

Refinement of communication and states in models of
embedded systems
Citation for published version (APA):
Beohar, H. (2013). Refinement of communication and states in models of embedded systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR748546

DOI:
10.6100/IR748546

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR748546
https://doi.org/10.6100/IR748546
https://research.tue.nl/en/publications/5bbf6cb4-d26d-4ebf-aa75-487dd79a5bca

Refinement of Communication and
States in Models of Embedded Systems

Harsh Beohar

December 2012

©Harsh Beohar

IPA Dissertation Series 2013-01

Typeset using LATEX2e

Printed by University Press Facilities, Eindhoven

Cover design by Paul Verspaget

A catalogue record is available

from the Eindhoven University of Technology Library

ISBN: 978-90-386-3327-5

The work in this thesis has been carried out under the auspices of the research

school IPA (Institute for Programming research and Algorithmics).

The author was employed at the Eindhoven University of Technology, sup-

ported by the Seventh Research Framework Programme of the European Com-

mission (MULTIFORM project, Grant number: INFSO-ICT-224249).

Refinement of Communication and
States in Models of Embedded Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op dinsdag 22 januari 2013 om 16.00 uur

door

Harsh Beohar

geboren te Jabalpur, India

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.C.M. Baeten

en

prof.dr.ir. J.E. Rooda

Copromotor:

dr.ir. P.J.L. Cuijpers

“The whole of science is nothing more than a refinement of everyday

thinking.”

Albert Einstein

Summary

Refinement of Communication and States in models of Embedded

Systems

This thesis addresses two particular issues related to the design of embedded

systems; namely, refinement of communication and refinement of states.

The refinement of communication deals with the issue of implementing a

synchronous system in an asynchronous way such that two systems are be-

haviourally equivalent. As a result, correctness of an asynchronous system

can be achieved by establishing correctness on its synchronous version, which

is computationally cheaper than analysing the latter. The research objective

was to find conditions that ensure the addition of buffers does not modify

the behaviour of a given synchronous system. We show that it is possible

to obtain better desynchronisability conditions (even for finer equivalence like

branching bisimulation) by changing the properties of the communication pro-

tocol. This is in contrast with the previous works where the focus was only

on restricting the communicating components.

The refinement of states deals with the stepwise development of hybrid sys-

tems. Such a concept was absent in the Compositional Interchange Format

(CIF), a modelling language for embedded systems based on hybrid automata

and some process algebraic operators. The research objective was to develop a

compositional operational semantics of CIF with hierarchy (HCIF). We show

that by referring only to the transition system of the substructures (not to

their syntactic representation), the semantics of HCIF operators is almost

unchanged with respect to their CIF versions. Furthermore, a definition to

eliminate hierarchy in a HCIF model is presented. As a result, the existing

simulation tools and the transformation tools to other timed or hybrid lan-

guages can be reused upon the elimination of hierarchy from a HCIF model.

Acknowledgements

I would like to thank prof.dr. Jos Baeten, prof.dr.ir. Koos Rooda, and dr.ir.

Pieter Cuijpers for trusting me as a PhD candidate in the MULTIFORM

project (Integrated Multi-formalism Tool Support for the Design of Networked

Embedded Control Systems). Professor Baeten’s various proposals and re-

views on my research work has always given me motivation and confidence

in continuing my doctoral study. I very much appreciate professor Rooda’s

efforts for keeping me free from the overheads of MULTIFORM project and

for his help in formulating research questions.

If this thesis is written in a readable way, then it is due to painstaking effort

taken by my daily supervisor dr.ir. Pieter Cuijpers. Pieter with his friendly

spirit has played a key role in the development of my mathematical, writing,

and presentation skills over these last four years. I also want to thank Pieter

for the Dutch translation of the summary of my thesis. It was a great privilege

to work with you and I wish to express my profoundest gratitude to Pieter for

sharing his knowledge with me.

I would like to thank the reading committee: prof.dr. Kim Larsen, prof.dr.

Ursula Goltz, and prof.dr.ir. Jan Friso Groote. The valuable comments and

feedback provided by them has significantly improved the material of this

thesis. My sincere gratitude to prof.dr. Manohara Pai M. M. for participating

in my defense committee at the very last moment and also for his support

during my master’s study without whom this PhD campaign would have been

impossible.

I would also like to thank dr. Erik de Vink and dr. Ruurd Kuipers for reading

the important chapters of this thesis. Apart from reviewing this thesis, Erik

was always open to discuss variety of things with me. In particular, his advice

on solving problems in a concrete setting led to the introduction of half-duplex

buffers, which I realized in the context of Multimover case-study that resulted

in better conditions for desynchronisation. I am also grateful to Ruurd for his

help in preparing the viva-voce required to defend my thesis and results.

vi

I would also like to thank the members of Formal Methods Group and Formal

System Analysis group for their support during this period: Ammar Osaiw-

eran, Bas Luttik, Erik de Vink, Francien Dechesne, Frank Stappers, Hans Zan-

tema, Helle Hansen, Jan Friso Groote, Jeroen Keiren, Jos Baeten, Kees Huiz-

ing, Meivan Cheng, Maciej Gazda, Matthias Rafffelsieper, MohammadReza

Mousavi, Muhammad Atif, Neda Noroozi, Pieter Cuijpers, Rob Hoogerwoord,

Ruurd Kuiper, Simona Orzan, Sjoerd Cranen, Sonja Georgievska, Suzana An-

dova, Tineke van den Bosch, Wan Fokkink, and Wieger Wesselink.

An important aspect of this thesis was developed with the cooperation of Sys-

tem Engineering Group at the Department of Mechanical Engineering, TU/e.

I would like to thank Allan van Hulst, Asia van de Mortel-Fronczak, Bert van

Beek, Dennis Hendriks, Damian Nadales, Evgeniy Ivanov, Henk van Rooy,

Jasen Markovski, Koos Rooda, Konstantin Starkov, Michel Reniers, Mihaly

Petreczky, Ramon Schiffelers, and Rong Su for the pleasant working atmo-

sphere. Especially, I want to thank Allan, Damian, Evgeniy, and Konstantin

for making the "Bunker" a friendly place to work in.

I would like to thank all my friends for supporting me during my PhD study.

Special thanks goes to Ashwin, Debjyoti “Bax” Bera, Ernest “Dj Takla”, Kiran,

Manj(n)u, Mehaal “Chand” Rai, McEnroe “Before” Dsilva, Pallmall, Poojith,

Ram “the Hulk”, (S)Uttam, Ujwal “Captain Cook”, and Waqar for the great

time in Eindhoven and Amersfoort.

Finally, I would like to thank my parents, my brother Yash, fufaji and bua for

their everlasting support, care, and love.

Contents

Summary v

Acknowledgements vi

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Refinement of communication 2
1.2 Refinement of states . 4
1.3 Origin of the chapters . 6

2 Preliminaries 7
2.1 Basic definitions . 7

2.1.1 Labelled transition system 7
2.1.2 Sequences and multisets 8
2.1.3 Behavioural equivalence relations 9

2.2 From synchrony to asynchrony 11
2.2.1 Buffered systems . 13
2.2.2 Abstraction schemes: which ones to hide? 14
2.2.3 The emptiness predicate t 17

3 Desynchronising a plant and its supervisor 21
3.1 Introduction to supervisory control theory 22
3.2 Desynchronisation using queues 23

3.2.1 Conditions of desynchronisability 24
3.3 Desynchronisation using bags 29

viii

Contents ix

3.3.1 Condition of desynchronisability 29
3.4 Well-posedness for free . 33

3.4.1 Well-posedness via synthesis 33
3.4.2 Well-posedness via Supremica 36

3.5 Related work . 36
3.6 Conclusions . 37

4 Desynchronisation of concrete synchronous systems 39
4.1 A quest for weaker conditions 40

4.1.1 Why queues? . 40
4.1.2 Why abstraction scheme A3? 40
4.1.3 Half-duplex queues . 41

4.2 Towards completeness of our characterisation 43
4.3 Characterisation . 46

4.3.1 Well-posedness . 46
4.3.2 Input-determinism . 47
4.3.3 Independence of external actions 50
4.3.4 Proof of sufficiency for desynchronisability 54
4.3.5 Contra-simulation . 56

4.4 Related work . 59
4.5 Conclusion . 62

5 Desynchronisation of the pusher-lift system 65
5.1 The pusher-lift system . 66

5.1.1 Analysis . 67

6 Some final remarks on desynchronisation 71
6.1 A mix of half-duplex and full-duplex mechanisms 71
6.2 Desynchronising a network of synchronously

communicating processes . 76
6.3 Synchronous systems with invisible transitions 81

7 Hierarchical compositional interchange format 83
7.1 Syntax of HCIF . 85
7.2 Semantic framework . 89

7.2.1 Concepts involved with the semantics of HCIF 89
7.2.2 Hybrid transition systems 90

7.3 Semantics . 92
7.3.1 Hierarchical automata 93
7.3.2 Automaton postfix operator 97
7.3.3 Parallel composition . 99
7.3.4 Urgency operator . 102

Contents x

7.4 Flattening of HCIF models . 103
7.4.1 Flattening of HCIF compositions 104
7.4.2 Requirements for flattening 104

7.5 Case-study: Patient Support System 107
7.6 Related work . 110
7.7 Conclusions . 112

8 Conclusions 113
8.1 Refinement of communication 113
8.2 Refinement of states . 116

A Proofs of main theorems in Chapter 3 119

B Proofs of main theorems in Chapter 4 127

C Proofs of Theorem 6.5 143

Bibliography 147

Samenvatting 155

Curriculum Vitae 156

List of Figures

1.1 Refinement of communication. 3
1.2 An illustration of a hierarchical automaton. 5
1.3 Outline of the thesis, where the numbers [1-8] represent the

numbers of the chapters. 6
2.1 Delaying of choice, where � 6= � 10
2.2 A synchronous system. 12
2.3 A buffered system. 14
2.4 Abstraction schemes. 16
3.1 Role of the condition Cp-singular. 26
3.2 An illustration of Definition 3.9. 26
3.3 Illustration of diamond property. 27
3.4 Example 3.4 in the new asynchronous setting. 30
3.5 A plant and its supervisor in Example 3.4. 30
3.6 An example showing a deadlock in the asynchronous system

that is absent in the synchronous system. 31
3.7 Well-posedness via synthesis. 34
4.1 A way to prevent Mp-singularity, where i 2 f2; 3g. 40
4.2 An illustration showing the impossibility of establishing the

diamond property in a synchronous system. 42
4.3 A buffered system with the half-duplex mechanism. The dia-

monds d1; d2 represent the half-duplex condition. 42
4.4 Different behaviour induced by the abstractions schemesA1;A2;A3,

and A4 in the presence of half-duplex mechanism. 44
4.5 The role of input-determinism in desynchronisability. 48
4.6 Illustration of Condition 1 in Definition 4.10. 51
4.7 Partial transition system used in Theorem 4.13. 53
4.8 Illustration of Item 1 in Triangle lemma. 57
5.1 Work-flow followed in Chapter 5. 65
5.2 The pusher-lift system [75]. 66

xi

List of Figures xii

5.3 The plant model of the pusher-lift system. 67
5.4 The requirement models and the supervisor model of the pusher-

lift. 68
5.5 A toy example illustrating deadlock in r1(p1 jf"; "gj s1). 69
6.1 Partial transition system used in Lemma 6.2. 73
6.2 Case 2 in Lemma 6.4. 75
6.3 An illustration of a network of three processes communicating

synchronously. 76
6.4 An illustration of a network with a cycle. 79
7.1 Movement control. 85
7.2 Horizontal movement. 86
7.3 An illustration of the set of enabled actions over a time period. 91
7.4 An assembly line. 100
7.5 Patient Support System. 107
7.6 Patient Support System. 108
7.7 User interface. 109
7.8 Initialization. 109
7.9 Normal movement control. 110
7.10 Horizontal and vertical movements of the controller. 111
7.11 Relation between automaton postfix operator and state tree

structures . 111
A.1 Transitions derived in Case 1(a)ii. 120
A.2 Transitions derived in Case 1(a)iiA. 124
B.1 Case 4(a) of Lemma 4.20. 137
B.2 Case 4(a) of Lemma 4.20. 138
B.3 Hypothesis in Case 2 of Theorem B.6. 140
B.4 Case 2(a)iii in hindsight. 141
B.5 Case 2(d)iB in hindsight. 142
C.1 Case 1 of Theorem C.1. 144
C.2 Case 3 of Theorem C.1. 145

List of Tables

2.1 SOS rules for k, �f (), and �I() operators. 13
2.2 SOS rules for buffered systems. 15
2.3 Equivalence problems studied in Chapters 3 and 4. 17
2.4 SOS rules for the emptiness predicate. 18
4.1 SOS rules for the buffered systems with half-duplex queues. . . 43
5.1 The results obtained when applying techniques of Chapter 3. . 69
5.2 The results for the modified Pusher-lift system, where p0 is the

modified plant model. 70
6.1 SOS rules for asynchronous parallel composition with a mix of

half-duplex and full-duplex communication mechanisms. 74
7.1 Textual and graphical conventions in HCIF. 89

xiii

Chapter 1
Introduction

The field of embedded systems is an engineering discipline in which the idea
is to create a product by embedding a processing device. Some characteristics
of an embedded system are the following (see [58] for a more elaborate list).

• Embedded systems are hybrid by nature, i.e., they contain a mix of
continuous and discrete dynamics.

• Embedded systems are reactive, i.e., they continuously interact with
their environment.

• Embedded systems are application specific, i.e., only the intended soft-
ware will be running on the processors.

Due to the increasing influence of safety-critical embedded systems (like a
control system in an aeroplane) in our society, establishing correctness of soft-
ware running on these systems become vital. To this end, various researchers
(see [2, 23], and the references therein) have proposed the model-based engi-
neering approach for the design of embedded systems. One objective of this
approach is to detect and correct errors at an early stage of the system de-
velopment. The following observation by Boehm and Basili [21] estimates the
cost paid in missing the above goal: finding and fixing a software problem
after delivery is often 100 times more expensive than finding and fixing
it during the requirement and design phase.

In the model-based engineering approach, first, the system under design is
decomposed into a number of components. Second, for every component an
abstract model is constructed in a formal language and rigorous analyses are
performed with respect to requirements. Third, this abstract model of a com-
ponent is refined and analysed until a detailed model of the component is

1

Chapter 1. Introduction 2

achieved that sufficiently captures its implementation; this process is known
as refinement.

Roughly, refinement corresponds to the addition of some unspecified aspect
of behaviour in an abstract model. For instance,

• Refinement of communication : how to implement the interaction among
components of a system?

• Refinement of states : how to specify the behaviour of a system (or
component) in a hierarchical way?

• Refinement of time and resources [49]: how to implement timing and
resource constraints in a concrete model such that its behaviour can be
measured in some metric with respect to the abstract model?

In this thesis, we shall focus on only two kinds of refinement; namely, refine-
ment of communication and refinement of states.

1.1 Refinement of communication

The components of a system are not just stand-alone entities, rather, they in-
teract with each other to perform a certain global task. Message passing [50]
is a programming paradigm in which software components send and receive
messages either synchronously or asynchronously. In synchronous communi-
cation components must be physically coupled, making it possible to execute
corresponding send and receive messages simultaneously. Asynchronous com-
munication is used when components are placed physically apart. The cor-
responding send and receive messages are then decoupled and the messages
travel via a buffer from a sender to its recipient.

As stated in [36], an issue associated with synchronous and asynchronous
communication is though synchronous systems are easier to develop and
understand than asynchronous systems, the implementation architectures
one has to aim at are usually of an asynchronous nature. One reason for
this is that the designer has a freedom (in synchronous communication) of
not specifying behaviour for the orphan messages in the model of a receiver.
Informally, a message is orphan [55] if it cannot be read by a receiver from
its input buffer. This raises an obvious research question (Figure 1.1): how
to implement a synchronous system in an asynchronous way?

We tackle1 this problem by developing different desynchronisation tech-
niques. Desynchronisation, a term coined by Fischer and Janssen [36] in

1For the refinement of communication, we restrict ourselves to only a discrete model of
an embedded system.

Chapter 1. Introduction 3

p s

?
= p s

Buffer

Buffer

Figure 1.1: Refinement of communication.

concurrency theory, is a technique that constructs a correct asynchronous
system from a given synchronous system. The motive is to find conditions
under which the behaviour of a synchronous system is insensitive to the ad-
dition of buffers using an abstraction scheme. An abstraction scheme hides
certain details in the asynchronous system that are irrelevant with respect to
the synchronous system and ensures that the two systems performs identical
events. Formally, the goal is to find conditions that render the synchronous
and asynchronous system behaviourally equivalent under a suitable abstrac-
tion scheme.

As a result, a correct asynchronous system is behaviourally equivalent to
the synchronous system and is orphan free. The related works [17, 24, 36,
55, 67] in literature focussed on only one of these correctness criteria, not
both. However, in this thesis we will develop desynchronisation techniques
that guarantees orphan freedom, whenever the synchronous system and the
asynchronous system are behaviourally equivalent.

The methods we use for studying desynchronizability in this thesis stem from
process algebra and concurrency theory [6]. We do not fix a set of desirable
properties a priori between a synchronous system and its asynchronous ver-
sion, but rather aim for desynchronizability modulo a behavioral equivalence
that preserves a large set of possibly desirable properties. To be as general
as possible, we take branching bisimulation as our behavioral equivalence of
choice, which is the strongest equivalence used in interleaving concurrency
theory in the presence of silent actions (see [76]).

The work on desynchronisation in this thesis spans over Chapters 3-6. A more
detailed account of related work is given in the respective chapters.

• In Chapter 3, we develop a desynchronisation technique for the syn-
chronous systems that are synthesised by the supervisory control theory
of Ramadge and Wonham [69]. This theory provides an automatic syn-
thesis of a supervisor that synchronously controls a plant (a model of
hardware) such that the given requirements are satisfied. The inability
to synthesise a controller for a plant in the presence of asynchronous
communication is one of the drawbacks in applying the supervisory con-
trol theory in practice [33].

Chapter 1. Introduction 4

The main result of this chapter is the partial characterisation of desyn-
chronisation modulo branching bisimulation [77]. In other words, the
synthesised supervisor controls the same plant in the presence of buffers
such that the synchronous system and its asynchronous version satisfy
the same requirements. Furthermore, the result obtained is in contrast
with the previous works [13, 80], where synthesis algorithms are designed
to compute a new supervisor in the presence of buffers.

• Chapter 4 considers the desynchronisation of a concrete synchronous
system. Informally, a synchronous system is concrete if it executes only
observable events. The objective is to obtain a weaker set of conditions
for desynchronisability than the conditions of Chapter 3. To this end,
we study the desynchronisation problem in the presence of a half-duplex
mechanism, where a component of a system can only send a message,
whenever its input buffers are empty. An intuitive example of a half-
duplex mechanism is the situation where two individuals communicate
over a walkie-talkie.

The main results of this chapter are the characterisation of desynchro-
nisation modulo branching bisimulation in the presence of a half-duplex
mechanism. I.e., we not only show that our conditions guarantee the
desynchronisability of a concrete synchronous system; but, also that any
desynchronisable concrete synchronous system satisfies our conditions.

Furthermore, we also give the characterisation of desynchronisation mod-
ulo contra-simulation (a weaker equivalence than branching bisimula-
tion, see [78]) because certain non-deterministic choices in a synchronous
system can become delayed in the corresponding asynchronous system.
Note that the delaying of non-deterministic choices was essentially the
point which led to the development of contra-simulation in concurrency
theory (see [78]).

• In Chapter 5, we apply the developed desynchronisation techniques to
desynchronise a case-study called the pusher-lift system [75].

• Lastly, in Chapter 6 we first address the issue of obtaining an efficient
asynchronous implementation of a synchronous system. Second, the
desynchronisation of a network of synchronously communicating pro-
cesses is addressed. Third, the issue of desynchronising a non-concrete
synchronous system whose alphabet contains invisible actions is treated.

1.2 Refinement of states

The components of an embedded system are not monolithic entities, rather
they are composed from different smaller components. In computer science,
the development of hierarchical automata / statecharts [47, 54, 61] has led

Chapter 1. Introduction 5

)

Figure 1.2: An illustration of a hierarchical automaton.

to the stepwise development of complex discrete systems (see Figure 1.2 for
an illustration of a hierarchical automaton). This is because hierarchical au-
tomata allow a gradual, level by level description of system behaviour [47].
Such a concept is absent in the Compositional Interchange Format (CIF) [7].

CIF is a modelling language for embedded systems based on hybrid automata
[48] and is designed for two purposes; namely, as a specification language for
hybrid systems, and as an interchange format for allowing model transforma-
tions between other languages for hybrid systems.

In Chapter 7, we extend the CIF language with the concept of hierarchy, re-
sulting in a new specification language called the Hierarchical Compositional
Interchange format (HCIF). A benefit of using hierarchical hybrid automata in
the design phase is that it helps the designers to communicate among them-
selves that are involved in the development of an embedded system. For
instance, a control engineer might be interested in only the specification of
the continuous behaviour of a component, whereas a software engineer might
only be interested in the specification of the discrete behaviour.

The semantics of a hierarchical automaton is defined in a compositional man-
ner, by referring only to the transition system of the substructures and not
to their syntactic representation. This compositional introduction of hierar-
chy allows us to keep the semantics of the HCIF operators almost unchanged
with respect to their CIF versions. For this purpose we introduce the automa-
ton postfix operator to define the overall behaviour of a hierarchical automa-
ton, whereas the previous works [27, 54, 61] on the semantics of hierarchical
automata requires tree-structure on the set of locations. Consequently, ad-
ditional concepts from tree-structures, like least common ancestors, children

Chapter 1. Introduction 6

of a location, etc., complicate the semantics and thus, bringing considerable
differences between the semantics of CIF and HCIF [20].

1.3 Origin of the chapters

The contents of Chapter 3 are taken from [17, 19], although the sufficient con-
ditions for desynchronisability when bags are used as buffers are improved.
Essentially, the diamond property [17, Definition 11.] is relaxed by allowing
diamonds only on certain actions (see Definition 3.9). However, a sub-class
of synchronous systems is studied in Chapter 3 in comparison to the syn-
chronous systems in [17]. To be precise, the sets of external actions of both
the plant and its supervisor are assumed to be empty because the sufficient
conditions obtained are restrictive even without the set of external actions
(see Chapter 5 that supports this fact). Furthermore, sufficient conditions for
desynchronisability when queues are used as buffers are new.

The characterisation of desynchronisation modulo branching bisimulation in
Chapter 4 was published in [18]; although, the characterisation of desynchroni-
sation modulo contra-simulation is not yet published elsewhere. Furthermore,
the above assumption on the set of external actions is discarded while de-
veloping the desynchronisation techniques in this chapter. The case-study
presented in Chapter 5 is adopted from the lecture notes on supervisory con-
trol theory [75]. The material in Chapter 6 is also new and is unpublished
elsewhere.

Finally, the contents of Chapter 7 originate from [20, 64]. This is a result of
joint work with Damian Nadales from the System Engineering group, TU/e.
As a result, a version of this chapter can also be found in [63]. Note that
certain mathematical notations are changed with respect to [63] to prevent
any conflicts with the refinement of communications part of this thesis.

This thesis can be read in the order depicted in Figure 1.3, due to the inde-
pendent nature of the refinement of communications and refinement of states.

1

2 3 4 5 6

7

8

Figure 1.3: Outline of the thesis, where the numbers [1-8] represent the
numbers of the chapters.

Chapter 2
Preliminaries

This chapter is devoted to establish the mathematical notations, and defini-
tions required for refinement of communication, i.e., for Chapters 3-6.

2.1 Basic definitions

In the sequel, we model the world as a labelled transition system space [6] in
which all behaviors of interest are represented. Components of a system as
well as their compositions are called processes and are represented by pointing
out an initial state p 2 P in the labelled transition system space. A process p
is then formed by all reachable states from the initial state p 2 P.

2.1.1 Labelled transition system

Definition 2.1. A labelled transition system space (simply, labelled transi-
tion system) is a tuple (P; A� ;!;t), where

• P is a set of states.

• A is the set of actions. We set A� = A] f�g, where � is the so called
invisible action, and let the symbols �;�0; �1; � � � range over the set A� .

• !� P� A� � P is the transition relation.

• t � P is the emptiness predicate over the set of states and its purpose
is to observe the states of an asynchronous system that consists of empty
buffer contents (see Subsection 2.2.3).

7

Chapter 2. Preliminaries 8

The notation q
�
�! q0 denotes an element (q; �; q0) 2! and qt denotes a state

q satisfying the predicate t. Furthermore, we write q t in lieu of :(qt). We
write q 6 ��! as a shorthand for @q0:

h
q

�
�! q0

i
. A state q 2 P is called deadlocked,

denoted q 6�!, if 8�:
h
q 6

�
�!
i
. For a given initial state q 2 P, the set of reachable

states R(q) is defined as the smallest set such that:

q 2 R(q); and 8q1; q2; �:
h
q1 2 R(q) ^ q1

�
�! q2) q2 2 R(q)

i
:

A process q is finite if the sets R(q) and !q are finite, where !q is the
restriction of ! to R(q). Sometimes, we refer to finite processes as automata.

Definition 2.2 (Concrete and deterministic processes). Let Alph(q) denote
the alphabet of the process q: Alph(q) =

n
� j 9q1; q2:

h
q1 2 R(q) ^ q1

�
�! q2

io
:

A process q is concrete iff � 62 Alph(q). Furthermore, a process q is deter-
ministic iff 8q0; q1; q2:

h
q0 2 R(q) ^ q0

�
�! q1 ^ q0

�
�! q2) q1 = q2

i
.

2.1.2 Sequences and multisets

The data structures used in queues and bags are sequences and multisets,
respectively. Thus, in this subsection we define sequences and multisets with
certain operations over them.

Let A� denote the set of all finite sequences generated from the set of actions
with the empty sequence denoted by the symbol �. The concatenation of
any two sequences w1; w2 2 A� is denoted by w1:w2. Let � : A� ! A� be
a permutation function that returns a permutation of a sequence. We write
w1 =� w2 to denote that w2 2 A� is a permutation of the sequence w1 2 A�

such that w2 = �(w1). A projection of a sequence w 2 A� onto a set B � A,
denoted w " B, is a sequence inductively defined as:

� " B = �, and (�:w) " B =

�
�:(w " B); if � 2 B
w " B; if � 62 B

:

A multiset � over the set of actions A is a function � : A ! N that returns
the corresponding multiplicity of the elements. We write the empty multiset
as " : A ! 0, where 8� 2 A:["(�) = 0]. We write A? to denote the set of all
multisets generated from the set A.

Definition 2.3. Let � : A! N be a multiset over the set A.

• With abuse of notation, we use the predicate 2 to denote an element
that belongs to a multiset. It is defined as � 2 � = �(�) > 0.

Chapter 2. Preliminaries 9

• The operator � denotes an addition of an element to a multiset. It
is defined as (� � �)(�) = �(�) + 1 and (� � �)(�0) = �(�0), for every
�0 6= �.

• The operator 	 denotes a removal of an element from a multiset. It
is defined as (� 	 �)(�) = �(�) � 1, if �(�) > 0, (� 	 �)(�) = �(�), if
�(�) = 0, and (� 	 �)(�0) = �(�0) for every �0 6= �.

We define S(�) to denote the set of all sequences generated from a multiset �.
For example, the set of all sequences generated from the multiset � = "�a� b
is S(�) = fa:b; b:ag.

Proposition 2.4. Let � 2 A? and w1 2 S(�). If for some permutation �
and w1 =� w2, then w2 2 S(�).

We now define the reachability relation ���� P � A� � P in the following
recursive way. The definitions of the behavioural equivalence relations used
in this thesis are based on this reachability relation.

q1 ��� q1 ;
q1

w
���� q0; q0

�
�! q2

q1
w

���� q2
;
q1

w
���� q0; q0

�
�! q2; � 6= �

q1
w:�

����� q2
:

2.1.3 Behavioural equivalence relations

In principle, a synchronous interaction can be simulated asynchronously by
hiding and renaming certain interactions between the local components and
the buffers (see Subsection 2.2.2). As a result, weak equivalences, which treat �
transitions as unobservable [76] can be used to compare a synchronous system
and its asynchronous version. In this thesis, we concentrate on two such
equivalences; namely, branching bisimulation [77], and contra-simulation [78].

Branching bisimulation [77] is a weak equivalence which abstracts away from
the invisible transitions while preserving the branching structure of the pro-
cesses. An advantage of using branching bisimulation equivalence is that it
enables us to preserve most of the modal requirements between a synchronous
system and an asynchronous system [28].

Definition 2.5. A binary relation B � P � P is a branching bisimulation
relation [77] iff the following transfer conditions are satisfied.

1: 8q; q1; q
0; � 2 A� :

h
(q; q0) 2 B ^ q

�
�! q1) (� = � ^ (q1; q

0) 2 B) _

9q01; q
0
2:
h
q0 ��� q01

�
�! q02 ^ (q; q01) 2 B ^ (q1; q

0
2) 2 B

ii
;

2: 8q; q0; q01; � 2 A� :
h
(q; q0) 2 B ^ q0

�
�! q01) (� = � ^ (q; q01) 2 B) _

Chapter 2. Preliminaries 10

9q1; q2:
h
q ��� q1

�
�! q2 ^ (q1; q

0) 2 B ^ (q2; q
0
1) 2 B

ii
:

Furthermore, a relation B � P� P is an t-sensitive (pronounced: emptiness
sensitive) branching bisimulation relation iff B is a branching bisimulation
relation satisfying the following transfer conditions:

3: 8q; q0:
h
(q; q0) 2 B ^ qt) 9q01:

h
q0 ��� q01 ^ q01 t ^(q; q

0
1) 2 B

ii
;

4: 8q; q0:
h
(q; q0) 2 B ^ q0t) 9q1:

h
q ��� q1 ^ q1 t ^(q1; q

0) 2 B
ii
:

Two processes q and q0 are (t-sensitive) branching bisimilar, denoted (q$t
b

q0) q $b q0, if there is a (an t-sensitive) branching bisimulation relation B
such that (q; q0) 2 B.

Proposition 2.6. Let q1; q2 be any two arbitrary processes such that q1$t
b

q2. If q1
w

���� q3 for some w 2 A�, then 9q4:
h
q2

w
���� q4 ^ q3$

t
b q4

i
.

Proposition 2.7. Let q1 be an arbitrary process and let q2 be a concrete
process. If q1$t

b q2, q1
�
�! q01, and � 6= � , then 9q02:

h
q2

�
�! q02 ^ q01$

t
b q02

i
.

Definition 2.8. A transition q
�
�! q0 is inert [44] modulo $b ($t

b), if
q $b q0 (q$t

b q0).

��
�

� �

Figure 2.1: Delaying of choice, where � 6= � .

In certain situations, branching bisimulation equivalence is hard to establish
due to its demanding transfer conditions. In particular, an external non-
deterministic choice (see left in Figure 2.1) in a synchronous system can be
delayed (see right in Figure 2.1) while constructing an asynchronous system1.
This phenomenon in concurrency theory is known as a delaying of choice
[78]. For this purpose, contra-simulation equivalence [76, 78] was designed to
be insensitive with the delaying of an external choice into an internal choice.
This can be interpreted via the so called contra-simulation axiom a:x+ a:y =
a:(�:x+ �:y) (see [78] for more details).

Definition 2.9. A binary relation C � P� P is a contra-simulation relation
[78] iff the following transfer condition is satisfied.

8q1; q2; q
0
1; w 2 A�:

h
(q1; q

0
1) 2 C ^ q1

w
���� q2) 9q02:

h
q01

w
���� q02 ^ (q02; q2) 2 C

ii
:

1A concrete example is given in Chapter 4 (see Example 4.1).

Chapter 2. Preliminaries 11

Furthermore, a relation C � P�P is a t-sensitive contra-simulation relation
iff C is a contra-simulation relation satisfying the following transfer condition:

8q1; q
0
1:
�
(q1; q

0
1) 2 C ^ q1t) 9q02:

�
q01 ��� q02 ^ q02 t ^(q

0
2; q1) 2 C

��
:

A process q1 contra-simulates q2, denoted q1 4 q2, if there exists a contra-
simulation relation C such that (q1; q2) 2 C. Furthermore, two processes q1; q2
are contra-similar, denoted q1 �c q2, iff q1 4 q2 and q2 4 q1. It is assumed
that the preorder 4 and the equivalence �c are extended to 4t and �tc ,
respectively, in the usual way.

Proposition 2.10. Let q1 be an arbitrary process and q2 be a process such
that q1 4t q2 and q2 6

�
�!. Then, q2 4t q1.

Proof. By instantiating Definition 2.9 we have

q1 4
t q2 ^ q1 ��� q1) 9q02:

�
q2 ��� q02 ^ q02 4

t q1
�
:

But, q2 6
�
�!; thus q02 = q2. Similarly, instantiating the transfer condition of t

we have q1 4t q2 ^ q1t) 9q02: [q2 ��� q02 ^ q02 t ^q
0
2 4

t q1] : Since q2 6
�
�!, we

have q02 = q2. Hence, q2 4t q1.

Henceforth, we let the symbols ', 't range over the sets f$b;�cg, and
f$t

b;�
t
c g, respectively.

2.2 From synchrony to asynchrony

The goal of this section is to give Structural Operational Semantics (SOS)
[68] to both synchronous and asynchronous systems so that the equivalence
problem can be studied on the induced labelled transition systems. Given two
processes p; s we achieve this goal in three steps. First, we recall the semantics
of the synchronous merge operator, the renaming operator, and the abstraction
operator from the TCP process algebra [6]. The synchronous merge operator
is used to model the given synchronous system, while the renaming and the
abstraction operators are used in the construction of an asynchronous system.
Second, we construct a buffered system by placing two buffers between the
given processes p; s. Finally, we define four abstraction schemes on a buffered
system using the renaming operator and the abstraction operator.

Consider a synchronous system as depicted in Figure 2.2. We identify two
basic components p; s, which we assume to be processes in our labeled transi-
tion system. These processes are composed into a synchronous process p k s
(commonly known as a synchronous system). The process p k s can perform
four kinds of events; namely, the external actions of p and s that belong to

Chapter 2. Preliminaries 12

p s

Mp

Ep

Ms

Es

Figure 2.2: A synchronous system.

the sets Ep and Es, respectively, and messages from p and s that belong to
the sets Mp and Ms, respectively.

Furthermore, we make the distinction between the sending of a message (mod-
eled for p by the set !Mp = f!mjm 2 Mpg) and the receiving of that message
(modeled for p by the set ?Mp = f?mjm 2Mpg). Note that such a distinction
is crucial when constructing an asynchronous system. We assume that the so
obtained sets are all part of our alphabet and are all pairwise disjoint, i.e.,

Ep] Es]Mp]Ms] !Mp] !Ms] ?Mp] ?Ms � A:

Assuming that the processes p and s are already part of our labeled transition
system, where p makes use of the actions !Mp]?Mp] Ep and s makes use of
the actions !Ms]?Ms] Es, we can define the synchronous composition of p
and s through SOS rules on the states of the transition system.

Formally, the synchronous merge is a binary operator k: P � P ! P that
denotes the synchronous execution of two processes. The semantic rules for
the synchronous merge operator are given in Table 2.1. The premise of each
rule states the assumption on the states of the composed processes, and the
conclusion gives the resulting transition for the composed state.

The renaming operator [6] is a unary operator �f : P ! P parameterised
by the so-called renaming function f : A ! A that maps the set of actions
to itself. The abstraction operator [6] is also a unary operator �I : P ! P
parameterised by a set of actions I � A. Intuitively, the abstraction operator
renames all actions in the set I to the invisible action � , whenever � 2 I. The
SOS rules for the renaming operator and the abstraction operator are given
in Table 2.1.

It should be noted that the branching bisimulation and the contra-simulation
relations are congruence relations for the synchronous merge operator, the
renaming operator, and the abstraction operator (see [6] for branching bisim-
ulation, and [78] for contra-simulation). Formally, an equivalence relation ' is
a congruence relation with respect to a k-ary operator �, if for all processes
qi; q

0
i (for i 2 [1; k]) such that qi ' q0i, then

�(q1; � � � ; qk) ' �(q01; � � � ; q
0
k):

Chapter 2. Preliminaries 13

p1
!m
�! p2; s1

?m
��! s2

p1 k s1
m
�! p2 k s2

(1)
p1

?n
�! p2; s1

!n
�! s2

p1 k s1
n
�! p2 k s2

(2)

p1
�
�! p2; � 2 Ep [f�g

p1 k s1
�
�! p2 k s1

(3)
s1

�
�! s2; � 2 Es [f�g

p1 k s1
�
�! p1 k s2

(4)

q
�
�! q0; � 62 I

�I(q)
�
�! �I(q

0)
(5)

q
�
�! q0; � 2 I

�I(q)
�
�! �I(q

0)
(6)

q
�
�! q0

�I(q)
�
�! �I(q

0)
(7)

q
�
�! q0

�f (q)
f(�)
���! �f (q

0)
(8)

q
�
�! q0

�f (q)
�
�! �f (q

0)
(9)

Table 2.1: SOS rules for k, �f (), and �I() operators.

Let � = �p] �s, where � 2 fM;E; !M; ?Mg. With abuse of notations, we
define an input projection function ? : (M [E)� ! ?M�, an output projection
function ! : (M [E)� ! (!M [E)�, and a message projection function � :
(M [E)� !M� in the following way.

1. ?� = �, ?(e:w) = w, ?(m:w) =?m:?w, where e 2 E and w 2 (M [E)�.

2. !� = �, !(e:w) = e:!w, !(m:w) =!m:!w, where e 2 E and w 2 (M [E)�.

3. �� = �, e:w = �w, and m:w = m: �w, where e 2 E and w 2 (M [E)�.

Proposition 2.11. Let p k s be a synchronous system.

1. If u 2 (Ms [Es)
�, p1 k s1

u
���� p2 k s2 then p1

?u
���� p2 ^ s1

!u
���� s2.

2. If v 2 (Mp [Ep)
�, p1 k s1

v
���� p2 k s2 then s1

?v
���� s2 ^ p1

!v
���� p2.

Proof. Straightforward by induction on u and v.

2.2.1 Buffered systems

Next, we turn our attention to the construction of a buffered system, which
is the result of placing two buffers between the processes p; s of a given syn-
chronous system p k s. Unlike, in the case of a synchronous system p k s, the
processes p; s in a buffered system interact with each other by reading and

Chapter 2. Preliminaries 14

p s

Buffer

Buffer

!m ?m

!n?n

Figure 2.3: A buffered system.

writing messages in their input and output buffers, respectively. Intuitively,
a buffered system performs the send !m action, whenever a sender (either, p,
or s) sends the message !m to its output buffer. Similarly, a buffered system
performs the receive ?m action, whenever a receiver reads the message ?m
from its input buffer (see Figure 2.3).

The final ingredient required to give formal semantics of a buffered system
is the kind of data-structure used to store the messages. In this thesis,
we consider two kinds of lossless and unbounded buffers: queues and bags.
To formally denote a buffered system with queues, we introduce a family
of operators called queue-asynchronous merge, notation _ j[�; �]j_, for ev-
ery � 2 Ms

�; � 2 Mp
�. Similarly, a buffered system with bags is written as

p jf�; �gj s, where _ jf�; �gj_ is a family of operators called bag-asynchronous
merge, for every � 2 M?

s ; � 2 M?
p . Henceforth, the contents of the input

buffer attached to the processes p and s are denoted by � 2 Ms
� (� 2 M?

s)
and � 2Mp

� (� 2M?
p), respectively. The semantic rules of bag-asynchronous

merge and queue-asynchronous merge are presented in Table 2.2.

2.2.2 Abstraction schemes: which ones to hide?

With the construction of a buffered system, we have already made a step
towards asynchrony from synchrony. A problem with defining equivalence
between a synchronous system and its buffered version is that asynchronous
composition needs two actions for the communication of a message while
synchronous composition only needs one. Furthermore, any two equivalent
systems should at-least have the same alphabet. The usual process algebraic
way to solve this issue is by defining an abstraction scheme, translating certain
actions from the asynchronous system to actions from the synchronous sys-
tem while hiding the remaining ones. In principle, there are four abstraction
schemes as shown in Figure 2.4:

A1. hiding the interactions between the process p and the buffers, and re-
naming the interactions between the process s and the buffers to the
messages from the process s. (see Figure 2.4(a)). The expression of the
form �1 ! �2 (for �1; �2 2 A�) in Figure 2.4(a) denotes the renaming
of the action �1 to �2.

Chapter 2. Preliminaries 15

p
!m
�! p0

(p j[�; �]j s)
!m
�!

�
p0 j[�; �:m]j s

�
(p jf�; �gj s)

!m
�!

�
p0 jf�; � �mgj s

�
(10)

s
!n
�! s0

(p j[�; �]j s)
!n
�!

�
p j[�:n; �]j s0

�
(p jf�; �gj s)

!n
�!

�
p jf� � n; �gj s0

�
(11)

p
?n
�! p0; � = n:�0

(p j[�; �]j s)
?n
�!

�
p0 j[�0; �]j s

� (12)
p

?n
�! p0; �(n) > 0

(p jf�; �gj s)
?n
�!

�
p0 jf� 	 n; �gj s

� (13)

s
?m
��! s0; � = m:� 0

(p j[�; �]j s)
?m
��!

�
p j[�; � 0]j s0

� (14)
s

?m
��! s0; �(m) > 0

(p jf�; �gj s)
?m
��!

�
p jf�; � 	mgj s0

� (15)

p
�
�! p0; � 2 Ep [f�g

(p j[�; �]j s)
�
�!
�
p0 j[�; �]j s

�
(p jf�; �gj s)

�
�!
�
p0 jf�; �gj s

� (16)
s

�
�! s0; � 2 Es [f�g

(p j[�; �]j s)
�
�!
�
p j[�; �]j s0

�
(p jf�; �gj s)

�
�!
�
p jf�; �gj s0

� (17)

Table 2.2: SOS rules for buffered systems.

A2. hiding the interactions between the process s and the buffers, and re-
naming the interactions between the process p and the buffers to the
messages from p. (see Figure 2.4(b)).

A3. hiding the interactions between the processes p; s and their input buffers,
and renaming the interactions between the processes p; s and their out-
put buffers to the messages from p; s. (see Figure 2.4(c)).

A4. hiding the interactions between the processes p; s and their output buffers,
and renaming the interactions between the processes p; s and their input
buffers to the messages from p; s. (see Figure 2.4(d)).

