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1

List of definitions

The following list gives the definitions of some terms used throughout this
thesis, in alphabetic order. Italicized words in the definitions are defined
separately.

Acoustic event Perceptibly distinct acoustic segment of speech.

Articulators The parts of the oral tract that can be used to form
sounds (e.g. lips and tongue).

Articulatory gesture Movement of the whole configuration of the vocal
tract aimed at realizing a speech event. This term
will not be applied to movements of single articula­
tors.

Articulatory position Configuration of the vocal tract.

Articulatory target Target configuration of the vocal tract.

Coarticulation Temporal overlap of two adjacent articulatory ges­
tures which influences the acoustic realizations of ad­
jacent phonemes.

Phoneme The smallest distinctive segment of sound which
brings about a change of meaning between words.

Phoneme boundary Perceptually determined location in the acoustic
speech signal which best approximates a boundary
between the acoustic realizations of two neighbour­
ing, phonologically transcribed phonemes.

Speech event Segment of speech corresponding to the acoustic re­
alization of a phoneme, or, if subphonemic events
can be distinguished (for instance in the case of plo­
sives or diphthongs), corresponding to a subphonemic
event.

Subphonemic event Acoustic event which can be considered as a distinct
part of the acoustic realization of a phoneme (for in­
stance burst and occlusion of a plosive).
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Target function

Target vector

List of definitions

Function describing the temporal evolution of the tar­
get vector which is associated with it. Determined by
means of temporal decomposition.

Vector of speech parameters which possibly models
an ideal articulatory target. Determined by means of
temporal decomposition.
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List of symbols
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The following list summarizes the specific symbols used throughout this the­
sis. Vectors and matrices are denoted by lower and upper case characters
respectively, both printed bold faced.

N

n, 1:::; n:::; N

I

y

Yi(n)

K

4>k (n)

a(k)

O(nc )

a(n)

E

Total number of frames.

Frame number.

Total number of speech parameters per frame.

Frame of speech parameters.

Approximation of y.

i th speech parameter of nth frame.

Total number of target functions and target vectors.

k th target function.

kth target vector, consisting of I elements.

Measure of spread around frame nco

Weighting factor.

Euclidian distance or error measure.
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List of abbreviations

List of abbreviations

The following list gives an overview of abbreviations used in this thesis.

A
CVC
BF
F
LA
LAR
LPC
RC
S
SED
TD

Area
Consonant-vowel-consonant
Filter bank output
Formant
Log area
Log-area ratio
Linear predictive coding
Reflection coefficient
Spectral coefficient
Smallest Eucledian distance
Temporal decomposition



IPA symbols

IPA symbols

IPA symbols used in this thesis, together with
Dutch exa.mple words.

IPA example IPA II example
symbol word symbol . word

/a/ mgt /p/ ~aal

/e/ l~s /b/ has
/1/ pit /t/ t.ak
/~/ rQt /d/ das
/re/ h!!t /k/ kat
/a/ laa,t /f/ fier
/e/ heet /v/ yos

/i/ b~t /s/ §.oep
/0/ boot /z/ ~on

/y/ muur /x/ ~ok

/u/ boer /m/ man
/<1>/ keus /n/ nat
/e~ d!jk /T// lang
/Ay/ t!!in /1/ laag
/au/ koud /r/ rood
/a/ d~ h/ jas

/w/ wal
/h/ hok

5



Chapter 1

General introduction

1.1 Introduction

During the speech process, the tongue, lips and other articulators move con­
tinuously from one articulatory position to the next. As a consequence, the
acoustic speech signal also changes in time continuously. In spite of this con­
tinuous variation, the signal conveys information that can be represented by
a sequence of discrete units such as words, letters or phonetic symbols. Ex­
amples of both kinds of representations can be seen in Fig. 1.1. From the
top downwards an orthographic text, a time-aligned phonetic transcription,
an amplitude-time waveform and a spectrogram of the same utterance are
shown.

It will be clear immediately that the relations between the various represen­
tations are far from trivial. Not even A and B have a one-to-one relationship,
let alone A or B to C or D. One can notice that spaces between words cannot
be found as silences in the spectrogram or waveform and, conversely, silences
that do occur nearly always indicate plosives (e.g. /b/ or fgl) rather than
word boundaries. Furthermore, acoustic realizations of phonemes do not ap­
pear as discrete units in waveform or spectrogram.

Listening carefully to small portions of speech of the length of one or at
most two phonemes by means of a gating technique (e.g. 't Hart and Cohen,
1964) confirms the above-mentioned visual observations: sharp boundaries
between the acoustic realizations of phonemes do not exist. In the transition
region both phonemes can often be perceived simultaneously.

The fact that the acoustic realizations of phonemes do overlap in time
contributes to the efficiency of speech as messages. 15 phonemes per second,
which is not unusual in normal conversation, would be more than the ear could
cope with jf phonemes were a string of discrete acoustic events (Liberman,

7
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A Joe brought a young girl
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Figure 1.1: This figure shows four different representations of the utterance
"Joe brought a young girl". A. orthographic text, B. time-aligned phonetic
transcription, C. amplitude-time waveform and D. spectrogram. (Figure
from Marcus and Van Lieshout (1984)).

Cooper, Shankweiler and Studdert-Kennedy, 1967). Producing such a high
speech rate also implies that phonemes cannot be realized separately. Due to
the inertness of the vocal tract, anticipation for the next phoneme is necessary.
According to Liberman et al. (1967) perception mirrors articulation more
closely than it does sounds. This is in agreement with the outcome of the
perception experiments of Fowler (1984). She states that listeners recover the
overlapping segments that talkers produce.

The mappings between discrete and continuous representations of the same
speech utterance are quite complex. Both listeners and speakers perform this
mapping almost automatically, hardly hindered by variations of speaking style
or speech rate. Speech researchers, however, encounter serious problems. For
many applications, such as automatic speech recognition or speech synthesis,
phonemes are the most important entities, but the overlapping, non-stable,
non-invariant acoustic realizations of phonemes are very difficult to cope with.
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As a consequence, most approaches ignore these phoneme features, and treat
the acoustic signal as if it consisted of a sequence of discrete invariant 000­

overlapping speech units. This is a severe simplification of reality which, of
course, has its impact on the ultimate results which can be obtained.

This thesis centres on the so-called temporal decomposition technique,
which tackles this mapping problem from a relatively new angle.

1.2 Short history of temporal decomposition

In 1983 a new technique for economical speech coding was introduced by Atal
(1983). Based on the considerations that speech events do not occur at uni­
formly spaced time intervals and that articulatory movements are sometimes
fast, sometimes slow, he concluded that uniform time sampling of speech
parameters is not efficient. Thus, he proposed the temporal decomposition
method in order to break up the continuous variation of speech parameters
into discrete overlapping units of variable lengths located at non-uniformly
spaced time intervals. Although this method was based on articulatory con­
siderations, Atal did not attempt to interpret the possibly phonetic meaning
of the so-determined units. Economical speech coding was his primary objec­
tive.

In 1984 Marcus and Van Lieshout suggested that temporal decomposition
was promising as a means of segmenting speech into a sequence of overlapping
events closely related to the phonetic structure of the speech signal. They also
pointed out that some of the first few steps of Atal's original method caused
some problems, which, however, were not fundamental to the philosophy of
the temporal decomposition method. Unfortunately, due to these problems,
they could not give any quantitative data about the phonetic relevance of the
overlapping units. In their paper they gave some suggestions for improving
the method. It was along these lines that the present research developed.

At the time this research started, in 1985, this was the only literature about
temporal decomposition. In the meantime, however, a few other articles on
the subject have been published. Most of these very concise articles focussed
attention on a description of the method and gave some suggestions for spe­
cific applications. Speech synthesis was advocated by Chollet, Grenier and
Marcus (1986), Ahlborn, Bimbot and Chollet (1987) and Bimbot, Ahlborn
and Chollet (1987). Niranjan and Fallside (1987) gave a geometric interpreta­
tion of the temporal decomposition results and proposed some improvements.
Finally, Bimbot, Chollet, Deleglise and Montacie (1988) and Marteau, Bailly
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and Janot-Giorgetti (1988) did some pilot experiments on speech recognition,
obtaining promising results.

Further details of these articles can be found in subsequent chapters in
relation to the research presented in this thesis.

1.3 Aims of this thesis

The current research is a continuation of the work initiated by Marcus and
Van Lieshout (1984). The principal objective is to investigate systematically
the possibilities of temporal decomposition as a tool with which to segment
the speech parameters into phonetically relevant speech units. Since Marcus
and Van Lieshout encountered some shortcomings of the original temporal
decomposition method, the method itself will also be under investigation. Es­
pecially those parameters which have a strong influence on the decompositions
will be evaluated. The phonetic relevance of the decomposition will be used
as a criterion for good performance.

Many segmentation methods make use of phonetic information. For in­
stance, a common method is to use the phonetic transcription of an utterance
in order to optimize the number and locations of segment boundaries (e.g.
Bridle and Chamberlain, 1983; Lennig, 1983; Van Hemert, 1987). We, how­
ever, are interested in how much information can be derived directly from the
acoustic speech signal. Thus, the use of phonetic knowledge will be excluded
explicitly. Though this will probably limit the achievements of the method
right now, a good view can be expected of the possibilities and shortcomings
of temporal decomposition as a tool for extracting phonetically relevant units
from the speech signal.

This research is mainly exploratory in nature; no specific application is
aimed at. Nevertheless, if the overlapping units turn out to be phonetically
interpretable, the results may provide information which could be of interest
to workers in various fields of speech research, such as speech coding, synthesis,
segmentation and recognition.

1.4 Contents of this thesis

In Chapter 2 a detailed description of Atal's original temporal decomposition
method is given, together with its shortcomings. For each problem an alterna­
tive solution is proposed, which results in a modified and extended temporal
decomposition method.
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The choice of input parameters for temporal decomposition is not restricted
to a specific set of speech parameters. The parameters proposed by Atal were
the log-area parameters which, probably due to their close relationship to the
positions of the articulators, gave reasonably satisfactory results. However,
since it is not inconceivable that better candidates exist, temporal decompo­
sition results are compared using nine different sets of input parameters. This
is the subject of Chapter 3.

In Chapter 4 some other explorations are described. After optimization
of the method and the choice of the speech parameters which give the best
results, the question remains how well the decomposed speech signal models
the original signal. For the derivation of phonetic information the quality of
the resynthesized speech signal is only of secondary importance; intelligibility
experiments, however, may reveal important information about the useful­
ness and the limitations of the model on which temporal decomposition is
based and the ultimate results which may be obtained with it. Perception
experiments are described, evaluating the intelligibility of temporally decom­
posed and resynthesized CVC utterances. This chapter also examines the
achievements of temporal decomposition using a database consisting of 100
phonologically balanced German sentences. The phonetic relevance of target
functions is judged both from a phonological and a phonetic point of view.

Finally, Chapter 5 gives an evaluation of the state of the art of temporal
decomposition. Future directions and applications as well as possible improve­
ments and remaining shortcomings are discussed.

Since chapters 2 and 3 are also meant for publication as articles, they
contain some overlapping of information.
Chapter 2: A.M.L. Van Dijk-Kappers and S.M. Marcus (1989), Temporal
decomposition of speech, Speech Communication 8, (in press).
Chapter 3 is a modified version of an article accepted for publication by Speech
Communication: A.M.L. Van Dijk-Kappers (1989), Comparison of parameter
sets for temporal decomposition.





Chapter 2

Temporal decomposition of speech

Abstract

In articulatory phonetics, speech is described as a sequence of distinct articulatory gestures
towards and away from articulatory targets, resulting in a sequence of speech events. Due to
overlap of the gestures, these articulatory targets are often only partly realized.

Atal (1983) has proposed a method for speech coding based on so-called temporal decom­
position of speech into a sequence of overlapping target functions and corresponding target
vectors. The target vectors may be associated with ideal articulatory target positions. The
target functions describe the temporal evolution of these targets. This method makes no use
of specific articulatory or phonetic knowledge. We have extended and modified this method
to improve the determination of the number and the location of the target functions and
to overcome some shortcomings of the original method. With these improvements temporal
decomposition has become a strong tool in analysing speech, from which researchers working
on speech coding, recognition, segmentation and synthesis may profit.

2.1 Introduction

Articulatory phonetics is based on a description of speech as a sequence of
articulatory gestures. Each gesture can be considered as a movement towards
and away from an articulatory target. Different articulatory targets will result
in different acoustic consequences. A limited number of adjacent gestures
can overlap one another, resulting in the characteristic transitions between
the acoustic realizations of phonemes that can be observed in almost any
parametric representation of the acoustic speech signal. Due to coarticulation
and reduction in fluent speech a target may not be reached before articulation
towards the next phonetic target begins. It has long been assumed that
such targets cannot be determined from the acoustic signal alone, detailed
knowledge of the production of all component phonemes being required before
the speech signal can be "decoded" (Liberman et al., 1967).

Atal (1983), however, has proposed a so-called temporal decomposition

13



14 2. Temporal decomposition of speech

method for analysing the speech signal without taking recourse to any explicit
phonetic knowledge. This method takes into account the above articulatory
considerations and results in a description of speech as a sequence of over­
lapping units of variable lengths and located at non-uniformly spaced time
intervals.

The temporal decomposition method was developed for economical speech
coding; Atal did not attempt to interpret the possibly phonetic meaning of the
units. Subsequent work on temporal decomposition, however, focussed on the
possibilities with respect to a phonetic interpretation of the units (Marcus
and Van Lieshout, 1984; Niranjan and Fallside, 1987). Applications in the
field of speech synthesis were also reported (Chollet et al., 1986; Ahlborn et
al., 1987; Bimbot et al., 1987).

The current research developed along the lines of Marcus and Van Lieshout
(1984). They recognized the possible applications of temporal decomposition
in the field of automatic speech transcription or recognition, but also reported
quite a few shortcomings from which the method still suffered. The objec­
tive of this chapter is to propose some improvements and extensions to the
original method to overcome these deficiencies. Although some of our choices
stem from our future intentions with temporal decomposition, namely to de­
rive phonetic information from the acoustic signal in an objective way, these
modifications will also be favourable to other possible applications of this tech­
nique. As this chapter aims at providing precise information about the way
these modifications are implemented, we will start with presenting a rather
detailed summary of Atal's original method as far as needed for describing
the modifications.

2.2 Temporal decomposition

Atal (1983) assumed that, given some suitable parametric representation of
the input speech signal, coarticulation can be described by simple linear com­
binations of the underlying targets. This makes it possible to investigate
speech using well-developed methods from linear algebra. Suppose that a
given utterance has been produced by a sequence of K movements aimed at
realiz:ng K articulatory targets. Let us denote the speech parameters corre­
sponding to the kth target by a target vector, a(k), and the temporal evolution
of this target by a target function, rPk( n). The frame number n varies between
1 and ]V and is a discrete index of time. Atal's assumption is that we can
approximate the observed speech parameters, y(n), by the following linear
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combination of target vectors and functions:

K
y(n) = L a(k)<pk(n), 1::; n::; N

k=l

or, in matrix notation,

Y=A~.

15

(2.1)

(2.2)

Y and y(n) are approximations of the observed speech parameters. The
acoustic parameters chosen by Atal to describe the speech signal y(n) are the
log-area parameters. These parameters model the cross-sectional areas of an
acoustic tube, vary slowly in time and show a high mutual linear dependence,
which makes them eminently suited for temporal decomposition (Van Dijk­
Kappers, 1989). These parameters are derived from the filter parameters of an
LPC analysis; the source parameters (filter gain, pitch and voiced/unvoiced
parameter) are not used for the purpose of temporal decomposition.

In Eqs. (2.1) and (2.2), both the target vectors and target functions are
unknown and in order to find a suitable solution we have to impose some
boundary conditions on the target functions <Pk(n). Each <Pk(n) should be non­
zero only over a small range of time. Furthermore, at every instant in time
only a limited number of target functions may be non-zero. For a moderate
speaking rate the number of speech events varies between 10 and 15 per
second, so we should expect about 13 target functions to be" present in a time
interval of 1 second. Given these restrictions, we will solve Eq. (2.1) for the
1>k(n); after that, the optimal target vectors can be computed.

Eq. (2.1) can be inverted to give the kth target function <Pk(n) as a linear
combination of the speech parameters y, (n)

I
rPk(n) = L WhYi(n)

i=l

(2.3)

where the Wh are a set of weighting coefficients and I is the number of speech
parameters. In this equation, only the Y, (n) are known and the Wki have to
be chosen so that ¢Jk(n) fulfils the requirements of a target function. Since
most of the time tPk(n) should equal zero, only a limited set of the Wki are
non-zero. This can be interpreted as putting a small time window over the
matrix of speech parameters Y. A first useful step in determining the target
function is to perform a singular value decomposition (e.g. Gerbrands, 1981;
Golub and Van Loan, 1983) on the windowed matrix Y w' In matrix notation
this can be expressed as
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Y; = UDyT (2.4)

where both U and Yare orthogonal matrices, their columns containing the
singular vectors. D is a diagonal matrix of singular values, the square roots
of the eigenvalues of Y~Yw' The singular values determine how much of the
variance is accounted for by the respective singular vectors. Usually 3 to 5
singular vectors are enough to explain more than 99 % of the variance, and
we only use these to determine the target function. The operation described
above is illustrated for a 210 ms analysis window in Fig. 2.1, where on the left
side the I = 10 log-area parameters determined every 10 ms are shown, and
on the right side the singular vectors Ui from the matrix U. It can be seen
that only the first few singular vectors are important and account for most of
the variance.

It follows from Eq. (2.4) that the speech parameters Yi(n) can be expressed
as a linear combination of the parameters u;(n). Substituting this in Eq. (2.3)
and taking only the s most significant singular vectors results in an important
data reduction in solving Eq. (2.3). Thus, the target function ¢'k(n) can be
represented as

s

¢'k(n) = L bkiUi(n)
;=1

(2.5)

where the bki are a set of amplitude coefficients. In order to derive a target
function, we have to choose a suitable set of coefficients bki .

2.2.1 Determination of the target functions

Atal defines a measure of spread B( nc) as

B(nc ) = [La(n)¢J%(n)/L¢'%(n)]~
n n

(2.6)

where a(n) is a weighting factor. The sum over n extends over the Nw frames
of the analysis window of which n c is the centre frame. To a certain extent
the shape of the target function is determined by the weighting factor a(n).
In fact, a(n) can be considered as a model for the target function. In the
following section we will discuss Atal's weighting factor and an alternative
one.

Depending on the choice of a(n), the spread measure B(n) has to be min­
imized or maximized. In order to obtain the optimal target function, ¢'k(n)
of Eq. (2.6) is replaced by the expression of Eq. (2.5), and the derivatives of
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Figure 2.1: Plot of the 10 log-area parameters, Yi(n), of a 210 ms window
and the singular vectors, u;(n), of the same speech segment.

U(ne ) (or InU(ne)' which gives the same results but with less computational
effort) with respect to the coefficients bki are set equal to O. This results in
the eigenvalue equation

Rb=,xb (2.7)

with eigenvalues ,x, where the coefficients r,j of the matrix R are given by

ri] = L a(n)ui(n)U](n).
n

(2.8)

The smallest (or largest) eigenvalue ,x provides the optimal choice of the coef­
ficients bki , and with Eq. (2.5) the target function ¢k(n) is determined (Lawley
& Maxwell, 1971; Atal, 1983).
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2.2.2 Weighting factor of Atal

Atal proposed a quadratic weighting factor:

(2.9)

where nc is the centre of the analysis window. With this a(n) the spread mea­
sure B(n) should be minimized. Since a(n) is quadratic, it strongly focusses
upon target functions centrally located. However, as the target functions are
supposed to be related to articulatory gestures, they are in general not ex­
pected exactly in the centre of the analysis window. Furthermore, the target
functions are forced to be as compact as possible, which impedes the search
for speech events of long duration.

2.2.3 An alternative weighting factor

The weighting factor we propose provides a simple, rectangular model for a
target function:

a(n) = 1

a(n) = 0

for nl ~ n ~ n2
elsewhere.

