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Abstract

We study the large-time behavior of the free boundary position capturing the
one-dimensional motion of the carbonation reaction front in concrete-based
materials. We extend here our rigorous justification of the

√
t-behavior of

reaction penetration depths by including non-linear effects due to deviations
from the classical Henry’s law and time-dependent Dirichlet data.

Keywords: Free boundary problem, concrete carbonation, Henry’s law,
large-time behavior, time-dependent Dirichlet data
2010 MSC: 35R35, 35B20, 76S05

1. Introduction

In this paper, we deal with the following initial free-boundary value prob-
lem: Find {s, u, v} such that

Qs(T ) = {(t, x)|0 < x < s(t), 0 < t < T},
ut − (κ1ux)x = f(u, v) in Qs(T ), (1)

vt − (κ2vx)x = −f(u, v) in Qs(T ), (2)

u(t, 0) = g(t), v(t, 0) = h(t) for 0 < t < T, (3)

u(0, x) = u0(x), v(0, x) = v0(x) for 0 < x < s0, (4)

s′(t)(=
d

dt
s(t)) = ψ(u(t, s(t))) for 0 < t < T, (5)
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κ1ux(t, s(t)) = −ψ(u(t, s(t)))− s′(t)u(t, s(t)) for 0 < t < T, (6)

κ2vx(t, s(t)) = −s′(t)v(t, s(t)) for 0 < t < T, (7)

s(0) = s0, (8)

where T > 0, κ1 and κ2 are positive constants, f is a given continuous
function on IR2, g and h are boundary data, u0, v0 and s0 are initial data and
ψ(r) = κ0|[r]+|p where κ0 > 0 and p ≥ 1 are given constants. Here u and v
represent the mass concentration of carbon dioxide dissolved in water and in
air, respectively, while s(t) denotes the position of the penetration reaction
front in concrete at time t > 0. The interface s separates the carbonated
from the non-carbonated regions.

We denote by P(f) the above system (1) ∼ (8). P(f) describes to so called
concrete carbonation process, one of the most important physico-chemical
mechanisms responsible for the durability of concrete structures; see [1, 2]
for more details of the civil engineering problem.

The target here is to study the large-time behavior of weak solutions1

in the presence of macroscopic nonlinear Henry’s law and time-dependent
Dirichlet boundary conditions. To get a bit the flavor of mathematical in-
vestigations of the effects by Henry’s law for this or closely related reaction-
diffusion systems, we refer the reader to [3] (linear Henry’s law) and [4, 5]
(micro- and micro-macro Henry-like laws). Essentially, we are able to present
refined estimates that extend the proof of the rigorous large-time asymptotics
beyond the settings that we have elucidated in [6, 7]. In practical terms, we
show that there exist two positive constants c∗ and C∗, depending on all
material parameters and initial and boundary data, such that

c∗
√
t ≤ s(t) ≤ C∗

√
t+ 1 for t ≥ 0. (9)

Based on (9), we can now explain that the deviations of carbonation fronts
from the

√
t-law emphasized in [8] are certainly not due to eventual nonlinear-

ities arising in the productions by Henry’s law nor due to the time-changing
(local) atmospheric dioxide concentrations. Therefore, there must be other
reasons for this to happen. However, we prefer to not give rise here to many
discussions in this direction. We just want to mention a first plausible rea-
son: Depending on the cement chemistry, the carbonation reaction might

1This is the way we translate the concept of ”material durability” in mathematical
terms.
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not be sufficiently fast to justify a free-boundary formulation. This fact may
naturally lead to a variety of different large-time asymptotics.

The reminder of the paper focuses on justifying rigorously the upper and
lower bounds on the interface position s(t) as indicated in (9).

