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Abstract

We study the large-time behavior of the free boundary position capturing the
one-dimensional motion of the carbonation reaction front in concrete-based
materials. We extend here our rigorous justification of the v/t-behavior of
reaction penetration depths by including non-linear effects due to deviations
from the classical Henry’s law and time-dependent Dirichlet data.
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1. Introduction

In this paper, we deal with the following initial free-boundary value prob-
lem: Find {s,u,v} such that

Qs(T)={(t,2)|0 <z < s(t),0 <t <T},
Uy

(
— (F1Ue)e = f(u,0)  In Qs(T), (1)
Vg — (KQUJJ)J: - _f(uv U) n QS(T)7 ( )
u(t,0) = g(t),v(t,0) = h(t) for0<t<T, (3)
(4)
(5)

u(0,2) = ug(x),v(0,2) =vo(x) for 0 <z < s,

0

"t)(= %s(t)) =(u(t,s(t))) for0<t<T,
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Kiug(t,s(t)) = = (u(t, s(t))) — s’ (H)ul(t,s(t)) for0<t<T, (6)
kovg(t, s(t)) = =5 (t)v(t, s(t)) for 0 <t < T, (7)
5(0) = so, (8)

where T" > 0, k1 and ky are positive constants, f is a given continuous
function on R?, g and h are boundary data, ug, vy and s, are initial data and
(r) = Ko|[r]T|P where kg > 0 and p > 1 are given constants. Here u and v
represent the mass concentration of carbon dioxide dissolved in water and in
air, respectively, while s(¢) denotes the position of the penetration reaction
front in concrete at time ¢ > 0. The interface s separates the carbonated
from the non-carbonated regions.

We denote by P(f) the above system (1) ~ (8). P(f) describes to so called
concrete carbonation process, one of the most important physico-chemical
mechanisms responsible for the durability of concrete structures; see [1, 2]
for more details of the civil engineering problem.

The target here is to study the large-time behavior of weak solutions'
in the presence of macroscopic nonlinear Henry’s law and time-dependent
Dirichlet boundary conditions. To get a bit the flavor of mathematical in-
vestigations of the effects by Henry’s law for this or closely related reaction-
diffusion systems, we refer the reader to [3] (linear Henry’s law) and [4, 5]
(micro- and micro-macro Henry-like laws). Essentially, we are able to present
refined estimates that extend the proof of the rigorous large-time asymptotics
beyond the settings that we have elucidated in [6, 7]. In practical terms, we
show that there exist two positive constants ¢, and C,, depending on all
material parameters and initial and boundary data, such that

eVt <s(t) < CVt+1  fort>0. (9)

Based on (9), we can now explain that the deviations of carbonation fronts
from the v/¢-law emphasized in [8] are certainly not due to eventual nonlinear-
ities arising in the productions by Henry’s law nor due to the time-changing
(local) atmospheric dioxide concentrations. Therefore, there must be other
reasons for this to happen. However, we prefer to not give rise here to many
discussions in this direction. We just want to mention a first plausible rea-
son: Depending on the cement chemistry, the carbonation reaction might

IThis is the way we translate the concept of "material durability” in mathematical
terms.



not be sufficiently fast to justify a free-boundary formulation. This fact may
naturally lead to a variety of different large-time asymptotics.

The reminder of the paper focuses on justifying rigorously the upper and
lower bounds on the interface position s(¢) as indicated in (9).

2. Technical preliminaries. Statement of the main theorem

We consider P(f) in the cylindrical domain Q(7") := (0,7") x (0,1) by
using change of variables in order to define a solution with usual notations:
Let

u(t,y) = ult, s(t)y) and o(t,y) = v(t,s(t)y) for (t,y) € Q(T).  (10)

Then, it holds that

S
u(t,0) = g(t),v(t,0) = h(t) for0<t<T,
s'(t) =y(u(t,1)) for0<t<T,
—%uy(t, 1) = (Bt 1) + () for0<t<T,
S
K2

s(
s(0) = s0,u(0,y) = uo(y), v(0,y) = Vo(y) for 0 <y <1,

where uo(y) = uo(soy) and v(y) = vo(sey) for y € [0, 1].

