
Flows Over Time

with

Flow-Dependent Transit Times

vorgelegt von
Dipl.-Math. Katharina Langkau

aus Bonn

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Rolf H. Möhring
Prof. Dr. Günter Rote

Tag der wissenschaftlichen Aussprache: 10. September 2003

Berlin 2003
D 83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/57701116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Zusammenfassung

Transportprobleme werden in der Kombinatorischen Optimierung üblicher-
weise mit Hilfe von Netzwerkflüssen modelliert. Das klassische Flussmodell
ist jedoch statisch und reflektiert daher nur unzureichend die zeitliche Kom-
ponente eines Transportproblems.

Ein spezielles Transportproblem entsteht bei der Straßenverkehrslenkung.
Neue Technologien, wie z.B. Navigationssysteme, haben ein verstärktes Inter-
esse an einer akkuraten Modellierung und Optimierung von Verkehrsflüssen
geweckt. In der vorliegenden Arbeit werden Flussmodelle betrachtet, welche
die typischen Eigenschaften von Straßenverkehr widerspiegeln. Hierbei wird
auf folgende grundlegende Eigenschaften abgezielt: Im Straßenverkehr ver-
ändert sich die Netzbelastung über die Zeit hinweg. Während zur Hauptver-
kehrszeit eine hohe Netzbelastung herrscht, kann bereits wenige Zeit später
eine entspannte Verkehrssituation vorliegen. Ein weiteres Phänomen ist die
Abhängigkeit der Fahrzeiten vom Verkehrsfluss. Ein hohes Verkehrsaufkom-
men zieht lange Fahrzeiten und Verzögerungen nach sich.

Schwerpunkt der vorliegenden Arbeit ist ein Flussmodell, das den beiden
genannten Eigenschaften genügt und damit ein, wenn auch vereinfachtes,
Abbild des realen Straßenverkehrs darstellt. Die zugrundeliegende Modellan-
nahme ist die Abhängigkeit der Fahrzeit einer Kante von der vorherrschenden
Zuflussrate auf der Kante. Innerhalb dieses Modells werden klassische Frage-
stellungen der Netzwerkflusstheorie behandelt.

Beim
”
Quickest Flow Problem“ ist ein Netzwerkfluss gesucht, der in mini-

maler Zeit eine gegebene Flussmenge von einem Startknoten (Quelle) zu ei-
nem Zielknoten (Senke) transportiert. Dieses Problem ist bereits NP-schwer,
und folglich existiert vermutlich kein polynomialer Lösungsalgorithmus. Je-
doch lassen sich in polynomialer Zeit approximative Lösungen, d.h. zulässige
Lösungen beweisbarer Güte, berechnen. Ein wesentlicher Bestandteil der vor-
liegenden Arbeit ist die Herleitung solcher Approximationsalgorithmen.

In einem ersten Schritt wird eine geeignete, polynomial lösbare Relaxie-
rung des Modells vorgestellt. Diese beruht auf einer Expansion des ursprüngli-
chen Netzwerks zu einem Netzwerk, in dem die Fahrzeiten nicht mehr explizit
flussabhängig sind sondern konstant. Im wesentlichen tritt jede ursprüngliche
Kante im expandierten Netzwerk vielfach auf. Jede Kopie repräsentiert eine
andere konstante Fahrzeit auf der Kante. Durch geschickte Wahl der Kapa-

iv Zusammenfassung

zitäten sind die auftretenden Fahrzeiten nur noch indirekt flussabhängig.
Basierend auf dieser Relaxierung werden in einem zweiten Schritt Ap-

proximationsalgorithmen entwickelt. Insbesondere wird auch das Mehrgü-
terflussproblem behandelt. Hierbei sind mehrere Quelle-Senke Paare gegeben
und gesucht ist ein Fluss, der den Bedarf jedes einzelnen Quelle-Senke Paares
deckt. Für dieses Problem wird ein voll polynomiales Approximationsschema
entwickelt, d.h. ein Lösungsverfahren, das zulässige Lösungen berechnet, die
eine optimale Lösung beliebig genau annähern. Da das

”
Quickest Flow Pro-

blem“ NP-schwer ist, ist dieses Ergebnis aus komplexitätstheoretischer Sicht
vermutlich nicht verbesserbar.

Acknowledgements

About three years ago I applied for a PhD position in the European Graduate
Program“Combinatorics, Geometry, and Computations”. Now, my thesis has
taken shape and I would like to thank several people for their support.

In the first place, I am grateful to Rolf Möhring for supervising my thesis.
He helped me to find the right topic and fully supported my research. At the
same time he allowed independent work and development. I benefited a lot
from the possibility of visiting international workshops and conferences and
I am thankful for Rolf Möhring’s trust.

It was a real pleasure to work together with Alex Hall, Ekkehard Köhler,
and Martin Skutella. In particular, I wish to thank Ekki and Martin who
gave me directions in asking the right questions and finding the right answers.

The European Graduate Program “Combinatorics, Geometry, and Com-
putations” offered me numerous opportunities to widen my horizon also in
other fields of Mathematics. The weekly lectures, schools, courses, and work-
shops all over Europe were interesting, instructive, and, moreover, lots of fun.
The financial support was granted by the German National Science Founda-
tion (DFG) (grant GRK 588/2).

My special thanks go to András Frank for giving me the opportunity
to join his research group at the Eötvös Loránd University, Budapest. He
aroused my interest in various graph theoretical problems and always had
time for inspiring discussions.

I wish to thank Martin Skutella, Marc Pfetsch, Ekkehard Köhler, Nicole
Megow, Ines Spenke, Volker Kaibel, Georg Baier, Sebastian Stiller, and Heiko
Schilling for their careful proof-reading of different parts of the manuscript
and for their helpful suggestions for improvement. I thank Nadine Baumann,
Lydia Franck, and Ewgenij Gawrilow for their support in producing computa-
tional results and Marc Pfetsch for providing his dissertation files. Moreover,
I thank Günter Rote for his willingness to take the second assessment of this
thesis.

Finally, my thanks go to the members of the research groups of Rolf
Möhring and Günter Ziegler. Without the daily coffee breaks, work would
not have been half as nice.

Berlin, July 2003 Katharina Langkau

Contents

Introduction 1

1 Network Flow Models 7

1.1 Introduction . 7

1.2 Static Network Flows . 8

1.3 Flows Over Time with Fixed Transit Times 9

1.3.1 Continuous Flows Over Time 10

1.3.2 Discrete Flows Over Time 13

1.3.3 Time-Expanded Graphs 13

1.3.4 Continuous versus Discrete Model 15
1.3.5 Known Results . 16

1.4 Flow-Dependent Transit Times 23

1.4.1 Time-Dependent Flows 25

1.4.2 Inflow-Dependent Transit Times 26

1.4.3 Load-Dependent Transit Times 27

1.4.4 Temporally Repeated Flows 28

1.4.5 Dynamic Traffic Assignment 30

2 Quickest s-t-Flows 35

2.1 Introduction . 35

2.2 A Relaxation . 36

2.2.1 The Bow Graph . 36

2.2.2 Relaxation Property of the Bow Graph 37

2.3 Constant Factor Approximations for Quickest Flows 42

2.3.1 Piecewise Constant Transit Times 43

2.3.2 General Transit Times 47

2.3.3 An Improved Result for Concave Transit Times 52

2.3.4 The Fan Graph . 58

2.3.5 Convex Transit Times 60

2.3.6 Computing Temporally Repeated Flows 64

2.3.7 Limits of the Static Approach 67
2.4 Complexity . 70

2.5 Computational Results . 74

vii

viii Contents

3 Quickest Multi-Commodity Flows 87
3.1 Introduction . 87
3.2 A Stronger Relaxation . 88

3.2.1 The New Bow Graph 89
3.2.2 Relaxation Property of the New Model 90

3.3 A Constant Factor Approximation for Quickest Flows 94
3.3.1 Quickest Weakly Inflow-Preserving Flows 94
3.3.2 The Algorithm . 98

3.4 FPTAS . 101
3.4.1 Condensed Time-Expanded Graphs 101
3.4.2 The Algorithm . 103

3.5 Complexity . 113

4 The First In, First Out Property 115
4.1 Introduction . 115
4.2 First In, First Out Violations in the Fan Graph 117
4.3 Complexity . 118
4.4 Geometrically Increasing Capacities 126

Bibliography 131

Symbol Index 137

Index 139

Introduction

Today, mobility is an indispensable part of everyday life and people attach
great importance to private transport. Everybody is familiar with the un-
pleasant side effects: congestion, traffic jams, and rush hour characterize
urban traffic. This has been a major incentive for road traffic industry to
develop new traffic management systems that improve the overall traffic sit-
uation. The resulting technological and financial efforts are considerable as
it is illustrated by the following example.

In the city of Berlin a traffic management center was established whose
aim is to record and evaluate the traffic situation in Berlin. The data gath-
ered shall be used to generate comprehensive traffic information and to im-
prove the traffic situation. The creation and operation of the center will
cost e16 million. In return “a total of 50 WebCams and over 200 infrared
sensors will be installed in locations such as Potsdamer Platz and the TV
Tower Interchange (Dreieck-Funkturm). These will feed into the central Traf-
fic Management Centre computer centre which controls 22 outdoor electronic
display units and a network of existing data centres.”1

As this last sentence indicates, a tremendous amount of data must be
processed when operating such systems. In order to turn the collected data
into valuable information for traffic forecast, traffic management, or even for
route guidance, mathematical models and efficient algorithms are required.
Yet, the design and the optimization of realistic traffic models constitute an
extremely difficult task. A significant body of literature is devoted to this
topic, which is widely referred to as traffic assignment.

A standard approach is to interpret road traffic as a network flow, where
the streets and street crossings form the arcs and nodes, respectively, of the
underlying network. A good model should include the typical characteristics
of traffic flow: First of all, road traffic is dynamic, i.e., the amount of traffic
on a road changes throughout the day due to fluctuating drivers’ requests.
An empty road might turn into a highly congested road during rush hour
times. In contrast to static traffic assignment, dynamic traffic assignment
concentrates on time-varying traffic models, which reflect the dynamic nature
of traffic.

The second characteristic of traffic flow is the dependency of travel times

1http://www.roadtraffic-technology.com/projects/vmz/

1

2 Introduction

on the current traffic situation. In general, driving through a congested street
takes much longer than driving through an empty street. We use the term
flow-dependent transit times to express that transit times depend on the
flow in one way or another. Bookbinder and Sethi [5] remark in their survey
article on the dynamic transportation problem: ”Perhaps the most important
extension is the case in which the time required for a shipment to reach from
source i to sink j is a function of the amount shipped.” Describing the exact
dependency of transit times on the flow values is a highly nontrivial and open
problem. Of course, a fully realistic model must take several parameters into
account including density, speed, and flow rate evolving along the road.

The literature on dynamic traffic assignment has not succeeded yet in
finding a mathematical model that includes the essential characteristics of
traffic flow and that is, above all, tractable. There are hardly any algorithmic
techniques known which are capable of providing reasonable solutions even for
networks of rather modest size. For problem instances of realistic size, already
the solution of mathematical programs relying on simplifying assumptions is
in general still beyond the scope of modern computers. As Kaufman, Nonis,
and Smith [39] conclude: “Unlike the elegant and complete treatment of the
classic static case, the dynamic traffic assignment problem is still largely
unexplored, at least from a formal point of view, where even its problem
formulation is not clearly understood.”

Flow-dependent transit times are relevant in many more applications in-
cluding evacuation planning, production systems, and communication net-
works (e. g., the Internet). It seems, however, that road traffic assignment
has spawned the most sustainable interest in this topic. Not surprisingly,
Hamacher and Tjandra [29] consider dynamic traffic models in the context
of evacuation planning.

Our work is primarily motivated by applications in road traffic control.
Therefore, we usually interpret network flows as road traffic and we measure
the quality of a model with respect to its practicality for traffic control pur-
poses. The focus of our research is on a specific network flow model in which
flow can change over time and in which transit times are flow-dependent.

The underlying assumption of our approach is that at any moment in
time the transit time needed to traverse an arc solely depends on the current
rate of inflow into that arc. We will therefore refer to these flows as flows over
time with inflow-dependent transit times, emphasizing that transit times are
considered as functions of the rate of inflow. In the context of road traffic,
this assumption means that the time needed to drive through a street is
determined when entering the road and it only depends on the number of
cars entering the road at that moment in time.

Much of our research is inspired by the seminal work of Ford and Fulk-

Introduction 3

erson [18, 19] on network flows over time (also known as dynamic network
flows). In this model transit times are fixed. Given a network with capacities
and transit times on the arcs, they study the problem of sending a maximal
amount of flow from a source node s to a sink node t within a pre-specified
time horizon T . Ford and Fulkerson show that this problem can be solved
by one minimum cost static flow computation, where transit times of arcs
are interpreted as cost coefficients. This result of Ford and Fulkerson has
initiated intensive research in this area so that many more classical network
flow problems have been considered and solved in the dynamic setting.

Flows over time with inflow-dependent transit times are a direct gener-
alization of flows over time (with fixed transit times); only that the transit
time of an arc is not fixed, but depends on the inflow rate of that arc. Unfor-
tunately, flows over time with inflow-dependent transit times are much more
difficult to handle: In the quickest s-t-flow problem, we ask for a flow over
time that sends a given demand from a source node s to a sink node t as
quickly as possible. While for fixed transit times the problem can be solved
efficiently (in polynomial time), the problem becomes strongly NP-hard for
inflow-dependent transit times. In particular, we cannot hope for a polyno-
mial time algorithm that computes an optimal solution.

However, flows over time with inflow-dependent transit times still con-
stitute a model that is tractable in the following sense: a solution that ap-
proximates the optimal solution within arbitrary precision can be computed
efficiently, i.e., in polynomial time.

In this thesis, we develop completely novel techniques to compute such
approximate solutions. The techniques rely on a relaxed model of inflow-
dependent transit times. The relaxation is defined on an expanded graph
with fixed transit times on the arcs. Here, the expansion of each arc in
the original graph implicitly models the dependency of transit times on the
inflow rate. Since in the expanded graph transit times are fixed, we can
apply all methods that are available for flows over time (with fixed transit
times). In fact, many of the latter methods again rely on static network flow
computations. Therefore, all algorithms presented in this thesis eventually
rely on static network flow formulations or on generalizations thereof, which
can be solved by linear or convex programming techniques. In particular, our
algorithms are simple to implement and are efficient also from a practical
viewpoint. Moreover, our techniques can be applied even to the case of
multiple source nodes and sink nodes. To our knowledge, we present the first
nontrivial model of flow-dependent transit times for which provably good
solutions can be computed in polynomial time even in the multi-commodity
case.

Surely, the model of inflow-dependent transit times is a simplified traffic

4 Introduction

assignment model and only a rough approximation of real-life traffic. For
instance, in this model only the rate of inflow into an arc is explicitly bounded;
the flow rates evolving along an arc can be arbitrarily large. This is of course
unrealistic for road traffic behavior. Moreover, flows over time with inflow-
dependent transit times do in general not obey the first in, first out property
on an arc. This property requires that flow units are entering and leaving
an arc in the same order. In the context of road traffic this means that no
overtaking is allowed on a street. A violation of the first in, first out property
can occur if the inflow rate of an arc drops down quickly. This causes a strong
decrease in the transit time of that arc such that some flow units might pass
other flow units which are ahead on the arc traveling at a slower speed.
However, this phenomenon does not occur in solutions that are generated by
our algorithm for the quickest s-t-flow problem. Unfortunately, unrealistic
behavior can occur in the multi-commodity flow solutions. Nevertheless, we
hope that the model and methods we present, together with the insights we
gained when studying this model, give new impulses to the area of dynamic
traffic assignment.

Outline of the thesis

This thesis is divided into four chapters.

Chapter 1. In the first chapter we introduce the basic network flow mod-
els that are relevant in this thesis including classical (static) network flows,
flows over time, and flows over time with inflow-dependent transit times. Be-
sides, we elaborate on some useful techniques developed for flows over time
and needed in subsequent chapters. Moreover, we give an overview of the
literature on flows over time and on dynamic traffic assignment, respectively.

Chapter 2. In the second chapter we present constant factor approximation
algorithms for the quickest s-t-flow problem in the setting of inflow-dependent
transit times. First, we introduce a relaxed model of inflow-dependent transit
times and show how the original model of inflow-dependent transit times can
be embedded into the relaxed model. Based on this relaxation, we develop
a (2 + ε)-approximation algorithm for the quickest flow problem for the case
of general arc transit time functions. For the case that all arc transit time
functions are concave, we can show that the algorithm achieves an improved
performance ratio of 3/2+ε. We present two other approximation algorithms
that both achieve performance ratio 2 + ε. One of the two algorithms is due
to Köhler and Skutella [44] and was originally designed for a model in which
the transit time of an arc depends on the load, i.e., the traffic volume, on that
arc. The two algorithms both rely on a static convex cost flow formulation

Introduction 5

in the original graph. In particular, both algorithms assume that the given
transit times are convex.

Additionally, we prove that the quickest s-t-flow problem is strongly NP-
hard in the setting of inflow-dependent transit times. The proof uses a reduc-
tion from the NP-complete problem 3-PARTITION. We close the chapter
with a practical evaluation of two of the algorithms mentioned above. All
computational experiments are performed on real-life instances given by parts
of the Berlin road network. Our computational results confirm the practical
usefulness of our algorithms.

Chapter 3. Here we address the quickest flow problem in the case of mul-
tiple source nodes and sink nodes. In addition, we consider the problem
where arc costs are added. The techniques proposed in Chapter 2 are not
powerful enough to handle the more general setting. Therefore, we define a
stronger relaxation which reflects flows over time with inflow-dependent tran-
sit times more accurately than the model given in Chapter 2. We introduce
a technique that converts a flow solution in the relaxed instance into a flow
solution to the original problem without losing too much in the objective func-
tion value. In particular, we present a (2 + ε)-approximation algorithm and
a fully polynomial approximation scheme for the quickest multi-commodity
flow problem with costs. This approach is inspired by the work of Fleis-
cher and Skutella [13, 14, 15] on multi-commodity flows over time with fixed
transit times.

Chapter 4. In this chapter we raise a topic that is of great relevance in
dynamic traffic assignment: the first in, first out property. We analyze inflow-
dependent transit times with respect to this property. More precisely, we
consider a slightly simpler model of inflow-dependent transit times that is
defined on a generalized time-expanded graph called fan graph. This model
has been considered, e.g., by Carey and Subrahmanian [9] and Kaufman,
Nonis, and Smith [39]. We show that computing a static multi-commodity
flow in the fan graph that satisfies the first in, first out property is strongly
NP-hard. The proof uses a reduction from the NP-complete problem 3-
SATISFIABILITY. For the single source, single sink case, we present some
simple approximation results.

The thesis is intended to be largely self-contained. Nevertheless, we as-
sume that the reader is familiar with the basic concepts of combinatorial
optimization including static network flows and linear programming. For an
introduction to these topics, we refer to the textbooks of Papadimitriou and
Steiglitz [55], Nemhauser and Wolsey [52], Schrijver [62], Ahuja, Magnanti,
and Orlin [1], Korte and Vygen [45], Grötschel, Lovász, and Schrijver [26],

6 Introduction

and Schrijver [61]. An overview of the literature on network flows over time
can be found, for instance, in the survey articles of Aronson [3] and Powell,
Jaillet, and Odoni [57], in the PhD thesis of Hoppe [33], and in the article
of Fleischer and Skutella [15]. For a comprehensive treatment of complexity
theory we refer to the book of Garey and Johnson [23]. An introduction to
approximation algorithms in combinatorial optimization is given in the book
of Hochbaum [32] and in the book of Vazirani [64].

Chapter 1

Network Flow Models

1.1 Introduction

One look at the table of contents of any textbook on combinatorial optimiza-
tion reveals to the reader that network flow theory is a fundamental building
block of this research area. A second look into the textbook gives an expla-
nation. A rich and concise toolbox of powerful algorithmic techniques has
been developed for solving a variety of network flow problems.

In this thesis we study network flows. However, our focus is not on the
classical network flow models that are exhaustively covered by most text-
books. We study flow models which capture the essential properties of flows
arising in real-life applications such as road traffic control.

The aim of this chapter is to introduce those flow models that are rele-
vant in this thesis. We start with a summary of basic definitions used for
classical static flows in Section 1.2. Then, in Section 1.3, we concentrate on
time-varying flows. In many optimization problems originating from real-life
applications, the factor time is a key ingredient to the problem formulation.
In classical network flow theory, however, this factor is not sufficiently re-
flected. For that reason, we consider network flows over time, which provide
an adequate framework for modeling time-dependent and network-structured
problems. The model was introduced by Ford and Fulkerson [18, 19] in the
late 1950s and since then this topic has become an area of active research.

Motivated by applications in road traffic control, we study time-varying
flows with an additional property. Road users are facing this phenomenon in
everyday road traffic; the amount of time needed to traverse a street increases
as the arc becomes more congested. In Section 1.4, we present network flow
models which reflect this dependency. The aim of this thesis is to analyze
these models and, hopefully, to advance basic research in areas of applied
network flow theory such as road traffic control.

We are considering network flow problems in a directed graph G = (V, A).
Each arc a ∈ A has a positive capacity ua and a nonnegative, nondecreasing,
left-continuous transit time function τa : [0, ua] → �

+. Moreover, a set of
commodities K = {1, . . . , k} is given; associated with each commodity i ∈ K

7

8 Network Flow Models

is a set of terminals Si = S+
i ∪ S−

i ⊂ V . Every source node v ∈ S+
i has

a supply dv,i ≥ 0 and every sink node v ∈ S−
i has a demand dv,i ≤ 0 such

that
∑

v∈Si
dv,i = 0. Every node which is neither a source node nor a sink

node is called intermediate node. We often consider two special cases: If each
commodity i ∈ K has only one source si ∈ V and one sink ti ∈ V , we set
di := dsi,i. If only one commodity is given with a set of terminals S = S+∪S−,
we denote the demand (respectively, supply) of a node v ∈ S by dv.

Sometimes we consider flows with costs. Then, each arc a ∈ A has asso-
ciated cost coefficients ca,i ≥ 0, i ∈ K, where ca,i is interpreted as the cost
(per flow unit) for sending flow of commodity i through the arc. For an
arc a = (v, w) ∈ A, let head(a) := w be the head node and let tail(a) := v
be the tail node of arc a. For a node v ∈ V , let δ+(v) and δ−(v) denote the
set of arcs leaving and entering v, respectively. We define the transit time of
a path P in G to be τP (x) :=

∑
a∈P τa(xa). If all transit time functions are

constant, we denote the transit time of path P simply by τP .

1.2 Static Network Flows

In this section we provide basic definitions and simple facts on classical
(static) network flows. For a comprehensive overview on (static) network
flows see, e.g., [1, 11, 45]. A static multi-commodity transshipment x in G
assigns to every arc a and every commodity i a nonnegative flow value xa,i

such that flow conservation holds:∑
a∈δ+(v)

xa,i −
∑

a∈δ−(v)

xa,i = 0 , for all i ∈ K and v ∈ V \Si. (1.1)

The total amount of flow on arc a is denoted by xa :=
∑

i∈K xa,i. The static
flow x is called feasible if it obeys the capacity constraints xa ≤ ua, for all
arcs a ∈ A. The flow x satisfies supplies and demands if∑

a∈δ+(v)

xa,i −
∑

a∈δ−(v)

xa,i = dv,i , for all i ∈ K and v ∈ Si. (1.2)

The cost of a static flow x is defined as

c(x) :=
∑
a∈A

∑
i∈K

ca,i xa,i .

If each commodity i ∈ K has only a single source si and a single sink ti, then
we call x a multi-commodity flow. If only one commodity is given, possibly
having several sources and sinks, we call x a transshipment . Notice that, for

1.3 Flows Over Time with Fixed Transit Times 9

every i ∈ K, the flow given by xa,i, a ∈ A, defines a transshipment in G
which we denote by xi.

If only one commodity with a single source s and a single sink t is given,
we use the term s-t-flow . We define the value of an s-t-flow x as

|x| :=
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa .

A transshipment x in G satisfying all demands dv, v ∈ S, corresponds to
an s-t-flow x̃ in a slightly modified graph; introduce a super source s which
is connected to every source node v ∈ S+ by an arc (s, v) of capacity dv

and introduce a super sink t to which every sink node v ∈ S− is connected
by an arc (v, t) of capacity −dv. Then, the transshipment x in G defines
an s-t-flow x̃ of value

∑
v∈S+ dv in the modified graph by setting x̃a := xa,

for a ∈ A, and by setting x̃(s,v) := dv, for v ∈ S+, and x̃(v,t) := −dv, for
v ∈ S−.

Due to this equivalence, literature on static network flows usually only
discusses multi-commodity flows and not multi-commodity transshipments.
Later, we will see that in a time-varying setting a distinction between both
problem settings is reasonable.

It is well-known that, for every s-t-flow x, there exists a family of s-
t-paths P and a family of cycles C in G together with nonnegative flow
values (xP)P∈P∪C, such that |P ∪ C| ≤ |A| and

xa =
∑

P∈P∪C:a∈P

xP ,

holds, for all a ∈ A. Then, the value of x can be expressed as
∑

P∈P xP .
If C = ∅, we call (xP)P∈P a path decomposition of x. Path decompositions
can easily be generalized to transshipments; let x be a transshipment in G
and let x̃ be the corresponding s-t-flow in the modified graph as is explained
above. A path decomposition (x̃P)P∈P̃ of x̃ naturally defines a path de-
composition (xP)P∈P∪C of x in G where P is a set of paths in G and every
path P ∈ P connects a source node in S+ to a sink node in S−. We further
generalize the notion of path decompositions to multi-commodity transship-
ments; a path decomposition of a multi-commodity transshipment x is de-
fined by a set of paths P := ∪i∈KPi in G together with flow values (xP)P∈P ,
such that (xP)P∈Pi

is a path decomposition of xi.

1.3 Flows Over Time with Fixed Transit Times

Ford and Fulkerson [18, 19] introduce flows over time to add a time dimension
to the traditional network flow model. The following two aspects of flows over

10 Network Flow Models

time distinguish them from the traditional model. Firstly, the flow value on
an arc may change over time. This feature is important in applications,
where the supplies and demands are not given as fixed measures; instead,
they change over time subject to seasonal influences. Naturally, the flow
value on each arc should adjust to these changes. Secondly, there is a transit
time on every arc which specifies the amount of time flow units need to
traverse the arc. As mentioned before, in typical applications not only the
flow rate but also the transit times are varying over time. However, in this
section we assume that all transit time functions (τa)a∈A are constant. To
simplify notation, we let τa denote the transit time value on arc a.

Flows over time have been previously referred to as dynamic network
flows. Fleischer [16] points out that the term “dynamic” is more consistently
used for a problem with input that changes over time. In the context of
dynamic flows, the input data is available at the start. It is the flow solution
that changes over time. In accordance with [16] and the recent literature on
this topic, we use the term“flow over time”. In the model presented by Ford
and Fulkerson, time progresses in discrete steps. Research on dynamic flow
problems has also pursued another approach where time is assumed to be
a continuous measure. Although in this thesis we concentrate on the latter
approach, we will introduce and compare both models. As will be shown in
Section 1.3.4, the two approaches are essentially equivalent.

1.3.1 Continuous Flows Over Time

A continuous multi-commodity transshipment over time f in G is given by
Lebesgue-measurable functions fa,i : �+ → �

+, for every a ∈ A, i ∈ K.
Here, the value fa,i(θ) is the rate of flow (per time unit) at which flow of
commodity i is entering arc a at time θ. In order to simplify notation, we
sometimes use fa,i(θ) for θ < 0, implicitly assuming that fa,i(θ) = 0 in this
case.

The transit time of an arc a ∈ A is interpreted as the time it takes for
flow to traverse a. More precisely, flow which is entering arc a at time θ,
arrives at head(a) at time θ + τa. We say that the flow over time f has
time horizon T , if no flow is entering an arc a ∈ A after time T − τa, i.e.,
fa(θ) :=

∑
i∈K fa,i(θ) = 0, for all θ ≥ T − τa, a ∈ A.

We require that flow conservation holds in f . In our model, we allow
storage of flow at intermediate nodes. That is, flow entering a node can be
held back for some time before it is sent onward. This leads to the following

1.3 Flows Over Time with Fixed Transit Times 11

slightly different notion of flow conservation; we require

∑
a∈δ+(v)

∫ ξ

0

fa,i(θ)dθ −
∑

a∈δ−(v)

∫ ξ

τa

fa,i(θ − τa)dθ ≤ 0 , (1.3)

for all ξ ∈ [0, T), i ∈ K, and v ∈ V \S+
i . The left sum in (1.3) denotes

the total amount of flow of commodity i that is leaving node v until time ξ.
Analogously, the right sum in (1.3) denotes the total amount of flow of com-
modity i that is entering node v until time ξ; notice that flow which is entering
node v at time θ via arc a must have entered this arc at time θ − τa. Hence,
the left side of (1.3) defines the net outflow of f until time ξ with respect to
commodity i. We require in (1.3) that the net outflow remains below zero in
order to rule out a flow deficit at node v. Moreover, flow must not remain in
any node other than the sinks at time T . Therefore, we demand that equal-
ity holds in (1.3) for every i ∈ K, v ∈ V \Si, at time ξ = T . If storage at
intermediate nodes is forbidden, we additionally require that equality holds
in (1.3) for all ξ ∈ [0, T), i ∈ K, and v ∈ V \Si.

The flow f is called feasible, if the capacity ua is an upper bound on
the rate of flow entering arc a at any moment in time, i.e., fa(θ) ≤ ua, for
all θ ∈ �+ and a ∈ A.

The flow over time f satisfies multi-commodity supplies and demands if

∑
a∈δ+(v)

∫ T

0

fa,i(θ)dθ −
∑

a∈δ−(v)

∫ T

τa

fa,i(θ − τa)dθ = dv,i , (1.4)

for every commodity i ∈ K, v ∈ Si. The cost of f is defined as

c(f) :=
∑
a∈A

∑
i∈K

ca,i

∫ T

0

fa,i(θ)dθ .

If each commodity i ∈ K has a single source si and a single sink ti, we call f
a multi-commodity flow over time. If only one commodity is given, possibly
having several sources and sinks, we call f a transshipment over time. If only
one commodity with a single source s and a single sink t is given, we use the
term s-t-flow over time. The value of an s-t-flow over time f is given by

|f | :=
∑

a∈δ+(s)

∫ T

0

fa(θ)dθ −
∑

a∈δ−(s)

∫ T

τa

fa(θ − τa)dθ .

Notice that |f | is the total amount of flow leaving the source node s until
time T and that, because of flow conservation, this value is equal to the total
amount of flow arriving in the sink node t until time T .

12 Network Flow Models

We conclude this section with a special class of flows over time called
temporally repeated flows. They were introduced by Ford and Fulkerson
who were able to solve the maximum flow over time problem using temporally
repeated flows; see Section 1.3.5. In a sense, temporally repeated flows form
the simplest type of flows over time because they resemble static network
flows.

Definition 1.1 (Temporally repeated flow). Let x be a feasible static
multi-commodity transshipment in G with path decomposition (xP)P∈P such
that the transit time τP of every path P ∈ P is bounded from above by T . For
every path P ∈ P, the temporally repeated multi-commodity transshipment f
sends flow at constant rate xP into path P ∈ P starting at time zero, ending
at time T − τP .

The temporally repeated multi-commodity transshipment f is a feasible
multi-commodity transshipment over time: f naturally obeys flow conserva-
tion constraints since it is defined through flows on paths. It even satisfies
the strict flow conservation constraints, i.e., no storage of flow at intermedi-
ate nodes occurs in f . By definition, the time horizon of f is bounded by T .
Finally, it follows from the feasibility of x that f is a feasible flow over time;
simply note that the flow rate into arc a at any point in time is bounded
by
∑

P∈P:a∈P xP = xa ≤ ua. The value of a temporally repeated s-t-flow can
be expressed in terms of the underlying static flow.

Observation 1.2. The value of a temporally repeated s-t-flow f with un-
derlying static flow (xP)P∈P is given by

|f | =
∑
P∈P

(T − τP) xP = T |x| −
∑
a∈A

τa xa . (1.5)

Proof. The total amount of flow sent into path P ∈ P is equal to (T −τP) xP .
Adding this up over all paths, yields

|f | =
∑
P∈P

(T − τP) xP

= T
∑
P∈P

xP −
∑
P∈P

(∑
a∈P

τa

)
xP

= T |x| −
∑
a∈A

τa

∑
P∈P:a∈A

xP

= T |x| −
∑
a∈A

τa xa ,

where the last equation holds because (xP)P∈P is a path decomposition of x.

1.3 Flows Over Time with Fixed Transit Times 13

It follows from the observation that the value of a temporally repeated
s-t-flow is independent of the underlying path decomposition.

1.3.2 Discrete Flows Over Time

Assume that all transit times (τa)a∈A are integral values. A discrete multi-
commodity transshipment over time f in G assigns to every arc-commodity
pair (a, i) a function fa,i : �+ → �

+. In contrast to the continuous model,
fa,i(θ) is interpreted as the total amount of flow of commodity i entering
arc a at time step θ.

All definitions made in Section 1.3.1 directly carry over to discrete flows
over time. Since transit times are integral, one can restrict the discussion to
integral time horizons. The flow over time f has time horizon T , if no flow
is entering an arc a ∈ A after time T − 1− τa, i.e., fa(θ) :=

∑
i∈K fa,i(θ) = 0,

for all time steps θ ≥ T − τa, a ∈ A.
Flow conservation constraints are the same as for continuous flows over

time, but the integral over time can be replaced by a sum:

∑
a∈δ+(v)

ξ∑
θ=0

fa,i(θ) −
∑

a∈δ−(v)

ξ∑
θ=τa

fa,i(θ − τa) ≤ 0 ,

for all ξ ≤ T − 1, i ∈ K, and v ∈ V \S+
i . Again, we require equality for

every i ∈ K, v ∈ V \Si, at time ξ = T − 1.
The flow f is is called feasible, if the capacity ua is an upper bound on

the amount of flow entering arc a at any time step, i.e., fa(θ) ≤ ua, for all
θ ∈ �+ and a ∈ A.

The flow f satisfies supplies and demands if

∑
a∈δ+(v)

T−1∑
θ=0

fa,i(θ) −
∑

a∈δ−(v)

T−1∑
θ=τa

fa,i(θ − τa) = dv,i , (1.6)

for every commodity i ∈ K, v ∈ Si. The cost of a discrete flow over time is
defined as

c(f) :=
∑
a∈E

∑
i∈K

ca,i

T−1∑
θ=0

fa,i(θ) .

1.3.3 Time-Expanded Graphs

An important contribution of Ford and Fulkerson’s work [18, 19] are time-
expanded graphs. They are primarily used to design and analyze flow over

14 Network Flow Models

θ = 0

θ = 1

θ = 2

θ = 3

θ = 4

w

w

v

v

s

s

t

t

0

0

1

3

3

(a) (b)

Figure 1.1: Figure (b) displays the T -time-expansion of the instance shown in (a) for
time horizon T = 5. The numbers at the arcs indicate transit times.

time algorithms. Either the time-expansion is needed explicitly, because the
algorithm runs on the time-expanded graph, or it is used implicitly to prove
the correctness of the algorithm. For instance, Ford and Fulkerson prove the
correctness of their maximum flow over time algorithm by specifying a tight
cut in the corresponding time-expanded graph [18, 19].

Given a graph G = (V, A) with integral transit times on the arcs and an
integral time horizon T , the T -time-expanded graph of G, denoted G(T), is
obtained by creating T copies of V , labeled V (0) through V (T − 1), with
the θth copy of node v denoted v(θ), θ ∈ {0, . . . , T − 1}. For every arc
a = (v, w) ∈ A and 0 ≤ θ < T − τa, there is an arc a(θ) from v(θ) to
w(θ + τa) with the same capacity as arc a. In the setting with costs, the cost
of arc a(θ) is identical to the cost of arc a. It storage of flow at node v ∈ V
is allowed, we include an infinite capacity holdover arc from v(θ) to v(θ + 1),
for all 0 ≤ θ < T −1, which models the possibility to hold flow at node v. An
example is given in Figure 1.1. The dashed holdover arcs are included in the
time-expanded graph if storage at intermediate nodes is allowed, otherwise
they are omitted.

In the T -time-expanded graph, we can consider static network flows. It
is not difficult to see that every static multi-commodity transshipment x
in G(T) corresponds to a discrete multi-commodity transshipment over time f
with time horizon T in G and vice versa; simply identify the static flow
value xa(θ),i, assigned to the copy of arc a in the θth time layer, with the
flow fa,i(θ) entering arc a at time step θ. Notice that this identification also
preserves costs.

In particular, a discrete s-t-flow over time f in G corresponds to a static

1.3 Flows Over Time with Fixed Transit Times 15

s(0)-t(T −1)-flow x in G(T) and vice versa. To simplify notation, we call x a
static s-t-flow in G(T) implicitly identifying the source s with its copy s(0) ∈
V (0) and the sink t with its copy t(T − 1) ∈ V (T − 1).

As a consequence, every discrete flow over time problem can be formu-
lated as a static flow problem in a time-expanded graph. Since the size of
the latter is linear in T (and therefore exponential in log T), a polynomial
time static flow algorithm will in general only yield a pseudo-polynomial
time algorithm for the corresponding time-dependent problem. Fleischer and
Skutella [13, 14] overcome this limitation by using condensed time-expanded
graphs. Based on this method, they develop an FPTAS for computing multi-
commodity flows over time. We adopt some of their techniques in Chapter 3
when discussing multi-commodity flows in the setting of flow-dependent tran-
sit times.

1.3.4 Continuous versus Discrete Model

We now discuss the relationship between continuous and discrete flows over
time in G. On the one hand, any discrete flow over time f with integral
time horizon T in G corresponds to a continuous flow over time f̃ with time
horizon T in G: interpret the flow fa,i(θ) entering arc a at time step θ ≤
T − 1 − τa as a constant flow rate on arc a during the whole time interval
[θ, θ + 1). Since fa(θ) ≤ ua at every (discrete) time step θ, also f̃a(θ) ≤ ua

at every (continuous) point in time θ. Consider an intermediate node v. We
verify flow conservation constraints in v. The net outflow of f̃ with respect
to commodity i ∈ K until time ξ ∈ [0, T) can be expressed as follows:

∑
a∈δ+(v)

∫ ξ

0

f̃a,i(θ)dθ −
∑

a∈δ−(v)

∫ ξ

τa

f̃a,i(θ − τa)dθ

=
∑

a∈δ+(v)

�ξ�−1∑
θ=0

fa,i(θ) −
∑

a∈δ−(v)

�ξ�−1∑
θ=τa

fa,i(θ)

− (�ξ	 − ξ)

(∑
a∈δ+(v)

fa,i(�ξ	 − 1) −
∑

a∈δ−(v)

fa,i(�ξ	 − 1)

)
.