In this case we have to maximize the spread measure B(n) in order to determine
the optimal <Pk(n). Since both location and length of the target function are
unknown and differ for each analysis window, the optimal location of (nil n2)
is also unknown; an iterative procedure is used to determine the best choice.

The iterative procedure starts with a small rectangular model ml (first
choice of (nl' n2)) in the centre of the analysis window, giving a first approx­
imation <Pk

1
(n) of the target function <Pk(n). The next model m2 is located

between the frames where <Pk
1
(n) has the threshold value hm . This proce­

dure is repeated until the new model mt equals the previous model mt-l' In
practice, the iterative procedure converges in three to five iterations.

This iteration procedure, consisting of the successive models and the re­
sulting target functions, can be seen in Fig. 2.2 for three different segments
of speech. With this procedure a single target function is found within each
analysis window. The target functions are always normalized to a peak value
of 1. This is a reasonable choice, since if the target is reached a single func­
tion can describe the length of stay on that target. An unreached target is
modelled by the overlap of two or even three target functions. As long as the
target itself is unknown. norrnaliziition to 1 is the best solution.
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r----,------" '

A B c I 100 msl

Figure 2.2: Target functions resulting from successive iterative models for
three segments of speech. The initial choice of the model is fixed in the centre
of the window, and the model converges in successive iterations.

The choice of the initial model ml is not too critical, with the only mathe­
matical restriction that it must not extend over the whole window. We found
that a suitable length for ml is 5 frames around the centre of the window,
although a length of 13 frames often gives the same results. A good choice
for the value of hm turned out to be 0.55.

2.2.4 Modification of the analysis window

The use of an analysis window with a fixed length has some serious drawbacks
(Marcus and Van Lieshout, 1984). A target function should only be non­
zero during a limited number of consecutive frames, but this requirement
is not always fulfilled. Sometimes, as in Fig 2.2B, the window size is too
large, which results in edge effects due to neighbouring speech events. Atal
solves this problem by simply truncating the sidelobes; we, however, prefer
to adapt the window size to the length of the target function, since within
an adapted window there might be a better solution of Eq. (2.5). At other
times the resulting target function is not complete, as in Fig. 2.2C, because
the window size is too small to accommodate the whole target function. This
problem is solved by Atal at a later stage, where he selects a limited number of
different target functions. Unfortunately, this procedure does not guarantee
the selection of only well-shaped functions, so this presents an additional
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argument for adapting the window size.
In order to adjust the window, the location of the maximum of the target

function, n max , within the window (no,nn), is determined. Next we determine
the locations of nleft and nright, the frames closest to n max with a value less
than the threshold value hw , to the left and right side of nmax respectively, as
shown in Fig. 2.3. If there is no frame which satisfies the conditions for nteft,

the first frame number, no, will be assigned to nteft; likewise the last frame
number, nn, will be assigned to nright if no frame to the right of n max has a
value smaller than hw •

1

o

Figure 2.3: Schematic overview of the variables used for modifying the
window.

As a measure of the amount of (left) edge effects we use E~~f~O r,/J2(n). If
this measure exceeds a certain threshold value S, the window needs to be
shortened. The new location of no is chosen relative to nteft. On the other
hand, if nleft = no, the target function is not complete, and thus the window
needs to be lengthened. In our experience the window size has to be increased
in very small steps to make sure the adaptation procedure remains stable.
However, if the window is really much too small a slightly bigger step provides
a faster convergence. According to our measurements, the best choice of
the values of the above-mentioned parameters hw and S was 0.2 and 0.05,
respectively (Van Dijk-Kappers and Marcus, 1987).

In this manner, left and right side of the window are modified indepen­
dently. To ensure that the resulting target function is not located completely
outside the initial window, the value of r,/J(nc) is checked, nc being the centre of
the initial window. This value needs to be above hw , otherwise the procedure
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is started all over again with an initial window somewhat smaller than the
previous one. This will be repeated as often as necessary.

If one or both of the window sides has been changed, a new singular value
decomposition is performed on the original data within the new window. The
most significant singular vectors are again used to construct a target function,
but this time the initial model equals the model mt as obtained from the
previous iteration. This procedure is repeated until both sides converge, which
usually is achieved in two or three iterations.

The results of this window adaptation procedure are shown in Fig. 2.4,
where the same speech segments are used as in Fig. 2.2. The target functions
numbered 1 indicate the resulting target functions of Fig. 2.2; the higher
numbers correspond to the successive results of the model iterations within
the modified windows. In all three cases the final window is optimally adjusted
to the target function.
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.."n /'
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Figure 2.4: Iterative modification of the analysis window size and position,
for the same three segments of speech as in Fig. 2.2.

2.3 Analysis of a complete utterance

So far we have only determined a target function for one particular analysis
window. In order to analyse an entire utterance, the above procedure has
to be repeated with windows located at intervals throughout the utterance.
Atal's original method requires the window to be moved in very small steps,
of about 10 ms, in order not to miss any functions. An example of such an
analysis of a number of successive windows is shown in Fig. 2.5. Although
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the length of the analysis window may seem flexible, this is only due to a
truncation of the sidelobes after the analysis. Furthermore, in spite of the
spread measure which attempts to force the function to be located in the
centre of the window, the resulting target function regularly lies outside the
centre or is not well-shaped.

: 100 ms

Figure 2.5: Target functions determined within the successive analysis
windows of the utterance /dababa/ using the original method of Atal. The
vertical bars indicate the centres of the analysis windows.

For comparison, we also show the analysis of the same utterance derived
with the modified temporal decomposition method described in the previous
sections (Fig. 2.6). The target functions of a number of adjacent windows
are very nearly identical, with only some negligible differences in edge effects.
Moreover, an acceptable target function is found for almost every window
location.
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: 100 me

Figure 2.6: Target functions determined within the successive analysis
windows of the utterance /dababa/ using our modified method.
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Shifting the analysis window in steps of 10 ms means that the total number
of target functions equals the number of frames. Since many of the target
functions describe the same speech event, it is obvious that their number can
and has to be reduced. Atal's reduction algorithm will be discussed in the
next section, followed by our alternative algorithm.

2.3.1 Atal's reduction algorithm

Atalhas developed a very simple reduction algorithm, which, however, dis­
cards a great deal of the relevant information and does not guarantee the
selection of only well-shaped functions (Marcus and Van Lieshout, 1984). To
determine the locations of the target functions as a function of the centre nc
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of the analysis window, Atal uses a timing function v(nc)

(2.10)

The minimum and maximum values of v(nc ) are, of course, bounded by the
size of the analysis window. According to Atal a speech event occurs every
time v( nc) crosses from positive to negative, and he uses this simple criterion
to reduce the total number of target functions. Since there is not always a
rapid shift from one ¢k(n) to the next, this timing function could remain nearly
constant for some time, without making any zero crossings. This can result in
a gap between two selected target functions. Furthermore, it is possible that
an incomplete function is selected, while there are much better candidates.
Finally, spurious crossings may result in finding the same function twice.

2.3.2 An alternative reduction algorithm

Although Atal's procedure for selecting the different target functions would
probably work without any problems for the target functions determined with
our modified temporal decomposition method, it seems a waste of computa­
tion time to determine twice or even more often the same target function.
Therefore, we have developed a more efficient method of analysing the whole
utterance. Instead of shifting the analysis window by steps of 10 ms, the
centre of the next analysis window is located where we expect to find a new
4>k(n), without skipping any target function. The best choice for this new
location turned out to be the nright of the previously found function. Since
there is a slight chance of finding the same function once again, the similarity
of the two subsequent 4>k(n)'s is tested. As a similarity measure we used the
cosine of the angle 0 between the two 4>k(n)'s, considering them as vectors,
where each frame represents a new dimension:

cos(o) = L 4>k-l(n)4>k(n)/[L 4>Ll(n) L 4>%(n)]1/2.
n n n

(2.11)

The summation extends over the overlapping frames n. If cos(o) is more than
0.75, the 4>k(n)'s are considered to be similar, and one of them is rejected. In
that case the location of the centre of the analysis window is shifted two frames
more. It is our experience that this procedure provides a fast determination
of all different target functions.
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2.3.3 Determination of the target vectors
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For the determination of the target vectors we use the same procedure as
proposed by Atal. The target vectors a(k) associated with the target functions
¢lk(n) can be determined by minimizing the mean-squared error E, defined
by:

or, by substituting Eq.(2.1)

E =I:[y(n) - y(nW,
n

(2.12)

K
E =I:[y(n) - I: a(k)¢lk(nW. (2.13)

n k=l

This equation can be solved for the a( k) by setting the partial derivatives of
E with respect to a(k) equal to zero (Atal, 1983). This results in a set of
target vectors a(k), each consisting of a frame of 10 log-area parameters.

2.3.4 Temporal decomposition of a speech utterance

Temporal decomposition of a speech utterance results in a new description of
the speech parameters in terms of target functions and target vectors which,
we hope, will be related to a phonetic description. A few examples of the
output of our modified method are shown in Fig. 2.7. The plot shows the
amplitude-time waveform of the utterance, together with the phonetic tran­
scription and the automatically extracted target functions. The 10 log-area
parameters of the associated target vectors are transformed into the spec­
tral domain and the corresponding log amplitude spectra are also shown in
Fig. 2.7. In Fig. 2.7A there is a clear correspondence between the target func­
tions and speech events, although a function associated with the burst of the
second /b/ is missing. In Fig. 2.78 there is one speech event described by two
target functions. In Chapter 4 the phonetic relevance of the decomposition
will be further investigated and discussed.

2.4 Evaluation and discussion

In several respects, our modified temporal decomposition method gives
better results than the original method of Atal. An important improvement
is that target functions are now found in all situations, whereas in the original
method sometimes a gap occurred between two functions. Of course, a gap is
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A 100 ms 

B 100 ms' 

Figure 2.7: Temporal decomposition of some eve utterances; A. 
/dababa/, B. /dallma/. The subscripts cl and b stand for closure and burst 
respectively. 

unacceptable irrespective of the intended application. Another improvement 
is that due to the window convergence procedure the target functions are 
guaranteed to be well-shaped. Comparing Figs 2.5 and 2.6 will illustrate 
this. In spite of these modifications, the computation time has remained 
more or less the same, since the singular value decomposition is the most 
time-consuming part of the procedure. 

2.4.1 Weighting factor 

An improvement which can be quantified is the choice of weighting factor. 
We stated that the weighting factor or model of Atal tends to yield target 
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functions as compact as possible. Since we want to relate target functions to 
speech events, this is undesirable. Speech events have variable lengths and 
the shortest length is not necessarily the optimal one. In order to be able 
to compare the performance of Atal's model with our rectangular model, we 
have embedded both models within our modified method. Thus, resulting 
differences will only be due to differences in weighting factor. 

The criterion for good performance will be the correspondence of target 
functions to speech events. The target vectors will be left out of consider­
ation. A small database was constructed consisting of CVC combinations 
embedded in the context /daC1VC2aj. The consonants C1 and C2 were one of 
the phonemes /1/, / m/, /b / or / p / and the vowel V was one of the phonemes 
/a/, /1/ or /-:::>/. Each of the 48 combinations was produced by a single male 
speaker. A phonetic labelling was carried out by hand, closure and burst of 
the stops being labelled separately. Temporal decomposition analysis using 
the modified method described above was carried out automatically. A few 
examples were already shown in Fig. 2.7, where use is made of the rectangular 
model. 

A tentative phonetic labelling by hand of the target functions was made for 
each utterance, and Table lA shows for each weighting factor the percentage 
of speech events described by zero, one, two or more target functions respec­
tively. Although a reasonable percentage of the speech events is described 
by only one target function, an unacceptable percentage of the speech events 
is missed. However, this percentage is mainly due to missing bursts of the 
stop consonants which were labelled separately. It is not surprising that these 
bursts are poorly detected: they are poorly represented by the initial LPC 
analysis and the temporal decomposition itself results in further smoothing 
out of such short-duration events. 

Table 2.1: Percentages of the speech events associated with zero, 
one, two or more than two target functions. The results given are 
averaged over all speech events, including and excluding the bursts 
respectively. 

A. including bursts B. excluding bursts 
o 1 2->2 -0---1-- -2-->2-

Rectangular 18 63 18 1 1 73 25 1 
Atal 15 55 27 3 0 60 36 4 _________________________ L-________ _ 

To get a better idea of the achievements of temporal decomposition, we 
show in Table IB the results of the analysis of the same words, leaving out 
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the bursts. As can be seen, the improvement is considerable; only a very small 
percentage of the speech events is missed and most of the speech events are 
described by only one target function. Furthermore, although the bursts of 
the plosives are not considered, this does not lead to problems for the plosives 
since their closures are always detected. In both Tables lA and 1B it can 
be seen that Atal's weighting factor results in more target functions, as we 
already expected. 

To understand why our simple and unrealistic model gives reasonable re­
sults, we have to consider Eq. (2.5). There, the target function if>k(n) is 
expressed as a linear combination of only 3 to 5 singular vectors, and thus 
the possible shapes of the target function are limited. Furthermore, although 
the spread measure will be maximal whenever the target function has an ex­
act rectangular shape, this situation will never be reached given this limited 
number of possibilities and the fact that the speech parameters vary smoothly 
in time. A more realistic exponential model gives similar results (Van Dijk­
Kappers, 1988). 

2.4.2 Reduction algorithm 

Atal will have discerned some of the shortcomings of his method. In his 
article he proposed, as an extension, an iterative refinement procedure to 
refine both target functions and vectors. Indeed, gaps between functions 
will be filled in by this procedure, but the so-obtained target functions look 
rather distorted, which is an unwanted artefact. Still, this proposal has been 
followed by several other workers on temporal decomposition (e.g. Ahlborn 
et al., 1987). Of course, this iterative procedure could also be added to our 
modified method. Although we do not expect any improvements concerning 
our intentions with temporal decomposition, other applications, for instance 
the derivation of rules for synthesis, might profit from it (e.g. Bimbot et al., 
1987). 

Finally, in this respect, we would like to mention an interesting different 
approach, which unfortunately is not very well documented. Chollet et al. 
(1986) refer to a clustering technique, applied after the determination of all 
target functions. Without giving any details, they claim that this technique 
removes the shortcomings of Atal's selection criterion. It remains to be seen 
how the target functions obtained with this method compare with our target 
functions. In any case, the clustering technique causes a substantial increase 
in computation time. 
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The extended and modified temporal decomposition method makes the deter­
mination of the number and the location of the target functions more robust,
and does not suffer from most of the problems of the original method of Atal
(1983). It can be stated that with these improvements temporal decomposi­
tion has become a powerful tool in analysing speech, from which researchers
working on speech coding, recognition and synthesis may profit.

If we use as a criterion the correspondence of target functions to speech
events, the weighting factor we have proposed performs better than the orig­
inal measure of Atal, which tends to yield too many target functions. Of
course, the choice of what is the best weighting factor really depends on the
intended applications. For speech coding, more but shorter target functions
may give a better speech quality (though less economical). For speech synthe­
sis it might be profitable to have separate functions for transitions from one
phoneme to the next. And finally, for speech recognition one target function
per speech event might be desirable.

For all possible applications it is encouraging that the present outcomes
are obtained without making use of any specific phonetic knowledge. Future
studies, that may include this knowledge, are needed to examine the achieve­
ments of temporal decomposition in more detail and with respect to particular
applications.





Chapter 3 

Comparison of parameter sets for 
temporal decomposition 

Abstraet 

Temporal decomposition of a speech utterance results in a description of speech parameters in 
term..s of overlapping target functions and associated target vectors. The target vector! may 
correspond to ideal articulatory targets of which the target functions describe the temporal 
evolution. Although developed for economical speech coding, this method also provides an 
interesting tool for deriving phonetic information from the acoustic speech signal. 

The speech parameters used by Atal (1983) when he proposed this method are the log-area 
parameters. Our modified temporal decomposition method (Van Dijk-Kappers and Marcus, 
1987; 1989) also works with the log-area parameters as input. The method is not, however, 
restricted to log-area parameters; in principle, most commonly used parameter sets can be 
used. In this ehapter we eompare the results obtained with nine different sets of speech 
parameters, among are which log-area parameters, formants, reliection coefficients and filter 
bank output parameters. 

The main performance criterion was "the phonetic relevance of the target functions. The 
phonetic interpretation of the target vectors was also considered, but that turned out to be 
an ineffective criterion. Finally, for those parameter sets which are transformable into the 
same parameter space, a reconstruction error will be defined and evaluated. 

From these experiments it can be concluded that the filter bank output parameters form 
the most suitable parameter set available for temporal decomposition if only the phonetic 
relevance is considered. However, with respect to resynthesis, the log-area parameters must 
be classified as a better set. 

3.1 Introduction 

In articulatory phonetics, speech production is considered as a sequence of 
overlapping articulatory gestures, each of which may be thought of as a move­
ment towards and away from an ideal, but often not reached, articulatory tar­
get. It has long been assumed that such targets cannot be determined from the 
acoustic signal alone, detailed knowledge of the production of all component 
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phonemes being required before the speech signal can be decoded (Liberman
et al., 1967). However, the so-called temporal decomposition method, pro­
posed by Atal (1983) for economical speech coding, decomposes the speech
signal into overlapping units, each described by a target function and a tar­
get vector. Although no use is made of any explicit phonetic knowledge, our
hope is that these units can be related to phonemes or subphonemic events.
Indeed, we have shown (Van Dijk-Kappers and Marcus, 1987; 1989) that with
some modifications and extensions, promising results were obtained. Using a
restricted database consisting of 48 eve combinations embedded in a neu­
tral context, and excluding the bursts of the plosives, 74 % of the phonemes
could be associated with precisely one target function and one target vector.
Furthermore, only 1 % of the phonemes was missed. The remaining 25 %
of the phonemes were associated with two or more target functions, which is
possibly due to the fact that the acoustic realizations of these phonemes can
be considered to consist of more than one acoustic event.

These results were obtained with our modified temporal decomposition
method, which is more robust than Atal's original method. Important par­
ameters (for instance the length of the analysis window) the optimal values
of which depend on the speech segment under evaluation, are adjusted it­
eratively. Other parameter choices, such as iteration thresholds and initial
values of parameters, have been optimized. The only parameters which have
not been varied are the input parameters; up till now log-area parameters
have always been used. These speech parameters have yielded the reasonably
satisfactory results mentioned above, possibly owing to their close relation­
ship to the positions of the articulators. It is, however, not inconceivable that
better candidates exist. At this moment, fundamental insight into the prop­
erties that make a parameter set suitable for temporal decomposition is still
lacking. As a consequence, the search for speech parameters which might give
better results than log-area parameters must be explorative.

In this chapter, two objectives are pursued. In the first place, the aim is
to find a set of speech parameters which improves the achievements of the
method as compared to the results obtained with the log-area parameters.
The second objective is to gain more insight into the temporal decomposition
method with respect to the influence of the choice of input parameters. To
reach both objectives, we compare the temporal decomposition results using
nine different sets of speech parameters. As, in practice, the results cannot be
predicted theoretically, we use sets which are often used for other purposes,
such as speech coding or synthesis. Parameter sets proposed ·for temporal
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decomposition in recent papers (Chollet et aI., 1986; Ahlborn et aI., 1987;
Bimbot et aI., 1987) are also included in the comparison. Moreover, the num­
ber of parameters, the amount of detail in the parameters and the relation
to log-area parameters are varied over the sets. Except for the filter bank
output parameters, all of these sets are LPC-derived. The main performance
criterion will be the phonetic relevance of the target functions, since this gives
a good indication of the phonetic relevance of the decomposition. In addition,
the phonetic meaning of the associated target vectors will be considered. For
those parameter sets which can be transformed into one another, a recon­
struction error will be defined and evaluated.

The work reported here is part of a project studying the relationship be­
tween the target functions and target vectors determined by means of tem­
poral decomposition and a phonetic transcription of the same utterance. The
results may provide deeper insight into the structure of the speech signal.
Such knowledge can be applied to economical speech coding or speech syn­
thesis. Applications of the method as a preprocessor for automatic speech
recognition or transcription may also be feasible.

In the following sections we will first give a brief description of the temporal
decomposition method. Next we will devote a section to the various speech
parameter sets used and their relation to one another. Then we will analyse
the performance of the speech parameters according to the above-mentioned
criteria. Finally, we will discuss the results achieved and draw some conclu­
sions about the parameter spaces in which the target functions and target
vectors should be determined.

