

Resource-aware life cycle models for service-oriented
applications managed by a component framework
Citation for published version (APA):
Mak, R. H. (2013). Resource-aware life cycle models for service-oriented applications managed by a component
framework. (Computer science reports; Vol. 1307). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/57ea2bd8-2517-4384-ab94-bb97aa051cf3

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

Resource-aware Life Cycle Models for Service-oriented

Applications managed by a Component Framework

R.H. Mak

13/07

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 13-07
Eindhoven, July 2013

Resource-aware Life Cycle Models for Service-oriented

Applications managed by a Component Framework

Rudolf H. Mak

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail R.H.Mak@tue.nl

Abstract

In this report we present a series of formal models that describe dy-
namically reconfigurable applications at various stages of their life cycle.
It is our intention that these models capture the essential concepts of such
applications and the platforms on which they are deployed, and that they
indicate the essential activities required to accomplish an application’s
transition from one stage of its life cycle to the next. These models aim
to support a life cycle in which applications are designed as a combination
of services and realized by predefined components that are deployed in a
framework specially tailored to the resource management needs of these
applications.

1 Introduction

Many current day large scale applications exhibit the following characteristics.
They are interdisciplinary : Their design relies on knowledge from a wide range
of domains of expertise, that is difficult to cover by a single design team. They
are intrinsically distributed : Control of the application occurs at a location that
is geographically distant from sensors and/or actuators. Typical examples are
surveillance systems for public areas such as shopping malls, airports, or even
parts of a city, or control systems for chemical and nuclear plants. Similarly,
processing of data may occur at locations remote from where the data is ac-
quired and/or stored. Typical examples are large scale scientific computations
that require computing power to an extent not available to a single user. Also,
the variety of resources needed by the system may not be present at a single
location or machine. They require intricate resource management : On the one
hand, intelligent reaction to sensor input or data content may give rise to large
fluctuations in resource demands of the application itself. On the other hand,
the application may be operating in an environment where it has to compete
for resources with other applications that execute simultaneously, and hence
may be confronted with fluctuating resource availability.

1

These characteristics have consequences for the design and deployment of
such applications. First of all, the interdisciplinary nature favors a design style,
where applications are built from predefined components developed by experts
in the various disciplines. Not only do these components encapsulate specialist
domain knowledge, they also facilitate reuse and are mechanisms for protection
and commercial exploitation of intellectual property.

For reuse of independently developed components to be successful, it must
be complemented with reuse of architectural principles that facilitate interoper-
ability between such components. For this a variety of component frameworks
has been developed both in industry (EJB [8], COM [4], CCM [15]) and in
academia (Koala [28], SOFA [7], Kobra [1], PECOS [14], PECT [16], Fractal
[6]). Most of these frameworks, however, are not resource-aware and do not ac-
commodate resource-dependent dynamic reconfiguration. Indeed, development
of frameworks that exhibit the latter capability has been identified as a major
research challenge in service-oriented computing [23].

In the literature many definitions of what a framework, or more specific a
component framework, encompasses can be found [26, 13, 17]. In all cases a
framework is defined as a software entity that realizes the goal stated above,
i.e., a software platform that embodies the reuse of architectural principles
for system composition within an application domain. The specification of
precisely how the software achieves its goal is not perceived as being part of the
framework, although tool support, in particular for component wrapping may
reveal some of this information.

Therefore, we prefer a more extended notion of framework [20], that sup-
plements the description of its software with additional concepts that are not
only important for the proper deployment of the framework in applications,
but also for the design of the framework itself. We refer to this model as the
MRTV framework model, since it defines a framework as a set of Models and
methods, a Run-time system, a set of Tools, and a set of Views. In this defi-
nition the run-time environment plays the role of the software platform of the
previous definitions. Although each framework defines its own particular set of
models, this set, in general, includes life cycle models — both for components
and applications —, programming models, data models, process models, etc.
Tooling, both for development of components and applications and platform
management is considered an intrinsic part of the framework. Finally, and per-
haps most importantly, the framework contains a set of views which explain
relationships between its models, methods, tools and run-time system. Each
view highlights a different aspect of the framework usage. Together, these views
build a coherent picture of the framework that allows not only development of
components suited for the framework, and the execution of applications built
from such components on the its runtime platform, but also the development
of its tools and its runtime platform. Again each framework defines its own
particular set of views, but to get some idea of what is expected here one can
think of views as defined by Kruchten [19].

Our research, is aimed at the design of a resource-aware component frame-
work that facilitates third-party runtime composition of applications with a
service-oriented architecture and with predictable resource usage. An initial

2

discussion of that framework has been presented in [10, 22]. A similar frame-
work targeting the domain of video surveillance applications can be found in
[5].

This report presents a variety of conceptual models of a mathematical na-
ture, both for the framework entities that constitute the fabric of our applica-
tions — interfaces, services, and components — and for the framework entities
that constitute the platform on which they are deployed — hosts and networks.
We target dynamically reconfigurable applications, so we model these entities
at various phases of their life cycle, which gives rise to a hierarchy of models
for each entity. Furthermore, we use the models to identify and explain the
responsibilities of the framework entities that manage the activities that take
place in the various phases of an application’s life cycle. Thus, the models also
constitute abstract versions of the data structures maintained by these entities
to perform their management tasks.

The rest of this report is organized as follows. Section 2 is devoted to the
application life cycle. It discusses in some detail the three major phases of that
life cycle. Section 3 is devoted to the component-based framework we envision.
It introduces its principle entities and outlines its organization. Sections 5 up
to 8 are devoted to models. These models are developed according to four
views, an initial one that emphasizes resource management, followed by three
more views, each of which is associated with a phase from the application life
cycle. These sections are preceded by Section 4 which contains some general
modeling principles and introduces some mathematical notation. For the less
mathematically inclined readers, a software engineering oriented version of the
models, in the form of UML diagrams, is given in the appendices. Finally,
in Sections 9 and 10, we discuss related work, summarize results and indicate
directions for further research.

2 Application life cycle

In this section we describe a life cycle for dynamically reconfigurable applica-
tions. This life cycle is displayed in Figure 1 and distinguishes the three main
phases in which an application can be engaged: (re)design, (re)deployment and
operation.

(Re-)Design (Re-)Deployment Operation

Figure 1: Application life cycle

3

Before we explain the activities that take place in the individual phases in
more detail, we make some general observations. The most important phase
of the life cycle is the operation phase. In this phase the application performs
the services for which it has been designed. The other two phases represent
deviations from this “normal” behavior during which the application is recon-
figured. Reconfiguration is triggered by events that can be both external and
internal to the application and that occur for many reasons. In this report, we
concentrate on reconfiguration needed to resolve resource conflicts. We con-
sider five reconfiguration mechanisms, three of which are so far-reaching that
they require an application to temporarily leave its operation phase and enter
a dedicated reconfiguration phase, viz., a redeployment or redesign phase.

To understand why there are two distinct phases associated with reconfig-
uration, we first need to explain our approach to application design, which is
commonly known as third-party composition. We are concerned with service-
oriented applications, and consider their design as a form of architectural design
which consists of composition of predefined units, called services, of well-defined
functionality to be delivered at a specified level of quality. How individual ser-
vices are designed, however, is of no concern to us. Instead, we simply assume
the existence of predefined executable software units, called components1, that
deliver the desired services upon deployment. Note that this is a deviation from
the classical definition of a component given by Szyperski [26], where a com-
ponent is both the unit of composition (as its name suggests) and the unit of
deployment. We retain the latter, but consider services as the more fundamen-
tal unit of composition. By ignoring the service design aspect and concentrating
on service composition, we obtain an application life cycle in which application
design becomes a recurring activity, rather than an activity that occurs once at
the start of the life cycle, (with the possible exception of some redesign as part
of maintenance). Of course, any application must be designed and deployed
before it comes into operation for the first time. Apart from the amount of
effort involved, such initial phases are not different from the ones needed for
reconfiguration of an already operational application. Hence, the single arrow
indicating the entry point of the life cycle in Figure 1 suffices to capture initial
design and deployment.

The two reconfiguration phases differ in that redeployment does not alter the
structure of an application, but merely changes the location where components
are deployed, whereas redesign also modifies the structure of the application,
by changing either the service composition or the selection of components that
provide the services.

Design phase

The main activities of the design phase are recorded in the UML activity dia-
gram depicted in Figure 2. We distinguish: application architecture by service
composition, allocation of components to services, definition of reconfiguration
strategies and definition of deployment constraints.

1Actually component types, but in this section we will not yet make that distinction

4

compose
application

[new design]

allocate
component

types

[partial]

[total]

define
location

constraints

define
resource

constraints

[stop]

[recompose]

[reallocate]

failure deploy

[finish]

[redesign]

define
reconfiguration

strategies

(1)

(2)

(3)

[recompose]

Figure 2: Design phase activities. The arrows labeled with a number have an
associated model in Section 6. These models define the outcome of their imme-
diately preceding activity and are given by: Mdesign

sb app design for (1), Mdesign
cb app design

for (2), and Mdesign
constraint for (3).

As explained above, design is architectural design and the architecture
of an application consists of two structures, a service-based structure and a
component-based structure. These structures need not be the same. Finding a
component-based structure that is compatible with the service-based structure
is a non-trivial activity and is, therefore, a separate activity of the design phase.

Deployment constraints come in two kinds. The first kind is concerned with
the location of components. In some applications, e.g. surveillance applica-
tions, services may be required at specific geographic locations, for instance,
the recording of images by a particular camera. Other constraints may not be
location specific, but may require that a certain combination of services needs
to be present on a single node (co-allocation constraints).

The second kind of deployment constraints is concerned with Quality of Ser-
vice (QoS), which is specified as part of a service’s contract. Services, however,
are provided by components and the latter are assumed to be deployable in only

5

a fixed number of modes. For each of these modes, it should, in principle, be
possible to determine the QoS-level of every service offered by the component,
when operating in that mode. Vice-versa, it should therefore also be possible
to determine the set of modes at which a component can be operated such that
all its services meet their contract. Whenever this set contains two or more
modes the following situation may arise. Mode M1 provides service S1 with
barely sufficient quality, but provides service S2 at excellent quality, whereas
mode M2 does precisely opposite. In this case, it is conceivable, that although
both modes meet the requirements stated in the service contracts, the applica-
tion’s end-user has a strong preference for one of them. In Figure 2, the stage
of the life cycle design phase in which this preference is stated is indicated by
the “define resource constraints”-activity, since each mode of deployment of
component has a well-defined associated resource demand.

There is one more design phase activity, which is the definition of reconfig-
uration strategies. Although important, because they supply the criteria used
in a number of decision boxes (“♢”-boxes) in the activity diagrams, reconfig-
uration strategies are not part of any application model. Therefore, modeling
this activity is outside the scope of this report.

Deployment phase

Given the outcome of the design phase, i.e., a component-based application
design and a set of deployment constraints, the goal of the deployment phase
is to create a situation in which this design is deployed on a component-based
platform. This means that on a subset of the platform nodes, called hosts, a
collection of processes must be created, each of which is a component of the
designed application. Of course, hosts must be allocated to these components
in accordance with the location constraints. Moreover, each component must
be deployed in a resource mode in accordance with the resource constraints,
and sufficient resources must be reserved on the hosts to allow components to
execute in their assigned resource modes. Finally, network connections must be
established to accommodate data traffic between components, as indicated by
interface bindings.

To achieve this goal the deployment phase is divided in three activities that
are depicted in the activity diagram in Figure 3.

The first activity is the determination of a feasible allocation, which consists
of three parts, viz., an allocation of hosts to components, an assignment of
resource modes to components, and, for each component, a reservation of a
resource budget on its allocated host, in agreement with its resource mode. In
general, many feasible allocations will exist, from which one has to be selected.
Nevertheless, it is also possible that the deployment constraints are so tight that
no feasible allocation exists. In that case, redesign is the only option. Although
we have not investigated the computational complexity of this combinatorial
problem, we expect it to be NP-complete.

Once a feasible allocation has been obtained, the application has to be
instantiated accordingly. For each component executable code, if not already
present, has to be installed on its allocated host, and a process has to be

6

[deploy]

allocate hosts
assign modes

reserve resources

[success]

[non-feasible]

[redesign]

failure

instantiate
components

bind
interfaces

operateredesign

[redeploy]

[stop]

(1) (2)

(4)

install
components

[all installed]

[otherwise]

(2)

(3)

Figure 3: Deployment phase activities. At the arrows (1), (2), (3) and

(4) the application complies with the models Mdeployment
feasible scheme, Mdeployment

installed app,

Mdeployment
instantiated app and Mdeployment

bonded app respectively. These models are defined in Sec-
tion 7.

created that runs that code in the required resource mode. Moreover, the
resources budgets specified in the reservations have to be made available to
those processes. This is the second activity of the deployment phase.