This equality implies that the net outflow is given by a piecewise linear
function in ξ with breakpoints in �+. To prove flow conservation constraints,
we need to show that this function is nowhere greater than zero. It suffices
to show that the function value is not greater than zero at each breakpoint.
For ξ ∈ �+, the function value is equal to the net outflow of f with respect
to commodity i until time ξ. The latter is not larger than zero because f

16 Network Flow Models

satisfies flow conservation constraints in v. We conclude that f̃ satisfies flow
conservation constraints in v. A similar calculation shows that f̃ satisfies the
same supplies and demands as f .

On the other hand, a continuous flow over time f̃ with integral time
horizon T and integral transit times in G yields a discrete flow over time f
of same time horizon T in G: set fa,i(θ) to the total amount of flow sent into
arc a during time interval [θ, θ + 1), i.e.,

fa,i(θ) :=

∫ θ+1

θ

f̃a,i(ξ)dξ , (1.7)

for all a ∈ A, i ∈ K, and 0 ≤ θ ≤ T − 1− τa. The flow f is feasible. Namely,
for every integral time step θ, we can bound fa(θ) as follows:

fa(θ) =

∫ θ+1

θ

f̃a(ξ)dξ ≤
∫ θ+1

θ

uadξ ≤ ua ,

where the first inequality holds because f̃ is feasible. Using (1.7), it is easy to
verify that flow conservation constraints hold and that f satisfies all supplies
and demands.

Notice that in both transformations the cost of the flow is preserved.
Hence, for integral data, every continuous flow over time problem can be
formulated as a discrete flow over time problem which, in turn, can be for-
mulated as a static flow problem in the T -time-expanded graph GT ; see
Section 1.3.3. Fleischer and Tardos [17] show that a large number of discrete
flow over time algorithms can be extended to solve the analogous continuous
flow over time problem, even if T is not integral.

Remark 1.3. Since in this thesis we concentrate on the continuous model,
by default, a flow over time is a continuous flow over time and it is discrete
if explicitly stated.

1.3.5 Known Results

We give a brief overview of the central results known for continuous flows
over time. A more exhaustive discussion of the literature can be found, for
instance, in [3, 15, 33, 57]. Some of the results will be relevant later when we
develop algorithms for the setting of flow-dependent transit times. Therefore,
we investigate them in more detail.

Many of the optimization problems under consideration are NP-hard
problems, i.e., no polynomial time algorithms exist for these problems, un-
less P = NP. However, not all NP-hard problems are equally hard. The

1.3 Flows Over Time with Fixed Transit Times 17

theory of approximation algorithms provides tools to measure the difficulty
of an optimization problem. As a large part of the literature on flows over
time is devoted to the design and analysis of approximation algorithms, we
review the basic definitions.

Definition 1.4 (Approximation algorithm). Let X be a minimization
(respectively, maximization) problem. For an instance I ∈ X, let OPT (I)
denote the objective value of an optimal solution. Let ε > 0 and set ρ :=
1 + ε (respectively, ρ := 1 − ε). An algorithm A is called a ρ-approximation
algorithm for problem X, if for all instances I of X it delivers a feasible
solution with objective value A(I) such that

|A(I) − OPT (I)| ≤ ε · OPT (I).

Moreover, we require that the time complexity of algorithm A is polynomial
in the input size of the problem. The value ρ is called performance guarantee
or performance ratio of the approximation algorithm A.

Definition 1.5 (Approximation scheme). Let X be a minimization (re-
spectively, maximization) problem.

• An approximation scheme for problem X is a family of (1+ε)-approxi-
mation algorithms Aε (respectively, a family of (1 − ε)-approximation
algorithms Aε) for problem X over all 0 < ε < 1.

• A polynomial approximation scheme (PTAS) for problem X is an ap-
proximation scheme whose time complexity is polynomial in the input
size of the problem.

• A fully polynomial time approximation scheme (FPTAS) for problem X
is an approximation scheme whose time complexity is polynomial in the
input size of the problem and also polynomial in 1/ε.

We refer to [32, 64] for a more detailed introduction to the field of ap-
proximation algorithms.

We now give an overview of known results for classical flow over time
problems. We start with a discussion of single source, single sink flows over
time. The maximum flow over time problem was introduced by Ford and
Fulkerson under the name maximal dynamic flow problem [18, 19].

Problem 1.6 (Maximum flow over time). Determine an s-t-flow over
time f that send as much flow as possible from the source s to the sink t
within a given time T .

18 Network Flow Models

Originally, Ford and Fulkerson consider this problem in the setting of
discrete flows over time; see Section 1.3.2. They prove that the problem can
be solved efficiently by transforming it to a static minimum cost flow problem
in a related graph. Fleischer and Tardos [17] show that this algorithm directly
extends to continuous flows over time. Since we will employ some of the
underlying insights of this algorithm, we give a short description of it.

The algorithm of Ford and Fulkerson computes a temporally repeated
s-t-flow of maximum value. Recall that the value of a temporally repeated
flow f with underlying static flow x is given by T |x| −

∑
a∈A τa xa; see Ob-

servation 1.2. This suggests the following static flow formulation:

max T |x| −
∑
a∈A

τa xa

s.t. x static s-t-flow in G.

(1.8)

Any solution to this problem defines a temporally repeated flow with time
horizon T . This follows immediately from the optimality of x with respect
to the objective function:

Observation 1.7. Let x be a static flow solution to (1.8) and let (xP)P∈P
be an arbitrary path decomposition1 of x. Then the transit time τP of any
path P ∈ P is bounded by T .

Proof. The objective value in (1.8) can be rewritten as
∑

P∈P(T − τP) xP ;
see Observation 1.2. Assume that there is a path P ∈ P with τP > T . By
decreasing the amount of flow on path P , the objective value can be increased
which is a contradiction to the optimality of x.

Hence, a solution x to (1.8) with path decomposition (xP)P∈P generates
a temporally repeated flow with time horizon T of maximal value. In par-
ticular, we can compute the optimal temporally repeated flow solution to
Problem 1.6. A priori, it is not clear that an optimal temporally repeated
flow defines a globally optimal solution to Problem 1.6. Ford and Fulkerson
show that this is indeed true, i.e., a temporally repeated flow of maximal
value is a maximum s-t-flow over time.

A solution to (1.8) can be, for example, obtained by adding the arc (t, s)
to the original graph with transit time −T and computing a (static) minimum
cost circulation in G with transit times interpreted as costs. Using, e.g., the
minimum mean cycle-canceling algorithm of Goldberg and Tarjan [25], this

1We can assume without loss of generality that no cycles are needed in the flow de-
composition; otherwise we can decrease flow on cycles without decreasing the objective
value.

1.3 Flows Over Time with Fixed Transit Times 19

can be done in strongly polynomial time. A complexity survey for minimum-
cost circulation can be found, e.g., in the book of Schrijver [62].

Theorem 1.8 (Ford and Fulkerson [18]). A maximum temporally re-
peated flow with time horizon T is a maximum flow over time with time
horizon T . Moreover, it can be computed by one minimum cost circulation
computation.

Closely related to the maximum flow over time problem is the quickest
flow problem.

Problem 1.9 (Quickest flow). Determine an s-t-flow over time f that
satisfies demand d within minimum time T .

Using the algorithm of Ford and Fulkerson, one can solve the quickest
s-t-flow problem in polynomial time: Apply binary search to determine the
optimal time horizon T . In each search step, solve the maximum flow over
time problem for the current value of T . However, in the continuous setting,
the time horizon of a quickest s-t-flow need not be integral. Therefore, it is
not clear that a binary search algorithm finds the optimal time horizon T
in a polynomial number of iterations. Fleischer and Tardos [17] show that,
if demand and transit times are integral, the minimum time horizon T can
be expressed as a rational number with denominator bounded by the size of
a minimum s-t-cut in the network. Thus, a binary search method can be
applied to compute the quickest (continuous) s-t-flow. Theorem 1.8 implies
that there exists a temporally repeated solution to the problem.

Corollary 1.10. There exists a temporally repeated flow solution to the
quickest flow problem. Moreover, it can be computed in polynomial time.

Burkard, Dlaska, and Klinz [6] present an algorithm which solves the
quickest flow problem in strongly polynomial time applying Megiddo’s method
of parametric search [47].

Theorem 1.11 (Burkard, Dlaska, Klinz [6]). Let T denote the time
horizon of a quickest s-t-flow. Then T and a static flow solution to (1.8) with
T = T can be computed in strongly polynomial time.

Related to these problems is the following optimization problem, which
asks for a flow over time that is of maximal value at every intermediate time
step.

Problem 1.12 (Earliest arrival flow). Determine an s-t-flow over time
which simultaneously maximizes the amount of flow arriving at the sink be-
fore time θ, for all θ ∈ [0, T).

20 Network Flow Models

Note that it is a priori not clear that a solution to this problem ex-
ists. Gale [22] proves the existence of a discrete earliest arrival flow and
Philpott [56] extends this result to continuous flows over time. Wilkin-
son [65] and Minieka [50] suggest to incorporate the successive shortest path
algorithm into Ford and Fulkerson’s maximum flow over time algorithm; see
Theorem 1.8. This method gives rise to a pseudo-polynomial algorithm for
finding earliest arrival flows. To our knowledge, the complexity of the earliest
arrival flow problem is not known. Zadeh [66] presents a family of instances
for which the successive shortest path algorithm needs an exponential num-
ber of augmentations. A simple modification of the instances shows that the
successive shortest path algorithm applied to the earliest arrival flow problem
produces solutions encoded by Ω(T) paths. Possibly, the flow solutions for
these instances require exponential output size.

The earliest arrival flow computed by the successive shortest path algo-
rithm has the property that it simultaneously maximizes the amount of flow
departing from the source after time θ, for all θ ∈ [0, T). Such a flow is called
a latest departure flow . Flows over time featuring both properties are called
universally maximal . A polynomial time approximation scheme for comput-
ing universally maximal flows over time was found by Hoppe and Tardos [34].
The algorithm sends a 1− ε fraction of the maximal flow that can reach the
sink t by time θ, θ ∈ [0, T), and it sends a 1− ε fraction of the maximal flow
that can leave the source s after time θ, θ ∈ [0, T). The algorithm combines
capacity scaling with the successive shortest path algorithm.

We proceed with a discussion of flow over time problems that involve
costs.

Problem 1.13 (Minimum cost flow over time). Determine an s-t-flow
over time f that satisfies demand d within given time T at minimum cost.

As already observed by Klinz and Woeginger [42], this problem is NP-
hard, since finding a minimum cost s-t-flow over time of value d = 1 amounts
to finding a minimum cost s-t-path with transit time bounded by T −1. The
latter problem is known as the constrained shortest path problem and is NP -
hard; see, e.g., Garey and Johnson [23]. The minimum cost flow over time
problem can be solved in pseudo-polynomial time by translating it to a static
minimum cost flow problem in the T -time-expanded graph; see Section 1.3.4.

Klinz and Woeginger [42] consider different variants of Problem 1.13. For
example, they show that the problem remains NP-hard if d is set to the
maximum value of a flow over time with time horizon T .

We have seen earlier that the maximum flow over time problem and the
quickest flow problem both have a temporally repeated flow solution; see
Theorem 1.8. If costs are added, this is no longer true. An interesting related

1.3 Flows Over Time with Fixed Transit Times 21

problem is to find a temporally repeated flow with minimum cost. Klinz and
Woeginger [42] show that this is a strongly NP-hard problem. In particular,
it cannot be solved as a static flow problem in the T -time-expanded graph.

Fleischer and Skutella [13, 14] present approximation schemes for the
minimum cost flow over time problem. We will discuss these algorithms in
more detail in the context of multi-commodity flows over time.

Next, we will consider flow over time problems involving multiple source,
sink pairs. Recall that for the quickest transshipment problem we are given
a single commodity which may have several source and sink nodes.

Problem 1.14 (Quickest transshipment). Determine a transshipment
over time f that satisfies all supplies and demands dv, v ∈ S, as quickly as
possible, i.e., within minimum time T .

We have seen in Section 1.2 that finding a feasible static transshipment
easily reduces to a static s-t-flow problem. To prove the equivalence of both
problems, a super source s (respectively, super sink t) is added in G which
is adjacent to all source nodes (respectively, sink nodes). The capacities on
these new arcs ensure that the amount of flow leaving a source node v ∈ S+

is equal to its supply dv and that the the amount of flow entering a sink
node v ∈ S− is equal to its demand. This is no longer true for flows over time.
Recall that the capacity of an arc limits the rate of flow into an arc and not the
total amount of flow entering an arc. Therefore, it is difficult to regulate the
flow sent from the super source into the source nodes v ∈ S+ over the entire
time horizon. However, Hoppe and Tardos [34] were able to come up with a
strongly polynomial time algorithm for the quickest transshipment problem.
Moreover, their algorithm produces a solution that does not make use of
storage at intermediate nodes. Their approach relies on chain-decomposable
flows which generalize the class of temporally repeated flows. These flows are
represented by a set of paths, but, unlike temporally repeated flows, these
paths may use backward arcs. The downside of this algorithm is that it
requires a submodular function minimization oracle as a subroutine and is
therefore not of practical use.

Problem 1.15 (Quickest transshipment with costs). Determine a trans-
shipment over time f that satisfies all supplies and demands dv, v ∈ S, as
quickly as possible at cost bounded by a given budget C.

Adding costs turns the transshipment problem into an NP-hard problem,
since its single source, single sink version is already NP-hard; see [42] and the
above paragraph on minimum cost flows over time. Again, translating the
problem to a static flow problem in a time-expanded graph yields a pseudo-
polynomial time algorithm.

22 Network Flow Models

Fleischer and Skutella [13, 14] present approximation schemes for the
quickest transshipment problem with costs. The approximation scheme pre-
sented in [14] produces a solution that does not make use of storage at in-
termediate nodes. Moreover, they prove that in the optimal transshipment
with costs no storage is needed. We will discuss these algorithms in more
detail in the paragraph on multi-commodity flows over time.

Under certain assumptions on the transit times or on the network topol-
ogy, Hall, Hippler, and Skutella [27] give polynomial time algorithms for
the quickest transshipment problem with budget constraint. For instance,
they give a strongly polynomial time algorithm that can be applied in tree
networks.

We now turn to the multi-commodity version of the problem.

Problem 1.16 (Quickest multi-commodity flow). Determine a multi-
commodity flow over time f that satisfies all demands dv,i, i ∈ K, v ∈ Si,
within minimum time T .

In the decision problem, we ask whether, for a given T , there exists a
multi-commodity flow over time f that satisfies all demands within time T .
Hall, Hippler, and Skutella [27] prove that the decision problem is NP-hard,
even when restricted to series-parallel networks or to the special case of only
two commodities. Moreover, they show that the problem is strongly NP -hard
if storage at intermediate nodes is forbidden and flow may only be sent along
simple paths. Notice that, without the former assumptions, the problem
can be solved in pseudo-polynomial time as a static multi-commodity flow
problem in the T -time-expanded network.

Fleischer and Skutella [13, 14] present a (2 + ε)-approximation algorithm
and an FPTAS for the quickest multi-commodity flow problem. Their (2+ε)-
approximation algorithm generates a temporally repeated flow solution that
does not make use of storage at intermediate nodes. In particular, allowing
storage of flow at intermediate nodes saves at most a factor of 2 in the optimal
time horizon. On the other hand, they present instances where the optimal
time horizon without storage at intermediate nodes is 4/3 times the optimal
time horizon with storage.

Problem 1.17 (Quickest multi-commodity transshipment with
costs). Determine a multi-commodity transshipment f that satisfies all sup-
plies and demands di,v, i ∈ K, v ∈ Si, as quickly as possible at cost bounded
by a given budget C.

Fleischer and Skutella [13, 14] present both a (2+ ε)-approximation algo-
rithm and an FPTAS for this problem. The (2+ ε)-approximation algorithm

1.4 Flow-Dependent Transit Times 23

is based on static length-bounded flow computations in the original graph G.
The algorithm outputs a temporally repeated multi-commodity transship-
ment. The FPTAS relies on static flow computations in a ’condensed’ time-
expanded graph. This graph has a rougher discretization of time and is
therefore of polynomial size. In contrast to the (2 + ε)-approximation, the
solutions produced by the FPTAS might use storage at intermediate nodes.
We will discuss both algorithms in more detail in Chapter 3, where we apply
some of their results to solve multi-commodity transshipment problems in
the setting of flow-dependent transit times.

Hall, Hippler, and Skutella [27] propose exact polynomial time algorithms
for the quickest multi-commodity transshipment problem with costs that are
applicable under certain restrictions on transit times or network topology.

1.4 Flow-Dependent Transit Times

So far we have considered flows over time with fixed transit times on the
arcs. In this setting, the time it takes to traverse an arc does not depend
on the current flow situation on the arc. Everybody who was ever caught
up in a traffic jam knows that the latter assumption often fails to capture
essential characteristics of real-life situations. In many applications, such as
road traffic control, production systems, and communication networks (e. g.,
the Internet), the amount of time needed to traverse an arc of the underlying
network increases as the arc becomes more congested.

The presumed dependency of the actual transit time of an arc on the
current (and maybe also past) flow situation is the most crucial parameter
for modeling traffic flow. Unfortunately, it is a highly nontrivial and open
problem to map this parameter into an appropriate and, above all, tractable
mathematical network flow model. A fully realistic model of flow-dependent
transit times on arcs should take density, speed, and flow rate evolving along
an arc into consideration; see, e. g., the book of Sheffi [63] and the report by
Gartner, Messer, and Rathi [24] for details on traffic flows. However, there
are hardly any algorithmic techniques known which capture these parameters
and are capable of providing reasonable solutions even for networks of rather
modest size. For problem instances of realistic size, as those occurring in
real-life applications, already the solution of mathematical programs relying
on simplifying assumptions is in general still beyond the means of state-of-
the-art computers.

In practical applications such as traffic flows, precise information on the
behavior of the transit time τa of an arc a can generally only be found for
the case of static flows. In this case, every arc a has a constant flow rate xa

24 Network Flow Models

and the transit time τa is given as a function of this flow rate. The transit
time function measures how fast the transit time on an arc increases as the
flow rate grows. The commonly used transit time functions are monotone
increasing and convex. Examples are “Davidson’s function” and a function
developed by the U.S. Bureau of Public Roads for traffic flow applications;
for details we refer to [63] and to Section 2.5 in which we discuss both transit
time functions in more detail.

Research in combinatorial optimization has paid great attention to static
traffic flow models. For instance, Jahn, Möhring, Schulz, and Stier Moses [36]
consider static traffic flow models and, based on them, they develop algo-
rithms to improve the efficiency and accuracy of route-guidance systems.
Their approach is based on a static multi-commodity flow formulation in
which every arc has an associated convex cost function given by the tran-
sit time function. Additional constraints on the flow paths are imposed to
ensure that each driver is assigned a path of acceptable length.

Also Roughgarden and Tardos [60] focus on static traffic flow models; they
analyze the relation between the system optimum and the user equilibrium in
static traffic flow models. While in a system optimum the total transit time
is minimized, in a user equilibrium each individual driver makes a selfish
route choice. They show that the total transit time in a selfish routing is
never larger than the total transit time incurred by optimally routing twice
as much traffic flow.

A significant drawback of static traffic flows is that they only model steady
state traffic as can be observed, for instance, during rush hours. Here, the
number of cars traversing a street per time unit is essentially constant over
a time period and thus traffic exhibits a (static) flow-like behavior. For
such stable traffic configurations, static flows are surely an adequate model.
Yet, most real-world applications are of dynamic nature. Therefore, in this
thesis we are concerned with time-varying traffic models. All models under
consideration are derived from the static traffic model described above. More
precisely, we assume that, for every arc a ∈ A, a nonnegative, nondecreasing
transit time function is given which measures the time it takes to traverse an
arc based on the arc flow rate.

Remark 1.18. Transit time functions can be specified in different ways. For
instance in road traffic applications, the transit time of an arc is usually
given as a concise function, e.g., a polynomial. In this case, we often require
only O(1) information to specify the function. In nonlinear optimization, it
is frequently assumed that all input functions are piecewise linear. In that
case, we encode the function by specifying the breakpoints and the slopes
between these breakpoints.

1.4 Flow-Dependent Transit Times 25

The encoding of the transit time functions is important when analyzing
the running time of an algorithms. An algorithm that solves problems in
the piecewise linear model in polynomial time might not solve them in the
concise-function model in polynomial time.

To formulate our results as generally as possible, we use the concept
of oracle algorithms. An oracle can be regarded as a subroutine whose
running time we do not take into account; for more details on oracle al-
gorithms see, e.g., [54]. We call an oracle an evaluation oracle for func-
tion h : �+ → �

+, if the following holds: given a rational number x, the
oracle returns h(x). Moreover, we require that the encoding length of h(x)
is polynomially bounded in the encoding length of x.

We assume that we have an evaluation oracle for each transit time func-
tion τa, a ∈ A. Later, we need to approximate τa by a piecewise constant
function. For that purpose, we need the technical assumption that the oracle
associated with τa can also evaluate the function2 τ
→ max{x | τa(x) ≤ τ}.
At last, we need the technical assumption that the oracle can evaluate �a :=
min{τa(x) + d/(|A| x) | x ∈ (0, ua]}. In fact, it suffices if the oracle can
compute a good estimate of �a, i.e., a constant approximation of �a. The
latter assumption is needed to derive good upper and lower bounds on the
objective value of a quickest flow in the setting of inflow-dependent transit
times.

Notice that, for the special case that the transit time function τa is piece-
wise linear, we can always implement the oracle as a subroutine with strongly
polynomial running time. However, we emphasize that a similar implemen-
tation is possible for many other functions, as well.

1.4.1 Time-Dependent Flows

In this section, we will generalize the model of flows over time and will con-
sider so-called time-dependent flows. The generalized model is universal in
the sense that an exact specification of transit times is not required. Transit
times might be fixed or they might be flow-dependent. Therefore, the model
of time-dependent flows serves as a general framework which comprises the
basic properties of the considered flow models. Subsequent to this section,
we will introduce two models of flow-dependent transit times which fit into
this framework.

A time-dependent multi-commodity transshipment f is given by Lebesgue-
measurable functions fa,i : �+ → �

+, a ∈ A, i ∈ K. The flow value fa,i(θ)
is the rate of flow (per time unit) of commodity i entering arc a at time θ.

2Notice that the function is well-defined because τ is assumed to be left-continuous.

26 Network Flow Models

The time-dependent flow f has time horizon T , if all arcs are empty after
time T .

At any point in time θ ∈ [0, T), for every commodity i ∈ K, and for
any node v ∈ V \S+

i , flow conservation must hold, i.e., the net outflow at
node v until time T with respect to commodity i is never strictly positive.
Moreover, at time T , we require that for any node v ∈ V \Si the net outflow
until time T is zero.

The flow f is called feasible, if, for every arc a ∈ A, the capacity ua is an
upper bound on the rate of flow entering arc a at any moment in time, i.e.,
fa(θ) :=

∑
i∈K fa,i(θ) ≤ ua, for all θ ∈ �+ and a ∈ A.

The time-dependent flow f satisfies the multi-commodity supplies and
demands if, for every i ∈ K, v ∈ Si, the net outflow at node v until time T
with respect to commodity i is equal to dv,i. The cost of a time-dependent

flow f is defined as c(f) :=
∑

a∈A

∑
i∈K ca,i

∫ T

0
fa,i(θ)dθ.

Notice that every flow over time f with constant transit times (τa)a∈A

is a time-dependent flow. We now introduce two models of flow-dependent
transit times which fit into this framework.

1.4.2 Inflow-Dependent Transit Times

The focus of this thesis is on a model that we refer to as flows over time
with inflow-dependent transit times . It is an extension of the flow over time
model defined in Section 1.3.1. There, it is assumed that transit times are
fixed, so that flow on arc a progresses at constant speed. In the following,
we will define the more general model of inflow-dependent transit times.
Here, the transit time experienced by an infinitesimal unit of flow on an arc
is determined when entering this arc and only depends on the inflow rate
at that moment in time. Each arc a ∈ A has an associated nonnegative,
nondecreasing transit time function τa : [0, ua] → �

+ measuring the time it
takes for flow to traverse arc a.

A multi-commodity transshipment over time with inflow-dependent transit
times is a time-dependent multi-commodity transshipment that obeys the
following additional rule: flow entering arc a at time θ arrives at head(a) at
time θ + τa(fa(θ)). In particular, the transit time of an arc only depends on
the current inflow rate. Since in a time-dependent flow, we require that all
arcs must be empty from time T on, the following implication must hold for
all a ∈ A and θ ∈ �+: if fa(θ) > 0, then θ+τa(fa(θ)) < T . Flow conservation

1.4 Flow-Dependent Transit Times 27

now reads as follows:∑
a∈δ+(v)

∫
0≤θ<ξ

fa,i(θ)dθ −
∑

a∈δ−(v)

∫
θ≥0:

θ+τa(fa(θ))≤ξ

fa,i(θ)dθ ≤ 0 , (1.9)

for all ξ ∈ [0, T), i ∈ K, and v ∈ V \S+
i , where equality should hold for every

i ∈ K, v ∈ V \Si, at time ξ = T .3

The flow over time f satisfies the multi-commodity supplies and demands
if ∑

a∈δ+(v)

∫
0≤θ<ξ

fa(θ)dθ −
∑

a∈δ−(v)

∫
θ≥0:

θ+τa(fa,i(θ))≤ξ

fa,i(θ)dθ = di , (1.10)

for every commodity i ∈ K, v ∈ Si.
The value of an s-t-flow over time f with inflow-dependent transit times

is given by

|f | :=
∑

a∈δ+(s)

∫ T

0

fa(θ)dθ −
∑

a∈δ−(s)

∫ T

0

fa(θ)dθ .

Note that the above requirements coincide with those made in Section 1.3.1
when restricted to constant transit time functions (τa)a∈A. Later, we will
need the following simple observation. It relies on the fact that intermediate
storage of flow is allowed.

Observation 1.19. For every arc a ∈ A, let τa : [0, ua] → �
+ and τ ′

a :
[0, ua] → �

+ denote transit time functions on arc a such that τa(x) ≤ τ ′
a(x),

for all x ∈ [0, ua]. Then, a flow over time with inflow-dependent transit
times (τ ′

a)a∈A and time horizon T naturally defines a flow over time with
inflow-dependent transit times (τa)a∈A and time horizon T .

1.4.3 Load-Dependent Transit Times

Köhler and Skutella [44] investigate the model of flows over time with load-
dependent transit times . The load of an arc is the total amount of flow on
the arc. The underlying assumption of the model is that the speed on an

3By assumption, τa is nondecreasing and thus Lebesgue-measurable. Hence, fa and τa

are both Lebesgue-measurable functions implying that the set {θ ≥ 0 | θ + τa(fa(θ)) < ξ}
is Lebesgue-measurable as well. Therefore, the integral in (1.9) is well-defined.

28 Network Flow Models

arc is a function of the load. We discuss this model in more detail because
we will later point out certain relations between the model of load- and the
model of inflow-dependent transit times.

As mentioned at the beginning of this section, the transit time of an arc
is typically given for the case of static flows. Then, τa(xa) is interpreted as
the transit time on arc a for the static flow rate xa. If �a denotes the load of
arc a, it is easy to see, that, for a static flow x, the following relation holds.

la = xaτa(xa). (1.11)

As observed in [44], if τa is monotonically increasing and convex, then, in a
static flow, the flow rate xa is a strictly increasing and concave function of
the load la. Hence, for the case of static flows, the transit time can also be
interpreted as an increasing function τ̂a of the load la, i.e.,

τa(xa) = τ̂a(la). (1.12)

If we interpret the static flow value xa as the flow rate over time on arc a,
the speed on arc a is proportional4 to the inverse of τ̂a(la).

For a time-dependent flow f , let la(θ) denote the total amount of flow
on arc a at time θ. Again, we refer to la(θ) as the load on arc a. A multi-
commodity transshipment over time with load-dependent transit times is a
time-dependent multi-commodity transshipment, for which the following ad-
ditional condition holds: at any point in time θ, the speed of the flow on
arc a is proportional to the inverse of τ̂a(la(θ)). In contrast to the model of
inflow-dependent transit times, flow units which currently travel on the same
arc experience the same speed on that arc.

1.4.4 Temporally Repeated Flows

For flows over time with fixed transit times we have defined the notion of
temporally repeated flows which, in a sense, resemble static flows: after a
certain inflow phase, during which the temporally repeated flow “fills” all its
flow paths, the flow rates on every arc remain fixed until the flow exits the
network again. We will extend this notion to the setting of flow-dependent
transit times.

Definition 1.20 (Flow-dependent temporally repeated flow). Let x
be a feasible static multi-commodity transshipment in G with path decom-
position (xP)P∈P , where P is a set of paths such that the transit time τP (x)

4We assume that every arc has a certain geographic length that determines the constant
of proportionality.

1.4 Flow-Dependent Transit Times 29

of every path P ∈ P is bounded from above by T . The temporally repeated
multi-commodity transshipment f with flow-dependent transit times (τa)a∈A

and time horizon T is defined as follows.

(i) For every path P ∈ P, flow f enters path P ∈ P at constant rate xP

starting at time zero, ending at time T − τP (x).

(ii) The transit time of every arc a ∈ A is fixed to τa(xa), i.e., at every point
in time θ ∈ [0, T), flow units entering arc a at time θ reach head(a) at
time θ + τa(xa).

In the definition, the transit time on an arc a only depends on the static
flow value xa. In particular, flow in f travels through arc a at uniform speed.
Next we prove that f defines a feasible time-dependent flow. Later we will
see that f can even be interpreted as a flow over time with inflow-dependent
(respectively, load-dependent) transit times.

The flow f naturally satisfies flow conservation constraints because it is
defined through flows on paths. Moreover, it is feasible since the flow rate
fa(θ) is always upper-bounded by xa ≤ ua. Hence feasibility follows from the
feasibility of x. It follows from property (ii) that flow units in f traveling
along path P ∈ P need exactly τP (x) units of time to reach the sink. Thus,
the value of a temporally repeated s-t-flow f with flow-dependent transit
times can be directly derived from x.

Observation 1.21. The value of a temporally repeated flow f with flow-
dependent transit times (τa)a∈A and underlying path decomposition (xP)P∈P
is given by

|f | =
∑
P∈P

(T − τP (x)) xP = T |x| −
∑
a∈A

τa(xa) xa . (1.13)

Proof. We have verified the statement for fixed transit times; see Obser-
vation 1.2. A similar calculation proves the statement for flow-dependent
transit times.

It follows from this observation that the value of a temporally repeated
flow with flow-dependent transit times is independent of the underlying path
decomposition.

Many of the algorithms presented in this thesis produce temporally re-
peated flow solutions. The crucial observation is that the set of temporally
repeated flows with flow-dependent transit times is contained both in the set
of flows over time with inflow-dependent transit times and in the set of flows
over time with load-dependent transit times.

30 Network Flow Models

Claim 1.22. A temporally repeated multi-commodity transshipment f with
flow-dependent transit times (τa)a∈A naturally induces a multi-commodity
transshipment over time

(i) with inflow-dependent transit times (τa)a∈A,

(ii) with load-dependent transit times (τa)a∈A.

Proof. First we prove (i). The flow f certainly defines a flow over time
with inflow-dependent transit time (τ ′

a)a∈A, where τ ′
a : [0, ua] → �

+ is the
constant function of fixed value τa(xa). Since fa(θ) ≤ xa, for all θ ∈ [0, T),
we can replace the capacity ua by u′

a := xa. Then, the statement follows from
Observation 1.19. Namely, τa : [0, u′

a] → �
+ and τ ′

a : [0, u′
a] → �

+ satisfy
τa(x) ≤ τ ′

a(x), for all x ∈ [0, u′
a]. Thus, Observation 1.19 implies that f

naturally defines a flow over time with inflow-dependent transit times (τa)a∈A.
Next we prove (ii). We again argue that flow in f is traveling not faster

than prescribed by the load-dependent transit times. The flow rate fa(θ)
never exceeds xa. Since the transit time of arc a is fixed to τa(xa), the load of
arc a in f is always upper-bounded by la := xaτa(xa). But for fixed load la,
the transit time experienced on arc a is equal to τ̂a(la) = τa(xa); see (1.12).
Since τ̂a is an increasing function, it follows that flow in f is traveling not
faster than prescribed by the transit time functions. Thus, the statement
follows because storage at intermediate nodes is not forbidden.

Notice that in both models, inflow-dependent and load-dependent transit
times, a temporally repeated flow makes use of the possibility to hold storage
at intermediate nodes.

1.4.5 Dynamic Traffic Assignment

The main objective of dynamic traffic assignment is to study, model, and
optimize the dynamic behavior of transportation networks. In contrast to
static traffic assignment, research in this area focuses on time-varying flows.
The rapid developments in driver information systems including route guid-
ance has generated considerable interest in this area. In the following, we
give an overview of the literature on dynamic traffic assignment. Notice that
we do not consider simulation-based approaches since they are in general not
suitable for analytically controllable optimization methods.

A good traffic assignment model should mirror the essential properties
of road traffic and it should be tractable from a mathematical programming
viewpoint. To our knowledge, all existing formulations are unsatisfactory
with respect to either of these requirements. As Friesz, Luque, Tobin, and

1.4 Flow-Dependent Transit Times 31

Wie [21] remark: “ There is yet to emerge from the literature a commonly
agreed upon statement of the dynamic traffic assignment problem.”

The articles of Merchant and Nemhauser [48, 49] are widely considered
to be seminal work in the field of dynamic traffic assignment. Merchant and
Nemhauser [48] present a discrete time model for dynamic traffic assignment
with a single destination. In this model, the assignment problem can be
formulated as a nonconvex program. We briefly describe the model.

The given time horizon T is divided into equal time intervals. Each arc a
in the given graph has a cost function ha and an exit function ga. If x is
the amount of traffic on arc a at the beginning of time period τ , then a
cost of ha(x) is incurred and ga(x) units of flow exit arc a during period τ .
Notice that no transit time functions are specified; instead, an exit function ga

measures the amount of flow that can exit the arc depending on the load of the
arc. All arcs are uncapacitated. For every source node v and for every time
period τ , the value dv,τ specifies the supply at node v during time period τ .
The objective is to determine a flow that satisfies the given supplies within
time T at minimum total cost.

Unless the functions ga are all linear, the constraint set is nonconvex.
Thus, Merchant and Nemhauser suggest to consider a piecewise linear ap-
proximation of the problem instead. With some additional assumptions on
the cost function, they can show that a global optimum to the approximate
problem can be found using a one-pass simplex algorithm.

Merchant and Nemhauser [49] discuss necessary optimality conditions of
the mathematical program described above. In particular, they show that
the optimality conditions generalize optimality conditions of a conventional
static traffic assignment problem. Moreover, they examine the behavior of
the dynamic model under static demand conditions and show that in this
case their model is a generalized version of a standard static model.

Carey [8] modifies the model of Merchant and Nemhauser [48] in order to
derive a convex program formulation for the traffic assignment problem with a
single destination. Associated with each arc a are variables xa,τ , da,τ , and ba,τ

that measure the flow volume, the inflow, and the outflow, respectively, on
arc a during period τ . Moreover, there is an outflow function ga, which
measures the“natural”outflow on arc a given the flow volume on a, and there
is a cost function ha, which measures the travel cost incurred by flow using
arc a. The objective is to minimize total cost such that flow conservation
holds: at each point in time, the actual outflow must not be larger than the
natural outflow. Provided that all functions ga are concave, the constraint
set is convex. If, moreover, all cost functions ha are convex, the problem
formulation induces a convex program and can thus be solved using a variety
of well-known algorithms developed for convex programming.

32 Network Flow Models

Janson [37] proposes a discrete time mixed integer nonlinear program-
ming formulation for dynamic traffic assignment with multiple sources and
sinks. While Merchant and Nemhauser [48] and Carey [8] minimize total
cost and hence seek for a system optimal solution, Janson [37] suggest a user
equilibrium approach. Here, the objective is to determine an equilibrium in
which each individual makes a selfish route choice. The time horizon T is
divided into equal time intervals. Each arc has a so-called impedance func-
tion fa that determines the length of the arc during time period τ depending
on the current flow volume on arc a. For each path P in the given graph, for
each arc a ∈ P , and for every time period τ , there is a zero-one variable that
indicates whether flow traveling along path P uses arc a in time period τ .
In particular, the problem formulation assumes complete enumeration of all
possible paths. The objective is chosen such that, in an optimal solution,
flow traveling from the same origin to the same destination experience the
same impedance.

A heuristic iterative procedure is presented to compute a solution to this
problem; the idea is to route flow along shortest path trees. Here, the length
of an arc is computed based on an estimate of the flow volume on that arc
in future time intervals. The length of an arc is updated with respect to the
current routing.

A similar mixed integer program is considered by Jayakrishnan, Tsai, and
Chen [38]. They propose a different iterative algorithm to compute solutions
to the mixed integer program. In each iteration, transit times are fixed; a
static traffic assignment problem is solved in a time-expanded network. Then,
transit times are updated accordingly. Like the algorithm of Janson [37], this
algorithm is only a heuristic.

Another iterative procedure is proposed by Kaufman, Smith, and Wun-
derlich [41]. They suggest a fixed point method to determine a dynamic user
equilibrium. They assume that an “assignment mapping” is given as part of
the input. This mapping assigns transit times to the arcs given a fixed vehi-
cle routing. The algorithm starts with an initial routing and assigns transit
times using the assignment mapping. In each iteration, an optimal routing is
determined and transit times are updated using the assignment mapping. It
is shown that a fixed point of this iterative procedure defines a user equilib-
rium. In particular, no individual can alter his route choice so that his trip
duration is reduced. However, such a fixed point does not exist in general.
Instead of considering the optimal routing in each iteration, Kaufman et al.
also suggest to consider a weighted sum of the current optimal routing and
the routings computed in previous iterations. A convergence of this proce-
dure to a fixed point is proven under very restrictive assumptions on the
assignment mapping and the routing procedure.