3.2 Temporal decomposition

Temporal decomposition of speech is based on the assumption that, given
some suitable parametric representation of the input speech, coarticulation
can be described by simple linear combinations of the underlying targets. If
we represent the kth target by a target vector a( k) consisting of I speech par­
ameters, and the temporal evolution of this target by a target function ¢>k(n),
the observed speech parameters y(n) can be approximated by the following
linear combination of target vectors and functions:

K
y(n) = L a(k)¢>k(n), 1 ~ n ~ N

k=!
(3.1)

where y(n) is the approximation of y(n). The frame number n represents
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discrete time and varies between 1 and the total number of frames N of the 
utterance. The total number of targets within the utterance is given by K. 
For the speech parameters y(n) any kind of parameter set can be chosen, and 
a number of these will be compared in the following sections. In this equation, 
the target vectors and target functions, as well as their number and locations 
are unknown. 

In solving this equation, first all the different target functions ¢k{ n) are de­
termined with the method described by Van Dijk-Kappers and Marcus (1987, 
1989). Next, the target vectors a(k) associated with the target functions ¢k(n) 
can be determined by minimizing the mean-squared error E, defined by: 

E = I:[y(n) - y(nW, (3.2) 
n 

or, by substituting Eq. (3.1): 

K 
E = I:[y(n) - I: a(k)¢k(nW· (3.3) 

n Ie=l 

This equation can be solved for the a(k), by setting the partial derivatives of 
E with respect to a(k) equal to zero. This results in a set of target vectors 
a(k) of the same dimension as y(n). 

According to Eq. (3.1), the target functions and target vectors together give 
a new representation of the speech parameters which we hope will be related 
to a phonetic representation. An illustration of the decomposition of a speech 
utterance is given in Fig. 3.1. The plot shows the amplitude-time waveform 
of the utterance, the phonetic transcription and the automatically extracted 
target functions. The speech parameters, in this case log-area parameters, of 
the associated target vectors are transformed into the spectral domain and 
the corresponding log amplitude spectra are also shown. 

Although temporal decomposition results in a description of speech in 
terms of linear combinations of the input parameters, the method itself is 
nonlinear, and complex to such a degree that its behaviour cannot be made 
explicit. As a consequence, the results obtainable with different parameter 
sets cannot be predicted theoretically from the log-area results, not even if 
the relationship between the two sets is linear. 
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100 ms

Figure 3.1: Temporal decomposition of the eve utterance fdamamaf.
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The parameter sets used in this chapter for the comparison of suitability for
temporal decomposition form together a representative subset of the available
sets for such an experiment. They are all characterized by the fact that they
are often used for other purposes, such as speech coding or synthesis. Some
of these sets are also used by others for temporal decomposition. Three sets
are closely related, and differ only in the amount of detail or the number of
parameters. It is hoped that the comparison of these three sets will add to
the insight into temporal decomposition. Eight parameter sets were derived
from the predictioil coefficients obtained with LPC (e.g. Viswanathan and
Makhoul, 1975; Markel and Gray, 1976; Vogten, 1983). For the temporal
decomposition analysis, the source parameters (the filter gain, the pitch and
the voice/unvoiced parameter) were left out of consideration. In the following
the prediction order I is always 10, except when specified otherwise, resulting
in 10 speech parameters per frame. One parameter set was based on the
output of a filter bank. In this latter set, amplitude information is integrated
in the parameters.

3.3.1 Parameter sets

Four of the LPC-derived parameter sets are directly related to the physical
parameters of a model in which the vocal tract consists of an acoustic tube of I
sections, each of the same length but of different cross-sectional area. They are
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all convertible into one another through linear or non-linear transformations.
Here they are presented in terms of the LPC prediction coefficients ai (not to
be confused with the elements of the target vector a(k)).

(3.4)1 ~ j ~ i-I,

(1) Reflection coefficients (Re) RC are often used for speech coding
and transmission purposes (e.g. Viswanathan and Makhoul, 1975). The re­
flection coefficients, indicated with the symbol k, have the following recursive
relations with the prediction coefficients:

ki = a~i)
(i) (i) (i)

(i-1) _ aj - a i ai_j
aj - 1 _ k2 ',

where the index i takes the decreasing values I, I-I, ..., 1 and initially
a~J) = aj, 1 ~ j ~ I.

(2) Area coefficients (A) Area coefficients are the cross-sections of the
I successive sections of the vocal tube. Eq. (3.5) relates these parameters, A,
to the reflection coefficients k:

1 ~ i ~ I. (3.5)

If a frame of I area coefficients is considered as a vector in an I-dimensional
space, the length of this vector can be varied (within certain limits) without
affecting the formant frequencies. The possible advantage of this property will
become clear in one of the following sections. These parameters have been
used for speech transmission (Markel and Gray, 1976). Bimbot et al. (1987)
have also used the A coefficients for temporal decomposition.

(3) Log-area parameters (LA) These parameters, originally proposed
by Atal, represent the logarithms of the areas of the cross-sections of the vocal
tube and are thus given by:

logA, , 1 ~ i ~ I. (3.6)

(4) Log-area ratios (LAR) The often used log-area ratios, indicated
with the symbol g, can be expressed in terms of the reflection coefficients k:
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1 + ki
gi = log --k-'

1 - i
1 ~ i ~ I,
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(3.7)

or, by substituting E9' (3.5) into Eq. (3.7), in terms of the area coefficients
A:

1 ~ i ~ I, (3.8)

thereby immediately explaining their name. Along with the LA parameters,
the LAR are the most frequently used parameters in temporal decomposition
and other related techniques (Ahlborn et al., 1987; Bimbot et al., 1987; Chollet
et al., 1986; Marteau et al., 1988; Niranjan et al., 1987). Bimbot et al.
(1987) reported that the LAR were the most suitable parameters for temporal
decomposition they had found so far. It is, however, unclear whether they
based this on experimental or theoretical grounds.

Although Eq. (3.7) suggests otherwise, the relationship between the LAR
and the RC is almost linear within a large range of the possible data, as can
be seen in Fig. 3.2. Viswanathan and Makhoul have shown that the LAR
provide an approximately optimal set for quantization.
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Figure 3.2: Log-area ratio (LAR) plotted as a function of the reflection co­
efficient (RC). For comparison the linear characteristic gi=4*ki is also shown.
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The following five parameter sets are derived from a spectral analysis of
the speech signal.

(5) Formant frequencies (F) The F frequencies are defined as the acous­
tical resonances of the vocal tract. Besides their frequent usage by phoneti­
cians, they are often used in speech synthesizers (e.g. Flanagan, 1972). To
determine the F frequencies and the associated bandwidths from the LPC co­
efficients, we have used the robust formant analysis method of Willems (1986,
1987). This method, based on the Split Levinson Algorithm, always yields
1/2 ordered formant tracks. After that, the optimal bandwidth values can be
found from a table. Only the F frequencies will be used as input parameters,
since at several stages of the temporal decomposition procedure (e.g. singular
value decomposition and the computation of the target vectors) it is unde­
sired to have a mixed set of input parameters. Bimbot et al. (1987) suggested
that F frequencies are less suitable for temporal decomposition because their
number is not constant and they are not always ordered. This objection, how­
ever, does not apply to the F frequencies obtained with the above-mentioned
algorithm.

(6), (7), (8) Three sets of spectral coefficients (S.) These spectral
coefficients are calculated by means of a discrete Fourier transform (DFT) of
the prediction coefficients ai. The order of the Fourier transform determines
the number of resulting log-amplitude coefficients (I') which describe the spec­
tral transfer characteristic of the prediction filter. Both the prediction order
and the order of the Fourier transform are varied, yielding the following three
sets: I = 10 and I' = 16 (8 10- 16), 1= 10 and [' = 32 (8 10- 32 ) and 1= 16 and
[' = 16 (S16-16)' These three different sets (S.) are used to vary the amount
of detail in the input parameters.

(9) Filter bank output parameters (BF) The BF parameters are
derived directly from the digitized speech signal. There exists a wide variety
of possible filter banks to determine these data, based on different models and
each with its own specific advantages. For our experiment a I-Bark bandwidth
auditory filter as described by Sekey and Hanson (1984) was available, yielding
16 parameters per frame.

3.3.2 Time variations of the speech parameters

As temporal decomposition is based on the assumption that the speech
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parameters can be described by linear combinations of articulatory target po­
sitions, the speech parameters should somehow reflect this linearity. There­
fore, there should be a high linear dependency between the time variations of
the different parameters of a single set.

The time variations of the parameters of the sets used in our experiment
can be seen in Fig. 3.3. Both the RC and the LAR (Fig. 3.3A and B) exhibit
a capricious behaviour in time. It can be seen that their time variations are
almost identical, which is explained in Fig. 3.2. Clearly, the three spectral
sets S. (Fig. 3.3C, F and I) are closely related, 816- 16 showing more details
than 810- 16 and 8 10- 32 , The BF parameters (Fig. 3.3E), and especially the
low-frequency ones (upper lines), also show a resemblance to the coefficients
of the 8. sets. The BF parameters, however, vary more smoothly. The time
variations of the A coefficients show distinct peaks between rather long periods
of almost constant value (Fig. 3.3D). The LA parameters, on the other hand,
vary constantly though rather smoothly (Fig. 3.3G). Finally, in Fig. 3.3H the
F frequency tracks are shown.

3.3.3 Temporal decomposition of a speech utterance

Fig. 3.4 gives an example of the decompositions of the speech utterance
jdababaj using five different sets of input parameters. From the top down­
wards, RC, LAR, A, BF and LA have been used. It can clearly be seen that
different sets of input parameters yield different results. Not only the num­
ber of target functions but also their locations vary considerably from one
set to the other. Consequently, the corresponding target vectors too can be
rather distinct. This variation, however, is far from random. The decompo­
sitions of LA and BF seem more closely related to the phonetic structure of
the speech signal.· RC and LAR nearly always yield more target functions
than LA and BF. Furthermore, the decompositions of RC and LAR are often
quite different (as in this example), in spite of the fact that they are nearly
identical apart from a scaling factor (see Fig. 3.2). Thus the performance of
the temporal decomposition method is very sensitive to minor differences in
the input parameters. The following sections will deal extensively with these
phenomena.
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Figure 3.4: Temporal decomposition of the speech utterance /dababa/
using five different sets of input parameters: reflection coefficients (RC),
log-area ratios (LAR) , areas (A), filter bank output parameters (BF) and
log-area parameters (LA).

3.4 Phonetic relevance of the target functions

Most phonemes are realized in the acoustic speech signal as a single speech
event. Clear exceptions are plosives and diphthongs, both consisting of two
speech events. Though this gives a simplified view of reality, it yields a possi­
bility to judge the phonetic relevance of the decomposition. An important cri­
terion for good performance is a one-to-one relation between target functions
and speech events. In the following, each target function will be associated
with a particular speech event, and for each speech event the number of target
functions associated with it will be counted.

3.4.1 Experimental procedure

In order to perform this experiment, a small database was constructed con­
sisting of CVC combinations embedded in a neutral context: IdaC l VC 2al.
The consonants C1 and C2 were taken from the phonemes Ill, Iml, Ibl or
Ipl and the short vowel V was one of the phonemes lal, III or I~/. Each
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of the 48 possible combinations was produced by a single male speaker. Of
course, this material does not exhaust all possibilities of the language, but for
practical reasons the size of the database had to be limited. Moreover, since
much is yet unknown of the possible achievements of temporal decomposi­
tion, it is better to restrict oneself to a small set of carefully articulated words
than to use fluent speech produced by various speakers. The results presented
in the next chapter will legitimate this approach in which only eve words
spoken by one speaker are used.

Phonetic labelling of the eve combinations was carried out by hand. Clo­
sure and burst of the plosives were labelled separately. Temporal decomposi­
tion analysis with the nine parameter sets was carried out for all 48 utterances.
Subsequently, every target function was assigned to a speech event. As may
be gathered from Fig. 3.4, this assignment was not always a straightforward
matter. Sometimes a target function is located at the transition of two con­
secutive speech events and thus difficult to classify. As we have opted not
to label transitions, in each case a decision had to be made as objectively as
possible. However, since we are mainly interested in the number of target
functions describing a speech event, a wrong decision will not substantially
influence the results as they are averaged over all speech events. Furthermore,
these transition-describing target functions appear to occur much more fre­
q uently when the overall number of target functions is also relatively high.
Thus, uncertain classifications will occur specifically for parameter sets which
are obviously not very suitable for temporal decomposition.

3.4.2 Results

As described above, for each speech event the number of associated target
functions was counted. Next, the percentage of speech events associated with
zero, one, two or more than two target functions was determined for each set
of input parameters. The results are shown in Table 3.1A. The order in which
the data of the several sets are presented may give an indication of the quality
of the performance.

As we aim at a one-to-one correspondence of target functions to speech
events, the second column gives the best indication of the performance. One
can see that both BF parameters and LA parameters give the fair result
that about 64 % of the speech events are associated with only one target
function. At a distance of some 6 % they are followed by the sets of spectral
coefficients S. and the F frequencies. The remaining three sets, consisting
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Table 3.1: Percentages of speech events associated with zero,
one, two or more than two target functions. The results given are
averaged over all speech events, including and excluding the bursts
respectively.

A. including bursts B. excluding bursts
parameters 0 1 2 >2 0 1 2 >2
BF 20 65 15 1 0 79 20 1
LA 18 63 18 1 1 73 25 1
810- 16 20 58 21 2 0 70 28 2
810- 32 22 56 21 1 1 70 28 1
816- 16 20 52 27 2 1 61 36 2
F 14 59 23 4 0 64 31 5
A 21 47 30 2 4 54 40 3
LAR 16 43 34 7 0 46 46 9
RC 14 42 37 7 0 41 50 9
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of A coefficients, LAR and RC, only got as far as some 44 %. The other
columns, however, also reveal important information. A high percentage of
speech events associated with precisely one target function is useless if the
remaining speech events are not associated with any target function at all
and thus are not detected. As can be seen in the first column, all sets show
an unacceptably high percentage of missed speech events. However, since the
bursts are only of very short duration and already spread out by the LPC
analysis, the question arises whether these speech events can be correctly
modelled by a target function which of necessity has a longer duration. It
might be expected that a fair amount of them will not be detected. Thus, it
is important to examine whether the high percentages in the first column of
Table 3.1A can be attributed to missed bursts.

In Table 3.1B the results are shown for the same speech events but exclud­
ing the bursts of the plosives. Clearly, the overall results are much improved,
all percentages in the first column showing a dramatic decrease, while all per­
centages in the second column are increased, as compared with the results in
Table 3.1A. For most parameter sets, the percentage of missed speech events
even gets as low as 0 %. Especially the relatively good parameter sets of
Table 3.1A, such as BF and LA, profit from this alternative way of presenting
the results, as their percentages of phonemes associated with precisely one
target function increase to 79 and 73, respectively. Again, the S. sets and the
F frequencies form a middle group, while the same three sets as before lag
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behind. Furthermore, a high percentage in the second column correlates with
a low percentage in the fourth column, indicating that only a small number
of speech events is associated with more than two target functions.

It should be noted that in Table 3.1 as well as in the next table the re­
maining percentages of missed speech events do not always indicate a gap in
the sequence of overlapping target functions. Rather, this can be attributed
to a strong coarticulation, because of which two consecutive speech events are
associated with the same target function. Only in the case of the closures of
voiceless stop consonants of relatively long duration is a real gap sometimes
found. This is easily understandable since in these particular cases hardly any
speech signal exists.

Table 3.2: Percentages of the consonants (excluding
the bursts) and the vowels associated with zero, one,
two or more than two target functions.

A. consonants B. vowels
parameters 0 1 2 >2 0 1 2 >2
BF 0 86 13 1 o 65 35 0
LA 2 77 20 1 o 65 35 0
810- 16 0 73 24 3 o 65 35 0
810- 32 2 70 27 1 o 70 30 0
816- 16 1 62 35 2 2 59 37 2
F 0 70 24 7 o 52 46 2
A 4 59 35 2 2 44 50 4
LAR 0 47 45 9 o 44 48 9
RC 0 40 49 11 o 41 52 7

Given the results of Table 3.1 it will be interesting to investigate whether
these results apply for all categories of phonemes. The most obvious division
is that into consonants and vowels. The results for both the consonants and
the vowels are shown in Table 3.2. The consonants show an increase in the
percentages of the second column for almost all parameter sets. The BF
parameters even get as high as 86 % of the consonants described by only one
target function. Here, the LA parameters cannot match the BF parameters,
although the achievement of 77 % is also relatively high. The other parameter

. sets follow in almost the same order as in the previous table.
From these results it can already be derived that, for the vowels, the per­

centages in the second column of Table 3.2B are lower than the corresponding
ones in Table 3.1B. It is interesting to notice that, for the vowels, the results
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of the BF parameters and the LA parameters are identical. Also the sets of
810- 16 and 810- 32 show similar results.

The order in which the results of the several parameter sets are presented
in the two tables gives an indication of their performance. The BF parameters
are therefore the most suitable input parameters for temporal decomposition
if the criterion is a one-to-one correspondence of target functions to speech
events. The historically most often used LA parameters occupy a second place.
A large middle group, consisting of the three 8. sets plus the F frequencies,
still gives reasonable results. The A coefficients, LAR and RC, turn out to be
unsuitable for our temporal decomposition method in this respect.

Although the differences are probably not significant, the order of the 8.
sets is nearly always 8 10- 16 , 8 10- 32 , 8 16- 16 . This suggests that if more detail
is included in the input parameters, the phonemes tend to be split up into
more target functions. Furthermore, it follows that temporal decomposition
is sensitive to small differences in the input parameters. This also holds for
the results of th~ LAR and the RC. Although the parameters of both sets are
almost identical (see Figs. 3.2 and 3.3), the former set always yields a slightly
better performance.

3.5 Phonetic relevance of target vectors

The target vectors are assumed to model articulatory target positions. It will
be clear that this is only possible if for each speech event only one target
function, and thus also one target vector, is found. In the previous section
we have found that this is not always the case; part of the speech events of
our database is associated with two or more target functions. For this reason,
we will restrict ourselves in the following to evaluating only target vectors
belonging to speech events associated with precisely one target function. Since
this is a first exploration of the target vectors, we will confine ourselves to
vowels.

The target vectors have the same dimension as a frame of input parameters.
As we started our research using LA parameters, we will first investigate the
interpretation and phonetic relevance of the target vectors determined with
LA parameters. Next, we will extend or adapt our findings to the other sets
of parameters.
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3.6.1 Target vectors of log-area parameters

After the determination of the target functions, a target vector is computed
for each function by solving Eq. (3.3). In the case of the LA parameters,
the target vectors describe in fact the shape of the vocal tract. The ideal
articulatory target position or vocal tract shape is, of course, not available as
a reference; thus the target vectors have to be tested on their own merits. As
the model assumes identical target positions for identical speech events, target
vectors belonging to the same speech events should show a close resemblance.
A convenient way of judging this resemblance is in terms of the first two
formants.

In order to obtain more vowels associated with precisely one target func­
tion, the database was extended with two more productions of the same ut­
terances by the same speaker. For all vowels associated with only one target
function, the target vectors were transformed from the LA space to the for­
mants and bandwidths space. Subsequently, the first two formants (F1 and
F 2) of all these vectors were plotted against each other, since these two for­
mants are usually considered as perceptually most relevant for the vowels.
The result is shown in Fig. 3.5, where the target vectors belonging to an / a/
are represented by filled circles (.), to an /1/ by filled squares (.) and to an
/~/ by filled triangles (&). These three groups form three separate clusters
of points at places where one might expect them if they really represented the
specific vowels. In order to better appreciate the location of these clusters,
we also show, for comparison, the points belonging to the middle frames of
the same vowels. These frames, which we use as a reference, were extracted
by hand from the original matrix of speech parameters and thus, in contrast
with the target vectors, were actually realized in the speech signal. In Fig. 3.5
the original vowels / a/, /1/ and t:J / are represented by open circles (0), open
squares (0) and open triangles (6), respectively.