In the third and final activity of the deployment phase, network connections
for the interface bindings have to be established. The reason why this activity
is separate from the previous one is that they are performed by different parties.
Component installment and instantiation is done solely by framework manage-
ment entities (see Section 3), whereas the instantiated components must assist
in setting up the network connections necessary to bind their interfaces.

Operation phase

The main activities of the operation phase are depicted in Figure 4. The first
activity of the operation phase is to activate the application. This involves
bringing all components in a state in which they are ready to execute. Amongst
other things, this means allocating to each component the resources it needs.
This activity is guaranteed to succeed, since these resources have been reserved
in advance during the deployment phase.

After activation, an application enters a stage in which it is executing as
specified until an error occurs in one of its components. During execution,
the behavior of an application can be influenced by external commands issued
by an operator. For instance, in a surveillance application an operator might

7

activate
components

execute

recover
error

deactivate
affected

components

Adapt
QoS

deallocate
affected

components

[operate]

[control cmd]

[all activated]

[otherwise] [RM 3 applies]

[non fatal]

[otherwise]

[error]

[other error] [resource conflict]

[fatal]

redesign redeployfailure

determine
Recovery

Mechanism

renegotiate
resource

reservations

deactivate
affected

components

[otherwise]

[RM 1 applies]

[RM 1or 2 applies]

(1)

Figure 4: Operation phase activities. At arrow (1) the application complies
with model Moperation

runtime described in Section 8. See the text for an explanation
of the recovery mechanism (RM) labels on outgoing edges of some of the decision
boxes.

issue PTZ2-commands to a camera [5]. In general, any application containing
actuators can be expected to require control commands. Similarly, commands
that influence the data processing of an application can be issued. Again taking
a surveillance application as an example, an operator might issue a request to
track a person appearing on one of the camera images.

For any application, a large variety of errors may occur, some of which are
application specific, whereas others are more general. Handling of application
specific errors can not be part of any generic life cycle and is therefore outside the
scope of this report. Of the more general errors, this report only addresses the
handling of resource errors. Non-resource errors, whether general or application
specific, are classified as either fatal or non-fatal. How this classification is made
and how non-fatal errors are resolved is left unspecified. However, it is assumed
that components affected by non-fatal errors must be deactivated — if this did
not already occur as a side-effect of the error— before resolution can take place.
The associated activities are depicted in the leftmost column of Figure 4.

A resource error is the manifestation of a resource conflict, i.e., a situation
in which there is a mismatch between the resources used by a component and
the resources reserved for it on its host. A resource error can be either a signal
that this situation is currently present, or a prediction that such a situation
will arise in the near future. Resource conflicts come in two flavors. When
an application’s resource usage exceeds its resource reservation, we speak of

2Pan Tilt Zoom

8

resource shortage. When, on the other hand, an application’s resource reser-
vation exceeds its resource usage, we speak of reservation surplus. In case of
resource shortage an application is in trouble, but in case of reservation surplus
the application is in good shape. Nevertheless, resolving reservation surplus is
useful, because it can be beneficial for other applications that run on the same
platform.

Resource conflicts are analyzed to determine which recovery mechanisms are
applicable. Listed in order of increasing impact, we distinguish five recovery
mechanisms:

RM 1 renegotiation of local resource reservations,

RM 2 QoS adaption,

RM 3 reallocation of components,

RM 4 reallocation of services,

RM 5 recomposition.

In case of resource shortage, renegotiating local resource reservations is an
option, provided there are still free resources available on the host where the
conflict occurs. In case of reservation surplus, renegotiation is always possible.
Especially, when the resource error is not based on the current situation, but is
a prognosis of a future situation, renegotiation is an attractive option because
it may be possible to complete the renegotiation process, and have the new
reservations in place, before the actual conflict arises. Thus, deactivation of
components can be avoided. In fact, since the application is not involved in the
resolution mechanism, it will remain oblivious to the occurrence of the conflict.

Another possibility to resolve a resource conflict without interrupting the
operation phase is by QoS adaptation. This is achieved by changing the resource
modes in which components operate. This mechanism, however, requires deac-
tivation of the components that are in conflict. Moreover, adapting the quality
of a service may affect components other than the ones in conflict and located
on different nodes.

Another mechanism is to resolve resource conflicts is to relocate components
that are in conflict to platform nodes where a better match can be obtained. In
fact, in order to resolve a conflict in one application it may even be necessary
to relocate components belonging to an other application that by itself suffers
no conflict. Since allocation of components is part of the deployment phase,
this mechanism interrupts the operation phase.

Finally, it may even be necessary to reallocate services or alter the logical
structure of an application to resolve a resource conflict. In the former case, one
or more components are replaced by others that provide the same services but
under more suitable resource demands. Typical examples of the latter case can
be found in patterns that create concurrency, such as replication of services to
divide the workload between the copies, or replacing a service by a sequential
composition of services and arranging the associated components in a pipeline

9

to increase throughput. The activities associated with the handling of resource
conflicts are displayed in the rightmost two columns of Figure 4.

Since, as described above, a resource conflict can be resolved by several
resolution mechanisms, we need criteria to decide which mechanism to apply.
For each application, these criteria have been defined in its design phase in the
form of reconfiguration strategies. They are applied in the decision boxes that
occur in Figure 2 and in the rightmost two columns of Figure 4.

3 Component framework

In this section we describe the structure of a resource-aware component-based
framework for the design and deployment and operation of service-oriented
applications. The main entities of the framework are depicted in Figure 5.

Orchestrator
 1

Orchestrator
 2

Resource
manager

Component
Repository

Device
manager

Device
manager

Component
 1

Component
 3

Component
 4

Component
 2

 Host 1

 Host 2

Component
 5

Device
manager

 Host 3

Figure 5: Framework entities

We distinguish three categories of entities. The first category consists of
the entities that constitute the fabric of our applications. These are the compo-
nents and interface bindings. Although the framework supports service-oriented
applications, services do not appear as framework entities. They are consid-
ered logical concepts that describe functionality and performance aspects of
an application, but it are the components, being containers of services, that
realize these aspects. Indeed, we assume that components are the only means
to obtain a service. In the diagram in Figure 5, applications are indicated by
dashed ovals, and interface bindings between the components of an application
are indicated by dotted zigzag lines.

The second category consists of the entities that provide the platform on
which applications are deployed. These are the hosts and the networks. The

10

diagram shows a very small platform consisting of three hosts, only two of
which carry applications. The networks are left implicit in the diagram. Their
existence, can be derived from the lines between framework entities, such as the
interface bindings, which imply exchange of data. Although, in most practical
case there will be a single network, our models will accommodate the situation
in which several networks coexist.

The third category consists of management and storage entities. For each
application there exists a dedicated framework entity, a so-called orchestrator,
whose responsibility it is to manage that application. For each host there exists
a dedicated framework entity, called a device manager, whose responsibility it
is to manage all framework entities that reside on its host. Furthermore, there
is a framework unique entity, called the resource manager, whose responsibility
it is to manage the collection of all resources supplied by the entire platform.
In the next sections, the responsibilities of the various management entities
will be further detailed. Finally, there is a framework unique entity, called the
repository, that contains all component descriptions. Every component of any
application must be derived from a component description in the repository.
So, the repository effectively defines the universe of components from which
all applications are constructed. In the diagram all of these entities, with the
notable exception of device managers, are located on a separate host that does
not host any user application. The latter, however, is merely done for clarity
of explanation, but is not a fundamental requirement of the framework.

As an aside, we remark that the framework entities of the third category
can themselves be seen as components, and their combined management effort
as yet another application. In that case, an additional orchestrator, called the
framework manager, should be added to the diagram.

4 Modeling preliminaries

In this section we present some general principles about the models presented
in this report and explain some mathematical notations. These models describe
only application entities and platform entities. The management and storage
entities of the framework are not modeled. In fact, the management entities of
the framework are the ones that maintain models of the other entities. In par-
ticular, an orchestrator maintains application related models and the resource
manager and device managers maintain platform related models.

Most models in this report, fall in one of two categories: type models and in-
stance models. E.g, the component descriptions that can be found in the frame-
work repository are component types, albeit very elaborate ones. Component
descriptions should contain at least an executable program (or the sources for
obtaining one), but they can be far more elaborate than that [21]. Of course,
the component type models presented in this report are a huge abstraction
of such descriptions. The components themselves, on the other hand, are pro-
cesses that execute these programs and their models classify as instance models.
Whereas type models are static, instance models are dynamic. They are snap-
shots that describe a framework entity at a certain moment in time and are

11

therefore subject to updates during the life time of such an entity.
Furthermore, each model describes an entity from a particular point of view.

These views correspond to the phases of the application life cycle described in
Section 2. However, not every framework entity has a model for every phase.
Since the models closely follow the life cycle, they can be organized in a hi-
erarchy, where models of a later phase are extensions of those of an earlier
phase. Besides the views that correspond to a phase of the life cycle, there is
one additional view, the resource view. In line with our emphasis on resource-
awareness, this is the most basic view. It defines models that lie at the bottom
of the hierarchies.

Finally, for precision’s sake, all models are expressed using formal math-
ematics. For the less mathematical oriented reader, some of the notational
conventions that are used are explained below, as are notations specific to this
report. In addition, Appendix A contains a collection of UML diagrams which
present the same models from a software engineering perspective.

Notation

From a mathematical point of view all framework entities are tuples. These
tuples are denoted as a list of attributes (fields) enclosed by angular brackets
“⟨” and “⟩”. To refer to an attribute of a named tuple, we use the infix selection
operator “.”. For instance, we write T.b to refer to the second attribute of
quadruple T = ⟨a, b, c, d⟩3. Besides attribute selection we also use tuple slicing,
i.e., we write T.⟨a, d⟩ to refer to the slice that consists of the first and last
attribute of T . Hierarchical models give rise to nested tuples. So, several
applications of the selection operator may be needed to select an attribute
of a nested tuple. For instance, if the first attribute of T is itself a nested
tuple, i.e., a = ⟨e, f, g⟩ and f = ⟨k, l,m⟩, then we must write ((T.a).f).m
to refer to the third attribute of the second attribute of the first attribute of
T. When the level of nesting increases this notation quickly becomes difficult
to digest. Therefore, we ensure that all attribute names of nested tuples are
distinct, and adopt the convention that attributes that require expansion steps
are selected using the “./”-operator. So we write T./f instead of (T.a).f and
T./m instead of ((T.a).f).m. Occasionally, we also make use of anonymous
attributes. For instance, we could have defined the tuple T above by T =
⟨⟨e, f, g⟩, b, c, d⟩. Note that T is still a quadruple, but its first attribute has
become an anonymous triple. In this case, we indicate the second attribute of
the first attribute of T simply by T.f . Avoiding the “./”-operator, however,
is not the reason for using anonymous attributes, but merely a side-effect. In
principle, we use anonymous attributes to express that a newly defined tuple
is an extension of its anonymous part. This is illustrated clearly in the UML
diagrams, where we model anonymous attributes by specialization and named
attributes by aggregation or composition.

Frequently, attributes of our models are functions of a special nature. In

3Strictly, this is an abuse of notation that blurs the distinction between attribute name
and attribute value, but we will ensure that the resulting ambiguity can always be resolved
from the context.

12

some cases, they are elements of a Cartesian product
∏

i∈I Vi, i.e, they are
functions f from some index set I to a union

∪
i∈I Vi that satisfy f(i) ∈ Vi. On

other occasions, attributes are partial functions. To indicate a partial function
f from A to B, we write f : A → B⊥. So, rather than making the subset A′

of the function domain A whose elements have an image under f explicit, we
extend the function range B with a special element ⊥, which, by definition, is
distinct from all elements of B. The extended range is denoted by B⊥ and the
set A′ is implicitly given by {a ∈ A | f(a) ̸= ⊥}. Occasionally, we also find use
for unordered pairs. Given a set S, we denote the set {{s1, s2} | s1, s2 ∈ S} of
all unordered pairs consisting of elements from S by

(
S
2

)
.

Finally, we use the following alphabet and font conventions. Instances are
denoted by lower case roman symbols (c, n, . . .), sets of instances are denoted
by upper case roman symbols (C, N , . . .), types are denoted by upper case
sans serif symbols (C, N, . . .), and sets of types by calligraphic symbols (C,
N , . . .). Universes, both of types and instances, are denoted by Euler Fraktur
symbols. For instance, N denotes the universe of names that are used to identify
framework entities of various types. Other universes will be introduced as the
need arises.

