the pulsation
amplitude can be reasonably well predicted by using a power balance (Sec. 2.6)
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in which the acoustic source power 〈Psource〉 is determined from scale model ex-
periments while visco-thermal 〈Pv-th〉 and radiation losses 〈Prad〉 are estimated
theoretically. This is the approach used by Bruggeman et al. [32] and Graf and Zi-
ada [82, 83] (Sec. 2.12.1). This procedure will in general provide an overestimation
of the pulsation amplitude because such a balance does not take into account wall
vibrations, which provide additional damping and reduce the pulsation amplitudes.
Furthermore, using for the damping coefficient α the approximation of Kirchhoff
(Eq. 2.35) we ignore the possibility of a transition from laminar to turbulent flow
in the acoustic boundary layers in the closed branches. Such a transition has never
been demonstrated in laboratory experiments but could occur in industrial pipe
systems when ρ0δv |~u′| /µ > 350 [216]. This transition would imply an increase in
visco-thermal damping.

In contrast with high amplitude pulsations, it can be convenient to present scale
model results for moderate amplitudes as the ratio |p′max| /

(
1/2ρ0U

2
)

of pressure
fluctuation amplitude |p′max| and total head 1/2ρ0U

2 of the main flow. This is
due to the fact that at moderate amplitudes the local hydrodynamic pressure
fluctuations induced by the shear layer are expected to scale with 1/2ρ0U

2 so that
the acoustic power production 〈Psource〉 scales with 1/2ρ0U

2 |p′max|. As the visco-

thermal and radiation losses scale with |p′max|
2
, we expect |p′max| to be proportional

to 1/2ρ0U
2.

A problem with the moderate amplitude model is actually that it does predict
finite pulsation amplitudes independently of the magnitude of the damping. This
implies that the power balance (Sec. 2.6) will not predict the sudden disappearance
of pulsations when increasing the damping. This occurs when the pulsations reach
the low amplitude level at which the source becomes amplitude dependant.

In scale models, losses can indeed became so large that self-sustained pulsations
are not observed. In this case, the scale model results cannot be up-scaled because
the self-sustained excitation mechanism and the resulting sound source are not
reproduced in the model. This effect is demonstrated by the influence of the static
pressure on the pulsation behavior of a single side branch resonator, observed by
Bruggeman et al. [32, 30]. The measured dimensionless pressure |p′max| /

(
1/2ρ0U

2
)

is shown as a function of the Strouhal number SrW eff based on the effective cavity
width, at both atmospheric pressure and at p0 = 5.2 bar (Fig. 2.32). For the
first hydrodynamic mode, around SrW eff ≈ 0.4, we do not observe a strong effect
of the pressure. The second hydrodynamic mode, around SrW eff ≈ 0.8 is only
observed for p0 = 5.2 bar. A similar strong pressure dependency is illustrated in
Fig. 2.31 for a double side branch system in tandem configuration. This graph
presents the maximum of the dimensionless pulsation amplitude |p′max| / (ρ0c0U)
as a function of the static pressure for 1 bar ≤ p0 ≤ 15 bar. Without spoilers we
observe a strong increase of pulsation amplitude up to p0 = 5 bar, followed by a
saturation. A spoiler placed upstream of the first side branch significantly reduces
the pulsations at low pressures. Above a critical pressure, the pulsation amplitude
suddenly rises, indicating a change in flow around the spoiler, which is probably
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related to the increase in Reynolds number. In this particular case we expect a
transition from a laminar to a turbulent flow in the boundary layer around the
teeth of the spoiler. These examples clearly illustrate that the possibility to vary
the pressure in a scale experiment will very strongly improve the reliability of the
extrapolation of results to full scale.

Figure 2.32 – Influence of the static pressure of the gas p0 on the dimensionless
pulsation amplitude |p′max| /

(
1/2ρ0U

2
)
. Single side branch configuration with circu-

lar cross section of the pipes and sharp edges of the junction. Solid line p0 = 1 bar,
dashed line p0 = 5.2 bar.

2.16.3 Predicting the onset of pulsations

In the previous sections we have been discussing the prediction of pulsations based
on scale model experiments. We implicitly considered established pulsations. In
engineering practice one would actually want to avoid pulsations. Hence, we seek
for a prediction of the critical Strouhal number SrW eff,cri below which pulsation
occurs.

The main parameter that influence the Strouhal number at the onset of reso-
nance SrW eff,cri is the ratio Dsb/Dp between the diameter of the closed branch(es)
Dsb and that of the main pipe Dp [234]. In a double side branch system in tandem
configuration, Ziada and Shine [234] observed an increase of the critical Strouhal
number from SrW eff,cri ≈ 0.28 up to SrW eff,cri ≈ 0.45, as the diameter ratio was
increased from Dsb/Dp = 0.135 up to Dsb/Dp = 0.57. Similar dependency of
Strouhal number was found by Elder et al. [65] and Golliard [77] for grazing flow
along orifices. For the (T-a1) limit case Nakiboglu et al. [158] predicts the same
increase in Strouhal number with increasing Dsb/Dp. Although the radiation and
the visco-thermal losses strongly influence the maximum pulsation amplitude and
the width of the lock-in range of the resonance, they have a negligible effect on
the critical Strouhal number SrW eff,cri [234].
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2.17 Perspectives

2.17.1 Sound sources

At the present time, we have obtained a fair qualitative understanding of the
aeroacoustic behavior of pipe systems with closed side branches, for the case of
side branch diameter close to that of the main pipe Dsb ≈ Dp. In such a case
the flow at the junction is reasonably well described by a two-dimensional flow
model. However, there is a need for more quantitative models, in particular for the
case of junctions with rounded edges. Also the experimental information is mainly
concerned with a grazing flow along the mouth of a closed side branch. There is
little information on the other flow configurations (Figs. 2.17 and 2.18).

For the case of side branch diameter much smaller to that of the main pipe
Dsb � Dp we have only a reasonable understanding of the flow induced pulsa-
tions for the case of a grazing flow past a closed side branch. In this case a two-
dimensional model remains reasonable. The reason why in this configuration the
critical Strouhal number SrW eff,cri depends on the diameter ratio Dsb/Dp should
be studied more in detail. For the case of a main flow entering or leaving a side
branch, we do not have experimental data nor model describing the aeroacoustic
behavior. In particular for the case of a flow leaving the side branch, one expects
an essentially three-dimensional behavior due to the formation of a free jet.

2.17.2 Theoretical prediction of global behavior

The prediction of pulsations in complex systems has not yet been proven to be
possible. Rules of thumb, such as an identification of resonators with a quality
factor Q above 10 combined with a critical Strouhal number SrW eff,cri seem to
predict in many cases pulsations which are not observed in industrial practice.
As explained in Sec. 2.14 one possible reason for the reduction of pulsations in
practice, is the damping due to wall vibrations. This should be verified.

Detuning of resonators, by choosing random lengths of the closed pipe seg-
ments, is certainly useful. It can however be expensive due to the increase in
complexity of the pipe system. It does furthermore not give a guarantee that no
acoustic trapped modes can appear (Sec 2.15.1).

At the present time, it is not clear how a scale model of a limited part of a
pipe system can be used to predict the pulsation behavior of the whole (extended)
system. In large pipe systems we can expect that several acoustic modes can in-
teract. The simple energy balance based on the assumption that a single mode is
dominant can fail. One may observe switching from one mode to another, rather
than a stable limit cycle dominated by a single mode.

In many industrial systems, compressors are present. These compressors act as
sound sources which can lock-in with flow induced pulsations or, on the contrary,
impede these pulsations. This phenomenon has not been studied yet.
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2.17.3 Scale models

Scale model experiments remain essential tools to study the behavior of complex
systems. They can be used in the design phase in order to predict pulsations. Later
they are most useful in order to test remedial measures, if flow induced pulsations
appear as consequence of the modification of the operating parameters.

The possibility to vary the static pressure in a scale model is important in
order to extrapolate the scale model results towards higher Reynolds numbers, as
encountered at full scale. In general, scale models allow a large number of useful
tests. Results should, however, always be confirmed by a number of full scale tests
(Sec. 2.16.1) because up-scaling remains uncertain.



Chapter 3

Whistling of a pipe system
with multiple side branches:
comparison with corrugated
pipes

Abstract

Corrugated pipes are widely used because they combine local rigidity with
global flexibility. Whistling induced by flow through such pipes can lead to se-
rious environmental and structural problems. The whistling of a multiple side
branch system is compared to the whistling behavior of corrugated pipes. The
low frequency resonance modes of the multiple side branch system have been
predicted by means of acoustic models, of which the validity has been tested
experimentally. Several experiments have been carried out for characterizing
the whistling behavior of the system. These experiments show that the multi-
ple side branch system is in many aspects a reasonable model for corrugated
pipes. Advantage of the multiple side branch system is that it is an experimen-
tal setup allowing easy modification of cavity depth. We used this feature to
identify the pressure nodes of the acoustic standing wave along the main pipe
as the regions where sound is produced. This contradicts recent publications
on corrugated pipes. Another interesting aspects is that the system appears
to whistle at the second hydrodynamic mode of the cavities rather than at
the first hydrodynamic mode. A prediction model for the whistling behavior
is proposed, consisting of an energy balance, based on the vortex sound the-
ory. The model predicts the observed Strouhal number but overestimates the
acoustic fluctuation amplitude by a factor four.

73
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3.1 Introduction

Corrugated pipes are used as flexible risers in offshore natural gas production
systems, vacuum cleaners, ventilation systems and heat exchangers. Such pipes
can display strong whistling driven by the flow through the pipe. The acoustic field
produced can induce, besides environmental noise problems, significant structural
vibrations. Corrugated pipes can also be used as toys or musical instruments [40,
196, 194].

Figure 3.1 – Typical cross sections of corrugated pipes.

Typical cross sections of corrugated pipes are shown in Fig. 3.1. The inner
diameter oscillates periodically as we move along the pipe. The wavelength of the
corrugation is called the pitch l. In thin wall pipes the corrugations provide the
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pipe some local rigidity, preventing collapse, while keeping its overall flexibility. In
the following we will consider the particular geometry for which the corrugation
is sharp edged. The main pipe has a minimum diameter D. Each corrugation is
a rectangular shaped cavity of width W in the flow direction and depth H (Fig.
3.2).

Figure 3.2 – Sharp edged corrugation geometry.

The flow induced whistling in corrugated pipes has been subject of several
studies. From literature it appears that some characteristics of this phenomenon
have been pointed out in almost all the experimental studies [40, 196, 35, 13, 170,
153, 228, 33, 11, 137, 133].

One characteristic is the stepwise increase of the whistling frequency as a func-
tion of the flow velocity. The whistling frequencies were found to be close to the
acoustic resonance frequencies of the system. An interesting aspect, first observed
by Cermak [35], is that the fundamental frequency is difficult to excite. It has
been suggested by Cadwell [33] that this was due to the transition from laminar
to turbulent flow and that whistling would only occur in turbulent flows.

Another widely observed characteristic is that optimal whistling occurs at fre-
quencies f corresponding to a optimal Strouhal number SrL = fL/U based on
the flow velocity U and a length scale L which can either be defined based on
the corrugation pitch l or on the corrugation cavity width W . Recent studies have
demonstrated that the most suitable dimension to be used is the corrugation cavity
width W [11, 137]. When at fixed cavity width, the distance between two corruga-
tions is increased, the optimal Strouhal number SrW = fW/U based on the cavity
width does not change. This suggests that the sound production is a local fluid
dynamic phenomenon within a single cavity/side branch. This is supposed to be
vortex shedding triggered by the acoustic velocity fluctuation [170, 228, 11]. The
optimal Strouhal number increases according to Binnie [13] with increasing the
length scale L relative to the pipe diameter D from SrL = 0.38 up to SrL = 0.75.
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Unfortunately it is not clear for the data of Binnie [13] whether the length L is
chosen to be the pitch l or the cavity width W . A similar increase of optimal
Strouhal number has been observed by Belfroid et al. [11] when the ratio of cavity
volume to pipe volume was increased.

The passive acoustic response of corrugated pipes has been described by Binnie
[13] as that of a pipe with periodically placed closed side branches. Moreover he
described analytically the acoustic wave behavior of the system in terms of plane
waves. The model of Nederveen [159] for closed tone holes in woodwinds provides
a more accurate description of the acoustic wave behavior in the absence of main
flow. For the acoustic response of a two-dimensional T-junction, Bruggeman [31]
provided extensive theoretical models and experimental data. A recent detailed
theoretical study of the acoustics of T-junctions has been carried out by Dubos
et al. [59]. Dépollier et al. [49] studied the effect of irregularities in the depth of
the side branches, which induces Anderson localization. More recently Debut et al.
[214] studied numerically the effect of irregularities in the geometrical configuration
on the whistling of a simplified model of corrugated pipes. A theoretical model for
the acoustic wave propagation in the presence of a main flow through corrugated
pipes has been proposed by Cummings, as reported by Elliot [67]. We will discuss
this model more in detail later (Sec. 3.6.1).

In the present study we consider pipes with rigid walls, in that way excluding
the possible coupling between flow instabilities and wall vibrations. Such a fluid-
structure coupling has been observed by Ziada and Bühlmann [228] for the case
of water flow through a corrugated pipe.

The hydrodynamic interaction between two successive cavities/side branches
has been subject of several studies. Lange and Ronneberger [141] and Aurégan
and Leroux [6] studied this interaction for the case of ducts lined with a series
of equally spaced deep cavities. Ziada and Bülhmann [229] studied the hydrody-
namic interaction between two side branches in close proximity. In a study of the
interaction between two Helmholtz resonators, Derks and Hirschberg [54] observed
that the hydrodynamic interaction becomes important for distances lower than the
width of the cavity opening. In our system the distance between two successive
side branches is twice the side branch width, so that we do not expect strong
hydrodynamic interaction. Coupling is expected to be dominated by acoustic in-
teraction.

The identification of the regions within the corrugated pipes where the sound
is mainly produced is a matter of current debate. Kristiansen and Wiik [137]
concluded that the energy generation occurs in the region of acoustic pressure
antinodes and the energy absorption around the acoustic pressure nodes. They
observed, however, that a short section of corrugations will only produce sound
effectively when placed at the inflow end of a long smooth pipe. This position
corresponds to an acoustic pressure node, which is in contradiction with their own
conclusions.

There is extensive experience in our group (Fluid Dynamics Laboratory of
the Department of Applied Physics, Eindhoven University of Technology) with
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whistling of systems of one or two closed side branches [32, 166, 136, 94, 51].
In particular a theoretical model based on vortex sound theory is available and
has been confirmed by experiments. That was a stimulus to consider a multiple
side branch system as a model for corrugated pipes, evaluating similitudes and
differences between these two systems.

In this chapter we first shortly introduce the theory of vortex sound and the
phenomenon of self-sustained acoustic oscillations. We will explain then, using the
aeroacoustic behavior of a cross configuration as example, the meaning of acoustic
and hydrodynamic modes. This is followed by the description of the shear layer
instability as source of unsteadiness acting as a source of sound. We will describe
then the experimental setup used. This is followed by the study of the passive
acoustic response of the multiple side branch system. Thereafter we will describe
how the acoustic flow within a T-junction is related to the sound production. We
will present then the experimental results on the whistling behavior of the multiple
side branch system. We propose an energy balance to predict the Strouhal number
for optimal whistling and the corresponding whistling amplitude. Finally we will
identify the location of the regions of the multiple side branch system where the
sound is produced.

To our knowledge no model predicting the whistling amplitude of corrugated
pipes is available from the literature. In our model we used the acoustic source
due to periodic vortex shedding as predicted by Hofmans [94]. He calculated the
flow field at a T-junction by using two-dimensional incompressible frictionless flow
simulations. He furthermore evaluated the sound sources applying the vortex sound
theory [105] to the results of his simulations. This theory has severe limitations.
Predicting the Strouhal number for whistling appears to be reasonably easy, while
an accurate prediction of the whistling amplitude is not yet possible.

3.2 Vortex sound

A formal relationship between vortex shedding and sound generation has been
established for free field conditions by Powell [174] and generalized by Howe [98,
100]. Howe [100] proposes to use a Helmholtz decomposition of the flow field ~u to
define the acoustic field:

~u = ∇ (ϕ0 + ϕ′) +∇× ~ψ (3.1)

where ϕ0 is the steady scalar potential, ϕ′ is the unsteady scalar potential and ~ψ
is the stream function. The acoustic field ~u′ is defined as the unsteady irrotational
part of the velocity field:

~u′ = ∇ϕ′ (3.2)

The ambiguity in the Helmholtz decomposition is in practice removed by the
boundary conditions which we impose to the acoustic field.
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We consider flows with high Reynolds number and low Mach number so that
we can neglect friction and heat transfer. Assuming a homentropic flow we can use
the formulation of Crocco for the momentum equation:

∂~u

∂t
+∇B = −~ω × ~u (3.3)

where B = 1
2 |~u|

2
+
∫
dp
ρ is the total enthalpy and ~ω = ∇× ~u is the vorticity.

At low Mach numbers we can neglect the convective effects on the propagation
of sound waves. With this approximation one finds:

1

c20

∂2B

∂t2
−∇2B = ∇ · (~ω × ~u) (3.4)

This corresponds to the assumption that the Coriolis force density ~fcoriolis =
−ρ0 (~ω × ~u), where ρ0 is the fluid density, acts as source of sound.

As proposed by Howe [100], the time-averaged acoustic source power 〈Psource〉
can be estimated using the approximation:

〈Psource〉 = −ρ0

〈∫
V

(~ω × ~u) · ~u′dV
〉

(3.5)

where V is the volume in which ~ω is not vanishing and the brackets 〈. . .〉 indicate
time averaging.

Figure 3.3 – Feedback loop characterizing the self-sustained oscillations (a) and
double side branch system in cross configuration (b).
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The vorticity in a flow field is related to the forces acting on the flow, therefore
it is related to the sound produced. One can qualitatively understand this feature
by considering the tone generated by a cylinder of diameter Dcyl in a steady cross
flow of velocity U . When we assume a potential flow around the cylinder, there is
no net force applied by the flow on the cylinder because of the symmetry of the
flow field. Due to viscous effects a wake is formed, vorticity shedding occurs and
this breaks the symmetry. At high Reynolds numbers ReDcyl > 102 instability of
the wake is observed which results into periodic vortex shedding with frequency
fvk = 0.2U/Dcyl. This so-called von Karman vortex street [190] is associated to
an oscillating lift force applied by the fluid on the cylinder. The reaction force of
the cylinder to this lift force is the source of sound of the associated whistling that
was studied first by Strouhal [202].

It is essential to realize that the cylinder walls do not need to vibrate in order to
generate the sound. However, if a mechanical vibration of the cylinder is induced
by the oscillating lift force this can significantly enhance the spatial coherence
of the vortex shedding along the cylinder and result into a stronger tone with a
frequency which is a compromise between the natural Strouhal vortex frequency
fvkDcyl/U = 0.2 and the mechanical resonance frequency.

A similar lock-in can occur with an acoustic standing wave (resonant mode)
when the cylinder is confined in a duct [16, 69, 232]. This enhances even more the
sound radiation because the acoustic standing wave provides improved radiation
impedance. The resulting high amplitude oscillation controls the vortex shedding.
These kinds of flow pulsations are called self-sustained oscillations. The global
behavior of these oscillations can be described in terms of a feedback loop (Fig.
3.3-a) consisting of an amplifier (flow instability) coupled to a band filter (acoustic
resonance).

3.3 Whistling of a cross configuration

The flow induced pulsations of double side branch systems in coaxial configuration
have been subject of several studies [229, 166, 136, 51, 234, 177, 5]. This configu-
ration is obtained when two closed side branches of equal length Lsb and diameter
Dsb are placed opposite to each other along a main pipe (Fig. 3.3-b). We use the
aeroacoustic behavior of this relatively simple configuration in order to introduce
basic concepts such as hydrodynamic and acoustic modes.

The amplitude of the acoustic pressure measured at the top of one closed
side branch

∣∣p′exp

∣∣ and the corresponding whistling frequency f are presented as
function of the main flow velocity U in Fig. 3.4-a, as obtained by Kriesels et al.
[136]. The different resonance modes, corresponding to acoustic standing waves
with frequencies fn ≈ (2n− 1) c0/ (4Lsb) (n = 1, 2, 3, . . .) are clearly observed in
Fig. 3.4-a. Only the odd modes are resonant because they have a pressure node at
the junction and therefore do not radiate into the main pipe.

The acoustic pressure
∣∣p′exp

∣∣ presents distinct maxima at different optimal
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Strouhal numbers based on the effective cavity width SrW eff = fWeff/U . The
significant Strouhal number in problems concerning the aeroacoustic behavior of
pipe systems with closed side branches has been identified by Bruggeman et al.
[32] to be based on the effective width of the side branches Weff. For side branches
with rectangular cross section, Weff is equal to the width of the side branches Wsb,
while for circular side branches of diameter Dsb, the effective width is the average
width of the side branch cross section Weff = πDsb/4.

Figure 3.4 – Acoustic measurements [136] and flow visualizations [166] of a double
side branch system in cross configuration.

The first hydrodynamic mode m = 1 corresponding to one vortex in the side
branch opening (Fig. 3.4-b) appears at a Strouhal number SrW eff ≈ 0.4. The con-
vective velocity of the vortex is about Ucon ≈ 0.4U [32], hence the travel time of
the vortex across the opening is one oscillation period. For the second hydrody-
namic mode m = 2 two vortices are present at the same time in the opening of the
side branch (Fig. 3.4-b), the time needed by a vortex to travel across the junction
is then two oscillation periods and SrW eff ≈ 0.8.

It appears that the sound source is the most effective when it is operating on
the first hydrodynamic mode m = 1. This mode induces pulsation amplitudes
which are usually one order of magnitude larger than the pulsations induced by
higher hydrodynamic modes, because it occurs at higher velocities than the higher
hydrodynamic modes.

When increasing gradually the flow velocity higher order hydrodynamic modes
are observed before observing the first hydrodynamic mode. In Fig. 3.4-a we clearly
observe that increasing the flow velocity the second hydrodynamic mode m = 2
is observed for each acoustic resonance (n = 1, 2, 3, . . .) before observing the first
hydrodynamic mode m = 1.

Self-sustained oscillations are due to instability of a feedback loop (Fig. 3.3-a).
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One of the oscillation conditions determining the whistling frequency f is:

2πfWeff

Ucon
+ ∆ϕac = 2πm (3.6)

where ∆ϕac is the acoustic phase shift and the first term is the phase delay due
to convection. The optimal oscillation condition corresponds to acoustic resonance
f ≈ fn and implies in this case ∆ϕac ≈ 0. By shifting the frequency f , the system
can reach any phase in the range −π/2 < ∆ϕac < π/2 which allows whistling
within a finite velocity range (Fig. 3.4-a) for a given acoustic mode. However, if
the resonator has a high quality factor, the frequency change is very small. We
therefore observe the typical stepwise increase in frequency shown in Fig. 3.4-a.

Figure 3.5 – Amplification rate −αiθs for a shear layer with finite thickness as
function of the Strouhal number based on the shear layer momentum thickness Srθ
[148].

3.4 The shear layer instability

The shear layer instability is the source of unsteadiness that acts as the amplifier
in the feedback loop of Fig. 3.3-a. The growth of vortical disturbances in the shear
layer that separates the main flow from the stagnant fluid has been extensively
studied by means of the linearized stability theory since Rayleigh [179]. The effect
of finite momentum thickness of the velocity profile of the mean flow on spatial
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amplification and convective velocity of hydrodynamic waves, in an inviscid par-
allel free shear layer, is described by Michalke [148]. The predicted amplification
is shown as a function of the Strouhal number fθs/U based on the shear layer
momentum thickness θs in Fig. 3.5.

For low frequencies the theory predicts an integral amplification over one wave-
length by a factor exp (2π). Furthermore the theory predicts that for frequencies
above:

fθs
U

= 0.04 (3.7)

the perturbations are not amplified. So there is no instability for hydrodynamic
wavelength λh = 0.4U/f shorter than about 10 times the shear layer momentum
thickness θs.

From this theory we can conclude that, when the velocity is increased mono-
tonically, the highest hydrodynamic mode to appear is determined by the critical
ratio of hydrodynamic wavelength λh to momentum thickness θs discussed above.

The linear theory is correct as long as the disturbances are small. For large
perturbations a roll-up of the shear layer is observed, forming coherent structures of
concentrated vorticity (Fig. 3.4-b). This concentration of the vorticity of the shear
layer into discrete vortices is the non linear saturation mechanism which explains
the stabilization of the feedback loop oscillation at a finite whistling amplitude
[32, 70, 121].