For simplicity, throughout this paper we introduce the following notations
related to some function spaces: We put H := L*(0,1), X := {z € H*(0,1) :
2(0) = 0}, |2|x = |2z|g for z € X, V(T) = L*>(0,T; H) N L*(0,T; H'(0,1)),
Vo(T) = V(T) N L*(0,T; X) and |z|v(ry = |2|rc0,m:m) + |2]1200,0x) for z €
V(T). Also, we denote by X* and (-, -) x the dual space of X and the duality
pairing between X and X*, respectively.

By using these notations we define a weak solution of P(f) in the following
way:

Definition 2.1. Let s be a function on [0,T] and u, v be functions on Q4(T)
for 0 <T < oco. We call that a triplet {s,u,v} is a weak solution of P(f) on
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[0, T if the conditions (S1) ~ (55) hold:

(S1) s € Wh>=(0,T) with s > 0 on [0,T], (u,v) € (W'2(0,T; X*)NV(T) N
L=(Q(T))).

(S2) u—g,v—h € L*0,T; X), s(0) = sg, u(0) = ug and v(0) = vy on [0, o).
(S3) ' (t) = ¥ (ul(t, s(t)) for a.e. t € [0,T].

(54)

/0 (@ (t), () x dt+ /Q . Sf(lt)uy(t)zy(t)dydt+ /0 D 2Dy a

— /Q (T)(f (u(t),v(t)) + s'(t) yiy ()2 (t)dydt  for z € Vo(T).

(S5) / 1)t + / T

- /Q (0 00+ T

Moreover, let s be a function on (0,00), and u and v be functions on Qs =
{(t,x)|t > 0,0 <z <s(t)}. We say that {s,u,v} is a weak solution of P(f)
on [0,00) if for any T > 0 the triplet {s,u,v} is a weak solution of P(f) on
[0, T].

B (1) 2, (t)dydi + /0 T 1yt 1)

)
'(t)

=1

Yo, (t)z(t)dydt  for z € Vo(T).

Next, we give a list of assumptions for data as follows:
(A1) f(u,v) = ¢(yv —u) and ¢ is a locally Lipschitz continuous and
increasing function on R with ¢(0) = 0 and

o(r)r > Cylr|'™ for r € R,

where ¢ > 1 and Cy is a positive constant.
(A2) g,h € W,22([0,00)) N L=(0,00), 0 < go < g, h > 0 on [0,00), and

loc

g — gs, h — h. € W0, 00), where go, g« and h, are positive constants with

Yhy = g..
(A3) sp > 0 and ug, vy € L>(0, sq), ug, v > 0 a.e. on (0, sg).

Our main result is as follows:

Theorem 2.2. If (A1), (A2) and (A3) hold, then the problem P(f) has a
weak solution {s,u,v} on [0,00). Moreover, there exist two positive constants
¢, and C, such that

eVt <s(t) <OWVE+T  fort >0.



In order to prove Theorem 2.2 we introduce the following notations: For
m > 0 we put
¢(m)  forr>m,
Om(r) = o(r)  for|r[<m,
¢(

—m) for r < —m,

and f,(u,v) = ¢p(yv — u) for (u,v) € R®. Obviously, for each m > 0 @,
and f,, are Lipschitz continuous. Then, we can denote by C,, the common
Lipschitz constant of ¢, and f,,.

Let s € W2(0,T) and m > 0. By using these notations we consider the
auxiliary problem SP,, (s, g, 0p):= {(11) ~ (16)}.

i = 3y, — —yi, = fnl@0) i Q(T), (11)
B 2~ Sy, = (@) Q) (12)
a(t,0) = g(t),5(t,0) = h(t) for0<t<T, (13)

%ay(t, 1) = s'(t)a(t, 1) + ¥(at, 1)) for0<t<T, (14)
—%@y(t, 1)=¢)o(t,1) for0<t<T, (15)
u(0,y) = uo(y), v(0,y) = vo(y) for 0 <y <1, (16)

where g and 7, are given functions on the interval [0, 1].

Relying on the basic properties of the solutions to SP,,(s, @, vg) (as in-
dicated in the next section), we will be able prove our main result, that is
Theorem 2.2, in the last section of the paper.