To formally define the aforementioned abstraction schemes, we first define the
sets Hi for the abstraction schemes Ai in the following way, for every i 2 [1; 4].
Intuitively, the set H1 contains the send actions and the receive actions of the
process p, which are the result of the interactions between the process p and
the two buffers in a buffered system (recall the rules from Table 2.2). Similarly,
explanations can be given for the sets H2; H3, and H4.

H1 = !Mp] ?Mp H2 = !Ms] ?Ms

H3 = ?Mp] ?Ms H4 = !Mp] !Ms:

Next, define the renaming functions �i : A ! A for the abstraction schemes
Ai in the following way, for every i 2 [1; 4]. Intuitively, the function �1

Chapter 2. Preliminaries 16

p s

Buffer

Buffer

!m! � ?m! m

!n! n?n! �

(a) Abstraction scheme A1.

p s

Buffer

Buffer

!m! m ?m! �

!n! �?n! n

(b) Abstraction scheme A2.

p s

Buffer

Buffer

!m! m ?m! �

!n! n?n! �

(c) Abstraction scheme A3.

p s

Buffer

Buffer

!m! � ?m! m

!n! �?n! n

(d) Abstraction scheme A4.

Figure 2.4: Abstraction schemes.

renames the send actions and the receive actions to the messages, which are the
result of the interactions between the process s and the two buffers. Similarly,
explanations can be given for the functions �2; �3, and �4.

�1(�) =

�
m; � =?m; ?m 2?Ms;
n; � =!n; !n 2!Ms:

�2(�) =

�
n; � =?n; ?n 2?Mp;
m; � =!m; !m 2?Mp:

�3(�) =

�
m; � =!m; !m 2!Mp;
n; � =!n; !n 2!Ms:

�4(�) =

�
n; � =?n; ?n 2?Mp;
m; � =?m; ?m 2?Ms:

Chapter 2. Preliminaries 17

For brevity, write �Hi
(��i(q)) as ri(q), for some q 2 P, and i 2 [1; 4] is

the identifier of an abstraction scheme. Thus, from a given synchronous sys-
tem p k s, the following variants of asynchronous systems are constructed:
ri(p j[�; �]j s);ri(p jf"; "gj s), for i 2 [1; 4]. The equivalence problems studied

Chapter Equivalence Buffers

3.
p k s $b r1(p j[�; �]j s)
p k s $b r1(p jf"; "gj s)

Queues and bags.

4.
p k s$t

b r3(p j[�; �]j s)
p k s �tc r3(p j[�; �]j s)

Queues

Table 2.3: Equivalence problems studied in Chapters 3 and 4.

in Chapters 3, 4 are stated formally in Table 2.3. The motivation of choosing
a particular abstraction scheme can be found in the respective chapters. In
the next subsection, we clarify the role of t-sensitive versions of branching
bisimulation and contra-simulation in this thesis.

2.2.3 The emptiness predicate t

Recall from Chapter 1 that orphan freedom is the other correctness criterion
which we envisage on an asynchronous system, apart from being equivalent to
the given synchronous system. The orphan freedom property is similar to the
unspecified reception from the field of Communicating Finite State Machines
(CFSM) (see [24, 42]), which is formulated only for queues because queues
are the preferred choice of buffers in CFSM. Informally, a state ri(p j[�; �]j s)
(for i 2 [1; 4]) in an asynchronous system have unspecified reception if the
states p; s has no input transitions of the form p

?n
�! p0 and s

?m
��! s0, whenever

� = n:�0 and � = m:� 0, respectively. In this thesis, we shall focus on a more
general property than unspecified reception, called orphan freedom.

Definition 2.12. An asynchronous systemri(p j[�; �]j s) with queues as buffers,
is orphan free iff for every reachable statesri(p1 j[�; �]j s1) 2 R(ri(p j[�; �]j s))

the following condition holds: 9p2; s2; w:
h
ri(p1 j[�; �]j s1)

w
� ri(p2 j[�; �]j s2)

i
:

Similarly, an asynchronous system ri(p jf"; "gj s) with bags as buffers, is or-
phan free iff for every reachable states ri(p1 jf�; �gj s1) 2 R(ri(p jf�; �gj s))

the following condition holds: 9p2; s2; w:
h
ri(p1 jf�; �gj s1)

w
� ri(p2 jf"; "gj s2)

i
:

An advantage when a synchronous system and its asynchronous version are
equivalent modulo 't is that it ensures orphan freedom in the asynchronous
system. Essentially, this property is ensured by the transfer conditions in
t-sensitive versions of the branching bisimulation and the contra-simulation
relations (see Theorem 2.13). To establish this fact, we define the semantic
rules for the emptiness predicate t in Table 2.4.

Chapter 2. Preliminaries 18

p k st
(18)

p j[�; �]j st
p jf"; "gj st

(19)
qt

�f (q)t
(20)

qt

�I(q)t
(21)

Table 2.4: SOS rules for the emptiness predicate.

Theorem 2.13. Let i 2 f1; 2; 3; 4g.

1. If p k s'tri(p j[�; �]j s), then the asynchronous system ri(p j[�; �]j s)
is orphan free.

2. If p k s'tri(p jf"; "gj s), then the asynchronous system ri(p jf"; "gj s)
is orphan free.

Proof. We give the proof of only Item 1; Item 2 can be proved in similar way.
We show that if p k s'tri(p j[�; �]j s), then

8p1; s1; �; �:
h
ri(p1 j[�; �]j s1) 2 R(ri(p j[�; �]j s)))

9p2; s2:
�
ri(p1 j[�; �]j s1) ��� ri(p2 j[�; �]j s2)

�i
:

If �; � = �, then the result holds trivially. So suppose, otherwise � 6= �_� 6= �.

1. Abstraction scheme A1. It is given that p k s'tr1(p j[�; �]j s). So we
get the following two cases:

(a) When 't =$t
b. Since r1(p1 j[�; �]j s1) 2 R(r1(p j[�; �]j s)), there

exists w such that r1(p j[�; �]j s)
w

���� r1(p1 j[�; �]j s1). From
Proposition 2.6 we have 9q: [q 2 R(p k s ^ q$t

b r1(p1 j[�; �]j s1))] :
From the transfer conditions of branching bisimulation we get qt)
9p2; s2: [r1(p1 j[�; �]j s1) ��� r1(p2 j[�; �]j s2)]. But, from the se-
mantics of the abstraction scheme A1 we know that reading the
messages by the process p1 from its input queue is observable.
Thus, there cannot be trace with a non-empty sequence of � ’s from
the state r1(p1 j[�; �]j s1) such that the content � is completely
read. Hence, this case is inapplicable.

(b) When 't =�tc . Similar to the previous case.

2. Abstraction scheme A2. Similar to the previous case.

3. Abstraction scheme A3. It is given that p k s'tr3(p j[�; �]j s). So we
get the following two cases:

Chapter 2. Preliminaries 19

(a) When 't =$t
b. Since r3(p1 j[�; �]j s1) 2 R(r3(p j[�; �]j s)), there

exists w such that r3(p j[�; �]j s)
w

���� r3(p1 j[�; �]j s1). From
Proposition 2.6 we have 9q:

h
q 2 R(p k s)^q$t

b r3(p1 j[�; �]j s1)
i
:

From the transfer conditions of branching bisimulation, we get

qt) 9p2; s2:
h
r3(p1 j[�; �]j s1) ��� r3(p2 j[�; �]j s2)

i
:

(b) When 't =�tc . Since r3(p1 j[�; �]j s1) 2 R(r3(p j[�; �]j s)), there
exists w such that r3(p j[�; �]j s)

w
���� r3(p1 j[�; �]j s1). But, p k

s �tc r3(p j[�; �]j s). Using the transfer condition of contra-simulation
we get 9q:

h
p k s

w
���� q ^ q 4 r3(p1 j[�; �]j s1)

i
: Again, using the

transfer condition of contra-simulation we have

qt) 9p2; s2:
h
r3(p1 j[�; �]j s1) ��� r3(p2 j[�; �]j s2)

i
:

4. Abstraction scheme A4. Similar to the Case 1.

Even though, Theorem 2.13 seems to solve the issue of preserving orphan
freedom; however, this solution is an unsatisfactory one for the asynchronous
systems that are constructed with the abstraction schemes A1;A2, and A4.
The reason is that a state with non-empty buffer contents in an asynchronous
system can never be related to a state in a synchronous system by the t-
sensitive versions of the branching bisimulation or the contra-simulation re-
lations, whenever the abstraction schemes A1;A2, and A4 are used. The
following lemma states this fact formally.

Lemma 2.14. Let i 2 f1; 2; 4g.

1. If p1 k s1'tri(p2 j[�; �]j s2), then � = �, � = �.

2. If p1 k s1'tri(p2 jf�; �gj s2), then � = ", � = ".

Proof. By following the reasoning in Case 1(a) of Theorem 2.13 we know that
�; � = � in the context of the abstraction scheme A1. Likewise, the other
cases can be proved.

In hindsight, the abstraction scheme A3 allows an elegant and a reasonable
way to establish the orphan freedom for an asynchronous system in comparison
with the other abstraction schemes. This is one of the advantages of using the
abstraction scheme A3 over the other abstraction schemes. In Chapter 4, we
will revisit this comparison of the abstraction schemes with the aim to find
weaker conditions (than those in Chapter 3) for a synchronous system and an
asynchronous system to be equivalent.

Chapter 3
Desynchronising a plant and its
supervisor

Recall (from Chapter 1) that our objective is to desynchronise a given syn-
chronous system, i.e., to establish that the synchronous system and its asyn-
chronous version are equivalent under suitable conditions. Considering that
the choice of buffers and the abstraction schemes contribute to varieties of
asynchronous systems, this makes the above objective a challenging one. In
principle, we would like to select a buffer and an abstraction scheme which
result in weaker conditions (than any other combination of buffer and abstrac-
tion schemes) for the equivalence to hold between a synchronous system and
its asynchronous version.

So we take a first step towards this goal by studying the equivalence problem
for the following setup. The synchronous systems are synthesised using su-
pervisory control theory, both queues and bags are used as buffers, and the
abstraction scheme A1 is used for the construction of asynchronous systems.

The synchronous systems of interests are synthesised by supervisory control
theory of Ramadge and Wonham [69]. In particular, these systems do not
contain external actions in their alphabets and are deterministic by defini-
tion (cf. [69]). These restrictions essentially simplify the required conditions
for desynchronisability. Later, in Chapter 4, we study the effects of having
external actions and non-determinism in the context of desynchronisation.

In spite of the above theoretical motive, there is also a practical reason to
study desynchronisation in supervisory control theory. In particular, the task
of implementing a supervisory controller is non-trivial, even though, there are
different theories [52, 65, 69, 79] that allow an automatic synthesis of these
controllers in the form of automata. One of the reasons for this discord is the

21

Chapter 3. Desynchronising a plant and its supervisor 22

asynchronous interaction between a plant and its supervisor in implementa-
tions, whereas the existing supervisory control theories assume synchronous
interaction. In supervisory control theory literature, this issue is known as
the inexact synchronisation problem and is considered to be a major obstacle
in applying supervisory control theory in practice (see [33]).

Finally, throughout this chapter, the abstraction scheme A1 is used in the
construction of asynchronous systems. The rationale behind the choice of A1

is that a supervisor s and the synchronous system p k s are isomorphic in the
monolithic supervisory control theory [69], modulo the difference in the type
of action labels. This is because in the synthesis of supervisors no transitions
are introduced that a plant cannot execute. As a consequence, the supervisor
model remains unaffected in the abstraction scheme A1; while, in the other
abstraction schemes (A2, A3 and A4) this fact does not hold.

3.1 Introduction to supervisory control theory

Supervisory control theory of Ramadge and Wonham [69] provides the auto-
matic synthesis of a supervisor that controls a plant in such a way that a legal
behaviour is achieved. In supervisory control theory terminology,

• the model of an uncontrolled hardware is known as the plant,

• the model that specifies the legal behaviour is known as the requirement,

• the model that forces the plant to meet the requirement by interacting
with it is known as the supervisor.

• the synchronous composition of a plant and its supervisor is known as
closed-loop system or supervised plant [57]. However, in this thesis,
we prefer the terminology synchronous system than closed-loop system.

The basic entities in Ramadge and Wonham’s supervisory control theory
(plant, requirement, and supervisor) are modelled as deterministic automata.
The alphabets of these automata are partitioned into two disjoint subsets:
controllable actions and uncontrollable actions. The idea behind this parti-
tion is that the supervisor can enable, or disable controllable actions, but it
cannot disable the uncontrollable actions of a plant. In this thesis, we follow
the input-output interpretation [8, 13] between a plant and its supervisor,
wherein the uncontrollable actions are the output messages from a plant
to a supervisor and the controllable actions are the output messages from
a supervisor to a plant. In other words, the sets of uncontrollable actions
and controllable actions are !Mp and ?Mp, respectively.

Chapter 3. Desynchronising a plant and its supervisor 23

Definition 3.1. A plant is a concrete and deterministic process p 2 P such
that Ep = ;. Similarly, a supervisor is a concrete and deterministic process
s 2 P such that Es = ;.

The conditions Ep = ; and Es = ; ensure that a plant and its supervisor
do not contain external actions. This is because in the theory of Ramadge
and Wonham a plant model contains only either controllable, or uncontrol-
lable actions. Furthermore, the synthesis procedure ensures that a supervisor
restricts the behaviour of the plant by synchronising with some of the con-
trollable actions and no extra transitions are introduced in a supervisor that
a plant cannot execute.

A requirement is a process specifying the legal interaction that must occur
while the plant and its supervisor are interacting such that a required task
(for which the supervisor is synthesised) is completed.

Definition 3.2. A requirement is a concrete and deterministic process r 2 P
such that Alph(r) �M.

Throughout this chapter, we use the letters p to denote a plant, s to denote a
supervisor, and r to denote a requirement.

Now, we can state the control problem as follows: given a plant p and a
requirement r, find a supervisor s 2 P such that

p k s $b r:

In this chapter, we are not interested in how this supervisor is computed and
rather assume that we are provided with a solution to the above equation.
Note that in supervisory control literature the control problem is usually based
on language equivalence, but branching bisimilarity coincides with language
equivalence in the presence of determinism and in the absence of � actions [31].
We use branching bisimulation as the equality in the above equation because
desynchronisation may introduce non-determinism through the abstraction of
certain interactions in the asynchronous system. Branching bisimulation then
ensures that the moments of choice that are specified in the requirement r are
also retained by the synchronous system p k s.

3.2 Desynchronisation using queues

In this section, we study the equivalence problem between a synchronous
system and its asynchronous version, where queues are used as buffers. As
already mentioned, the abstraction scheme A1 is used in the construction of
an asynchronous system from the given synthesised synchronous system.

Chapter 3. Desynchronising a plant and its supervisor 24

Definition 3.3. A synchronous system p k s is desynchronisable with respect
to the abstraction scheme A1 and queues, if p k s $b r1(p j[�; �]j s):

Throughout this chapter, by a synthesised synchronous system we mean a
synchronous system synthesised using the supervisory control theory of Ra-
madge and Wonham [69].

Proposition 3.4. If p k s is a synthesised synchronous system, then p k s
is a concrete and deterministic process.

3.2.1 Conditions of desynchronisability

In this section, we first present three conditions on a synchronous system.
Later, we show that these three conditions together form a sufficient condition
for desynchronisation with respect to the abstraction scheme A1 and queues.

Definition 3.5. A binary relation W � P � P is called a well-posedness
relation iff the following conditions are satisfied.

1. 8p1; s1; p2;m:
h
p1

!m
�! p2 ^ (p1; s1) 2 W) 9s2:

h
s1

?m
��! s2

i
^

8s2:
h
s1

?m
��! s2) (p2; s2) 2 W

i i
;

2. 8p1; s1; p2; e 2 Ep:
h
p1

e
�! p2 ^ (p1; s1) 2 W) (p2; s1) 2 W

i
;

3. 8p1; s1; s2;m:
h
s1

!m
�! s2 ^ (p1; s1) 2 W) 9p2:

h
p1

?m
��! p2

i
^

8p2:
h
p1

?m
��! p2) (p2; s2) 2 W

i i
;

4. 8p1; s1; s2; e 2 Es:
h
s1

e
�! s2 ^ (p1; s1) 2 W) (p1; s2) 2 W

i
:

Two processes p; s are said to be well-posed if there exists a well-posedness
relation W such that (p; s) 2 W.

Condition 1 and 3 assert not only that there exists a matching receive message
in the receiver, but every matching receive message in the receiver will lead
to a well-posed state. Condition 2 and 4 asserts that the execution of an
external action in p and s, respectively, will lead to a well-posed state. Note
that Condition 1 can be simplified in the following way under the assumption
of deterministic processes.

8p1; s1; p2;m:
h
p1

!m
�! p2 ^ (p1; s1) 2 W) 9s2:

h
s1

?m
��! s2 ^ (p2; s2) 2 W

i i
:

(3.1)

Chapter 3. Desynchronising a plant and its supervisor 25

Likewise, Condition 3 can be simplified under the assumption of deterministic
processes. In Definition 3.5, we defined well-posedness in a general way to
handle non-deterministic processes in Chapter 4.

Intuitively, if a sender and its receiver are not well-posed, then in a syn-
chronous system the send messages will be blocked. However, in an asyn-
chronous system, such send messages will lead to orphans, i.e., messages that
remain forever in the buffer. In turn, orphans leads to deadlocking communi-
cation (except in some pathological cases).

Proposition 3.6. Let p k s be a concrete and a well-posed synchronous
system with W being the witnessing well-posedness relation, i.e., (p; s) 2
W. Then, 8p1; s1: [p1 k s1 2 R(p k s)) (p1; s1) 2 W] :

Lemma 3.7 (Generalised well-posedness). Let p k s be a well-posed and
concrete synchronous system. Let u 2 (Ms [Es)

� and v 2 (Mp [Ep)
�.

1. If p1 k s1 2 R(p k s) and s1
!u

���� s2, then 9p2:
h
p1 k s1

u
���� p2 k s2

i
:

2. If p1 k s1 2 R(p k s) and p1
!v

���� p2, then 9s2:
h
p1 k s1

v
���� p2 k s2

i
:

Proof. Straightforward from the induction on u (v) and application of well-
posedness definition.

The next condition which we would like to discuss is called X-singular, where
X � A. Informally, a process q is X-singular if every reachable state executes
a unique element from the set X. Note that the following definition does not
exclude non-deterministic choices at a state.

Definition 3.8. Let X � A. A process q 2 P is X-singular if every reachable
state q1 2 R(q) satisfies the following condition:

8q2; q3; �1; �2 2 X:
h
q1

�1�! q2 ^ q1
�2�! q3) �1 = �2

i
:

Example 3.1. Consider the following transition systems of p1 and s1:

(fp1; p2; p3g; fp1
!m1��! p2; p1

!m2��! p3g); and

(fs1; s2; s3g; fs1
?m1��! s2; s1

?m2��! s3g):

The transition system of the synchronous system p1 k s1 and the asyn-
chronous system r1(p1 j[�; �]j s1) are shown in Figure 3.1. An attempt
to construct a branching bisimulation relation between the two systems
will fail to relate the states p1 k s1 and r1(p2 j[�;m1]j s1). This is because
the state r1(p2 j[�;m1]j s1) cannot simulate the transition p1 k s1

m2��! p3 k
s3. Thus, the deterministic choice of messages from the plant-side is

Chapter 3. Desynchronising a plant and its supervisor 26

p1 k s1

p2 k s2 p3 k s3

m1 m2

r1(p1 j[�; �]j s1)

r1(p2 j[�;m1]j s1) r1(p3 j[�;m2]j s1)

r1(p2 j[�; �]j s2) r1(p3 j[�; �]j s3)

� �

m1 m2

�

Figure 3.1: Role of the condition Cp-singular.

transformed into an internal non-deterministic choice by the abstraction
scheme A1 that cannot be resolved.

In contrast, suppose p1 k s1 $b r1(p2 j[�;m1]j s1). Then, from the transfer
conditions of branching bisimulation we have there exists q1; q2 such that

r1(p2 j[�;m1]j s1) ��� q1
m2��! q2 ^ q1 $b p1 k s1 ^ q2 $b p3 k s3:

Since, concrete processes p; s are used to construct the asynchronous sys-
tem we have q1 = r1(p4 j[�;m1:m2]j s2), for some p4 2 P such that

r1(p2 j[�;m1]j s1)
�
�! r1(p4 j[�;m1:m2]j s2):

Notice that there cannot exists a process q2 with r1(p4 j[�;m1:m2]j s2)
m2��!

q2 because queues are used as buffers and the message m2 can only be
read by s2 after it has read the message m1. Thus, this suggests that the
condition Mp-singular is also a candidate for the necessary conditions of
desynchronisation modulo $b when queues are used.

The final condition which we would like to discuss is (X;Y)-diamond prop-
erty (commonly known as diamond property), where X;Y � A. Informally,
Definition 3.9 asserts that the execution of two distinct actions � 2 X and
� 2 Y from a state in a synchronous system cannot disable the execution of
each other; furthermore, the traces �:� and �:� commute.

q1

q2 q3

q4

�1 �2

�2 �1

Figure 3.2: An illustration of Definition 3.9.

Chapter 3. Desynchronising a plant and its supervisor 27

Definition 3.9. Let X;Y � A be any two subsets of the set of actions. A
process q 2 P satisfies the (X;Y)-diamond property if every reachable state
q1 2 R(q) satisfies the following condition (see Figure 3.2):

8q2; q3; �1 2 X;�2 2 Y:
h
q1

�1�! q2 ^ q1
�2�! q3 ^ �1 6= �2

) 9q4:
h
q2

�2�! q4 ^ q3
�1�! q4

ii
:

Example 3.2. Consider the following transition systems of the processes
p1; s1: (fp1; p2; p3g; fp1

!m
�! p2; p1

?n
�! p3g) and (fs1; s2; s3g; fs1

?m
��! s2; s1

!n
�!

s3g): The transition systems of the synchronous system p1 k s1 and the

p1 k s1

p2 k s2 p3 k s3

p4 k s4

m n

mn

r1(p1 j[�; �]j s1)

r1(p2 j[�;m]j s1) r1(p1 j[n; �]j s3)

r1(p2 j[�; �]j s2) r1(p3 j[�; �]j s3)r1(p2 j[n;m]j s3)

r1(p4 j[�;m]j s3)r1(p2 j[n; �]j s4)

r1(p4 j[�; �]j s4)

� n

m �n �

m �

� m

�n

Figure 3.3: Illustration of diamond property.

asynchronous system r1(p1 j[�; �]j s1) are shown as solid lines in Fig-
ure 3.3. Observe that if we do not consider the dashed transitions in
Figure 3.3 the two transition systems are already branching bisimilar;
however, the asynchronous system is not orphan free.

In particular, the state r1(p2 j[n;m]j s3) contains non-empty queue con-
tents and there is no way to empty these contents based on the given
transition systems of p1 and s1. To this end, the (Mp;Ms)-diamond prop-
erty ensures that there exists the transitions p3 k s3

m
�! p4 k s4 (for some

p4; s4 2 P) and p2 k s2
n
�! p4 k s4 in the synchronous system. As a result,

the asynchronous system is orphan free and all the invisible transitions
in it are inert modulo $b (see Figure 3.3).

Corollary 3.10 (Generalised (X;Y) diamond property). Let X;Y � A
and suppose w1 2 X�; w2 2 Y � such that w1\w2 = ;1. Suppose a concrete

1It is assumed that the sequences are flattened into sets before applying the operation \.

Chapter 3. Desynchronising a plant and its supervisor 28

and deterministic process q 2 P satisfies the (X;Y)-diamond property. If
q1 2 R(q), q1

w1
����� q2, and q1

w2
����� q3, then 9q4:

h
q2

w2
����� q4 ^ q3

w1
����� q4

i
:

Proof. By induction on w1, w2, and application of Definition 3.9.

We are now ready to prove the main result of this section.

Theorem 3.11. Let p k s be a synthesised synchronous system such that
p; s are well-posed. If p k s is Mp-singular and satisfies the (Mp;Ms)-
diamond property, then p k s $b r1(p j[�; �]j s):

Proof. Define a relation B in the following way:

B =

��
p1 k s1;r1(p2 j[�; �]j s1)

� ��� p1 k s1 2 R(p k s) ^

r1(p2 j[�; �]j s1) 2 R(r1(p j[�; �]j s)) ^

9p02; s
0
2; p2; s2:

�
p02 k s

0
2

�
���� p1 k s1 ^ p02 k s

0
2

�
���� p2 k s2

��
:

The construction of B is based on the following idea. A reachable state p1 k
s1 2 R(p k s) in the synchronous system is related to those states in the
asynchronous system r1(p j[�; �]j s) that contain the same supervisor state s.
Next, we need to show that the relation B is a branching bisimulation relation,
which can be found in Appendix A as Theorem A.1.

It is interesting to note that the above definition of the relation B is inde-
pendent of the size of the queues attached to the processes p; s. Thus, the
preconditions in Theorem 3.11 are also sufficient for desynchronisability mod-
ulo branching bisimulation, even if queues of finite size with back-pressure are
used to construct an asynchronous system with the abstraction scheme A1.

Theorem 3.12 (Orphan freedom). Suppose a synthesised synchronous
system p k s satisfies the preconditions of Theorem 3.11. Then, the asyn-
chronous system r1(p j[�; �]j s) is orphan free.

Proof. We need to show that for every reachable state r1(p1 j[�; �]j s1) in the
asynchronous system r1(p j[�; �]j s) the following holds:

9w; p2; s2:
h
r1(p1 j[�; �]j s1)

w
���� r1(p2 j[�; �]j s2)

i
:

So pick a reachable state r1(p1 j[�; �]j s1) 2 R(r1(p j[�; �]j s)) in the asyn-
chronous system. Recall the definition of the relation B from Theorem 3.11.
We showed that if the conditions of this theorem hold then such a relation B

Chapter 3. Desynchronising a plant and its supervisor 29

exists. Thus, by definition of B we have 9p01: [(p01 k s1;r1(p1 j[�; �]j s1)) 2 B].
Furthermore, we have (construction of B):

9p02; s
0
2; s2:

�
p02 k s

0
2

�
���� p01 k s1 ^ p02 k s

0
2

�
���� p1 k s2

�
:

Next, applying Corollary 3.10 we get

9p3; s3:

�
p01 k s1

�
���� p3 k s3 ^ p1 k s2

�
���� p3 k s3

�
:

Thus, we get s1
?�

���� s3 and p1
?�

���� p3 (see Proposition 2.11 for definitions
of the sequences ?�; ?�). Using these transitions we get the desired result:

r1(p1 j[�; �]j s1) ��� r1(p3 j[�; �]j s1)
�

���� r1(p3 j[�; �]j s3):

3.3 Desynchronisation using bags

In this section, we find the conditions that ensure branching bisimulation
equivalence between the given synchronous system p k s and the asynchronous
system r1(p jf"; "gj s), where bags are used as buffers.

Definition 3.13. A synchronous system p k s is desynchronisable with re-
spect to the abstraction scheme A1 and bags, if p k s $b r1(p jf"; "gj s):

3.3.1 Condition of desynchronisability

We begin by discarding the condition Mp-singular as a first change in the
sufficient condition for desynchronisability when substituting queues by bags
as buffers. Recall the synchronous system in Example 3.1, where the con-
dition Mp-singular forbids the deterministic choices between the messages
of the process p1. This was required because the supervisor’s state s1 in
r1(p2 j[�;m1]j s1) (see Figure 3.1) cannot read the message m2 before reading
the message m1 due to the FIFO order maintained by the queues, whenever
p2

!m2��! p4 and s1
?m2��! s4, for some p4; s4 2 P. Thus, disallowing the state

r1(p2 j[�;m1]j s1) to simulate the transition p1 k s1
m2��! p2 k s2 that violates

one of the transfer conditions of the branching bisimulation relation. Note that
the above issue disappears when bags are used to desynchronise a synchronous
system because the messages are stored in an arbitrary order.

Example 3.3. Consider the synchronous system p1 k s1 of Example 3.1
and its asynchronous version r1(p1 jf"; "gj s1) with bags as buffers. The
transition system of the asynchronous system r1(p1 jf"; "gj s1) is shown as
solid lines in Figure 3.4. To relate the states p1 k s1 and r1(p2 jf";m1gj s1)

Chapter 3. Desynchronising a plant and its supervisor 30

p1 k s1

p2 k s2 p3 k s3

p4 k s4

m1 m2

m2 m1

r1(p1 jf�; �gj s1)

r1(p2 jf�;m1gj s1) r1(p3 jf�;m2gj s1)

r1(p2 jf�; �gj s2) r1(p3 jf�; �gj s3)r1(p4 jf�;m1�m2gj s1)

r1(p4 jf�;m2gj s2) r1(p4 jf�;m1gj s3)

r1(p4 jf�; �gj s4)

� �

m1 m2�

� m1

m2

m2
m1

�

�

Figure 3.4: Example 3.4 in the new asynchronous setting.

by a branching bisimulation relation, the state r1(p2 jf";m1gj s1) must
simulate the transition p1 k s1

m2��! p3 k s3. Similarly, to relate the states
p1 k s1 and r1(p3 jf";m2gj s1) by a branching bisimulation relation, the
state r1(p3 jf";m2gj s1) must simulate the transition p1 k s1

m1��! p2 k s2.
For this purpose, we require the transitions p2 k s2

m2��! p4 k s4 and p3 k

s3
m1��! p4 k s4; thus, completing the diamond in the synchronous system

p1 k s1. Consequently, all the invisible transitions in the asynchronous
system r1(p1 jf"; "gj s1) are inert modulo $b (see Figure 3.4).

Thus, the choice between the messages (say, m1;m2) of the plant process do
not disable the execution of each other, and the traces m1:m2, and m2:m1

commute. Note that this can be encoded in the (X;Y)-diamond property
(Definition 3.9) by substituting X as Mp, and Y as Mp [Ms.

Unfortunately, both well-posedness and (Mp;Mp [Ms)-diamond property are
not sufficient to guarantee an asynchronous system is orphan free when bags
are used as buffers. The following example illustrates this fact.

p1

p01 p2

p3

p4

?n1?n2

?n2

!m

s1

s2

s3

s4

!n1

!n2

?m

Figure 3.5: A plant and its supervisor in Example 3.4.

Chapter 3. Desynchronising a plant and its supervisor 31

Example 3.4. Consider the behaviour of a plant p1 and its supervisor s1
as shown in Figure 3.5.

(pj["; "]js)

r1(p1 jfn1; "gj s2)

r1(p1 jfn1 � n2; "gj s3)

r1(p2 jf"; "gj s2)

r1(p2 jfn2; "gj s3) r1(p3 jf"; "gj s3)

r1(p4 jf";mgj s3)

r1(p4 jf"; "gj s4)

r1(p
0
1 jfn1; "gj s2)

n1

n2

�

�

�

n2

�

�

m

Figure 3.6: An example showing a deadlock in the asynchronous system
that is absent in the synchronous system.

The transition system of the synchronous system p1 k s1 is:
fpi k si j i 2 [1; 3]g;

(
p1 k s1

n1�! p2 k s2; p2 k s2
n2�! p3 k s3;

p3 k s3
m
�! p4 k s4

)!
:

The transition system generated by the asynchronous r1(p jf"; "gj s) is
depicted in Figure 3.6. Since the messages in the asynchronous system
r1(p jf"; "gj s) can delay in the buffers, so the supervisor can perform the
output sequence !n1:!n2 without allowing any moves from the plant p; thus,
resulting in the state r1(p jfn1�n2; "gj s2): Now, due to the deterministic
choice between ?n1 and ?n2 at the state p1, the plant can remove the
message n2 from its input bag before the message n1 and leading the
asynchronous system into a deadlock state (shown as rounded rectangle
in Figure 3.6).

Thus, the following reordering property is designed to eliminate such scenarios.

Definition 3.14. A synchronous system p1 k s1 satisfies the reordering prop-
erty iff every reachable state p1 k s1 2 R(p k s) satisfies the following condi-
tions.

1: 8p2; s2; p3; n; �:

�
p1 k s1

�:n
����� p2 k s2 ^ p1

?n
�! p3 ^ n 2Ms ^ � 2Ms

�)

Chapter 3. Desynchronising a plant and its supervisor 32

9s3; �
0:

�
p1 k s1

n
�! p3 k s3

�0

���� p2 k s2 ^ � =� �
0
� �
;

2: 8p2; s2; s3;m; �:

�
p1 k s1

�:m
����� p2 k s2 ^ s1

?m
��! s3 ^m 2Mp ^ � 2Mp

�)

9p3; �
0:

�
p1 k s1

m
�! p3 k s3

�0

���� p2 k s2 ^ � 0 =� �

� �
:

Informally, Condition 1 of Definition 3.14 states that if the plant is willing
to receive an input ?n and the supervisor offers the message n 2 Ms after
performing the sequence of messages � 2 Ms

�, then the plant can read the
message n before reading the sequence of messages �0 such that �0 is a permu-
tation of the sequence �. This is due to the nature of bags that are inserted
between the plant and its supervisor.

Theorem 3.15. Let p k s be a synthesised synchronous system such that
p; s are well-posed. If p k s satisfies the (Mp;Mp [Ms) diamond property
and the reordering property then p k s $b r1(p jf"; "gj s).

Proof. Define a relation B in the following way:

B =

��
p1 k s1;r1(p2 jf�; �gj s1)

� ��� p1 k s1 2 R(p k s) ^

r1(p2 jf�; �gj s1) 2 R(r1(p jf"; "gj s)) ^

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p02 k s

0
2

�
���� p1 k s1 ^

� 2 S(�) ^ p02 k s
0
2

�
���� p2 k s2

i_
(C1)

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p2 k s2

�
���� p02 k s

0
2 ^

� 2 S(�) ^ p1 k s1
�

���� p02 k s
0
2

i�
: (C2)

The remainder of the proof which shows that B is a branching bisimulation
relation can be found in Appendix A as Theorem A.2.

Like in the case of queues, notice that the above definition of the relation B is
also independent of the size of bags. Thus, the preconditions of Theorem 3.15
are also sufficient for desynchronisability when bags with bounded size and
back-pressure are used.

Theorem 3.16 (Orphan freedom). Suppose a synthesised synchronous
system p k s satisfies the preconditions of Theorem 3.15. Then the asyn-
chronous system r1(p jf"; "gj s) is orphan free.

Chapter 3. Desynchronising a plant and its supervisor 33

Proof. Pick a reachable state r1(p1 jf�; �gj s1) 2 R(r1(p j["; "]j s)) in the
asynchronous system and recall the definition of the relation B from Theo-
rem 3.15. We showed that if the conditions of this theorem then such a relation
B exists. Thus, by definition of B we have 9p01: [(p01 k s1;r1(p1 jf�; �gj s1)) 2 B].

1. Either, (p01 k s1;r1(p1 jf�; �gj s1)) 2 B due to the condition in Equa-
tion C1. By Corollary 3.10 we get

9p3; s3:

�
p01 k s1

�
���� p3 k s3 ^ p1 k s2

�
���� p3 k s3

�
:

Applying Proposition 2.11 on the above transitions we get s1
?�

���� s3

and p1
?�

���� p3. Thus, we get

r1(p1 jf�; �gj s1) ��� r1(p3 jf"; �gj s1)
�

���� r1(p3 jf"; "gj s3):

2. Or, (p01 k s1;r1(p1 jf�; �gj s1)) 2 B due to the condition in Equation C2.
Similar to the previous case.

3.4 Well-posedness for free

Recall that in the supervisory control theory of Ramadge and Wonham [69]
a supervisor can enable, or disable controllable actions, but it cannot disable
the uncontrollable actions of a plant. In other words, a supervisor, by con-
struction, always has a matching receive transition for every send transition
by a plant. Thus, Condition 1 of Definition 3.5 is automatically satisfied by
the synthesis procedure of a supervisor because the supervisor is a determin-
istic process and under the assumption of determinism Condition 1 can be
simplified as the condition in Equation (3.1) (Page 24).

This observation raises a question: Is it always possible to guarantee the well-
posedness between a plant and its synthesised supervisor? In this section,
we provide two ways to ensure the well-posedness between a given plant and
its supervisor. These two solutions are different in nature: one is a synthesis
technique that establishes the well-posedness for free; while, the other uses
the Supremica tool-set [1] to ensure well-posedness.

3.4.1 Well-posedness via synthesis

The following steps are involved in our synthesis technique.

Chapter 3. Desynchronising a plant and its supervisor 34

p s p s0 =g p s

Figure 3.7: Well-posedness via synthesis.

• Given a plant p and a requirement r, synthesise a supervisor s using the
synthesis procedure of [69].

• Next, construct a new supervisor s0 as the synchronous parallel compo-
sition of the processes p and s with the renaming of messages into either,
send or receive messages (see Figure 3.7). This renaming of messages en-
sures that the new supervisor s0 and the old plant p can understand each
other’s requests. To this end, define a renaming function g : M ! A in
the following way:

g(m) =

�
!m; if m 2Ms

?m; if m 2Mp
: (3.2)

Controllability is the central notion in supervisory control theory [10, 34, 79].
In essence, it gives sufficient and necessary conditions for the existence of a
supervisor when a plant and a requirement model are given. Intuitively, it
asserts that the supervisor must always synchronise with an uncontrollable
action (or, a send message) generated by the plant.

Definition 3.17. A supervisor s is controllable with respect to a plant p if

8p1; s1; p2;m:
h
p1 k s1 2 R(p k s) ^ p1

!m
�! p2) 9s2:

h
s1

?m
��! s2

ii
:

Note that the above definition does not ensure the existence of a supervisor
if the given plant p is non-deterministic (cf. [10, 34]). Since a plant p and
its supervisor s are deterministic in Ramadge and Wonham’s framework, the
above definition is sufficient to prove the well-posedness between the plant p
and the new supervisor �g(p k s).

Theorem 3.18. Let p; s be any two concrete and deterministic processes.
If s is controllable with respect to p, then the processes p and �g(p k s) are
well-posed.

Proof. Define a binary relation W = f(p1; �g(p1 k s1)) j p1 k s1 2 R(p k s)g.
Next, we show that the relation W is a well-posed relation.

Chapter 3. Desynchronising a plant and its supervisor 35

1. When p1
!m
�! p2 and (p1; �g(p1 k s1)) 2 W. By definition of W we have

p1 k s1 2 R(p k s). And from Definition 3.20 we get 9s2:
h
s1

?m
��! s2

i
.

Thus, p1 k s1
m
�! p2 k s2. Hence, �g(p1 k s1)

?m
��! �g(p2 k s2) (because

m 2 Mp), and p2 k s2 2 R(p k s). Clearly, by definition of W we have
(p2; �g(p2 k s2)) 2 W.

2. When �g(p1 k s1)
!n
�! �g(p2 k s2) and (p1; �g(p1 k s1)) 2 W. By defini-

tion ofW we have p1 k s1 2 R(p k s). And by definition of the renaming
function g we know that p1 k s1

n
�! p2 k s2, and n 2Ms. Since, the sets

Mp;Ms are disjoint; thus, by semantics we have s1
!n
�! s2 and p1

?n
�! p2.

Clearly, we have p2 k s2 2 R(p k s). By definition of W we conclude
that (p2; �g(p2 k s2)) 2 W.

Given a plant p and its synthesised supervisor s, we showed that it is possible
to synthesise a new supervisor s0 such that it is already well-posed with the
plant p. The next theorem states that the synchronous systems p k s; p k s0
are equivalent modulo strong bisimulation (Definition B.1).

Theorem 3.19. Let p k s be a synthesised synchronous system. Let s0 =
�g(p k s). Then, p k s $ p k s0.

Proof. Define a relation in the following way:

S = f(p1 k s1; p1 k s
0
1) j p1 k s1 2 R(p k s) ^ s01 = �g(p1 k s1)g:

Next, we show that the relation S is a strong bisimulation relation.

1. When p1 k s1
�
�! p2 k s2 and (p1 k s1; p1 k s

0
1) 2 S. Since the alphabet of

a synthesised synchronous system contains elements from the set Mp [
Ms. We get the following cases:

(a) When � = m, for somem 2Mp. From semantics we have p1
!m
�! p2,

and s1
?m
��! s2. Also, by construction of S we have p1 k s1 2 R(p k

s) ^ s01 = �g(p1 k s1). From the definition of the function g we
and the given transition we get �g(p1 k s1)

?m
��! �g(p2 k s2). Let

s02 = �g(p2 k s2). Clearly, p1 k s01
m
�! p2 k s02. Finally, from the

construction of S we conclude that (p2 k s2; p2 k s02) 2 S.
(b) When � = n, for some n 2Ms. Similar to the previous case.

2. When p1 k s01
�
�! p2 k s

0
2 and (p1 k s1; p1 k s

0
1) 2 S. Since the alphabet of

a synthesised synchronous system contains elements from the set Mp [
Ms. We get the following cases:

Chapter 3. Desynchronising a plant and its supervisor 36

(a) When � = m, for some m 2 Mp. Then, from semantics we have
p1

!m
�! p2 and s01

?m
��! s02. And from the construction of S we have

p1 k s1 2 R(p k s) ^ s01 = �g(p1 k s1). Furthermore, from the
definition of g, the transition s01

?m
��! s02, the semantics of k, and the

fact s01 = �g(p1 k s1) we get p1 k s1
m
�! p02 k s2 and s02 = �g(p

0
2 k s2),

for some p02; s2 2 P. Thus, p1
!m
�! p02 ^ s1

?m
��! s2.

But, the plant p in a synthesised synchronous system is determin-
istic (cf. Proposition 3.4). Thus, p1

!m
�! p02 ^ p1

!m
�! p2) p2 = p02.

Finally, by the construction of S we have (p2 k s2; p2 k s
0
2) 2 S.

(b) When � = n, for some n 2Ms. Similar to the previous case.

3.4.2 Well-posedness via Supremica

Another alternative to establish a well-posed combination of the plant and
its supervisor is by using the “inverse-controllability” feature of Supremica
tool [1]. Intuitively, it asserts that a plant must always synchronise with the
controllable actions (or, the output messages) of a supervisor.

Definition 3.20. A plant p is inverse-controllable with respect to a super-
visor s if 8p1; s1; s2; n:

h
p1 k s1 2 R(p k s) ^ s1

!n
�! s2) 9p2:

h
p1

?n
�! p2

ii
:

Theorem 3.21. Let p; s be concrete and deterministic processes. If s is
controllable with respect to p and p is inverse-controllable with respect to
s, then p and s are well-posed.

Proof. Define a relation W = f(p1; s1) j p1 k s1 2 R(p k s)g. Then, the
result that W is a well-posed relation follows directly from the definition of
controllability, inverse-controllability, and determinism.

