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1
Introduction

In this chapter, magnetic field effects in organic semiconductors are introduced. First, an
overview is given of organic semiconductors. The way these materials conduct current by
hopping of charges is very important for the occurrence of magnetic field effects. One of
the most important applications of organic semiconductors is the organic light-emitting
diode. How light is produced by those diodes is briefly discussed. In the second part of this
chapter, the phenomenology of magnetoconductance and magneto-electroluminescence is
discussed. It is made clear that spin mixing by hyperfine interactions lies at their origin.
Besides hyperfine interaction, other sources of spin mixing that are relevant for this thesis
are described as well. Next, several mechanisms that can give rise to magnetic field effect
are discussed in detail. The chapter concludes with an outline of this thesis.

1.1 Organic Semiconductors

An organic semiconductor consists of molecules or polymers that are made up
primarily from carbon and hydrogen atoms, but that could also contain nitrogen
or sulfur and sometimes even metal atoms. While the first conducting organic
materials were discovered earlier, the discovery of highly conducting polymers
after doping with halides in 1977 accelerated the field.25 Heeger, MacDiarmid
and Shirakawa were awarded a Nobel prize for this discovery. The first time elec-
troluminescence was observed in an organic material was in 1953 by Bernanose
and coworkers.10 A technological breakthrough was made in 1987 when Tang
and VanSlyke, working for Kodak, made the first organic light emitting diode
(oled).113 Since then, much progress has been made and other electronic devices
have been made, like Organic Field-Effect Transistors (ofet s),108 Organic Photo-
voltaic Cells (opc s),19 and Polymer oled s (pled s).20

Organic semiconductors have several advantages over inorganic semiconductors.
The materials are generally cheap and easy to process. Also, the properties of
molecules are relatively easy to tune chemically. Being organic, devices made

1



2 Introduction

Figure 1.1 Two applications of organic semiconductors: (left) A flexible, very thin oled

display demonstrated by Samsung ( c© Samsung) and (right) decorative lighting from
Philips91.

from them could be disposed of in an environmentally friendly way or even be
biodegradable. Moreover, organic devices can be flexible. In addition, while most
other light sources are point sources (or line sources), oled s emit light from a
large surface. Those properties open up a lot of new possibilities, like flexible
displays [see Figure 1.1 at the left], decorative lighting [see Figure 1.1 at the right],
or complete ceilings that function as a light source. Displays made of oled s are
potentially more energy efficient than liquid crystal displays (lcd s), because only
active pixels emit light and consume energy, while in an lcd already produced
light is blocked in case of a black pixel. When used for lighting applications,
oled s have as an advantage over other efficient light sources that their color
temperature—how well the color resembles that of sun light—is nicer and their
color rendering index—how well the light reproduces the color of an object it
shines on—is higher. Currently, oled displays are used in some smartphones and
a few (very expensive) televisions. For lighting, oled s are commercially available,
for example the Philips Lumiblade, see Figure 1.1 at the right.

1.1.1 Conduction

What makes an organic semiconductor conducting is the presence of π-conjuga-
tion, that is, alternating single and double bonds between carbon atoms. The result
is that the s and two of the p orbitals hybridize to form three σ-bonds with other
atoms. That leaves a half-filled (singly occupied) pz orbital per carbon atom free.
Those pz orbitals hybridize to form molecular orbitals that are delocalized over
the whole molecule.∗ Every carbon atom provides one orbital and one electron.
Since every orbital could be doubly occupied, that would make the molecule or

∗In the case of a polymer, bends and twists in the polymer chain limit the delocalization to unbent
stretches of the polymer.
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polymer metallic, if not for the Peierls instability.90 The configuration where all
bonds between carbon atoms have equal length turns out not to have the lowest
energy. By alternatingly moving atoms closer or further apart, the energy of the
highest occupied molecular orbital (homo) is lowered, while that of the lowest
unoccupied molecular orbital (lumo) is raised. In this way a bandgap is created
that is typically a few electronvolt, making a material consisting of those molecules
a semiconductor.

Although crystalline organic semiconductors exist, the organic semiconductors
that are relevant for the work presented in this thesis are positionally and energet-
ically disordered. Their homo and lumo energy levels are usually assumed to
be distributed according to a Gaussian distribution with a standard deviation σ

of ∼0.1 eV.6,49 This energetic disorder together with strong electron-phonon cou-
pling leads to electrons and holes that are localized to single molecules or parts of
polymers.109 An electron (or hole) together with its phonons—which are, in effect,
a deformation of the molecule—is called an electron (hole) polaron. When speak-
ing specifically about an electron polaron or a hole polaron, the word “polaron”
is omitted in the rest of this thesis. A molecule or part of a polymer to which a
polaron is localized is called a “site”.

Hopping

Charge transport happens by phonon-assisted tunneling of electrons or holes from
site to site. This process is called hopping. In the literature, two types of hopping
rates are commonly used. The first are Miller-Abrahams rates, which come from
the field of inorganic electronics.77 For a hop from site i to j, they are given by

kMA
i→j =

{
ν0e−2αRij e−∆Eij/kBT if ∆Eij > 0,

ν0e−2αRij if ∆Eij ≤ 0,
(1.1)

where Rij is the distance between sites i and j, α is the inverse of the wave-function
decay length, ∆Eij is the energy of the state after the hop minus the energy of
the state before the hop, kBT is the thermal energy, and ν0 is the attempt-to-jump
frequency.

The second type are Marcus rates,66 which have their background in chemistry.
The Marcus rate for a hop from site i to site j is given by,

kM
i→j = ν0

√
π

4λkBT
e−2αRij e−

(∆Eij+λ)2

4λkBT , (1.2)

where λ is the reorganization energy. The reorganization energy is the energy
needed to move the charge from the source to the target site, while keeping the
phonons that are associated with the charge on the source site. It is typically
between 0.1 eV and 0.8 eV and it is material specific.109
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e-

h+
HOMO

LUMO

electrode electrode

σ

energy

density

Figure 1.2 A typical organic device, consisting of two electrodes with an organic semi-
conductor in between. The organic semiconductor consists of sites of which the energies
are distributed according to a Guassian with standard deviation σ. Electrons and holes are
injected into the lumo and homo, respectively, of the organic semiconductor from the
electrodes. The charges then continue their transport through the device by hopping from
site to site.

Both types of rates are used in the literature. Marcus rates are more appropriate
for hopping in organic materials but Miller-Abrahams rates have as an advantage
that there is one parameter fewer.

It is clear from Equations 1.1 and 1.2 that hops to sites with a higher energy are
more difficult (happen with a lower rate) than hops to sites with a lower energy.
Also hops to sites further away are more difficult than hops to sites close by. As a
consequence, the current through a layer of organic semiconductor will follow a
meandering path of least resistance through the energy landscape—just like water
finding its way through coffee powder in a percolator. This process is, therefore,
aptly named percolation. The result is that current will flow along preferential paths
through the semiconductor.46

For simplicity, we will ignore positional disorder in our modelling and assume that
all sites are on a square lattice—or on a line in case of a one-dimensional system—
with lattice spacing a. Furthermore, we assume that only nearest-neighbor hop-
ping takes place. With this assumption, the tunnelling factor e−2αa and ν0 can be
absorbed into a prefactor k0 = ν0e−2αa.

Space charge

The band gaps of organic semiconductors are much larger than the thermal energy
at room temperature, which is 25 meV. The intrinsic conductivity will therefore be
very low and electrons and holes need to be introduced into the semiconductor in
order to obtain a sizeable conductivity. This is commonly done by injection from
electrodes. Figure 1.2 shows a simple device consisting of an organic semiconduc-
tor sandwiched between two electrodes. It is easy to understand that with every
charge that is injected into the organic semiconductor it becomes more difficult
to inject the next charge, because of the build-up space charge. If injection is suffi-
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ciently easy, the current through the device will be limited by the amount of space
charge. In the case of unipolar devices, the space-charge-limited current is given by

J =
9
8

µε
V2

d3 , (1.3)

where µ is the charge mobility, ε is the permittivity of the organic semiconductor,
V is the voltage applied over the device, and d is the thickness of the device.88

When both holes and electrons are injected, in the case of a bipolar device, the
positive space charge of the holes and the negative space charge of the electrons
will (partially) cancel each other, provided the recombination is weak. Recombina-
tion is weak when most electrons and holes reach the collecting electrode instead
of recombine. That results in more charge being injected and consequently in a
higher current. In this case the current is given by

J =
9
8

ε

√
2πµeµh(µe + µh)

µr

V2

d3 . (1.4)

Here, µe and µh are the electron and hole charge mobility, respectively, and µr is
the recombination mobility.88 The recombination mobility is a measure of how
easily electrons and holes recombine and is defined as µr = εB/2e, where e is
the elementary charge and B is total recombination rate.9 The previous equation
for the space charge limited current is only valid when recombination is weak,
that is, when µr � µe, µh. If, on the other hand, the recombination is strong, that
is, µr � µe, µh, an electron and a hole that meet each other will immediately
recombine. That results in a narrow recombination zone somewhere in the organic
layer with only electrons on one side of it and only holes on the other site. In this
case, the recombination rate does not affect the current.

Photocurrent

Another way of introducing carriers is by photo-excitation. When a molecule
or polymer absorbs a photon, an exciton is generated that can dissociate into an
electron-hole pair. Under influence of an electric field, this electron-hole pair can be
pulled apart. The resulting current is called a photocurrent. The dissociation can be
more efficient at the interface of two organic semiconductors with different energy
levels, because in that case the state where the electron is in one semiconductor
and the hole is in the other could be lower in energy than the excitonic state. This
is the basic principle of how an organic solar cell works.

Doping

A third way of introducing charges into an organic semiconductor is by doping.122

By putting molecules into the material that have their homo and lumo energies
suitably shifted with respect to the host semiconductor, those dopant molecules
can donate an electron or hole to a host site, see Figure 1.3. In the case of electron
doping, the homo of the dopant site should be energetically aligned with the
lumo of the host to get the largest amount of doping. In that case, one of the
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HOMO

LUMO

host sites

dopant site

Figure 1.3 A few host sites with one of them replaced by a dopant site with shifted
energy levels. In general, the dopant’s homo will not be exactly aligned with the host’s
lumo, but ionisation of the dopant site is easier when the dopant’s homo is aligned
(or has a higher energy) than the host’s lumo. One electron of the dopant’s homo has
hopped to a neighboring host site’s lumo.

electrons from the dopant’s homo can hop without an energy penalty to a nearby
host site.

A hole-doped layer is often used in devices to facilitate hole injection from an
electrode. Electron doping is considerably more difficult, because the required
high homo energy makes such dopant molecules chemically instable.122

1.1.2 Light production

At present, the most prominent application of organic semiconductors is in dis-
plays. Oled s also have the promise to become more efficient than other light
sources. Light can be produced when both electrons and holes are injected into an
organic semiconductor. When an electron and hole meet, they can form an exciton,
which can then decay to the ground state by emitting a photon if the exciton is a
singlet.

Efficacy

An important measure of a light source is its efficacy. That is, how much of the
energy used by the oled is converted into light, measured in lumen? The efficacy
of an oled depends on several factors:

1. How well does the voltage over the oled match the energy of the emitted photons?
The energy difference will be lost as heat.

2. How many injected electrons and holes recombine and form excitons, instead
of hopping through the organic semiconductor and being collected at the other
electrode?

3. How many of the excitons that are formed are singlets? Since triplets have a total
spin equal to one, they cannot decay by emitting a photon, so only singlets emit
light.
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4. How many of the singlet excitons will decay by emitting a photon? A singlet
exciton can, for example, be quenched by interaction with a charge or a triplet. A
singlet can also decay non-radiatively.

5. And finally, how many of those photons can leave the oled? Organic materials
have a high refractive index of 1.7–1.9, which leads to total internal reflection,
making light out-coupling one of the main challenges in creating an efficient
oled.115

Of those five factors, the third is relevant for the study of magneto-electrolumines-
cence as will become clear in the next section. When an electron and hole that are
injected from the electrodes meet to form an exciton, their spins will be random.
That means that there is a 25% probability that their spins are in a singlet config-
uration and a 75% probability that they are in a triplet configuration. There has
been much debate in the literature about whether or not this statistical ratio of
1:3 singlet to triplet excitons can be violated during exciton formation. There are
several reports claiming the formation of either more22,33,98,126,127 or less23,106,129

than 25% singlets.

It should be noted that on molecules with a large spin-orbit interaction—for ex-
ample, due to the presence of a heavy metal atom—the energy eigenstates are no
longer pure singlets and triplets. Instead, the “triplet” state will also have some
singlet character and the “singlet” state will also have some triplet character. On
those phosphorescent molecules, “triplet” excitons can decay radiatively as well.
This is used to increase the efficacy of oled s:55 Triplet excitons can also contribute
to the efficacy by triplet-triplet annihilation.59,134 When the total spin configura-
tion of a triplet pair is a singlet, a radiative decay to the ground state is possible
when they encounter each other. Recently, Uoyama and coworkers116 have shown
that triplets can also be made to contribute to the luminescence by designing an
organic semiconductor such that it has only a small (compared to the thermal
energy) energy difference between the singlet and triplet states. If that energy dif-
ference is small, the intersystem crossing from the triplet states to the singlet state
is relatively fast, resulting in effective thermally activated delayed fluorescence.

Spin-OLED

In the previous section, it was assumed that the spins of an electron and a hole that
meet each other are random, as is the case when charges are injected from non-
magnetic electrodes. However, when charges are injected from magnetic electrodes,
these charges will be spin-polarized. Let us imagine the ideal situation where the
electrodes inject fully spin-polarized charges and let us ignore spin relaxation for
the moment. If now the two electrodes inject electrons and holes that are oppositely
polarized, 50% of the excitons that are formed will be singlets instead of 25%.
Oppositely, when the two electrodes inject charges with the same polarization, only
triplet excitons will be formed. So, not only can this be used to increase the oled’s
efficiency, it also leads to a very large magneto-electroluminescence when the
electrodes are such that their magnetization direction can be switched individually
by an applied magnetic field.31 However, in reality, the injected spins will lose some
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of their polarization when moving through the organic semiconductor before they
meet, due to hyperfine interactions17 or spin-orbit interactions.131 Also, charges are
not injected in a fully spin-polarized way. That seems to be a problem especially at
the higher voltages needed to make oled s emit light.128 Nguyen and coworkers
were the first to report a working spin-oled, although they found an magneto-
electroluminescence due to the effects described above of only ∼ 1%.80,81

1.2 Magnetic Field Effects

We will define a magnetic-field effect as the relative change in some property X as
a function of an applied magnetic field, B:

MFE(B) =
X(B)− X(0)

X(0)
, (1.5)

where X could be the current, in which case we speak of magnetoconduction (mc),
the electroluminescence, in which case we speak of magneto-electroluminescence
(mel), or it could be the diffusion constant, in which case we speak of magnetodif-
fusion. Instead of magnetoconduction, sometimes the term magnetoresistance (mr)
is used for a change in the resistance.

In 1992, Frankevich and coworkers observed a magnetic-field dependence of the
photocurrent of a polymer film (ppv

†) of little over 3% at only several tens of
millitesla and at room temperature.37 Later, a magnetic field effect of similar size
was also measured in the electroluminescence and conduction of oled s made
from the small molecule Alq3

‡ by Kalinowski et al.53 Soon thereafter effects of over
10% were measured by Francis et al., sparking a lot of interest.36 In the meantime,
a magnetoconductance of over 25% and a magneto-electroluminescence of over
50% have been reported.85 A magnetic field effect in the photocurrent of ∼300%
was found, but only at very small currents.32

All these measurements were done on bulk semiconducting small molecules or
polymers, at room temperature, and without magnetic electrodes. The magne-
toconductance was found not to depend on the device thickness,74 so interface
effects are not dominant.§ The temperature dependence was found to be weak.74

1.2.1 Lineshapes

Measurements of the magnetoconductance have been done on devices of many
different organic semiconductors, all yielding very similar results, see Figure 1.4(a).
This indicates that the effects are relatively independent of the material choice. A
second thing to note from Figure 1.4(a) is that all curves can be fitted with either of
two lineshapes: a Lorentzian and a “non-Lorentzian” lineshape. These lineshapes

†
ppv: poly(p-phenylene vinylene)
‡Alq3: aluminium tris(8-hydroxyquinoline)
§Increasing the device thickness decreases the effect the interface has on the current, so it would
decrease the magnetoconductance if the magnetoconductance were an interface effect.
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Figure 1.4 (a) Magnetoconductance as a function of the applied magnetic field for de-
vices of several different organic semiconductors. The lineshape can either be fitted by a
Lorentzian (red curves) or by a non-Lorentzian (blue curves). Figure adapted from Refer-
ence 74. (b) Magneto-electroluminescence as a function of the applied magnetic field for
doo -ppv (black) and its deuterated variant (red). Figure adapted from Reference 82.

are defined as

MFE(B) =
B2

B2 + B2
0

(Lorentzian), (1.6)

MFE(B) =
B2

(|B|+ B0)2 (non-Lorentzian), (1.7)

where B is the applied magnetic field and B0 is a material-dependent constant that
is typically a few mT. (When comparing B0 of different fits, it should be noted that
fitting the same curve with both lineshapes results in different B0.)

Often additional features are observed in the measured lineshape. So called high-
field effects are observed: The saturation at high magnetic fields can be slower than
that of the Lorentzian or non-Lorentzian lineshapes. The magnetic field effect
could also saturate to a value that is lower than it was for intermediate fields. In
addition, Nguyen and coworkers have observed a feature at small magnetic field
(< 1 mT), which they have called Ultra-Small-Magnetic-Field Effect (usmfe), see
Figure 1.4(b).82 While Nguyen and coworkers explain the usmfe as arising from
additional spin mixing due to level crossings at zero applied magnetic field, we
have found that it can be explained by the competition between spin mixing and
exciton formation, see Chapter 3.

1.2.2 Hyperfine interaction

It is known from the field of spin chemistry that reactions between spin-carrying
molecules, or radicals, can have a magnetic-field dependence on a field scale of a
few millitesla.111 Because organic molecules consist of light atoms—like carbon,
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Figure 1.5 The hyperfine interactions of a polaron spin with the nuclear magnetic mo-
ments, Ii, of the atoms that make up the molecule can be approximated by a hyperfine field,
Bhf, which is an effective static magnetic field, see the main text. The total magnetic field
felt by the polaron, Beff, is the sum of this hyperfine field and the applied magnetic field, B.

oxygen, hydrogen and nitrogen—the spin-orbit interaction is generally weak (see
the discussion later on in this section on page 12). The dominant interaction
of electron or hole spins is the hyperfine interaction with the nuclear magnetic
moments of hydrogen and nitrogen. (99% of the naturally occurring isotopes of
carbon and oxygen have no nuclear magnetic moment.) In the so-called radical-pair
mechanism, the reaction between two radicals in a pair depends on the pair’s spin
configuration. The hyperfine interaction mixes the singlet and triplet states and,
therefore, affects the reaction rate between the radicals. Applying a magnetic field
suppresses the spin mixing and leads to a different reaction rate.

Already in the paper by Frankevich37 it was proposed that the same spin mix-
ing by hyperfine fields is at the origin of the magnetic field effects. Most of the
mechanisms that were later introduced to explain the magnetoconductance and
magneto-electroluminescence—see the next section—rely on this spin mixing. The
importance of hyperfine interactions was finally confirmed by deuteration experi-
ments done by Nguyen et al.82,83 They replaced the hydrogen atoms of doo -ppv

¶

with deuterium atoms. Deuterium has a smaller magnetic moment, resulting in a
smaller hyperfine interaction. The experiments showed that the linewidth scaled
accordingly, see Figure 1.4. Similar experiments were done where naturally abun-
dant carbon-12 atoms (which don’t have a nuclear magnetic moment) were re-
placed by carbon-13 (which do have a nuclear magnetic moment). Again, the
lineshape broadened as expected. A similar effect of deuteration was observed in
experiments on Alq3 by Rolfe et al.97 An effect of deuteration was also found in
magnetic resonance experiments performed on meh -ppv

‖ by Lee et al.62
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Semiclassical approximation

A typical organic molecule consists of many atoms—usually of the order of 10—
that have a non-zero nuclear magnetic moment, Ii. Taking hyperfine interactions
between a polaron spin and all those nuclear magnetic moments into account
individually is mathematically cumbersome and would not provide much insight
into the problem. Instead, the effect of those nuclear magnetic moments on the
polaron spin can be approximated by an effective static magnetic field, called the
hyperfine field, as was shown by Schulten and Wolynes.105 In this approximation, the
nuclear magnetic moments are assumed to be randomly oriented and stationary
on the time scales that the polaron resides on a molecule. The hyperfine field
is then proportional to the sum of those randomly oriented magnetic moments
times the hyperfine coupling constants, see Figure 1.5 on the preceding page.
The resulting hyperfine fields are distributed according to a three-dimensional
Gaussian distribution with standard deviation Bhf, given by105:

Bhf =

√
1
3 ∑

i
a2

i Ii(Ii + 1), (1.8)

where ai is the hyperfine coupling constant with nucleus i. The hyperfine field is
of the order of 1 mT and varies slightly depending on the specific molecule. Since
the nuclear magnetic moments are now treated as a classical magnetic field while
the polaron spin is still treated quantummechanically, this is called the semiclassical
approximation.

McConnell rule

There are two contributions to the hyperfine interaction of a nuclear spin with an
electron spin: the Fermi contact interaction, which is proportional to the electron
density at the nucleus, and the magnetic dipolar interaction. Since the π-orbitals
have no overlap with the hydrogen nuclei, one would expect the Fermi contact
interaction to be zero, leaving only the dipolar interactions. This led to a paradox in
the spin-chemistry field, where hyperfine interactions were observed for molecules
in solution, whereas the tumbling of the molecules should have averaged out the
dipolar interactions.125 McConnell solved this paradox when he derived that the
Fermi contact interaction on σ-electrons is transmitted to a π-electron via exchange
coupling.70 This has led to the McConnell rule71 for the hyperfine coupling constant
of a hydrogen nucleus:

ai = Qρi , (1.9)

where ρi is the spin density on the carbon atom bonded to the hydrogen atom,
and Q is a constant between 2.2 and 3 mT.

Consider now a (hypothetical) symmetric organic molecule with N hydrogen
atoms. In that case, the spin density is homogeneously distributed (ρi ∼ 1/N) and
the hyperfine coupling constants are all identical (ai = a). Combining Equations 1.8

¶
doo -ppv: poly[2,5-dioctyloxy-1,4 -p-phenylene vinylene]
‖

meh -ppv: poly[2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene]
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and 1.9 yields Bhf ∼ 1/
√

N. Larger delocalization of an electron or hole leads
therefore to a smaller hyperfine field. This has been experimentally confirmed for
phenylene-vinylene oligomers.133

1.2.3 Spin-orbit coupling

Spin-orbit interaction in organic semiconductors is usually assumed to be negligi-
ble due to the absence of heavy atoms in those materials—the spin-orbit interaction
scales with the number of protons Z as Z4.∗∗ The assumption that spin-orbit inter-
action is negligible, obviously, does not hold for molecules that do contain heavy
atoms, like CuPc†† and Ir(ppy)3

‡‡. In addition, Yu131,132 has pointed out that also
the non-planar geometry of molecules can give rise to a larger spin-orbit coupling
than expected. He found that, especially, Alq3 has a relatively strong spin-orbit
coupling due to the orthogonal arrangement of its ligands.

With spin-orbit coupling, the energy eigenstates are no longer pure spin-up or spin-
down states, but a mixture of both. This leads to a loss in spin polarization with
every hop, independent of the hopping rate. This is in contrast to spin relaxation
due to hyperfine interactions, where spin polarization is lost between hops, so that
the amount of loss of spin polarization is proportional to the time between hops.17

That time is inversely proportional to the hopping rate.

The loss in spin polarization due to spin-orbit coupling does not have a magnetic-
field dependence.132 The presence of spin-orbit coupling therefore reduces the
magnetic-field dependence of spin mixing relative to the total amount of spin-
mixing. That is, magnetic-field effects will become smaller. The observation of
magnetic field effect, therefore, indicates that, in general, the effect on a polaron
spin of spin-orbit coupling seems to be much weaker than the effect of hyperfine
interactions.

1.2.4 Mechanisms

Since the discovery of magnetic field effects in organic semiconductors, several
mechanisms have been proposed to explain those effects. These mechanisms can
be divided in four groups, which are discussed below.

Bipolaron mechanism

The easiest understandable mechanism is the bipolaron mechanism.16 This mecha-
nism explains a magnetic-field-dependent current. A bipolaron is a (quasi)particle
consisting of two equally charged polarons—either two electrons or two holes—on
the same site. A polaron that has been trapped, either at a trap site or a site that
happens to lie low in the Gaussian energy distribution, will block other polarons,

∗∗Spin-orbit coupling is proportional to the nuclear charge Z and inversely proportional to the Bohr
radius cubed. The Bohr radius is inversely proportional to the Z, making the spin-orbit coupling
proportional to Z4. See for example Reference 42.

††CuPc: copper phthalocyanine
‡‡Ir(ppy)3: fac-tris(2-phenylpyridine) iridium
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Figure 1.6 A trapped polaron (at the dark gray site) can block other polarons. For the
current to flow, (a) the block polaron (at the left) has to hop around the trapped polaron, or
(b) the trapped polaron has to detrap, or (c) the blocked polaron has to form a bipolaron
with the trapped polaron. Bipolaron formation is only possible to the singlet state. (d) Spin
precession about hyperfine fields, Bhf, leads to spin mixing and makes it possible for triplet
polaron pairs to form (singlet) bipolarons as well. (e) When the external magnetic field,
B, is much larger than the hyperfine fields, the spins will precess in sync and the spin
mixing is suppressed. Now, a polaron pair that started as a T+ (or T−) triplet cannot form
a bipolaron.

see Figure 1.6. For the current to flow, one of the following processes has to hap-
pen: a) The blocked polaron can hop around the trapped one. b) The trapped
polaron can detrap. c) The blocked polaron can form a bipolaron on the trapped
polaron’s site, which in turn can dissociate, allowing effectively the passage of a
polaron. The first two processes do not depend on the applied magnetic field, but
the third does.

A bipolaron can only be formed in the singlet (ground) state, because the triplet
state is much higher in energy21,24 and has, therefore, a very small formation
rate. Since spin is preserved during bipolaron formation (because of total spin
conservation), whether or not a bipolaron can be formed depends on the spin
configuration of the two polarons. The spins of two polarons that meet each other
are random, so their spin configuration can be either a singlet or a triplet. In
the latter case, bipolaron formation is not possible. However, the polarons’ spins
will precess about their different hyperfine fields and this will mix their spin
configuration, allowing even those polarons that are initially triplets to form a
bipolaron, see Figure 1.6(d). This is called spin mixing. If now an external magnetic
field is applied, the spins will no longer precess about the hyperfine fields, but
about the effective magnetic fields which are the sum of the hyperfine fields and
the external magnetic field. When the external magnetic field is larger than the
hyperfine fields, the effective magnetic fields that both spins experience will be
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aligned, see Figure 1.6(e). As a result, the two spins will now only dephase. That is,
the T− and T+ triplets no longer mix with the singlet and T0 triplet. Two polarons
that are initially in one of those triplet states cannot form a bipolaron. This, in
turn, leads to a lower current.

In this way, the bipolaron mechanism leads to a negative magnetoconductance,
that is, a current that decreases as a function of the applied magnetic field. The
bipolaron mechanism could also lead to positive magnetoconductance in two
ways. Using Monte Carlo simulations, Bobbert et al. have shown that a positive
magnetoconductance could results from this mechanism due to an increase in the
number of polarons when bipolaron formation is decreased when an magnetic
field is applied.16 Because polarons are mobile and bipolarons are not, an increase
in polarons leads to an increase in current. The second way in which the bipolaron
mechanism can lead to positive magnetoconductance is via the sign-change mech-
anism introduced by Bloom et al. in the case of a space-charge-limited current.12 A
decrease in the mobility of, say, the electrons could lead to an increase in the total
space charge and thereby to an increase in the current.