5 Resource view

In this section, we present a set of models that describe framework entities from
a resource management perspective. These models are the most fundamental
ones we consider. In later sections these models will be extended to incorporate
other aspects of framework entities relevant for activities occurring in specific
phases in their life cycle.

In practice, many kinds of resources can be distinguished, each of which
has its own characteristics. In this report, however, we will not consider all
those characteristics in detail, but describe a resource by means of a type, such
as “processor”, “memory”, “energy”, or “network”, that is a rough indication
of its capabilities, and a value which quantifies its capacity, i.e., the extent to
which the resource possesses those capabilities.

So, we simply postulate a universe R of resource types of which neither
the number nor the nature of its individual elements is specified, and assume
for each resource type R ∈ R the existence of a universe of values VR whose
elements are used to quantify and compare resources of type R.

We do not detail the sets VR, but note that in view of the above their values
may be compounds. For instance, the value of a memory-type resource could
state not only its storage capacity, but also its word size and the time it takes to
store or retrieve a word. Also, when comparing resource values, it is important
that these values are expressed using the same unit. In practice this need not
be the case, but we assume that for each quantifiable capability there exists
a standard unit, and that, given any context, it always possible to convert a
non-standard resource value to a value in that standard. By definition, values
from any universe VR are expressed in the corresponding standard unit, which,
again, will be left anonymous.

13

Under the conventions above, a resource type instance, or resource for short,
is a pair ⟨R, v⟩ where v ∈ VR. Resources can be grouped into budgets, which
give rise to our first model.

Model 5.1 (Mresource
budget)

Let R ⊆ R be a set of resource types. A resource budget for R is an element of∏
R∈RVR, i.e., a tuple of resource capacities, one for each resource type R ∈ R.

2

Resource budgets are used to model various resource management concepts.
At any moment in time, a single resource supplier will supply its resources to
a number of resource consumers. These consumers will specify their resource
needs by means of a number of budgets, called resource demands. A consumer
must specify at least two demands that specify the minimum respectively max-
imum resource usage over its entire life span. Of course, the actual resource
usage at any particular moment in time is also expressed as a budget. More-
over, to assist resource management decisions, consumers may specify addi-
tional resource demands, like typical usage. As part of resource management,
a resource supplier will set aside a resource budget for each consumer to which
it supplies its resources. In general, these resource allocations have bounded
duration and depend on the resource demands specified by the consumer. To
avoid deadlock due to competition for resources, budget allocations have to be
reserved beforehand. The total amount of resource reservations that a supplier
can accommodate is called its resource capacity and is also expressed by a bud-
get. Finally, given its resource capacity and outstanding allocations, a supplier
has a free budget of remaining resources that is available for reservation.

The framework entity that supplies applications with resources is the plat-
form. It consists of nodes that host the components of an application. These
nodes are interconnected by networks that realize the data traffic associated
with the interface bindings of an application. The resources supplied by hosts
and networks are distinct. Henceforth, we therefore assume that the set of
resource types R is partitioned in two disjoint sets Rhost and Rnet.

Model 5.2 (Mresource
host type)

In the resource view a host type is a pair ⟨R, cap ⟩, where

1. R ⊆ Rhost is a set of resource types,

2. cap ∈
∏

R∈RVR is a budget indicating the resource capacities.

2

By definition, a host is a host-type instance. Since all information about
the resources offered by a host is already captured by its set of resource types,
the only additional information is its identity.

Model 5.3 (Mresource
host)

In the resource view a host is a pair ⟨H, hn⟩, where

1. H ∈ Mresource
host type is a host type,

14

2. hn ∈ N is a framework unique name.

2

Note that, in contrast to hosts, resources have no identity. Instead, they
are identified through the host to which they belong. As a consequence, every
host has only one resource of any single type. Obviously, this is not always
conform reality. For instance, processors may have several cores, main memory
may consist of several identical memory chips organized in banks, or secondary
memory may be organized as a RAID. So, in our models, we implicitly assume
that a host which in reality has two or more resources of the same type, with
respective capacities κ1 and κ2, can always be modeled as if it had a single
resource of capacity f(κ1, κ2), with f a known function, e.g., addition. This
assumption is not essential, but merely simplifies our models. Finally, one
could argue that resource capacity is a property of a host and not of a host
type. However, by modeling in this way, replacing a host by one of the same
type will neither hamper nor benefit deployment of components.

In general, applications will consist of several components that are dis-
tributed over a number of hosts. The reasons for distribution can be vari-
ous, but the one relevant from a resource perspective is that no single node
has sufficient resources to execute the application in question at its required
service level. In other words, there exists at least one resource for which the
total resource demand of all components combined exceeds the capacity of that
resource on any single host. Given this distributed nature of applications, facil-
ities for data exchange between its components are needed; a service provided
by platform entities known as networks. To be precise, a network is a frame-
work entity that accepts data at one location, the source, and delivers that data
at one or more other locations, the destinations. We assume that any location
of a network that can serve as a source can also serve as a destination. These
locations are called the external locations or access points of the network. In
addition to external locations, a network may have internal locations or routing
points, which are neither source nor sink, and merely serve to forward data on
its journey from source to destination. In Section 7, where we model networks
from a deployment perspective, we will return to these routing points and the
physical links that connect them to the access points and to each other, but
here we ignore them. Instead, we adopt the view that a network is an entity
that supplies its users with a set of resources, called connections, that can be
used to transfer data between access points.

Model 5.4 (Mresource
network type)

In the resource view a network type is a pair ⟨R, A⟩, where

1. R ∈ Rnet is the resource type of all network connections,

2. A ⊆ N is a set of framework unique names that are addresses of the
network’s access points.

2

15

The network type resource model differs from the host type resource model
in that it mentions only a single resource type. Thus, it models a homogeneous
network, i.e, a network that offers the same communication facilities for each
connection, irrespective of the pair of access points that are connected. Also a
network type resource model contains no notion of capacity. Although physical
links between individual network locations possess properties like bandwidth
and propagation delay which constitute a form of capacity, such properties
do not readily translate to similar ones for the logical connections between
source-destination pairs offered by the network. Instead, network capacity — or
more precisely the capacities of all existing logical connections between source-
destination pairs — is a dynamic property of the network that depends both
on network configuration and traffic load. For some networks, such as ATM
networks, it is possible to configure the network in such a way that connections
with fixed duration and guaranteed capacity arise; for others, such as the in-
ternet, connections can be established but capacities can not be guaranteed.
So, a network description in terms of individual links, for which it is possible
to specify a notion of capacity, contains too much detail for the type of high-
level resource model we are interested in, whereas the instantaneous capacities
of connections that depend on current network configuration and traffic load
belong to the deployment view.

Thus what is left in the resource view is a network type model that only
specifies a resource type R for connections and a set of access points that can
be interconnected, but no actual connections, let alone the capabilities of such
connections.

Similar to a host, a network is an instance consisting of a type and a name.

Model 5.5 (Mresource
network)

In the resource view a network is a pair ⟨N, nn⟩, where

1. N ∈ Mresource
network type is a network type,

2. nn ∈ N is a framework unique name.

2

Having defined the host and network model, we are in a position to define the
platform as an aggregation of hosts and networks, with additional information
to specify where hosts are attached to networks.

Model 5.6 (Mresource
platform)

In the resource view a platform is a triple ⟨H,N, attm ⟩, where

1. H ⊆ Mresource
host is a set of hosts,

2. N ⊆ Mresource
network is a set of networks such that

• ∀n1,n2∈N n1./A ∩ n2./A = ∅,

3. attm :
∏

n∈N (n./A → H⊥) is a mapping, where attm (n, a) indicates the
host, if any, that is attached to network n at access point a.

16

In addition, the derived attribute

4. haps : H →
∪

n∈N n./A is a function that maps hosts to access points in
agreement with attm , i.e.,

• haps (h) =
∪

n∈N{a ∈ n./A | attm (n, a) = h}.

2

Since the platform is by definition framework unique, the platform model does
not contain a name-attribute. Furthermore, note that it is possible for a plat-
form to have several networks and that a single host can be attached to multiple
access points, either belonging to a single network or to multiple networks.

It is the responsibility of the resource manager to maintain the platform
model. Because the first attribute is a set of hosts, rather than a set of host
names, this implies that the resource manager not only must be aware of the
identity of the platform hosts, but also must have a local copy of the resource
model of each of these hosts. The same holds for the network models of the
platform.

From a resource management perspective, a component is both a consumer
and a supplier. Its responsibility is to supply the services from which applica-
tions are composed and to do so it consumes platform resources. Its role as
service supplier will be modeled in the next section. Here, we model its reliance
on platform resources. We shall assume that components can operate in a num-
ber of modes, each of which is characterized by a pair of budgets specifying its
minimum and maximum resource demand.

Model 5.7 (Mresource
component type)

In the resource view a component type is a quadruple ⟨R,M, dmdmin, dmdmax⟩,
where

1. R ⊆ Rhost is a set of resource types,

2. M ⊆ N is a set of resource modes,

3. dmdmin : M →
∏

R∈RVR is a mapping from resource modes to demand
budgets,

4. dmdmax : M →
∏

R∈RVR is a mapping from resource modes to demand
budgets.

2

By definition, a component is a component type instance. Therefore, it has
an identity expressed by its name. In practice, this name may have structure.
For instance, it may consist of a host name and a process identifier. Such
structure, however, can only be part of a deployment model. So, in the resource
view, component names have no structure.

Model 5.8 (Mresource
component)

In the resource view a component is a pair ⟨C, cn⟩, where

17

1. C ∈ Mresource
component type is a component type,

2. cn ∈ N is a framework unique name.

2

A component type model is part of a component description which must
be stored in the framework repository. The framework entities responsible for
keeping track of components will be discussed in Section 7, where we discuss
the deployment view.

6 Design view

In this section we present two models that characterize an application at various
stages of its design phase (see Figure 2), a model that prescribes deployment
constraints, and a number of auxiliary models.

From a design perspective, an application is a composition of services. A
service is characterized by a set of interfaces by means of which it interacts with
other services, and a contract that specifies both functional and extra-functional
aspects of the service. Since our focus is on resource management, we do not
use application design models to establish whether an application built from
services provides the desired functionality. We are, however, interested in the
interaction patterns of an application, because they define the communication
resources needed for its execution, i.e, the binding pattern of its services. Hence,
in this report, we use a simple service model that considers interfaces but ignores
contracts. When, on rare occasions, we do need to refer to service contracts,
we do so in an informal manner.

Each interface is characterized by a type, which specifies the number, names
and signatures of its operations. Based on the role they play in establishing its
functionality, the interfaces used by a service are divided into two groups, viz.
the provided interfaces and the required interfaces. Interaction between a pair
of services along an interface can only take place when the interface assumes
opposite roles in each member of that pair. In our models, we implicitly assume
that services interact along interfaces of the same type. In practice, a notion of
subtypes can be defined. In that case, the required interface needs to be only a
subtype of the provided interface. For the same reason that we ignore service
contracts, we also ignore the operations of an interface. Hence an interface type
is modeled as an atomic entity without any structure, i.e., as an element from
a universe I of interface types. As a consequence, the only operation that can
be performed on interface types is testing whether two types are equal, which
is sufficient for our purpose.

Model 6.1 (Mdesign
service type)

A service type is a pair ⟨Ireq, Iprv⟩, where

1. Ireq ⊆ I is a set of interface types,

2. Iprv ⊆ I is a set of interface types

18

such that

• Ireq ∩ Iprv = ∅.

Since we do not always need to distinguish between interface types of a service
based on their role, we introduce the derived attribute

3. I ⊆ I is the set of interfaces defined by

• I = Ireq ∪ Iprv.

2

In this model, services have at most one interface of any type, because from a
logical perspective there is no need to provide the same functionality through
several interfaces4. As a consequence, the model identifies the interfaces of a
service by their unique type, instead of introducing separate identifiers.

A service, as is customary for an instance entity, is nothing but a service
type and a name.

Model 6.2 (Mdesign
service)

A service is a pair ⟨S, sn⟩, where

1. S ∈ Mdesign
service type is a service type,

2. sn ∈ N is a framework unique name.

2

Although a service for which S.Iprv = ∅ is completely useless in practice, we do
not impose this constraint in our simple service model.

The first design model of an application presented in this section is based on
this simple service model. It defines the outcome of the “compose application”
activity of the design phase (see Figure 2), in which an application is defined as
a collection of services whose communication topology is given by a collection
of bonds between their interfaces.