2. Technical preliminaries. Statement of the main theorem

We consider P(f) in the cylindrical domain Q(T ) := (0, T ) × (0, 1) by
using change of variables in order to define a solution with usual notations:
Let

ū(t, y) = u(t, s(t)y) and v̄(t, y) = v(t, s(t)y) for (t, y) ∈ Q(T ). (10)

Then, it holds that

ūt −
κ1
s2
ūyy −

s′

s
yūy = f(ū, v̄) in Q(T ),

v̄t −
κ2
s2
v̄yy −

s′

s
yv̄y = −f(ū, v̄) in Q(T ),

ū(t, 0) = g(t), v̄(t, 0) = h(t) for 0 < t < T,

s′(t) = ψ(ū(t, 1)) for 0 < t < T,

− κ1
s(t)

ūy(t, 1) = s′(t)ū(t, 1) + s′(t) for 0 < t < T,

− κ2
s(t)

v̄y(t, 1) = s′(t)v̄(t, 1) for 0 < t < T,

s(0) = s0, ū(0, y) = ū0(y), v̄(0, y) = v̄0(y) for 0 < y < 1,

where ū0(y) = u0(s0y) and v̄0(y) = v0(s0y) for y ∈ [0, 1].
For simplicity, throughout this paper we introduce the following notations

related to some function spaces: We put H := L2(0, 1), X := {z ∈ H1(0, 1) :
z(0) = 0}, |z|X = |zx|H for z ∈ X, V (T ) = L∞(0, T ;H) ∩ L2(0, T ;H1(0, 1)),
V0(T ) = V (T ) ∩ L2(0, T ;X) and |z|V (T ) = |z|L∞(0,T ;H) + |z|L2(0,T ;X) for z ∈
V (T ). Also, we denote by X∗ and 〈·, ·〉X the dual space of X and the duality
pairing between X and X∗, respectively.

By using these notations we define a weak solution of P(f) in the following
way:

Definition 2.1. Let s be a function on [0, T ] and u, v be functions on Qs(T )
for 0 < T <∞. We call that a triplet {s, u, v} is a weak solution of P(f) on
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[0, T ] if the conditions (S1) ∼ (S5) hold:
(S1) s ∈ W 1,∞(0, T ) with s > 0 on [0, T ], (ū, v̄) ∈ (W 1,2(0, T ;X∗) ∩ V (T ) ∩
L∞(Q(T )))2.
(S2) ū−g, v̄−h ∈ L2(0, T ;X), s(0) = s0, u(0) = u0 and v(0) = v0 on [0, s0].
(S3) s′(t) = ψ(u(t, s(t)) for a.e. t ∈ [0, T ].
(S4)∫ T

0

〈ūt(t), z(t)〉Xdt+
∫
Q(T )

κ1
s2(t)

ūy(t)zy(t)dydt+

∫ T

0

(
s′(t)

s(t)
ū(t, 1)+

s′(t)

s(t)
)z(t, 1)dt

=

∫
Q(T )

(f(ū(t), v̄(t)) +
s′(t)

s(t)
yūy(t))z(t)dydt for z ∈ V0(T ).

(S5)

∫ T

0

〈v̄t(t), z(t)〉Xdt+
∫
Q(T )

κ2
s2(t)

v̄y(t)zy(t)dydt+

∫ T

0

s′(t)

s(t)
v̄(t, 1)z(t, 1)dt

=

∫
Q(T )

(−f(ū(t), v̄(t)) +
s′(t)

s(t)
yv̄y(t))z(t)dydt for z ∈ V0(T ).

Moreover, let s be a function on (0,∞), and u and v be functions on Qs :=
{(t, x)|t > 0, 0 < x < s(t)}. We say that {s, u, v} is a weak solution of P(f)
on [0,∞) if for any T > 0 the triplet {s, u, v} is a weak solution of P(f) on
[0, T ].