The other mechanisms described below all rely on the presence of both holes and
electrons. When magnetoconduction is observed in a unipolar device (hole only or
electron only) it is likely due to the bipolaron mechanism. Indeed a small negative
magnetoconduction of about 1% and less has been observed in unipolar devices
and has been attributed to bipolaron formation.5,82,124 Recently, a magnetoconduc-
tion of up to 0.6% has been measured in an organic field-effect transistor, which
could be due to the bipolaron mechanism.94 A possible reason for the relatively
small size of this effect is the large formation energy of a bipolaron. The Coulomb
repulsion of two equally charged polarons on the same site is partially offset be-
cause of the shared relaxation of the atomic configuration. Although the resulting
bipolaron formation energy U can be as small as 0.1 to 0.3 eV for ppv or pery-
lene,45,67,117 this is still several times larger than the thermal energy of 25 meV at
room temperature. The rates for the processes circumventing bipolaron formation
[Figure 1.6(a) and (b)] are not much smaller (if at all) than the rate for bipolaron
formation.

The energetically disordered nature of organic semiconductors probably plays an
important role, as it leads both to filamentary charge transport as well as trapping
of polarons, thereby reducing the rates of the processes shown in Figure 1.6(a)
and (b). Indeed, taking filamentary transport to its extreme—to completely one-
dimensional transport—will lead to very large magnetic field effects, as will be
shown in Chapters 5 and 6.

Electron-hole mechanisms

It turns out to be quite difficult to make a completely unipolar device and often a
device is bipolar by its very nature, like in the case of an oled where one wants
electrons and holes to form excitons. Moreover, the largest magnetic field effects
have been measured in bipolar devices.
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As explained earlier in the context of oled s, electron-hole pairs that meet ran-
domly can be either in a singlet or in a triplet configuration. Like for bipolaron
formation, hyperfine fields can mix the spin configuration between singlet and
triplet states and an externally applied magnetic field can suppress this mixing. If
the formation rates for singlets and triplets are different, this will lead to a mag-
netic-field-dependent fraction of singlet excitons and subsequently to a magnetic-
field-dependent light output—magneto-electroluminescence. This is discussed in
more detail in Chapter 3.

How the current reacts to a change in the exciton formation rate, and thus to what
magnetoconduction it leads, depends on the device physics. Several mechanisms
have been proposed:

1. In a space-charge-limited device, the magnetic field dependence of the exciton
formation rate affects the current through the recombination mobility in Equa-
tion 1.4.9,48,92

2. In a recombination-limited device, like a liquid electro-chemical cell with two
sharply separated regions of n-doping and p-doping,93 the device is separated
into two regions with either only electrons or only holes, which meet in a narrow
recombination zone. In such a device, the current is proportional to the recombi-
nation rate. A magnetic field effect in the exciton formation rate will, in this case,
directly affect the current through the device.

3. In a device that is neither space-charge-limited nor recombination-limited, the
formation of a Coulombically bound polaron pair takes away two charges that
would otherwise contribute to the current. The recombination rate of that polaron
pair affects the probability of its dissociation.48 If the pair dissociates, the electron
and hole can again contribute to the current.

4. Finally, the amount of triplet excitons that are formed can affect the current. As
explained earlier, singlets can decay radiatively, while triplets cannot. As a result,
triplets have a much longer life time. The amount of triplets present can have an
effect on the current in several ways. The triplets can simply hinder the movement
of electrons and holes, thereby reducing the current. A triplet exciton can also
detrap a charge while decaying to the ground state, thereby creating a free charge
that can contribute to the current.48 Since triplets have a non-zero spin, their
interaction with polarons has a magnetic field dependence as well. This will be
discussed next.

Charge-triplet mechanisms

A triplet exciton can diffuse to a trapped charge and detrap the charge while
decaying to the ground state. In this way, trapped charges can be freed and the
resulting increase in free charges will lead to a larger current.48 The final result
of this process is a single free charge, which is a spin doublet. This process can,
therefore, only happen when the initial charge–triplet exciton pair is a doublet as
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well. The other possible initial spin configuration, a quartet, cannot lead to detrap-
ping in this way. As for the mechanisms described before, hyperfine fields will mix
the quartet and doublet states of the charge-triplet pair. Again, a magnetic field
dependence arises because the spin mixing can be suppressed by an external mag-
netic field. Unlike the previous mechanisms, though, the width of the lineshape is
now determined by the zero-field splitting of the triplet exciton: The effect of the
hyperfine interactions on the linewidth is cancelled out when an average is taken
over all possible hyperfine field.103 The zero-field splitting is the splitting of the
triplet energy levels even in absence of an applied magnetic field and is typically
about 100 mT.38,87

Triplet-triplet annihilation

One of the first magnetic field effects observed in organic semiconductors was in
the delayed fluorescence due to triplet-triplet annihilation.52 When two triplets
annihilate each other, light is emitted. This effect is found to increase the efficacy of
an oled in some cases.59,134 Two triplets can only annihilate when their combined
spin configuration is a singlet. Just as for charge-triplet interactions, hyperfine
fields and the zero-field splitting lead to spin mixing that can be suppressed by
an applied magnetic field. This results in a magneto-electroluminescence with a
linewidth determined by the zero-field splitting.103,134,135

1.2.5 ∆g-effect

Besides hyperfine interactions, there is a second mechanism that gives rise to spin
mixing, which is related to the difference in g-factors between an electron and a
hole. But unlike hyperfine interactions, this so-called ∆g-effect leads to spin mixing
at large—instead of small—applied magnetic fields.

To understand how the ∆g-effect leads to spin mixing, consider an electron in a
magnetic field B. The spin of that electron will precess about the magnetic field
with a frequency given by

fB = gµBB/h, (1.10)

where g is the g-factor, µB is the Bohr magneton, and h is Planck’s constant. The g-
factor for an electron spin in vacuum has been measured to great accuracy and its
first eight digits are 2.0023193. Due to the (weak) spin-orbit interactions in organic
semiconductors, the g-factor of a polaron will be slightly different from that of a
free electron and will be different for hole and electron polarons. In addition, it will
vary slightly throughout the organic semiconductor. In Reference 132, g-factors
for several commonly used molecules and polymers are listed.

The difference in g-factors, ∆g, of two polarons will lead to a difference in preces-
sion frequency, ∆ fB = ∆gµBB/h, proportional to the applied magnetic field. The
resulting dephasing of the polaron pair’s spin configuration leads to an increase
in spin mixing between the singlet and T0 triplet, partially compensating for the
loss in spin mixing due to the alignment of the effective magnetic fields.
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In the literature, the ∆g-effect has been proposed to explain a
√

B dependence
of the magneto-electroluminescence at high applied magnetic fields.124 However,
a Lorentzian lineshape was found from calculations by Schellekens and cowork-
ers.103 Moreover, the difference in g-factors of ∼1% needed to explain the mea-
surements on organic semiconductors is unrealistically large.132 It is, therefore, not
completely clear whether the ∆g-effect is indeed the cause of the measured

√
B

dependence.

1.2.6 Traps

In 2008, Niedermeier and coworkers86 discovered that in a polymer oled, the
magnetoresistance could be increased from ∼1% to more than 15% by operating
it for an hour at a current density (125 mA/cm2) much higher than under normal
operating conditions (< 1 mA/cm2). They called this procedure conditioning. In a
follow-up paper,3 they showed that the effect was reversed after keeping the device
a few days at room temperature or after a few hours at ∼420 K. Conditioning
could increase the magnetic field effect again and this cycle was repeatable several
times. This suggests that not chemical changes but morphological changes lie at
the origin of the enhanced magnetic field effects. In the same paper, the creation of
traps by conditioning is put forth as the source of the enhancement. They showed
that the enhancement could be (partially) countered by illumination with infrared
light, which detraps charges.

More recently, a similar increase in the magnetoconduction was reported by Ry-
bicki and coworkers.99 They created traps by irradiating the device with x-rays,
which create traps with a depth of ∼0.5 eV. By varying the duration of the irra-
diation, the number of traps created could be tuned. A stronger increase in the
magnetoconductance was observed for longer durations.

There are also indications that traps created by exposure of the organic material to
air can lead to an increased magnetic field effect. Kanemoto et al.54 reported that an
air-treated meh -ppv diode showed a much larger transient Electrically Detected
Magnetic Resonance (edmr) (see the next section) response than the untreated
device. They also observed an increase in edmr linewidth after air-treatment,
indicating that indeed polarons on different kinds of sites—intrinsic sites and trap
sites that have been created by the air-treatment—are responsible for the increase
in magnetic field effect.

Why the presence of traps increases the magnetoconduction and magneto-electro-
luminescence is not entirely clear. All the mechanisms that are described in the
previous section rely on reactions between two (quasi)particles—polarons, triplets,
etc. One possible explanation is that it is easier for two particles to meet when one
is fixed (trapped) than when both can move around. In addition, the bipolaron
mechanism relies on polarons being blocked by a trapped polaron. It is expected
that more traps will lead to more spin-blocked polaron pairs. Furthermore, the
trap depth could partially offset the bipolaron formation energy, making the mag-
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netic-field-dependent bipolaron formation more favourable than the alternative
processes (see Section 1.2.4).

1.2.7 Electrically detected magnetic resonance

In what has been discussed up to now, hyperfine fields lead to spin mixing that
can be suppressed by applying an external magnetic field. It is, however, also
possible to introduce other ways of spin mixing. A powerful way of doing this is
by means of spin resonance. Depending on whether the effect of the additional
spin mixing is detected in the light output or in the current, this technique is
called Optically Detected Magnetic Resonance (odmr) or Electrically Detected Magnetic
Resonance (edmr).§§

When a magnetic field B is applied to a device, the energy levels of spin-up and
spin-down polarons in this field will split with an energy difference ∆E = gµBB.
In the presence of electromagnetic radiation, the polaron spin can oscillate be-
tween the spin-up and spin-down states. These so-called Rabi oscillations happen
only when the frequency of the electromagnetic radiation exactly matches the
energy splitting of the spin-up and spin-down states, that is, when the resonance
condition is fulfilled. Since two polarons that are about to form a bipolaron or
an exciton experience different hyperfine fields and can have different g-factors,
their resonance conditions differ. Therefore, it is possible to make only one of the
two polarons resonate, leading to mixing of their spin configuration. In a typical
edmr experiment, the change in current is measured when the applied magnetic
field is swept while the frequency of the electromagnetic radiation is kept constant.
A peak in the current will occur when the applied magnetic field matches the
resonance condition. The g-factor can then be derived from the peak position and
the peak width is a measure for the strength of the hyperfine fields. McCamey
et al. used this technique to establish that, in their meh -ppv oled, a reaction
takes place between two polarons that experience hyperfine fields of different
magnitude.68

Even more information can be obtained by using Pulsed edmr (pedmr). Instead
of continuous electromagnetic radiation, a pulse of a definite length is used. When
the resonance condition is fulfilled, the oscillating magnetic field of the pulse acts
as a static field in the reference frame that rotates with a spin that precesses about
the applied magnetic field. The spin will rotate away from the direction of the
applied magnetic field over an angle that is proportional to the pulse length and
its power—the power is proportional to the magnitude of the pulse’s oscillating
magnetic field. A rotation over π will results in the maximal change in current,
while a rotation of 2π yields no change at all. From the decay of the Rabi oscilla-
tions with increasing pulse lengths, it has been established that the spin lifetime
in meh -ppv oled s is larger than 0.5 µs.68,69

§§As a side note: Similar experiments on the behaviour of European Robins—a migratory bird that
possibly has a compass based on the radical-pair mechanism—subject to resonant radio waves have
been dubbed Animal-Detected Magnetic Resonance, see for example Reference 95.
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1.2.8 Fringe fields

Another way of controlling the amount of spin mixing is with the fringe fields
of a magnetic layer. Near a magnetic layer, a fluctuating magnetic field (a fringe
field) is present with a strength and correlation length that depend on the domain
structure and thickness of the magnetic layer and the distance from the layer. These
fringe field lead to spin mixing in a similar way as the random hyperfine fields do.
Cohen has proposed to use the fringe fields of magnetic nanoparticles to influence
the reaction rate of molecules around them via the radical-pair mechanism.27 The
same idea was applied to organic semiconductors by Wang and coworkers.123

They used a magnetic layer that generates fringe fields when its magnetisation is
switched by an applied magnetic field. A magnetoconductivity of about 10% was
observed.

1.2.9 Spin valves

The subject of this thesis is magnetic field effects that originate in the bulk of a
device without magnetic electrodes. However, there is a second class of organic
magnetic field effects, caused by some mechanism at the interfaces between the
organic semiconductor and magnetic electrodes. The spin-oled that was already
mentioned before is an example of this kind of devices, but the most prominent
one is the spin valve. A spin valve consists of two magnetic electrodes with a
non-magnetic layer between them. Spin-polarized charges are injected from one
electrode, pass through the non-magnetic layer, and are collected at the other
electrode. The collection efficiency depends on the charge’s spin direction with
respect to the polarization of the collecting electrode. The current through the
device depends, therefore, on the relative orientation of the polarizations of the
electrodes.

The demonstration of an organic spin valve would prove that spin injection from
magnetic electrodes is possible. Spin injection is one of the requirements for mak-
ing organic spintronics devices—devices that use the electronic spin to process
information.31,78,101,102 Several claims have been made in the literature about work-
ing organic spin valves, see Reference 31 and references therein. Typically, mag-
netic field effects of 30–40% are found at 10 K while less than 1% remains at room
temperature.

However, several other effects look very much like the spin valve effect. An exam-
ple is the fringe-field effect mentioned above.100,123 Also, the tunnelling anisotropic
magnetoresistance, which arises from magnetic-field-dependent injection from a
magnetic electrode due to strong spin-orbit interaction, has similar features as
the spin valve effect.41 The definite proof of a working spin valve would be the
observation of the Hanle effect.50,63 The Hanle effect is the periodic dependence
of the current through a spin valve on an applied magnetic field perpendicular to
the magnetisation direction of the electrodes. The applied magnetic field causes
the polarisation of the injected electrons to rotate a certain angle proportional to
the magnitude of the magnetic field and the time it takes the electrons to reach
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the collecting electrode. Since the current through a spin valve depends on the
angle between the polarisation of the electrons that reach the collecting electrode
and that electrode’s magnetisation direction, the current will depend periodically
on the applied magnetic field. Calculations by Wagemans (pages 86 and 87 of
Reference 120) show that even in a disordered organic semiconductor—where the
time it takes electrons to reach the collecting electrode is not shapely defined—the
Hanle effect should be observable. However, no Hanle effect has been observed
in organic spin valves to date. On the order hand, two-photon photo-emission
experiments by Cinchetti et al.26 and muon spin rotation experiments by Drew et
al.34 indicate that spin injection into an organic semiconductor is indeed possible.
The absence of spin detection at the collector (or the independence of the current
on the spin detection at the collector) might therefore be the reason for the failure
to observe the Hanle effect.

1.3 Outline of this thesis

The goals of this thesis are to both explain experimentally observed magnetic field
effects as well as to make predictions for even larger effects in organic semicon-
ductors. The theoretical frameworks with which these effects are described are
Stochastic Liouville equations and Monte Carlo simulations. Both are described
in Chapter 2. The question whether the statistical singlet–versus–triplet exciton
ratio can be violated and the connection of this issue with magneto-electrolumines-
cence will be investigated in Chapter 3 using a two-site model for which we solve
the stochastic Liouville equation. In addition, it will be shown that the recently
measured ultra-small-magnetic-field effect can be explained with our model. It
is argued that the largest magnetic-field effects are expected when hopping is
slower than the hyperfine frequency. However, modelling of the charge mobility
in polymers has shown that the hopping rate might not be that slow. This paradox
is solved in Chapter 4 when the role played by energetic disorder is discussed
using a multi-site model. In that chapter we get to the limitations of the Stochas-
tic Liouville equation, with which only a relatively small number of sites and
charges can be described. To investigate larger systems and, more importantly,
systems containing more than two charges, Monte Carlo simulations can be used.
In Chapter 5, we do such simulations, to show that huge magnetoconductance
and magnetodiffusion in doped polymers can occur for vanishingly small applied
electric fields. The huge effects are found to be the result of interactions between
the charges and of the one-dimensionality of the system. In Chapter 6, similar sim-
ulations are used to explain the huge magnetoconduction that was measured in
wires of molecules embedded in a zeolite crystal. The spin blocking resulting from
bipolaron formation is found to be very effective in this one-dimensional system.
It is shown that the magnetoconductance is further enhanced by the presence of
traps. The magnetic field effects described in Chapters 3 to 6 results from spin
mixing by hyperfine fields. In Chapter 7, we investigate a magnetic field effect that
is caused by a difference in magnitude of the local magnetic fields experienced
by two polarons. This mechanism could explain the magnetoconductance that
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was recently observed in organic devices where the fringe fields of a magnetic
layer give rise to a magnetic field that varies from site to site. In Chapter 8, the
main conclusions of of this thesis are summarised and an outlook on the future of
modelling of magnetic field effects in organic semiconductors is given.
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2
Analytical and numerical methods

The analytical and numerical methods used in this thesis will be described in this chapter.
The spin state of two polarons that encounter each other is unknown. This uncertainty
can be described by the density operator formalism, of which a short introduction will be
given. While spin precession is a coherent process, hopping of a polaron is an incoherent
process. To describe the spin-dependent hopping processes that lie at the origin of magnetic
field effects in organic materials, coherent and incoherent processes need to be treated at the
same time. For that, a stochastic Liouville equation, an extension of the Liouville equation
in the density matrix formalism, is introduced next. Special attention is given to the slow-
hopping limit. In this limit, spin-dependent hopping can be described with simple rate
equations. This allows us to perform Monte Carlo simulations, which are discussed next.
Finally, it is shown how the rate equations for a hopping polaron can be mapped onto a
resistor network. The current through the latter can easily be calculated.

2.1 Density operator formalism

The Schrödinger equation can be used to describe the evolution of a system that is
in a single, known quantum state. When it is only known with a certain probability
in which state the system is—or when describing an ensemble of systems, each
possibly in a different state—the density operator formalism, developed by von
Neumann, can be used.14,35,118 Consider a quantum system with a Hamiltonian H
and a basis of states |ψj〉 that span the Hilbert space—for example, the eigenstates
of H. The density operator for this system is

ρ = ∑
j

pj|ψj〉〈ψj|, (2.1)

where pj is the probability that the system is in |ψj〉. Because the sum of all the
probabilities is unity, the following equation should hold: Tr[ρ] = ∑j pj = 1. The

23
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probability that the system is in an arbitrary state |χ〉 is given by Tr[|χ〉〈χ|ρ]. The
density operator contains all information that can be known about the system.

When a basis has been chosen, a density matrix can be constructed that has the
elements ρij = 〈ψi|ρ|ψj〉. It is often more convenient to work with the elements of
the density matrix than with the density operator, especially when doing numerical
calculations. The probability of finding the system in state i is given by the diagonal
element ρii of the density matrix.

If there is a basis |φi〉 for which p1 = 1 and all other pi = 0, the density operator
is a pure state. If no such basis exists, the operator is in a mixed state. The latter
could be the case if there is uncertainty about the state of the system. Also, the en-
tangled subsystems of a pure state are mixed states. An example of two entangled
subsystems that is relevant for this thesis are the position and spin of a polaron
and its phonons. The phonon systems absorbs (gives) the energy that is released
(needed) for a hop of the polaron downwards (upwards) in energy.

If there is complete uncertainty about the state of the system, the density matrix
is proportional to the identity operator. The density matrix is then diagonal with
all diagonal elements equal to 1/n, where n is the dimension of the matrix.

The expectation value of an observable O can be found from the density operator:

〈O〉 = ∑
j

pj〈ψj|O|ψj〉 = Tr[ρO] . (2.2)

Using the Schrödinger equation it is easy to derive that the time evolution of the
density operator is given by the Liouville-von Neumann equation:

∂ρ

∂t
= − i

h̄
[H, ρ], (2.3)

where h̄ is the reduced Planck constant and [ · , · ] is the commutator.

If the density operator can be written in the form of Equation 2.1 on the preceding
page for a basis |χi〉, it means that there is just uncertainty about in which of
those basis states the system is—the system is not in a superposition of several
basis states. If, in addition, the basis |χi〉 is the basis of the energy eigenstates,
then the density operator will not evolve in time. That can be found easily from
Equation 2.3, as the |χi〉〈χi| operators commute with each other and both ρ and
H are linear combinations of them.

2.2 Stochastic Liouville equation

While taking into account the uncertainty in the initial state, the Liouville-von
Neumann equation only describes the coherent evolution of the density opera-
tor. In many cases, it is not desirable of even possible to treat the whole system
quantum mechanically when one is only interested in the behavior of a subsystem.
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For example, hopping of polarons in an organic semiconductor takes place by
interactions with the phonons of the material, which provide or absorb the energy
difference between the initial and final states of the polaron. However, we are
only interested in the behavior of the polaron and not in the detailed evolution of
the phonon system. Moreover, the phonon system is material dependent, while
hopping and magnetic field effects are much less so. Therefore, we want to have a
description in which the phonon system is not explicitly considered.

When the subsystem that one is not interested in consists of a large number of
small interactions with the subsystem of interest, the former can be treated in
a stochastic way.114 This idea was used by Anderson2 and Kubo60 to explain
the observed lineshapes of magnetic resonance absorption. This led to stochastic
Liouville equations, which extend the Liouville-von Neumann equation to include
stochastic or incoherent interactions.

Stochastic Liouville equations in the form as used in this thesis were introduced
in 1970 by Johnson and Merrifield51 for studying the magnetic field dependence
of triplet-triplet annihilation in anthracene crystals. They used a stochastic Liou-
ville equation that models the annihilation of two reacting triplet excitons, taking
into account an external magnetic field and dipolar interactions. Later, hyperfine
fields were taken into account as well.43 Stochastic Liouville equations describing
hopping between more than two sites were first introduced by Suna et al.112 for
their study of triplet-triplet annihilation.

2.2.1 General model

In this thesis we use stochastic Liouville equations to describe one or two spin-
carrying (quasi)particles on a lattice of sites N. Every site i, with 1 ≤ i ≤ N, has a
random energy Ei taken from a Gaussian distribution with standard deviation σ,
see Section 1.1.1 on page 2. Furthermore, at every site i there is an effective mag-
netic field Beff,i that is the sum of an externally applied magnetic field B and the
site’s hyperfine field Bhf,i, taken from a three-dimensional Gaussian distribution,
see Section 1.2.2 on page 11. Below, we will consider the case of two particles, as
the case for one particle easily follows from it.

For every positional configuration, denoted by (i, j), with the first particle on site
i and the second particle on site j, there is a density operator ρ(i,j), describing
the spin state of the two particles when they are on those two sites.∗ Since every
density operator ρ(i,j) describes only a single possible configuration, its trace is
equal to the probability of the system being in that configuration. The sum of all
those traces is equal to unity: ∑i,j Tr

[
ρ(i,j)

]
= 1. For every configuration, there is a

Hamiltonian H(i,j) that describes the evolution of the particles’ spins:

H(i,j) = gµBBeff,i · S1/h̄ + gµBBeff,j · S2/h̄, (2.4)

∗Although it is possible to use a single, large density operator to describe the whole system, it is more
intuitive to consider several coupled density operators.
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where g is the g-factor, µB is the Bohr magneton, Sm is the spin operator for particle
m = 1, 2, and h̄ is the reduced Planck constant. The time evolution of the density
operators is then given by the following stochastic Liouville equation:

∂ρ(i,j)

∂t
= − i

h̄
[
H(i,j), ρ(i,j)

]
− 1

2
{

Λ(i,j), ρ(i,j)
}
+ Γ(i,j), (2.5)

where { · , · } is the anticommutator. The first term on the right hand side is the
same as in the Liouville-von Neumann equation and accounts for the (coherent)
evolution of the spins of the particles involved.

The second term accounts for the decrease of the population of the density opera-
tor, for example due to hopping to another site or exciton formation. The operator
Λ(i,j) contains one term for every process by which the population of density op-
erator ρ(i,j) can decrease. For example, the part of Λ(i,j) accounting for hopping of
particle 2 from site j to sites k is simply given by:†

∑
k

rj→k , (2.6)

where the summation is over all sites k to which particle 2 can hop from site j.
The hopping rate rj→k depends on the energy difference between the two sites
and could be the Miller-Abrahams or the Marcus hopping rate, see Section 1.1.1
on page 3. In the case of a spin-dependent process, like bipolaron formation or
exciton formation, the operator Λ(i,j) contains projections onto the spin subspaces
multiplied by the rates with which the process happens. For bipolaron formation,
which can occur only to the singlet state, on either site i or site j, Λ(i,j) contains
the terms:

rbip
i→j|S〉〈S|+ rbip

j→i|S〉〈S|, (2.7)

where rbip
i→j is rate for forming a bipolaron on site j and |S〉 is the singlet state.

In the last term of the Stochastic Liouville equation, the source operator Γ(i,j)
accounts for the increase of population of density operator ρ(i,j). For every process
that increases the population of ρ(i,j), Γ(i,j) contains a source term. For example,
for hops of particle 2 from sites k to site j with a rate rk→j, the source operator
Γ(i,j) contains the following term:‡

∑
k

rk→j ρ(i,k), (2.8)

where the summation is over all sites k from which particle 2 can hop to site j.

†This expression is valid in the limit of vanishing particle densities. For a higher density, an additional
factor (1− Tr

[
ρ(i,k)

]
) should be included, because the hop is only possible to an empty site. In this

thesis, stochastic Liouville equations are only used in the low density limit.
‡This expression is valid in the limit of vanishing particle densities. For higher densities a factor
(1− Tr

[
ρ(i,j)

]
) should be included. See the footnote for Equation 2.6.



2.2 Stochastic Liouville equation 27

2.2.2 Solving Stochastic Liouville equations

The system of stochastic Liouville equations just described is a complicated system
of coupled differential equations. We solve it by transforming it into a single matrix
equation as follows. Consider, for every density operator ρ(i,j), the density matrix
with respect to the energy eigenstates of H(i,j). The elements of these matrices,
ρ(i,j)στ , where i and j run over all sites and σ and τ run over the basis states of
H(i,j), can be written as a single vector ρ̃. The time evolution of this vector is given
by:

∂ρ̃

∂t
= Mρ̃. (2.9)

Here, M is a time-independent matrix that follows directly form Equation 2.5 on
the facing page. The solution to Equation 2.9 is ρ̃(t) = exp(Mt)ρ̃0, where ρ̃0 is the
initial condition. There is a transformation T, such that D = TMT−1 is a diagonal
matrix with the eigenvalues mi of M. With this transformation, it is easy to get an
expression for ρ̃(t):

ρ̃(t) = exp(T−1DT)ρ0 = T−1 exp(Dt)Tρ0 = T−1diag
(
emit
)

Tρ̃0, (2.10)

where diag(ai) is a diagonal matrix with elements ai.

If det M = 0, there is a non-trivial steady-state solution that can be found from
solving Mρ̃ = 0.

2.2.3 Slow hopping

An interesting and important limit to consider is the slow-hopping limit. In this limit,
hopping takes place much slower than the spin precession about the hyperfine
fields: khop � ωhf, where ωhf = gµBBhf/h̄ is the hyperfine frequency, which is
2.8 · 107 Hz for a typical hyperfine field of 1 mT and g = 2. The maximum possible
amount of spin mixing takes place in the slow-hopping limit. Therefore, the largest
magnetic field effects are expected in this limit. Taking this limit also drastically
simplifies the way calculations can be done, as will be shown for hopping between
two sites.