Model 6.3 (Mdesign
bond)

A bond is a pair ⟨I, bn⟩, where

1. I ∈ I is an interface type,

2. bn ∈ N is a framework unique name.

2

Binding interfaces of services is not arbitrary, but must obey two rules5.
The first and most important binding rule states that each bond links a pair

4This does not preclude that, in the deployment phase, code and resources can be replicated
to provide the service’s functionality at a required QoS level.

5Note that we make a distinction between the composition activity, i.e. binding, and the
entities, i.e., the bonds by which this is achieved.

19

of interfaces of the same type and opposite roles: one required interface and
one provided interface. The second rule states that there can be only one bond
per interface type between any pair of services. The latter rule is not very
restrictive. In particular, it hardly constrains the number of bonds in which
an interface participates. As displayed in Figure 6, of the 8 possible binding
patterns for any pair of bonds allowed by the first rule, only one is excluded by
the second rule.

Figure 6: Component binding patterns consisting of two bonds. Components
on the left hand side of a pattern expose provided interfaces, components on the
right hand side expose required interfaces. Two component types (circular and
angular) are distinguished. Of the eight possible patterns only one is forbidden.

Furthermore, notice that a service-based application design is a static model
that does not provide any indication of the life span of the connections that
realize bonds at run-time. For any interface participating in two or more bonds,
corresponding run-time connections may either exist simultaneously or one at
a time or in any combination thereof.

Model 6.4 (Mdesign
sb app design)

A service-based application design is a quadruple ⟨S,B, req , prv ⟩, where

1. S ⊆ Mdesign
service is a set of services,

2. B ⊆ Mdesign
bond is a set of bonds,

20

3. req : B → S is a function indicating the service that exposes the required
interface of the bond interface type and that satisfies

• ∀b∈B b.I ∈ (req (b))./Ireq,

4. prv : B → S is a function indicating the service that exposes the provided
interface of the bond interface type and that satisfies

• ∀b∈B b.I ∈ (prv (b))./Iprv,

such that

• ∀b1,b2∈B (b1.I = b2.I) ⇒ (req (b1) ̸= req (b2) ∨ prv (b1) ̸= prv (b2)).

2

Recall that components are the units of deployment in our framework, and
that they are the only means by which services can be realized. So given a
service-based application the next design step is to identify a set of component(
type)s that provides its services. For this purpose, we extend the component
type resource model from Section 5 with the interface types of the services it
provides.

Model 6.5 (Mdesign
component type)

In the design view, a component type is a quadruple ⟨⟨C⟩, Ireq, Iprv, dep ⟩, where

1. C ∈ Mresource
component type is a component type in the resource view,

2. Ireq ⊆ I is a set of interface types, viz., the ones required by a component
of this type,

3. Iprv ⊆ I is a non-empty set of interface types, viz., the ones provided by
a component of this type such that

• Ireq ∩ Iprv = ∅,

4. dep : Iprv → P(Ireq) is a mapping, where dep (I) indicates the set of
required interfaces invoked by a component of this type to realize the
functionality provided through interface I.

Besides these attributes we also introduce two derived attributes.

5. I ⊆ I is the set of interface types defined by

• I = Ireq ∪ Iprv.

This attribute is introduced, because we do not always need to distinguish
between interface types of a component.

6. Simpl ⊆ Mdesign
service type is the set of service types defined by

• Simpl = {⟨Ir, Ip⟩ | ∅ ⊂ Ip ⊆ Iprv ∧
∪

I∈Ip dep (I) ⊆ Ir ⊆ Ireq}.

21

Services with a type from Simpl can use a component of this component type
for their realization. In fact, our interest in this derived attribute is the main
reason for introducing the basic attribute dep . 2

The derived attribute Simpl of the design view component type model expresses
that a component of this type can be used to realize any service that provides
a subset of the component’s functionality and that requires a superset of the
functionality needed by the component to implement that service’s functional-
ity.

Since component-based designs rely on component types only, components
do not play a role in the design phase. Nevertheless, we also introduce a model
for components in this view, because it simplifies definitions in subsequent
views.

Model 6.6 (Mdesign
component)

In the design view, a component is a pair ⟨⟨⟨C⟩, Ireq, Iprv, dep ⟩, cn⟩, where

1. ⟨⟨C⟩, Ireq, Iprv, dep ⟩ ∈ Mdesign
component type is a component type in the design

view,

2. ⟨C, cn⟩ ∈ Mresource
component is a component in the resource view.

2

Indeed this model indicates that a component in the design view is nothing but
a component from the resource view albeit with an extended type.

Based on the extended component type model, we define the second applica-
tion model, which describes the outcome of the “allocate components” activity
from Figure 2. In this model, each service has been allocated a component
type whose components can implement the service, i.e., can provide the desired
functionality at the appropriate service level.

Model 6.7 (Mdesign
cb application)

A component-based application design is a triple ⟨⟨S,B, req , prv ⟩, C, cta ⟩,
where

1. ⟨S,B, req , prv ⟩ ∈ Mdesign
sb app design is a service-based application design,

2. C ⊆ Mdesign
component type is a set of component types in the design view, such

that all services in S can be implemented using components with a type
from this set, i.e.,

• S ⊆
∪

C∈C C.Simpl,

3. cta : S → C is a mapping that indicates the type of the component used
to realize a service. So for all s ∈ S we must have

• s.S ∈ (cta (s)).Simpl,

• there exists a resource mode m ∈ cta (s).M such that deployment
of a component of type cta (s) in mode m yields the QoS required
by the contract of s.

22

2

The constraint imposed on C in this model not only guarantees the existence
of the attribute cta , but also limits the service-based application designs that
can be considered.

The constraints imposed on cta itself, however, are not very restrictive. In
particular, since cta need not be injective, the component-based application
design model allows applications in which a single component realizes several
services, possibly sharing some interfaces. Of course, the latter requires the ex-
istence of a resource mode that guarantees all those services their desired QoS.
On the one hand, this generality complicates not only the actual deployment of
a component-based application design, which is discussed in Section 7, but also
complicates the formulation of deployment constraints which we will discuss
next. On the other hand, the fact that cta is a function instead of a relation
also simplifies deployment somewhat. For instance, it precludes that the re-
quired service level is obtained by parallel deployment of several components of
identical type. Such deployment scenario’s are conceivable, e.g., when process-
ing a video stream on a frame-by-frame basis. To double the throughput we
could demultiplex the stream into two substreams containing the odd and even
numbered frames respectively, apply the processing service using two identical
components, one for each substream, and multiplex the filtered streams into
a single stream again. To keep our model simple, however, we assume that
this type of parallelism is encapsulated in the component types, where it can
be reflected by a variety of resource modes each with corresponding resource
demands.

The final activity of the design phase involves prescription of deployment
constraints. We consider two types of such constraints: constraints on resources
and constraints on locations. Resource usage is determined by the resource
modes in which components are deployed. The permissible resource modes of a
component, in turn, are determined by the QoS-levels required by the services it
realizes. Therefore, ideally, a resource constraint should specify for each service
s a subset of resource modes from cta (s). This set, however, may depend on the
existence of other services with whom s shares its component of type cta (s).
Here, we will ignore this complication and assume that resource constraints can
indeed be formulated as a predicate on functions of type

∏
s∈S cta (s).M , which

we call resource mode assignments. We justify this approach by observing that
it is always possible to realize each service by a separate component.

The formulation of location constraints suffers from a different problem.
Whereas some constraints do not require specific knowledge of locations, such
as constraints that merely specify that services have to be co-located, others,
such as specifying the geographical location of camera services, do imply plat-
form knowledge. The platform, however, is not part of a component-based
application design. Hence, for proper formulation of location constraints, we
must assume at least partial knowledge of the platform on which the application
is to be deployed, viz. its set H of hosts. Given this set, location constraints can
be formulated as a predicate on functions of type S → H, which we call host
allocations. Typical location constraints are: ha (s) = h, indicating that service

23

s must be located on node h, or ha (s1) ̸= ha (s2), indicating that services s1
and s2 must not be co-allocated. Location constraints such as the latter, are
a reason why services of the same type sometimes have to be distributed over
several instances of the same component type.

Model 6.8 (Mdesign
constraint)

Let Dcb = ⟨⟨S,B, req , prv ⟩, C, cta ⟩ be a component-based application design
and let P = ⟨H,N, attm ⟩ be a platform. A deployment constraint for Dcb on P

is a pair ⟨Pres, Ploc⟩, where

1. Pres : (
∏

s∈S cta (s).M) → B is a predicate specifying resource con-
straints,

2. Ploc : (S → H) → B is a predicate specifying location constraints,

with B denoting the set of Boolean values {true, false}. 2

This model does not constrain network connections. Although QoS require-
ments in service contracts certainly may give rise to such constraints, we have
not modeled network constraints for two reasons. First, it strongly depends
on the amount of control that can be exercised over the network whether con-
straints can be enforced upon deployment. Second, networks that do offer such
control, require a more detailed model than the one given in Section 5 to express
that constraints are met during deployment.

We end this section with a discussion of responsibilities of the various frame-
work management and storage entities in the design phase. Although designing
an application is mainly a human activity performed by an application archi-
tect, several of those entities are also involved in this activity. First, the frame-
work repository defines, through its component descriptions, the service types
from which an application can be built. Second, the resulting designs, both
the service-based version and the component-based version, are maintained by
an orchestrator. This orchestrator could also assist the application architect
in determining the component type assignment cta , although the description
of service contracts may be such that verifying whether a resource mode exists
that fits the QoS mentioned in the contract can only be done by the application
architect.

7 Deployment view

In this section we introduce the four models associated with the main activities
of the deployment phase of the application life cycle, as indicated in Figure 3.
For this, it is necessary to extend some of the models presented in the previous
sections. For instance, in the deployment view of a platform entity, not only
the resources it provides must be modeled, but also the applications deployed
on it. Moreover, as indicated in Section 2, components are deployed in a certain
resource mode and with their interfaces bound to those of other components. As
a consequence, also the component design model, which by itself is an extension
of the component resource model, has to be extended. The deployment view,

24

however, neither extends nor introduces type models, since, by its very nature,
deployment is only concerned with instances.

We begin our discussion with the extension of the component model.

Model 7.1 (Mdeployment
component)

In the deployment view, a component is a quadruple ⟨⟨⟨⟨C⟩, Ireq, Iprv, dep ⟩, cn⟩,
S,m, peers ⟩, where

1. ⟨⟨⟨C⟩, Ireq, Iprv, dep ⟩, cn⟩ ∈ Mdesign
component is a component in the design view,

2. S ⊆ Mdesign
service is the set of services that use the component and therefore

must satisfy

• ∀s∈S s.S ∈ C.Simpl,

3. m ∈ C.M is the resource mode in which the component should operate
when active,

4. peers : C.I → 2Ncomp is mapping, where peers (I) is the set of all peers,
identified by their framework unique component name, with whom the
component interacts via interface I.

Moreover, we introduce the derived attribute

5. Npeers ⊆ Ncomp is the set of names of all peers of this component, defined
by

• Npeers =
∪

I∈C.I peers (I).

2

In this model a deployed component neither is, nor needs to be, aware of the
fact that all bonds required by the application(s) in which it participates are
established. In particular, for every interface I of a component, neither does
peers (I) = ∅ imply that binding of I still has to take place, nor does peers (I) ̸=
∅ imply that binding of I is completed. In particular, a component c will never
communicate over an interface I ∈ c.I \

(∪
s∈c.S s./I

)
, so for those interfaces

certainly c.peers (I) = ∅.
In order for components to communicate with each other over an interface,

however, a connection needs to be established. For that, the initiating compo-
nent needs to indicate the other party (its peer). Because a reusable component
should be oblivious of the platform upon which it is deployed, it can only do so
by identifying its peer by name. The information necessary to resolve that name
to the peer’s host address on the platform can be found in the platform model
(function hiaps) to be discussed later in this section, and will be maintained
by the framework entities responsible for that model.

It is the responsibility of a component itself to maintain its components
model. As a consequence, every component deployed by the framework must
contain code that performs this task. We assume that this is achieved by instru-
menting each component, as delivered by its developer, with additional services

25

that take care of this task, in accordance with some well-defined framework
standard.

Next, we consider the platform entities. Modeling the platform is com-
plicated by the fact that at any single moment in time there may be various
applications present on the platform, each of which may be engaged in a dif-
ferent activity of the deployment (or operation) phase. The platform entity
models are oblivious of this. Only the framework management entities that run
on it, carry this knowledge.