3.5 Experimental setup

3.5.1 General setup

The experimental setup is sketched in Fig. 3.6. The multiple side branch system is
made up of equal T-joints connected to each other, forming a row of equally spaced
side branches along a main pipe (Fig. 3.7). The system is built up of T-junction
elements for vacuum appliances ISO-KF cast in aluminum. The main pipe of each
T-joint has an internal diameter Dp = 33 mm and a length Lp = 100 mm. The
side branch is situated half-way on the main pipe segment of the T-joint. The
junction between the side branch and the main pipe has sharp edges. The side
branch has a diameter Dsb = 33 mm and a length Lsb = 33 mm. The end of
the side branches is closed. The successive T-junctions are connected with aid of
standard ISO-KF clamps and incorporate O-rings for sealing. The end of each side
branch is closed by means of a blank-off flange. This flange is fixed with the aid
of a standard ISO-KF clamp and incorporates an O-ring for sealing. Plugs can be
inserted into the side branch in order to fill up the side branch and to reduce the
T-joint to a straight pipe segment. We will use these to assess the significance of
specific side branches in maintaining whistling. The end walls of four side branches
are supplied with flush mounted microphones.

One end of the multiple side branch system, called outlet, is open to the labo-
ratory (a large room of 15 m× 4 m× 4 m). The other end, the inlet, is connected
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to a high pressure air supply system. It consists of a compressor, a 3 m3 vessel
filled with air at 15 bar, a control valve to control the flow through the system,
an intermediate cylindrical buffer vessel of 1.23 m length and 20 cm diameter, a
2.3 m long pipe of 10 cm diameter, a turbine flow meter, a 1.10 m long pipe of
10 cm diameter and an expansion chamber muffler with diameter Dm = 150 mm
and length Lm = 930 mm. Half of the muffler is covered internally with sound
absorbing foam in order to avoid cavity resonances. Nevertheless this muffler is
not ideal and appears to display around 360 Hz a resonant behavior which reduces
strongly the whistling amplitudes. The multiple side branch system is connected to
the muffler by a pipe segment of length Lst = 41 mm and diameter Dst = 33 mm.
The upstream edge of this pipe segment has a radius of curvature of Dst/3 which
avoids flow separation at the main pipe inlet.

Figure 3.6 – Experimental setup.

3.5.2 Instrumentation

The microphones used are piezo-electric pressure transducers PCB 116A. They
are linked to charge amplifiers Kistler 5011. These amplifiers are connected to a
personal computer via an A/D converter acquisition board National Instruments
NI cRIO-9233. The turbine flow meter Instromet SM-RI-X-K G250 is used to
measure the main flow velocity. It is connected to a digital counter Systron Donner
via an interface designed in our group for the power supply of the flow meter sensor
and for the correction of the pulses given by the flow meter. The temperature of
the air is measured within 0.1◦ by means of a digital thermometer Eurotherm 91e.
Its sensor is positioned inside the expansion chamber muffler.

In order to study the passive acoustic response of the multiple side branch
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system we drive the acoustic field by means of a loudspeaker Eurotec 59-F135.03-
01F positioned 50 mm in front of the outlet of the system. The loudspeaker, used
as sound source, is connected to a white noise generator Hewlett Packard HOI-
3722A via an AIM wideband amplifier WPA301A.

Figure 3.7 – Multiple side branch system.

3.5.3 Geometrical comparison with a typical corrugated pipe

The geometrically relevant parameters in a corrugated pipe are: the ratio H/W
of cavity depth H to cavity width W , the ratio Hf/c0 of cavity depth H to
wavelength c0/f , the ratio l/W of pitch length l to cavity width W , the ratio
W/D of cavity width W to pipe diameter D and the ratio R/W of cavity edge
radius R to cavity width W .

In our multiple side branch system Lsb/Dsb (corresponding to H/W in a cor-
rugated pipe) and Lp/Dsb (corresponding to l/W in a corrugated pipe) are of
order unity as in typical corrugated pipes. For the data presented Lsbf/c0 � 1
as in corrugated pipes Hf/c0 � 1. Concerning the ratio R/Dsb (corresponding to
R/W in a corrugated pipe), we restricted our study to sharp edges, so R/Dsb = 0
as R/W = 0. Only the ratio Dsb/Dp (corresponding to W/D in a corrugated
pipe) is in our case of order unity Dsb/Dp = O (1) while in most corrugated pipes
W/D = O

(
10−1

)
.

3.6 Acoustic wave propagation in the multiple side
branch system

The first step of our study has been to find a simplified model for the acoustic
wave propagation in the multiple side branch system without main flow. For this
purpose we made use of the model proposed by Cummings as reported by Elliot
[67]. We also developed a plane wave analytical model based on the low frequency
plane wave acoustic model in duct segments of Dowling and Ffowcs Williams [57].
Binnie [13] had earlier proposed such a model for a multiple side branch system.
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We improved it by including visco-thermal damping, radiation losses and end
corrections [159, 59].

The models have been validated by comparing the theoretical predictions of
both models with experimental measurements. Several experiments have been car-
ried out for characterizing the passive acoustic behavior of the multiple side branch
system.

3.6.1 Analytical models for wave propagation

In Cummings model, to which we will refer as “Cummings acoustic model (CAM)”,
the effect of the fluid in each cavity is limited to the compressibility of the cavity in
which the pressure is assumed to be uniform and equal to the pressure in the main
pipe [67]. The main pipe acoustic flow grazing along the cavities is assumed to be
uniform. The corrugated pipe is then considered as a straight pipe presenting a
side wall reactance to the acoustic field. This reactance has the effect of decreasing
the effective speed of sound ceff along the main pipe. Neglecting the Mach number
dependency due to convective effects we find:

ceff = c0
1√

1 + V
S l

(3.8)

where c0 is the speed of sound, V is the volume of a corrugation, S is the cross
sectional area of the pipe and l is the pitch of the corrugations.

In order to use this model (CAM) for our multiple side branch system we
consider the volume of a corrugation to be the volume of a single side branch
Vsb = πD2

sbLsb/4, the cross sectional area to be the cross sectional area of the
main pipe Sp = πD2

p/4 and the pitch to be the distance between two consecutive
side branches Lp. The effective speed of sound ceff in our multiple side branch
system is then given by:

ceff = c0
1√

1 + Vsb

Sp Lp

(3.9)

The second model, to which we will refer as “plane wave acoustic model
(PWAM)”, has been established by applying the continuity of mass flow and of
pressure at each bifurcation and the perfect reflection condition at the side branch
terminations. The resulting system of 4N equations with 4N +2 unknowns, where
N is the number of side branches composing the multiple side branch system, is
closed mathematically by imposing two boundary conditions.

At the outlet we impose an unflanged open pipe termination and the loud-
speaker is represented by an harmonically oscillating pressure discontinuity. At
the inlet we impose a simple flanged open pipe termination. The fluid inside the
multiple side branch system is at rest. The visco-thermal losses are taken into ac-
count as proposed by Kirchhoff [171, 91]. The main pipe length is taken including
the fluid at the junction. The end corrections for the side branches are taken into
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Table 3.1 – Predicted and experimental frequencies of the resonance modes of the mul-
tiple side branch system (15 side branches). fp is the measured frequency, fC is the
frequency predicted with the Cummings model (CAM) and fPW is the frequency pre-
dicted with the plane wave model (PWAM).

Mode number Measured frequency Cummings model (CAM) Plane wave model (PWAM)

fp
|fp−fC|
fp

· 100
|fp−fPW|

fp
· 100

1 89.7 3.10 1.11
2 181.3 2.02 0.22
3 271.5 2.19 0.29
4 357.7 3.42 1.28
5 454.4 1.77 0.68
6 538.1 3.12 0.20
7 621.1 4.23 0.48
8 704.8 4.98 0.42
9 784.7 6.07 0.43
10 864.8 6.94 0.06
11 927.3 9.71 0.80
12 989.2 12.19 0.85
13 1044.3 15.13 0.55

account by adding a correction equal to one-third of the side branch diameter
Dsb/3 to the length of the side branches [31]. The more complex theory of Ned-
erveen [159] was not implemented, because the results were already satisfactory.

3.6.2 Wave propagation results

The experiments to characterize the passive acoustic behavior of the multiple
side branch system were performed without blowing air through the system. The
loudspeaker was used as sound source. It was driven by a white noise generator
with a bandwidth of 5000 Hz. Experiments have been done for a variable number
of side branches and have been carried out twice: firstly with the side branch
system connected to the muffler and secondly with the system disconnected from
the muffler. The measured resonance frequencies were not affected by the presence
of the muffler; however, around 360 Hz the amplitude of the resonance modes
have been observed to be affected by the presence of the muffler. This indicates a
problem which also affects the results of whistling experiments (Sec. 3.8).

The low frequency resonance modes of the multiple side branch system can be
predicted by both the analytical models (CAM and PWAM). These modes corre-
spond, for the CAM model, to standing waves with a multiple of a half wavelength
matching the pipe length:

Lmp = n
ceff

2 fp
(n = 1, 2, 3, . . .) (3.10)

where Lmp is the length of the whole main pipe and fp is the resonance mode
frequency.
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Higher frequency resonance modes can be accurately predicted only by us-
ing the more complex plane wave model (PWAM). For both models (CAM and
PWAM) the accuracy of the prediction increases as the number of side branches
increases.

For a system of 15 side branches, the resonance frequencies obtained experi-
mentally are compared in Table 3.1 with the theoretical predictions of both models
(CAM and PWAM). For low frequencies an accuracy of 1% is achieved with the
plane wave model (PWAM). With the simplified model based on the effective speed
of sound (CAM) we have for the first six modes about 3% accuracy.

As expected from the earlier analysis of Binnie [13] one observes at high fre-
quencies zones in which there is no wave propagation. Such zones are also found in
periodic systems such as crystals and they correspond to forbidden energy levels in
electrical conduction of solids [126]. This behavior is only predicted by the plane
wave model (PWAM).

3.7 Acoustic flow within a T-junction and sound
production

In corrugated pipes and in the multiple side branch system considered, the cavi-
ties/side branches are shallow compared to the acoustic wavelength. This implies
that, in contrast with the cross configuration discussed above (Sec. 3.3), the acous-
tic field is not dominated by acoustic waves due to the compressibility of the cavi-
ties/side branches but it is dominated by waves traveling along the main pipe. As
we will see later (Sec. 3.10), this is in agreement with the result that the sound in
mainly produced at pressure nodes in the standing wave pattern along the main
pipe.

Globally, we can describe the acoustic field in terms of plane waves traveling at
a modified speed of sound ceff along a uniform pipe (Sec. 3.6.1). Locally, however,
the acoustic flow is very complex. Around the pressure nodes the acoustic flow is
an oscillating potential flow grazing along a cavity. In Fig. 3.8-a we show a sketch
of the streamlines of this acoustic flow. In such a potential flow the sharp edges of
the cavity are singularities at which the acoustic velocity becomes locally infinitely
large. Further away from the wall the acoustic streamlines, which are initially
(upstream of the upstream edge) parallel to the main pipe axis, bend around the
upstream edge. In the middle of the cavity the streamlines bend back, up to be
again parallel to the main pipe axis. Finally they turn around the downstream edge
and they end up parallel to the main pipe axis (downstream of the downstream
edge).

The magnitude of the acoustic velocity is higher near the edges of the junction
than in the middle of the cavity. As the vorticity ~ω in the shear layer is mainly
convected along a path corresponding to the unperturbed shear layer (straight
line connecting the upstream and the downstream edges), we see from Eq. (3.5)
that acoustic energy will be produced or dissipated around the upstream and
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Figure 3.8 – Streamlines of the acoustic velocity field for the case of acoustic flow
directed along the main pipe (a) and qualitative representation of the x-dependence
of the vertical component of the acoustic velocity at the junction between the main
pipe and the side branch (b).

downstream edges because the acoustic velocity ~u′ has a large amplitude and a
component directed normal to the flow velocity ~u, so that (~ω × ~u) · ~u′ 6= 0. Note
that the normal component of the acoustic velocity has, for a given instant in time,
near the downstream edge a sign opposite to that near the upstream edge (Fig.
3.8-b).

As observed by Nelson et al. [160], Stokes and Welsh [200] and Bruggeman et
al. [32] a new vortex is shed at the upstream edge each time the acoustic velocity
changes direction in the main pipe from upstream to downstream. We choose
this as the origin of time t = 0. Since the vector ~ω × ~u is directed towards the
inside of the cavity, at this moment (~ω × ~u) · ~u′ > 0, so that sound is absorbed.
The vortical perturbation generated at the upstream edge by flow separation is
amplified by the shear layer instability as it is convected towards the downstream
edge. It will produce sound near the downstream edge if it arrives there when
the local acoustic velocity ~u′ has a component directed outwards from the cavity.
This condition is actually achieved during the first half oscillation period after the
initial vortex shedding, so for 0 < t < T/2. When the flow velocity is sufficiently
large this occurs and yields the first hydrodynamic mode of the grazing acoustic
flow configuration.

Assuming that the vorticity is concentrated into a point vortex growing linearly
in time and convected at constant velocity along a straight line, yields the predicted
acoustic source power 〈Psource〉 obtained by Bruggeman et al. [32] and shown in
Fig. 3.9.

The model Bruggeman et al. [32] considers a two-dimensional flow with side
branch cross sectional area Ssb equal to the main pipe cross sectional area Sp. We
see from this result that the optimal Strouhal number for sound production by the
first hydrodynamic mode of the cavity with grazing acoustic flow is SrW eff ≈ 0.13.

The model of Bruggeman et al. [32] is not realistic because it dramatically
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overestimates the acoustic power generated at SrW eff ≈ 0.13. More realistic results
are provided by the numerical calculations carried out by Hofmans [94].

Figure 3.9 – Dimensionless time-averaged acoustic source power as a function of
the Strouhal number based on the effective cavity width for acoustic flow directed
along the main pipe. Results of the point vortex model proposed by Bruggeman et
al. [32].

In his calculations, Hofmans [94] considers a two-dimensional flow with side
branch cross sectional area Ssb equal to the main pipe cross sectional area Sp. For a
single T-joint, using the vortex sound theory of Howe [105], Hofmans [94] calculated
the dimensionless time-averaged acoustic source power 〈Psource〉 /

(
ρ0U

2 |u′|Sp

)
as

a function of the Strouhal number based on the effective cavity width SrW eff for
the case of acoustic flow directed along the main pipe. The numerical simulations
were performed solving the flow at a two-dimensional T-joint by means of a fric-
tionless incompressible flow model (vortex blob method). The acoustic velocity
was imposed as an oscillating boundary condition. Calculations were carried out
for an acoustic velocity amplitude to main flow velocity ratio |u′| /U = 0.2.

The results of the calculations carried out by Hofmans [94] are presented in
Fig. 3.10. We observe here a second hydrodynamic mode around SrW eff ≈ 0.6.
Furthermore the first hydrodynamic mode is predicted for SrW eff ≤ 0.1 and it is
weaker than the second hydrodynamic mode.

It is interesting to note that the first hydrodynamic mode corresponds to only



90 Whistling of a pipe system with multiple side branches

a quarter of a hydrodynamic wavelength in the cavity width. Hence, following the
linear theory (Sec. 3.4), the amplification due to the hydrodynamic instability of

the shear layer is only [exp (2π)]
1/4 ≈ 5 for the first mode, while it is [exp (2π)]

5/4 ≈
2.5 · 103 for the second hydrodynamic mode.

Figure 3.10 – Dimensionless time-averaged acoustic source power as a function of
the Strouhal number based on the effective cavity width for acoustic flow directed
along the main pipe. Results of the numerical simulations carried out by Hofmans
[94].

The weakness of the first hydrodynamic mode and the optimal Strouhal number
SrW eff ≈ 0.6 for the second hydrodynamic mode predicted by Hofmans [94] have
been recently confirmed by the two-dimensional DNS calculations of Mart́ınez-
Lera et al. [144]. A third hydrodynamic mode is predicted around SrW eff ≈ 1.1
but it can occur only if the shear layer is sufficiently thin to obtain a hydrodynamic
instability (Eq. (3.7)).

3.8 Whistling experimental results of the multi-
ple side branch system

When air is blown through the multiple side branch system whistling is observed.
Several experiments have been carried out for a variable number of side branches.
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The whistling frequency shows a stepwise increase with the flow velocity, dif-
ferent acoustic modes of the system being excited consecutively. The whistling
frequencies observed in the experiments are close to the resonance frequencies of
the system (Sec. 3.6). In Fig. 3.11 we present the measured whistling frequency
f as a function of the flow velocity U for a system of 15 side branches and the
acoustic modes of the system as calculated by means of the two analytical models
(CAM and PWAM) presented in Sec. 3.6.1. It is interesting to note that, as of-
ten observed in corrugated pipes, whistling is absent at the lowest acoustic mode
[40, 196, 35, 13, 33, 137].

The flow induced whistling, observed in our multiple side branch system at low
velocities (below 30 m/s), occurs around a optimal Strouhal number based on the
effective cavity width in the range 0.5 < SrW eff < 0.65. This range corresponds
to the second hydrodynamic mode of the cavity with grazing acoustic flow pre-
dicted by theory (Sec. 3.7). Furthermore, we observe that upon increasing the flow
velocity above 30m/s, a hydrodynamic mode with a different Strouhal number is
excited. We will focus on the range below this critical velocity.

Figure 3.11 – Measured whistling frequency as function of flow velocity and acoustic
modes calculated by means of the analytical models (CAM and PWAM) for a system
of 15 side branches.

The optimal Strouhal number remains almost constant when the velocity changes
and when the number of side branches is changed. For whistling at the lowest ex-
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cited acoustic mode, a maximum of the acoustic amplitude is found at:

SrW eff =
fWeff

U
= 0.6 (3.11)

where f is the whistling frequency, Weff is the effective cavity width and U is the
flow velocity.

Figure 3.12 – Measured dimensionless pressure fluctuation amplitude as function of
Strouhal number based on the effective cavity width for a system of 15 side branches.

In typical corrugated pipes the optimal Strouhal number based on the cavity
width is also almost constant. The typical values of optimal Strouhal number based
on the cavity width for corrugated pipes (Fig. 3.13 [11]) are lower than the values
based on the effective cavity width for our multiple side branch system:

SrW =
fW

U
= 0.4. (3.12)

This difference can be due to geometrical differences between the corrugated pipes
and our multiple side branch system. In particular we expect the ratio of cavity
width to pipe diameter (W/D in corrugated pipes and Weff/Dp in the multiple
side branch system) to be crucial. As discussed in Sec. 3.5.3 this is a geometri-
cal parameter that is considerably different between a corrugated pipe and our
multiple side branch system.
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Binnie [13] carried out experiments in which he reduced the effective pipe
diameter of a corrugated pipe by inserting a rod in the main pipe along the pipe
axis. He observed a similar increase in optimal Strouhal number from SrL = 0.38
(it is not clear whether L is the pitch l or the cavity width W ) up to SrL = 0.75
as W/D was increased from W/D = 0.46 up to W/D = 1.28.

Belfroid et al. [11] carried out experiments with various corrugated pipes.
In these experiments the observed optimal Strouhal numbers were in the range
0.3 ≤ SrW ≤ 0.5 for the second hydrodynamic mode. Furthermore, whistling was
reported at very high flow speed for Strouhal around SrW = 0.1. This would cor-
respond to the first hydrodynamic mode. However, the dimensionless amplitudes
were very low and the whistling quite unstable.

One should further investigate the effect of the ratio of cavity width to shear
layer momentum thickness on the optimal Strouhal number. This ratio is much
larger in the multiple side branch system than in typical corrugated pipes.

Figure 3.13 – Dimensionless pressure fluctuation amplitude as function of Strouhal
number based on the cavity width for a corrugated pipe with sharp edged corruga-
tions. TNO data measured at a static pressure of 4 bar [11].

In Fig. 3.12 we present the dimensionless pressure fluctuation amplitude as
function of the Strouhal number based on the effective cavity width SrW eff for a
system of 15 side branches. This dimensionless amplitude is defined as the ampli-
tude of the standing pressure wave at a pressure antinode inside the main pipe



94 Whistling of a pipe system with multiple side branches

|p′max| divided by the air density ρ0, the speed of sound c0 and the main flow
velocity U .

The dimensionless pressure fluctuation amplitude |p′max| / (ρ0c0U) = O
(
10−2

)
is of the same order of magnitude as that observed for a corrugated pipe with sharp
edged corrugations, presented in Fig. 3.13 [11]. In this case the corrugated pipe
diameter is D = 49 mm. The corrugation width is W = 4 mm. The corrugation
depth is H = 4 mm. The pitch of the corrugations is l = 12 mm. The total pipe
length is Ltot = 3.038 m. Whistling as shown in Fig. 3.13 [11] was obtained at
a static pressure of p0 = 4 bar. More details of the experimental setup and the
measuring procedure are given by Belfroid et al. [11]. Note that, when the edges of
the corrugations are rounded, Belfroid et al. [11] found dimensionless amplitudes
of magnitude |p′max| / (ρ0c0U) = O

(
10−1

)
.

3.9 Energy balance for prediction of the whistling
amplitude

As already stated in Sec. 3.4, linear theory cannot explain the occurrence of a
stable whistling with finite amplitude [32, 70, 121]. This is a consequence of the
fact that acoustic energy losses 〈Ploss〉 are quadratic in the acoustic amplitude |u′|.
If the vorticity perturbation is linear in |u′|, the acoustic source power 〈Psource〉
will also be quadratic in |u′|. This implies that when 〈Psource〉 balances 〈Ploss〉 the
system is neutrally stable and can have any amplitude |u′|. A very small increase in
the losses is sufficient to make the system stable, killing the whistling. Therefore
low amplitude oscillations are unstable. Such a behavior is indeed observed for
the so-called low amplitude regime, as defined by Bruggeman et al. [32] |u′| /U =
O
(
10−3

)
.

At moderate amplitudes, such as |u′| /U = O
(
10−1

)
, the shear layer vorticity

is concentrated into discrete vortices [32] and becomes insensitive to the value of
the acoustic amplitude. Therefore the acoustic source power 〈Psource〉 becomes, at
a given Strouhal number, linearly proportional to |u′|. The system displays for
moderate amplitudes a stable oscillation.

In our measurements we obtained whistling amplitudes of the order of |u′| /U =
O
(
10−2

)
, which is intermediate between low and moderate amplitudes. This im-

plies that it will be extremely difficult to predict the whistling amplitude. We,
however, decided to make an attempt by assuming a moderate amplitude behav-
ior. The price we have to pay for this, is that we cannot predict the disappearance
of a whistling mode. Our theory always predicts whistling.

The energy balance model (EBM) is a single mode model, so that the acoustic
field in the multiple side branch system is considered as dominated by a single
standing acoustic wave. The main idea of the model is that the acoustic source
power driving this acoustic mode has to be balanced by the corresponding dissi-
pated acoustic power. The acoustic mode considered in our model (EBM) is the
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first whistling mode, corresponding to a standing wave with a wavelength matching
the main pipe length f = ceff/Lmp.

In our multiple side branch system, the wavelength of the lowest whistling
modes is long compared to the side branch length. This means that the whistling
is driven by the longitudinal acoustic field along the main pipe and that the compo-
nent of the acoustic flow directed inside the side branches can be neglected. With
this assumption, as introduced in Sec. 3.7, the acoustic source power 〈Psource〉 due
to vortex shedding at each side branch can be evaluated by means of the numerical
simulations of Hofmans [94] (Fig. 3.10).

In our prediction model (EBM) we use the results of these numerical simula-
tions, extrapolating the time-averaged acoustic source power 〈Psource〉 towards low
amplitudes by assuming a linear relationship between 〈Psource〉 and |u′|.

Assuming this linear relationship and considering the second hydrodynamic
mode, corresponding to a Strouhal number SrW eff = 0.6, we obtain for a single
side branch element:

〈Psource〉sb
ρ0U2 |u′|Sp

= 1.66 · 10−2 = K (3.13)

For the first whistling mode, the longitudinal acoustic velocity field inside the
multiple side branch system is given by:

u′ =
|p′max|
ρ0ceff

cos

(
2π

Lmp
x

)
(3.14)

where x is the abscissa coinciding with the main pipe axis (x = 0 is at the main pipe
inlet). This equation also defines |p′max| as the pressure amplitude at a pressure
antinode of the standing wave.

The time-averaged acoustic source power generated by the whole multiple side
branch system at SrW eff = 0.6 can be then calculated by a summation of the
time-averaged acoustic source power generated by each side branch:

〈Psource〉 =

N∑
i=1

Kρ0U
3Sp

∣∣∣∣cos

(
2π

Lmp
xi

)∣∣∣∣ c0ceff

|p′max|
ρ0c0U

(3.15)

where xi is the abscissa of the i-th side branch and N is the total number of side
branches.

In order to satisfy the energy balance of the whole multiple side branch system
the time-averaged acoustic source power 〈Psource〉 has to be equal to the time-
averaged acoustic losses 〈Ploss〉. Losses are due to the radiation of acoustic waves,
the visco-thermal dissipation (heat transfer and friction) and the vortex shedding
at the open termination of the main pipe. We will consider each dissipation mech-
anism separately assuming that they are all independent.