Consider two sites, 1 and 2, and a single polaron, hopping from site 1 to site 2.
The spin Hamiltonian for the polaron on site 1 (site 2) is given by

H1(2) = gµBBeff,1(2) · S/h̄, (2.11)

where Beff,1(2) is the effective magnetic field on site 1 (site 2) and S is the spin
operator for the polaron. The eigenstates of this Hamiltonian for site 1 are denoted
by |↑〉 and |↓〉 and those for site 2 by |⇑〉 and |⇓〉, see Figure 2.1 on page 29.
Initially, site 2 is empty and site 1 is occupied by the polaron. Let us assume that
the polaron is in one of the energy eigenstates of site 1: To be specific, assume it is
in |↑〉 with a probability P↑ and in |↓〉 with probability P↓ = 1− P↑. Therefore, for
the density operators at t = 0, we have ρ2(0) = 0 for the configuration where the
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polaron is on site 2 and ρ1(0) = P↓|↓〉〈↓|+ P↑|↑〉〈↑| for the configuration where
the polaron is on site 1.§

As the polaron hops to site 2, the evolution of ρ1 is given by the following stochastic
Liouville equation:

∂ρ1

∂t
= − i

h̄
[
H1, ρ1

]
− khopρ1 (2.12)

= −khopρ1, (2.13)

where khop is the hopping rate. The solution to this equation is:

ρ1(t) = ρ1(0) exp(−khopt). (2.14)

For the density operator of site 2, it is convenient to work with the matrix elements
of the density matrix with respect to the local eigenstates. Their time evolution is
given by:

∂〈σ|ρ2|τ〉
∂t

= −iωστ〈σ|ρ2|τ〉+
(
〈σ|↑〉〈↑|τ〉P↑ + 〈σ|↓〉〈↓|τ〉P↓

)
khope−khopt, (2.15)

where σ, τ = ⇑, ⇓ and ωστ = (Eσ − Eτ)/h̄ with H2|σ〉 = Eσ|σ〉. The solution for
t� 1/khop when the hop has happened is:

〈σ|ρ2|τ〉 =


khop

i2ωστ+khop
e−2iωστ t

(
〈σ|↑〉〈↑|τ〉P↑ + 〈σ|↓〉〈↓|τ〉P↓

)
, if σ 6= τ,

|〈σ|↑〉|2P↑ + |〈σ|↓〉|2P↓, if σ = τ.
(2.16)

In the case of slow hopping we have ωστ ≈ ωhf � khop and therefore the elements
with σ 6= τ are all zero. That is, after the hop the spin will again be in one
of the local eigenstates |⇑〉 or |⇓〉 with probabilities |〈⇑|↑〉|2P↑ + |〈⇑|↓〉|2P↓ and
|〈⇓|↑〉|2P↑ + |〈⇓|↓〉|2P↓, respectively.

Rates

In the slow-hopping limit, hopping can thus be considered as taking place between
energy eigenstates of the spin Hamiltonians of the source and target sites. For example,
the spin-dependent hopping rate from |↑〉 on site 1 to |⇑〉 on site 2 equals:

k̃1↑→2⇑ = k1→2|〈↑|⇑〉|2, (2.17)

where k1→2 is the spin-independent hopping rate. The spin projection factors |〈σ|τ〉|2
depend only on the angle θ between the hyperfine fields of the two sites and are
given in Table 2.1 on the facing page. Hopping of a polaron is illustrated in
Figure 2.1.

§Including also |↓〉〈↑| and |↑〉〈↓| in ρ1(0) has no effect on the final result. Furthermore, as we will
see, the end result of a hop in the slow-hopping limit is exactly a density matrix like ρ1(0) with only
contributions from |↑〉〈↑| and |↓〉〈↓|. The assumption that the spin is either in |↑〉 or |↓〉 is therefore
justified.
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Figure 2.1 The energy eigenstates of two sites with effective magnetic fields Beff,i. The a
polaron is in the |↑〉 state of site 1. In the slow-hopping limit, hopping can be considered to
take place between energy eigenstates. The hopping rates are proportional to the spin pro-
jection factors between the eigenstates of the source site and the target site: khop cos2(θ/2)
and khop sin2(θ/2), which only depend on the angle θ between the two effective magnetic
fields.

The same result can be derived for a reaction between two polarons. Because
there is a large exchange interaction between two polarons on the same site (a
bipolaron or an exciton), the spin eigenstates for two polarons on a single site
(for site 2, see Figure 2.1) are the singlet, |S〉 = 1√

2
(|⇑⇓〉 − |⇓⇑〉), and triplet,

|T0〉 = 1√
2
(|⇑⇓〉+ |⇓⇑〉), |T−〉 = |⇓⇓〉, and |T+〉 = |⇑⇑〉, states. Note that the

singlet and T0 states do not depend on the direction of the effective magnetic field,
while T− and T+ do. For example, when there is a polaron in |↑〉 on site 1 and a
polaron in |⇑〉 on site 2, the spin-dependent rate for forming a singlet on site 2 is,

k̃1↑,2⇑→2S = kS|〈↑⇑|S〉|2, (2.18)

where kS is the singlet exciton formation rate. The spin projection factors between
energy eigenstates of two sites and the singlet and triplet states on a single site
are listed in Table 2.2 on the following page. The same spin projection factors are
used for dissociation of an exciton or bipolaron or for ionization of a dopant.

These hopping rates between energy eigenstates allow us to model spin-dependent
processes with simple rate equations. It also makes it possible to perform Monte
Carlo simulations of multiple-polaron systems. Those will be discussed in the next
section.

|〈 · | · 〉|2 〈↑| 〈↓|
|⇑〉 cos2(θ/2) sin2(θ/2)

|⇓〉 sin2(θ/2) cos2(θ/2)

Table 2.1 Spin projection factors between the spin eigenstates of two sites, whose effective
magnetic fields make a mutual angle θ.
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|〈 · | · 〉|2 〈S| 〈T−| 〈T0| 〈T+|
|↑⇑〉 1

2 sin2(θ/2) 0 1
2 sin2(θ/2) cos2(θ/2)

|↑⇓〉 1
2 cos2(θ/2) sin2(θ/2) 1

2 cos2(θ/2) 0

|↓⇑〉 1
2 cos2(θ/2) 0 1

2 cos2(θ/2) sin2(θ/2)

|↓⇓〉 1
2 sin2(θ/2) cos2(θ/2) 1

2 sin2(θ/2) 0

Table 2.2 Spin projection factors between the spin eigenstates of two sites, whose effective
magnetic fields make a mutual angle θ, and the singlet and triplets states of the second site.

2.3 Monte Carlo simulations

Monte Carlo methods are computational methods that use statistical sampling
to calculate some property.76 When eniac, the first electronic general-purpose
computer, was finished just after the second world war, Stanisław Ulam quickly re-
alized that it could be used to apply statistical sampling techniques to the problem
of neutron diffusion in fissionable materials.¶ Although eniac was developed
to calculate artillery firing tables for the army, it was flexible enough to do other
calculations and John von Neumann was able to convince the owners to use it
for calculations of nuclear fission and fusion for nuclear weapons. It was Nicholas
Metropolis who came up with the name Monte Carlo, because Ulam’s uncle used
to go to Monte Carlo to gamble and the new method also relied on chance.75 Since
then, Monte Carlo methods have become more sophisticated and have found many
other applications in physics, biology, economics, and other fields.

In this thesis, we are interested in following the time evolution of charges in an
organic semiconductor to find properties like the current. To get such ‘kinetic’
properties, the Kinetic Monte Carlo method was developed by Young, Elcock and
others in the late 1960s.119,130 Essentially the same method was derived indepen-
dently by other authors and named Dynamical Monte Carlo,72 the n-fold way,18

and Gillespie algorithm.39 The first time this method was used to study charge
transport in organic semiconductors was in 1981 by Bässler and coworkers, al-
though that was for single polarons only.7,104 Simulations with multiple polarons
(including Coulomb interactions) were done for the first time by Houili et al.47 for
interfaces between organic semiconductors and later by Zhou et al.136 for a bulk
organic semiconductor.

In the rest of this thesis, the kinetic Monte Carlo method described below will
simply be called “Monte Carlo”, as is usual in the field of organic semiconductors.

¶Already in the 1930s, Enrico Fermi applied a ‘Monte Carlo’ method to the same neutron diffusion
problem using only a “small mechanical adding machine” whenever he suffered from insomnia.75
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2.3.1 Description of the Monte Carlo method

Below, the steps of a single Monte Carlo simulation as used in our research are
listed. Steps 1 to 3 are used to set up the simulation. After that, steps 4 to 8

constitute, what is called, one time step. At each time step, one single event is
chosen and performed. Finally, in the last step, the output is written to a file.

This procedure is used both to calculate the current in the presence of an electric
field as well as to simulate the diffusion of a single polaron in absence of an electric
field.

Often, the system is equilibrated for a certain number of time steps, after which the
simulation of the quasi-equilibrium state continues and the properties of interest
are measured. Sometimes, for example for single-polaron simulations, equilibra-
tion happens so fast that the equilibration phase can be omitted.

The different steps in the Monte Carlo method are:

1. A disorder configuration is made: A lattice of sites is made and each site gets an
energy taken from a Gaussian distribution with standard deviation σ and a hy-
perfine field taken from a three-dimensional Gaussian distribution with standard
deviation Bhf.

2. A number of polarons, according to the desired charge concentration, is placed on
their (usually random) initial positions in a random spin state.

3. The simulation time, counters for the number of hops (in different directions) and
all other counters are set to zero.

4. The first time this step occurs, the rates, ki, of all events are calculated. In all
following occurrences, only those rates that might have changed are recalculated.
Depending on the system of interest, the following events are possible: Hopping
of a charge, bipolaron formation, bipolaron dissociation, ionisation of a dopant,
and recombination of a charge with an ionised dopant. Combinations might also
be possible: For example, a bipolaron next to a charge might dissociate while
forming a new bipolaron with the charge. The rates are calculated as described in
Section 2.2.3.

5. An event is chosen at random, weighted by its rate ki. The probability that event
i is chosen is: ki/ ∑j k j. A binary tree of all hopping rates is maintained to make
choosing an event fast.

6. The chosen event is performed. Depending on what type of event happened, the
corresponding counters are updated.

7. The simulation time is increased by a random time taken from the distribution:

f (t) = ktotektott (2.19)

where ktot is the sum of all rates.
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8. When equilibrating: If the desired number of equilibration steps has been taken,
go to step 3, otherwise go to step 4. When equilibration was already finished or
not used: If the total prescribed number of time steps has not yet been reached
or the final simulation end time has not been reached, go to step 4. Otherwise,
continue to the next step.

9. Output the final simulation time, the values of the counters (e.g., number of hops
to the left, number of bipolarons formed), and values derived from that (e.g., the
current). Often, also during the simulation output is written to a file to monitor
the progress and to judge whether convergence has been reached.

To calculate a magnetic field effect, the steps listed above are performed for B =

0. After that, the charges are removed from the system and all steps except for
step 1 are repeated for other values of the magnetic field for the same disorder
configuration. The currents (or any other property of interest) found from the runs
for the same disorder configuration are then used to calculate the magnetic field
dependence.

This procedure is repeated for many different disorder configurations and an
average is calculated of all properties. The number of disorder configurations is
chosen such that the variance of the mean is small enough. Usually the variance
is smaller than 1%.

2.4 Resistor network

In 1971, Ambegaokar and coworkers1 have shown that the calculation of the cur-
rent through a network of sites where electrons can hop from site to site can be
simplified by mapping of the hopping problem onto the problem of finding the
current through a resistor network. The derivation below follows the derivation
by Ambegaokar et al. as rephrased by Cottaar et al.29

The average transition rate between sites i and j is given by:

Γij = 〈ni(1− nj)ki→j〉, (2.20)

where ki→j is the hopping rate from site i to site j, ni is the occupation number of
site i and the factor (1− nj) appears because a site can be occupied by at most a
single electron (or hole). We ignore the possibility of bipolaron formation.

We first consider thermal equilibrium. In this case, the occupation numbers for
sites i are given by the Fermi-Dirac distribution:

〈ni〉 = neq
i =

1
1 + e(Ei−EF)/kBT

, (2.21)

where Ei and Ej are the energies of sites i and j, kBT is the thermal energy, and
EF is the Fermi energy. The Fermi energy is determined by the temperature and
charge density n of the system as n = ∑i ni. Furthermore, we assume that the



2.4 Resistor network 33

occupation numbers are statistically independent: 〈ninj〉 = 〈ni〉〈nj〉 for i 6= j.
This assumption is only exact in the limit of vanishing charge concentration.28 We
will, however, only use the mapping described in this section in that limit (See
Section 5.2 on page 59). The transition rate from site i to site j can now be found
by filling Equation 2.21 into Equation 2.20, yielding:

Γeq
ij = ksymm

i→j
1

4 cosh[(Ei − EF)/2kBT] cosh[(Ej − EF)/2kBT]
(2.22)

≈ ksymm
i→j exp

(
EF

kBT
− Ei + Ej

2kBT

)
. (2.23)

Here, we have factored the hopping rate ki→j in a part that is symmetric in the
energy difference, ∆Eij = Ej − Ei, between sites i and j and a part that is antisym-
metric in ∆Eij as follows:

ki→j = ksymm
i→j e−∆Eij/2kBT , (2.24)

where the symmetric part ksymm
i→j depends on the particular hopping rate.29 We

have also used the fact that the hopping rates ki→j must satisfy detailed balance,
resulting in:‖

ki→j

k j→i
= e(Ei−Ej)/kBT , (2.25)

or, in this case, ksymm
i→j = ksymm

j→i . Both Miller-Abrahams and Marcus hopping rates
(see Section 1.1.1 on page 3) satisfy this condition, both being proper physical
hopping rates. Note that Γeq

ij is symmetric under exchange of i and j: Γeq
ij = Γeq

ji .
This means that there is no net charge flow between sites i and j, as should be the
case in equilibrium.

If now a small electric field F is applied, it can be treated as a perturbation, giving
rise to small perturbations δki→j and δni in the hopping rates, ki→j, and occupa-
tion numbers, ni. Using detailed balance and the symmetry of Γeq

ij , the current Iij
between sites i and j can written in terms of those perturbations (in first order):

Iij = e(Γij − Γji) (2.26)

= eΓeq
ij

(
δki→j

ki→j
− δk j→i

k j→i
+

δni
ni(1− ni)

− δnj

nj(1− nj)

)
(2.27)

=
e

kBT
Γeq

ij
(
eRij · F + δµi − δµj

)
(2.28)

≡ GijVij, (2.29)

where Rij is the distance between sites i and j and Vij is the potential between
nodes i and j of the resistor network, which needs not be the same as the potential

‖Detailed balance means that every elementary processes must be equilibrated by its reverse process.
For fermions that means: ni(1− nj)ki→j = nj(1− ni)k j→i . The factor 1− ni results from the Pauli
exclusion principle, which states that two fermions cannot occupy the same state. Using this relation
and the fact that in equilibrium fermions must obey the Fermi-Dirac distribution yields Equation 2.25.
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difference between sites i and j of the original hopping problem. It follows directly
that the current between those two sites is the same as through a resistor with a
conductivity,

Gij =
e2

kBT
Γeq

ij (2.30)

=
e2

kBT
ksymm

i→j exp
(

EF

kBT
− Ei + Ej

2kBT

)
. (2.31)

This means that the current resulting from hops between the sites of the origi-
nal problem is the same as the current through a network of resistors given by
Equation 2.31.



3
Modelling exciton formation using

a two-site model

We explore the magneto-electroluminescence of organic light-emitting diodes by evaluating
the magnetic-field dependent fraction of singlet excitons formed. We use a two-site model
with spin mixing by hyperfine fields and different singlet and triplet exciton formation
rates. When the hopping rate is comparable to or smaller than the hyperfine frequency, we
find a deviation from the statistical fraction of 25% singlet excitons as well as a magnetic-
field effect of the fraction. A huge magneto-electroluminescence is predicted when exciton
formation is in competition with spin mixing and when the triplet exciton formation rate is
significantly larger than the singlet exciton formation rate. This competition also leads to
a low-field structure in the magneto-electroluminescence that is in agreement with recent
experiments.

3.1 Introduction

Surprisingly large magnetic field effects of several percents on the electrolumines-
cence and current in organic light-emitting diodes (oled s) have been found in
recent years.32,36,48,53,92 Intensive experimental and theoretical research is presently
going on to unravel the mechanism behind these effects. The small field scale of
a few millitesla at which the effects occur points at the role of hyperfine fields.
Several mechanisms to explain the effects were proposed, involving excitons32,92

or bipolarons.16 These mechanisms rely on the suppression by an applied mag-
netic field of the hyperfine-induced spin mixing within a pair of polarons prior to

This chapter was adapted with permission from:

S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert. Magnetic-Field Dependence of
the Electroluminescence of Organic Light-Emitting Diodes: A Competition between Exciton Formation and Spin
Mixing. Phys. Rev. Lett. 106, 197402 (2011).
Copyright (2012) by the American Physical Society.
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exciton or bipolaron formation. Magnetocurrent measurements on organic donor-
acceptor and single-carrier devices suggest that both exciton and bipolaron mech-
anisms can be operative.124

The importance of hyperfine coupling for spin mixing in organic semiconduc-
tors was demonstrated explicitly by experiments in which magnetic field effects
occurring in a deuterated conjugated polymer were compared to those in the
undeuterated polymer.83 In identical oled s, the deuterated polymer yields a
narrower lineshape of the magneto-electroluminescence, i.e., the magnetic-field
dependence of the electroluminescence. This is in agreement with the smaller
magnetic moment of a deuteron as compared to a proton. Interestingly, the mag-
neto-electroluminescence curves of Reference 83 show an additional structure at
low field. Finding the cause of this structure is important for establishing the
precise mechanism responsible for the magneto-electroluminescence and possibly
other magnetic field effects.

Closely related to the discussion about magnetic field effects is the question if
the quantum-statistical 1:3 ratio for the formation of singlet vs. triplet excitons
in oled s is violated. There are experimental claims of either a larger22,33,98,126,127

or smaller23,106,129 ratio. This question has great technological relevance, since a
larger than statistical ratio would break the 25% efficiency limit of oled s based on
fluorescence. Establishing the origin of magnetic field effects in oled s is expected
to provide an answer to this question. Since the magneto-electroluminescence of
oled s quantifies the change in the number of singlet excitons formed when a
magnetic field is applied, it is an important tool to address this question.

In this chapter we investigate the effects of spin mixing by hyperfine coupling
on the fraction of singlet excitons formed in oled s. These effects have until now
only been described in qualitative terms.32,53,92,129 Moreover, only the case was
considered where exciton formation from a pair of polarons is slow as compared
to spin mixing by hyperfine coupling.129 However, modeling of charge transport in
two derivatives of ppv

∗ shows89 that the rate of polaron hopping is larger than the
rate of spin mixing.17 Since exciton formation is essentially a process in which one
charge hops to the site of an opposite charge, exciton formation is not expected to
be slow as compared to spin mixing. We therefore consider general exciton forma-
tion and spin mixing rates. We demonstrate that unexpected effects occur when
there is competition between exciton formation and spin mixing. We predict that huge
magneto-electroluminescence effects can then occur. Furthermore, we show that
this competition leads to a low-field structure in the magneto-electroluminescence
curves comparable to that of Reference 83.

3.2 Two-site model

We start our considerations with the two-site model shown in Figure 3.1 on the
next page. The two sites α and β represent localized states in a disordered organic

∗
ppv: poly(p-phenylene vinylene)
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Figure 3.1 Two-site model, with an electron at site β at which an exciton will be formed
by hopping of a hole at site α to β. The total effective magnetic field Bα(β),tot is the sum of
a random hyperfine field Bα(β),hf and an applied field B. Spin mixing occurs by precession
of the spins (red arrows) around Bα(β),tot.

semiconductor. A hole-polaron at site α and an electron-polaron at site β together
form a “polaron pair”, a precursor to an exciton. In the polaron pair state the
exchange coupling and the possible dipolar coupling between the spins of the
electron and hole are small with respect to the hyperfine and Zeeman coupling,
which means that the spins are free to evolve independently.

We treat the hyperfine coupling at both sites within a semi-classical approach, with
coupling of each polaron spin to a random hyperfine field Bα(β),hf. This field is
drawn from a three-dimensional Gaussian distribution with a standard deviation
Bhf. This treatment is correct for the typical situation that coupling of the π-electron
spin to several hydrogen nuclear spins occurs.105 The total effective magnetic field
Bα(β),tot at each site is the sum of its hyperfine field and an externally applied
magnetic field B = Bẑ.

Exciton formation in this model takes place by hopping of the hole from site α

to site β, resulting in the formation of a singlet or one of the triplet (T0, T+, T−)
excitons. We assume that in the exciton states the exchange coupling is dominant
with respect to the coupling to Bα(β),eff. Because of the steep exponential decay of
the exchange coupling with distance one should expect that there is always a step
in the exciton formation process where this coupling changes from subdominant
in the polaron pair state to dominant in the exciton state. We note that the exciton
states after the hopping are not necessarily the states with the lowest energy.
Further relaxation within the singlet or triplet exciton manifold can take place, but
we assume that the exchange splitting prevents spin mixing during this process.

Because of their different energies and wave functions, the formation of singlet
and triplet excitons occurs with different rates kS and kT0 ,T− ,T+ = kT, with a ratio
γ ≡ kS/kT. We also introduce the relative hopping rate r ≡ kS/ωhf as a parameter,
with ωhf = gµBBhf/h̄ the typical hyperfine frequency; r � 1 (r � 1) corresponds
to “fast” (“slow”) singlet exciton formation, as compared to the hyperfine preces-
sion time 2π/ωhf (≈ 35 ns for Bhf ≈ 1 mT). The rates kS and kT are determined
by material-specific details of the exciton formation process. Values for these rates
could be obtained form ab initio calculations or by fitting of experimental data;
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however, this goes beyond the present work. We therefore treat γ and r as parame-
ters. We will assume that unbinding of the excitons is prevented by a large energy
difference between the polaron pair and exciton states.

There are two positional configurations in this model: the polaron pair state (PP),
where both sites are occupied by one polaron, and the exciton state (X), where site
α is empty and site β is occupied by a exciton. For simplicity, we will assume that
the exciton states do not evolve in time, therefore HX = 0. The Hamiltonian for
the PP configurations is given by:

HPP = gµBBα,eff · S1/h̄ + gµBBβ,eff · S2/h̄ (3.1)

where g is the g-factor, µB is the Bohr magneton, S1(2) is the spin operator for
polaron 1(2). Because of the small spin-orbit coupling in organic materials we have
for the g-factor g ≈ 2; we take this factor equal for electrons and holes.

The combination of the coherent time evolution of the spin state of the polaron pair
and the incoherent formation of an exciton on site β is described by a Stochastic
Liouville equation, as described in Section 2.2 on page 24. The time evolution of
the polaron pair and exciton density operators ρPP and ρX is given by:

∂ρPP

∂t
= − i

h̄
[H, ρPP]−

1
2
{Λ, ρPP} (3.2)

∂ρX

∂t
= ∑

λ

kλ|λ〉〈λ|ρPP|λ〉〈λ|, (3.3)

where Λ = ∑λ kλ|λ〉〈λ| for λ = S, T−, T0, T+.

We take ρX(0) = 0 and for ρPP(0) we take a density operator corresponding to
equal populations of the polaron pair spin states as initial conditions. Equation 3.3
is solved as described in Section 2.2.2 on page 27. The final singlet and triplet
exciton fractions χS (singlet fraction) and χT = 1− χS are obtained from ρX(t→ ∞).
For all the results presented in this chapter, a numerical average has been taken
over the hyperfine fields.

3.3 Time dependence

We start by considering the time evolution of the system that was just described for
γ = 10 in the fast and slow-hopping limits. For simplicity, the standard deviations
Bhf were taken equal for electrons and holes. Figure 3.2(a) shows the occupation
probability of the polaron pair state and the singlet and triplet exciton states
in the fast hopping limit (r = 102). Because γ > 1, initially more singlet than
triplet excitons are formed. However, exciton formation happens too fast for spin
mixing to take place, so in the final state the statistical ratio of singlet to triplet
excitons is recovered. This behavior is also reflected in the singlet character, χPP,S =

Tr[ρPP|S〉〈S|], and triplet character, χPP,T = 1− χPP,S, of the polaron pair state, see
the dashed curves. While the initial polaron pair state consists of 25% singlets,
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Figure 3.2 Occupation probabilities of the polaron-pair (black curve) and exciton states
(blue and red curves) as a function of time in the two-site model for γ = 10 in (a) the fast
hopping limit (r = 102) and (b) in the slow-hopping limit (r = 10−2). The dashed curves
indicate the singlet and triplet character of the polaron pair state.

this fraction quickly reduces to zero as singlet excitons are formed faster than
triplets excitons. After all singlet polaron pairs have formed singlet excitons, the
remaining 75% polaron pairs are triplets and will form triplet excitons.

Figure 3.2(b) shows the results for slow hopping (r = 10−2). In this case, spin
mixing takes place which keeps the singlet and triplet character of the polaron pair
state constant throughout the exciton formation process, see the dashed lines. Now,
singlet excitons keep being formed at the faster rate, resulting in more singlet than
triplet excitons being formed—a clear deviation from the statistical singlet fraction
of 1/4. We conjecture that the mechanism presented here is the generic mechanism behind
violations of the statistical S:T ratio in oled s.

3.4 Magneto-electroluminescence

Figure 3.3(a) shows the dependence of the singlet fraction χS(B = 0) on γ and
r. A deviation from the statistical ratio is found when γ 6= 1. This deviation
disappears in the fast hopping limit r → ∞, where the effect of the hyperfine
fields is quenched. As expected, the largest deviation occurs in the slow-hopping
limit r → 0.

Figure 3.3(b) shows the dependence of the magnetic field effect MFE(B) = [χS(B)−
χS(0)]/χS(0) for B→ ∞ (MFE for short) on γ and r. We see that in the slow-hop-
ping limit r → 0 a substantial magnetic field effect occurs. In this limit, χS and its
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Figure 3.3 (a) Fraction of formed singlet excitons χS and (b) magnetic field effect (MFE)
of χS as a function γ and r for the two-site model. The statistical ratio of 0.25 (and the
corresponding absence of a magnetic field effect) is shown as a black frame.

magnetic field effect can be calculated analytically, as will be shown in the next
section.

The magnetic field dependence arises from the alignment of the effective magnetic
fields as the applied magnetic field is increased. As explained in the previous
section, the deviation from the statistical ratio depends on the amount of spin
mixing. The amount of spin mixing decreases when the mutual angle between the
two effective magnetic fields decreases.

In the slow-hopping limit, this is the only mechanism by which the applied mag-
netic field affects the amount of spin mixing. However, as we will see in Sec-
tion 3.5.1 on page 43 and in Chapter 7, at intermediate hopping rates there are
other ways in which the applied magnetic field can affect the amount of spin
mixing.

3.4.1 Analytical derivation

As explained in Section 2.2.3, in the slow-hopping limit it is sufficient to know the
eigenstates of the Hamiltonian and their projections onto the singlet and triplet
spin subspaces in order to calculate χS. These projections are only determined by
the angle θ ∈ [0, π] between Bα,eff and Bβ,eff, see Table 2.2 on page 30.

The four eigenstates of the Hamiltonian can be categorized into two pairs: two
parallel (P) eigenstates, for which the spins at α and β are either both parallel or both
antiparallel to Bα,eff and Bβ,eff, and two anti-parallel (AP) eigenstates, for which the
spin at α is parallel to Bα,eff and the spin at β is antiparallel to Bβ,eff, or vice versa.
The rates for exciton formation are equal to the spin-independent formation rates
times the spin projection factor, see Section 2.2.3 on page 27. For the P eigenstates,
one can easily derive that the rates of singlet and triplet exciton formation are equal

to 1
2 kS sin2(θ/2) and kT

[
1
2 sin2(θ/2) + cos2(θ/2)

]
, while for the AP eigenstates
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these rates are 1
2 kS cos2(θ/2) and kT

[
1
2 cos2(θ/2) + sin2(θ/2)

]
, respectively. For a

fixed angle θ, the fraction of produced singlet excitons is therefore

χS =
1
2

 kS
1
2 sin2(θ/2)

kS
1
2 sin2(θ/2) + kT

[
1
2 sin2(θ/2) + cos2(θ/2)

]
+

kS
1
2 cos2(θ/2)

kS
1
2 cos2(θ/2) + kT

[
1
2 cos2(θ/2) + sin2(θ/2)

]
 . (3.4)

The factor 1/2 comes from the initial occupation of the P and AP states, which
are equally occupied and must add up to unity. Since, in the limit B→ ∞ the two
effective magnetic fields are aligned, we have θ = 0 and we find therefore that

χS(B→ ∞) =
γ

2(γ + 1)
. (3.5)

For B = 0 the directions of Bα,eff and Bβ,eff are isotropically distributed. Taking an
angular average of Equation 3.4 then results in

χS(B = 0) =
γ
{

γ− 1− ln
[

1
4 (1 + γ)2

]}
(γ− 1)2 . (3.6)

From the last two equations it follows straightforwardly that MFE → −1/2 for
γ → ∞, whereas MFE → 3 − 4 ln 2 = +0.227 for γ → 0. These results are in
agreement with the numerical results shown in Figure 3.3.

We note that the above result is valid for any isotropic distribution of the hyperfine
fields. In particular, the standard deviations of the hyperfine fields at α and β may
be different.