3. Basic results for the auxiliary problem SP,, (s, g, ¥o)

We begin the section by showing a first result concerned with the solv-
ability for the problem SP,,(s, @, Up).

Proposition 3.1. Let m > 0, T > 0, s € W2Y(0,T) with s(0) > 0 and
s >0o0n[0,T], goh € WH(0,T), g — g(0) € X and vy — h(0) € X. Then
there exist one and only one pair (u,v) € (WH2(0,T; H)YNL>(0,T; H*(0,1))N
L*(0,T; H*(0,1)))? satisfying (11) ~ (16) in the usual sense, that is, (u,?)
is a unique solution of SP,,(s,ug,vy) on [0,T].



We can prove this proposition in a way quite similar to the working strat-
egy illustrated in the proofs from Section 2 in [3]. Essentially, we rely on a
Banach’s fixed point argument. We omit here the proof and refer the reader
to [3].

As next step, we establish the positivity and the existence of upper bounds
for a solution of SP,,(s, @, o).

Lemma 3.2. Under the same assumptions as in Proposition 3.1 let (u,v)
be a solution of SP,,(s,ug,v9) on [0,T]. If 0 <ty < uy and 0 < vy < v, on
0,1, 0 < g <wu, and 0 < h < v, on [0,T] and u, = yv., where u, and v,
are positive constants, then

0<u<u,0<v<uv, onQT).

Proof. We multiply (11) by —[—u]" to obtain

1d P 2 s’ T +
sl mU T+ 5 [ Il Pdy = St Dl=a(, )
— ot D)t I

0

Here, we note that

~m(v0 = @) [~u" <~ (=[] —a)[-a]*t

< Cu(y[=o]" + |al)[-a]*

< Cu(y + D=0 [=a]" +|[-a] ") ae. on Q(T),
and

(a(, D)—a(, * =0 ae. on Q(T).
Then, it follows that

_ K _ _ _
S l=aty + 2—512![—?4;@1 < Crm(|[=0] 7 + |[=u]*[3) a-e. on [0,77,

where Cy,,, = 20, (v + 1) + ﬁ|5l|%oo(o,T)‘



Similarly, we can show that

1 d _ K9 _ _ _
Nt B+ 0l < Con(I=01 i + [ 3) e on 0.7,
where Cy,,, = 2C,(y+ 1) + i!s’ |2 (oy- From the above inequalities Gron-

wall’s lemma implies that [—a]* = 0 and [-0]" = 0 a.e on Q(T), that is,
u>0and v >0 a.e on Q(T).

From now on we shall show the boundedness of the solutions. First,
by (A2) and (A3) we can take positive constants w, and v, satisfying the
inequality in the assumption of this Lemma.

Next, we multiply (11) by [ — u.]" and have

1d, K1 s’ _
5 gl = uT i+ gl — w1+l Diac, 1) — w]*

1 / 1
= G (y0 — 1) [0 — w]Tdy + Sg/ yuy[u —u] dy a.e. on [0,T].
0 0

Similarly, we see that

1d,. o K2 5, S B
5@ [U—U*]+ H‘i‘? [U—U*};—H‘i‘g?}(',l)[U(yl) —U*]+
1 / 1
= —/ Gm(yo —0)[o — v Tdy+ = [ yo,[o —v]Tdy a.e on [0,T].
0 0

(
< P[0 —0]") = (@ —w))[a — w" = Gn(v(0 —v.) — [0 —w]")[o —v]"
< Osn([a—w] P+ [0 — v T]?)  ae on Q(T),

where Cs,,, = 2C,,y + Cp (v + 1).
From the above inequalities it follows that

1d,
5 e
Cln (| [@ — w7 + 1[0 — 0] " [5)

_ R1\,_ Ro\r_
— w5 A ([0 = v T[E) + == w5 + ol Ch vy |

IN
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vl T

bl =y + 5|5 Bl = ]
+5llo = 0+ 5l oo -
so that
(GRS GRS
< (Con+ I Bom(ge + 51l

a.e. on [0, 7]

v )

a.e. on [0,7].

Hence, by applying Gronwall’s lemma we conclude that u < u, and v < v,
a.e. on Q(T'). Thus we have proved this lemma.