For the first whistling mode considered here, the radiation losses at the outlet
of the system (unflanged open end) are negligible compared with the other losses.
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The radiated power at the inlet can be calculated from the acoustic intensity
at the inlet [91]. The time-averaged acoustic power radiated is given by:

〈Prad〉 = Sp 〈Iinlet〉 (3.16)

We assume a perfect standing wave with effective speed of sound ceff along the main
pipe of the multiple side branch system. At resonance conditions, the longitudinal
standing wave is built up of a wave traveling in the positive direction p+ and a
wave traveling in the negative direction p−. Assuming that the sound absorbing
foam in the muffler acts as an anechoic termination, the reflection coefficient for
waves traveling from the main pipe inlet toward the muffler is given by:

Rinlet =
p+

inlet

p−inlet

=
D2

p −D2
m

D2
p +D2

m

(3.17)

Hence the time-averaged radiation losses at the inlet are given by:

〈Prad〉 =

[
1

2

(
1−R2

inlet

)
ρ0
c20
ceff

U2Sp

](
|p−|
ρ0c0U

)2

≈

≈
[

1

8

(
1−R2

inlet

)
ρ0
c20
ceff

U2Sp

](
|p′max|
ρ0c0U

)2

. (3.18)

In the last equation we assumed that the standing wave pattern is built up of a
p+ and a p− traveling wave of almost equal amplitude, so that p′max ≈ 2p−.

The visco-thermal losses [91] are due to the losses inside the main pipe 〈Pv-th m〉
and inside each side branch 〈Pv-th sb〉. In order to calculate the acoustic power
dissipated by the visco-thermal damping of acoustic waves in the main pipe of the
system, we assume a standing wave built up of a p+ and a p− traveling waves of
equal amplitude p′max ≈ 2p+. The acoustic power lost by the wave traveling in
the positive direction

〈
P+

v-th m

〉
after traveling along the whole main pipe is equal

to the difference in acoustic power flow between the inlet
〈
I+
inlet

〉
and the outlet〈

I+
outlet

〉
. The total power loss is twice this value because we have two traveling

waves of equal amplitude:

〈Pv-th m〉 = 2Sp

[〈
I+
inlet

〉
−
〈
I+
outlet

〉]
(3.19)

The acoustic power loss by visco-thermal dissipation in the main pipe of the mul-
tiple side branch system is then given by:

〈Pv-th m〉 =

[
2ρ0

c20
ceff

αLmpSpU
2

](
|p+|
ρ0c0U

)2

≈

≈
[

1

2
ρ0
c20
ceff

αLmpSpU
2

](
|p′max|
ρ0c0U

)2

(3.20)

where α is the acoustic damping coefficient in the main pipe.
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Table 3.2 – Predicted and experimental dimensionless pressure fluctuation amplitude
|p′max| / (ρ0c0U) = |u′| /U of the first whistling acoustic mode (n = 2).

Number of side branches Whistling frequency f Strouhal number SrW eff Measured amplitude ×102 Predicted amplitude ×102

(EBM)
8 328.1 0.60 0.47 5.34
9 293.1 0.62 0.81 5.42
10 266.7 0.61 0.76 5.58
11 245.1 0.59 1.40 5.85
12 226.7 0.58 1.90 6.10
13 210.3 0.58 1.60 6.13
14 194.7 0.60 1.46 5.99
15 183.1 0.61 1.80 6.02
16 172.1 0.61 1.55 6.25
17 161.4 0.61 1.56 6.05
18 153.8 0.60 1.56 6.16

The visco-thermal losses in each side branch are calculated assuming perfect
reflection at the side branch termination (end wall). The total power loss in each
side branch is then equal to twice the power lost by the incoming wave p+

main

traveling along the whole side branch:

〈Pv-th sb〉sb = 2Ssb

[〈
I+
main

〉
−
〈
I+
wall

〉]
=
[
2ρ0c0αLsbSsbU

2
](∣∣p+

main

∣∣
ρ0c0U

)2

(3.21)

where Ssb is the cross sectional area of the side branch and
〈
I+
main

〉
and

〈
I+
wall

〉
are the acoustic power fluxes at the main pipe section and at the side branch
termination, respectively. The expression of the visco-thermal losses in each side
branch can be rewritten in terms of the amplitude of the standing wave inside the
main pipe of the multiple side branch system 2p+

main ≈ p′maxsin (2πxi/Lmp). The
total visco-thermal losses in all the side branches is then:

〈Pv-th sb〉 ≈
N∑
i=1

[
1

2
ρ0c0

∣∣∣∣sin2

(
2π

Lmp
xi

)∣∣∣∣αLsbSsbU
2

](
|p′max|
ρ0c0U

)2

(3.22)

where α is the acoustic damping coefficient in the side branches.
The acoustic damping coefficient α is calculated following the theory of Kirch-

hoff [171, 91]:

α =
L2p

2Scc0

√
πfµ

ρ0

(
1 +

γ − 1√
Pr

)
(3.23)

where L2p is the perimeter of the pipe, Sc is its cross sectional area, c0 is the
speed of sound, f is the sound wave frequency, µ is the dynamic viscosity, ρ0 is
the density, γ = cp/cv is the ratio of specific heat capacities and Pr is the Prandtl
number.

For acoustic losses due to vortex shedding at the downstream main pipe ter-
mination we do not describe the flow in detail. We use a simpler theory, assuming
a quasi-steady free jet formed at the outlet of the main pipe. According to Ingard
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and Singhal [112], the acoustic energy reflection coefficient is in that case:〈
I−outlet

〉〈
I+
outlet

〉 =

(
1−M
1 +M

)2

(3.24)

where M = U/ceff is the Mach number of the flow inside the main pipe of the
system. The time-averaged acoustic losses due to vortex shedding at the outlet of
the multiple side branch system are given by:

〈Pvort〉 = Sp

[〈
I+
outlet

〉
−
〈
I−outlet

〉]
=

=

[
1

2
ρ0
c20
ceff

U2Sp

(
4M

(1 +M)
2

)](
|p+|
ρ0c0U

)2

(3.25)

Assuming to be in the incompressible limit M � 1 and rewriting the expression
of the vortex shedding losses in terms of the amplitude of the standing wave inside
the main pipe of the multiple side branch system p′max ≈ 2p+, we obtain:

〈Pvort〉 ∼=
[

1

2
ρ0
c20
ceff

U2SpM

](
|p′max|
ρ0c0U

)2

(3.26)

In order to obtain the dimensionless amplitude |p′max| / (ρ0c0U) of the acoustic
field inside the system, the time-averaged acoustic source power has to be balanced
by the time-averaged acoustic losses:

〈Psource〉 = 〈Prad〉+ 〈Pv-th m〉+ 〈Pv-th sb〉+ 〈Pvort〉 (3.27)

As shown in Table 3.2, above 11 side branches the measured pressure fluctua-
tion amplitude is about a factor four lower than the amplitude predicted by means
of the energy balance (EBM). This difference can be explained partially by the
expected deviation of our system from a two-dimensional geometry. Bruggeman
et al. [32] observed, for a single side branch system with circular cross section,
whistling amplitudes which were about a factor two lower than for square cross
section. Moreover, the model (EBM) has been established by assuming a moder-
ate amplitude behavior that is not expected to be accurate at the low amplitudes
observed in our system. An important aspect to note is that the models for energy
losses at the upstream and downstream ends of the main pipe are very crude. In
particular, the upstream muffler displays resonances, which significantly influence
the whistling amplitudes around f = 360 Hz. We see from Fig. 3.12 that the
second and the third whistling modes are weaker than the first, while our theory
would predict a monotonous increase of the whistling amplitude with increasing
frequency. We also see from Table 3.2 that, upon reduction of the number of side
branches, the measured whistling amplitude decreases as we approach 360 Hz (Sec.
3.5). Finally, the damping model does not take into account possible contributions
from turbulence.
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3.10 Regions of sound production

The localization of the regions of the corrugated pipes where the sound is produced
is a matter of current debate [137]. Our model (EBM) predicts for the multiple
side branch system that the sound production is dominant within regions of high
grazing acoustic velocity. These regions are located around the acoustic pressure
nodes of the standing wave along the main pipe (acoustic velocity antinodes). This
is confirmed by our experiments (Fig. 3.14) in which we consider the first whistling
mode f = ceff/Lmp. The contribution of specific side branches in our system was
evaluated by plugging these side branches. As shown in Fig. 3.14, when the three
side branches near the pressure nodes of the second acoustic mode (first whistling
mode) are plugged, the whistling amplitude decreases by an order of magnitude.
Plugging the two side branches near the pressure antinodes only slightly affects
the whistling amplitude.

Figure 3.14 – Dimensionless pressure fluctuation amplitude as function of Strouhal
number based on the effective cavity width measured plugging the side branches
near the pressure nodes (circles) and near the pressure antinodes (stars). System of
15 side branches.
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3.11 Conclusions

In the present chapter we have studied the whistling behavior of a multiple side
branch systems with shallow side branches. This system is interesting by its own
and it appears to have similitudes with corrugated pipes.

The great advantage of the multiple side branch system is its versatility in
terms of changes in geometry, which can be obtained for instance by inserting
plugs into the side branches. We used this feature in order to identify the location
of the sources of sound in the system.

The low frequency resonance modes of the multiple side branch system can be
predicted by assuming an effective sound propagation speed along the main pipe of
the system (CAM) as proposed by Cummings [67]. The accuracy of this prediction
increases as the number of side branches increases. Higher frequency resonance
modes can accurately be predicted by using a plane wave model (PWAM).

A prediction model (EBM) for the whistling behavior has been proposed, which
is based on the energy balance between the acoustic sources and the acoustic losses.
The grazing acoustic flow is assumed to be dominant. The model does predict the
observed Strouhal number SrW eff = 0.6 but overestimates the pressure fluctuation
amplitude by a factor four. One of the interesting results is that the observed
whistling corresponds to the second hydrodynamic mode of the grazing flow rather
than the first hydrodynamic mode.

The prediction of the amplitude is particularly difficult in a system displaying
acoustic velocity fluctuations much lower than the main flow velocity as found
here |u′| /U = O(10−2). In view of the many crude assumptions used in our energy
balance model (EBM), it is not surprising that the amplitude prediction is poor.

The energy balance model (EBM) predicts that the sound production occurs
mainly in regions of high grazing acoustic velocity, around the pressure nodes of
the standing wave along the main pipe. This is confirmed by our experiments.

Further research is now needed to assess the effect of the cavity width relative
to the main pipe diameter on the optimal Strouhal number, reported by Binnie
[13], and the effect of the ratio of cavity width to momentum thickness on the
optimal Strouhal number. We should furthermore explore the effect of rounded
edges of the T-junctions. Rounding the upstream edges is expected to increase
significantly the whistling amplitudes [11].



Chapter 4

Self-sustained oscillations in
pipe systems with multiple
deep side branches:
prediction and reduction by
detuning

Abstract

Flow-induced pulsations are frequently observed in pipe networks. In the
present work we focus on the case of flow-induced pulsations in a pipe system
composed by six equally spaced deep closed side branches. These pulsations
are self-sustained aeroacoustic oscillations driven by the instability of the flow
along the closed branches. The prediction of pulsations in such complex sys-
tems has not yet been proved to be possible, indeed the methods proposed
in literature have only been applied to relatively simple geometries, mainly
single or double side branch systems. We propose a prediction model of the
self-sustained oscillations in multiple deep side branch systems. This has been
established by means of an analytical model for the acoustic wave propagation
in which a semi-analytical source model is included. Detuning of the acoustic
resonator is often considered as a possible remedial measure to suppress pul-
sations. Although this countermeasure appears to be very effective for double
side branch systems in cross configuration, its effectiveness has never been as-
sessed for different geometries. The effectiveness of the length detuning on the
six side branch system appear to be limited and depends on the upstream and
downstream acoustic boundary conditions of the main pipe.
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4.1 Introduction

Flow-induced pulsations in pipe networks have been observed in many technical
applications [36, 38, 7, 80, 117, 168, 139, 85, 48, 204, 227]. These pulsations are
a nuisance not only because of the noise produced but also because of the possi-
bility of mechanical failures in the pipe system [85, 48, 227, 162]. Even when the
pulsations do not endanger the system safety and can be environmentally toler-
ated, they can affect volume flow measurements [201], trigger vibration control
equipment and cause pressure losses.

The aeroacoustic pulsations generated by coupling of the instability of the flow
with the acoustic standing waves in a pipe network are called self-sustained, or
self-excited oscillations. The flow in a pipe past a discontinuity, such as a closed
branch, forms a shear layer that has been identified as the main sound source driv-
ing aeroacoustic pulsations. The self-sustained oscillations in unstable shear layers
are due to a feedback mechanism between the hydrodynamic (vortical) flow field
and the acoustic (potential) flow field. A particular category of self-sustained oscil-
lations is the one where the hydrodynamic instabilities excite a resonant acoustic
field, in this case the oscillations are strongly enhanced. Classical example of this
mechanism is the sound production in organ pipes and woodwinds [39, 61, 215, 53].
Examples related to technical applications are the self-sustained pulsations in pipe
systems presenting closed branches [36] or safety valves [38, 7].

In the present work we focus on the self-sustained oscillations in resonant
pipe networks with deep closed side branches. This kind of systems was identi-
fied as a cause of strong pulsations by Chen and Stürchler [36]. From then on,
in order to investigate the aeroacoustic pulsations in pipe networks with closed
branches, several studies have been carried out, which focused on systems of one
[117, 85, 48, 193, 5, 230] or two [32, 82, 229, 222, 166, 136, 234, 169, 146, 51, 83]
side branches. We have recently initiated a study of the aeroacoustic behavior of
systems of multiple side branches. In the first paper we described the whistling
behavior of a system of up to fifteen shallow side branches (non-resonant) along
a main pipe [210]. We later studied the case of a system of six equally deep side
branches (resonant) as scale model of the six side branch system in the Ommen
compressor station [211], in which severe pulsations were observed. Pulsations with
an amplitude of 2.5 bar were observed at the closed end of side branches of 1 m
diamater. In this system the side branch diameter to main pipe diameter ratio is
0.85. The scale model, aimed at modeling the case of Ommen, has a side branch
diameter to main pipe diameter ratio of 1.

A prediction model is needed in the design phase as well as during any geomet-
rical or operational modification of a pipe system. The prediction of pulsations in
complex systems has not yet been proved to be possible. The methods proposed in
literature have mainly been applied to single or double side branch systems [209].

A formal procedure to predict the low frequency oscillations in a pipe system
with closed side branches, produced by the vortical non-homogeneities of a low
Mach number flow, was established by Bruggeman et al. [32]. This approach was
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inspired by the work of Fletcher [70] on wind instruments. An integral formulation
of the problem of sound produced by aeroacoustic sources in a T-junction, between
the main pipe and the closed side branch, was derived using the formula of Green.
A low frequency Green’s function was determined, as proposed by Howe [98, 106],
by coupling a locally incompressible potential flow model at the junctions to a
plane wave model [30] in the pipe segments. The source term was determined using
the point vortex model of Nelson et al. [161] that is a representation of the shear
layer as a row of discrete point vortices convected along a straight line from the
upstream edge toward the downstream edge of the junction at constant velocity.
The convective velocity of the vortices is an empirical fit parameter in this model.
The Green’s function was, then, expanded in terms of modes of the pipe system
and the coefficients in this expansion were determined by means of the method
of van der Pol [32]. This resulted into a set of coupled second order differential
equations, one for each mode. The assumption of a single mode to be dominant
yields a single second order equation. The model predicts reasonably well the
pulsation frequencies and the influence of the main flow velocity on the amplitude
and frequency of the pulsations for a single side branch system [32]. However,
the predicted amplitude is about a factor 4 higher than the measured amplitude
for pipes with square cross section and about a factor 6 for pipes with circular
cross section. This over prediction is partially due to the spurious interaction of
a point vortex with the sharp downstream edge of the T-junction. This artifact
was compensated by suppressing the singularity of the acoustic flow at the edge
or by considering a junction with rounded edges [51]. This prediction model, when
applied to the case of a double side branch system in cross configuration with
square cross section of the pipes and rounded or sharp edges, provided a fair
prediction (within 50%) of the pulsation amplitude [51].

Another single mode model was proposed by Graf and Ziada [82, 83]. This con-
sisted of a plane wave model for the acoustic wave propagation in which empirical
source terms were included. Each source of sound was imposed as an oscillating
acoustic pressure discontinuity across the shear layer and was characterized ex-
perimentally in double side branch systems in cross configuration [82] and tandem
configuration [83] with sharp edges of the junctions. Since the source pressure
was determined from experiments on cylindrical pipes conveying turbulent flow at
high Reynold number, the model is suitable for predicting the self-sustained oscil-
lations in industrial applications. The model of Graf and Ziada [82, 83] predicts
the pulsation behavior of double side branch systems, for various depths of the
side branches and different static pressures, with an accuracy of about 20% in am-
plitude. Furthermore, the model predicts the pulsation frequencies and the critical
flow velocity at which the pulsations appear. In practical applications, however,
T-junctions have rounded edges instead of sharp edges. This implies that measure-
ments with rounded edges has to be carried out before one can use the approach
of Graf and Ziada [82, 83].

An alternative prediction method of the self-sustained oscillations is the energy
balance approach. This is a single mode model in which it is assumed that the
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excited acoustic mode has a high quality factor so that the oscillation frequency
can be approximated by the eigen-frequency of that mode. This frequency has to be
determined a priori and is not a solution of the model. The evaluation of the mode
amplitude, that is the amplitude of the steady harmonic oscillation, is carried out
using a balance between the time-averaged acoustic source power 〈Psource〉 and the
time-averaged acoustic power losses 〈Ploss〉. The acoustic power losses are modeled
analytically. Different methods for the evaluation of the acoustic source power
have been presented in literature [209]. These different methods consist of using
the results of the vortex sound theory [98, 174, 100, 105] in combination with the
point vortex model of Nelson [51] or in combination with numerical simulations
carried out by means of the vortex blob method [166, 136, 51, 209, 94]. The energy
balance yields a simple algebraic equation for the prediction of the mode amplitude.
A drawback of the energy balance model is that it does not predict which acoustic
mode is excited. This model predicts the amplitude of oscillation of any mode,
under the assumption that it is excited and that it dominates the oscillations.

We propose a single mode model which is inspired by a combination of the
model of Bruggeman et al. [32, 30] and the empirical approach of Graf and Ziada
[82, 83], suitable for multiple deep side branch systems. Our prediction model
is based on an analytical model for the plane wave propagation in which source
terms, modeled by means of a semi-analytical source model, are included. This
model does, in contrast to the energy balance, include the pulsation frequency as
part of the solution. It can, for instance, predict the increase of pulsation frequency
of a mode as the flow velocity is increased. The first part of this paper describes
this model.

A common design rule for avoiding flow-induced resonances in pipe networks
containing side branches is to detune the length of the branches. Although this
counter measure has been proved to be successful in simple geometries [82, 229,
222, 83] its effectiveness in more complex systems has not yet been addressed
in literature. In the second part of this paper we study the effectiveness of the
length-detuning in a system composed by six equally spaced deep side branches.
We use the semi-analytical prediction model to study the effect of the geometrical
modifications of a pipe system on its aeroacoustic behavior.

Wall vibrations can be significant amplitude limiting losses of pulsations in
pipe networks [209]. However, this effect is negligible in our side branch systems
because of their rigidity, due to the high relative thickness of the pipe walls.

4.2 Experimental setup

4.2.1 General setup

The experimental setup is sketched in Fig. 4.1. Each side branch system that has
been tested is made up of a different combination of cross-joints, T-joints and
straight pipe segments connected to each other. The different configurations that
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have been examined in this work are presented in Fig. 4.2.

Figure 4.1 – Experimental setup.

The T-joints and the cross-joints are respectively T-junction and cross-junction
elements for vacuum appliances ISO-KF cast in aluminum. The side pipe of each
T-joint is situated half way on the main pipe segment. The cross-joints are com-
posed by two pipes crossing each other in their middle points, so that these ele-
ments are geometrically symmetrical. The successive elements are connected with
the aid of standard ISO-KF clamps and incorporate an O-ring for sealing. The
slits at these connections are filled by means of putty.

The main pipe of the side branch system has an internal diameter Dmp =
33 mm that is equal to the internal diameter of the side branches Dsb = 33 mm.
The other geometrical characteristics depend on the configuration (Fig. 4.2) and
they are presented in Tables 4.1 and 4.2. The junctions between the side branches
and the main pipe present all rounded edges whose radius of curvature is redge =
0.1Dsb. This corresponds to typical edge radii in the large gas transport systems
in which strong pulsations have been observed [80, 32]. Each side branch is closed
by means of a blank-off flange, which is connected with aid of a standard ISO-KF
clamp and incorporates an O-ring for sealing. Some of these flanges (up to four)
are equipped with flush mounted microphones.

The outlet of the side branch system is open to the laboratory (a large room of
15 m× 4 m× 4 m) and presents sharp edges; it is, acoustically, an unflanged open
pipe termination. The inlet is connected to a high-pressure air supply system. It
consists of a compressor, a 3 m3 vessel filled with air at 15 bar, a control valve
to control the flow through the system, an intermediate cylindrical buffer vessel
of 1.23 m length and 200 mm diameter, a 2.3 m long pipe of 100 mm diameter,
a turbine flow meter, a 1.1 m long pipe of 100 mm diameter and an expansion
chamber muffler with diameter Dm = 150 mm and length Lm = 930 mm. Half of
the muffler is internally covered with sound absorbing (open cell) foam in order
to reduce cavity resonances. The side branch system is connected to the muffler



106 Self-sustained oscillations in pipe systems with multiple deep side branches

by a smooth contraction with a radius of curvature of Dmp/3, which avoids flow
separation at the main pipe inlet.

Figure 4.2 – Different side branch systems tested. Each configuration is made up
of T-joints, cross-joints and straight pipe segments. Pipe lengths are given in Tables
4.1 and 4.2.

4.2.2 Instrumentation

The pressure transducers used are piezo-electric PCB 116A. They are connected
to charge amplifiers Kistler 5011 and these are connected, in turn, to a personal
computer via an A/D converter acquisition board National Instruments NI SCXI-
1314. The turbine flow meter Instromet SM-RI-X-K G250 is used to measure
the main flow velocity. It is connected to a personal computer via an interface
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Table 4.1 – Geometrical characteristics of the reference configuration Conf-d1, the con-
figurations for the evaluation of the empirical parameters in the source model Conf-c1/c9
and the configurations for the analysis of the effect of a small detuning of the side branch
length Conf-s1/s6 (Fig. 4.2).

Configuration Lin [mm] Lout [mm] Lsb [mm] Lsb s [mm] Lsb dist [mm]
Conf-c1 74 63 648 - -
Conf-c2 74 63 442 - -
Conf-c3 74 63 412 - -
Conf-c4 74 63 339 - -
Conf-c5 74 63 309 - -
Conf-c6 74 63 236 - -
Conf-c7 74 63 221 - -
Conf-c8 74 63 150 - -
Conf-c9 74 63 133 - -
Conf-d1 74 63 233 - 66

Conf-s1/s6 74 63 233 133 66

Table 4.2 – Geometrical characteristics of the configurations for the analysis of the effect
of a strong detuning of the side branch length Conf-r1/r3 (Fig. 4.2).

Configuration Lin [mm] Lout [mm] Lsb dist [mm] L1 [mm] L2 [mm]
Conf-r1 74 273 66 200 300
Conf-r2 74 63 66 200 300
Conf-r3 74 273 66 200 300

Configuration L3 [mm] L4 [mm] L5 [mm] L6 [mm]
Conf-r1 133 233 333 100
Conf-r2 133 233 333 100
Conf-r3 133 233 333 150
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for the power supply of the flow meter sensor, a synthesizer function generator
Yokogawa FG120 and a I/O connector National Instruments NI SCB-68. The
synthesizer function generator and the A/D converter acquisition board are linked
via a trigger board National Instruments NI SCXI-1180, so that the acquisition
of the pressure and the flow velocity are synchronized. The temperature of the air
is measured within 0.1◦C by means of a digital thermometer Eurotherm 91e. Its
sensor is positioned inside the expansion chamber muffler.

4.3 Prediction model of the self-sustained oscilla-
tions

The single mode model for the prediction of the self-sustained oscillations (Self-
sustained Oscillations Prediction Model - SOPM) has been established by means
of an analytical model for the acoustic wave propagation (Plane Wave Acoustic
Model - PWAM) in which source terms, modeled by means of a semi-analytical
model (Semi-Analytical Source Model - SASM), are included. We now describe
this model in detail.

Figure 4.3 – Elements in which the pipe systems are decomposed for the imple-
mentation of the plane wave acoustic model (PWAM).

4.3.1 Plane wave acoustic model

In the acoustic model (PWAM) only the propagation of plane waves is considered.
This is correct when the oscillation frequency f is lower than the cut-off frequency
fcut for propagation of higher modes in the system [171]. A further assumption,
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reasonable for low Mach number M = U/c0 flows, is to consider, acoustically, the
medium in the pipe system as uniform and stagnant, so that convective effects on
the wave propagation are neglected.

The acoustic model (PWAM) is a lumped element model for the acoustic wave
propagation [171, 57, 152, 23, 172] that has been established by decomposing the
side branch system in the basic elements: straight pipe, T-junction, cross-junction,
area contraction, closed end, open end and anechoic end (Fig. 4.3). Each element
in which the system has been decomposed has a number of sections that are
connected to other elements, the nodes: up, down, side-1, side-2, end (Fig. 4.3).
The acoustic field in each element is described by the state variables at the nodes.
Since we assume plane harmonic wave propagation these variables are the complex
acoustic pressure amplitudes of the wave traveling in the positive x-direction p+

and of the wave traveling in the negative x-direction p− (Fig. 4.3).
The straight pipe is an element in which the state variables are related by the

plane wave propagation conditions [171, 57]:

p+
down = p+

upexp (−ikL) (4.1)

p−down = p−upexp (ikL) (4.2)

where L is the length of the straight pipe and k is the complex wave number. We
neglect here convective effects in the wave number. Convection is only important
when considering the reflection at the open outlet of the system. For low Mach
numbers this corresponds to the use of the total enthalpy as aeroacoustic variable.
The error made is of the order of M2 [166].