Next, we give a list of assumptions for data as follows:
(A1) f(u, v) = φ(γv − u) and φ is a locally Lipschitz continuous and

increasing function on IR with φ(0) = 0 and

φ(r)r ≥ Cφ|r|1+q for r ∈ IR,

where q ≥ 1 and Cφ is a positive constant.
(A2) g, h ∈ W 1,2

loc ([0,∞)) ∩ L∞(0,∞), 0 < g0 ≤ g, h ≥ 0 on [0,∞), and
g − g∗, h− h∗ ∈ W 1,1(0,∞), where g0, g∗ and h∗ are positive constants with
γh∗ = g∗.

(A3) s0 > 0 and u0, v0 ∈ L∞(0, s0), u0, v0 ≥ 0 a.e. on (0, s0).

Our main result is as follows:

Theorem 2.2. If (A1), (A2) and (A3) hold, then the problem P(f) has a
weak solution {s, u, v} on [0,∞). Moreover, there exist two positive constants
c∗ and C∗ such that

c∗
√
t ≤ s(t) ≤ C∗

√
t+ 1 for t ≥ 0.
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In order to prove Theorem 2.2 we introduce the following notations: For
m > 0 we put

φm(r) =


φ(m) for r > m,
φ(r) for |r| ≤ m,
φ(−m) for r < −m,

and fm(u, v) = φm(γv − u) for (u, v) ∈ IR2. Obviously, for each m > 0 φm
and fm are Lipschitz continuous. Then, we can denote by Cm the common
Lipschitz constant of φm and fm.

Let s ∈ W 1,2(0, T ) and m > 0. By using these notations we consider the
auxiliary problem SPm(s, ū0, v̄0):= {(11) ∼ (16)}.

ūt −
κ1
s2
ūyy −

s′

s
yūy = fm(ū, v̄) in Q(T ), (11)

v̄t −
κ2
s2
v̄yy −

s′

s
yv̄y = −fm(ū, v̄) in Q(T ), (12)

ū(t, 0) = g(t), v̄(t, 0) = h(t) for 0 < t < T, (13)

− κ1
s(t)

ūy(t, 1) = s′(t)ū(t, 1) + ψ(ū(t, 1)) for 0 < t < T, (14)

− κ2
s(t)

v̄y(t, 1) = s′(t)v̄(t, 1) for 0 < t < T, (15)

ū(0, y) = ū0(y), v̄(0, y) = v̄0(y) for 0 < y < 1, (16)

where ū0 and v̄0 are given functions on the interval [0, 1].
Relying on the basic properties of the solutions to SPm(s, ū0, v̄0) (as in-

dicated in the next section), we will be able prove our main result, that is
Theorem 2.2, in the last section of the paper.

3. Basic results for the auxiliary problem SPm(s, ū0, v̄0)

We begin the section by showing a first result concerned with the solv-
ability for the problem SPm(s, ū0, v̄0).

Proposition 3.1. Let m > 0, T > 0, s ∈ W 2,1(0, T ) with s(0) > 0 and
s′ ≥ 0 on [0, T ], g, h ∈ W 1,2(0, T ), ū0 − g(0) ∈ X and v̄0 − h(0) ∈ X. Then
there exist one and only one pair (ū, v̄) ∈ (W 1,2(0, T ;H)∩L∞(0, T ;H1(0, 1))∩
L2(0, T ;H2(0, 1)))2 satisfying (11) ∼ (16) in the usual sense, that is, (ū, v̄)
is a unique solution of SPm(s, ū0, v̄0) on [0, T ].
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We can prove this proposition in a way quite similar to the working strat-
egy illustrated in the proofs from Section 2 in [3]. Essentially, we rely on a
Banach’s fixed point argument. We omit here the proof and refer the reader
to [3].

As next step, we establish the positivity and the existence of upper bounds
for a solution of SPm(s, ū0, v̄0).

Lemma 3.2. Under the same assumptions as in Proposition 3.1 let (ū, v̄)
be a solution of SPm(s, ū0, v̄0) on [0, T ]. If 0 ≤ ū0 ≤ u∗ and 0 ≤ v̄0 ≤ v∗ on
[0, 1], 0 ≤ g ≤ u∗ and 0 ≤ h ≤ v∗ on [0, T ] and u∗ = γv∗, where u∗ and v∗
are positive constants, then

0 ≤ ū ≤ u∗, 0 ≤ v̄ ≤ v∗ on Q(T ).