First, we extend the resource model of a host to include the components
that are deployed on it. To that end, each host is equipped with a set of com-
ponent types that represent the set of binaries that are installed on that host.
Obviously, the component types that can be installed on a host depend on the
resource types present on that host, but other than that there are no constraints.
Whether component types are stand-alone executable programs or library mod-
ules is irrelevant; only that they can be instantiated into components matters.
Although each component must have its component type installed on every
host where it is deployed, the reverse is not required. For each component type
installed on a host there can be zero or more deployed components. Thus, the
model is able to capture intermediate stages of an incremental installation and
instantiation procedure. Also, this model implies that when the last component
of a certain type is destroyed on any host, e.g. because it is migrated to another
host, there is no need to uninstall its component type. In addition to the above,
the host deployment model describes a breakdown of a host’s resource capac-
ity into budgets allocated to currently deployed components and a remaining
free budget for components to be deployed in the future. These budgets are
constrained both by the resource demands of the deployed components and the
resource capacity of the host.

Model 7.2 (Mdeployment
host)

In the deployment view a host is a quadruple ⟨⟨H, hn⟩, C, C, ra ⟩, where

1. ⟨H, hn⟩ ∈ Mresource
host is a host in the resource view,

2. C is a set of component types such that

• ∀C∈C C.R ⊆ H.R,

3. C ⊆ Mdeployment
component is a set of components in the deployment view such that

• ∀c∈C c.C ∈ C,

4. ra : C →
∏

R∈H.RVR is a mapping from components to resource budgets
such that

• ∀R∈c./R c./dmdmin(c.m,R) ≤ ra (c,R) ≤ c./dmdmax(c.m,R),

• ∀R∈H.R (
∑

c∈C ra (c,R)) ≤ (H.cap)(R).

To facilitate the description of other models presented in this section, we intro-
duce the derived attribute

26

5. free :
∏

R∈h./RVR is a resource budget, defined by

• free (R) +
∑

c∈C ra (c,R) = (H.cap)(R).

2

To determine which framework entities are responsible for maintaining the
host deployment models, we must consider in more detail the rôles that the
various framework managers play in the activities of the deployment phase. It
is a device manager’s task to create processes, i.e. to instantiate components,
that run executables, i.e. component types. If these executables are not yet
installed on the host, it is also the device manager’s responsibility to download
them from the repository. From this it follows that the device managers should
be responsible for maintaining the second and third attribute of the host deploy-
ment model. Another task of device managers is to provide every component
with the resources it needs. The amounts that need to be allocated are specified
by resource reservations, which the device manager obtains from the resource
manager. So it could be argued that only the resource manager is responsible
for maintaining the ra -attribute of the host deployment model. On the other
hand, by having the device managers maintain a local copy it is possible for
the framework to distinguish between the situation in which the reservation is
made by the resource manager and the situation in which it is effectuated by
the device manager. Since we consider this distinction to be important, e.g.,
because after a component crash it should be possible to determine whether
there are still outstanding reservations, we stipulate that the ra -attribute is
also maintained by the device managers. A disadvantage of this arrangement is
that the values maintained by the device managers need to be consistent with
the values maintained by the resource manager. Since the free -attribute is a
derivative of the ra -attribute, it should be maintained in the same manner.

Next, we extend the resource model of a network with the logical connec-
tions it provides. In general, there may be multiple connections between a
single pair of access points. For example, consider a deployment of four com-
ponents on two hosts, where components c1 and c2 are located on host h1, and
components c3 and c4 are located on host h2, and where two interface bindings
are needed, one between the even-numbered components, and one between the
odd-numbered components. In this case, two connections are needed, also when
the bindings are of same interface type. As another example, consider a single
pair of components located on distinct hosts that have two or more bindings
in common. In this case there is a choice. Besides a separate connection per
binding, also a single connection that interleaves data traffic belonging to the
different bindings may be used when interface types are the same. Anyway, the
model must be general enough to allow several connections between a single
pair of access points.

Model 7.3 (Mdeployment
network)

In the deployment view a network is a pair ⟨⟨N, nn⟩, L⟩, where

1. ⟨N, nn⟩ ∈ Mresource
network is a network in the resource view,

27

2. L ⊆
(N.A

2

)
is a set of pairs of access points representing the set of connec-

tions currently maintained by N.

2

In this model a connection is oblivious of the interface binding(s) it accommo-
dates and of the components by which it is used.

It is difficult to indicate which framework entities are responsible for main-
taining the network deployment model. In case the framework has control over
the internal points, i.e., the routers of the network, connections are established
by suitable configuration of these routers, and the network deployment model is
maintained in a distributed manner as part of the router configurations. If, in
addition, network configuration also establishes the communication capabilities
of a connection, then the situation becomes similar to resource reservation on
hosts and maintaining network configurations becomes a responsibility of the
resource manager. If, on the other hand, the framework has little to no control
over the network, as is the case for hosts connected via the internet, connections
are maintained as part of the communication protocols used by components to
establish their interface bindings.

Finally, we extend the resource model of the platform, to incorporate the
extended models of its hosts and networks.

Model 7.4 (Mdeployment
platform)

In the deployment view a platform is a quadruple ⟨H,N, attm , hiaps ⟩, where

1. H ⊆ Mdeployment
host is a set of hosts in the deployment view such that

• ∀h1,h2∈H h1.C ∩ h2.C = ∅,

2. N ⊆ Mdeployment
net is a set of networks in the deployment view such that

• ∀n∈N∀{a1,a2}∈n.L attm (n, a1) ̸= ⊥ ∧ attm (n, a2) ̸= ⊥,

3. attm :
∏

n∈N (n./A → H⊥) is mapping from network-address pairs to
hosts,

4. hiaps :
∏

h∈H
(∏

c∈h.C
(
c./I →

(∪
n∈N n./A

)
⊥
))

where hiaps (h, c, I) is
the access point of h that exposes the interface of type I of component c
to components on other hosts of the platform.

In order to formulate the remaining platform constraints imposed in the de-
ployment view, we first need to introduce a number of derived attributes.

5. Hres, is the restriction of the host set obtained by looking only at their
resources, i.e.,

• Hres = {h.⟨H, hn⟩ | h ∈ H},

6. Nres is the restriction of the network set obtained by looking only at their
resources, i.e.,

• Nres = {n.⟨N, nn⟩ | n ∈ N},

28

7. attm res :
∏

n∈Nres
(n./A → Hres⊥) is defined by

• ∀h∈H attm res(h.⟨H, hn⟩) = attm (h).⟨N, nn⟩,

8. Cpfm is the set of components present on the platform, i.e.,

• Cpfm =
∪

h∈H h.C,

9. Lpfm is the set of logical connections present on the platform, i.e.,

• Lpfm =
∪

n∈N n.L,

10. Npfm is the set of names of all components on the platform, i.e.,

• Npfm = {c.cn | c ∈ Cpfm},

11. host : Cpfm → H is a mapping that assigns to each component its host,
i.e.,

• ∀c∈Cpfm
c ∈ host (c).C,

12. netw : Lpfm → N is a mapping that assigns to each logical connection
its network, i.e.,

• ∀l∈Lpfm
l ∈ netw (l).L.

In terms of these derived attributes the remaining platform constraints are now
given by:

the first three attributes of a deployment view platform constitute a resource
view platform, when restricted to their resources only

• Hres ⊆ Mresource
host ∧ Nres ⊆ Mresource

net ∧ ⟨Hres, Nres, attm res⟩ ∈ Mresource
platform,

the access points by which a host exposes the interfaces of its components indeed
belong to the set of access points of that host

• ∀h∈H∀c∈h.C∀I∈c./Ihiaps (h, c, I) ∈ haps res(h),

every peer named by any component is itself present on the platform

• ∀c∈Cpfm
c.Npeers ⊆ Npfm,

the peer relationship is symmetric

• ∀c1,c2∈Cpfm
c1.cn ∈ c2.Npeers ≡ c2.cn ∈ c1.Npeers,

peers must have a common interface type

• ∀c1,c2∈Cpfm
c1.I ∩ c2.I ̸= ∅ ,

peers must be able to connect, i.e., their hosts are physically connected

• ∀c1,c2∈Cpfm
c1.cn ∈ c2.Npeers =⇒

∃n∈N ∃a1,a2∈n./A attm (n, a1) = host (c1) ∧ attm (n, a2) = host (c2)

.

2

29

Whereas, the first three attributes of this model are similar to those in the
resource view platform model, the last attribute hiaps is different from the
derived attribute haps of the resource view platform model. In particular,
hiaps is not a derived attribute, but carries independent information. To un-
derstand the nature of this information, recall from [27] that communication
between components takes place in the transport layer between so-called trans-
port service access points (TSAPs). In our model, these TSAPs are given by the
interfaces of the components, i.e., by pairs (c, I) where c ∈ Cpfm and I ∈ c./I.
Hence, the bonds of a component-based application design indicate transport
layer connections. At deployment, these connections are realized in three parts.
The first part is a network layer connection, which is modelled by an element
l ∈ n.L for some network n ∈ N . This connection runs between two host access
points, which are also known as network service access points (NSAPs) [27].
Hence, a second and third part is needed to describe how, on each of the two
host, the TSAP is connected to the NSAP. This is what mapping hiaps does
for the entire platform (see Figure 7).

Next, we model the outcome of the various activities of the deployment
phase of the application life cycle (see Figure 3). The first model defines the
notion of a feasible deployment scheme. Deployment schemes are always defined
for a particular component-based application design and with respect to a par-
ticular platform and consist of three mappings, as described in Section 2. The
first two of these mappings have already been introduced in the previous section
when the deployment constraints were defined. They are the host allocation
ha that maps services to locations, i.e., platform hosts, and the resource mode
assignment ma that assigns a resource mode to each service. The third mapping
rsv reserves for each service a resource budget that it should be granted at the
next operation phase of the application. A deployment scheme for a platform is
feasible, when the resource types and the reserved budgets are indeed available
on the allocated hosts, and when all deployment constraints are met.

Model 7.5 (Mdeployment
feasible scheme)

Given a platform P = ⟨H,N, attm , hiaps ⟩ ∈ Mdeployment
platform in the deployment

view, a component-based application design Dcb = ⟨S,B, req , prv , C, cta ⟩ ∈
Mdesign

cb app design and a deployment constraint ⟨Ploc, Pres⟩ for Dcb, a feasible de-
ployment scheme for Dcb on P is a triple ⟨ha , ma , rsv ⟩, where

1. ha : S → H is a mapping that allocates to each service a host on which
it can be deployed, such that the allocated host possesses the right set of
resources,i.e.,

• ∀s∈S cta (s).R ⊆ ha (s)./R,

and such that to services that share a bond either a single host is allocated,
or a pair of hosts that are physically connected, i.e., that are attached to
a common network

• ∀b∈B ha (req (b)) = ha (prv (b)) ∨
∃n∈N haps (ha (req (b))) ∩ n./A ̸= ∅ ∧

haps (ha (prv (b))) ∩ n./A ̸= ∅

30

and such that the location constraints are met, i.e.,

• Ploc(ha) holds,

2. ma :
∏

s∈S cta (s).M is a mapping that assigns to each service a resource
mode in which is can be deployed, such that the resource constraints are
met, i.e.,

• Pres(ma) holds

3. rsv :
∏

s∈S
∏

R∈cta (s).RVR is a mapping that reserves for each service
a resource budget such that for each resource used by that service, and
considering the resource mode assigned to that service, the budget is
neither too small, i.e.,

• ∀s∈S∀R∈cta (s).R cta (s).dmdmin(ma (s),R) ≤ rsv (s,R),

nor too large, i.e.,

• ∀s∈S∀R∈cta (s).R rsv (s,R) ≤ cta (s).dmdmax(ma (s),R),

and such that on every host the reserved budget is available

• ∀h∈H∀R∈h.R
(∑

ha (s)=h ∧ R∈cta (s).R rsv (s,R)
)
≤ h.free (R).

2

In this model the last constraint of the reservation guarantees that the reserved
budgets are available on the allocated hosts even in the worst situation, in which
every service is deployed on a separate component. This follows from the fact
that each service that makes use of the resource has its separate term in the
summation.

A feasible deployment scheme is the outcome of negotiations between the
resource manager and the orchestrator of the component-based application. In
general, many feasible deployment schemes exist and it is the orchestrator that
has the responsibility to select one. In doing so, an orchestrator may adhere to
framework specific strategies and cost criteria, to guide its selection. For the
feasible deployment scheme model, however, these details are irrelevant.