Energy losses due to heat transfer and friction are taken into account in the
complex wave number k = ω/c0 + (1− i)α [171, 125, 179, 208, 122, 123]. The
acoustic damping coefficient α is calculated as:

α =
L2p

2Sc0

√
πfµ

ρ0

(
1 +

γ − 1√
Pr

)
(4.3)

where L2p is the perimeter of the pipe, S is its cross sectional area, c0 is the speed
of sound, f is the frequency, ω = 2πf is the angular frequency, µ is the dynamic
viscosity, ρ0 is the density, γ = cp/cv is the ratio of specific heat capacities and Pr
is the Prandtl number.

The junctions are elements in which the state variables are related by the
continuity of the acoustic volume flow and the continuity of the acoustic pressure
[171, 57]. Taking explicitly the convective effects into account, we would have had
a continuity of total enthalpy. For the T-junction the equations are:

−Sup

(
p+

up − p−up

)
+ Sdown

(
p+

down − p
−
down

)
+

+Sside-1

(
p+

side-1 − p
−
side-1

)
= 0 (4.4)

p+
up + p−up = p+

down + p−down (4.5)

p+
up + p−up = p+

side-1 + p−side-1 −∆p1
s (4.6)
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while for the cross-junction:

−Sup

(
p+

up − p−up

)
+ Sdown

(
p+

down − p
−
down

)
+ Sside-1

(
p+

side-1 − p
−
side-1

)
+

−Sside-2

(
p+

side-2 − p
−
side-2

)
= 0 (4.7)

p+
up + p−up = p+

down + p−down (4.8)

p+
up + p−up = p+

side-1 + p−side-1 −∆p1
s (4.9)

p+
up + p−up = p+

side-2 + p−side-2 + ∆p2
s (4.10)

where S is the cross sectional area of the pipes attached to the junction and ∆p1
s

and ∆p2
s represent the sound source terms (Eq. (4.17), Sec. 4.3.2).

The end corrections for each junction are considered by including a length
correction δ to the pipes attached to the junction [30]. These corrections are for
the T-junction: δup,down = Dside-1/2 and δside-1 = Dside-1/3; for the cross-junction:
δup,down = Dside-1/2 = Dside-2/2 and δside-1,side-2 = Dup/2 = Ddown/2. The more
accurate theories of Nederveen [159] and Dubos et al. [59] have not been imple-
mented, because the results were already satisfactory.

The area contraction between the upstream muffler and the multiple side
branch system is an element in which the state variables are related by the con-
tinuity of the acoustic volume flow and the continuity of the acoustic pressure
[171, 57]:

−Sup

(
p+

up − p−up

)
+ Sdown

(
p+

down − p
−
down

)
= 0 (4.11)

p+
up + p−up = p+

down + p−down (4.12)

The end correction for the area contraction is taken into account by including
the length correction of the flanged open pipe termination to the pipe connected
to the smaller section (for example, in Fig. 4.3 the smaller section is: down).

The closed end, open end and anechoic end are elements in which the state
variables are related by the specific acoustic impedance Zs of these terminations
[171]:

p+
end + p−end =

Zs
ρ0c0

(
p+

end − p
−
end

)
(4.13)

For a closed end, assuming a perfectly reflecting wall [171], it is Zs = ∞, so
that Eq. (4.13) can be rewritten as p+

end − p−end = 0. The open end is an un-
flanged open pipe termination, it has specific acoustic impedance Zs/ (ρ0c0) =

0.25 (kDend/2)
2

+ ik0.61Dend/2 [195], where Dend is the diameter of the pipe con-
nected to the termination. Finally, the anechoic end [171] has specific acoustic
impedance Zs = ρ0c0. For each termination presented, the end correction is taken
into account in the specific impedance Zs.

The actual open pipe termination of the multiple side branch system presents
convective effects. At low frequencies one has (Zs/ρ0c0)conv ≈ 2M [166, 112]. For
simplicity we do not introduce these effects in our model but we consider the
two extreme cases of anechoic (anechoic end) and reflective (open end) boundary
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conditions. In one case, configuration Conf-r2 (Fig. 4.2), we will show the effect of

convective effects by using the radiation impedance Zs/ (ρ0c0) = 0.25 (kDend/2)
2
+

ik0.61Dend/2 + 2M , where Dend is the diameter of the pipe at the termination.
The system of equations describing the global acoustic behavior of the side

branch system has been obtained assembling together the equations of the dif-
ferent elements composing the system. This can be written as a non-linear set of
equations because of the non-linear source terms. The system of equations is solved
numerically as explained in Sec. 4.5, with the oscillation frequency as unknown.

4.3.2 Semi-analytical source model

The source model (SASM) developed here is inspired by the vortex model of Nelson
et al. [161]. Based on flow measurements in the opening of a Helmholtz resonator,
Nelson et al. [161] proposed a simplified vortex model in which a point vortex is
assumed to be formed, at the upstream edge of the cavity, each time the acoustic
flow turns into the cavity. The circulation of the n-th vortex Γn (t) is assumed
to correspond to the integral of the vorticity shed at the upstream edge and the
vortex is assumed to be convected downstream at a constant speed UΓ, along a
straight line between the upstream and the downstream edges. The convective
velocity UΓ is an empirical parameter of the model; it will be discussed in Sec.
4.3.3.

We now recall the model of Nelson et al. [161] as proposed by Dequand et al.
[51]. We will however modify the model by calibrating it with experimental data
for a cross configuration (Sec. 4.3.3). In the model of Dequand et al. [51], the
acoustic source pressure ∆pn (t) related to the n-th vortex shed at the upstream
edge of a side branch opening is the time-varying pressure difference caused by the
Coriolis force ~fc (t) [98, 174, 100, 105]:

∆pn (t) =
1

WeffDsb

∫
V

~fc (t) dV =

= − ρ0

WeffDsb

∫
V

(~ωn × ~u) dV = (4.14)

= − ρ0

Weff
Γn (t)UΓ

where Weff is the effective width of the side branch opening, Dsb is the diameter
of the side branch, ~ωn is the vorticity field induced by the n-th vortex and ~u is the
local flow velocity at the junction. As for the vortex model of Nelson et al. [161],
Dequand et al. [51] assume the flow to be two-dimensional, so that the opening of
the side branch is assumed to be rectangular with an effective width [32] Weff and
a depth Dsb. For circular cross section of the side branch, Bruggeman et al. [32]
found that Weff ≈ πDsb/4 + rup, where rup is the minimum radius of curvature of
the upstream edge.

The acoustic source pressure of Eq. (4.14) is related to the local acoustic field
at the junction. The acoustic source pressure ∆ps,n to use in our prediction model
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(SOPM) should be related to the plane acoustic waves in the system. This has
been obtained by introducing the geometrical parameter kn (t) [51], that is the
ratio of the local component of the acoustic velocity normal to the main pipe axis
at the junction to the average of this velocity along the side branch opening:

∆ps,n (t) = ∆pn (t) kn (t) (4.15)

For junctions with rounded edges, according to Hirschberg and Rienstra [91],
it is reasonable to assume that the acoustic flow is uniform over the shear layer.
The geometrical parameter kn is, then, a constant:

kn ≈
π
4Dsb

π
4Dsb + 2regde

(4.16)

This is a key simplification in our model. We actually assume that the aero-acoustic
interaction is only controlled by the standing wave in the closed side branch. In a
general model one should assume this interaction to depend on the acoustic field in
all the branches of a junction. As a result of this assumption our prediction model
can only be applied to systems composed by deep resonant side branches. It is
unable, for instance, to predict flow-induced pulsations in the particular problem
of a large number of non-resonant shallow closed side branches along a main pipe
[210]. In this case, the shear layer instability couples with a longitudinal acoustic
standing wave along the main pipe and not with a standing wave in the closed
side branches.

The inserting of the expression of the circulation Γn (t) of the n-th vortex
derived by Nelson et al. [51, 161] in the Eq. (4.14) and the use of Eq. (4.15) gives
the time-dependent acoustic source pressure of the n-th vortex. This function is
periodic and can be written in the form of a Fourier series. Since the prediction
model (SOPM) is a single mode model, one considers only the term with the
frequency f = 1/T , where T is the period of the acoustic harmonic field. The
acoustic source pressure ∆ps in the frequency domain, expressed as function of
the Strouhal number SrW eff = fWeff/U based on the effective width Weff and on
the main flow velocity U , is then given by:

∆ps (SrW eff) = ∆ps,opt

√
a2 + b2 exp

[
i

(
arctan

(
− b
a

)
+ ϕu +

π

2

)]
(4.17)

where ϕu is the phase of the acoustic velocity at the junction, and:

∆ps,opt =
1

2π
ρ0U

2kn (4.18)

is the acoustic source pressure at optimal whistling conditions of the first hydrody-
namic mode. If the time needed T ′ = Weff/UΓ by the vortex to travel through the
junction is smaller than the acoustic period T (T ′ < T ), only one vortex is present
in the junction; this corresponds to the first hydrodynamic mode. If T ′ ≥ T , the
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first vortex has not yet reached the downstream edge when a second vortex is
shed at the upstream edge of the junction. The number of vortices present in the
junction at a certain instant in time defines the hydrodynamic mode number h.
For T ′ < T :

a = − 1
2π

1
SrWeff

UΓ

U

[
cos
(

2πSrW eff
U
UΓ

)
+

+2πSrW eff
U
UΓ

sin
(

2πSrW eff
U
UΓ

)
− 1
]

(4.19)

b = − 1
2π

1
SrWeff

UΓ

U

[
sin
(

2πSrW eff
U
UΓ

)
+

−2πSrW eff
U
UΓ

cos
(

2πSrW eff
U
UΓ

)]
(4.20)

and for T ′ ≥ T :

a = − 1
SrWeff

UΓ

U sin
(

2πSrW eff
U
UΓ

)
(4.21)

b = 1
SrWeff

UΓ

U cos
(

2πSrW eff
U
UΓ

)
(4.22)

Using the analytical expression of the acoustic source pressure at optimal
whistling conditions ∆ps,opt (Eq. (4.18)) leads to a prediction model that con-
siderably overestimates the pulsation amplitudes. This is due to the fact that the
vortex model is a caricature of the flow [166, 132]. In order to obtain a more ac-
curate model, the source pressure ∆ps,opt is evaluated experimentally (Sec. 4.3.3).
It is an empirical function of the pulsation amplitude.

4.3.3 Empirical parameters

In agreement with the simplifying assumption that that the aero-acoustic interac-
tion only depends on the standing wave in the closed side branch we use a cross
configuration with two opposite closed side branches (Conf-c1/c9 of Fig. 4.2) to
experimentally determine the empirical parameters, UΓ and ∆ps,opt, introduced in
the source model (SASM). Experiments have been carried out for different lengths
Lsb of the side branches, within the range Lsb = 133 ÷ 648 mm (Table 4.1). The
acoustic pressure has been measured as functions of the main flow velocity U,
by monotonically increasing it from 0 m/s up to 70 m/s. In Fig. 4.4 the results
of these experiments are given in terms of Strouhal number SrW eff,opt (Fig. 4.4-
a) and dimensionless time-averaged acoustic source power 〈Psource〉opt /

(
ρ0U

3Ssb

)
(Fig. 4.4-b) for optimal whistling of the first hydrodynamic mode as function of
the dimensionless pulsation amplitude

∣∣~u′jun

∣∣ /U . In the case of a resonant side

branch, the ratio of the acoustic velocity amplitude at the source section
∣∣~u′jun

∣∣
to the steady main flow velocity U is equal to the ratio of the acoustic pressure
amplitude |p′max| at a pressure antinode in the closed branch (i.e. at the closed
branch termination) to the product ρ0c0U of the characteristic impedance ρ0c0 of
the fluid with the main flow velocity U,

∣∣~u′jun

∣∣ /U ≈ |p′max| / (ρ0c0U).
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Figure 4.4 – Results of the experiments on the double side branch systems in
cross configuration (Conf-c1/c9, Fig. 4.2). Strouhal number SrWeff,opt (a) and dimen-
sionless time-averaged acoustic source power 〈Psource〉opt /

(
ρ0U

3Ssb

)
(b) at optimal

whistling of the first hydrodynamic mode as function of the dimensionless pulsation
amplitude

∣∣~u′jun

∣∣ /U .
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The convective velocity UΓ of the vortices is calculated from the measured
Strouhal number for optimal whistling SrW eff,opt of the first hydrodynamic mode:

SrW eff,opt =

(
fWeff

U

)
opt

=
UΓ

U
(4.23)

where f is the pulsation frequency, Weff is the effective width of the branch opening
(Sec. 4.3.2) and U is the main flow velocity. The expression of UΓ used in the source
model (SASM) is obtained from the data of Fig. 4.4-a by means of a linear fitting in
the range 0 <

∣∣~u′jun

∣∣ /U < 0.64, and assuming a saturation above
∣∣~u′jun

∣∣ /U = 0.64.

SrW eff,opt =

 −0.13
|~u′jun|
U + 0.4 0 <

|~u′jun|
U < 0.64

0.32
|~u′jun|
U ≥ 0.64

The acoustic source pressure at optimal whistling conditions ∆ps,opt is cal-
culated from the measured time-averaged acoustic source power 〈Psource〉opt at
optimal whistling for each of the two shear layers in the cross-junction:

〈Psource〉opt =
1

2
Ssb

∣∣~u′jun

∣∣
opt

∆ps,opt (4.24)

where Ssb is the cross sectional area of each side branch. The time-averaged acous-
tic source power 〈Psource〉opt is evaluated through an energy balance [32, 166, 136]
by measuring the time-averaged acoustic power losses 〈Ploss〉. For a symmetric
double side branch system in cross configuration these losses are mainly due to
the visco-thermal dissipation by friction and heat transfer 〈Pv-th〉 [209]. The time-
averaged acoustic source power of each shear layer is calculated by measuring the
acoustic pressure |p′max| / (ρ0c0) ≈

∣∣~u′jun

∣∣ at optimal whistling conditions at the
closed termination of each side branch:

〈Psource〉opt = 〈Ploss〉opt = 〈Pv-th〉opt =
1

2
ρ0c0αoptLsbSsb

∣∣~u′jun

∣∣2
opt

(4.25)

where ρ0 is the fluid density, c0 is the speed of sound, α is the damping coefficient
as expressed by Eq. (4.3) and Lsb is the length of each side branch. The expression
of ∆ps,opt to use in our model (SASM) is obtained from the data of Fig. 4.4-b by
means of a quadratic fit in the range

∣∣~u′jun

∣∣ /U < 6 · 10−2, a linear fit in the range

6·10−2 ≤
∣∣~u′jun

∣∣ /U < 2·10−1, a quadratic fit in the range 2·10−1 ≤
∣∣~u′jun

∣∣ /U < 0.6,

and assuming a saturation of the source above
∣∣~u′jun

∣∣ /U = 0.6:

〈Psource〉opt

ρ0U3Ssb
· 102 =



10.88

(
|~u′jun|
U
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The empirical parameters, UΓ and ∆ps,opt, have only been characterized for
the first hydrodynamic mode h = 1. Our prediction model is then meaningful
only in the prediction of the pulsations occurring at the first hydrodynamic mode.
The most severe pulsations observed in field experiences correspond to this hy-
drodynamic condition. Pulsations at higher order modes are typically one order of
magnitude weaker. To develop a model for the higher order hydrodynamic modes
one should carry out additional measurements.

4.4 Resonance modes of the side branch systems

The resonance modes of a side branch system are predicted by calculating the
eigen-modes of the homogeneous system of linear equations describing the free os-
cillation regime of the system. This is obtained by means of the plane wave acoustic
model (PWAM) in the absence of sources. Each of these modes correspond to a
complex frequency, the eigen-value, and a mode shape, the eigen-vector. The real
part of the complex frequency is the frequency of free oscillation of the system at
resonance, while the imaginary part is a measure for the damping of the oscillation.

The eigen-values are calculated by means of the minimization algorithm fmin-
search of Matlab applied to the determinant of the system matrix of the homoge-
neous system of linear equations. The eigen-vector associated to each eigen-value
is, then, calculated solving the homogeneous system of linear equations by means
of the fsolve algorithm of Matlab [210, 211].

4.4.1 Influence of the acoustic boundary conditions

The significance of the acoustic boundary conditions on the resonance behavior
of the system with six equal side branches, configuration Conf-d1 (Fig. 4.2), has
been studied. In Fig. 4.5 we present the relative difference between the resonance
frequencies obtained by imposing reflective boundary conditions frefl and anechoic
boundary conditions fanech at the inlet and at the outlet of the system. This
difference is plotted as function of the dimensionless resonance frequencies of Conf-
d1 with the reflective boundary conditions, in terms of Helmholtz number HeL =
freflLsb/c0 based on the side branch length Lsb.

The variation of the acoustic boundary conditions leads to a variation of the
resonant behavior in terms of acoustic modes. It is interesting to note that the
modes not too far remote from the conditions for which each side branch is an
excellent reflector HeL ≈ 1/4, 3/4, ... are not affected by the change of the acoustic
boundary conditions. These modes are nearly trapped (localized), they depend
only on the geometry of the multiple side branch system and not on the acoustic
boundary conditions at the inlet and outlet of the system [58, 87]. We see that
the radiation damping (Fig. 4.5-b) increases strongly for the other modes (global
modes) when reflecting boundary conditions are replaced by anechoic boundary
conditions.
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Figure 4.5 – Relative difference between the resonance frequencies of configura-
tion Conf-d1 obtained by imposing reflective boundary conditions frefl and anechoic
boundary conditions fanech at the inlet and at the outlet of the system. This dif-
ference is plotted as function of the dimensionless resonance frequencies with the
reflective boundary conditions, in terms of Helmholtz number HeL = freflLsb/c0
based on the side branch length Lsb. The dimensionless frequency range considered
is 0 < HeL < 0.8.
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4.5 Flow induced pulsations in the side branch
systems

When air is blown through the pipe system with six deep side branches (Conf-d1 in
Fig. 4.2) strong pulsations are observed. Measurements have been done up to a flow
velocity of U = 70 m/s by monotonically increasing it (Fig. 4.6). The frequency
of the pulsations shows a stepwise behavior as function of the flow velocity and is
close to the predicted frequency of acoustic modes. It is interesting to note that
not all the modes are excited.

The flow-induced pulsations observed in configuration Conf-d1 occur around
certain values of the Strouhal number SrW eff = fWeff/U based on the effective
cavity width: SrW eff = 0.4 ; 0.8 ; 1.1. These correspond to the first three hydrody-
namics modes of the shear layers separating the main flow in the main pipe from
the stagnant fluid in the closed side branches [32].

Figure 4.6 – Measured dimensionless pulsation frequency HeL = fLsb/c0 and
dimensionless pressure fluctuation amplitude |p′max|3 / (ρ0c0U) at the closed end of
side branch 3 (the third from the inlet) of the reference configuration with six equally
deep (Lsb/Dsb = 6.9) side branches (Conf-d1). The acoustic modes of the system
are indicated by the horizontal (dotted) lines.

Increasing the flow velocity U, the first pulsation of the system that appears
corresponds to the Strouhal number range 1.09 ≥ SrW eff ≥ 1.01 corresponding
to the third hydrodynamic mode. Further increase of the flow velocity leads the
system to jump in the range 0.94 ≥ SrW eff ≥ 0.72 corresponding to the second
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hydrodynamic mode and then in the range 0.52 ≥ SrW eff ≥ 0.32 corresponding to
the first hydrodynamic mode. In the lowest Strouhal number range, several acous-
tic modes of the system are excited consecutively. A maximum of the dimensionless
pressure fluctuation amplitude |p′max| / (ρ0c0U) ≈ 0.23 is observed at a Strouhal
number SrW eff = 0.37 and a Helmholtz number based on the side branch length
HeL = fLsb/c0 = 0.21. The further increase of the flow velocity leads to other
consecutive jumps in Strouhal ranges.

The highest dimensionless pressure fluctuation amplitude is observed at the
acoustic mode close to the conditions for which each side branch is an ideal reflector
HeL ≈ 0.25. This result is in agreement with the idea that in deep side branch
systems the highest pulsation levels are expected when the aeroacoustic sources are
close to the pressure nodes of the system [209]. This condition coincides also with
the frequency for which the closed side branch is an excellent acoustic reflector.
The fact that, in a multiple side branch system the resonance condition HeL =
0.21 corresponding to the highest amplitude is not exactly equal to the condition
for which each side branch is an ideal reflector HeL ≈ 0.25, indicates that the
standing wave behavior of this multiple side branch system depends not only on
the geometry of the single side branches but on the global geometry of the system.

From the analysis of Fig. 4.6 an important design parameter can be deduced:
the critical flow velocity Uonset for the onset of pulsations. In engineering practice,
commonly, one will keep the flow velocity U lower than Uonset, in order to avoid
the occurrence of strong self-sustained oscillations. However, this simple design
criterion seems to be too conservative for most industrial applications. It is there-
fore worthwhile to consider the development of a prediction model able to predict
the severity of pulsations.

The results of the prediction model (SOPM) applied to the configuration with
six equal side branches (Conf-d1) are presented in Fig. 4.7. We focus on the first
hydrodynamic mode h = 1, for which the source model has been developed. The
system of equations describing the aeroacoustic behavior of the pipe system can
be expressed in the matrix form:

Hs · p± = ∆ps (4.26)

where Hs is the linear part of the system matrix, p± is the vector of the state
variables and ∆ps is the vector of the source terms. The system is non linear
because the amplitude and phase of ∆ps depend non-linearly on the solution p±.
The unknowns of this system are the oscillation frequency and the state variables
at the nodes of the system. The solution of this non-linear system is obtained
by means of the solution algorithm fsolve of Matlab, in which we adopted the
minimization algorithm LevenbergMarquardt and we imposed the frequency to be
a real number. The initial values used in the solution procedure are the predicted
eigen-modes of the system (Sec. 4.4). Since the system of equations is non-linear,
multiple solutions are possible at each flow velocity U. These represent the possible
modes that can be excited, in terms of pulsation frequencies and amplitudes. These
modes are represented in Fig. 4.7 as lines. At each flow velocity U , when more than
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Figure 4.7 – Dimensionless pulsation frequencies HeL = fLsb/c0 (a) and dimen-
sionless pressure fluctuation amplitudes |p′max|3 / (ρ0c0U) (b) at the closed end of side
branch 3 (the third from the inlet) of configuration Conf-d1 (six equally deep side
branches). The results of the prediction model (lines) are compared with the experi-
mental data (full diamonds and stars). At each flow velocity M = U/c0, the predicted
oscillation condition leading to the higher pulsation amplitude is represented by a
solid line, while the other predicted oscillation conditions are represented by a dashed
line. The solution presented corresponds to the first hydrodynamic mode h = 1.
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Figure 4.8 – Measured dimensionless pulsation frequency HeL = fLsb/c0 and
dimensionless pressure fluctuation amplitude |p′max|3 / (ρ0c0U) at the closed end of
side branch 3 (the third from the inlet) of configurations Conf-s1 (a) and Conf-s5
(b). The side branch 1 (the first from the inlet) has been detuned in Conf-s1, while
the side branch 5 (the fifth from the inlet) has been detuned in Conf-s5. The acoustic
modes of the systems are indicated by the horizontal (dotted) lines.
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one solution is found, the oscillation leading to the highest pulsation amplitude is
represented in Fig. 4.7 by a solid line.

The predictions of the developed model (SOPM) are in fair agreement with the
experimental data. The dimensionless frequency HeL = fLsb/c0, dimensionless
amplitude |p′max| / (ρ0c0U) and flow velocity U at which they occur are accurately
predicted. Furthermore the model explains fundamental aspects observed in exper-
iments: the lock-in of pulsations to specific acoustic modes in determined ranges
of the flow velocity and the slight increase in the oscillation frequency as the flow
velocity increases within a lock-in velocity range. The predicted pulsations in the
velocity range 0.08 < M < 0.15 have not been observed experimentally. In this ve-
locity range the system has been observed to pulsate at the second hydrodynamic
mode h = 2. Outside this range the model predicts the pulsation amplitudes with
an accuracy better than 20%, which is surprisingly good considering the drastic
simplifications of the model (Sec. 4.3.2). The prediction model (SOPM) can also
predict the acoustic excitation of the system by the different hydrodynamic modes
of the shear layer. However, while the prediction of the pulsations corresponding to
the first hydrodynamic mode (h = 1, 0.52 ≥ SrW eff ≥ 0.32) are quite accurate, the
pulsations at higher hydrodynamic modes h > 1 are overestimated. For example,
the model overestimates by an order of magnitude the amplitude of the pulsations
corresponding to the second hydrodynamic mode (h = 2, 0.94 ≥ SrW eff ≥ 0.72).
This is due to the fact that the empirical parameters of the model (Sec. 4.3.2) have
been determined for the first hydrodynamic mode h = 1.