3.4.2 Prediction of extremely large magneto-electroluminescence

Quite surprisingly, however, the largest magnetic field effect does not occur for
r → 0, but for intermediate values of r and small γ (kT � kS), see Figure 3.3(b).
The reason for this is the competition between exciton formation and spin mixing.
For large r the effect of the hyperfine fields is quenched and the singlet fraction is
equal to 0.25. When r decreases the singlet fraction decreases too. However, this
decrease happens faster for B = 0 than for B� Bhf, see Figure 3.4(a). In Chapter 7,
an expression is derived for χS as a function of r and γ for B→ ∞, which is shown
in Equation 7.7 on page 90. From that equation it can be found that χS behaves
as a power law in r with exponent 1 for r ≈ 1. For intermediate r, the singlet
fraction for B = 0 can be fitted with a power law as well with an exponent of ∼1.9.
The magnetic field effect would therefore increase indefinitely for decreasing r as
a power law in r with exponent ∼ −0.9. However, depending on γ, a maximal
magnetic field effect is reached as the singlet fraction saturates to the value for the
slow-hopping limit, as given by Equations 3.5 and 3.6. This leads to a pronounced
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Figure 3.4 (a) The singlet fraction χS and (b) its magnetic field effect as a function of
r/
√

γ for B = 0 (solid curves) and B = 103Bhf (dashed curves) for different values of γ.
Around r = 1, χS varies as a power law of r with exponents ∼ 1.9 for B = 0 and 1 for
B→ ∞. The magnetic field effect is independent of γ when r is small.

peak in MFE(r) that grows indefinitely with decreasing γ, see Figure 3.4(b). This
means that it should be possible to obtain a huge magneto-electroluminescence if
the parameters of the organic material can be appropriately tuned. As an example,
for γ = 0.1 and r = 0.3 an magnetic field effect of 75% can be obtained, with an
singlet exciton fraction of 10% at large field.

3.5 Lineshapes

We also investigated the lineshapes of χS(B). We always found Lorentzian line-
shapes with a width of a few times Bhf. Lineshapes for γ = 10 are shown in
Figure 3.5. The linewidths B0 (see Section 1.2.1 on page 8) increase from 3.1Bhf
for slow hopping to 8.3Bhf for r = 10. These lineshape and linewidths are in
agreement with those measured experimentally, see Section 1.2.1 on page 8.

The experimentally observed increase of the magneto-electroluminescence with
magnetic field by Nguyen et al.,83 see Figure 3.6(b), and others96 points at a larger
triplet than singlet formation rate, that is, γ < 1. This is in agreement with the
claim of Segal et al. that in ppv the singlet fraction is lower than 25%.106 With
γ ≈ 0.7 we can reproduce the value of 20± 4% reported by these authors.

We have modelled the exciton formation in the deuterated and undeuterated ppv

derivatives that were investigated by Nguyen et al.83 The results for the magnetic
field effects shown in Figure 3.6(a) were obtained with the two-site model by
taking γ = 0.7 and Bhf,e = 3Bhf,h,† as found by electrically detected magnetic res-
onance measurements on a related ppv-derivative.68 We took r = kS/ωhf,h = 1.5
(black squares) and 4.886 (red discs). The factor 4.886/1.5 = 3.257 accounts for the

†There is no reason to assume that the electron’s hyperfine field is the larger of the two. However, in
our model it does not matter whether the electron’s or hole’s hyperfine field is larger than the other.
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Figure 3.5 The lineshapes of the singlet fraction as a function of the applied magnetic
field for γ = 10 and relative hopping rates ranging from slow hopping to fast hopping.
Lorentzian fits (thick, shaded curves) and the corresponding values for B0 are shown.

difference in hyperfine fields between the deuterated and undeutared polymer, re-
sulting from the different spins and gyromagnetic ratios (267.51 and 41.07 rad/sT)
of the proton and deuteron. With these values of r, the ratio of the sizes of the
low-field structure [discussed in the next section; see Figures 3.6(c) and (d)] for the
deuterated and undeuterated case is approximately equal for the predicted and
measured results. The decrease in linewidth of the magneto-electroluminescence
of the deuterated polymer compared with the undeuterated polymer caused by
its smaller hyperfine field is partially countered by the increase due to the larger r,
see Figure 3.5. That explains why the difference in linewidths for the deuterated
and undeuterated polymers is smaller than the factor 3.257 difference between the
gyromagnetic ratios of the proton and deuteron. Considering the large uncertainty
in the parameters, the overall agreement with the magneto-electroluminescence
experiments is quite remarkable.

3.5.1 Ultra-small-magnetic-field effect

For intermediate r we generically found an additional feature at a field scale
smaller than or comparable to the hyperfine field, as in the magneto-electrolumi-
nescence experiments of Reference 83, see Figure 3.6(c) and (d). The structure has
been named ultra-small-magnetic-field effect. In Reference 83 the magneto-electrolu-
minescence curves were modeled with a coupling of the spins of the polaron pair
to a single nuclear spin at each of the two sites of the polaron pair (spin-1/2 for
the undeuterated and spin-1 for the deuterated polymer). However, as explained
in Section 1.2.2 on page 11, it should be expected that in reality coupling to many
nuclear spins occurs, in accordance with our semi-classical treatment.

When the magnetic field is increased, two things happen to the effective magnetic
fields: their magnitudes increase and they become more aligned. The alignment
leads to less spin mixing as explained in Section 3.4. The increase in magnitude
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Figure 3.6 (a) Magnetic field dependence MFE(B) of the singlet exciton fraction χS in the
two-site model for γ = 0.7 and Bhf,e = 3Bhf,h. Black squares: r = 1.5 (protons). Red circles:
r = 4.886 = 3.257× 1.5 and hyperfine fields divided by 3.257 (deuterons). The field axis is
scaled with Bhf,h for protons. (b) Magneto-electroluminescence of oled s of a deuterated
and undeuterated ppv-derivative, reproduced from Reference 83. (c) and (d) zoom in to
the effects occurring at low field.

of the effective magnetic fields leads to faster precession. If the hopping rate is
comparable to or faster than the hyperfine frequency, no complete spin mixing
takes place and an increase in the precession frequency leads to more spin mixing.
There is, therefore, a competition between an increase in spin mixing due to the
increase in magnitude of the effective magnetic fields and a decrease in spin
mixing due to their alignment.

This can be seen clearly when the difference between the two hyperfine fields is
large. For illustrative purposes, the singlet fraction is shown in Figure 3.7 as a func-
tion of the applied magnetic field B for γ = 10 and Bhf,β = 100Bhf,α. Results are
shown for slow hopping (blue discs) and intermediate hopping rate r = 30 (black
squares), where the “ultra-small-magnetic-field” effect is visible for B < 100Bhf,α.
When B increases between Bhf,α and Bhf,β, the precession frequency increases,
leading to more spin mixing and a larger deviation of 0.25 for the singlet fraction.
Around B = 300Bhf,α the value for slow hopping (where the maximum amount of
mixing takes place) is approached.

Figure 3.8(a) shows the singlet fraction as a function of the magnetic field B and
the relative hopping rate r with Bhf,e = 3Bhf,h. For r between 10−2 and 10, the
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Figure 3.7 Singlet fraction as a function of B/Bhf,α for γ = 10 for slow hopping (blue
discs) and r = 30 (black squares). The ratio between the two hyperfine fields Bhf,,α and
Bhf,,β (indicated as arrows) is 100. The ultra-small-magnetic-field effect can be fitted with a
Lorentzian (red curve).

singlet fraction increases for B < 2Bhf,h before decreasing for larger B, that is, the
ultra-small-magnetic-field effect is observed. Figure 3.8(b) again shows the singlet
fraction as a function of B and r. However, now the magnitude of the effective
magnetic fields is kept constant: Beff = Bhf(Bhf + B)/‖Bhf + B‖. (This is done per
hyperfine field configuration, before averaging.) In this case, the singlet fraction
decreases monotonically with B. This shows that indeed, the increase in precession
frequency is the cause of the ultra-small-magnetic-field effect.

Although not essential for obtaining the low-field structure, taking different stan-
dard deviations for the hyperfine fields of electrons and holes makes the structure
more prominent. This is easy to understand, as the applied magnetic field needs
only to be larger than the smallest hyperfine field to increase the precession fre-
quency, while alignment of the effective magnetic fields occurs when the applied
field is larger than the largest hyperfine field. The larger the difference between
the two hyperfine fields, the larger is the size and the magnetic field range of the
ultra-small-magnetic-field effect.

Finally, we remark that similar low-field structures as found in the magneto-electro-
luminescence were very recently also found in the magnetoconductance of oled s
as well as single-carrier devices.82 The low-field structure in the magnetoconduc-
tance of oled s could very well be related to that in the magneto-electrolumines-
cence. However, in the single-carrier devices no exciton formation should take
place, leaving the bipolaron mechanism16 as candidate for the description of the
magnetoconductance. By taking very large values of γ in the two-site model, re-
flecting suppression of triplet bipolaron formation,16 we checked that the low-field
structure for intermediate r then also appears. This demonstrates the similarity of
the physics involved in exciton and bipolaron formation.
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Figure 3.8 (a) The singlet fraction as a function of the magnetic field B/Bhf,h and the
relative hopping rate r. At constant r, the singlet fraction first increases as a function of B due
to faster spin precession before decreasing due to alignment of the effective magnetic fields.
This gives rise to the ultra-small-magnetic-field effect (indicated by the arrow). (b) The
singlet fraction for the same parameter range, but the magnitude of the effective magnetic
fields is kept constant as B increases. There is no ultra-small-magnetic-field effect in this
case.

3.6 Conclusions

We have found that the magnetic field dependence of the efficiency of an oled

proves that the statistical singlet-to-triplet ratio of 1:3 is violated. The observation
that the efficiency of a ppv oled increases when a magnetic field is applied in-
dicates that triplet excitons are formed faster than singlet excitons—in agreement
with measurements of the efficiency. Furthermore, we have shown that the recently
observed ultra-small-magnetic-field effect can be explained as a competition be-
tween an increase in spin mixing due to faster spin precession and a decrease due
to alignment of the effective magnetic fields. An important conclusion is that our
study of magneto-electroluminescence curves provides valuable information about
the magnitude and ratio of the triplet and singlet exciton formation rates in oled s.
Finally, we could explain why the difference in linewidth for the deuterated and
undeuterated polymer as measured by Nguyen et al. is smaller than expected: The
small hyperfine field for the deuterated polymer leads to slower spin precession
and thus a faster relative hopping rate, for which the lineshape is broader.

We thank Dr. T. D. Nguyen for providing us with the experimental data in Fig-
ure 3.6, which is published in Reference 82.



4
Investigating the effect of Coulomb

interaction and energetic disorder

on exciton formation

In the previous chapter, the fraction of singlet excitons and its magnetic field effect was
investigated using a two-site model. In this chapter, the effect of Coulomb interaction
between the electron and hole and the effect of energetic disorder on exciton formation is
studied for lattices of up to 9×9×9 sites. A violation of the statistical singlet-triplet ratio
and a magnetic field effect occur at much faster hopping rates than in the two-site model.

4.1 Introduction

In the previous chapter, only the last step of the exciton formation process was
considered. It was assumed that only exciton formation could take place; the elec-
tron and hole could not hop to other sites. However, in reality, a nearest-neighbor
electron-hole pair might temporarily break up by hopping of the electron or hole
(or both) to other sites before forming an exciton. In this chapter, we will consider
exciton formation in a more realistic system consisting of a box of up to 9×9×9
sites. We take the Coulomb attraction between electron and hole into account as
well as energetic disorder.

Parts of this chapter were adapted with permission from:

S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert. Magnetic-Field Dependence of
the Electroluminescence of Organic Light-Emitting Diodes: A Competition between Exciton Formation and Spin
Mixing. Phys. Rev. Lett. 106, 197402 (2011).
Copyright (2011) by the American Physical Society.

S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert. Effect of hyperfine interactions on exciton
formation in organic semiconductors. Synth. Met. 161, 613 (2011).
Copyright (2011) by Elsevier.
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e-

h+

h+

Coulomb interaction

injection to
edge sites

energetic disorder

random hyperfine fields

Figure 4.1 Exciton formation in a box of 5×5×5 sites. An electron is fixed in the middle
of the box. The sites have energetic disorder and at each site there is a random hyperfine
field. A hole is injected at the edge sites with a random spin and can hop around until it
forms an exciton with the electron. The Coulomb interaction between the electron and hole
is taken into account. For clarity, not all sites are shown.

It has become clear that the hopping rate relative to the hyperfine frequency, the
relative hopping rate r, is an important parameter determining the size of the
magnetic field effect. Only when hopping is slower than or comparable to the
hyperfine frequency—that is, r . 1—spin mixing and magnetic field effects can
occur. However, studies89 of hole-only devices made of oc1c10 -ppv

∗ indicate
that r is of the order of 10–1000.17 That seems to be at odds with the fact that a
magnetic field effect have been observed in the similar doo -ppv

† polymers.83 On
the other hand, in an analysis by Baker and coworkers4 a relative hopping rate of
r = 0.1 is found in meh -ppv

‡. While differences between materials can result in
a variation in hopping rates and thus in the occurrence of a magnetic field effect
in one material but not in another, the results presented in this chapter show that
even at relative hopping rates much larger than unity a magnetic field effect can
be found.

4.2 Multi-site model

In order to study situations closer to reality than the two-site model, we simulated
recombination in a three-dimensional box of N×N×N sites separated by a distance
a, see Figure 4.1. The sites have a random energy Ei, taken from a Gaussian

∗
oc1 c10 -ppv: poly[2-methoxy-5-(30,70-dimethyloctyloxy)-p-phenylene vinylene]
†

doo -ppv: poly[2,5-dioctyloxy-1,4 -p-phenylene vinylene]
‡

meh -ppv: poly[2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene]
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distribution with standard deviation σ. An electron is fixed in the middle on site
X, while a hole with random spin is injected at the boundary sites and can hop
around on the lattice. Since electrons are severely trapped compared to holes in
ppv,11 it is indeed reasonable to assume that the electron remains fixed while the
hole moves. Due to the Coulomb interaction, the hole is attracted to the electron
and will eventually recombine with it, forming a singlet or triplet exciton.

The energy due to the Coulomb interaction between an electron and hole on sites
i and j is given by:

−e2

4πεrε0Rij
≡ −V

rij
, (4.1)

where Rij is the distance between the particles, e is the elementary charge, ε0 is the
vacuum permittivity, and εr is the relative permittivity constant. We have defined
the dimensionless distance between two sites as rij ≡ Rij/a and the strength of
the Coulomb interaction as V = e2/4πaεrε0. We take typical values a = 2 nm and
εr = 3, giving us V = 0.24 eV. Because the electron is kept fixed in the middle,
the Coulomb potential the hole feels due to the electron can be added to the site
energies: The hole energy for site i is then equal to Ei −V/riX .

It is straightforward to generalize the Hamiltonian Equation 3.1 on page 38 and the
Stochastic Liouville equation Equation 3.3 on page 38 to this case as is described
in Section 2.2.1 on page 25. Since we keep the electron fixed in the middle on site
X, the positional configuration (i, X) of the system is determined by the site i at
which the hole is located. We will therefore use i to label the configuration (i, X).
This results in the following Hamiltonian for the polaron-pair states with the hole
on site i 6= X:

Hi = gµBBi,eff · Sh/h̄ + gµBBX,eff · Se/h̄, (4.2)

where g is the g-factor, µB is the Bohr magneton, Se(h) is the spin operator for the
electron (hole), and Bi(X),eff is the effective magnetic field on site i (site X). We take
g = 2 for the electron and hole and for all sites. As in the previous chapter, we
will ignore the coherent evolution of the exciton states, when the hole is on site X,
so HX = 0.

The density matrix ρi for the case that the hole is on site i 6= X evolves according
to the Stochastic Liouville equation:

∂ρi
∂t

= − i
h̄
[Hi , ρi]−

1
2
{Λi , ρi}+ Γi (4.3)

= − i
h̄
[Hi , ρi] + ∑

j∈NN(i)
j 6=X

(
ρjk j→i − ρiki→j

)

−1
2

{
∑
λ

kλ|λ〉〈λ| , ρi

}
δi∈NN(X), (4.4)

where λ = S, T−, T0, T+ (in the basis of site X), NN(i) are the nearest neighbors
of site i, and δi∈NN(X) is 1 if i is a nearest-neighbor of X and zero otherwise.
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The second term on the right-hand side of Equation 4.4 accounts for hops from
nearest-neighbor sites of site i to site i (and vice versa). The third term is only
non-zero when site i is a nearest-neighbor of site X and accounts for the decrease
in occupation probability of site i due to exciton formation. As in the previous
chapter, we take for the singlet exciton formation rate kS = khop and for the triplet
exciton formation rates kT0 ,T− ,T+ = kT = kS/γ. Since exciton formation is an
energetically downward process that occurs by hopping of a hole to the electron,
it is reasonable to assume that kS and kT are comparable in magnitude to khop. The
density matrix for the exciton states’ time dependence is given by:

∂ρX

∂t
= ∑

j∈NN(X)
∑
λ

kλ|λ〉〈λ|ρj|λ〉〈λ|. (4.5)

In addition to these physical rates, we add an artificial rate for a spin-randomizing
flow from the exciton states to the edge sites of the lattice. This rate corresponds to
the physical process of decay of excitons and the formation of new polaron pairs.
We add this rate such that there is an equilibrium solution of Equations 4.4 and 4.5,
which is easier to determine than the time-dependent solution, see Section 2.2.2
on page 27. While the magnitude of this rate affects the occupation probability of
site X compared to that of the other sites, it does not affect the fraction of singlet
and triplet excitons formed. The additional source term for the Nedge edge sites is
keq,i Tr[ρX] I/4, where I is the identity operator. The rate keq,i is taken proportional
to exp(−Ei/kBT) in order to get the right occupation probability of edge site i. To
the Liouville equation for site X we then simply add a term −∑i∈Edge keq,iρX.

For all data presented in this chapter, averages were taken over different energetic
and hyperfine disorder configurations until the statistical error was of the order of
the size of the symbols shown. Results are shown for γ = kS/kT = 10. We expect
that the behavior of the singlet fraction and the magnetic field effect as a function
of other parameters is not much affected by the choice of γ. With the chosen value
of γ, this behavior is easier to study than for more realistic values of γ close to
unity.

4.3 Results

Let us start by considering the effect of the box’s size in absence of energetic
disorder and Coulomb interactions. The singlet fraction χS of the excitons that
are formed as a function of the relative hopping rate r is shown in Figure 4.2
for boxes of different sizes and for the two-site model (open symbols). The first
thing to notice is that the maximal obtainable singlet fraction is larger than for
the two-site model. In fact, it is close to the singlet fraction that would result if
complete spin mixing would take place between the polaron pair’s spin states:107

kS/(kS + 3kT) = γ/(γ + 3) (dashed line in the figure), where the factor 3 comes
from the fact that there are three triplets. Clearly, no complete spin mixing can
take place in the two-site model, where only two hyperfine fields can change the
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Figure 4.2 The singlet fraction as a function of the relative hopping rate for γ = 10
and B = 0. Results are shown for boxes with 3×3×3 (red), 5×5×5 (blue), 7×7×7 (green),
and 9×9×9 (purple) sites and with (filled symbols) and without (open symbols) Coulomb
interaction of V = 0.24 eV. The results for the two-site model are shown for comparison
(black). The dashed line at χS = 0.769 indicates the singlet fraction that would result if
complete mixing would take place between all electron-hole-pair spin states.

spin configuration of the pair. When the hole can hop away from the electron it
can experience different hyperfine fields and the pair’s spin configuration will be
more effectively mixed.

The second observation is that the transition from slow to fast hopping is shifted
to faster hopping rates as compared to the two-site model and shifts further as
the box size increases. The reason for this is the following. When the hole reaches
the electron, electron-hole pairs with predominantly singlet character will recom-
bine faster than pairs with predominantly triplet character (since γ > 1). If no
recombination occurs, the pair will separate by hopping of the hole. Of those pairs
that separate, more than 25% will be triplets. The hole will make a random walk
through the box and will return after some time. During this time, the spin con-
figuration of the pair gets mixed by the hyperfine fields, increasing the singlet
character (back towards 25%). The amount of spin mixing increases with the time
it took the hole to return, which is longer in a larger box.

When Coulomb interaction (V = 0.24 eV) is included, the singlet fraction is the
same as for the two-site model irrespective of the box size, except for the larger
value at slow hopping rates, see the filled symbols in Figure 4.2. The hole is now
strongly attracted to the electron and does not have much chance to hop around.
Clearly, Coulomb interactions are important for exciton formation and should be
included in theoretical considerations involving more than two sites.

Figure 4.3(a) shows the singlet fraction for a 5×5×5 box§ with Coulomb interaction
and energetic disorder strengths of σ = 0, 0.05, 0.1, and 0.15 eV. The corresponding

§The largest box that is computationally feasible when including energetic disorder. As explained in
Section 2.2.2 on page 27, to calculate the singlet fraction involves solving a matrix equation. The
dimension of that matrix is equal to the dimension of the density matrix of a single configuration
(22n = 16 for n = 2 particles) times the number of configurations (N3 − 1): 16(N3 − 1).
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Figure 4.3 (a) Singlet fraction χS and (b) its magnetic field effect [χS(B)− χS(0)]/χS(0)
as a function of the relative hopping rate in a box of 5×5×5 sites for γ = 10 and V =
0.24 eV (red). Results are shown for different energetic disorder strengths σ = 0 (solid), 0.05
(dashed), 0.1 (dotted), and 0.15 eV (dash-dotted). The results for the two-site mode (black)
are shown for comparison.

magnetic field effects are shown in Figure 4.3(b). The presence of energetic disorder
results in a deviation from the statistical singlet fraction of 25% and a magnetic
field effect at much higher relative hopping rates than without energetic disorder or
for the two-site model. For σ = 0.15 eV, a magnetic field effect is found for a relative
hopping rate up to 106, even higher than for the case where no Coulomb interaction
was present. Energetic disorder makes some hops away from the central site easier
and some hops towards the central site more difficult. The time spent by the hole
between the first encounter and the second encounter is thereby increased. As the
amount of spin mixing is proportional to this time, the spin mixing increased as
well.

4.3.1 Open box

The results presented sofar are for a closed box, that is, the hole cannot hop over
the boundary of the box. In reality, many electron-hole pairs will be present in
an organic semiconductor and a hole can hop out off the Coulomb potential well
of one electron into that of another nearby electron. The escaping of a hole to
another electron is more likely if the electron-hole pair is a triplet than if it is a
singlet, because singlets recombine faster (for γ > 1). The spin configuration of
the hole with the electron it has escaped to is again completely random, that is,
with a probability of 0.25 singlet and 0.75 triplet. In this way, the statistical singlet-
triplet ratio can be violated even without a spin-mixing mechanism. Consequently,
the resulting violation is not magnetic field dependent. The deviation from the
statistical ratio resulting from this mechanism depends (besides γ) only on the
ratio between the recombination rate and the rate of the hole hopping out of the
electron’s Coulomb well once the electron and hole have become nearest neigh-
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Figure 4.4 (a) The singlet fraction and (b) its magnetic field effect as a function of the
relative hopping rate in boxes with (dashed curves, open box) and without (solid curves,
closed box) periodic boundary conditions. Results are shown for box sizes of 3×3×3 (blue)
and 5×5×5 (red) sites for γ = 10, σ = 0.1 eV, and V = 0.24 eV. Boxes of 3×3×3 and 5×5×5
sites corresponds to an electron (or hole) density of, respectively, 3.7% and 0.8%.

bors. The deviation from the statistical ratio from this mechanism increases with
increasing charge concentration: The higher the charge concentration the smaller
the distance between two electrons and the easier it is for the hole to hop out of the
Coulomb well of one electron into that of another. As mentioned, This mechanism
does not rely on spin mixing by hyperfine fields (or otherwise) and has therefore
no magnetic field dependence.

While it is not feasible to treat more than two particles (electrons or holes) with
our stochastic Liouville method, we can approximate the effect described in the
previous paragraph by using periodic boundary conditions. Whenever the hole
hops over the boundary of this open box, we randomize the spin configuration of
the electron-hole pair. Hopping over the boundary by the hole corresponds then
to the physical process where one hole leaves the electron’s Coulomb well while
at the same time another hole (with random spin) enters the Coulomb well. In
this way, several effects are ignored, for example, the possibility of two holes in
the Coulomb well of a single electron or the fact that a new hole might still be
correlated with the electron from a previous encounter. Nevertheless, we can gain
some insight from this model.

Figure 4.4(a) shows the singlet fraction as a function of the relative hopping rate
for a open box of 5×5×5 sites for σ = 0.1 eV and V = 0.24 eV. With one electron (and
hole) per box this corresponds to an electron (hole) concentration of 1/53 = 0.8%.
When r . 1, there is no difference in the singlet fraction between the open and
closed boxes, because in either case the maximal amount of spin mixing takes
place. However, for r & 1, the singlet fraction is larger for the open box. Moreover,
the singlet fraction remains larger that the statistical value even in the limit r → ∞.
The magnetic field effect is shown in Figure 4.4(b)
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Figure 4.5 Magnetic field dependence MFE(B) of the singlet exciton fraction χS calcu-
lated for the multi-site model with a box of 5×5×5 sites for (a) γ = 10 and (b) γ = 0.1, both
for σ = 0.1 eV and V = 0.24 eV. Results are shown for a relative hopping rate r ranging
from 0.001 to 1000. Lorentzian fits are shown as thick shaded curves with widths B0 that are
4− 6Bhf for γ = 10 and 3.5− 6.5Bhf for γ = 0.1. The standard deviations of the hyperfine
fields of electrons and holes were taken to be equal.

4.4 Lineshapes

Figure 4.5(a) shows the singlet fraction as a function of the applied magnetic
field for γ = 10, σ = 0.1 eV, V = 0.24 eV, and several relative hopping rates
ranging from fast hopping to slow hopping. All lineshapes are Lorentzian with
widths B0 (see Section 1.2.1 on page 8) that increase from 4Bhf for slow hopping
to 6Bhf for r = 103, see the fits in the figure. Results for γ = 0.1 are shown in
Figure 4.5(b). These lineshapes are Lorentzian too, with B0 ranging from 3.5Bhf
for r = 0.1 to 6.5Bhf for r = 100. The linewidths are comparable to those of the
two-site model, see Figure 3.5. Even the ultra-small-magnetic-field effect might be
visible for r = 0.1 and 1 for γ = 10, although it is comparable in size to the error
margins.

4.5 Conclusions

Without taking Coulomb interactions into account, a deviation from the statistical
singlet-triplet exciton ratio (and thus a magnetic field effect) occurs at relative hop-
ping rates that are more than an order of magnitude larger for exciton formation
on a lattice of 3×3×3 sites (and larger) than for the two-site model. However,
with Coulomb interactions, the results are close to each other when there is only
a small amount of energetic disorder (less than 0.05 eV). It is therefore important
to include Coulomb interaction when considering the magnetic field effect on the
singlet-triplet ratio.



4.5 Conclusions 55

For larger energetic disorder, though, the transition from slow hopping, where the
statistical ratio can be violated, to fast hopping, where it cannot, is much more
spread out. For a realistic energetic disorder strength of 0.15 eV, a violation of the
statistical ratio is found for relative hopping rates up to 106 for γ = 10. This could
be an explanation for the observation of magnetic field effects in materials where
the hopping rate might not be much slower than the hyperfine frequency. The
lineshapes with Coulomb interaction and a realistic amount of energetic disorder
can be fitted by a Lorentzian with a width B0 of 3.5 to 6.5 times the hyperfine field,
comparable to the lineshapes of the two-site model.

We conclude that, while the two-site model gives comparable lineshapes, to accu-
rately model the formation of excitons, a multi-site model should be used. The
two-site model underestimates the amount of spin mixing in the slow-hopping
limit but especially for relative hopping rates larger than unity when the amount
of energetic disorder is larger than 0.05 eV.
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5
Prediction of a giant magneto-

conductance in doped polymers

Room-temperature magnetoconductance of the order of 10% has been observed in organic
semiconductors. We predict that even larger magnetoconductance can be realized in suit-
ably synthesized doped conjugated polymers. In such polymers, ionization of dopants
creates free charges that recombine with a rate governed by a competition between an
applied magnetic field and random hyperfine fields. This leads to a spin-blocking effect
that depends on the magnetic field. We show that the combined effects of spin blocking
and charge blocking, the fact that two free charges cannot occupy the same site, lead to a
magnetoconductance of more than 90%. This magnetoconductance occurs even at vanish-
ing electric field and is therefore a quasi-equilibrium effect. The influences of the dopant
strength, energetic disorder, and interchain hopping are investigated. We find that the
dopant strength and energetic disorder have only little influence on the magnetoconduc-
tance. Interchain hopping strongly decreases the magnetoconductance because it can lift
spin-blocking and charge-blocking configurations that occur in strictly one-dimensional
transport. We provide suggestions for realization of polymers that should show this mag-
netoconductance.