O

Lemma 3.3. Under the same assumptions as in Proposition 3.1 let (u,v)

be a solution of SP,,(s,1g,v) on [0,T].

If u(t,z) =

ﬂ(t7 m

u(t, 55 ) for (t,z) € Qs(T), then the following inequality holds:
th/ lu — g|? d:zc—l—
s [ e / e+ 9(ul, )l 5) ~ )

0 0

1 S
—|—§3'(]u(-, s) — g|* +v|v(-,s) — h|?) + C¢,/ Iyv — u|dx
0

IN

—g’/os(u—

/ lv — h|*dx

g)dx — 7h'/ (v —h)dx
0

) and v(t,x) =

(17)

~ [ ontro =g = g)ds+y [ onlro = uh— b

—s'g(u(-;5) — g)

—vs'h(v(-,

s) —h)

a.e. on [0,T).

Proof. Since (4, v) is a strong solution of SP,,(s, @, Up), it holds that
in Q(T),

u(0,) = g(t)
— KU (t, s(t)
— Ko, (t, s(t)

uo(

u(0,z) =

v(0,1) =

)=
)
z),v(0,

Uo

fm(u,v)
_fm(u U)

s (H)u(t,
()(

s(t)) +
)

s(t

)

o(z)

8

in Q(T),
h(t)

for0 <t<T,

(u

(t,5(1)))

for0<t<T,

for0 <t <

for 0 < x < sg.

T,



Here, we multiply (18) by u—g and (19) by v(v—~h), and by using integration
by parts and the boundary conditions we obtain

1d s(t) ) s(t) )
SO ) — o)+ / o ()P
0 0

+5'(O)]u(t, s(t)) — g(t)* + 9 (ult, s(t)))(ult, s(t)) = g(t))
s(t)
= =5 (O)g(®)(ult,s(t) —g(t)) — 9'(?5)/ (u(t) — g(t))dx

s(¢) ’
—I—/O fm(u(t),v(t))(u(t) — g(t))dz  for a.e. t € [0,T]

and

vd [ ) (1) ,
v | O = grds e [P
0 0

s’ (t)|v(t, s(t)) — h(t)]?

s(t)
= =S Oh(@)(v(t, s(t)) — (1)) — vh/(t)/o (v(t) = h(t))dz

s(t)
— / Fout), (D) (0(t) — h(t))da  for ac. t € [0,T].
0
It is easy to see that

Jm(u,v){(u —g) —~y(v—h)}
= —m(yv —u) (Y0 = u) = S (y0 — u){g — g« +v(he — h(t)}
< —Cylyv — ul™ = G (v — u)(g — g) — YIm(yv — w)(hy —v) a.e. on Qy(T).

Combining these inequalities leads in a straightforward manner to the con-
clusion of this Lemma. OJ

The aim of this section is to establish the existence and the uniqueness
of a weak solution of SP,,(s, @i, 7o) in case s € W(0,T). Here, we define a
weak solution of SP,, (s, tg, 0p)

Definition 3.4. Let u, v be functions on Q(T') for0 < T < oco. We call that
a pair {u,v} is a weak solution of SP,,(s,1ug,vy) on [0,T] if the conditions
(851) ~ (554) hold:

(551) (u,v) € (Wh2(0,T; X*)NV(T) N L=(Q(T)))>.

9



(SS2) i — g, v —h € L*0,T; X), u(0) = ug and v(0) = .

/

(SSB)/O <at,z>th+/Q(T) %uyzydydw/o (Sgﬂ(-,1)—1—%2/}(&(.71)))2(.71)&

- / (fl@0,3) + Zyti,)zdydt  for = € Vo(T).
Q(T) s

S

T Ko T g
(854) / <6t,z>xdt+/ —217yzydydt+/ Zo(-, D)z(-, 1)dt
0 Q) S 0

/

— / (— fn(@,0) + S—y@y)zdydt for z € Vo(T).
QT s

Proposition 3.5. Let T > 0, m > 0, s € WY4(0,T) with s(0) > 0, s’ >
0 a.e. on [0,T], g,h € W'2(0,T) with g,h > 0 on [0,T] and gy, 0y €
L>(0,1) with 19,09 > 0 a.e. on [0,1]. Then SP,(s,ug,vy) has a unique
weak solution {u,v} on [0,T]. Moreover, (17) holds a.e. on [0,T] with {u,v},
where u(t,x) = u(t, G5) and v(t, ) = 0(t, ;) for (t,2) € Qs(T).