The experimental results on the cross configurations (Conf-c1/c9) and on the
configuration with six equally deep side branches (Conf-d1) show, mostly, that
each flow velocity U corresponds to one whistling condition. Two different oscil-
lation modes are present simultaneously only for narrow velocity intervals around
the transition of the systems from one oscillation mode to another. A criterion for
determining the dominant pulsation, when more than one whistling condition is
predicted, has not yet been found. The assuming that the oscillation more likely to
occur is the one leading to the higher pulsation amplitude seems reasonable. Fur-
thermore, this simple criterion provides a conservative prediction of the pulsation
amplitudes, useful for engineering purposes.

4.5.1 Effect of the length-detuning on the pulsation behav-
ior

A counter-measure proposed in literature [229, 222] to reduce pulsations, consists
of detuning the length of the side branches.

In order to investigate the effect of a small detuning of the configuration with
six equal side branches (Conf-d1), the length of one side branch has been reduced
from Lsb = 233 mm to Lsb = 133 mm. A set of six experiments has been carried
out varying each time the length of a different side branch (Conf-s1/s6, Fig. 4.2).

Each geometrical variation affects both the pulsation frequencies and the pulsa-
tion amplitudes. The variation of the pulsation frequencies is due to the dependence
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of the acoustic modes on the geometry of the system. However, it is interesting to
note that all the tested configurations present a similar frequency behavior at low
velocities (M < 0.08). Pulsations are observed around HeL ≈ 0.15, 0.18, 0.20, 0.21.
The Helmholtz number HeL is based on the length of the deepest side branches
Lsb = 233 mm. Besides these similarities, depending on the position of the shorter
side branch, pulsations at other Helmholtz numbers have been observed. In Fig.
4.8 we present the experimental results for the configurations Conf-s1 and Conf-s5,
that are the systems with detuned side branch 1 (the first from the inlet) and 5
(the fifth from the inlet) respectively.

Figure 4.9 – Dimensionless pressure fluctuation amplitudes |p′max| / (ρ0c0U) of the
acoustic mode HeL = 0.21 closer to the quarter wave length resonance of a single side
branch. The pulsation amplitude at the closed end of the first four side branches of
the reference configuration Conf-d1 is compared with the values obtained at the same
locations for the configurations presenting a single branch length-detuning Conf-s1
and Conf-s5 (detuned side branch 1 and 5 respectively). The measured pulsations
of Conf-s1 and Conf-s5 are compared with the predictions (SOPM) obtained by
imposing both the reflective and anechoic boundary conditions. The side branch
number indicates the order of the side branch from the main pipe inlet. The results
presented correspond to the first hydrodynamic mode h = 1.

The pulsation behavior of configurations Conf-s1/s6 depends on the position
of the shorter side branch. An interesting observation is that the shortening of one
side branch reduces the pulsation amplitude but it is not sufficient to generate
pulsation free (safe) operation. In Fig. 4.9 we present the dimensionless pressure
fluctuation amplitudes |p′max| / (ρ0c0U) of the acoustic mode HeL = 0.21 at the
closed end of different side branches for the configurations Conf-d1, Conf-s1 and
Conf-s5. While in double side branch systems [82, 229, 222, 83] a 10% of detuning
of the side branch length was sufficient to decrease by an order of magnitude the
pulsation amplitude, in the pipe system with six deep side branches a detuning
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Figure 4.10 – Measured pulsation frequency f (a) and dimensionless pressure fluc-
tuation amplitude |p′max|3 / (ρ0c0U) (b) at the closed end of side branch 3 (the third
from the inlet) of configurations Conf-r1 (asterisks), Conf-r2 (circles) and Conf-r3
(triangles). These configurations are systems with six equally spaced side branches
of different length (Fig. 4.2, Table 4.2).
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Figure 4.11 – Pulsation frequencies f (a) and dimensionless pressure fluctuation
amplitudes |p′max|3 / (ρ0c0U) (b) at the closed end of side branch 2 (the second from
the inlet) of configuration Conf-r2. The results of the prediction model, obtained
by imposing the reflective (solid line), the reflective with convective losses (dotted
line) and the anechoic (dashed line) boundary conditions, are compared with the
experimental data (full diamonds and asterisks). The solution presented corresponds
to the first hydrodynamic mode.
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of 40% of the length of one side branch does not effectively reduces the pulsation
behaviour.

Since the detuning of one side branch is not an effective remedial measure,
varying the length of more side branches of Conf-d1 is now considered. The con-
figuration obtained, Conf-r1 (Fig. 4.2, Table 4.2), is a pipe system with six equally
spaced side branches of different lengths. From the experiments carried out with
this configuration, presented in Fig. 4.10, we can observe that, even though the
amplitude of the pulsations is lower than in the reference configuration Conf-d1,
it is still moderately high. A high level of detuning is not sufficient to eliminate
all the flow-induced pulsations. For complex pipe systems the modal density is so
high that there is always a nearly trapped mode that can be excited.

The effects of a modification of the strongly detuned configuration (Conf-r1) is
studied by varying the length L6 of the sixth side branch from the inlet (Conf-r3)
or the length Lout of the downstream main pipe (Conf-r2). From the experiments
on these configurations we observe that the strongly detuned configuration Conf-r1
is quite sensitive to geometrical modifications (Fig. 4.10). In particular we observe
from Fig. 4.10 that a new pulsation condition appears above M = 0.1 when the
length Lout of the downstream main pipe is shortened (Conf-r2).

The experimental observations on the effect of detuning the length of the side
branches are reasonably well reproduced by our prediction model, as can be seen
from Figs. 4.9 and 4.11. Note that the pulsations of the strongly detuned config-
uration (Conf-r2) in the range 0.025 ≤ M ≤ 0.06 and M ≥ 0.1 are global modes,
which are sensitive to modifications of the acoustic boundary conditions (Fig.
4.11). Instead, the pulsations in the range 0.06 < M < 0.1 are nearly trapped (lo-
calized) modes, which are less sensitive to modifications of the acoustic boundary
conditions (Fig. 4.11).

The acoustic losses due to convective effects at the open outlet of the strongly
detuned configuration (Conf-r2) lead to a decrease of the pulsation amplitude. This
decrease is proportional to the Mach number. As can be observed in Fig. 4.11, the
results of the prediction model with the convective effects at the main pipe outlet
fall between the predictions with reflective boundaries and anechoic boundaries.
The reflective and the anechoic acoustic boundary conditions are the two limit
cases that have to be considered in engineering practice for a safe aeroacoustic
design.

4.6 Conclusions

Pipe systems with multiple closed deep side branches display acoustic modes that
can be predicted by considering an eigen-value problem for the homogeneous sys-
tem (without sources) describing the plane wave acoustic propagation in the pipe
network.

For the first hydrodynamic mode the model presented can predict the oscilla-
tion amplitude within 20% for a row of side branches of equal depth and within
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50% when the system is detuned by varying the side branch length. The oscil-
lation frequency is predicted within 2%. Furthermore, it strongly overestimates
the amplitude of higher hydrodynamic modes. The second hydrodynamic mode is
overestimated by an order of magnitude. This calls for additional measurements
to obtain separate empirical correlations for the sources of sound at higher hy-
drodynamic modes. As the most severe pulsations are associated with the first
hydrodynamic mode, our prediction model is a useful engineering tool.

For single or double side branch systems the detuning of side branch length, as-
sociated to anechoic boundary conditions of the main pipe, is an effective remedial
measure. In more complex systems this countermeasure can be rather ineffective.

Complex pipe systems display flow-induced pulsations at frequencies corre-
sponding either to global modes or to localized (trapped or nearly trapped) modes.
Self-sustained oscillations driving global modes are significantly influenced by the
acoustic boundary conditions of the main pipe. Since the acoustic properties of
the pipe system play a significant role, scale models aiming at the prediction of
pulsations of such modes should have realistic acoustic boundary conditions.





Chapter 5

Aeroacoustic behavior of
wall perforations

Abstract

Acoustical dampers are used in order to avoid the noise propagation. Well
known examples are the aero-engine liners, the IC-engine exhaust mufflers,
and the liners in combustion chambers. These devices comprise wall perfora-
tions, responsible for their sound absorbing features. Understanding the effect
of the flow on the acoustic properties of a perforation is essential for the design
of acoustic dampers. In the present work the effect of a grazing-bias flow com-
bination on the impedance of slit shaped wall perforations is experimentally
investigated by means of a multi-microphone impedance tube. Measurements
are carried out for the perforation geometries more commonly encountered in
technical applications. The focus of the experiments is on both the Strouhal
number dependence of the acoustic impedance and the low Strouhal num-
ber (quasi-steady) behavior. Analytical models of the steady flow and of the
low frequency aeroacoustic behavior of a two-dimensional wall perforation are
proposed. These theoretical results compare favorably with the experiments.

5.1 Introduction

Acoustical dampers are widely used in order to avoid the noise propagation. Well
known examples are the aero-engine liners, designed to reduce the noise from the
engine during takeoff and landing [151], the IC-engine exhaust mufflers [152], and
the liners in combustion chambers of gas turbines [221].

If we consider an IC-engine exhaust system with a muffler, we can schematically
identify three main sections of the system: an upstream pipe, where an incoming
acoustic wave p′in travels downstream; the acoustical damper, that has the role of
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preventing the propagation of the incoming acoustic wave p′in further downstream;
and a downstream pipe (tail pipe), where an outgoing wave p′out travels toward the
exit of the exhaust system. A general categorization of acoustical dampers consist
of distinguishing between reactive dampers and dissipative dampers. In both cases
the effectiveness of the damper is specified by the transmission loss TL, that is the
ratio between the acoustic power of the incoming waves and that of the outgoing
waves:

TL = 10log10

∣∣∣∣ p′inp′out

∣∣∣∣2 (5.1)

where we assume plane wave propagation.
The purpose of a reactive damper is to provide a certain transmission loss TL

by reflecting back the incoming waves p′in, reducing to a minimum the outgoing
waves p′out. An expansion chamber muffler is the simplest example of such a damper
(Fig. 5.1-a). As reported by Davis et al. [47] the expansion chamber muffler is
characterized by a transmission loss that strongly depends on the frequency of
the acoustic waves (Fig. 5.1-b). It has maxima at Helmholtz numbers HeL =
fLmuff/c0 ≈ (2n− 1) /4, n = 1, 2, 3, ..., where c0 is the speed of sound and Lmuff

is the length of the expansion chamber. Furthermore, it vanishes at Helmholtz
numbers HeL ≈ (n− 1) /2, n = 1, 2, 3, .... The main disadvantages of a reactive
damper are that it is effective only within certain frequency ranges and that it
may lead to high pulsations in the upstream section because it reflects rather than
dissipate the acoustic waves.

Figure 5.1 – Expansion chamber muffler. Schematic section (a) and acoustical trans-
mission loss TL as function of the Helmholtz number HeL = fLmuff/c0. The exper-
imental results of Davis et al. [47] are compared with the theoretical predictions
obtained by the plane wave theory [57]. The cross sectional area ratio of the muffler
is Smuff/Sin,out = 36.

A dissipative damper has the purpose of reducing the acoustic power propa-
gated downstream by dissipating the waves. The clear advantage, compared to a
reactive damper, is that it reduces the pulsation level also in the upstream pipe.
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The simplest example of dissipative muffler is an expansion chamber partially
filled with sound absorbing material (e.g. sound absorbing foam). This material is
placed in the chamber so that a “straight tube” is left open, in order to allow the
exhaust flow to travel downstream. In this case acoustical energy is dissipated by
the visco-thermal damping within the absorbing material.

A simple but effective muffler configuration adopted in IC-engine exhaust sys-
tems is the perforated pipe muffler. It is a perforated straight tube surrounded by
an expansion chamber. The volume between the tube and the chamber is filled by
sound absorbing material. This dissipative muffler has the peculiar drawback to
lose its acoustic performances after some time. The hostile environment in which
it works, due to the hot and dusty exhaust gas leads to burning or plugging the ab-
sorbing material, with consequent loss of its acoustic absorbing properties. When
the absorbing material is completely burnt, the configuration becomes a perforated
pipe in an empty expansion chamber. This behaves as a reactive muffler with dis-
sipation (Fig. 5.2). The reactive features are due to the expansion chamber, while
the dissipation is due to the interaction of the flow with the acoustic waves at the
perforations. Each perforation of the pipe is subjected to the grazing flow along the
pipe. Bias flow through the perforations is negligibly small in this configuration.
The effect of the flow is to enhance the acoustic dissipation [10].

Figure 5.2 – Perforated pipe muffler with empty chamber. Schematic section (a)
and measured acoustical transmission loss TL as function of the Helmholtz number
HeL = fLmuff/c0 [84]. The reactive characteristic leads to the shape similar to that
of an expansion chamber muffler (Fig. 5.1-b), while the dissipative characteristic is
responsible for the shift of the curve toward higher values of transmission loss TL
by almost 3 dB.

The acoustic dissipation of a perforated pipe muffler with empty chamber can
be considerably increased by inserting a plug in the perforated pipe (Fig. 5.3).
This forces the flow to leave the pipe through the perforations upstream of the
plug and to re-enter in the pipe through the perforations downstream of the plug.
This enhanced sound absorption is due to the change in the aeroacoustic behavior
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of the perforations. Each perforation is now subjected to a combination of grazing
and bias flow. The sound absorption features of a wall perforation subjected to
pure bias flow have been widely discussed in literature [10, 95]. The presence of a
jet, due to the separation of the bias flow can even lead to an anechoic behavior
of the perforated wall [10]. Unfortunately bias flow involves large total pressure
losses, which is not acceptable for a muffler.

Figure 5.3 – Plugged perforated pipe muffler with empty chamber. Schematic sec-
tion (a) and measured acoustical transmission loss TL as function of the Helmholtz
number HeL = fLmuff/c0 [84]. The reactive characteristic leads to the shape simi-
lar to that of an expansion chamber muffler, while the dissipative characteristic is
responsible for the shift of the curve toward higher values of transmission loss TL
by about 7 dB. The transmission loss is higher than in the case of a perforated pipe
muffler (unplugged). This is due to the bias flow through the perforations.

The design of an efficient muffler requires to obtain a good compromise between
high acoustical performances, at high bias flow through the perforations, and high
fluid dynamic performances, at low bias flow component. Understanding the effect
of the flow on the acoustic properties of a wall perforation is essential for the
design of acoustic dampers. However, most of the studies are limited to grazing flow
[180, 128, 217, 42, 107, 102, 115] or bias flow [10, 110, 99, 45, 191, 114, 77, 205, 138]
considered separately. Only few works have been carried out on a combined grazing
and bias flow [203, 185, 142]. From these studies it is clear that the acoustic
properties of a wall perforation depend on the interaction of the two mean flow
contributions rather than the simple summation of the grazing and the bias flow
effects.

The paper of Rogers and Hersh [185] is a first attempt to consider a grazing-bias
flow combination (for simplicity we further call a flow combining grazing and bias
components as a “grazing-bias flow”). In this paper, the influence of a grazing-bias
flow on the steady-state resistance of squared edged perforations is presented. The
discharge coefficient, defined as the ratio of the actual flow rate through the per-
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foration to the ideal one-dimensional flow rate through the perforation, was used
to describe the steady-state resistance of the perforation itself and an inviscid flow
model to evaluate semi-analytically the discharge coefficient was proposed. Based
on the work of Rogers and Hersh [185], Cummings [43] proposed a quasi-steady
model to relate the acoustic resistance with the discharge coefficient of the perfo-
ration. The relation between the fluid dynamic behavior of the perforation and the
discharge coefficient was extrapolated from the data of Rogers and Hersh [185].
Recently, Sun et al. [203] proposed a quasi-steady model to evaluate the acoustic
resistance based on the work of Cummings [43]. Furthermore, they developed an
empirical model to relate the discharge coefficient with the fluid dynamic behavior
of the perforation.

Most of the studies on the aeroacoustics of wall perforations concentrate on
the working domain of liners and mufflers, that is at low Strouhal numbers and
boundary layers with large thickness compared to the stream wise width of the per-
forations. The works of Golliard [77], Kooijman et al. [130] and Testud et al. [205]
consider also higher Strouhal numbers, for which resistance and reactance display
an oscillating behavior as function of the Strouhal number. For certain flow con-
ditions, the perforations were observed to produce acoustical energy (whistling).
The works of Golliard [77] and Kooijman et al. [130] focus on wall perforations
subjected to pure grazing flow. The work of Testud et al. [205] focuses on the pure
bias flow through wall perforations. The presence of hydrodynamic instabilities
seems to govern the presence of the oscillations in resistance and reactance.

The perforation geometry has been observed to have a significant influence
on the aeroacoustic response of wall perforations. Kooijman et al. [130] investi-
gated the influence of the edge geometry of a slit shaped perforation subjected to
pure grazing flow. The amplitudes of the oscillations in resistance and reactance
were observed to be larger for sharp edged geometries. Especially, the shape of
the downstream edge was observed to be important. Recently, Heuwinkel et al.
[88] investigated the effect of several parameters on the damping performances of
perforated liners subjected to grazing-bias flow. Wall perforations with chamfered
edges, compared to sharp edges, were observed to lead to higher resistance, at low
Strouhal numbers.

Widely diffused in combustion chamber liners (film cooling liners) are wall
perforations at 30◦ angle relative to the direction of the flow. These liners are used
with the dual purpose of providing acoustic damping and film cooling of the walls
[66]. They consist of a regular array of apertures, across which a pressure difference
forces a steady jet of cool air into the hot combustor. The apertures are slanted
so that the cool jets coalesce to form a film adjacent to the wall which does not
substantially mix with the hot combustion products.

In the present work the effect of a grazing-bias flow combination on the im-
pedance of slit shaped wall perforations is experimentally investigated by means
of a multi-microphone impedance tube setup. Measurements are carried out for
perforations with different shapes, in order to obtain experimental data useful for
optimization purposes of the perforation shape. These correspond to geometries
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Figure 5.4 – Schematic layout of the impedance tube setup.
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commonly encountered in technical applications. The focus of the present experi-
ments is on both the Strouhal number dependency of the acoustic impedance and
the low Strouhal number (quasi-steady) behavior. Analytical models of the steady
flow and of the aeroacoustic behavior of a two-dimensional wall perforation are
proposed for some limit cases. These theoretical results are compared with the
experiments. We limit our study to slit shaped perforations which are expected to
display the most severe whistling behavior. For pure grazing flow the effect of the
shape of the opening has been studied theoretically by Howe [103] and Grace et
al. [81].

5.2 Impedance tube experimental setup

5.2.1 General setup

The acoustic response of rectangular wall perforations in presence of a grazing-bias
flow have been measured by means of an impedance tube (Fig. 5.4). It is essentially
the same facility as used by Kooijman et al. [130] in his study of the aeroacoustic
response of orifices under grazing flow.

The impedance tube consists of a 70 cm long smooth steel pipe with an inner
radius of Rtube = 3.5 cm and a 2 cm wall thickness. The microphones are flush
mounted, through bronze adapters, to the wall of the pipe. A pressure hole is placed
in the pipe, at 2 cm from the front end of the pipe. The front end of the pipe is
closed by means of a H = 1.5 cm thick aluminum plate with a rectangular slit
opening (Fig. 5.5). The plate is positioned such that the perforation is centered
relative to the pipe axis. The back end of the tube is connected through a T-
junction with a loudspeaker and a pump. The loudspeaker is connected to the
T-junction via a flexible rubber band, to avoid structural vibrations of the tube.
The T-junction is filled with porous acoustic damping material that serves to
prevent unwanted high acoustic amplitudes due to resonance. The silent pump
Aug. Laukhuff Ventola, generating the bias flow through the slit, is connected to
a turbine flow meter. These connections are made through flexible tubing. The
perforated plate is fixed to the exit nozzle of an open-jet silent wind tunnel, which
generates the grazing flow over the slit. The nozzle exit has a 20 cm × 20 cm cross
section. A pressure hole is placed in the wall of the settling chamber of the wind
tunnel.

We take y = 0 for the position of the perforated plate wall at the inside of
the impedance tube and the negative direction of the y-axis directed toward the
back end of the tube. Based on this system of coordinates, the positions of the
microphones are: y1 = −20 mm, y2 = −70 mm, y3 = −170 mm, y4 = −310 mm,
y5 = −365 mm, y6 = −410 mm, and y7 = −565 mm.

Note that for a conventional two microphone setup the measurement error
becomes very large if the distance between the two microphones is an integer
times half-wavelength [22, 28]. Since we use 7 irregularly placed microphones, for
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any frequency at most one microphone will be at an integer times half-wavelength
from another microphone. This allows accurate measurements in a wide frequency
range (from 30 Hz to 850 Hz). The measurement accuracy of the setup is discussed
in Sec. 5.2.7.

The entire setup is placed in a semi-anechoic room of 100 m3 volume with a
cut-off frequency of 300 Hz.

Figure 5.5 – Picture of the perforated plate (Plate-B, Fig. 5.6) mounted at the front
end of the impedance tube. The 1.5 cm thick aluminum plate has a rectangular slit
opening.

5.2.2 Wall perforation geometries

Impedance measurements have been carried out for different geometries of the
wall perforations (Fig. 5.6). All these perforations are rectangular slits and they
are made on a 20 cm×20 cm aluminum plate of H = 1.5 cm thickness. These slits
have a depth of Lh = 5 cm in the direction normal to the flow and a width W in
the flow direction. The widths W of the different slits geometries are given in Fig.
5.6 and Table 5.1. The slits are made by spark erosion leaving smooth surfaces
and sharp edges.

Plate-A has a slit with 27◦ sharp edges both upstream and downstream (Fig.
5.6-a), this represents a perforation in a thin wall. Plate-B has a slit with 90◦

edges both upstream and downstream (Fig. 5.6-b), it is a perforation in a thick
wall, with sharp rectangular edges. Plate-C has a slit with 27◦ sharp edge upstream
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Table 5.1 – Geometrical parameters of the different rectangular wall perforations (slits)
used in the experiments and presented in Fig. 5.6.

Perforation width Perforation depth Plate thickness Boundary layer Perforation minimum
approaching length cross sectional area

W [cm] Lh [cm] H [cm] Lw [cm] Sh [cm2]
Plate-A 1 5 1.5 9.5 5
Plate-B 1 5 1.5 9.5 5
Plate-C 1 5 1.5 10 5
Plate-D 1 5 1.5 9 5
Plate-E 2 5 1.5 7.6 5
Plate-F 2 5 1.5 10.4 5
Plate-G 1.6 5 1.3 9.2 5

and 90◦ edge downstream (Fig. 5.6-c). Plate-D is obtained by rotating Plate-C over
180◦, so that the sharp 27◦ edge will be downstream (Fig. 5.6-d). The perforations
of Plate-A,B,C and D have a width W = 1 cm in the grazing flow direction.
Plate-E and Plate-F present a slanted slit, obtained by drilling a 1 cm wide wall
perforation at 30◦ angle with the plane of the plate. Such slits are used in liners
within combustion chambers to generate a cold flow along the wall protecting the
wall from the flame [66]. While the slit of Plate-E is oriented in the direction of the
grazing flow (Fig. 5.6-e), the slit of Plate-F has the opposite direction (Fig. 5.6-f).
The perforations of Plate-E and F have a width W = 2 cm in the grazing flow
direction. Plate-G has the same overall slit shape as Plate-B, but it has chamfered
edges at the upper side (the side where the grazing flow is flowing). This plate has
been obtained by cutting the upper side edges with an angle of 45◦ at 3 mm from
the edge (Fig. 5.6-g).

The center of the plates is 10 cm from the exit nozzle of the silent jet wind
tunnel. The distance Lw of the silent wind tunnel exit section to the upstream
edge of each wall perforation depends on the geometry of the slit (Fig. 5.6 and
Table 5.1).

5.2.3 Instrumentation

The microphones used are piezo-electric PCB 116A. They are connected to charge
amplifiers Kistler 5011. The signals are registered by a computer system National
Instruments NI PXIe-1062Q via a 8 channel dynamic signal acquisition (DSA)
card National Instruments NI PXI-4472. The loudspeaker is driven by a signal
generator National Instruments NI PXI-5411 controlled by the computer through
a power amplifier Toellner TOE 7608. The signals of the microphones as well as
the function generator signal are sampled by the DSA card at 10 kHz. Both the
DSA card and the function generator module are driven by an embedded controller
National Instruments NI PXI-8176, the three units are housed in the computer
system.

The turbine flow meter Dresser IMTM-CT G65 DIN PN16 is used to measure
the flow velocity in the impedance tube. The turbine flow meter is connected to the
computer system via a Turk MK-15 switching amplifier, a 24V-to-5V converter, a
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connector block National Instruments NI SCB-68 and a timing I/O card National
Instruments NI PXI-6602. The turbine flow meter has been calibrated by means
of a calibrated Rotameter flow meter and has an accuracy of 2% in the volume
flow range used during our experiments.

Figure 5.6 – Geometries of the different rectangular wall perforations (slits) used
in the experiments.

The temperature of the air is measured within 0.1◦C by means of a digital
thermometer Omega HH309A. Its sensor is positioned in the room, close to the
impedance tube.