5.1 Introduction

In the last decade, large room-temperature magnetic field effects in the current and
in the electroluminescence of devices made of organic semiconductors have been
found.13,32,36,48,53,82,83,86,92,124 The precise mechanisms behind these effects are still
debated, but agreement is arising that the effects are caused by the magnetic-field

This chapter was adapted with permission from:

S. P. Kersten, S. C. J. Meskers, and P. A. Bobbert. Route towards huge magnetoresistance in doped
polymers. Phys. Rev. B 86, 045210 (2012).
Copyright (2012) by the American Physical Society.
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sensitivity of spin-selective reactions between spin-carrying electronic excitations
(electrons, holes, triplet excitons). Striking analogies exist with mechanisms known
in the field of spin chemistry.111 The involvement of hyperfine fields has recently
been demonstrated by the occurrence of isotope effects.82,83 Isotope substitution
in organic semiconductors—the replacement of hydrogen by deuterium or carbon-
12 by carbon-13 leads to different nuclear magnetic moments and therefore to a
different hyperfine interaction between the nuclei and spin-carrying excitations,
while leaving all other electronic properties of the semiconductor unchanged. It
has been shown that the magnetic field dependence scales accordingly.82,83

The electronic spin in an organic semiconductor interacts with many (typically
of the order of ten or more) nuclear spins. As a consequence, this interaction
can be quite well described by assuming that the electronic spin experiences a
classical, quasi-static, and random hyperfine field, having a Gaussian distribution
with a standard deviation Bhf of the order of a millitesla.15,105 The evolution of
the spin state of a pair of spin-carrying excitations is then determined by the sum
of an externally applied magnetic field B and the local hyperfine fields, which
are different for the two excitations. If the reaction between the two excitations is
spin-selective, the reaction rate changes when the magnitude of B surpasses Bhf,
giving rise to a B-dependent reaction rate. Magnetic field effects in the current
of unipolar organic devices have been explained by a mechanism in which two
electrons or holes react to form a singlet bipolaron.16 Magnetic field effects in the
electroluminescence of bipolar devices have been explained by a mechanism in
which electrons and holes react to form singlet or triplet excitons with different
rates.58,82,83 Spin-selective reactions between electrons and holes as well as between
electrons or holes and triplet excitons have also been suggested to be responsible
for magnetic field effects in the current.32,48,92

A magnetic field effect in the current is usually interpreted as a magnetoresistance.
The reported magnetoresistance of present organic devices is of the order of 10%
at rather high electric fields.73 With the insight that magnetic field effects in or-
ganic semiconductors are caused by spin-selective reactions between spin-carrying
excitations one may ask the question if it is possible to design organic materials
with even higher magnetoresistance at a low electric field. The manufacturing of
an organic material with very large magnetoresistance at low magnetic and elec-
tric field, to be used in highly sensitive magnetic sensors or maybe even magnetic
switches, would be of large technological interest. Such sensors could be integrated
with other cheap and flexible organic electronics. The present chapter is concerned
with a theoretical survey of this possibility.

The route we propose towards high magnetoresistance at low electric field is the
use of doped π-conjugated polymers with specific properties. Doped polymers
have been investigated in great detail because of their conducting properties. In
these polymers free charges created by ionization of dopants move along the poly-
mer chains. Our present interest is in the concurrent creation of free spins, carried
by the free charges and the ionized dopants. We will consider the case of intrinsi-
cally doped polymers, where the dopants are part of the polymer chains themselves.
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To obtain a large magnetoresistance it is important that the coupling between the
monomeric units of the polymers is small, such that the hopping transport between
these units takes place with a rate that is smaller than the hyperfine precession
rate. This makes the proposed polymers different from commonly used conjugated
polymers, where charges can delocalize over several monomers. We propose to
achieve the required small hopping rate by inserting spacer units in between the
monomers. Under this condition, the recombination rate of a free charge with an
ionized dopant will become magnetic-field-dependent, leading to magnetoresis-
tance. Another important condition for obtaining large magnetoresistance is that
the charge transport is one-dimensional. In this case, free charges contributing to
transport are forced to regularly recombine with the ionized dopants. In principle,
polymers are ideal in this respect, because charge transport mainly takes place
along the polymer chain. However, interchain hopping can also take place, and
this may allow a free charge to hop around a dopant. In order to obtain a large
magnetoresistance, interchain hopping will therefore have to be suppressed. Sup-
pression of interchain hopping can be achieved by introducing side groups that
keep individual polymer chains sufficiently separated from each other.

This chapter is built up as follows. In Section 5.2 we will introduce our model
system for a doped polymer. We will show that in the case of low density of free
charges in the system the problem of finding its conductivity can be mapped onto
that of a resistor model. The latter problem can be easily solved. In this case, the
magnetoresistance is solely caused by a spin-blocking effect in the recombination
of a free charge with a dopant. In the general case of high free electron density
we find the conductivity from Monte Carlo simulations. In these simulations the
effect of charge blocking is included, that is, the effect that two free charges are not
allowed to occupy the same site due to their Coulomb repulsion. In Section 5.3 we
present the results of the resistor model and those of the Monte Carlo simulations.
The influences of the dopant strength, energetic disorder, and interchain hopping
are investigated. In Section 5.4 we discuss how the envisaged doped polymers
could be realized. Section 5.5 contains a summary and the main conclusions.

5.2 Model

We model a polymer chain as a sequence of sites along which nearest-neighbor
hopping of localized charges occurs; see Figure 5.1. For simplicity, we assume
that dopant sites are distributed periodically within the chain, with a period of n
sites. Because of the one-dimensionality, the case of arbitrarily distributed dopants
follows from combining the results of periodically doped chains with appropriate
weights for different n. We consider the case of donors—the case of acceptors is
completely equivalent—with a highest occupied molecular orbital (homo) that
lies a small energy ∆ below the lowest unoccupied molecular orbital (lumo) of
the host sites. (∆ is negative if the host’s lumo is lower in energy than the donor’s
homo.) In that case, ionization of a donor can take place at thermal conditions
by hopping of an electron from the donor to a neighboring host site. With the
unionized donor being a spin singlet, the combination of the free electron and the
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Figure 5.1 Doped polymer chain containing donor sites with period n. A small energy
difference ∆ between donor homo and host lumo allows ionization of donors, followed
by precession of the donor spin and the free-electron spin (red arrows). Recombination
occurs back to the spin-singlet unionized donor state.

ionized donor, both having spin 1
2 , will initially also be a spin singlet. However,

the different hyperfine fields at the positions of the free electron and ionized donor
mixes in triplet character, which reduces the recombination rate back to the singlet
state of the unionized donor. Spin mixing also changes the recombination rate of
the free electron with other ionized donors. The spins of the free electron and the
ionized donor might happen to be in a triplet configuration, for which recombi-
nation would not be allowed. Spin mixing by the random hyperfine fields will
then raise the recombination rate by mixing in singlet character. An applied mag-
netic field suppresses the spin mixing and hence the recombination. In both cases,
a magnetic field-dependent spin blocking occurs that leads to magnetoresistance,
even at vanishing electric field.

The combination of incoherent spin-selective hopping and coherent spin evolu-
tion can be described with the stochastic Liouville equation, see Section 2.2 on
page 24. It follows from this equation that when the hopping rate khop is much
larger than the hyperfine frequency ωhf of typically 108 s−1 (ωhf = γBhf, with
γ the gyromagnetic ratio) the effects of the hyperfine fields will be quenched
and no magnetoresistance occurs. The largest magnetoresistance occurs when
khop is much smaller than ωhf and this “slow-hopping” case is the case we con-
sider from now on.∗ The observation of large magnetic field effects in organic
semiconductors13,32,36,48,53,82,83,86,92,124 indicates that the hopping rate can indeed
be smaller than or at least comparable to the hyperfine frequency. Because co-
herent effects between eigenstates of the spin Hamiltonian vanish in the limit of
slow hopping, we only need to consider the occupancy of the (localized) spin
eigenstates and hopping between these states, see Section 2.2.3 on page 27.

5.2.1 Resistor model

In Figure 5.2(a) we consider a part of the chain for the simplest situation, with
periodically a donor and a host site, corresponding to a period n = 2 in Figure 5.1.

∗The extremely large magnetic field effect that was found for intermediate hopping rates in Chapter 3

occurs only when kS � kT. Recombination with a dopant can be mapped onto the exciton formation
problem where kS > kT, see Appendix A.
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Figure 5.2 (a) Donor-host-donor sequence i = 1, 2, 3 for the case n = 2. The spin eigen-
states are indicated by the red and dashed arrows. The total effective magnetic fields Btot,i
are the sums of the external field B and local random hyperfine fields Bhf,i. Two possible
consecutive hopping events are shown, corresponding to ionization at the left donor and
recombination at the right donor. (b) Resistor network corresponding to hopping between
the spin eigenstates of (a), with conductances indicated by the thickness of the drawn re-
sistors. The arrows show the current flow corresponding to the two hopping events in (a).
The labeling of the states indicates whether the spins on the three sites are parallel (P) or
antiparallel (A) to the local effective magnetic field or whether there is no spin-1/2 (−) on
that site.

To demonstrate the essence of the magnetoresistance occurring in this system,
we take ∆ = 0 and first consider what we will call a “low electron density”,
corresponding to at most one free electron on the chain. In this case, there is either
only one donor unionized—the free electron is at that donor site—and no electrons
on host sites, or all donors are ionized and there is only one free electron on a
host site. Since an ionized donor site is positively charged, that means that the
whole chain is positively charged due to the absence of compensating electrons.†

In the donor-host-donor sequence of Figure 5.2(a) the free electron can be on
one of the three sites i = 1, 2, 3. If the electron is on either of the donor sites
(i = 1, 3), that donor is unionized, while the other is ionized. The spin eigenstates
then correspond to a spin at the ionized donor that can be either parallel (P) or
anti-parallel (A) to the total effective magnetic field Btot,i at that donor, which is
the sum of the external magnetic field B and the local random hyperfine field Bhf,i.
We label these eigenstates as −−P, −−A, P−−, and A−−. If the electron is on the
host site i = 2, there are spins at all three sites and the corresponding eigenstates
are labeled as PPP, AAA, APP, PAA, PAP, APA, PPA, and AAP. In Figure 5.2(a)
two consecutive hops are indicated, corresponding to −− P→ PAP→ P−−.

In presence of a vanishingly small electric field F the current through the hopping
network can be calculated from a mapping onto a resistor network as derived by
Ambegaokar and coworkers,1 see Section 2.4 on page 32. The same mapping is
also possible between a resistor network and the energetic spin eigenstates that
have been introduced above, where the above eigenstates correspond to the nodes
of the network. Generalizing the result of Reference 1, the conductance between

†This situation might be realized by applying a large negative gate voltage in a fet-like device that
forces out almost all electrons.
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nodes p and q is given by

G̃pq =
e2k̃symm

pq

kBT
exp

(
Enetwork

F
kBT

− Ep + Eq

2kBT

)
, (5.1)

where kBT is the thermal energy and e the electronic charge. Ep and Eq are the
energies associated with nodes p and q of the network, and Enetwork

F is the Fermi
energy of the network, which determines the number of extra charges on the chain
(more on that below). k̃symm

pq is a symmetrized hopping rate: k̃symm
pq ≡ (k̃pq k̃qp)1/2.

The rates k̃pq are equal to a spin-independent rate kpq multiplied by a spin projec-
tion factor Ppq: k̃pq ≡ Ppqkpq, see Section 2.2.3 on page 27. For hops of the electron
between two host sites we have Ppq = cos2(θpq/2) (sin2(θpq/2)) for hops between
eigenstates for which the spin keeps (changes) its orientation with respect to the
direction of the local effective magnetic field, where θpq is the angle between the
effective magnetic fields of the two sites. For recombination from or ionization to
a state for which the dopant spin is parallel and the electron spin antiparallel to
the local effective magnetic field, or vice versa, we have Ppq = 1

2 cos2(θpq/2). If
both spins are parallel or antiparallel to the local effective magnetic field we have
Ppq = 1

2 sin2(θpq/2). The latter factors are the projections onto the spin-singlet
subspace. The resistor network corresponding to Figure 5.2(a) for the case ∆ = 0,
n = 2, and kpq = khop for all allowed hops is given in Figure 5.2(b), where the thick-
ness of the drawn resistors indicates their conductance. We note that reversing
all spins leaves the network unchanged, which is indicated by the labels between
brackets. It is straightforward to set up resistor networks for larger values of n,
but their complexity increases rapidly with increasing n.

The requirement, for the mapping onto a resistor network, that the occupation
probabilities of any two site be independent restricts us to the case where there is
only a single electron in the resistor network. If there were more than one electron
in the network, the occupation of the states PPP, AAA, APP, etc. would not be
independent: Those states cannot be occupied by an electron if any other of those
states is occupied by another electron, because two electrons cannot be on the
same site. The resistor model, therefore, only models our doped polymer correctly
in the limit of low electron densities, where interactions between two electrons are
not important.

The Fermi energy that appears in Equation 5.1 is not the same as the Fermi energy
of the original doped chain. In the derivation given in Section 2.4 on page 32,
every site was mapped to a node of the resistor network. However, in this section
we have mapped every site between two donor sites to four nodes of the resistor
network, corresponding to the four possible (unique) spin states of the donor sites.
The number of charges in the chain of sites is equal to

NdonorsneEF/kBT , (5.2)

where Ndonors is the number of donors in the chain, n is the doping period, and EF
is the Fermi energy of the real system. This number must be equal to the number
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of charges in the resistor network, which is given by

Ndonors(4n− 3)eEnetwork
F /kBT . (5.3)

This leads to the following relation between the two Fermi energies:

n
4n− 3

eEF/kBT = eEnetwork
F /kBT . (5.4)

The charge-carrier mobility can be obtained from the resistance R(B) of a chain
of N � 1 sites by µ(B) = exp(−EF/kBT)Na2/eR(B), where a is the inter-site
distance. The resistance R(B) is the sum of the resistances of many of the above
resistor networks with random hyperfine fields and is obtained by a hyperfine-
field average of the resistance of such a network. For simplicity we assume equal
standard deviations Bhf for the Gaussian distributions of the donor and host hy-
perfine fields, and equal gyromagnetic ratios. If donor and acceptor have different
Bhf this will only change the results for non-zero finite B but not the total magne-
toresistance.

5.2.2 Monte-Carlo simulations

As explained, the resistor model is limited to the case of low electron densities.
When the electron density is high, electrons interact with each other. While in
principle two electrons could form a bipolaron, see Section 1.2.4 on page 12, we as-
sume in this chapter that the bipolaron formation energy is so high that bipolaron
formation does not happen. (The magnetoconductance resulting from bipolaron
formation in a one-dimensional system is investigated in the next chapter.) There-
fore, the main effect of those interactions in a one-dimensional system is that
an electron cannot get past another electron. In other words, an electron can be
blocked by another. We call this charge blocking. We take this effect into account in
Monte Carlo simulations that we performed for long chains. In these simulations
hops are chosen randomly with weights proportional to the rates k̃pq discussed
above, where now two free electrons are not allowed to occupy the same site. After
each hop the time is increased with a random time step drawn from an exponen-
tial distribution with a decay time equal to the inverse of the sum of the rates of
all possible hops, see Section 2.3 on page 30. A small electric field F is applied
that leads to a net drift of the electrons along the chain by decreasing the rate of
the up-field hops by a factor exp(−eaF/kBT). The mobility is obtained from the
average electron drift velocity v(B) by µ(B) = v(B)/F. We take F small enough to
be in the regime where v(B) is linear in F, yet large enough to obtain a sufficient
accuracy in µ(B).

We considered the charge-neutral case of “high electron density”, where the num-
ber of free electrons is equal to the number of ionized donors. The typical chain
lengths that we took were 2× 105 (n = 2) up to 3× 106 (n = 30) sites. Steady-state
situations were obtained after 2× 109 hops, after which v(B) was calculated for
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2× 109 (n = 2) up to 3× 1010 (n = 30) hops. Averages were taken over 10 (n = 30)
up to 200 (n = 2) hyperfine-field configurations.

Monte Carlo simulations were also performed for the case of low electron density.
In that case the mobility can alternatively be obtained by using Einstein’s relation
µ(B) = eD(B)/kBT, and calculating the diffusion constant D(B) from Monte Carlo
simulations of diffusion of a single electron along a chain in absence of an electric
field. The chain lengths that we took were the same as for the case of high electron
density. The number of hops in the calculation of the diffusion constant were
2× 106 (n = 30) up to 8× 106 (n = 2). Averages were taken over 103 (n = 10) up
to 3.5× 103 (n = 2) hyperfine-field configurations.

5.3 Results

The results of the resistor model and the Monte Carlo simulations are discussed in
the next two subsections for low and high electron density. After that, lineshapes
and the effects of relaxing some requirements we have made so far are discussed.

5.3.1 Low electron density

We start by considering the case of low electron density, where there is at most one
free electron on the chain. The results for the mobility obtained from the resistor
model are shown in Figure 5.3(a). In the limit B→ ∞ we obtain µ(∞) = [n2/(4n−
3)(n + 2)]ekhopa2/kBT (crosses). Results for µ(0) were evaluated for networks up
to n = 5 (plusses). For n→ ∞ and finite B the effect of the presence of the donors
vanishes and we thus obtain µ(0) = ekhopa2/kBT. The results for the mobility
using the Einstein relation, with the diffusion constant obtained from Monte Carlo
simulations in absence of an electric field, are also displayed (B = 0: filled circles,
B → ∞: open circles). The agreement with the results of the resistor model and
with the mobility obtained directly from the Monte Carlo simulations with a
small electric field (not shown) is perfect. These results demonstrate explicitly that
the magnetic field effect occurs even in absence of an electric field, namely as
magnetodiffusion.

The magnetic field effect in the mobility, defined as MFE ≡ MFE(∞), where
MFE(B) ≡ [µ(B)− µ(0)]/µ(0), is shown in Figure 5.3(c) (half-filled circles). For
n = 2 we obtain a magnetic field effect of −37%, which grows to −75% in the limit
n→ ∞. The physical reason for the magnetic field effect is the spin blocking that
occurs in the case of large B due to the occurrence of spin configurations where
the spin of the electron has the same orientation as that of a neighboring ionized
donor site, preventing recombination and further transport. The reason why the
magnetic field effect increases for increasing doping period n is that spin blocking
then becomes more effective. At short doping period a spin-blocking situation of
a free charge and an ionized donor in a configuration with parallel spins can be
lifted not only by spin mixing by hyperfine fields, but also by return of the free
charge to the ionized donor that was last visited. Recombination at this donor



5.3 Results 65

0.01

0.1

1

10 100
-100%

-80%

-60%

-40%

-20%

0%

10

 

B ® ¥

B = 0

 

M
o
b

ili
ty

 (
e
k h

o
p
a

2
/k

B
T
) (a)

 

  
M

a
g

n
e
ti

c 
Fi

e
ld

 E
ff

e
ct

(c)

Doping period n

Low electron density

42 30

 

 

B ® ¥

B = 0

 
(b)

  

(d)

Doping period n

High electron density

-75%

2 4 30

Figure 5.3 Mobility as a function of doping period n for B = 0 and B → ∞ for low (a)
electron density as found from the resistor model (plusses and crosses) and from Monte
Carlo simulations (discs) and (b) for high electron density found from Monte Carlo simu-
lations. Magnetic field effect in the mobility for (c) low and (d) high electron density. The
horizontal line shows the asymptotic magnetic field effect of −75% in absence of interaction.
The error in the Monte Carlo results is smaller than or equal to the size of the symbols.

and subsequent re-ionization of this donor randomizes the spin of the free charge,
which can lift the spin blocking. This process becomes more unlikely for a longer
doping period.

We checked that in the Monte Carlo simulations at zero electric field the equi-
librium occupancies of all states are equal. This should be the case because the
hyperfine energy scale of µeV of energy differences between the states is orders of
magnitude smaller than the thermal energy scale of 10 meV. A magnetic field of
the order of the hyperfine fields therefore cannot lead to a change of equilibrium
occupancies. We note that existing explanations of magnetic field effects involve
driven reactions between spin-carrying excitations and therefore assume a non-
equilibrium situation. By contrast, the present magnetoresistance is a quasi-equilibrium
effect, that occurs in the diffusion constant even in absence of an electric field.

5.3.2 High electron density

We now consider the case of high electron density, where the number of free
electrons is equal to the number of ionized donors and the chain is electrically
neutral. The results for the mobility and the magnetic field effect in the mobility
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Figure 5.4 Lineshapes of MFE(B) at low (circles) and high (squares) electron density, for
four different doping periods. Lorentzian (B2/[B2 + B2
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2, dashed line) fits are shown with the corresponding values of B0.

as obtained from Monte Carlo simulations for this case are shown in Figures 5.3(b)
and (d). For large doping period n the results approach the case of low electron
density, as expected. Contrary to that case, however, we now see that the size of
the magnetic field effect increases with decreasing n. For n = 2 a magnetic field
effect of −98.5± 0.3% is found, corresponding to a magnetoresistance of almost
two orders of magnitude. Figure 5.3(b) shows that the main cause for this huge
magnetoresistance is a dramatic drop in the mobility for B → ∞ at low doping
period. The reason for this huge magnetoresistance is that the spin blocking is
now enhanced by charge blocking: since two electrons cannot occupy the same site,
a single spin-blocked electron blocks all electrons that would otherwise be able to
pass it.

5.3.3 Lineshapes

Figure 5.4 shows MFE(B) for several doping periods, for low (circles) and high
(squares) electron density. For low electron density, the lineshape is Lorentzian
for small n, but changes to the non-Lorentzian between n = 10 and 30. For high
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Figure 5.5 Magnetic field effect in the mobility at low electron density as a function of
the ratio between Ghost and Gdonor, for doping periods n = 3, 4, and 5. Points lying on the
dashed line correspond to the data shown in Figure 5.3.

electron density, the lineshapes are always non-Lorentzian and broader than for
low electron density.

5.3.4 Influences of the dopant strength and energetic disorder

We investigated the influences of the donor-host homo-lumo energy offset ∆ =

Elumo

host − Ehomo

donor , which is a measure of the dopant strength of the donor, and
of energetic disorder in the site energies of donor and host. For simplicity we
considered only the case of low electron density. We expect that the conclusions
drawn will qualitatively also hold for high electron density.

In the resistor model, the effect of a finite ∆ manifests itself in a difference between
the spin-independents part of the conductance between two host sites, Ghost, and
the conductance between a donor and a host site, Gdonor. We note that the relevant
dimensionless parameter is ∆/kBT. Since for the case of a doping period n = 2
there are only hops between donor and host sites, all hops are affected equally by
a change in ∆ and there is thus no dependence of the magnetic field effect on ∆
for this case. For doping periods n = 3, 4, and 5, the magnetic field effect in the
mobility as a function of the ratio Ghost/Gdonor is shown in Figure 5.5. (The effect
of ∆ on Ghost and Gdonor will be discussed later in this section.) The results shown
earlier for low electron density in Figure 5.3 correspond to Ghost = Gdonor and
lie on the dashed line in Figure 5.5. We see in Figure 5.5 that there is a gradual
decrease in the magnitude of the magnetic field effect from 75% when Ghost �
Gdonor to 50% when Ghost � Gdonor. Except for a small region in Ghost/Gdonor for
n = 3, the magnitude of the magnetic field effect never gets smaller than 50%. The
largest magnetic field effect is found when the hops that determine the current—the slowest
hops—are the magnetic-field-dependent hops.
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Figure 5.6 Magnetic field effect (MFE) in the mobility at low electron density as a function
of energy offset ∆ for n = 4, for (a) Miller-Abrahams hopping and (b) Marcus hopping. The
asterisks are calculated with the resistor model while the squares are obtained with Monte
Carlo simulations. In the case of Marcus hopping, results are shown for three values of the
reorganization energy. The dashed line corresponds to the case considered in Figure 5.3.

The dependence of Ghost/Gdonor on ∆ is determined by the specific hopping model.
In modeling studies of charge transport in organic semiconductors usually Miller-
Abrahams77 or Marcus66 hopping models are used, see Section 1.1.1 on page 3.
For Miller-Abrahams hopping we find:

Ghost
Gdonor

=

{
exp(−∆/kBT) if ∆ ≤ 0
1 if ∆ > 0

, (5.5)

while for Marcus hopping we find:

Ghost
Gdonor

= exp
(−∆ + ∆2/2Er

2kBT

)
. (5.6)

Here, Er is the reorganization energy, which is typically of the order of 0.1 eV
(approximately 4kBT at room temperature).109

Figure 5.6 shows the magnetic field effect in the mobility as a function of the offset
∆ for doping period n = 4, for both (a) Miller-Abrahams and (b) Marcus hopping.
It is clear from Figure 5.6 that the type of hopping determines the effect of ∆ on
the magnetic field effect. While for Miller-Abrahams hopping the magnetic field
effect is constant for ∆ > 0, for Marcus hopping the magnitude of the effect can
both decrease or increase as a function of ∆ for realistic Er. For Miller-Abrahams
hopping, we also calculated the magnetic field effect using Monte Carlo simula-
tions to confirm the results of the resistor model. The agreement is perfect; see the
squares in Figure 5.6(a).
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Figure 5.7 MFE(B) found from Monte Carlo simulations at low electron density for n = 4
and different combinations of the energy offset ∆ and strength of the energetic disorder σ.

We also studied the effect of energetic disorder, again for the case of low electron
density. We took Gaussian energetic disorder with a standard deviation σ both
for the homo energies of the donor sites and the lumo energies of the host
sites. The relevant dimensionless parameter is σ/kBT. For the special case n = 2
there are two types of conductances within each donor-host-donor sequence: the
ones between the middle host site and the left donor site, and the ones between
the middle host site and the right donor site. A change in the ratio between
the spin-independent parts of those two types of conductances with respect to
unity increases the magnitude of the magnetic field effect in the mobility from
37% at a ratio of unity (the case considered in Section 5.3.1) to 50% at an infinite
or zero ratio. For n > 2, a difference between the energies of neighboring host
sites decreases Ghost, while an energy difference between a host and a donor site
can both increase or decrease Gdonor, depending on ∆ and, in the case of Marcus
hopping, Er. Figure 5.7 compares MFE(B) when σ = ∆ = 0 (the case considered
in Section 5.3.1) to the case ∆ = −2kBT (that is, the donor level above the host
level) and σ = 0, and to the case ∆ = 0 and σ = 2kBT, for Miller-Abrahams
hopping. The results in Figure 5.7 were obtained from Monte Carlo simulations.
The case of positive ∆ is identical to that of ∆ = 0 for Miller-Abrahams hopping;
see Figure 5.6(a). It is clear from Figure 5.7 that neither non-zero ∆ nor non-zero
σ changes the magnetic field effect significantly.

The conclusion of our analysis is that the predicted magnetoresistance is very
robust against a non-zero energy offset ∆ and the presence of energetic disorder.
Since the relevant dimensionless parameters are ∆/kBT and σ/kBT, this also means
that the magnetoresistance is robust against a change in the temperature. We do
note that a non-zero ∆ or σ creates energy barriers in the transport and that
therefore the mobility itself strongly decreases with increasing |∆| or σ.
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Figure 5.8 Magnetic field effect in the mobility as a function of the interchain hopping
rate, kinterchain, for doping period n = 2, energy offset ∆ = 0, no disorder, and high electron
density. The dashed line indicates the result for kinterchain = 0.

5.3.5 Influence of interchain hopping

The huge magnetoresistance in doped polymers predicted in this work crucially
depends on the effects of spin and charge blocking, which are only optimal for
one-dimensional charge transport. However, in reality it might be difficult to sepa-
rate individual chains far enough to completely prevent interchain hopping. We
investigated the adverse effect of interchain hopping on the magnetoresistance
by Monte Carlo simulations at high electron density, for ∆ = 0 and no energetic
disorder. In these simulations interchain hopping is modeled by allowing every
electron to hop to a randomly chosen empty host site or to an ionized donor site
within the chain with a rate kinterchain.