1.4 Flow-Dependent Transit Times 33

Carey and Subrahmanian [9] consider a generalized time-expanded graph
for modeling flow-dependent transit times. They assume that each arc a =
(v, w) has a piecewise linear transit time function τa given by breakpoints
0 = x0 < x1 < · · · < x�, where τa(xi) := i, i = 0, . . . , �. In the generalized
time-expanded graph, they introduce a copy (v(θ), w(θ+ i)) with capacity xi,
for each point in time θ and each transit time i = 0, . . . , T −1−θ. Carey and
Subrahmanian consider static network flow formulations in this generalized
time-expanded graph with additional bundle constraints linking the flow of
the arcs (v(θ), w(θ + i)), i = 0, . . . , T − 1 − θ. They derive necessary con-
ditions which guarantee that at most two neighboring arcs (v(θ), w(θ + i))
and (v(θ), w(θ + i + 1)) carry flow. In chapter 2, we will consider a very
similar model and analyze it.

Kaufman, Nonis, and Smith [39] formulate a mixed integer linear program
in the generalized time-expanded graph proposed by Carey and Subrahma-
nian [9]. More precisely, they formulate a static flow problem where zero-one
variables indicate whether an arc in the time-expanded graph carries flow.
For each arc a = (v, w) and each point in time θ, at most one of the arcs
(v(θ), w(θ + i)), i = 0, . . . , T − 1− θ, may carry flow. They suggest to apply
a branch-and-bound strategy to solve the resulting mixed integer program.

Friesz, Luque, Tobin, and Wie [21] interpret the dynamic traffic assign-
ment problem as an optimal control problem. Roughly speaking, control
theory considers mathematical systems that describe a dynamic process aris-
ing, e.g., in a physical, economical, or engineering context. The underlying
assumption is that certain state variables x(τ), τ ≥ 0, and certain control
variables u(τ), τ ≥ 0, describe, respectively control the dynamic process.
More precisely, given the initial condition of the state variables x(0) and
given u(τ), τ ≥ 0, one can determine the state x(τ) of the system at any
given point in time τ ≥ 0. Friesz et al. [21] propose two continuous time
formulations, one that corresponds to system optimization and the other to
user optimization. Associated with each arc a in the given graph is an inflow
function ua(τ), a load function xa(τ), a load-dependent cost function ca(x),
and a load-dependent exit function ga(x). The load xa(τ) on an arc a at
time τ ∈ [0, T] is considered as a state variable, the inflow ua(τ) of an arc a
at time τ ∈ [0, T] is considered as a control variable. The function ga is
assumed to be concave. Under certain reasonable assumptions on the initial
state of the system and on the given cost and exit functions, Friesz et al. [21]
derive necessary and sufficient conditions for the existence of a solution to
the system. However, they do not propose any solution techniques. They
only note that the treatment of arc exit flow as a nonlinear function ga might
yield some computational difficulties for the case of multiple destinations.

A large part of the literature interprets the dynamic traffic assignment

34 Network Flow Models

problem as a variational inequality problem; for more details see, e.g., the
book of Ran and Boyce [59]. Variational inequality theory is a methodol-
ogy for the study of equilibrium problems. It is used in various disciplines
including economics, operations research, and engineering. Given a closed
convex set and a continuous function F : K → �

n, the variational inequal-
ity problem is to determine a vector x∗ ∈ K, such that the inner product
F (x∗)T ·(x−x∗) is greater than or equal to 0, for all x ∈ K. For instance, the
static user equilibrium can be characterized as the solution of a variational
inequality; see, e.g., the book of of Ran and Boyce [59].

Friesz, Bernstein, Smith, Tobin, and Wie [20] define a continuous time
dynamic user equilibrium that can be represented as an infinite-dimensional
variational inequality. In such an equilibrium, all users with a common travel
purpose (i.e., the same origin, destination, and desired arrival time) experi-
ence the same travel cost regardless of the selected route. In addition, no
unused route or departure time has a lower cost. Their model requires so-
lution of a complex program expressed by a system of simultaneous integral
equations. Friesz et al. [20] do not present any solution techniques.

Ran and Boyce [58] and Chen and Hsueh [10] formulate discrete-time
dynamic user-optimal route choice problems using the variational inequality
approach. Ran and Boyce [58] analyze necessary and sufficient conditions
for the existence of a solution to this problem. Chen and Hsueh [10] propose
an iterative procedure for solving this problem. In each iteration, transit
times are estimated, a time-expanded network is constructed, and a static
assignment problem is solved. It is not clear that this procedure converges
to an optimal solution.

Chapter 2

Quickest s-t-Flows

2.1 Introduction

For fixed transit times, the classical problems related to s-t-flows over time
have been extensively studied. For most of the problems either efficient
algorithms were found or it was shown that the problem is NP-hard in
which case approximation algorithms were developed; see Chapter 1. In
this chapter we investigate s-t-flows over time with inflow-dependent transit
times.

As a starting point, we introduce a relaxed model of inflow-dependent
transit times in Section 2.2. This relaxation relies on an expanded graph with
fixed transit times on the arcs. To mimic flow-dependent transit times, every
arc of the original graph is replaced by a bunch of parallel arcs with different
transit times. This expansion has the following intuitive interpretation in
the context of road traffic: every expanded arc represents a multi-lane road;
traffic on the same lane travels with the same fixed speed. A driver can
choose a lane when entering the road. In contrast to real-life traffic, the driver
must remain on this lane and follow the prescribed speed. Flow-dependent
transit times are realized as follows. High-speed lanes have a relatively small
capacity. If the capacity of such a lane is used up, drivers must enter a lane
with lower speed.

Based on this relaxation, we present approximation results for the quickest
flow problem in Section 2.3. The results demonstrate the quality of this relax-
ation and thus justify its consideration for practical purposes. In Section 2.4
we discuss the complexity of the quickest flow problem with inflow-dependent
transit times. We prove that this problem is NP-hard in the strong sense.
We conclude this chapter with a presentation of computational results that
confirm the practical usefulness of our algorithms.

A substantial part of this chapter is based on joint work with Ekkehard
Köhler, Martin Skutella, and Alex Hall. Extended abstracts appeared in [28]
and [43].

35

36 s-t-Flows

x0

(a)

u1 u2 u3 u4

τ1

τ2

τ3

τ4

τs
a

τs
a

r1r2r3r4

b1

b2

b3

b4

(b)

(∞, τ1)

(∞, τ2)

(∞, τ3)

(∞, τ4)

(u1, 0)(u2, 0)(u3, 0)(u4, 0)

v w

Figure 2.1: Figure (b) depicts the expansion of a single arc a = (v, w) according to its
transit time function τs

a as given in Figure (a).

2.2 A Relaxation

Our eventual goal is to design good approximation algorithms for flows over
time with inflow-dependent transit times. On the way there, we introduce a
simpler model which on the one hand enables us to apply algorithms known
for flows over time with fixed transit times and on the other hand allows for a
dependency of transit times on the inflow. In other words, the simpler model
defines a relaxation of flows over time with inflow-dependent transit times.
Throughout this section we make the following assumption:

Assumption. All transit time functions are given as piecewise constant,
nondecreasing, and left-continuous functions (τ s

a)a∈A.

To stress the step function character of this transit time function, we
denote it by τ s

a . Later we will use the fact that general transit time functions
can be approximated by step functions within arbitrary precision.

2.2.1 The Bow Graph

The bow graph, denoted GB = (V B, AB), arises from the original graph G
by expanding each arc a ∈ A according to its transit time function. Consider
the example in Figure 2.1 (b), where an arc is expanded according to the
step function in Figure 2.1 (a). In GB, every arc e ∈ AB has a capacity ue

and a constant transit time τe ∈ �+.
For the definition, let us consider a particular arc a ∈ A. Let the transit

2.2 A Relaxation 37

time function τ s
a be given by breakpoints 0 = u0 < u1 < · · · < u� = ua and

corresponding transit times τ1 < · · · < τ�, where τ s
a (x) := τi, for x ∈ (ui−1, ui].

Arc a is replaced by arcs of two types; bow arcs, denoted b1, . . . , b�, and
regulating arcs, denoted r1, . . . , r�. Every bow arc bi represents a possible
transit time of arc a. More precisely, the transit time τbi

of arc bi is set
to τi, i = 1, . . . , �. All bow arcs are uncapacitated. The regulating arcs
limit the amount of flow entering the bow arcs. Their capacities are chosen
according to the breakpoints of transit time function τ s

a : the capacity uri
of

arc ri is set to ui, i = 1, . . . , �. All regulating arcs have transit time zero. We
denote the set of bow arcs and regulating arcs associated to an arc a ∈ A
by AB

a and refer to AB
a as the expansion of arc a. For every arc e ∈ AB

a ,
let a(e) denote the corresponding arc a in A. Note that the size of AB

a is
linear in the number of breakpoints of τ s

a . We call the nodes in V B which
correspond to nodes in V —in Figure 2.1 (b) the nodes v and w—original
nodes, the remaining nodes artificial .

2.2.2 Relaxation Property of the Bow Graph

We now discuss the relationship between flows over time in the bow graph GB

and flows over time with inflow-dependent transit times in G. In particular,
we will see that the bow graph defines a relaxation of the model of inflow-
dependent transit times.

Any flow over time f with inflow-dependent transit times (τ s
a)a∈A and

time horizon T in G can be interpreted as a flow over time (with constant
transit times) fB with the same time horizon T in GB. If in the original
graph G flow is entering arc a ∈ A at time θ with flow rate fa(θ), this flow
reaches head(a) at time θ + τ s

a (fa(θ)). We can simulate this behavior in the
bow graph by sending this flow onto the arc e ∈ AB

a representing transit
time τ s

a (fa(θ)). To be more precise, let b1, . . . , b� be the bow arcs in AB
a and

let i ∈ {1, . . . , �} be chosen such that τ s
a(fa(θ)) = τbi

. We define fB on the
expansion of arc a by setting

fB
e (θ) :=

{
fa(θ) if e = bi or e ∈ {rj | i ≤ j ≤ �},
0 otherwise.

(2.1)

Notice that fB obeys capacity constraints and flow conservation constraints
at all intermediate nodes.

Let F(T) denote the set of flows over time in G with inflow-dependent
transit times (τ s

a)a∈A and time horizon T . Similarly, let FB(T) denote the set
of flows over time in GB (with constant transit times) and time horizon T .

38 s-t-Flows

Let ι : F(T) → FB(T) denote the embedding that maps a flow f ∈ F(T) to
the corresponding flow over time fB ∈ GB; see Equation (2.1).

Observation 2.1. Let f be a flow over time with inflow-dependent transit
times (τ s

a)a∈A in G that sends d units of flow from s to t within time T .
Then ι(f) defines a flow over time (with constant transit times) in GB which
sends d units of flow from s to t within time T .

While every flow over time with inflow-dependent transit times in G can
be regarded as a flow over time in GB, the converse is not true: By our
definition of inflow-dependent transit times, flow particles entering arc a ∈ A
at the same time simultaneously arrive at the head node of a. In the bow
graph, however, flow units entering the expansion of an arc simultaneously,
do not necessarily travel through the expansion at the same speed. The
flow is allowed to split up and use bow arcs representing different transit
times. Only a portion of the flow is traversing the expansion of arc a at
the speed prescribed by the transit time function or possibly slower. The
rest might travel at a faster speed. Hence, the above defined embedding ι is
not surjective, unless all transit time functions are constant, in which case
G and GB essentially coincide. The following definition characterizes flows
over time in GB that lie in the image of ι.

Definition 2.2. Let fB be a flow over time in GB. We call fB inflow-
preserving if

(i) flow in fB is only stored in original nodes,

(ii) for every original arc a ∈ A and at every point in time θ, the flow fB

sends flow into at most one bow arc in AB
a .

The embedding ι maps every flow over time with inflow-dependent tran-
sit times and time horizon T in GB to an inflow-preserving flow over time;
this follows immediately from the definition in (2.1). Still, not every inflow-
preserving flow over time in GB lies in the image of ι. An inflow-preserving
flow over time can traverse the expansion of arc a via a bow arc with slower
transit time than prescribed by the transit time function. We define a map-
ping π that projects any inflow-preserving flows over time in FB(T) onto the
set F(T).

Let fB be an inflow-preserving flow over time in FB(T). We define a flow
over time f with inflow-dependent transit times in G as follows. Consider
an arc a ∈ A and let b1, . . . , b� and r1, . . . , r� be the set of bow arcs and
regulating arcs, respectively, of arc a. For any point in time θ ∈ [0, T), we
set

fa(θ) := fB
r�

(θ). (2.2)

2.2 A Relaxation 39

Claim 2.3. The flow f defines a feasible flow over time with inflow-dependent
transit times (τ s

a)a∈A and time horizon T in G.

Proof. The flow f satisfies the capacity constraints because fB does: fa(θ) =
fB

r�
(θ) ≤ ur�

= ua, where the latter equality follows from the definition of the
bow graph; see Section 2.2.1. It remains to show that f satisfies the flow
conservation constraints. It suffices to prove that flow in f travels through
arc a ∈ A not slower than flow in fB and therefore reaches head(a) on time.
Note that if flow in f travels faster through arc a than flow in fB, we can
compensate for this by storing flow at head(a).

Consider a point in time θ. If fa(θ) = 0, nothing needs to be shown,
hence, let us assume that fa(θ) = fB

r�
(θ) > 0. By definition, flow entering

arc a at time θ needs τ s
a(fa(θ)) time units to reach head(a). Consider the

corresponding flow in fB, which enters the expansion of arc a at time θ;
because of property (i) and (ii), there is a unique bow arc ba with fB

ba(θ) =
fB

r�
(θ). Since fB obeys the capacity constraints, the value fB

ba(θ) can be
bounded by uba ; in particular fB

r�
(θ) ≤ uba . Together with (2.2) we derive

that fa(θ) ≤ uba . Since the transit time function τ s
a is nondecreasing, we can

conclude that τ s
a(fa(θ)) ≤ τ s

a(uba) = τba , where the latter equality follows
from the definition of the bow graph; see Section 2.2.1. We conclude that
flow in f travels not slower than flow in fB.

Let π denote the projection that maps an inflow-preserving flow over
time fB in FB(T) to the corresponding flow f in F(T); see Claim 2.3. Notice
that π ◦ ι : F(T) → F(T) is the identity map.

Observation 2.4. Let f be an inflow-preserving flow over time in GB that
sends d units of flow from s to t within time T . Then π(f) defines a flow over
time with inflow-dependent transit times (τ s

a)a∈A in G which sends d units of
flow from s to t within time T .

We have seen above that flows over time in GB can be regarded as a
relaxation of flows over time with inflow-dependent transit times in G; simply
identify F(T) with the subset ι(F(T)) of FB(T). Using this insight, we will
develop an algorithm that in a first step computes a flow over time solution
in the bow graph GB. By means of various refinement operations, we turn
the produced solution into an inflow-preserving flow over time in GB, while
ensuring that the objective value does not increase too much. Applying the
projection π, such an inflow-preserving flow over time in GB can be easily
transformed into a solution to the original problem.

The advantage of this relaxation is that it relies on a graph having con-
stant transit times on the arcs. Therefore, we can apply algorithms that are

40 s-t-Flows

known for this much simpler model of flows over time. In particular, this
approach allows us to use standard network flow algorithms on the time-
expansion of GB; see Section 1.3.4.

In the remainder of this section we analyze the quality of the relaxation
for two simple cases. First, we consider the case that the given graph consists
of a single arc only. Then the class of flows over time and the class of inflow-
preserving flows over time in GB essentially coincide. After that, we discuss
a simple example in which this property does not hold.

Claim 2.5. Let G consist of a single arc a = (s, t) and let f be a flow over
time in GB with time horizon T that does not use storage in artificial nodes.
Then there exists an inflow-preserving flow over time g in GB that satisfies
the same demand as f within time T .

Proof. Let AB
a consist of bow arcs b1, . . . , b� and regulating arcs r1, . . . , r�,

and let θ ∈ [0, T). Then define g as follows:

gbi
(θ) :=

{
fri

(θ) if fbi
(θ) > 0 and fbj

(θ) = 0 for all j > i,

0 else,

gri
(θ) :=

{
fri

(θ) if fbj
(θ) = 0 for all j > i,

0 else.

At every point in time, flow in g is sent onto the highest bow arc that is
currently used by f . This guarantees that the time horizon of g is not larger
than T . Since f satisfies capacity constraints, so does g.

We have seen in the last chapter that, for the maximum flow over time
problem and for the quickest flow problem, there always exists a solution
that does not use storage at intermediate nodes; see Theorem 1.8 and Corol-
lary 1.10. Consequently, Claim 2.5 implies that for single-arc instances, the
class of inflow-preserving flows over time in GB contains a quickest flow and
a maximum flow over time. Thus, for this special case, the relaxation defined
by the bow graph is tight.

The following instance consisting of two arcs shows that this does not
hold in general. More precisely, the time horizon of a quickest flow in GB can
be strictly smaller than the time horizon of any inflow-preserving flow over
time in GB satisfying the same demand.

Example 2.6. Let G consist of a path P of length 2. The first arc on P ,
denoted a1, has capacity ua1 := 2 and transit time function

τ s
a1

(x) :=

{
0 if 0 ≤ x ≤ 1,

1 if 1 < x ≤ 2.

2.2 A Relaxation 41

(∞, 0)

(∞, 1)

b1

b2

r1r2 a2

(1, 0)(2, 0) (2, 0)
s t

v

Figure 2.2: The figure depicts an instance, for which the class of inflow-preserving flows
over time in GB neither contains a maximum flow over time in GB nor a quickest flow in
GB.

The second arc, denoted a2, has capacity ua2 := 2 and constant transit
time τa2 := 0. The corresponding bow graph is shown in Figure 2.2. Strictly
speaking, the arc a2 should be represented by its expansion which consists
of one regulating arc and one bow arc. Since for fixed transit times this
expansion is redundant, in this example arc a2 is not explicitly expanded.

There exists a flow over time in GB which sends d := 3 units of flow
from s to t within time T := 2: consider the temporally repeated flow which
sends flow at rate 1 into the s-t-path containing the lower bow arc b1 during
time interval [0, 2) and flow at rate 1 into the s-t-path containing the upper
bow arc b2 during time interval [0, 1).

We define an inflow-preserving flow over time f in GB which satisfies de-
mand 5/2 within time T : it sends flow at rate 2 into bow arc b2 during [0, 1/2),
then it sends flow at rate 1 into bow arc b1 until time 2. Figure 2.3 illustrates
how the flow is routed. Figure (a) depicts the outflow rate of f at node s
as defined above. The dark shaded area represents flow that is sent along
bow arc b2. Analogously, the light shaded area represents flow that is sent
along b1. Figure (b) displays the inflow rate of f at node v, Figure (c) de-
scribes the inflow rate of f at node t. Notice that f uses intermediate storage
at node v.

We show that f is maximal, i.e., any inflow-preserving flow over time can
satisfy at most demand 5/2 within time T . In such a flow g, let gi, i ∈ {1, 2},
denote the flow which is sent along bow arc bi in [0, 1) and let g′

1 denote the
flow which is sent along bow arc b1 in [1, 2). Note that no flow can be sent
into bow arc b2 after time 1 since this flow cannot reach the sink on time.
The value of g can then be expressed as |g| = |g1| + |g′

1| + |g2|.
We distinguish two cases. First, assume |g1| ≤ 1/2. Since the capacity of

arc a2 is 2, we can upper-bound |g′
1|+|g2| by 2. Hence, |g| = |g1|+|g′

1|+|g2| ≤
2 + 1/2. Next, assume |g1| > 1/2, i.e., |g1| = 1/2 + ε, where ε > 0.
Then, the flow g1 is entering bow arc b1 for at least 1/2 + ε time units.

42 s-t-Flows

f+(s) f−(v) f−(t)

(a) (b) (c)

11

1

1

1 1

2

222

2 2

33 3

000
θθ θ

Figure 2.3: Description of an optimal inflow-preserving flow over time in the bow graph
which is depicted in Figure 2.2. Figure (a) depicts the outflow rate out at node s, Figure (b)
the inflow rate at node v, and Figure (c) the inflow rate at node t. In total, 5/2 units of
flow reach t before time 2.

Thus, |g2| ≤ 2(1/2 − ε). By capacity constraints, |g′
1| ≤ 1. In total, |g| =

|g1| + |g2| + |g′
1| ≤ 1/2 + ε + 2(1/2 − ε) + 1 < 5/2. Thus, in both cases the

value of g can be upper-bounded by 5/2. We conclude that f is maximal.
There exists an inflow-preserving flow over time in GB that satisfies de-

mand d = 3 within time 5/2: send flow at rate 2 into the s-t-path containing
bow arc b2 during time interval [0, 3/2). One can check that any inflow-
preserving flow over time in GB needs at least time 5/2 to satisfy demand d.

The following corollary summarizes our observations.

Observation 2.7. The following two statements hold:

(i) If G consists of a single arc (s, t), then the time horizon of a quickest
inflow-preserving flow of value d in GB is equal to the time horizon of
a quickest flow of value d in GB.

(ii) There exist instances in which the time horizon of any inflow-preserving
flow over time of value d in GB is at least 5/4 times larger than the
time horizon of a quickest flow of value d in GB.

2.3 Constant Factor Approximations for Quickest Flows

The purpose of this section is to demonstrate the strength and usefulness of
the bow graph presented in the last section for solving time-dependent flow
problems with inflow-dependent transit times. This is done by presenting ap-
proximation algorithms for the quickest flow problem with inflow-dependent

2.3 Constant Factor Approximations for Quickest Flows 43

transit times that are based on optimal solutions to the relaxation given
by GB.

Problem 2.8 (Quickest inflow-dependent flow). Determine an s-t-flow
over time f with inflow-dependent transit times that satisfies demand d
within minimum time T .

2.3.1 Piecewise Constant Transit Times

We now present an approximation algorithm for the case of piecewise constant
transit time functions. In the subsequent section we discuss general transit
time functions.

Assumption. All transit time functions are given as piecewise constant,
nondecreasing, and left-continuous functions (τ s

a)a∈A.

The first step in the algorithm is to construct the bow graph GB with re-
spect to the given transit time functions (τ s

a)a∈A as described in Section 2.2.1.

Next, one determines a quickest flow fB with time horizon T
B

in GB. As

Burkard et al. [6] show, the time horizon T
B

and a solution xB to the static

flow problem (1.8) with time horizon set to T
B

can be computed in strongly
polynomial time by applying Megiddo’s method of parametric search; see
Theorem 1.11. We denote the resulting temporally repeated flow solution
in GB by fB. By Equation (1.5), the value of fB is

|fB| = T
B |xB| −

∑
e∈AB

τe xB
e = d . (2.3)

By Observation 2.1, the quickest flow problem on GB can be seen as a relax-

ation of the quickest inflow-dependent flow problem on G. Thus the value T
B

is a lower bound on the optimal time horizon T in G.

Later, we will need the following lemma, which follows from the optimality
of xB. We consider the bow graph expansion of a particular arc a ∈ A to
bow arcs b1, . . . , b� and regulating arcs r1, . . . , r�, where the capacity of rj

is given by uj.

Lemma 2.9. If xB sends flow along bow arc bi, then for all bow arcs bj with
index j smaller than i, we have xB

bj
= uj − uj−1. Less formally speaking, the

flow xB fills the bows from bottom to top.

44 s-t-Flows

s t

(a)
s t

(b)

Figure 2.4: Turning a static flow xB (a) into a static flow x̃B (b) that uses only one
arc ba of the expansion of arc a ∈ A. The static flow in (b) generates an inflow-preserving
temporally repeated flow in GB.

Proof. For j smaller than i, the transit time of arc bj is smaller than the
transit time of arc bi. Therefore, shifting flow from arc bi to arc bj improves
the value of the objective function (1.8) of xB. The result thus follows from
the optimality of xB and the choice of capacities on the regulating arcs.

Eventually, we are interested in a flow over time in GB which is inflow-
preserving. Unfortunately, as it is discussed in Section 2.2.2, the flow fB

does in general not satisfy this requirement. One reason is that flow units
entering the expansion of an arc a ∈ A simultaneously might experience
different transit times in fB due to different transit times on bow arcs in AB

a .
Therefore, we reroute the static flow xB to make sure that it does not split
among bow arcs representing different transit times of the same arc a ∈ A.
This is achieved by pushing flow from“fast”bow arcs up to the“slowest”flow-
carrying bow arcs in xB. An illustration is given in Figure 2.4. More formally
speaking, for the expansion AB

a of an arc a, given by bow arcs b1, . . . , b� and
regulating arcs r1, . . . , r�, the modified static flow x̃B is defined by setting

x̃B
bi

:=

{
xB

ri
if xB

bi
> 0 and xB

bj
= 0 for all j > i,

0 else,

x̃B
ri

:=

{
xB

ri
if xB

bj
= 0 for all j > i,

0 else.

Since only the regulating arcs r1, . . . , rk are capacitated in GB, it follows
immediately from the feasibility of xB that x̃B is feasible as well. Notice that
the value of the flow remains unchanged, i. e.,

|x̃B| = |xB|. (2.4)

We denote the unique bow arc b ∈ AB
a which carries flow in x̃B by ba. Later,

we will need the following observation which follows by construction of x̃B

and Lemma 2.9.

2.3 Constant Factor Approximations for Quickest Flows 45

Observation 2.10. Let a ∈ A; either no flow in x̃B is routed through AB
a or

the flow in x̃B is routed through a unique bow arc ba ∈ AB
a with transit time

τba = τ s
a(x̃B

ba).

We show that the modified flow x̃B yields a flow over time in GB with

value d and time horizon at most 2T
B
. For this, we decompose x̃B into flows

on s-t-paths1 P ∈ P̃ in GB with flow values x̃B
P .

Claim 2.11. The transit time τP of every path P ∈ P̃ is bounded from above

by T
B
.

Proof. Since all flow-carrying arcs in x̃B carry flow in xB as well, the result
follows from Observation 1.7.

As a consequence, the path-decomposition (xB
P)P∈P̃ of x̃B induces a tem-

porally repeated flow f̃B(T) in GB for any time horizon T ≥ T
B
. We

choose T ′ such that |f̃B(T ′)| = T ′ |x̃B| −
∑

e∈AB τe x̃B
e = d.

Lemma 2.12. The value of T ′ is bounded from above by 2T
B
.

Proof. Notice that |f̃B(T)| is an increasing function of T . Therefore, it suf-

fices to show that |f̃B(2T
B
)| ≥ d:

|f̃B(2T
B
)| = 2T

B |x̃B| −
∑
e∈AB

τe x̃B
e by Observation 1.2,

= 2T
B |x̃B| −

∑
P∈P̃

τP x̃B
P

= T
B |x̃B| +

∑
P∈P̃

(
T

B − τP

)
x̃B

P

≥ T
B |x̃B| by Claim 2.11,

= T
B |xB| by (2.4),

≥ |fB| = d by (2.3).

This concludes the proof.

Claim 2.13. The flow over time f̃B is inflow-preserving.

1We can assume without loss of generality that no cycles are needed in the flow decom-
position of xB ; otherwise we can decrease flow on cycles without decreasing the objective
value in (1.8). In particular, no cycles are needed in the flow decomposition of x̃B .

46 s-t-Flows

Proof. We have to check that Properties (i) and (ii) in Definition 2.2 hold.
Property (i) holds since a temporally repeated flow (with constant transit
times) does not make use of storage, by definition. Property (ii) follows from
the construction of x̃B.

Applying Observation 2.4, turns f̃B into an s-t-flow over time with inflow-
dependent transit times (τ s

a)a∈A in G. The following claim summarizes this
result.

Claim 2.14. There exists an s-t-flow over time with inflow-dependent transit

times (τ s
a)a∈A in G satisfying demand d within time horizon at most 2T

B
.

In Section 1.4.4 we have introduced temporally repeated flows with flow-
dependent transit times as a special class of flows over time with inflow-
dependent transit times. We next show that the flow over time f̃B induces
a temporally repeated flow with flow-dependent transit times (τ s

a)a∈A in G.
Take as the underlying static flow x in G the flow defined by

xa := x̃B
ba (2.5)

and choose the path decomposition induced by the path decomposition of x̃B .
We have to check that, for every arc a ∈ A, flow in f traverses arc a with
fixed transit time τ s

a(xa). Flow in x̃B is traveling through the expansion of
arc a with fixed transit time τba . By Observation 2.10, this is equal to τ s

a(x̃B
ba)

which, by (2.5), is equal to τ s
a(xa).

Later we will need the following observation.

Observation 2.15. Let (xP)P∈P be a path decomposition of x. Then the
transit time τ s

P (x) of every path P ∈ P is bounded by T .

Proof. This follows immediately from Claim 2.11, since any path P ∈ P
induces a flow-carrying path P̃ in x̃B with the same transit time.

Theorem 2.16. Consider an instance of the quickest inflow-dependent flow
problem 2.8 where all transit time functions are step functions. Let T denote
the optimal time horizon. Then there exists a temporally repeated flow f
with flow-dependent transit times (τ s

a)a∈A satisfying demand d within time
horizon at most 2T . Moreover, such a flow can be computed in strongly
polynomial time.

Proof. It follows from the description above that f can be computed in
strongly polynomial time. Moreover, |f | = |f̃B| = d and the time hori-
zon of f is equal to T , the time horizon of f̃B. Finally, by Lemma 2.12,

T ≤ 2T
B

and by the relaxation property of the bow graph this is not larger
than 2T .

2.3 Constant Factor Approximations for Quickest Flows 47

δ

(1 + η)iδ

τa(ua)

τa

ui−1 ui ui+1 ua

ua

0

Figure 2.5: Example of a step function τs
a approximating transit time function τa as

explained in Observation 2.18.

Notice that in our analysis we have compared the value T of the computed

solution f to the lower bound T
B

given by an optimal solution fB to the
relaxation of the problem defined by the bow graph GB. This yields the
following result on the quality of this relaxation.

Corollary 2.17. The relaxation of the quickest inflow-dependent flow prob-
lem on the bow graph GB is a 2-relaxation, that is, the value of an optimal
solution to the quickest inflow-dependent flow problem is within a factor of 2
of the value of an optimal solution to this relaxation.

2.3.2 General Transit Times

So far we have derived a 2-approximation for the case that all transit time
functions are nondecreasing step functions. In this section the approach
is generalized to arbitrary nondecreasing transit time functions. The idea
is to approximate them by step functions. In order to do this, we need
the technical requirement that the transit time functions are left-continuous.
See Figure 2.5 for a visualization of a possible step function as claimed in the
following observation.

Observation 2.18. Let δ, η > 0. For every nonnegative, nondecreasing,
and left-continuous function τ : [0, u] → �

+, there exists a step function
τ s : [0, u] → �

+, with

(i) τ s(x) ≤ τ(x) ≤ (1 + η) τ s(x) + δ for every x ∈ [0, u],

(ii) the number of breakpoints of τ s is bounded by �log1+η(τ(u)/δ)	 + 1.

48 s-t-Flows

Proof. Without loss of generality we can assume that τ(0) = 0. In case
this does not hold, determine a step function τ̃ s satisfying requirements (i)
and (ii) for τ̃ (x) := τ(x) − τ(0), x ∈ [0, u]. One can easily check that the
step function τ s(x) := τ̃ s(x)+τ(0), x ∈ [0, u], then satisfies the requirements
for τ(x), x ∈ [0, u]. Furthermore, we can assume that τ(u) > δ. If this is
not the case, the step function τ s(x) = 0, x ∈ [0, u], satisfies (i) and (ii).

Let α ∈ � be chosen minimum with the property that (1 + η)αδ >
τ(u), i.e., α = �log1+η(τ(u)/δ)	. For every i ∈ {1, . . . , α}, choose ui :=
max{x | τ(x) ≤ (1 + η)i−1δ}. Notice that ui is well-defined because τ is
assumed to be left-continuous. We define the step function τ s by τ s(x) := 0,
for x ∈ (0, u1], and τ s(x) := τ(ui), for x ∈ (ui, ui+1], i ∈ {1, . . . , α}. This
step function has the desired properties.

Remark 2.19. Recall that each transit time function (τa)a∈A, is given by an
oracle; see Remark 1.18. By assumption, the oracle associated with τa can
evaluate the function τ
→ max{x | τa(x) ≤ τ}. At this point the assumption
is needed. In the proof of Observation 2.18, we describe a method to compute
a step function τ s

a that approximates τa. To guarantee that this method can
be performed in strongly polynomial time, we need the technical assumption
that the oracle can compute each breakpoint ui = max{x | τ(x) ≤ (1 +
η)i−1δ}, i ∈ {1, . . . , α}.

In the following, we consider transit time functions τ s
a for the arc a in

graph G that fulfill the requirements stated in Observation 2.18. Then, an
instance of the quickest inflow-dependent flow problem on G with transit time
functions (τ s

a)a∈A, is a relaxation of the corresponding instance with transit
time functions (τa)a∈A, since τ s

a(x) ≤ τa(x), for all a ∈ A and x ∈ [0, ua]; see
Observation 1.19. In particular, the optimal time horizon T

s
for transit times

τ s
a is a lower bound on the optimal time horizon T for transit times (τa)a∈A.

Conversely we have:

Lemma 2.20. Let δ, η > 0. A temporally repeated flow f s for transit time
functions (τ s

a)a∈A in G with time horizon T s naturally induces a temporally
repeated flow f for transit time functions τa in G with |f | ≥ |f s| and time
horizon (1 + η) T s + δ |A|.

Proof. Let P denote the set of s-t-paths used by f s and xs
P the flow rate on

path P ∈ P. Evidently, the path flows (xs
P)P∈P define a temporally repeated

flow for transit time functions (τa)a∈A as well. For every arc a ∈ A, let
xs

a :=
∑

P∈P : a∈P xs
P . In f s, the transit time on arc a ∈ A is fixed to τ s

a (xs
a)

and flow traveling along path P ∈ P needs τ s
P (xs) =

∑
a∈P τ s

a (xs
a) ≤ T s time

to reach the sink. If we return to the original transit time functions τa, the

2.3 Constant Factor Approximations for Quickest Flows 49

transit time on path P increases to τP (xs) =
∑

a∈P τa(x
s
a) ≤ (1 + η)τ s

P (xs) +
δ |A|; see Observation 2.18 (i). Therefore, the value of the corresponding
temporally repeated flow f for transit time functions τa and time horizon
T ′ := (1 + η) T s + δ |A| is

|f | = T ′ |xs| −
∑
P∈P

τP (xs) xs
P

≥ T ′ |xs| −
∑
P∈P

(
(1 + η)τ s

P (xs) + δ |A|
)
xs

P

≥ T ′ |xs| − (η T s + δ |A|) |xs| −
∑
P∈P

τ s
P (xs) xs

P

= T s |xs| −
∑
P∈P

τ s
P (xs) xs

P = |f s| .

This concludes the proof.

If the optimal time horizon T or at least a good estimate is known in ad-
vance, a provably good solution to the quickest inflow-dependent flow prob-
lem in G can be computed in strongly polynomial time.

Lemma 2.21. Given a lower bound L on T with L ≤ T ≤ p(|A|) L, for
some polynomial p, a temporally repeated flow with flow-dependent transit
times (τa)a∈A in G satisfying demand d within time horizon at most (2+ ε) T
can be computed in strongly polynomial time.

Proof. Since any flow over time with time horizon T can send flow with rate
at most u′

a := max{x ∈ [0, ua] | τa(x) ≤ p(|A|) L} into arc a at any moment
in time, we can set ua := u′

a, for all a ∈ A, without changing the optimal time
horizon T . Set δ := ε L/(2 |A|) and η := ε/4. Then, by Observation 2.18 (ii),
the number of breakpoints of τ s

a is in O(log(|A|/ε)/ε) and thus polynomially
bounded in the input size and 1/ε.

Hence, by Theorem 2.16, for transit time functions τ s
a a temporally re-

peated flow f s in G with flow-dependent transit times (τ s
a)a∈A and with time

horizon at most 2T
s

of value d can be computed in strongly polynomial
time. By Lemma 2.20, f s induces a solution f to the quickest flow problem
for transit time functions τa with time horizon at most (1 + η) 2T

s
+ δ |A| ≤

(2 + ε) T .

Corollary 2.22. For every ε > 0, there exists a temporally repeated flow
with flow-dependent transit times (τa)a∈A in G satisfying demand d in at
most (2 + ε)T time.

Proof. The result follows from Lemma 2.21 by setting L = T .

50 s-t-Flows

The number of breakpoints of the step functions (τ s
a)a∈A chosen in the

proof of Lemma 2.21 determines the size of GB.

Corollary 2.23. The number of arcs (respectively, nodes) in the bow graph
constructed with respect to (τ s

a)a∈A lies in O(|A| log(|A|/ε)/ε).

In view of Lemma 2.21, it remains to show that a lower bound L with L ≤
T ≤ p(|A|) L, for some polynomial p, can be found in strongly polynomial
time. For an arc a ∈ A, let �a := min{τa(x) + d/(|A| x) | x ∈ (0, ua]} >
0. Notice that �a is the minimum amount of time that is needed to send
d/|A| units of flow through arc a in a temporally repeated fashion. That is,
the value �a essentially measures how fast the arc a can transport flow. If,
for instance, transit time function τa is constant, the minimum is attained
for x = ua.

Remark 2.24. Notice that it is assumed that the oracle associated with
transit time function τa can determine the value �a up to a constant factor;
see Remark 1.18.

Lemma 2.25. There exists an algorithm with strongly polynomial running
time which computes a lower bound L such that L ≤ T ≤ p(|A|) L, for some
polynomial p.

Proof. For an arbitrary s-t-path P in G, let �P := maxa∈P �a. Then, �P is
a lower bound on the amount of time that is needed to send d/|A| units of
flow through path P in a temporally repeated flow. Furthermore, we set

L := min{�P/2 | P is an s-t-path in G} . (2.6)

Notice that L (or a constant approximation of L) can be computed in strongly
polynomial time: First determine �a (or a constant approximation of �a), for
every a ∈ A, using the presumed oracle algorithm associated with τa; see
Remark 1.18. The minimum bottleneck capacity of a path—and thus L—
can be computed with a Dijkstra-type algorithm; a description of Dijkstra’s
algorithm can for example be found in [45].