The static pressure in each of the two pressure holes (in the settling chamber
and in the impedance tube) is measured by means of a Delft Betz water micro-
manometer. The pressure measurement has an accuracy of 1 Pa.
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5.2.4 Velocity profiles of the grazing flow

In order to investigate the influence of a grazing-bias flow on the impedance of
a wall perforation, three different grazing flows have been employed. These are a
grazing flow with a laminar boundary layer and two grazing flows with a turbulent
boundary layer. The laminar flow is realized by adjusting the Reynold number of
the approaching boundary layer to a sufficient low value (UG = 12.8 m/s). The
turbulent flows are obtained by tripping the flow just before the silent wind tunnel
exit by means of a strip of sandpaper (1 cm width in the flow direction and 1 mm
roughness). The grazing flow velocity of the turbulent flows is UG = 12.8 m/s and
UG = 16.8 m/s. Detailed characterization of these boundary layers is provided by
Kooijman et al. [130].

5.2.5 Quantitative description of the acoustic behavior of a
wall perforation

The acoustic behavior of a wall perforation can be specified by different quantities
[130]. Most commonly one uses the acoustic impedance. Made non-dimensional
by dividing it to the characteristic impedance of the fluid ρ0c0, with ρ0 the fluid
density and c0 the speed of sound, it is given by:

Zh =
1

ρ0c0

p− − p+

uh
(5.2)

where p+ and p− are the amplitudes of the imposed (Fourier transformed) acoustic
pressure disturbances respectively outside and inside the impedance tube, and uh
is the amplitude of the area averaged velocity disturbance through the perforation,
normal to the wall. We refer to the grazing flow side (outside) as “above” the per-
foration and the impedance tube side as “below” the perforation. The impedance
can be decomposed in a resistance r and a reactance δ:

r = Re (Zh) (5.3)

δ =
1

k0
Im (Zh) (5.4)

where k0 = ω/c0 is the wave number, defined as the ratio of the angular acous-
tic frequency ω and the speed of sound c0. The resistance and the reactance are
complex functions depending on the flow properties and on the geometry of the
wall perforation [130]. Also the radiation impedance from the slit to the surround-
ings contributes to Zh. In order to evaluate the effect of the flow on the acoustic
properties of a wall perforation, Golliard [77] proposed to subtract the impedance
measured in the absence of flow, Zh,U=0 = rU=0 + ik0δU=0:

rflow = r − rU=0 (5.5)

δflow = δ − δU=0 (5.6)
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The subscript U = 0 indicates the absence of both grazing (UG = 0) and bias
(UB = 0) flow.

The acoustic pressure above the wall perforation p+ equals the radiation pres-
sure prad, which in principle depends on the grazing flow above the perforation
[130]. Ingard and Singal [111] showed that for a piston in a grazing flow the influ-
ence of the flow is small for Mach numbers below 0.2. Therefore, it is reasonable
to consider the radiation pressure to be independent of the flow. Subsequently,
dividing rflow by the Mach number M and δflow by the width of the perforation
W , gives the non-dimensional scaled resistance and reactance due to the flow:

r̃flow =
rflow

M
=
r − rU=0

M
=

1

M
[Re (Zh)− Re (Zh,U=0)] (5.7)

δ̃flow =
δflow

W
=
δ − δU=0

W
=

1

k0W
[Im (Zh)− Im (Zh,U=0)] (5.8)

Depending on the specific case considered, the Mach number can be based on
the grazing flow velocity, M = UG/c0, or on the bias flow velocity, M = UB/c0.
The bias flow velocity UB is defined as the ratio of the volume flow through the
perforation to the minimum cross sectional area of the perforation Sh (Table 5.1).

The non-dimensional scaled resistance and reactance are then determined using
a “one-sided” perforation impedance Zh−:

Zh− =
1

ρ0c0

p−
uh

(5.9)

r̃flow =
1

M
[Re (Zh−)− Re (Zh−,U=0)] (5.10)

δ̃flow =
1

k0W
[Im (Zh−)− Im (Zh−,U=0)] (5.11)

5.2.6 Impedance measurement

For each measurement, microphone signals are recorded during 3 s. Subsequently,
as post-processing, lock-in detection is performed on an integer number of oscilla-
tion periods to determine the complex amplitudes of the microphone signals. The
signal driving the loudspeaker is used as reference signal. A Hilbert transform is
used to generate a complementary reference signal. The microphone signals are
multiplied by a reference signal and integrated numerically by simple trapezoidal
method. The beginning and the end of the signal are determined by zero crossing
of the reference sinusoidal signal used to drive the loudspeaker.

We limit our measurements to frequencies below 850 Hz. This is much lower
than the cut-off frequency fcut = 2870 Hz for propagation of non-planar modes in
the impedance tube. The acoustic perturbations in the impedance tube are plane
waves. Using the exp (+iωt) convention, the solution of d’Alembert for plane waves
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can be written in the complex notation:

p′ (y) = p+exp
(
−ik+y

)
+ p−exp

(
ik−y

)
(5.12)

u′ (y) =
1

ρ0c0

[
p+exp

(
−ik+y

)
− p−exp

(
ik−y

)]
(5.13)

where p± are the complex amplitudes at y = 0 of the acoustic pressure waves
traveling in the positive/negative y-direction (to the right/left in Fig. 5.4) and k±

are the corresponding complex wave numbers. We ignore convective effects within
the impedance tube, hence k+ = k− = k. Accounting for visco-thermal damping
of the acoustic waves at the walls of the tube, the complex wavenumber is given,
in the low frequency approximation k0Rtube � 1 and for high shear numbers
Sh = Rtube

√
ω/ν � 1, by [167, 130]:

k =
ω

c0

[
1 +

1− i√
2

1

Sh

(
1 +

γ − 1√
Pr

)]
(5.14)

where ν is the kinematic viscosity, γ = cp/cv is the ratio of specific heats at
constant pressure cp and constant volume cv, and Pr is the Prandtl number. The
experiments have been carried out with a bias flow at atmospheric pressure and
at about 20◦C, so that: ν = 1.51× 10−5 m2/s, γ = 1.4, and Pr = 0.71. The effect
on the damping of the plane waves due to visco-thermal losses in the bulk of the
flow appears [167, 171] to be two orders of magnitude smaller than that due to
the losses at the walls. Therefore, bulk losses are neglected.

Eqs. (5.12) and (5.13) are applied for each position y1, ..., y7 of the 7 micro-
phones mounted in the wall of the impedance tube: p′ (y1)

...
p′ (y7)


︸ ︷︷ ︸

p′exp

=

 exp (−iky1) exp (iky1)
...

...
exp (−iky7) exp (iky7)


︸ ︷︷ ︸

Mexp

[
p+

p−

]
︸ ︷︷ ︸

p±

(5.15)

where p′exp is the experimentally determined vector of the complex amplitudes of
the microphone signals, Mexp is the matrix of coefficients and p± is the unknown
vector of the complex pressure amplitudes at y = 0. In order to evaluate the
unknown vector p±, the overdetermined system of equations (Eq. (5.15)) is solved
by means of the least square method [1]:[

p+

p−

]
=
(
MT

expMexp

)−1

MT
exppexp (5.16)

where the superscript T indicates the complex conjugate transpose.
The impedance of a wall perforation Zh−, as defined in Eq. (5.9), can be ex-

pressed as function of the complex amplitudes p+ and p− by using Eqs. (5.12) and
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(5.13). We have p− = p+ + p−, and uh = [(p+ − p−) / (ρ0c0)] (Stube/Sh):

Zh− =
1

ρ0c0

p−
uh

=
Sh
Stube

p+ + p−

p+ − p−
(5.17)

where Sh is the minimum cross sectional area of the perforation (Table 5.1) and
Stube = πR2

tube is the cross sectional area of the tube.

5.2.7 Accuracy of the acoustical measurements

The accuracy of the experimental setup has been assessed by measuring the re-
flection coefficient R0 = p−/p+ at a closed end wall. This is an aluminum plate of
2 cm thickness. The theoretical value of the reflection coefficient of an end wall is
R0 = 1 with four decimal accuracy. In Fig. 5.7 we present the difference between
the theoretical and the measured reflection coefficient, in terms of absolute value
|R0| and phase ϕ scaled to 2π radians. Both this deviations are at most O

(
10−2

)
for frequencies up to 850 Hz.

All the impedance measurements of the present work have been carried out
at low sound pressure levels of the acoustic field so that the impedance of each
wall perforation is linear with the amplitude of the acoustic velocity through the
perforation aperture. A detailed characterization of the linearity of the acoustic
impedance in our setup has been reported for grazing flow by Kooijman et al.
[130].

Figure 5.7 – Difference between the theoretical and the measured (impedance tube
measurement) reflection coefficient of an end wall, in terms of absolute value |R0|
(a) and phase ϕ scaled to 2π radians (b).

5.3 Steady flow through a single wall perforation

In the following we consider a sharp edged single wall perforation drilled normal
to a plate. On one side of the plate, referred as duct, the fluid is either at rest or
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is flowing along a direction normal to the perforation axis. This flow is referred as
grazing flow or duct flow. The duct in our experimental setup is the semi-anechoic
room and the grazing flow is produced by the silent free jet wind tunnel. On the
other side of the plate, the wall perforation is backed by a cavity. The cavity in
our experimental setup is the impedance tube. The flow through the perforation
is called bias flow. If the bias flow is directed from the duct toward the cavity
(negative y-direction in our setup, Fig. 5.4) the flow condition is called inflow.
The bias flow in the opposite direction is called outflow. According to Baumeister
and Rice [9] and to Rogers and Hersh [185] there are eight possible flow regimes
for the case of a thick wall perforation similar to the geometry of Plate-B (Fig.
5.8): pure grazing flow (a), low inflow (b), high inflow (c), pure bias inflow (d),
low outflow (e), intermediate outflow (f), high outflow (g) and pure bias outflow
(h). The most important characteristics of this flow regimes, as observed from the
flow visualizations of Baumeister and Rice [9] and the measurements of Rogers
and Hersh [185], are following summarized.

• Pure grazing flow (Fig. 5.8-a). This regime occurs when there is no bias flow
through the perforation UB = 0. The grazing flow induces a recirculating
flow within the perforation driven by the shear exerted by the fluid passing
the opening. This recirculation region fills the perforation. For high grazing
flow velocities UG it can even extend down into the cavity.

• Low inflow (Fig. 5.8-b). The bias flow is directed from the duct to the cav-
ity. In this regime, the ratio between the bias and the grazing flow velocities
UB/UG is low. The bias flow induces a jet flow into the cavity. A shear layer
originates due to flow separation at the upstream edge. It extends through
almost the full width of the perforation. The second shear layer bounding
the jet flow separates tangentially from the downstream side wall of the per-
foration, at the edge on the cavity side of the perforation. As the bias flow
increases the cross sectional area of the separated region decreases and the
cross sectional area of the jet formed by the flow through the perforation
increases. The flow in the jet region is directed in the direction of the down-
stream wall of the perforation. An important feature of the inflow case is the
position of the stagnation point of the grazing flow. For the low inflow regime
it is positioned on the downstream side wall of the perforation (within the
perforation). Increasing the ratio UB/UG it moves up, toward the duct.

• High inflow (Fig. 5.8-c). The bias flow is from the duct to the cavity. This
regime is characterized by high values of the ratio UB/UG. Separation occurs
at both edges of the perforation on the side of the duct. The direction of the
flow in the jet depends on the ratio of the bias and grazing flow UB/UG. It
moves toward the centerline of the perforation as UB/UG increases. In this
case the position of the stagnation point of the grazing flow is inside the
duct, on the duct wall downstream of the perforation downstream edge.
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Figure 5.8 – Schematic representation of the different regimes of the steady flow
through a single wall perforation [9, 185].



5.3 Steady flow through a single wall perforation 145

• Pure bias inflow (Fig. 5.8-d). The flow is directed from the duct into the cav-
ity. This regime occurs when there is no grazing flow along the perforation
UG = 0. Only the bias flow is present and this regime represents the inter-
esting limit case when the effect of the grazing flow is negligible compared
to the effect of the bias flow UB/UG � 1. Separation occurs symmetrically
at both edges of the perforation at the duct side. The direction of the flow
in the jet region is along the centerline of the perforation.

• Low outflow (Fig. 5.8-e). The bias flow is directed from the cavity to the
duct. In this regime, the ratio between the bias and the grazing flow velocities
UB/UG is low. The bias flow emerging through the perforation is abruptly
deflected downstream parallel to the wall by pressure and shear forces exerted
by the grazing flow. The latter acts like a partial cover over the exit plane
(the plane that connects the upstream and the downstream edges of the
perforation on the duct side) and causes the flow inside the perforation to
bent before reaching the exit plane and to leave the perforation mainly near
the downstream edge. At the upstream edge of the perforation there is almost
a tangential separation of the flow in the direction of the grazing flow. The
bias flow has there a stagnation point.

• Intermediate outflow (Fig. 5.8-f). The bias flow is directed from the cavity
to the duct. As the ratio UB/UG increases, the bias flow leaving the perfo-
ration penetrates further into the grazing flow before bending towards the
downstream wall in grazing flow direction. More fluid leave the perforation
near the downstream edge but the velocity distribution over the exit plane
is now more uniform. There is a separation of the bias flow at both edges of
the perforation at the cavity side. After some distance the flow reattaches
to the wall of the duct downstream of the orifice. The flow is essentially
two-dimensional.

• High outflow (Fig. 5.8-g). The bias flow is directed from the cavity to the
duct. For high values of the ratio between the bias and the grazing flow
velocities UB/UG the penetration of the bias flow emerging the perforation
is large. It forces a deflection of the main grazing flow. The interaction of
the jet with the main grazing flow is essentially three-dimensional.

• Pure bias outflow (Fig. 5.8-h). The bias flow is from the cavity toward the
duct. This regime occurs when there is no grazing flow along the perforation
UG = 0. This regime represents the interesting limit case when the effect of
the grazing flow is negligible compared to the effect of the bias flow UB/UG �
1. Separation occurs symmetrically at both edges of the perforation at the
cavity side. The direction of the flow in the jet region is along the centerline
of the perforation.
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5.4 Steady model of the flow through a single wall
perforation

5.4.1 Pure bias inflow regime

The fluid dynamic behavior of a wall perforation in the pure bias inflow condition
is determined using simplified models.

The flow through a wall perforation in the pure bias inflow condition (Fig.
5.8-d) can be separated into three regions: the fluid at rest in the anechoic room,
the compact flow in the region around the wall perforation, and the uniform flow
in the impedance tube (Fig. 5.10).

The basic approximations used are defined by introducing a set of dimensionless
numbers: Mtube = Utube/c0, Mach number; SrB = fW/UB , Strouhal number;
ReB = UBW/ν, Reynolds number. Here Utube is the steady main flow velocity
in the impedance tube downstream of the wall perforation, c0 is the speed of
sound, f is the frequency of the hydrodynamic instabilities, W is the width of the
wall perforation in the flow direction, UB is the average velocity across the wall
perforation (bias flow velocity), and ν is the kinematic viscosity.

The focus of the present work is on high Reynolds number flows ReB = O
(
104
)
,

so that an inviscid flow description will be used. Neglecting friction we assume uni-
form velocity profiles in the free jet and in the pipe. The only viscous effects taken
into account are the flow separation at the sharp edges of the wall perforation
and the turbulent dissipation in the jet. This turbulent dissipation is implicitly
assumed in the turbulent mixing region downstream of the jet. Another funda-
mental assumption is to consider the flow to be steady. That is reasonable at low
Strouhal numbers SrB � 1. The final assumption concerns the importance of the
compressibility effects, measured by the Mach number Mtube. Firstly, we consider
the case of low Mach numbers Mtube � 1, that leads to the incompressible flow
model. Secondly, a model is derived for finite subsonic Mach numbers Mtube.

Vena Contracta

In the pure bias inflow condition the flow separates, at the sharp edges of the duct
side of the perforation, in the direction of the wall of the perforated plate. The two
shear layers formed by flow separation delimit a jet flow entering the perforation.
The shear layers bend in the direction of the axis of the wall perforation. This
results in a contraction of the jet flow (Fig. 5.10). The vena contracta, also called
contraction ratio, Γ is defined as the ratio of the minimum jet cross section Sj and
the cross section of the wall perforation Sh at the separation.

An analytical expression for the vena contracta of a two-dimensional incom-
pressible flow through a wall perforation in an infinitely extended thin plate was
found by Kirchhoff [176]: Γ0 = π/ (π + 2) ≈ 0.611. Hofmans et al. [95] provides a
review of the effect of compressibility and flow confinement on the vena contracta
factor for an orifice in a pipe.
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The vena contracta Γ has been measured as function of the Mach number of
the bias flow MB for the different wall perforations presented in Fig. 5.6. The flow
velocity at the jet exit Uj is evaluated measuring the pressure difference between

the duct pch and the jet pj , Uj =
√

2 (pch − pj) /ρ0. A static pressure hole is drilled
in the impedance tube at a distance of 2 cm from the inner wall of the perforated
plate. Neglecting variations of the pressure between the jet and this position in
the impedance tube, we use this pressure as estimate for the jet pressure pj . The
bias flow velocity UB is calculated as the measured volume flow rate (turbine flow
meter) divided by the minimum cross section Sh of the perforation (Table 5.1).
The vena contracta value is then defined as the ratio between the bias flow velocity
UB and the jet velocity Uj , Γ = Sj/Sh = UB/Uj . We implicitly assume a uniform
flow in the jet.

Figure 5.9 – Measured vena contracta (contraction ratio) Γ = Sj/Sh as function of
the Mach number of the bias flow MB for the different wall perforations presented
in Fig. 5.6. Pure bias inflow regime.

The measured vena contracta Γ as function of the Mach number of the bias flow
MB are shown in Fig. 5.9. A first observation that can be drawn is that the vena
contracta Γ is quite sensitive to the geometry of the wall perforation. For a thin
wall perforation (Plate-A) the vena contracta at low Mach numbers (MB → 0) of
the bias flow has a typical experimental value Γ0 ≈ 0.7. An increase of the vena
contracta value is observed for a thick wall perforation (Plate-B) up to Γ0 ≈ 0.8.
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This increase of the cross section of the jet is suspected to be due to the effect of
the lateral walls of the perforation. In a thick orifice with H/W > 2 the jet will
reattach to the walls inside the wall perforation. Indeed, in the limit of H/W � 1
Blevins [17] observed a re-attachment of the separated flow, leading to Γ0 ≈ 1. As
can be observed from the vena contracta values measured for Plate-G, a thick wall
perforation with chamfered edges displays a vena contracta value Γ0 ≈ 0.95 that is
considerably higher that that of a thick wall perforation (Plate-B) with sharp edges
Γ0 ≈ 0.8. This is due to the reduction of flow separation by rounded/chamfered
inlet edges, which is also discussed by Blevins [17].

There are a number of possible reasons why the measured value Γ0 ≈ 0.7 of the
vena contracta of the thin wall perforation (Plate-A) is different from the value
found by Kirchhoff Γ0 ≈ 0.61. These are the influence of the Reynolds number and
the sharpness of the edges. The effect of the Reynolds number becomes important,
as reported by Blevins [17], when ReB = O

(
103
)

or smaller. Since the focus of

the present work is on high Reynolds number flows ReB = O
(
104
)
, this effect

is expected to be negligible in our experiments. The crucial importance of the
sharpness of the edges of the wall perforation was clearly demonstrated by Blevins
[17]. A rounding of the edges by a few percent of the width of a wall perforation
suppresses the vena contracta effect almost completely. In our experiments special
care has been taken in the manufacture of the perforated plates, in order to keep
the edges as sharp as possible.

Steady incompressible flow model

An incompressible steady model of the flow through a wall perforation in the pure
bias inflow regime is presented. The model, based on the assumptions presented
above, is valid only for low Mach number flows. It is important to note that because
Stube/Sj � 1 the flow velocity in the jet Uj is much higher than the velocity in the
impedance tube Utube. In the approximation considered here Uj has to be much
lower than the speed of sound c0.

The flow configuration we are modeling is represented in Fig. 5.10. The fluid at
rest in the duct is sucked through the wall perforation resulting in a jet flow. At the
sharp edges of the wall perforation flow separation occurs symmetrically at both
edges tangentially to the outer duct wall (horizontally). Further downstream, the
shear layers bend towards the axis of the orifice. This means that the jet contracts
further than the perforation aperture reaching a minimum width, which we call the
vena contracta. Within the jet (control volume C1 in Fig. 5.10) the flow is isentropic
and irrotational. The velocity outside the jet is assumed to be negligibly small and
at the end of the jet (minimum cross sectional area of the jet Sj) the pressure is
assumed to be uniform over the tube cross section. Downstream of this section the
jet becomes turbulent and the kinetic energy is dissipated in the turbulent mixing
region (control volume C2 in Fig. 5.10). At the end of this turbulent mixing region
the flow evolves within the impedance tube into a uniform flow. In the turbulent
mixing region some pressure recovery takes place. Friction, which is essential in
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the bulk of this region, is neglected at the walls of the tube. We further ignore
heat transfer. The flow is adiabatic but, due to the dissipation, it is not isentropic.

The equations describing the incompressible steady flow model of a wall perfo-
ration in the pure bias inflow condition are the Bernoulli’s equation applied in the
jet region (control volume C1 in Fig. 5.10), the integral mass conservation equation
applied in the turbulent mixing region (control volume C2 in Fig. 5.10), and the
momentum equation applied in the turbulent mixing region (control volume C2 in
Fig. 5.10):

pch − pj − 1
2ρ0U

2
j = 0

ρ0UjSj − ρ0UtubeStube = 0 (5.18)

ρ0U
2
j Sj − ρ0U

2
tubeStube + pjStube − ptubeStube = 0

We have 3 equations in the 6 unknowns: pch, Uj , pj , Sj , Utube and ptube. The
pressure in the duct pch and the flow velocity in the tube Utube are the boundary
conditions of the problem. The minimum jet cross section Sj is evaluated experi-
mentally and imposed in the model as parameter. The vena contracta factor Sj/Sh
depends strongly on the orifice geometry.

Figure 5.10 – Schematic representation of a steady flow through a wall perforation
in the pure bias inflow regime.
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Steady compressible flow model

When the Mach number of the flow Mtube increases, the effect of the compressibil-
ity increases. Since the flow velocity in the jet Uj is much higher than the velocity
in the pipe Utube, a meaningful dimensionless number is the Mach number in the
jet Mj = Uj/c0. This is a measure of the importance of compressibility in the
source region. In the present work, we consider subsonic flows where the jet Mach
number is at most equal to unity. A compressible steady model of the flow through
a wall perforation in the pure bias inflow regime is presented.

The main difference between this compressible model and the incompressible
model is that now the density is a variable. The set of equations of the steady flow
model is complemented by the isentropic gas relation applied to the inflow region
up to the jet (control volume C1 in Fig. 5.10) and the integral formulation of the
energy equation (control volume C1 ∪C2 in Fig. 5.10), stating that total enthalpy
is conserved because heat transfer at the walls is neglected. The fluid is assumed
to behave as a perfect gas with constant specific heats. The equations describing
the compressible steady flow model of a wall perforation in the pure bias inflow
condition are:

γ
γ−1

pch

ρch
− 1

2U
2
j −

γ
γ−1

pj
ρj

= 0

ρjUjSj − ρtubeUtubeStube = 0

ρjU
2
j Sj − ρtubeU

2
tubeStube + pjStube − ptubeStube = 0 (5.19)
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For air at room conditions, γ = 1.4. We have 5 equations in the 9 unknowns: pch,
ρch, Uj , pj , ρj , Sj , Utube, ptube and ρtube. The pressure pch and the density ρch in
the duct and the flow velocity in the tube Utube are the boundary conditions of
the problem. The minimum jet cross section Sj is evaluated experimentally and
imposed in the model as parameter.

5.4.2 Low inflow regime

The fluid dynamic behavior of a wall perforation in the low inflow regime is deter-
mined using a simplified model.

The flow through a wall perforation at low inflow conditions (Fig. 5.8-b) can be
separated into four regions: the grazing flow upstream of the perforation, the com-
pact flow in the region around the wall perforation, the grazing flow downstream
of the perforation, and the uniform flow in the impedance tube (Fig. 5.11).

In contrast with the pure bias inflow case (Sec. 5.4.1) the vena contracta factor
Γ = Sj/Sh = UB/Uj is not a constant. It is now a function of the ratio UB/UG
of bias flow velocity to grazing flow velocity. At very low inflow Uj ≈ UG so that
Γ ≈ UB/UG is very small. With increasing inflow, Γ increases asymptotically to
the pure bias flow value Γ0.
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The basic approximations used are defined by introducing a set of dimensionless
numbers: MG = UG/c0, Mach number; SrG = fW/UG, Strouhal number; ReG =
UGW/ν, Reynolds number. Here UG is the steady main grazing flow velocity in the
duct, c0 is the speed of sound, f is the frequency of the hydrodynamic instabilities,
W is the width of the wall perforation in the flow direction, and ν is the kinematic
viscosity.