Figure 5.8 shows the magnetic field effect in the mobility as a function of the
ratio kinterchain/khop for doping period n = 2. The size of the magnetic field
effect decreases strongly with increasing kinterchain to a very small value when
kinterchain/khop > 1. This result demonstrates that if the interchain hopping rate is
not small enough, spin and charge blocking are not effective anymore, since elec-
trons can hop to another chain when confronted with a spin-blocking or charge-
blocking configuration.

5.4 Realization of suitable systems

We now come to the discussion of the possible realization of suitable systems that
would show the predicted magnetoresistance. Two important conditions should
be fulfilled: (1) The charges should be localized on monomers, with a hopping
rate between monomers, khop, that is smaller than the hyperfine frequency, ωhf;
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(2) Charge transport should be essentially one-dimensional, which means that the
interchain hopping rate must be much lower than the intrachain hopping rate.

Condition (1) could be fulfilled by inserting spacer units in between the monomers.
We propose to use phenyl spacer units for this. It has been shown that with a single
phenyl spacer the exchange coupling between a hole at a donor and an electron
at an acceptor unit can be reduced to a value corresponding to a millitesla, while
with more phenyl spacers the coupling decreases exponentially with the number
of phenyl units.30 In the optimal case of vanishing ∆, the condition that khop is
smaller than ωhf means that the intrachain mobility (in absence of an external
magnetic field and for n = 2) should not exceed 0.1eωhfa2/kBT; see Figure 5.3(a).
With the typical values ωhf = 108 s−1 and a = 1 nm this leads to a maximal
room-temperature mobility µ ≈ 4× 10−6 cm2/Vs. While this is not a very high
mobility, the high charge density still leads to an appreciable current. Taking for
the case n = 2 half an electron per monomer unit with a volume of 1 nm3, such a
mobility leads to a conductivity of about 0.3 S/cm−1. This is not more than one
order of magnitude lower than the conductivity of a conducting doped polymer
like pedot :pss

‡.

Condition (2) could be fulfilled by adding side groups to the polymer such that
polymer chains are far enough apart to prevent interchain hopping. Another in-
teresting option might be blending with a non-conducting polymer. It has been
shown that blends of p3ht

§ with non-conducting commodity polymers can show
excellent conduction even at p3ht weight percentages of only a few percent.40

A starting point for realizing the case n = 2 could be the copolymerization of
monomeric units with strongly electron-accepting and electron-donating proper-
ties. The onset of the optical transition for charge transfer in these polymers marks
the energy needed to generate free charge carriers and has been made as low as
∆ = 0.5 eV.44,110 The mobility for these copolymers has been measured to be in the
range 10−5–10−3 cm2/Vs,110 which is too large to find a substantial magnetic field
effect. Localization of the charges to the monomeric units and a sufficiently low
hopping rate could be achieved by inserting spacer units in between the monomers,
as discussed above.

Although a small value of the energy offset ∆ is not needed to obtain a large mag-
netoresistance, it is an important condition for obtaining an appreciable mobility.
It is interesting to note that the condition ∆ ≈ 0 has been realized in molecularly
doped organic semiconductors. An example is F4-tcnq:ZnPc,¶ which is used
as hole-injection material in organic light-emitting diodes.122 In this system the
lumo energy of the acceptor (F4-tcnq) and the homo energy of the host (ZnPc)
are nearly identical. The conduction in these systems is not one-dimensional, so
that the blocking effects discussed above will not be optimal. However, the exis-
tence of these systems shows that synthesis of π-conjugated organic units with
∆ ≈ 0 should be possible.

‡
pedot :pss: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

§
p3ht: poly(3-hexylthiophene)
¶F4-tcnq:ZnPc: tetrafluorotetracyanoquinodimethane:zinc phthalocyanine
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We finally remark that a small magnetoresistance has been found in devices of
pedot :pss.84 It would be very interesting to investigate if the magnetoresistance
in this polymer is of the type proposed in the present work. If this is the case,
one could try to optimize the magnetoresistance along the route described in this
chapter.

5.5 Summary and conclusions

In summary, we have investigated the magnetic field dependence of the charge
mobility in a doped conjugated polymer by analytical and numerical methods. We
considered the case of an electron donor in a host polymer in the slow-hopping
limit. The largest magnetic field effect in the mobility of −98.5± 0.3% was found
for high doping concentration (equal amounts of donor and host sites) and high
electron density (equal amounts of free electrons and ionized donors). The mag-
netic field effect arises because of the spin dependence of the recombination of an
electron with an ionized donor (spin blocking) and the suppression of hyperfine-
induced spin mixing by an external magnetic field. The increased effect at high
electron density occurs because a single free electron-ionized donor pair in a spin-
blocking configuration can block the current through the whole polymer chain
(charge blocking). In addition, we found that energetic disorder and an imperfect
alignment of the homo energy of the donor and the lumo energy of the host
polymer have only a minimal influence on the effect. The interchain hopping rate,
however, does have a significant influence and should be low in order to obtain a
large effect. We have suggested promising ways of realizing polymers that show
the effect.



6
Modelling the giant magneto-

conductance in molecular wires

Very large magnetoconduction with a size larger than −90% has been observed in molec-
ular wires in zeolite crystals. Spin blocking by bipolaron formation between a trapped
and free electron is proposed as the mechanism behind those magnetic field effects. It is
shown that trapping caused by just the energetic disorder explains neither the size of the
effect nor its electric field dependence. We propose that the inhomogeneous distribution of
the positive ions that are present in the zeolite leads to traps sites. With those traps it is
possible to correctly explain the size, the electric field dependence, and the lineshapes of the
magnetoconduction.

6.1 Introduction

In the previous chapter, very large magnetic field effects are predicted in doped,
one-dimensional systems. The (ionized) donors, which have fixed positions in the
chain, can block the current through the chain. An electron behind one of the
donors cannot recombine with it if their spin configuration is a triplet. The same
spin-blocking effect can result between a trapped electron and a free electron. In
that case, bipolaron formation plays the same role as recombination between an
electron and and ionized donor does in the doped systems: the current is blocked
when no bipolaron can be formed because the spins of the two electrons are
in a triplet configuration. While the bipolaron mechanism in three dimensions
yields only a small magnetic field effect of a few percent—see Section 1.2.4 on
page 12—the spin-blocking effect is greatly enhanced in a one-dimensional system.
Unlike for dopant sites, however, spin blocking by a trapped electron can be lifted
because the trapped electron can detrap. How likely that is to happen depends on

The data presented in this chapter are part of a manuscript that is submitted for publication.65 S.P.K.
contributed to the modelling of the experimental results in that publication.
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the bipolaron formation energy, the trap depth, and the size of the applied electric
field. In addition, the number and positions of trapped electrons are not constant
but depend on the charge concentration and the electric field. These dependencies
will be investigated in this chapter.

A very large magnetoconduction has recently been measured in molecular wires
by Mahato and coworkers.65 The wires consist of dxp

∗ molecules embedded in
the channels of a zeolite L crystal. We propose that the potassium ions that are
present in the zeolite (see below) lead to the trap sites that are necessary to explain
the large magnetoconductance that is observed.

In the next section, the experimental results on the dxp wires will be briefly
described. The model we use to describe the results is introduced in Section 6.3.
We assume in this model that the current is only carried by electrons, that is, we
assume unipolar transport. In Section 6.4 we discuss the results from the model
and compare them to the experimental results. Some remarks are made about
the relation between the hopping rate and the charge concentration in Section 6.5.
In Section 6.6 we comment on the validity of our model in the case that charge
transport through the wires is not unipolar. We end with the main conclusions of
this chapter in Section 6.7.

6.2 Experiments

One-dimensional molecular wires of dxp molecules were created by inserting
dxp molecules in a zeolite L crystal. Zeolite L is an aluminosilicate with straight
channels along its c-axis with a diameter varying between 0.71 nm and 1.26 nm
along each channel, see Figure 6.1. The aluminosilicate structure is negatively
charged. To compensate this charge, (mobile) potassium ions are present in the
channels.

When dxp molecules, which are rod-shaped with their smallest dimension close
to the channel diameter and a length of 2.2 nm, fill those channels, wires are
formed of uniaxially oriented molecules, see Figure 6.1. The length of the wires is
determined by the height of the zeolite crystals, which was varied between 30 and
90 nm. A loading degree of 86% of the unit cells filled with dxp was achieved.

The wires are contacted at the bottom by a pedot :pss
† layer on top an ito

‡

electrode and at the top by the PtSi tip of a conducting-probe atomic force micro-
scope (cp -afm). The tip radius is ∼10 nm, such that in the order of 100 wires
are contacted at the same time. The current through the wires was measured as a
function of the applied voltage at an applied magnetic field of up to 14 mT. The
applied magnetic field is perpendicular to the molecular wires.

∗
dxp: N,N’-bis(2,6-dimethylphenyl)-perylene-3,4,9,10-tetracarboxylic diimide
†

pedot :pss: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
‡

ito: Indium tin oxide
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Figure 6.1 The experimental setup used to measure the magnetoconduction of molecular
dxp wires in a zeolite crystal. The zeolite crystal contains channels (only a single channel is
shown) in which dxp molecules are inserted. Part of a channel is magnified at the left. The
dxp molecules only fit in the channels with their long axes oriented along the channel. The
conductivity of about 100 wires at the same time is measured between the ito electrode
and the tip of a conducting-probe atomic force microscope (cp -afm). A magnetic field is
applied perpendicular to the direction of the channels. Adapted from Reference 65.

The work functions of both contacts are about −5 eV.8,79 That is in the middle
between the homo and lumo of dxp, which are −6.0 eV and −3.9 eV.61 However,
the potassium ions in the zeolite channels are closer to the dxp molecules than
the equally, but oppositely, charged aluminosilicate around them. That will lower
the electrical potential for electrons in the wire and raise it for holes. We believe
therefore that charge injection and transport is (mostly) by electrons. But even if
holes are injected as well, the modelling of the magnetic field effect in this chapter
remains valid, as will be discussed in Section 6.6 on page 82.

6.2.1 Results

Figure 6.2(a) shows the measured magnetoconduction of a 60 nm thick zeolite
crystal loaded with dxp molecules as a function of the applied magnetic field for
voltages over the zeolite between 2 V and 9 V. A maximal magnetoconductance
of −93% is observed at 2 V. This value is comparable to the values predicted for
doped polymers in the previous chapter and much larger than what has so far been
reported in the literature on organic materials at room temperature. The lineshapes
seem to be fitted slightly better with a non-Lorentzian than with a Lorentzian,
although these two lineshapes are hard to distinguish over the available mag-
netic field range. The linewidths B0 that are found from fitting the lineshapes
are between 2 and 6 mT and do not have a clear voltage or length dependence.
Figure 6.2(b) shows the maximal magnetoconductance MCmax ≡ MC(14 mT) as a
function of the applied voltage for wires with lengths between 30 nm and 90 nm.
The magnetoconductance is found to decrease with increasing applied voltage.
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Figure 6.2 (a) The measured magnetoconductance (MC) of molecular wires in a 60 nm
thick zeolite crystal as a function of the applied magnetic field B for applied voltages
between 2 V and 9 V. (b) The maximal magnetoconductance MCmax ≡ MC(14 mT) as a
function of the applied voltage V for wires of different lengths. Adapted from Reference 65.

The importance of the one-dimensionality of the dxp wires for observing the
large magnetic field effect was demonstrated by two control experiments. Firstly,
when the magnetoconduction of a ∼40 nm dxp film was measured with the same
cp -afm tip, an effect of about −20% was found. When the dimensionality was
increased by using a platinum wire with a diameter of 250 µm instead of the afm

tip, the magnetoconduction decreased to about−5%.65 A voltage of 0.5 V was used.
At lower voltages there was too much noise to measure the magnetoconductance.

6.3 Model

The measured lineshapes have a non-Lorentzian shape with a width of a few
millitesla, which is typical for magnetic field effects that arise from spin-dependent
reactions between particles (electrons or holes) when spin mixing takes place
by hyperfine fields. This is, together with the apparent importance of the one-
dimensionality of the charge transport on the size of the measured magnetic field
effect, a strong indication that similar physics as described in the previous chapter
takes place.

While in the doped polymers the magnetoconductance arises due to spin-depen-
dent reactions between free electrons (or holes) and ionized dopants, we propose
that, in the dxp wires, spin-dependent reactions take place between free electrons
and trapped electrons. That is, magnetoconduction results from magnetic-field-
dependent bipolaron formation, see Section 1.2.4 on page 12. An electron can get
trapped in an energetically low-lying site in the Gaussian density of states. It will
be conjectured that more effective trapping can happen due to an inhomogeneous
distribution of the mobile potassium ions that are present in the zeolite. A local
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Figure 6.3 A chain of sites as a model of a wire of dxp molecules. At random locations,
electron trap sites are formed with an energy Utrap below the lumo of the host sites due
to a local concentration of potassium ions. When an electron is trapped, a second electron
can only pass that site by first forming a bipolaron at the cost of an energy penalty U (the
bipolaron formation energy). An electric field F is applied along the chain.

concentration of potassium ions lowers the energy of an electron on a nearby dxp

molecule, creating a trap site.

We model the dxp wire as a chain of N = 100 sites, see Figure 6.3. The site ener-
gies are taken from a Gaussian distribution with standard deviation σ. At every
site there is a random hyperfine field, which is taken from a three-dimensional
Gaussian distribution with standard deviation Bhf. The potassium ions are much
less mobile than electrons, so their distribution can be considered stationary on the
time scale of an electron passing through the wire. We assume that the presence of
the ions leads to randomly located trap sites. Traps are added to the chain with a
concentration ctrap and an energy Utrap below the middle of the Gaussian density
of states. The trap concentration and trap energy are treated as parameters.

In the model, electrons can hop between nearest-neighbor sites with Miller-Abra-
hams hopping rates, see Section 1.1.1 on page 3. When two nearest-neighbor sites
are both occupied by an electron, one of the electrons can hop to the other site,
forming a bipolaron. Bipolaron formation happens with an energy penalty U (the
bipolaron formation energy), which we take to be 0.2 eV as found from cyclic
voltammetry measurements on dxp.61 Bipolaron formation is only possible to
the singlet state and happens, therefore, with a rate that is proportional to the
spin projection factor onto the singlet space, see Section 2.2.3 on page 27. We use
periodic boundary conditions, which avoids the complication of considering the
injection and collection of charges by the electrodes.

The current through the chain is determined as a function of the applied magnetic
field in the slow-hopping limit by Monte Carlo simulations, see Section 2.3 on
page 30. In reality, this limit might not be reached, so the size of the magnetic
field effect that we find will be an upper boundary for what will happen in reality.
After calculating the magnetoconductance per disorder configuration, an average
is taken over 30 to 100 disorder configurations to reach a relative statistical error in
the magnetoconductance smaller than 1%, see Section 2.3 on page 30. Incidentally,
the number of disorder configurations we average over is similar to the number of
dxp wires that is contacted at the same time by the cp -afm probe, see Section 6.2
on page 74.
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The experimental voltage range of the data shown in Figure 6.2 on page 76(a) is
2 V to 9 V. If we assume that this voltage falls entirely over the 60 nm wire, this
voltage range translates to electric fields between 0.07 V/hop and 0.33 V/hop. (For
the wires of lengths of 30 nm and 90 nm, the ranges corresponding to the voltage
range in Figure 6.2(b) are, respectively, 0.07–0.66 V/hop and 0.10–0.22 V/hop.)

6.4 Results

Let us start by considering a wire without traps and only a typical amount of
energetic disorder with strength σ = 0.1 eV. The magnetoconduction as a function
of the applied magnetic field is shown in Figure 6.4(a) (black squares) for an elec-
tric field F = 0.1 V/hop and a charge concentration c = 0.3. (A justification of
this large charge concentration will be given in Section 6.5 on page 81.) Like the
experimentally obtained lineshapes, the lineshape we find is best fitted by a non-
Lorentzian and comparing the linewidth to the experimentally obtained values
yields a reasonable value of ∼1 mT for the hyperfine fields. However, the magni-
tude of the effect, about 65%, is not quite as large as in the experiments, which
is > 90%. Figure 6.5 shows the dependence of the maximal magnetoconduction
MCmax ≡ MC(B = 100Bhf) on the charge concentration. While the magnitude in-
creases with increasing charge concentration, it saturates at about 70%. Even if the
bipolaron energy would be 0.3 eV, the magnitude never reaches 90%. Increasing
the amount of energetic disorder to σ = 0.15 eV leads to a small decrease of the
magnetoconduction from −64% to −56% for F = 0.1 V/hop, c = 0.3. When the
energetic disorder is decreased to σ = 0.05 eV, the magnetoconduction decreases
to −45%. (The magnetoconduction is less than 1% for σ = 0.)

Apart from the disagreement in the size, the experimental magnetic field effect
is found to increase with decreasing voltage, while we find a decrease with de-
creasing electric field from our simulations for the range of electric fields that
correspond to the voltages used in the experiments, see the black squares in Fig-
ure 6.4(b). We conclude, therefore, that the trapping caused by just the Gaussian
energetic disorder of organic materials is unlikely to be the origin of the measured
magnetic field effects.

6.4.1 Magnetoconduction with traps

As mentioned before, positively charged potassium ions are present in the zeolite
channels. An inhomogeneous distribution of those ions can give rise to trap sites.
Figure 6.6(a) shows the magnetic field effect MCmax as a function of the trap
concentration ctrap for several trap depths between Utrap = 0.1 eV to 0.4 eV for a
charge concentration c = 0.3 and electric field F = 0.1 V/hop. In order to focus
exclusively on the effect of traps we took σ = 0.

The magnetic field effect is largest when ctrap is slightly larger than half the charge
concentration. As we have seen in Section 5.3.4 on page 67, the magnetic field
effect is largest when the current is determined by the magnetic-field-dependent
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Figure 6.4 (a) The magnetoconductance (MC) as a function of the applied magnetic
field B for a charge concentration c = 0.3. Results are shown for a wire with energetic
disorder σ = 0.1 eV (black squares) and a wire with traps with a concentration ctrap = 0.15
and trap depth Utrap = 0.2 eV equal to the bipolaron formation energy (red discs). Both
curves are best fitted with a non-Lorentzian lineshape. (b) The maximal magnetic field
effect MCmax ≡ MC(B = 100Bhf) as a function of the electric field F. The green bars
indicate the approximate electric field range corresponding to the voltage range used in the
experiments for wires of length 30 nm, 60 nm, and 90 nm (see Figure 6.2 and the main text).
The linewidths B0 of fits with a non-Lorentzian as a function of the electric field are shown
in the inset.
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hops. That is, an electron moving through the chain should spend most of its
time making magnetic-field-dependent hops. It has also become clear in the pre-
vious chapter that the magnetoconductance is larger for high rather than for low
dopant (trap) and free-electron densities, because only a single electron has to
be blocked to block the whole current and electrons spend less time between
recombinations/bipolaron formations if the dopants/traps are closer together.
Those two effects explain the dependence of the magnetoconductance on the trap
concentration. When the trap concentration is increased from zero, initially, the
magnetoconductance increases due to the increased blocking by the increased
number of trapped electrons. However, if the trap concentration increases beyond
c/2, the effect of decreasing free-electron concentration dominates and the mag-
netoconductance decreases. Another way of looking at this is that the number
of spin-blocked electrons is proportional to both the number of trapped charges
and the number of free charges: ctrap(1− ctrap), assuming that almost all traps are
filled with electrons. The number of spin-blocked electrons is therefore maximal
for ctrap = c/2.

The effect of Utrap on the magnetoconduction is less straightforward: When less
than half of all electrons are trapped for ctrap < 0.15 (again assuming that all
traps are filled), there is an optimal trap depth of 0.2 eV, equal to the bipolaron
formation energy. For ctrap � c, the magnetoconductance increases as a function of
the trap depth. A likely reason for this is that, with increasing trap concentration,
it becomes more probable to find two traps next to each other: The magnetic
field effect is largest when the hop that is magnetic field dependent—bipolaron
formation—is slow, such that a change in the rate of that hop—due to the magnetic
field—affects the current significantly, see Section 5.3.4 on page 67. In addition,
the blocking electron should have a small detrapping rate, otherwise it would
just detrap instead of forming a bipolaron with the blocked electron. Those two
conditions can be fulfilled when two traps are located next to each other, see the
inset in Figure 6.6 on the facing page. The right electron in the figure cannot easily
detrap because of the energy penalty Utrap and bipolaron formation happens with
an energy penalty U.

From now on we set Utrap = 0.2 eV. Figure 6.6(b) shows the dependence of
the magnetoconductance on the charge concentration for F = 0.1 V/hop and
ctrap = 0.05 (green triangles), 0.1 (red discs), and 0.15 (black squares). For small c,
the magnetoconductance increases as a function of c. However, when c is larger
than ∼ctrap, when all traps are filled with electrons, the magnetoconductance is
almost independent of c.

The magnetic field dependence of the magnetoconductance for this case is shown
in Figure 6.4(a) (red discs) for c = 0.3 and ctrap = c/2 = 0.15. Again, a non-
Lorentzian lineshape is found. However, the magnetoconductance, −88% at B =

100Bhf, is much larger than that for the case without traps. The electric field de-
pendence is shown in Figure 6.4(b). The decrease of the magnetoconductance’s
magnitude with increasing electric field that we find (for F > 0.3 V/hop) is in
agreement with the experiments. While the charge concentration and possibly the
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Figure 6.6 (a) Magnetoconduction as a function of the concentration of traps ctrap for a
charge concentration c = 0.3 and trap depths Utrap = 0.1 (black squares), 0.2 (red discs),
0.3 (green triangles), and 0.4 eV (blue diamonds). The inset shows two trap sites next to
each other, both with a trapped electron on them. In the presence of a strong electric field,
either the left electron will form a bipolaron by hopping to the right or the right electron
will detrap. (b) Magnetoconduction as a function of c for ctrap = 0.15 (black squares), 0.1
(red discs), and 0.05 (green triangles). All results are for electric field F = 0.1 V/hop.

trap concentration in the experiment depend on the electric field as well, the mag-
netoconductance does not depend strongly on those quantities for the parameters
we have chosen. The experimental and simulated electric field dependencies can
therefore be compared with each other. The largest magnetoconductance of −93%
is found for F = 0.3 V/hop and is equal to the experimentally found maximal
magnetoconductance.

We have found no—that is, less than the error margin of 1%—direct dependence of
the magnetoconduction on the wire length N between 60 and 140 for c = 0.3 and
ctrap = 0.15. The experimentally observed length dependence is therefore likely in-
direct, resulting from a length-dependent charge concentration, trap depth and/or
concentration, electric field, or from an effect due to the injection and/or collection.
More-detailed simulations, incorporating charge injection and the dynamics of the
potassium ions, have to be done to investigate the length dependence.

6.5 Charge concentration and hopping rate

To get an estimation for the charge concentration, we take the measured current
I = 50 nA for the 60 nm thick zeolite crystal at 9 V. As mentioned in Section 6.2
on page 74, the cp -afm tip contacts in the order of 100 wires. We assume that all
hops are with the electric field—not unreasonable given the fact that the Boltzmann
factor for hopping against an electric field of 9 V/60 nm is ∼10−5. Using these
data, we find the relation rc ≈ 4 between the relative hopping rate and the charge
concentration. The presence of energetic disorder leads to sizable magnetic field
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effects even for relative hopping rates comparable to unity, see Chapter 4. However,
the large magnetoconductance that was measured is comparable to the values
we find from our simulations, r must be comparable to or smaller than unity—
only for small r does enough spin mixing take place to yield large magnetic
field effects. Furthermore, by ignoring energetic disorder or traps, the presence
of which lowers the current, we have underestimated rc. As a consequence, the
charge concentration c must be close to unity. In addition, the magnetoconductance
that we find for lower charge concentrations is much lower than what is found
experimentally. This justifies the large values for c that we have used in this chapter,
provided our model is correct.

6.6 The assumption of unipolarity

We have assumed above that there are only electrons in the dxp wire and no holes.
However, even if holes are injected into the wire, our model keeps most of its
validity. When electrons are injected form one side and hole from the other side,
they will meet somewhere in a wire and form excitons. However, at both sides of
the place where excitons are formed the wire will be unipolar. In the electron-only
part of the device, the magnetic field effects we have described in this chapter will
occur and will lead to a large magnetoconductance.

A magnetic field effect might also arise at the point where the electron-only and
hole-only parts of the wire meet. However, we do not expect this magnetic field ef-
fect to be as large as those experimentally observed. The exciton formation process
could be magnetic-field dependent, as is described in Chapter 3. However, to get
the experimentally observed large magnetic field effect requires an unrealistically
low (or high) ratio between the singlet and triplet exciton formation rates (γ).

Only magnetic-field-dependent charge blocking is expected to give the large mag-
netic field effects that were measured. Triplet excitons have a long life time and
could lead to charge blocking. This blocking is magnetic field dependent, because
a magnetic-field-dependent triplet-charge interaction can make the triplet decay,
thereby clearing the blockage. However, the linewidth of the magnetic-field depen-
dence of the triplet-charge interaction is determined by the zero-field splitting,103

which is typically about 100 mT.38,87 Thus, this mechanism cannot explain the
measured lineshapes.

6.7 Discussion and conclusions

We have simulated the magnetoconductance resulting from bipolaron formation
in an experimentally studied system of wires of dxp molecules in a zeolite crystal
in the slow-hopping limit using Monte Carlo simulations. The magnetoconduc-
tance emerges due to blocking of the current by trapped electrons, which can
be overcome by magnetic-field-dependent bipolaron formation. The trapping re-
sulting from energetic disorder does not yield a magnetic field effect as large as
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measured in dxp wires. Moreover, the electric field dependence of the magneto-
conduction is the opposite of what was experimentally found. Potassium ions that
are present in the zeolite could lead to trap sites. With those traps the simulated
magnetoconductance is as large as the experimentally found values and has the
right electric field dependence. We suggest that this is the mechanism behind the
large magnetoconductance that was measured.

What is not understood yet is the dependence of the magnetoconductance on the
wire length. The largest magnetoconductance is measured for the 60 nm long wires;
longer or shorter wires show a smaller magnetoconductance. Our simulations, on
the other hand, show no length dependence. Possible explanations for the length
dependence found in the experiment are: a different distribution of dxp molecules
in wires of different length; a trap concentration and trap depth that depend on
the wire length; or an inhomogeneous charge distribution (and, consequently, a
position-dependent electric field), for example, due to charge accumulation at the
contacts. More insight could be gained by including injection from and collection
by the contacts in the model (instead of using periodic boundary conditions) and
explicitly including the potassium ions and their dynamics.
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7
Spin mixing by fringe fields

When all effective magnetic fields are completely aligned due to the presence of a large
applied magnetic field, spin mixing still takes place between the singlet and T0 triplet
states of polaron pairs. This spin mixing is analytically investigated in this chapter. The
amount of spin mixing is found to depend on both the difference in magnitude of the
effective magnetic fields at different sites and the relative hopping rate. We conclude that
this so-called ∆B-mechanism is the likely mechanism behind the magnetoconductance that
was measured in a device with a single magnetic electrode. The magnetic-field-dependent
magnetization of that magnetic electrode leads to magnetic-field-dependent fringe fields.
Those fringe fields are the source of the difference in effective magnetic fields at different
sites.

7.1 Introduction

All magnetic field effects discussed in this thesis, except for the ultra-small-mag-
netic-field effect (see Section 3.5.1 on page 43), rely on spin mixing by local hyper-
fine fields and the suppression of this mixing by applying an external magnetic
field. However, there are also other sources of spin mixing. In particular, the (inho-
mogeneous) fringe fields emerging from magnetic nanoparticles could play a role
similar to that of hyperfine fields, as was proposed by Cohen.27

Relying on hyperfine fields offers only very little control over the amount of spin
mixing: They are determined by the organic material and vary only little between
different materials. Moreover, they cannot be changed once a device has been
made. Fringe fields, on the other hand, result from the properties of a magnetic
layer or nanoparticles. By using different materials or by patterning the magnetic
layer differently, control could be exerted over the fringe fields. Furthermore, the
presence of fringe fields depends on the magnetization of the magnetic layer,
which can be controlled by an applied magnetic field.
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Using fringe fields as a source of spin mixing is interesting from both a scientific
and technological standpoint. In principle, fringe fields could be controlled such
that the amount of spin mixing depends on the position within the device, possi-
bly giving insight into where magnetic-field-dependent processes, like exciton or
bipolaron formation, take place.