Proof. We multiply (11) by −[−ū]+ to obtain

1

2

d

dt
|[−ū]+|2H +

κ1
s2

∫ 1

0

|[−ū]+y |2dy −
s′

s
ū(·, 1)[−ū(·, 1)]+

−1

s
ψ(ū(·, 1))[−ū(·, 1)]+

= −
∫ 1

0

φm(γv̄ − ū)[−ū]+dy − s′

s

∫ 1

0

yūy[−ū]+dy a.e. on [0, T ].

Here, we note that

−φm(γv̄ − ū)[−ū]+ ≤ −φm(−γ[−v̄]+ − ū)[−ū]+

≤ Cm(γ[−v̄]+ + |ū|)[−ū]+

≤ Cm(γ + 1)(|[−v̄]+[−ū]+ + |[−ū]+|2) a.e. on Q(T ),

and
ψ(ū(·, 1))[−ū(·, 1)]+ = 0 a.e. on Q(T ).

Then, it follows that

1

2

d

dt
|[−ū]+|2H +

κ1
2s2
|[−ū]+y |2H ≤ C1m(|[−v̄]+|2H + |[−ū]+|2H) a.e. on [0, T ],

where C1m = 2Cm(γ + 1) + 1
2κ1
|s′|2L∞(0,T ).
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Similarly, we can show that

1

2

d

dt
|[−v̄]+|2H +

κ2
2s2
|[−v̄]+y |2H ≤ C2m(|[−v̄]+|2H + |[−ū]+|2H) a.e. on [0, T ],

where C2m = 2Cm(γ + 1) + 1
2κ2
|s′|2L∞(0,T ). From the above inequalities Gron-

wall’s lemma implies that [−ū]+ = 0 and [−v̄]+ = 0 a.e on Q(T ), that is,
ū ≥ 0 and v̄ ≥ 0 a.e. on Q(T ).

From now on we shall show the boundedness of the solutions. First,
by (A2) and (A3) we can take positive constants u∗ and v∗ satisfying the
inequality in the assumption of this Lemma.

Next, we multiply (11) by [ū− u∗]+ and have

1

2

d

dt
|[ū− u∗]+|2H +

κ1
s2
|[ū− u∗]+y |2H +

s′

s
ū(·, 1)[ū(·, 1)− u∗]+

+
1

s
ψ(ū(·, 1))[ū(·, 1)− u∗]+

=

∫ 1

0

φm(γv̄ − ū)[ū− u∗]+dy +
s′

s

∫ 1

0

yūy[ū− u∗]+dy a.e. on [0, T ].

Similarly, we see that

1

2

d

dt
|[v̄ − v∗]+|2H +

κ2
s2
|[v̄ − v∗]+y |2H +

s′

s
v̄(·, 1)[v̄(·, 1)− v∗]+

= −
∫ 1

0

φm(γv̄ − v̄)[v̄ − v∗]+dy +
s′

s

∫ 1

0

yv̄y[v̄ − v∗]+dy a.e. on [0, T ].

Here, elementary calculations lead to

φm(γv̂ − ū)([ū− u∗]+ − [v̄ − v∗]+)

= φm(γ(v̂ − v∗)− (ū− u∗))([ū− u∗]+ − [v̄ − v∗]+)

≤ φm(γ([v̂ − v∗]+)− (ū− u∗))[ū− u∗]+ − φm(γ(v̂ − v∗)− [ū− u∗]+)[v̄ − v∗]+

≤ C3m(|[ū− u∗]+|2 + |[v̂ − v∗]+|2) a.e. on Q(T ),

where C3m = 2Cmγ + Cm(γ + 1).
From the above inequalities it follows that

1

2

d

dt
(|[ū− u∗]+|2H + |[v̄ − v∗]+|2H) +

κ1
s2
|[ū− u∗]+y |2H +

κ2
s2
|[v̄ − v∗]+y |2H

≤ C3m(|[ū− u∗]+|2H + |[v̂ − v∗]+|2H)
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+
κ1
2s2
|[ū− u∗]+y |2H +