At any moment in time, several negotiations between the resource manager
and various orchestrators may be in progress. In that case, the resource manager
has the responsibility to arbitrate between the resource reservations requested
by the various orchestrators and prevent overbooking of resources. Because the
resource manager is the unique framework entity involved in all negotiations, it
can easily fulfill that responsibility. Disadvantages of this arrangement are that
the resource manager is a single point of failure of the framework and a potential
performance bottleneck. To avoid these disadvantages, a distributed resource
manager is needed, but that is of no consequence for the models presented in
this report.

An instantiation of a component-based application design on a platform
consists of a set of components which together realize all services, and which
are deployed on the hosts of the platform according to some feasible deployment.

31

Model 7.6 (Mdeployment
installed app)

An installed application is a triple ⟨Dcb,P,F⟩, where

1. Dcb ∈ Mdesign
cb app is a component-based application design,

2. P ∈ Mdeployment
platform is a platform in the deployment view,

3. F ∈ Mdeployment
feasible scheme is a feasible deployment scheme for Dcb on P,

such that all component types are present on the hosts of the platform, i.e.,

• ∀s∈Dcb.S Dcb.cta (s) ∈ ((F.ha)(s)).C.

2

Model 7.7 (Mdeployment
instantiated app)

An instantiated application is a pair ⟨⟨Dcb,P,F⟩, ca ⟩, where

1. ⟨Dcb,P,F⟩ ∈ Mdeployment
installed app is an installed application,

2. ca : Dcb.S → P.Cpfm is an allocation of platform components to services,

such that each allocated component is of the specified type, i.e.,

• ∀s∈Dcb.S (ca (s)).C = (Dcb.cta)(s),

is on the right host i.e.,

• ∀s∈Dcb.S ca (s) ∈ ((F.ha)(s)).C,

is instantiated in the right mode, i.e.,

• ∀s∈Dcb.S ca (s).m = (F.ma)(s),

and has been allocated the right amount of resources, i.e.,

• ∀s∈Dcb.S∀R∈(cta (s)).R (F.rsv)(s,R) = (((F.ha)(s)).ra)(ca (s),R).

Furthermore, we introduce the derived attribute

3. Capp ⊆ P.Cpfm is the set of components of the application given by

• Capp = {ca (s) | s ∈ Dcb.S}.

2

Note that this model admits the possibility that a single component is instan-
tiated to provide multiple services, in which case ca is not injective. This can
only happen, however, when these services agree on the resource mode in which
the component has to be deployed and on the resources reserved for it. Al-
though not likely in practice, the model even admits that a single component
is involved in multiple applications.

It is the responsibility of the application’s orchestrator to instantiate the
application. To this end, it instructs device managers to create the appropriate

32

components from C on its host. For any c ∈ C the code to be executed by c is
part of its component type c.C. If this type is not present on the host, the device
manager also needs to install the type, i.e., download it from the repository.
If the type contains source code instead of executable code, installation also
involves compilation and linking. These activities are also the responsibility of
the device managers6.

Finally, a deployed application is an instantiated application in which all
interface bindings are realized.

Model 7.8 (Mdeployment
bonded app)

A bonded application is a pair ⟨⟨⟨Dcb,P,F⟩, ca ⟩, la ⟩, where

1. ⟨⟨Dcb,P,F⟩, ca ⟩ ∈ Mdeployment
instantiated app is an instantiated application,

2. la : Dcb.B → P.Lpfm is an allocation of connections to bonds such that
the bonded services are connected via the allocated connection, i.e.,

• ∀b∈Dcb.B la (b) = {P.hiaps (hr(b), cr(b), b.I),P.hiaps (hp(b), cp(b), b.I)},

where the functions hr, hp : B → P.H are given by

• hr(b) = (F.ha)((Dcb.req)(b)),

• hp(b) = (F.ha)((Dcb.prv)(b))

and the functions cr, cp : B → P.Cpfm are given by

• cr(b) = ca ((Dcb.req)(b)),

• cp(b) = ca ((Dcb.prv)(b))

Furthermore, we introduce the derived attribute

3. Lapp ⊆ P.Lpfm is the set of logical connections of the application given
by

• Lapp = {la (s) | s ∈ Dcb.S}

2

Recall from the discussion following the deployment platform model that a bond
specifies a transport layer connection, and that such a connection is realized
in three parts, two of which are described by hiaps and the third by the
attribute la of the bonded application model above. The constraint in this
model expresses that for each bond indeed three parts exist that can be chained
together in such a manner that the indicated transport layer connection is
established (see Figure 7).

It is the responsibility of the application’s orchestrator to deploy the appli-
cation. Part of that responsibility has been addressed by the previous model

6This implies that facilities for compilation and linking should be present on the host and
have to be considered in the host allocation of a feasible deployment scheme, a fact that we
have conveniently ignored in our models.

33

Figure 7: Transport layer connection between components consisting of 3 seg-
ments: from TSAP (Cmp, Ifc) to NSAP (Ipaddr, Portno) on each host, given
by function hiaps of Model 7.4, and a network layer connection between the
two NSAPs, given by function la of Model 7.8.

that ensures that components are created for all services. The other part is
to ensure that transport layer connections are created for all interface bonds
between services. To that end, the orchestrator informs components that are
equipped with the required side of a bond interface of the address and identity
of their peer and instructs them to set-up the connection.

8 Operation view

In this section we present an application model from the perspective of the oper-
ation phase. Although the activity diagram of the operation phase in Figure 4
distinguishes a large number of activities, a simple extension of the deploy-
ment model to keep track of the current operational status of its components
is sufficient.

In accordance with the activity diagram of the operation phase, we model
the operational status of a deployed component with a state diagram that con-
tains three states and that is depicted in Figure 8. A deployed component
can be either active or passive. All components enter the operation phase in
the passive state and must be explicitly activated. Although, a component will
start executing upon activation, being active does not necessarily mean that the
component is executing. Since it may share its host with other components,
belonging either to the same or to other applications, a component may also
be blocked on access to a resource, e.g. cpu cycles. As long as QoS is not en-
dangered, this is irrelevant for the operation of the application, which considers
the operational status of the component to be normal.

Likewise, control commands that are issued to a component with status
normal are irrelevant from the perspective of the application, and therefore
do not result in a change of status. If, on the other hand, a resource conflict
arises whose nature is distinct from the normal blocking described above, or if
an other error that endangers the integrity of the application is signalled, the
component will change its status to exceptional. When this happens, framework
managers must start activities to resolve the error. Recall that we have adopted
an extensive notion of error that does not necessarily refer to a current failure,

34

 deployed

 passive

 active

command

error

signal
activate

deactivate

return

normal

exceptional

deploy

deactivate

Figure 8: Operational status of a deployed component

but may also forecast a future problem. So, in the latter case, reconfiguration
may take place without the application, or even the component that signalled
the error, being interrupted, whereafter the component may resume its normal
status. This is the best possible scenario from the perspective of the application.
In the worst case, on the other hand, the entire application will fail. In all other
cases, depending on the severity of the problem, at least some components are
deactivated, and the operation phase is temporarily suspended for redeployment
or redesign.

Model 8.1 (Moperation
runtime)

A runtime application is a pair ⟨⟨⟨⟨Dcb,P,F⟩, ca ⟩, la ⟩, sa ⟩, where

1. ⟨⟨⟨Dcb,P,F⟩, ca ⟩, la ⟩ is a bonded application in the deployment view,

2. sa : P.Cpfm → {passive, normal, exceptional}⊥ is a function from com-
ponents to states such that

• c ∈ Capp ⇒ sa (c) ̸= ⊥.

A runtime application is called passive, when there exists at least one component
c ∈ A.C such that sa (c) = passive. Otherwise, it is called active.
2

It is the responsibility of an orchestrator to maintain the runtime model
of its application. To fulfill this responsibility, it must be able to activate
and deactivate components. For this, all components have to be equipped
with an additional interface that allows an orchestrator to issue activation and
deactivation commands. This is done as part of the instrumentation process to
which components are subjected before they are admitted to the framework.
Vice-versa, it is the responsibility of components to inform their orchestrators
of a change in active state. This could, for instance, be done by a equipping

35

each component with an interface that allows other components to subscribe to
state-change events.

It makes sense to extend the range of the state function sa with states such
as instantiated, deployed, and crashed that make it possible for an orchestra-
tor to keep track of the progress of the deployment phase or fatal errors as well.
For instance, sa (c) = deployed would indicate that as far as component c is
concerned the constraints of Model 7.8 are satisfied. It would be the responsi-
bility of the device managers to inform orchestrators of the occurrence of such
additional states.

9 Related work

Over the past years extensions to the frameworks mentioned in Section 1 have
been explored that facilitate dynamic configuration. Most of these are restricted
to specific technologies and/or target specific application domains such as em-
bedded systems. Batista and Rodriguez [2] have studied dynamic reconfigu-
ration of CORBA-based components. Polakovic et. al. [24] use THINK an
extension of Fractal and target design of dynamically reconfigurable operating
systems. Rasche and Polze [25] have studied dynamic reconfiguration of mobile
applications using the .Net framework. In terms of dynamic reconfiguration
our work is perhaps most closely related to OpenCom [9] with which it shares
the goals of both target domain independence and deployment environment in-
dependence. All these approaches, however, do not make special provisions for
resource-awareness and do not focus on resource conflicts as a major cause for
dynamic reconfiguration.

In terms of resource-awareness the Palladio Component Model (PCM)[3]
is closest to our approach. In this model every provided service of a compo-
nent is equipped with a so-called Resource Demand Service Effect Specification.
These RDSEFFs abstractly model the externally visible behavior of a service
with resource demands and calls to required services. Internal computations of
components necessary to provide their services are clustered into actions that
model only their resource demands. Thus, RDSEFFs can be used to predict
runtime-performance at system design time which in the PCM precedes system
deployment. Moreover, the PCMmaintains a global repository of resource types
which are provided by system deployers. RDSEFFs refer to these types without
knowledge of resource instances. System deployers group resource types into
containers, which play a similar role as the hosts in our model. Although the
PCM models resources similar the models this report, they are not intended as
a basis for dynamic reconfiguration. Hence the novelty of our approach lies in
the combination of resource awareness and dynamic reconfiguration.

In this report we have described a restricted life cycle model that concen-
trates on runtime activities and focusses on applications instead of the com-
ponents out of which these applications are built. Since the initial design and
deployment of an application is considered an extreme case of reconfiguration,
these phases are incorporated in the life cycle, but in a way that differs from
more conventional life cycle models such as the ones presented in [12]. Thus our

36

application life cycle comes closest to the reconfiguration process described by
Kounev et.al. [18]. Moreover, phases which do not require separate application
models, such as testing, have been ignored. Also maintenance, which is usually
considered hand in hand with the operation phase, is not present. Maintenance
of individual components to restore bugs is outside the scope of the report, and
maintenance of an application that involves replacing components by newer
versions can be treated similar to reconfiguration due to resource conflicts. In
general, one would expect that a change in version also implies a change in
resource demands. Although we use the life cycle and its associated models
to identify responsibilities and task of the runtime platform, the design and
maintenance of that platform itself is not explicitly addressed in our life cycle.
However, it is possible to perceive the runtime platform as yet another, albeit
special, application that provides the services needed by user applications. In
this perspective, the platform can take care of its own resource management.
Orchestrators and other platform entities can be reallocated and their quality
of their services can be adapted to obtain the best performance of user appli-
cations.

10 Conclusions

In this report we have presented a number of models for dynamically recon-
figurable applications. These applications are composed of services offered by
components which either reside in a repository known to the application archi-
tect or are exposed over the WEB. The mechanism by which the components
become available for application building, however, is immaterial for the models.

Because our models describe applications at various runtime stages, we have
introduced an application life cycle model that contains just enough detail for
that purpose. It consists of the operation phase encountered in conventional
life cycle models extended with a redesign and a redeployment phase to capture
dynamic reconfiguration activities. Since the extreme case of reconfiguration
involves a complete redesign, initial application design and subsequent deploy-
ment becomes assimilated in this life cycle. This in contrast to more traditional
life cycle models that consist of separate design and deployment phases and treat
redesign in their maintenance phase. Besides this rearrangement of phases, we
have kept the life cycle model as simple as possible, by omitting traditional
phases that contain activities which do not require separate application models
such as, e.g., testing.

The application models are especially tailored for resource management.
Component models contain resource demands, platform models contain re-
source capacities and allocations, and deployment schemes contain resource
reservations in agreement with resource usage state of the platform. Appli-
cation deployment involves, amongst others, allocating resources according to
reservations. The models are organized in a hierarchy with the resource models
at the basis.