In this figure a few things should be noticed. As mentioned earlier, the
target vectors form three separate clusters. Also, the middle frames of the
vowels form separate clusters which are slightly more compact. What is most
important, however, is that the two clusters belonging to the same vowel do
not occur at exactly the same location, although there is a fair amount of
overlap. This can be seen most clearly for the vowel /~/; there is not much
overlap between the groups of & and of 6. One might argue that this is
due to the fact that the target vectors represent idealized targets and are
thus not necessarily realized in the acoustic speech signal. This argument
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would be supported by the fact that the shift of the target-vector clusters
with respect to the vowel clusters is in a direction away from a neutral vocal
tube; that is, the target-vector points are more pronounced than the actually
realized vowels. However, in that case one would have to expect more compact
clusters, as all different realizations of the same vowel are supposed to belong
to the same target.
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Figure 3,5: The first two formants F I and F2 plotted against each other for
some target vectors and some middle frames of vowels. The target vectors
are associated with the short vowels lal (.), III (.) and I-:JI (A). The
middle frames are taken from the same vowels: lal (0), III (0) and I-:JI
(6).

There is another, more plausible explanation, The a(k) are chosen subject
to the condition that the product of a(k) and 1Jk(n) approximates as closely as
possible the original speech parameters y (n). Thus, the length of the target
vectors is determined by both y(n) and 1Jk(n). However, since the original
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speech parameters are given, the only variable factor can be ePk(n). These
target functions are all normalized to 1, a choice which, although it can be
defended, is in fact arbitrary. With this the length of the target vector is also
fixed. This can be seen in the following extension of Eq. (3.1):

K K 1
y(n) = L a(k)ePk(n) = L (_. a(k))(x . ePk(n)), (3.9)

,1,=1 ,1,=1 x
where x is an arbitrary positive constant. Changing the normalization factor
by a factor x yields target vectors with a length of ~ times the standard
length, while for all possible x the resulting approximation of the original
speech parameters remains the same.

The effect a change of length of an LA vector has on the position of the
vector in the F 1-F2 plane is shown in Fig. 3.6. The F 1-F2 points corresponding
to the vectors of original length are represented by filled circles (.). Increas­
ing the length up to a factor of 2 results in the tracks from • to 0, while
decreasing the length down to a factor of 0.1 yields the track from. to o.
Of course, the other formants and the bandwidths change as well, but for the
sake of clarity only the effects in the F 1-F2 plane are shown.

If temporal decomposition is used for coding, the actual choice of x is not
important. However, in our case it introduces an undesired extra degree of
freedom and it is important to make a well-considered choice of the value of
x. The value of x actually used (namely x = 1) is based upon the following
grounds: if a target function does not have much overlap with neighbouring
functions, the target can be reached. Since the input vectors at that particular
place are approximated by the product of only one target function and target
vector, the target vector should resemble the input vectors, so the target
function has to be normalized to 1. However, in practice consecutive target
functions often show a considerable overlap. In those cases it is less clear what
the normalization factor should be. The results given in Figs. 3.5 and 3.6
suggest that a normalization factor of slightly more than 1 would be a better
choice. The lengths of the target vectors will then be a little bit shorter,
causing a shift of the target vector clusters in the direction of the original
vowel clusters. It will be clear that in order to give optimal results all target
vectors require different normalization factors. However, up till now it has
been impossible to find boundary conditions for the temporal decomposition
method which solve this problem satisfactorily. A more detailed study of a
wider range of target vectors will be necessary.
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Figure 3.6: Tracks in the F 1-F2 plane of three vectors which are changed
in length in the LA space. The three vectors correspond to the three vowels
I ai, III and I~/· The FI-F2 belonging to the vectors of original length are
represented by the filled circles (.). If the length of the vector is doubled,
F I-F 2 take the place of the squares (D). Multiplying the length by 0.1 results
in the FI-F2 at the places of the open circles (0).

3.5.2 Target vectors of the remaining parameter sets

The conclusions with respect to the phonetic relevance of the LA vectors can
be extended to RC, LAR and F. As a consequence, a comparative analysis of
the target vectors in the F 1-F 2 plane makes no sense. Changing the length
of A, S. or BF target vectors has no effect on the values in the F1-F2 plane.
However, sometimes the values of the A coefficients turned out to be negative
and thus unphysical. Unphysical values were also found for RC and F. Clearly,
target vectors consisting of one or more physically uninterpretable parameters
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could never model a target position.
Unfortunately, it must be concluded that the phonetic relevance of the

target vectors turned out to be an ineffective criterion for the comparison of
performance of different speech parameters.

3.6 Resynthesis

The temporal decomposition method of Atal was originally proposed for eco­
nomical speech coding. Thus, after the decomposition of the speech signal in
terms of target functions and target vectors, the original speech signal has to
be reconstructed and resynthesized again. Reconstructed speech parameters,
approximating the original ones, can be obtained by substituting the target
functions and target vectors in Eq. (3.1). Although it is not our purpose to
use temporal decomposition for speech coding, it remains useful to analyse
the quality of the resynthesized speech signal. Target functions and target
vectors can only model the speech signal in a phonetically relevant way if the
speech quality is not too much affected by temporal decomposition. Thus,
the quality of the resynthesis gives a good indication of the usefulness of this
model.

There are two ways to test the quality of the resynthesis. First, the speech
signal can be evaluated perceptually. However, for different reasons some of
the parameter sets are unsuitable for speech resynthesis. In order to resyn­
thesize the speech signal starting from BF parameters, a special synthesizer,
which was not available for our experiment, is needed. Furthermore, such
synthesizers are known to yield, in general, unsatisfactory results (e.g. Pols,
1977). The S. coefficients can only be used for resynthesis if phase information
is also available, but this is lost during the several stages of the analysis. Fi­
nally, among the reconstructed speech parameters of Re, A coefficients and F
frequencies unphysical values sometimes occur. Such unphysical values would
have to be corrected before they could be passed on to a speech synthesizer.
Thus, only the LA parameters and the LAR can be used without any problems
for speech resynthesis.

The second possible way of evaluating the speech quality consists of deter­
mining the difference between the original and the reconstructed speech par­
ameters, using a suitable distance measure. For each frame of each parameter
set such a difference or reconstruction error can be determined. However, the
comparison of the errors of different parameter sets is only meaningful if these
errors signals are computed in the same parameter space. Since not all sets
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(3.10)

are transformable into one another, only LA parameters, A coefficients, LAR
and RC can be compared in this way. The following section will deal with
this.

3.6.1 Reconstruction errors in the resynthesis

The LA space is used as a reference; all the reconstructed speech parameters
are transformed into the LA space. Next, for each frame the difference with
the original frame is computed, subject to a suitable distance measure. Of
course, a perceptually relevant distance measure would be the most appro­
priate, but although many attempts have been made (e.g. Gray and Markel,
1976; Nocerino, Soong, Rabiner and Klatt, 1985; Applebaum, Hanson and
Wakita, 1987), the definition of such a distance measure does not exist yet.
Therefore, we confine ourselves to a simple Euclidian distance measure, the
same which is minimized in Eq. (3.3) for the determination of the target
vectors. The reconstruction error E(n) for one particular frame is defined as:

1

E(n) = [iE(Yi(n) - Yi(n))2] 2

Both Yi(n) and Yi(n) consist of LA parameters, but the optimization of Yi(n)
(i.e. the determination of the target functions and target vectors) has taken
place in the various parameter spaces. The E(n) of the various parameters sets
can be compared directly. However, comparing these errors per frame is not
the most convenient way; it seems better to sum E(n) over a number offrames,
obtaining an error measure Em. As Em will only be used to get an impression
of the differences in reconstruction errors between the various parameter sets,
the exact number and choice of frames over which the summation extends is
not important. The actually used Em is defined as follows:

50

Em = L E(n).
n=10

(3.11)

This choice of Em is based on the consideration that it can be used for all
the CVC utterances in the database, and that the summation extends over a
relevant part of the utterance. In order to get a perceptually more relevant
error measure, it is possible to weight the reconstruction errors of a frame
with the gain factor G(n). This follows from the fact that if the amplitude of
the speech signal is lower, the relative error will be less audible. This error is
defined as:
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50

E A = L G(n)E(n)/1000.
n=10

(3.12)

The factor 1000 is only meant to bring the values of EA into the same order
of magnitude as Em. Again, these values are only used to give an indication
of the performance of the various parameter sets.

In Fig. 3.7, a representative example can be seen of the decompositions of
the utterance /dapala/, using four different parameter sets: Re, LAR, A and
LA. Like Fig. 3.4, this figure shows the differences in number, location and
form of the target functions. Next to the target functions the reconstruction
error E(n) is shown for each frame. The vertical bars under the error signal
of the A coefficients indicate the locations where unphysical (i.e. negative)
values were obtained. The numbers at the right side of this figure represent
Em and E A respectively.
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Figure 3.7: Target functions (left) belonging to the reflection coefficients
(RC), the log-area ratios (LAR), the areas (A) and the log areas (LA), and
the reconstruction error signal (right) of the CVC utterance /dapala/ for
each of the parameter sets. A further explanation of this figure is given in
the text.

Temporal decomposition attempts to describe the speech parameters with
a linear model. A parameter set is really suitable for linear modelling if the
error signal is small and varies little in time; peaks in the error signal indi­
cate locations where this model is not satisfactory. In the example of Fig. 3.7
it can be seen that the error signal of the A coefficients shows considerable
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peaks, confirming once more that the A coefficients are not very convenient
parameters for temporal decomposition. Although none of the other par­
ameter sets produces a consistently flat error signal, the achievements of the
LA parameters are most satisfactory in this respect. Also the absolute error
measures Em and EA are smallest for the LA. Due to an almost identical de­
composition, the error signals of the RO and the LAR are very much alike in
this example.

Most of these observations hold for all examples studied, even when there is
a considerable difference in the number of target functions; only in a few cases
is the error signal of the LAR smaller than that of the LA. The reconstructed
LAR always describe the speech signal better than the RO, and of the four
sets the A coefficients usually perform worst (although this is not visible in
the particular example of Fig. 3.7).

3.6.2 Reconstruction using mixed parameter spaces

In the previous section error signals of reconstructed speech parameters were
compared. In all cases, the decompositions (i.e. the number and location of the
target functions) were different. The LA parameters nearly always yielded the
smallest reconstruction error. However, our temporal decomposition method
was optimized using LA parameters, which might have influenced the results.
Since the target functions are dimensionless, it is possible to use them in
another parameter space than the one in which they have been determined.
This strategy makes it possible to investigate whether the target functions
determined in LA space are also suitable for use in other parameter spaces.
In this way, the comparison is more direct, irrespective of the optimization
of the temporal decomposition method. On the other hand, it also offers the
opportunity to carry out this procedure the other way round: using target
functions, determined in other parameter spaces, for reconstruction in the LA
space. Since the other parameter sets mostly yielded more target functions,
it is interesting to investigate whether the LA reconstruction error further
reduces if more target functions (determined in another parameter space) are
used.

An example of the first procedure can be seen in Fig. 3.8A. The LA target
functions have been used to determine the target vectors in the various par­
ameter spaces. Subsequently, the speech parameters have been reconstructed
and transformed to the LA space. The resulting reconstruction error signals
have been plotted for each parameter set.
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Figure 3.8: A. Target functions of the utterance /dal::>la/ determined in
the LA space. Using these functions, the optimal target vectors are computed
in the RC, LAR, A and LA space, yielding the plotted error signals. B. Same
as A., only in this case the target functions are determined in the RC space.

The fact that the error signals of the LA parameters and the LAR are
identical is due to the specific coherence of the two spaces. In the appendix it
will be proved that the target vectors and thus the error signals of these two
parameter sets are always identical if the same target functions are used for
the computation. This means that for the computation and interpretation of
the target vectors these two spaces are equivalent. Moreover, in the previous
section it has already been said that the error signal of the LAR is nearly
always larger than that of the LA, even if the description in the LA space
consists of more target functions. It follows that for the LAR a better recon­
struction of the speech parameters can be obtained with a smaller number of
target functions.

Since in all cases in Fig. 3.8A identical target functions are used, it is
possible to compare directly the error signals of the RC and the LAR. Again,
the error of the RC is the larger of the two. This is mainly due to the
occurrence of unphysical values. Also, the fact that these coefficients differ
significantly in the region 0.8 ~ IRCil < 1 (see Fig. 3.2) plays a role here.

Another example of the decomposition of the same utterance jdal-:Jlaj
following the second procedure is given in Fig. 3.8B. This time the target
functions shown are derived in the RC space, yielding considerably more target
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functions than in Fig. 3.8A. Again the computation of the target vectors and
the reconstruction of the speech parameters have taken place in the various
parameter spaces. Now, the error signals in Fig. 3.8A and B can be compared.
For the LA parameters it can be seen that the error measures Em and EA are
higher if the RC functions are used. Since the LA and LAR error signals are
identical, this also holds for the LAR. Also the error signal of the A coefficients
is smaller when the LA functions are used. In this particular example the RC
error signal is smaller if RC functions are used, but quite often the opposite
is true, which signifies that even in RC space the RC functions are not always
optimal.

These examples show that indeed the optimization of the temporal decom­
position method for the LA parameters has its impact on the performance of
the other parameter sets. Still, it can be concluded that the LA parameters are
more suitable for temporal decomposition than RC or A coefficients, since the
error signal is always smallest for the LA parameters. The LAR, on the other
hand, must have, in principle, the same possibilities as the LA parameters.

Of the four parameter sets compared in this section, the LA target functions
gave the best results, not only here but also in the experiment comparing the
phonetic relevance of the target functions. However, in the latter experiment,
the BF parameters were found to yield even better results. In the hope to
also achieve better results here, a final option we have examined is the use of
BF target functions for reconstruction in the LA space. Although this indeed
sometimes led to better descriptions of the original speech signal, more often
the error signals obtained were significantly larger. As it is impossible to
transform the reconstructed BF parameters to the LA space we have not
been able to compare the error signals of both spaces.

3.7 Discussion and conclusions

In this chapter it has become clear that every speech utterance can be de­
composed in a large number of ways by simply varying the choice of input
parameters (see e.g. Fig. 3.4). Variation of the other parameter settings of
the method will lead to even more possible decompositions. The criterion
for determining the best possible decomposition when optimizing the method
was its phonetic relevance. Here, it was shown that speech parameters which
yield a phonetically relevant decomposition also give the best reconstruction
results, even compared to decompositions which yielded more target func­
tions. Thus, it can be concluded that indeed the optimized temporal decom-
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position method is capable of decomposing the speech signal into units which
are closely related to the composition of the speech signal.

One of the objectives of this chapter was to investigate whether there are
speech parameter sets that yield better results than the LA parameters. With
respect to the phonetic relevance of the target functions, such a set has been
found, namely BF parameters. However, resynthesis of these speech par­
ameters is not possible, which makes them less suitable for temporal decom­
position. Unfortunately, the reconstruction errors of this set could not be
compared with those of the LA parameters because these sets could not be
transformed into one another.

A possible explanation of the differences between the results of the LA par­
ameters and the BF parameters lies in the fact that in the latter set amplitude
information is integrated in the parameters. In the LA parameters and the
other LPC-derived parameters the amplitude information is left out of con­
sideration. Although amplitude information could be a useful cue for better
temporal decomposition results, it is not a straightforward matter to integrate
this information in the parameters. A pilot experiment (not reported here)
in which the LA parameters were weighted with the gain factor to obtain a
situation comparable with the BF parameters, did not yield any better LA
results.

The three sets of spectral coefficients were included in the comparison
to study the effect of different amounts of detail in the parameters (i.e. a
higher order of DFT or a higher number of parameters) on the decomposition.
Although not significant, a tendency was found that more detail leads to more
target functions.

The phonetic relevance of the target vectors turned out to be difficult to
establish. In the F 1-F2 plane the LA target vectors belonging to vowels as­
sociated with precisely one target function, formed a cluster of points which,
compared with the cluster of middle frames of the same vowels, was slightly
shifted and somewhat less compact. From this, it was concluded that appar­
ently the target vectors do not really model idealized target positions. Nor,
moreover, do they represent the actually realized speech event, which is pos­
sibly due to a non-optimal normalization of the target functions. Since the
target vectors of the other parameter sets either consisted sometimes of un­
physical values or could not be transformed to the F 1-F2 plane, the phonetic
relevance of the target vectors could not be used as a criterion to distinguish
between the various parameter sets.

Also with respect to resynthesis, the LA turned out to be one of the most
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suitable parameter sets, often yielding the smallest reconstruction error, al­
though compared with the other sets the reconstruction of the signal was
achieved with the fewest number of target functions and target vectors. Bet­
ter results were also obtained in other parameter spaces when LA target func­
tions were used. In the LAR space the results are then even identical (see also
the appendix). This has to do with the fact that the temporal decomposition
method was optimized while using LA parameters. In principle, it must be
possible to obtain the same target functions using the LAR. Although the
RC are almost identical to the LAR, they invariably perform worse, mainly
due to the occurrence of unphysical values. Viswanathan and Makhoul (1975)
already reported that for speech transmission the optimal transformation of
the RC were the LAR. The A coefficients performed worse than the LA par­
ameters, also when using the LA target functions. This can be understood
from their logarithmic relationship; if LA parameters are suitable for linear
modelling, as a consequence the A coefficients will not be suitable.

In recent literature temporal decomposition results are reported using the
LAR (Ahlborn et al., 1987; Bimbot et al., 1987; Chollet et al., 1986; Marteau
et al., 1988; Niranjan et al., 1987). Although this is not in direct accordance
with our results (Table 3.1), the resynthesis experiments of section 3.6.2 have
made it clear that, in principle, the same results can be obtained with the LAR
as with the LA parameters. However, in their experiments the target vectors
are assumed to be known, leaving only the target functions to be determined.
As we have shown in the appendix, identical target functions yield identical
target vectors in the LA and LAR space. This also holds the other way round:
identical target vectors yield identical target functions. Thus, using temporal
decomposition in this way, the LAR and the LA parameters will perform
equally well, independent of the way in which the temporal decomposition
method is optimized.

Appendix

In this appendix it will be proved that, using a fixed set of target functions
and the same speech utterance, both calculations in the LA and LAR space
yield identical target vectors. The input parameters in the LA space are given
by:

Yi = logA" (A1)
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and in the LAR space by:

, Ai ( )Yi = log -A = logAi - logAi +1 = Yi - Yi+1· A2
i+1

In order to determine the target vectors in the LA space the mean squared
error defined by

K
E = L[y(n) - L a(k)<pk(nW, (A3)

n k=l
has to be minimized, which yields the following set of equations (Atal, 1983):

K
L aikL<Pk(n)<Pr(n) = LYi(n)<Pr(n). (A4)
k=l n n

From these equations the components aik of the target vectors can be deter­
mined. We now have to prove that these vectors are identical to the vectors
determined in the LAR space, using the same target functions <Pk(n). Follow­
ing the same procedure we get an equivalent set of equations:

K

L a:k L <Pk(n)<Pr(n)-= Ly:(n)<Pr(n), (A5)
k=1 n n

from which the components a:k can be determined. Expressing y~(n) in terms
of Yi(n) (Eq. (A2)) gives:

K

L a~k L <Pk(n)<Pr(n) =
k=1 n

L(Yi(n) - Yi+1(n))<Pr(n)
n

LYi(n)<Pr(n) - LYi+1(n)<Pr(n)
n n

(A6)

(A7)

Substitution of Eq. (A4) in the right-hand terms of Eq. (A7) gives:

K K
L a~k L <Pk(n)<Pr(n) = L aik L <Pk(n)<Pr(n)
k=1 n k=1 n

K
- L a(i+1)kL<Pk(n)<Pr(n) (A8)

k=l n

K

L(aik - a(i+1)k) L <Pk(n) <Pr(n), (A9)
k=1 n

which subsequently leads to:

(A10)

Since the same relation holds between the target vectors (Eq. (AlO)) as be­
tween the input parameters (Eq. (A2)), identical target vectors are obtained
for both the LA and the LAR.



Chapter 4

Some further explorations of temporal
decomposition

4.1 Introduction

The exploratory experiments described in this thesis are aimed at getting
an impression of the possibilities of temporal decomposition with respect to
the derivation of phonetic information directly from the acoustic speech sig­
nal, without making use of phonetic information. In the previous chapters
the optimization of the method has been the central theme; in this chapter,
the optimized temporal decomposition method thus obtained will be further
explored.