We claim that L is a lower bound on T . It follows from Corollary 2.22
that, for every ε > 0, there exists a temporally repeated flow fε in G with
flow-dependent transit times (τa)a∈A that sends d units of flow within time
(2 + ε)T . Since the s-t-paths used by fε result from a path decomposition
of the underlying static flow in G, their number can be bounded by |A|. In
particular, there must exist an s-t-path Pε which carries at least d/|A| units
of flow in the temporally repeated solution. This yields �Pε ≤ (2 + ε)T and
therefore L ≤ �Pε/2 ≤ (1 + ε/2)T , for every ε > 0. Hence, L ≤ T .

2.3 Constant Factor Approximations for Quickest Flows 51

Finally, we show that T ≤ 2 |A|2 L. Let P be an s-t-path for which the
minimum in (2.6) is attained. By definition of �P , and since P consists of at
most |A| edges, we can send d/|A| units of flow from s to t on P within time
2 |A|L. By repeating this flow |A| time units, we can send d units of flow
within time 2 |A|2 L.

Later we will need the following corollary.

Corollary 2.26. Let T
t

denote the time horizon of a quickest temporally
repeated flow with flow-dependent transit times (τa)a∈A and value d in G.

Then, the lower bound L in Lemma 2.25 satisfies L ≤ T
t ≤ p(|A|) L, for

some polynomial p.

Proof. The statement follows immediately from the proof of Lemma 2.25.

We can now state the main result of this section, which follows from
Lemmas 2.21 and 2.25.

Theorem 2.27. Assume that each transit time function (τa)a∈A is a nonneg-
ative, nondecreasing, left-continuous function given by an oracle as described
in Remark 1.18. Then there exists a (2 + ε)-approximation algorithm for the
quickest inflow-dependent flow problem with strongly polynomial running
time in the input size and 1/ε.

We point out that the output of the algorithm is a temporally repeated
flow. In particular, the inflow rate function on every arc is piecewise constant.
A compact description of the final algorithm is given on the following page.
Step 2 of the algorithm can be viewed as a first relaxation of the problem

since replacing all transit time functions by lower step functions enlarges the
space of flows over which we optimize; see Observation 1.19. Step 4 further
relaxes the problem by considering the corresponding bow graph solution.

The running time of this algorithm is clearly dominated by Step 4. This
step can be implemented using the algorithm by Burkard et al. [6]. On
a graph with n nodes and m arcs, their algorithm has a running time of
O(MCC(n, m)2), where MCC is the running time of a minimum cost (static)
circulation algorithm which makes only use of certain arc cost operations2.
They suggest the algorithm by Orlin [53] which fulfills these requirements and
is moreover one of the currently asymptotically best algorithms for solving
minimum cost flow problems [62]. Applying this result, they achieve a run-
ning time of O

(
m2 log2 n (m + n log n)2

)
. In our case, n and m represent the

number of nodes, respectively, arcs in the bow graph GB. By Corollary 2.23,
the size of GB lies in O(|A| log(|A|/ε)/ε).

2The algorithm is allowed to perform: additions and subtractions of two costs, multi-
plications of an arc cost with a real number, and pairwise comparisons between arc costs.

52 s-t-Flows

Algorithm 1: Approximating quickest inflow-dependent flows.

Input: Directed graph G = (V, A) with positive capacities ua and
nonnegative, nondecreasing, left-continuous transit time func-
tions τa on the arcs, source-sink node pair (s, t) ∈ V ×V and
flow demand d, parameter ε > 0.

Output: Flow over time f with inflow-dependent transit times in G
satisfying demand d within time (2 + ε)T .

1 Compute lower bound L on T (see proof of Lemma 2.25) and set
η := ε/4 and δ := ε L/(2 |A|);

2 Replace transit time functions τa by step functions τ s
a (see Observa-

tion 2.18);
3 Construct bow graph GB with respect to (τ s

a)a∈A;
4 Compute quickest (temporally repeated) flow in GB;

xB ← underlying static flow;
5 Turn xB into static flow x in G according to (2.5);
6 Determine the time horizon T such that T |x| −

∑
a∈A τa(xa) xa = d;

f ← temporally repeated flow over time with inflow-dependent transit
times and with time horizon T generated by x;

2.3.3 An Improved Result for Concave Transit Times

In this section we show that for the special case of nonnegative, nonde-
creasing, and concave transit time functions Algorithm 1 achieves a better
performance ratio.

Theorem 2.28. Consider an instance of the quickest inflow-dependent flow
problem times where the transit time function of every arc is nonnegative,
nondecreasing, and concave. Then, a variant of Algorithm 1 achieves perfor-
mance ratio 3/2 + ε.

To this end, we slightly modify the algorithm by defining η := ε/6 (instead
of ε/4 as in the proof of Lemma 2.21). The parameter δ := ε L/(2 |A|) remains
unchanged.

Let xB denote the static flow in GB computed in Step 4 of the algorithm
and x the corresponding static flow in G computed in Step 5. We first bound
the total transit time

∑
a∈A τa(xa) xa of x with respect to the original transit

time functions (τa)a∈A.

Lemma 2.29. Let T be the optimal time horizon of a quickest inflow-

2.3 Constant Factor Approximations for Quickest Flows 53

τa(x)

τa(ui)

τi

(1+η)τi+δ

ui-1 ui u�̃-1 u�̃

x
xa0

�̃∑
i=1

(
(1+η) τi+δ

)
xB

bi

�̃∑
i=1

τa(ui)xB
bi

Figure 2.6: Illustration of the proof of Inequality (2.8), first part: The area under the
upper step function is larger than the area under the concave transit time function τa.

dependent flow in G. Then,

1
2

∑
a∈A

τa(xa) xa ≤ (1 + ε/6)
∑
e∈AB

τe xB
e + ε |x| T/2 . (2.7)

Proof. Consider the expansion AB
a of a fixed arc a ∈ A consisting of bow arcs

b1, . . . , b� with transit times τ1, . . . , τ� and of regulating arcs r1, . . . , r� with
capacities u1, . . . , u�. Since all regulating arcs have zero transit time, they
do not contribute to the sum on the right hand side of (2.7). Moreover, by
definition of x, we have

∑�
i=1 xB

bi
= xa ≤ |x|.3 Therefore, it suffices to show

that

1
2
τa(xa) xa ≤

�∑
i=1

(
(1 + η) τi + δ

)
xB

bi
, (2.8)

since summing up these inequalities over all arcs a ∈ A yields the statement of
the lemma. The value of the step function approximating τa when evaluated
at point ui is τi. Therefore, the first property stated in Observation 2.18
yields

(1 + η) τi + δ ≥ τa(ui) ; (2.9)

see also Figure 2.6. Assume that xB is sending flow along bow arcs b1 to b�̃.

3Since x has a decomposition into flow on paths (no cycles), xa ≤ |x| holds on every
arc a ∈ A.

54 s-t-Flows

τa(x)

0
x

τa(xa) xa

2

∫ xa

0

τa(x) dx

τa(xa)

xa

Figure 2.7: Illustration of the proof of Inequality (2.8), second part: the area under the
concave transit time function τa is at least as large as the area of the triangle below τa.

Then, the right hand side of (2.8) can be bounded as follows

�∑
i=1

(
(1 + η) τi + δ

)
xB

bi
≥

�̃∑
i=1

τa(ui) xB
bi

by (2.9),

=

�̃−1∑
i=1

τa(ui) (ui − ui−1) + τa(u�̃) (xa − u�̃−1) by Lemma 2.9,

≥
∫ xa

0

τa(x) dx ≥ τa(xa) xa/2 .

An illustration of the first two inequalities is given in Figure 2.6. The last
inequality holds since the function τa is nonnegative, nondecreasing, and
concave; see Figure 2.7.

Proof of Theorem 2.28. Let (xP)P∈P be a path decomposition of x. Then
the transit time τP (x) of path P ∈ P can be bounded as follows:

τP (x) =
∑
a∈P

τa(xa) ≤
∑
a∈P

(
(1 + η) τ s

a(xa) + δ
)

by Observation 2.18 (i),

≤ (1 + η)τ s
P (x) + |A|δ

≤ (1 + η)T
s
+ |A|δ by Observation 2.15,

≤ (1 + 2/3 ε) T . (2.10)

2.3 Constant Factor Approximations for Quickest Flows 55

As a consequence we get

(3/2 + ε) T |x| −
∑
a∈A

τa(xa) xa

= (1 + 2/3 ε) T |x| + 1
2

∑
P∈P

(
(1 + 2/3 ε)T − τP (x)

)
xP − 1

2

∑
a∈A

τa(xa) xa

≥ (1 + 2/3 ε) T |x| − 1
2

∑
a∈A

τa(xa) xa by (2.10),

≥ (1 + ε/6) T |x| − (1 + ε/6)
∑
e∈AB

τe xB
e by Lemma 2.29,

= (1 + ε/6)

(
T |xB| −

∑
e∈AB

τe xB
e

)

= (1 + ε/6) d ≥ d .

This proves that the time horizon of the computed solution is upper-bounded
by (3/2 + ε) T . In particular, the performance guarantee of Algorithm 1 is
at most 3/2 + ε. This concludes the proof of Theorem 2.28.

Lower Bounds. We show that the analysis of the above algorithm is tight.

Claim 2.30. The performance ratio of the described approximation algo-
rithm can be arbitrarily close to 2, for general transit time functions, and
arbitrarily close to 3/2, for concave transit time functions.

Proof. First, we define an instance with concave transit times for which the
performance of the algorithm is not better than 3/2. Consider an instance G
consisting of a single arc a = (s, t) with linear transit time function τa and
capacity ua. As depicted in Figure 2.8 (a), we assume that the function τa is
going through the origin. For a given demand d, let T denote the time horizon
of a quickest flow of value d in G with inflow-dependent transit time τa. We
will prove that Algorithm 1 computes a solution with time horizon T at
least (1 − ε)3/2 T .

Assume that we have approximated τa by a lower step function τ s
a as

proposed by the algorithm. Let AB
a := {b1, . . . , b�, r1, . . . , r�} be the expansion

of arc a with respect to τ s
a . We denote the time horizon of a quickest flow

over time of value d in GB by T
B
. Without loss of generality, we assume

that we have specified demand d such that T
B

is smaller than τ s
a(ua). In

particular, T
B

< τb�
.

Furthermore, let xB be the static s-t-flow in GB computed by Ford and
Fulkerson’s algorithm. Then xB generates a temporally repeated flow over

56 s-t-Flows

(a) (b)

T
B

T
B

T

θθ

|xB|
xx

xa

τa(x)τa(x)

00

≥
∑�

i=1 τbix
B
bi

τa(xa)xa

≤ T
B|xB| − P�

i=1 τbi
xB

bi
= d

Txa − τa(xa)xa

Figure 2.8: A single-arc instance of the quickest inflow-dependent flow problem showing
that, for linear transit time functions, the performance guarantee of Algorithm 1 is not
better than 3/2.

time in GB of value

d = T
B |xB| −

∑
e∈AB

a

τex
B
e = T

B |xB| −
�∑

i=1

τbi
xB

bi
. (2.11)

As already observed in Lemma 2.9, the static flow fills the bow arcs “from

bottom to top” assigning flow to all bow arcs bi with τbi
≤ T

B
. We already

used in the proof of Claim 2.29 that the total transit time
∑�

i=1 τbi
xB

bi
ap-

proximates the area under the transit time function τa between 0 and |xB|;
see Figure 2.8 (a). Hence, by (2.11), the value d is approximately the dark
shaded area above τa.

Let xa denote the static s-t-flow on arc a computed in Step 5 of the
algorithm; by definition, xa = |xB|. Its total transit time τa(xa)xa is shown in

Figure 2.8 (b). Given a time horizon T ≥ T
B
, the value of the corresponding

temporally repeated flow over time with inflow-dependent transit times in G
is T xa − τ(xa)xa. It follows immediately from Figure 2.8 (b) that T needs to

be at least 3/2 T
B

in order to satisfy demand d. Together with Claim 2.31, we
can conclude that the time horizon T must be at least (1− ε)3/2 T , showing
that the performance of the algorithm is not better than 3/2.

Similarly, it can be shown that, for general transit time functions, the
performance guarantee of the algorithm is not better than 2. Consider an
instance consisting of a single arc a with transit time function τa(x) := xα, for
a given α ∈ [1,∞). Following the same analysis as above, it is easy to see that,
if α is chosen small enough, the performance ratio of the algorithm can be
arbitrarily close to 2; see Figure 2.9. Less formally speaking, the more convex
the transit time function is, the worse the performance of the algorithm

2.3 Constant Factor Approximations for Quickest Flows 57

(a) (b)

T
B

T
B

T

θ

θ

|xB|
x xx

xa

τa(x)τa(x)

0 00

≥
∑�

i=1 τbix
B
bi

τa(xa)xa

≤ T
B |xB| −

∑�
i=1 τbix

B
bi

= d

Txa − τa(xa)xa

Figure 2.9: A single-arc instance of the quickest inflow-dependent flow problem showing
that, for general transit time functions, the performance guarantee of Algorithm 1 is not
better than 2.

can get. The computational results presented in Section 2.5 confirm this
statement.

Claim 2.31. Let G consist of a single arc a with transit time function τa;
let GB be the bow graph constructed in Step 3 of Algorithm 1. The following

inequalities hold for T and T
B
:

T
B ≤ T ≤ 1

1 − ε
T

B
. (2.12)

Proof. The first inequality follows immediately from the relaxation property
of the bow graph and thus, it only remains to prove the second inequality.
Let fB be a quickest flow over time in GB. By Corollary 1.10, we can
assume that fB is a temporally repeated flow. Then, fB naturally induces
a temporally repeated flow gB in the bow graph constructed with respect
to the increased transit time function τ ′

a(x) := (1 + η)τ s
a(x) + δ, x ∈ [0, ua];

compare Lemma 2.20. Moreover, the time horizon of gB can be bounded

by (1+η)T
B
+δ|A| ≤ T

B
+ε T . It follows from the first statement of Claim 2.5

that we can assume that gB is inflow-preserving. By Observation 2.4,the
flow gB corresponds to a flow over time g in G with inflow-dependent transit
time τ ′

a and same time horizon as gB. Since τ ′
a(x) ≥ τa(x), x ∈ [0, ua],

the flow g is a flow over time with inflow-dependent transit time τa; see

Observation 1.19. Hence, the time horizon T is not larger than T
B

+ ε T and
the statement follows.

58 s-t-Flows

1

3

6

[0, 1)[0, 1)

[1, 2)[1, 2)

[3, 4)

[6, 7)

[T − 1, T)[T − 1, T)

(a) (b) (c)

vv v ww w

Figure 2.10: Definition of the fan graph; expansion of a single arc a = (v, w).

2.3.4 The Fan Graph

In Sections 1.3.3 we have introduced time-expanded graphs. It was shown
that flow over time problems in G translate to static flow problems in a
T -time-expanded graph G(T). Also, we have seen in the last section that
flows over time in the bow graph serve as a useful model when dealing with
flow-dependent transit times. Therefore, it is natural to consider the time-
expansion of the bow graph.

Assume that the transit time function τa of an arc a ∈ A is given as
a piecewise constant, nondecreasing, and left-continuous function with only
integral values. Of course, the latter assumption can easily be relaxed to
allow arbitrary rational values if time is scaled by an appropriate factor. Let
GB be the according bow graph. Then we call GB(T) the fan graph of G with
(integral) time horizon T . The name “fan graph” is chosen as a figurative
description alluding to the bundle of arcs in GB(T) introduced for an arc in G
at each time step; see Figure 2.10 (b). Notice that, for the special case of fixed
transit times, the fan graph essentially equals the standard time-expanded
graph.

Flows over time in the bow graph constitute a relaxation to inflow-
dependent transit times. Hence, the solution space defined by static flows
on the fan graph can be also seen as a relaxation of the space of flows over
time with inflow-dependent transit times. Moreover, the fan graph can be
applied to solve a large variety of time-dependent flow problems, such as
multi-commodity flows, flows with costs on the arcs, and so forth. The fan
graph will be again relevant in Chapter 3 where we derive approximation al-
gorithms for multi-commodity flows over time with inflow-dependent transit
times.

2.3 Constant Factor Approximations for Quickest Flows 59

(a) (b) (c)
uuu vvv

Figure 2.11: Three variants of the bow graph; Figure (a) displays the bow graph as
defined in Section 2.2.1. Figure (b) depicts a bow graph that captures in- and outflow-
dependent transit times. Figure (c) is the underlying bow graph of an FPTAS for solving
multi-commodity flow problems in the setting of inflow-dependent transit times. The
FPTAS is presented in Chapter 3.

Remark 2.32. The fan graph is defined as the time-expansion of the bow
graph. From the perspective of practical applications, one very natural vari-
ation is a bow graph that captures in- and outflow-dependent transit times.
This can be achieved by introducing regulating arcs also at the head node
of each arc; see Figure 2.11 (b). This symmetric model better reflects the
behavior of flows in practical applications, as for example traffic in street
networks.

Strictly speaking, flows over time in this enhanced bow graph model do
not constitute a relaxation of flows over time with inflow-dependent transit
times in G. This is due to the fact that, in a flow over time with inflow-
dependent transit times, possibly very large outflow rates can occur on the
arcs which is forbidden in model (b). However, the algorithm presented in
Section 2.3.2 can also be applied to bow graph model (b); it is not difficult
to see that it performs identically on bow graph types (a) and (b). This
observation shows that the time horizon of a quickest flow in the bow graph
of type (b) and the time horizon of a quickest inflow-dependent flow in G are
within a constant factor of each other. Thus, the fan graph arising from bow
graph model (b) might be an interesting variation of the problem setting.

In Chapter 3, we will consider a much simpler bow graph and its fan
graph; see Figure 2.11 (c). This bow graph has no regulating arcs at all. The
expansion of an original arc a ∈ A only contains parallel bow arcs. As we
will see, flows over time in this bow graph again constitute a relaxation of
flows over time with inflow-dependent transit times in G. In Chapter 3, we
will consider static flows in the corresponding fan graph. Imposing additional
bundle constraints that couple the arc flow values of each fan in GF will be
the key to solving multi-commodity flow problems in the setting of inflow-
dependent transit times.

Interestingly, Carey and Subrahmanian [9] consider the fan graph induced
by the bow graph model shown in Figure 2.11 (c). Yet, in [9] the transit

60 s-t-Flows

times in the fan graph have a slightly different interpretation. Carey and
Subrahmanian also consider static flow formulations in the fan graph with
extra bundle constraints linking the arc flow values of each fan. However,
they do not provide a theoretical analysis of this model.

2.3.5 Convex Transit Times

We present an algorithm of Köhler and Skutella [44] which was originally
designed to solve the quickest flow problem in the setting of load-dependent
transit time; see Section 1.4.3. It relies on a static convex cost flow for-
mulation, and, like the algorithm presented in Section 2.3.2, it computes
temporally repeated flow solutions. In the following, we will show that the
analysis can easily be generalized to a larger class of time-dependent flows.
For the remainder of this section we will assume that all transit time func-
tions (τa)a∈A are convex.

We have introduced time-dependent flows in Section 1.4.1 as a generalized
model containing, for example, the classes of flows over time with fixed,
inflow-dependent, and load-dependent transit times.

For a time-dependent flow f with time horizon T , we define a correspond-
ing static flow x given by

xa :=
1

T

∫ T

0

fa(θ)dθ ,

for all a ∈ A, and refer to it as the average rate flow of f . Since f satisfies
the capacity constraints, x does so, too.

Later, we need to be able to bound the total transit time of f on an arc a.
Generally speaking, the total transit time is the total amount of time spent
by all units of flow on that arc. In the context of inflow-dependent transit
times, for instance, it is defined by∫ T

0

fa(θ)τa(fa(θ))dθ .

Similarly, in the setting of load-dependent transit times it can be expressed
as ∫ T

0

�a(θ)dθ ,

where �a(θ) measures the current load on arc a.

Definition 2.33. We call a time-dependent flow f with time horizon T lazy
if, on every arc a ∈ A, its total transit time is at least as large as the total
transit time Txaτa(xa) of the corresponding static average rate flow.

2.3 Constant Factor Approximations for Quickest Flows 61

A key lemma in [44] says that every load-dependent flow over time is lazy.
We prove the analog for the case of inflow-dependent transit times.

Lemma 2.34. Every flow over time f with inflow-dependent transit times
and time horizon T is lazy, i.e., it satisfies∫ T

0

fa(θ)τa(fa(θ))dθ ≥ T xa τa(xa) , (2.13)

for all a ∈ A.

Proof. Since τa is a nonnegative, convex function, ξ → ξ τa(ξ) fulfills these
conditions, as well. After dividing both sides of (2.13) by T , the statement
follows from Jensen’s inequality.

Now, we present the approximation algorithm given in [44] and sketch
the proof. We consider the following static maximum flow problem with
bounded convex cost. Here, the cost of flow x on arc a is xaτa(xa).

max |x|
s.t.

∑
a∈A

xa τa(xa) ≤ d

x (static) s-t-flow in G.

(2.14)

Lemma 2.35. If there exists a lazy time-dependent flow f which sends d
units of flow from s to t within time T , then there exists a static flow of value
at least d/T for the static flow problem (2.14).

Proof. Consider the static average rate flow x of f . By definition, its value
is equal to d/T . It remains to show that its total transit time is bounded
by d. On the one hand, the total transit time of f is not larger than Td
since every unit of flow needs at most T time units to travel through the
network. On the other hand, the total transit time of f is not smaller than
T
∑

a∈A xa τa(xa) because f is lazy. It follows that

Td ≥ T
∑
a∈A

xa τa(xa) ,

which proves the lemma.

As Köhler and Skutella [44] observe, a sufficiently good solution to (2.14)
can be computed in polynomial time. More precisely, if there is a lazy time-
dependent flow which sends d units of flow from s to t within time T , then
a static flow x of value at least (1 − ε/3) d/T and cost at most d can be

62 s-t-Flows

computed in polynomial time. The algorithm determines such a flow x and
decomposes it into path flows (xP)P∈P . For fixed T̃ ≥ 0, we can eliminate
all paths in the path decomposition with transit time larger than T̃ . Then
the remaining paths yields a temporally repeated flow f with flow-dependent
transit times in G of value

d(T̃) =
∑

P∈P:τP (x)≤T̃

xP (T̃ − τP (x)) . (2.15)

From this expression one can determine the minimum time horizon that is
needed to satisfy demand d: order the paths in P by nondecreasing length
τP1(y) ≤ τP2(y) ≤ · · · ≤ τPq(y) and observe that the function d is affine linear
and increasing within every interval [τPi

(y), τPi+1
(y)], 1 ≤ i ≤ q. Köhler and

Skutella prove that a time horizon of (2 + ε) T suffices to guarantee that f
satisfies demand d.

Theorem 2.36 (Köhler, Skutella [44]). If there is a lazy time-dependent
flow which sends d units of flow from s to t within time T , then there exists
a temporally repeated flow with flow-dependent transit times satisfying de-
mand d within time horizon at most 2T . Moreover, for every ε > 0, one can
compute a temporally repeated flow within polynomial time which satisfies
demand d within time horizon at most (2 + ε)T .

Originally, this theorem was formulated for flows over time with load-
dependent transit times. But, since the class of lazy time-dependent flows
contains both the class of flows over time with load-dependent transit times
and the class of flows over time with inflow-dependent transit times (see
Lemma 2.34), the statement of Theorem 2.36 is even stronger. Moreover, it
has the following surprising implication.

Corollary 2.37. Let T
�

denote the time horizon of a quickest flow with

load-dependent transit times satisfying demand d. Similarly, let T
i

be the
time horizon of a quickest flow with inflow-dependent transit times satisfying

demand d. Then, 1/2T
� ≤ T

i ≤ 2T
�
.

Proof. It follows from Theorem 2.36 that there exists a temporally repeated
flow f with flow-dependent transit times of value d with time horizon T ≤
2 min{T �

, T
i}. Moreover, it follows from Claim 1.22 that f defines a feasible

flow over time both in the setting of inflow-dependent transit times and in

the setting of load-dependent transit times and thus max{T �
, T

i} ≤ T .

2.3 Constant Factor Approximations for Quickest Flows 63

Algorithm 2: Approximating quickest inflow-dependent flows.

Input: Directed graph G = (V, A) with positive capacities ua and
nonnegative, nondecreasing, convex transit time functions τa

on the arcs, source-sink node pair (s, t) ∈ V × V and flow
demand d, parameter ε > 0.

Output: Flow over time f with inflow-dependent transit times in G
satisfying demand d within time (2 + ε)T .

1 Compute a solution x to the static constrained maximum flow prob-
lem (2.14) of value at least (1 − ε/3) the optimum flow value;

2 Decompose x into path flows (xP)P∈P ;
3 Determine the time horizon T such that∑

P∈P: τP (x)≤T xP (T − τP (x)) = d;
4 f ← temporally repeated flow over time with inflow-dependent transit

times and time horizon T generated by x;

In summary, the analysis of the algorithm shows that the optimal tem-
porally repeated flow of value d is at most twice as long as any lazy time-
dependent flow of value d. Recall that time-dependent flows serve as a very
general framework to describe time-varying flows. The main ingredient that
is needed in the analysis is the “laziness” of the considered class of flows
over time. Hence, this algorithm might be applied to other models of flow-
dependent transit times, as well.

An overview of the main steps of the algorithm is given above. For sim-
plicity, we have formulated the algorithm for the setting of inflow-dependent
transit times. In [44] the capacity scaling algorithm of Ahuja and Orlin [2]
is suggested for Step 1 of the algorithm. It computes an optimal integral so-
lution to the constrained maximum flow problem (2.14) in polynomial time.
By appropriate scaling of the data, one can make sure that the value of an
optimal integral solution is arbitrarily close to the fractional optimum. In this
way, Step 1 can be performed in polynomial time and therefore the algorithm
has polynomial running time.

Lower Bounds. The analysis of the algorithm is tight, i.e., the performance
ratio of Algorithm 2 is not better than 2. To see this, consider the following
example consisting of only one arc a from s to t with fixed transit time τa ≥ 1
and unit capacity. A quickest s-t-flow for demand d := 1 sends flow at rate 1
through the arc and therefore needs 1+τa time units to complete. Algorithm 2
outputs a flow over time with fixed flow rate 1/τa and time horizon 2τa. Thus,
for large τa, the ratio of the two solution values approaches 2.

Notice that Algorithm 1 computes the optimal solution for the above

64 s-t-Flows

instance. This follows from the fact that the bow graph precisely captures
the case of fixed transit times and, hence, Algorithm 1 performs optimally
on instances with fixed transit times. In contrast to Algorithm 2, it can be
applied to a considerably richer family of transit time functions. Also, the
stronger performance ratio for the case of concave transit time functions does
not seem to translate to Algorithm 2.

2.3.6 Computing Temporally Repeated Flows

So far we have presented two algorithms which produce temporally repeated
flow solutions to the quickest s-t-flow problem and which have performance
guarantee 2 + ε. Algorithm 1 is based on a relaxation for inflow-dependent
transit times and performs all computations in the bow graph. Algorithm 2
solves a static maximum flow problem with bounded convex cost in G, where
the cost is given as the total transit time of the static flow. The question
arises if there is a more direct and intuitive method to compute the quickest
temporally repeated flow with flow-dependent transit times in G. Indeed,
the algorithm of Ford and Fulkerson [18, 19] for the maximum flow over
time problem (see Section 1.3.5) can be generalized to flow-dependent transit
times.

In this section we assume that all transit time functions (τa)a∈A are con-
vex. For that case, we show that the problem of finding a quickest temporally
repeated flow solution reduces to a series of minimum convex cost circulation
problems.

We have seen in (1.13) that the value of a temporally repeated flow with
time horizon T and underlying static flow x is given by T |x|−

∑
a∈A τa(xa) xa.

As suggested by Ford and Fulkerson for the case of constant transit times,
we consider the corresponding maximization problem:

max T |x| −
∑
a∈A

τa(xa) xa

s.t. x static s-t-flow in G.

(2.16)

Let (xP)P∈P be a path decomposition of a flow solution to (2.16). Then
the transit time τP (x) of every path P ∈ P is bounded by T : the objective
in (2.16) can be rewritten as

∑
P∈P(T − τP (x)) xP and thus an optimal

solution will not assign flow to a path with transit time larger than T .
We conclude that a solution to (2.16) yields a temporally repeated flow

with flow-dependent transit times and time horizon T of maximum value.
Such a solution can be found, for example, by adding the arc (t, s) to the
original graph with transit time −T and computing a (static) minimum con-

2.3 Constant Factor Approximations for Quickest Flows 65

vex cost circulation in G with transit times interpreted as costs. In the book
of Ahuja, Magnanti, and Orlin [1] several algorithms are suggested which
solve minimum convex cost flow problems. Most of these algorithms, how-
ever, compute an integer optimal solution. For example, Hochbaum and
Shanthikumar [31] propose a scaling based algorithm that solves separable
convex integer programs defined by totally unimodular constraint matrices.
Since these conditions apply to problem formulation (2.16), their algorithm
can be used to find an optimal integer solution in polynomial time. By ap-
propriately scaling the data, one can make sure that the value of an optimal
integral solution is arbitrarily close to the fractional optimum.

These considerations suggest the following alternative approximation al-
gorithm for computing quickest s-t-flows with inflow-dependent (respectively,

load-dependent) transit times. Let T
t

denote the time horizon of a tempo-
rally repeated flow with flow-dependent transit times (τa)a∈A that satisfies

demand d in minimum time. Theorem 2.36 implies that T
t ≤ 2T , where T

denotes the time horizon of a quickest flow with inflow-dependent (respec-
tively, load-dependent) transit times.

Search for an estimate T̃ of T
t
satisfying T

t ≤ T̃ ≤ (1 + ε/3)T
t
and

solve (2.16) with T = T̃ . More precisely, compute an approximate solution x
to the convex cost flow problem with objective value T̃ |x| −

∑
a∈A τaxa ≥

(1−ε/3) d. By increasing the time horizon to (1+ε/2)T̃ , we can ensure that
the static flow x generates a temporally repeated flow of value at least

(1 + ε/2)T̃ |x| −
∑
a∈A

τaxa ≥ (1 + ε/2)(1 − ε/3) d ≥ d .

Its time horizon is bounded by (1 + ε/2)T̃ ≤ (1 + ε)T
t
.

Note that the estimate T̃ can be computed in strongly polynomial time:

determine a lower bound L with L ≤ T
t ≤ p(|A|) L, for some polynomial p,

as suggested in Corollary 2.26 and apply geometric mean binary search. The
main steps of this approximation algorithm are summarized on the next page.
The discussion above proves the following theorem.

Theorem 2.38. Algorithm 3 has performance ratio 2 + ε for the quickest
flow problem both in the setting of load-dependent transit times and in the
setting of inflow-dependent transit times. In the latter setting, it has an
improved performance guarantee of 3/2 + ε provided that all transit time
functions are linear.

Proof. The second part of the statement follows from Theorem 2.28. Since
Algorithm 3 assumes that all transit time functions are convex, the improved

66 s-t-Flows

Algorithm 3: Approximating quickest inflow-dependent flows.

Input: Directed graph G = (V, A) with positive capacities ua and
nonnegative, nondecreasing, convex transit time functions τa

on the arcs, source-sink node pair (s, t) ∈ V × V and flow
demand d, parameter ε > 0.

Output: Flow over time f with inflow-dependent transit times in G
satisfying demand d within time (2 + ε)T .

1 Compute lower bound L with T
t ∈ [L, p(|A|) L] (see Lemma 2.25);

2 Using geometric mean binary search on [L, p(|A|) L], compute a solu-

tion x to the static flow problem (2.16) with T
t ≤ T ≤ (1 + ε/3)T

t

and T |x| −
∑

a∈A τaxa ≥ (1 − ε/3)d;
3 Decompose x into path flows (xP)P∈P ;

f ← temporally repeated flow over time with inflow-dependent transit
times and time horizon (1 + ε/2)T generated by x;

performance guarantee only holds for linear (convex and concave) transit
time functions. Otherwise one would have to solve a nonconvex optimization
problem; see (2.16).

Lower Bounds. For Algorithm 1 and Algorithm 2, respectively, we have
shown that there exist instances for which the upper bound on the perfor-
mance guarantee is asymptotically attained. Since Algorithm 3 computes the
optimal temporally repeated solution, it might perform better than the the-
oretical bounds given in Theorem 2.38 suggest. We can derive the following
lower bounds on its performance ratio.

Claim 2.39.

(i) There exist instances of the quickest inflow-dependent flow problem
with convex transit time functions where any temporally repeated so-
lution needs at least a factor of e1/e (≈ 1.445) times longer than the
optimal solution needs to satisfy the demand. In particular, the per-
formance ratio of Algorithm 3 is not better than e1/e.

(ii) There exist instances of the quickest inflow-dependent flow problem
with linear transit time functions where any temporally repeated so-
lution needs at least a factor of

√
2 (≈ 1.414) times longer than the

optimal solution needs to satisfy the demand.

Proof. The following instance consisting of a single arc shows that the per-
formance ratio of Algorithm 3 is not better than e1/e.

2.3 Constant Factor Approximations for Quickest Flows 67

Consider an arc a = (s, t) with transit time function τa(x) = xα on [0,∞),
where α ∈ �+ is a parameter we will specify later. We want to send a given
demand d from s to t as quickly as possible. Consider a fixed time horizon T .
Setting the inflow-rate to (T − θ)1/α at time θ ∈ [0, T), we manage to send∫ T

0

(T − θ)1/αdθ = [α/(1 + α) · θ(1+α)/α]T0 = α/(1 + α) · T (1+α)/α

units of flow from s to t. Notice that this is in fact the maximal demand
we can send within given time T ; for every point in time, we are sending
flow at the highest possible rate such that every flow unit arrives no later
than time T . We can conclude that we can satisfy the demand d within time
T := (d (1 + α)/α)α/(1+α).

We want to compare this solution to an optimal temporally repeated
solution. Again, consider a fixed time horizon T . Having fixed the inflow
rate to x, one manages to send (T − xα)x units of flow from s to t in a
temporally repeated fashion. Choosing a constant flow rate x := (T/(1 +
α))1/α maximizes this expression and yields a value of

(T − T/(1 + α)) · (T/(1 + α))1/α = α T
1+α

α /(1 + α)
1+α

α .

For the latter to be larger than the demand d, the time horizon has to be
chosen to be at least T t := (d/α)α/(1+α) · (1 + α). Comparing this to the
optimal time horizon T yields a ratio of T t/T = (1 + α)1/(1+α). A simple
calculation shows that this is maximized for α := e − 1 and then yields a
ratio of e1/e.

To prove the second part of the statement, simply set α to 1.

2.3.7 Limits of the Static Approach

A temporally repeated flow is generated from a static network flow and is
therefore, in a sense, a “static” time-dependent flow: after a certain inflow
phase, a temporally repeated flow stabilizes to a static flow configuration.
We have seen that restricting to this simpler class of time-dependent flows
yields provably good solutions to the quickest flow problem in the setting of
inflow-dependent transit times. In this section we want to point out to the
limits of this approach. In particular, we will consider two classical network
flow problems for which this approach fails.

Problem 2.40 (Maximum inflow-dependent flow). Determine a flow
over time f with inflow-dependent transit times that sends the maximal
amount of flow from the source to the sink within a given time T .

68 s-t-Flows

Claim 2.41. For every � ∈ �, there exists an instance of the maximum
inflow-dependent flow problem where any temporally repeated solution sat-
isfies at most a fraction of 1/� of the optimum value.

Proof. We define an instance consisting of a single arc a = (s, t) with a
piecewise constant transit time function τ s

a . The function τ s
a is given by

breakpoints 0 = u0 < u1 < · · · < u2�+1, where ui := 2i−1, i = 1, . . . , 2� +
1, and corresponding transit times 0 = τ0 < τ1 < · · · < τ2�, where τi is
recursively defined by τi+1 := τi + 22�−i, i = 0, . . . , 2� − 1. Let τ s

a(x) := τi,
for x ∈ (ui, ui+1], i = 0, . . . , 2�. For a given time horizon T ≥ τ2�, the
optimal flow is defined as follows. At every point in time, it sends flow at
the highest possible rate such that the flow still reaches t before time T . It
starts sending flow at rate u2�+1 until time T − τ2�. Then it reduces the
flow rate down to u2� to make sure that flow still reaches the sink on time
and continues so until time T − τ2�−1 and so on. In general the optimal
flow is defined by fa(θ) := u2�+1, for θ ∈ [0, T − τ2�), and fa(θ) := ui+1, for
θ ∈ [T − τi+1, T − τi), i = 0, . . . , 2�− 1. If we set T := τ2�, the value of f can
be expressed as follows:

|f | = (T − τ2�) u2�+1 +
2�−1∑
i=0

(τi+1 − τi) ui+1

=

2�−1∑
i=0

(τi+1 − τi) 2i = 2� · 22� .

A temporally repeated flow manages to send at most 22�+1 units of flow during
the same time; namely, assume that it sends flow at constant rate uj+1, 0 ≤
j ≤ 2� + 1, into arc a. Then its value can be upper-bounded as follows.

(T − τj)uj+1 =

(
(T − τ2�) +

2�−1∑
i=j

(τi+1 − τi)

)
uj+1

=

(2�−1∑
i=j

22�−i

)
2j

=

(2�−j∑
i=1

2i

)
2j

= (22�−j+1 − 2)2j ≤ 22�+1 .

We conclude that any temporally repeated flow can satisfy at most a fraction
of 1/� of the optimum value within time T , and the claim follows.

2.3 Constant Factor Approximations for Quickest Flows 69

k, 1 0, 1

sk tk

sk−1 tk−1si tis1 t1

τ(x), (k + 1)2

Figure 2.12: An instance with k commodities showing that a temporally repeated flow
solution needs k times longer than the optimal solution does.

The claim implies that computing an optimal temporally repeated flow
will not result in a constant factor approximation for the maximum inflow-
dependent flow problem. Next we consider the multi-commodity version of
the quickest flow problem.

Problem 2.42 (Quickest inflow-dependent multi-commodity flow).
Determine a multi-commodity flow over time f with inflow-dependent transit
times that satisfies all demands di, i = 1, . . . , k, within minimum time T .