1

2κ1
|s′|2L∞(0,T )|[ū− u∗]+|2H

+
κ2
2s2
|[v̄ − v∗]+y |2H +

1

2κ2
|s′|2L∞(0,T )|[v̄ − v∗]+|2H a.e. on [0, T ]

so that

1

2

d

dt
(|[ū− u∗]+|2H + |[v̄ − v∗]+|2H)

≤ (C3m +
1

2
|s′|2L∞(0,T )(

1

2κ1
+

1

2κ2
)(|[ū− u∗]+|2H + |[v̄ − v∗]+|2H) a.e. on [0, T ].

Hence, by applying Gronwall’s lemma we conclude that ū ≤ u∗ and v̄ ≤ v∗
a.e. on Q(T ). Thus we have proved this lemma. �

Lemma 3.3. Under the same assumptions as in Proposition 3.1 let (ū, v̄)
be a solution of SPm(s, ū0, v̄0) on [0, T ]. If u(t, x) = ū(t, x

s(t)
) and v(t, x) =

v̄(t, x
s(t)

) for (t, x) ∈ Qs(T ), then the following inequality holds:

1

2

d

dt

∫ s

0

|u− g|2dx+
γ

2

d

dt

∫ s

0

|v − h|2dx

+κ1

∫ s

0

|ux|2dx+ κ2γ

∫ s

0

|vx|2dx+ ψ(u(·, s))(u(·, s)− g)

+
1

2
s′(|u(·, s)− g|2 + γ|v(·, s)− h|2) + Cφ

∫ s

0

|γv − u|q+1dx

≤ −g′
∫ s

0

(u− g)dx− γh′
∫ s

0

(v − h)dx (17)

−
∫ s

0

φm(γv − u)(g − g∗)dx+ γ

∫ s

0

φm(γv − u)(h− h∗)dx

−s′g(u(·, s)− g)− γs′h(v(·, s)− h) a.e. on [0, T ].

Proof. Since (ū, v̄) is a strong solution of SPm(s, ū0, v̄0), it holds that

ut − κ1uxx = fm(u, v) in Q(T ), (18)

vt − κ2vxx = −fm(u, v) in Q(T ), (19)

u(0, t) = g(t), v(0, t) = h(t) for 0 < t < T,

−κ1ux(t, s(t)) = s′(t)u(t, s(t)) + ψ(u(t, s(t))) for 0 < t < T,

−κ2vx(t, s(t)) = s′(t)v(t, s(t)) for 0 < t < T,

u(0, x) = u0(x), v(0, x) = v0(x) for 0 < x < s0.
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Here, we multiply (18) by u−g and (19) by γ(v−h), and by using integration
by parts and the boundary conditions we obtain

1

2

d

dt

∫ s(t)

0

|u(t)− g(t)|2dx+ κ1

∫ s(t)

0

|ux(t)|2dx

+s′(t)|u(t, s(t))− g(t)|2 + ψ(u(t, s(t)))(u(t, s(t))− g(t))

= −s′(t)g(t)(u(t, s(t))− g(t))− g′(t)
∫ s(t)

0

(u(t)− g(t))dx

+

∫ s(t)

0

fm(u(t), v(t))(u(t)− g(t))dx for a.e. t ∈ [0, T ]

and

γ

2

d

dt

∫ s(t)

0

|v(t)− g(t)|2dx+ γκ2

∫ s(t)

0

|vx(t)|2dx

+γs′(t)|v(t, s(t))− h(t)|2

= −γs′(t)h(t)(v(t, s(t))− h(t))− γh′(t)
∫ s(t)

0

(v(t)− h(t))dx

−γ
∫ s(t)

0

fm(u(t), v(t))(v(t)− h(t))dx for a.e. t ∈ [0, T ].