Proof. First, we take sequences {s,} € W>1(0,T), {uo,} € H*(0,1) and
{Von} C H'(0,1) such that s, — s in W'4(0,T) as n — oo, 5,(0) = s(0),
si. >0 on [0,7T] for n, g, — Uy and vy, — U in H as n — oo, 0 < 4y, <
|to|Lo(0,1)+ 1, 0 < Top < |Tg|Loe(0,1) + 1 on [0.1] and g, — g(0), To, — h(0) € X
for n. Obviously, there exists a positive constant L such that 0 < s(0) <
$p < L on [0,T] for n. Then, Proposition 3.1 and Lemma 3.2 imply that
SP,. (8, Uon, Ton) has a solution (i, v,) on [0,7] and 0 < @, < u, and 0 <
Uy < v, on Q(T) for each n, where u, and v, are positive constants satisfying
s = max{|to|r=(0,1) +1, 9|01}, v 2 max{[Oo|0,1) +1, || 0m) } and
Uy = YU.. Moreover, by Lemma 3.3 and putting w,(t,z) = u,(t, ﬁ(t)) and
v (t, ) = v, (t, ﬁ(t)) for (t,z) € Qs,(T), we see that

Sn

1d [
|vy, — h|*dz

2di ),
hr / e *de + iy / [Oal 2+ (1 $2)) (- 5) — 9)
0 0

2 v d
n—gl7dr + - —
[un = glidz + 5= i

10



1 sn
+§S;~b(|un<'> 5n>) - 9‘2 + 7|Un('a 571) - h|2) + C¢/ YUn — Un|q+1d3’j
0

—g’/ (up, — g)dx — Vh’/ (v, — h)dx
0 0

- G (YU — un)(g — gx)dx + 7/0 n Gm(Yn — un)(h — hy)dx
_S/ng(un('7 Sn) - g) - ’}/S;lh(l)n(', Sn) - h) a.e. on [07T]

IN

Here, we note that
|G (Yn — )| < G(yvs) — d(—ui) = Cy on Qs (T),

(un (s 80)) (Un (- 80) — g) 2 l/s(un<75n)) - 1&(9) a.e. on [0, 77,
where 1/3(7“) = forzb(f)df for r € R. Then by using Young’s inequality we
obtain

1

2dt 2dt J,

+/<;1/ |um\2dx—i—/£2/ Va2 dz + 9 (un (-, 50))
0 0

d [ d [
— lu, — g|*dx + 12 v, — h|*dx
0

1 Sn
+ZS;1(|UR(': Sn) — 9’2 + '7|Un('> Sn) - h|2) + O¢/ |7vn - UN|q+1d‘T
0

IN

~ ]_ 1 Sn Sn
0l9) + 5P+ o)+ 5[ = gPdo ey [ o, = hd)
0 0
+Cs [ llg =g+ 2lh = o+ (lgF +91bP)  ace. on [0.7)
0

Hence, by applying Gronwall’s lemma we observe that

T Sn
/ / (|tinz|? + |vne|?)dxdt < C for n,
o Jo

where C'is a positive constant independent of n. This implies that {u,} and
{©,} are bounded in L2(0, T; HY(0,1)), since |, ()% = sa(t) [ Jun, () 2dz
for t € [0, 7.