3.5 Related work

The main focus in the literature of supervisory control theory is to deal with
the inexact synchronisation problem is by synthesising a supervisor in the
presence of an asynchronous plant. Balemi was the first to consider this issue
in the context of supervisory control theory [13]. An input-output interpreta-
tion was adopted between a plant and its supervisor. Furthermore, a special
delay operator was introduced to model the delay in communication between
the plant and its supervisor. Although the main result of [13] was the existence
of a supervisor for an asynchronous plant, Balemi’s construction was partially

Chapter 3. Desynchronising a plant and its supervisor 37

asynchronous in nature as noticed in [80]. In [80], this requirement was re-
laxed; necessary and sufficient conditions were provided for the existence of a
controller under the presence of bounded queues.

In addition, the synthesis algorithm of [80] ensures that the synchronous sys-
tem is desynchronisable modulo language equivalence. The computational
complexity of this algorithm exponentially depends on the delay bound (apart
from being linear and quadratic on the size of plant p and requirement r, re-
spectively). This is in contrast to the desynchronisation techniques developed
in this thesis (not only this chapter), which are independent of the size of the
buffers. Thus, our approach seems to be computationally cheaper than the one
developed in [80], however this conjecture needs to be verified by analysing
the complexities associated with the conditions presented here.

3.6 Conclusions

The goal of this chapter was to examine under what conditions a supervisor
that is synthesised using supervisory control theory [69] can control an asyn-
chronous plant without constructing the transition system of an asynchronous
system. The main results obtained in this chapter are the following.

1. The conditions well-posedness, Mp-singular, and (Mp;Ms)-diamond are
sufficient for desynchronisability of a synthesised synchronous system
with respect to the abstraction scheme A1 and queues (Theorem 3.11).

2. The conditions well-posedness, (Mp;Ms [Mp)-diamond, and reorder-
ing property are sufficient for desynchronisability of a synthesised syn-
chronous system with respect to the abstraction scheme A1 and bags
(Theorem 3.15).

3. Finally, we also showed how to ensure that a given plant and its super-
visor are always well-posed (Theorem 3.18 and Theorem 3.21).

In hindsight, we found sufficient conditions in this chapter under which a
synthesised synchronous system is branching bisimilar to its corresponding
asynchronous system (in the presence of either, queues, or bags). Thus, the
synthesised supervisor can control the same plant in the presence of buffers
such that the synchronous system and its asynchronous version satisfy the
same requirements. The question whether these conditions are reasonable or
not to apply in practice is the point of the next chapter.

Chapter 4
Desynchronisation of concrete
synchronous systems

In the previous chapter, we found certain conditions on the synchronous
systems using the abstraction scheme A1 for the desynchronisation modulo
branching bisimulation. Subsequently, the following question arises: Are these
conditions reasonable to apply in practice?

Unfortunately, these conditions are too strict to apply even for the syn-
chronous systems that are synthesised from supervisory control theory. For
instance, in the case of queues, the condition Mp-singular says that a plant
must execute only a unique send-transition at every reachable state in a syn-
chronous system. Furthermore, in the case of bags, the reordering property
(an extra condition with respect to the case of queues) puts restriction on
both plant and its supervisor so that they are insensitive to the ordering of
messages.

Thus, the above observations lead us to search for a weaker collection of suffi-
cient conditions for desynchronisability than the ones obtained in the previous
chapter. This is essentially the objective of this chapter. As we know that the
construction of an asynchronous system depends upon the choice of buffers
and abstraction schemes, these two factors will play key role in achieving the
aforementioned goal.

In particular, we show that by adopting the abstraction scheme A3 and half-
duplex queues the conditionMp-singular and the diamond property disappears
from the sufficient condition of desynchronisability. Furthermore, we also
show that every synchronous system of supervisory control theory is desyn-
chronisable by construction under this setup. Note that in this chapter the
synchronous systems can contain nondeterministic choice and external actions.

39

Chapter 4. Desynchronisation of concrete synchronous systems 40

ri(p1 j[�; �]j s1)

ri(p2 j[�;m1]j s1) ri(p3 j[�;m2]j s1)

ri(p2 j[�; �]j s2) ri(p3 j[�; �]j s3)

m1 m2

� �

Figure 4.1: A way to prevent Mp-singularity, where i 2 f2; 3g.

4.1 A quest for weaker conditions

4.1.1 Why queues?

By now it is clear that we want to restrict the behaviour of an asynchronous
system so that an equivalence between the synchronous system and its asyn-
chronous version can be established. To this end, we choose queues as buffers
rather than bags because an extra condition called the reordering property
(Definition 3.14) arises due to the arbitrary order in which the messages are
stored in the case of bags. Intuitively, an asynchronous system with bags
has more behaviour than an asynchronous system with queues; hence, condi-
tion(s) to restrict the former will be stronger than the conditions to restrict
the latter.

4.1.2 Why abstraction scheme A3?

In Chapter 3, we discovered that the deterministic choices between the mes-
sages of the process p were transformed into the internal choices in the asyn-
chronous system due the abstraction scheme A1. In addition, the resulting
invisible transitions were non-inert modulo $b (see Example 3.1). One way
to prevent this – instead of imposing the condition Mp-singular – is by con-
sidering the abstraction schemes A2;A3, where the external choice between
the messages of the process p remains intact.

Reconsider the synchronous system of Example 3.1. The transition systems
of the asynchronous systems with queues and the abstraction schemes A2;A3

are shown in Figure 4.1. Observe that in both the abstraction schemes A2;A3,
the output messages !m1; !m2 of the process p1 are renamed into the messages
m1;m2; thus, the choice between m1;m2 remains visible. On the other hand,
the output messages of the process p1 are made invisible in the abstraction
schemes A1;A4; thus, the external choice between messages m1;m2 of the
process p1 is not preserved in A1;A4.

Chapter 4. Desynchronisation of concrete synchronous systems 41

Therefore, by constructing asynchronous systems using the abstraction schemes
A2, A3 it is possible to eliminate the conditionMp-singular from the sufficient
conditions for desynchronisability. However, in case of the abstraction scheme
A2, the issue of preserving the external deterministic choice is not completely
resolved. It turns out that in this case a dual version of the condition Mp-
singular, i.e., Ms-singular arises because (inherently) the abstraction scheme
A2 is a dual version of the abstraction scheme A1.

Consider the following definition of a synchronous system p1 k s1:�
fpi k si j i 2 f1; 2; 3gg; fp1 k s1

n1�! p2 k s2; p1 k s1
n2�! p3 k s3g

�
;

where n1; n2 2Ms. Notice that in the transition system1 of the asynchronous
system r2(p1 j[�; �]j s1) the choice between n1; n2 is again transformed into
an internal choice. The reason is that the output messages of the process s1
are renamed into invisible actions in the abstraction scheme A2 (compare this
with the abstraction scheme A1 and observe the duality).

On the other hand, in the abstraction scheme A3 the output messages of both
the processes p; s are renamed to the corresponding messages, i.e., elements
of the sets Mp;Ms, respectively. Thus, the choice between the messages of
processes p; s remains visible.

4.1.3 Half-duplex queues

Another property which we want to eliminate from the sufficient conditions
for desynchronisability is (Mp;Ms)-diamond property because it is hard to
establish in practice. Consider a simplified model of a drive motor (a device
used in an Automated Guided Vehicle [38]), which can move in a forward
direction ‘fwmove’, or in a backward direction ‘bwmove’. The drive motor
can only move in the forward direction in its initial state. The requirement
is to design a controller such that the event change direction ‘chdir’ always
executes before altering the direction of the motor. The models of the drive
motor, the controller, and the synchronous system are shown in Figure 4.2.
The dotted lines shows the extra transitions that are required in the syn-
chronous system to satisfy the (Mp;Ms)-diamond property. Observe that if
the synchronous system satisfies the (Mp;Ms)-diamond property, then it vio-
lates the requirement. Thus, it is impossible to satisfy the (Mp;Ms)-diamond
property in these situations unless we adapt the model of plant or supervisor,
or we adapt the way in which the desynchronisation is performed.

To encompass the application of desynchronisation, it is necessary to eliminate
the diamonds between the messages m;n when m 2 Mp, n 2 Ms. For this

1We ask the reader to verify this observation by drawing the transition system of the
asynchronous system r2(p1 j[�; �]j s1).

Chapter 4. Desynchronisation of concrete synchronous systems 42

Drive motor
Controller

Synchronous system

!chdir
?fwmove
?bwmove ?chdir

?chdir

!fwmove !bwmove

chdir

chdir
bwmove fwmove

fwmove bwmove

Figure 4.2: An illustration showing the impossibility of establishing the
diamond property in a synchronous system.

p s

Queue1

Queue2

d1

d2

Buffer

Buffer

Figure 4.3: A buffered system with the half-duplex mechanism. The dia-
monds d1; d2 represent the half-duplex condition.

purpose, we introduce the half-duplex mechanism [24], which asserts that a
sender is allowed to send a message, whenever its input queue is empty. The
modified architecture of a buffered system is shown in Figure 4.3.

Formally, a buffered system with half-duplex mechanism will be composed
by a new family of operators _ j[�; �]jh_, for every � 2 Ms

�; � 2 Mp
�. Se-

mantically, we model the half-duplex mechanism in Table 4.1 by replacing
Rules 10 and 11 from Table 2.2 with the following Rules 100 and 110, respec-
tively. Rule 120 states that the remaining rules of Table 2.2 are just inherited.
Observe that the rules are similar to those we used before (Table 2.2), except
that either the left or the right queue remains empty at all times.

Next, we argue that in the context of half-duplex mechanism, the abstrac-
tion scheme A3 will yield a less restrictive condition for desynchronisation in
comparison to the other abstraction schemes. This is essentially due to the
abstraction scheme A3 that preserves the external choices between the mes-
sages of distinct local processes present at a state in a synchronous system
upon adding buffers. The abstraction schemes A1;A2, and A4 fail to preserve
these nondeterministic choices, thus disallowing the two systems to be related
by a branching bisimulation relation. Notice that here we are highlighting the

Chapter 4. Desynchronisation of concrete synchronous systems 43

p
!m
�! p0

p j[�; �]jh s
!m
�! p0 j[�; �:m]jh s

(100)
s

!n
�! s0

p j[�; �]jh s
!n
�! p j[�:n; �]jh s

0
(110)

p1 j[�1; �1]j s1
�
�! p2 j[�2; �2]j s2; � 62!Mp[!Ms

p1 j[�1; �1]jh s1
�
�! p2 j[�2; �2]jh s2

(120) :

Table 4.1: SOS rules for the buffered systems with half-duplex queues.

preservation of an external choice between the messages of distinct local pro-
cesses ; whereas, in the previous subsection, we focused on the preservation of
an external choice between the messages of a local process.

Consider the following transition system of a synchronous system p1 k s1:�
fp1 k s1; p2 k s2; p3 k s3g; fp1 k s1

n
�! p2 k s2; p1 k s1

m
�! p3 k s3g

�
, where

n 2Ms andm 2Mp. In Figure 4.4, the transition systems induced by different
abstraction schemes are drawn. The dotted lines show an attempt to construct
a branching bisimulation relation between the synchronous system and the
asynchronous systems with the respective abstraction schemes. Observe that
a branching bisimulation relation only exists in the case of abstraction scheme
A3. For instance, consider the case of A1, where the states p1 k s1 and
r1(p3 j[�;m]jh s1) are not branching bisimilar. This is due to the half-duplex
mechanism which prevents the process s1 to send the message !n and thus,
disallowing the state r1(p3 j[�;m]jh s1) to simulate the matching message n.
Similar reasons can be given for the abstraction schemes A2 and A4.

So far, in Chapter 3, we focussed on the properties that the communicating
processes should have in order to ensure desynchronisability. Therefore, our re-
search hypothesis is that it may be possible to find better desynchronisability
conditions by changing the properties of the communication protocol. In
the remainder of this chapter, we take a first step in that direction. In partic-
ular, in the presence of half-duplex queues and the abstraction scheme A3 we
show that a synchronous system is desynchronisable modulo branching bisim-
ulation if and only if it is well-posed, strongly independent of external actions,
and input-deterministic. Moreover, we also show that by dropping the adverb
‘strongly’ and the condition input-deterministic from the above, the resulting
conditions characterises desynchronisability modulo contra-simulation.

4.2 Towards completeness of our characterisation

The following lemmas are useful in proving the completeness of our charac-
terisation.

Chapter 4. Desynchronisation of concrete synchronous systems 44

p1 k s1

p2 k s2 p3 k s3

r1(p1 j[�; �]jh s1)

r1(p1 j[n; �]jh s2) r1(p3 j[�;m]jh s1)

r1(p2 j[�; �]jh s2) r1(p3 j[�; �]jh s3)

�
n m

n �

m�

(a) A1

p1 k s1

p2 k s2 p3 k s3

r2(p1 j[�; �]jh s1)

r2(p1 j[n; �]jh s2) r2(p3 j[�;m]jh s1)

r2(p2 j[�; �]jh s2) r2(p3 j[�; �]jh s3)

�n m

� m

�n

(b) A2

p1 k s1

p2 k s2 p3 k s3

r3(p1 j[�; �]jh s1)

r3(p1 j[n; �]jh s2) r3(p3 j[�;m]jh s1)

r3(p2 j[�; �]jh s2) r3(p3 j[�; �]jh s3)

n m

n m

��

(c) A3

p1 k s1

p2 k s2 p3 k s3

r4(p1 j[�; �]jh s1)

r4(p1 j[n; �]jh s2) r4(p3 j[�;m]jh s1)

r4(p2 j[�; �]jh s2) r4(p3 j[�; �]jh s3)

�
�n m

� �

mn

(d) A4

Figure 4.4: Different behaviour induced by the abstractions schemes
A1;A2;A3, and A4 in the presence of half-duplex mechanism.

Chapter 4. Desynchronisation of concrete synchronous systems 45

Lemma 4.1. If p1 k s1
w

���� p2 k s2 then r3(p1 j[�; �]j s1)
w

���� r3(p2 j[�; �]j s2).

Proof. Straightforward by induction on w.

Lemma 4.2 states that all the invisible transitions induced by the abstraction
scheme A3 are inert modulo branching bisimulation, whenever a concrete
synchronous system is desynchronisable.

Lemma 4.2. Suppose p k s is a concrete synchronous system, p k s$t
b

r3(p j[�; �]j s), and r3(p1 j[�1; �1]j s1) 2 R(r3(p j[�; �]j s)). If

r3(p1 j[�1; �1]j s1)
�
�! r3(p2 j[�2; �2]j s2);

then r3(p1 j[�1; �1]j s1)$
t
b r3(p2 j[�2; �2]j s2).

Proof. Since p k s is a concrete process, none of the � -transitions in the
asynchronous system can be matched by any related state in the synchronous
system. Thus, all � -transitions in the asynchronous system have to be inert
modulo branching bisimulation.

Lemma 4.3 states that two synchronous systems p1 k s1; p2 k s2 are indis-
tinguishable modulo 't, whenever p1 k s1'

tr3(p2 j[�; �]j s2) and pi; si are
concrete processes (for i 2 f1; 2g).

Lemma 4.3. Let p1; s1; p2; s2 be any four concrete processes. Then,

p1 k s1'
tr3(p2 j[�; �]j s2)) p1 k s1'

tp2 k s2 :

Proof. It is easier to show the above results for strong bisimulation2 [66],
i.e., p1 k s1'

tr3(p2 j[�; �]j s2)) p1 k s1 $
t p2 k s2. Note that the desired

result follows directly from Proposition B.2, which states that for the class
of concrete processes the branching bisimulation and the contra-simulation
equivalences coincides with the strong bisimulation equivalence. To see the
former, define the following relations S't (for 't 2 f$t

b;�
t
c g):

S't =

�
(p3 k s3; p4 k s4); (p4 k s4; p3 k s3)

��� p3 k s3 2 R(p1 k s1) ^

r3(p4 j[�; �]j s4) 2 R(r3(p2 j[�; �]j s2)) ^ p3 k s3'
tr3(p4 j[�; �]j s4)

�
:

Now, it is easy (although tedious) to show that the above relations are strong
bisimulation relations. The complete proof can be found in Appendix B under
the label Lemma B.3.

2For the sake of completeness, the definition of strong bisimulation is given in the Ap-
pendix B as Definition B.1.

Chapter 4. Desynchronisation of concrete synchronous systems 46

Lemma 4.4 states that if a concrete synchronous system is desynchronisable
modulo 't, then every reachable state in the synchronous system is desyn-
chronisable modulo 't. It is this property which is key in understanding the
necessary conditions for desynchronisability modulo 't (see the next section).

Lemma 4.4. Let p; s be any two concrete processes. If p k s'tr3(p j[�; �]j s)
then, 8p1; s1: [p1 k s1 2 R(p k s)) p1 k s1'

tr3(p1 j[�; �]j s1)] :

Proof. We show the result for 't =�tc . The proof for the case 't =$t
b can

be constructed along similar lines. Without loss of generality, let p1 k s1 �tc
r3(p1 j[�; �]j s1) for some p1 k s1 2 R(p k s).

1. Suppose p1 k s1
n
�! p2 k s2, for some n 2 Ms. Then we need to show

that p2 k s2 �tc r3(p2 j[�; �]j s2). Note that the above transition is due
to Rule 2. Thus, we have p1

?n
�! p2 ^ s1

!n
�! s2. Using this transition we

get
r3(p1 j[�; �]j s1)

n
�! r3(p1 j[n; �]j s2)

�
�! r3(p2 j[�; �]j s2):

Thus, r3(p1 j[�; �]j s1)
n

���� r3(p2 j[�; �]j s2). But, from the induction
hypothesis we have p1 k s1 �tc r3(p1 j[�; �]j s1). Using the transfer con-
dition of contra-simulation and the fact that the synchronous system is
concrete we get 9p02; s02:

h
p1 k s1

n
�! p02 k s

0
2 ^ p02 k s

0
2 4

t r3(p2 j[�; �]j s2)
i
:

Since p; s are concrete processes so is p2; s2. Thus, r3(p2 j[�; �]j s2) 6
�
�!.

Applying Proposition 2.10 we get r3(p2 j[�; �]j s2) 4t p02 k s02. Hence,
p02 k s02 �tc r3(p2 j[�; �]j s2). Now, from Lemma 4.3 we have p2 k
s2 �tc p02 k s02. And from the transitivity of �tc we conclude that
p2 k s2 �

t
c r3(p2 j[�; �]j s2).

2. Suppose p1 k s1
�
�! p2 k s2, for some � 2 Mp [Ep [Es. Similar to the

previous case.

4.3 Characterisation

In this section, we first present the necessary conditions for desynchronisation
of a concrete synchronous system modulo 't. Note that we show our condi-
tions are necessary for desynchronisation modulo 't even for the full-duplex
queues. Subsequently, we prove that these conditions are also sufficient for
the desynchronisation modulo 't in the presence of a half-duplex mechanism.

4.3.1 Well-posedness

The first implication of desynchronisability modulo 't is well-posedness as
defined in Chapter 3.

Chapter 4. Desynchronisation of concrete synchronous systems 47

Theorem 4.5. Suppose p; s are concrete processes and p k s'tr3(p j[�; �]j s).
Then p; s are well-posed.

Proof. We show the result for 't =�tc . The proof for the case 't =$t
b can

be constructed along similar lines. Define a binary relation W:

W = f(p1; s1) j r3(p1 j[�; �]j s1) 2 R(r3(p j[�; �]j s))g:

Next, we need to show that W is a well-posed relation.

1. Suppose (p1; s1) 2 W and p1
!m
�! p2, for some !m 2 Mp. By defi-

nition of W we have r3(p1 j[�; �]j s1) 2 R(r3(p j[�; �]j s)). Using the
above transition we have r3(p1 j[�; �]j s1)

m
�! r3(p2 j[�;m]j s1). Thus,

r3(p2 j[�;m]j s1) 2 R(r3(p j[�; �]j s)). Since p k s �tc r3(p j[�; �]j s) so
there exists some q 2 R(p k s) such that q 4t r3(p2 j[�;m]j s1).

But,r3(p2 j[�;m]j s1)t. Using the transfer condition of contra-simulation
for the predicate t we get

9s2:
h
r3(p2 j[�;m]j s1)

�
�! r3(p2 j[�; �]j s2)

i
:

From the semantics and the construction of W we get s1
?m
��! s2 and

(p2; s2) 2 W, respectively. Thus, we showed that there exists s2 such
that s1

?m
��! s2 and (p2; s2) 2 W. But, well-posedness also asserts that

for every s2 such that s1
?m
��! s2 and (p2; s2) 2 W. So pick a s02 2 P

such that s1
?m
��! s02. Then we have r3(p2 j[�;m]j s1)

�
�! r3(p2 j[�; �]j s

0
2).

Finally, by the construction of W we conclude that (p2; s02) 2 W.

2. Suppose (p1; s1) 2 W and p1
e
�! p2, for some e 2 Ep. Then, by def-

inition of W we have r3(p1 j[�; �]j s1) 2 R(r3(p j[�; �]j s)). Using the
above transition we have r3(p1 j[�; �]j s1)

e
�! r3(p2 j[�; �]j s1). Thus,

r3(p2 j[�; �]j s1) 2 R(r3(p j[�; �]j s)) and from the construction of W we
get (p2; s1) 2 W.

3. Suppose (p1; s1) 2 W and s1
�
�! s2, for some � 2 Es [Ms. Similar to

the previous cases.

4.3.2 Input-determinism

The second implication of desynchronisability modulo$t
b is that desynchro-

nisable synchronous systems are input-deterministic.

Definition 4.6. A process p k s is input-deterministic modulo$t
b iff every

reachable state p1 k s1 2 R(p k s) satisfies the following conditions.

Chapter 4. Desynchronisation of concrete synchronous systems 48

1. for all p2; s2; p3, whenever p1 k s1
u

���� p2 k s2 and p1 k s1
u

���� p3 k s2
for some u 2 (Ms [Es)

�, then p2 k s2 $b p3 k s2.

2. for all p2; s2; s3, whenever p1 k s1
v

���� p2 k s2 and p1 k s1
v

���� p2 k s3
for some v 2 (Mp [Ep)

�, then p2 k s2 $b p2 k s3.

Intuitively, an input-deterministic synchronous system p k s make determin-
istic choices upon the reception of messages. It may perform nondeterministic
external behavior, and it may also be nondeterministic when sending mes-
sages. This is because desynchronisation only delays nondeterministic choice
on the input messages as shown in the next example.

Example 4.1. Consider the two transition systems of the processes p; s
as shown in Figure 4.5(a). The transition systems of the synchronous
system and asynchronous system are shown in Figure 4.5(b). Clearly, the

p1

p2 p3

p4 p5

s1

s2

s4 s5

?n ?n

!m1 !m2

!n

?m1 ?m2

(a) Transitions systems of processes p; s in Example 4.1.

p1 k s1

p2 k s2 p3 k s2

p4 k s4 p5 k s5

r3(p1 j[�; �]j s1)

r3(p1 j[n; �]j s2)

r3(p2 j[�; �]j s2) r3(p3 j[�; �]j s2)

r3(p4 j[�;m1]j s2)

r3(p4 j[�; �]j s4)

r3(p5 j[�;m2]j s2)

r3(p5 j[�; �]j s5)

n n

m1 m2

n

� �

m1 m2

� �

(b) Transition systems of p k s and r3(p j[�; �]j s).

Figure 4.5: The role of input-determinism in desynchronisability.

following pairs of states: (p2 k s2;r3(p1 j[n; �]j s2)), (p3 k s2;r3(p1 j[n; �]j s2))
cannot be related by a branching bisimulation relation, i.e., p2 k s2 6$t

b

r3(p1 j[n; �]j s2), p3 k s2 6$t
b r3(p1 j[n; �]j s2), respectively. This is because

the state p2 k s2 is unable to simulate the transition labelled with m2;
similarly, the state p3 k s2 is unable to simulate the transition labelled
with m1. Note that in abstraction scheme A3, reading the messages from

Chapter 4. Desynchronisation of concrete synchronous systems 49

the buffers by the local processes p; s are made invisible. Thus, the choice
made by the local process p1 will result in an internal nondeterministic
choice at the state r3(p1 j[n; �]j s1) in the asynchronous system, whereas
in the synchronous system it will result in an external nondeterministic
choice at the state p1 k s1. This is an example of delaying of choice in
the context of desynchronisation. Note that, in contrast, the synchronous
system p1 k s1 and the asynchronous system r3(p1 j[�; �]j s1) depicted in
Figure 4.5(b) are contra-similar.

At first sight, it seems obvious that Definition 4.6 can be equivalently de-
fined in the following ‘local ’ way by restricting u; v to be a message from the
process s and p (i.e., u 2 Ms and v 2 Mp) in Conditions 1 and 2, respec-
tively. Note that this formulation only leads to an equivalent formulation of
input-determinism modulo syntactical equivalence (not branching bisimula-
tion equivalence).

Definition 4.7. A synchronous system p k s is locally input deterministic
modulo = if every reachable state p1 k s1 2 R(p k s) satisfies the following
conditions.

1. for all p2; s2; p3, whenever p1 k s1
n
�! p2 k s2 and p1 k s1

n
�! p3 k s2 for

some n 2Ms, then p2 k s2 = p3 k s2.

2. for all p2; s2; s3, whenever p1 k s1
m
�! p2 k s2 and p1 k s1

m
�! p2 k s3 for

some m 2Mp, then p2 k s2 = p2 k s3.

Lemma 4.8. A concrete synchronous system p k s is locally input deter-
ministic modulo = iff it is input deterministic modulo =.

Proof. The only-if part follows directly from Definition 4.6. The if part fol-
lows by performing induction on sequences u 2 (Ms [Es)

� (v 2 (Mp [Ep)
�)

and instantiating Definition 4.7.

The next theorem states input-determinism modulo $t
b is a necessary con-

dition for desynchronisation modulo$t
b.

Theorem 4.9. If p; s are concrete processes and p k s$t
b r3(p j[�; �]j s),

then the synchronous system p k s is input-deterministic modulo$t
b.

Proof. We need to show that if p1 k s1 2 R(p k s), p1 k s1
u

���� p2 k s2,
and p1 k s1

u
���� p3 k s2 (for u 2 (Ms [Es)

�), then p2 k s2 $
t
b p3 k s2.

From Proposition 2.11, we have s1
!u

���� s2, p1
?u

���� p2, and p1
?u

���� p3.
From Lemma 4.4 we have p1 k s1 $

t
b r3(p1 j[�; �]j s1). Using the sequence

of transitions s1
!u

���� s2 we get r3(p1 j[�; �]j s1)
u

���� r3(p1 j[�; �]j s2), where

Chapter 4. Desynchronisation of concrete synchronous systems 50

� = �u. Using the sequence of transitions p1
?u

���� p2, p1
?u

���� p3 we get
r3(p1 j[�; �]j s2) ��� r3(p2 j[�; �]j s2) andr3(p1 j[�; �]j s2) ��� r3(p3 j[�; �]j s2),
respectively.

Furthermore, from Lemma 4.2 we know that these � -transitions are inert
modulo $t

b. Thus, we have r3(p2 j[�; �]j s2) $
t
b r3(p3 j[�; �]j s2). Also,

from Lemma 4.4 we have p2 k s2 $
t
b r3(p2 j[�; �]j s2) and p3 k s2 $

t
b

r3(p3 j[�; �]j s2). Hence, by transitivity we get p2 k s2$t
b p3 k s2.

Likewise, the following statement can be proven: if p1 k s1 2 R(p k s),
v 2 (Mp [Ep)

�, p1 k s1
v

���� p2 k s2, and p1 k s1
v

���� p2 k s3 then
p2 k s2$

t
b p2 k s3.

4.3.3 Independence of external actions

The last implication of desynchronisability that we discuss is independence
of external actions. Intuitively, it means that a receiver can always delay
the execution of its own external action e in favor of receiving a sequence
of messages u from the other process, without any consequence on its future
behavior, i.e., the traces e:u and u:e commute up to 't. The reception of
messages becomes independent of the external behavior in this way.

Definition 4.10. A synchronous system p k s is E-independent modulo 't,
if every reachable state p1 k s1 2 R(p k s) satisfies the following conditions
(see Figure 4.6).

1: 8p3; p4; s2; u; e:
h
e 2 Ep ^ u 2 (Ms [Es)

� ^ p1 k s1
e
�! p3 k s1

u
���� p4 k s2)

9p2; p5; s
0
2:
h
p1 k s1

u
���� p2 k s

0
2

e
�! p5 k s

0
2 ^ p4 k s2'

tp5 k s
0
2

i i
:

2: 8p2; s3; s4; v; e:
h
e 2 Es ^ v 2 (Mp [Ep)

� ^ p1 k s1
e
�! p1 k s3

v
���� p2 k s4)

9p02; s2; s5:
h
p1 k s1

v
���� p02 k s2

e
�! p02 k s5 ^ p2 k s4'

tp02 k s5
i i
:

Furthermore, a synchronous system p k s is strong E-independent modulo
't, if s02 = s2 in Condition 1 and p02 = p2 in Condition 2, respectively.

Just like in the case of input-determinism, it seems obvious that the above
definition can be equivalently defined in the following ‘local ’ way by restricting
u; v to be a message from the process s and p (i.e., u 2 Ms and v 2 Mp) in
Conditions 1 and 2, respectively. Note that this formulation only leads to an
equivalent formulation of E-independence, not strong E-independence.

Proposition 4.11. A concrete synchronous system p k s is E-independent
modulo 't iff p k s is locally E-independent modulo 't.

Chapter 4. Desynchronisation of concrete synchronous systems 51

p1 k s1

p3 k s1

p5 k s
0
2

't

p4 k s2

p2 k s
0
2

e 2 Ep u 2 (Ms [Es)
�

u e

Figure 4.6: Illustration of Condition 1 in Definition 4.10.

Proof. The if-part follows directly from Definition 4.10 by letting u 2 Ms

and v 2 Mp in Conditions 1 and 2, respectively. To prove the only-if part,

assume u = u0:� such that p1 k s1
e
�! p3 k s1

u0

���� p4 k s2
�
�! p6 k s6, for

some u0 2 (Ms [Es)
�, � 2 Ms [Es, e 2 Ep, and p4; s2 2 P. By induction

hypothesis we have

9p2; p5; s
0
2:

�
p1 k s1

u0

���� p2 k s
0
2

e
�! p5 k s

0
2 ^ p4 k s2'

tp5 k s
0
2

�
:

Now, performing case-distinction on the type of � we get the following cases:

• Let � = e0, for some e0 2 Es. Then, p4 = p6 and s2
e0
�! s6. Recall

p4 k s2'
tp5 k s

0
2 from the induction hypothesis. Since the synchronous

system p k s is concrete, then p4 k s2 $
t p5 k s02 in light of Proposi-

tion B.2. From the transfer conditions of strong bisimulation we get

9p7; s
0
6:

�
p5 k s

0
2

e0
�! p7 k s

0
6 ^ p7 k s

0
6$

t p6 k s6

�
:

Since, the sets Ep; Es are disjoint, thus by the semantics we get p5 = p7.

• Let � = n, for some n 2 Ms. Then, p4
?n
�! p6 and s2

!n
�! s6. From the

previous case we know that p4 k s2'tp5 k s02) p4 k s2$
t p5 k s

0
2. And

from the transfer conditions of strong bisimulation we get

9p7; s
0
6:
h
p5 k s

0
2

n
�! p7 k s

0
6 ^ p7 k s

0
6$

t p6 k s6
i
:

Likewise, Condition 2 of Definition 4.10 can be derived from its corresponding
local formulation.

In contrast to the above proposition, we have the following lemma for strong
E-independence modulo =.

Chapter 4. Desynchronisation of concrete synchronous systems 52

Lemma 4.12. A concrete synchronous system p k s is locally strong E-
independent of external actions iff it is strong E-independent of external
actions modulo =.

Proof. The only-if part follows directly from Definition 4.10. To prove the
if part, assume the transitions p1 k s1

e
�! p2 k s1

u
���� p02 k s2, where

p1 k s1 2 R(p k s), e 2 Ep, and u 2 (Ms [Es)
�. We show by induction on u

that there exists p3 such that p1 k s1
u

���� p3 k s2
e
�! p02 k s2. Without loss

of generality, assume u = u0:� such that p2 k s1
u0

���� p03 k s
0
2

�
�! p02 k s2, for

some p03; s02 2 P and u0 2 (Ms [Es)
� and � 2 Ms [Es. Then, by induction

hypothesis we have p1 k s1
u0

���� p3 k s
0
2

e
�! p03 k s

0
2, for some p3 2 P. Now

performing case distinction on � we get the following cases.

1. Let � = e0 for some e0 2 Es. Then, by the semantics we have p03 = p02

and s02
e0
�! s2. Using this transition at the state p3 k s02 we get p3 k

s02
e0
�! p3 k s2. But, from inductive hypothesis we have p3

e
�! p02. Thus,

p3 k s2
e
�! p02 k s2; hence, p1 k s1

u
���� p3 k s2

e
�! p02 k s2 as required.

2. Let � = n for some n 2 Ms. Then, p3 k s02
n
�! p4 k s2

e
�! p02 k s2, for

some p4 2 P. Thus, p1 k s1
u

���� p4 k s2
e
�! p02 k s2 as required.

The next theorem states that strong E-independent modulo$t
b is a necessary

condition for desynchronisation modulo$t
b.

Theorem 4.13. If p; s are concrete processes and p k s$t
b r3(p j[�; �]j s),

then p k s is strong E-independent modulo $t
b.

Proof. We need to show that if p1 k s1 2 R(p k s), e 2 Ep; u 2 (Ms [Es)
�,

p1 k s1
e
�! p3 k s1, and p3 k s1

u
���� p4 k s2, then

9p2; p5:
h
p1 k s1

n
���� p2 k s2 ^ p2 k s2

e
�! p5 k s2 ^ p4 k s2$

t
b p5 k s2

i
:

Note that the above condition is a stronger version of Condition 1 in Defini-
tion 4.10. Applying Proposition 2.11 in the transitions p1 k s1

e
�! p3 k s1

u
����

p4 k s2 we get

p1
e
�! p3 ^ p3

?u
���� p4 ^ s1

!u
���� s2: (4.1)

And, from Lemma 4.1 we get p1 k s1 2 R(p k s)) r3(p1 j[�; �]j s1) 2
R(r3(p j[�; �]j s)): Observe that using the transitions in Equation 4.1 we can
derive the transitions in the asynchronous system depicted as solid lines in
Figure 4.7, where � = u. Furthermore, from Theorem 4.5 we know that if
p k s is a concrete process and p k s$t

b r3(p j[�; �]j s) then p; s are well-posed.

Chapter 4. Desynchronisation of concrete synchronous systems 53

r3(p1 j[�; �]j s1) r3(p3 j[�; �]j s1)

r3(p1 j[�; �]j s2) r3(p3 j[�; �]j s2)

r3(p2 j[�; �]j s2) r3(p4 j[�; �]j s2)

e

e

u u

Figure 4.7: Partial transition system used in Theorem 4.13.

So let W be a well-posedness relation between p; s. Then, from Proposi-

tion 3.6 we get (p1; s1) 2 W. So, from Lemma 3.7, if s1
!u

���� s2 implies

that 9p2:
�
p1

?u
���� p2

�
. Thus, we get the transition r3(p1 j[�; �]j s1) ���

r3(p2 j[�; �]j s2) depicted as dashed line in Figure 4.7.

Now, from Lemma 4.2 we know that all invisible transitions in the asyn-
chronous system r3(p j[�; �]j s) are inert, so we have r3(p1 j[�; �]j s2) $

t
b

r3(p2 j[�; �]j s2). Using the transfer conditions of Definition 2.5 we get

9q0; q00:
h
r3(p2 j[�; �]j s2) ��� q0

e
�! q00^

q0$t
b r3(p1 j[�; �]j s2) ^ q00$t

b r3(p3 j[�; �]j s2)
i
:

But, p; s are concrete processes, so we have q0 = r3(p2 j[�; �]j s2). Since the
sets Ep; Es are disjoint, so from the semantics we know that the transition
r3(p2 j[�; �]j s2)

e
�! q00 is due to Rule 16. Thus,

9p5:
h
q00 = r3(p5 j[�; �]j s2) ^ p2

e
�! p5

i
:

Using the above transition we get p2 k s2
e
�! p5 k s2. Moreover, from above we

have r3(p5 j[�; �]j s2) $
t
b r3(p3 j[�; �]j s2) (∵ q00 = r3(p5 j[�; �]j s2) ^ q00 $t

b

r3(p3 j[�; �]j s2)). Also, from Lemma 4.2 we have

r3(p3 j[�; �]j s2)$
t
b r3(p4 j[�; �]j s2):

Thus, from transitivity we haver3(p5 j[�; �]j s2)$
t
b r3(p4 j[�; �]j s2). Further-

more, from Lemma 4.4 we have x k s2 $
t
b r3(x j[�; �]j s2) for x 2 fp4; p5g.

Hence, we can conclude that p4 k s2$t
b p5 k s2.

Chapter 4. Desynchronisation of concrete synchronous systems 54

Likewise, the following statement can be proven: if p1 k s1 2 R(p k s),
e 2 Es; v 2 (Mp [Ep)

�, p1 k s1
e
�! p1 k s3, and p1 k s3

v
���� p2 k s4, then

9s2; s5:
h
p1 k s1

v
���� p2 k s2

e
�! p2 k s5 ^ p2 k s4$

t
b p2 k s5

i
:

Theorem 4.14 demonstrates that E-independent modulo �tc is a necessary
condition for desynchronisation modulo �tc . Note that we use the weaker
form of Definition 4.10 for desynchronisation modulo �tc .

Theorem 4.14. If p; s are concrete processes and p k s �tc r3(p j[�; �]j s),
then p k s is E-independent modulo �tc .

Proof. We first show that if p1 k s1 2 R(p k s), e 2 Ep; u 2 (Ms [Es)
�,

p1 k s1
e
�! p3 k s1, and p3 k s1

u
���� p4 k s2, then

9p2; p5; s
0
2:
h
p1 k s1

u
���� p2 k s

0
2

e
�! p5 k s

0
2 ^ p4 k s2'

tp5 k s
0
2

i
:

Following the arguments of the previous proof we can derive the transitions in
asynchronous system as depicted in Figure 4.7. Furthermore, from Lemma 4.4
we have p1 k s1 �tc r3(p1 j[�; �]j s1). Using transfer conditions of Definition 2.9
we know that r3(p1 j[�; �]j s1)

u:e
����� r3(p4 j[�; �]j s2) and r3(p1 j[�; �]j s1) 4t

p1 k s1 implies 9p5; s02:
h
p1 k s1

u:e
����� p5 k s

0
2 ^ p5 k s

0
2 4

t r3(p4 j[�; �]j s2)
i
.

Since, p4; s2 are concrete processes so we have r3(p4 j[�; �]j s2) 6
�
�!. Now, from

Proposition 2.10 we get r3(p4 j[�; �]j s2) 4t p5 k s
0
2.

Thus, p5 k s02 �tc r3(p4 j[�; �]j s2). Now consider the sequence of transitions
p1 k s1

n:e
����� p5 k s

0
2: and by decomposing it in the following way we get the

desired result 9p2:
h
p1 k s1

n
�! p2 k s

0
2

e
�! p5 k s

0
2

i
.

4.3.4 Proof of sufficiency for desynchronisability

In this subsection, we prove that well-posedness, input-determinism modulo
$t

b, and strong E-independence modulo$t
b are also sufficient for desynchro-

nisation of the concrete synchronous systems modulo$t
b, whenever buffers

used are half-duplex queues (queues with half-duplex mechanism). Further-
more, we also show that dropping input-determinism modulo $t

b and sub-
stituting strong E-independence modulo$t

b by E-independence modulo �tc
results in sufficient conditions for desynchronisation modulo �tc .

Theorem 4.15. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo $t

b, and strong E-
independent modulo $t

b, then p k s$t
b r3(p j[�; �]jh s):

Chapter 4. Desynchronisation of concrete synchronous systems 55

Proof. Define a relation B in the following way:

B =
n�
p1 k s1;r3(p2 j[�; �]jh s2)

�
j p1 k s1 2 R(p k s) ^

r3(p2 j[�; �]jh s2) 2 R(r3(p j[�; �]jh s)) ^�
(� = � ^ � = �)) p1 k s1$

t p2 k s2
� _

�
(� 6= � ^ � = �)) 9p02; s

0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2 2 R(p k s) ^

p2 k s
0
2

u
���� p02 k s2 ^ � = �u ^ p1 k s1$

t p02 k s2
i� _

�
(� = � ^ � 6= �)) 9p02; s

0
2; v 2 (Mp [Ep)

�:
h
p02 k s2 2 R(p k s) ^

p02 k s2
v

���� p2 k s
0
2 ^ � = �v ^ p1 k s1$

t p2 k s
0
2

i�o
:

The remainder of the proof which shows that B is a branching bisimulation
relation can be found in Appendix B under the label Theorem B.4.

Observe that we use strong bisimulation equivalence (instead of branching
bisimulation equivalence) between the reachable states of the given concrete
synchronous system p k s in the above definition of the relation B because
branching bisimulation and strong bisimulation coincide in the class of con-
crete processes (cf. Proposition B.2). Technically, we prefer to use strong
bisimulation (instead of branching bisimulation) on the reachable states of the
given concrete synchronous systems in the proofs of Theorem 4.15 because its
transfer conditions are simpler than the ones in branching bisimulation.

The following corollary states that well-posedness, input-determinism modulo
=, and strong E-independent modulo = are also sufficient for desynchronis-
ability modulo$t

b.

Corollary 4.16. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo =, and strong E-
independent modulo =, then p k s$t

b r3(p j[�; �]jh s):

Proof. Substitute$t;$t
b by = in the proof of Theorem B.4.

Corollary 4.17. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, locally input-deterministic modulo =, and locally
strong E-independent modulo =, then p k s$t

b r3(p j[�; �]jh s):

Proof. By Lemmas 4.12,4.8 and Corollary 4.16.

Chapter 4. Desynchronisation of concrete synchronous systems 56

4.3.5 Contra-simulation

Recall Example 4.1 where the delaying of nondeterministic choices in an asyn-
chronous system forbids a branching bisimulation relation between the syn-
chronous system and its asynchronous version. However, observe that the
two transition systems in Figure 4.5(b) are contra-similar, even though the
synchronous system p1 k s1 is not input-deterministic. In this subsection, we
formally prove this observation that input-determinism is no longer required
for desynchronisation modulo contra-simulation.

Unlike in the case of branching bisimulation, we have to reason with the
multi-steps (reachability relation) _

w
���� _ (for some w 2 A�) due to the

transfer conditions of a contra-simulation relation. In the following lemmas,
we identify some properties about the asynchronous systems that are involved
with the reachability relation required to prove Theorem 4.21.