It is easy to see that

fm(u, v){(u− g)− γ(v − h)}
= −φm(γv − u)(γv − u)− φm(γv − u){g − g∗ + γ(h∗ − h(t)}
≤ −Cφ|γv − u|q+1 − φm(γv − u)(g − g∗)− γφm(γv − u)(h∗ − v) a.e. on Qs(T ).

Combining these inequalities leads in a straightforward manner to the con-
clusion of this Lemma. �

The aim of this section is to establish the existence and the uniqueness
of a weak solution of SPm(s, ū0, v̄0) in case s ∈ W 1,4(0, T ). Here, we define a
weak solution of SPm(s, ū0, v̄0)

Definition 3.4. Let ū, v̄ be functions on Q(T ) for 0 < T <∞. We call that
a pair {ū, v̄} is a weak solution of SPm(s, ū0, v̄0) on [0, T ] if the conditions
(SS1) ∼ (SS4) hold:
(SS1) (ū, v̄) ∈ (W 1,2(0, T ;X∗) ∩ V (T ) ∩ L∞(Q(T )))2.
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(SS2) ū− g, v̄ − h ∈ L2(0, T ;X), ū(0) = ū0 and v̄(0) = v̄0.

(SS3)

∫ T

0

〈ūt, z〉Xdt+
∫
Q(T )

κ1
s2
ūyzydydt+

∫ T

0

(
s′

s
ū(·, 1)+

1

s
ψ(ū(·, 1)))z(·, 1)dt

=

∫
Q(T )

(fm(ū, v̄) +
s′

s
yūy)zdydt for z ∈ V0(T ).

(SS4)

∫ T

0

〈v̄t, z〉Xdt+

∫
Q(T )

κ2
s2
v̄yzydydt+

∫ T

0

s′

s
v̄(·, 1)z(·, 1)dt

=

∫
Q(T )

(−fm(ū, v̄) +
s′

s
yv̄y)zdydt for z ∈ V0(T ).

Proposition 3.5. Let T > 0, m > 0, s ∈ W 1,4(0, T ) with s(0) > 0, s′ ≥
0 a.e. on [0, T ], g, h ∈ W 1,2(0, T ) with g, h ≥ 0 on [0, T ] and û0, v̂0 ∈
L∞(0, 1) with û0, v̂0 ≥ 0 a.e. on [0, 1]. Then SPm(s, ū0, v̄0) has a unique
weak solution {ū, v̄} on [0, T ]. Moreover, (17) holds a.e. on [0, T ] with {u, v},
where u(t, x) = ū(t, x

s(t)
) and v(t, x) = v̄(t, x

s(t)
) for (t, x) ∈ Qs(T ).

Proof. First, we take sequences {sn} ⊂ W 2,1(0, T ), {ū0n} ⊂ H1(0, 1) and
{v̄0n} ⊂ H1(0, 1) such that sn → s in W 1,4(0, T ) as n → ∞, sn(0) = s(0),
s′n ≥ 0 on [0, T ] for n, ū0n → ū0 and v̄0n → v̄0 in H as n → ∞, 0 ≤ ū0n ≤
|ū0|L∞(0,1) +1, 0 ≤ v̄0n ≤ |v̄0|L∞(0,1) +1 on [0.1] and ū0n−g(0), v̄0n−h(0) ∈ X
for n. Obviously, there exists a positive constant L such that 0 < s(0) ≤
sn ≤ L on [0, T ] for n. Then, Proposition 3.1 and Lemma 3.2 imply that
SPm(sn, ū0n, v̄0n) has a solution (ūn, v̄n) on [0, T ] and 0 ≤ ūn ≤ u∗ and 0 ≤
v̄n ≤ v∗ on Q(T ) for each n, where u∗ and v∗ are positive constants satisfying
u∗ ≥ max{|ū0|L∞(0,1) + 1, |g|L∞(0,T )}, v∗ ≥ max{|v̄0|L∞(0,1) + 1, |h|L∞(0,T )} and
u∗ = γv∗. Moreover, by Lemma 3.3 and putting un(t, x) = ūn(t, x

sn(t)
) and

vn(t, x) = v̄n(t, x
sn(t)