Claim 2.43. For every k ∈ �, there exists an instance of the quickest inflow-
dependent multi-commodity flow problem with k commodities where any
temporally repeated solution needs at least a factor of k times longer to
satisfy the demands.

Proof. Consider the following instance which consists of a single path P =
(v1, . . . , v2k+2) of length 2k + 1. The first k − 1 commodity pairs are given
by (v2i, v2i+1), i = 1, . . . , k − 1, and a kth commodity is given by (v1, v2k).
There are three types of arcs. All ’even’ arcs (v2i, v2i+1), i = 1, . . . , k − 1,
have capacity (k + 1)2 and the following transit time function.

τ(x) =

{
0 if x ∈ (0, 1],

k if x ∈ (1, (k + 1)2].

The first arc has constant transit time k and capacity 1. All other arcs have
zero transit time and capacity 1. An illustration is given in Figure 2.12.

The objective is to send one unit of flow from sk to tk and (k + 1)2 units
of flow from si to ti, i = 1, . . . , k − 1, as quickly as possible. The optimal
flow finishes by time T = k + 1; for one time unit, it sends flow at rate 1
from sk to tk and flow at rate (k + 1)2 from si to ti, i = 1, . . . , k − 1. The
entire flow reaches its destination by time k + 1. In a temporally repeated
flow solution, the transit time of every arc must be fixed. Assume that the
transit time of one of the arcs (si, ti), i = 1, . . . , k − 1, is fixed to 0. In
particular, flow may only enter that arc at rate not larger than 1. Then at

70 s-t-Flows

least (k + 1)2 units of time are needed only to satisfy the demand of the
corresponding commodity (si, ti). On the other hand, if the transit time of
every arc (si, ti), i = 1, . . . , k, is fixed to k + 1, then, in order to satisfy the
demand of commodity (sk, tk), at least k + 1 + (k − 1)(k + 1) time is needed.
We can conclude that a temporally repeated flow needs at least T = k(k+1)
time to satisfy all demands and is therefore k times slower than the optimal
flow.

2.4 Complexity

For constant transit times, the quickest s-t-flow problem can be solved in
strongly polynomial time as shown by Burkard et al. [6]. Moreover, their al-
gorithms output quickest flow solutions that do not make use of intermediate
storage in nodes which implies that prohibiting storage does not change the
complexity of the problem. In the setting of inflow-dependent transit times,
both variants of the problem turn out to be NP-hard.

Theorem 2.44. The quickest s-t-flow problem with inflow-dependent transit
times, with or without storage of flow at intermediate nodes, is NP-hard in
the strong sense.

The proof uses a reduction from the well-known NP-complete problem
3-PARTITION.

Problem 2.45 (3-PARTITION). Given a set of 3n items with associated
sizes b1, . . . , b3n ∈ N, a bound B ∈ N such that each bi satisfies B/4 < bi <
B/2 and such that

∑3n
i=1 bi = nB. Decide whether the set {1, . . . , 3n} can

be partitioned into n disjoint sets I1, . . . , In such that, for j ∈ {1, . . . , n},∑
i∈Ij

bi = B.

Given an instance of 3-PARTITION, we construct a network with inflow-
dependent transit times as shown in Figure 2.13. Each item bi is represented
by a node vi, each index set Ij is represented by a node wj . The capacities
are defined as follows.

u((s, vi)) := nbi + 1, u((vi, wj)) := bi + 1, u((wj, t)) := (n + 1)B + 3,

We define inflow-dependent transit times on (vi, wj) as

τ(vi,wj)(x) :=

{
0 if x ≤ bi,

1 else.

All other arcs in the network have transit time zero. The task is to send
D := 2n2B + 3n units of flow from s to t.

2.4 Complexity 71

s

t

v1 v3n

w1 wn

vi

wj

Figure 2.13: Reduction of the problem 3-PARTITION to an s-t-flow over time problem
with inflow-dependent transit times.

Lemma 2.46. If the underlying instance of 3-PARTITION is a ’yes’-instance,
then there exists an s-t-flow over time with inflow-dependent transit times
which sends 2n2B +3n units of flow from s to t in time T := 2 without using
storage of flow at intermediate nodes.

Proof. Given a partition I1, . . . , In of the set {1, . . . , 3n} such that, for j ∈
{1, . . . , n},

∑
i∈Ij

bi = B, we define a flow over time with inflow-dependent

transit times as follows. During the time interval [0, 1) we send flow at
constant rate nbi + 1 into arc (s, vi), for every i ∈ {1, . . . , 3n}. This flow is
sent on to the nodes w1, . . . , wn according to the following rule. During the
time interval [0, 1), we set the flow rate of arc (vi, wj) to bi + 1, if i ∈ Ij , and
to bi, otherwise. During the time interval [1, 2) we send flow at constant rate
nbi into arc (s, vi), for every i ∈ {1, . . . , 3n}, and define the flow rate into arc
(vi, wj), j = 1, . . . , n, to be bi. With these definitions, it is easy to see that at
every point in time flow is entering a node wj, j = 1, . . . , n, at rate bounded
by (n + 1)B + 3. Thus, this flow can be sent immediately on to t using the
arc (wj, t). Obviously, flow conservation holds at every point in time and no
storage at intermediate nodes is used. Moreover, all 2n2B + 3n units of flow
arrive in t before time 2.

It remains to show that the existence of a flow over time f with inflow-
dependent transit times of value D with time horizon at most 2 yields a

72 s-t-Flows

feasible solution to the underlying instance of 3-PARTITION. To do this, we
need to make the following reasonable assumption on f : all flow rate func-
tions are essentially continuous, i.e., on every arc a of the given network we
require that the flow rate function fa has at most finitely many discontinu-
ities.

In f , we color every (infinitesimal) unit of flow either red or green. If it
enters the network before time 1, it is colored red, else it is colored green.
We denote the corresponding flows by f r and f g.

Claim 2.47. For every θ ∈ [0, 1), the following properties hold:

∫ θ

0

f r
(s,vi)

(τ) dτ = θ (nbi + 1) for all i ∈ {1, . . . , 3n}, (2.17)∫ 1+θ

1

f g
(vi,wj)

(τ) dτ = θ bi for all i ∈ {1, . . . , 3n}, j ∈ {1, . . . , n}.

(2.18)

Proof. After time 1 flow can enter an arc (vi, wj) at rate at most bi since,
otherwise, it cannot reach t before time 2. Thus, in total, at most n2B units of
green flow can be sent to t. Then, in order to satisfy the demand 2n2B+3n, at
least n2B +3n units of red flow must leave s. Since the capacity of arc (s, vi)
is bounded by nbi + 1, for i ∈ {1, . . . 3n}, at most

∑3n
i=1(nbi + 1) = n2B + 3n

units of red flow can be sent in total. Hence, exactly n2B + 3n units of
red flow and exactly n2B units of green flow must travel from s to t. As a
consequence, (2.17) and (2.18) must hold.

Consider a node vi, i ∈ {1, . . . , 3n}. If flow is entering an arc (vi, wj), j ∈
{1, . . . , n}, at rate at most bi, this flow arrives in wj instantaneously. Oth-
erwise, this flow needs one unit of time to reach wj and is therefore delayed.
We now investigate how much red flow is delayed for each node vi.

Claim 2.48. For all i ∈ {1, . . . , 3n}, the following properties hold:

1. At least bi + 1 units of red flow passing through vi are delayed.

2. If exactly bi + 1 units of red flow passing through vi are delayed, then
at almost every4 point θ ∈ [0, 1)

f r
(vi,wj)

(θ) ∈ {bi, bi + 1}, for all j ∈ {1, . . . , n}.

4the subset of [0, 1) where the property fails has Lebesgue-measure zero.

2.4 Complexity 73

Proof. Fix i ∈ {1, . . . , 3n}. At most nbi units of red flow can be sent out of vi

instantaneously during [0, 1) by setting the flow rate of every arc (vi, wj), j =
1, . . . , n, to the threshold value bi during time interval [0, 1). By (2.17), at
least one additional unit of red “excess” flow has to be sent out of vi by
exceeding this threshold value on some of the arcs (vi, wj), j = 1, . . . , n. For
every arc (vi, wj), j = 1, . . . , n, let

δj(θ) :=

{
f r

(vi,wj)
(θ) − bi if f r

(vi,wj)
(θ) > bi,

0 otherwise,

denote the excess rate of arc (vi, wj), then

n∑
j=1

∫ 1

0

δj(θ)dθ ≥ 1 (2.19)

must hold. Since 0 ≤ δj(θ) ≤ 1 at every point in time θ ∈ [0, 1),

bi + δj(θ) ≥ (bi + 1)δj(θ) . (2.20)

Whenever the excess rate δj(θ) is strictly greater than zero, not only the
excess flow is delayed, but all flow entering the arc (vi, wj) at time θ. We
conclude that the total amount of delayed flow can be lower-bounded as
follows:

n∑
j=1

∫
θ:δj(θ)>0

(bi +δj(θ)) dθ
(2.20)

≥ (bi +1)

n∑
j=1

∫ 1

0

δj(θ) dθ
(2.19)

≥ bi +1 . (2.21)

This proves the first statement of the claim.
To prove the second statement, assume that exactly bi+1 units of red flow

are delayed. In a first step, we prove that at almost every point θ ∈ [0, 1), the
excess rate δj(θ) is either 0 or 1. By contradiction, assume that there exists
j ∈ {1 . . . n} for which the property fails; let Θ := {θ ∈ [0, 1) : 0 < δj(θ) <
1}. For all θ ∈ Θ, the inequality in (2.20) is strict. Since f(vi,wj) has only a
finite number of discontinuities, so does δj . Hence Θ contains a small interval
where δj is continuous and so the first inequality in (2.21) must be strict, too.
Thus, more than bi + 1 units of flow are delayed leading to a contradiction.
We conclude that at almost every point in time, for all j ∈ {1, . . . , n}, either
f r

(vi,wj)
(θ) ≤ bi (if δj(θ) = 0) or f r

(vi,wj)
(θ) = bi +1 (if δj(θ) = 1). Next assume

that there exists j ∈ {1 . . . n} for which there is a set with Lebesgue-measure
greater than zero where f r

(vi,wj)
is strictly less than bi. Then, the excess flow∑n

j=1

∫ 1

0
δj(θ)dθ has to be strictly greater than 1, implying that the second

inequality in (2.21) is strict. Again, more than bi +1 units of flow are delayed
leading to a contradiction. This proves the second statement.

74 s-t-Flows

Claim 2.49. For all i ∈ {1, . . . , 3n}, exactly bi + 1 units of red flow passing
through vi are delayed. Moreover, all arcs (wj , t), j = 1, . . . , n, are com-
pletely filled with green flow and delayed red flow during [1, 2).

Proof. It follows from (2.18) that nB units of green flow must travel via the
arcs (wj, t), j ∈ {1, . . . , n}. Thus, due to capacity constraints, during the
interval [1, 2) at most another nB + 3n units of delayed red flow can pass
through all of the arcs (wj, t), j = 1, . . . , n. It then follows from the first
statement in Claim 2.48 that, for all i ∈ {1, . . . , 3n}, exactly bi + 1 units of
red flow passing through vi are delayed and all arcs (wj, t), j = 1, . . . , n, are
completely filled with green flow and delayed red flow during [1, 2).

Lemma 2.50. If an s-t-flow over time f with inflow-dependent transit times
exists which sends D = 2n2B + 3n units of flow from s to t in time T := 2,
then the underlying instance of 3-PARTITION is a ’yes’-instance.

Proof. Pick a non-empty interval (0, µ) during which all flow rate functions
f(vi,wj) are continuous. By Claim 2.49 and the second part of Claim 2.48,
each of these flow rates must be constant, either bi or bi + 1. Claim (2.17)
together with flow conservation implies that, for each i ∈ {1, . . . , 3n}, at
most one arc leaving vi has a flow rate of bi + 1 during (0, µ). We define
partition sets as follows: for all j ∈ {1, . . . , n} let Ij be the set of items bi

for which f(vi,wj)(θ) = bi + 1 during (0, µ). Notice that no item is contained
in more than one partition set. We claim that each partition set Ij satisfies∑

i∈Ij
bi = B. If not, there exists j ∈ {1, . . . , n} such that

∑
i∈Ij

bi < B.

Then, less than µ(B +3) units of delayed red flow arrive in wj during (1, 1 +
µ). Again, by (2.18), at most another µnB units of green flow arrive in
wj during (1, 1 + µ) contradicting Claim 2.49. This concludes the proof of
Lemma 2.50.

This concludes the proof of Theorem 2.44.

2.5 Computational Results

In this section we report on the results of our implementation of Algorithm 1.
A summary of the main steps of this algorithm is given on page 52. It is
proven in Section 2.3 that this algorithm computes a (2+ ε)-approximate so-
lution to the quickest flow problem in the setting of inflow-dependent transit
times.

In a first step, we will briefly describe the data structure, transit time
functions, and input data used in our implementation. Afterwards, we will

2.5 Computational Results 75

Figure 2.14: Screenshot of the graphical user interface designed by Olaf Jahn and used
for our implementation; it depicts the fan graph over a path of length three.

discuss the practical performance of the algorithm for different problem in-
stances. The implementation is based on joint work with Nadine Baumann
and Lydia Franck.
Data Structure. Recall that the algorithm does not perform on the original
graph G but on its expansion to a bow graph. The bow graph serves as a
relaxation of the model of inflow-dependent transit times; see Section 2.2.
Moreover, we have seen that flows over time in the bow graph correspond to
static flows in the time-expanded bow graph, which we again refer to as the
fan graph; see Section 2.3.4.

The layer structure of the considered graphs is reflected by our imple-
mented data structure; the underlying graph G forms the base layer, the bow
graph serves as intermediate layer, and the fan graph, as the time-expansion
of the latter, forms the top layer. A screenshot of the graphical user interface
is given in Figure 2.14. It depicts the fan graph over a path of length three.

We have realized each layer by a distinguished traits class; for more details
on traits classes see, e.g., [51]. A software architecture based on traits classes
allows to design graph algorithms that are independent of the underlying
graph data structure. This approach leads to a clear separation of graph
data structure and algorithms, which decreases the error-proneness of the
implementation and simplifies code-reusability.

In our implementation, we provide a traits class called GraphView for each
graph type (original graph, bow graph, and fan graph) and ensure that certain
algorithmic requirements are met by all three graph types. The algorithm
accesses the underlying graph data via the generic interface GraphView. In

76 s-t-Flows

τa

τ 0
a

u′
a

xa0

τa

τ 0
a

xa0

J
=

1.
0

0.
5

0.
25

0.
1

0.
01

ua

Figure 2.15: For the case of static road
traffic, the U.S. Bureau of Public Roads de-
veloped a simplified function describing the
dependency of the transit time on the flow.

Figure 2.16: Davidson proposed an alter-
native family of transit time functions.

particular, the algorithm cannot distinguish between different graph types;
potentially, it can be applied to all three graph layers. Another advantage of
this approach is the following; with standard time-expansion, the fan graph
may become very large. Using the concept of traits classes, it is possible to
expand the graph only locally. The algorithm works virtually on the complete
time-expanded graph; however, only those parts are actually expanded that
are currently in use.

Transit Time Functions. Earlier, we have mentioned the difficulties in de-
signing realistic traffic flow models; see Section 1.4. The dependency of the
actual transit time of an arc on the current flow situation is exceedingly dif-
ficult to capture and it is unclear how to derive an appropriate and tractable
mathematical model. As pointed out by Sheffi [63], the formulas which are ef-
fectively used in analyzing traffic networks are significantly simpler. Accord-
ing to Sheffi, a function that is often used in practice is a function developed
by the U.S. Bureau of Public Roads (BPR):

τa(xa) := τ 0
a (1 + αxa/u

′
a)

β . (2.22)

A visualization of this function is given in Figure 2.15. Here, xa represents
the (static) flow rate on a road which is determined in practice, for instance,
by taking the average number of cars entering the road during a pre-specified
time interval. The value τ 0

a is the free-flow travel time which measures the
time it takes to traverse the empty road. The practical capacity u′

a is the flow

2.5 Computational Results 77

Figure 2.17: Screenshot of instance hld 97 96.

rate at which the transit time of a road is 15% larger than the free-flow travel
time. The quantities α and β are model parameters, for which the values α :=
0.15 and β := 4 are typically chosen. Figure 2.15 depicts the transit time
function for these parameters. Note that, for this choice of α, the transit
time function evaluated at the practical capacity u′

a is indeed 15% higher
than the free-flow transit time τ 0

a . For our test instances, we have chosen the
BPR function with parameter α set to 0.15 and β varying between 1 (linear)
and 4 (strictly convex).

A different function which is frequently used according to Sheffi is David-
son’s function. It is defined as follows:

τa(xa) := τ 0
a

(
1 + J

xa

ua − xa

)
.

Here, J is a parameter of the model which typically varies between 0.1
and 1.0; see Figure 2.16 for an illustration.

Input Data. We have tested our algorithms on real-life instances given by
parts of the street network of Berlin. One of these instances is depicted in
Figure 2.17. Since the input data associated with each road complies with
the parameters appearing in the BPR function, we have picked this function
model for our test runs.

We have selected six sections of Berlin, ranging in the size between 201
and 12100 nodes (street crossings) and 339 and 19570 arcs (streets). In

78 s-t-Flows

Table 2.1: List of instances in order of increasing size; for each of the six sections of
Berlin, three different commodity pairs are selected. They are listed in order of increasing
geographic distance between source and sink node.

Instance #nodes #arcs dist [m]

fdh 81 70 201 339 761
fdh 70 70 2280
fdh 81 77 4370

hld 97 96 345 528 1916
hld 10 96 4627
hld 96 96 8546

kpn 94 96 419 635 2786
kpn 97 99 10931
kpn 99 10 25067

zld 41 66 461 724 3824
zld 44 66 7948
zld 67 56 14043

csw 14 25 1800 2935 3692
csw 94 7 8695
csw 56 54 17670

bln 50 64 12100 19570 6739
bln 10 11 20854
bln 13 13 62987

each such section we have picked three source-sink pairs. The resulting 18
instances are listed in Table 2.1. The last column in the table shows the
geographic distance between the source and the sink node.

Computational Experience. In this paragraph we examine the practical
performance of Algorithm 1. The experiments were conducted on a 1.7 GHz
AMD Athlon(TM) XP 2100+ machine running under Linux with 512MByte
memory. The code is written in C++ and has been compiled with the GNU
gcc-Compiler version 3. All running times are measured in seconds.

The main step of Algorithm 1 is to determine a quickest s-t-flow in the bow
graph. As suggested by Burkard, Dlaska, and Klinz [6], we use a Newton-type

search algorithm to find the optimal time horizon T
B
; this search method

is known to be very efficient for solving practical problems. In each search
step, we solve a static minimum cost circulation problem to determine a max-

2.5 Computational Results 79

imum flow over time for the current search estimate. To solve the minimum
cost circulation problem, we have implemented the successive shortest path
algorithm [7, 35]. In the worst case, the successive shortest path algorithm
needs an exponential number of iterations to compute the optimal solution.
However, in practice it performs very well.

We have selected three instances, fdh 70 70, csw 94 7, and kpn 97 99,
which we discuss in more detail in Tables 2.2, 2.3, and 2.4, respectively. Recall
that the theoretical performance guarantee of the algorithm is ρ = 2+ ε. We
have set ε = 0.1, hence the time horizon of the computed solution exceeds
the optimal time horizon by at most a multiplicative factor of 2.1.

The tables are structured as follows; In the first column, different de-
mands d are listed. The demand is the amount of flow (the number of cars)
that is sent from the source to the sink. In our tests, the demand varies
between 100 and 10000. In the succeeding columns, various indicators of the
performance of Algorithm 1 are shown. In the following, we explain these
indicators.

• T
B

denotes the time horizon of a quickest flow in the bow graph; see

Step 4 of Algorithm 1. The value T
B

is a lower bound on the time
horizon of a quickest flow with inflow-dependent transit times in the
original graph.

• T B
p is the time horizon of the inflow-preserving temporally repeated

flow in the bow graph that is computed in Step 5 of Algorithm 1. The
subscript alludes to the procedure in which flow is pushed from “fast”
bow arcs up to the “slowest” flow-carrying bow arcs. In the theoretical
analysis of the algorithm it is proven that T B

p is at most twice as large
as T B.

• d(2T B
p) is the value of the inflow-preserving temporally repeated flow

for time horizon 2T B
p ; see Step 5 of Algorithm 1. It follows from the

analysis of the algorithm that d(2T B
p) ≥ d.

• T denotes the time horizon of the final solution. To evaluate the prac-
tical performance of the algorithm we consider the quotient of T and

the lower bound T
B
.

• |P| denotes the number of paths in the path decomposition of our final
solution. As an indicator of fairness, we have chosen the maximum
transit time of a flow path divided by the minimum transit time of a
flow path in the solution.

80 s-t-Flows

Table 2.2: Instance fdh 70 70

d T
B

T B
p d(2T B

p) T T/T
B |P| fairness

100 469.1 660.1 239 682.3 1.45 2 1.00
1000 1693.7 2148.0 1964 2181.1 1.29 5 1.02
2000 2979.4 3433.7 3964 3466.9 1.16 5 1.02
5000 6836.5 7290.9 9964 7324.0 1.07 5 1.02
10000 13265.1 13719.4 19964 13752.6 1.04 5 1.02

Table 2.3: Instance kpn 97 99

d T
B

T B
p d(2T B

p) T T/T
B |P| fairness

100 1871.1 2453.0 315 2506.0 1.34 2 1.00
1000 7271.1 7853.0 2115 7906.0 1.09 2 1.00
2000 13271.1 13853.0 4115 13906.0 1.05 2 1.00
5000 31271.1 31853.0 10115 31906.0 1.02 2 1.00
10000 61271.1 61853.0 20115 61906.0 1.01 2 1.00

Table 2.4: Instance csw 94 7

d T
B

T B
p d(2T B

p) T T/T
B |P| fairness

100 1644.7 1876.7 692 1919.2 1.17 6 1.01
1000 3115.9 3897.4 2556 3946.4 1.27 10 1.01
2000 4615.9 5397.4 4556 5446.4 1.18 10 1.01
5000 9115.9 9897.4 10556 9946.4 1.09 10 1.01
10000 16615.9 17397.4 20556 17446.4 1.05 10 1.01

We only discuss the results presented in Table 2.2. Notice, however, that
the results given in Table 2.3 and 2.4 have a very similar flavor and thus

lead to the same conclusions. First, consider the performance ratio T/T
B
. It

is always remarkably better than the theoretical performance ratio ρ = 2.1.
The maximum performance ratio attained for this instance is 1.45. Also
notice that, with increasing demand d, the practical performance improves
considerably; for d = 10000, the algorithm achieves performance ratio 1.04.
Secondly, the value d(2T B

p) is always clearly larger than the demand d; on
this instance, it is about twice as large as d. Thirdly, the fairness of the
solution remains unchanged for d ≥ 1000.

We give an explanation for this behavior. Recall that the algorithm com-

2.5 Computational Results 81

1.0

1.5

100 1000 2000 5000 10000
0

fdh 70 70
hld 96 96
kpn 97 99
zld 41 66
csw 94 7

bln 10 11

Figure 2.18: Upper bound T/T
B

on the performance ratio of the algorithm for different
demands d.

putes a good temporally repeated flow solution. For large T , an optimal
temporally repeated flow solution approximates a quickest flow very well.
Namely, it is not difficult to see that the value of an s-t-flow over time with
time horizon T is always upper-bounded by Tδ, where δ is the value of a
minimum s-t-cut in G. On the other hand, the value of a temporally re-
peated flow that is generated from a maximum static s-t-flow is equal to
Tδ −

∑
a∈A τa(xa)xa; see (1.13) on page 29. For large T , this term is domi-

nated by Tδ and hence the temporally repeated flow is optimal in the limit.

In our test runs, this process seems to converge very fast. This explains
why the quality of the solution improves for large demand d and why the
fairness does not change for d ≥ 1000.

Figure 2.18 visualizes the correlation between performance ratio and de-
mand for six selected instances. Table 2.5 shows the average (∅) and the
maximum (max) performance ratio for different demands d. The average
and the maximum are taken over all instances listed in Table 2.1. Again, we
conclude that the performance ratio improves significantly with increasing
demand d.

Next, we examine the dependency of the performance ratio on parame-
ter β in more detail. The parameter β controls the degree of convexity of
the transit time function; see (2.22) on page 76. In Section 2.3.3 we prove
that the performance ratio of Algorithm 1 is bounded by 2 + ε, for general

82 s-t-Flows

1.0

1.5

1 2 4 6
0

fdh 70 70
hld 96 96
kpn 97 99
zld 41 66
csw 94 7
bln 10 11

Figure 2.19: Performance ratio T/T
B

of the algorithm for different values of parameter β.

transit time functions, and it is bounded by 3/2 + ε, for concave transit time
functions. On the other hand, we present a family of instances showing that
both bounds are tight; see Section 2.3.3. On these instances, the performance
guarantee approaches 2 as the degree of convexity of the underlying transit
time functions increases.

We have examined this behavior on our test instances. Figure 2.19 visu-
alizes the dependency of the performance ratio on the parameter β for six
instances. Table 2.6 depicts the average and the maximum performance ra-
tio taken over all instances listed in Table 2.1. The results confirm that the
quality of the solution degrades considerably with increasing parameter β.

We now examine the running time of the algorithm with respect to the
parameters ε and β. In this context, we also discuss the size of the bow
graph. The parameter ε controls the quality of the computed solutions.

Table 2.5: Average (∅) and maximum (max) performance ratio T/T
B

of the algorithm
for different demands d. Average and maximum are taken over all instances listed in
Table 2.1.

inst. d = 100 d = 1000 d = 2000 d = 5000 d = 10000

∅ 1.27 1.21 1.14 1.07 1.04
max 1.45 1.62 1.58 1.29 1.16

2.5 Computational Results 83

Table 2.6: Average (∅) and maximum (max) performance ratio T/T
B

of the algorithm
for different values of parameter β. Average and maximum are taken over all instances
listed in Table 2.1.

inst. 1 2 4 6

∅ 1.04 1.07 1.21 1.46
max 1.07 1.18 1.62 1.68

More precisely, it determines the accuracy of the step functions, which are
computed in Step 2 of the algorithm to approximate the original transit time
functions. In particular, the precise choice of ε determines the number of
breakpoints in each step function. Hence, the parameter ε has an immediate
impact on the size of the bow graph and thus on the running time of the
algorithm.

Figure 2.20 illustrates the trade-off between accuracy and size of the bow
graph (respectively, running time). On the left hand side, the figure displays

1

10

100

1000

10000

100000

11 22 44 66
ε = 1.0

0.5

0.25

0.125

0.0625

0.01

0.1

1

10

100

1000

11 22 44 66
ε = 1.0

0.5

0.25

0.125

0.0625

Figure 2.20: Instance fdh 70 70; size of the bow graph (left) and running time (in
seconds) of the algorithm (right) depending on the choice of parameters ε and β. The
values are plotted in logarithmic scale. The parameter β is chosen from {1, 2, 4, 6}, the
demand d is fixed to 1000.

the number of arcs in the bow graph with respect to parameters ε and β
for instance fdh 70 70. The number of arcs in the bow graph is plotted
in logarithmic scale. The parameter ε varies between 0.0625 and 1, the
parameter β is chosen from {1, 2, 4, 6}. For ε = 0.0625 and β = 4, the
bow graph contains already 88810 arcs while the original graph of instance
fdh 70 70 contains only 339 arcs; see Table 2.1.

As it can be seen in Figure 2.20, the number of arcs in the bow graph

84 s-t-Flows

is also correlated with parameter β. The reason is the following. With
increasing parameter β, the range of possible transit times on an arc increases;
see (2.22) on page 76. Consequently, the number of arcs in the bow graph
increases.

The running time of the algorithm is documented on the right hand side
of Figure 2.20; it is plotted in logarithmic scale. For β ≤ 4, the running time
is never larger than 75 seconds. For β = 6, the algorithm needs already more
than 10 minutes to attain accuracy ε = 0.0625.

In Table 2.7, the size of the bow graph and the running time of the
algorithm are shown for six selected instances. We have chosen demand
d = 1000, β = 4, and ε = 0.1. The bow graph of the largest instance
bln 10 11 contains more than 1.7 million arcs and the algorithm needs more
than half an hour to compute a solution.

Table 2.7: Number of arcs in the bow graph (|AB|) and CPU (in seconds)for demand
d = 1000 and parameter β = 4.

inst. |AB| CPU

fdh 70 70 30510 27.9
hld 96 96 47520 25.2
kpn 97 99 57150 32.5
zld 41 66 65160 29.2
csw 94 7 264150 384.0
bln 10 11 1761300 2036.7

In Section 2.3.5 the algorithm of Köhler and Skutella [44] is described,
which computes quickest flows in the setting of load-dependent transit times.
An overview of the main steps of the algorithm is given on page 63. We again
refer to this algorithm as Algorithm 2.

It is shown that Algorithm 2 is also applicable in the setting of inflow-
dependent transit times. We have implemented this algorithm to compare
its practical performance with that of Algorithm 1. Both algorithms have a
theoretical performance guarantee of ρ = 2 + ε. In our test runs, we have
set ε = 0.1.

In Figure 2.21, we examine the practical performance ratios of both algo-
rithms for five selected instances. In these test runs, we have set d = 100. On
the left hand side, the parameter β is set to 1 (linear transit time functions),
on the right hand side, it is set to 4 (strictly convex transit time functions).

For β = 1, Algorithm 1 performs significantly better than Algorithm 2.
For β = 4, the latter algorithm seems to be preferable. It performs better on

2.5 Computational Results 85

0.01

1.01

2.01

11 22 33 44 55

1 2 3 4 5
Alg. 1 Alg. 2

0.01

1.01

2.01

11 22 33 44 55

Figure 2.21: Performance ratios of Algorithm 1 and Algorithm 2 for parameter β =
1 (left) and β = 4 (right); we have selected five instances (1=fdh 70 70, 2=hld 96 96,
3=kpn 97 99, 4=zld 41 66, 5=csw 94 7), the demand d is set to 100.

0.01

1.01

2.01

11 22 33 44 55
Alg. 1 Alg. 2

0.01

1.01

2.01

11 22 33 44 55

Figure 2.22: As in Figure 2.21 with demand d set to 1000.

0.01

0.1

1

10

100

1000

11 22 33 44 55
Alg. 1 Alg. 2

0.01

0.1

1

10

100

1000

11 22 33 44 55

Figure 2.23: Running times of Algorithm 1 and Algorithm 2 for parameter β = 1
(left) and β = 4 (right); we have selected five instances (1=fdh 70 70, 2=hld 96 96,
3=kpn 97 99, 4=zld 41 66, 5=csw 94 7), the demand d is set to 100. The running time
(in seconds) is plotted in logarithmic scale.

all instances except on the largest instance bln 10 11. This result underlines
that Algorithm 1 does not perform too well if transit times are “highly con-
vex”. For demand d = 1000, both algorithms seem to perform equally well;
see Figure 2.22.

Figure 2.23 shows the running times of both algorithms measured in log-
arithmic scale. The demand d is fixed to 100. For β = 1 (left), the running
times of both algorithms are similar; in particular, they remain below one
minute. Not surprisingly, for β = 4, Algorithm 1 is significantly slower than
Algorithm 2. Recall that parameter β has a direct impact on the size of the
bow graph and thus on the running time of Algorithm 1; compare Figure 2.20.
Algorithm 2 seems to be inaffected by the choice of β.

Chapter 3

Quickest Multi-Commodity Flows

3.1 Introduction

The main focus of this chapter is on the quickest multi-commodity flow prob-
lem. An overview of the results known for fixed transit times is given in
Chapter 1. In this chapter we present approximation algorithms designed for
the more general setting of inflow-dependent transit times. In a first step,
we develop a relaxation which reflects flows over time with inflow-dependent
transit times more accurately than the model presented in Section 2.2. Based
on the new relaxation, we present both, a constant factor approximation
algorithm and an FPTAS for the quickest multi-commodity transshipment
problem with bounded cost. Since the problem is NP-hard already for the
single source, single sink case, this result is the best we can hope for.

In the single source, single sink case, we are able to approximate quickest
flows by considering a corresponding relaxed instance given by the bow graph;
see Section 2.3. In the bow graph, transit times are fixed and thus we can
apply an exact polynomial time algorithm for computing quickest s-t-flows.
In the multi-commodity case, we are facing the following difficulties when
following the same approach: Hall, Hippler, and Skutella [27] prove that
the multi-commodity flow over time problem is already NP-hard for fixed
transit times. Therefore, we can only compute approximate quickest multi-
commodity flows in the bow graph. Furthermore, there does not always exist
a good temporally repeated flow solution as the example given at the end of
Section 2.3 shows; an instance with k commodities is presented, for which any
temporally repeated flow with flow-dependent transit times needs at least k
times longer than the optimal solution.

Due to these difficulties, we need to consider a relaxation that is stronger
than the one presented in Section 2.2. Using this new relaxation, we can ap-
proximate a quickest multi-commodity transshipment with inflow-dependent
transit times within arbitrary precision.

However, the constant approximation algorithms presented in Chapter 2
for quickest s-t-flows do not become obsolete. These algorithms solely rely on
standard network flow techniques and therefore they are very efficient as the

87

88 Quickest Multi-Commodity Flows

computational results presented at the end of Chapter 2 confirm. Moreover,
they generate solutions that have a simple structure. These two aspects make
the algorithms very attractive for application purposes.

Both algorithms presented in this chapter rely on static flow formula-
tions with additional bundle constraints linking the flow values of several
arcs. In particular, we need general linear programming techniques to solve
these problems. The constant factor approximation computes fairly well-
structured solutions; the flow rate on each arc follows a temporally repeated
pattern. Since the optimal flow might require a much more complicated time-
varying structure, the FPTAS must rely on a model that reflects the param-
eter time with a higher resolution. Our FPTAS utilizes a time-expansion
with a fine discretization of time in order to attain a good performance guar-
antee. Hence, the trade-off between quality and efficiency of the considered
algorithms should not be disregarded.

Recall that in the multi-commodity case we are given a set of commodi-
ties K = {1, . . . , k}; every commodity i ∈ K is defined by a set of sources
and sinks with given supplies and demands. To simplify notation, we restrict
to the case of only one source si and one sink ti with given demand di > 0,
for each commodity i. However, our results can be generalized directly to the
case of several sources and sinks: Our algorithms rely on static network flow
formulations. In particular, a transshipment problem can easily be reduced
to a single source, single sink problem by introducing a super source and a
super sink; see Section 1.2.

Without loss of generality we assume that no two commodities have the
same source node. Otherwise we introduce an new source node s′i, for each
commodity i, and connect it to si by an arc with transit time zero and infinite
capacity. Then, the objective is to send di units of flow from s′i to ti.

A large part of this chapter is based on joint work with Martin Skutella
and Alex Hall. An extended abstract appeared in [28].

3.2 A Stronger Relaxation

In this section we define a relaxation of inflow-dependent transit times that
is stronger than the one presented in Section 2.2. Throughout this section
we make the following assumption:

Assumption. All transit time functions are given as piecewise constant,
nondecreasing, and left-continuous functions1 (τ s

a)a∈A.

1The transit time function of arc a is denoted τs
a to stress its step function character.

3.2 A Stronger Relaxation 89

b1
b1

b2b2

b3
b3

b4 b4

(a) (b)

r1r2r3r4

(∞, τ1)

(∞, τ2)

(∞, τ3)

(∞, τ4)

(u1, 0)(u2, 0)(u3, 0)(u4, 0)

(u1, τ1)

(u2, τ2)

(u3, τ3)

(u4, τ4)

v vw w

Figure 3.1: Comparison of both bow graph models. Figure (a) shows the expansion of
a single arc a = (v, w) as defined in Section 2.2.1; compare Figure 2.1. Figure (b) depicts
the simpler expansion used in this chapter.

3.2.1 The New Bow Graph

We begin with the definitions of a bow graph that is very similar to the one
defined in Section 2.2.1. To simplify notation, we again refer to it as GB.
Throughout this chapter we only work on this simpler bow graph.

The bow graph, denoted GB = (V B, AB), is defined on the same node set
as G, i.e., V B := V , and is obtained by creating several copies of an arc, one
for each possible transit time on the arc. Every arc e ∈ AB has a capacity ue,
a constant transit time τe ∈ �+, and costs ce,i, i ∈ K.

For the definition, let us consider a specific arc a ∈ A. We assume that
the transit time function τ s

a is given by breakpoints 0 = u0 < u1 < · · · <
u� = ua and corresponding transit times τ1 < · · · < τ�. Flow entering at
rate x ∈ (uj−1, uj] needs τj time units to traverse arc a. In the bow graph,
arc a is replaced by � copies b1, . . . , b� of a. These bow arcs represent all
possible transit times of arc a. Namely, the transit time of arc bj is given by
τj , its capacity is chosen as uj, j = 1, . . . , �. We denote the set of bow arcs
corresponding to a by AB

a and refer to AB
a as the expansion of arc a. The cost

coefficients of every arc e ∈ AB
a are identical to those of a, i.e., ce,i := ca,i,

for i ∈ K. For every arc e ∈ AB
a , let a(e) denote the original arc a.

The main difference to the bow graph introduced in Section 2.2.1 can be
seen in Figure 3.1: in the new model, we omit the regulating arcs which, in
the old model, limit the amount of flow entering the bow arcs. In particular,
all bow arcs representing the same original arc “share” capacity. In the new
model, capacities are directly assigned to the bow arcs. They no longer share
capacities. Moreover, we include arc costs in the new model.

90 Quickest Multi-Commodity Flows

3.2.2 Relaxation Property of the New Model

We now discuss the relationship between flows over time in the bow graph GB

and flows over time with inflow-dependent transit times in G. Any flow over
time f with inflow-dependent transit times (τ s

a)a∈A in G with time horizon T
and cost C can be interpreted as a flow over time fB (with constant transit
times) in GB with same time horizon T and same cost C: If, in the original
graph G, flow is entering arc a ∈ A at time θ with flow rate fa(θ), then, in
the bow graph, this flow is sent onto the bow arc e ∈ AB

a representing transit
time τ s

a(fa(θ)). Costs are preserved, since the cost of every arc e ∈ AB
a is

identical to the cost of arc a.