As for the pure bias inflow (Sec. 5.4.1) the focus is on high Reynolds number
flows ReG = O

(
104
)
. The effect of friction is only taken into account implicitly

by assuming flow separation at the sharp edges and turbulent mixing in the jet.
Heat transfer is also neglected. Furthermore, we assume a steady flow (SrG � 1)
and we neglect compressibility effects (MG � 1)

Figure 5.11 – Schematic representation of a steady flow through a wall perforation
in the low bias inflow regime for perforation geometry Plate-B.

The incompressible steady model of the flow through a wall perforation in
the low inflow regime is presented (Fig. 5.11). In this model the grazing flow is
considered to flow along the duct that has a wall aperture backed by a cavity
(impedance tube). The steady main grazing flow is from section 1 to section 2.
Part of the flow is diverted from the duct into the impedance tube forming a free
jet (cross sectional area Sj) at section j. Section 1 and section 2 are respectively
on the upstream and on the downstream boundaries of the control volume C1.
Section j is where we have the free jet exit. Sduct and Sh indicates respectively
the cross sectional area of the duct and of the perforation. Downstream of section
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j the jet becomes turbulent in the mixing region (control volume C2 in Fig. 5.11).
At the end of this turbulent mixing region the flow evolves into a uniform flow. In
the turbulent mixing region some pressure recovery takes place. Friction, which is
essential in the bulk of this region, can be neglected at the walls.

In addition to the basic approximations previously presented we introduce other
assumptions. The most important one is that we neglect pressure variations along
the duct walls upstream and downstream of the wall perforation. This approxi-
mations implies that we neglect the pressure load in the y direction, normal to
the duct flow, along the duct between the border of the control volume and the
edges of the perforation. The velocity outside the jet is assumed to be negligibly
small and at the minimum cross section of the jet the pressure is assumed to be
uniform over the tube cross section. The flow in the jet region is assumed to be
directed in the direction of the downstream side wall of the perforation. In our
case this coincides with the axis of the perforation. This corresponds to the low
inflow regime of Plate-B (Fig. 5.6).

The basic equations of our model are the integral mass conservation equation
in the control volume C1 (Fig. 5.11), the equation of Bernoulli applied along the
streamline from section 1 to section 2 and from section 1 to section j (Fig. 5.11),
the integral mass conservation equation and the momentum equation applied in
the turbulent mixing region (control volume C2 in Fig. 5.10):

ρ0UGSduct − ρ0U2Sduct − ρ0UjSj = 0

p1 + 1
2ρ0U

2
G − p2 − 1

2ρ0U
2
2 = 0

p1 + 1
2ρ0U

2
G − pj − 1

2ρU
2
j = 0 (5.20)

ρ0UjSj − ρ0UtubeStube = 0

ρ0U
2
tubeStube − ρ0U

2
j Sj + ptubeStube − pjStube = 0

Up to now we have 5 equations with 9 unknowns: UG, p1, Utube, U2, p2, Uj ,
pj , Sj and ptube. The flow velocity and the pressure at the section 1, respectively
UG and p1, and the flow velocity in the tube Utube are the boundary conditions of
our problem. In order to close the system of equations we need one more equation.
Following Hofmans [94], we use the integral balance of the y-momentum in the
control volume C1. Remembering that we neglect the pressure loads in the y
direction along the duct between the border of the control volume C1 and the
edges of the perforation, the y-momentum equation is:

ρ0u
2
jSj + pjSh − Sh [p1 +Kh (p2 − p1)] = 0 (5.21)

where Kh is a constant taking care of the net result of the pressure integration
along the walls of the duct. The value Kh = 1/2 used here is a first guess.

Vena Contracta

A low inflow conditions, the flow separates tangentially along the duct wall at the
sharp upstream edge of the duct side of the perforation (Fig. 5.11). A wall jet
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is formed along the downstream side wall of the perforation. This jet separates
tangentially from this side wall, as it leaves the perforation (Fig. 5.11). For Plate-
B (Fig. 5.6) this jet flows along the axis of the perforation in the y-direction.
The vena contracta, also called contraction ratio, Γ is defined as the ratio Sj/Sh
of the minimum jet cross section Sj and the minimum cross section of the wall
perforation Sh.

Figure 5.12 – Measured vena contracta (contraction ratio) Γ = Sj/Sh as function of
the Mach number of the bias flow MB for the different wall perforations presented in
Fig. 5.6. Grazing-bias flow combination with grazing flow velocity UG = 12.8 m/s and
bias inflow. The grazing flow is laminar. The horizontal lines are the vena contracta
values measured for the pure bias inflow condition, as presented in Fig. 5.9. Solid
line: Plate-A,C,D. Dashed line: Plate-B,E.

The vena contracta Γ has been measured as function of the Mach number of
the bias flow MB for the different wall perforations presented in Fig. 5.6. These
measurements have been carried out with a grazing flow of UG = 12.8 m/s with
a laminar boundary layer. In addition one measurement series has been carried
out for a turbulent flow of UG = 12.8 m/s. The flow velocity at the jet exit Uj
is evaluated measuring the pressure difference between the duct section upstream
of the wall perforation p1 and the jet pj , and the grazing flow velocity UG, Uj =√
U2
G + 2 (p1 − pj) /ρ0. A static pressure hole is drilled in the impedance tube

at y = −2 cm. Neglecting variations of the pressure between the jet and this
position in the impedance tube, we use this pressure as estimate for the jet pressure
pj . The bias flow velocity UB is evaluated through the measured volume flow
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rate determined by means of the turbine flow meter. The grazing flow velocity
is evaluated by measured the pressure difference between the settling chamber of
the silent wind tunnel p0 and the duct section upstream of the wall perforation
p1: UG =

√
2 (p0 − p1) /ρ0. The vena contracta value is then defined as the ratio

between the bias flow velocity UB and the jet velocity Uj , Γ = Sj/Sh = UB/Uj .
We implicitly assume a uniform flow in the jet at the vena contracta section.

Figure 5.13 – Measured vena contracta (contraction ratio) Γ = Sj/Sh as function
of the Mach number of the bias flow MB for Plate-B (Fig. 5.6). Grazing-bias flow
combination with grazing flow velocity UG = 12.8 m/s and bias inflow. The grazing
flow is either laminar (Plate-B) or turbulent (Plate-B-turb). The turbulent grazing
flow is obtained by tripping the boundary layer. The predictions of the theoretical
model (dash-dotted line) and of the theoretical model corrected (solid line) are also
presented.

The measured vena contracta Γ as function of the Mach number of the bias flow
MB = UB/c0 is shown in Fig. 5.12, for each wall perforation, keeping the grazing
flow velocity constant UG = 12.8 m/s. For vanishing small bias flow (UB → 0) the
vena contracta approaches zero (Γ→ 0). It increases with increasing the bias flow
velocity UB and it tends asymptotically to the value measured in the pure bias
flow regime (Fig. 5.9). Both the shape of the evolution of the vena contracta as
function of the bias flow velocity UB and the asymptotic value for large UB/UG (as
observed in Sec. 5.4.1) are quite sensitive to the geometry of the wall perforation.
The effect of the boundary layer characteristics of the grazing flow on the vena
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contracta of the thick wall perforation (double 90◦ edge geometry, Plate-B) has
been studied by keeping the grazing flow velocity constant UG = 12.8 m/s and
tripping the flow at the silent wind tunnel exit section by means of a strip of
sandpaper. The two different boundary layers, laminar (Plate-B in Fig. 5.13) and
turbulent (Plate-B-turb in Fig. 5.13), lead to a considerable difference in the vena
contracta.

The results of the theoretical model are compared in Fig. 5.13 with the mea-
surements of the vena contracta Γ as function of the Mach number of the bias
flow MB . As can be deduced from the assumptions on which the theoretical model
is based, it should be compared with the thick wall perforation (Plate-B). The
theoretical model (dash-dotted line in Fig. 5.13) underestimates the experimental
results but it reproduces the shape of the evolution of the vena contracta Γ as
function of the bias flow Mach number MB . In particular we can observe that for
MB/MG →∞, the model tends to the Borda [176] theoretical value Γ = 0.5, while
the experiments tends to the value Γ = 0.8. This difference is due to the fact that
the theoretical model assumes uniform pressures p1 and p2 in the duct respec-
tively upstream and downstream of the perforation. This implies that the pressure
contribution from the duct to the momentum balance (Eq. (5.21)) vanishes out-
side the perforation. Neglecting this pressure contribution, for the limit case of
MB/MG → ∞ the theoretical model becomes identical to the model of Borda
[176]. In order to retrieve the limit value of Γ = 0.8 for MB/MG →∞ we propose
a correction of the theoretical model that consists of adjusting the y-momentum
equation (Eq. (5.21)) by substituting to the minimum cross sectional area Sh of
the perforation an equivalent perforation opening Γexp (Sh/Sj)Sh, where Γexp is
the experimental asymptotic value of the vena contracta for the pure bias flow
regime (MB/MG →∞). The corrected y-momentum equation is then:

ρ0u
2
jSj + pjΓexp

S2
h

Sj
− Γexp

S2
h

Sj
[p1 +Kh (p2 − p1)] (5.22)

where Sj is one of the variables in our model.
The corrected theoretical model (solid line in Fig. 5.13) is in reasonably good

agreement with the experimental results for Plate-B and laminar grazing flow.

5.5 Quasi-steady aeroacoustic response of a wall
perforation

The aeroacoustic behavior of a wall perforation is predicted using a simplified
model. The main assumptions of this model are to consider quasi-steady high
Reynolds number flows and compact aeroacoustic source region. The compactness
of the source region is measured by the Helmholtz number HeD = fDtube/c0,
where f is the acoustic frequency. A compact source region is characterized by
HeD � 1.
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In order to determine the aeroacoustic response of a wall perforation, acoustic
perturbations are introduced in the steady flow models described in Sec. 5.4. The
oscillation of the flow quantities is indicated by an apostrophe, around a mean
value, indicated by an over bar:

p = p̄+ p′ (5.23)

U = Ū + u′ (5.24)

ρ = ρ̄+ ρ′ (5.25)

A classic method to evaluate the acoustic behavior of the wall perforation
is to linearize the equations describing the steady flow model, split the acoustic
perturbations into downstream traveling waves and upstream traveling waves, and
rewrite the equations in terms of a scattering matrix [27]. We propose here a
different method to calculate the acoustic resistance of a wall perforation.

We do not attempt to obtain an analytical expression but rather solve the
model numerically. The main idea is to solve numerically the non-linear equations
describing the steady flow model for two slightly different flow conditions. The
difference between the results of the two calculations provides the perturbations in
any of the relevant quantities. We calculate in particular the pressure and velocity
perturbations in the tube. The acoustic resistance of the wall perforation is given
by:

r =
Sh
Stube

p
′

tube

u
′
tube

(5.26)

The quasi-steady model ignores inertial effects and does therefore not predict
end corrections.

5.6 Aeroacoustics of a wall perforation in the pure
bias flow regime

The effect of the bias flow on the impedance of a wall perforation is evaluated by
subtracting the impedance measured without flow from the impedance measured
with flow (Sec. 5.2.5).

Fig. 5.14 shows the measured impedance Zh− of the wall perforation with
double sharp 27◦ edges (Plate-A) as function of the frequency f in the absence
of flow (UB = UG = 0), and in the case of pure bias (UG = 0) inflow of UB =
3.3, 6.3, 18.2 m/s. The effect of the bias flow on the impedance is significant. In
the frequency range considered the flow increases the resistance r almost linearly
with MB , so that it enhances the sound absorption quality of the perforation.
Furthermore, the bias flow is observed to decrease the reactance over the whole
frequency range.

Fig. 5.15 shows the measured non-dimensional scaled impedance Zh− of the
wall perforation with double sharp 90◦ edges (Plate-B) as function of the Strouhal
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Figure 5.14 – Resistance r = Re (Zh−) (a) and reactance δ = 1/k0Im (Zh−) (b)
of the wall perforation with double sharp 27◦ edges (Plate-A) as function of the
frequency f in the absence of flow (UB = UG = 0), and in the case of pure bias
(UG = 0) inflow of UB = 3.3 m/s (circles), UB = 6.3 m/s (triangles) and UB =
18.2 m/s (pluses).
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Figure 5.15 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) of the
wall perforation with double sharp 90◦ edges (Plate-B) as function of the Strouhal
number SrB = fW/UB (based on the perforation width W and the bias flow velocity
UB) in the case of bias inflow of UB = 15.5 m/s (circles), UB = 19.8 m/s (triangles)
and UB = 38.4 m/s (pluses).
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Figure 5.16 – Non-dimensional scaled resistance r̃ of the wall perforation with
chamfered edges at the duct side (Plate-G) as function of the Strouhal number
SrB = fW/UB (based on the perforation width W and the bias flow velocity UB).
(a) pure bias inflow of UB = 4.6 m/s (circles), UB = 11.1 m/s (triangles) and UB =
15.4 m/s (pluses). (b) pure bias outflow of UB = 3.0 m/s (circles), UB = 8.7 m/s
(triangles) and UB = 15.9 m/s (pluses).
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number SrB = fW/UB (based on the perforation width W and the bias flow
velocity UB) in the case of pure bias (UG = 0) inflow of UB = 15.5, 19.8, 38.4 m/s.
As for Plate-A we observe that the resistance r is proportional to MB and it is
now strongly dependent on the Strouhal number SrB . Two different features can
be observed for this wall perforation. At certain values of the Strouhal number, for
SrB ≈ 0.5 in the case of UB = 15.5 m/s, a negative resistance (sound production)
is observed. Furthermore, around SrB ≈ 0.16 a local minimum of the resistance
is observed. It indicates a sound production potentiality of the wall perforation at
this critical Strouhal number. If based on the thickness of the perforation H, these
critical Strouhal numbers SrH = fH/U are: SrH ≈ 0.24 and SrH ≈ 0.75. This
behavior is very similar to the whistling observed by Testud et al. [205] in the case
of thick orifice plates in a duct, around SrH ≈ 0.25 and SrH ≈ 0.75.

The effect of the geometry of the perforation edges has been studied by cutting
the outer edges of Plate-B, so that the new perforated plate (Plate-G) presents
chamfered edges of 45◦ instead of sharp 90◦ edges. In the pure bias inflow con-
dition this modification has a marginal effect on the aeroacoustic response of the
perforation (Fig. 5.16-a). The resistance at low Strouhal numbers decreases. The
local minima, that are now around SrW ≈ 0.25 and SrW ≈ 1 does not change
significantly their amplitude.

By inverting the flow direction, so that the bias flow is directed from the tube
to the duct we obtain the pure bias outflow regime. In this condition the presence
of chamfered edges is observed to lead to a significant change of the aeroacoustic
response of the wall perforation (Fig. 5.16-b). The local minimum of the resistance
around SrW ≈ 0.25 observed for the bias inflow condition becomes now a region
of negative resistance, so that sound production is observed. Furthermore, the
absolute value of the resistance in the sound production region around SrW ≈ 1
is considerably increased.

The whistling response of Plate-G can qualitatively be explained by means of
the vortex sound theory as for the “whistler” nozzle [89]. At outflow, chamfering
reduces the vortex sound absorption at the downstream (chamfered) edges. The
same phenomena has been predicted numerically by Golliard et al. [78]. Please
note that in Testud et al. [205] there is a typing error. The paper mentions that
downstream chamfer reduces whistling while the opposite was observed experi-
mentally.

5.6.1 Low Strouhal number behavior

The results of the theoretical model are compared in this section with the mea-
surements of the acoustic impedance of wall perforations. The measured and the
predicted resistance r = Re (Zh−) of different wall perforations is presented in
Fig. 5.17 as function of the Mach number of the bias flow MB at a frequency of
f = 93 Hz.

The evolution of the resistance r = Re (Zh−) as function of the Mach number
of the bias flow MB strongly depends on the geometry of the wall perforation. A
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thin wall perforation (Plate-A, double sharp 27◦ edges) displays higher values of
resistance then a thick wall perforation (Plate-B, double 90◦ edges).

Flow separation at the outer edges (on the duct side) of the thick wall per-
foration (Plate-B) can be reduced by rounding these edges. Plate-G is obtained
by cutting the outer edges of Plate-B, so that it presents chamfered edges of 45◦

instead of sharp 90◦ edges. The chamfers have a width of 3 mm. This modification
has been shown to lead to a considerable reduction of the jet contraction Γ0 = 0.95
(Fig. 5.9). The resistance r = Re (Zh−) of the thick perforation with chamfered
edges (Plate-G) is lower than that of both the thin perforation (Plate-A) and the
thick perforation with sharp edges (Plate-B).

Figure 5.17 – Measured (symbols) and predicted (lines) resistance r = Re (Zh−) of
different wall perforations as function of the Mach number of the bias flow MB at a
frequency of f = 93Hz.

The quasi-steady compressible model provides accurate predictions for the
acoustic response of the thin wall perforation (Plate-A), the thick wall perfora-
tion (Plate-B), and the thick wall perforation with chamfered edges (Plate-G).
This agreement between theory and experiments indicates that the assumption
of the theoretical model are reasonable. A particularly strong assumption was to
assume a constant vena contracta factor.
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5.7 Aeroacoustics of a wall perforation in the pure
grazing flow regime

The effect of the grazing flow on the impedance of a wall perforation is evaluated by
subtracting the impedance measured without flow from the impedance measured
with flow (Sec. 5.2.5).

Fig. 5.18 shows the measured impedance Zh− of the wall perforation with dou-
ble sharp 27◦ edges (Plate-A) as function of the frequency f in the case of no-mean
flow, and in the case of a turbulent grazing flow of UG = 16.8 m/s. At low frequen-
cies the flow increases the resistance, here absorption of sound occurs. Increasing
the frequency, this effect becomes weaker and around f = 340 Hz a region in
which the resistance is negative starts, so that sound production occurs. Around
f = 560 Hz the resistance has a minimum, after which there is a sharp transi-
tion to a region of high sound absorption. The sharp transition in the resistance
coincides with a peak in the reactance.

The effect of the boundary layer characteristics of the grazing flow on the
impedance of wall perforations has been investigated. As explained in Sec. 5.2.4,
we have varied the main flow velocity of the grazing flow UG and we have tripped
the grazing flow. In Figs. 5.19, 5.20 and 5.21 we present the non-dimensional
scaled resistance and reactance for Plate-A, Plate-B and Plate-E respectively, for
two different flows: a turbulent flow of UG = 16.8 m/s and a laminar flow of
UG = 12.8 m/s (Sec. 5.2.4). The results are plotted as function of the Strouhal
number SrG = fW/UG based on the perforation width W and the grazing flow
velocity UG.

For increasing Strouhal number, alternatively positive and negative regions are
observed for both resistance and reactance. These regions are observed to corre-
spond to lower Strouhal numbers for the case of the turbulent flow, if compared to
the laminar flow case. The wall perforation with double sharp 27◦ edges (Plate-A)
shows, for the turbulent flow, larger oscillations in resistance and reactance than
for the laminar flow. However, the thick wall perforation (Plate-B) and the slanted
wall perforation (Plate-E) display a different behavior. The oscillations in resis-
tance and reactance are observed to decrease their amplitude with the turbulent
flow.

The influence of the geometry of the wall perforation on the acoustic impe-
dance due to grazing flow is investigated for the case of turbulent grazing flow
(Sec. 5.2.4) of UG = 16.8 m/s. The different geometries tested are shown in Fig.
5.6 and the results are presented in Fig. 5.22. The perforation geometry clearly
affects the behavior of both the resistance and the reactance. Compared to the
double sharp 90◦ edge geometry (Plate-B), the geometry with double sharp 27◦

edges shows a considerable increase in the amplitude of the oscillations of both
the resistance and the reactance. These is mainly due to the effect of the down-
stream edge geometry, as shown by Kooijman et al. [130]. The geometry with a
single sharp 27◦ edge upstream (Plate-C) was observed to give similar results to
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Figure 5.18 – Resistance r = Re (Zh−) (a) and reactance δ = 1/k0Im (Zh−) (b)
of the wall perforation with double sharp 27◦ edges (Plate-A) as function of the
frequency f in the case of no-mean flow (stars) and in the case of a turbulent grazing
flow of UG = 16.8 m/s (circles).
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Figure 5.19 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) due to
grazing mean flow along the wall perforation with double sharp 27◦ edges (Plate-A)
for laminar (squares) and turbulent (circles) flows.
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Figure 5.20 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) due to
grazing mean flow along the wall perforation with double sharp 90◦ edges (Plate-B)
for laminar (squares) and turbulent (circles) flows.
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Figure 5.21 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) due to
grazing mean flow along the wall perforation slanted in the direction of the flow with
an inclination of 30◦ from the plate (Plate-E) for laminar (squares) and turbulent
(circles) flows.
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Figure 5.22 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforations with different edge geometry of Fig. 5.6 in the case of turbulent
boundary layer of the grazing flow UG = 16.8m/s. Symbols: stars, 90◦ edges both
sides (Plate-B); circles, sharp 27◦ edges both sides (Plate-A); crosses, chamfered
edges (Plate-G); squares, slanted 45◦ in flow direction (Plate-E); triangles, slanted
45◦ opposite to flow direction (Plate-F).
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the double sharp 90◦ edge geometry (Plate-B), while the geometry with a single
sharp 27◦ edge downstream (Plate-D) was observed to increase considerably the
resistance and reactance peaks [130]. The crucial effect of the edge geometry of a
wall perforation on the impedance due to a grazing main flow is further confirmed
by the experimental results of the wall perforation with chamfered edges (Plate-
G). This geometry shows a considerable reduction of the oscillation amplitudes in
resistance and reactance, when compared to the geometry with sharp 90◦ edges
(plate-B).

Widely diffused in technical applications are slanted wall perforations. Plate-E
and Plate-F present a sharp edged slanted wall perforation with an inclination of
30◦ from the plate. The wall perforation slanted in the flow direction (Plate-E)
displays sound production qualities (negative resistance) at low Strouhal numbers.
This is a peculiar characteristic of this geometry, because all the other perforations
have a Strouhal region of positive resistance at low Strouhal numbers. Furthermore,
Plate-E displays oscillations in resistance and reactance that are similar to those
displayed by the thick wall perforation (Plate-B). The direction of the slanting is
important, as can be observed from the experimental results of the wall perforation
slanted in the direction opposite to the grazing flow (Plate-F). The resistance
is now positive in the whole Strouhal number range considered. The oscillating
behavior in resistance and reactance is almost completely absent.

5.8 Aeroacoustics of a wall perforation subjected
to a grazing-bias flow

The effect of a grazing-bias flow on the impedance of a wall perforation is measured
by keeping a constant grazing flow and varying the bias flow through the wall
perforation. These measurements have been carried out with a turbulent grazing
flow of UG = 16.8 m/s and for the wall perforations: Plate-A, Plate-B, Plate-E,
Plate-F and Plate-G. These are the flow condition and the perforation geometries
more relevant for technical applications, such as liners and mufflers. The results of
this experimental characterization are presented in Sec. 5.8.1 for the grazing-bias
inflow condition and in Sec. 5.8.2 for the grazing-bias outflow condition.

5.8.1 Grazing-bias inflow condition

The wall perforation with sharp 27◦ edges both upstream and downstream (Plate-
A) displays a strongly oscillatory behavior (peaks) of the resistance as function of
Strouhal number SrG in the pure grazing flow condition. The addition of a bias
inflow component UB/UG = 0.51 is observed to have the beneficial effect to reduce
these peaks and to enhance the sound absorption at low Strouhal numbers (Fig.
5.23), in terms of resistance value and dimension of the absorption region (from
SrG < 0.2 for UB/UG = 0 up to SrG < 0.33 for UB/UG = 0.51). Further increase
of the bias inflow to UB/UG = 0.8 and UB/UG = 2.9 enhances the absorbing
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Figure 5.23 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with sharp 27◦ edges both upstream and downstream (Plate-A in
Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s and different values of the bias
inflow velocity UB .
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Figure 5.24 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with double sharp 90◦ edges (Plate-B in Fig. 5.6). Turbulent grazing
flow UG = 16.8 m/s and different values of the bias inflow velocity UB .
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Figure 5.25 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with chamfered edges of 45◦ (Plate-G in Fig. 5.6). Turbulent grazing
flow UG = 16.8 m/s and different values of the bias inflow velocity UB .
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Figure 5.26 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation slanted in the direction of the grazing flow with an inclination of
30◦ from the plate (Plate-E in Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s and
different values of the bias inflow velocity UB .
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Figure 5.27 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation slanted in the direction opposite to the grazing flow direction with
an inclination of 30◦ from the plate (Plate-F in Fig. 5.6). Turbulent grazing flow
UG = 16.8 m/s and different values of the bias inflow velocity UB .
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qualities of this perforation, such that in the Strouhal range considered SrG < 0.5
the region of negative resistance (sound production) disappears. Concerning the
reactance, the addition of a bias inflow component has the effect to suppress the
positive peak observed for the pure grazing flow condition. Furthermore, a negative
peak of reactance is observed at high bias inflow values UB/UG = 2.9.