) for (t, x) ∈ Qsn(T ), we see that

1

2

d

dt

∫ sn

0

|un − g|2dx+
γ

2

d

dt

∫ sn

0

|vn − h|2dx

+κ1

∫ sn

0

|unx|2dx+ κ2γ

∫ sn

0

|vnx|2dx+ ψ(un(·, sn))(un(·, sn)− g)

10



+
1

2
s′n(|un(·, sn))− g|2 + γ|vn(·, sn)− h|2) + Cφ

∫ sn

0

|γvn − un|q+1dx

≤ −g′
∫ sn

0

(un − g)dx− γh′
∫ sn

0

(vn − h)dx

−
∫ sn

0

φm(γvn − un)(g − g∗)dx+ γ

∫ sn

0

φm(γvn − un)(h− h∗)dx

−s′ng(un(·, sn)− g)− γs′nh(vn(·, sn)− h) a.e. on [0, T ].

Here, we note that

|φm(γvn − un)| ≤ φ(γv∗)− φ(−u∗) =: C4 on Qsn(T ),

ψ(un(·, sn))(un(·, sn)− g) ≥ ψ̂(un(·, sn))− ψ̂(g) a.e. on [0, T ],

where ψ̂(r) =
∫ r
0
ψ(ξ)dξ for r ∈ IR. Then by using Young’s inequality we

obtain

1

2

d

dt

∫ sn

0

|un − g|2dx+
γ

2

d

dt

∫ sn

0

|vn − h|2dx

+κ1

∫ sn

0

|unx|2dx+ κ2

∫ sn

0

|vnx|2dx+ ψ̂(un(·, sn))

+
1

4
s′n(|un(·, sn)− g|2 + γ|vn(·, sn)− h|2) + Cφ

∫ sn

0

|γvn − un|q+1dx

≤ ψ̂(g) +
1

2
(|g′|2 + γ|h′|2) +

1

2
(

∫ sn

0

|un − g|2dx+ γ

∫ sn

0

|vn − h|2dx)

+C4

∫ sn

0

(|g − g∗|+ γ|h− h∗|)dx+ s′n(|g|2 + γ|h|2) a.e. on [0, T ].

Hence, by applying Gronwall’s lemma we observe that∫ T

0

∫ sn

0

(|unx|2 + |vnx|2)dxdt ≤ C for n,

where C is a positive constant independent of n. This implies that {ūn} and

{v̄n} are bounded in L2(0, T ;H1(0, 1)), since |ūny(t)|2H = sn(t)
∫ sn(t)
0
|unx(t)|2dx

for t ∈ [0, T ].
Next, we provide the boundedness of ūnt and v̄nt. Let η ∈ X. Then it is

easy to see that

|
∫ 1

0

ūntηdy|

11



= |
∫ 1

0

(
κ1
s2n
ūnyy +

s′n
sn
yūny + fm(ūn, v̄n))ηdy|

≤ κ1
s2n

∫ 1

0

|ūny||ηy|dy +
s′n
sn
|ūn(·, 1)η(1)|+ |ψ(ūn(·, 1))η(1)|

+
s′n
sn
|
∫ 1

0

ūn(η + yηy)dy|+
s′n
sn
|ūn(·, 1)η(1)|+ |

∫ 1

0

fm(ūn, v̄n))ηdy|

≤ κ1
s2n
|ūny|H |ηy|H +

s′n
sn
u∗|η(1)|+ |ψ(u∗)||η(1)| (20)

+
s′n
sn
u∗(|η|H + |ηy|H) +

s′n
sn
u∗|η(1)|+ C4|η|H a.e on [0, T ].