However, an arbitrary flow over time fB in GB does not correspond to
a flow over time f with inflow-dependent transit times (τ s

a)a∈A in G. In
addition, we have to require the following property: For every original arc a ∈
A and at every point in time θ, the flow fB sends flow into at most one bow
arc a ∈ AB

a . This property ensures that flow units entering arc a at the same
point in time θ travel through a at the same speed. As in Section 2.2, we
call a flow over time inflow-preserving if it fulfills this property.

Using the same terminology as in Section 2.2.2, we let F(T) denote the
set of flows over time in G with inflow-dependent transit times (τ s

a)a∈A and
time horizon T . Similarly, let FB(T) denote the set of flows over time in GB

(with constant transit times) and time horizon T . Let ι : F(T) → FB(T) be
the embedding that maps a flow over time f ∈ F(T) to the corresponding
inflow-preserving flow over time fB in GB.

Observation 3.1. Let f be a flow over time with inflow-dependent tran-
sit times (τ s

a)a∈A in G that satisfies the multi-commodity demands within
time T at cost C. Then ι(f) defines an inflow-preserving flow over time (with
constant transit times) in GB which satisfies the multi-commodity demands
within time T at cost C.

Not every inflow-preserving flow over time in GB lies in the image of ι.
An inflow-preserving flow over time can travel through the expansion of arc a
via a bow arc with transit time larger than prescribed by the transit time
function. As in Section 2.2.2, we define a mapping π that projects any inflow-
preserving flows over time in FB(T) onto the set F(T).

Let fB be an inflow-preserving flow over time in FB(T) with cost C. We
define a flow over time f with inflow-dependent transit times in G as follows.
Consider an arc a ∈ A and let b1, . . . , b� be the set of bow arcs of arc a. For

3.2 A Stronger Relaxation 91

any point in time θ ∈ [0, T), we set

fa(θ) :=

�∑
j=1

fB
bj

(θ). (3.1)

Claim 3.2. The flow f defines a feasible multi-commodity flow over time
with inflow-dependent transit times (τ s

a)a∈A in G with time horizon T and
cost C.

Proof. Consider a fixed point in time θ. There is a unique bow arc ba ∈ AB
a

with fa(θ) = fB
ba(θ) because fB is inflow-preserving. Since fB satisfies the

capacity constraints, it follows that fa(θ) = fB
ba(θ) ≤ uba ≤ ua. Hence, the

flow f satisfies the capacity constraints as well.
Next, we show that f satisfies the flow conservation constraints. Since

storage of flow at intermediate nodes is allowed, it suffices to prove that flow
in f travels through arc a ∈ A not slower than flow in fB and therefore
reaches head(a) on time. Flow in f entering arc a at time θ needs τ s

a(fa(θ))
time to reach head(a). Flow in fB entering the expansion of arc a at time θ
needs τba time to reach head(a). Since the function τ s

a is nondecreasing, it
follows that τ s

a(fa(θ)) = τ s
a(fB

ba(θ)) ≤ τ s
a(uba). By definition of transit times

in the bow graph, τ s
a (uba) = τba . We conclude that τ s

a(fa(θ)) ≤ τba and thus
flow in f travels not slower than flow in fB.

Obviously, the cost of f is equal to the cost of fB, because the cost
coefficient of every bow arc in AB

a is identical to that of arc a.

Let π denote the projection that maps an inflow-preserving multi-com-
modity flow over time fB in FB(T) to the corresponding flow f in F(T); see
Claim 3.2. Notice that π ◦ ι : F(T) → F(T) is the identity map.

Observation 3.3. Let f be an inflow-preserving multi-commodity flow over
time in GB that satisfies the multi-commodity demands within time T at
cost C. Then π(f) defines a flow over time with inflow-dependent tran-
sit times (τ s

a)a∈A in G which satisfies the multi-commodity demands within
time T at cost C.

The set of inflow-preserving flows over time is not convex. In particular,
it is difficult to compute inflow-preserving flows directly. Therefore, we also
consider a relaxed notion which can be interpreted as a convexification of
inflow-preserving flows: For any bow arc e ∈ AB, let λe(θ) := fB

e (θ)/ue

denote the per capacity inflow rate into arc e.

Definition 3.4. A flow over time fB with time horizon T in GB is called
weakly inflow-preserving if

∑
e∈AB

a
λe(θ) ≤ 1 for all a ∈ A and θ ∈ [0, T).

92 Quickest Multi-Commodity Flows

We let FB
λ (T) denote the set of weakly inflow-preserving flows over time

in GB with time horizon T . The following observation summarizes the relax-
ation property of FB

λ (T).

Observation 3.5. Let f be a multi-commodity flow over time with inflow-
dependent transit times (τ s

a)a∈A in G that satisfies the multi-commodity
demands within time T at cost C. Then ι(f) defines a (weakly) inflow-
preserving multi-commodity flow over time in GB which satisfies the multi-
commodity demands within time T at cost C.

Remark 3.6. In Section 2.2 we have worked with a slightly different bow
graph; see Figure 3.1 (a) on page 89. It is not difficult to observe that the
set of weakly inflow-preserving flows over time FB

λ (T) can be embedded into
the set of flows over time in the bow graph defined as in Figure 3.1 (a).

To see this, consider a weakly inflow-preserving flow over time f in the
expansion shown in Figure 3.1 (b). We define a flow over time f̃ in the
expansion depicted in Figure 3.1 (a) in the canonical way: If at time θ flow
in f is entering bow arc bi at rate fbi

(θ), send this flow through the regulating
arc ri into the corresponding bow arc bi. The flow f̃ defines a feasible flow
over time: The flow rate into arc ri at time θ is given by

f̃ri
(θ) =

i∑
j=1

fbj
(θ) =

i∑
j=1

λbj
(θ)ubj

≤ ubi
,

where ubi
is the capacity of bow arc bi in the bow graph defined as in Fig-

ure 3.1 (b). By definition, ubi
is equal to the capacity uri

of regulating arc ri.
We conclude that f̃ri

(θ) ≤ uri
and thus f̃ defines a feasible flow over time.

Therefore, the model of weakly inflow-preserving flows over time indeed
constitutes a relaxation which is at least as strong as the relaxation presented
in Section 2.2.

The basic idea of the approximation algorithms presented in this chapter
is to compute weakly inflow-preserving flows over time in an appropriate bow
graph and to turn them into inflow-preserving flows over time afterwards.
Applying the projection π to such an inflow-preserving flow over time, we
derive a solution to the original problem. The following lemma and its corol-
lary make this approach work. Consider the expansion of a single arc a ∈ A
to bow arcs AB

a = {b1, . . . , b�}.
Lemma 3.7. Let fB be a weakly inflow-preserving multi-commodity flow
over time with time horizon T in AB

a and δ > 0. Then, fB can be turned into
an inflow-preserving multi-commodity flow over time f̂B in AB

a such that
every (infinitesimal) unit of flow in f̂B reaches head(a) with a delay of at
most δ.

3.2 A Stronger Relaxation 93

θθ δ̃δ̃ 2δ̃ 2δ̃ 3δ̃3δ̃

ub1ub1

00

Figure 3.2: Original flow rate on bow arc b1 and modified flow rate produced by buffering
in tail(b1).

Proof. For every bow arc bi, i = 1, . . . , �, we set up a buffer Bi in tail(a) for
temporary storage of flow. The buffer Bi is collecting all flow in fB which is
about to be shipped through bow arc bi. It can output this flow in a first-
in-first-out manner, i.e., flow particles must enter and leave the buffer in the
same order. Buffer Bi has only two output modes. Either it is closed, then
no flow is leaving the buffer, or it is open and flow is leaving the buffer at
constant rate ubi

, immediately entering arc bi. In our modified solution f̂B,
at every point in time at most one of the buffers Bi, i = 1, . . . , �, will be
open. This guaranties that f̂B is inflow-preserving.

As above, let λe(θ) := fB
e (θ)/ue be the per capacity inflow rate of fB on

arc e ∈ AB
a at time θ. We partition the time horizon into intervals of length

δ̃, where δ̃ := δ/2. Let λe,j be the average per capacity inflow rate on arc
e ∈ AB

a during time interval [(j − 1) δ̃, j δ̃), i.e.,

λe,j :=
1

δ̃

∫ j δ̃

(j−1)δ̃

λe(θ) dθ ,

j = 1, . . . , �T/δ̃	. We define the modified flow f̂B as follows: During the
first δ̃-round, all buffers are closed. During each following δ̃-round, we open
the buffers in a ‘round robin’ fashion. More precisely, during time interval
[j δ̃, (j +1) δ̃), we first open buffer B1 for λb1,j δ̃ time, then buffer B2 for λb2,j δ̃

time, and so on. Since fB is weakly inflow-preserving,
∑�

i=1 λbi,j ≤ 1 holds

and the last buffer is closed again before the end of this δ̃-round. Figure 3.2
illustrates how the buffer changes the original inflow rate of bow arc b1.

We show that the buffers are never empty while they are open. Consider
bow arc bi. During interval [(j−1) δ̃, j δ̃), the flow fB sends δ̃λbi,jubi

units of
flow into bow arc bi. This is exactly the amount of flow that the corresponding
buffer Bi is sending out during the succeeding interval [j δ̃, (j + 1) δ̃). Hence
buffer Bi is never empty while it is open and, in particular, every unit of flow
is delayed for at most 2δ̃ = δ time.

94 Quickest Multi-Commodity Flows

For δ > 0, we call a multi-commodity flow over time fB in GB δ-resting
if, for every commodity i and for every node v �= si, all flow arriving at v is
stored there for at least δ time units before it moves on. A weakly inflow-
preserving multi-commodity flow over time fB in GB which is δ-resting can
easily be interpreted as an inflow-preserving flow over time f̂B: Consider a
single arc a ∈ A and its expansion AB

a . Applying Lemma 3.7, the multi-
commodity flow over time fB restricted to AB

a can be modified to an inflow-
preserving multi-commodity flow over time such that every unit of flow is
delayed by at most δ. The resting property of fB makes up for this delay
and ensures that every such flow unit can continue its way on time. Applying
the projection map π, the flow f̂B can be turned into a flow over time f in G
with inflow-dependent transit times (τ s

a)a∈A.

Corollary 3.8. Let fB be a weakly inflow-preserving multi-commodity flow
over time in GB with time horizon T which is δ-resting. Then, fB can be
turned into a multi-commodity flow over time f in G with inflow-dependent
transit times (τ s

a)a∈A and time horizon T satisfying the same demands as fB

at the same cost as fB. Moreover, the flow over time fi, i ∈ K, is given by
piecewise constant functions (fa,i)a∈A such that the number of breakpoints
of fa,i can be bounded by 2 |AB

a | �T/δ	.
Proof. The transformation is described above. We claim that it preserves
cost. Throughout the transformation of fB no flow is rerouted. We only
make use of storage at nodes; see Lemma 3.7. Moreover, the projection π
preserves cost; see Observation 3.3. Thus, the claim follows.

3.3 A Constant Factor Approximation for Quickest Flows

In this section we present a (2 + ε)-approximation algorithm for the quickest
multi-commodity flow problem with inflow-dependent transit times. The al-
gorithm consists of the following three main steps. First, the original transit
times (τa)a∈A are replaced by lower step functions (τ s

a)a∈A and the corres-
ponding bow graph GB is constructed. Then, an appropriately modified
version of the (2 + ε)-approximation algorithm presented in [13] is applied
yielding a weakly inflow-preserving flow over time in GB. Finally, the output
is turned into a feasible solution to the original problem.

3.3.1 Quickest Weakly Inflow-Preserving Flows

Fleischer and Skutella [13] propose a (2 + ε)-approximation algorithm for
the quickest multi-commodity flow problem with bounded cost and constant

3.3 A Constant Factor Approximation for Quickest Flows 95

transit times. The method is based on an approximate length-bounded static
flow computation. The same approach can be applied to the problem of
finding a quickest weakly inflow-preserving multi-commodity flow over time
with bounded cost in the bow graph. Here, the goal is to determine a weakly
inflow-preserving multi-commodity flow over time in GB which satisfies all
demands within minimum time T at a cost which is bounded by C.

Let fB be an optimal solution to this problem with minimum time hori-
zon T . As suggested in [13], we consider the static multi-commodity flow xB

in GB which results from averaging the flow fB on every arc e ∈ AB over the
time interval [0, T), i.e.,

xB
e,i :=

1

T

∫ T

0

fB
e,i(θ) dθ .

As proven in [13], this static flow

(i) satisfies a fraction of 1/T of the demands covered by the flow over
time fB,

(ii) has cost c(xB) = c(fB)/T , and

(iii) is T -length-bounded.

The latter property means that the flow of every commodity i ∈ K can be
decomposed into a sum of flows on si-ti-paths such that the length τ(P) :=∑

e∈P τe of any such path P is at most T . To see this, notice that, since the
flow over time fB finishes by time T , every (infinitesimal) unit of flow in f
describes a path in GB of length at most T . Taking all such paths yields a
T -length-bounded path decomposition of xB.

Since fB is weakly inflow-preserving, so is xB , i.e., its per capacity flow
values λe := xB

e /ue, e ∈ AB, satisfy

(iv)
∑

e∈AB
a

λe ≤ 1 for every arc a ∈ A.

An arbitrary static flow x̃B in GB meeting requirements (i) – (iv) can
be turned into a weakly inflow-preserving flow over time gB in GB meeting
the same demands at the same cost as fB within time 2T : Send flow into
every si-ti-path P given by the length-bounded path decomposition of x at
the corresponding flow rate xP for exactly T time units; wait for at most an-
other T time units until all flow has arrived at its destination. Since gB

e (θ)/ue

is always upper-bounded by xe/ue, it follows from property (iv) that gB is
weakly inflow-preserving.

Provided that we know the optimal time horizon of a quickest weakly
inflow-preserving flow, we can compute a 2-approximate solution by solving
the static flow problem defined by requirements (i) – (iv).

96 Quickest Multi-Commodity Flows

Unfortunately, computing T -length-bounded flows is NP-hard. This fol-
lows from an easy reduction from the NP-complete problem PARTITION.
Yet, as discussed in [13], the T -length-bounded multi-commodity flow prob-
lem can be approximated within arbitrary precision in polynomial time by
slightly relaxing the length bound T . It is easy to generalize this observation
to length-bounded, weakly inflow-preserving flows. More precisely, given
a time horizon T such that there exists a T -length-bounded static multi-
commodity flow x in GB which is weakly inflow-preserving, then, a (1+ ε) T -
length-bounded static flow x′ which is weakly inflow-preserving, satisfies the
same demands, and has cost c(x′) ≤ c(x) can be computed in time polynomial
in the input size and 1/ε. Turning x′ into a flow over time as described above
thus yields a (2 + ε)-approximate solution. In the following discussion, we
detail how to compute x′. The discussion is a straightforward generalization
of the arguments used in [13].

Let PT
i be the set of all si-ti-paths in GB whose transit times are bounded

from above by T . Finding a static flow satisfying (i) – (iv) is equivalent to
solving the following linear program:
The primal LP:

min
∑
i∈K

∑
P∈PT

i

ci(P)xP

s.t.
∑

P∈PT
i

xP ≥ di/T for all i ∈ K,

∑
e∈AB

a

1

ue

(∑
i∈K

∑
P∈PT

i :
e∈P

xP

)
≤ 1 for all a ∈ A,

xP ≥ 0 for all i ∈ K, P ∈ PT
i .

Notice that the flow variable xP associated with path P ∈ PT
i only con-

tributes to the flow of commodity i, since we assume that no two commodi-
ties have the same source node. Since the number of paths in PT

i and thus
the number of variables in this linear program can be exponentially large, we
consider its dual.
The dual LP:

max
∑
i∈K

(di/T) zi −
∑
a∈A

pa

s.t.
∑
e∈P

(pa(e)/ue + ce,i) ≥ zi for all i ∈ K, P ∈ PT
i ,

zi, pa ≥ 0 for all i ∈ K, e ∈ AB, a ∈ A.

3.3 A Constant Factor Approximation for Quickest Flows 97

The separation problem of the dual can be formulated as |K| length-bounded
shortest path problems: for every i ∈ K, find a shortest si-ti-path P with
respect to the arc weights ye + pa(e)/ue + ce,i whose length τP is at most T ,
i.e., P ∈ PT

i . The length-bounded shortest path problem is NP-hard; see
Garey and Johnson [23]. However, it can be solved approximately in the
following sense; for any ε > 0, one can find in time polynomial in the size
of the underlying graph and 1/ε an si-ti-path P with τP ≤ (1 + ε)T whose
length with respect to the arc weights ye + pa(e)/ue + ce,i is not larger than
the length of a shortest path in PT

i [30, 46].
From the equivalence of optimization and separation [26] it follows that we

can solve the dual linear program approximately: Assume we want to check
the feasibility of the current solution. If it is not feasible, then there exists
a path P ∈ PT

i whose length with respect to the current arc weights ye +
pa(e)/ue + ce,i is smaller than the current value zi. Using the approximation
algorithm for the length-bounded shortest path problem, we can compute in
polynomial time a path P̃ whose transit time τP is bounded by (1 + ε)T and
whose length is smaller than zi. In particular, we can separate the current
solution by adding the constraint corresponding to P̃ . That way, we might
even separate feasible solutions since we also generate cuts corresponding to
paths with transit time T < τP ≤ (1 + ε)T . Eventually, we optimally solve a
modified dual linear program which arises from the dual program above by
adding those constraints which we generated with our approximate separation
routine and which correspond to some paths of length at most (1 + ε)T .
From this dual solution we get a primal solution which uses extra variables
corresponding to the generated paths of length at most (1 + ε)T . The next
lemma summarizes the above.

Lemma 3.9. Given a time horizon T such that there exists a weakly inflow-
preserving multi-commodity flow over time with time horizon T and cost at
most C. Then, for every ε > 0, a weakly inflow-preserving multi-commodity
flow over time with time horizon at most (2 + ε) T and cost at most C can
be computed in time polynomial in the input size and 1/ε.

We point out that the above method relies on the ellipsoid method since
the equivalence of optimization and separation [26] is based on the ellipsoid
method. In particular, this method is only of limited relevance for solving
practical problems. Alternatively, we suggest to apply the revised simplex
method with column generation, which is known to be very efficient for solv-
ing practical problems. Notice, however, that it is not clear whether the
revised simplex method terminates after a polynomial number of steps.

We give a brief description of this method; more details can be found, e.g.,
in [55]. The revised simplex method starts with a basic feasible solution to

98 Quickest Multi-Commodity Flows

the primal. In each iteration, the current basic solution is updated, i.e., a
non-basic variable is selected which will enter the basis and a basic variable is
selected that will leave the basis. In our case, the update of the basis essen-
tially amounts to computing a solution to the length-bounded shortest path
problem described above. Namely, the variable corresponding to a length-
bounded shortest path is a candidate for entering the basis. Important is
that we only generate a primal variable when it is about to enter the basis.
The latter property is the main advantage of this method; throughout the
entire procedure, we only keep a small number of variables (columns).

Lower bounds. If all transit time functions τa are constant, the (2 + ε)-
approximation algorithm in Lemma 3.9 and the one presented in [13] basi-
cally coincide. In [13], an example is given which shows that the performance
guarantee of both algorithms is not better than 2, more precisely, for every
k ∈ �, a k-commodity problem is defined for which the algorithm has per-
formance ratio exactly (2k − 1)/k.

The following instance shows that even in the single source, single sink
case the approximation ratio of the discussed algorithm is not better than 4/3.
The example consists of a single arc a = (s, t). The transit time of arc a is
set to 0 if flow is entering at rate xa ≤ 1, and it is set to 1 if flow is entering
at rate xa ∈ (1, 2]. We want to send 2 units of flow from s to t as quickly as
possible. A quickest weakly inflow-preserving flow finishes within T = 3/2
simply by sending flow at rate 2 during the interval [0, 1/2], and at rate 1
during the interval [1/2, 3/2]. Note that this flow is even inflow-preserving.

A weakly inflow-preserving flow over time fB which is generated from a
path decomposition of a static flow as described above needs at least 2 time
units. To see this, consider the corresponding bow graph GB consisting of
two parallel arcs e1 and e2, where e1 has transit time 0 and capacity 1, and
e2 has transit time 1 and capacity 2. Let λi be the per capacity flow rate of
fB on ei. Then, for T ≥ 1, the flow fB manages to send λ1T + 2λ2(T − 1)
flow units from s to t within time T . It is easily checked that fB needs at
least time T = 2 to satisfy the demand.

We point out that this lower bound can be further increased to e1/e (≈
1.445) by discretizing the instance presented to prove Claim 2.39.

3.3.2 The Algorithm

So far, we have presented an algorithm to compute a (2 + ε)-approximate
solution to the quickest multi-commodity flow problem with bounded cost in
the relaxed model of weakly inflow-preserving flows over time. Such a solution
has a simple structure, namely it is generated from a path decomposition of

3.3 A Constant Factor Approximation for Quickest Flows 99

a static flow in the bow graph. We will use this property to turn such a flow
into a solution to the original problem. Throughout this modification we will
make sure that the time horizon only increases by a small factor.

Assume in the following that we have constructed the bow graph GB

according to step functions fulfilling the requirements stated in Observa-
tion 2.18. We will later specify the parameters δ, η > 0 such that the size of
the resulting bow graph is polynomial in the input size and 1/ε.

Let fB be a weakly inflow-preserving (multi-commodity) flow over time
with time horizon T B in GB, which is generated from a static flow xB as
described in the last section. In particular, xB is weakly inflow-preserving
and has a length-bounded path decomposition. Let Pi denote the set of si-ti-
paths from the length-bounded path decomposition of xB and P := ∪k

i=1Pi.

Lemma 3.10. The flow over time fB can be turned into a flow over time f
with inflow-dependent transit times (τa)a∈A in G satisfying the same demands
at the same cost as fB within time T , where T is bounded from above by
(1 + η)T B + 2nδ.

Proof. We increase transit times in GB in order to emulate the original transit
times (τa)a∈A. For every arc e ∈ AB, let τ̃e := (1+η)τe + δ be the new transit
time along e. Note that this corresponds to constructing the bow graph
according to step functions (τ̃ s

a)a∈A, where τ̃ s
a(x) := (1+η)τ s

a(x)+ δ for every
x ∈ [0, ua]. Consider a path P ∈ P. The flow fB sends flow at constant
rate xP into P for a certain time period. Before increasing transit times,
flow traveling along P needed τ(P) :=

∑
e∈P τe time to reach its destination.

After the increase, this time goes up to τ̃ (P) :=
∑

e∈P τ̃e ≤ (1+ η)τ(P)+nδ.
Since τ(P) is bounded from above by T B, the transit time of every unit of
flow increases by at most ηT B + nδ.

We repeat this procedure, but this time we increase the transit time of
every arc e ∈ AB by another additive factor of δ. This way, we obtain a
weakly inflow-preserving flow over time f̂B in the bow graph constructed with
respect to transit times (τ̃ s

a)a∈A which is δ-resting and whose time horizon is
bounded by (1 + η)T B +2nδ. Notice that throughout these modifications no
flow is rerouted. We only make use of storage in nodes. Therefore, the cost
of fB remains unchanged, i.e., c(fB) = c(f̂B). Applying Corollary 3.8, this
yields a flow over time f with inflow-dependent transit times (τ̃ s

a)a∈A in G.
Observation 1.19 implies that f can be interpreted as a flow over time with
inflow-dependent transit times (τa)a∈A in G which concludes the proof.

We are now ready to state the main result of this section.

Theorem 3.11. Assume that each transit time function (τa)a∈A is a nonneg-
ative, nondecreasing, left-continuous function given by an oracle as described

100 Quickest Multi-Commodity Flows

Algorithm 4: Approximating quickest inflow-dependent flow.

Input: Directed graph G = (V, A) with positive capacities ua,
costs ca,i, and nonnegative, nondecreasing, left-continuous
transit time functions τa on the arcs, source-sink node pairs
(si, ti) ∈ V × V , flow demands di, a budget C, parame-
ter ε > 0.

Output: Multi-commodity flow over time f with inflow-dependent
transit times in G satisfying demands di at cost C within
time (2 + ε)T .

1 Compute lower bound L on T (see proof of Theorem 3.11), set
η := ε/8 and δ := ε L/(12n);

2 Replace transit time functions τa by step functions τ s
a (see Observa-

tion 2.18);
3 Construct bow graph GB with respect to (τ s

a)a∈A;
4 Using geometric mean binary search, compute (temporally repeated)

weakly inflow-preserving multi-commodity flow over time fB with
time horizon T ≤ (2 + ε/4)T and cost c(fB) ≤ C in GB (see
Lemma 3.9);

5 Turn fB into δ-resting flow by increasing the time horizon to at
most (2 + ε)T (see Lemma 3.10);

6 Turn fB into flow over time f with inflow-dependent transit times
in G (see Corollary 3.8);

in Remark 1.18. Then there exists a polynomial time algorithm for the quick-
est multi-commodity flow problem with inflow-dependent transit times and
bounded cost that, for any ε > 0, finds a solution of the same cost as optimal
with time horizon at most 2 + ε times the optimal time horizon T .

Proof. The algorithm is summarized above. We can compute in polynomial
time a lower bound L on T such that L ≤ T ≤ p(n)kL, for some polynomial p.
Namely, it is stated in Lemma 2.25 that for every commodity i, a lower
bound Li on the optimal time horizon Ti for sending commodity i such that
Li ≤ Ti ≤ p(n)Li can be computed in polynomial time. Setting L := maxi Li

yields the desired bound. Notice that Lemma 2.25 assumes that every transit
time function τa is given by an oracle as specified in Remark 1.18.

We fix η to ε/8 and δ to εL/(12n). For every arc a ∈ A, we pick lower
step functions according to Observation 2.18. As already observed in [43], the
number of breakpoints of τ s

a is then in O(log(nk/ε)/ε) and thus polynomially
bounded. The latter is a direct consequence of Observation 2.18 (ii) and
the fact that without loss of generality we can set the capacity of every

3.4 FPTAS 101

arc a ∈ A to u′
a := max{x ∈ [0, ua]|τa(x) ≤ p(n)kL}. We then construct

the bow graph GB with respect to these step functions. Because of the

relaxation property of GB (see Observation 3.5), the time horizon T
B

of
a quickest weakly inflow-preserving flow in GB is a lower bound on T . If

T
B ≤ L, then using Lemma 3.9 with T = L we can compute a weakly

inflow-preserving multi-commodity flow over time with time horizon at most

(2 + ε/4)L ≤ (2 + ε/4)T . Otherwise L ≤ T
B ≤ p(n)kL holds. Using

geometric mean binary search together with Lemma 3.9, we can compute a
weakly inflow-preserving multi-commodity flow over time with time horizon T

such that T ≤ (2 + ε/4)T
B ≤ (2 + ε/4)T .

Applying Lemma 3.10, this flow over time can be turned into a flow over
time f with inflow-dependent transit times in G. Its time horizon is bounded
by (1 + η)(2 + ε/4)T + 2nδ = (1 + ε/8)(2 + ε/4)T + ε/6L ≤ (2 + ε)T . Re-
call that fi is given by piecewise constant functions (fa,i)a∈A. Corollary 3.8
implies that the number of breakpoints of each such function is indeed poly-
nomial in the input size and 1/ε.

3.4 FPTAS

In this section we present a fully polynomial time approximation scheme
(FPTAS) for the quickest multi-commodity flow problem with inflow-depen-
dent transit times and bounded cost. We use ideas similar to the ones em-
ployed in [14] for the problem with fixed transit times. The FPTAS is based
on a static weakly inflow-preserving flow computation in a condensed time-
expanded bow graph.

3.4.1 Condensed Time-Expanded Graphs

It is shown in Section 1.3.3 that flow over time problems with constant tran-
sit times translate to static flow problems in a time-expanded graph. Hence,
many flow over time problems can be solved by applying algorithmic tech-
niques developed for static network flows in the time-expanded graph. How-
ever, one has to pay for this simplification of the considered flow problem
in terms of an enormous increase in the size of the underlying network. In
particular, the size of the time-expanded graph is only pseudo-polynomial
in the input size. Nevertheless, Fleischer and Skutella [13] show that the
time-expanded network can be condensed to polynomial size while keeping
control over the optimal time horizon of a flow solution. In the following, we
present their idea.

Assume that all transit times are multiples of some large number ∆ > 0.

102 Quickest Multi-Commodity Flows

[0, 2)

[2, 4)

[4, 6)

w

w

wv

v

vs

s

st

t

t

0

0

4

2

2

(a) (b) (c)

[0, 1)

[1, 2)

[2, 3)

[3, 4)

[4, 5)

Figure 3.3: Figure (b) displays the T -time-expansion of the instance shown in (a) for time
horizon T = 5. Figure (c) depicts the ∆-condensed time-expanded network for ∆ = 2.

Instead of using the T -time-expanded graph, one can rescale time and use a
∆-condensed time-expanded graph G(T)/∆ that contains only �T/∆	 copies
of V , denoted V (ρ∆), ρ = 0, . . . , �T/∆	 − 1. For every arc a = (v, w) ∈ A
and every point in time θ ∈ {ρ∆ | ρ = 0, . . . , (�(T/∆	 − 1)− τa/∆}, there is
an arc a(θ) from v(θ) to w(θ+τa). Since in this setting every arc corresponds
to a time interval of length ∆, capacities are multiplied by ∆. In addition,
there is an infinite capacity holdover arc from v(θ) to v(θ + ∆), for all v ∈ V
and θ ∈ {ρ∆ | ρ = 0, . . . , �T/∆	 − 2}, which models the possibility to
hold flow at node v. The cost of every arc in the time-expanded graph is
equal to the cost of the original arc. An example is shown in Figure 3.3.

Any static flow in this condensed time-expanded graph corresponds to a
flow over time of equal cost in the original graph with time horizon bounded
by T + ∆: divide the static flow on an arc with tail in Vρ∆ by ∆ and send
flow at this rate for ∆ units of time starting at time ρ∆. Conversely, given
a flow over time with time horizon T , a static flow in the condensed time-
expanded graph of equal cost can be obtained by mapping the whole flow on
arc a ∈ A during time interval [ρ∆, (ρ + 1)∆), ρ = 0, . . . , �T/∆	 − 1, to the
copy a(ρ∆). Capacity constraints are fulfilled since the total flow starting on
arc a in interval [ρ∆, (ρ + 1)∆), ρ = 0, . . . , �T/∆	 − 1, is bounded by ∆ua.
The following lemma taken from [13] summarizes the above.

Lemma 3.12. Suppose that all transit times are multiples of ∆. Then, any
flow over time that completes by time T corresponds to a static flow of equal
value and cost in G(T)/∆, and any static flow in G(T)/∆ corresponds to a
flow over time of equal value and cost that completes by time T + ∆.

3.4 FPTAS 103

3.4.2 The Algorithm

In this section we describe a fully polynomial time approximation scheme
for the quickest multi-commodity flow problem. The algorithm works on an
appropriately condensed time-expanded graph. To state the algorithm and
prove its correctness, we first need to define the underlying bow graphs.

The Underlying Graphs. Assume we are given a graph G = (V, A) with
transit time functions (τa)a∈A on the arcs, a time horizon T , and ∆ > 0. We
define the following three bow graphs: The first bow graph G↓ = (V ↓, A↓)
is constructed with respect to lower step functions (τ ↓

a)a∈A, which arise from
the original transit time functions (τa)a∈A by rounding down to the nearest
multiples of ∆, i.e., τ ↓

a (x) := �τa(x)/∆�∆, for a ∈ A, x ∈ [0, ua]. We denote
the transit time of an arc e ∈ A↓ by τ ↓

e . The second bow graph G↑ = (V ↑, A↑)
denotes the ∆-lengthened bow graph G↑ = (V ↑, A↑) which is constructed
from G↓ by increasing the transit time function of each arc by ∆. The
corresponding transit time step functions are given by τ ↑

a (x) := τ ↓
a (x) + ∆,

for a ∈ A, x ∈ [0, ua]. We denote the transit time of an arc e ∈ A↑ by τ ↑
e .

Thirdly, let G↑↑ = (V ↑↑, A↑↑) be the 2∆-lengthened bow graph, which arises
from G↓ by lengthening the transit time of each arc by 2∆. The corresponding
transit time step functions are given by τ ↑↑

a (x) := τ ↓
a (x) + 2∆, for a ∈ A, x ∈

[0, ua]. We denote the transit time of an arc e ∈ A↑↑ by τ ↑↑
e .

Let GF = (V F , AF) be the ∆-condensed time-expansion of G↑↑ with
time horizon T , i.e., GF := G↑↑(T)/∆. The exact choice of T is given in
the paragraph below. We refer to GF also as the ∆-condensed fan graph;
compare Section 2.3.4. Each arc a = (v, w) ∈ A is represented in the bow
graph G↑↑ by its expansion A↑↑

a . Thus, the fan graph contains, for each point
in time θ ∈ {ρ∆ | ρ = 0, . . . , �T/∆	 − 1}, a “fan” of arcs AF

a (θ) := {e(θ) :
e ∈ A↑↑

a , θ + τe ≤ (�T/∆	 − 1)∆}, where e(θ) := (v(θ), w(θ + τe)).
For a static flow x in GF , we define λe := xe/ue to be the per capacity

inflow value on arc e ∈ AF . With these definitions, the concept of (weakly)
inflow-preserving flows directly carries over to static flows in GF : The static
flow x is weakly inflow-preserving if∑

e∈AF
a (θ)

λe ≤ 1 , (3.2)

for all a ∈ A and θ ∈ {ρ∆ | ρ = 0, . . . , �T/∆	 − 1}.

Specifying T and ∆. Let T denote the time horizon of a quickest multi-
commodity flow with inflow-dependent transit times and bounded cost in G
and let L be a lower bound on T with L ∈ O

(
T
)
. Given ε > 0, we set

104 Quickest Multi-Commodity Flows

ε′ := ε/8. Without loss of generality, we can assume in the following calcu-
lations that ε < 1 and therefore ε′ < 1/8. Let T ′ be an estimate of T with
T ≤ T ′ ≤ (1 + ε′)T . We set ∆ := ε′2L/n and T := (1 + ε/2)T ′.

With this choice of parameters, we can prove the following lemma.

Lemma 3.13. A weakly inflow-preserving static multi-commodity flow xF

in GF can be turned into a multi-commodity flow over time f with inflow-
dependent transit times (τa)a∈A in G satisfying the same demands as xF at
the same cost as xF within time horizon bounded by (1 + ε)T .

Proof. It follows from Lemma 3.12 that xF corresponds to a flow over time f ′

in G↑↑ satisfying the same demands at the same cost as xF with time horizon
bounded by T + ∆. By choice of T , we have that T = (1 + ε/2)T ′ ≤
(1 + ε/2)(1 + ε/8)T ≤ (1 + 3/4ε)T . By choice of ∆, we have that ∆ =
ε′2L/n ≤ 1/8εT . We conclude that the time horizon of f ′ can be upper-
bounded by T + ∆ ≤ (1 + ε)T . Since xF is weakly inflow-preserving, so
is f ′. By shortening all arcs of G↑↑ by ∆, the flow over time f ′ can be
interpreted as a weakly inflow-preserving flow over time in G↑ which is ∆-
resting. Applying Corollary 3.8, we derive a flow over time f in G with
inflow-dependent transit times (τ ↑

a)a∈A and time horizon at most (1 + ε)T .
Since τ ↑

a (x) ≥ τa(x), for all a ∈ A, x ∈ [0, ua], the statement of the lemma
follows from Observation 1.19.

From this lemma we can immediately derive an algorithm. Using bi-
nary search, we find the estimate T of T . In each search step, we check
whether GF = G↑↑(T)/∆ contains a weakly inflow-preserving multi-commo-
dity flow satisfying all demands at given cost and update the value of T . The
crucial part is to show that, for this choice of T , such a flow exists in GF .
The algorithm is summarized on the facing page.

We now show that the algorithm can be implemented to run in polynomial
time. The correctness of the algorithm will be shown subsequently. The lower
bound L in Step 1 can be computed in polynomial time using the constant
factor approximation algorithm presented in Section 3.3. The estimate T ′

can thus be found within O(log(1/ε)) geometric mean binary search steps.
In each search step, we need to compute a weakly inflow-preserving multi-

commodity flow in a condensed fan graph GF . This problem can be formu-
lated as a linear program by adding a bundle constraint of type (3.2) for each
fan in GF to a standard network flow formulation. It remains to bound the
size of GF . By definition, the fan graph contains �T/∆	 ∈ O(n/ε2) time
layers. Hence, the number of nodes lies in O(n2/ε2). Every arc a ∈ A is
represented in each time layer by a fan. Since a fan in GF contains at most
�T/∆	 ∈ O(n/ε2) arcs—one for each time layer—the number of arcs in GF

3.4 FPTAS 105

Algorithm 5: FPTAS for quickest inflow-dependent flow.

Input: Directed graph G = (V, A) with positive capacities ua,
costs ca,, and nonnegative, nondecreasing, left-continuous
transit time functions τa on the arcs, source-sink node pairs
(si, ti) ∈ V × V , flow demands di, a budget C, ε > 0.

Output: Multi-commodity flow over time f with inflow-dependent
transit times in G satisfying demands di at cost C within
time (1 + ε)T .

1 Compute lower bound L and upper bound U on T with L ∈ O(U)
(see Theorem 3.11), set ε′ := ε/8 and ∆ := ε′2L/n;

2 Using geometric mean binary search on [L, U], determine T ′ with T ≤
T ′ ≤ (1 + ε′)T such that, for T := (1 + ε/2)T ′, GF = G↑↑(T)/∆
contains a weakly inflow-preserving static multi-commodity flow x′

satisfying all demands at cost C;
3 Interpret x′ as flow over time f ′ in G↑↑ ;
4 Interpret f ′ as a ∆-resting flow over time in G↑;
5 Turn f ′ into a flow over time f with inflow-dependent transit

times (τa)a∈A in G (see Corollary 3.8);

lies in O(mn2/ε4). We conclude that GF is of polynomial size. Consequently,
a weakly inflow-preserving multi-commodity flow in GF can be computed in
polynomial time, for instance, by applying the ellipsoid method; for more
details on this method see for example [26].

The running time of Step 3 and 4 is obviously polynomial. It follows from
Corollary 3.8 that the algorithm outputs a solution which is given by piece-
wise constant functions fa,i, a ∈ A, i ∈ K, where the number of breakpoints
of fa.i is bounded by 2 |A↑

a| �T/∆	. Since we can assume that A↑
a only con-

tains arcs with transit time not larger than T , we can bound |A↑
a| by T/∆.