Next, we provide the boundedness of 4,; and v,,. Let n € X. Then it is
easy to see that

1
| / antndm
0

11



ffl_

= ’ / unyy + yuny + fm(una vn))ndy’

< 2 [ il + 5 O]+ 0 1)(1)
HS/ 1 s’ 1
220 [+ gyl + 2000+ [ i, 5)0d)
n JO n 0
K1, sl
< Sy llnylar + ()] + () () (20)

/ /

Sn S’Vl
+S—u*(\n|H + [yl a) + S—u*!n(l)! + Calnlg a.e on [0,T].

n

On account of the boundedness of {u,} in L*(0,T; H'(0,1)) we infer that
{tn } is bounded in L?(0, T; X*). Similarly, {0, } is also bounded in L?(0,T; X*).
From the above uniform estimates there exist a subsequence {n;} C {n}
and (u,v) such that (u,v) satisfies (SS1), u,, — @ and v,, — v weakly™
in L>(Q(T)), weakly in L?(0,T; H'(0,1)) and weakly in W12(0,T; X*) as
j — o0. Accordingly, Aubin’s compactness theorem (see [9]) implies that
U, = @ and U,, — v in L*(0,T; H) as j — oo. Moreover, i, (t) — @(t) and
vn](t) — 0(t) Weakly in H as j — oo for any t € [0, 7], (SSQ) is valid, and

0<u<u,and 0 <o <w, ae. on Q).
Now, I shall prove (SS3). Let z € Vo(7T'). Then it holds that

T

1

// U zdzdt —|—/ /{21 Uy 2y dydt —|—/ (S_nan(.7 1) 4+ —(tn(-,1)))2(-, 1)dt

()52 0 Sn Sn
/

= / (fin(Up, 0n) + S—nyﬂny)zdydt for n. (21)
Q(T) Sn
Since s, — s in C([0,T]), from the above convergences it is clear that

T pl T K1 K1
// ﬂnjtzdxdt%/ (ﬁt,z)th,/ STﬂnjyzydydt—)/ S—Qﬂyzydydt,
0Jo 0 Q(T)7n; Q(T)

/ /

Sn; _ NS _ .
/ (fin(n,, Un; )+ =Y ly, ) 2dydt — / (fm(u, v)+—yu,)zdydt as j — oo.
Q(T) Sn; Q(T) 5

We show convergences of the third and fourth terms in the left hand side of
(21) in the following way:

y/ ”un )~ S 1))

12



T o / T o1
S = S G [ 1) = D) 1
T ;1 / 2 T
< u/ |%—S§||Z|de+%/o 5/ l1tn; = @3,y — Byl 2 L2
and
LV 1
[l 1) — S D)=( it
0 nj
1o 1, )
< I = S G o 10) = o ) e

< v [ 2= el o [ D) = @G D)1

T T
1 1 V2Cs _ 1/2 _ 1/2 .
< v | o Sl [V, =, = 31t or

where Cj is a positive constant satisfying | (r) — ¥(r")| < Cs|r — /| for
0 < r,7" < u,. Hence, we conclude that (SS3) holds. Note that we can get
(SS4) in a similar fashion.

As next step, we prove the uniqueness of a weak solution to SP,, (s, g, Ug)
on [0,7T]. Let (uy,v;) and (ug, v2) be weak solutions of SP,, (s, g, vy) on [0, T
and put @ = 4y — g and v = v; — U on Q(7T'). Then (SS3) implies that

(i 2+ 5 [y + SaC 001+ L0 0) - 6 D))
- /o (fm (U1, 01) — fin(t2,0s))z2dy +Sg i yuyzdy for z € X a.e. on [0,77]. (22)

By taking z = u in (22) we have

1d R1,_ 2 S/ _ 2 1 _ _ _
Szl ulf + =Wl + 1l DI+ (@, 1) = 9(aa(- 1))a(, 1)
K 1
< Cullalg + |0)a)|a|g + 2—812|ay|§1 + 2—m|8’|2|ﬂ|§{ a.e. on [0, 7]

so that

1d 1
5+ 55l < Gl + ollaln + 5|3/ Plaff ace. on [0.7)

13



We can also obtain the inequality for v. Accordingly, by adding these two
inequalities and Gronwall’s inequality we show the uniqueness.