An important aspect which received only little attention in Chapter 3 is
the speech quality of the resynthesis. Although we do not aim to use tempo­
ral decomposition for speech coding, it is still useful to investigate how well
phonetic information is preserved after temporal decomposition. Phonetic in­
formation that gets lost in the process is apparently not modelled correctly by
the target functions and target vectors. Such knowledge increases the insight
into what kind of phonetic information might be derived from the acoustic
speech signal by means of temporal decomposition. In Chapter 3 it was al­
ready shown that reconstruction errors do occur, and thus the speech signal
cannot be reconstructed perfectly. However, an intelligibility experiment is
needed to determine what impact such errors have on the phonetic content
of the speech signal. A perception experiment will be described in which the
intelligibility of temporally decomposed and resynthesized CVC utterances is
compared with that of LPC utterances.

In the previous chapters the phonetic relevance of the target functions has
already been under discussion. In Chapter 2 a small database was used to
optimize the parameter values of the method and to compare the performance

59
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of our weighting factor with the original weighting factor of Atal. The object
was always to achieve the best possible correspondence between target func­
tions and phonemes. Except for the plosives, phonemes were supposed to be
realized as single speech events, which is, of course, a simplified view of reality.
As a performance criterion, however, it sufficed. In this chapter, the phonetic
relevance of the target functions was investigated, using a much larger, more
realistic database consisting of 100 phonologically balanced sentences. Possi­
bly, the experiment may lead to suggestions for further improvement of the
method.

The phonetic relevance of the target functions was judged in two ways:
phonologically and phonetically. The phonological approach starts from a
phonetic transcription of the sentences. Subsequently, for each phoneme it
is determined how many target functions are associated with it. The ideal
outcome would be one target function for each phoneme. A disadvantage of
this approach is that in fluent speech not all phonemes will be actually real­
ized in the acoustic speech signal. In such cases, it cannot be expected that a
separate target function will be found. However, since recognition or segmen­
tation techniques often concentrate on the phoneme level, it is important to
examine to what extent temporal decomposition could be used as a phoneme
detector.

In previous chapters it has become clear that the "ideal" result is far from
being reached; phonemes are often associated with more than one target func­
tion. The phonetic approach of this experiment is directed towards the inves­
tigation of the question as to why a phoneme is associated with a particular
number of target functions. The expectation is that each speech segment
that is perceptually distinct from neighbouring speech segments is associated
with a separate target function. A perceptual analysis is set up to verify this
expectation.

In the experiments described in this chapter, the temporal decomposition
method as proposed in Chapter 2 was used. To be able to combine the results
of the experiments, log-area parameters were used as input. The filter bank
output parameters, which gave the best results with respect to the phonetic
relevance of the target functions, could not be used since a suitable speech
synthesizer was not available. The results of the experiments should give an

. impression as to whether applications of temporal decomposition for speech
segmentation or speech recognition might be feasible.
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4.2 Intelligibility of temporally decomposed and resyn­
thesized eve utterances

4.2.1 Introduction

The intelligibility experiments are set up to investigate the influence which
temporal decomposition has on the phonetic content of speech utterances.
This investigation was done in two ways. In the first place, the intelligibility
of temporally decomposed and resynthesized speech, the so-called TD speech,
was compared with that of LPC speech. By comparing these two speech types,
the influence of temporal decomposition on the intelligibility is measured di­
rectly, since LPC-derived coefficients (log-area parameters) are used as input
for the method. LPC speech represents the speech quality immediately be­
fore temporal decomposition. The LPC results were taken from an earlier but
otherwise identical experiment; that is, the same subjects, the same kind of
stimuli and the same tasks for the subjects (Eggen, 1987b).

In the second place, the intelligibility of three different types of TD speech
(TDl, TD2 and TD3) was compared. These three speech types differ in the
accuracy with which the target functions and target vectors are described. In
the temporal decomposition process much effort goes into the accurate deter­
mination of target functions. It is, however, unknown how much accuracy is
needed for correct modelling of phonetic information. In TDI the description
of target functions and target vectors is very accurate. In TD2, both tar­
get functions and target vectors are quantized. In TD3 the target functions
are replaced by stylized functions, while the target vectors are further quan­
tized. The intelligibility of TD2 was also measured in the experiment from
which the LPC results were taken (Eggen, 1987b), so that the results of both
experiments could be related.

4.2.2 Method

4,2.2.1 Speech material and stimulus preparation

In the experiments the stimuli consisted of CVC utterances. CVC combi­
nations are often used for such experiments, since the intelligibility is then
measured at a segmental level, excluding syntactic or semantic influences. An
extra advantage of such stimuli is that they allow automatic processing of the
responses of the subjects.

The words consisted of CVC sequences which are phonotactically possible
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in Dutch (e.g. Cohen, Ebeling, Fokkema and Van Rolk, 1961; Moulton, 1962).
All words were easy to pronounce and sounded natural. The initial consonants
were chosen from the set (jp/, fbi, /t/, /d/, /k/, Iff, /v/, lsi, /z/, lxi, /m/,
/n/, /1/, /r/, /j/, /w/, /hj), the vowels from the set (ja/, /e/, /1/, /"J/, /re/,
/a/, lei, /i/, /0/, fyi, /u/, /'/J/, /et/, /Ay/, /au/) and the final consonants
from the set (jp/, /t/, /k/, /f/, /s/, /x/, /m/, /n/, (fll, Ill, Irl, Ijl, Iw/)
(IPA notation).

Stimulus lists consisting of 50 CVC words were generated by a comput~r

program. Each phoneme allowed in a certain position appeared approximately
an equal number of times in the CVC words. This was realized by drawing
at random, without replacement, a phoneme from the appropriate set. The
complete set was replaced when all the phonemes of a set were drawn. The
so-obtained lists included words as well as non-words. Excluding the mean­
ingful CVC words from the test sets would have provided the subjects with an
additional cue and would have restricted the open response set. In a similar
experiment Pols and Olive (1983) did not find any indication that the iden­
tification scores for words deviated from those of non-words. Eggen (1987b)
has found that the different lists are equivalent, that is, the overall results do
not depend on the list.

For each of the speech types a different 50-word stimulus list was generated.
These lists were recorded and the four different speech types were created in
accordance with the principles described in the next section. Additional lists
were prepared for training purposes.

The CVC words used were all spoken by one male Dutch speaker. The
quality of his speech after LPC analysis/resynthesis was judged to be good.
To ensure that the words were recorded under similar conditions, the words
were spoken in isolation at the end of a neutral carrier sentence (e.g. Ret
woord is ... "bak" (The word is ... "bak"), where the dots indicate a short
silence). From our experience, there was no reason to expect that the temporal
decomposition results would be speaker-dependent (see also section 4.4). The
words were recorded on a digital audio recorder and, after low-pass filtering
at 5 kHz, stored on disk using a 12-bit AD converter and a sampling rate of
10 kHz (Eggen, 1987c). Each word was stored in a separate file.

4.2.2.2 Speech types used in the experiment

LPC The LPC speech was synthesized directly from the ten coefficients
of a linear predictive analysis. Pitch and voiced/unvoiced parameters were
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estimated using the pitch detection algorithm developed by Hermes (1988).
The bit rate of this speech type was approximately 12 kbit/s, viz. c::: 10 kbit/s
for the filter parameters and c::: 2 kbit/s for the source parameters.

TDI The ten prediction coefficients from the LPC analysis were trans­
formed into log-area parameters, which were subsequently used as input for
the temporal decomposition method. The resulting target functions and tar­
get vectors were filed with a sufficient accuracy (both with three decimal
places), together with their locations in time. For resynthesis these target
functions and target vectors were recombined using equation (2.1) and the
so-obtained speech parameters were transformed back again into prediction
coefficients. Resynthesis of the filter coefficients together with the original
source parameters (pitch, gain and voiced/unvoiced parameter) yielded the
TDI speech. Since the number and lengths of the target functions differ for
each speech utterance, the bit rate of this speech type can only be indicated
as an average. Based on the analysis of the utterances used in this experi­
ment, the bit rate was on the average c::: 6.7 kbit/s, viz. c::: 2.0 kbit/s for the
source parameters and c::: 4.7 kbit/s for the filter coefficients. A more detailed
overview of the distribution of the bits is given in Table 4.1.

TD2 The procedure for preparing the TD2 speech was much the same
as for the TDI speech. In this case, however, an additional step was exe­
cuted before filing. Low-valued « 0.1) sidelobes of the target functions 4>(n)
were truncated and, as a consequence, the average length of the functions was
shortened. The values of 4>(n) (0.1 ~ 4>(n) ~ 1.0) were specified with one
decimal place only. Furthermore, the accuracy with which the individual par­
ameters of the target vectors were stored (-4.00 ~ ai ~ 6.00) was decreased
to two decimal places (see also Table 4.1). For resynthesis the original source
parameters were used again, resulting in the c::: 4.4 kbit/s TD2 speech.

TD3 The TD3 speech was the result of an attempt to find an efficient
stylization of the target functions. It was found that the target functions could
be approximated fairly well with an exponential (i.e. Gaussian) function:

::J(n - p,)2

4>(n) = e (J'2 (AI)

where p, represents the location of the maximum of the target function and
(J' is a measure of its width. It also turned out that 8 different values of (J'

were sufficient to cover the range of all possible target functions, and thus
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the number of bits required to encode each target function was reduced to
only 3. The parameters of the target vectors were separately quantized to
32 levels, that is 5 bits for each parameter. Finally, the source parameters
were logarithmically quantized to 16 levels. This resulted in a bit rate of
~ 1.8 kbitls for the TD3 speech (see also Table 4.1).

Table 4.1: Overview of the estimated bit distribution in kbit/s
over source and filter parameters for LPC speech and the three
TO-speech types.

I LPe TD1 TD2 TD3

0.05
0.8
0.1

0.4
0.5

0.7
1.6
0.1

1.2
0.8

2.4
2.6
0.1

1.2
0.8

Filter i Filter coefficients i 10.0
i Target function II

; Target vector
I Location 1

Source: Gain I 1.2
j F0 and VIVV I 0.8

Total : 12.0 6.7 4.4 1.8

4.2.2.3 Listening experiment

The above-mentioned eve utterances were used in an identification experi­
ment. Eight subjects, all native speakers of Dutch, participated as subjects in
this experiment. All reported normal hearing and were familiar with listen­
ing experiments and with the kind of speech stimuli used in this particular
experiment. The stimuli were presented to the subject over headphones. The
subjects, one at a time, had to respond by typing the perceived eve com­
bination followed by the return key on the keyboard of a computer terminal.
As the response time was unlimited, the subject was not bothered by any
time constraints. After the return key was pressed, the next stimulus was
presented. The response of the subject was filed and evaluated automatically
by the software especially designed for these experiments (Eggen, 1987a).

The experimental sessions always started with a set of training stimuli to
make the subjects familiar with their specific task and to test whether they had
understood the written instructions. Next, three lists with eve words of TD
speech were presented in varying order to the subjects. A complete session
took about h.alf an hour. The LPe speech had been tested in an identical
experiment performed about six months earlier by Eggen (1987a, 1987b).
TD2 speech was tested in both Eggen's and in the present experiment.
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4.2.3 Results

A one-way analysis of variance on the arcsine-transformed percentages (Stude­
baker, 1985) showed no significant differences in terms of percentages correct
phoneme identification between the results of the two experiments in which
the TD2 speech was tested (F(1,14) = 3.33; p> 0.05). This is not surprising,
since in both cases the experimental conditions, including the subjects, were
identical. We concluded that we can relate the scores of the second experiment
directly to the LPC scores of the first experiment.

4.2.3.1 Overall identification scores

In Fig. 4.1 the percentages of the phonemes correctly identified are shown for
the four different speech types averaged over all eight subjects. A distinction
is made between the scores of initial consonants, vowels, and final consonants,
since Pols and Olive (1983) showed that for some consonants these scores
differed significantly. A two-way analysis of variance was performed on the
arcsine-transformed percentages. There was a significant effect of speech type
(F(3,21) = 19.98; p < 0.001), and of phoneme type (initial consonants, vow­
els and final consonants) (F(2,14) = 67.14; P < 0.001). Also, there was a sig­
nificant interaction between speech type and phoneme type (F(6,42) = 13.22;
P < 0.001).

As the LPC coefficients are used as input for temporal decomposition, it
was assumed that the LPC scores form an upper limit for the scores of the
other speech types. Indeed, a post hoc Student-Newman-Keuls multiple range
test (SNK test) with a 0.05 level of significance revealed that if scores of TD­
speech types were higher than the equivalent LPC-speech scores (in Fig. 4.1),
these differences were not significant.

The speech types are most clearly distinguished in the case of the initial
consonants. Here, the SNK test yielded three significantly different subsets:
1 LPC, 2 TDl and 3 TD2, TD3. For the vowels the TD3 score was signifi­
cantly less than the LPC score. Also, TD2 and TD3 scored significantly less
than TDl. For the final consonants the distinctions are less clear: only the
difference between TD2 and TD3 is significant; it should be noted, however,
that the score of TD3 is higher than that of TD2!

For three speech types, LPC, TD1, and TD2, vowels are much better iden­
tified than both initial and final consonants. Only in the case of TD3 speech
is there no significant difference between the vowel and final consonant scores.
For LPC stimuli Van Bezooijen and Pols (1987) reported similar results.
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Figure 4.1: Percentages correct phoneme identification for the four differ­
ent speech types averaged over all subjects. The results are given for the
initial consonants, the vowels and the final consonants, respectively.

These results are very reassuring, since only in the case of the initial con­
sonants should the decrease in intelligibility results be attributed to temporal
decomposition. In both the other cases, the TD1 score does not differ sig­
nificantly from the LPC scores and thus the lower recognition percentages of
the other TD-speech types have to be a result of the less accurate descrip­
tion of the target functions and target vectors rather than of the temporal
decomposition itself.

4.2.3.2 Identification scores for phoneme classes

In the previous section it was shown that only in the case of initial consonants
does the TD1 score differ significantly from the LPC score. Since this exper­
iment is aimed at investigating the influence temporal decomposition which
has on the phonetic content of the speech signal, it is useful to split up the
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results for several phoneme classes that share important phonetic features. It
might well be that the decrease in intelligibility can be attributed to only a
subset of the phonemes. For the same reason, the identification scores of TD2
and TD3 will also be presented in terms of phoneme classes.

In Table 4.2 the identification scores of initial consonants are given, av­
eraged over phoneme classes, namely plosives, fricatives, nasals and a class
consisting of the remaining consonants jhj,l,r,w/, for each of the four speech
types. The numbers between brackets indicate the phoneme class identifica­
tion score, that is the score when confusions within the class are counted as
correct. For instance, a /bj perceived as /pj is considered correct in the case
of phoneme class identification score.

Table 4.2: Percentages correct identification of initial consonants aver­
aged over phoneme classes for the four different speech types. The scores
between brackets give the scores if confusions within the class are counted
correct.

: LPC TD1 TD2 TD3
Plosives (b,d,k,p,t) 173 (86) 63 (92) 53 (88) 60 (91)
Fricatives (f,s,v,x,z) i 87 (95) 95 (100) 87 (99) 89 (98)
Nasals (m,n) 192(98) 54 (67) 42 (46) 31 (42)
Remainder (hJ,I,r,w)! 88 (90) 80 (88) 77 (87) 78 (90)
Total ·84 (91) 77 (90) 69 (86) 71 (87)

By comparing the LPC and TD1 scores of Table 4.2 it can be seen that
especially the nasals are strongly affected by temporal decomposition. Quan­
tization and stylization of the target functions and target vectors impair the
intelligibility of the nasals even further. From the phoneme class identifica­
tion scores it can be derived that these consonants probably lose their nasality
as well, since they are confused with all kinds of other consonants. Also the
plosives are more affected than other consonants, be it less strongly than the
nasals. However, it follows from the phoneme class scores that the character­
istic features of the plosives remain intact. The fricative scores are relatively
high, and they are only seldom confused with consonants other than fricatives.
This also holds for the quantized and stylized speech types TD2 and TD3.

The recognition rates for most vowels are very high, approaching the values
maximally reachable by high-quality speech (Eggen, 1987c). As a consequence
of this low confusion rate, subdivision into special classes would not provide
useful information.

For the sake of completeness, in Table 4.3 the identification scores of the
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final consonants are given, again in terms of phoneme classes. These classes
differ somewhat from those in Table 4.2, since in Dutch the voiced plosives
and fricatives, and the phoneme Ihl, cannot occur in word final position. On
the other hand, the class of the nasals is extended with the phoneme IT//.

Table 4.3: Percentages correct identification of the final consonants aver­
aged over phoneme classes for the four different speech types. The scores
between brackets give the scores if confusions within the class are counted
correct.

I LPC TD1 TD2 TD3I

Plosives (k,p,t) ! 95 (100) 92 (100) 91 (100) 93 (100)
Fricatives (f,s,x) 191 (97) 92 (98) 87 (100) 99 (99)
Nasals (m,n,T/) I 45 (67) 43 (74) 23 (68) 45 (74)
Remainder (j,l,r,w) ! 88 (99) 87 (99) 83 (99) 96 (100)
Total : 80 (91) 80 (93) 75 (95) 84 (93)

For all speech types, the final plosives are much better perceived than the
initial plosives. On the other hand, the identification scores of final nasals are
much lower than the equivalent scores of initial nasals. In this case, the intel­
ligibility of the LPC nasals is decreased as well. Similar results are reported
by Pols and Olive (1983). but they also report that this does not occur for
high-quality speech. The very low nasals score of TD2 is apparently the main
reason for the significant difference with the TD3 intelligibility. Except for
the nasals, confusions take place almost exclusively within the classes. Thus,
for all speech types the important phonetic features remain intact.

4.2.4 Discussion

4.2.4.1 Influence of temporal decomposition on intelligibility

The major aim of this perception experiment was to investigate whether the
phonetic content of the speech signal is affected by temporal decomposition.
Comparison of LPC and TD1 utterances revealed that only TD 1 initial con­
sonants have significantly lower scores. More specifically, only initial nasals
and to a lesser extent initial plosives too can be held responsible for this
decrease in intelligibility. However, the phonetic features of the plosives re­
mained intact. This followed from the fact that wrongly perceived plosives
were mainly confused with other plosives. The nasals, on the other hand,
were affected more seriously, the phoneme class score also being relatively
low. Of course, compared to other phoneme classes, the nasal class is very
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small, which restricts the within-class confusion possibilities. Still, it can be
concluded that apparently nasality, the feature of this phoneme class, is not
modelled correctly by the target functions and target vectors.

It follows that only in the case of initial Iml and Inl does temporal decom­
position have a negative influence on phoneme features; for all other phoneme
classes, the important phoneme features are not affected. Thus, CVC words
can be modelled quite adequately by means of target functions and target
vectors. This result in itself does not give any guarantee that it is possible to
use temporal decomposition for the derivation of phonetic information from
the acoustic speech signal. However, what is of more importance here is that
a fair impression is obtained of the kind of phonetic information that could
be extracted by means of temporal decomposition.

It remains to be seen whether the intelligibility results, and the conclusion
that CVC words can be modelled by means of target functions and target
vectors also hold for fluent speech. In general, contextual influences make
the identification of fluent speech easier than that of isolated CVC words, so
probably the results may be extended to fluent speech.

4.2.4.2 Influence of quantization and stylization

The perception experiment showed that quantization or stylization of the
target functions and target vectors diminishes the intelligibility of initial con­
sonants and vowels significantly. This effect is strongest for those phoneme
classes where TD1 also differs significantly from LPC, namely nasals and plo­
sives; the other phoneme classes are hardly affected. However, the phoneme
class identification scores do not differ widely between the three TD speech
types.

This result implies that in the temporal decomposition method the determi­
nation of the precise shape of the target functions can be simplified. Possibly
the convergence criteria in the temporal decomposition method could be ad­
justed, although this must not be done at the expense of the determination
of the optimal location and length of the target function. In another exper­
iment, an attempt was made to substitute an exponential weighting factor
for the rectangular one (Van Dijk-Kappers, 1988). Although it was hoped
that better decomposition results could be achieved by using a more realistic
measure, the results did not differ significantly.