Hence, the number of breakpoints of fa,i lies in O(n2/ε4).

It remains to show that the algorithm performs correctly, i.e., we need
to discuss the choice of T in the algorithm and prove that a static multi-
commodity flow as described in Step 2 exists. To this end, we transform a
quickest flow in G with inflow-dependent transit times into a weakly inflow-
preserving static multi-commodity flow in GF . The transformation is done in
several steps which are illustrated in Figure 3.4: Step � in the transformation
immediately follows from Observations 1.19 and 3.5; a flow over time with
inflow-dependent transit times (τa)a∈A in G naturally induces a flow over time
with inflow-dependent transit times (τ ↓

a)a∈A in G which, in turn, corresponds
to an inflow-preserving flow over time in G↓. Likewise, transformation �

106 Quickest Multi-Commodity Flows

flow over time with inflow-dependent
transit times in G, time horizon T��

inflow-preserving flow over time
in G↓, time horizon T��

weakly inflow-preserving flow over
time in G↑↑, time horizon ≤ T��

weakly inflow-preserving static flow
in GF , time horizon ≤ T

Figure 3.4: Diagram depicting the transformation steps needed to prove Lemma 3.14; a
quickest flow with inflow-dependent transit times is turned into a weakly inflow-preserving
static flow in GF .

was already used to prove Lemma 3.12; simply map the total amount of flow
entering arc e ∈ A↑↑ in the interval [θ, θ + ∆) to e(θ) ∈ AF , for θ ∈ {ρ∆ |
ρ = 0, . . . , �T/∆	 − 1}. It can easily be checked that these transformations
preserve cost and the property of being weakly inflow-preserving.

Step � is the most interesting but also the most intricate one. Increas-
ing transit times in the bow graph will in general destroy feasibility of the
considered flow over time. Similarly to [14], we will carefully average flow to
derive an “almost feasible” flow, then subsequently reduce the flow value to
obtain feasibility, and finally increase the time horizon to meet demands. We
can adopt this method since the transit times in bow graphs G↓ and G↑↑ are
constant. However, in contrast to [14], our flows must have the additional
property of being weakly inflow-preserving. Hence, in the following more
detailed discussion of transformation �, we will stress why this property is
preserved.

Lemma 3.14. A weakly inflow-preserving multi-commodity flow over time f
in G↓ with time horizon T can be transformed into a weakly inflow-preserving
flow over time in G↑↑ with time horizon at most T satisfying the same de-
mands as f at the same cost as f .

3.4 FPTAS 107

On the way to proving the lemma we need to show several intermediate
results. Consider a flow over time f in G↓ as claimed in the lemma. Fleischer
and Skutella [14] introduce a technique for “smoothing” f . The intuition is
the following. Consider two paths P1 and P2 in G↓ sharing an arc e in G↓.
Assume that f is sending flow into Pi, i ∈ {1, 2}, at a very high rate for a
short period of time. Figuratively, both paths carry a big “package” of flow.
We assume that these packages travel through arc e one after another. Now
we increase the transit time of every arc in G↓ by an equal amount. That way,
we also increase the transit times of paths P1 and P2. After this modification,
the two packages might collide when traveling through e. This happens if
the number of arcs preceding e in P1 is not equal to the number of arcs
preceding e in P2. In that case, the package traveling along P1 experiences a
different delay than the package traveling along P2. To avoid such collisions,
we preprocess each path flow. That is, we smooth each path flow in order to
avoid extreme changes in the flow rate.

Smoothing f . In f , every infinitesimal unit of flow describes a simple2 path P
in G↓ and a certain delay configuration; if P is given by nodes (v0, v1, . . . , vq),
then a vector of nonnegative delays δ = (δ1, . . . , δq−1) specifies the amount
of time for which the infinitesimal flow unit is stored in each node. More
precisely, the flow unit rests in node vj for δj units of time before it continues
towards node vj+1. We call a path P together with a delay vector δ a path
with delay and denote it by P δ.

Since all arc lengths in G↓ are multiples of ∆, we can assume that each
δi, i = 1, . . . , q−1, is a multiple of ∆: First, we apply Lemma 3.12 to turn f
into a static flow in the ∆-condensed time expansion of G↓. Then, we again
apply Lemma 3.12 to turn the static flow back into a flow over time in G↓.
After this transformation, f is still weakly inflow-preserving and has the same
cost.

Since all hold-over arcs in the ∆-condensed time-expansion connect time
layers of distance ∆, the statement follows. Notice that we have to pay for
that transformation with an increase of the time horizon by an additive factor
of ∆. Hence, the following statement holds after the transformation.

Observation 3.15. The time horizon of the flow over time f in G↓ is upper-
bounded from above by T + ∆.

In particular, the flow f induces only finitely many paths with delay P δ.
Therefore, there exists a (finite) decomposition of the flow over time f into
flows over time fP δ on paths with delay P δ. Consider a path P δ of the path

2Notice that cycles can be avoided by storing flow at intermediate nodes.

108 Quickest Multi-Commodity Flows

εT ′0
θ

f̂P (θ)

εT ′0
θ

fP (θ)

Figure 3.5: The original path flow over time fP and the smoothed path flow over time f̂P .

decomposition of f , i.e., P δ is given by a path P = (v0, v1, . . . , vq) in G↓ and
a delay vector δ. For e := (vl, vl+1), we define

τ ↓(P δ, e) :=

�∑
j=1

(τ ↓
(vj−1,vj)

+ δj) (3.3)

to be the transit time with delay of the subpath (v0, v1, . . . , vl) in G↓. Sim-
ilarly, let τ ↑↑(P δ, e) denote the transit time with delay of this subpath with
respect to the increased transit times in G↑↑. We denote the transit time
with delay of the entire path P δ by τ ↓(P δ) and τ ↑↑(P δ), respectively.

In particular, flow in f entering P δ at time θ enters arc e at time θ +
τ ↓(P δ, e). Therefore, the total flow entering arc e at time θ can be computed
as follows:

fe(θ) =
∑

P δ:e∈P

fP δ

(
θ − τ ↓(P δ, e)

)
. (3.4)

We average the flow along each path P δ and, thereby, define a new flow f̂ .
For every θ ∈ [0, T + ∆ + ε′ T ′), we set

f̂P δ(θ) :=
1

εT ′

∫ θ

θ−ε′ T ′
fP δ(ξ) dξ . (3.5)

As in [14], we call f̂ smoothed. Notice that, if ε is small, then f̂P δ approxi-
mates the original path flow over time fP δ very accurately. An example of a
smoothed flow rate function is depicted in Figure 3.5.

Since f̂ is defined via a path decomposition, we can interpret f̂ as a flow
over time in the 2∆-lengthened bow graph G↑↑. In particular, flow in f̂
entering P δ at time θ now enters arc e at time θ + τ ↑↑(P δ, e). Thus, the total
flow entering arc e at time θ can be computed as follows:

f̂e(θ) =
∑

P δ:e∈P

f̂P δ

(
θ − τ ↑↑(P δ, e)

)
. (3.6)

3.4 FPTAS 109

The smoothed flow satisfies all demands and has the same cost as f because
the total amount of flow sent along every path with delay P δ is not changed.
Moreover, it satisfies the flow conservation constraints since it is defined
through flows on paths.

However, the flow over time f̂ need not be feasible in G↑↑; in fact, capac-
ity constraints and the weakly inflow-preserving property might be violated.
Before we address this problem, we derive an upper bound on the time hori-
zon T̂ of f̂ in G↑↑.

Claim 3.16. The time horizon T̂ of the flow over time f̂ in G↑↑ is bounded
from above by (1 + 3/2ε′)T ′.

Proof. The time horizon of f in G↓ is bounded by T+∆; see Observation 3.15.
Smoothing f increases the time horizon by another additive factor of ε′ T ′:
simply note that flow in f̂P δ is entering path P δ at most ε′ T ′ time units later
than in fP δ ; see (3.5). Therefore, we can upper-bound the time horizon of f̂
in G↓ by T + ∆ + ε′ T ′ ≤ (1 + 5/4ε′)T ′, where the latter inequality holds
because T ≤ T ′ and ∆ = ε′2L/n ≤ ε′/4 T ′.

Next, we interpret f̂ as a flow over time in the 2∆-lengthened bow
graph G↑↑. Consider a path P δ of the path decomposition of f , i.e., P δ

is given by a path P = (v0, v1, . . . , vq) in G↓ and a delay vector δ. Since every
path P δ is simple, it contains at most n − 1 arcs. Therefore, we can bound
the transit time with delay τ ↑↑(P δ) of path P δ in G↑↑ in terms of the transit
time with delay τ ↓(P δ) in G↓:

τ ↓(P δ) ≤ τ ↑↑(P δ) (3.7)

≤ τ ↓(P δ) + 2(n − 1)∆

≤ τ ↓(P δ) + 2ε′2 T ′ ,

where the last inequality holds because ∆ = ε′2L/n. Consequently, we can
bound the time horizon of f̂ in G↑↑ by (1+5/4ε′)T ′+2ε′2 L ≤ (1+5/4ε′)T ′+
ε′/4 L ≤ (1 + 3/2ε′)T ′. This concludes the proof of the claim.

Later we need the following claim. It follows immediately from the cal-
culations in (3.7) by replacing P δ by a subpath of P δ.

Claim 3.17. For every arc e ∈ P δ, the following holds:

τ ↓(P δ, e) ≤ τ ↑↑(P δ, e) ≤ τ ↓(P δ, e) + 2ε′2 T ′ . (3.8)

Rescaling f̂ . We have mentioned already above that the flow over time f̂
need neither be feasible nor weakly inflow-preserving. However, it is proven

110 Quickest Multi-Commodity Flows

in [14] that the flow over time f̂ is almost feasible, i.e., for every arc e ∈ A↑↑

and every θ ∈ [0, T̂), the flow rate f̂e(θ) is not larger than (1 + 2ε′)ue. In a
similar fashion, we will show next that the flow over time f̂ is almost weakly
inflow-preserving. The following rather technical claims bound the sum of
the per capacity inflow rates λ̂e(θ) of f̂ in each expansion A↑↑

a , a ∈ A. First,
we bound f̂e(θ) in terms of f .

Claim 3.18. For every e ∈ A↑↑ and θ ∈ [0, T̂),

f̂e(θ) ≤
1

ε′T ′
∑

P δ:e∈P

∫ θ

θ−2ε′2T ′−ε′T ′
fP δ

(
ξ − τ ↓(P δ, e)

)
dξ .

Proof.

f̂e(θ) =
∑

P δ:e∈P

f̂P δ

(
θ − τ ↑↑(P δ, e)

)
by (3.6),

=
1

ε′T ′
∑

P δ:e∈P

∫ θ−τ↑↑(P δ,e)

θ−τ↑↑(P δ,e)−ε′T ′
fP δ

(
ξ
)

dξ by (3.5),

≤ 1

ε′T ′
∑

P δ:e∈P

∫ θ−τ↓(P δ ,e)

θ−τ↓(P δ,e)−2ε′2T ′−ε′T ′
fP δ

(
ξ
)

dξ by (3.8),

=
1

ε′T ′
∑

P δ:e∈P

∫ θ

θ−2ε′2T ′−ε′T ′
fP δ

(
ξ − τ ↓(P δ, e)

)
dξ .

Using the above claim, we prove that f̂ is almost weakly inflow-preserving
in G↑↑.

Claim 3.19. For every a ∈ A and θ ∈ [0, T̂),

∑
e∈A↑↑

a

λ̂e(θ) ≤ 1 + 2ε′ .

3.4 FPTAS 111

10
θ

f̂e,i(θ)

1 + 2ε′0
θ

f̂e,i(θ/(1 + 2ε′))

Figure 3.6: The original flow rate f̂e,i(θ) and the stretched flow rate f̂e,i(θ/(1 + 2ε′)).

Proof.∑
e∈A↑↑

a

λ̂e(θ) =
∑

e∈A↑↑
a

f̂e(θ)/ue

≤
∑

e∈A↑↑
a

(
1

ε′T ′
∑

P δ:e∈P

∫ θ

θ−2ε′2T ′−ε′T ′
fP δ

(
ξ − τ ↓(P δ, e)

)
dξ

)/
ue

=
1

εT ′

∫ θ

θ−2ε′2T ′−ε′T ′

(∑
e∈A↑↑

a

1

ue

∑
P δ:e∈P

fP δ

(
ξ − τ ↓(P δ, e)

))
dξ

=
1

ε′T ′

∫ θ

θ−2ε′2T ′−ε′T ′

∑
e∈A↑↑

e

fe

(
ξ
)
/ue dξ by (3.4),

≤ 1

ε′T ′

∫ θ

θ−2ε′2T ′−ε′T ′
1 dξ

=
2ε′2T ′ + ε′T ′

ε′T ′ = 1 + 2ε′ ,

where the first inequality follows from Claim 3.18 and where the last inequal-
ity holds because f is weakly inflow-preserving. This concludes the proof of
the claim.

Dividing f̂e by (1+2ε′) on every arc e ∈ A↑↑ yields a feasible weakly inflow-
preserving flow over time in G↑↑ that satisfies a fraction of 1/(1 + 2ε′) of all
demands and has cost at most c(f̂)/(1 + 2ε′) = c(f)/(1 + 2ε′) ≤ C/(1 + 2ε′).
A subsequent “stretching” of f̂ ensures that all demands are met.

Stretching f̂ . We expand the time horizon T̂ by a multiplicative factor of (1+
2ε′) and increase the transit time τ ↑↑

e of arc e to τ̃e := (1 + 2ε′)τ ↑↑
e , for every

arc e ∈ A↑↑. Then, we reparameterize f̂ accordingly by considering f̂e,i(θ/(1+

2ε′)), e ∈ A↑↑, θ ∈ [0, (1 + 2ε′) T̂) instead. Figure 3.6 depicts an example
of a stretched flow rate function. The new flow satisfies flow conservation

112 Quickest Multi-Commodity Flows

constraints:∑
e∈δ+(v)

∫ ξ

0

f̂e,i(θ/(1 + 2ε′))dθ −
∑

e∈δ−(v)

∫ ξ

τ̃e

f̂e,i(θ/(1 + 2ε′) − τ̃e)dθ

= (1 + 2ε′)
∑

e∈δ+(v)

∫ ξ
1+2ε′

0

f̂e,i(θ)dθ − (1 + 2ε′)
∑

e∈δ−(v)

∫ ξ−τ̃e
1+2ε′

0

f̂e,i(θ)dθ

= (1 + 2ε′)
(∑

e∈δ+(v)

∫ ξ
1+2ε′

0

f̂e,i(θ)dθ −
∑

e∈δ−(v)

∫ ξ
1+2ε′

0

f̂e,i(θ − τ ↑↑
e)dθ

)

≤ 0 ,

for all v ∈ V ↑↑\{si}, i ∈ K, where the last inequality follows because f̂
satisfies flow conservation constraints. Similarly, it can be checked that the
value of the new flow with respect to commodity i ∈ K is equal to di and
its cost is bounded by C. Moreover, the new flow is still weakly inflow-
preserving. By Claim 3.16, its time horizon can be bounded by (1 + 2ε′)T̂ ≤
(1 + 2ε′)(1 + 3/2ε′)T ′ ≤ (1 + 4ε′)T ′ ≤ (1 + ε/2)T ′ = T . This concludes the
proof of Lemma 3.14. We can now state the main result of this section.

Theorem 3.20. Assume that each transit time function (τa)a∈A is a nonneg-
ative, nondecreasing, left-continuous function given by an oracle as described
in Remark 1.18. Then there is an FPTAS for the quickest multi-commodity
flow problem with inflow-dependent transit times and bounded cost.

Quality of the Relaxation. In Section 3.2 we have introduced the notion of
weakly inflow-preserving flows over time as a relaxation to flows over time
with inflow-dependent transit times. It was shown in this section that this
relaxation leads to an FPTAS for the quickest multi-commodity flow prob-
lem with bounded cost. This result provides evidence of the quality of this
relaxation.

Theorem 3.21. Let T denote the time horizon of a quickest multi-commodity
flow with inflow-dependent transit times (τa)a∈A in G.

(i) For every ε > 0, there exists a bow graph GB of size polynomial in

the input size and 1/ε such that the time horizon T
B

of a quickest

weakly inflow-preserving multi-commodity flow in GB satisfies T
B ≤

T ≤ (1 + ε)T
B
.

(ii) Let all transit time functions be step functions and let GB be the

corresponding bow graph. Then the time horizon T
B

of a quickest
weakly inflow-preserving multi-commodity flow fB in GB is equal to T .

3.5 Complexity 113

Proof. We begin with the proof of (ii). It follows from Observation 3.5 that

T
B ≤ T , so it remains to prove T ≤ T

B
. To see this, it suffices to show

that for any ε > 0, there exists a flow over time f with inflow-dependent

transit times in G with time horizon bounded from above by (1+ε)T
B
. This

follows from the result presented in Lemma 3.14: Consider a weakly inflow-

preserving flow over time fB with time horizon T
B

in GB. Then, fB can be
interpreted as a weakly inflow-preserving flow over time in G↓, where G↓ is
the lower bow graph as defined at the beginning of Section 3.4.2. Lemma 3.14
implies that fB can be turned into a weakly inflow-preserving flow over time

in G↑↑ with time horizon bounded by (1 + ε)T
B
. We interpret this flow as a

weakly inflow-preserving flow over time in G↑ which is ∆-resting. Applying
Corollary 3.8 proves part (ii).

Next, we consider (i). Pick as bow graph GB the lower bow graph G↓ as
defined at the beginning of Section 3.4.2. Because of the relaxation property

of the bow graph T
B ≤ T . Hence it remains to show T ≤ (1 + ε)T

B
. Let

T ↑↑ denote the optimal time horizon of a weakly inflow-preserving flow over
time in G↑↑. It follows from the second part of this theorem that T ≤ T ↑↑.
Moreover, Lemma 3.14 implies that T ↑↑ ≤ (1 + ε)T

B
. This concludes the

proof.

3.5 Complexity

We close this chapter with a summary of the main complexity results known
for flows over time with constant transit times and with flow-dependent tran-
sit times. In Table 3.1 four problem settings are considered: s-t-flow, trans-
shipment, minimum cost s-t-flow, and multi-commodity flow. We focus on
those entries in the table which are presented in this thesis.

Consider the first row in the table which discusses constant transit times.
The algorithm of Ford and Fulkerson, which solves the maximum s-t-flow over
time problem with constant transit times, is presented in Section 1.3.5. The
reduction of the problem to a static minimum cost s-t-flow problem can also
be found there. Moreover, the quickest s-t-flow problem is polynomial time
solvable; see Section 1.3.5. For integral data, all four problem versions can be
translated to static flow problems in the corresponding time-expanded graph;
see Section 1.3.4. In particular, for integral time horizon T , all problems are
solvable in pseudo-polynomial time since the respective static network flow
problems are polynomial time solvable.

Consider the second row in the table which discusses inflow-dependent
transit times. The strong NP-hardness of the quickest s-t-flow problem in

114 Quickest Multi-Commodity Flows

Table 3.1: The complexity of flows over time with constant transit times in comparison
to the corresponding flow problems with inflow-dependent and load-dependent transit
times, respectively. The entry ”poly”(”pseudo-poly”) means that the problem can be solved
exactly in polynomial (pseudo-polynomial) time.

transit
times s-t-flow transshipment min-cost flow multi-commodity

flow

constant
poly [18]

(� static min
cost flow)

poly [34]
(� submod.
function)

pseudo-poly,
NP-hard [42],

FPTAS [14]

pseudo-poly,
NP-hard [27],

FPTAS [14]

inflow-
dependent strongly NP-hard, FPTAS [28]

load-
dependent

APX -hard [44]
(2 + ε)-

approx. [44]

the setting of inflow-dependent transit times is proven in Section 2.4 by a re-
duction from the NP-complete problem 3-PARTITION. The FPTAS, which
is even applicable to the quickest multi-commodity transshipment problem
with costs, is discussed in Section 3.4. It relies on a linear programming
formulation on a condensed time-expanded graph. Constant factor approxi-
mation algorithms for the quickest s-t-flow problem in the setting of inflow-
dependent transit times are not explicitly mentioned in the table. They can
be found in Section 2.3.

The third row contains results known for the model of load-dependent
transit times. Computing quickest s-t-flows is already APX -hard; in partic-
ular, there does not exist a polynomial time approximation scheme for the
quickest s-t-flow problem, unless P = NP. The (2 + ε)-approximation algo-
rithm of Köhler and Skutella [44], which solves the quickest s-t flow problem
in the setting of load-dependent transit times, is presented in Section 2.3.5.
It is also shown there that the algorithm can be applied to other, more gen-
eral models of flow-dependent transit times; in particular, it can be used to
approximate the quickest s-t-flow problem in the setting of inflow-dependent
transit times.

Chapter 4

The First In, First Out Property

4.1 Introduction

The model of flows over time with inflow-dependent transit times is only a
rough approximation of the actual behavior of flow in real-life applications.
For instance, flows over time with inflow-dependent transit times do in gen-
eral not obey the first in, first out (FIFO) property on an arc. The FIFO
property states that traffic that enters a road at a particular time exits the
facility before traffic which enters in later periods. Translated to time-varying
flows, the FIFO condition requires that flow particles are entering and leav-
ing an arc in the same order. In the model of inflow-dependent transit times,
a violation of the FIFO property can arise if the inflow rate of an arc drops
down quickly. This causes a strong decrease in the transit time of that arc
such that some flow units might pass other flow units which are ahead on the
arc traveling at a slower speed.

The FIFO property is not only relevant from a practical point of view, but
also from a theoretical one: A generalization of the shortest path problem
is the dynamic shortest path problem. Here, it is assumed that the length
of an arc is not fixed but time-varying. Kaufman and Smith [40] prove that
essentially any labeling algorithm such as Dijkstra’s method [12] can be used
to compute a shortest path provided that the given time-dependent length
functions satisfy the FIFO property. Hence, in that case a shortest path
can be computed in the original network and an explicit time-expansion is
avoided.

Although FIFO violations can emerge in the setting of inflow-dependent
transit times, this phenomenon does not occur in the solutions generated
by the constant factor approximation algorithms presented in Section 2.3.
Namely, the algorithm outputs a temporally repeated flow; in such a flow,
the transit time of every arc is fixed and, hence, flow units can never pass
each other. Unfortunately, the solutions produced by the FPTAS presented
in Section 3.4 do not satisfy the first in, first out property. Since in such a
solution the inflow rate—and thus the transit time—on an arc is changing in
a “round robin” fashion, the FIFO property will in general be violated.

115

116 The First In, First Out Property

Flows over time with load-dependent transit times always satisfy the first
in, first out condition. In this model, flow units traveling on the same arc at
the same time experience the same speed. Thus, the first in, first out prop-
erty is an intrinsic characteristic of the model. From a practical standpoint,
the latter feature favors the model of load-dependent transit times over the
model of inflow-dependent transit times. However, theoretical results give
evidence that the model of load-dependent transit times is not too promis-
ing from a mathematical programming standpoint: Köhler and Skutella [44]
prove that computing a quickest s-t-flow in this model is APX -hard. More
precisely, they prove that there does not exist an approximation algorithm
with performance guarantee better than 37/36, unless P = NP. More-
over, at this point no approximation algorithm is known that computes good
multi-commodity flow solutions.

In this chapter we analyze a much simpler model of flow-dependent transit
times with regard to the FIFO property. In Chapter 2 we have introduced
the fan graph. We have seen that the solution space defined by static flows
on the fan graph can be seen as a relaxation of the space of flows over time
with inflow-dependent transit times. The advantage of this model is that the
algorithmic machinery developed for static network flows can be applied to
this generalized time-expanded network. As will be explained in Section 4.3,
the first in, first out property does not necessarily hold in the fan graph
model. Hence, a natural question to ask is whether one can enforce the
FIFO property, for instance by imposing additional constraints. The scope
of this chapter is to prove that finding a static multi-commodity flow in the
fan graph that satisfies the first in, first out property is NP-hard. For the
single source, single sink case, we will present some simple approximation
results.

Carey and Subrahmanian [9] study static flows in a fan graph similar to
the one presented in Chapter 2 with a slightly different interpretation of arc
transit times. They address the problem of ensuring the first in, first out
property in a flow solution and propose to introduce additional nonconvex
constraints. These constraints can be formulated as linear constraints with
zero-one integer variables. They note that this approach makes the mathe-
matical program much less tractable and alternatively suggest to add only
few such constraints initially and repeatedly add new or drop old constraints.
However, this iterative approach is a heuristic method, and it is not clear that
it converges towards an optimal solution.

Remark 4.1. Recall that the fan graph is defined as the time-expansion
of the bow graph. In this thesis we have considered different types of bow
graphs; see Remark 2.32 and Figure 2.11 on page 59. In this chapter we

4.2 First In, First Out Violations in the Fan Graph 117

wτ1

wτ2

vθ1

vθ2

v w

Figure 4.1: Example of a fan graph over a single arc (v, w); a FIFO violation occurs if
two crossing arcs in the fan graph carry flow.

concentrate on the fan graph which is the time-expansion of the bow graph
presented in Figure 2.11 (c). Notice however that the results presented in
this chapter hold for all three types of fan graphs.

4.2 First In, First Out Violations in the Fan Graph

In this section we give a formal definition of the first in, first out property for
static flows in the fan graph. After that, we will prove that finding a static
multi-commodity flow in the fan graph that in addition satisfies the first in,
first out property is NP-hard.

We are considering the following setting. Let G = (V, A) be a directed
graph, in which each arc a ∈ A has a nonnegative capacity ua and a piecewise
constant transit time function1 τ s

a : [0, ua] → �. For a fixed integral time
horizon T , let GF = (V F , AF) denote the fan graph with time horizon T
constructed with respect to (τ s

a)a∈A. In particular, V F contains T copies
of V , denoted V F (0), . . . , V F (T − 1). For every arc a = (v, w) ∈ A and
every point in time 0 ≤ θ ≤ T −1, there is a whole “fan” of arcs leaving v(θ);
one arc for each possible transit time on arc a. Consider the example in
Figure 4.1 which displays the fan graph over a single arc (v, w). In the
example, each fan contains two arcs; the first representing transit time one,
the second representing transit time four.

For a static flow in the fan graph, we can formalize the first in, first out
property as follows.

Definition 4.2. Let x be a static flow in GF . The flow x violates the first

1The transit time function is denoted τs
a to stress its step function character.

118 The First In, First Out Property

in, first out property if there exist flow-carrying arcs ei = (vθi
, wξi

) ∈ AF , i ∈
{1, 2}, representing the same arc (v, w) ∈ A, such that θ1 < θ2 and ξ1 > ξ2.

A FIFO violation of x has an intuitive interpretation in the layout of the
fan graph depicted in Figure 4.1; the respective arcs are crossing each other.

4.3 Complexity

We are considering the problem of deciding whether, for a given time hori-
zon T , the fan graph contains a multi-commodity flow for certain demands
satisfying the first in, first out property. We prove that this problem is
strongly NP-hard. The result follows by a reduction from the well-known
NP-complete problem 3-SATISFIABILITY.

First, we need to specify the exact input. We are given a directed graph
G = (V, A), where each arc a ∈ A has a nonnegative integral capacity ua and
a piecewise constant transit time function τ s

a : [0, ua] → �. Each function
τ s
a is given by integral breakpoints 0 = u0 < u1 < · · · < u� = ua and corres-

ponding integral transit times τ1 < · · · < τ�. Moreover, a set of commodities
K = {1, . . . , k} is specified, where every commodity i ∈ K is defined by a
source-sink pair (si, ti) ∈ V × V . For each commodity i ∈ K, an integral
demand di ≥ 0 is given. Finally, an integral time horizon T is given.

By definition, a static multi-commodity flow x in GF satisfies the de-
mand of commodity i if it sends di units from si(0) to ti(T − 1) in GF ; see
Section 1.3.3. We are considering the following decision problem.

Problem 4.3. Let T ∈ � be given. Decide whether there exists a static
multi-commodity flow in GF that satisfies all demands and obeys the first in,
first out property.

Theorem 4.4. Problem 4.3 is strongly NP-complete.

We give a reduction from the strongly NP-complete problem 3-SATIS-
FIABILITY; see, e.g., Garey and Johnson [23].

Problem 4.5 (3-SATISFIABILITY (3-SAT)). Given a set of m clauses
C1, . . . , Cm on a set of n variables x1, . . . , xn such that each Ci is the con-
junction of three literals of different2 variables. Decide whether there exists
a truth assignment of the variables that satisfies all clauses.

2Without loss of generality, one can assume that the variables of each clause are dif-
ferent: If C = (x ∨ x̄ ∨ y), drop C. If C = (x ∨ x ∨ y), add an auxiliary variable z and
replace C by clauses C′ := (x ∨ y ∨ z) and C′′ := (x ∨ y ∨ z̄).

4.3 Complexity 119

v(θ)v(θ)

v(θ + 1)v(θ + 1)

v(θ + 2)v(θ + 2)

w(θ)w(θ)

w(θ + 1)w(θ + 1)

w(θ + 2)w(θ + 2)

w(θ + 3)w(θ + 3) w(θ + 3)w(θ + 3)

θ

(a) (b)

Figure 4.2: Figure (a) displays the full expansion of arc (v, w) in the fan graph. By
introducing extra commodities, the fan graph can be thinned out to yield the sparser
graph shown in (b).

To prove Theorem 4.4, we pursue the following strategy. Given an in-
stance of 3-SAT with m clauses and n variables, we define an instance of
Problem 4.3 with input size polynomial in m and n. We show that for
T := 8m the answer to Problem 4.3 is “yes” if and only if the 3-SAT instance
is satisfiable. An important ingredient to the proof is the FIFO gadget.

The FIFO gadget. Consider an original arc a = (v, w) with capacity ua := 5
and transit time function τ s

a defined as follows:

τ s
a (x) :=

{
0 if 0 ≤ x ≤ 1,

2 if 1 < x ≤ 5.

This arc is represented in the fan graph as shown in Figure 4.2 (a). By
definition, every arc (v(θ), w(θ)), θ = 0, . . . , T − 1, has capacity 1, and every
arc (v(θ), w(θ + 2)), θ = 0, . . . , T − 3, has capacity 5.

Consider a point in time 0 ≤ θ < T − 2. We apply the following trick
to thin out the fan graph before time θ and after time θ + 2. For every arc
(v(ξ), w(ξ)), ξ /∈ {θ + 1, θ + 2}, we introduce a commodity with demand 1.
In total, we need another T − 2 commodities. More precisely, in the original
graph we introduce a new source node which we connect to node v via an
arc that has capacity 1 and transit time ξ. Similarly, we introduce a new
sink node to which we connect w by an arc that has capacity 1 and constant
transit time T − 1− ξ; see Figure 4.3. In order to satisfy the demand of this

120 The First In, First Out Property

s t

(1, θ) (1, T − 1 − θ)

v w

Figure 4.3: Introducing an extra commodity (s, t) guaranties that arc (v, w) is blocked
at time θ.

new commodity by time T −1, any static flow in the corresponding fan graph
must use arc (v(ξ), w(ξ)) at full capacity.

Since we are only interested in solutions obeying the first in, first out
property, the arcs of type (v(ξ), w(ξ + 2)), ξ /∈ {θ, θ + 1}, cannot carry flow
due to the auxiliary commodities (compare Figure 4.2 (b)). Hence, these
arcs are blocked as well. In particular, in the fan graph, no flow can travel
through arc a before time θ and after time θ + 2. We say that the FIFO
gadget is open at time θ, i.e., only the arcs (v(θ), w(θ + 2)), (v(θ + 1), w(θ +
1)), (v(θ + 1), w(θ + 3)), and (v(θ + 2), w(θ + 2)) can carry flow. These arcs
are highlighted in Figure 4.2 (b).

We use the sparser fan graph to force zero, one decisions. Assume that
we want to send 3 ≤ d ≤ 5 units of flow from v to w and assume the gadget
is open at time θ. If arc (v(θ + 1), w(θ + 1)) does not carry flow, we say
that the FIFO gadget is empty at time θ. In this case, all d units of flow
can be routed along arc (v(θ), w(θ + 2)) and can reach node w at time θ + 2.
Otherwise the FIFO gadget is blocked at time θ, i.e., arc (v(θ + 1), w(θ + 1))
carries flow and a first in, first out conflict can occur. In that case only
arcs (v(θ + 1), w(θ + 1)), (v(θ + 1), w(θ + 3)), and (v(θ + 2), w(θ + 2)) are
allowed to carry flow. Since the capacity of arc (v(θ + 1), w(θ + 1)) is 1, we
need to assign at least d−1 ≥ 2 units of flow to arcs (v(θ+1), w(θ+3)) and
(v(θ + 2), w(θ + 2)). Again, flow can only be assigned to one of the two arcs
because of the first in, first out rule. Since the “faster” arc (v(θ+2), w(θ+2))
can carry at most 1 unit of flow, all remaining flow must be routed along
(v(θ + 1), w(θ + 3)). Consequently, at least d− 1 units of flow arrive in w at
time θ + 3.

Summarizing, two cases can occur. Either the FIFO gadget is empty at
time θ, then all d units of flow can reach w until time θ + 2. Or the FIFO
gadget is blocked at time θ, then at least d − 1 units of flow arrive in w at
time exactly θ + 3.
The underlying graph G. We are ready to define the underlying graph G of
the fan graph GF that encodes a given 3-SAT instance. The graph G only
contains arcs with constant transit times and FIFO gadgets.

We start with the representation of clauses in graph G. For every clause C
in {C1, . . . , Cm}, we introduce a commodity that is given by a source-sink

4.3 Complexity 121

sC tC
v1 v2 v3 v4 v5 v6

Figure 4.4: Representation of a clause C as a commodity pair (sC , tC) which is connected
by a path with two extra arcs attached to it. The path contains exactly three FIFO gadgets
represented by black arcs; one FIFO gadget for each variable contained in the clause.

pair (sC , tC). The demand of each clause commodity is 5. We connect the
source to the sink by a path P := (sC , v1, . . . , v6, tC) and attach two extra
arcs (v2, tC) and (v4, tC) to this path as depicted in Figure 4.4.

The arcs f1 := (v1, v2), f2 := (v3, v4), and f3 := (v5, v6) (indicated by
black arcs in Figure 4.4) represent FIFO gadgets. The path contains one
FIFO gadget for each variable in the clause. Assume that clause C contains
variables xi1 , xi2 , and xi3 with i1 < i2 < i3. Then, we say that variable
xi1 is in first position, variable xi2 is in second position, and variable xi3

is in third position of clause C. Moreover, we define the index of fj to
be ij , j ∈ {1, 2, 3}. Notice that the FIFO-gadgets of clause C are located on
path P in order of increasing index. Globally speaking, each FIFO gadget
in G represents a clause-variable incidence, where the index of the variable
defines the index of the FIFO gadget.

Every FIFO gadget has a successor arc (indicated by dashed arcs in the
figure) leading directly to the sink. In particular, flow coming from the
source sCj

must use one of the arcs (vi, tCj
), i ∈ {2, 4, 6}, to reach the

sink tCj
. All arcs except the FIFO gadgets have capacity 5.

We continue with the representation of variables in G. We introduce
one commodity pair (sxi

, txi
) for each variable x1, . . . , xn. Each of these

commodities has demand 1. The source sxi
is connected to the sink txi

by
a TRUE-path and a FALSE-path. Next, we explain how these paths are
interwoven with the paths connecting commodities.

Consider the example in Figure 4.5. In the example, we are given four
clauses C1, . . . , C4 represented by vertical paths with two arcs attached to
it as explained in the above paragraph. The first clause contains literal xi

in second position; hence, we direct the FALSE-path through the second
FIFO gadget on the path connecting commodity pair (sC1 , tC1). Note that,
by definition, the index of this FIFO gadget is i. Clause C3 contains literal xi

in third position; thus, the FALSE-path leads through the third FIFO gadget
on the path connecting commodity pair (sC3 , tC3). Again, by definition, the

122 The First In, First Out Property

sC1

sC1

sC2

sC2

sC3

sC3

sC4

sC4

sxi txi

(· ∨ xi ∨ ·) (x̄i ∨ · ∨ ·) (· ∨ · ∨ xi) (· ∨ x̄i ∨ ·)

x

x̄

Figure 4.5: Example of a graph representing a 3-SAT-instance consisting of four clauses
C1, . . . , C4. Each clause is represented by a commodity pair (sCi , tCi), i = 1, . . . , 4.
Variable x appears in each of the commodities either as literal xi or x̄i. Commodity
pair(sxi, txi) represents variable xi. The source sxi is connected to the sink txi via a
TRUE- and a FALSE-path. The TRUE-path visits one FIFO gadget of each clause with
literal x̄i; analogously, the FALSE-path visits one FIFO gadget of each clause with lit-
eral xi.

index of this FIFO gadget is i. That way, the FALSE-path traverses exactly
one of the three3 gadgets of each clause with literal xi. The position of
literal xi in the clause determines which of the three FIFO gadgets is chosen.
Moreover, the FALSE-path only visits FIFO gadgets with index i.

Similarly, the TRUE-path visits exactly one of the three FIFO gadgets
of each clause with literal x̄i, namely those with index i. In the exam-
ple, clauses C2 and C4 both contain literal x̄i. Thus, the TRUE-path vis-
its the corresponding FIFO gadgets on the paths connecting commodity
pair (sC2 , tC2) and commodity pair (sC4 , tC4). All non-gadget arcs on both
the TRUE- and the FALSE-path have capacity 1.

Claim 4.6. For every variable xi, i = 1, . . . , n, there are exactly two paths
in G leading from the source node sxi

to the sink node txi
. These paths are

given by the TRUE- and FALSE-path of variable xi.

Proof. First of all note that the TRUE- and the FALSE-paths of variable xi

3By assumption, each clause has three different variables.

4.3 Complexity 123

only share the source node sxi
and the sink node txi

. This holds because each
clause contains a variable either negated or un-negated.