Let @s be the smallest relation on (E [M)� that is closed under the following
rules:

e:e0 @s e
0:e; n:e0 @s e

0:n; where e 2 Es; e
0 2 Ep; n 2Ms:

Similarly, let @p be the smallest relation on (E [M)� that is closed under
the following rules: e:e0 @p e0:e;m:e0 @p e0:m;where e 2 Ep; e

0 2 Es;m 2 Mp:
Let vs;vp denote the reflexive closure of the relations @s;@p, respectively.
Intuitively, w vx w0 (for x 2 fp; sg) denote that the sequence w0 can be
rewritten into the sequence w using the above rules.

Proposition 4.18. 1. Let v 2 Ep
� and e 2 Es. Then, e:v vs v:e.

2. Let u 2 Es
� and e 2 Ep. Then, e:u vp u:e.

Lemma 4.19 (Triangle lemma). Let p k s be a concrete synchronous sys-
tem.

1. If r3(p1 j[�; �]jh s1)
w

���� r3(p2 j[�; �]jh s2), then there exists p01; s
0
1 2 P,

u 2 (Es [Ms)
�, v 2 (Ep[?Mp)

� such that (see Figure 4.8)

(a) r3(p1 j[�; �]jh s1)
w1

����� r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p2 j[�; �]jh s2),

w = w1:w2, and

(b) s01
!u

���� s2; p
0
1

v
���� p2, u:(v " Ep) vs w2, and ?u = (v "?Mp):?�.

2. If r3(p1 j[�; �]jh s1)
w

���� r3(p2 j[�; �]jh s2), then there exists p01; s
0
1 2 P,

v 2 (Ep [Mp)
�, u 2 (Es[?Ms)

� such that

(a) r3(p1 j[�; �]jh s1)
w1

����� r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p2 j[�; �]jh s2),

w = w1:w2, and

Chapter 4. Desynchronisation of concrete synchronous systems 57

r3(p1 j[�; �]jh s1) r3(p
0
1 j[�; �]jh s

0
1) r3(p2 j[�; �]jh s2)

r3(p
0
1 j[u; �]jh s2)

w1 w2

u v " Ep

w

Figure 4.8: Illustration of Item 1 in Triangle lemma.

(b) s01
u

���� s2; p
0
1

!v
���� p2, v:(u " Es) vp w2, and ?v = (u "?Ms):?�.

Condition 1 of Triangle lemma states that if a state r3(p2 j[�; �]jh s2) is reach-
able from a state r3(p1 j[�; �]jh s1) with the trace w, then

1. there exists an intermediate state r3(p
0
1 j[�; �]jh s

0
1), i.e.,

r3(p1 j[�; �]jh s1)
w1

����� r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p2 j[�; �]jh s2)

such that w = w1:w2, and

2. the target state can be reached from this intermediate state by first
performing s-transitions labelled with the sequence u 2 (Es [Ms)

� and
then performing p-transitions labelled with the sequence v " Ep, where
v 2 (Ep[?Mp)

�. This is due to the half-duplex property, which disallow
the process p01 to send any message until its input queue is empty. The
sequence w2 can be rewritten into the sequence u:(v " Ep) is encoded
by the condition u:(v " Ep)w2.

Finally, the condition ?u = (v "?Mp):?� states that that a sequence of
message sent by the process s01 is equivalent to the sequence of message
received by the process p01 concatenated with the renaming messages in
the input queue of the process p. Intuitively, this condition states that
the input queue attached to the process p is lossless.

A similar explanation can be given for Condition 2 in Lemma 4.19.

Proof of Triangle lemma. We first prove the statement in Item 1 by induc-
tion on w. Assume, w = w0:� withr3(p1 j[�; �]jh s1)

w
���� r3(p2 j[�; �]jh s2)

�
�!

r3(p3 j[�1; �]jh s3). By the induction hypothesis we have there exists p01; s01 2
P, u 2 (Es [Ms)

�, v 2 (Ep[?Mp)
� such that

(a) r3(p1 j[�; �]jh s1)
w1

����� r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p2 j[�; �]jh s2), w =

w1:w2, and

Chapter 4. Desynchronisation of concrete synchronous systems 58

(b) s01
!u

���� s2; p
0
1

v
���� p2, u:(v " Ep) vs w2, and ?u = (v "?Mp):?�.

Now, based on the type of � we get the following cases:

1. When � = e, for some e 2 Es. Then, p2 = p3, �1 = �, s2
e
�! s3.

From above we have s01
!u

���� s2. Thus, s01
(!u):e

������ s3. And from
definition of the output projection function (Proposition 2.11) we know
that (!u):e =!(u:e). Let u0 = u:e. Next, we show that ?u0 = (v "Mp):?�.

?u0 =?(u:e) (from above)
=?u:?e

=(v "?Mp):?�:� (inductive hypothesis)
=(v "?Mp):?�:

Finally,

u:(v " Ep) vs w2 (inductive hypothesis)
u:(v " Ep):e vs w2:e

u:e:(v " Ep) vs w2:e (Proposition 4:18):

2. When � = e, for some e 2 Ep. Then, p2
e
�! p3, �1 = �, s2 = s3. From

above we have p01
v

���� p2. Thus, p01
v:e

����� p3. Fix, v0 = v:e. Now we
show that ?u = (v0 "?Mp):?�. This is trivial because (v:e) "?Mp = v.
Furthermore,

u:(v " Ep) vs w2

u:(v " Ep):e vs w2:e

u:((v:e) " Ep) vs w2:e (∵ (v:e) " Ep = (v " Ep):e)

u:(v0 " Ep) vs w2:e:

3. When � = n, for some n 2Ms. Similar to 1.

4. When � = � . Then, p2
?n
�! p3, � = n:�1, and s2 = s3. From above we

have p01
v

���� p2. Thus, p01
v:?n

����� p3. Fix, v0 = v:?n. Now we show
that ?u = (v0 "?Mp):?�1.

?u =(v "?Mp):?� (inductive hypothesis)
=(v "?Mp):?(n:�1) (from above we have � = n:�1)

=(v "?Mp):?n:?�1 (Proposition 2:11)

=((v:?n) "?Mp):?�1

=(v0 "?Mp):?�1:

Chapter 4. Desynchronisation of concrete synchronous systems 59

Clearly, u:(v0 " Ep) vs w2 because v0 = v:?n and (v:?n) " Ep = v.

Likewise, the statement in Item 2 can be proved.

Lemma 4.20. Suppose a concrete and well-posed synchronous system p k
s is E-independent modulo 't. Let r3(p1 j[�; �]jh s1) 2 R(r3(p j[�; �]jh s))

and r3(p1 j[�; �]jh s1)
w

���� r3(p2 j[�; �]jh s2) then,

9p3; s3:
h
p1 k s1

w
���� p3 k s3 ^ p2 k s2$

t p3 k s3
i
:

Proof. See Appendix B under the label Lemma B.5.

Theorem 4.21. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed and E-independent modulo �tc , then p k s �tc
r3(p j[�; �]jh s):

Proof. See Appendix B under the label Theorem B.6.

The following corollary states that well-posedness and E-independent modulo
= are also sufficient for desynchronisability modulo �tc .

Corollary 4.22. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed and E-independent modulo =, then p k s �tc
r3(p j[�; �]jh s):

Corollary 4.23. Let p; s be concrete processes. If the synchronous system
p k s is well-posed and E-independent modulo �tc , then r3(p j[�; �]jh s) is
orphan free.

Proof. Application of Theorem 4.21 and Theorem 2.13.

4.4 Related work

Fischer and Janssen [36] were the first to use the term ‘desynchronisation’ in
concurrency theory. They studied the equivalence problem between a syn-
chronous system and its asynchronous version in CSP process algebra [50],
where failure equivalence is the preferred equivalence between any two pro-
cesses. An asynchronous system was constructed using the abstraction scheme
A3 with bags as buffers. Although the usage of bags as buffers is not directly
mentioned in the article [36], this fact can be inferred because for each action
a unique queue of unbounded size was placed between the local processes.

Chapter 4. Desynchronisation of concrete synchronous systems 60

This work was motivated by the so-called “Foam-rubber wrapper” principle
[73], borrowed from the field of delay insensitive circuits, which states that
“a process and the same process connected with buffers are equivalent”. The
foam-rubber wrapper principle was also studied in the context of the parallel
composition operator and it was shown that an extra condition, called sender
domination, is required to preserve this principle. In the following, we give
comparisons of our work with [36].

• We present our conditions for desynchronisability over a synchronous
system p k s conjointly, in contrast with [36], where the check for the
foam rubber wrapper principle on the processes p; s was applied sepa-
rately. Although, imposing conditions on the local processes p; s allows
a modular way of asserting them; however, such a formulation leads to
stronger condition. Consider for instance the following ‘localised’ version
of input-determinism modulo$t

b.

8p1; p2; p3; n:
h
p1 2 R(p) ^ p1

?n
�! p2 ^ p1

?n
�! p3) p2$

t
b p3

i
:

8s1; s2; s3;m:
h
s1 2 R(s) ^ s1

?m
��! s2 ^ s1

?m
��! s3) s2$

t
b s3

i
:

Clearly, the above definition has the following advantage over Defini-
tion 4.6: one has check the above conditions on the local processes p; s,
while the conditions of Definition 4.6 has to be checked on the composed
system, i.e., p k s. But, note that the above formulation is stronger than
Definition 4.6 because if p1 2 R(p) then it is not necessary that this
local state is also reachable in the context p1 k _.

• One of the sufficient conditions [36, Lemma 5.3] required for a process
p to preserve the foam rubber wrapper principle is: if every reachable

state p0 has a trace ?m:!n to p00, i.e., p0
?m:!n

������ p00, then p0
!n:?m

������ p00.
We conjecture that this property can be discarded from [36] if the half-
duplex mechanism is used.

• Finally, the alphabet of the synchronous systems studied in [36] do not
contain external actions. This makes it impossible to desynchronise a
network of synchronously communication processes (see Section 6.2).

Recently, the authors in [67] (and its companion paper [71]) also study the
conditions under which synchronous interactions can be implemented using
asynchronous interactions in the context of �-calculus and Petri nets. They
concluded that any good3 encoding of synchrony within a purely asynchronous
setting introduces causal dependencies ; irrespective of the representation of
concurrent systems in either the �-calculus, or Petri nets.

3in the sense of Gorla’s five criteria for language comparison, see [41] for details.

Chapter 4. Desynchronisation of concrete synchronous systems 61

Consider the process terms p =!m+?n and s =!n+?m, where + is the alter-
native composition operator on process terms. Indeed, behaviour of the syn-
chronous system p k s is a choice between the communication actions m;n,
i.e., p k s = m + n. However, to simulate this behaviour in an asynchronous
setting one has to introduce a lock. This is due to the possibility of executing
the alternative !n (or !m) after the execution of the alternative !m (or !n). In
[67], the authors proposed a ‘sum lock’ (a syntactical approach) to simulate
a synchronous interaction in the asynchronous setting, whereas we introduce
causality in the asynchronous systems by using the half-duplex mechanism (a
semantical approach).

Another way to establish the correctness of an asynchronous system (when
queues are used as buffers) is by applying the techniques from the field of
CFSM. Arguably, the most important result in this field is by Brand and
Zafiropulo [22] which states that CFSM are Turing complete. Consequently,
properties such as reachability of states, unspecified reception, and model
checking against a temporal logic all are undecidable for a CFSM.

In the literature of CFSM, the main focus is to impose restrictions on the local
automata such that the above properties becomes decidable. For instance, if
the channel contents are piecewise regular then the reachability of states in an
asynchronous system is decidable [40]. Informally, piecewise regular languages
[40] are those recognised by nondeterministic automaton whose only nontrivial
strongly connected components are states with self-loops.

Cécé and Finkel in [24] studied a subclass of CFSM’s, which satisfies the fol-
lowing half-duplex property: every reachable state in a CFSM has atmost one
nonempty queue. It was shown that two finite state automata communicating
over unbounded queues, but with half-duplex property have a recognizable
reachability set. In other words, reachability of states in such asynchronous
systems was shown to be decidable.

Furthermore, model checking the computational tree logic CTL* 4 formulae
on such systems was shown to be undecidable in [24]. Through the desyn-
chronisation technique developed here, we have also characterised a class of
asynchronous systems, where model checking the formulae of CTL*-X (com-
putational tree logic without the next operator) is decidable. This is due to a
result by De Nicola and Vaandrager [28], where it is established that a diver-
gence blind version of stuttering equivalence on the CTL* formulae coincides
with the branching bisimulation equivalence on the processes.

In process algebraic approaches [43, 51], there is yet another abstraction
scheme to verify an asynchronous system. Fundamentally, this abstraction
scheme assumes that the communicating processes p; s have their local input

4CTL* is a logic consisting of both branching time and linear time operators, see [11] for
details.

Chapter 4. Desynchronisation of concrete synchronous systems 62

and output buffers. Then, a synchronous interaction of a message (say, m)
can be simulated in the following way:

1. The sender performs a send message !m by updating its output buffer.

2. Then, the semantics ensures that a message m from the sender’s output
buffer is transferred to the receiver’s input buffer.

3. Finally, a receiver can read the message ?m from its input buffer at its
own discretion.

Furthermore, the send and receive messages are made hidden to study the
equivalence between the synchronous system and its asynchronous version
[43]. Note that this abstraction scheme (like the abstraction schemes A1;A2,
and A4) fails to preserve deterministic choice between any two messages of a
local process. Moreover, the invisible transitions induced by this abstraction
scheme are non-inert modulo branching bisimulation. As an example, the
interested reader is referred back to the synchronous system of Example 3.1.

In hindsight, our results indicate that the study of desynchronisability should
no longer focus on the properties one needs to retain equivalence of behavior
in a certain communication context, but rather should focus on changing the
communication context in such a way that these properties actually become
attainable.

4.5 Conclusion

We conclude this chapter by recapitulating the main results obtained here. We
started out with a quest to find a weaker set of conditions for desynchronisabil-
ity than obtained in Chapter 3 and observed that two factors, namely, choice
of buffers and choice of abstraction schemes play a crucial role in achieving
the above goal.

We discarded bags in favour of queues because bags allow more behaviour
and thus, inherently lead to an extra condition called the reordering property
(Definition 3.14). The abstraction scheme A3 was chosen because it is the
abstraction scheme in which the output messages of the local processes p; s
remain observable. As a result, the external choice between the messages of
processes p; s remains intact. While in case of the other abstraction scheme,
these external choices present in the synchronous system are not preserved
by the construction of an asynchronous system as they get transformed into
internal choices (see Subsection 4.1.2).

Another property which was argued to be difficult to establish in practice
is the (Mp;Ms) diamond property (commonly known as diamond property

Chapter 4. Desynchronisation of concrete synchronous systems 63

in the desynchronisation literature cf. [13, 17, 36, 43, 73]). To this end,
we introduced the half-duplex mechanism that prevents the diamond prop-
erty on the output messages of the distinct local processes. In summary, we
showed that input-determinism modulo $t

b, well-posedness, and strong E-
independence modulo$t

b are sufficient and necessary for desynchronisation
of any concrete synchronous systems modulo branching bisimulation (Theo-
rem 4.15). Moreover, we also showed that well-posedness and E-independence
modulo �tc (i.e., by dropping the input-determinism property) are sufficient
and necessary for desynchronisation of any concrete synchronous systems mod-
ulo contra-simulation (Theorem 4.21).

Consequently, in the presence of abstraction schemeA3 and half-duplex queues,
we eliminated two sufficient conditions from Chapter 3; namely, the condition
Mp-singular and (Mp;Ms)-diamond property. Furthermore, it can be inferred
that a synchronous system synthesised using supervisory control theory is
desynchronisable modulo 't by construction when abstraction scheme A3

and half-duplex queues are used. This is because the synthesis technique of
Section 3.4 always result in well-posed combination of a plant and its super-
visor. The following theorem states this observation in a formal way.

Theorem 4.24. Let p k s be a synchronous system synthesised using the
supervisory control theory of Ramadge and Wonham. Let s0 = �g(p k s),
where g is the renaming function defined on Page 34. Then,

p k s 't p k s0 't r3(p j[�; �]jh s
0):

Unfortunately, such a result does not hold if the restriction of determinism is
dropped from the processes p; s. However, we claim that our characterisation
of desynchronisation modulo 't is effective when the given synchronous sys-
tem is finite because the reachability of states and verifying 't is decidable for
finite labelled transition systems. Moreover, Corollaries 4.16, 4.17, and 4.22
can be used for desynchronisation modulo 't in case the necessary conditions
(Definitions 4.6 and 4.10) are computationally hard to establish in practice.

Chapter 5
Desynchronisation of the
pusher-lift system

In this chapter, we apply the desynchronisation techniques developed of Chap-
ter 3 and Chapter 4 to desynchronise the pusher-lift system [75]. To this end,
we use the Supremica [1] tool to automatically synthesise a supervisor. Later,
we use the equivalence checker from the mCRL2 tool-set [45] to verify the
branching bisimulation equivalence between the synchronous system and its
asynchronous version. In summary, the work-flow depicted in Figure 5.1 is
followed to desynchronise the pusher-lift system. The transformations which
are done manually are indicated by dashed lines in Figure 5.1.

Automaton
Requirement

Supremica

Automaton
Plant

Automaton
Supervisor

Process
Suprevisor

Process
Plant

Process
Sync. system

Process
Async. system

mCRL2

Figure 5.1: Work-flow followed in Chapter 5.

We begin with the modelling of a plant and a requirement in the form of au-
tomata, whose alphabets contain only controllable and uncontrollable actions.

65

Chapter 5. Case-studies 66

Then, Supremica tool is used to generate a supervisor in the form of an au-
tomaton for this plant and requirement models. Subsequently, we manually
transformed the plant and supervisor automata to the mCRL2 specification
language as processes. At this stage, we distinguish the action labels of the
plant and its supervisor as either send message, or receive message. Recall that
the uncontrollable actions are modelled as send messages in a plant model and
the controllable actions are modelled as send messages in a supervisor model.
Then, we construct a synchronous system and its asynchronous versions as
explained in Chapter 2. Finally, the transitions systems of two systems are
compared with the help of equivalence checker from the mCRL2 tool-set.

5.1 The pusher-lift system

The pusher-lift system is adopted from the lecture notes on supervisory control
course [75]. The overall system consists of three components: first, a lift
that can go up and down; second, a pusher that can retract and extend;
third, a product holder (see Figure 5.2). The incoming arrow in Figure 5.2

Figure 5.2: The pusher-lift system [75].

indicates the arrival of a product in the system. The product holder places
it on the lift, whenever the lift is in descend position. Finally, the outgoing
arrow in Figure 5.2 indicates the processed products are pushed by the pusher,
whenever the lift is in ascended position.

The hardware components – the pusher, the product holder, and the lift –
are to be controlled by a supervisor with the manipulation of the following
variables (control signals) [75]:

• The expression push=1 signals the pusher to extend. Similarly, the
expression push=0 signals the pusher to retract.

• The expression down=0 and up = 1 signals the lift to ascend. The
expression down=1 and up = 0 signals the lift to descend. The lift
remains in its position when down=up.

Chapter 5. Case-studies 67

• Finally, the expression place=1 signals the product holder to place a
product on the lift.

We model the above expressions as actions by dropping the equality symbol.
For instance, we specify the expression push=1 as push1. The plant model
of this system is the interleaving of product model (Figure 5.3(a)), pusher
model (Figure 5.3(b)), and lift model (Figure 5.3(c)). In Figure 5.3, we use

m1m0
s_placed

r_place1

(a) Product model

m001

m110

m101

m010
r_push0

r_push0

r_push1

s_extended

r_push1

s_retracted

(b) Pusher model

m0010

m0110

m0001

m1010

m0101

m1110

m1001

m1101 r_up1

r_down0

r_up1

r_down1

r_down0

r_up0

r_down1

r_up0

s_descended

r_down0

r_down1

r_up1

r_down1

r_down1

r_up1

r_up0

r_down0

r_down0

r_up1

r_down0

r_down1

r_up0

r_up0

r_up1

s_ascended

r_up0

(c) Lift model

Figure 5.3: The plant model of the pusher-lift system.

the prefixes s_, r_, and c_ to denote a send message, a receive message,
and communication of a message, respectively, because the Supremica tool-
set forbids the use of symbols !; ?; in the specification of an automaton. The
different requirement models and the synthesised supervisor model of this
system are shown in Figure 5.4.

5.1.1 Analysis

In the following, we first apply the desynchronisation techniques of Chapter 3
and then, apply the techniques of Chapter 4 on this case-study.

Chapter 3

Table 5.1 shows the results obtained when desynchronising the pusher-lift case-
study using the techniques of Chapter 3. The second and third columns (from

Chapter 5. Case-studies 68

S3

S1S0

S2

c_down0

c_placed

c_up1c_down0

c_up1

(a) Requirement 1

S1S0

S2 c_push1c_push0

c_ascended

(b) Requirement 2

S3

S1S0

S2

c_down1

c_extended

c_up0c_down1

c_up0

(c) Requirement 3

S3

S1S0

S2

c_descended

c_place1

c_retractedc_descended

c_retracted

(d) Requirement 4

q12

q5

q13

q23

q10

q8

q11

q21

q16

q7

q17

q24

q14

q2

q15

q20

q18

q1

q19

q0

q4

q22

q3 q6

q9

BLOCKED:

r_ascended

r_descended

r_retracted

s_down1

s_push0

s_down1

s_place1

s_down1

s_up0

r_placed

s_place1

s_up0

s_up0

s_down0

s_up0

r_retracted

r_retracted

s_up1

s_down1

r_retracted

s_up0

r_retracted

s_down1

s_push0

r_descended

r_extended

s_down1

s_push0

s_push0

r_descended

s_up0

s_down1

s_down1

s_up1

s_push0

r_placed

s_down0

s_push1

s_down1

(e) Supervisor

Figure 5.4: The requirement models and the supervisor model of the
pusher-lift.

left) of Table 5.1 shows the number of states and the number of transitions
generated by the respective processes modulo $b. The column entitled as
‘Size’ indicates the size of the queues, or the bags used in the construction of
an asynchronous system. The column with the heading $b shows whether
the asynchronous systems (r1(p j[�; �]j s) and r1(p jf"; "gj s)) are branching
bisimilar to the synchronous system p k s. The second column (from right)
in Table 5.1 shows that the plant and the supervisor of this case-study are
well-posed. This fact was established by using the “inverse-controllability”
feature of Supremica tool (Theorem 3.21). The final column shows which of
the systems deadlocks.

In the case of bags as buffers, the asynchronous system r1(p jf"; "gj s) has

Chapter 5. Case-studies 69

Processes States Transitions Size $b Well-posed Deadlock
p k s 25 39 - - Yes No

r1(p j[�; �]j s) 31 50 2 No - No
r1(p jf"; "gj s) 122 251 2 No - Yes

Table 5.1: The results obtained when applying techniques of Chapter 3.

p1

p2

p3 p4

p5

p6

s1

s2

s3 s4

s5

s6

?n1

?n3
?n2

?n3 ?n2

!m

!n1

!n2 !n3

!n3 !n2

?m

?n2

Figure 5.5: A toy example illustrating deadlock in r1(p1 jf"; "gj s1).

two deadlock traces as pointed out by the tool ‘lps2lts’ from the mCRL2 tool-
set. In Example 5.1, we simulate a situation that caused a deadlock in the
asynchronous system r1(p jf"; "gj s). This is possible by understanding the
deadlocked situations caused by these two deadlock traces with the help of
‘xsim’ tool from the mCRL2 tool-set.

Example 5.1. Consider the transition systems of a plant and its super-
visor as shown in Figure 5.5. Clearly, the synchronous system p1 k s1
is deadlock free; however, the trace n1:n2:n3 leads to a deadlock in the
asynchronous system r1(p1 jf"; "gj s1). This is because the sequence of
outputs !n1:!n3:!n2 from the supervisor s1 can be read as ?n2:?n1:?n3 by
the plant p1. Observe that the synchronous system p1 k s1 does not satisfy
the reordering property (Definition 3.14), which is one of the sufficient
properties for desynchronisability when bags are used as buffers.

In view of the above discussion, we claim that the synchronous system of the
pusher-lift system do not satisfy the reordering property.

Furthermore, if we remove the self-loops from the lift model (Figure 5.3(c))
and keep the other models of plant and supervisor unchanged, then the mod-
ified synchronous system is desynchronisable modulo branching bisimulation
in the presence of bags. However, such a result is consistent only if the old syn-
chronous system and the modified synchronous system are branching bisim-
ilar. Thus, the following tasks were verified using the equivalence checker of

Chapter 5. Case-studies 70

Processes States Transitions Size $b Well-posed Deadlock
p k s 25 39 - - Yes No
p0 k s 25 39 - Yes Yes No

r1(p
0 j[�; �]j s) 31 50 2 No - No

r1(p
0 jf"; "gj s) 25 39 2 Yes - No

Table 5.2: The results for the modified Pusher-lift system, where p0 is the
modified plant model.

mCRL2 tool-set. The results obtained for the modified synchronous system
is shown in Table 5.2.

1. The old synchronous system and the modified synchronous system were
branching bisimilar (actually, the two systems are even isomorphic).

2. The modified synchronous system is desynchronisable with respect to
abstraction scheme A1 and bags bounded by size 2.

3. Finally, the modified synchronous system is not desynchronisable with
respect to abstraction scheme A1 and queues bounded by size 2.

Note that the column with the heading $t
b in Table 5.2 shows: whether

the modified synchronous system p0 k s (or, the two asynchronous systems
r1(p

0 j[�; �]j s);r1(p
0 jf"; "gj s)) and the old synchronous system p k s are

branching bisimilar?

Chapter 4

While applying the desynchronisation techniques of Chapter 3, we already
established that the original plant model p (or, the modified plant model p0)
and the supervisor model s of the pusher-lift system are well-posed. Moreover,
from Theorem 4.24 we know that the synchronous systems p k s, p0 k s are
desynchronisable under the abstraction scheme A3 and half-duplex queues.
Thus, in the context of queues, the above experimentation supports our claim
that the half-duplex mechanism and the abstraction scheme A3 are more rea-
sonable restrictions to achieve desynchronisation modulo branching bisimula-
tion than the sufficient conditions of Chapter 3.

Furthermore, we also conducted test for desynchronisability modulo branching
bisimulation on the modified synchronous system p0 k s by introducing bags
and the abstraction schemeA3

1. Unfortunately, the synchronous system p0 k s
was not desynchronisable in the presence of bags and the abstraction A3. This
suggests that the abstraction scheme A1 outperforms A3 in case of bags.

1In order to compare with the desynchronisation result obtained in the previous subsec-
tion.

Chapter 6
Some final remarks on
desynchronisation

So far we have developed a reasonable desynchronisation technique for syn-
chronous systems that consists of two communicating concrete processes. In
this chapter, we extend this technique in three orthogonal directions.

Admittedly, the choice for half-duplex communication is an odd one from the
perspective of efficiency. The half-duplex protocol essentially makes compo-
nents wait for each other, which makes communication slow. In Section 6.1,
we sketch a first step to remedy this by recognizing when actions are inde-
pendent of each other. Intuitively, independent messages satisfy the diamond
property and can therefore be processed in a full-duplex way.

Often the model of embedded system contain more than two communicat-
ing processes. In Section 6.2, we show how to desynchronise a network of
synchronously communicating processes in a compositional way.

Finally, we consider the desynchronisation of synchronous systems whose al-
phabet contains the invisible action � . In Section 6.3, we show that the con-
ditions of Chapter 4 are also sufficient for desynchronisability of non-concrete
synchronous systems.

6.1 A mix of half-duplex and full-duplex mechanisms

The goal of this section is to answer: how can a synchronous system be desyn-
chronised by relaxing the half-duplex restriction on certain output messages of
a sender without introducing any further sufficient conditions? Observe that

71

Chapter 6. Some final remarks on desynchronisation 72

this question can be reformulated as: when is it safe to execute a send message
by a sender in an asynchronous system while its input queue is non-empty?
Here, by the word ‘safe’ we mean preserving the branching bisimulation equiv-
alence between a synchronous system and its asynchronous version.

To address this issue, consider the equation p1 k s1$
t
b r3(p1 j[�; �]j s1) with

the transitions p1
!m
�! p2 and s1

!n
�! s2. Then, by the semantics of an asyn-

chronous system we can derive the following transitions:

r3(p1 j[�; �]j s1)
m
�! r3(p2 j[�;m]j s1)

n
�! r3(p2 j[n;m]j s2);

r3(p1 j[�; �]j s1)
n
�! r3(p1 j[n; �]j s2)

m
�! r3(p2 j[n;m]j s2):

We notice that the messages m;n, which are output with respect to processes
p; s execute in an independent way and form a diamond of transitions labelled
with m;n. Furthermore, if the synchronous system p1 k s1 is branching
bisimilar with its asynchronous version, such a diamond must also exist in the
synchronous system p1 k s1. Lemma 6.2 formally proves this fact.

Definition 6.1. Letm 2Mp; n 2Ms. A process p1 k s1 satisfies the predicate
♦(m;n), notation p1 k s1 j= ♦(m;n), iff the following condition holds:

8p2; s2; p3; s3:
h�
p1 k s1

m
�! p2 k s2 ^ p1 k s1

n
�! p3 k s3

�
)

9p4; s4; p5; s5:
h
p2 k s2

n
�! p4 k s4 ^ p3 k s3

m
�! p5 k s5 ^ p4 k s4$

t
b p5 k s5

ii
:

Observe the difference between the above condition and Definition 3.9. In
essence, the above formulation is nothing but the diamond property (Defini-
tion 3.9) modulo branching bisimulation.

Lemma 6.2. Let p; s be concrete processes such that p k s$t
b r3(p j[�; �]j s).

Suppose, m 2Mp; n 2Ms. Then,

8p1; s1;m; n:
h
p1 k s1 2 R(p k s)) p1 k s1 j= ♦(m;n)

i
:

Proof. We need to show that if p1 k s1 2 R(p k s), p1 k s1
m
�! p2 k s2 and

p1 k s1
n
�! p3 k s3, then 9p4; s4:

h
p2 k s2

n
�! p4 k s4 ^ p3 k s3

m
�! p4 k s4

i
. So

assume the antecedent in the above implication. Then, from semantics we
have p1

!m
�! p2, s1

?m
��! s2, p1

?n
�! p3, and s1

!n
�! s3. From Lemma 4.4 we know

that p1 k s1 $t
b r3(p1 j[�; �]j s1). Using the above derived transitions we get

the transitions depicted as solid lines in Figure 6.1.

Again, applying Lemma 4.4 we get pi k si$t
b r3(pi j[�; �]j si), for i 2 f2; 3g.

And from Lemma 4.2 we know that the invisible transitions are inert modulo
$t

b whenever the local processes p; s are concrete. Thus,

p2 k s2$
t
b r3(p2 j[�;m]j s1) and p3 k s3$

t
b r3(p1 j[n; �]j s3):

Chapter 6. Some final remarks on desynchronisation 73

r3(p1 j[�; �]j s1)

r3(p1 j[n; �]j s3) r3(p2 j[�;m]j s1)

r3(p2 j[n;m]j s3) r3(p2 j[�; �]j s2)r3(p3 j[�; �]j s3)

n m

� �m n

Figure 6.1: Partial transition system used in Lemma 6.2.

And, from Proposition 2.7 we get

9p4; s4:
h
p2 k s2

n
�! p4 k s4 ^ p4 k s4$

t
b r3(p2 j[n;m]j s3)

i
:

Likewise, 9p5; s5:
h
p3 k s3

m
�! p5 k s5 ^ p5 k s5$

t
b r3(p2 j[n;m]j s3)

i
: Finally,

from transitivity we get the desired result p4 k s4$t
b p5 k s5.

In view of Lemma 6.2, sending a message m from one local process should be
considered safe in an asynchronous system, whenever it does not disable the
sending of a message n from the other local process. Moreover, any order of
execution, i.e., traces m:n and n:m, leads to behaviourally equivalent states.
This leads to the following definition, which identifies pair of independent
messages in a synchronous system that can be safely executed.

Definition 6.3. Let p k s be a synchronous system. Define an independence
relation I �Ms �Mp:

I =
n
(n;m) j 8p1; s1:

�
p1 k s1 2 R(p k s)) p1 k s1 j= ♦(m;n)

�o
:

On the contrary, suppose in a synchronous system the above condition between
messagesm;n is impossible to satisfy then from Chapter 4 we know that these
messages should be executed in half-duplex way in the asynchronous system.

Thus, the above two opposing observations demands a semi-duplex buffering
strategy for an efficient implementation of an asynchronous system from the
perspective of performance.

To this end, we propose that at any time it is safe to send a message m by a
local process in an asynchronous system if the message m and the messages
in the input queue of the local process are independent in the sense of Defini-
tion 6.3. Formally, we lift the relation I of independent actions to a relationbI �Ms

� �Mp
� of sequences of independent actions:

(�; �) 2 bI = 8�1; �2:
h
(�1 2 � ^ �2 2 �)) (�1; �2) 2 I

i
:

Chapter 6. Some final remarks on desynchronisation 74

p
!m
�! p0; (�;m) 2 bI

p j[�; �]jI s
!m
�! p0 j[�; �:m]jI s

(22)
s

!n
�! s0; (n; �) 2 bI

p j[�; �]jI s
!n
�! p j[�; n]jI s

0
(23)

p1 j[�1; �1]j s1
�
�! p2 j[�2; �2]j s2; � 62!Mp[!Ms

p1 j[�1; �1]jI s1
�
�! p2 j[�2; �2]jI s2

(24)

Table 6.1: SOS rules for asynchronous parallel composition with a mix of
half-duplex and full-duplex communication mechanisms.

Now, a buffered system with a mix of half-duplex and full-duplex mechanisms
is denoted by p j[�; �]jI s, where � 2 Ms

�; � 2 Mp
�. The operational rules for

the family of operators _ j[�; �]jI _, parameterised by � 2 Ms
�; � 2 Mp

�,
are given in Table 6.1. Rule 22 states that a sender (say, p) can execute an
output message !m, whenever its input queue content � and the message m
are independent, i.e, (�;m) 2 bI; otherwise, the output message !m is executed
in the half-duplex way. Rule 23 is analogous to Rule 22. Rule 24 states that
the remaining rules of Table 2.2 are just inherited.

Lemma 6.4. Let p1; s1 be any two concrete and well-posed processes. Sup-
pose p1 k s1 is input-deterministic modulo$t

b and strong E-independent
modulo $t

b. If p1 k s1
u

���� p2 k s2, p1 k s1
v

���� p3 k s3, u 2 (Ms [Es)
�,

v 2 (Mp [Ep)
�, and (�u; �v) 2 bI, then

9p4; s4; p5; s5:
h
p2 k s2

v
���� p4 k s4 ^ p3 k s3

u
���� p5 k s5 ^ p4 k s4$

t p5 k s5
i
:

Proof. We first prove the following claim if p1 k s1
u

���� p2 k s2, p1 k s1
�
�!

p3 k s3, and (�u; ��) 2 bI, then
9p4; s4; p5; s5:

h
p2 k s2

�
�! p4 k s4 ^ p3 k s3

u
���� p5 k s5 ^ p4 k s4$

t p5 k s5
i
:

Without loss of generality, assume that p1 k s1
u

���� p02 k s
0
2

�0
�! p2 k s2. Then,

by induction hypothesis we have

9p04; s
0
4; p

0
5; s

0
5:
h
p02 k s

0
2

�
�! p04 k s

0
4 ^ p3 k s3

u
���� p05 k s

0
5 ^ p04 k s

0
4$

t p05 k s
0
5

i
:

We identify the following cases based on the types of �;�0.

1. Let � = e, for some e 2 Ep, �0 = e0, for some e0 2 Es. Trivial!

2. Let � = e, for some e 2 Ep, �0 = n, for some n 2 Ms. The single step
transitions from the above inductive hypothesis are shown as solid lines

Chapter 6. Some final remarks on desynchronisation 75

in Figure 6.2. Note that s02 = s04 because of Rule 3. From the transition
p02 k s

0
2

n
�! p2 k s2 we have s02

!n
�! s2. But, p1; s1 are well-posed processes,

p02 k s
0
2

p2 k s2

p6 k s2

p04 k s
0
2

p4 k s2
$t

p06 k s2
p7 k s2

$
t$

t

e

n

n
n

e

e

Figure 6.2: Case 2 in Lemma 6.4.

so assume a well-posed relation W such that (p1; s1) 2 W. And from
Proposition 3.6 we have (p04; s02) 2 W. By applying Definition 3.5 we get
9p4:

h
p04

?n
�! p4

i
. Thus, we get (see Figure 6.2) p04 k s02

n
�! p4 k s2.

Now, applying strong version of Definition 4.10 at the state p02 k s02 we get
(see Figure 6.2) 9p6; p06:

h
p02 k s

0
2

n
�! p6 k s2

e
�! p06 k s2 ^ p06 k s2$

t p4 k s2
i
.

Under concreteness assumption input determinism gives us p2 k s2 $t

p6 k s2. And from transfer conditions of strong bisimulation we get

9p7:
h
p2 k s2

e
�! p7 k s2 ^ p06 k s2$

t p7 k s2
i
:

Thus, by transitivity we get p7 k s2 $t p4 k s2. Recall from induction
hypothesis that p04 k s02$

t p05 k s
0
5. Again, from the transfer conditions of

strong bisimulation we get 9p5; s5:
h
p05 k s

0
5

n
�! p5 k s5 ^ p4 k s2$

t p5 k s5
i
.

Finally, by transitivity we get the desired result p7 k s2$t p5 k s5.

3. Let � = m, for some m 2 Mp, �0 = e0, for some e0 2 Es. Similar to the
previous case.

4. Let � = m, for some m 2Mp, �0 = n, for some n 2Ms. Similar to Case
2, use Definitions 6.1, 6.3 instead of Definition 4.10.

Likewise, the main statement can be proved by assuming v = v0:� for some
� 2 Ep [Mp.

The next theorem states that a synchronous system satisfying well-posedness,
input-determinism, and strong E-independence properties is desynchronisable
modulo branching bisimulation even if semi-duplex buffering strategy is used
instead of half-duplex mechanism.

Theorem 6.5. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo $t

b, and strong E-
independent modulo $t

b, then p k s$t
b r3(p j[�; �]jI s):

Chapter 6. Some final remarks on desynchronisation 76

Proof. See Theorem C.1.

Like the previous theorems on desynchronisability of Chapter 4, the above
theorem is also independent of the size of queues.

Corollary 6.6. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo =, and strong E-
independent modulo =, then p k s$t

b r3(p j[�; �]jI s):

Corollary 6.7. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo $t

b, and strong E-
independent modulo$t

b, then p k s$t
b r3(p j[�; �]jh s)$

t
b r3(p j[�; �]jI s):

6.2 Desynchronising a network of synchronously
communicating processes

Often, a model of an embedded system is built by the synchronous parallel
composition of more than two local processes. Consider a network of three
processes communicating synchronously s1 k p k s2, as shown in Figure 6.3.
We assume that the set of external actions of the processes p; s1; s2 are pairwise
disjoint, i.e., Ep\Es1 = ;; Ep\Es2 = ;; and Es1\Es2 = ;: Likewise, we assume
the set of messages of the processes p; s1; s2 are also pairwise disjoint.

p s2s1

Figure 6.3: An illustration of a network of three processes communicating
synchronously.

Conceptually, this network can be desynchronised in three steps:

• First, desynchronise the synchronous system p1 k s1 captured by dashed
lines in Figure 6.3, where p1 = �f1(p) and

f1(�) =

�
e!m; if � =!m^?m 2 Alph(s2);
e?n; if � =?n^!n 2 Alph(s2):

: (6.1)

Intuitively, with the renaming function f1 we mask the interactions be-
tween the process p and s2. At this stage, we just want to decouple the
synchronous interactions between the process p and s1. Now, check for
desynchronisability on the synchronous system p1 k s1.

Chapter 6. Some final remarks on desynchronisation 77

• Second, construct a new synchronous system p2 k s2, where p2 =
�f2(p1 k s1) and

f2(�) =

(
f�11 (�); if � = e!m _ � = e?n;
em; if � = m ^m 2 Alph(p1 k s1):

: (6.2)

Informally, the renaming function f2 enables the masked interactions
between the process p; s2, and renames the communication actions into
external actions, which are generated by the synchronous execution of
the processes p1 and s1.

• Finally, desynchronisation of the complete network can be attained as
shown in the following derivation, where f is the renaming function
defined as f(em) = m.

(s1 k p) k s2

$t
b �f (�f2(s1 k p1) k s2); (Lemma 6:8)

$t
b �f (�f2(r3(p1 j[�; �]jh s1)) k s2); (Desynchronisation of s1 k p1)

$t
b �f (p2 k s2);

�
p2 = �f2(p1 k s1)$

t
b �f2(r3(p1 j[�; �]jh s1))

�
;

$t
b �f (r3(p2 j[�; �]jh s2)) (Desynchronisation of p2 k s2):

Note that in the last step of the above derivation we can also substitute
the process r3(p2 j[�; �]jh s2) by the process r3(p2 j[�; �]jI s2) because
of Corollary 6.7. As a result, on the one hand, we introduce between
half-duplex queues between the processes p; s1. On the other hand,
we introduce a mix of half-duplex and full-duplex queues between the
processes p; s2. Such a choice in the design of this network can result in
an efficient implementation of this network.

Alternatively, one can also first desynchronise the parallel composition of the
processes p and s2. Later, this desynchronised process under suitable renaming
can be composed with the process s1 to desynchronise the network s1 k p k s2.

Lemma 6.8. Let p; s1; s2 be any three concrete processes with the process
s1 k p k s2 representing the network in Figure 6.3. Let f1; f2 be the renam-
ing functions as defined in Equation 6.1 and Equation 6.2, respectively.
Then, s1 k p k s2$t �f (�f2(s1 k �f1(p)) k s2).

Proof. Define a binary relation S in the following way:

S =
n�

s3 k p1 k s4; �f (�f2(s3 k �f1(p1)) k s4)
�
j s3 k p1 k s4 2 R(s1 k p k s2)

o
:

Next, we show that S is a bisimulation relation.

Chapter 6. Some final remarks on desynchronisation 78

1. Let s3 k p1 k s4
�
�! s5 k p2 k s6, (s3 k p1 k s4; �f (�f2(s3 k �f1(p1)) k s4))

2 S. Now, based on the type of � we get the following cases:

(a) Let � 2 Ep [Es1 [Es2 . Trivial!
(b) Let � = m, for some m 2 Mp. Then, this communication action

is due to the synchronous interaction between the processes p1 and
s3 (or s4) because of the network topology in Figure 6.3.

i. Interaction with s3. Then, we have p1
!m
�! p2, s3

?m
��! s5, and

s4 = s6. By definition of f1 we get �f1(p1)
!m
�! �f1(p2) because

?m 2?Ms1 , and ?Ms1\?Ms2 = ;. Thus, s3 k �f1(p1)
m
�! s5 k

�f1(p2). And, from definition of f2 we get �f2(s3 k �f1(p1))
em��!