Finally, in order to prove (17), we put u(t,x) = u(t, %) and v(t,z) =
o(t, ] ) for (t,z) € Qs(T) and u,(t, x) = Uy (t, ;- @ )) and vy, (t,x) = v,(t, ﬁ(t))
for (t,x) € Qs,(T") and n. Then Lemma 3.3 guarantees the following inequal-
ity:

1d [ 9 v d 9
~ 4 n—glde+ 12 ALY
2dt/0 un = gfFdv+ 55 | lon = hl7de

rr / e + iy / [0ne 2+ 9 (ttn(- 30)) (- 50) — 9)
0 0
1 sn
sl esa) = o+ alonCsn) =)+ Co [ o — a1
0

//sn( g)dx — K /Osn(vn — h)dz (23)

/ o = )y = g0+ | " (v — ) (h — hu)d
—5,9(tn (-, 80) — g) = v8,h(vn(-,5,) —h) a.e. on (0,77,

IN

We integrate (23) on [0, ¢1] with respect to ¢ for 0 < ¢; < T'. Then on account
of the lower semi continuity of integral, we obtain by letting n — oo

s(t1) s(t1)
3] e —ge)Pde+ 3 [T et = b

2
/ /|um|2dxdt+/<;ﬂ/ /|vx|2dxdt+/ W(u ,s) — g)dt

+/ s'(Ju(-, 8) — g|* +vJv(-, s) — A )dt+C¢/ /m u|T dwdt

t1
/ /u— Ydzdt — /”yh'/ v — h)dzdt

_/0 /O%(W_u)(g_g*)ddey/o /Ogbm(w—u)(h—h*)dxdt

-/ S oul5) — g) + 150l 8) — Nt for 0 <4 < T

IA

14



Relying on uniqueness, (@, v) is also a weak solution of the problem SP,, (s, u(t), v(tg))
on [to,T] for 0 < ty < T'. Hence, it holds that

s(t1) s(t1)
3] e —gt)Pdr+ 3 [T o) = b

/ / |ux|2dxdt+/127/ / |vx|2dxdt—|—/ (u ,8) — g)dt
to

«¢/ S(ful-, ) = g + (-, 5) — MW+%/L/WJMWMﬁ

/ /u— Ydxdt — / fyh'/ v — h)dzdt (24)

_/to /O¢m(7v—u)(g_g*)dxdt+7/to /0¢m(7v—u)(h—h*)dxdt

IN

— /tl(s'g(u(-,s) —g)+vs'h(v(-,s) —h))dt for 0 <ty <t; <T.

to

Therefore, by dividing it by ¢; — ¢y and letting t; | t; we can obtain (24).
Thus we have proved this Proposition. U

4. Interfaces propagate asymptotically like v/t as t — oo

In this section, we finally prove the main result — Theorem 2.2.

4.1.  Proof of the existence of a weak solution

We suppose (A1), (A2) and (A3). Then, since f,, is Lipschitz continuous
on R for each m > 0, by Theorem 1.1 of [3] P(f,,) has a unique weak solution
{s,u,v} on [0,T,,] for some T, > 0.

First, we show that P(f,,) has a weak solution on [0,00). In fact, let
[0, 7)) be the maximal interval of existence of a weak solution of P(f,,). We
assume that 7 is finite. Obviously, Lemma 3.2 implies that

0<u<wu,and 0 <v <w, on Q7T
so that s'(t) = ¥(u(t,s(t)) < ¥(uy) for 0 < t < T}, where u, and v, are
positive constants given in the proof of Lemma 3.2. Accordingly, there exists
a number s(7%) > 0 such that s(t) — s(7)%) as t T T5. Therefore, on
account of (17) we infer that w,v € L?(0,T; H'(0,1)), where u and v are

Y m?
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functions defined by (10). Similarly to (20), w,o € W2(0,T; X*). This
shows that there exist u(T),v(T}) € L*>(0,1) such that u(t) — w(7T}) and
o(t) — o(T}) weakly in H as t 1T T.}. Hence, by applying Theorem 1.1 of [3],
again, we can extend the solution beyond 7. This is a contradiction, that
is, P(fn) has a weak solution on [0,00). Moreover, it is obvious the weak
solution of P(f,,) is also a weak solution to P(f), in case m > yv, +u,. Thus

we have proved the existence of a weak solution to P(f) on [0, c0). O

4.2.  Proof of the upper estimate for the free boundary position

Let {s,u, v} be a weak solution of P(f) on [0, 00) and @ and v are functions

defined by (10). Then (S4) leads to:

R1

(1), 2+ s [ a0z +
- [ aw.om)+ 55

Accordingly, by taking z = s?y, we have

s'(t) s'(1)
S0 u(t, 1) + S )z(1)dt

yty(t))zdy for z € X and a.e. t € [0,00).