Recently, this idea was applied to organic semiconductors by Wang and cowork-
ers.123 They have measured a magnetoconduction of up to 5% in an oled with
a magnetic layer as bottom electrode. Control experiments—where the magnetic
layer is present, but charge injection takes place from a layer above the magnetic
layer—proved that the observed effect is not related to injection from a magnetic
electrode. Furthermore, a model in which the fringe fields suppress spin mixing in
the same way as an external magnetic field does in, for example, the two-site model
of Chapter 3, was unable to explain the experimental linewidth or lineshapes. The
magnetic field scale for which the magnetoconduction was measured coincides
with the field scale over which the magnetic layer switches its magnetization.64

These are strong indications that the fringe fields—which are only present during
the switching of the magnetic layer—are the cause of spin mixing. However, the
exact mechanism by which this happens remained unclear.

In the next section of this chapter, the measurements by Wang and coworkers are
briefly discussed. In Section 7.3 we propose a mechanism in which the difference
in magnitude of the (effective) magnetic fields of two sites is the dominant source
of spin mixing. An analytical proof of principle is given for how this can lead
to a magnetic field effect. How spin mixing due to a difference in magnitude of
the effective magnetic fields could lead to a magnetic field effect in the experi-
ments by Wang and coworkers is explained in Section 7.4. This chapter ends with
conclusions and an outlook.

7.2 Fringe field device

The structure of the device on which measurements are reported by Wang and
coworkers in Reference 123 is shown in Figure 7.1(a). An Alq3 layer and a pedot

hole-injection layer are sandwiched between a magnetic and a non-magnetic elec-
trode. The Alq3 layer has a thickness of 30 nm, while the thickness d of the pedot

layer is varied between 12 nm and 84 nm. The magnetic electrode consists of alter-
nating layers of cobalt and platinum and has perpendicular magnetic anisotropy.
The magnetization of the magnetic layer as a function of the applied magnetic field
is shown in Figure 7.1(b). When the magnetization of the layer switches, a domain
structure appears, with domains of about 200 nm when the magnetization is zero,
see Figure 7.1(c). The magnetization of these domains is perpendicular to the layer.
As a result of this domain structure, fringe fields appear above the magnetic layer.
Variation in thickness of the magnetic layer may also give rise to fringe fields.

The magnetoconduction of the device is measured as a function of the applied
magnetic field, see Figure 7.1(d). It is clear that the lowest current is measured
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for magnetic fields for which the magnetic layer’s magnetization is switching
and fringe fields are present. As the thickness d of the spacer layer increases,
the magnetic field effect on the 100 mT scale decreases and only the ordinary
magnetic field effect at the hyperfine field scale remains. Since the gradient in the
fringe fields decreases with the distance from the magnetic layer [see Figure 1(d)
in Reference 123], this suggests that the presence of the fringe fields leads to
additional spin mixing.∗

An explanation along the lines of two-site models in the slow-hopping limit, like in
Reference 121, was dismissed by the authors because the correlation length of the
fringe fields is too large and results in effective magnetic fields on neighboring sites
that are almost completely aligned. However, slow-hopping models assume that
complete mixing takes place between the singlet and T0 triplet of a polaron pair,
while at intermediate (and more realistic) hopping rates, mixing between those
states depends on the difference in precession frequency of the two spins. The
measurements can be explained when that effect is taken into account correctly,
as will be shown in the rest of this chapter.

7.3 ∆B-mechanism

The dominant source of the magnetic field effects so far discussed in this thesis
is the alignment of the effective magnetic fields of two sites when an external
magnetic field is applied. Due to this alignment, the spin mixing for a polaron
pair between the singlet and T0 triplet with the T− and T+ triplets is suppressed.
However, even when the two effective magnetic fields are completely aligned, spin
mixing will still take place between the singlet and T0 triplet polaron-pair states,
because the precession frequencies of the polarons’ spins will differ—due to a
difference in g-factor or a difference in magnitude of the effective magnetic fields
at the polarons’ sites.

When the reaction rate is much slower than the difference in precession frequency,
complete mixing between the singlet and T0 triplet takes place. When that is not
the case, the amount of spin mixing depends on the difference in precession fre-
quencies. For the ∆g-mechanism, which was discussed in Section 1.2.5 on page 16,
the difference in g-factor between the two polarons’ spins leads to a magnetic-
field-dependent difference in precession frequency proportional to ∆gB, where B
is the applied magnetic field. When there is a gradient in the magnetic field, for
example, due to fringe fields, a similar difference in precession frequency occurs,
which is proportional to g∆B, where ∆B is the difference in the magnetic fields at
the sites of the two polarons and where the g-factors are assumed to be equal. In
analogy to the ∆g-mechanism, we call this the ∆B-mechanism.

Consider an electron and a hole that are about to form an exciton. For simplicity,
we assume that both have the same g-factor and that their effective magnetic fields

∗Note that the charge mobility in pedot is much higher than that in Alq3. Consequently, the current
and, therefore, the magnetoconduction is determined by what happens in the Alq3 layer.
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Figure 7.1 (a) A simplified schematic of the fringe-field device from Reference 123. An
30 nm thick Alq3 layer and a pedot hole-transport layer with a width d are sandwiched
between a magnetic and a non-magnetic electrode. (b) Schematic magnetization of the
magnetic layer as a function of the applied magnetic field. When the magnetization is
switching between −1 and 1, magnetic domains will emerge (shown in the inset) in the
magnetic electrode, causing fringe fields (Bfringe) above the electrode [indicated as dashed
lines in (a)]. (c) The magnetoconduction as a function of the applied magnetic field for a
device similar as shown in (a) but without magnetic layers. (d) Magnetoconduction of the
device as a function of the applied magnetic field for d = 15, 20, 50, and 100 nm. Figures
(b), (c), and (d) are adapted from Reference 123.
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are completely aligned, as would be the case when a large external magnetic
field is applied (pointing in the z-direction). The electron and hole feel effective
magnetic fields Be and Bh = Be + ∆B respectively. The Hamiltonian of this system
is given by,

H = gµBBeSz,e/h̄ + gµBBhSz,h/h̄, (7.1)

where µB is the Bohr magneton, and Sz,e(h) is the spin operator in the z-direction
for the electron (hole).

As a model for all spin-dependent reactions between two spin-1/2 particles, we
consider the steady-state fraction of singlet excitons that is formed, χS, when
polaron pairs are formed with a rate ku from which singlet and triplet excitons
are formed with rates kS and kT respectively. We will use a stochastic Liouville
equation to find the singlet fraction, see Section 3.2 on page 36. The steady-state
density operator is found by demanding:

0 =
∂ρ

∂t
= − i

h̄
[
H, ρ

]
− 1

2
{

Λ, ρ
}
+ Γ, (7.2)

where Λ = ∑λ kλ|λ〉〈λ|, with λ = S, T0, T−, T+, and Γ = kuI/4, where I is the
identity operator. For the formation rates, we take kT = kT0 = kT− = kT+ = khop/γ

and kS = khop.

We find the density matrix that is a solution to Equation 7.2 as described in
Section 2.2.2 on page 27. The non-zero elements of this matrix are:

ρ↑↑,↑↑ = ρ↓↓,↓↓ =
γku

4khop
(7.3)

ρ↑↓,↑↓ = ρ↓↑,↓↑ =
γku

khop

(4gµB∆Bγ/khoph̄)2 + (1 + γ)2

8(1 + γ)[(2gµB∆Bγ/khoph̄)2 + γ]
(7.4)

ρ↑↓,↓↑ = ρ∗↓↑,↑↓ =
γku

khop

γ− 1
(2gµB∆Bγ/khoph̄)2 + γ

(
1
8
+ i

gµB∆Bγ/khoph̄
2(1 + γ)

)
.(7.5)

From this density matrix, it is easy to get the singlet exciton fraction, which is
given by,

χS =
γ

1 + γ

1
4

(
2− γ− 1

(2gµB∆Bγ/khoph̄)2 + γ

)
. (7.6)

The singlet fraction as a function of the relative hopping rate is shown in Fig-
ure 7.2(a) for ∆B = 10Bhf and γ = 1/2 (solid curve). When the exciton formation
rate is slower than the difference in precession frequencies, a deviation from the
statistical singlet fraction of 0.25 is found. The transition occurs around khop =

2gµB∆B
√

γ/h̄. If we define the relative hopping rate as r = khop/ωhf, with the hy-
perfine frequency ωhf = gµBBhf/h̄, the transition occurs around r = 2∆B

√
γ/Bhf.

When no fringe fields are present and only an external magnetic field Bz̃ that
is much larger than the hyperfine fields, ∆B is equal to the difference of the z-
components of the hyperfine fields. That means that ∆B is distributed according
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Figure 7.2 (a) The singlet fraction as a function of the relative hopping rate for γ = 1/2
resulting from the ∆B-mechanism, where ∆B is either 10Bhf (χS,fringe, solid curve) or the
difference between the z-components of two random hyperfine fields (χS,hf, dashed curve).
For the latter, an average over all hyperfine fields was taken. (b) The resulting magnetic
field effect, defined as (χS,hf − χS,fringe)/χS,fringe for γ = 1/3, 1/2, 2, and 3.

to a Gaussian distribution with standard deviation 2Bhf. Taking an average over
the hyperfine fields yields the following expression:

〈χS〉hf =
γ

1 + γ

1
4

(
2− er2/32γ(γ− 1)r

√
π/2

[
1− erf(r/

√
32γ)

]
4γ3/2

)
, (7.7)

where erf(x) is the error function. In Figure 7.2(a), 〈χS〉hf is shown as a dashed
curve. The transition from fast to slow hopping is slightly broader compared to
the case where ∆B has a fixed value (solid curve).

The derivation in this section is for the case of exciton formation. However, the
same physics applies to other reactions where spin mixing by hyperfine fields
plays a role, such as bipolaron formation.

7.4 Magnetic field effect

For magnetoconductance to arise in the fringe field device that was described in
Section 7.2 on page 86, the difference in magnitude of the fringe fields at two
neighboring site must be larger than the difference between the hyperfine fields
for at least a significant fraction of sites that determine the current. For illustrative
purposes, assume that the difference in fringe fields is 10Bhf. We also assume
that the fringe fields are static on the time scale of exciton formation. In that
case, the singlet fractions with (solid curve) and without (dashed curve) fringe
fields are given in Figure 7.2(a) for γ = 1/2. (For simplicity, the effects of the
smaller hyperfine fields are neglected for the former case.) It is clear from this
figure that, for relative hopping rates between 10−1 and 102, the singlet fraction in
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the presence of fringe fields is different from the singlet fraction without fringe
fields. Therefore, “turning off” the fringe fields by saturating the magnetization
of the magnetic layer with an external magnetic field leads to an increase in the
singlet fraction. That is, the singlet fraction—or indeed any other quantity that
depends on spin mixing—is magnetic field dependent. The resulting magnetic
field effect is shown as a function of the relative hopping rate for several values of
γ in Figure 7.2(b).

This behavior is indeed what is seen in the experiments by Wang and coworkers64,123

that were described in Section 7.2, see Figures 7.1(b) and (d). Let us start by con-
sidering the case of d = 15 nm. At that distance above the magnetic layer, the
fringe fields are larger than 0.1 T (see Figure 1(d) in Reference 123). In a device
without a magnetic layer and the resulting fringe fields, the magnetoconductance
is almost saturated for magnetic fields of that size and larger, see the point labeled
a in Figure 7.1(c). Since the magnetoconductance in such a device is caused by
the alignment of the effective magnetic fields when an external magnetic field
is applied, we conclude that at 0.1 T and larger the effective magnetic fields are
aligned. The assumption made in the previous section that the effective magnetic
fields are aligned and only the differences in magnitude of the effective magnetic
fields lead to spin mixing is therefore justified for the case of d = 15 nm.

Let us now consider what happens as a function of the applied magnetic field.
At high applied magnetic fields (> 0.5 T), no fringe fields are present and only
the difference in magnitude of the hyperfine fields leads to spin mixing. When
the applied magnetic field gets smaller than ∼0.2 T, the magnetization of the
magnetic layer starts to become smaller than its saturation value and fringe fields
appear. The resulting increase in spin mixing leads (in this case) to a decrease of
the current. The current reaches a minimum when the maximal amount of spin
mixing is attained—the largest gradients in the fringe fields. That happens when
the magnetization is zero, that is at B ≈ −0.1 T, see Figures 7.1(b) and (d). When
decreasing the applied magnetic field further, the magnetization increases again
(with the opposite sign), the gradient in the fringe fields decreases, and the current
increases back to the initial value.

For larger d, the gradients in the fringe fields are smaller, as is the magnitude of
the fringe fields. The former—the decrease of the gradient—results in a smaller
amount of spin mixing at applied magnetic fields (between 0.1 and 0.5 T) for
which the fringe fields are present, see Figure 7.1(d). The smaller fringe fields
result in effective magnetic fields that are not fully aligned anymore at B = 0. That
is evident from the appearance of a feature in the lineshapes with a width that
is typical for hyperfine fields. For d = 84 nm (not shown) the magnitude of the
fringe fields is around 0.02 T. At those fields, the magnetoconductance in a device
without a magnetic layer is not saturated, see the point labeled b in Figure 7.1(c).
The effective magnetic fields are thus not fully aligned by the fringe fields that are
present at d = 84 nm. Therefore, applying an external magnetic field will reduce
the amount of spin mixing. This can be seen in Figure 7.1(d) for d = 100 nm—for
which the fringe fields are even smaller—where the typical lineshape with a width
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Figure 7.3 (a) Magnetoconductance and (b) magnetization of the magnetic layer as a
function of the applied magnetic field B. Figure adapted from Reference 123.

of a few millitesla is recovered. The amount of 5% of magnetoconductance found
for d = 100 nm is smaller than the 11% found in a device without a magnetic layer,
because even at B = 0 the non-zero fringe fields lead to some alignment of the
effective magnetic fields.

The effects of the alignment of the effective magnetic fields and of the ∆B-mecha-
nism can be seen more clearly in another measurement from Wang and coworkers,
shown in Figure 7.3, where a different magnetic layer was used. There, the mag-
netic layer’s magnetization flips at an applied magnetic field that is much larger
than the hyperfine-field scale, such that the effects of alignment and of the fringe
fields are separated. At small magnetic fields (B < 0.1 T) the familiar lineshape
due to the alignment of the effective magnetic fields is visible. Around B = 0.2 T,
where the effective magnetic fields are almost completely aligned, the magnetic
layer flips and fringe fields appear. The increase in spin mixing caused by the
gradient in the fringe fields leads to a decrease in current.

7.5 Conclusions and outlook

In conclusion, even when all effective magnetic fields in an organic semiconductor
are aligned, spin mixing still takes place between the singlet and T0 triplet. The
amount of this spin mixing is proportional to the difference in magnitude of
the effective magnetic fields at neighboring sites and inversely proportional to
the hopping rate. We conclude that this spin mixing, caused by the gradients in
the fringe fields of a magnetic layer, is the likely origin of the recently observed
magnetoconductance by Wang and coworkers.123

The next step would be to calculate the fringe fields as a function of the applied
magnetic field and the distance above the magnetic layer and to use those fringe
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fields as input for the theory presented in Section 7.3. In that way, lineshapes could
be calculated and compared with the experimentally found lineshapes. From that
comparison, also values for the hopping rate and for the relative singlet exciton
formation rate γ could be determined.
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8
Conclusions and outlook

The goals of this thesis are both to explain experimentally observed magnetic field
effects in organic semiconductors and to make predictions of how even larger
magnetic field effects can be obtained. In the first section of this chapter, the main
conclusions of the previous chapters are summarized. In the second section an out-
look on the future of modeling of magnetic field effects in organic semiconductors
is given.

8.1 Conclusions

We conclude that, in general, the largest magnetic field effects—in the current and
electroluminescence—are found when the hopping rate is much slower than the
hyperfine frequency. In that case the maximal amount of spin mixing takes place
(Chapter 3). When the hopping rate increases and becomes comparable to the
hyperfine frequency the magnetic field effects decrease. The magnetic field effects
disappear when the hopping rate is much larger than the hyperfine frequency.
However, when the effects of Coulomb attraction between electron and hole and of
energetic disorder are included, magnetic field effects are found even for hopping
rates that are several orders of magnitude larger than the hyperfine frequency
(Chapter 4).

In most cases, the dominant contribution to magnetic field effects results from the
alignment of the effective magnetic fields at the sites of two polarons when an ex-
ternal magnetic field is applied. In that way, the external magnetic field suppresses
the amount of spin mixing. However, when the hopping rate is comparable to the
hyperfine frequency no complete spin mixing takes place, so the amount of spin
mixing can also be increased by increasing the precession frequency. We conclude
that this effect leads to a small increase in spin mixing when a small magnetic
field is applied, explaining the occurrence of an ultra-small-magnetic-field effect.
Due to the same incomplete spin mixing, a very large magnetic field effect was
found in the singlet fraction when singlet excitons are formed several orders of
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magnitude slower than triplet excitons at formation rates that are comparably to
the hyperfine frequency (Chapter 3). Even when the effective magnetic fields on
different sites are completely aligned, the amount of spin mixing depends on the
hopping rate and the difference in magnitude of the effective magnetic fields. We
conclude that this so-called ∆B-mechanism causes the magnetoconductance in
a device where the magnetic-field-dependent magnetization of a magnetic layer
causes fringe fields in the organic semiconductor that vary from site to site (Chap-
ter 7).

A question that is much debated in the literature is whether the statistical ratio of
1:3 singlet–versus–triplet excitons formed can be violated. We find a magnetic field
dependence of the singlet fraction—a measure for the electroluminescence—only
if the singlet fraction deviates from the statistical fraction of 0.25. Since magneto-
luminescence is experimentally observed, we conclude that the statistical ratio
must be violated (Chapter 3). Furthermore, we conclude that it can be violated
even when hopping is too fast for spin mixing by the hyperfine fields to take place,
because electron-hole pairs can split up after which both the electron and hole can
recombine with a different hole and electron (Chapter 4).

An effective way of obtaining a very large magnetoconductance is by restricting
the charge transport to one dimension. In that case, the magnetic-field-dependent
blocking of electrons by dopant sites (Chapter 5) or by trapped electrons (Chap-
ter 6) is very effective. In both cases a larger magnetoconductance is found when
the charge concentration is increased. We suggest that this is the mechanism be-
hind the huge magnetoconductance that is measured in wires of dxp molecules
in a zeolite crystal.

Trapping caused by only the energetic disorder results in neither the right magni-
tude nor in the right electric field dependence of the magnetoconductance in the
molecular wires as compared to the measurements. When traps are introduced
in the wires both the magnitude and the electric field dependence found from
our simulations are comparable to those found experimentally. We suggest that
the potassium ions that are present in the zeolite lead to the necessary trapping
(Chapter 6).

8.2 Outlook

It seems to have been established by now that spin mixing by hyperfine fields
underlies the magnetic field effects that are observed in organic semiconductors
at a magnetic field scale of milliteslas. Deuteration experiments have proven the
importance of hyperfine interactions and experimental results have been qualita-
tively explained by modeling and simulations, giving the right trends and order
of magnitude. What remains challenging, though, is to quantitatively model the
experimental results. A more quantitative comparison between experiments and
theory is needed, especially because there are so many different mechanisms (see
Section 1.2.4 on page 12) that could be acting at the same time.
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This problem should be solved by an approach from two sides. Firstly, modelling
should become more extensive and more detailed. We have seen that in a multi-site
model effects appear that are not present in a two-site model, like the occurrence of
magnetic field effects at hopping rates much larger than the hyperfine frequency.
Furthermore, the input parameters of the models should be calculated or mea-
sured more accurately. The magnitude of the hyperfine field is often assumed to
be about ∼1 mT. However, if the hyperfine field strength were accurately known
for different materials, it would be possible to more accurately compare measured
lineshapes with theoretical ones. In a device that consists of a blend of two ma-
terials or that contains traps, the lineshape depends on the material in which the
spin-dependent reactions underlying the magnetic field effect take place. It would
therefore be possible to derive from the lineshape in which material those reac-
tions take place. Another issue is the magnitude of the hopping rate. The size and
linewidth of the magnetic field effect depend on the relative hopping rate. When
the hopping rate is comparable to the hyperfine frequency new features appear,
like the ultra-small-magnetic-field effect. Finally, the effect of spin-orbit coupling
is often assumed to be negligible. However, for some materials it could play an
important role and its influence on the spin mixing by hyperfine fields should
therefore be investigated.

Secondly, our understanding of magnetic field effects could be increased by new
kinds of experiments. Experiments could be designed to exclude some spin-
dependent processes, so attention can be focussed on others. For example, ofet s
already offer a promising way to study truly unipolar charge transport,94 thereby
reducing the number of mechanisms that could give rise to a magnetic field ef-
fect. Furthermore, the gate voltage can be used to control the charge density,
which can have a large influence on the magnetic field effects, as we have seen in
Chapter 5. Also experiments where electrons or holes (or both) are injected with
spin polarization into the organic semiconductor—like in a spin-oled

80—can
help determine whether the measured magnetic field effect arises from a unipolar
or bipolar mechanism. For example, changing between spin-polarized and spin-
unpolarized injection of one carrier type could give an indication of the origin of
the measured magnetic field effect—whether it results from a unipolar mechanism
involving one carrier type or from a bipolar mechanism between electrons and
holes. A unipolar mechanism would be influenced by the polarized injection of
only one carrier type, whereas a bipolar mechanism would much less so. Lastly,
the ∆B-mechanism could be employed to tune the amount of spin mixing. By
engineering the gradients in the magnetic field in the organic semiconductor—by
making them position dependent—information could be obtained about the posi-
tion at which the spin-dependent processes that give rise to magnetic field effects
take place.
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A
Equivalence of exciton formation

and bipolaron formation

The mathematical description of bipolaron formation in a one-dimensional sys-
tem and exciton formation are equivalent, as will be shown here. The stochastic
Liouville equation for both processes is given by:

∂ρPP

∂t
= − i

h̄
[H, ρPP]−

1
2
{Λ, ρPP}+ Γ, (A.1)

where H is the spin Hamiltonian Equation 2.4 on page 25. For exciton formation
we have: Λ = ∑λ kλ|λ〉〈λ| for λ = S, T−, T0, T+. And the dimensionless parameter
γ = kT/kS. On the other hand, for bipolaron formation we have Λ = |S〉〈S|kα→β +

I kα→e, where I is the identity operator. Now, we have as a dimensionless parameter
the branching ratio b = kα→β/kα→e.16 For both cases, we have Γ = k(1− Tr[ρ])I.

It is easy to see that those two equations are equivalent when kα→β = kS − kT
and kα→e = kT. That yields the following relation between the dimensionless
parameters: γ = 1 + b.

In a wire, where the current is proportional to the rate of bipolaron formation
relative to hopping back:

rBip =
Tr
[
kα→β|S〉〈S|ρ

]
Tr
[
kα→β|S〉〈S|ρ

]
+ Tr[kα→eρ]

, (A.2)

is equivalent to the fraction of singlet excitons formed:

χS =
Tr[kS|S〉〈S|ρ]

Tr[kS|S〉〈S|] + Tr
[
∑λ=T0 ,T− ,T+

kT |λ〉〈λ|ρ
] (A.3)
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Summary

Magnetic Field Effects in Organic Semiconductors:

Theory and Simulations

Organic semiconductors are a promising class of materials, offering several advan-
tages over inorganic semiconductors. They are light, flexible, easy and cheap to pro-
duce, and easily chemically tunable. Organic semiconductors are currently used
for lighting applications and in the displays of some smartphones and televisions.
Exciting magnetic field effects have been observed in the current through and
light production of organic semiconductors. A magnetoconductance and magneto-
electroluminescence of up to 30% have been measured in organic semiconductor
films. Recently, an even larger magnetoconductance with a magnitude of 93% was
found in molecular wires.

The magnetic field effects are remarkably independent of the specific material used,
always having either a Lorentzian or a so-called non-Lorentzian lineshape with
a width of a few millitesla. The hyperfine interaction between nuclear magnetic
moments and the spins of the particles—electrons, hole, excitons, bipolarons, etc.—
in an organic semiconductor can be approximated by an effective magnetic field
that acts on the spins. The difference in those so-called hyperfine fields experienced
by two particles leads to spin mixing that can be suppressed by applying an
external magnetic field. Magnetic field effects arise because quantities like the
current and light output depend on processes that are spin-dependent and are
thus affected by the amount of spin mixing.

The goals of this thesis are to explain experimentally observed magnetic field
effects and to make predictions for obtaining even larger effects. This is done
analytically using stochastic Liouville equations as well as using Monte Carlo
simulations.

A much-discussed question that is related to magneto-electroluminescence is
whether the statistical ratio of one singlet to three triplets can be violated in exci-
ton formation. We have studied this question using a two-site model in Chapter 3.
We found that, if the singlet and triplet exciton formation rates differ, the sta-
tistical singlet–to–triplet exciton ratio of 1:3 is violated when hopping is slower
than or comparable to the hyperfine frequency—the precession frequency of an
electron spin due to the hyperfine field. Furthermore, for those hopping rates,
we found a magnetic field dependence of the singlet fraction—a measure of the
electroluminescence—if and only if singlet and triplet exciton formation rates
differ. We also found that an ultra-small-magnetic-field effect that is sometimes
observed can result from the increase in spin mixing when a magnetic field is
applied that is comparable in magnitude to the hyperfine fields.

101



102 Summary

In Chapter 4 we found that the violation of the statistical ratio and its magnetic
field effect occur at hopping rates that are several orders of magnitude higher than
the hyperfine frequency when Coulomb interaction and energetic disorder are
present. In addition, a violation of the statistical ratio can be found even in the
fast hopping limit, because electron-hole pairs can split up after which both can
recombine with another electron and hole. This violation of the singlet fraction
does not depend on the magnetic field.

The main conclusion of Chapter 5 is that very large magnetic field effects in both
the current and diffusion constant can be obtained in doped polymers. The one-
dimensionality of the charge transport through the polymer leads to effective spin
blocking at dopant sites. This blocking occurs even in absence of an electric field
and is amplified when the charge concentration is increased.

A huge magnetoconductance has been measured in molecular wires embedded in
a zeolite L crystal. We have modeled the conduction through those wires using a
chain of sites in Chapter 6. We conclude that a similar mechanism as in the doped
polymers leads to spin blocking in the wires, where trapped electrons instead of
dopant sites lead to spin blocking. We suggest that the potassium ions that are
present in the zeolite lead to the necessary trapping, because trapping by just the
energetic disorder results in neither the right magnitude nor in the right electric
field dependence of the magnetoconductance as compared to the experiment.

When all effective magnetic fields are aligned, the amount of spin mixing depends
on the hopping rate and the difference in magnitude of the effective magnetic fields
felt by two particles on different sites. The effective magnetic fields vary from site
to site due to the random nature of the hyperfine fields. However, in Chapter 7

we show that additional spin mixing happens when an external magnetic field
is present that varies more strongly as a function of position than the hyperfine
fields do. We conclude that the magnetoconductance that was measured in a
device with a single magnetic electrode is the result of this kind of spin mixing.
The magnetization of the magnetic layer changes as a function of the applied
magnetic field. The resulting change in the fringe fields throughout the organic
semiconductor leads to a change in spin mixing and thus in a change in the
current.