�f2(s5 k �f1(p2)). From Rule 3 we get �f2(s3 k �f1(p1)) k s4
em��!

�f2(s3 k �f1(p1)) k s4. Furthermore, applying definition of f
we get �f (�f2(s3 k �f1(p1)) k s4)

m
�! �f (�f2(s5 k �f1(p2)) k s4).

Finally, from the construction of S we conclude that

(s5 k p2 k s4; �f (�f2(s5 k �f1(p2)) k s4)) 2 S:

ii. Interaction with s4. Then, we have p1
!m
�! p2, s3 = s5, and

s4
?m
��! s6. By definition of f1 and Rule 8 we get �f1(p1)

e!m��!
�f1(p2) because ?m 2?Ms2 and ?Ms1\?Ms2 = ;. And from
Rule 4 we get s3 k �f1(p1)

e!m��! s3 k �f1(p2). Now, by definition
of f2 and Rule 8 we get �f2(s3 k �f1(p1))

!m
�! �f2(s3 k �f1(p2)).

Furthermore, from Rule 1 we get

�f2(s3 k �f1(p1)) k s4
m
�! �f2(s3 k �f1(p2)) k s6:

Thus, �f (�f2(s3 k �f1(p1)) k s4)
m
�! �f (�f2(s3 k �f1(p2)) k s6).

Finally, by the construction of S we conclude that

(s3 k p2 k s6; �f2(s3 k �f1(p2)) k s6) 2 S:

(c) Let � = n, for some n 2Ms1 [Ms2 . Similar to the previous case.

2. Let (s3 k p1 k s4)t and (s3 k p1 k s4; �f2(s3 k �f1(p1)) k s4) 2 S. Trivial.

3. Let �f2(s3 k �f1(p1) k s4)
�
�! �f2(s5 k �f1(p2) k s6) and (s3 k p1 k s4;

�f2(s3 k �f1(p1)) k s4) 2 S. Similar to Case 1.

4. Let (�f2(s3 k �f1(p1) k s4))t and (s3 k p1 k s4; �f2(s3 k �f1(p1)) k s4) 2
S. Trivial.

Unfortunately, the above technique fails to desynchronise a network, if the
network topology contains a cycle. Consider a network of three synchronously
communicating processes as shown in Figure 6.4. Suppose we begin with

Chapter 6. Some final remarks on desynchronisation 79

p

s2

s1

Figure 6.4: An illustration of a network with a cycle.

desynchronisation of the synchronous system depicted as the dashed rectangle
in Figure 6.4. At this stage one should not only mask the interactions between
the processes p; s2, but, also the interactions between the processes s1; s2. For
this reason, we define the following renaming functions f3; f4:

f3(�) =

�
e!m; if � =!m; !m 2 Alph(p) [Alph(s1); ?m 2 Alph(s2);
e?n; if � =?n; ?n 2 Alph(p) [Alph(s1); !n 2 Alph(s2):

: (6.3)

f4(�) =

(
f�13 (�); if � = e!m _ � = e?n;
em; if � = m ^m 2 Alph(p1 k s1):

: (6.4)

Now, desynchronisability of the complete network can be shown by the fol-
lowing derivation, where f is the renaming function defined as f(em) = m.

s1 k p k s2

$t
b �f (�f4(�f3(s1) k �f3(p)) k s2) (Lemma 6:9);

$t
b �f (�f4(r3(�f3(p) j[�; �]jh �f3(s1))) k s2)

(Desynchronisation of �f3(s1) k �f3(p));
$t

b �f (�f4(p2 k s2))

(p2 = �f4(�f3(s1) k �f3(p)); and the above desynchronisation);
$t

b �f (�f4(r3(p2 j[�; �]jh s2))):

Lemma 6.9. Let p; s1; s2 be any three concrete processes such that the
process s1 k p k s2 represents the network in Figure 6.4. Let f3; f4 be
the renaming functions as defined in Equation 6.3 and Equation 6.4,
respectively. Then, s1 k p k s2$t �f (�f4(�f3(s1) k �f3(p)) k s2).

Proof. Define a binary relation S in the following way:

S =
n�

s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)
�
j

s3 k p1 k s4 2 R(s1 k p k s2)
o
:

Chapter 6. Some final remarks on desynchronisation 80

Next, we show that the relation S is a bisimulation relation.

1. Let s3 k p1 k s4
e
�! s5 k p2 k s6, for some e 2 Es3 [Ep1 [Es4 , and�

s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)
�
2 S. Trivial.

2. Let s3 k p1 k s4
m
�! s5 k p2 k s6, for some m 2 Mp [Ms1 [Ms2 , and�

s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)
�
2 S.

(a) Let m 2 Ms1 . Then, from the network topology we know that
this communication action is due to the interaction between either
processes p1; s3, or s3; s4. Thus, we get the following cases:

i. Let p1
?m
��! p2, s3

!m
�! s5, and s4 = s6. Similar to Case 1(b)i of

Lemma 6.8.
ii. Let p1 = p2, s3

!m
�! s5, and s4

?m
��! s6. Then, we have

�f3(s3)
e!m��! �f3(s5) (Rule 8; s3

!m
�! s5);

�f3(s3) k �f3(p1)
e!m��! �f3(s5) k �f3(p1) (Rule 3);

�f4(�f3(s3) k �f3(p1))
!m
�! �f4(�f3(s5) k �f3(p1))

(Rule 8; Definition of f4);

�f4(�f3(s3) k �f3(p1)) k s4
m
�! �f4(�f3(s5) k �f3(p1)) k s6;

�f (�f4(�f3(s3) k �f3(p1)) k s4)
m
�! �f (�f4(�f3(s5) k �f3(p1)) k s6):

Finally, from the construction of S we conclude that�
s5 k p1 k s6; �f (�f4(�f3(s5) k �f3(p1)) k s6)

�
2 S:

(b) Let m 2Mp. Similar to Case 2a.
(c) Let m 2Ms2 . Similar to Case 2a.

3. Let (s3 k p1 k s4)t,
�
s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)

�
2 S.

Trivial!

4. Let �f (�f4(�f3(s3) k �f3(p1)) k s4)
�
�! �f (�f4(�f3(s5) k �f3(p2)) k s6), and�

s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)
�
2 S. Similar to Case 2.

5. Let �f (�f4(�f3(s3) k �f3(p1)) k s4)t, and�
s3 k p1 k s4; �f (�f4(�f3(s3) k �f3(p1)) k s4)

�
2 S. Trivial!

Ideally, one would like to generalise the above two desynchronisation tech-
niques for a network of three processes to any arbitrary number k of processes,
for k � 3. However, we refrain from doing this because the renaming functions

Chapter 6. Some final remarks on desynchronisation 81

which are required to construct modular synchronous systems from a given
network depends upon the network topology.

6.3 Synchronous systems with invisible transitions

In certain situations, it is necessary to consider some activity of processes as
internal and unobservable. Such activities can be modelled by the so-called
invisible transitions. The purpose of invisible transitions in a synchronous sys-
tem can be either to hide certain details, or to add impurities in the behaviour
of a synchronous system (for instance, a plant entering into an undesirable
state without informing its supervisor).

However, the introduction of invisible transitions in a synchronous system
contradicts with our assumption on a synchronous system. In particular, it
is impossible to know from the semantics (Table 2.1) whether the process
p1, or1 s1 performed an invisible transition, whenever the synchronous system
p1 k s1 executes invisible transition. Such information is vital in the definition
of witnessing branching bisimulation, or contra-simulation relations between
a synchronous system, and its asynchronous version.

One way to circumvent this problem is by renaming the label � of every
invisible transitions present in the processes p and s by the labels �p and �s,
respectively. Furthermore, by assuming that the labels �p; �s are present in
the external actions of the local processes p; s, respectively, the conditions
of Theorem 4.15 (Theorem 6.5) can still be used to assert whether a non-
concrete synchronous system is desynchronisable or not. However, despite this
soundness result, more research is required in order to examine to what extent
are these conditions necessary in the absence of concreteness assumption.

1The word ‘or’ is used in the exclusive sense.

Chapter 7
Hierarchical compositional
interchange format

In this chapter, we focus on the issue of refinement of states in a model of
a hybrid system that contains both discrete and continuous dynamics. The
idea is to facilitate the top-down development of a hybrid system in the Com-
positional Interchange Format (CIF) [7], just like the statecharts [47] and the
hierarchical automata [61] are used in the development of discrete systems.

CIF is a modeling language [14, 15] based on hybrid automata [48], which aims
to establish interoperability among a wide range of formalisms and associated
tools for the specification of hybrid and timed systems. This is accomplished
by means of model transformations to and from CIF to avoid the implemen-
tation of many bilateral translators. The CIF language contains the following
features.

• A CIF automaton contains three kind of predicates at every location.
First, the initial conditions in an automaton are specified by the ini-
tialisation predicate, written as init. Second, the time can progress
predicate, written as tcp, that specifies the conditions under which time
can progress in a location. Finally, the predicate inv which specifies the
invariant that must hold in a location of a CIF automaton.

• Communication among CIF automata is done by common action labels
and shared variables.

• The variable scope operator is used to specify local variables in a CIF
automaton and the action scope operator defines which actions are to
be made hidden in a CIF automaton.

83

Chapter 7. Hierarchical compositional interchange format 84

• An initialization operator for restricting the initial conditions of vari-
ables. This allows initialization on a more global level as compared to
the init predicate of a CIF automaton.

• A synchronization operator ensures an action is executed synchronously
in a parallel composition.

• An urgency operator for declaring actions as urgent.

Although there exists many frameworks [3, 29, 30, 46, 60] that allow hierar-
chical description of a hybrid system; however, these frameworks either do
not have formal semantics or the formal semantics of these frameworks are
not based on the Structural Operational Semantics (SOS) [68]. There are two
reasons for having the formal semantics based on SOS.

First, this allows the semantics of our new language to be inline with the
semantics of CIF. As a result, the existing simulation tools for validating a
model of an hybrid system can be reused upon eliminating the hierarchy.
Second, usually, the model transformations to and from CIF are not only to
be executed on ‘complete’ models, but also on components of bigger models.
Thus, it is crucial that bisimulation equivalence is a congruence for all the
constructs of the CIF. This is guaranteed by the process-tyft format on the
SOS rules of Mousavi et al. [62].

For this purpose, we define the semantics of a hierarchical hybrid automaton
in a compositional manner, by referring only to the transition system of the
substructures and not to their syntactic representation. This compositional
introduction of hierarchy allows us to keep the semantics of the Hierarchical
CIF (HCIF) operators almost unchanged with respect to their CIF versions.
Note that the previous works [27, 54, 61] on the semantics of hierarchical
automata requires tree-structure on the set of locations. Consequently, ad-
ditional concepts from tree-structures, like least common ancestors, children
of a location, etc., complicate the semantics and thus, bringing considerable
differences between the semantics of CIF and HCIF [20].

This chapter is organised as follows. In Section 7.1 we describe the formal
syntax of HCIF formalism. Section 7.2, we describe our semantic framework
consisting of hybrid transition system, valuation, trajectories, etc. in detail. In
Section 7.3, we give the SOS rules for all the constructs of HCIF and explain it
intuitively with examples. In Section 7.4, we give linearisation procedure that
eliminates hierarchy from a subclass of HCIF models. Lastly, in Section 7.5,
we describe the patient support system in HCIF, which is used in medical
diagnosis to position a patient in a Magnetic Resonance Scanner (MRI).

Chapter 7. Hierarchical compositional interchange format 85

7.1 Syntax of HCIF

In this section, we describe the mathematical syntax of HCIF and illustrate it
by modelling a controller of a simplified patient support table attached to a
MRI scanner, which is discussed in more detail in Section 7.5. Note that in this
section we give an incomplete description of the controller model to illustrate
the various concepts involved in the definition of a hierarchical automaton.

Horizontal

inv : xv = 1

UpOut

inv : xh = �1 ^
xv = 1

Vertical

inv : xh = �1

when s = 0

when s = +1 when s = 0

when s = �1

Normal

Figure 7.1: Movement control.

Figure 7.1 gives an informal, graphical representation of a HCIF automaton,
which models a controller of a patient support table. The control operates in
one of the following three modes:

1. Horizontal : horizontal movement of the table.

2. UpOut : table fully up and out.

3. Vertical : vertical movement of the table.

Every location has an initialization predicate, an invariant predicate, and a
time can progress predicate associated to it. The initialization predicate of
a location l describes the constraints that the initial values of variables must
satisfy for an execution to start in l. Such locations for which the initialization
predicate is true are called active locations. The invariant of a location `
is a predicate that must hold as long as the location ` is one of the active
locations of the system. The time can progress predicate of a location ` is a
predicate that must hold during time delays when ` is an active location.

In Figure 7.11, the location UpOut has true as the initialization predicate,
and the time can progress predicate and the predicate xh = �1 ^ xv = 1 as
the invariant. Time can progress predicates are in general useful for triggering
the execution of an action from a location within a certain period of time. For
instance, an action a must be executed when the clock value has reached 2
units of time (see Figure 7.4(a)).

1Table 7.1 describes the conventions followed throughout this chapter.

Chapter 7. Hierarchical compositional interchange format 86

Edges represent discrete changes in the computational state of a system. An
edge has a source and a target location whose execution results in a change
of active location (unless the edge is a self loop). The automaton of Figure 7.1
has four edges in total among the locations Horizontal, UpOut, and Vertical.

Every edge contains a predicate called guard that determines when an action
can be executed, a set of jumping variables that specify the variables that
are changed by the action, and a predicate called update that determines how
these model variables can change. Edges are labeled by actions that may be
used to synchronize the behavior of automata in a parallel composition. In
Figure 7.1, the edge from the location UpOut to the location Horizontal has
the guard s = 1, update predicate true, empty set of jumping variables, and
the silent action label � .

Formally, the set of locations in a HCIF automaton is denoted by L and its
alphabet is denoted as usual by A. In HCIF, there are three types of variables:
regular variables, denoted by the set V ; the dotted versions of those variables,
which belong to the set _V = f _x j x 2 V g; and the step variables, which belong
to the set fx+ j x 2 V [_V g. The notation x+ is used to refer to the value of
the variable x after the execution of an action. Furthermore, the variables can
be classified according to their evolution (i.e. how their values change during
time delays). In particular, we distinguish between discrete variables (such as
s in Figure 7.1), whose values remain constant during time delays, so that the
values of their dotted versions are always 0; and continuous variables (such as
xh and xv in Figure 7.1), whose values evolve as a continuous function of time
during delays and their dotted versions represent their derivatives.

The values of the variables belong to the set � that contains, among others,
the sets B (booleans) and R (reals). The predicates representing the guards,
time can progress, invariant, and initialization predicates are taken from the
set P and the predicates representing the update predicates are taken from
the set P+. The exact syntax and semantics of predicates are defined in [7].
The predicates P and P+ are the terms of the language of predicate logic [70],
where for P the variables are taken from the set V [_V and for P+ the variables
are taken from the set V [_V [fx+ j x 2 V [_V g. Lastly, Expr denotes the
set of all expressions over variables V [_V .

StoppedIn

inv : _xh = 0
Middle

inv : _xh = s
StoppedOut

inv : _xh = 0

when s = �1

when s = +1when x = +1 ^ s � 0

when x = �1 ^ s � 0

Horizontal

Figure 7.2: Horizontal movement.

Chapter 7. Hierarchical compositional interchange format 87

Locations can contain other automata (or compositions of them, as we show
in Section 7.5). In Figure 7.1 the location Horizontal contains the automaton
shown in Figure 7.2, that defines the horizontal movement of the controller in
more detail. Automata that are contained inside other locations are referred to
as sub-automata, or sub-structure, and the containing automata are referred
to as super-automata, or super-structure. In a HCIF automaton, there are
two types of edges: non-disruptive edges (for brevity, we refer to a non-
disruptive edge as an edge) and disruptive edges. Intuitively, an edge is
executed from a location if the sub-structure at that location is terminating,
while a disruptive edge can be executed even if the sub-structure at that
location is non-terminating. Note that the conditions under which an edge,
or a disruptive edge can be executed depend on several other factors, which
are defined in Section 7.3.

In addition to the initialization, the invariant, and the time can progress predi-
cates, each location has a termination predicate which defines when execution
can terminate in that location. Termination predicates are useful to specify
when the super-structure can perform a transition. In the automaton shown
in Figure 7.1, the � transition from the location Horizontal to the location
UpOut can be executed only if the guard s = 0 holds, the automaton (Fig-
ure 7.2) inside the location Horizontal has StoppedOut as its active location
and the termination predicate holds.

Additional components of an automaton (not shown in the example presented
here) include: control variables, synchronizing actions, and dynamic type
mappings. Intuitively, controlled variables are those variables that can only
be modified by the automaton that declares them, and they do not change
arbitrarily after performing an action. The set of synchronizing actions is
used to specify which actions are to be synchronized when the automaton is
composed in parallel. The concept of dynamic types [56] is used to model the
constraints in the joint evolution of a variable and its dotted version. In CIF,
a dynamic type is a set containing pairs of functions, whose domain is a closed
range of the form [0; t], with t 2 T . Notation T is used to refer to the set of
all time points, which is nothing but the set of all positive real numbers.

Definition 7.1 (Hierarchical automata). A hierarchical automaton � is a
tuple

(L; init; inv; tcp; E;D; cvar2; actS ;dtype; term; h); where

• L is a set of locations,

• initialization predicate init, invariant predicate inv, time-can-progress
predicate tcp, and termination predicate term are of the type L! P ,

2Some of the notations differs from the original publication on HCIF [64] to prevent any
conflict with the notations of Chapter 2.

Chapter 7. Hierarchical compositional interchange format 88

• a set of edges E � L� P �A� � (2V [
_V � P+)� L. Intuitively, an edge

of the form (`; g; a; (J;up); `0) specifies:

1. The source and the target locations are represented by `; `0 2 L,
respectively.

2. The guard is represented by the predicate g 2 P .
3. The label of this transition is denoted by a 2 A� .
4. The set J � V represents the set of jumping variables.
5. The update predicate, denoted as up 2 P+, determines how the

model variables change after executing this edge.

• D � E is the set of disruptive edges of the automaton.

• cvar � 2V is the set of controlled variables.

• actS � 2A is the set of synchronizing actions.

• dtype : V * 2(T!�)�(T!�) is the dynamic type mapping.

• h : L * C is a partial function that associates to some locations a
sub-structure. Here, C is the set of all compositions in HCIF (see Defi-
nition 7.2).

Using operators more complex models, referred to as compositions (Defini-
tion 7.2), can be constructed. The semantics of the operators is presented in
Section 7.3, with the exception of the semantics of the action and variable
scope operators. The semantics of these operators is unchanged with respect
to the semantics of these operators in CIF, as defined in [7, 63].

Definition 7.2. The set of compositions C in the HCIF formalism is recur-
sively defined by the grammar below, where x 2 V , e 2 Expr.

c; c0 2 C ::= � hierarchical automaton
j c : � automaton postfix operator
j c k c0 parallel composition
j j[V x = e; _x = e :: c]j variable scope operator
j j[A a :: c]j action scope operator, a 2 A
j �a(c) urgency operator, a 2 A� .

Throughout this chapter, the textual and graphical conventions given in Ta-
ble 7.1 are followed.

Chapter 7. Hierarchical compositional interchange format 89

Graphical representation Meaning

Location without any sub-structure
Initial location with init predicate true
Final location with termination predi-
cate true

Location containing a sub-structure
when g act a do x := e Edge (g; a; (fxg; x+ = e))
E when g act a do x := e Disruptive edge (g; a; (fxg; x+ = e))
when g Edge (g; �; (;; true))
act a Edge (true; a; (;; true))
N D

Automaton N with declarations D

�1 �2

N D

�1 k �2

N D

�1 �2

`

AND superstate ` containing parallel
composition �1 k �2

Table 7.1: Textual and graphical conventions in HCIF.

7.2 Semantic framework

In this section, the semantic framework is set up to properly explain the
semantics of HCIF. First, we present the concepts of variable valuations and
flow trajectories. Second, we describe informally hybrid transitions systems,
which are induced by the different SOS rules of HCIF compositions. Finally,
a formal definition of this semantic model is given.

7.2.1 Concepts involved with the semantics of HCIF

The execution of a hybrid automaton can be regarded as a sequence of discrete
or continuous changes in the values of variables from the set V [_V . This
phenomenon of discrete changes in the values of variables is achieved by a
valuation. On the other hand, the phenomenon of continuous changes in
the values of variables is realized by a variable trajectory. In this way, we can

Chapter 7. Hierarchical compositional interchange format 90

describe the semantics in terms of the changes in valuation that an automaton
may cause in a given initial valuation.

A valuation � : (V [_V) ! � is a function that for each variable returns its
corresponding value. We use the notation � = f� j � : (V [_V)! �g to refer to
the set of all valuations. Having defined valuations, we introduce the concept
of satisfiability. Even though predicates are abstract entities, we assume that a
satisfaction relation j=� ��P is defined, that expresses a predicate evaluates
to true in a valuation. For a valuation �, we define �+(v+) = �(v).

A variable trajectory is a partial function % : T * � that returns the valua-
tions of the variables at each time point. In other words, %(t)(x) is the value
of variable x at time t 2 T . We assume the domain of variable trajectories to
be closed intervals, i.e. intervals of the form [0; t], for some t 2 T to model
that t time unit has been elapsed.

7.2.2 Hybrid transition systems

The semantics of HCIF compositions is given in terms of SOS rules, which
induce a hybrid transition system (HTS) [26]. The states of the HTS are of
the form hc; �i, where c 2 C and � 2 � is a valuation. There are three kinds
of transition in the HTS, namely, action transitions, time transitions, and
environment transitions.

Action transitions are of the form hc; �i
a;b;X
���! hc0; �0i. Intuitively, this tran-

sition models the execution of an action a by a composition c in a valuation
�, which results in a new composition c and a new valuation �0. Label b is a
boolean that indicates whether action a is synchronizing or not, and label X
is the set of controlled variables defined by the environment.

Time behavior is captured by time transitions. Time transitions are of the

form hc; �i
%;A0;�;!
7����! hc0; �0i. They model the passage of time in a composition

c in a valuation �, which results in a composition c0 and a valuation �0. Label
A0 � A contains the set of synchronizing actions of c and c0. Function % : T *
� is the variable trajectory. Function � : T * 2A is called guard trajectory.
It models the evolution of enabled actions during time delays. For each time
point t 2 dom(�), the function application �(t) yields the set of enabled actions
of the composition c at time t.

Consider the automaton as shown in Figure 7.3(a) and assume that 0 < k0 <
k1. Then, the set of enabled actions at the active location will depend on the
function ex as illustrated in Figure 7.3(b). In other words,

• the set of enabled actions is fag, whenever 0 � x < ln(k0),

• the set of enabled actions is fa; bg, whenever ln(k0) � x < ln(k1),

Chapter 7. Hierarchical compositional interchange format 91

`0

`1

act a

k0 < ex

when ex < k1
act b

(a)

(b)

Figure 7.3: An illustration of the set of enabled actions over a time period.

• the set of enabled actions is fag, whenever x � ln(k1).

Lastly, the function ! : T ! B is called termination trajectory. It models
the evolution of termination (Definition 7.3) during time delays: for each
time point t 2 dom(!), composition c0 is terminating at time t if and only
if !(t) = true. For all time transitions, it is assumed that the domain of
variable trajectory % is a non-empty closed interval, i.e., dom(%) = [0; t], for
some t > 0, and dom(%) = dom(�) = dom(!).

Definition 7.3. Given a valuation �, we define termination as follows:

• An automaton (L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h) is termi-
nating in �, if there is a location ` 2 L such that � j= init(`), � j= inv(`),
� j= term(`), and if ` 2 Dom(h) then h(`) is terminating in �.

• The composition c1 k c2 is terminating in the valuation �, if the compo-
sitions c1 and c2 are terminating in the valuation �.

• For the remaining operators, termination is defined point-wise.

Chapter 7. Hierarchical compositional interchange format 92

Environment transitions are of the form hc; �i
A0;b
99K hc0; �0i. They are used

in the semantics to enforce restrictions posed by the environment of a composi-
tion on the action behavior of the composition. More specifically, a transition

hc; �i
A0;b
99K hc0; �0i expresses that the composition c is consistent (Defini-

tion 7.4) in the valuation � and the composition c0 is consistent in the valua-
tion �0. In addition, the role of the environment transitions is to indicate that
a composition c can initialize to become a composition c0 in which an active
location is fixed for each (active) substructure. Furthermore, the boolean b
indicates whether the initialized substructure can terminate and thus, give
back the control to its super-structure. As before, label A0 contains the set of
synchronizing actions of compositions c and c0.

Definition 7.4. Given a valuation �, we define consistency as follows.

• An automaton (L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h) is consis-
tent in �, if there is a location ` 2 L such that � j= init(`), � j= inv(`),
and if ` 2 Dom(h) then h(`) is consistent in �.

• The composition c k c0 is consistent in valuation �, if the compositions
c and c0 are consistent in the valuation �.

• For the remaining operators, consistency is defined point-wise.

We use notation � j= c to denote that composition c is consistent in the
valuation �. Alternatively, we say that � is consistent with c.

Definition 7.5 formalizes the hybrid transition system induced by the SOS
rules presented in the next sections.

Definition 7.5. A hybrid transition system (HTS) is a five-tuple of the form
(C� �; A;�! ; 7�! ; 99K), where

1. �! � (C� �)� (A� � B� 2V)� (C� �),

2. 7�! � (C��)�
�
(T * �)� 2A � (T * 2A)� (T ! B)

�
� (C��), and

3. 99K� (C� �)� (2A � B)� (C� �).

7.3 Semantics

In this section we explain the semantics of HCIF, both informally by means
of examples and formally by means of SOS rules.

Chapter 7. Hierarchical compositional interchange format 93

7.3.1 Hierarchical automata

In the following, we use the notation �[`] to refer to the automaton:

(L; id`; inv; tcp; E;D; cvar; actS ;dtype; term; h);

where Dom(id`) = L, id`(`0) = true for ` = `0, and false otherwise. Intuitively,
the notation �[`] denotes that ` is the active location of the automaton �.
Furthermore, we use notation f " A0 to refer to the domain restriction of
function f to the set A0.

Action transitions

In the absence of hierarchy, an automaton � can perform an action in a location
` and a valuation �, if there is an edge (`; g; a; (J;up); `0) such that the following
conditions are met:

• Location ` is active in the valuation �, i.e., � j= init(`).

• Guard g and the invariant at the location ` holds in the valuation �, i.e.,
� j= g ^ � j= inv(`).

• It is possible to find a new valuation �0 such that:

– The invariant of the new location `0 holds in the valuation �0, i.e.,
�0 j= inv(`0).

– The update predicate up is satisfied in the valuation � [�0+, i.e.,
� [�0+ j= up. Note that we do not write �0 j= up since, in general,
the predicate up can refer to the next values of the variables in up,
which are contained in �0+.

– The values of the control variables of the automaton (cvar) and of
the environment (X) remains the same in � and �0, except those
variables that belong to the set of jumping variables J . This is
encoded in the equation � " ((X [cvar)nJ) = �0 " ((X [cvar)nJ).

The above conditions are summarized in �; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi,

which is syntactically equivalent to:

(`; g; a;up; `0) 2 E ^ � j= init(`) ^ � j= g ^ � j= inv(`) ^ �0 j= inv(`0) ^

�0+ [� j= up ^ � " ((X [cvar) n J) = �0 " ((X [cvar) n J):

Actually, the conditions in the predicate �; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi

are exactly the conditions required to execute an action in a CIF automaton.

Chapter 7. Hierarchical compositional interchange format 94

The first line in the premise of Rule H-1 asserts the conditions that are required
to execute an action transition in a flat CIF automaton. The second line in the
premise of Rule H-1 asserts that if the edge is not disruptive, it is necessary
to check that the substructure of the initial location, if any, is terminating.

This is expressed by the condition (`; g; a; (J;up); `0) 62 D) (hh(`); �i
A0;true
99K

hc; �i _ ` 62 dom(h))). Finally, after the action is performed, the substructure

in the target location, if present, must be initialized (hh(`0); �0i
A1;b
99K hc0 :

�[`0]; �0i). The choice of selecting active locations of substructure h(`0) is
made upon entering location `0. Consistency of the substructures in the target
location `0 is taken care of by the above environment transition.

�; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi;

(`; g; a; (J;up); `0) 62 D)

�
hh(`); �i

A0;true
99K hc; �i _ ` 62 dom(h)

�
;

`0 2 dom(h); hh(`0); �0i
A1;b
99K hc0; �0i

h�; �i
a;a2actS ;X
�������! hc0 : �[`0]; �0i

(H-1)

Remark 7.6. Consider the controller automaton in Figure 7.1, assuming Up-
Out is an active location with a valuation �. The edge labelled when s = +1
can be executed if there exists a valuation �0 such that � satisfies the invariant
of the location UpOut (�(xh) = �1 ^ �(xv) = 1), �0 satisfies the invariant
of the location Horizontal (�0(xv) = 1), and the valuation �0 is consistent
with the automaton shown in Figure 7.2. The consistency of the valuation �0

implies that the active location of the automaton in Figure 7.2 is Middle such
that �0 j= _xh = s.

Now consider the active location of the controller to be Horizontal and the
active location of the automaton in Figure 7.2 to be Stopped-in. In this
case, the edge labelled when s = 0 in Figure 7.1 cannot be executed even
if the guard s = 0 is true. This is due to the sub-automaton inside the
location Horizontal is non-terminating. The edge labelled when s = 0, can
be executed only if either the sub-automaton is terminating, or the edge is
specified as disruptive.

Rule H-1 requires as a condition that there is an active substructure in the
target location `0 2 dom(h). If this is not the case then no active substructure
is prefixed to �[`], as expressed by Rule H-2.

�; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi; `0 62 dom(h);

(`; g; a; (J;up); `0) 62 D)

�
hh(`); �i

A0;true
99K hc; �i _ ` 62 dom(h)

�
h�; �i

a;a2actS ;X
�������! h�[`0]; �0i

(H-2)

Chapter 7. Hierarchical compositional interchange format 95

Besides the action transitions triggered by the edges of a hierarchical automa-
ton, the action transitions can also be triggered by their substructures. Given
a valuation �, an action transition triggered by a substructure can be executed
at a super-state ` if the following conditions hold:

• ` is the active location in the valuation �, i.e., � j= init(`).

• The invariant associated with location ` is satisfied by �, i.e., � j= inv(`).

• The action performed by the substructure of ` results in a new valuation
�0 such that the valuation �0 also satisfies the invariant of `, i.e., �0 j=
inv(`).

Rule H-3 formalizes this. In the conclusion, c : �[`] reflects that an initial loca-
tion ` is chosen in a hierarchical automaton � if the substructure h(`) performs
an action transition. In the premise of this rule, we ignore the boolean b that
indicates whether the action a is synchronizing. As a result, the superstruc-
ture decides on which actions it wants to synchronize. In other words, the
superstructure defines the set of synchronizing actions, independently of the
sub-structures.

� j= init(`); � j= inv(`); �0 j= inv(`);

` 2 dom(h); hh(`); �i
a;b;X[cvar
�������! hc; �0i

h�; �i
a;a2actS ;X
�������! hc : �[`]; �0i

(H-3)

Transition hh(`); �i a;b;X[cvar
�������! hc; �0i in the premise of the above rule ensures

that the control variables inherited from the environment (X) and the control
variables (cvar) of the automaton � will not jump arbitrarily when the action
is executed by the substructure.
Remark 7.7. Again consider the model of the controller as given in Figures 7.1
and 7.2. Assume that the active location is Horizontal and the active location
of the sub-structure is Middle. The edge labelled when x � 1 ^ s � 0 can
be executed from the location Middle only if there exists a new valuation �0

such that it satisfies the invariant of the locations Horizontal and StoppedIn.

Time transitions

In HCIF, a time delay t > 0 is possible in an active location `, if there exists
a variable trajectory % such that

1. the invariant associated with the active locations is satisfied in the in-
terval [0; t],

2. the time can progress predicate is satisfied in the interval [0; t), and

Chapter 7. Hierarchical compositional interchange format 96

3. the dynamic type constraints specified by dtype are satisfied by the
variable trajectory %.

We formalise the above conditions as a predicate % j= ht; `; init; inv; tcp;dtypei,
which is syntactically equivalent to the following condition:

%(0) j= init(`) ^ dom(%) = [0; t] ^ 0 < t ^

8t0 2 [0; t):
h
%(t0) j= tcp(`)

i
^ 8t0 2 [0; t]:

h
%(t0) j= inv(`)

i
^

8x 2 dom(dtype):
h
(% " x; % " _x) 2 dtype(x)

i
:

In addition, for a time delay t, the substructure (if present) must perform a
time transition with the same variable trajectory. Thus, the invariant and
the time can progress predicates of the active location of the automaton and,
recursively, of the substructure are satisfied simultaneously for the time delay
t. In other words, an automaton and its active substructure synchronize on
time delays. Rule H-4 models this fact, where dom(!) = dom(%);dom(�) =
dom(%),

8t0 2 [0; t]:
h
!(t0) = (!0(t

0) ^ %(t0) j= term(`))
i
; and

8t0 2 [0; t]:
h
�(t0) = �0(t

0) [fa j (`; g; a; (J;up); `0) 2 E ^ %(t0) j= g ^ !0(t
0)g
i
:

The above condition states that the guard trajectory � and the termination
trajectory ! are constructed by using the corresponding trajectories generated
by the time transition in the substructure. Intuitively, the equation !(t0) =
(!0(t

0)^%(t0) j= term(`)) states that a hierarchical automaton � terminates at
a time instant t0 if the substructure terminates at the time instant t0 and the
termination predicate of the active location ` is satisfied at the time instant
t0. Similarly, the equation

�(t0) = �0(t
0) [fa j (`; g; a; (J;up); `0) 2 E ^ %(t0) j= g ^ !0(t

0)g

states that an action is enabled at a time instant t0 by a HCIF automaton if

• either, the action is enabled by the substructure at a time instant t0,

• or, the action is present as a label in an edge of the hierarchical automa-
ton with its corresponding guard satisfied at the time instant t0 and the
substructure terminates at the time instant t0.

% j= ht; `; init; inv; tcp;dtypei; ` 2 dom(h);

hh(`); %(0)i
%;A;�0;!0
7�����! hc; %(t)i

h�; %(0)i
%;actS ;�;!
7������! hc : �[`]; %(t)i

(H-4)

Chapter 7. Hierarchical compositional interchange format 97

The set of synchronizing actions only takes into account the set actS of the
superstructure, since the set of synchronizing actions in the substructure does
not influence the action synchronizing behavior of its parent. The same ap-
proach is taken when computing the set of synchronizing actions in the envi-
ronment transition in Rule H-6.

Rule H-5 deals with the case that an initial location ` does not contain a
substructure, where dom(!) = dom(%);dom(�) = dom(%),

8t0 2 [0; t]:
h
!(t0) = (%(t0) j= term(`))

i
; and

8t0 2 [0; t]:
h
�(t0) = fa j (`; g; a; (J;up); `0) 2 E ^ %(t0) j= gg

i
:

% j= ht; `; init; inv; tcp;dtypei; ` 62 dom(h)

h�; %(0)i
%;actS ;�;!
7������! h�[`]; %(t)i

(H-5)

Environment transitions

In HCIF, if an automaton performs an environment transition, a unique active
location is chosen, and the substructure (if present) is also initialized. The
environment transition ensures that the active location contains a consistent
hierarchical structure (Definition 7.4). This is expressed by Rule H-6. The
initialized composition c becomes the active substructure of �[`] and the au-
tomaton is terminating if the active location and the active substructure both
are terminating. Rule H-7 deals with the case where there is no substructure.

� j= init(`); � j= inv(`); �0 j= inv(`);
� " cvar = �0 " cvar;

` 2 dom(h); hh(`); �i
A0;b
99K hc; �0i

h�; �i
actS ;�j=term(`)^b

99K hc : �[`]; �0i
(H-6)

� j= init(`); � j= inv(`); �0 j= inv(`);
� " cvar = �0 " cvar; ` 62 dom(h)

h�; �i
actS ;�j=term(`)

99K h�[`]; �0i
(H-7)

7.3.2 Automaton postfix operator

We now define the SOS rules for the automaton postfix operator, which helps
in defining the overall behavior of a hierarchical automaton. Intuitively, c : �
means that composition c is the active substructure of some initial location
` 2 L in the automaton �. Note that whenever the composition c : � is the

Chapter 7. Hierarchical compositional interchange format 98

result of a previous transition in �, this initial location is always uniquely
defined.

The semantics of c : � is reminiscent of the mode transfer (disrupt) operator
of process algebra [4], i.e., the composition c in c : � will perform the action
transition until it is terminating and no disruptive edges in � are enabled.
However, in the overall evolution of c : �, the automaton � can perform its
disruptive edges. The difference between the two operators is due to the
passage of time caused by these operators and how the termination is handled
in them.

• In the automaton postfix operator, the passage of time is synchronized
between the first, and second component. In the mode transfer operator,
the passage of time is not only synchronized between the two compo-
nents; but, if right component is unable to match the time transitions
generated by the left component, then the overall composition behaves
as the left component [4].

• In the automaton postfix operator, c : � terminates whenever the com-
position c and � terminates. In the mode transfer operator, the overall
composition terminates, whenever one of the components terminates [4].

Rule H-8 models the action transition taken by automaton � when the active
substructure is terminating or when the chosen edge is disruptive, and the
target location has a substructure.

�; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi;

(`; g; a; (J;up); `0) 62 D)

�
hc1; �i

A0;true
99K hc01; �i _ ` 62 dom(h)

�
;

`0 2 dom(h); hh(`0); �0i
A1;b

0

99K hc2; �
0i

hc1 : �; �i
a;a2actS ;X
�������! hc2 : �[`

0]; �0i
(H-8)

Rule H-9 differs from Rule H-8 only in that the target location does not have
a substructure.

�; �0 j=� h`; g; a; (J;up); `
0; cvar; Xi; `0 62 dom(h);

(`; g; a; (J;up); `0) 62 D)

�
hc; �i

A0;true
99K hc0; �i _ ` 62 dom(h)

�
hc : �; �i

a;a2actS ;X
�������! h�[`0]; �0i

(H-9)

Rule H-10 models the action transition that results from execution of the
substructure. Transition hc; �i a;b;X[cvar

�������! hc0; �0i in the premise of Rule H-10
ensures that the control variables inherited from the environment (X) and the
control variables (cvar) of the automaton � will not jump arbitrarily when the
action is executed by the substructure.

Chapter 7. Hierarchical compositional interchange format 99

hc; �i
a;b;X[cvar
�������! hc0; �0i

hc : �; �i
a;a2actS ;X
�������! hc0 : �; �0i

(H-10)

% j= ht; `; init; inv; tcp;dtypei;

hc; %(0)i
%;A;�0;!0
7�����! hc0; %(t)i

hc : �; %(0)i
%;actS ;�;!
7������! hc0 : �[`]; %(t)i

(H-11)

Rule H-11 models the passage of time in an automaton postfix such that the
timed transitions are (recursively) synchronized in every level of hierarchy of
c : �, where, dom(!) = dom(%);dom(�) = dom(%),

8t0 2 [0; t]:
h
!(t0) = (!0(t

0) ^ %(t0) j= term(`))
i
; and

8t0 2 [0; t]:
h
�(t0) = (�0(t

0) [fa j (`; g; a; (J;up); `0) 2 E ^ %(t0) j= g ^ !0(t
0)g)

i
:

Finally, Rule H-12 models the execution of an environment transition in an
automaton postfix.

� j= init(`); � j= inv(`); �0 j= inv(`);

� " cvar = �0 " cvar; hc; �i
A0;b
99K hc0; �0i

hc : �; �i
actS ;�j=term(`)^b

99K hc0 : �[`]; �0i
(H-12)

7.3.3 Parallel composition

The parallel composition operator allows concurrent execution of HCIF com-
positions. The semantics of parallel composition is almost unchanged with
respect to the parallel composition of CIF. Action behavior is not affected
by the addition of hierarchy. The rules for time and environment transitions
are updated to reflect that a parallel composition is terminating only if both
components are.

As an illustration, consider the assembly process shown in Figure 7.4(a),
henceforth referred to as Assembly , such that its location WaitForAB con-
tains the parallel composition shown in Figure 7.4(b). The assembly pro-
cess initially is in the WaitForAB location and according to the semantics
of the atomic automata, it can trigger action assembling only if its sub-
structure terminates. Since the sub-structure is a parallel composition of two
automata, namely WaitForA and WaitForB (see Figure 7.4(b)), the sub-
structure h(WaitForAB) can terminate after actions a and b have both been
executed; i.e., both automata WaitForA and WaitForB can terminate. This

Chapter 7. Hierarchical compositional interchange format 100

GenA

tcp : ca < 2�

ca = 0

when ca � � act a do ca := 0

GenB

tcp : cb < 2�

cb = 0

when cb � � act b do cb := 0

WaitForAB
Assembling

tcp : t < �

act assembling do t := 0

when t � � act send

Assembly typeD : fca 7! clock; cb 7! clock; t 7! clockg

GeneratorA

actS : fag
GeneratorB

actS : fbg

Asembling

actS : fa ; bg

(a) Assembly process (Assembly).

WaitForA

Done

WaitForB

Done

act a act b

WaitForAB

WaitForA

actS : fag
WaitForB

actS : fbg

(b) Receive process
(h(WaitForAB)).

Figure 7.4: An assembly line.

pattern, in which an action is triggered after a series of parallel processes
terminate, can be expressed succinctly using hierarchy. Without support for
hierarchy and termination it is necessary to rewrite the parallel processes into
a flat automaton.

The addition of hierarchy facilitates inter-level synchronization. As an exam-
ple consider the generator process GeneratorA shown in Figure 7.4(a), which
enables an action a every � time units, when ca � �. The action a from the
generator synchronizes with action a specified as synchronizing in the automa-
tonWaitForA, which is part of the substructure of locationWaitForAB. This
synchronizing behavior is obtained by inclusion of action a in the set of syn-
chronizing actions actS of GeneratorA (fag) and in the set of synchronizing
actions of automaton Assembly (fa; bg). Note that strictly speaking, action
a need not be defined as synchronizing for the automaton WaitForA.