Eggen (1987b) reported that the intelligibility of TD2 speech (in his terms
TDC) is comparable with that of other 4 kbitls speech types. It was already
suggested by Atal (1983), however, that the strength of temporal decom-
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position lies in the range of even more economical speech descriptions. In­
deed, the intelligibility of TD3 (~ 1.8 kbit/s) is comparable with that of TD2
(~ 4.4 kbitjs). Thus, the experiments presented here also confirm that tem­
poral decomposition is suitable for economical speech coding. An even more
economical speech type could be obtained by using a code book of quantized
target vectors.

4.3 Phonetic relevance of the target functions

4.3.1 Introduction

In the previous chapters the phonetic relevance of the target functions has only
been used to improve the temporal decomposition method, or to compare the
performance of different parameter settings. For these purposes a limited set
of pseudo-CVC utterances sufficed. However, the actual performance of the
method after optimization must be tested on a much larger database. The
experiment described here is intended to get a fair impression of the phonetic
relevance of the target functions. The results may lead to suggestions for
further improvement of the temporal decomposition method.

For this experiment a database consisting of 100 German sentences was
used. In several respects this speech material differs from the material used
up till now; it consists of fluent speech instead of isolated CVC words, the
speaker was native German instead of native Dutch, and in this database
the occurrence of phonemes is phonologically balanced. It will be clear that
temporal decomposition gets a chance to prove its robustness.

The phonetic relevance of the target functions was judged both phonolog­
ically and phonetically. In the phonological approach it was determined how
far temporal decomposition can be seen as a phoneme detector. In this re­
spect, the ideal outcome would be one target function for each phonologically
transcribed phoneme. However, given the results of previous chapters, it was
to be expected that the actual outcome would probably deviate substantially
from this ideal result. In the phonetic approach, attention is paid to the ques­
tion of why phonemes are associated with zero, one, two or even more target
functions. In this approach, perceptual criteria are used.

The results are averaged over phoneme classes which share important fea­
tures. These classes are the same as those used in the above-described intelli­
gibility experiments, in the hope that the results of both experiments can be
related.
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4.3.2 Method

4.3.2.1 Speech material
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For our experiments a database was available consisting of 100 German sen­
tences spoken by a native male speaker. The sentences were phonologically
balanced, which means that the frequency of occurrence of each phoneme
approximated that of spoken German.

4.3.2.2 Analysis

Starting from a phonological transcription, the 100 sentences were phonet­
ically labelled and segmented by hand by an experienced phonetician. Use
was made of the original digitized speech signals. The phoneme boundaries
(i.e. the perceptually determined best locations for a boundary between the
acoustic realizations of two adjacent phonemes) were stored in a file. After
that, LPC analysis and temporal decomposition were carried out automati­
cally for all 100 sentences. For each sentence a plot was produced in which
the waveform, the target functions (i.e. the decomposition) and the stored
phoneme boundaries were displayed.

4.3.2.3 Experimental procedure

In the phonological part of the experiment, a phonetician determined for
each target function to which phoneme it was associated. Making use of the
indicated phoneme boundaries this was in most cases a rather straightforward
process. In a few dubious cases, for instance when a target function was
located around a phoneme boundary, most weight was given to the location
of the maximum of the target function. Since as yet no attempt is made to
identify the speech units with which the target functions are associated, no
use was made in this process of phonetic information in the target vectors.

Statistics were collected of the number of times each phoneme was associ­
ated with zero, one, two or more target functions. The results were averaged
over broad phonetic classes, namely vowels, diphthongs, plosives, nasals, frica­
tives and a class consisting of Il,r,j,w,hf.

For the phonetic part of the experiment a subset of 30, also phonologi­
cally balanced, German sentences was used. In this case the LPC version of
the sentences was used rather than the original digizited speech signal, since
LPC coefficients are used as input for temporal decomposition. To judge
the validity of a decomposition, perceptual criteria were used. In general,
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the judgement criterion was that each perceptually distinct speech segment
should be associated with a separate target function. In this process, a gating
technique was used to quickly compare small portions (10,30 or 50 ms) of the
same phoneme. Such a technique is considered to be an efficient way of listen­
ing to phonetic details (e.g. 't Hart and Cohen, 1964). The indicated phoneme
boundaries still served as an aid in the process, but they were viewed more
critically. This was necessary since these boundaries were placed by listening
to the original digitized speech signal (PCM), whereas temporal decompo­
sition works on LPC speech, which is somewhat degraded compared to the
original. Because of this degradation some of the boundaries become blurred,
and, as a consequence, the decision as to which phoneme a target function
should be associated had to be changed sometimes. By careful listening it was
decided by one, and in half of the sentences by two, phoneticians how many
perceptually distinct events could be distinguished in the acoustic realization
of a given phoneme. In dubious cases, formant tracks were used as extra infor­
mation. The number of acoustic events so obtained was then compared with
the number of target functions associated with the same phoneme. Again,
the results were averaged over broad phonetic classes.

4.3.3 Results

4.3.3.1 Phonological judgement of the target functions

The results of the analysis of the 100 sentences are presented in Table 4.4.
For each phoneme class the percentages of phonemes associated with zero,
one, two or more target functions is given. In the far right column the total
number of phonemes within a class is given. Also given are the results averaged
over all phonemes. Of course, it would be naive to expect only one target
function for each phoneme; clear exceptions could be plosives and diphthongs.
However, since most segmentation and recognition techniques concentrate on
the phoneme level, in presenting these results we do not want to anticipate
the subdivision of phonemes into subphonemic events. Thus, Table 4.4 gives
a good impression of the achievements of temporal decomposition on the
phoneme level.

These results immediately raise some questions. Why is a substantial part
of the vowels associated with more than one target function? Why is more
than 30 % of the diphthongs associated with only one target function? Fur­
thermore, although plosives can be considered to consist of at least two sub­
phonemic events (viz. occlusion and burst), why are they often not associated
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Table 4.4: Percentages of phonemes associated
with zero, one, two or more target functions for six
phoneme classes in 100 sentences. The far right col­
umn gives the total number of phonemes for each
class.

Phoneme I No. of target functions
class 0 1 2 > 2 No.
Vowels I 4.6 66.7 25.7 2.9 781
Diphthongs! 32.6 55.8 11.6 86
Plosives '125.2 63.5 10.2 1.2 433
Nasals 6.2 73.8 19.5 0.5 210
Fricatives I 3.1 71.3 24.1 1.6 320

i
II,rj,w,hl l30.8 68.7 0.5 198
Total i 11.3 66.2 20.3 2.2~
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with any target function at all? The same question can be asked of the
phonemes of the Il,r j ,w ,hi group. The next section, in which the phonetic
approach of this experiment is described, focusses on these questions.

4.3.3.2 Phonetic judgement of the target functions

For each phoneme of a subset of 30 sentences it was judged whether the
number of associated target functions was justifiable on phonetic grounds.
The judgement criterion used was that each distinct acoustic event should
be associated with a separate target function. The results of this perceptual
analysis can be seen in Table 4.5. Just as in Table 4.4, the results are averaged
over phoneme classes. In this table the plosives are lacking; they will be dealt
with separately. The percentages are given of the number of times phonemes
are correctly or incorrectly associated with zero, one, two or more target
functions. Also the total number of phonemes and the total percentages
correct and incorrect are given for each class.

If the percentages correct and incorrect in Table 4.5 are added for each
item, a table similar to Table 4.4 results with, however, slightly different
percentages. The main cause of this discrepancy is that target functions are
sometimes associated with a different phoneme for reasons described above.
Furthermore, due to the fact that only a subset of the 100 sentences is used,
the distribution of the phonemes differs somewhat.

It can be seen in Table 4.5 that it is considered to be correct that a num­
ber of phonemes is not associated with any target function. There are two
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Table 4.5: Percentages of phonemes associated with zero, one, two or more target func­
tions for five phoneme classes. The results are divided into "Correct" and "Incorrect" , which
has been decided perceptually. The far right column gives the total number of phonemes
within a class. For each phoneme class the total percentages correct and incorrect are also
given.

Phoneme Correct Incorrect
class O-~-1~ 2 > 2 i %-:r-O 1 2 > 2 % No.

Vowels 1.4 68.7 19.0 0.9 I 90.0 ~ 3.3 2.8 3.8 9.9 211
Diphthongs 35.3 41.2 17.6: 94.1 5.9 5.9 17
N~sal~ 4.5 77.3 181.8 i 6.1 12.1 18.2 66
FrIcatIves 1.1 77.3 14.8 I 93.2 3.4 3.4 6.8 88
II,rj,w,hl 9.1 74.5 3.6 187.3 I 12.7 12.7 55
______ _ ~~_. ~. ~.~ _ _____..iL__ . __ . ~~ _

reasons for this seeming parodox. In the first place it appeared that a num­
ber of phonologically transcribed phonemes could not be associated with ~ny

clear acoustic event in the speech signal. Secondly, in some cases acoustic
realizations of phonemes not very distinctively present in the PCM speech
disappeared in the LPC speech.

Table 4.5 shows that a large percentage of the decompositions can be con­
sidered to be correct on phonetic grounds. Vowels associated with two target
functions nearly always consisted of two perceptually different speech seg­
ments. For instance, a vowel phonologically transcribed as Ial could consist
of the pair faa]. Other examples are /"i£1 ...... [reI] and le:1 ...... [eI]. Similar
observations apply to the fricatives; in those cases the manner of articulation
remained the same, but a clear timbre shift could be perceived, which was
also observable in the formant plot. On the other hand, diphthongs associ­
ated with only one target function were often realized as a single acoustic
event.

The gating technique was also used to examine the plosives more closely.
They were dealt with separately since they can be considered to consist of
distinct but short-durational subphonemic events, featuring rapid changes
which are typically difficult to describe correctly with temporal decomposi­
tion. Subphonemic events which might be distinguished are occlusion, burst
and aspiration. These subphonemic events, especially aspiration, are certainly
not present in every plosive. It is also possible that both burst and aspiration
are present but cannot be discriminated. Also, in some cases, a subdivision
into subphonemic events cannot be made at all. Moreover, on some occasions,
a burst cannot be distinguished from the realization of the following phoneme,
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for instance in the case of It I followed by Is;'
In Table 4.6 an overview is given of the perceptual analysis of the plosives.

For each plosive it is determined what subphonemic events were present in the
acoustic speech signal. This resulted in five categories, which are indicated in
the first column. The last category consists of those plosives for which it was
impossible to make a subdivision into subphonemic events. All other possible
categories, for example plosives consisting of a voiced occlusion and a burst,
were not found in our database.

Table 4.6: Number of plosives associated with zero, one, two or
three target functions. The first column indicates what subphonemic
parts of the plosive are present in the acoustic signal. The category
"all other plosives" represents all cases where it was too difficult to
make this subdivision.

Present in the speech signal
. No. of target functions
--(f 1 2 3

3
17
4

21
2

38

6 2
2
3

Silent occlusion
Voiced occlusion
Silent occlusion + burst
Occlusion + burst + aspiration·
All other plosives . 11

Instead of dividing the results of the plosives into correct and incorrect, as
we did for the other phoneme classes, we prefer to present the "raw" data.
With plosives, the decision whether the decomposition is phonetically relevant
is difficult to make. A silent occlusion often resulted in a gap in the sequence
of overlapping target functions. In this respect, it should be mentioned that
of the 21 plosives of the category 'silent occlusion + burst', associated with
precisely one target function, 19 of these target functions are located at the
place of the burst. A gap is inherent in the low amplitude of the speech
signal, due to which the log-area parameters are not very well defined. As a
consequence, it is not always possible to find a target function which fulfils
the boundary conditions.

In order to be able to give a percentage "correct" for the plosives,. a deci­
sion has to be made whether or not it is accepted that silent occlusions are
sometimes missed. In the former case the percentage correctly decomposed
plosives is 79.8. Otherwise, if gaps are not allowed when silent occlusions
occur, this percentage decreases to 55.0.
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4.3.4 Discussion

In the first part of this experiment the phonetic relevance of the target func­
tions was evaluated from a phonological point of view. Given the phonetic
transcription of a sentence, for each phoneme it was determined how many
target functions were associated with it. For many applications, such as for
instance automatic speech segmentation or speech recognition, the ideal out­
come would be one target function for each phoneme. However, from the
results of Chapters 2 and 3 it could already be expected that such an ideal
outcome would not be attained. Indeed, we see that only about 66 % of the
phonemes was associated with precisely one target function. This result is
comparable with the results obtained earlier, although the speech material
used in previous experiments differs significantly from that used here.

The maximum score which could be obtained is, however, also limited
on fundamental grounds. Some of the phonologically transcribed phonemes
are not realized in the acoustic speech signal, while others disappear after the
LPC analysis. Furthermore, a substantial part of the phonemes is not realized
as a single acoustic event. In such cases, one cannot expect an algorithm
like temporal decomposition, which does not use any phonetic knowledge, to
detect phonemes correctly.

The second part of the experiment was set up to investigate more closely
what temporal decomposition does detect. It was expected and hoped that
each perceptually distinct speech segment would be associated with a separate
target function.

The phonetic observations made during the gating experiment are, of
course, well known. Articulatory coarticulation, voice and place assimilation,
reduction, etc. all bring their influence to bear on the acoustic realization
of speech. What is new here is that, indeed, the relationship between the
temporal decomposition (i.e. the target functions) and perceptually distinct
acoustic events is quite close. Averaged over all phoneme classes, including
the plosives, 87 % of the decompositions correspond to perceptually distinct
speech segments.

Intentionally, the results of the plosives were not presented in terms of
correct or incorrect, since these decisions are difficult to defend. For example,
quite often no target function is found for a silent occlusion, which can easily
be understood. Due to the low amplitude of the speech signal, the log-area
parameters are not very well defined and vary discontinuously. Consequently a
target function cannot always be constructed. Possibly, a suitable smoothing
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of the log-area parameters in low-amplitude regions would bring about positive
effects.

Although the bursts are quite often detected, in principle they are difficult
to model with a target function and target vector. A burst is a very short
speech event, whereas the target functions have a built-in minimum length
of 5 frames (50 ms). Thus, a burst can be "overlooked" quite easily by the
temporal decomposition method. Moreover, even if a target function is found
for a burst, the question arises whether the target function really models this
burst. Indeed, in the above-described perception experiment with temporally
decomposed and resynthesized eve utterances it was found that the identity
of some plosives gets lost, although they were still perceived as plosives. This
indicated that the bursts, or more specifically the transitions from burst to
vowel, are not always modelled correctly.

Some of the incorrect decompositions can be understood in terms of the
algorithms of the temporal decomposition method. For instance, one of the
first steps in the iterative procedure is the determination of the location of
the analysis window. This location is determined by the position of nright of
the previously determined target function (see section 2.3.2). Thus, if the
length of this target function is large, the initial analysis window is shifted
over a relatively long region. This is correct if the long target function be­
longs to a single acoustic event. However, if the length is caused by a strong
coarticulation with following speech events, the long shift is incorrect. As a
result, sometimes no separate target function is found for the skipped acous­
tic event. It is also possible to find a target function which overlaps another
target function almost 100 %. Due to a difference in length, one of the two
is a "subfunction" of the other. The algorithm to test the similarity of two
target functions (Eq. (2.11)) allows this overlap and due to the difference in
length the functions are considered to model different speech events, which is
clearly arguable. Furthermore, some of the functions clearly show two peaks.
In those cases, phonetic evidence for two target functions is nearly always
present. It should be possible to incorporate in the method a procedure to
test for the presence of peaks and, if present, to split the target function into
two target functions. It remains to be seen whether these shortcomings can
be overcome in a new version of the temporal decomposition method.
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4.4 Discussion and conclusions

In this chapter, two aspects of temporal decomposition have been explored.
In the first place, a perception experiment was carried out to determine how
much of the phonetic content of the speech signal is preserved after temporal
decomposition. In the second place, it was investigated what kind of phonetic
information could be extracted from the acoustic speech signal by means of
temporal decomposition.

The speech material used in the two experiments was rather different. In
the intelligibility experiment isolated CVC combinations spoken by a Dutch
speaker were used, whereas in the other experiment the material consisted of
fluently spoken sentences, in this case German. Both choices were based on
the consideration that such speech materials lend themselves fairly well for
the purpose of the experiment, although the choice for German also followed
from the simple fact that such a database was available. The speech material
differed also from the material used for the optimization of the method, which
consisted of a British English sentence and some Dutch pseudo-CVe words.
Despite these differences, similar results seem to emerge from the various
experiments. Thus, an attempt to relate the results seems permitted.

From the intelligibility experiment it followed that of all phoneme classes
nasals are affected most by temporal decomposition. Also, in the second
experiment it appeared that the results for nasals were relatively low compared
with those of other classes (Table 4.5). However, the percentage correctly
decomposed nasals was still 81.8, whereas the intelligibility percentage was
only 54. Apparently, a target function located at the right place is not always
enough to model the speech parameters of nasals correctly.

The intelligibility of plosives was also influenced by temporal decomposi­
tion, be it to a lesser extent than that of nasals; the plosive characteristics
often remained intact. The study of the phonetic relevance of the decomposi­
tion revealed that for silent occlusions often no target functions were found.
This could be explained by the low amplitude of the speech signal. Because
of this low amplitude such a gap probably cannot be of any consequence for
the intelligibility of the speech utterance. The bursts, on the other hand, are
quite often detected, but it may be doubted whether these target functions
can model the burst and the transition to the following phoneme correctly.
This is probably the cause of the decrease in intelligibility.

The results presented here give a fair impression of the achievements of
temporal decomposition. As yet, this research is of an exploratory nature. A
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step for the near future will be to use these results in a specific application.
Since the decomposition results are so closely related to the acoustic speech
signal, an obvious possibility is to use temporal decomposition as a help for
producing a narrow phonetic transcription. However, our aims with temporal
decomposition go further than this. In a manner similar to that reported by
Van Hemert (1987), the combined information provided by target functions
and target vectors could be used to automatically label the most salient speech
segments. Temporal decomposition might also be suitable as a preprocessor
for automatic speech recognition.



Chapter 5

Evaluation and applications

5.1 Introduction

In this final chapter the results presented in this thesis will be evaluated with
respect to the aims stated in the first chapter. The principal objective was
to investigate the possibilities of temporal decomposition as a tool to derive
phonetic information from the acoustic speech signal. The use of phonetic
knowledge, for instance a phonetic transcription, was excluded explicitly in
order to obtain a fair impression of the achievements of the method itself.
The investigations have been exploratory in nature; no specific application
was worked at. Since many interesting research possibilities have been left
unexplored, a selection of suggestions for further research will be discussed.
Furthermore, an overview of possible applications will be given. Some of the
applications have already been implemented by other researchers, whereas
other applications only exist as ideas.

5.2 Evaluation

5.2.1 Improvement of the method

In order to be able to investigate the phonetic relevance of the decomposi­
tion it was necessary to improve and extend Atal's original method, since this
method suffered from a number of shortcomings. There were two kinds of
shortcomings which had to be solved. In the first place, there were problems
which had to do directly with the method itself, irrespective of the intended
application. The major problem of this kind was caused by Atal's reduction
algorithm (Eq. (2.10)), due to which a gap could result in the sequence of
overlapping target functions. Also, a target function was not guaranteed to
fulfil the boundary conditions of a well-shaped target function. In the second
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place, there were shortcomings which had to do with our intention to use
temporal decomposition for the derivation of phonetic information. For in­
stance, the original method focussed on target functions which are temporally
as compact as possible. For speech coding such a condition might not really
matter. For the phonetic relevance of the target functions, on the other hand,
this condition was not satisfactory; the lengths of target functions should be
related to the durations of speech events, and these can vary considerably.

The modified method has been described in Chapter 2. Although it was
not possible to quantify the improvements, they could be made plausible.
Important improvements were solutions to the above-mentioned problems.
Except for silent occlusions, the number of gaps in the decomposition is almost
reduced to zero, making the method more robust. The method does not focus
any longer on target functions which are temporally as compact as possible;
speech events of longer duration have as much chance of being detected as
short speech events. Only speech events as short as bursts are still difficult
to detect. Furthermore, the new method has become less sensitive to initial
parameter choices. An example is the length of the analysis window, which is
now adapted to the speech event found within this window. Other parameter
choices have been optimized. The improvement criterion has always been the
correspondence of target functions to speech events.