Finally, the main conclusions of this thesis are summarized and an outlook on the
future of modeling of magnetic field effects in organic semiconductors is given in
Chapter 8.
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47 H. Houili, E. Tutiš, I. Batistić, and L. Zuppiroli. Investigation of the charge
transport through disordered organic molecular heterojunctions. J. Appl. Phys.
100, 033702 (2006). (page 30)

48 B. Hu and Y. Wu. Tuning magnetoresistance between positive and negative values
in organic semiconductors. Nature Mat. 6, 985 (2007). (pages 15, 35, 57, 58, 60)

49 I. N. Hulea, H. B. Brom, A. J. Houtepen, D. Vanmaekelbergh, J. J. Kelly, and
E. A. Meulenkamp. Wide Energy-Window View on the Density of States and
Hole Mobility in Poly(p-Phenylene Vinylene). Phys. Rev. Lett. 93, 166601 (2004).
(page 3)

50 F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees.
Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature
416, 713 (2002). (page 19)

51 R. C. Johnson and R. E. Merrifield. Effects of Magnetic Fields on the Mutual
Annihilation of Triplet Excitons in Anthracene Crystals. Phys. Rev. B 1, 896 (1979).
(page 25)

52 R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen. Effects of Mag-
netic Fields on the Mutual Annihilation of Triplet Excitons in Molecular Crystals.
Phys. Rev. Lett. 19, 285 (1967). (page 16)

53 J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori. Magnetic
field effects on emission and current in Alq3-based electroluminescent diodes. Chem.
Phys. Lett. 380, 710 (2003). (pages 8, 35, 36, 57, 60)

54 K. Kanemoto, H. Matsuoka, Y. Ueda, K. Takemoto, K. Kimura1, and H. Hashi-
moto. Displacement current induced by spin resonance in air-treated conjugated
polymer diodes. Phys. Rev. B 86, 125201 (2012). (page 17)

55 Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi.
100% phosphorescence quantum efficiency of Ir(III) complexes in organic semicon-
ductor films. Appl. Phys. Lett. 86, 071104 (2005). (page 7)

56 S. P. Kersten, S. C. J. Meskers, and P. A. Bobbert. Route towards huge mag-
netoresistance in doped polymers. Phys. Rev. B 86, 045210 (2012). (pages 57,
105)

57 S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert. Effect of
hyperfine interactions on exciton formation in organic semiconductors. Synth. Met.
161, 613 (2011). (pages 47, 105)

http://dx.doi.org/10.1016/0379-6779(93)90949-W
http://dx.doi.org/10.1016/0379-6779(93)90949-W
http://dx.doi.org/10.1002/macp.1993.021940608
http://dx.doi.org/10.1002/macp.1993.021940608
http://dx.doi.org/10.1103/PhysRevB.79.085203
http://dx.doi.org/10.1063/1.2222041
http://dx.doi.org/10.1063/1.2222041
http://dx.doi.org/10.1038/nmat2034
http://dx.doi.org/10.1103/PhysRevLett.93.166601
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1038/416713a
http://dx.doi.org/10.1103/PhysRevLett.19.285
http://dx.doi.org/10.1016/j.cplett.2003.09.086
http://dx.doi.org/10.1016/j.cplett.2003.09.086
http://dx.doi.org/10.1103/PhysRevB.86.125201
http://dx.doi.org/10.1063/1.1862777
http://dx.doi.org/10.1103/PhysRevB.86.045210
http://dx.doi.org/10.1016/j.synthmet.2010.11.040
http://dx.doi.org/10.1016/j.synthmet.2010.11.040


Bibliography 113

58 S. P. Kersten, A. J. Schellekens, B. Koopmans, and P. A. Bobbert. Magnetic-
Field Dependence of the Electroluminescence of Organic Light-Emitting Diodes: A
Competition between Exciton Formation and Spin Mixing. Phys. Rev. Lett. 106,
197402 (2011). (pages 35, 47, 58, 105)

59 D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler. Triplet anni-
hilation exceeding spin statistical limit in highly efficient fluorescent organic light-
emitting diodes. J. Appl. Phys. 106, 124510 (2009). (pages 7, 16)

60 R. Kubo. Note on the Stochastic Theory of Resonance Absorption. J. Phys. Soc.
Jpn. 9, 935 (1954). (page 25)

61 S. K. Lee, Y. Zu, A. Herrmann, Y. Geerts, K. Müllen, and A. J. Bard. Elec-
trochemistry, Spectroscopy and Electrogenerated Chemiluminescnece of Perylene,
Terrylene, and Quaterrylene Diimides in Aprotic Solution. J. Am Chem. Soc. 121,
3513 (1999). (pages 75, 77)

62 S.-Y. Lee, S.-Y. Paik, D. R. McCamey, J. Yu, P. L. Burn, J. M. Lupton, and C.
Boehme. Tuning Hyperfine Fields in Conjugated Polymers for Coherent Organic
Spintronics. JACS 133, 2019 (2011). (page 10)

63 X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. N. Reddy,
S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell. Electrical detection of spin
transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197 (2007).
(page 19)

64 F. Macià, F. Wang, N. J. Harmon, M. Wohlgenannt, A. D. Kent, and M. E.
Flatté. Hysteretic control of organic conductance due to remanent magnetic fringe
fields. Appl. Phys. Lett. 102, 042408 (2013). (pages 86, 91)

65 R. N. Mahato, H. Lülf, M. H. Siekman, S. P. Kersten, P. A. Bobbert, M. P. de
Jong, L. de Cola, and W. G. van der Wiel. Giant Organic Magnetoresistance
in One-Dimensional Molecular Wires. Manuscript submitted for publication,
(pages 73–76, 105)

66 R. A. Marcus. Electron transfer reactions in chemistry. Theory and experiment.
Rev. Mod. Phys. 65, 599 (1993). (pages 3, 68)

67 J. Y. Mayorova, P. A. Troshin, A. S. Peregudov, S. M. Peregudova, M. G. Kaplu-
nova, and R. N. Lyubovskayaa. Highly soluble perylene dye: tetrabenzyl 3,4,9,10-
perylenetetracarboxylate. Mendeleev Commun. 17, 156 (2007). (page 14)

68 D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S.-Y. Paik, J. M.
Lupton, and C. Boehme. Hyperfine-Field-Mediated Spin Beating in Electrostati-
cally Bound Charge Carrier Pairs. Phys. Rev. Lett. 104, 017601 (2010). (pages 18,
42)

69 D. R. McCamey, H. A. Seipel, S.-Y. Paik, M. J. Walter, N. J. Borys, J. M. Lupton,
and C. Boehme. Spin Rabi flopping in the photocurrent of a polymer light-emitting
diode. Nature Mat. 7, 723 (2008). (page 18)

70 H. M. McConnel. Indirect Hyperfine Interactions in the Paramagnetic Resonance
Spectra of Aromatic Free Radicals. J. Chem. Phys. 24, 764 (1956). (page 11)

71 H. M. McConnell and D. B. Chesnut. Theory of Isotropic Hyperfine Interactions
in π-Electron Radicals. J. Chem. Phys. 28, 107 (1958). (page 11)

http://dx.doi.org/10.1103/PhysRevLett.106.197402
http://dx.doi.org/10.1103/PhysRevLett.106.197402
http://dx.doi.org/10.1063/1.3273407
http://dx.doi.org/10.1143/JPSJ.9.935
http://dx.doi.org/10.1143/JPSJ.9.935
http://dx.doi.org/10.1021/ja984188m
http://dx.doi.org/10.1021/ja984188m
http://dx.doi.org/10.1021/ja108352d
http://dx.doi.org/10.1038/nphys543
http://dx.doi.org/10.1063/1.4790141
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1016/j.mencom.2007.05.008
http://dx.doi.org/10.1103/PhysRevLett.104.017601
http://dx.doi.org/10.1038/nmat2252
http://dx.doi.org/10.1063/1.1742605
http://dx.doi.org/10.1063/1.1744052


114 Bibliography

72 B. Meng and W. H. Weinberg. Monte Carlo simulations of temperature pro-
grammed desorption spectra. J. Chem. Phys. 100, 5280 (1994). (page 30)

73 Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M.
Wohlgenannt, A. Kohler, M. K. Al-Suti, and M. S. Khan. Large magnetore-
sistance in nonmagnetic π-conjugated semiconductor thin film devices. Phys. Rev.
B 72, 205202 (2005). (page 58)

74 Ö. Mermer, G. Veeraraghavan, T. L. Francis, and M. Wohlgenannt. Large
magnetoresistance at room-temperature in small-molecular-weight organic semicon-
ductor sandwich devices. Solid State Commun. 134, 631 (2005). (pages 8, 9)

75 N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science
Special Issue, 125 (1987). (page 30)

76 N. Metropolis and S. Ulam. The Monte Carlo Method. J. Am. Stat. Ass. 44, 335

(1949). (page 30)

77 A. Miller and E. Abrahams. Impurity conduction at low concentrations. Phys.
Rev. 120, 745 (1960). (pages 3, 68)

78 W. J. M. Naber, S. Faez, and W. van der Wiel. Organic spintronics. J. Phys. D:
Appl. Phys. 40, R205 (2007). (page 19)

79 A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A.
J. Janssen. Conductivity, work function, and environmental stability of PEDOT:PSS
thin films treated with sorbitol. Org. Electr. 9, 727 (2008). (page 75)

80 T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny. Spin-Polarized Light-Emit-
ting Diode Based on an Organic Bipolar Spin Valve. Science 337, 204 (2012).
(pages 8, 97)

81 T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny. The spin-polarized organic
light emitting diode. Synth. Met. doi: 10.1016/j.synthmet.2012.11.015, (2013).
(page 8)

82 T. D. Nguyen, B. R. Gautam, E. Ehrenfreund, and Z. V. Vardeny. Magnetocon-
ductance Response in Unipolar and Bipolar Organic Diodes at Ultrasmall Fields.
Phys. Rev. Lett. 105, 166804 (2010). (pages 9, 10, 14, 45, 46, 57, 58, 60)

83 T. D. Nguyen, G. Hukic-Markosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfre-
und, and Z. V. Vardeny. Isotope effect in spin response of π-conjugated polymer
films and devices. Nature Materials 9, 345 (2010). (pages 10, 36, 42–44, 48, 57,
58, 60)

84 T. D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan, and M. Wohlgenannt.
Magnetoresistance in π-conjugated organic sandwich devices with varying hyper-
fine and spin-orbit coupling strengths, and varying dopant concentrations. J. Mat.
Chem. 17, 1995 (2007). (page 72)

85 T. D. Nguyen, Y. Sheng, J. Rybicki, and M. Wohlgenannt. Magnetic field-effects
in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) alu-
minum devices. Phys. Rev. B 77, 235209 (2008). (page 8)

86 U. Niedermeier, M. Vieth, R. Pätzold, W. Sarfert, and H. von Seggern. En-
hancement of organic magnetoresistance by electrical conditioning. Appl. Phys.
Lett. 92, 193309 (2008). (pages 17, 57, 60)

http://dx.doi.org/10.1063/1.467192
http://dx.doi.org/10.1103/PhysRevB.72.205202
http://dx.doi.org/10.1103/PhysRevB.72.205202
http://dx.doi.org/10.1016/j.ssc.2005.02.044
http://library.lanl.gov/la-pubs/00326866.pdf
http://library.lanl.gov/la-pubs/00326866.pdf
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1103/PhysRev.120.745
http://dx.doi.org/10.1088/0022-3727/40/12/R01
http://dx.doi.org/10.1088/0022-3727/40/12/R01
http://dx.doi.org/10.1016/j.orgel.2008.05.006
http://dx.doi.org/10.1126/science.1223444
http://dx.doi.org/10.1016/j.synthmet.2012.11.015
http://dx.doi.org/10.1103/PhysRevLett.105.166804
http://dx.doi.org/10.1038/NMAT2633
http://dx.doi.org/10.1039/B617541D
http://dx.doi.org/10.1039/B617541D
http://dx.doi.org/10.1103/PhysRevB.77.235209
http://dx.doi.org/10.1063/1.2924765
http://dx.doi.org/10.1063/1.2924765


Bibliography 115

87 R. Österbacka, M. Wohlgenannt, D. Chinn, and Z. V. Vardeny. Optical studies
of triplet excitations in poly(p-phenylene vinylene). Phys. Rev. B 60, 16 (1999).
(pages 16, 82)

88 R. H. Parmenter and W. Rupel. Two-carrier Space-Charge-Limited Current in a
Trap-Free Insulator. J. Appl. Phys. 30, 1548 (1959). (page 5)

89 W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom,
D. M. de Leeuw, and M. A. J. Michels. Unified Description of Charge-Carrier
Mobilities in Disordered Semiconducting Polymers. Phys. Rev. Lett. 94, 206601

(2005). (pages 36, 48)

90 R. Peierls. Quantum theory of solids (Clarendon, ) (page 3)

91 Philips. Philips presents world’s first OLED-based interactive lighting concepts.
(2009) url: http://www.newscenter.philips.com/main/standard/

about/news/press/20090423_oled.wpd (page 2)

92 V. Prigodin, J. Bergeson, D. Lincoln, and A. Epstein. Anomalous room tempera-
ture magnetoresistance in organic semiconductors. Synth. Metals 156, 757 (2006).
(pages 15, 35, 36, 57, 58, 60)

93 S. van Reenen, P. Matyba, A. Dzwilewski, R. A. J. Janssen, L. Edman, and M.
Kemerink. A Unifying Model for the Operation of Light-Emitting Electrochemical
Cells. J. Am. Chem. Soc. 132, 13776 (2010). (page 15)

94 T. Reichert, T. P. I. Saragi, and J. Salbeck. Magnetoresistive field-effect transistors
based on organic donorÐacceptor blends. RSC Adv. 2, 7388 (2012). (pages 14, 97)

95 T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko. Resonance
effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429,
177 (2004). (page 18)

96 N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin.
Elucidating the role of hyperfine interactions on organic magnetoresistance using
deuterated aluminium tris(8-hydroxyquinoline). Phys. Rev. B 80, 241201(R) (2009).
(page 42)

97 N. J. Rolfe, M. Heeney, P. B. Wyattc, A. J. Drew, T. Kreouzis, and W. P. Gillin.
The effect of deuteration on organic magnetoresistance. Synth. Met. , 608 (2011).
(page 10)

98 C. Rothe, S. M. King, and A. P. Monkman. Direct Measurement of the Singlet
Generation Yield in Polymer Light-Emitting Diodes. Phys. Rev. Lett. 97, 076602

(2006). (pages 7, 36)

99 J. Rybicki, R. Lin, F. Wang, M. Wohlgenannt, C. He, T. Sanders, and Y. Suzuki.
Tuning the Performance of Organic Spintronic Devices Using X-Ray Generated
Traps. Phys. Rev. Lett. 109, 076603 (2012). (page 17)

100 G. Salis, S. F. Alvarado, M. Tschudy, T. Brunschwiler, and R. Allenspach.
Hysteretic electroluminescence in organic light-emitting diodes for spin injection.
Phys. Rev. B 70, 085203 (2004). (page 19)

101 S. Sanvito. Organic Electronics: Spintronics goes plastic. Nature Mat. 6, 803

(2007). (page 19)

http://dx.doi.org/10.1103/PhysRevB.60.R11253
http://dx.doi.org/10.1063/1.1734999
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://dx.doi.org/10.1103/PhysRevLett.94.206601
http://www.newscenter.philips.com/main/standard/about/news/press/20090423_oled.wpd
http://www.newscenter.philips.com/main/standard/about/news/press/20090423_oled.wpd
http://dx.doi.org/10.1016/j.synthmet.2006.04.010
http://dx.doi.org/10.1021/ja1045555
http://dx.doi.org/10.1039/c2ra20901b
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1038/nature02534
http://dx.doi.org/10.1103/PhysRevB.80.241201
http://dx.doi.org/10.1016/j.synthmet.2010.11.044
http://dx.doi.org/10.1103/PhysRevLett.97.076602
http://dx.doi.org/10.1103/PhysRevLett.97.076602
http://dx.doi.org/10.1103/PhysRevLett.109.076603
http://dx.doi.org/10.1103/PhysRevB.70.085203
http://dx.doi.org/10.1038/nmat2050
http://dx.doi.org/10.1038/nmat2050


116 Bibliography

102 S. Sanvito. Molecular spintronics. Chem. Soc. Rev. 40, 3336 (2011). (page 19)

103 A. J. Schellekens, W. Wagemans, S. P. Kersten, P. A. Bobbert, and B. Koop-
mans. Microscopic modeling of magnetic-field effects on charge transport in organic
semiconductors. Phys. Rev. B 84, 075204 (2011). (pages 16, 17, 82, 105)

104 G. Schönherr, H. Bässler, and M. Silver. Dispersive hopping transport via sites
having a Gaussian distribution of energies. Phil. Mag. Part B 44, (1981). (page 30)

105 K. Schulten and P. Wolynes. Semiclassical description of electron spin motion in
radicals including the effect of hopping. J. Chem. Phys. 68, 3292 (1978). (pages 11,
37, 58)

106 M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos. Excitonic
singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68,
075211 (2003). (pages 7, 36, 42)

107 Z. Shuai, D. Beljonne, R. J. Silbey, and J. L. Brédas. Singlet and triplet exciton
formation rates in conjugated polymer light-emitting diodes. Phys. Rev. Lett. 84,
131 (2000). (page 50)

108 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M.
W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig,
and D. M. de Leeuw. Two-dimensional charge transport in self-organized, high-
mobility conjugated polymers. Nature 401, 685 (1999). (page 1)

109 S. Stafström. Electron localization and the transition from adiabatic to nonadiabatic
charge transport in organic conductors. Chem. Soc. Rev. 39, 2484 (2010). (pages 3,
68)

110 T. T. Steckler, X. Zhang, J. Hwang, R. Honeyager, S. Ohira, X.-H. Zhang,
A. Grant, S. Ellinger, S. A. Odom, D. Sweat, D. B. Tanner, A. G. Rinzler, S.
Barlow, J.-L. Brédas, B. Kippelen, S. R. Marder, and J. R. Reynolds. A Spray-
Processable, Low Bandgap, and Ambipolar Donor-Acceptor Conjugated Polymer. J.
Am. Chem. Soc. 131, 2824 (2009). (page 71)

111 U. E. Steiner and T. Ulrich. Magnetic Field Effects in Chemical Kinetics and
Related Phenomena. Chem. Rev. 89, 51 (1989). (pages 9, 58)

112 A. Suna. Kinematics of Exciton-Exciton Annihilation in Molecular Crystals. Phys.
Rev. B 1, 1716 (1970). (page 25)

113 C. W. Tang and S. A. VanSlyke. Organic electroluminescent diodes. Appl. Phys.
Lett. 51, 913 (1987). (page 1)

114 Y. Tanimura. Stochastic Liouville, Langevin, Fokker-Planck, and Master Equation
Approaches to Quantum Dissipative Systems. J. Phys. Soc. Jap. 75, 082001 (2006).
(page 25)

115 Y.-S. Tyan. Organic light-emitting-diode lighting overview. J. Photon. Energy 1,
011009-1 (2011). (page 7)

116 H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi. Highly efficient
organic light-emitting diodes from delayed fluorescence. Nature 492, 234 (2012).
(page 7)

http://dx.doi.org/10.1039/c1cs15047b
http://dx.doi.org/10.1103/PhysRevB.84.075204
http://dx.doi.org/10.1080/01418638108222366
http://dx.doi.org/10.1063/1.436135
http://dx.doi.org/10.1103/PhysRevB.68.075211
http://dx.doi.org/10.1103/PhysRevB.68.075211
http://dx.doi.org/10.1103/PhysRevLett.84.131
http://dx.doi.org/10.1103/PhysRevLett.84.131
http://dx.doi.org/10.1038/44359
http://dx.doi.org/10.1039/B909058B
http://dx.doi.org/10.1021/ja809372u
http://dx.doi.org/10.1021/ja809372u
http://dx.doi.org/10.1021/cr00091a003
http://dx.doi.org/10.1103/PhysRevB.1.1716
http://dx.doi.org/10.1103/PhysRevB.1.1716
http://dx.doi.org/10.1063/1.98799
http://dx.doi.org/10.1063/1.98799
http://dx.doi.org/10.1143/JPSJ.75.082001
http://dx.doi.org/10.1117/1.3529412
http://dx.doi.org/10.1117/1.3529412
http://dx.doi.org/10.1038/nature11687


Bibliography 117

117 Z. Vardeny, E. Ehrenfreund, O. Brafman, M. Nowak, H. Schaffer, A. J. Heeger,
and F. Wudl. Photogeneration of confined soliton pairs (Bipolarons) in polythio-
phene. Phys. Rev. Lett. 56, 671 (1986). (page 14)

118 J. von Neumann. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik.
Göttinger Nachrichten 1, 245 (1927). (page 23)

119 A. F. Voter. Introduction to the Kinetic Monte Carlo Method. url: http://www.
ipam.ucla.edu/publications/matut/matut_5898_preprint.pdf (page 30)

120 W. Wagemans. Plastic Spintronics. PhD thesis, Eindhoven University of Tech-
nology (2012). (page 20)

121 W. Wagemans, F. Bloom, P. Bobbert, M. Wohlgenannt, and B. Koopmans. A
two-site bipolaron model for organic magnetoresistance. J. Appl. Phys. 103, 07F303

(2008). (page 87)

122 K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo. Highly efficient organic devices
based on electrically doped transport layers. Chem. Rev. 107, 1233 (2007). (pages 5,
6, 71)

123 F. Wang, F. Macià, M. Wohlgenannt, A. D. Kent, and M. E. Flatté. Magnetic
Fringe-Field Control of Electronic Transport in an Organic Film. Phys. Rev. X 2,
021013 (2012). (pages 19, 86–88, 91, 92)

124 F. J. Wang, H. Bässler, and Z. V. Vardeny. Magnetic Field Effects in π-Conjuga-
ted Polymer-Fullerene Blends: Evidence for Multiple Components. Phys. Rev. Lett.
101, 236805 (2008). (pages 14, 17, 36, 57, 60)

125 S. I. Weissman. Hyperfine Splittings in Polyatomic Free Radicals. J. Chem. Phys.
22, 1378 (1954). (page 11)

126 J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Kahn, A. Köhler, and R. H.
Friend. Spin-dependent exciton formation in π-conjugated compounds. Nature
413, 828 (2001). (pages 7, 36)

127 M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny.
Formation cross-sections of singlet and triplet excitons in π-conjugated polymers.
Nature 409, 494 (2001). (pages 7, 36)

128 Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi. Giant magnetoresistance in
organic spin-valves. Nature 427, 821 (2004). (page 8)

129 Y. Yoshida, A. Fujii, M. Ozaki, K. Yoshino, and E. L. Frankevich. Magnetic
Field Effect as a Test for Effectiveness of the Light Emission at the Recombination of
Injected Charge Carriers in Polymeric Semiconductors. Mol. Cryst. Liquid Cryst.
426, 19 (2005). (pages 7, 36)

130 W. Young and E. Elcock. Monte Carlo studies of vacancy migration in binary
ordered alloys: I. Proc. Phys. Soc. 89, 735 (1966). (page 30)

131 Z. G. Yu. Spin-Orbit Coupling, Spin Relaxation, and Spin Diffusion in Organic
Solids. Phys. Rev. Lett. 106, 106602 (2011). (pages 8, 12)

132 Z. G. Yu. Spin-orbit coupling and its effects in organic solids. Phys. Rev. B 85,
115201 (2012). (pages 12, 16, 17)

http://dx.doi.org/10.1103/PhysRevLett.56.671
http://www.ipam.ucla.edu/publications/matut/matut_5898_preprint.pdf
http://www.ipam.ucla.edu/publications/matut/matut_5898_preprint.pdf
http://dx.doi.org/10.1063/1.2828706
http://dx.doi.org/10.1063/1.2828706
http://dx.doi.org/10.1021/cr050156n
http://dx.doi.org/10.1103/PhysRevX.2.021013
http://dx.doi.org/10.1103/PhysRevX.2.021013
http://dx.doi.org/10.1103/PhysRevLett.101.236805
http://dx.doi.org/10.1103/PhysRevLett.101.236805
http://dx.doi.org/10.1063/1.1740399
http://dx.doi.org/10.1063/1.1740399
http://dx.doi.org/10.1038/35101565
http://dx.doi.org/10.1038/35101565
http://dx.doi.org/10.1038/35054025
http://dx.doi.org/10.1038/nature02325
http://dx.doi.org/10.1080/15421400590890642
http://dx.doi.org/10.1080/15421400590890642
http://dx.doi.org/10.1088/0370-1328/89/3/329
http://dx.doi.org/10.1103/PhysRevLett.106.106602
http://dx.doi.org/10.1103/PhysRevB.85.115201
http://dx.doi.org/10.1103/PhysRevB.85.115201


118 Bibliography

133 A. A. Zezin, V. I. Feldman, J. M. Warman, J. Wildeman, and G. Hadziioannou.
EPR study of positive holes on phenylene vinylene chains: tom dimer to polymer.
Chem. Phys. Lett. 389, 108 (2004). (page 12)

134 Y. Zhang and S. R. Forrest. Triplets Contribute to Both an Increase and Loss in
Fluorescent Yield in Organic Light Emitting Diodes. Phys. Rev. Lett. 108, 267404

(2012). (pages 7, 16)

135 Y. Zhang, R. Liu, Y. L. Lei, and Z. H. Xiong. Low temperature magnetic field
effects in Alq3-based organic light emitting diodes. Appl. Phys. Lett. 94, 083307

(2009). (page 16)

136 J. Zhou, Y. C. Zhou, J. M. Zhao, C. Q. Wu, X. M. Ding, and X. Y. Hou. Carrier
density dependence of mobility in organic solids: A Monte Carlo simulation. Phys.
Rev. B 75, 153201 (2007). (page 30)

http://dx.doi.org/10.1016/j.cplett.2004.03.071
http://dx.doi.org/10.1103/PhysRevLett.108.267404
http://dx.doi.org/10.1103/PhysRevLett.108.267404
http://dx.doi.org/10.1063/1.3089844
http://dx.doi.org/10.1063/1.3089844
http://dx.doi.org/10.1103/PhysRevB.75.153201
http://dx.doi.org/10.1103/PhysRevB.75.153201


Index
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∆g-effect, 16, 87

Alignment, 14, 40

Bandgap, 3

Bipolaron, 12, 73, 76

Charge blocking, 63, 66

Conditioning, 17

Coulomb interaction, 14, 49, 51, 59, 95

Density matrix, see also Density operator,
24

Density operator, 23

Detailed balance, 33

Deuteration, 10, 36, 43

Dimensionality, 59, 70, 73, 76, 96

Disorder configuration, 31

Doping, 5, 58

EDMR, see Electrically detected magnetic
resonance

Effective magnetic field, 13

Electrically detected magnetic resonance,
18, 42

Electron-hole pair, see Polaron pair
Energetic disorder, 3, 47, 51, 67, 78

Exciton, 15, 36, 82, 87

Fringe field, 19, 86

g-factor, 16, 18, 87

Hanle effect, 19

High-field effects, 9

HOMO, 3

Hopping, 3

Marcus rates, 3

Miller-Abrahams rates, 3

Hyperfine field, 11

Semi-classical approximation, 11

Hyperfine frequency, 27

Hyperfine interaction, 9

Injection, 4

Lineshape, 8, 42, 67, 78, 86, 91

Lorentzian, 8, 17, 42, 67

Non-Lorentzian, 8, 67, 75, 78

Lorentzian, see Lineshape
LUMO, 3

Magnetic electrode, 86

Magneto-electroluminescence, 8
Magnetoconductance, 90

Magnetoconduction, 8, 57, 75

Magnetodiffusion, 8, 64

Magnetoresistance, see Magnetoconduc-
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MC, see Magnetoconduction, see Monte
Carlo

McConnell rule, 11

MEL, see Magneto-electroluminescence
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MR, see Magnetoconduction

Non-Lorentzian, see Lineshape

ODMR, see Optically detected magnetic
resonance

OLED, see Organic Light-Emitting Diode
Optically detected magnetic resonance,

18

Organic Light-Emitting Diode, 6, 36

Efficiency, 36

PEDMR, see Pulsed EDMR
Percolation, 4

Phonon, 3, 25

Photocurrent, 5

Polaron, 3

Polaron pair, 14, 37

Positional configuration, 25

Precession frequency, 16, 44, 87

Pulsed EDMR, 18

Rabi oscillations, 18

Radical-pair mechanism, 10

Recombination mobility, 5

Relative hopping rate, 37, 48

Reorganization energy, 3

Resistor network, 32–34, 60–63
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Semiclassical approximation, see Hyper-
fine field

Singlet fraction, 38, 50, 89

Site, 3

Slow hopping, 27, 87, 95

Space charge, 4

~limited current, 4, 15

Spin blocking, 60, 64

Spin mixing, 13, 27, 38, 44, 87

Spin projection factor, 28, 40, 62, 77

Spin valve, 19

Spin-OLED, 7

Spin-orbit coupling, 12

Spin-polarized injection, 7, 97

Spintronics, 19

Statistical ratio, 7, 36, 96

Stochastic Liouville equation, 24–27, 38,
49, 89, 99

Time step, 31

Traps, 17, 49, 77, 78

Triplet-charge interaction, 16

Triplet-triplet annihilation, 7, 16
Two-site model, 36

Ultra-small-magnetic-field effect, 9, 36,
43–45

USMFE, see Ultra-small-magnetic-field
effect

Zeolite, 74

Zero-field splitting, 16
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