Formally, Rule H-13 states that two synchronizing actions with the same label
can execute in parallel only if they share the same initial and final valuation,
and if the action is synchronizing in both compositions. The set of control
variables X, is propagated from the conclusions to the premises since the
control variables in the scope of a parallel composition are shared by both
partners. The resulting action transition is also synchronizing which allows
action a to synchronise with more than two compositions.

hc1; �i
a;true;X
�����! hc01; �

0i; hc2; �i
a;true;X
�����! hc02; �

0i

hc1 k c2; �i
a;true;X
�����! hc01 k c

0
2; �

0i
(H-13)

Chapter 7. Hierarchical compositional interchange format 101

Rule H-14 models interleaving behavior of two compositions when executed
in parallel. In these rules, an action can be performed in one of the compo-
nents (c1) only if the initial and final valuations are consistent with the other
composition (c2); and if this action is not synchronizing in the other compo-
nent, which is expressed by the condition a =2 A0. The environment transition

(c2; �)
A0;b0

99K (c02; �
0) is used to obtain the set of synchronizing action labels

in composition c2, to ensure that the initial valuation � is consistent with the
active invariants and initialization conditions of c2.

hc1; �i
a;b;X
���! hc01; �

0i; hc2; �i
A0;b0

99K hc02; �
0i; a 62 A0

hc1 k c2; �i
a;b;X
���! hc01 k c

0
2; �

0i

hc2 k c1; �i
a;b;X
���! hc02 k c

0
1; �

0i

(H-14)

Rule H-15 models the fact that if two compositions are put in parallel, t time
units can elapse, whenever it is allowed by both partners, where

8t0 2 [0; t]:
�
�01(t

0) =
�
�0(t

0) \ �1(t
0)
�
[
�
�0(t

0) n A1
�
[
�
�1(t

0) n A0
� �
; and

8t0 2 [0; t]:
�
!01(t

0) = !0(t
0) ^ !1(t

0)
�

The equation �01(t
0) = (�0(t

0) \ �1(t
0))[(�0(t

0) n A1)[(�1(t
0) n A0) states that

1. if an action a is enabled in the composition c1 and c2 at a time point
t0 2 [0; t], then the action a is also enabled in the parallel composition
at the time point t0.

2. if an action a is enabled in c1 (or c2) at a time point t0 2 [0; t] and a is
not synchronising in the other component c2 (or c1), then the actions a
is also enabled in the parallel composition at the time point t0.

The termination trajectory in the parallel composition at a given time point t0
is the conjunction of the termination trajectories of the respective components
at the same time instant t0. This is encoded in 8t0 2 [0; t]:

�
!01(t

0) = !0(t
0) ^

!1(t
0)
�
.

hc1; %(0)i
%;A0;�0;!0
7������! hc01; %(t)i; hc2; %(0)i

%;A1;�1;!1
7������! hc02; %(t)i

hc1 k c2; %(0)i
%;A0[A1;�01;!01
7����������! hc01 k c

0
2; %(t)i

(H-15)

Rule H-16 defines the environment transition behavior for parallel composi-
tion. The resulting set of synchronizing actions is the union of the synchro-
nizing actions of c1 and c2. The conjunction b0 ^ b1 models the fact that a
parallel composition is terminating if its components are. Note that the end

Chapter 7. Hierarchical compositional interchange format 102

valuations of all transitions match.

hc1; �i
A0;b0
99K hc01; �

0i; hc2; �i
A1;b1
99K hc02; �

0i

hc1 k c2; �i
A0[A1;b0^b1

99K hc01 k c
0
2; �

0i
(H-16)

7.3.4 Urgency operator

By means of the urgency operator it is possible to declare actions as urgent.
This means that time cannot pass if an urgent action is enabled. However,
urgent actions do not have priority over regular (non-urgent) actions.

For example, consider the model of the controller of Figure 7.1 with active
location UpOut. When a user demands the controller to operate in the hor-
izontal mode, it should react as soon as possible. In other words, the action
� in the labelled edge when s = +1 between the locations UpOut and Hor-
izontal must be urgent. This ensures that time does not pass in the location
UpOut from the instant when the guard s = +1 is enabled.

Rule H-17 specifies that the urgent action operator restricts the time behavior
of a composition in such a way that time can pass as long as no urgent action
is enabled.

hc; �i
%;A0;�;!
7����! hc0; �0i; 8t0 2 [0; t):

h
a =2 �(t0)

i
h�a(c); �i

%;A0;�;!
7����! h�a(c

0); �0i
(H-17)

The urgency operator affects only the time behavior. Action and environment
transitions remain unchanged as expressed by Rules H-18 and H-19.

hc; �i
`;b;X
���! hc0; �0i

h�a(c); �i
`;b;X
���! h�a(c

0); �0i
(H-18)

hc; �i
A0;b
99K hc0; �0i

h�a(c); �i
A0;b
99K h�a(c

0); �0i
(H-19)

Stateless bisimulation

It is clear from the definition of a HTS (Definition 4.1) that a state in a
transition system consists of a process part (a behavioural entity) and a data
part (valuation). Furthermore, we know that the stateless bisimulation is the
most robust equivalence for the transition systems whose states contains data
[25, 62]. In this section, we show that the semantics of HCIF is compositional
with respect to stateless bisimulation [62].

Definition 7.8. A binary symmetric relation R � C�C is called a stateless
bisimulation relation iff the following conditions are satisfied.

Chapter 7. Hierarchical compositional interchange format 103

1. 8c1; c2; c01; �; �
0; X; a; b:

�
hc1; �i

a;b;X
���! hc01; �

0i ^ (c1; c2) 2 R)

9c02:
h
hc2; �i

a;b;X
���! hc02; �

0i ^ (c01; c
0
2) 2 R

i�
:

2. 8c1; c2; c01; �; �
0; %; A0; �; !:

�
hc1; �i

%;A0;�;!
7����! hc01; �

0i ^ (c1; c2) 2 R)

9c02:
h
hc2; �i

%;A0;�;!
7����! hc02; �

0i ^ (c01; c
0
2) 2 R

i�
:

3. 8c1; c2; c01; �; �
0; A0; b:

�
hc1; �i

A0;b
99K hc01; �

0i ^ (c1; c2) 2 R)

9c02:
h
hc2; �i

A0;b
99K hc02; �

0i ^ (c01; c
0
2) 2 R

i�
:

Two compositions c1; c2 are said to be stateless bisimilar, notation c1 $ss c1,
iff there exists a stateless bisimulation relation R such that (c1; c2) 2 R.

Theorem 7.9. Stateless bisimulation is a congruence for all the con-
structs of HCIF.

Proof. The SOS rules of HCIF are in the process-tyft format [62], which
guarantees the congruence for stateless bisimilarity.

7.4 Flattening of HCIF models

In this section, we present a technique that converts a hierarchical automaton
into a flat automaton such that they are stateless bisimilar. That is, we define
a procedure that eliminates the hierarchy function of a hierarchical automa-
ton and produces an equivalent flat automaton modulo stateless bisimulation.
Such techniques in the field of process algebras (see [6]) are known as lin-
earisation, or as elimination of operators. The advantage of flattening a
hierarchical automaton is to allow the usage of existing tools such as simula-
tors of the CIF language.

Definition 7.10. The depth D(c) of a composition c 2 C is recursively de-
fined:

D(�) = 1 + max
`2dom(h)

D(h(`))

D(c1 k c2) = max(D(c1); D(c2))

D(�(c)) = D(c) � 2 fj[V _ :: _]j; j[A_ :: _]j; �_(_)g:

An automaton has a finite depth, whenever its depth is defined. An automa-
ton of depth 1 (i.e., dom(h) = ;) is called a flat automaton.

Chapter 7. Hierarchical compositional interchange format 104

We write �:X to access the componentX of an automaton � that is of the form
(L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h). For example, the notation
�:L denotes the set of locations L of the automaton �. For a given predicate
g 2 P , we assume the existence of the operator _+ : P ! P+, i.e., all the
variables in g+ belong to the set V + [_V +.

7.4.1 Flattening of HCIF compositions

Suppose that we have a procedure 	 that turns any composition of CIF into
a stateless bisimilar CIF automaton (see, [32] for instance). Note that a CIF
automaton is a flat automaton. Then we can lift this procedure to any finite
HCIF compositions c 2 C, by first applying a flattening procedure (f , see
Definition 7.12) to all the components of c before applying the procedure 	
to the result. Formally, for any c; c1; c2; � 2 C we have,

	f(c1 k c2; &) = 	(f(c1; &) k 	f(c2; &))
	f(j[A a :: c]j; &) = 	(j[A a :: 	f(c; &)]j)
	f(�a(c); &) = 	(�a(f(c; &)))
	f(j[V x = e0; _x = e1 :: c]j; &) = j[V x = ?; _x = ? ::

	f(c; & [fx 7! e0; _x 7! e1g)]j
	f(j[V x = e0; _x = e1 :: �]j; &) = j[V x = ?; _x = ? :: �0]j

where

• � = (L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h),

• �0 = 	f((L; init
0; inv; tcp; E;D; cvar; actS ;dtype; term; h)), and

• init0 is defined for all ` 2 L by:

init0(`) = init(`) ^ x = e0 ^ _x = e1 ^
^

y2Dom(&)

(y = &(y) ^ _y = &(y)) :

Note that for flattening the compositions contained in a variable scope, as in
	f(j[V x = e0; _x = e1 :: c]j; &), we assume that all variables are unique. This
can be easily realized by means of variable renaming.

7.4.2 Requirements for flattening

Unfortunately, a HCIF automaton cannot be linearised to a CIF automaton
in general. This is because the calculation of the control variables and the
dynamic types in a HCIF automaton depends on the active locations of a HCIF
automaton and thus, also on the substructures inside these active locations. So

Chapter 7. Hierarchical compositional interchange format 105

a HCIF automaton can be flattened only if the global set of control variables
does not depend on the active location because the set of control variables
is constant for a flat automaton. The global set of control variables of an
automaton is defined as the union of its own set of control variables and the
sets of control variables of all active substructures.

Let A denote the set of all HCIF automata. To establish whether the global set
of control variables of a hierarchical automaton is independent of the active
locations of the automaton, a control variable range function cvr : A !

22
V
is introduced. This functions returns the sets of control variables for all

combinations of active locations of the automaton and its substructures. If
this set contains exactly one element, then the set of control variables of the
automaton is constant; thus, in principle a HCIF automaton can be flattened.

Definition 7.11. The control variable range cvr : A! 22
V
is defined in the

following way.

cvr(?) = ;

cvr(c1 k c2) = cvr(c1) [cvr(c2)

cvr(�(c)) = cvr(c) � 2 fj[V _ :: _]j; j[A_ :: _]j; �_(_)g

cvr(�) =
[

`2�:L

fcvr((�:h)(`)) [cvarg:

Likewise, the dynamic type range dtr : A ! 2V*2(T!�)�(T!�)
is a function

that returns the set of global dynamic types of a finite hierarchical automaton.

dtr(?) = ;

dtr(c1 k c2) = dtr(c1) \ dtr(c2)

dtr(�(c)) = dtr(c) � 2 fj[V _ :: _]j; j[A_ :: _]j; �_(_)g

dtr(�) =
[

`2�:L

fdtr((�:h)(`)) \ dtypeg:

A HCIF automaton � 2 A is linearisable iff jcvr(�)j = 1 and jdtr(�)j = 1.

Definition 7.12. Let � be a linearisable automaton of the form

(L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h):

We define, if Dom(h) = ;, then

	f(�) , (L; init; inv; tcp; E;D; cvar; actS ;dtype; term; ;);

and otherwise

	f(�) , (L̂; ^init; ^inv; ^tcp; Ê; D̂; ^cvar; actS ; ^dtype; ^term; ;; X̂):

Chapter 7. Hierarchical compositional interchange format 106

Here, we have used the shorthand notation

(L; init; inv; tcp; E;D; cvar; actS ;dtype; term; h;X);

that extends an automaton � with a list of variables X = [x0; � � � ; xn]. It is
defined as the following composition:

j[V x0 = ?; _x0 = ? :: j[V � � � :: j[V xn = ?; _xn = ? :: �]j � � �]j]j :

The elements of the flattened automaton 	f(�) are defined below.

• The set L̂ is defined by:

L̂ = f(`;?) j ` 2 L; h(`) = ?g[f(`; `0) j ` 2 L; h(`) 6= ?; `0 2 	f(h(`)):Lg:

Note that the set L̂ is also the domain of the functions Ôp where, Op 2
finit; term; inv; tcpg.

• Let Op 2 finit; term; inv; tcpg. The functions Op which return the pred-
icates are defined in the following way for all (`; `0) 2 L̂:

Ôp((`; `0)) =

(
Op(`) if `0 = ?

Op(`) ^ 	f(h(`)):Op(`0) if `0 6= ?
:

• The set of control variables and the dynamic type for the flat automaton
is defined by:

^cvar , x where, cvr(�) = fxg

^dtype , x where, dtr(�) = fxg:

• The set of local variables X is defined as:

X =
[

`2dom(h)

	f(h(`)):X :

• Finally, the set of edges Ê is defined in the following way.

Ê =

��
(`0; `

0
0); ĝ; a; (Ĵ ; ûp); (`1; `

0
1)
�
j

(`0; `
0
0) 2 L̂ ^ (`1; `

0
1) 2 L̂ ^

�
`0; g; a; (J;up); `1

�
2 �:E ^

ĝ =

�
g; if (`0; g; a; (J;up); `1) 2 �:D
	f(h(`0)):term(w0) ^ g; if (`0; g; a; (J;up); `1) 2 �:E n �:D

^

Ĵ = J [f(h(`1)):X ^

ûp = up ^ (f(h(`1)):init)(`
0
1)

�[

Chapter 7. Hierarchical compositional interchange format 107

��
(`0; `

0
0); ĝ; a; (Ĵ ; ûp); (`0; `

0
1)
�
j
�
`00; ĝ; a; (Ĵ ; ûp); `

0
1

�
2 	f(h(`0)):E

�
:

It is assumed that all the references to initialisation predicates, or termi-
nation predicates to be true when a location ` 2 L has no substructure.
Thus, (f(h(`0)):term)(`00) = true and (f(h(`1):init)(`

0
1)

+ = true in
the above conditions, whenever `0 62 dom(h) and `1 62 dom(h), respec-
tively. Likewise, the set of local variables 	f(h(`1)):X = ;, whenever
`1 62 dom(h). In this way, we get definitions for the simpler cases derived
from the above one.

7.5 Case-study: Patient Support System

+1 �1

�1

+1

Horizontal axis xh

Vertical axis xvTabletop

Magnet

Bore

Figure 7.5: Patient Support System.

The patient support system (see Figure 7.5) is used in medical diagnosis to
position a patient in a MRI scanner [72]. The system can be operated in the
following modes: vertical mode, horizontal mode, and user interface mode. In
the vertical mode, the table top on which a patient resides can only move ver-
tically between the bounds depicted in Figure 7.5. Similarly, in the horizontal
mode, the table top can be moved in or out of the bore, either manually or
by means of a motor drive. Furthermore, the system is equipped with a table
top release switch for emergency situations. This system is controlled via a
user interface that contains a tumble switch to control the movement (both
horizontally and vertically) of the table, and a button to enable the start of
an initialization sequence. The position of the tumble switch is represented
by variable s which can have the values +1, 0, and �1. The continuous vari-
ables xh and xv represent the horizontal and vertical position of the table top,
respectively.

The objective of this case-study is to design a controller that satisfies the
following requirements. The table should move up and down, or in and out
of the bore, by operating the tumble switch. The table should not move
beyond the boundaries shown in Figure 7.5. The case-study is specified using
a top-down design methodology. In other words, we first model the overall

Chapter 7. Hierarchical compositional interchange format 108

�1 � xh � 1
�1 � xv � 1

Init

Normal

inv : xh = �1 _
xv = 1

TTR

inv :
�1 � xh � 1
^ _xv = 0

UI

Eact ttron

Eact ttro�

Eact ttron

PSS dtype : fxh 7! cont; xv 7! cont; s 7! discg

actS : fttron ; ttro� ; startg cvar : fxh; xvg actS : fttron ; ttro� ; startg

Figure 7.6: Patient Support System.

system at a higher level of abstraction in which we identify that the system
consists of a controller and a user interface. Furthermore, a controller can
run in the following three modes: Init mode in which the controller should
place the table in the initial position; Normal mode in which the controller
synchronises with the events of the tumble switch; TTR (Table Top Release)
mode in which an operator is allowed to override the normal execution of
the controller. Figure 7.6 shows the model of the system at this level of
abstraction. Throughout the complete description of this case-study, it is
assumed that only the � action is urgent. All other actions, which are the
actions generated by the user interface, are non-urgent. This is modeled by
�� (PSS) where PSS represents the automaton PSS shown in Figure 7.6.

User interface The user interface consists of three input devices: the tum-
ble switch, the table top release switch and the start button (see Figure 7.7).
MvUpOrIn, Neutral, and MvDownOrOut are the three positions of the tum-
ble switch. The MvUpOrIn position is used to move the table either up or
into the bore, the MvDownOrOut position is used to move the table down or
out of the bore. When the switch is released, it returns to the neutral position,
which enforces actuated (motorized) movement of the table to stop.

The TTR switch can be used to release the table top from the horizontal motor.
When the switch is active, the horizontal movement of the table is uncontrolled
by the system, so that an operator can manually move the table freely in the
horizontal direction. The start button is used to allow initialization of the
system.

Chapter 7. Hierarchical compositional interchange format 109

MvUpOrIn

inv : s = +1
Neutral

inv : s = 0
MvDownOrOut

inv : s = �1

act neutral

act pos act neutral

act neg

TTRoff TTRon

act ttron

act ttro�

WFstart act start

UI

TumbleSwitch

TTRSwitch

actS : fttron ; ttro� g
StartButton

actS : fstartg

Figure 7.7: User interface.

WFstart

inv : _xh = 0 ^
_xv = 0

Retract

inv : _xh = �1 ^
_xv = 0

MoveUp

inv : _xh = 0 ^
_xv = 1

WFneutral

inv : _xh = 0 ^
_xv = 0

when s=0 act start

when xh = �1

when xv = +1s = 0

act start

act start

act start

Init actS : fstartg

Figure 7.8: Initialization.

Initialization In the Init mode, the position of the patient support system
is initialized (Figure 7.8). The position of the tumble switch needs to be
neutral before initialization begins and the movement is triggered by pressing
the start button. The desired final position of the table is fully retracted and
fully up. First, the table is retracted since this is always a safe movement.
Then, when the table is fully retracted, the table is moved up until it reaches
the top position. The initialization is complete when the tumble switch is

Chapter 7. Hierarchical compositional interchange format 110

in the neutral position, to prevent that the table starts moving immediately
after initialization.

Horizontal

inv : xv = 1

UpOut

inv : xh = �1 ^
xv = 1

Vertical

inv : xh = �1

when s = 0

when s = +1 when s = 0

when s = �1

Normal

Figure 7.9: Normal movement control.

Normal mode Initially, the system enters the normal mode with the table
fully up and retracted, so in an up and out position (Figure 7.9). In this
intersection point between moving the table horizontally or vertically, holding
the tumble switch in the MvUpOrIn position triggers horizontal movement
of the table into the bore, whereas holding it in a MvDownOrOut position
triggers vertical, downward movement.

A system requirement is that between switching from horizontal to vertical
movement, and vice versa, the position of the tumble switch must be neutral.
This to prevent the table from continuing movement unexpectedly in a dif-
ferent direction. Figures 7.10(a),and 7.10(b) show the horizontal and vertical
movement of the system in more detail.

7.6 Related work

In the past, the following techniques were proposed in order to accommodate
hierarchy in other formalisms.

• Action refinement [77]. In this approach an action in the alphabet of
a process or an automaton is substituted by another process/automa-
ton. However, the setting of action refinement is incompatible with the
interleaving models of concurrency (see, e.g. [74]). Since CIF and its
hierarchical extensions are based on interleaving models of concurrency,
we disregard the technique of action refinement.

• Statecharts [47]. Statecharts were the first formalism that extended fi-
nite state machines with the concept of hierarchy. Conventionally, the
semantics of statecharts requires a tree-structure on the set of locations

Chapter 7. Hierarchical compositional interchange format 111

StoppedIn

inv : _xh = 0
Middle

inv : _xh = s
StoppedOut

inv : _xh = 0

when s = �1

when s = +1when x = +1 ^ s � 0

when x = �1 ^ s � 0

Horizontal

(a) Horizontal movement control.

StoppedUp

inv : _xv = 0
Middle

inv : _xv = s
StoppedDown

inv : _xv = 0

when s = �1

when s = +1when x = +1 ^ s � 0

when x = �1 ^ s � 0

Vertical

(b) Vertical movement control.

Figure 7.10: Horizontal and vertical movements of the controller.

of a statechart. Consequently, additional concepts from tree-structures,
like least common ancestors, children of a location, etc., complicate the
semantics. In [20], it was shown that these additional concepts are un-
necessary when reverting to structural operational semantics [68]. We
only need to introduce the notion of a substructure, which we handle
through the automaton postfix operator.

((c1 : �1) k (c2 : �2)) : �0

�0

k

�2�1

c2c1

Figure 7.11: Relation between automaton postfix operator and state tree
structures

Consider a state hc; �i in the HTS, it becomes clear how the postfix op-
erator helps us to mimick the state-tree structures used in the semantics
of statecharts [47]. Figure 7.11 shows that a composition c in essence is a
tree, where the postfix operator represents the edges of the tree and the
parallel compositions represent the branching points in the tree. The
root of this tree is the active location of the hierarchical automaton we
described, while the leaves are the active substructures where the con-
trol over actions currently lies. Indeed, an informal comparison of our

Chapter 7. Hierarchical compositional interchange format 112

semantics to that of statecharts suggest that the AND-superstates and
the OR-superstates are represented by the parallel compositions and
the multiple initial locations of substructures, respectively. The con-
cepts of history retention (not considered in this work) is not supported
directly in HCIF, although it can be emulated.

• Hierarchical timed automata [27, Chapter 4.] are extensions of state-
charts with a finite set of clock variables modeling real time. Again the
semantics of this formalism is based on the concepts of tree structures
and for this reason we also disregard this approach. However, there is
a common intuition about the passage of time in [27] with the current
work. The time can pass in a hierarchical structure only if the time can
pass in all the levels of hierarchy, i.e., time transitions must synchronise
in all the levels of hierarchy of a hierarchical automaton.

• State refinement operator [74]. State refinement is a binary operator
originating from the field of process algebras, denoted as p[q], where
p; q are arbitrary process terms. Informally, it means that p is a state
with the substructure q. In other words, a location of an automaton
is allowed to contain another automaton representing its substructure.
Furthermore, it was also stated [74] that the above way of introducing
hierarchy is compatible with the interleaving models of concurrency.
Thus, the current work is motivated by [74], even though the basic
entity in our formalism is an automaton rather than an action.

7.7 Conclusions

In this chapter, we have presented the syntax and semantics of HCIF, which
extends CIF with hierarchy in a compositional manner, so that only the SOS
rules for an automaton and for the time transitions of parallel composition
need to be adapted.

We conjecture that we are able to transform a HCIF composition into a bisimi-
lar CIF specification on the condition that the global set of controlled variables
and the global dynamic type of the variables is independent of the active lo-
cations of the automata.This condition is needed because the dynamic type of
variables and the set of control variables can change per location due to the
presence of the substructures at different locations. These substructures, in
principle, may have different dynamic types and different control variables.

Chapter 8
Conclusions

As outlined in Chapter 1, the model-based engineering approach allows an
incremental development of an embedded system. In this approach, the pro-
cess of refining a system model is key in obtaining a more exact description of
system behaviour. Although, a model of an embedded system can be refined
in a number of ways depending on the application domain, this thesis focussed
only on refinement of communication and on refinement of states.

8.1 Refinement of communication

The part on the refinement of communication dealt with correct implemen-
tation of synchronous systems using asynchronous communication because
synchronous systems are easier to understand and design than asynchronous
systems, and often their implementation are asynchronous in nature [33, 36].
To address this issue, our objective was to render a synchronous system and its
asynchronous version equivalent, by a suitable equivalence relation from the
van Glabbeek spectrum [76]. Roughly, a synchronous system that is unaltered
by the addition of communication buffers is called desynchronisable.

Another reason to study this refinement of synchrony into asynchrony is that
the presence of buffers makes ensuring the correctness (via state exploration
techniques) of an asynchronous system a non-trivial task. In general, if the
buffers are modelled to have infinite capacity, such systems are known to be
Turing complete as shown by Brand and Zafiropulo [22]. But also, if the buffers
are modeled to have finite capacity, we may still face the state-space explosion
problem. In this respect, it helps to separate concerns by first designing a
correct synchronous system and then desynchronising it.

113

Chapter 8. Conclusions 114

In general, the equivalence between any synchronous system and its asyn-
chronous version cannot be established because addition of the buffers (bags,
or queues) introduces more behaviour. For instance, deadlocks in the asyn-
chronous system, the introduction of new traces in the asynchronous system,
the reordering of traces present in the synchronous system, or delaying of
choices present in the synchronous system.

Thus, we investigated the conditions in this thesis that are required to desyn-
chronise a given synchronous system without building the transition system of
the corresponding asynchronous system, which may have an infinite number of
states. We noticed that sufficient conditions for desynchronisability depends
upon the equivalence notion, the type of buffers, and the abstraction schemes
used to construct an asynchronous system from a given synchronous system.
In this thesis, desynchronisability was studied up to either branching bisimi-
larity or contra-similarity, buffers were unbounded and lossless queues or bags,
and four abstraction schemes were proposed to ensure that the alphabet of
the asynchronous system is identical to its synchronous version.

Our results indicate that (when comparing the conditions of Chapter 3 and
Chapter 4) better desynchronisability conditions can be obtained by chang-
ing the properties of the communication protocol, rather than just focusing on
the properties that the communicating processes should have to ensure desyn-
chronisability. For instance, half-duplex queues avoid the diamond property
from the sufficient conditions of desynchronisability (Theorems 4.15, 4.21).
This leads to weaker conditions for desynchronisability than the sufficient
conditions obtained in the past (cf. [13, 36, 73, 80]) for weaker equivalences.
Moreover, we also showed that a reasonable characterisation of desynchroni-
sation (at-least for concrete communicating processes, see Chapter 4) can be
obtained even for the finest equivalence in the van Glabbeek spectrum.

A question which rises before applying the techniques developed in this thesis
is: which of the abstraction schemes lead to a reasonable restriction on a
synchronous system for desynchronisation? We believe that answer to this
question depends upon the choice of buffers.

In particular, in the case of (half-duplex) queues, we argued in Chapter 4 that
the abstraction scheme A3 leads to less restrictive conditions for desynchro-
nisability than the other abstraction schemes A1, A2, or A4. Recall that the
abstraction scheme A3 was the only abstraction scheme that preserves the
external choice between the messages sent from the communicating processes
in a synchronous system. On the contrary, the abstraction scheme A1 and A2

fail to preserve the external choices between the messages sent by the processes
p and s, respectively. Lastly, the abstraction scheme A4 fails to preserve the
external choices between the messages sent by both the process p and s (see
the examples from Subsection 4.1.2 and Subsection 4.1.3).

Chapter 8. Conclusions 115

However, in the case of bags, this thesis does not provide such a concrete
answer that helps in selecting one abstraction scheme over the others. Note
that, in general, the above combination of the half-duplex mechanism and the
abstraction scheme A3 does not ensure desynchronisation in the presence of
bags. In particular, the half-duplex bags introduces deadlocks in the asyn-
chronous system; even though if a synchronous system is desynchronisable
modulo $b under the abstraction scheme A1 and full-duplex bags (recall,
the modified synchronous system of the Pusher-lift system from Chapter 5).

Another issue which we faced is that the half-duplex mechanism reduces the
degree of parallelism in an asynchronous system because it restricts a sender
to proceed with the output messages, while its input queue is non-empty.
For this purpose, in Chapter 6, we studied the conditions under which it is
possible to relax the half-duplex restriction on certain send messages. Our
results indicate that a tradeoff between the full-duplex and the half-duplex
buffering strategies is required in order to obtain a correct and an efficient
implementation of an asynchronous system. Furthermore, the techniques of
Chapter 4 were also extended to desynchronise a non-concrete synchronous
system and a network of synchronously communicating processes.

We conclude the work on refinement of communication by sketching directions
for future research.

1. An obvious extension, especially given the nature of embedded systems,
is the desynchronisation of timed/hybrid synchronous systems modulo
timed branching bisimulation [5]. However, there is no common under-
standing of such a notion in the literature of timed process algebras [9].
This is due to the following open problem: whether two branching bisim-
ilar process must have exactly matching time behaviour? Furthermore,
the current focus of researchers from the field of hybrid systems/cyber-
physical systems is on the development of non-exact/approximate ver-
sions of behavioural relations (see, for instance, [35, 49]).

2. For deterministic supervisory control, we showed that it is possible to
synthesize a controller that satisfies the well-posedness property by con-
struction (Theorem 3.18). For other systems, however, this may not
be so easy. Therefore, it would be beneficial if tools for model check-
ing asynchronous systems, like mCRL2 [45] and CADP [59], could be
optimized to check for well-posedness as well.

3. Well-posedness was the only property, which we were unable to remove
from the sufficient conditions of desynchronisability presented in Chap-
ter 3. A way to relax the conditions of well-posedness is by allowing a
special kind of messages, called negative acknowledgements [43]. In-
tuitively, a receiver executes a negative acknowledgement message to
inform the sender that it is unable to perform the output message of
the sender. The introduction of negative acknowledgements raises the

Chapter 8. Conclusions 116

following question: How to handle the messages in the buffer in case the
receiver sends a negative acknowledgement? The answer to this question
is crucial for giving the semantics to an asynchronous system, which is
a prerequisite before establishing a desynchronisation result.

4. Throughout, the development of desynchronisation techniques in this
thesis we assume that our buffers were lossless. However, in practice
“real” buffers are lossy. Usually, the specification of a lossless buffer and
a lossy buffer differs in the � -transitions that forgets the elements from
the buffer contents. In this respect, the conventional specification of a
lossy buffer are sometimes considered too pessimistic and inadequate for
verifying liveness or fairness properties (see [12]). In such cases, the mes-
sage losses are associated with probabilities that leads to a more realistic
model of an asynchronous system. Thus, this issue should be addressed
in a desynchronisation study that allow buffers to be lossy before adopt-
ing probabilistic transition system as the computational model.

5. Finally, from Chapter 3 we know that an extra condition called reorder-
ing property arises while desynchronising a synchronous system in the
presence of bags. A way to relax this condition is by augmenting multi-
ple queues in an asynchronous system, rather than having a single bag
for one direction. Recall the deadlock situation which arises in Exam-
ple 5.1 (Chapter 5) due to bags. However, if we attached two input
queues Q1; Q2 at the plant-side such that the messages n1; n2 travel via
queue Q1 and the message n3 travel via Q2. Then the modified asyn-
chronous system does not have a deadlock because the self-loop labelled
as ?n2 at p1 is never executed as it will be guarded by the reception
of the message n1. As a consequence, we expect a weaker collection of
sufficient conditions for desynchronisability in the presence of multiple
queues than in the presence of unidirectional bags.

8.2 Refinement of states

The work on refinement of states focussed on the top-down development of
models in the Compositional Interchange Format (CIF). CIF is a modelling
language based on hybrid automata, which inherits some of the process alge-
braic operators to construct larger models from smaller models.

In his seminal paper [47], Harel argued that hierarchy, concurrency, and com-
munication are sufficient to describe behaviour of a discrete system in an
economical way and at the same time being formal and rigorous to do com-
puterized simulation. In this respect, CIF language was lacking the notion
of hierarchy, while the notions of concurrency and communication were al-
ready present in CIF since its inception (see [16]). Thus, in Chapter 7, we

Chapter 8. Conclusions 117

extended CIF with the notion of hierarchy, which resulted in the Hierarchical
Compositional Interchange Format (HCIF).

Syntactically, we introduced hierarchy in a CIF automaton by a hierarchy func-
tion h that associates a substructure to some locations of the CIF automaton.
Semantically, a hierarchical automaton is defined in a compositional manner
by referring only to the transition system of the substructures and not to their
syntactic representation. This allowed us to describe the SOS rules of HCIF
in the process-tyft format of Mousavi et al. [62]; thus, leading to stateless
bisimulation as a congruence for all the constructs of HCIF for free.

For this purpose, an auxiliary operator called the automaton postfix operator
was introduced to define the overall behaviour of a HCIF automaton. Thanks
to this operator, we were able to give the semantics of a HCIF automaton
without using the tree-structure (and its associated operations) on the set of
locations. This is how we obtained a concise semantics for hierarchy even
in the hybrid setting in contrast to the previous works [27, 54, 61]. It was
these concepts of tree-structure that would have otherwise bring the consid-
erable differences between the semantics of CIF and HCIF. Furthermore, we
anticipate that the already well-established semantics of (timed) hierarchical
automata [27] and statecharts [54, 61] can be made more simpler and concise
in this regard.

Nevertheless, there were subtle changes in the SOS rules that triggers the time
transitions in the various HCIF operators (w.r.t CIF). In CIF semantics, there
was no need of guard trajectory and termination trajectory because there
was no notion of termination in CIF. However, the notion of termination is
an important one in HCIF semantics because it intuitively tells us when a
non-disruptive edge can be executed in a HCIF automaton. For instance, an
action of a non-disruptive edge is enabled in a location at a time instant t if
the substructure at that location terminates at t. Such an information cannot
be left out while giving semantics to a HCIF automaton (or even in case of a
hierarchical timed automaton [27]).

Future work includes proving that HCIF is more expressive than CIF and
defining the subset of HCIF that can be translated to CIF. Although, an
initial prototype (see [37] for details) of Definition 7.12 has been implemented
to flatten the hierarchical models of Patient-support case-study (Section 7.5).
These transformations are important to reuse existing tools for CIF, including
model transformations that will allow model checking of HCIF models via tools
like SpaceEx [39] or Uppaal [53].

Appendix A
Proofs of main theorems in
Chapter 3

Theorem A.1 (Proof of Theorem 3.11). Let p k s be a synthesised
synchronous system such that p; s are well-posed. If p k s is Mp-singular
and satisfies the (Mp;Ms)-diamond property, then

p k s $b r1(p j[�; �]j s):

Proof. Define a relation B in the following way:

B =

��
p1 k s1;r1(p2 j[�; �]j s1)

� ��� p1 k s1 2 R(p k s) ^

r1(p2 j[�; �]j s1) 2 R(r1(p j[�; �]j s)) ^

9p02; s
0
2; p2; s2:

�
p02 k s

0
2

�
���� p1 k s1 ^ p02 k s

0
2

�
���� p2 k s2

��
:

Next, we show that the relation B is a branching bisimulation relation.

1. Let p1 k s1
�
�! p4 k s4 and (p1 k s1;r1(p2 j[�; �]j s1)) 2 B. From the

construction of B we have

9p02; s
0
2; p2; s2:

�
p02 k s

0
2

�
���� p1 k s1 ^ p02 k s

0
2

�
���� p2 k s2:

�
(A.1)

Since, Ep = ;, Es = ; and the processes p; s are concrete we know that
either, � 2Mp, or � 2Ms.

119

Appendix A. Proofs of main theorems in Chapter 3 120

(a) Let � 2Mp. Then, we have

9m:
h
� = m ^ p1

!m
�! p4 ^ s1

?m
��! s4

i
: (A.2)

i. Either, � = �. Then, due to the concreteness assumption we
have p2 k s2 = p02 k s

0
2. Then, the transition p02 k s

0
2

�
���� p1 k

s1 in Equation A.1 is of the form p2 k s2
�

���� p1 k s1. And

from Proposition 2.11 we get p2
?�

���� p1. Using this transition
at state r1(p2 j[�; �]j s1) we get

r1(p2 j[�; �]j s1) ��� r1(p1 j[�; �]j s1):

From the construction of B we get (p1 k s1;r1(p1 j[�; �]j s1)) 2

B. Using the transitions p1
!m
�! p4; s1

?m
��! s4 (Equation A.2) we

get r1(p1 j[�; �]j s1)
�
�! r1(p4 j[�;m]j s1)

m
�! r1(p4 j[�; �]j s4):

Using the transition p1 k s1
m
�! p4 k s4 in the construction

of B we get (p1 k s1;r1(p4 j[�;m]j s1)) 2 B. Clearly, from the
construction of B we have (p4 k s4;r1(p4 j[�; �]j s4)) 2 B.

ii. Or, � 6= �. Then, � = �0:� 0, for some �0 2 Mp, and � 0 2 Mp
�.

Since � = �0:� 0, the transition p02 k s02
�

���� p2 k s2 (Equa-
tion A.1) can be written in the following way (see Figure A.1):

p02 k s
0
2

�0
�! p03 k s

0
3

�0

���� p2 k s2; for some p03; s
0
3 2 P:

p02 k s
0
2

p03 k s
0
3 p1 k s1

p04 k s
0
4 = p4 k s4p2 k s2

p3 k s3

�0

m

�

�

� 0

� 0

�

Figure A.1: Transitions derived in Case 1(a)ii.

Applying Corollary 3.10 at the state p02 k s02 we get (see Fig-

ure A.1): 9p04; s04:
�
p1 k s1

�0

���� p04 k s
0
4 ^ p03 k s

0
3

�
���� p04 k s

0
4

�
:

If �0 = m, then by determinism we have p04 k s04 = p4 k s4. If
�0 6= m, then by Mp-singularity we have �0 = m. And, again
by determinism we have p04 k s04 = p4 k s4. In any case, we have

Appendix A. Proofs of main theorems in Chapter 3 121

p1 k s1
m

���� p4 k s4 and p03 k s
0
3

�
���� p4 k s4. Now, applying

Corollary 3.10 at the state p03 k s03 we get (see Figure A.1):

9p3; s3:

�
p2 k s2

�
���� p3 k s3 ^ p4 k s4

�0

���� p3 k s3

�
:

Thus, � = m:� 0^p1 k s1
m
�! p4 k s4

�0

���� p3 k s3: Furthermore,
using the transition s1

?m
��! s4 (Equation A.2) and the fact � =

m:� 0 we get r1(p2 j[�; �]j s1)
m
�! r1(p2 j[�; �

0]j s4): Finally, us-

ing the transitions p03 k s03
�0

���� p2 k s2 and p03 k s
0
3

�
���� p4 k

s4 in the construction we have (p4 k s4;r1(p2 j[�; �
0]j s4)) 2 B.

(b) Let � 2Ms. Then, we have

9n:
h
� = n ^ p1

?n
�! p4 ^ s1

!n
�! s4

i
:

Using the transition s1
!n
�! s4 at the state r1(p2 j[�; �]j s1) we get

r1(p2 j[�; �]j s1)
n
�! r1(p2 j[�:n; �]j s4):

Clearly, we have p02 k s02
�:n

����� p4 k s4 and p02 k s
0
2

�
���� p2 k s2.

Using the above transitions in the construction of B we conclude
that (p4 k s4;r1(p2 j[�:n; �]j s4)) 2 B:

2. Let r1(p2 j[�; �]j s1)
�
�! r1(p4 j[�

0; � 0]j s4), (p1 k s1;r1(p2 j[�; �]j s1)) 2
B. From the construction of B we have

9p02; s
0
2; p2; s2:

�
p02 k s

0
2

�
���� p1 k s1 ^ p02 k s

0
2

�
���� p2 k s2

�
: (A.3)

Since, the given processes p; s are concrete and the abstraction scheme
A1 is used we know that the transition

r1(p2 j[�; �]j s1)
�
�! r1(p4 j[�

0; � 0]j s4)

is either, due to the removal of an element from �, or due to the addition
of an element in �.

(a) Removal of an element from �. Then, � = n:�0, � 0 = �, p2
?n
�! p4,

and s1 = s4. Since, � = n:�0 we know that the transition p02 k

s02
�

���� p1 k s1 (Equation A.3) can be written in the following way:

p02 k s02
n
�! p03 k s03

�0

���� p1 k s1; for some p03; s03 2 P: Applying
Corollary 3.10 at the state p02 k s02 we get

9p04; s
0
4:
h
p03 k s

0
3

�
���� p04 k s

0
4 ^ p2 k s2

n
�! p04 k s

0
4

i
:

Appendix A. Proofs of main theorems in Chapter 3 122

Thus, p2
?n
�! p04 and s2

!n
�! s04. But, from above we have p2

?n
�! p4.

Since the plant process is deterministic, we have p4 = p04.

Finally, using the transition p03 k s
0
3

�
���� p4 k s

0
4 and the transition

p03 k s03
�0

���� p1 k s1 in the construction of B we conclude that
(p1 k s1;r1(p4 j[�

0; �]j s1)) 2 B.

(b) Addition of an element in �. Then, � = � 0:m, �0 = �, p2
!m
�! p4,

and s1 = s4. Since, the given p; s are well-posed, so assume a well-
posedness relation W such that (p; s) 2 W. From Proposition 3.6
we have (p2; s2) 2 W. And from Definition 3.5 we get p2

!m
�! p4 ^

(p2; s2) 2 W) 9s04:
h
s2

?m
��! s04

i
. Thus, p2 k s2

m
�! p4 k s

0
4. Hence,

p02 k s
0
2

�:m
����� p4 k s

0
4. Finally, using this transition together with

the transition p02 k s02
�

���� p1 k s1 in the construction of B we
conclude that (p1 k s1;r1(p4 j[�; �:m]j s1)) 2 B.

3. Let r1(p2 j[�; �]j s1)
�
�! r1(p4 j[�

0; � 0]j s4), (p1 k s1;r1(p2 j[�; �]j s1)) 2
B, and � 6= � . From the construction of B we have

9p02; s
0
2; p2; s2:

�
p02 k s

0
2

�
���� p1 k s1 ^ p02 k s

0
2

�
���� p2 k s2

�
:

Since, Ep = ;, Es = ;, and the processes p; s are concrete we know that
either, � 2Mp, or � 2Ms.

(a) Let � 2Mp. Then, due to the abstraction scheme A1 we know that
from the above transition we have s1

?m
��! s4, p2 = p4, �0 = �, and

� = m:� 0. So the transition p02 k s02
�

���� p2 k s2 can be written

in the following way: p02 k s02
m
�! p03 k s03

�0

���� p2 k s2, for some
p03; s

0
3 2 P. Now, applying Corollary 3.10 at the state p02 k s02 we get

9p04; s
0
4:

�
p1 k s1

m
�! p04 k s

0
4 ^ p03 k s

0
3

�
���� p04 k s

0
4

�
.