The modified method has been used throughout the succeeding chapters,
although it was realized that the method could be improved further. That
is inherent in a method which is still under development. It was felt, how­
ever, that it would be better to carry out further explorations using the same
method, in order to be able to relate the outcome of the various experiments.
Also, the relative importance of the remaining shortcomings would become
more clear.

Indeed, the experiments have demonstrated that the modified method still
suffers from a few shortcomings. These remaining shortcomings, however, are
of a different order from those of the original method. Although these will
have to be solved, the method is already useful and usable as it is. Here, they
will be discussed briefly.

The similarity algorithm (Eq. (2.11)) checks whether two subsequently de­
termined target functions are different; if not, the second one is rejected.
However, this algorithm allows for an almost complete overlap of one target
function over another; in such cases two target functions differ only in length
and one of the functions can be considered as a subfunction of the other (see
for example Fig. 3.1). Strictly speaking, these two target functions are indeed
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different and possibly for both functions phonetic evidence is present. For
instance, the smaller one could indicate a single acoustic event, whereas the
other one points to a strong articulation with a neighbouring acoustic event.
For practical applications, however, this is an undesirable artefact.

In Chapter 4 it was mentioned that some target functions clearly exhibited
two peaks. As yet, the existence of peaks has not been checked, and otherwise
such target functions fulfil the conditions for a well-shaped function. It ap­
peared that a decomposition into two separate target functions would nearly
always be phonetically more correct. Addition of an extra boundary condition
which checks the presence of peaks should be taken into consideration.

A final shortcoming which should be mentioned is the decomposition of
the beginning and the end of the utterance. Clearly, the window adaptation
procedure cannot work satisfactorily in those regions since the extension pos­
sibilities are limited. This sometimes leads to small spurious target functions,
which have no phonetic interpretation. In the present method this shortcom­
ing has been neglected, since it did not lead to serious problems. It does,
however, deserve attention.

Suggestions for further improvement are given in section 5.3.

5.2.2 Parameter choice

In Chapter 3 the influence of the choice of input parameters has been in­
vestigated. Since the temporal decomposition method was optimized using
log-area parameters as input, this experiment was somewhat biased towards
these parameters. There was no way of preventing this, however. Temporal
decomposition is complex to such a degree that optimization for each par­
ameter set separately was impracticable, let alone optimization for each set in
the same measure. For the same reason, the suitability for temporal decom­
position of a parameter set could not be predicted from the log-area results.
As a consequence, the only possibility was to test the performance of a num­
ber of representative sets. Again, the main performance criterion was the
correspondence of target functions to speech events.

Despite the bias towards log-area parameters, filter bank output par­
ameters were found to give better results. The achievements of log-area ratios,
on the other hand, were much worse. Still, it was demonstrated that, in prin­
ciple, these parameters could give the same results as obtained with log-area
parameters. The decompositions of all other parameter sets were phonetically
less relevant than those of the log-area parameters. Although this could be
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due partially to non-optimal parameter settings, more fundamental objections,
such as unphysical parameter values, also played a role here.

Unfortunately, a speech synthesizer for filter bank output parameters was
not available for our experiments. Consequently, intelligibility experiments
were not possible using this set of speech parameters. Since we preferred to use
only one set of speech parameters, log-area parameters were used throughout
the remaining experiments described in this thesis. This choice may have
influenced the results of Chapter 4 in a slightly negative way, although the
performance criteria in Chapters 3 and 4 were not exactly identical. An
analysis, similar to that in Chapter 4, of the phonetic relevance of the target
functions using filter bank output parameters instead of log-area parameters,
may be worth while.

5.2.3 Phonetic relevance of the decomposition

The major aim of this thesis was to investigate whether it is possible to derive
phonetic information from the acoustic speech signal in an objective way by
means of temporal decomposition. Stated otherwise, the question was: does
the decomposition have any phonetic relevance? From our experiments, how­
ever, especially those in Chapter 3, it followed that one should not talk about
the decomposition; by varying the parameter settings or the choice of input
parameters, a wide variety of decompositions of the same utterance could
be obtained. Thus, the relevant question would rather be split up into two.
On the one hand, it was necessary to investigate how the phonetically most
relevant decomposition could be obtained. This led to the optimization of
the method. On the other hand, the decomposition had to be interpreted in
phonetic terms.

From the foregoing, the impression could be obtained that temporal de­
composition is just a matter of arbitrariness: different parameter settings
leading to different decompositions. That is, however, only part of the truth.
In Chapter 3 it appeared that if temporal decomposition leads to target func­
tions that are phonetically interpretable, the reconstruction error is nearly
always smaller than alternative decompositions although the latter decompo­
sitions often consisted of a larger number of target functions. This gives a
strong indication that the optimized temporal decomposition method models
relevant speech units. Moreover, this means that the improvements with re­
spect to the phonetic relevance of the target functions are also of value for
applications such as speech coding.
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In Chapter 1 it was argued that the achievements of most approaches in
speech research were limited by the fact that they considered speech as a
sequence of temporally distinct speech units. The strength of the temporal
decomposition approach is that the speech signal is decomposed into over­
lapping units of variable lengths. Such a description of speech in terms of
overlapping units is in agreement with both the perception and production
of speech. The phonetic interpretation of these units has been investigated
in Chapter 4. The experiments clearly showed that temporal decomposition
does not detect the phonemes prescribed by a phonological transcription. Of
course, this could hardly have been expected, since some phonemes are not
realized in the acoustic speech signal. Even a very advanced speech analysis
technique will never be able to locate phonemes which are not present at all
in the acoustic speech signal, without recourse to higher level processing in
which language models and lexical rules play an important role. For humans a
similar task, making a phonological transcription of speech of an unknown lan­
guage, is also impossible. On the other hand, making a phonetic transcription
of an unknown language is possible for experien~ed phoneticians. Temporal
decomposition should be judged with respect to the latter way of transcribing
speech. Such a transcription is closely related to the acoustic contents of the
speech utterance. In Chapter 4 it was shown that temporal decomposition
segments the speech signal into perceptibly distinct acoustic events, and thus
the decomposition can be considered as phonetically relevant.

5.2.4 Validity of the model

Temporal decomposition models speech parameters as linear combinations of
a number of target vectors. In most respects this turned out to be an ad­
equate description of the speech parameters, provided that a proper set of
input parameters was used. In the introductions of both Chapters 2 and 3 it
was mentioned that the model was based on articulatory considerations. The
target vectors were supposed to model ideal articulatory targets of which the
target functions describe the temporal evolution. The experiments did not,
however, yield any evidence that the target vectors can indeed be considered
as ideal articulatory positions. Of course, ideal articulatory positions were not
available as a reference, and thus the target vectors had to be judged on their
own merits. An analysis of log-area target vectors in the F r F 2 plane (Chap­
ter 3) demonstrated that the vector points exhibit more spread than would be
expected if they really modelled ideal positions. Partially, this spread could be
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attributed to a degree of freedom in the temporal decomposition method, due
to which the length of the target vectors was not always optimal. However, it
was felt that this non-optimal normalization was the cause of the deviation of
the target vectors from the actually realized speech frames, rather than the
deviation from ideal target positions.

Both Niranjan and Fallside (1987) and Marteau et al. (1988) have con­
tributed to an interpretation of temporal decomposition. The sequence of
speech parameters can be interpreted as a point moving through a multi­
dimensional space. This point moves towards and away from target points,
representing articulatory positions. Assuming for a moment that only two
adjacent target functions overlap, this means that the space in which the
movements of the point take place is reduced to a two-dimensional subspace.
In this way it can be understood why temporal decompostion is suitable for
economical speech coding: instead of describing the movement of the point
through a multi-dimensional space, it is described throught a sequence of
two-dimensional subspaces. For most speech sounds this will be a valid ap­
proximation, but for rapid transitions it does not suffice. The fact that both
log-area parameters and filter bank output parameters give reasonably sat­
isfactory results indicates that the movement through the multi-dimensional
space as described by these parameters is sufficiently slow.

Apart from the articulatory target positions, it has also been assumed that
temporal decomposition could model coarticulation, namely by varying the
amount of overlap of two adjacent target functions. Indeed, Bimbot et al.
(1987) claim that in speech synthesis coarticulation could be varied by ma­
nipulating the target functions. Of course, the transition from the acoustic
realization of one phoneme ~o the next is determined by the specific overlap of
the target functions. Howev~r, in a pilot experiment (not reported in this the­
sis) it was found that temporal decomposition is not nearly sensrtive enough
to model differences in coarticulation effects. A similar indication could be
obtained from the intelligibility experiments of Chapter 4. Substituting an
exponential function for a target function resulted only in minor differences
in intelligibility. These results indicate that only little phonetic value should
be attached to the exact shape of a target function.

A way to test the validity of the linear model is to consider the course
in time of the error signal, defined as the Euclidean distance between the
original and resynthesized speech parameters. If a linear model satisfies, this
error signal is constantly small and does not exhibit distinct peaks. It was
shown in Chapter 3 that the log-area parameters fulfil this criterion to a large
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extent, especially when compared with the error signals of other parameters.
Another way to test the validity of the model is to judge the quality of resyn­
thesized speech. The perception experiments in Chapter 4 showed that the
intelligibility of temporally decomposed and resynthesized speech is almost
comparable to LPC speech. Though the overall identification scores are sig­
nificantly less than the LPC scores, this is only due to a small number of
phonemes. Although an all-explaining cause for the decrease in intelligibility
of these phonemes has not been found, it turned out that rapid transitions
were often affected. It is possible that in those cases linear modelling of the
speech parameters does not suffice.

5.3 Suggestions for further research

Since temporal decomposition is a relatively new speech analysis technique,
only a few aspects of the method have yet been explored. For the future many
interesting research possibilities remain. In the following a few suggestions will
be given.

From our experiments, especially those in Chapter 4, it followed that about
87 % of all perceptually distinct acoustic events is detected by temporal de­
composition. In this context, detection means that an acoustic event is asso­
ciated with one target function and one target vector. The percentage of 87 is
sufficiently high to proceed with a next step, either labelling or segmentation
of the speech signal.

5.3.1 Labelling

Van Erp and Boves (1988) state that instead of segmentation of the speech
signal, it seems better to just indicate the most salient parts of the speech
signal. In this sense, temporal decomposition could provide a helpful tool
in labelling speech, since the locations of most perceptually distinct speech
events are detected. However, labelling also entails identification of the speech
units. In this process, two approaches are possible. In the first place, explicit
phonetic knowledge, for instance a phonetic transcription, could be used to
identify the speech units. In that case, the units have to be mapped with a
given sequence of phonetic symbols. The second possible approach is more
complex. In that case the units have to be identified on the basis of their own
information. Probably, the target vectors could supply the most important
phonetic information, although the length of the target functions could also
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be of importance.
In order to be able to identify a target vector one could create a code

book of labelled vectors. Each phonetic element should be represented by at
least one, but probably more, code book entries. Identifying a target vector
amounts to determining to which code book vector the distance is minimal,
subject to a suitable distance measure. Instead of matching the target vector
itself to the code book vectors, one of the frames of the phonetic element
indicated by the target function could be taken. A possibility is to use that
frame which has the smallest Eucledian distance to the target vector (SED
frame). The advantage of this approach is that all SED frames are guaranteed
to be phonetically interpretable, since they are actually realized. Furthermore,
it can be seen in Figure 3.5 that the clusters formed by the middle frames of
vowels are slightly more compact than the target vector clusters. If that also
holds for the SED frames, using these frames instead of the target vectors will
result in fewer confusions.

A convenient cluster technique (see e.g. Anderberg, 1973) should be used
to create the code book from either the target vectors or the SED frames.
Clearly, using only F I-F2 would be a severe limitation to the results maxi­
mally reachable, discarding a lot of useful information. The best results can
be obtained using the whole space spanned by the parameters. Since the
spatial resolution must be as high as possible, special care should be given
to the choice of parameter space; different spaces will give different results!
Extension of this parameter space with a dimension representing amplitude
might be considered.

5.3.2 Segmentation

The speech signal is often segmented prior to or as a part of automatic speech
recognition processes (e.g. Hatazaki, Tamura, Kawabata and Shikano, 1988;
Andre-Obrecht and Su, 1988). Although temporal decomposition segments
the speech parameters into a sequence of overlapping target functions, in a
practical implementation preference usually goes to non-overlapping units.
Thus, it is necessary to define some boundary criterion for transforming the
overlapping units into a sequence of non-overlapping units. The point of in­
tersection of two adjacent target functions, and the location which divides
the overlap area into two equal parts, could be possible criteria. This, how­
ever, has not been explored and it is not at all sure that this would yield a
useful sequence of non-overlapping units. From the intelligibility experiment
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it followed that the speech quality was not sensitive to the shape of a tar­
get function. Also, the shape of a target function is sensitive to variation of
the parameter settings. This indicates that the phonetic value of the exact
shape of a target function is limited. Since the shape of a target function is
of direct influence on the boundary placement criteria as proposed above, it
follows that the accuracy with which the boundaries can be determined is also
limited.

In a procedure described by Van Hemert (1987) segmentation of the speech
signal is optimized using explicit phonetic knowledge. In his procedure the
advantages of an implicit and an explicit segmentation method are combined.
This resulted in a useful method for the automatic preparation of diphone
libraries. In a like manner, phonetic knowledge could be used to improve the
segmentation results of temporal decomposition.

5.3.3 Amplitude information

If LPC coefficients (e.g. log-area parameters) are used as input for temporal
decomposition, the amplitude of the speech signal is not taken into account.
In filter bank output parameters, on the other hand, amplitude information
is integrated in the parameters. In Chapter 3 it has already been suggested
that this might be the cause of the better performance of these parameters. It
will be worth while to consider ways to make use of the phonetically relevant
information which can be provided by the amplitude when LPC coefficients
are used as input.

A rough segmentation by hand of the speech waveform is possible using only
amplitude information. This suggests that implementing amplitude informa­
tion at an early stage of the method might be profitable for the determination
of the target functions, since these indicate the locations of phonetic elements.
However, we did not manage to find a suitable way to realize this implemen­
tation. Weighting the speech parameters with the amplitude did not have the
desired effect, although in such a wayan integration of amplitude information
comparable to that of the filter bank output parameters was created. Neither
was the use of the amplitude as an extra (11 th ) speech parameter effective; the
time variation of the amplitude appeared to be too independent of the other
parameters, due to which the influence of the amplitude on the determination
of the target functions became too strong.

It may perhaps be better to use amplitude information after the determina­
tion of both target functions and target vectors. An error criterion as defined
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in Chapter 3 could be used to judge the decomposition. A high reconstruction
error combined with a high amplitude may indicate an undesired gap in the
sequence of target functions. The gap could be filled by a search directed at
constructing a target function at that particular location.

A final possibility which has not been verified is to test the course of am­
plitude between, for instance, nleft and nright (see Chapter 2) of the newly de­
termined target function. A certain change in amplitude, which nearly always
indicates the transition to another phonetic element, will then be considered
as unacceptable. In that case, the target function must be rejected, and a
new procedure using a smaller initial analysis window should be started.

5.4 Possible applications

In the following sections some possible applications will be discussed. Some
of them have already been implemented by other researchers, be it in a pre­
liminary way. Most of them can be characterized as promising, although the
merits of all still have to be proved.

Segmentation of the speech signal by means of temporal decomposition
has already been discussed extensively in section 5.3.2, and therefore this
application will be omitted here.

5.4.1 Recognition

An obvious application of temporal decomposition lies in the field of auto­
matic speech recognition. In section 5.3.1 it has already been indicated how
the target vectors might be applied to identify the phonetic elements with
which they are associated. Of course, this identification process alone is not
sufficient for recognition. As such, temporal decomposition should be viewed
as a preprocessor in the recognition process.

Bimbot et al. (1988) report the results of a preliminary recognition experi­
ment on a small corpus of continuously spelled French surnames. In the train­
ing phase target vectors are automatically extracted and manually labelled.
In the recognition phase a lattice of the three best candidate phonemes is
obtained and searched through, taking into account the lexical constraints of
the French alphabet. They claim a recognition score of 70 % on the letter
level. Although this identification score may not seem very high, it should be
noted that unlike many other recognition approaches the number of words to
be recognized is not restricted.
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Possibilities to further improve this rather new technique certainly exist.
Niranjan and Fallside (1987), for instance, suggested connecting temporal
decomposition with Markov modelling. It would certainly be interesting to
investigate whether a combination of these two techniques would lead to better
recognition results.

5.4.2 Coding

Temporal decomposition was originally proposed for economical speech coding
(Atal, 1983). In Chapter 4 we have verified that speech coded by temporal
decomposition can indeed be matched to speech with comparably low bit
rates. The practical use, however, is restricted to those situations where a
time delay is acceptable. This cannot be avoided since the analysis of the
speech parameters can only start when a fair number of speech frames is
available.

A possible application is the economical coding of a diphone inventory.
Houben (1987) investigated this possibility using an approach based on tem­
poral decomposition. He used the first and the last frame of a diphone as
target vectors. By weighting these vectors with very stylized target functions,
all other frames of the diphone were described. Houben found that for 62 %
of the diphones such a simple description sufficed. The remaining diphones
needed at least one extra target function and vector to retain the same speech
quality. The target functions he used consisted of two straight lines, one of
which was horizontal; the results of Chapter 4 suggest that the same bit rate
but better results could be obtained if exponential functions were used.

5.4.3 Synthesis

A final application, which has been proposed in literature, is speech synthesis.
Synthesis based on temporal decomposition lies somewhere between segmen­
tal synthesis (e.g. diphone concatenation) and rule-based synthesis. Ahlborn
et aI. (1987) and Bimbot et al. (1987) use about 7000 polysons as their basic
synthesis units. These diphone-like units are classified according to the struc­
ture of their target functions. They state that the temporal patterns of all
combinations of, for instance, a vowel and an unvoiced fricative are similar.
Thus, all polysons of that type are coded with an identical pattern of target
functions. The target vectors still depend on the phonemes. These coded
polysons can be used directly for speech synthesis, but by manipulating the
target function pattern, it is also possible to introduce variations in speaking
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rate, stress, etc. With this synthesis system, they aim to derive better rules
for acoustic speech synthesis.
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I

Temporal decomposition is a speech analysis method, proposed in 1983 by
Atal for economical speech coding, which segments the continuously varying
acoustic speech signal into a sequence of overlapping units of variable lengths.
Each unit is composed of a target function and an associated target vector.
The target vector can be considered to model an articulatory target position.
The target function describes the temporal evolution of the target. Although
the method takes into account some articulatory considerations, no use is
made of explicit phonetic knowledge. This study has been set up to inves­
tigate the phonetic meaning that can be attributed to these speech units.
Such knowledge will not only provide deeper insight into the structure of the
speech signal, but may also have applications in speech coding, segmentation,
recognition and synthesis.

The original temporal decomposition method suffered from a number of
shortcomings. Although these problems were not fundamental to the philos­
ophy of the method, they had to be solved before an extensive investigation
of the phonetic relevance of the speech units could be carried out. Chapter 2
focusses on improvement and extension of the method. An important im­
provement is that the method no longer forces the target functions to be as
temporally compact as possible. This property of the original method mili­
tated against the search for speech events of longer duration. Furthermore,
the new method uses a less arbitrary criterion for the selection of the tar­
get functions. Together with other changes this resulted in a more robust
temporal decomposition method.

Many representations of the acoustic speech signal can be used as the input
for temporal decomposition. However, a pilot experiment demonstrated that
the decomposition outcome depends to a great extent on the choice of input
parameters. The original method of Atal (1983) as well as de modified method
described in Chapter 2 use log-area parameters as input. In Chapter 3 an ex­
tensive experiment is described in which the decomposition results of nine
commonly used speech parameter sets are compared. The main objective was
to investigate whether the results of the optimized method could be further
improved by using a different set of input parameters. The main performance
criterion was the phonetic relevance of target functions, but also the pho­
netic relevance of the target vectors and resynthesis of the speech signal were
taken into account. With respect to the main criterion, filter bank output
parameters gave the best results, followed closely by log-area parameters. A
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speech synthesizer for filter bank output parameters was not available, how­
ever. As a consequence log-area parameters have been chosen here as the
most suitable set of input parameters for temporal decomposition.