1

1
(U, S°y)x + k1 / aydy + ss'(u(-,1) + 1)
1 ‘ 1
= / (f(u,v)szydy—l—ss// u,y°dy  a.e. on [0,00).
0 0

It is clear that (see [10, Proposition 23.23])

d [t 1 1 s
(1, s*y)x = E/ uszdy—/ 2uss’ydy,/ us’ydy = / zudz a.e. on [0, 00).
0 0 0 0

It follows that

d

s 1 1
7 xudr + /ﬁ/ Uy dy + ss' :/ f(u,v)s*ydy a.e. on [0,00).  (25)
0 0 0

We can obtain the similar equation for v to (25). Accordingly, we see that

d S

1 1
7 z(u+v)dr + Ky / Uy dy + /12/ v,dy + ss' = 0 a.e. on [0,00). (26)
0 0 0
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By integrating it, it holds that
s(t) t t 1
/ x(u(t) +v(t))dx + ky / u(r, s(7))dr + Kz/ o(r, s(1))dT + 582(25)
0 t 0 0
(

S0 t 1
= / x(up + vo)dx + ml/ g(T)dr + lig/ h(T)dT + 588 for ¢t € [0, 00).
0 0 0

Making use of the positivity of u and v, we observe that

1 1 50
3 s(t)? < 550 —|—/ z(ug + vo)dx + (k1g™ + koh*)t  for t € [0, 00),
0
where g* = |g|1~(0,00) and h* = |h|p(000)- This inequality guarantees the

existence of a positive constant C, satisfying

s(t) < Cvt+ 1 for t > 0. O

Proof of the lower estimate for the free boundary. First, we show

t s
/ / v, |*dodT < Ki(s(t) +1) fort >0, (27)
0 Jo

where K is a positive constant. In fact, Proposition 3.5 implies
1 [5® N s(t)
[ o gwras+ L[ e e
2 Jo 2 Jo

t S t S t
+ff1/ / |Ux|2divd7"|“/‘€2’7/ / |v$|2dxd7'+/ s'u(-, s)dr
0 0 0 0 0

< 5 o= g@Pds+ ] [l - ho)Pds
+/t8’gd7—/tg’/s(u—g)dxdT—fy/th'/s(v—h)dxdT
//gmu—u g—a. dxdr+7//¢w—u Y(h — h.)dzdr
/0<g<< $) — ) +15h(v(-,5) — h)
< 5/ to—o@Pdr+ 3 [l ho)Pds 28)
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L7 (s(8) — s0) + (s + 97)s /Wgu7+vm+h* L/vwm

t
s(t)C’4(/ lg — g.|dxdr + 7/ |h — hy|dxdT)
0 0
+(g" (us *x +9) + vh" (ve + h7))(s(t) — s9) for t > 0.

Obviously, by (A2) we can take a positive number K; satisfying (27).
Recalling (26), we have

s(t) t 1
/ z(u(t) +v(t))dr + Ky / u(T, s(7))dT + HQ/ vpdzdr + 532(15)
0 0 s(t)
S0 t 1
= / x(up + vo)dx + Ky / g(T)dT + 558
0 0

> Kigot fort >0

so that
s(t) 1
Kigot < /12(/ . v |2dadT) 2 (s(8)) /% + (u. + v*)/o rdx + 532(15)
t
K
+—p [ 1s']Mrdr
KoY Jo

IN

faKwo+AwW<m>m+§wfmm4W+§§@

1/p / |s'|dT) 1py1=1/p

129015 for ¢ > 0,

< Ka(s(t) + 1)s(t) +
where K5 is a positive constant. Then it holds that

K190

1
St < Kos(t) + g0

+

K2s(t)? for t € [0,T].
D K31 for 1€ 0,7

Hence, it is easy to see that

1
“149% < (Ky + —K2)s(t)? for t > 1.

K190

In case 0 <t <1, we have
soVt < sp < s(t).

Thus we have now completed the proof of the Theorem. O
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