Thus, p1
!m
�! p04 and s1

?m
��! s04. But, s1

?m
��! s4. Since, the supervi-

sor s is deterministic we get s04 = s4. Thus, p1 k s1
m
�! p04 k s4.

Using the transitions p03 k s03
�0

���� p2 k s2 and p03 k s
0
3

�
���� p04 k s4

we get (p04 k s4;r1(p2 j[�; �
0]j s4)) 2 B.

(b) Let � 2Ms. Then, s1
!n
�! s4, �0 = �:n, p2 = p4, and � = � 0. Since,

the given processes p; s are well-posed, so assume a well-posedness
relation W such that (p; s) 2 W. From Proposition 3.6 we have
(p1; s1) 2 W. And by Definition 3.5 we get s1

!n
�! s4 ^ (p1; s1) 2

W) 9p04:
h
p1

?n
�! p04

i
. Thus, p1 k s1

n
�! p04 k s4. Combining this

transition with p02 k s
0
2

�
���� p1 k s1 we get p02 k s02

�:n
����� p04 k s4.

Appendix A. Proofs of main theorems in Chapter 3 123

Finally, using this transition together with p02 k s
0
2

�
���� p2 k s2 we

conclude that (p04 k s4;r1(p2 j[�:n; �]j s4)) 2 B.

Theorem A.2 (Proof of Theorem 3.15). Let p k s be a synthesised
synchronous system such that p; s are well-posed. If p k s satisfies the
(Mp;Mp [Ms) diamond property and the reordering property then

p k s $b r1(p jf"; "gj s):

Proof. Define a relation B in the following way:

B =

��
p1 k s1;r1(p2 jf�; �gj s1)

� ��� p1 k s1 2 R(p k s) ^

r1(p2 jf�; �gj s1) 2 R(r1(p jf"; "gj s)) ^

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p02 k s

0
2

�
���� p1 k s1 ^

� 2 S(�) ^ p02 k s
0
2

�
���� p2 k s2

i_
(C1)

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p2 k s2

�
���� p02 k s

0
2 ^

� 2 S(�) ^ p1 k s1
�

���� p02 k s
0
2

i�
: (C2)

We show that the relation B is a branching bisimulation relation.

1. Let p1 k s1
�
�! p4 k s4 and (p1 k s1;r1(p2 jf�; �gj s1)) 2 B due to

Condition C1. From the construction of B we have

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p02 k s

0
2

�
���� p1 k s1 ^

� 2 S(�) ^ p02 k s
0
2

�
���� p2 k s2

i
:

Since, Ep = ;, Es = ;, and the processes p; s are concrete we know that
either, � 2Mp, or � 2Ms.

(a) Let � 2Mp. Then, from disjointness of the sets Mp;Ms we have

9m:
h
� = m ^ p1

!m
�! p4 ^ s1

?m
��! s4

i
:

i. Either, � = ". Similar to Case 1(a)i of Theorem 3.11.
ii. Or, � 6= ". Note that the state r1(p1 jf�; �gj s1) can perform

the action m, if m 2 �. Otherwise, the plant process p1 will
have to update its output’s bag content by adding m. Thus,
we have two possibilities.

A. Either, m 2 �. Then, using the transition s1
?m
��! s4 we

get r1(p2 jf�; �gj s1)
m
�! r1(p2 jf�; � 	mgj s4). Applying,

Appendix A. Proofs of main theorems in Chapter 3 124

Corollary 3.10 at state p02 k s02 we get (see Figure A.2)

9p3; s3:

�
p2 k s2

�
���� p3 k s3 ^ p1 k s1

�
���� p3 k s3

�
:

p02 k s
0
2 p1 k s1

p2 k s2 p3 k s3

p4 k s4

p03 k s
0
3

p04 k s
0
4= p05 k s

0
5

�

�

�

�1

�2

�1

m

m

Figure A.2: Transitions derived in Case 1(a)iiA.

Since, m 2 � we have m 2 �. Thus, the transition can
p1 k s1

�
���� p3 k s3 can be rewritten as (see Figure A.2):

p1 k s1
�1

���� p03 k s
0
3

m
�! p04 k s

0
4

�2
���� p3 k s3;

for some p03; s
0
3; p

0
4; s

0
4; �1; �2 such that � = �1:m:�2 and

m 62 �1. Applying Corollary 3.10 at p1 k s1 we get (see Fig-
ure A.2) 9p05; s05:

h
p4 k s4

�1
���� p05 k s

0
5 ^ p03 k s

0
3

m
�! p05 k s

0
5

i
:

Since the synchronous system is deterministic we have p04 k
s04 = p05 k s05. Thus, we have p4 k s4

�1:�2
������ p3 k s3.

Note that �1:m:�2 2 S(�)) �1:�2 2 S(� 	m). Using the
above transition with the transition p2 k s2

�
���� p3 k s3 in

Condition C2 we get (p4 k s4;r1(p2 jf�; � 	mgj s4)) 2 B.
B. Or, m 62 �. Applying, Corollary 3.10 at the states p02 k s02,

p1 k s1 we get

9p3; s3:

�
p2 k s2

�
���� p3 k s3 ^ p1 k s1

�
���� p3 k s3

�
:

9p5; s5:
h
p3 k s3

m
�! p5 k s5 ^ p4 k s4

�
���� p5 k s5

i
:

Applying Proposition 2.11 on the transition p2 k s2
�

����

p3 k s3 we get p2
?�

���� p3. Thus, r1(p2 jf�; �gj s1) ���

r1(p3 jf"; �gj s1). Using the transition p1 k s1
�

���� p3 k

Appendix A. Proofs of main theorems in Chapter 3 125

s3, � 2 S(�) in Condition C1 we get

(p1 k s1;r1(p3 jf"; �gj s1)) 2 B:

Also, from the transition p3 k s3
m
�! p5 k s5 we have p3

!m
�!

p5. Using this transition we have

r1(p3 jf"; �gj s1)
�
�! r1(p5 jf"; � �mgj s1):

Using the transition p1 k s1
�:m

����� p5 k s5, �:m 2 S(��m)
in Condition C1 we get (p1 k s1;r1(p5 jf"; � �mgj s1)) 2

B. Furthermore, from the transition s1
?m
��! s4 we get

r1(p5 jf"; � �mgj s1)
m
�! r1(p5 jf"; �gj s4). Finally, using

the transition p4 k s4
�

���� p5 k s5 and the fact � 2 S(�) in
C1 we conclude that (p4 k s4;r1(p5 jf"; �gj s4)) 2 B.

(b) Let � 2Ms. Similar to Case 1b of Theorem 3.11.

2. Let p1 k s1
�
�! p4 k s4 and (p1 k s1;r1(p2 jf�; �gj s1)) 2 B due to

Condition C2. Similar to the previous case.

3. Let r1(p2 jf�; �gj s1)
�
�! r1(p4 jf�

0; � 0gj s4), (p1 k s1;r1(p2 jf�; �gj s1)) 2
B due to Condition C1. Then, from the construction of B we have

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p02 k s

0
2

�
���� p1 k s1 ^

� 2 S(�) ^ p02 k s
0
2

�
���� p2 k s2

i
:

Applying Corollary 3.10 at the state p02 k s02 we get

9p3; s3:

�
p2 k s2

�
���� p3 k s3 ^ p1 k s1

�
���� p3 k s3

�
:

Since, the given processes p; s are concrete and the abstraction scheme
A1 is used we know that this transition is either, due to the removal of
an element from �, or due to the addition of an element in �.

(a) Removal of an element from �. Then, �0 = � 	 n, for some n 2 A,
� 0 = �, p2

?n
�! p4, s1 = s4. Then, n 2 �. Thus, the transition

p2 k s2
�

���� p3 k s3 can be rewritten as:

p2 k s2
�1

���� p03 k s
0
3

n
�! p04 k s

0
4

�2
���� p3 k s3;

for some p03; p
0
4; s

0
3; s

0
4; �1; �2 such that � = �1:n:�2. And from

reordering property we get

9s05; �
0
1:

"
p2 k s2

n
�! p4 k s

0
5

�01
���� p04 k s

0
4 ^ �01 =� �1

#
:

Appendix A. Proofs of main theorems in Chapter 3 126

Thus, p4 k s05
�01:�2

������ p3 k s3. Using Proposition 2.4 we have
�1:n:�2 2 S(�)) n:�01:�2 2 S(�)) �01:�2 2 S(� 	 n). Using the

transitions p4 k s05
�01:�2

������ p3 k s3 and p1 k s1
�

���� p3 k s3 in
Condition C2 we get (p1 k s1;r1(p4 jf� 	m; �gj s1)) 2 B.

(b) Addition of an element in �. Similar to Case 2b of Theorem 3.11.

4. Let r1(p2 jf�; �gj s1)
�
�! r1(p4 jf�

0; � 0gj s4), (p1 k s1;r1(p2 jf�; �gj s1)) 2
B due to Condition C2. Similar to the previous case.

5. Letr1(p2 jf�; �gj s1)
�
�! r1(p4 jf�

0; � 0gj s4), (p1 k s1;r1(p2 jf�; �gj s1)) 2
B due to Condition C1, � 6= � . Then, from the construction of B we get

9p02; s
0
2; p2; s2; �; �:

h
� 2 S(�) ^ p02 k s

0
2

�
���� p1 k s1 ^

� 2 S(�) ^ p02 k s
0
2

�
���� p2 k s2

i
:

Since, Ep = ;, Es = ;, and the processes p; s are concrete we know that
either, � 2Mp, or � 2Ms.

(a) Either, � 2Mp. Then, due to the abstraction scheme A1 we know
that from the above transition we have s1

?m
��! s4, p2 = p4, �0 = �,

and � = � 0 	 m, for some m 2 A such that � = m. Applying
Corollary 3.10 at state p02 k s02 we get

9p3; s3:

�
p2 k s2

�
���� p3 k s3 ^ p1 k s1

�
���� p3 k s3

�
:

Clearly, we have m 2 � and thus m 2 �. Thus, the transition
p1 k s1

�
���� p3 k s3 can be rewritten as: p1 k s1

�1
���� p03 k

s03
m
�! p04 k s

0
4

�2
���� p3 k s3; for some p03; p04; s03; s04; �1; �2 such that

� = �1:m:�2. Applying reordering property at the state p1 k s1

we get 9p5; � 01:

"
p1 k s1

m
�! p5 k s4

�01
���� p04 k s

0
4 ^ � 01 =� �1

#
. Thus,

p5 k s4
�01:�2

������ p3 k s3: Using Proposition 2.4 we have �1:m:�2 2
S(�)) m:� 01:�2 2 S(�)) � 01:�2 2 S(� 	 m). Using the above
derived transition with the transition p2 k s2

�
���� p3 k s3 in

Condition C2 we conclude that (p5 k s4;r1(p2 jf�; �	mgj s4)) 2 B:

(b) Or, � 2Ms. Similar to Case 3b of Theorem 3.11.

Appendix B
Proofs of main theorems in
Chapter 4

Definition B.1. A symmetric binary relation S � P � P is called a strong
bisimulation (simply, bisimulation) relation [66] iff the following transfer con-
dition is satisfied.

8q1; q
0
1; q2; �:

h
q1

�
�! q01 ^ (q1; q2) 2 S) 9q02:

h
q2

�
�! q02 ^ (q01; q

0
2) 2 S

ii
:

Furthermore, a relation S � P � P is an t-sensitive bisimulation (pro-
nounced, emptiness sensitive bisimulation) relation iff S is a bisimulation
relation satisfying the following transfer condition:

8q1; q2:
�
(q1; q2) 2 S ^ q1t) q2 t

�
:

Two processes q1; q2 are (t-sensitive) bisimilar, denoted (q1$t q2) q1 $ q2,
if there exists a (an t-sensitive) bisimulation relation S such that (q1; q2) 2 S.

The following proposition states that for the class of concrete processes both
branching bisimilarity and contra-similiarity coincides with bisimilarity.

Proposition B.2. Suppose q1; q2 are any two concrete processes. Then,

q1$
t q2 , q1'

tq2:

Proof. For branching bisimulation, we know the result q1$t q2 , q1$
t
b q2

holds, whenever q1, q2 are concrete processes ([77]). So we show the result for
contra-similarity. It is easy to see that q1 $t q2) q1 �

t
c q2 because $t is

the finest equivalence in van Glabbeek’s spectrum [76]. So we prove the other

127

Appendix B. Proofs of main theorems in Chapter 4 128

direction, i.e., if q1 �tc q2, then q1$
t q2. Define a binary relation S:

S = f(q3; q4); (q4; q3) j q3 �
t
c q4 ^ q3 2 R(q1) ^ q4 2 R(q2)g:

Next, we need to show that S is a bisimulation relation.

1. Let q3
�
�! q5, � 6= � (∵ q1 is concrete), and (q3; q4) 2 S. Then, by the

construction of S we have q3 �tc q4. Now, using the transfer condition of
Definition 2.9 we get 9q6:

h
q4

�
���� q6 ^ q6 4t q5

i
: Since q1 is a concrete

processes, so is q5. Thus, q5 6
�
�!. And from Proposition 2.10 we get

q5 4t q6. Thus, q5 �tc q6. Also, q2 is a concrete process, so q4
�

���� q6
implies q4

�
�! q6. Finally, from the construction of S we conclude that

(q5; q6) 2 S and (q6; q5) 2 S.

2. Let q3t and (q3; q4) 2 S. Then, by the construction of S we have
q3 �

t
c q4. Now, using the transfer condition of Definition 2.9 we get

9q6:
�
q4 ��� q6 ^ q6 t ^ q6 4

t q3
�
:

Since q1 is a concrete processes, then q3 is also a concrete process. Thus,
q3 6

�
�!. And from Proposition 2.10 we get q3 4t q6. Thus, q3 �tc q6.

Also, q2 is a concrete process, so q4 ��� q6 implies q4 = q6. Hence, q4t.

3. Let q2
�
�! q02, � 6= � and (q1; q2) 2 S. Similar to Case 1.

4. Let q2t and (q1; q2) 2 S. Similar to Case 2.

Hence, the desired result q1$t q2 , q1'
tq2 follows.

Lemma B.3 (Proof of Lemma 4.3). Let p1; s1; p2; s2 be any four concrete
processes. Then, p1 k s1'tr3(p2 j[�; �]j s2)) p1 k s1'

tp2 k s2 :

Proof. It is easier to show p1 k s1'
tr3(p2 j[�; �]j s2)) p1 k s1 $

t p2 k s2
than p1 k s1'

tr3(p2 j[�; �]j s2)) p1 k s1'
tp2 k s2. Note that the desired

result follows directly from Proposition B.2. To see the former, define the
following relations S't (for 't 2 f$t

b;�
t
c g):

S't =

�
(p3 k s3; p4 k s4); (p4 k s4; p3 k s3)

��� p3 k s3 2 R(p1 k s1) ^

r3(p4 j[�; �]j s4) 2 R(r3(p2 j[�; �]j s2)) ^ p3 k s3'
tr3(p4 j[�; �]j s4)

�
:

Next, we need to show that S't is a bisimulation relation.

1. When p3 k s3
�
�! p5 k s5 and (p3 k s3; p4 k s4) 2 S't . Now, perform

case-distinction based on the type of �, we get the following cases:

Appendix B. Proofs of main theorems in Chapter 4 129

(a) Let � = e, for some e 2 Es. Then p3 = p5 and s3
e
�! s5. And, by

the construction of S't we have p3 k s3'tr3(p4 j[�; �]j s4).
• Let 't =$t

b. Then, from the transfer conditions of branching
bisimulation we get 9q:[r3(p4 j[�; �]j s4) ��� q

e
�! q0^q$t

b p3 k
s3 ^ p3 k s5 $

t
b q0]. Since concrete processes are used to con-

struct the asynchronous systems we have q = r3(p4 j[�; �]j s4).
Since the sets Ep; Es are disjoint, so from the semantics we
have q0 = r3(p4 j[�; �]j s6) such that s4

e
�! s6, for some s6 2 P.

Using the fact p3 k s5$t
b r3(p4 j[�; �]j s6) in the construction

of S$t
b
we get (p3 k s5; p4 k s6) 2 S$t

b
.

• Let 't =�tc . Then, from the transfer conditions of contra-
simulation we get 9q:[r3(p4 j[�; �]j s4)

e
��� q ^ q 4t p3 k s5].

Since concrete processes are used to construct the asynchronous
systems and the external actions do not update the contents of
queues we have q = r3(p6 j[�; �]j s6) such that

r3(p4 j[�; �]j s4)
e
�! r3(p6 j[�; �]j s6) for some p6; s6 2 P:

Since the sets Ep; Es are disjoint, so from the semantics we
have p4 = p6 and s4

e
�! s6.

Also, p1; s1 are concrete processes, so is p1 k s1. Thus, p3 k s5
is also concrete and p3 k s5 6

�
�!. From Proposition 2.10 we get

p3 k s5 4t r3(p4 j[�; �]j s6). Thus p3 k s5 �tc r3(p4 j[�; �]j s6).
Clearly, p4 k s4

e
�! p4 k s6. Using p4 k s4 �tc r3(p4 j[�; �]j s6) in

the construction of S�tc we get (p3 k s5; p4 k s6) 2 S�tc .
(b) Let � = e, for some e 2 Ep. Similar to Case (a).

(c) Let � = n, for some n 2 Ms. Then, p3
?n
�! p5 and s3

!n
�! s5. And

by the construction of St' we have p3 k s3'tr3(p4 j[�; �]j s4).
• When 't =$t

b : Using the transfer conditions of branching
bisimulation we get there exists q; q0 such that

r3(p4 j[�; �]j s4) ��� q
n
�! q0 ^ q$t

b p3 k s3 ^ q0$t
b p5 k s5:

Due to concreteness assumption, we have q = r3(p4 j[�; �]j s4).
Since the sets Mp;Ms are disjoint, so the sets Mp;Ms are
also disjoint. Using this fact in the semantics we know that
q0 = r3(p4 j[n; �]j s6) such that s4

!n
�! s6, for some s6 2 P.

But, r3(p4 j[n; �]j s6)t and from the transfer conditions of the
predicate t we get

9q00:
�
r3(p4 j[n; �]j s6) ��� q00 ^ q00 t ^ q00$t

b p5 k s5
�
:

Due to concreteness assumption, we have q00 = r3(p6 j[�; �]j s6)

such that r3(p4 j[n; �]j s6)
�
�! r3(p6 j[�; �]j s6), for some p6 2

Appendix B. Proofs of main theorems in Chapter 4 130

P. Thus, we have the transitions s4
!n
�! s6 and p4

?n
�! p6.

Clearly, p4 k s4
n
�! p6 k s6. Finally, using the fact p5 k s5 $t

b

r3(p6 j[�; �]j s6) we conclude that (p5 k s5; p6 k s6) 2 S$t
b
:

• Let't =�tc . Using the transfer conditions of contra-simulation
we get 9q:

h
r3(p4 j[�; �]j s4)

n
���� q ^ q 4t p5 k s5

i
: Again, due

to concreteness assumption we have p5 k s5 6�! � . And, from
Proposition 2.10 we have p5 k s5 4t q. Thus, p5 k s5 �tc q.
Now consider the transition r3(p4 j[�; �]j s4)

n
���� q. Note that

there are two situations possible: either, n is consumed, or n
is not consumed.
– Suppose n is consumed. Again, due to concreteness as-

sumption and the fact that the sets Mp;Ms are disjoint
and n 2Ms we have q = r3(p6 j[�; �]j s6) such that

r3(p4 j[�; �]j s4)
n
�! r3(p4 j[n; �]j s6)

�
�! r3(p6 j[�; �]j s6);

for some p6; s6 2 P. Thus, s4
!n
�! s6 and p4

?n
�! p6. Clearly,

p4 k s4
n
�! p6 k s6. And from the construction of S�tc we

get (p5 k s5; p6 k s6) 2 S�tc .
– Suppose n is not consumed. Since, concrete processes are

used to construct the asynchronous systems, n 2 Ms, and
the sets Mp;Ms are disjoint we have q = r3(p4 j[n; �]j s6)
such that

r3(p4 j[�; �]j s4)
n
�! r3(p4 j[n; �]j s6);

for some s6 2 P. But r3(p4 j[n; �]j s6)t and from above
we have p5 k s5 �tc r3(p4 j[n; �]j s6) (∵ p5 k s5 �

t
c q). So

using the transfer conditions of the predicate t we get

9q0:
�
r3(p4 j[n; �]j s6) ��� q0 ^ q0 t ^ q0 4t p5 k s5

�
:

Due to concreteness assumption we have q0 = r3(p6 j[�; �]j s6)

such that r3(p4 j[n; �]j s6)
�
�! r3(p6 j[�; �]j s6), for some

p6 2 P. Also, from above we have p5 k s5 6�! � ; thus,
from Proposition 2.10 we get p5 k s5 4t r3(p6 j[�; �]j s6).
Thus, p5 k s5 �tc r3(p6 j[�; �]j s6). Note that we derived the
transition p4

?n
�! p6 and s4

!n
�! s6. Thus, p4 k s4

n
�! p6 k s6.

Finally, from the construction of S�tc we conclude that
(p5 k s5; p6 k s6) 2 S�tc .

(d) Let � = m, for some m 2Mp. Similar to Case 1c.

2. Let p3 k s3t and (p3 k s3; p4 k s4) 2 S't . Trivial.

3. Let p4 k s4
�
�! p6 k s6 and (p3 k s3; p4 k s4) 2 S't . Similar to Case 1.

Appendix B. Proofs of main theorems in Chapter 4 131

4. Let p4 k s4t and (p3 k s3; p4 k s4) 2 S't . Trivial.

Theorem B.4 (Proof of Theorem 4.15). Let p; s be concrete processes. If
the synchronous system p k s is well-posed, input-deterministic modulo
$t

b, and strong E-independent modulo$t
b, then p k s$t

b r3(p j[�; �]jh s):

Proof. Define a relation B in the following way:

B =
n�
p1 k s1;r3(p2 j[�; �]jh s2)

�
j p1 k s1 2 R(p k s) ^

r3(p2 j[�; �]jh s2) 2 R(r3(p j[�; �]jh s)) ^�
(� = � ^ � = �)) p1 k s1$

t p2 k s2
� _

�
(� 6= � ^ � = �)) 9p02; s

0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2 2 R(p k s) ^

p2 k s
0
2

u
���� p02 k s2 ^ � = �u ^ p1 k s1$

t p02 k s2
i� _

�
(� = � ^ � 6= �)) 9p02; s

0
2; v 2 (Mp [Ep)

�:
h
p02 k s2 2 R(p k s) ^

p02 k s2
v

���� p2 k s
0
2 ^ � = �v ^ p1 k s1$

t p2 k s
0
2

i�o
:

Note that in the above definition there is no implication with the antecedent
� 6= �; � 6= � because of half-duplex mechanism. Next, we need to show that
B is a branching bisimulation relation.

1. Let p1 k s1
�
�! p3 k s3 and (p1 k s1;r3(p2 j[�; �]jh s2)) 2 B. Based on the

type of � we get the following cases:

(a) When � = e, for some e 2 Es. Then, p1 = p3 and s1
e
�! s3. Now,

applying structural induction on �; � we get the following cases:
i. Let � = �; � = �. Similar to the next case.
ii. When � 6= �; � = �. Then, we have

9p02; s
0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2

u
���� p02 k s2 ^

� = �u ^ p1 k s1$
t p02 k s2

i
:

Consider the transition p1 k s1
e
�! p1 k s3 and applying the

transfer conditions of strong bisimulation we get

9p04; s4:
h
p02 k s2

e
�! p04 k s4 ^ p1 k s3$

t p04 k s4
i
:

Since, the sets Ep; Es are disjoint, thus, from the semantics
we have p04 = p02 and s2

e
�! s4. Using this transition we get

r3(p2 j[�; �]jh s2)
e
�! r3(p2 j[�; �]jh s4). Note that (u:e) = �

Appendix B. Proofs of main theorems in Chapter 4 132

because �u:e = �u and �u = �. From the construction of B, we
get (p1 k s3;r3(p2 j[�; �]jh s4)) 2 B.

iii. Let � = �; � 6= �. Then, we have

9p02; s
0
2; v 2 (Mp [Ep)

�:
h
p02 k s2

v
���� p2 k s

0
2 ^

� = �v ^ p1 k s1$
t p2 k s

0
2

i
:

Consider the transition p1 k s1
e
�! p1 k s3 and applying the

transfer conditions of strong bisimulation we get

9p4; s
0
4:
h
p2 k s

0
2

e
�! p4 k s

0
4 ^ p1 k s3$

t p4 k s
0
4

i
: (B.1)

Since, the sets Ep; Es are disjoint, thus, from the semantics we
have p2 = p4 and s02

e
�! s04. From above we have p02 k s2

v
����

p2 k s02. And, Proposition 2.11 we get s2
?v

���� s02. Note
that ?v =?�, since � = �v. Thus, we have r3(p2 j[�; �]jh s2) ���
r3(p2 j[�; �]jh s

0
2). But, p1 k s1$

t p2 k s
0
2, so from the construc-

tion of B we have (p1 k s1;r3(p2 j[�; �]jh s
0
2)) 2 B. From the

transition s02
e
�! s04 we get r3(p2 j[�; �]jh s

0
2)

e
�! r3(p2 j[�; �]jh s

0
4):

Applying the fact p1 k s3$t p4 k s
0
4 from Equation B.1 in the

construction of B, we get (p1 k s3;r3(p2 j[�; �]jh s
0
4)) 2 B.

iv. Let �; � 6= �. Inapplicable, due to half-duplex mechanism!
(b) Let � = e, for some e 2 Ep. Similar to the previous case.
(c) Let � = m, for some m 2Mp. Similar to Case 1a.
(d) Let � = n, for some n 2Ms. Similar to Case 1a.

2. Let p1 k s1t and (p1 k s1;r3(p2 j[�; �]jh s2)) 2 B: Now applying struc-
tural induction on �; � we get the following cases:

(a) Let � = �; � = �. Trivial.
(b) Let � 6= �; � = �. Then, from the construction we have:

9p02; s
0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2

u
���� p02 k s2 ^

� = �u ^ p1 k s1$
t p02 k s2

i
:

From Proposition 2.11 we have p2
?u

���� p02. Note that � = �u; thus,
?u =?�. Thus, r3(p2 j[�; �]jh s2) ��� r3(p

0
2 j[�; �]jh s2). Clearly,

r3(p2 j[�; �]jh s2)t. And from the construction of B we get (p1 k
s1;r3(p

0
2 j[�; �]jh s2)) 2 B.

(c) Let � = �; � 6= �. Similar to the previous case.
(d) Let � 6= �; � 6= �. Inapplicable, due to the half-duplex mechanism!

Appendix B. Proofs of main theorems in Chapter 4 133

3. Let r3(p2 j[�; �]jh s2)
�
�! r3(p4 j[�

0; � 0]jh s4), (p1 k s1;r3(p2 j[�; �]jh s2))
2 B. Based on the type of � we get the following cases:

(a) Let � = e, for some e 2 Es. Then, p2 = p4, �0 = �, � 0 = �, and
s2

e
�! s4. Now applying structural induction on �; � we get:
i. Let � = �; � = �. Similar to the next case.
ii. Let � 6= �; � = �. Then,

9p02; s
0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2

u
���� p02 k s2 ^

� = �u ^ p1 k s1$
t p02 k s2

i
:

Using the transition s2
e
�! s4 we get p02 k s2

e
�! p02 k s4. Now

from the transfer conditions of strong bisimulation we get

9p3; s3:
h
p1 k s1

e
�! p3 k s3 ^ p3 k s3$

t p02 k s4
i
:

Using the above derived facts and u:e = � in the construction
of B we conclude that (p1 k s3;r3(p2 j[�; �]jh s4)) 2 B.

iii. Let � = �; � 6= �. Then,

9p02; s
0
2; v 2 (Mp [Ep)

�:
h
p02 k s2

v
���� p2 k s

0
2 ^

� = �v ^ p1 k s1$
t p2 k s

0
2

i
:

By applying Proposition 2.11 we get p02
!v

���� p2. Using the
transition s2

e
�! s4 we get p02 k s2

e
�! p02 k s4. But, the given syn-

chronous system is well-posed. By applying Lemma 3.7 we get

p02 k s4 2 R(p k s) ^ p02
!v

���� p2) 9s04:
h
p02 k s4

v
���� p2 k s

0
4

i
.

Now applying the strong version of Definition 4.10 at p02 k s2 we
get 9s6; s06:

h
p02 k s2

v
���� p2 k s

0
6

e
�! p2 k s6 ^ p2 k s6$

t p2 k s
0
4

i
:

Now, from input-determinism we have p2 k s02 $
t p2 k s06.

From above, we have p1 k s1 $
t p2 k s02 and by transitiv-

ity we get p1 k s1 $
t p2 k s06. Consider p2 k s06

e
�! p2 k s6

and applying the transfer conditions of strong bisimulation
we get: 9p3; s3:

h
p1 k s1

e
�! p3 k s3 ^ p3 k s3$

t p2 k s6
i
: Also,

from above we have p2 k s6 $t p2 k s
0
4; by transitivity we get

p3 k s3 $
t p2 k s

0
4. Using the transitions p02 k s4

v
���� p2 k s

0
4

and the fact p3 k s3 $
t p2 k s04 in the construction of B we

conclude that (p3 k s3;r3(p2 j[�; �]jh s4)) 2 B.
iv. When � 6= �; � 6= �. Inapplicable due to half-duplex mecha-

nism!
(b) Let � = e, for some e 2 Ep. Similar to the previous case.

Appendix B. Proofs of main theorems in Chapter 4 134

(c) Let � = n, for some n 2 Ms. Then, p2 = p4, �0 = �:n, � 0 = �,
s2

!n
�! s4. Now, applying structural induction on �; � we get the

following cases:
i. When � = �; � = �. Similar to the next case.
ii. When � 6= �; � = �. Then,

9p02; s
0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2

u
���� p02 k s2 ^

� = �u ^ p1 k s1$
t p02 k s2

i
:

Since, the processes p; s are well-posed. So by Lemma 3.7 we
have 9p04:

h
p02 k s2

n
�! p04 k s4

i
. But, p1 k s1$t p02 k s2. So from

the transfer conditions of strong bisimulation we get

9p3; s3:
h
p1 k s1

n
�! p3 k s3 ^ p04 k s4$

t p3 k s3
i
:

Using the above facts and u:n = �:n in the construction of B
we conclude that (p3 k s3;r3(p2 j[�:n; �]jh s4)) 2 B.

iii. Let � = �; � 6= �. Inapplicable due to half-duplex mechanism!
iv. Let � 6= �; � 6= �. Inapplicable due to half-duplex mechanism!

(d) Let � = m, for some m 2Mp. Similar to the previous case.
(e) Let � = � . Since, the local processes are concrete so the transition

r3(p2 j[�; �]jh s2)
�
�! r3(p4 j[�

0; � 0]jh s4) is either due to Rule 12 or
Rule 14.

• Application of Rule 12. Now perform structural induction on
�, � we get the following cases:
i. Let � = �; � = �. Inapplicable, because � is nonempty

when Rule 12 is applied!

ii. Let � 6= �; � = �. Then, p2
?n
�! p4, � = n:�0, � 0 = �, and

s2 = s4. Also, from the construction we have

9p02; s
0
2; u 2 (Ms [Es)

�:
h
p2 k s

0
2

u
���� p02 k s2 ^

� = �u ^ p1 k s1$
t p02 k s2

i
:

Since � = �u and � = n:�0, we can then decomposed the
above transition as:

p2 k s
0
2

u1
���� p2 k s

00
2

n
�! p04 k s

0
4

u2
���� p02 k s2;

for some u1; u2 2 (Es [Ms)
� such that �u1 = �, �u2 =

�0, and s002; p
0
4; s

0
4 2 P. Thus, we get p2

?n
�! p04, s002

!n
�!

s04, s04
!u2

����� s2. Also, from above we have p2
?n
�! p4.

Appendix B. Proofs of main theorems in Chapter 4 135

Then, we get p2 k s002
n
�! p4 k s04. Since the given syn-

chronous system is well-posed, so from Lemma 3.7 we get

9p6:

�
p4

?u2
����� p6

�
. Thus, p4 k s04

u2
���� p6 k s2.

And from input-determinism we get p02 k s2 $
t
b p6 k s2.

Since the synchronous system is concrete, from Proposi-
tion B.2 we have p02 k s2$

t p6 k s2. But, p1 k s1$t p02 k s2
and from transitivity we get p1 k s1 $

t p6 k s2. Finally,
using the transition p4 k s04

u2
���� p6 k s2 and the facts

�u2 = �0; p1 k s1$
t p6 k s2 in the construction of B we get

(p1 k s1;r3(p4 j[�
0; �]jh s2)) 2 B.

iii. Let � = �; � 6= �. Inapplicable, same reason as in Case3(e)i!
iv. Let �; � 6= �. Inapplicable, due to half-duplex mechanism!

• Application of Rule 14. Similar to the previous case.

4. Let r3(p2 j[�; �]jh s2)t and (p1 k s1;r3(p2 j[�; �]jh s2)) 2 B: Then, from
semantics we have � = �; � = �, and from the construction of B we get
p1 k s1$

t p2 k s2. Clearly, from the semantics we have p1 k s1t.

Lemma B.5 (Proof of Lemmma 4.20). Suppose a concrete and well-posed
synchronous system p k s is E-independent modulo 't. If r3(p1 j[�; �]jh s1)

2 R(r3(p j[�; �]jh s)) and r3(p1 j[�; �]jh s1)
w

���� r3(p2 j[�; �]jh s2) then,

9p3; s3:
h
p1 k s1

w
���� p3 k s3 ^ p2 k s2$

t p3 k s3
i
:

Proof. We prove this lemma by strong induction on w. When w = �
then the lemma holds trivially due to concreteness assumption. So suppose

otherwise w = w0:� such that r3(p1 j[�; �]jh s1)
w0

���� r3(p
0
2 j[�; �]jh s

0
2)

�
�!

r3(p2 j[�; �]jh s2). Based on the type of � we get the following cases:

1. Let � = e, for some e 2 Es. Then, from the semantics we know that
p02 = p2, �; � = �, and s02

e
�! s2. And by inductive hypothesis we have

9p3; s3:

�
p1 k s1

w0

���� p3 k s3 ^ p2 k s
0
2$

t p3 k s3

�
:

From the transition s02
e
�! s2, we get p2 k s02

e
�! p2 k s2. Using the

transfer conditions of strong bisimulation we get

9p4; s4:
h
p3 k s3

e
�! p4 k s4 ^ p2 k s2$

t p4 k s4
i
:

2. Let � = e, for some e 2 Ep. Then, from the semantics we know that
p02

e
�! p2, �; � = �, and s02 = s2. The remainder of the proof is similar to

the previous case.

Appendix B. Proofs of main theorems in Chapter 4 136

3. Let � = m, or � = n, for some m 2 Mp; n 2 Ms. Inapplicable, because
the target state contains empty queue contents!

4. Let � = � . Note that this transition can be either due to Rule 12 or
Rule 14. Then, w = w0 by definition of reachability relation ���.

(a) Application of Rule 12. Then, p02
?n
�! p2, � = n, � = �, s02 =

s2, for some n 2 Ms. Then, the transition r3(p
0
2 j[�; �]jh s

0
2)

�
�!

r3(p2 j[�; �]jh s2) is of the formr3(p
0
2 j[n; �]jh s2)

�
�! r3(p2 j[�; �]jh s2).

And from triangle lemma (Lemma 4.19) we have there exists p01; s01 2
P, u 2 (Es [Ms)

�, v 2 (Ep[?Mp)
� such that

i. r3(p1 j[�; �]jh s1)
w1

����� r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p

0
2 j[n; �]jh s2),

w = w1:w2, and

ii. s01
!u

���� s2; p
0
1

v
���� p02, ?u = (v "?Mp):?n and u:(v " Ep) vs

w2.
And, from the strong induction hypothesis we have

9p3; s3:
h
p1 k s1

w1
����� p3 k s3 ^ p01 k s

0
1$

t p3 k s3
i
: (B.2)

Next, we show that

r3(p
0
1 j[�; �]jh s

0
1)

w2
����� r3(p2 j[�; �]jh s2))

9p4; s4:
h
p01 k s

0
1

w2
����� p4 k s4 ^ p2 k s2$

t p4 k s4
i
: (B.3)

Note that if the above condition holds then the desired result:

9p5; s5:
h
p3 k s3

w2
����� p5 k s5 ^ p5 k s5$

t p4 k s4
i

follows directly from the transfer conditions of bisimilarity. And
by transitivity of$twe get p5 k s5$t p2 k s2.
In the remainder we show the condition in Equation B.3 holds. To

this end, we rewrite the transitions s01
!u

���� s2 as (for some j � 1):

sM1
u1

���� sO1
!n1��! sM2 � � �

uj
���� sOj

!nj
��! sMj+1;

where u1:!n1: � � � :uj :!nj :uj+1 =!u, ui 2 Es
� (for all i 2 [1; j]),

sM1 = s01, sMj+1 = s2, and !nj =!n.

Similarly, we rewrite the transitions p01
?v:?n

������ p2 as:

pM1
v1

���� pO1
?n1��! pM2 � � �

vj
���� pOj

?nj
��! pMj+1;

where v1:?n1: � � � :vj :?nj :vj+1 = v, vi 2 Ep
� (for all i 2 [1; j]),

pM1 = p01, pOj = p02, pMj+1 = p2, ?nj =?n. Thus, for every i 2 [1; j]

Appendix B. Proofs of main theorems in Chapter 4 137

we have:
sMi

ui
���� sOi

!ni��! sMi+1;

pMi
vi

���� pOi
?ni��! pMi+1:

(B.4)

A consequence of the above encoding is: if w3 is a prefix of w2

and u1:n1: � � � :ui:ni:v1: � � � :vi vs w3 (for i � j), then there exists q
such that r3(p

M
1 j[�; �]jh s

M
1)

w3
����� q and q = r3(p

M
i+1 j[�; �]jh s

M
i+1).

Next, we show that for every sequence w3 such that the sequence
w3 is a prefix of the sequence w2, u1:n1: � � � :ui:ni:v1: � � � :vi vs w3,
(for i � j) the following condition hold:

r3(p
M
1 j[�; �]jh s

M
1)

w3
����� r3(p

M
i+1 j[�; �]jh s

M
i+1))

9p0; s0:
h
pM1 k s

M
1

w3
����� p0 k s0 ^ p0 k s0$t pMi+1 k s

M
i+1

i
: (B.5)

Observe that the condition in Equation B.3 follows directly from
the condition in Equation B.5 by substituting w3 = w2, pM1 = p01,
sM1 = s01, pMj+1 = p2, and sMj+1 = s2.
Let w3 be a prefix of w2 such that u1: � � � :ui:ni:v1: � � � :vi vs w3

and the condition in Equation B.5 holds. We show by induction the
above result holds for the sequence w3:w

0
3, where ui+1:ni+1:vi+1 vs

w0
3. By the induction hypothesis, we have 9p0; s0:

h
pM1 k sM1

w3
�����

p0 k s0 ^ p0 k s0 $t pMi+1 k sMi+1

i
: Now, using the transitions in

Equation B.4 we get the transitions depicted in Figure B.1.

pMi+1 k s
M
i+1 pOi+1 k s

M
i+1

pMi+1 k s
O
i+1 pOi+1 k s

O
i+1

pMi+2 k s
M
i+2

vi+1

ui+1 ui+1

vi+1

ni+1

Figure B.1: Case 4(a) of Lemma 4.20.

Since, ui+1:ni+1:vi+1 vs w
0
3 then the sequence w0

3 is in one of the
following forms:
i. Either, w0

3 = w0
4:ni+1 such that ui+1:vi+1 vs w

0
4. Consider the

transitions pMi+1 k s
M
i+1

ui+1:vi+1

��������� pOi+1 k s
O
i+1 (see Figure B.1).

Since ui+1:vi+1 vs w0
4 and the sequences of external actions

Appendix B. Proofs of main theorems in Chapter 4 138

ui+1 2 Es
�; vi+1 2 Ep

� can be executed in any arbitrary order
by the processes pMi+1; s

M
i+1 in the synchronous system; thus, we

have pMi+1 k s
M
i+1

w04
����� pOi+1 k s

O
i+1. Hence,

pMi+1 k s
M
i+1

w04:ni+1

�������� pMi+2 k s
M
i+2:

ii. Or, w0
3 = w0

4:ni+1:v
00
i+1 such that ui+1:v

0
i+1 vs w

0
4 and vi+1 =

v0i+1:v
00
i+1. Since pMi+1

vi+1

������ pOi+1 (Equation B.4) and vi+1 =
v0i+1:v

00
i+1, then there exists p�i+1 2 P such that

pMi+1

v0
i+1

������ p�i+1

v00
i+1

������ pOi+1:

Thus, using the transitions in Equation B.4 we get the tran-
sitions at the state pMi+1 k sMi+1 depicted as solid lines in Fig-
ure B.2. By applying Definition 4.10 at the state p�i+1 k s

O
i+1

we get the dashed transition of Figure B.2. Since ui+1:v
0
i+1 vs

pMi+1 k s
M
i+1

pMi+1 k s
O
i+1

p�i+1 k s
M
i+1 pOi+1 k s

M
i+1

p�i+1 k s
O
i+1 pOi+1 k s

O
i+1

pMi+2 k s
M
i+2

$t

p003 k s
00
3p002 k s

00
2

v0i+1

ui+1

v0i+1

v00i+1

ui+1 ui+1

v00i+1

ni+1

ni+1

v00i+1

Figure B.2: Case 4(a) of Lemma 4.20.

w0
4 and the sequences of external actions ui+1 2 Es

�; v0i+1 2
Ep

� can be executed in any arbitrary order by the processes
pMi+1; s

M
i+1 in the synchronous system; thus, we have pMi+1 k

sMi+1

w04
����� p�i+1 k sOi+1. Hence, pMi+1 k sMi+1

w03
����� p003 k s003,

where p003 k s003 $
t pMi+2 k sMi+2. Thus, the condition in Equa-

tion B.5 holds.
(b) Application of Rule 14. Similar to the previous case.

Theorem B.6 (Proof of Theorem 4.21). Let p; s be concrete processes. If
the synchronous system p k s is well-posed and E-independent modulo
�c, then p k s �c r3(p j[�; �]jh s):

Appendix B. Proofs of main theorems in Chapter 4 139

Proof. For brevity we fix the type of u; v as (Ms [Es)
�; (Mp [Ep)

�, respec-
tively. Recall the definition of the relation B from Theorem B.4. Now, define
a pair of relations C1; C2 in the following way:

C1 =B; C2 = f(r3(p2 j[�; �]jh s2); p1 k s1) j p1 k s1 $ p2 k s2g:

Next, we show that C = C1 [C2 is a contra-simulation relation. Note that by
construction we have C1 \ C2 = ;. In the following, without mentioning this
reason we write (qs; qa) 2 C1 whenever (qs; qa) 2 C and (qa; qs) 2 C2 whenever
(qa; qs) 2 C, where qs 2 R(p k s) and qa 2 R(r3(p j[�; �]jh s)).