For the wall perforation with a double 90◦ edge geometry (Plate-B), com-
pared to the case with only grazing flow, the addition of a bias inflow component
UB/UG = 0.37 is observed to shift to higher Strouhal SrG values the region of
negative resistance (sound production) and to increase its absolute value (Fig.
5.24). The low Strouhal number region of sound absorption is globally increased
(high resistance) by the addition of the bias inflow. However, an interesting as-
pect is that a local minimum of the resistance is observed around SrG = 0.18.
It indicates a whistling potentiality of the wall perforation. This feature was not
observed in the thin wall perforation (Plate-A). This local minimum in the resis-
tance corresponds to a change in sign from negative to positive in the reactance.
Further increase of the bias inflow up to UB/UG = 0.84 and UB/UG = 1.5 leads
to an overall increase of the resistance at low Strouhal numbers. The negative
resistance (sound production) region vanishes in the considered Strouhal number
range SrG < 0.5 and when the bias flow velocity is comparable to the grazing flow
velocity UB/UG = 0.84 an extended region of high sound absorption is observed
around SrG = 0.4. The further increase of the bias inflow to UB/UG = 2.21 in-
duces further increase of the absorption qualities for SrG < 0.4. However, a sound
production region is observed around SrG = 0.45. Negative values of reactance
are observed at low Strouhal numbers. These negative regions increase as the bias
inflow increases.

The aeroacoustic response of wall perforations subjected to pure grazing flow
is sensitive to the geometry of the edges of the perforation, as observed in Sec. 5.7.
The effect of the sharpness of the edges of the thick wall perforation (Plate-B) in
the case of a grazing-bias inflow has been studied by cutting the outer edges (on
the duct side) of Plate-B at 3 mm from the edge with an angle of 45◦. The new
perforated plate (Plate-G) presents chamfered edges of 45◦ instead of sharp 90◦

edges. This small modification of the edge shape induces significant differences in
the aeroacoustic response of the perforation. For low bias inflow UB/UG = 0.44,
the whistling potentiality observed in the low Strouhal region for Plate-B, now
leads to an effective whistling of the wall perforation (Plate-G). The resistance
has a negative value around SrG = 0.25. Increasing the bias inflow velocity, the
change in resistance behavior seems more gradual than in the case of a sharp
edged orifice. At UB/UG = 0.89 the graph of the resistance resembles the one
for UB/UG = 0.44. Another significant difference between Plate-B and Plate-G is
that at high bias inflow, UB/UG = 2.26, Plate-G displays positive resistance (sound
absorption) in the whole Strouhal range SrG < 0.8. An interesting observation is
that at similar values of UB/UG, the perforation with chamfered edges (Plate-G)
leads to lower acoustic absorption than the perforation with sharp edges (Plate-A).
It is acoustically a less efficient absorbing geometry.
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Figure 5.28 – Measured resistance r = Re (Zh−) of different wall perforations
as function of the ratio MB/MG of the bias inflow Mach number MB to grazing
flow Mach number MG, at a frequency of f = 93 Hz and grazing turbulent flow
of UG = 16.8 m/s (a). Measured vena contracta (contraction ratio) Γ = Sj/Sh as
function of the ratio MB/MG of the bias inflow Mach number MB to grazing flow
Mach number MG, for grazing turbulent flow of UG = 16.8 m/s (b).
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The slanted wall perforation of Plate-E, as discussed in Sec. 5.7, in the pure
grazing flow condition shows an oscillating behavior of the resistance that has a pe-
culiar characteristics of having a region of negative resistance (sound production)
at low Strouhal numbers SrG < 0.3. The addition of a bias inflow UB/UG = 0.23
does not modify strongly the resistance behavior. However, for UB/UG = 0.56
and UB/UG = 1 the absorption qualities of the wall perforation are significantly
enhanced, leading to an extended region of positive resistance. If the perforation
is slanted in the direction opposite to the flow, like in the wall perforation of
Plate-F, the acoustic absorbing qualities are improved if compared to the per-
foration slanted in the direction of the flow (Plate-E). This is confirmed by the
extended region of positive resistance (sound absorption) that spans through the
whole Strouhal range. Besides the good performances as acoustic absorber, such
perforations has poor fluid dynamic qualities, leading to high pressure losses.

The low Strouhal number behavior of different wall perforation geometries is
summarized in Fig. 5.28-a. The measured resistance r = Re (Zh−) is presented as
function of the ratio MB/MG of the bias inflow Mach number MB to grazing flow
Mach number MG, at a frequency of f = 93 Hz and for a grazing turbulent flow
of UG = 16.8 m/s.

The evolution of the resistance r = Re (Zh−) as function of the Mach ratio
MB/MG depends strongly on the geometry of the wall perforation. As can be
deduced from Fig. 5.28-b, there is an inverse proportionality between the acoustic
resistance r and the contraction ratio Γ: r ∝ 1/Γ. Since the contraction ratio is
inversely proportional to the steady-state resistance, we can conclude that the low
frequency acoustic resistance of a perforation is proportional to the steady-state
resistance.

5.8.2 Grazing-bias outflow condition

The aeroacoustic response of the wall perforation with sharp 27◦ edges both up-
stream and downstream (Plate-A) seems to be more sensitive to the addition of a
bias outflow component (from the tube to the duct) than to a bias inflow (from the
duct to the tube). A bias outflow of UB/UG = 0.51 eliminates the region of negative
resistance (Fig. 5.29), observed in the pure grazing flow condition (UG = 16.8 m/s,
UB = 0), while a bias inflow of the same magnitude (Fig. 5.23) only reduces these
negative resistance region. Even a small bias outflow of UB/UG = 0.15 is observed
to eliminate almost completely the negative resistance region. It is interesting to
note that for bias flow velocity close to the grazing flow velocity UB/UG ≈ 1, the
outflow condition has the same effect on the resistance as the inflow condition.
This can be observed by comparing the bias inflow of UB/UG = 0.83 (Fig. 5.23)
with the bias outflow of UB/UG = 0.91 (Fig. 5.29).

The impedance of the thick wall perforation subjected to a grazing turbulent
flow and a bias outflow is presented in Fig. 5.30. The addition of a small bias
outflow component UB/UG = 0.17 does not modify significantly the overall evolu-
tion of the resistance as function of the Strouhal number SrG. A further increase
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Figure 5.29 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with sharp 27◦ edges both upstream and downstream (Plate-A in
Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s and different values of the bias
outflow velocity UB .
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Figure 5.30 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with double sharp 90◦ edges (Plate-B in Fig. 5.6). Turbulent grazing
flow UG = 16.8 m/s and different values of the bias outflow velocity UB .
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Figure 5.31 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation with chamfered edges of 45◦ (Plate-G in Fig. 5.6). Turbulent grazing
flow UG = 16.8 m/s and different values of the bias outflow velocity UB .
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Figure 5.32 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation slanted in the direction of the grazing flow with an inclination of
30◦ from the plate (Plate-E in Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s and
different values of the bias outflow velocity UB .
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Figure 5.33 – Non-dimensional scaled resistance r̃ (a) and reactance δ̃ (b) for the
wall perforation slanted in the direction opposite to the grazing flow direction with
an inclination of 30◦ from the plate (Plate-F in Fig. 5.6). Turbulent grazing flow
UG = 16.8 m/s and different values of the bias outflow velocity UB .
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of the bias outflow, up to UB/UG = 0.41, leads to an enforcement of the oscil-
latory behavior of the resistance. Several peaks, local minima and maxima, are
now observed in the Strouhal range considered SrG < 0.5. This oscillatory behav-
ior is maintained also at higher bias outflow values UB/UG = 0.84. The case of
grazing-bias flow with bias outflow (Fig. 5.30) has an aeroacoustic response that is
substantially different from that of a grazing-bias flow with bias inflow (Fig. 5.24).
The flow in these two conditions is very different, as discussed in Sec. 5.3.

In the pure grazing flow (Sec. 5.7) and grazing-bias inflow (Sec. 5.8.1) cases,
the geometry of the edges of the perforation influence the aeroacoustic response
of the thick wall perforation. This effect is less evident in the grazing-bias out-
flow case. The wall perforation with chamfered edges (Plate-G) shows an overall
shape of the resistance as function of the bias outflow (Fig. 5.31) similar to that
of the wall perforation with sharp 90◦ edges (Plate-B, Fig. 5.30): a small bias
outflow UB/UG = 0.26 does not significantly modify the resistance respect to the
pure grazing flow; a moderate bias outflow UB/UG = 0.48 enforces the oscilla-
tory behavior of the resistance; the oscillations are maintained as the bias outflow
increases up to UB/UG = 0.9.

Figure 5.34 – Measured resistance r = Re (Zh−) of different wall perforations as
function of the ratio MB/MG of the bias outflow Mach number MB to grazing
flow Mach number MG, at a frequency of f = 93 Hz and grazing turbulent flow of
UG = 16.8 m/s.

A wall perforation slanted of 30◦ in the direction of the grazing flow (Plate-
E) subjected to pure grazing turbulent flow (Fig. 5.32) shows a region of negative
resistance (sound production) at low Strouhal numbers. This region can be reduced
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by the addition of a bias outflow. A low bias outflow of UB/UG = 0.27 leads to a
positive resistance up to SrG = 0.12 and a bias outflow of UB/UG = 0.59 leads to
a positive resistance up to SrG = 0.85. The addition of a bias inflow was observed
(Fig. 5.26) to be less effective in reducing the negative resistance region of the pure
grazing flow condition. If the perforation is slanted in the direction opposite to the
grazing flow direction (Plate-F), the acoustic absorbing qualities are improved
compared to the perforation slanted in the direction of the grazing flow (Plate-E).
The resistance is globally enhanced (Fig. 5.33) by the presence of a bias outflow
component. However, a bias outflow (Fig. 5.33) is less effective than a bias inflow
(Fig. 5.27) in enhancing the resistance.

The low Strouhal number behavior of different wall perforation geometries is
summarized in Fig. 5.34. The measured resistance r = Re (Zh−) is presented as
function of the ratio MB/MG of the bias outflow Mach number MB to grazing
flow Mach number MG, at a frequency of f = 93 Hz and for a grazing turbulent
flow of UG = 16.8 m/s.

5.8.3 Comparison between the grazing-bias inflow and the
grazing-bias outflow conditions

The comparison between the effect of a grazing-bias inflow and a grazing-bias
outflow on the non-dimensional scaled resistance r̃ is presented in Figs. 5.35 and
5.36 for the wall perforations technically more interesting (Plate-B, Plate-G, Plate-
E and Plate-F) and for the flow condition MB/MG ≈ 1.

The low Strouhal region in which is safe to operate a wall perforation is larger
in the grazing-bias inflow condition than in the grazing-bias outflow condition. For
Plate-G (Fig. 5.35-b) and Plate-E (Fig. 5.36-a) the addition of a bias outflow leads
to higher values of the resistance than the addition of a bias inflow. However, this
beneficial effect on the sound absorption qualities of these perforations is hampered
by the considerable shrinkage of these regions of positive resistance.

5.9 Conclusions

A clear understanding of the effect of the flow on the acoustic properties of wall
perforations is essential for the design of acoustic dampers, such as aero-engine
liners, IC-engine exhaust mufflers, and liners in combustion chambers. The effect of
a grazing-bias flow combination on the impedance of slit shaped wall perforations
is experimentally investigated by means of a multi-microphone impedance tube
setup. Measurements are carried out for the perforation geometries more commonly
encountered in technical applications.

In the low Strouhal number limit the effect of the flow on the perforation
impedance is observed to be sensitive to the perforation geometry. The acoustic
resistance (real part of the impedance) of a perforation, that measures its sound
absorption quality, is observed to be proportional to the steady-state resistance.
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Figure 5.35 – Non-dimensional scaled resistance r̃ for (a) the wall perforation with
double sharp 90◦ edges (Plate-B in Fig. 5.6) and (b) the wall perforation with cham-
fered edges of 45◦ (Plate-G in Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s.
Comparison between pure grazing flow (stars), grazing-bias inflow (triangles) and
grazing-bias outflow (circles).
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Figure 5.36 – Non-dimensional scaled resistance r̃ for (a) the wall perforation
slanted in the direction of the grazing flow with an inclination of 30◦ from the plate
(Plate-E in Fig. 5.6) and (b) the wall perforation slanted in the direction opposite
to the grazing flow direction with an inclination of 30◦ from the plate (Plate-F in
Fig. 5.6). Turbulent grazing flow UG = 16.8 m/s. Comparison between pure grazing
flow (stars), grazing-bias inflow (triangles) and grazing-bias outflow (circles).
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However, a high value of the steady-state resistance leads to high pressure losses
across the perforation. The design of an efficient acoustic damper requires an
optimization between acoustic and fluid dynamic performances.

Both resistance (real part of the impedance) and reactance (imaginary part
of the impedance) due to a grazing-bias flow display an oscillating behavior as
function of the Strouhal number. In particular, at high Strouhal numbers, posi-
tive (sound absorption) and negative (sound production) values of resistance are
observed. The geometry of the perforation determines the whistling behavior at
high Strouhal numbers. This operating condition should be strongly avoided in
technical applications. The Strouhal number can be kept low by adopting narrow
perforations.

Analytical models of the steady flow and of the low frequency (quasi-steady)
aeroacoustic behavior of a two dimensional wall perforation are proposed. In
the pure bias inflow regime the theoretical prediction (quasi-steady compressible
model) of the resistance compares favorably with the experiments. Furthermore,
the effect of the shape of the perforation on its whistling behavior in the pure bias
flow regime (both inflow and outflow) can be explained by means of the vortex
sound theory. In the grazing-bias inflow regime, the theoretical prediction (steady
incompressible model) of the contraction ratio of the jet compares well with the
experiments for a thick wall perforation.

The grazing-bias outflow regime shows extremely complex behavior at both low
and high Strouhal numbers, compared to the grazing-bias inflow regime. Further-
more, the low Strouhal region in which is safe to operate a wall perforation is larger
in the grazing-bias inflow condition than in the grazing-bias outflow condition.
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Conclusions

Self-sustained oscillations can be a serious threat to the integrity of systems such
as gas turbines, industrial heaters, cold gas transport systems, main steam lines
of nuclear power plants, and re-heat steam lines of boilers [56, 80, 162, 38]. The
main goal of our research is the quantitative prediction of such phenomena and
the design of remedial measures. In particular we consider the coupling of acoustic
waves with shear layers formed by flow separation in internal flows. We consider
here, in particular, the shear layers formed at the opening of closed branches
along a pipe and shear layers formed by grazing/bias flow along/through wall
perforations.

Closed deep side branches are perfect acoustic reflectors for depth matching
uneven numbers of quarter wavelength. Two closed side branches of equal “reso-
nance” frequency distant by an integer number of half wavelength form an acousti-
cally perfectly closed resonator. Coupling of these standing acoustic waves with the
instability of the shear layers can induce spectacular pressure fluctuations, called
self-sustained oscillations. In early work, literature has focused on this phenomenon
for two closed side branches of equal depth. Although there are extensive studies
on the pulsations generated by the separating flow along a closed side branch, the
configurations with the flow entering or leaving the side branch have not been
systematically studied as source of pulsations. In our study, strong flow induced
pulsations have been observed experimentally in configurations with a mean flow
entering a side branch or flowing out of a side branch (Figs. 2.9 and 2.10).

When flow induced pulsations occur, wall vibrations can be significant ampli-
tude limiting losses. In laboratory experiments with pipes with rectangular cross
sections one should suspect them because rectangular cross sections are easily
deformed by pressure fluctuations. In full scale pipes, wall vibrations can also be-
come crucial because pipe walls become relatively thin as one increases the pipe
diameter. Large scale experiments carried out by Gasunie at Westerbork [80, 79]
confirm the significant role of wall vibrations as amplitude limiting losses. These
experiments have been carried out measuring the pulsation level in a double side
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branch system in tandem configuration with and without stiffening elements. By
increasing the rigidity of the setup, the pulsation amplitude was increased by about
50% (Fig. 2.27). In Sec. 2.14 we propose an analytical model providing an order of
magnitude estimate for the influence of wall vibrations induced by an oscillating
side branch.

Scale model experiments remain essential tools to study the behavior of com-
plex systems (Sec. 2.10.1). They can be used in the design phase in order to predict
pulsations. Later they are most useful in order to test remedial measures, if flow
induced pulsations appear as consequence of the modification of the operating pa-
rameters. The possibility to vary the static pressure in a scale model is important
in order to extrapolate the scale model results towards higher Reynolds numbers,
as encountered at full scale. In general, scale models allow a large number of useful
tests. Results should, however, always be confirmed by a number of full scale tests
(Sec. 2.16.1) because up-scaling remains uncertain.

In the particular case of a large number of shallow closed side branches along a
main pipe, the shear layer instability couples with a longitudinal acoustic standing
wave along the main pipe. The side branches are not resonant. The low frequency
resonance modes of the multiple side branch system can be predicted by assuming
an effective sound propagation speed along the main pipe of the system (Eq. (3.9))
as proposed by Cummings [67]. The accuracy of this prediction increases as the
number of side branches increases. The whistling observed in such a system is
similar to that observed in a main steam line along which a row of safety valves
is placed. It is also a model for a corrugated pipe as used in risers for natural
gas production. The great advantage of the multiple side branch system is its
versatility in terms of changes in geometry, which can be obtained for instance by
inserting plugs into the side branches. We used this feature in order to identify the
pressure nodes of the standing wave along the main pipe as the locations where
sound is produced (Fig. 3.14).

A prediction model for the whistling behavior of shallow closed side branch
systems has been proposed, which is based on the “energy balance” between the
acoustic sources and the acoustic losses. The grazing acoustic flow is assumed to be
dominant. The model does predict the observed Strouhal number but overestimates
the pressure fluctuation amplitude by a factor four (Sec. 3.9). One of the interesting
results is that the observed whistling corresponds to the second hydrodynamic
mode of the grazing flow rather than the first hydrodynamic mode. The theoretical
model, in agreement with the experiments, predicts that the sound production
occurs mainly in regions of high grazing acoustic velocity, around the pressure
nodes of the standing wave along the main pipe. The prediction of the amplitude
is particularly difficult in a system displaying acoustic velocity fluctuations much
lower than the main flow velocity, as found here.

The prediction of pulsations in complex systems has not yet been proven to be
possible. We propose a semi-empirical model (engineering tool) for the prediction
of the self-sustained oscillations in pipe systems with deep closed side branches
with rounded edges. It can predict the oscillation amplitude within 50% and the



189

oscillation frequency within 2%, for the first hydrodynamic mode. It strongly over-
estimates the amplitude of higher hydrodynamic modes. The second hydrodynamic
mode is overestimated by an order of magnitude. As the most severe pulsations are
associated with the first hydrodynamic mode, our prediction model can already
be considered as a useful engineering tool.

While for single or double side branch systems the coupling of length-detuning
and anechoic boundary conditions of the main pipe is an effective remedial mea-
sure, in more complex systems this countermeasure can be rather ineffective (Figs.
4.9 and 4.10). Complex pipe systems display flow induced pulsations at frequencies
corresponding either to global modes or to localized (trapped or nearly trapped)
modes. Self-sustained oscillations driving global modes are significantly influenced
by the acoustic boundary conditions of the main pipe (Fig. 4.11). Since the acous-
tic properties of the pipe system play a significant role, scale models aiming at
the prediction of pulsations of such modes should have realistic acoustic boundary
conditions. At the present time, it is not clear how a scale model of a limited
part of a pipe system can be used to predict the pulsation behavior of the whole
(extended) system.

In large pipe systems we can expect that several acoustic modes can interact.
In many industrial systems, compressors are present. These compressors act as
sound sources which can lock-in with flow induced pulsations or, on the contrary,
impede these pulsations. This phenomenon has not been studied yet.

In car mufflers, liners of the aircraft engine and liners protecting the walls
of combustion chambers, perforated walls are used to absorb sound. The sound
absorption is due to the interaction of acoustic waves with the shear layers. A
clear understanding of the effect of the flow on the acoustic properties of wall
perforations is essential for the design of acoustic dampers. The sound absorption
depends strongly on the shape of the perforations and on the ratio of bias to
grazing flow velocity. In application to combustion chambers, the wall perforations
are designed to generate cold wall jets which protect the wall from the flame. In
mufflers one usually seeks for simple perforations normal to the wall.

In the low Strouhal number limit, the acoustic resistance (real part of the
impedance) of a perforation is observed to be proportional to the steady-state
resistance (Figs. 5.28 and 5.34). However, a high value of the steady-state resistance
leads to high pressure losses across the perforation. The design of an efficient
acoustic damper requires an optimization between acoustic and fluid dynamic
performances.

Both resistance (real part of the impedance) and reactance (imaginary part
of the impedance) due to a grazing-bias flow display an oscillating behavior as
function of the Strouhal number. In particular, at high Strouhal numbers, posi-
tive (sound absorption) and negative (sound production) values of resistance are
observed. The geometry of the perforation determines the whistling behavior at
high Strouhal numbers. This operating condition should be strongly avoided in
technical applications.

In the pure bias inflow regime the theoretical prediction of the resistance by
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means of a quasi-steady compressible model compares favorably with the exper-
iments (Fig. 5.17). Furthermore, the effect of the shape of the perforation on its
whistling behavior in the pure bias flow regime (both inflow and outflow) can be
explained by means of the vortex sound theory. In the grazing-bias inflow regime,
the theoretical prediction of the contraction ratio of the jet by means of an incom-
pressible model compares well with the experiments for a thick wall perforation
(Fig. 5.13).

We hope that our work has opened the way for the use of simple aeroacoustic
models and experimental tests in the design of complex pipe systems and perfo-
rated wall dampers.



Bibliography

[1] G. Ajello. Acoustic measurements in pipe systems with flow: Design of a
flow bench and applications to measurement of discontinuities. PhD Thesis,
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Summary

Aeroacoustics of shear layers in internal flows: closed
branches and wall perforations

Flow induced pulsations in resonant pipe networks have been observed in many
technical applications, such as natural gas transport systems, steam lines of nuclear
power plants and re-heat steam lines of boilers. These pulsations, which present a
serious threat to the integrity of the systems, have been identified as self-sustained
aeroacoustic oscillations driven by the instability of the flow.

The main goal of the proposed research is the prediction of the coupling of
acoustic waves with shear layers formed by flow separation in internal flows and
the design of remedial measures. We consider here, in particular, the shear layers
formed at the opening of closed branches along a pipe and shear layers formed by
grazing/bias flow along/through wall perforations.

Although there are extensive studies in literature on the pulsations generated
by the separating flow along a closed side branch, the configurations with the
flow entering or leaving the side branch have not been recognized as source of
pulsations. In our study, strong flow induced pulsations have been observed ex-
perimentally in configurations with a mean flow entering a side branch or flowing
out of a side branch. When flow induced pulsations occur, wall vibrations can be
significant amplitude limiting losses. Therefore, we propose an analytical model
for the acoustical energy losses due to wall vibrations induced by an oscillating
side branch.

The study of the aeroacoustics of complex pipe systems was initiated consid-
ering a row of closed side branches placed along a main pipe. Systems with up
to 15 shallow side branches produces flow induced pulsations in which the shear
layer instability couples with a longitudinal acoustic standing wave along the main
pipe. The side branches are not resonant. The whistling observed in such a sys-
tem is similar to that observed in a main steam line along which a row of safety
valves is placed. It is also a model for a corrugated pipe as used in risers for nat-
ural gas production. Our experiments and theoretical analysis demonstrate that
the aeroacoustic sources are located near the acoustic pressure nodes of the lon-
gitudinal acoustic modes. A prediction model for the whistling behavior has been
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proposed, which is based on the “energy balance” between the acoustic sources
and the acoustic losses.

Experiments carried out on pipe systems with deep closed side branches show
that these systems displays strong trapped modes. These systems have been used
to test design rules aiming at a reduction of pulsation levels. The most commonly
used solution, detuning the side branch length, appears to be inefficient in multiple
deep side branch systems. We propose a semi-empirical model for the prediction of
the self-sustained oscillations in pipe systems with closed deep side branches with
rounded edged T-junctions. It can predict the oscillation amplitude of a system
of six deep side branches within 50% and the oscillation frequency within 2%, for
the first hydrodynamic mode. It strongly overestimates the amplitude of higher
hydrodynamic modes.

In car mufflers, liners of the aircraft engine and liners protecting the walls of
combustion chambers, perforated walls are used to absorb sound. The sound ab-
sorption is due to the interaction of acoustic waves with the shear layers formed by
grazing or/and bias flow. The sound absorption depends strongly on the shape of
the perforations and on the ratio of bias to grazing flow velocity. In the low Strouhal
number limit, the acoustic resistance (real part of the impedance) of a perforation
is observed to be proportional to the steady-state resistance. A high value of the
steady-state resistance leads to high pressure losses across the perforation. The
design of an efficient acoustic damper requires an optimization between acoustic
and fluid dynamic performances. Both resistance (real part of the impedance) and
reactance (imaginary part of the impedance) due to a grazing-bias flow display
an oscillating behavior as function of the Strouhal number. In particular, at high
Strouhal numbers, positive (sound absorption) and negative (sound production)
values of resistance are observed. The geometry of the perforation determines the
whistling behavior at high Strouhal numbers. This operating condition should be
avoided in technical applications. Analytical models of the steady flow and of the
low frequency aeroacoustic behavior of a two-dimensional wall perforation are pro-
posed allowing a quasi-steady prediction for the sound absorption at low Strouhal
numbers. They compare favorably with the experiments.
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