Before attempting to interpret the speech units determined by temporal
decomposition, it is worth evaluating how closely a description of speech in
terms of target functions and target vectors resembles the original speech
signal. In Chapter 4 a perception experiment is described in which the in­
telligibility of temporally decomposed and resynthesized CVC utterances is
measured. Although the identification score differed significantly from the
LPC score, which can be considered as the maximally reachable score, this
turned out to be mainly due to a small number of initial consonants. Espe­
cially the intelligibility of nasals, and to a lesser extent that of plosives, was
affected. The overall scores, however, justified further research on the pho­
netic relevance of the decomposition.
The perception experiment included an evaluation of a quantized and a styl­
ized version with very low bit rates. The results showed that temporal de­
composition is indeed very suitable for economical speech coding (down to at
least 1.8 kbitJs).
Chapter 4 also contains an evaluation of the phonological and the phonetic
relevance of the decomposition on a database of 100 phonologically balanced
German sentences. The phonological approach starts from a phonetic tran­
scription of the sentences, and for each phoneme the number of target func­
tions associated with it is determined. The phonetic part focusses on the
question whether it can be understood on acoustic grounds why a phoneme
is associated with a particular number of target functions. It was found that
87 % of the target functions can be related to a perceptibly distinct sound,
and thus can be considered as phonetically relevant. Partially, the remaining
13 % can be attributed to plosives of which the occlusion and the burst are not
always detected. Another part is due to shortcomings of the method which,
however, are of a different order than those of the original method.

In Chapter 5 the results of the previous chapters are evaluated. The im­
provement of the method, the parameter choice, the phonetic relevance of the
decomposition, and the validity of the model, are discussed. Since many in­
teresting research possibilities have been left unexplored, some suggestions for
further studies are given. Finally, possible applications of temporal decom­
position in the fields of automatic speech recognition, speech coding, speech
synthesis and speech segmentation, are discussed.
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Temporele decompositie is een spraakanalysemethode, die door Atal in 1983
werd voorgesteld voor het zuinig koderen van spraak. Deze methode deelt
het continu in de tijd varierende akoestische spraaksignaal op in een reeks
overlappende eenheden met variabele lengtes. Elke eenheid wordt beschreven
door een doelfunktie en een daarbij behorende doelvektor. De doelvektor kan
worden beschouwd als een model voor een artikulatorische doelpositie. De

.J doelfunktie beschrijft hoe deze doelpositie in de tijd wordt benaderd. Hoewel
de methode rekening houdt met enige artikulatorische overwegingen, wordt
er geen gebruik gemaakt van expliciete fonetische kennis.

Dit onderzoek is opgezet om de fonetische betekenis, die mogelijk aan de
spraakeenheden kan worden toegeschreven, nader te onderzoeken. Kennis
hierover zal niet aileen bijdragen aan een dieper inzicht in de samenstelling
van het spraaksignaal, maar kan ook toepassingen hebben op het gebied van
spraakkodering, -segmentatie, -herkenning en synthese.

De originele temporele decompositie methode leed aan een aantal tekort­
komingen. Hoewel deze problemen niet fundamenteel waren voor de filosofie
van de methode, moesten ze wei eerst worden opgelost alvorens een uitge­
breid onderzoek naar de fonetische relevantie van de spraakeenheden kon
worden uitgevoerd. In Hoofdstuk 2 staat de verbetering en de uitbreiding
van de methode centraal. Een belangrijke verbetering is dat de doelfunkties
niet langer door de methode worden gedwongen om zo kompakt mogelijk te
zijn. Deze eigenschap van de originele methode werkte het zoeken naar langer
durende spraakklanken tegen. Verder gebruikt de nieuwe methode een minder
arbitrair criterium voor de selektie van de doelfunkties. Samen met enkele an­
dere veranderingen resulteerde dit in een robuustere temporele decompositie
methode.

Verschillende representaties van het akoestische spraaksignaal kunnen wor­
den gebruikt als input voor de temporele decompositie methode. Een pilot­
experiment liet echter zien dat de temporele decompositie resultaten sterk
afhangen van de gekozen input parameters. Zowel de methode van Atal (1983)
als de in Hoofdstuk 2 beschreven methode gebruiken log-area-parameters als
input. In Hoofdstuk 3 wordt een uitgebreid experiment beschreven waarin de
decompositie resultaten van negen vaak gebruikte parameter sets met elkaar
worden vergeleken, met als voornaamste doel om na te gaan of er voor de
geoptimaliseerde methode parameters zijn die betere resultaten geven dan
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de log-area-parameters. Het belangrijkste criterium voor geschiktheid was de
fonetische relevantie van de doelfunkties, maar er werd ook rekening gehouden
met de fonetische relevantie van de doelvektoren en de resynthese van het
spraaksignaal. Met betrekking tot het belangrijkste criterium, de fonetische
relevantie van de doelfunkties, gaven bandfilterparameters de beste resultaten,
op de voet gevolgd door log-area-parameters. Omdat het echter niet mogelijk
was om bandfilterparameters te resynthetiseren, werden log-area-parameters
gekozen als meest geschikte parameters om als input voor deze versie van de
temporele decompositie methode te dienen.

Voordat geprobeerd werd om de spraakeenheden die met temporele de­
compositie worden gevonden te interpreteren, was het nuttig om te evalueren
hoe goed de beschrijving van het spraaksignaal in termen van doelfunkties
en -vektoren op het originele spraaksignaal lijkt. In Hoofdstuk 4 wordt een
percept ie-experiment beschreven waarin de verstaanbaarheid van temporeel
gedecomponeerde en weer geresynthetiseerde CVC-woorden wordt bepaald.
De verstaanbaarheidscore week weliswaar significant af van de LPC-score, die
als maximaal haalbare score beschouwd kan worden, maar dit kon worden
geweten aan een klein aantal beginconsonanten. Vooral de verstaanbaarheid
van nasalen, en in mindere mate ook die van plosieven werd aangetast. Toch
rechtvaardigden de verstaanbaarheidscores van de overige fonemen verder on­
derzoek naar de fonetische relevantie van de decompositie.

In het perceptie-experiment werd tevens de verstaanbaarheid van een
gekwantiseerde en een gestileerde spraakversie met hele lage bitrates
geevalueerd. Uit de resultaten volgde dat temporele decompositie inderdaad
bijzonder geschikt is voor zeer zuinige spraakkodering (in ieder geval zo laag
als 1.8 kbit/s).

Hoofdstuk 4 bevat ook de evaluatie van de fonologische en de fonetische
relevantie van de decompositie, waarvoor een bestand van 100 Duitse, fonolo­
gisch gebalanceerde, zinnen is gebruikt. In de fonologische benadering wordt
uitgegaan van de fonetische transcriptie van de zinnen en er wordt bepaald met
hoeveel doelfunkties ieder foneem geassocieerd is. In het fonetische gedeelte
gaat de aandacht naar de vraag of op akoestische gronden begrepen kan wor­
den waarom een foneem met een bepaald aantal doelfunkties is geassocieerd.
Het bleek dat 87 % van de doelfunkties gerelateerd kan worden aan percep­
tief verschillende spraakklanken, en dus als fonetisch relevant beschouwd kan
worden. De resterende 13 % is voor een deel te wijten aan plosieven, waarvan
de occlusie en de plof niet altijd goed worden gedetekteerd. Een ander deel
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is toe te schrijven aan enkele aspecten van de methode die nog voor verdere
verbetering in aanmerking komen. Deze tekortkomingen zijn echter van een
geheel andere orde dan die van de originele methode.

In Hoofdstuk 5 worden de resultaten, die in de eerdere hoofdstukken zijn
beschreven, geevalueerd. Hierbij komen de verbetering van de methode, de
parameterkeuze, de fonetische relevantie van de decompositie en de geldigheid
van het model, uitgebreid aan de orde. Ook worden er enige voorstellen

/ gedaan voor verder onderzoek. Het hoofdstuk eindigt met een bespreking van
een aantal mogelijke toepassingsgebieden van temporele decompositie, zoals
automatische spraakherkenning, -kodering, -synthese, en -segmentatie.



98

References

References

Ahlborn, G., Bimbot, F. & Chollet, G. (1987) Modeling spectral speech tran­
sitions using temporal decomposition techniques, Proceed£ngs ICASSP,
13-16.

Anderberg, M.R. (1973) Cluster analysis for appl£cat£ons, Academic press,
New York / London.

Andre-Obrecht, R. & Su, H.Y. (1988) Three acoustic labellings for phoneme
based continuous speech recognition, Proceed£ngs 1 h FASE Sympos£um,
943-950.

Applebaum, T.H., Hanson, A.H. & Wakita, H. (1987) Weighted cepstral dis­
tances measures in vector quantization based speech recognizers, Pro­
ceed£ngs ICASSP, 1155-1158.

Atal, B.S. (1983) Efficient coding of LPC parameters by temporal decompo­
sition, Proceedings ICASSP, 81-84.

Bimbot, F., Ahlborn, G. & Chollet, G. (1987) From segmental synthesis to
acoustic rules using temporal decomposition, Proceedings 11th ICPHS,
5,31-34.

Bimbot, F., Chollet, G., Deleglise, P. & Montacie, C. (1988), Temporal
decomposition and acoustic-phonetic decoding of speech, Proceed£ngs
ICASSP, 445-448.

Bridle, J .S. & Chamberlain, R.M. (1983) Automatic labelling of speech using
synthesis-by-rule and non-linear-time-alignment, Speech Communication,
2, 187-189.

Chollet, G., Grenier, Y. & Marcus, S.M. (1986) Temporal decomposition and
non-stationary modeling of speech, Proceedings 3rd EUSIPCO, 365-368.

Cohen, A., Ebeling, C.L., Fokkema, K. & Van Holk, A.G.F. (1961) Fonologie
van het Nederlands en het Fries, second edition, The Hague, Martinus
Nijhoff.

Eggen, J.H. (1987a) Software voor het meten van spraakverstaanbaarheid,
IPO report R 609, Eindhoven.

Eggen, J.H. (1987b) Evaluation of speech communication quality with a
Monosyllabic Adaptive Speech Interference Test, IPO report MS 596,
submitted to Speech Communication.

Eggen, J.H. (1987c) Start evaluation of available methods for analysis, ma­
nipulation and resynthesis of speech, IPO report R 612, Eindhoven.

\.



References 99

Flanagan, J.L. (1972) Speech analysis synthesis and perception, Springer­
Verlag.

Fowler, C.A. (1984) Segmentation of coarticulated speech in perception, Per­
ception and Psychophysics, 36, 359-368.

Gerbrands, J.J. (1981) On the relationships between SVD, KLT and PCA,
Pattern Recognition, 14, 375-381.

Golub, G.H. & Van Loan, C.F. (1983) Matrix computations, North Oxford
academic, 16-20.

Gray, A.H. & Markel, J.D. (1976) Distance measures for speech processing,
IEEE Transactions on Acoustics, Speech and Signal Processing, 24, 380­
391.

't Hart, J. & Cohen, A. (1964) Gating techniques as an aid in speech analysis,
Language and Speech, 7, 22-39.

Hatazaki, K., Tamura, S., Kawabata, T. & Shikano, K. (1988) Phoneme seg­
mentation by an expert system based on spectogram reading knowledge,
Proceedings 1 h FASE Symposium, 927-934.

Hermes, D.J. (1988) Measurement of pitch by subharmonic summation, J.
Acoust. Soc. of Am. 83, 257-264.

Houben, C.G.J. (1987) Zuinige codering van difonen, [PO report R 575, Eind­
hoven.

Lawley, D.N. & Maxwell, A.E. (1971), Factor analysis as a statistical
method, Butterworth, London, 79-82.

Lennig, M. (1983) Automatic alignment of natural speech with a correspond­
ing transcription, Speech Communication, 2, 190-192.

Liberman, A.M., Cooper, F.S., Shankweiler, D.P. & Studdert-Kennedy, M.
(1967) Perception of the speech code, Psychological Review, 74, 431-461.

Marcus, S.M. & Van Lieshout, R.A.J.M. (1984) Temporal decomposition,
IPO Annual Progress Report 19, 25-31.

Markel, J.D. & Gray, A.H. (1976) Linear prediction of speech, Springer­
Verlag.

Marteau, P.F., Bailly, G. & Janot-Giorgetti, M.T. (1988) Stochastic model
of diphone-like segments based on trajectory concepts, Proceedings
ICASSP, 615-618.

Moulton, W.G. (1962) The vowels of Dutch: phonetic and distributional
classes, Lingua, 294-312.



100 References

Niranjan, M. & Fallside, F. (1987) On modelling the dynamics of speech pat­
terns, Proceedings ECOST , 71-74.

Nocerino, N., Soong, F.K., Rabiner, L.R. & Klatt D.H. (1985) Comparative
study of several distortion measures for speech recognition, Proceedings
ICASSP, 25-28.

Pols, L.C.W. (1977) Spectral analysis and identification of Dutch vowels in
monosyllabic words, doctoral thesis, Amsterdam.

Pols, L.C.W. & Olive, J.P. (1983) Intelligibility of consonants in CVC utter­
ances produced by dyadic rule synthesis, Speech Communication 2, 3-13.

Sekey, A. & Hanson, B.A. (1984) Improved I-bark bandwidth auditory filter,
J. Acou.st. Soc. Am. 75(6),1902-1904. (

Studebaker, G.A. (1985) A "rationalized" arcsine transform, Journal of Hear-
ing and Speech Re.search, 28, 455-462.

Van Bezooijen, R. & Pols, L.C. W. (1987) Evaluation of two synthesis by rule
systems for Dutch, Proceeding.s ECOST, 1, 183-186.

Van Dijk-Kappers, A.M.L. (1988) Temporal decomposition of speech: com­
pactness measures compared, Proceedings of the 7t1

• FASE Symposium,
1343-1350.

Van Dijk-Kappers, A.M.L. (1989) Comparison of parameter sets for temporal
decomposition, to appear in Speech Communication.

Van Dijk-Kappers, A.M.L. & Marcus, S.M. (1987) Temporal decomposition
of speech, IPO Annual Progre.ss Report 22, 41-50.

Van Dijk-Kappers, A.M.L. & Marcus, S.M. (1989) Temporal decomposition
of speech; to appear in Speech Communication.

Van Erp, A. & Boves, L. (1988) Manual segmentation and labelling of speech,
Proceeding.s 1 h FASE Sympo.sium, 1131-1138.

Van Hemert, J.P. (1987) Automatic segmentation of speech into diphones,
Philips Technical Review, 43, 233-242.

Viswanthan, R. & Makhoul, J. (1975) Quantization properties of transmis­
sion parameters in linear predictive systems, IEEE Transactions on
Acou.stic.s, Speech and Signal Proce.s.sing, 23, 309-321.

Vogten, L.L.M. (1983) Analy.se,
zuinige codering en re.synthe.se van .spraakgeluid, doctoral thesis, Eind­
hoven.

Willems, L.F. (1986) Robust formant analysis, [PO Annual Progre.s.s Report,



References 101

21,34-40.
Willems, L.F. (1987) Robust formant analysis for speech synthesis applica­

tions, Proceedings ECOST, 250-253.



102

Curriculum vitae

20 sept. 1959 Geboren te Haarlem.

Curriculum vitae

aug. 1971 - juni 1977 Revius Lyceum te Doorn, Gymnasium B.

sept. 1977 - okt. 1984 RU Utrecht, Experimentele Natuurkunde, afstudeer­
richting Medische Fysica.

sept. 1985 - sept. 1988 Onderzoekmedewerkster in dienst van de Stichting
Taalwetenschap van de Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), gedetacheerd
bij het Instituut voor Perceptie Onderzoek (IPO), l
Eindhoven, voor het verrichten van promotieonder-
zoek naar temporele decompositie van spraak.

sept. 1988 - feb. 1989 Onderzoekmedewerkster verbonden aan de Horen en
Spraak groep van het IPO.

maart 1989 - heden Universitair docente bij de vakgroep Medische en Fy­
siologische Fysica van de RU Utrecht.



Stellingen

1. Niranjan en Fallside (1987) bestrijden de bewering van Ahlborn, Bim­
bot en Chollet (1987) dat singular value decomposition (SVD) geen es­
sentiele stap is voor temporele decompositie. In hun argumenten houden
zij echter onvoldoende rekening met het feit dat Ahlborn et al. (1987)
het aantal input parameters beperken en bovendien een niet nader om- '
schreven decorrelatie-algoritme gebruiken. Uit de bijgevoegde figuren
blijkt weI dat de resultaten behaald met en zonder SVD verschillend
zijn.

G. Ahlborn, F. Bimbot, G. Chollet (1987), Modeling spec­
tral speech transitions using temporal decomposition techniques,
Proc. ICASSP, 13-16.
M. Niranjan, F. Fallside (1987), On modeling the dynamics of
speech patterns, Proc. ECOST, 71-74.

2. Uit het feit dat op een recente conferentie door Carey, Harding, Carey,
Anderson en Tucker, een sprekeronafhankelijke spraakherkenner werd
gedemonstreerd die veertien zorgvuldig gebalanceerde Engelse woorden
kon onderscheiden, mag worden afgeleid dat automatische spraakherken­
ning nog in de kinderschoenen staat.

M.J. Carey, R.S. Harding, E.J. Carey, A.J. Anderson, R.C.F.
Tucker (1988), A speaker-independent speech recogniser, Proc.
1h FASE Symposium, Edinburgh, 9-15.

3. De definitie van "close copy stilering" in het intonatieonderzoek zoals
gehanteerd door Willems, Collier en 't Hart (1988) leidt in de praktijk
niet tot werkelijk eenduidige stileringen. Dit vermindert de bruikbaarheid
van close copy stileringen in het intonatieonderzoek.

N. Willems, R. Collier, J. 't Hart (1988), A synthesis scheme
for British English intonation, J. Acoust. Soc. Am. 84 (4), 1250­
1261.

4. Uit het feit dat mensen die regelmatig worden blootgesteld aan difoon­
spraak deze in het algemeen beter verstaan en hoger waarderen dan
naleve luisteraars, blijkt dat er nog heel wat te verbeteren valt aan de
kwaliteit van de spraaksynthese.



5. Om te kunnen beoordelen in hoeverre het "alphabet learning" simulatie­
experiment van Carpenter en Grossberg (1987) zinnige resultaten op­
levert, moet de gegeven informatie op tenminste drie manieren worden
uitgebreid: a) Vermelding van de samenstelling van de klassen van let­
ters, b) Ret aannemelijk maken dat dit een zinnige indeling is, en c)
Vermelding in hoeverre de indeling afhangt van de volgorde waarin de
stimuli worden aangeboden.

G.A. Carpenter, S. Grossberg (1987), Neural dynamics of cate­
gory learning and recognition: attention, memory consolidation,
and amnesia, in J. Davies, R. Newburgh, and E. Wegman (Eds.),
Bra£n structure, learn£ng, and memory, AAAS Symposium Se­
ries, 239-283.

6. Boeken die in de titel "de Azteken" hebben staan, zijn vaak volop
geillustreerd met foto's van bouwwerken en kunstvoorwerpen die aan
andere Oud-Mexicaanse volkeren worden toegeschreven, waardoor de
Azteken ten onrechte te vee! eer krijgen.

Bijv.: C. Burland, W. Forman (1987), De Azteken. Geloof en
goden £n het Oude Mex£co, (Nederlandse vertaling).
De Azteken. Kunstschatten u£t het Oude Mex£co, Zaberndruck,
Mainz am Rhein, 1987.

7. Deze stelling is dubieus.

Gej'nspireerd door: D.R. Hofstadter (1986), Metamagical the­
mas: Quest£ng for the essence of mind and pattern, Bantam
books, 5-48.

8. De tevredenheid over de kwaliteit van het treinvervoer in Nederland
neemt toe naarmate men er frequenter gebruik van heeft gemaakt.

Astrid M.L. Van Dijk-Kappers
Eindhoven, 30 mei 1989
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