1. Let p01 k s01
w

���� p3 k s3 and (p01 k s01;r3(p
0
2 j[�; �]jh s

0
2)) 2 C. By

structural induction on w we get following cases:

• Let w = �. Then, due to concreteness assumption we have p01 =
p3; s

0
1 = s3. Now, apply structural induction on �; � we get the

following cases:
(a) Let � = �; � = �. Similar to the next case.
(b) Let � 6= �; � = �. Then, we have

9p002; s
00
2; u:

h
p02 k s

00
2

u
���� p002 k s

0
2 ^ � = �u ^ p01 k s

0
1 $ p002 k s

0
2

i
:

From Proposition 2.11 we get p02
?u

���� p002. Thus,

r3(p
0
2 j[�; �]jh s

0
2) ��� r3(p

00
2 j[�; �]jh s

0
2):

Furthermore, using the fact p01 k s01 $ p002 k s
0
2 in the construc-

tion of C2 we conclude that (r3(p
00
2 j[�; �]jh s

0
2); p

0
1 k s

0
1) 2 C2.

(c) Let � = �; � 6= �. Similar to the previous case.
(d) Let �; � 6= �. Inapplicable, due to half-duplex mechanism!

• Let w = w0:�, for some w0 2 A�; � 2 A. Then, assume that

p01 k s1
w0

���� p1 k s1
�
�! p3 k s3, for some p1; s1 2 P. By the

induction hypothesis we have there exists p2; s2 2 P such that

r3(p
0
2 j[�; �]jh s

0
2)

w0

���� r3(p2 j[�
0; � 0]jh s2);

and (r3(p2 j[�
0; � 0]jh s2); p1 k s1) 2 C: Thus, (r3(p2 j[�

0; � 0]jh s2); p1 k
s1) 2 C2 and from the construction of C2 we know that �0 = �; � 0 =
�. The remainder of the proof is similar to the Case 1 of Theo-
rem B.4.

2. Let r3(p3 j[�3; �3]jh s3)
w

���� r3(p4 j[�4; �4]jh s4), (r3(p3 j[�3; �3]jh s3);
p03 k s

0
3) 2 C. From the construction of C2 we have �3 = �; �3 = �, i.e.,

(r3(p3 j[�; �]jh s3); p
0
3 k s

0
3) 2 C2: (B.6)

Appendix B. Proofs of main theorems in Chapter 4 140

r3(p3 j[�; �]jh s3) r3(p2 j[�; �]jh s2) r3(p4 j[�4; �4]jh s4)

p03 k s
0
3 p1 k s1

C2 C1

w
0

w
0

�

Figure B.3: Hypothesis in Case 2 of Theorem B.6.

When w = �, the proof is trivial. So consider otherwise, w = w0:� such

that r3(p3 j[�; �]jh s3)
w0

���� r3(p2 j[�; �]jh s2)
�
�! r3(p4 j[�4; �4]jh s4);

for some � 2 Ms
�; � 2 Mp

�. By inductive hypothesis we have (see Fig-

ure B.3) 9p1; s1:
�
p03 k s

0
3

w0

���� p1 k s1 ^ (p1 k s1;r3(p2 j[�; �]jh s2)) 2 C

�
:

Thus, (p1 k s1;r3(p2 j[�; �]jh s2)) 2 C1. Based on the type of � we get
the following cases:

(a) Let � = e, for some e 2 Es. Then, from semantics we have p2 = p4,
s2

e
�! s4, � = �4, and � = �4. Now, applying structural induction

on �; � we get the following cases:
i. Let � = �, � = �. Similar to the next case.
ii. Let � 6= �, � = �. Then, from the construction of C1 we have

9p02; s
0
2; u:

h
p2 k s

0
2

u
���� p02 k s2 ^ � = �u ^ p1 k s1$

t p02 k s2
i
:

Using the transition s2
e
�! s4 we get p02 k s2

e
�! p02 k s4. Note

that (u:e) = �u:e = �. Since p1 k s1 $ p02 k s2, so applying the
transfer condition of strong bisimulation we get

9p01; s
0
1:
h
p1 k s1

e
�! p01 k s

0
1 ^ p01 k s

0
1$

t p02 k s4
i
:

Using the above facts in the construction of C1 we conclude
that (p01 k s01;r3(p2 j[�; �]jh s4)) 2 C1.

iii. Let � = �, � 6= �. Then, from the construction of C1 we have

9p02; s
0
2; v:

h
p02 k s2

v
���� p2 k s

0
2 ^ � = �v ^ p1 k s1$

t p2 k s
0
2

i
:

From Proposition 2.11 we get p02
!v

���� p2. And, using the
transition s2

e
�! s4 we get p02 k s2

e
�! p02 k s4. Since, the

processes p; s are well-posed, so applying Lemma 3.7 we get

9s04:
h
p02 k s4

v
���� p2 k s

0
4

i
:

Appendix B. Proofs of main theorems in Chapter 4 141

Again, from Proposition 2.11 we get s4
?v

���� s04. Thus,

r3(p2 j[�; �]jh s4) ��� r3(p2 j[�; �]jh s
0
4):

Recall the hypothesis and observe that we have derived the

transition r3(p3 j[�; �]jh s3)
w0:e

����� r3(p2 j[�; �]jh s
0
4). Now, ap-

plying Lemma 4.20 we get

9p5; s5:

�
p3 k s3

w0:e
����� p5 k s5 ^ p5 k s5$

t p2 k s
0
4

�
:

Thus, using the transition p02 k s4
v

���� p2 k s
0
4 and the equa-

tion p5 k s5 $
t p2 k s

0
4 in the construction of C1 we conclude

that (see Figure B.4) (p5 k s5;r3(p2 j[�; �]jh s4)) 2 C1.

r3(p3 j[�; �]jh s3) r3(p2 j[�; �]jh s2) r3(p2 j[�; �]jh s4)

p03 k s
0
3 p1 k s1

p5 k s5

C2 C1

C1

w
0

w
0

w
0
:e

e

Figure B.4: Case 2(a)iii in hindsight.

iv. Let � 6= �, � 6= �. Inapplicable due to half-duplex mechanism!
(b) Let � = e, for some e 2 Ep. Similar to the previous case.
(c) Let � = n, for some n 2 Ms [Mp. Similar to Case 3(c)ii of

Theorem B.4.
(d) Let � = � . Since, the given processes p; s are concrete, so the tran-

sition r3(p2 j[�; �]jh s2)
�
�! r3(p4 j[�4; �4]jh s4) (in the hypothesis)

is either, due to the Rule 12, or Rule 14.

i. Application of Rule 12. Then, we have p2
?n
�! p4, � = n:�4, � =

�4, and s2 = s4, for some n 2 Ms. Now, applying structural
induction on �; � we get the following cases:
A. Let � = n; � = �. Similar to the next case.
B. Let � = n:�4, � = �. Then, from the construction of C1 we

have

9p02; s
0
2; u:

h
p2 k s

0
2

u
���� p02 k s2^� = �u^p1 k s1$

t p02 k s2
i
:

Since �u = � = n:�4, then the above transitions can be
decomposed in the following way: there exists p04; s002; s04 2

Appendix B. Proofs of main theorems in Chapter 4 142

P, u1 2 Es
�; u2 2 (Es [Ms)

� such that �u1 = �, �u2 = �4,
and

p2 k s
0
2

u1
���� p2 k s

00
2

n
�! p04 k s

0
4

u2
���� p02 k s2:

Thus, s002
!n
�! s04

!u2
����� s2. But, from above we have p2

?n
�!

p4. Thus, we get p2 k s002
n
�! p4 k s04. Since, the given

processes p; s are well-posed, so applying Lemma 3.7 we get
9p6:

h
p4 k s

0
4

u2
���� p6 k s2

i
. And from Proposition 2.11 we

get p4
?u2

����� p6. Since �u2 = �4, we have

r3(p4 j[�4; �]jh s2) ��� r3(p6 j[�; �]jh s2):

Recall the hypothesis and observe that we derived the tran-
sition r3(p3 j[�; �]jh s3)

w
���� r3(p6 j[�; �]jh s2) (note, w0 =

w when � = �). Now, applying Lemma 4.20 we get

9p5; s5:
h
p3 k s3

w
���� p5 k s5 ^ p5 k s5$

t p6 k s2
i
:

Thus, using the transition p4 k s04
u2

���� p6 k s2 and the
equation p5 k s5 $

t p6 k s2 in the construction of C1, we
have (see Figure B.5) (p5 k s5;r3(p4 j[�4; �]jh s2)) 2 C1.

r3(p3 j[�; �]jh s3) r3(p2 j[�; �]jh s2) r3(p4 j[�4; �]jh s2)

p03 k s
0
3 p1 k s1

p5 k s5

C2 C1

C1

w

w

w

�

Figure B.5: Case 2(d)iB in hindsight.

C. Let � = n:�4, � 6= �. Inapplicable due to half-duplex
mechanism.

ii. Application of Rule 14. Similar to the previous case.

Appendix C
Proofs of Theorem 6.5

Theorem C.1. Let p; s be concrete processes. If the synchronous sys-
tem p k s is well-posed, input-deterministic modulo $t

b, and strong E-
independent modulo $t

b, then p k s$t
b r3(p j[�; �]jI s):

Proof. Define a binary relation B in the following way:

B =
n�
p1 k s1;r3(p2 j[�; �]jI s2)

�
j

p1 k s1 2 R(p k s) ^r3(p2 j[�; �]jI s2) 2 R(r3(p j[�; �]jI s)) ^

9p02; s
0
2; q; q

0; u; v:
h
u 2 (Ms [Es)

� ^ v 2 (Mp [Ep)
� ^ �u = � ^

�v = � ^ p2 k s
0
2 2 R(p k s) ^ p02 k s2 2 R(p k s) ^

p2 k s
0
2

u
���� q$t p1 k s1$

t q0
v
���� p02 k s2

io
;

Next, we show that B0 is a branching bisimulation relation.

One can easily verify that if (p1 k s1;r3(p2 j[�; �]jI s2)) 2 B, then every transi-
tion originating from the state p1 k s1 is simulated by the stater3(p2 j[�; �]jI s2)

because the transitions p2 k s02
u

���� q; p02 k s2
v

���� q0 in the construction of
B allows the processes p2; s2 to read the contents of their input queues such
that an asynchronous state branching bisimilar to p1 k s1 is reached.

The proof for the other direction is an intricate one and we distinguish the
following cases.

1. Let r3(p2 j[�; �]jI s2)
�
�! r3(p4 j[�

0; � 0]jI s4), � 2 Es (the case when
� 2 Ep is symmetric), and (p1 k s1;r3(p2 j[�; �]jI s2)) 2 B. Then,
by semantics we have p2 = p4; s2

e
�! s4; �

0 = �; � 0 = �. Since (p1 k

143

Appendix C. Proofs of Theorem 6.5 144

p02 k s2

p02 k s4

p03 k s3

p05 k s
0
5

p03 k s
00
3

p03 k s
0
6

p03 k s6

$t

$t

$t

$
t

$t

p2 k s
0
2p3 k s

0
3

p04 k s
0
4

v u

v
2

v
3

e

1

e

3

e

4

e

5

Figure C.1: Case 1 of Theorem C.1.

s1;r3(p2 j[�; �]jI s2)) 2 B, so from the construction of B we get the
solid transitions depicted in Figure C.1. Using the transition s2

e
�! s4

we get the dashed transition (1) in Figure C.1.

Consider the transition p02 k s2
v

���� p03 k s3 then from Proposition 2.11

we have p02
!v

���� p03. By generalised well-posedness we get the dashed
transition (2) in Figure C.1. By applying Definition 4.10 we get the
two dashed transitions labeled as (3) in Figure C.1. And, from input-
determinism under concreteness assumption, we get p03 k s06 $

t p03 k s3
(see Figure C.1).

Furthermore, from the conditions of strong bisimulation we get the re-
maining dashed transitions (4) and (5). And, from the construction of
B we have p3 k s03 $

t p1 k s1. Also, from conditions of strong bisim-
ulation we get there exists p01; s

0
1 such that p1 k s1

e
�! p01 k s01 and

p01 k s
0
1 $

t p04 k s
0
4. Finally, using the transitions p2 k s02

u:e
����� p04 k s

0
4,

p02 k s4
v

���� p03 k s
00
3 and the fact p03 k s003 $

t p04 k s
0
4 $

t p01 k s
0
1 in the

construction of B we conclude that (p01 k s01;r3(p2 j[�; �]jI s4)) 2 B.

2. Let r3(p2 j[�; �]jI s2)
�
�! r3(p4 j[�

0; � 0]jI s4), � 2 Ms (the case when
� 2Mp is symmetric), and (p1 k s1;r3(p2 j[�; �]jI s2)) 2 B. Then, p2 =
p4; �

0 = �:n; � 0 = �; s2
!n
�! s4, where � = n, for n 2 Ms. The remainder

of the proof is similar to the previous case; except use Lemma 6.4 instead
of applying Definition 4.10.

3. Let r3(p2 j[�; �]jI s2)
�
�! r3(p4 j[�

0; � 0]jI s4), (p1 k s1;r3(p2 j[�; �]jI s2))
2 B. Since the communicating components are concrete, so the above
transition is due to the removal of an element either, from � or �. Thus,

(a) Either, an element is remove from �. Then, p2
?n
�! p4; � = n:�0; � =

� 0; s2 = s4, for some n 2Ms. Since (p1 k s1;r3(p2 j[�; �]jI s2)) 2 B,
so from the construction of B we have the transitions p2 k s02

u
����

Appendix C. Proofs of Theorem 6.5 145

p3 k s
0
3 and p02 k s2

v
���� p03 k s3. But, �u = � = n:�0, we can then

decompose the transition p2 k s02
u

���� p3 k s03 as shown by the
solid lines in Figure C.2, where �u1 = �, and �u2 = �0.

Also, p2
?n
�! p4; thus, we get the dashed transition (1) in Fig-

ure C.2. Since the given synchronous system is well-posed, so from
generalised well-posedness (Lemma 3.7) we get the dashed transi-
tion (2) in Figure C.2. By input-determinism we have p5 k s03 $

t

p3 k s03. Finally, by using the transitions p4 k s004
u2

���� p5 k s03,
p02 k s2

v
���� p03 k s3 and the facts �u2 = �0 and p5 k s03 $

t

p03 k s3 $
t p1 k s1 in the construction of B we conclude that

(p1 k s1;r3(p4 j[�
0; �]jI s2)) 2 B.

p2 k s
0
2

p2 k s
0
4

p04 k s
00
4

p3 k s
0
3 p03 k s3

p02 k s2
p4 k s

00
4

p5 k s
0
3 $

t $t

u1

u2
v

u2
2

nn
1

Figure C.2: Case 3 of Theorem C.1.

(b) Or, an element is remove from �. Symmetric to the previous case.

4. Let r3(p2 j[�; �]jI s2)t and (p1 k s1;r3(p2 j[�; �]jI s2)) 2 B. Trivial!

Bibliography

[1] Åkesson, K.; Fabian, M., and Flordal, H. Supremica in a nutshell.
Chalmers University of Technology, SE-412 96 Göteborg, Sweden, 2007.

[2] Alur, R. Formal verification of hybrid systems. In Proceedings of the
9th ACM international conference on Embedded software, EMSOFT
’11, pages 273–278, New York, NY, USA, 2011.

[3] Alur, R.; Grosu, R.; Lee, I., and Sokolsky, O. Compositional modeling
and refinement for hierarchical hybrid systems. Journal of Logic and
Algebraic Programming, 68(1-2):105 – 128, 2006.

[4] Baeten, J. C. M. and Bergstra, J. A. Mode Transfer in Process Alge-
bra. Computing science reports ISSN 0926-4515, Eindhoven university of
technology, Eindhoven, The Netherlands, 2000.

[5] Baeten, J. C. M.; Middelburg, C. A., and Middelburg, K. Process Algebra
with Timing. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
ISBN 354043447X.

[6] Baeten, J. C. M.; Basten, T., and Reniers, M. Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge University
Press, 2009.

[7] Baeten, J. C. M.; van Beek, D.A.; Hendriks, D.; Hofkamp, A. T.;
Nadales Agut, D. E.; Rooda, J. E., and Schiffelers, R. R. H. Report
describing the extended CIF functionality. http://cms.multiform.bci.tu-
dortmund.de/images/stories/multiform/deliverables/multiform_d112.pdf,
2010.

[8] Baeten, J. C. M.; van Beek, B.; van Hulst, A., and Markovski, J. A
process algebra for supervisory coordination. In Aceto, L. and Mousavi,
M. R., editors, PACO, volume 60 of EPTCS, pages 36–55, 2011.

147

Bibliography 148

[9] Baeten, J.C.M. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131 – 146, 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.
2004.07.036.

[10] Baeten, J.C.M.; Beek, D.A. v.; Luttik, S.P.; Markovski, J., and Rooda,
J.E. Partial bisimulation. SE Report 2010-04, Eindhoven University
of Technology, Systems Engineering Group, Department of Mechanical
Engineering, Eindhoven, The Netherlands, 2010.

[11] Baier, C. and Katoen, J. P. Principles of Model Checking. The MIT
Press, 2008.

[12] Baier, C.; Bertrand, N., and Schnoebelen, Ph. Symbolic verification of
communicating systems with probabilistic message losses: liveness and
fairness. In Proceedings of the 26th IFIP WG 6.1 international confer-
ence on Formal Techniques for Networked and Distributed Systems,
FORTE’06, pages 212–227, Berlin, Heidelberg, 2006. Springer-Verlag.

[13] Balemi, S. Control of Discrete Event Systems: Theory And Appli-
cation. PhD thesis, Swiss Federal Institute of Technology, Automatic
Control Laboratory, ETH Zurich, May 1992.

[14] Beek, D. A. van; Reniers, M. A.; Schiffelers, R. R. H., and Rooda, J. E.
Foundations of an interchange format for hybrid systems. In Bemporad,
A.; Bicchi, A., and Butazzo, G., editors, Hybrid Systems: Computation
and Control, 10th International Workshop, volume 4416 of Lecture
Notes in Computer Science, pages 587–600, Pisa, 2007. Springer-Verlag.

[15] Beek, D. A. van; Collins, P.; Nadales, D. E.; Rooda, J.E., and Schiffel-
ers, R. R. H. New concepts in the abstract format of the compositional
interchange format. In Giua, A.; Mahuela, C.; Silva, M., and Zaytoon,
J., editors, 3rd IFAC Conference on Analysis and Design of Hybrid
Systems, pages 250–255, Zaragoza, Spain, 2009.

[16] Beek, D.A. van; Reniers, M. A.; Schiffelers, R. R. H., and Rooda, J. E.
Foundations of a compositional interchange format for hybrid systems.
SE Report 2006-05, Eindhoven University of Technology, Systems Engi-
neering Group, Department of Mechanical Engineering, Eindhoven, The
Netherlands, 2006.

[17] Beohar, H. and Cuijpers, P. J. L. Desynchronizability of (partial) syn-
chronous closed loop systems. Scientific Annals of Computer Science,
21(1):5–38, 2011.

[18] Beohar, H. and Cuijpers, P. J. L. Avoiding diamonds in desynchronisa-
tion. Accepted in proceedings of Formal Aspects of Compoent Software
(FACS), September 2012.

Bibliography 149

[19] Beohar, H. and Cuijpers, P.J.L. A theory of desynchronisable closed loop
systems. In Proceedings of Interaction and Concurrency Experience
(ICE’10), 2010.

[20] Beohar, H.; Nadales Agut, D. E.; van Beek, D. A., and Cuijpers, P. J. L.
Hierarchical states in the Compositional Interchange Format. In Aceto,
L. and Sobocinski, P., editors, Proceedings of the 7th Workshop on
Structural Operational Semantics, SOS 2010., volume 32 of EPTCS,
pages 42–56, 2010.

[21] Boehm, B. and Basili, R. V. Software defect reduction top 10 list. Com-
puter, 34(1):135–137, January 2001.

[22] Brand, D. and Zafiropulo, P. On communicating finite-state machines.
J. ACM, 30:323–342, April 1983. ISSN 0004-5411.

[23] Braspenning, N. C. W. M. Model-based Integration and Testing of
High-tech Multidisciplinary Systems. PhD thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, 2008.

[24] Cécé, G. and Finkel, A. Verification of programs with half-duplex com-
munication. Inf. Comput., 202:166–190, November 2005.

[25] Cuijpers, P. J. L. and Reniers, M. A. Hybrid process algebra. Journal
of Logic and Algebraic Programming, 62(2):191–245, 2005.

[26] Cuijpers, P. J. L.; Reniers, M. A., and Heemels, W. P. M. H. Hybrid tran-
sition systems. Technical Report CS-Report 02-12, Eindhoven University
of Technology, Department of Computer Science, The Netherlands, 2002.

[27] David, A. Hierarchical Modeling and Analysis of Timed Systems. PhD
thesis, Uppsala University, November 2003.

[28] De Nicola, R. and Vaandrager, F. Three logics for branching bisimulation.
J. ACM, 42:458–487, March 1995. ISSN 0004-5411.

[29] Deshpande, A.; Göllü, A., and Varaiya, P. Shift: A formalism and a
programming language for dynamic networks of hybrid automata. In
Hybrid Systems IV, pages 113–133, London, UK, UK, 1997. Springer-
Verlag. ISBN 3-540-63358-8.

[30] Eker, J.; Janneck, J. W.; Lee, E. A.; Liu, J.; Liu, X.; Ludvig, J.; Neuen-
dorffer, S.; Sachs, S., and Xiong, Y. Taming heterogeneity - the Ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, January 2003.

[31] Engelfriet, J. Determinancy ! (observation equivalence = trace equiva-
lence). Theoretical Computer Science, 36(0):21 – 25, 1985.

[32] Engels, T. P. CIF to CIF model transformations. Master’s thesis, Eind-
hoven university of technology, System engineering group, Dept. of Me-
chanical Engineering, 2010.

Bibliography 150

[33] Fabian, M. and Hellgren, A. PLC-based implementation of supervisory
control for discrete event systems. In Proceedings of the 37th IEEE
Conference on Decision and Control, 1998., volume 3, pages 3305–
3310, 1998.

[34] Fabian, M. and Lennartson, B. On non-deterministic supervisory control.
In Proceedings of the 35th IEEE Decision and Control, volume 2,
pages 2213 –2218, December 1996.

[35] Fahrenberg, U.; Legay, A., and Thrane, C. The Quantitative Linear-
Time–Branching-Time Spectrum. In Chakraborty, S. and Kumar, A.,
editors, IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2011), volume 13
of Leibniz International Proceedings in Informatics (LIPIcs), pages
103–114, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-34-7.

[36] Fischer, C. and Janssen, W. Synchronous development of asynchonous
systems. In Proceedings of the 7th International Conference on Con-
currency Theory, CONCUR ’96, pages 735–750, London, UK, UK, 1996.
Springer-Verlag.

[37] Fonteijn, J. AND/OR superstate refinement in Hierarchical Composi-
tional Interchange Format. SE 420640, Eindhoven University of Technol-
ogy, System Engieering Group, Department of Mechanical Engineering,
Eindhoven, March 2011.

[38] Forschelen, S. T. J. Supervisory control of theme park vehicles. Master’s
thesis, Eindhoven University of Technology, System Engineering Group,
Dept. of Mechanical Engineering, 2010.

[39] Frehse, G.; Le Guernic, C.; Donzé, A.; Cotton, S.; Ray, R.; Lebeltel, O.;
Ripado, R.; Girard, A.; Dang, T., and Maler, O. Spaceex: Scalable verifi-
cation of hybrid systems. In Gopalakrishnan, G. and Qadeer, S., editors,
Proc. 23rd International Conference on Computer Aided Verification
(CAV), LNCS. Springer, 2011.

[40] Ghafari, N.; Gurfinkel, A.; Klarlund, N., and Trefler, R. Reachability
problems in piecewise fifo systems. ACM Trans. Comput. Logic, 13(1):
1–33, January 2012.

[41] Gorla, D. Comparing communication primitives via their relative expres-
sive power. Inf. Comput., 206:931–952, August 2008. ISSN 0890-5401.

[42] Gouda, M. G. and Yu, Y. T. Protocol validation by maximal progress
state exploration. Computer science report TR-211, University of Texas
at Austin, Austin, TX, USA, 1982.

[43] Groote, J. F. Implementation of events in LOTOS-specifications. Master’s
thesis, Technical Report 009/88EN, Philips CFT, Eindhoven, 1988.

Bibliography 151

[44] Groote, J. F. and Sellink, M. P. A. Confluence for process verification.
Theor. Comput. Sci., 170(1-2):47–81, December 1996.

[45] Groote, J. F.; Mathijssen, A.; Reniers, M.; Usenko, Y., and van Weer-
denburg, M. The formal specification language mCRL2. In MMOSS’06,
2006.

[46] Grosu, R. and Stauner, T. Modular and visual specification of hybrid
systems: An introduction to hycharts. Form. Methods Syst. Des., 21
(1):5–38, July 2002.

[47] Harel, D. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, June 1987.

[48] Henzinger, T. A. The theory of hybrid automata. In Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, LICS
’96, Washington, DC, USA, 1996. IEEE Computer Society.

[49] Henzinger, T.A. Two challenges in embedded systems design: Predictabil-
ity and robustness. Philosophical Transactions of the Royal Society
A, 366:3727–3736, 2008.

[50] Hoare, C. A. R. Communicating sequential processes. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1985. ISBN 0-13-153271-5.

[51] Kouzapas, D.; Yoshida, N., and Honda, K. On asynchronous session
semantics. In Proceedings of the joint 13th IFIP WG 6.1 and 30th
IFIP WG 6.1 international conference on Formal techniques for dis-
tributed systems, FMOODS’11/FORTE’11, pages 228–243, Berlin, Hei-
delberg, 2011. Springer-Verlag. ISBN 978-3-642-21460-8.

[52] Kumar, R. and Shayman, M. A. Non-blocking Supervisory Control of
Nondeterministic Systems via Prioritized Synchronization. IEEE Trans-
actions on Automatic Control, 41(8):1160–1175, 1996.

[53] Larsen, K. G.; Pettersson, P., and Yi, W. Uppaal in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer (STTT),
1:134–152, 1997. ISSN 1433-2779.

[54] Latella, D.; Majzik, I., and Massink, M. Towards a Formal Operational
Semantics of UML Statechart Diagrams. In Proceedings of the IFIP
TC6/WG6.1 Third International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), Deventer, The
Netherlands, 1999. Kluwer, B.V.

[55] Lozes, É. and Villard, J. Reliable contracts for unreliable half-duplex
communications. In Carbone, M. and Petit, J-M., editors, International
Workshop on Web Services and Formal Methods, Lecture Notes in
Computer Science. Springer, 2011.

Bibliography 152

[56] Lynch, N.; Segala, R., and Vaandrager, F. Hybrid I/O Automata Revis-
ited. In Proceedings Fourth International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’01, pages 403–417. Springer-
Verlag, 2001.

[57] Markovski, J. A synthesis-based framework for systems engineering. Pre-
sented in 1st Workshop on Synthesis (SYNT), 2012.

[58] Marwedel, P. Embedded System Design. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[59] Mateescu, R. Specification and analysis of asynchronous systems using
cadp. In Modeling and Verification of Real-Time Systems, pages 141–
169. ISTE, 2010.

[60] MathWorks, . StateChart - Stateflow - Simulink. http://www.
mathworks.nl/products/stateflow.

[61] Mikk, E.; Lakhnech, Y., and Siegel, M. Hierarchical automata as model
for statecharts. In Proceedings of the Third Asian Computing Science
Conference on Advances in Computing Science, ASIAN ’97, pages
181–196, London, UK, 1997. Springer-Verlag.

[62] Mousavi, M. R.; Reniers, M. A., and Groote, J. F. Notions of bisim-
ulation and congruence formats for SOS with data. Information and
Computation, 200(1):107–147, 2005.

[63] Nadales Agut, D. E. A Compositional Interchange Format for Hy-
brid Systems: Design and Implementation. PhD thesis, Eindhoven
univsersity of technology, In preparation, 2012.

[64] Nadales Agut, D. E.; Beek, D. A. v.; Beohar, H.; Cuijpers, P. J. L., and
Fonteijn, J. The Hierarchical Compositional Interchange Format. In Aich-
ernig, B.; de Boer, F., and Bonsangue, M., editors, Formal Methods for
Components and Objects, volume 6957 of Lecture Notes in Computer
Science, pages 316–335. Springer Berlin / Heidelberg, 2012.

[65] Overkamp, A. Supervisory Control Using Partial Failure Semantics and
Partial Specifications. IEEE Trans. on Automatic Control, 42(4):498–
510, 1997.

[66] Park, D. Concurrency and automata on infinite sequences. In Proceedings
of the 5th GI-Conference on Theoretical Computer Science, pages
167–183, London, UK, 1981. Springer-Verlag.

[67] Peters, K.; Schicke, J.-W., and Nestmann, U. Synchrony vs causal-
ity in asynchronous pi-calculus. In Luttik, S. P. and Valencia, F., ed-
itors, 18th International Workshop on Expressiveness in Concur-
rency, EXPRESS, volume 64 of EPTCS, pages 89–103, 2011.

Bibliography 153

[68] Plotkin, G. D. A Structural Approach to Operational Semantics. Tech-
nical Report DAIMI FN-19, Computer science department, University of
Aarhus, 1981. Also published in: Journal of Logic and Algebraic Pro-
gramming, 60-61:17-140, 2004.

[69] Ramadge, P. J. and Wonham, W. M. Supervisory control of a class of
discrete event processes. SIAM Journal on Control and Optimization,
25(1):206–230, 1987.

[70] Reynolds, John C. Theories of programming languages. Cambridge
University Press, New York, NY, USA, 1999. ISBN 0-521-59414-6.

[71] Schicke, J.-W.; Peters, K., and Goltz, U. Synchrony vs causality in asyn-
chronous petri nets. In Luttik, S. P. and Valencia, F., editors, 18th Inter-
national Workshop on Expressiveness in Concurrency, EXPRESS,
volume 64 of EPTCS, pages 119–131, 2011.

[72] Theunissen, R. J. M.; Petreczky, M.; Schiffelers, R. R. H.; Beek, D. A. van,
and Rooda, J. E. Application of supervisory control synthesis to MRI
scanners: improving evolvability. SE Report 2010-06, System Engineering
Group, Department of Mechanical Engineering, Eindhoven university of
technology, Eindhoven, 2010.

[73] Udding, J. T. Classification and Composition of Delay-Insensitive
Circuits. PhD thesis, Eindhoven University of Technology, Eindhoven,
1984.

[74] Uselton, Andrew E. and Smolka, Scott A. State Refinement in Process
Algebra. Technical report, Stony Brook university, NY, 1993.

[75] van de Mortel-Fronczak, J.M. and Su, Rong. Advanced supervi-
sory control - 4k460. http://se.wtb.tue.nl/sewiki/_media/4k420/
pusherlift-overview.pdf. Dept. of Mechanical Engineering, Eindhoven
University of Technology.

[76] van Glabbeek, R. J. The linear time - branching time spectrum ii. In Pro-
ceedings of the 4th International Conference on Concurrency Theory,
CONCUR ’93, pages 66–81, London, UK, 1993. Springer-Verlag.

[77] van Glabbeek, R. J. and Weijland, W. P. Branching time and abstraction
in bisimulation semantics. J. ACM, 43(3):555–600, May 1996.

[78] Voorhoeve, M. and Mauw, S. Impossible futures and determinism. Inf.
Process. Lett., 80(1):51–58, October 2001.

[79] Wonham, W. M. Supervisory control of discrete-event systems. Mono-
graph ECE 1636F/1637S, University of Toronto, Dept. of Electrical &
Computer Engineering, 2008.

Bibliography 154

[80] Xu, S. and Kumar, R. Asynchronous implementation of synchronous dis-
crete event control. In Proceedings of the 9th International Workshop
on Discrete Event Systems, WODES 2008., pages 181–186, May 2008.

Samenvatting

Verfijning van Communicatie en Toestanden in Modellen van Em-
bedded Systemen

Dit proefschrift behandeld twee aspecten van het model-gebaseerd ontwerpen
van embedded systemen, namelijk: verfijning van communicatie en verfijning
van toestandsmodellen.

Het deel over verfijning van communicatie behandelt de implementatie van
een synchroon ontwerp met behulp van asynchrone primitieven, op zodanige
manier dat de twee systemen equivalent zijn in hun gedrag. Het resultaat hier-
van is dat de correctheid van een asynchrone implementatie gegarandeerd kan
worden door eerst de correctheid van het synchrone ontwerp vast te stellen.
Dit laatste kost in het algemeen minder rekenkracht. Het doel van het onder-
zoek was om condities te vinden onder welke het toevoegen van buffers het
gedrag van een gegeven synchroon ontwerp niet zou veranderen. We laten zien
dat het mogelijk is om betere desynchronisatie condities te vinden (zelfs voor
fijnere equivalenties dan vertakkende bisimulatie) door eigenschappen van het
communicatie protocol aan te passen. Dit staat in contrast met eerder werk,
waar de aandacht uitsluitend uitging naar het beperken van het gedrag van
de communicerende componenten zelf.

Het deel over verfijning van toestanden behandelt de stapsgewijze ontwikkeling
van hybride systeemmodellen. Een dergelijk concept was nog niet aanwezig
in het "Compositional Interchange Format (CIF)", een modelleer taal voor
embedded systemen, gebaseerd op hybride automaten in combinatie met een
aantal proces-algebraïsche operatoren. Het doel van het onderzoek was in
dit geval om een compositionele operationele semantiek te ontwikkelen voor
CIF uitgebreid met hierarchie (HCIF). We laten zien dat, door slechts te
verwijzen naar de transitie-systemen van substructuren (in tegenstelling tot
hun syntactische representatie), de semantiek van HCIF operatoren vrijwel
onveranderd kan blijven ten opzichte van hun oorspronkelijke CIF variant.
Bovendien wordt er een methode gepresenteerd om de hiërarchie in HCIF
modellen te elimineren. Daardoor kunnen bestaande simulatie-pakketten en
transformatie-algoritmen voor andere getimede en hybride talen hergebruikt
worden voor HCIF modellen waar de hiërarchie uit geëlimineerd is.

Curriculum Vitae

Harsh Beohar was born on the 18th of April 1984 in Jabalpur, India. He stud-
ied computer science at the NMAM Institute of Technology, Nitte, India and
obtained the degree of Bachelor in Computer Science and Engineering in June,
2006. In August 2008 he obtained a M.Tech. degree in Software Engineering
from Manipal Institute of Technology, India and a M.Sc. degree in Computer
Science from Eindhoven University of Technology, The Netherlands. In Oc-
tober 2008 he became a Ph.D. student at the Formal Methods Group (now
Formal System Analysis Group), Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands.

156

Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time
reconfigurable Network-on-Chip
for streaming DSP applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detec-
tion of Abnormalities in Locally
Autonomous Distributed Systems.
Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Appli-
cations of Process and Program
Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2007-04

L. Brandán Briones. Theories
for Model-based Testing: Real-
time and Coverage. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2007-05

I. Loeb. Natural Deduction:
Sharing by Presentation. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2007-06

M.W.A. Streppel. Multifunc-
tional Geometric Data Structures.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transi-
tion Systems and Markov Chains.

Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development
Processes. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System
Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and
Improving the Quality of Model-
ing: A Series of Empirical Stud-
ies about the UML. Faculty of
Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evo-
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Cal-
culi for Reasoning with Binding.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2007-18

M. A. Abam. New Data Struc-
tures and Algorithms for Mobile
Data. Faculty of Mathematics and
Computer Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Elec-
tronic Voting Controversy. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2008-01

A.L. de Groot. Practical Au-
tomaton Proofs in PVS. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-02

M. Bruntink. Renovation of
Idiomatic Crosscutting Concerns
in Embedded Systems. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated
System to Manage Crosscutting
Concerns in Source Code. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Sys-
tems. Faculty of Mechanical Engi-
neering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Pars-
ing, and Assimilation of Language
Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal
Verification of Optimistic Fair Ex-
change Protocols. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration
and Test Strategies for Complex
Manufacturing Machines. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity
with Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-11

M. Farshi. A Theoretical and
Experimental Study of Geomet-
ric Networks. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Proto-
cols, Hashes and Commitments.
Faculty of Science, Mathematics and
Computer Science, RU. 2008-14

P. E. A. Dürr. Resource-based
Verification for Robust Composi-
tion of Aspects. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Per-
formance Analysis of Data-
Independent Stream Process-
ing Systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for
Fat Objects: Decompositions and

Applications. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive
Systems with Data - Enumera-
tive Methods and Constraint Solv-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and
Experimental Aspects of Pattern
Evaluation. Faculty of Mathematics
and Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural
Computation: Gene Assembly and
Membrane Systems. Faculty of
Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-24

U. Khadim. Process Algebras
for Hybrid Systems: Compari-
son and Development. Faculty of
Mathematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for
Performance Evaluation. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-26

H. Kastenberg. Graph-Based
Software Specification and Verifi-
cation. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Ap-
plications. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-28

R.S. Marin-Perianu. Wire-
less Sensor Networks in Motion:
Clustering Algorithms for Ser-
vice Discovery and Provisioning.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2009-01

M. de Mol. Reasoning about
Functional Programs: Sparkle, a
proof assistant for Clean. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-02

M. Lormans. Managing Re-
quirements Evolution. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Auto-
mated Model-based Testing of Hy-
brid Systems. Faculty of Math-
ematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata
Theory and Modal Logic. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Ap-
plications. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Program-
ming Ready for Prime Time. Fac-
ulty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Rea-
soning about Java programs in
PVS using JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based
Storage Devices. Integration in

Energy-Constrained Mobile Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluat-
ing Dynamic Analysis Techniques
for Program Comprehension. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters:
Privacy in Voting and Fairness
in Digital Exchange. Faculty of
Mathematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshap-
ing Trust Management. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer
Algebra on top of Proof Assis-
tants and making Proof Assistants
available over the Web. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incomplete-
ness & Completeness: Formaliz-
ing Logic and Analysis in Type

Theory. Faculty of Science, Math-
ematics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Opti-
mization and Their Applications
to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-22

J.H.P. Kwisthout. The Compu-
tational Complexity of Probabilis-
tic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collabora-
tive Environments. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visu-
alisation for Crime Analysis and
Genomics. Faculty of Mathematics
and Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Au-
tomatic Code Inspections. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Ran-
domly Timed Systems. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2010-02

J. Endrullis. Termination and
Productivity. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling
and Protocol Dynamics. Faculty of
Science, UvA. 2010-05

J.K. Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Soft-
ware. Faculty of Mathematics and
Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Foun-
dations, Implementations and Ap-
plications. Faculty of Mathematics
and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for
Component Connectors. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your
Service: Schedulability Analysis
of Real-Time and Distributed Ser-
vices. Faculty of Mathematics and
Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Mod-
els: Formal Analysis of Epidemic
Protocols. Faculty of Sciences,
Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination
of the Template Enigma: Software
Code Generation with Templates.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-02

E. Zambon. Towards Optimal
IT Availability Planning: Methods
and Tools. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2011-03

L. Astefanoaei. An Executable
Theory of Multi-Agent Systems
Refinement. Faculty of Math-
ematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordi-
nation of distributed components.

Faculty of Mathematics and Natural
Sciences, UL. 2011-05

A. Moralı. IT Architecture-
Based Confidentiality Risk Assess-
ment in Networks of Organiza-
tions. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On chang-
ing models in Model-Based Test-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Anal-
ysis of Information Leakage in
Probabilistic and Nondeterminis-
tic Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and
Verification of Distributed Fail-
ure Detectors. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From
Computability to Executability –
A process-theoretic view on au-
tomata theory. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic meth-
ods for model comparison and
model co-evolution. Faculty of

Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and
Hiding in Concurrent Processes.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in
Runtime Enforcement. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-14

M. Raffelsieper. Cell Libraries
and Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of
Flow and Visibility on Trian-
gulated Terrains. Faculty of
Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models
for Quality of Service of Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of
States in OO Verification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-18

M.F. van Amstel. Assessing
and Improving the Quality of
Model Transformations. Faculty of
Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct
Programs in Practice. Faculty of

Science, Mathematics and Computer
Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detec-
tion for Programming Language
Grammars. Faculty of Science,
UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks
for Language Workbenches. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Anal-
ysis of Real-Time Coordination
Patterns. Faculty of Mathematics
and Natural Sciences, UL. 2011-24

J. Wang. Spiking Neural P Sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of
Program Properties with Attribute
Grammars, Revisited. Faculty of
Science, UU. 2012-02

Z. Hemel. Methods and Tech-
niques for the Design and Im-
plementation of Domain-Specific
Languages. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organi-
zational Security Policies: Theory
and Practice. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2012-04

S. Sedghi. Towards Provably
Secure Efficiently Searchable En-
cryption. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2012-05

F. Heidarian Dehkordi. Studies
on Verification of Wireless Sensor
Networks and Abstraction Learn-
ing for System Inference. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Composi-
tional Interchange Format for Hy-
brid Systems: Design and Imple-
mentation. Faculty of Mechanical
Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks
by Means of Annotated Graph
Mining Algorithms. Faculty of
Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Lan-
guage Evolution. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2012-10

Bibliography 165

L.J.P. Engelen. From Napkin
Sketches to Reliable Software. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2012-11

F.P.M. Stappers. Bridging For-
mal Models – An Engineering
Perspective. Faculty of Math-
ematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Ar-
chitecture Design in Global and
Model-Centric Software Develop-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2012-13

C. Kop. Higher Order Ter-
mination. Faculty of Sciences,

Department of Computer Science,
VUA. 2012-14

A. Osaiweran. Formal Develop-
ment of Control Software in the
Medical Systems Domain. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2012-15

W. Kuijper. Compositional
Synthesis of Safety Controllers.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2012-16

H. Beohar. Refinement of Com-
munication and States in Models
of Embedded Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2013-01

	Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Preliminaries
	3. Desynchronising a plant and its supervisor
	4. Desynchronisation of concrete synchronous systems
	5. Desynchronisation of the pusher-lift system
	6. Some final remarks on desynchronisation
	7. Hierarchical compositional interchange format
	8. Conclusions
	Appendices
	Bibliography
	Samenvatting
	Curriculum Vitae