Consider an arbitrary sxi
-txi

-path P in G. We show that it coincides
either with the TRUE- or with the FALSE-path. Without loss of generality,
assume that the path P and the TRUE-path share the first arc. Assume that,
on its way to the sink node txi

, path P traverses FIFO gadgets f1, . . . , f�. By
construction, the indices of f1, . . . , f� form a nondecreasing sequence; simply
recall that we have ordered the FIFO gadgets of each clause by increasing
index. Since the TRUE- and the FALSE-path only traverse FIFO gadgets
representing variable xi, their sequences are given by (i, . . . , i). Then, the
sequence of path P must be identical to i, as well: Since the sequence is
nondecreasing, it suffices to show that the first and the last entry of the
sequence are equal to i. Since path P shares the first FIFO gadget of the
TRUE-path, the first entry is equal to i. On the other hand, path P either
contains the last FIFO gadget on the TRUE-path or it contains the last FIFO
gadget on the FALSE-path. Hence, the last entry in the sequence is equal
to i. It is easy to see that the sequence uniquely determines the path. This
concludes the proof.

Encoding a 3-SAT instance. It follows from Claim 4.6 that for each variable
xi, i = 1, . . . , n, there are two ways to route flow from the source sxi

to the
sink txi

. If, in a solution, flow is sent along the TRUE-path, the variable xi is
set to TRUE, otherwise it is set to FALSE. Flow traveling along the TRUE-
path blocks out those commodities which contain literal x̄, analogously, flow
traveling along the FALSE-path blocks out those commodities which contain
literal x. More precisely, let (sCj

, tCj
), j ∈ {1, . . . , m}, be a commodity with

literal x̄ in position α ∈ {1, 2, 3}. We assign transit times in such a manner
that flow traveling along the FALSE-path of variable xi blocks the αth gadget
of clause Cj at the moment when flow traveling from sCj

to tCj
is about to

traverse this gadget. This will cause a delay of the “clause-flow” by 1. If its
total delay is greater than 2, the flow cannot reach the sink tCj

on time.
It remains to fix transit times in G. More precisely, we need to specify

the transit times of all non-gadget arcs and the opening times of all FIFO
gadgets in G. In the following, let T = 8m. For every j ∈ {1, . . . , m}, we
specify the transit times of arcs lying on (respectively, attached to) the path
connecting the source sCj

to the sink tCj
; see Figure 4.6.

Consider the non-gadget arcs on the path (indicated by gray arcs in the
figure). The transit time of the first non-gadget arc on the path is set to 8(j−
1). This choice will guarantee that the flow of clause Cj enters the first gadget
when the routing of clause Cj−1 is essentially completed. All other non-gadget
arcs on the path have transit time zero.

124 The First In, First Out Property

T − (8(j − 1) + 9)

T − (8(j − 1) + 6)

T − (8(j − 1) + 3)

8(j − 1) 0 0

tCj
sCj

Figure 4.6: Representation of clause Cj in G; the numbers at the arcs indicate transit
times.

Next, we fix the transit times of the arcs pointing to the sink tCj
(indicated

by dashed arcs in the figure). The first such arc encountered along the
path has transit time T − (8(j − 1) + 3), the second one has transit time
T − (8(j − 1) + 6), the third one has transit time T − (8(j − 1) + 9).

It remains to define the opening times of the FIFO gadgets (indicated by
black arcs in the figure). The first FIFO gadget is opened at time 8(j − 1),
the second one at time 8(j − 1) + 3, the third one at time 8(j − 1) + 6.

In the following, we motivate this choice of transit times. Recall that we
need to send 5 units of flow from the source sCj

to the sink tCj
. Flow leaving

the source sCj
at time zero reaches the first FIFO gadget at time 8(j−1). At

that moment this FIFO gadget opens. Assume that the gadget is empty at
time 8(j − 1). Then, all five flow units can be routed directly to the sink via
the (dashed) arc pointing to tCj

; the flow needs 2 units of time to traverse
the gadget and another T − (8(j − 1)+3) units of time to reach the sink tCj

.
Hence, it arrives in tCj

at time 8(j − 1) + 2 + T − (8(j − 1) + 3) = T − 1.

Otherwise, the FIFO gadget is blocked at time 8(j − 1). Then at least 4
flow units need 3 time units to traverse the FIFO gadget and must therefore
enter the second gadget at time 8(j − 1) + 3 in order to reach the sink on
time. At time 8(j − 1) + 3 the second FIFO gadget opens. If this gadget
is empty at time 8(j − 1) + 3, all remaining flow units can be routed along
the succeeding (dashed) arc pointing to the sink. Otherwise, this gadget is
blocked, and at least 3 units of flow must enter the third gadget. Finally, if
this last gadget is blocked as well, the flow cannot reach the sink on time.
Consequently there does not exist a feasible flow solution.

It remains to fix transit times on the TRUE- and on the FALSE-path of
each variable. Consider a specific variable xi, i = 1, . . . , n. We define transit
times of arcs lying on the TRUE-path. The assignment of arc transit times on
the FALSE-path works in the same manner. Assume that literal x̄i appears
in clauses Ci1 , . . . , Cil, i1 < · · · < il. The TRUE-path traverses exactly one
FIFO gadget of each of these clauses in the given order. It remains to fix

4.3 Complexity 125

the transit times of all non-gadget arcs on the path. We pick these in such a
way that flow starting in the source node sxi

at time zero blocks each gadget
on the TRUE-path at its opening time. In order to choose transit times
appropriately, we need to make sure that the opening times form a monotone
increasing sequence. This follows from the fact that for j ∈ {1, . . . , m}, the
opening time of any gadget of clause Cj lies in [8(j−1), 8(j−1)+6]. Finally,
the transit time of the last arc on the path is chosen such that the transit
time of all non-gadget arcs on the path add up to T − 1.

Bounding the size of G. Every representation of a clause contains three
FIFO gadgets each of which involves T − 2 = 8m− 2 auxiliary commodities;
see Figure 4.4. Hence, the number of arcs associated with all m clauses lies
in O(m2). Each representation of a variable consists of two paths of length
at most 2m; this implies that the number of arcs in G lies in O(m2 + mn).

The following lemma proves Theorem 4.4. That is, deciding whether GF

contains a feasible static multi-commodity flow that satisfies the first in, first
out property is a strongly NP-complete problem.

Lemma 4.7. There exists a truth-assignment for clauses C1, . . . , Cm if and
only if, the fan graph GF contains a feasible multi-commodity flow satisfying
all demands and obeying the first in, first out property.

Proof. Let T : {x1, . . . , xn} → {TRUE, FALSE} be a truth-assignment for
clauses C1, . . . , Cm. Consider variable xi, i = 1, . . . , n. If T (xi) = TRUE
(respectively, FALSE), at time zero we send one unit of flow into the TRUE-
path (respectively, FALSE-path) of xi. Since each clause is fulfilled, at least
one of its three FIFO gadgets is empty. Hence, every flow unit arrives at its
sink not later than T − 1.

On the other hand, if a feasible routing exists, then we can define a
truth-assignment as follows. Consider variable xi, i = 1, . . . , n. In the flow
solution, one unit of flow is routed from the source node sxi

to the sink
node txi

. It follows from Claim 4.6 that there are exactly two paths leading
from source sxi

to sink txi
, namely the TRUE- and the FALSE-path. If only

the TRUE-path (respectively, only the FALSE-path) carries flow, then we
set T (xi) := TRUE (respectively, FALSE). If in the flow solution both paths
carry a fraction of the flow, then we can set T (xi) either to TRUE or to
FALSE. In that case, the truth-assignment is independent of the value of the
variable xi. Since all flow units arrive at their sink on time, all clauses must
be fulfilled.

In the minimization version of Problem 4.3, we ask for the minimum
integral time horizon T such that the fan graph GF contains a static multi-

126 The First In, First Out Property

6

0 1 2 4 8 16 x

2
3
4
5

1

τs
a

τ

Figure 4.7: Example of a transit time function τs
a with geometrically increasing break-

points.

commodity flow which satisfies the demands and obeys the first in, first out
property. Theorem 4.3 yields the following non-approximability result.

Corollary 4.8. There exists no FPTAS for the optimization version of Prob-
lem 4.3, unless P = NP.

Proof. Since we only consider integral time horizons, the statement follows
from a well-known fact on strongly NP-complete problems; see, e.g., [4].

4.4 Geometrically Increasing Capacities

Deciding whether, for a given time horizon T , the fan graph contains a multi-
commodity flow satisfying the first in, first out property is a strongly NP-
complete problem; see Theorem 4.4. In this section we consider the single
source, single sink version of the problem. We study the special case that
each arc a ∈ A has infinite capacity ua and a piecewise constant transit
time function τ s

a where the breakpoints of τ s
a form a geometrically increasing

sequence.
More precisely, for each arc a ∈ G, we are given integral values qa ≥ 2

and pa ≥ 0. The breakpoints of τ s
a are given by the sequence (qi

a)i∈�
where τ s

a(x) := pa, for x ∈ (0, 1], and τ s
a (x) := i+1+pa, for x ∈ (qi

a, q
i+1
a], i ∈

�. In Figure 4.7, an example of such a transit time function is shown
with qa := 2 and pa := 1. For a given integral time horizon T , let GF :=
(V F , AF) be the fan graph with time horizon T with respect to the above
defined transit time functions (τ s

a)a∈A. For every arc a = (v, w) ∈ G, let
AF

a denote those arcs in AF associated with a, i.e., AF
a := {(v(θ), w(ξ)) |

θ = 0, . . . , T − 1, ξ = θ + pa, . . . , T − 1}. By definition, the capacity ue of

4.4 Geometrically Increasing Capacities 127

arc e := (v(θ), w(ξ)) is qξ−pa−θ
a . In G, we have specified a source node s and

a sink node t. Recall that, by definition, a static s-t-flow in GF sends flow
from s(0) to t(T − 1) in GF .

Problem 4.9. Let T ∈ � be given. In GF , determine a maximum s-t-flow
among all s-t-flows that satisfy the first in, first out property.

In the following, we prove that a simple greedy strategy can be applied
to remove FIFO violations in a given static s-t-flow x in GF ; the new s-
t-flow satisfies the FIFO condition and its value is at least half the value
of x. Employing this method, we can compute a 2-approximate solution to
Problem 4.9. Since the fan graph is of pseudo-polynomial size, the running
time of this algorithm is pseudo-polynomial in the input size.

Remark 4.10. In this section, we assume that the transit time function τ s
a

of arc a ∈ A is defined implicitly by integral values qa and pa. In particular,
we consider qa and pa as input of the algorithm. If, for every arc a ∈ A,
a list of the breakpoints (qi

a)i≤T is given as input, then T is polynomial in
the input size and hence the size of the fan graph is polynomial in the input
size. In this case, the algorithm described below is even a polynomial-time
algorithm.

Lemma 4.11. Let x be a static s-t-flow in GF of value d. Then, there exists
a static s-t-flow x̃ in GF of value at least d/2 which satisfies the first in, first
out property. Moreover, the flow x̃ can be computed in pseudo-polynomial
time.

Proof. We describe the algorithm that turns a given s-t-flow x in GF into a
flow x̃ which satisfies the FIFO condition.

In each step of the algorithm, we process the expansion AF
a of a single

arc a = (v, w) ∈ A. We reassign flow such that, at the end of that step, no
FIFO violation occurs in AF

a . The modification preserves the total outflow
x(δ+(v(θ))) :=

∑T−1
ξ=θ+pa

x(v(θ),w(ξ)) of every node v(θ), θ = 0, . . . , T − 1,

and it preserves the total inflow x(δ−(w(θ))) :=
∑θ−pa

ξ=0 x(v(ξ),w(θ)) of every
node w(θ), τ = 0, . . . , T −1. After the reassignment, arc capacities might be
violated. We prove that every arc in AF

a carries at most twice as much flow as
the arc capacity allows. Hence, dividing the flow on every arc by two yields
a feasible static flow in GF which satisfies the first in, first out property.

We continue with a detailed description of the subroutine which removes
FIFO violations in AF

a . A compact version is given on the following page.
Associated with each node v(θ), θ = 0, . . . , T − 1, is a label �(v(θ))

which measures the current supply of node v(θ) at each step of the algo-
rithm; at the beginning the label �(v(θ)) is set to x(δ+(v(θ))). Similarly each

128 The First In, First Out Property

Subroutine 6: Remove FIFO violations in AF
a

Input: Expansion AF
a of arc a ∈ A, a feasible static flow x in AF

a .

Output: A static flow x̃ in AF
a that satisfies FIFO and with x̃e ≤ 2ue,

for all e ∈ AF
a .

1 for θ = 0, . . . , T − 1 do
�(v(θ)) ← x(δ+(v(θ)));
�(w(θ)) ← x(δ−(w(θ)));

endfor
2 for θ = 0, . . . , T − 1 do

for ξ = θ + pa, . . . , T − 1 do
x̃(v(θ),w(ξ)) ← min{�(v(θ)), �(w(ξ))};
�(v(θ)) ← �(v(θ)) − min{�(v(θ)), �(w(ξ))};
�(w(ξ)) ← �(w(ξ)) − min{�(v(θ)), �(w(ξ))};

endfor
endfor

node w(ξ), ξ = 0, . . . , T − 1, carries a label �(w(ξ)) which stores the current
demand of node w(ξ) at each step of the algorithm; initially, the label �(w(ξ))
is set to x−(w(ξ)).

We process the nodes v(θ), θ = 0, . . . , T − 1, in order of increasing θ.
When processing node v(θ), we assign its current supply greedily to the
arcs (v(θ), w(ξ)), ξ = θ+pa, . . . , T −1. More precisely, for ξ = θ+pa, . . . , T −
1, the flow value of arc (v(θ), w(ξ)) is set to the minimum of the current
supply of node v(θ) and the current demand of node w(ξ), i.e., x̃(v(θ),w(ξ)) :=
min{�(v(θ)), �(w(ξ))}. Afterwards the current supply of node v(θ) and the
current demand of node w(ξ) are decreased correspondingly.

Obviously, after this procedure x̃(δ+(v(θ))) = x(δ+(v(θ))) holds and sim-
ilarly x̃(δ−(w(θ))) = x(δ−(w(θ))), θ = 0, . . . , T − 1. Moreover, we claim
that no FIFO violation occurs in AF

a . By contradiction, assume there exist
flow-carrying arcs ei = (vθi

, wξi
) ∈ AF

a , i ∈ {1, 2}, such that θ1 < θ2 and
ξ1 > ξ2. When processing node vθ1 , the algorithm first visits node wξ2 and
then node wξ1 . After visiting node wξ2 , either the label of node vθ1 must be
zero or the label of node wξ2 must be zero. Since afterwards the algorithm
assigns flow to arc e1 and to arc e2, neither the label of node vθ1 nor the label
of node wξ2 can be zero. This contradiction proves the statement.

It remains to show that the capacity of every arc e ∈ AF
a is violated by at

most a factor of two. Consider an arc e := (v(θ), w(ξ)), θ = 0, . . . , T −1, ξ =
θ + pa, . . . , T − 1. By definition, its capacity is ue := qξ−pa−θ

a . We prove
that x̃e is not larger than 2ue.

When processing arc e, the algorithm assigns at most �(w(ξ)) units of

4.4 Geometrically Increasing Capacities 129

(a) (b) (c)

21 − 1

21 − 1

21 − 1

21 − 1

22 − 1

22 − 1

22 − 1

22 − 1

23 − 123 − 123 − 123 − 1

24 − 1

24 − 1

24 − 1

24 − 1

25 − 1

25 − 1

25 − 1

25 − 1

26 − 1

26 − 1

26 − 1

26 − 1 0

0

0

0

w(0)

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)

v(0)

v(1)

v(2)

v(3)

v(4)

v(5)

v(6)

Figure 4.8: Example of how Subroutine 6 removes FIFO violations. Figure (a) displays
the expansion of a single arc. The capacities of the arcs in a fan are geometrically increasing
with respect to basis qa = 2. The flow in (b) fills every arc up to its capacity and thus
violates the first in, first out property wherever two flow-carrying arcs cross each other.
The flow in (c) is the output of Subroutine 6. All FIFO violations are resolved by greedily
rerouting flow from bottom to top.

flow to arc e, where �(w(ξ)) is the current demand of node w(ξ). On the
other hand, the current demand of node w(ξ) is not larger than the total
capacity of all arcs (v(θ′), w(ξ)), θ′ = θ, . . . , ξ − pa, which, by definition, is

ξ−pa∑
θ′=θ

q ξ−pa−θ′
a =

ξ−pa−θ∑
θ′=0

q θ′
a =

q ξ−pa+1−θ
a − 1

qa − 1
≤ qa

qa − 1
q ξ−pa−θ
a ≤ 2ue .

This concludes the proof of the lemma.

The example given in Figure 4.8 demonstrates how the algorithm removes
FIFO violations in AF

a . In the example, parameter pa is set to 1 and qa is set
to 2, thus the capacity of arc (v(θ), w(ξ)) is 2ξ−1−θ.

In Figure 4.8 (a), the expansion AF
a is depicted. In (b), an example of a

flow in AF
a is shown. The flow leaving v(0) is highlighted simply to improve

visibility. Every node is labeled by its initial supply and demand. In the
example, the flow fills every arc up to its capacity and thus several FIFO
violations occur.

In Figure (c), all FIFO violations are resolved by satisfying the supplies
and demands greedily from bottom to top as done by the algorithm. Notice
that arc (v(0), w(ξ)), ξ = 2, . . . , T − 2, carries 2ξ − 1 units of flow while its

130 The First In, First Out Property

Algorithm 7: Approximating maximum s-t-flow with FIFO constraints

Input: Fan graph GF , a source-sink pair (s, t) ∈ V × V .

Output: A static s-t-flow x in GF satisfying demand d/2 and obeying
the first in, first out property.

1 Compute static s-t-flow x in GF of value d;
2 for a ∈ A do

Remove FIFO violations in AF
a (call Subroutine 6);

endfor
3 for e ∈ AF do

xe ← xe/2;
endfor

capacity is 2ξ−1. This shows that, for qa = 2, the analysis of the algorithm is
tight.

Theorem 4.12. Let d denote the maximum value of a static s-t-flow in GF .
Then there exists a static s-t-flow of value d/2 in GF which satisfies the first
in, first out property. Moreover, it can be computed in pseudo-polynomial
time.

Proof. First compute a maximum static s-t-flow in GF . Then apply the
algorithm described in Lemma 4.11.

The main steps of the algorithm can be found above.

Remark 4.13. The described algorithm is also used in a different context. In
the Hitchcock problem we ask for a minimum cost static flow on a bipartite
graph. A feasible solution to this problem can be found using the above
method. In the literature this method is referred to as the north-west rule;
for more details see, e.g., [62].

Corollary 4.14. Given demand d, let T denote the minimum time horizon
such that the corresponding fan graph GF contains a static s-t-flow x of
value d. Similarly, let T

′
denote the minimum time horizon such that the

corresponding fan graph GF ′
contains a static s-t-flow x of value d satisfying

the first in, first out property. Then T
′ ≤ 2T .

Proof. By Theorem 4.12, there exists a static s-t-flow in GF of value d/2
which satisfies the FIFO condition. Consider this flow in the enlarged fan
graph GF ′

. After time T − 1, the network is empty, hence we can repeat the
flow starting at time T . Obviously, that way we have doubled the flow value.
This proves the statement of the theorem.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. The-
ory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[5, 8, 65]

[2] R. K. Ahuja and J. B. Orlin, A capacity scaling algorithm for the con-
strained maximum flow problem, Networks 25 (1995), pp. 89–98. [63]

[3] J. E. Aronson, A survey of dynamic network flows, Annals of Operations
Research 20 (1989), pp. 1–66. [6, 16]

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Protasi, Complexity and Approximation, Springer,
Berlin, 1999. [126]

[5] J. H. Bookbinder and S. P. Sethi, The dynamic transportation problem:
A survey, Naval Research Logistics Quarterly 27 (1980). [2]

[6] R. E. Burkard, K. Dlaska, and B. Klinz, The quickest flow problem,
ZOR — Methods and Models of Operations Research 37 (1993), pp. 31–58.

[19, 43, 51, 70, 78]

[7] R. G. Busacker and P. J. Gowen, A procedure for determining a family of
minimum-cost network flow patterns, ORO Technical Paper 15, Operational
Research Office, Johns Hopkins University, Baltimore, 1961. [79]

[8] M. Carey, Optimal time-varying flows on congested networks, Operations
Research 35 (1987), pp. 58–69. [31, 32]

[9] M. Carey and E. Subrahmanian, An approach to modelling time-varying
flows on congested networks, Transportation Research B 34 (2000), pp. 157–
183. [5, 33, 59, 116]

[10] H. Chen and C. Hsueh, A model and an algorithm for the dynamic user-
optimal route choice problem, Transportation Research B 32 (1998), pp. 219–
234. [34]

[11] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schri-

jver, Combinatorial Optimization, John Wiley & Sons, New York, 1998. [8]

[12] E. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik 1 (1959), pp. 269–271. [115]

131

132 Bibliography

[13] L. Fleischer and M. Skutella, The quickest multicommodity flow prob-
lem, in Integer Programming and Combinatorial Optimization, W. J. Cook
and A. S. Schulz, eds., Lecture Notes in Computer Science 2337, Springer,
Berlin, 2002, pp. 36–53. [5, 15, 21, 22, 94, 95, 96, 98, 101, 102]

[14] L. Fleischer and M. Skutella, Minimum cost flows over time with-
out intermediate storage, in Proceedings of the 14th Annual ACM–SIAM
Symposium on Discrete Algorithms, Baltimore, MD, 2003, pp. 66–75.

[5, 15, 21, 22, 101, 106, 107, 108, 110, 114]

[15] L. Fleischer and M. Skutella, Quickest flows over time (2003). Submit-
ted. [5, 6, 16]

[16] L. K. Fleischer, Faster algorithms for the quickest transshipment problem,
SIAM Journal on Optimization 12 (2001), pp. 18–35. [10]

[17] L. K. Fleischer and E. Tardos, Efficient continuous-time dynamic net-
work flow algorithms, Operations Research Letters 23 (1998), pp. 71–80.

[16, 18, 19]

[18] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic
flows from static flows, Operations Research 6 (1958), pp. 419–433.

[3, 7, 9, 13, 14, 17, 19, 64, 114]

[19] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University
Press, Princeton, NJ, 1962. [3, 7, 9, 13, 14, 17, 64]

[20] T. L. Friesz, D. Bernstein, T. E. Smith, R. L. Tobin, and B. W. Wie,
A variational inequality formulation of the dynamic network user equilibrium
problem, Operations Research 41 (1993), pp. 179–191. [34]

[21] T. L. Friesz, J. Luque, R. L. Tobin, and B. Wie, Dynamic network
traffic assignment considered as a continuous time optimal control problem,
Operations Research 37 (1989), pp. 893–901. [31, 33]

[22] D. Gale, Transient flows in networks, Michigan Mathematical Journal 6
(1959), pp. 59–63. [20]

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP–Completeness, Freeman, San Francisco, 1979.

[6, 20, 97, 118]

[24] N. Gartner, C. J. Messer, and A. K. Rathi, Traffic flow theory: A
state-of-the-art report. http://www.tfhrc.gov/its/tft/tft.htm. [23]

[25] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations
by canceling negative cycles, Journal of the ACM 36 (1989), pp. 873–886. [18]

Bibliography 133

[26] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer,
Berlin, 1988. [5, 97, 105]

[27] A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time:
Efficient algorithms and complexity, in Automata, Languages and Program-
ming, J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, eds.,
Lecture Notes in Computer Science 2719, Springer, Berlin, 2003, pp. 397–409.

[22, 23, 87, 114]

[28] A. Hall, K. Langkau, and M. Skutella, An FPTAS for quickest multi-
commodity flows with inflow-dependent transit times, in Approximation, Ran-
domization, and Combinatorial Optimization, S. Arora, K. Jansen, J. D. P.
Rolim, and A. Sahai, eds., Lecture Notes in Computer Science 2764, Springer,
Berlin, 2003, pp. 71–82. [35, 88, 114]

[29] H. W. Hamacher and S. A. Tjandra, Mathematical modelling of evacu-
ation problems: A state of art, tech. report, Fraunhofer Institut Techno- und
Wirtschaftsmathematik, 2001. [2]

[30] R. Hassin, Approximation schemes for the restricted shortest path problem,
Mathematics of Operations Research 17 (1992), pp. 36–42. [97]

[31] D. S. Hochbaum and J. G. Shanthikumar, Convex separable optimization
is not much harder than linear optimization, Journal of the Association for
Computing Machinery 37 (1990), pp. 843–862. [65]

[32] D. S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems,
Thomson, 1996. [6, 17]

[33] B. Hoppe, Efficient dynamic network flow algorithms, PhD thesis, Cornell
University, 1995. [6, 16]

[34] B. Hoppe and E. Tardos, The quickest transshipment problem, Mathemat-
ics of Operations Research 25 (2000), pp. 36–62. [20, 21, 114]

[35] M. Iri, A new method of solving transportation-network problems, Journal of
the Operations Research Society of Japan 3 (1960), pp. 27–87. [79]

[36] O. Jahn, R. H. Möhring, A. S. Schulz, and N. E. Stier Moses, Sys-
tem optimal routing of traffic flows with user constraints in networks with
congestion, tech. report, TU Berlin, 2002. [24]

[37] B. Janson, Dynamic traffic assignment for urban road networks, Transporta-
tion Research B 25 (1991), pp. 143–161. [32]

[38] R. Jayakrishnan, W. K. Tsai, and A. Chen, A dynamic traffic as-
signment model with traffic-flow relationships, Transportation Research C 3
(1995), pp. 51–72. [32]

134 Bibliography

[39] D. Kaufman, J. Nonis, and R. Smith, A mixed integer linear programming
model for dynamic route guidance, Transportation Research B 32 (1998),
pp. 431–440. [2, 5, 33]

[40] D. Kaufman and R. Smith, Minimum travel time paths in dynamic net-
works with application to intelligent vehicle/highway systems, Tech. Report
90-34, Department of Industrial and Operations Engineering, University of
Michigan, Ann Arbor, Michigan 48109, November 1990. [115]

[41] D. E. Kaufman, R. L. Smith, and K. E. Wunderlich, User-equilibrium
properties of fixed points in dynamic traffic assignment, Transportation Re-
search C 6 (1998). [32]

[42] B. Klinz and G. J. Woeginger, Minimum cost dynamic flows: The
series-parallel case, in Integer Programming and Combinatorial Optimiza-
tion, E. Balas and J. Clausen, eds., Lecture Notes in Computer Science 920,
Springer, Berlin, 1995, pp. 329–343. [20, 21, 114]

[43] E. Köhler, K. Langkau, and M. Skutella, Time-expanded graphs with
flow-dependent transit times, in Algorithms — ESA ’02, R. Möhring and
R. Raman, eds., Lecture Notes in Computer Science 2461, Springer, Berlin,
2002, pp. 599–611. [35, 100]

[44] E. Köhler and M. Skutella, Flows over time with load-dependent
transit times, in Proceedings of the 13th Annual ACM–SIAM Sympo-
sium on Discrete Algorithms, San Francisco, CA, 2002, pp. 174–183.

[4, 27, 28, 60, 61, 62, 63, 84, 114, 116]

[45] B. Korte and J. Vygen, Combinatorial Optimization, Springer, Berlin,
2002. [5, 8, 50]

[46] D. H. Lorenz and D. Raz, A simple efficient approximation scheme for
the restricted shortest path problem, Operations Research Letters 28 (2001),
pp. 213–219. [97]

[47] N. Megiddo, Combinatorial optimization with rational objective functions,
Mathematics of Operations Research 4 (1979), pp. 414–424. [19]

[48] D. K. Merchant and G. L. Nemhauser, A model and an algorithm for
the dynamic traffic assignment problems, Transportation Science 12 (1978),
pp. 183–199. [31, 32]

[49] D. K. Merchant and G. L. Nemhauser, Optimality conditions for a dy-
namic traffic assignment model, Transportation Science 12 (1978), pp. 200–
207. [31]

[50] E. Minieka, Maximal, lexicographic, and dynamic network flows, Operations
Research 21 (1973), pp. 517–527. [20]

Bibliography 135

[51] N. C. Myers, A new and useful template technique: Traits, C++ Report
(1995), pp. 32–35. [75]

[52] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization, John Wiley & Sons, New York, 1988. [5]

[53] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm,
Operations Research 41 (1993), pp. 338–350. [51]

[54] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[25]

[55] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity, Prentice-Hall Inc., Englewood Cliffs, N.J., 1982.

[5, 97]

[56] A. B. Philpott, Continuous-time flows in networks, Mathematics of Oper-
ations Research 15 (1990), pp. 640–661. [20]

[57] W. B. Powell, P. Jaillet, and A. Odoni, Stochastic and dynamic net-
works and routing, in Network Routing, M. O. Ball, T. L. Magnanti, C. L.
Monma, and G. L. Nemhauser, eds., Handbooks in Operations Research and
Management Science 8, North–Holland, Amsterdam, The Netherlands, 1995,
ch. 3, pp. 141–295. [6, 16]

[58] B. Ran and D. E. Boyce, Dynamic Urban Transportation Network Mod-
els: Theory and Implications for Intelligent Vehicle-Highway Systems, Lecture
Notes in Economics and Mathematical Systems 417, Springer, Berlin, 1994.

[34]

[59] B. Ran and D. E. Boyce, Modelling Dynamic Transportation Networks,
Springer, Berlin, 1996. [34]

[60] T. Roughgarden and É. Tardos, How bad is selfish routing?, Journal of
the ACM 49 (2002), pp. 236–259. [24]

[61] A. Schrijver, Theory of Linear and Integer Programming, John Wiley &
Sons, Chichester, 1986. [6]

[62] A. Schrijver, Combinatorial Optimization, Springer, Berlin, Heidelberg,
2003. [5, 19, 51, 130]

[63] Y. Sheffi, Urban Transportation Networks, Prentice-Hall, New Jersey, 1985.
[23, 24, 76]

[64] V. V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001. [6, 17]

[65] W. L. Wilkinson, An algorithm for universal maximal dynamic flows in a
network, Operations Research 19 (1971), pp. 1602–1612. [20]

136 Bibliography

[66] N. Zadeh, A bad network problem for the simplex method and other minimum
cost flow algorithms, Mathematical Programming 5 (1973), pp. 255–266. [20]

Symbol Index

A arc set of G [7]

GB bow graph of G, GB = (V B, AB) [36]

C budget [21]

ca,i cost for sending flow of commodity i through arc a [8]

di demand of commodity i [8]

δ−(v) set of arcs entering v [8]

δ+(v) set of arcs leaving v [8]

AB
a expansion of arc a in the bow graph GB [37]

fa,i(θ) flow rate of commodity i on arc a at time θ [10]

GF fan graph of G, GF = (V F , AF) [103]

G directed graph with node set V and arc set A, G = (V, A) [7]

G(T) T -time-expanded graph of G [15]

G(T)/∆ condensed time-expanded graph of G [102]

G↓ lower bow graph, G↓ = (V ↓, A↓) [103]

G↑ ∆-lengthened bow graph, G↑ = (V ↑, A↑) [103]

G↑↑ 2∆-lengthened bow graph, G↑↑ = (V ↑↑, A↑↑) [103]

head(a) head node of arc a [8]

K set of commodities, K = {1, . . . , k} [8]

P δ path with delay [107]

�
+ the set of nonnegative reals including zero [7]

si source node of commodity i [8]

137

138 Symbol Index

Si set of terminals of commodity i, Si = S+
i ∪ S−

i [8]

S+
i set of source nodes of commodity i [8]

S−
i set of sink nodes of commodity i [8]

T time horizon [10]

ti sink node of commodity i [8]

tail(a) tail node of arc a [8]

τa transit time function of arc a [7]

τ s
a piecewise constant transit time function of arc a [7]

τP (x) transit time of path P , τP (x) :=
∑

a∈P τa(xa) [8]

τP transit time of path P (fixed transit times), τP :=
∑

a∈P τa [8]

T
B

time horizon of a quickest flow in GB [43]

T time horizon of a quickest flow in G [48]

τ(P δ) transit time with delay of a path with delay P δ [108]

T
s

time horizon of a quickest flow in G with transit times τ s
a [48]

T
t

time horizon of a quickest temporally repeated flow in G [51]

ua capacity of arc a [7]

V node set of G [7]

�
+ the set of nonnegative integrals including zero [7]

Index

∆-condensed fan graph, 103
∆-lengthened bow graph, 103
∆-resting, 94, 99, 104
3-PARTITION, 70
3-SAT, see 3-SATISFIABILITY
3-SATISFIABILITY, 118

approximation algorithm, 17, 42–67, 94–
113

artificial node, see bow graph

bow arc, see bow graph
bow graph, 36, 89

artificial node, 37
bow arc, 37, 89
expansion, 37, 89
original node, 37
regulating arc, 37, 59

capacity constraint, 8, 11, 13
complexity, 70–74, 113–114, 118–126
computational results, 74–85
concave transit times, see transit times
condensed time-expansion, 101, 103
continuous flow over time, see flow over

time
convex transit times, see transit times
cost, 8, 11, 13, 20, 26

Davidson’s function, 77
demand, 8, 11, 26
discrete flow over time, see flow over time
duality theory, 96
dynamic network flow, 10
dynamic traffic assignment, 1, 30–34

earliest arrival flow, 19
ellipsoid method, 97, 105
evaluation oracle, see oracle

fan graph, 58–60, 103, 115–131
∆-condensed, see ∆-condensed fan

graph
feasible, 8, 11, 13, 26
FIFO, see first in, first out property

first in, first out property, 4, 115–131
flow, see network flow
flow conservation, 8, 10, 13, 26
flow over time, 10

s-t-flow, 11
value, 11

continuous, 10, 15, 16
discrete, 13, 15
multi-commodity, 10, 21, 22, 87–113

supply, demand, 11
smoothed, 108
temporally repeated, 12
transshipment, 11
with inflow-dependent transit times,

see inflow-dependent transit times
with load-dependent transit times, see

load-dependent transit times
flow-dependent transit times, 23–30

inflow-dependent, see inflow-dependent
transit times

load-dependent, see load-dependent
temporally repeated flow, 28, 51, 64–

70
FPTAS, see fully polynomial approxima-

tion scheme
free-flow travel time, 76
fully polynomial approximation scheme,

17, 101

inflow-dependent transit times, 26–27
inflow-preserving, 38, 90

latest departure flow, 20
length-bounded shortest path, 97
load, 27
load-dependent transit times, 27–28

maximum flow over time, 17
Megiddo’s method of parametric search,

19, 43
minimum cost flow over time, 20
multi-commodity, 8, 10, 21, 22, 87–113

network flow, 7–30
over time, see flow over time

139

140 Index

static, see static network flow
time-dependent, see time-dependent

flow

optimization and separation, 97
oracle, 25, 48, 50, 51
original node, see bow graph

path decomposition, 9, 12
path with delay, 107
per capacity inflow rate, 91
per capacity inflow value, 103
performance guarantee, 17
performance ratio, 17
polynomial approximation scheme, 17
practical capacity, 76
PTAS, see polynomial approximation scheme

quickest flow, 19
quickest inflow-dependent flow, 43, 46
quickest inflow-dependent flow with costs,

87, 98
quickest multi-commodity flow, 22
quickest multi-commodity transshipment

with costs, 22
quickest transshipment, 21
quickest transshipment with costs, 21
quickest weakly inflow-preserving flow, 94–

98

regulating arc, see bow graph
relaxation, 35–43, 87–94, 112
revised simplex method, 97

smoothed flow over time, see flow over
time

static convex cost flow, 60
static network flow, 8

s-t-flow, 9
value, 9

multi-commodity, 8
supply, demand, 8

transshipment, 8
storage of flow, 11, 70
supply, 8, 11, 26

temporally repeated flow, 12, 28, 46, 51,
64–70

value, 12
time horizon, 10, 13, 26

time-dependent flow, 25, 60–64
time-expanded graph, 13, 58

holdover arc, 14, 102
traffic models, 1, 30–34, 76–77
transit time function, 24–26, 76–77
transit time with delay, 108
transit times, 76

concave, 52–58
convex, 60–67
inflow-dependent, see inflow-depen-

dent transit times
load-dependent, see load-dependent

transit times
transshipment, 8, 11

universally maximal flow, 20

weakly inflow-preserving, 91, 94, 103

Lebenslauf

Katharina Helene Langkau

geboren am 22.3.1975 in Bonn–Bad Godesberg

1981 bis 1985 Besuch der Grundschule in Bonn

1985 bis 1994 Besuch des Cusanus–Hertz–Gymnasiums in Bonn

1994 Abitur

1994 bis 2000 Studium der Mathematik an der Rheinischen Friedrich-
Wilhelms-Universität Bonn

1996 Vordiplom in Mathematik mit Nebenfach Volkswirt-
schaftslehre

2000 Diplom in Mathematik mit Nebenfach Volkswirtschafts-
lehre

1997 bis 1998 Tutorin am Mathematischen Institut der Universität Bonn

1998 bis 2000 Studentische Mitarbeiterin am Institut für Diskrete Ma-
thematik, Universität Bonn

Seit 2000 Stipendiatin im Europäischen Graduiertenkolleg “Combi-
natorics, Geometry, and Computation”

	Introduction
	Network Flow Models
	Introduction
	Static Network Flows
	Flows Over Time with Fixed Transit Times
	Continuous Flows Over Time
	Discrete Flows Over Time
	Time-Expanded Graphs
	Continuous versus Discrete Model
	Known Results

	Flow-Dependent Transit Times
	Time-Dependent Flows
	Inflow-Dependent Transit Times
	Load-Dependent Transit Times
	Temporally Repeated Flows
	Dynamic Traffic Assignment

	Quickest s-t-Flows
	Introduction
	A Relaxation
	The Bow Graph
	Relaxation Property of the Bow Graph

	Constant Factor Approximations for Quickest Flows
	Piecewise Constant Transit Times
	General Transit Times
	An Improved Result for Concave Transit Times
	The Fan Graph
	Convex Transit Times
	Computing Temporally Repeated Flows
	Limits of the Static Approach

	Complexity
	Computational Results

	Quickest Multi-Commodity Flows
	Introduction
	A Stronger Relaxation
	The New Bow Graph
	Relaxation Property of the New Model

	A Constant Factor Approximation for Quickest Flows
	Quickest Weakly Inflow-Preserving Flows
	The Algorithm

	FPTAS
	Condensed Time-Expanded Graphs
	The Algorithm

	Complexity

	The First In, First Out Property
	Introduction
	First In, First Out Violations in the Fan Graph
	Complexity
	Geometrically Increasing Capacities

	Bibliography
	Symbol Index
	Index