As a first step towards design of a resource-aware component framework, we
have used the models to identify the services that the runtime environment has

37

to provide to any application and to identify the platform entities responsible for
delivery of those services. Further research must be aimed at a full specification
of the architecture of such a runtime environment and its implementation. Also
reconfiguration policies and strategies must be investigated and implemented in
the appropriate platform management entities. Given sufficient sophistication
of such policies and strategies, this can ultimately lead to a runtime environment
for self-adaptive applications [11].

Finally, the models presented in this report are generic and qualitative. In
practice, they have to be replaced by specific and quantitative models that de-
scribe concrete components and resources. In particular, automatic extraction
of resource models from components would be an asset for any framework.

References

[1] Colin Atkinson and Dirk Muthig. Component-based product-line engi-
neering with the uml. In Cristina Gacek, editor, Software Reuse: Methods,
Techniques, and Tools, volume 2319 of Lecture Notes in Computer Science,
pages 155–182. Springer Berlin / Heidelberg, 2002.

[2] Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic re-
configuration in component-based systems. In Ron Morrison and Flavio
Oquendo, editors, Software Architecture, volume 3527 of Lecture Notes in
Computer Science, pages 1–17. Springer Berlin / Heidelberg, 2005.

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio compo-
nent model for model-driven performance prediction. Journal of Systems
and Software, 82(1):3 – 22, 2009. Special Issue: Software Performance -
Modeling and Analysis.

[4] Don Box. Essential COM. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1997.

[5] Kris van Rens Bram Kersten and Rudolf Mak. Viframework: A framework
for networked video streaming components. In Hamid R. Arabnia et al.,
editor, Proceedings of the 2011 International Conference on Parallel and
Distributed Processing Techniques and Applications, PDPTA ’11, pages
286–292. CSREA Press, 2011.

[6] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and
Jean-Bernard Stefani. An open component model and its support in java.
In Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt Wall-
nau, editors, Component-Based Software Engineering, volume 3054 of Lec-
ture Notes in Computer Science, pages 7–22. Springer Berlin / Heidelberg,
2004.

[7] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing ad-
vanced features in a hierarchical component model. Software Engineering
Research, Management and Applications, ACIS International Conference
on, 0:40–48, 2006.

38

[8] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0. O’Reilly
Media, Inc., 5th edition, May 2006.

[9] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia,
Kevin Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic com-
ponent model for building systems software. ACM Trans. Comput. Syst.,
26:1:1–1:42, March 2008.

[10] Ionut David, Bojan Orlic, Rudolf H. Mak, and Johan J. Lukkien. Towards
resource-aware runtime reconfigurable component-based systems. In Pro-
ceedings of the 2010 6th World Congress on Services, SERVICES ’10, pages
465–466, Washington, DC, USA, 2010. IEEE Computer Society.

[11] Betty H.C. Cheng et al. Software engineering for self-adaptive systems: A
research roadmap. In Betty Cheng, Rogrio de Lemos, Holger Giese, Paola
Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive
Systems, volume 5525 of Lecture Notes in Computer Science, pages 1–26.
Springer Berlin / Heidelberg, 2009.

[12] Syed Ahsan Fahmi and Ho-Jin Choi. Life cycles for component-based
software development. In citworkshops, IEEE 8th International Conference
on Computer and Information Technology Workshops, pages 637–642, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[13] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application
frameworks. Commun. ACM, 40:32–38, October 1997.

[14] Thomas Genssler, Alexander Christoph, Michael Winter, Oscar Nierstrasz,
Stéphane Ducasse, Roel Wuyts, Gabriela Arévalo, Bastiaan Schönhage,
Peter Müller, and Chris Stich. Components for embedded software: the
pecos approach. In Proceedings of the 2002 international conference on
Compilers, architecture, and synthesis for embedded systems, CASES ’02,
pages 19–26, New York, NY, USA, 2002. ACM.

[15] Object Management Group. Corba Component Model V4.0. Available on:
http://www.omg.org/spec/CCM/4.0/.

[16] Scott Hissam, Gabriel Moreno, Judith Stafford, and Kurt Wallnau. Pack-
aging predictable assembly. In Judith Bishop, editor, Component Deploy-
ment, volume 2370 of Lecture Notes in Computer Science, pages 108–124.
Springer Berlin / Heidelberg, 2002.

[17] Ralph E. Johnson. Frameworks = (components + patterns). Commun.
ACM, 40(10):39–42, 1997.

[18] Samuel Kounev, Fabian Brosig, Nikolaus Huber, and Ralf Reussner. To-
wards self-aware performance and resource management in modern service-
oriented systems. Services Computing, IEEE International Conference on,
0:621–624, 2010.

39

[19] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[20] Johan J. Lukkien. private communication.

[21] Johan Muskens, Michel R. V. Chaudron, and Johan J. Lukkien.
Component-based software development for embedded systems. chapter
A component framework for consumer electronics middleware, pages 164–
184. Springer-Verlag, Berlin, Heidelberg, 2005.

[22] Bojan Orlic, Ionut David, Rudolf Mak, and Johan Lukkien. Dynami-
cally reconfigurable resource-aware component framework: Architecture
and concepts. In Ivica Crnkovic, Volker Gruhn, and Matthias Book, ed-
itors, Software Architecture, volume 6903 of Lecture Notes in Computer
Science, pages 212–215. Springer Berlin / Heidelberg, 2011.

[23] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: a research roadmap. Int. J. Coopera-
tive Inf. Syst, 17(2):223–255, 2008.

[24] Juraj Polakovic, Sebastien Mazare, Jean-Bernard Stefani, and Pierre-
Charles David. Experience with safe dynamic reconfigurations in
component-based embedded systems. In Heinz Schmidt, Ivica Crnkovic,
George Heineman, and Judith Stafford, editors, Component-Based Soft-
ware Engineering, volume 4608 of Lecture Notes in Computer Science,
pages 242–257. Springer Berlin / Heidelberg, 2007.

[25] A. Rasche and A. Polze. Dynamic reconfiguration of component-based real-
time software. In Object-Oriented Real-Time Dependable Systems, 2005.
WORDS 2005. 10th IEEE International Workshop on, pages 347 – 354,
feb 2005.

[26] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 2002.

[27] Andrew Tanenbaum. Computer Networks. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 4th edition, 2003.

[28] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The koala component model for consumer electronics software. Computer,
33:78–85, 2000.

40

A UML diagrams

In this appendix we present the mathematical models from sections 5, 6 and 7
and their relationships by means of UML class diagrams. Classes that corre-
spond to universes, prescriptions and other mathematical models are indicated
by color: yellow for universes, red for prescriptions, green for type models and
blue for instance models (see Figure 9).

lifecycle models

names

values

types

<<universes>>

resource view

host type

network type

component type

<<type models>>

budget

host

network

platform

component

<<instance models>>

deployment view

feasible deployment scheme

<<prescriptions>>

component

host

network

platform

installed application

instantiated application

bonded application

<<instance models>>

operation view

running application

<<instance models>>

design view

service type

component type

<<type models>>

service

bond

component

sb app design

cb app design

<<instance models>>

constraint

<<prescriptions>>

Figure 9: Model overview.

Besides these classes, there are also classes to represent model attributes like
sets and functions. Note that in UML-diagrams we use currying to model the
multivariate functions from the mathematical models. Wherever possible, we
use annotated dotted arrows to express model constraints. In combination with
function classes, this yields diagrams that can become quite complex. For one
of the most complex diagrams, viz. the one in Figure 22 containing the bonded
application model, we explicitly show how the mathematical constraints can be
retrieved from the diagram.

In principle, we strive for a 1-1 correspondence with the names used in the
mathematical models. Lack of proper fonts in UML diagrams, however, leads
to ambiguities, which we resolve by prefixing names with a font indication: “ss”
for sans serif, “cal” for calligraphic, and “ds” for double struck.

All diagrams in this appendix are intended as visualisations of the mathe-
matical models, which remain authoritative.

Resource View Models

The models of the resource view are captured by two diagrams. The first
diagram, displayed in Figure 10, contains the models pertaining to hardware

41

resources.

<<type univ>>

ResType

<<type univ>>

HostResType

<<type univ>>

NetwResType

<<value univ>>

ResValue

<<type>>

HostType

<<type>>

NetwType

<<singleton>>

Platform

<<name univ>>

 FUID

 Host Network

 ssH

1

 ssN

1

 H

1

 ssR

1

 hn

1

 nn

1

 cap

1

 A

1

 V_ssR

*

1

 calR

1

<<set>>

Networks

*

<<set>>

Hosts

*

<<set>>

HostResTypes
*

<<set>>

AccessPoints

1

0..1

*

 N

1

 attm

1

1

1 /A

1

1

 haps

1

for all h in H: haps(h) = union n in N {a in n./A | attm(n,a) = h}

in

inin

<<mapping>>

HostAtt
a

in n./A

{xor}

<<mapping>>

HostAPs

h n

<<mapping>>

HostAttMap

<<mapping>>

Budget ssR

in

disjoint

Figure 10: Hardware resource models.

The second diagram, displayed in Figure 11, contains the models pertaining
to the resource usage of components.

Note that, by superimposing boxes with equally named classes, the diagrams
in these figures can be combined into a single diagram. Care has to be taken
with associations, however. Although the demand budgets dmdmin(m) and
dmdmax(m) from Figure 11 and the capacity budget (cap) from Figure 10 both
range over a set of resource types, indicated by a dashed arrow labeled “in”
from the qualifier ssR to the resource type set calR, these sets are distinct,
because they are represented by part-of relationships originating from distinct
classes. This is a phenomenon that is more easily expressed by using separate
diagrams 7.

Conversely, although possible, we have not split the diagram from Figure 10
into separate diagrams to deal with the individual platform resources in isola-
tion, because here, in our opinion, the single diagram contributes to a clear
perception of the dependencies between the various mathematical models.

7We adopt the convention that an “in” constraint on a qualifier holds only for all incoming
arrows of the qualified class visible in the diagram that exhibits the constraint.

42

<<type>>

CompType

<<name univ>>

 FUID Component

 ssC

1

 M

1

 cn

1

 V_ssR

*

1

 calR

1

<<set>>

HostResTypes

1

1

<<value univ>>

ResModeNmb

<<set>>

ResModes

*

*

 dmd_max

1

 dmd_min

1

<<type univ>>

ResType

<<value univ>>

ResValue

in

in

<<mapping>>

Budget
ssR

<<mapping>>

Demand
m <<type univ>>

HostResType

in

Figure 11: Component resource usage models.

Design View Models

The design view models and their relationships are captured by means of three
UML class diagrams. The first diagram, displayed in Figure 12, contains the
models for bonds,services, components, and their types. Notice the usage of
specialization instead of composition to indicate that a component type in the
design is considered an extension of a component type in the resource view. This
has been expressed by the usage of an anonymous attribute in the mathematical
model.

The second diagram, displayed in Figure 13 contains the application design
models.

The third diagram, displayed in Figure 14, contains the constraint model.
Although its constraints are defined relative to a component-based application
design model and a platform model, the latter two are not part of the con-
straint model. In the UML diagram this is exemplified by the fact that there
are only dependencies but no associations between the classes of the various
models. To emphasize this fact, the relevant classes of both the component-
based application design model and the platform model are put in grey boxes.

43

<<type univ>>

InterfaceType

<<type>>

ServiceType

<<name univ>>

 FUID

ServiceBond

 calI_prv

1 <<set>>

 InterfaceTypes

*

<<type>>

 CompType
design view model

 bn

1

1

<<set>>

InterfaceTypeSets
*

 calI

1

 calI

1

 calI_prv

1

 dep

1

 ssS

1

<<set>>

ServiceTypes
 calS_impl

1

*

 sn

1

 ssI

1

<<type>>

 CompType
resource view model

 calI_req

Component
design view model

 ssC

1

1

{inherits}

 calI_req

 cn

1

< ssC, cn > is a

component in the

resource view

in

calS_impl =

 { <calI_r, calI_p> |

 emptyset subset calI_p subset calI_prv and

 (Union ssI in calI_p: dep(ssI)) subset calI_r

 and calI_r subset calI_req

 }

<<mapping>>

DependencyMap

ssI

disjoint

union

union

disjoint

Figure 12: Design view: component, service and bond models.

CB_App_Design

SB_App_Design

Service
*

 calC

1

 prv

1

*

<<set>>

Services

<<type>>

CompType
design view model

1

 B

1

<<set>>

CompTypes

<<set>>

Bonds

 req

1

 S

1

1

 cta

1

Bond
*

for all b1, b2 in B

 (req(b1) neq req(b2)) or (prv(b1) neq prv(b2))

in

in

<<set>>

ServiceTypes

<<type>>

ServiceType
 ssT

1

*

 calS_impl

1

{in}

<<mapping>>

CompTypeAllocation
s

<<mapping>>

ServiceEP

b

<<type univ>>

InterfaceType

<<set>>

 InterfaceTypes
*

 calI_req

1

 calI_prv

1

 ssI

1

in

in

Figure 13: Design view: application models.

44

Component-based Application Design

Platform model

<<set>>

Hosts

<<value univ>>

Boolean

<<set>>

HostAllocations

1

DesignConstraints

 P_loc

qualifies over

CB_App_Design
<<set>>

Services
 S

1

 Host
1

*

<<value univ>>

Boolean
 P_res

<<value univ>>

 ResModeNmB

1

<<set>>

ResModeAssignments

qualifies over

<<predicate>>

ResModeConstraint

*

qualifies over

<<type>>

CompType

<<set>>

ResModes

belongs to

qualifies over

 cta

1

 M

1

belongs to

identical qualifier

depends on

<<mapping>>

HostAllocation

<<predicate>>

LocationConstraint

depends on

in

<<mapping>>

ResModeAssignment

<<singleton>>

Platform

 H

1

<<mapping>>

CompTypeAllocation

s

Figure 14: Design view: constraint model.

Deployment view models

The deployment view models and their relationships are captured by means
of nine UML class diagrams. Figure 15 contains the component model which
extends the one from the design view.

The models that describe of the platform and its composing entities and
types are presented in Figure 16, Figure 17 and Figure 18. They are extensions
of the corresponding resource view models. Due to the increased complexity
they can no longer be presented in a single diagram althought the previous
structure can still be recognized.

45

 ssC

1

<<type>>

CompType
design view model

Component
deployment view model

<<set>>

InterfaceTypes

<<name univ>>

 FUID

 cn

1

 peers

1

<<set>>

 CompNames

<<value univ>>

ResModeNmb

<<set>>

ResModes

*

 m

1

 M

1

*

1

Component
design view model

1

 N_peers

1

<<set>>

Services
 S

1

1 calS_impl

1
1

 calI

1

in

<<set>>

ServiceTypes

Service
<<type>>

ServiceType

 *

 ssS

1

 *

= Union peers(ssI)

<<mapping>>

PeerAssignment ssI

in in

Figure 15: Deployment view: component model.

 Host
resource view model

<<set>>

HostResTypes

 Host
deployment view model

<<set>>

CompTypes

<<set>>

Components

 calC

1

*

 C

1

 ssC

1

<<type>>

CompType
design view model

Component
deployment view model

*

1 calR

1

<<value univ>>

ResValue

 1

ra

 free

1

<<type>>

HostType
resource view model

 ssH

1

<<name univ>>

FUID
 hn

1

 calR

1

<<type>>

CompType
resource view model

 dmd_max

1

 dmd_min

1

 1

{subseteq}

in

<<mapping>>

Demand
m

<<mapping>>

Budget

ssR

in

<<mapping>>

ResAllocation

c

<<value univ>>

ResModeNmb
 m

1

instantiated with

>= dmd_min(c.m)

<= dmd_max(c.m)

in

= free + Sum ra(c)

 cap

1

Figure 16: Deployment view: host model.

46

Network
resource view model

<<set>>

AccessPoints

Network
deployment view model

<<set>>

Connections

<<name univ>>

 FUID

<<unordered pair>>

Connection

 L

1

*

1

2

 A

1

{subset}

<<type>>

NetwType
resource view model

 ssN

1

*

 nn

1

Figure 17: Deployment view: network model.

<<singleton>>

Platform
deployment view

model

 Host
deployment view

model

Network
deployment view

model

 H

1

<<set>>

Networks

*

<<set>>

Hosts

*

<<set>>

AccessPoints

1

0..1

 /calI

1

 N

1

 attm

1

1

 /A

1

1

 hiaps

1

inin

<<mapping>>

HostAtt
a

in n./A

<<set>>

Components
 Component

deployment view model

*

 C

1

<<set>>

 InterfaceTypes

1

<<mapping>>

HostIAPs

h

<<mapping>>

CompIAPs

c

1

n

<<mapping>>

HostAttMap

in

in

<<name univ>>

 FUID

 cn

1

 hn

1

 nn

1*

<<set>>

CompNames
 Npfm

1

 1

Npeers

 host

1

1

<<mapping>>

HostMap
c

 1

Cpfm

<<set>>

Connections
 1

Lpfm

 L

1

 netw

1

1

<<mapping>>

NetwMap
l

Union {h.C | h in H}

{in} {in}

Union {n.L | n in N}

<<mapping>>

IAPs ssI

disjoint

for all c in Cpfm: c in host(c).C

for all l in Lpfm: l in netw(l).L

for all c1, c2 in Cpfm:

 (c1.cn in c2.N_peers) equiv

 (c2.cn in c1.N_peers)

for all c1, c2 in Cpfm

 c1.cn in c2.N_peers implies

 c1.calI inter c2.calI neq emptyset

Figure 18: Deployment view: platform model.

47

Finally, we present diagrams for the models that are concerned with the
deployment proper and that capture the outcome of the various activities of
the deployment phase of the life cycle in Figure 3. We use two diagrams to
express the feasible deployment scheme.

The first diagram, displayed in Figure 19 contains the host allocation map-
ping and its first constraints. To express the latter, a number of associations
have been introduced that are absent in the mathematical model. First of all,
we associate with each bond two specific services sreq and sprv, which are the
service endpoints of the bond as given by the corresponding mappings of the
component-based application design. Next, by application of the host alloca-
tion mapping to these services, we obtain two specific hosts hreq and hprv of
the platform, to which in turn we apply the host access point set map haps to
obtain two specific sets of host access points, viz. apsprv, and apsreq.

The second diagram, displayed in Figure 20, contains the remaining parts
of the feasible deployment scheme model, i.e., the remaining constraint of the
host allocation mapping and the mode assignment and resource reservation with
their constraints.

The last three diagrams contain the installed application model (Figure 21),
the instantiated application model (Figure 22) and the bonded application
model (Figure 23).

For the bonded application model we now show how the constraint on the
connection allocation mapping can be retrieved from the diagram. We derive

la (b)

= { see dependency ⃝1 in the diagram }
{b.iapsprv, b.iapsreq}

= { see dependency ⃝2 in the diagram }
{gprv(b.I), greq(b.I)}

= { see dependency ⃝3 in the diagram }
{(fprv(cprv))(b.I), (freq(creq))(b.I)}

= { see dependency ⃝4 in the diagram }
{((P.hiaps (hprv))(cprv))(b.I), ((P.hiaps (hreq))(creq))(b.I)}

= { remove Currying }
{P.hiaps (hprv, cprv, b.I), P.hiaps (hreq, creq, b.I)}

= { see dependency ⃝5 in the diagram }
{P.hiaps (hprv), ca (sprv), b.I), P.hiaps (hreq), ca (sreq), b.I)}

= { see the diagram in Figure 19 }
{P.hiaps (ha (sprv), ca (sprv), b.I), P.hiaps (ha (sreq), ca (sreq), b.I)}

48

 Host
1

 ha

1

<<set>>

AccessPoints
1

<<singleton>>

Platform

 H

1

<<set>>

Hosts

*

Service
*<<set>>

Services

<<set>>

Bonds

 Bond

*

*

 h_req

1

*

 h_prv

1

* s_prv

1

 aps_req

1

 aps_prv

1

* s_req

1

 haps

1

in

CB_App_Design
 req

1

 prv

1<<mapping>>

ServiceEP

b

1
 S

1

FeasibleScheme

 B

1

in

in

= prv(b)

= req(b)

Network

<<set>>

Networks

*

1

 /A

1

 N

1

for all b in B

 b.h_req = b.h_prv or

 exists n in N

 b.aps_req inter n./A neq emptyset and

 b.aps_prv inter n./A neq emptyset

<<mapping>>

HostAllocation
s

= ha(s_req)

= ha(s_prv)

<<mapping>>

HostAPs h

=haps(h_req)

=haps(h_prv)

Figure 19: Feasible deployment scheme model, part 1.

 Host
1 ha

1

<<mapping>>

HostAllocation
sFeasibleScheme

<<type>>

CompType
design view model

1

<<mapping>>

ResModeAssignment
s

<<mapping>>

ReservationMap
s

<<mapping>>

CompTypeAllocation
s

 M

1

<<value univ>>

ResModeNmb

<<set>>

ResModes

*

1

1

equal

 ma

1

 calR

1

<<set>>

ResTypes

 /calR

1

 dmd_max

1

 dmd_min

1

equal

in

1 <<value univ>>

ResValue

in

1

instantiated with

leqgeq

 rsv

1

equal

<<mapping>>

Budget
ssR

 cta

1

CB_App_Design
<<set>>

Services
 S

1

in

<<mapping>>

Demand

m

<<singleton>>

Platform
deployment view

model

 H

1

<<set>>

Hosts

*

subset

 V_ssR

*

1

Figure 20: Feasible deployment scheme model, part 2.

49

1 ha

1
FeasibleScheme

 H

1

<<set>>

Hosts

*

<<singleton>>

Platform
deployment mode

model

<<mapping>>

HostAllocation
s

<<type>>

CompType
design view model

<<mapping>>

CompTypeAllocation
s

 cta

1

1
CB_App_Design

 Host
deployment view model

<<set>>

CompTypes
 calC

1

*

inequal

InstalledApp

 dsP

1

 dsF

1

 dsD_cb

1

<<set>>

Services
 S

1

in

Figure 21: Deployment view: installed application model.

1 ha

1FeasibleScheme

 H

1

<<set>>

Hosts

*

<<singleton>>

Platform
deployment view

model

<<mapping>>

HostAllocation
s

<<type>>

CompType
design view model

<<mapping>>

CompTypeAllocation
s

 cta

1

1
CB_App_Design

 Host
deployment view model

*

in

equal

InstantiatedApp

 dsP

1

 dsF

1

 dsA_cb

1

<<set>>

Services
 S

1

in

 ca

1

<<mapping>>

CompAllocation
s

<<set>>

Components
 C

1

 ssC

1

Component
deployment view model

1

equal

equal

<<mapping>>

ResModeAssignment
s

<<value univ>>

ResModeNmb
1

equal

 ma

1

 1

ra

<<mapping>>

Reservation
c

instantiated with

<<mapping>>

ReservationMap
s

1

 rsv

1

 m

1

equal

 calR

1

<<set>>

ResTypes

in

InstalledApp

equal

<<mapping>>

Budget

ssR

<<value univ>>

ResValue

 V_ssR

*

1

1

 C_app

1
equal

 C_pfm

1

set of

subset

Figure 22: Deployment view: instantiated application model.

50

<<set>>

AccessPoints

1 1<<mapping>>

CompIAPs
c

1<<mapping>>

HostIAPs h

 f_prv,f_req

1

 g_prv,g_req

1= hiaps(h_prv)

= hiaps(h_req)

= f_prv(c_prv)

= f_req(c_req)

Bond

 ssI

1

<<type univ>>

InterfaceType

 iaps_prv,iaps_req

1

in

<<mapping>>

CompAllocation
s Component

deployment view model

1

 c_prv,c_req

1

= g_prv(ssI)

= g_req(ssI)

= ca(s_prv)

= ca(s_req)

CB_App_Design
<<set>>

Services
 S

1 Service
*

*

 s_prv, s_req

1

<<singleton>>

Platform
deployment view

model

<<set>>

Hosts
 H

1

in in

 Host
deployment view model

*

 h_prv, h_req

1

*

 hiaps

1

BondedApp

 dsP

1

 dsD_cb

1

InstantiatedApp

Connection
deployment view model

1 la

1

<<set>>

Bonds
 B

1

<<name univ>>

 FUID

1

2

<<mapping>>

ConnAllocation
b

*

 N

1

<<set>>

Networks
* Network

deployment view model

*

<<set>>

Connections L

1

 ca

1

<<set>>

Components
 C

1

in

*

equal

in

<<mapping>>

IAPs ssI

 L_app

1

 L_pfm

1

set of

subset

1

2

5

34

 C_app

1

Figure 23: Deployment view: bonded application model. For the definition
of associations sprv, sreq, hprv and hreq of a Bond-object, see the diagram in
Figure 19.

51

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
 Mathijs Schuts, Jozef Hooman
 and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
 and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
 and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
 and Tim A.C. Willemse

13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
 A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
 J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
 Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications
 managed by a Component Framework

	TITEL.PG13-07
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-07

	Blanco
	CSR-13-07
	Blanco
	PUBL.LS4csr 2009 tm