On account of the boundedness of {ūn} in L2(0, T ;H1(0, 1)) we infer that
{ūnt} is bounded in L2(0, T ;X∗). Similarly, {v̄nt} is also bounded in L2(0, T ;X∗).

From the above uniform estimates there exist a subsequence {nj} ⊂ {n}
and (ū, v̄) such that (ū, v̄) satisfies (SS1), ūnj

→ ū and v̄nj
→ v̄ weakly*

in L∞(Q(T )), weakly in L2(0, T ;H1(0, 1)) and weakly in W 1,2(0, T ;X∗) as
j → ∞. Accordingly, Aubin’s compactness theorem (see [9]) implies that
ūnj
→ ū and v̄nj

→ v̄ in L2(0, T ;H) as j →∞. Moreover, ūnj
(t)→ ū(t) and

v̄nj
(t) → v̄(t) weakly in H as j → ∞ for any t ∈ [0, T ], (SS2) is valid, and

0 ≤ ū ≤ u∗ and 0 ≤ v̄ ≤ v∗ a.e. on Q(T ).
Now, I shall prove (SS3). Let z ∈ V0(T ). Then it holds that∫ T

0

∫ 1

0

ūntzdxdt+

∫
Q(T )

κ1
s2n
ūnyzydydt+

∫ T

0

(
s′n
sn
ūn(·, 1) +

1

sn
ψ(ūn(·, 1)))z(·, 1)dt

=

∫
Q(T )

(fm(ūn, v̄n) +
s′n
sn
yūny)zdydt for n. (21)

Since sn → s in C([0, T ]), from the above convergences it is clear that∫ T

0

∫ 1

0

ūnjtzdxdt→
∫ T

0

〈ūt, z〉Xdt,
∫
Q(T )

κ1
s2nj

ūnjyzydydt→
∫
Q(T )

κ1
s2
ūyzydydt,∫

Q(T )

(fm(ūnj
, v̄nj

)+
s′nj

snj

yūnjy)zdydt→
∫
Q(T )

(fm(ū, v̄)+
s′

s
yūy)zdydt as j →∞.

We show convergences of the third and fourth terms in the left hand side of
(21) in the following way:

|
∫ T

0

(
s′nj

snj

ūnj
(·, 1)− s′

s
ū(·, 1))z(·, 1)dt|

12



≤
∫ T

0

|
s′nj

snj

− s′

s
||ūnj

(·, 1)||z(·, 1)|dt+

∫ T

0

s′

s
|ūnj

(·, 1)− ū(·, 1))||z(·, 1)|dt

≤ u∗

∫ T

0

|
s′nj

snj

− s′

s
||z|Xdt+

√
2

s(0)

∫ T

0

|s′||ūnj
− ū|1/2H |ūnjy − ūy|

1/2
H |z|

1/2
H |zy|

1/2
H dt,

and

|
∫ T

0

(
1

snj

ψ(ūnj
(·, 1))− 1

s
ψ(ū(·, 1)))z(·, 1)dt|

≤
∫ T

0

| 1

snj

− 1

s
||ψ(ūnj

(·, 1))||z(·, 1)|dt+

∫ T

0

1

s
|ψ(ūnj

(·, 1))− ψ(ū(·, 1))||z(·, 1)|dt

≤ ψ(u∗)

∫ T

0

| 1

snj

− 1

s
||z|Xdt+

C5

s(0)

∫ T

0

|ūnj
(·, 1))− (ū(·, 1))||z(·, 1)|dt

≤ ψ(u∗)

∫ T

0

| 1

snj

− 1

s
||z|Xdt+

√
2C5

s(0)

∫ T

0

|ūnj
− ū|1/2H |ūnjy − ūy|

1/2
H |z|Xdt for j,

where C5 is a positive constant satisfying |ψ(r) − ψ(r′)| ≤ C5|r − r′| for
0 ≤ r, r′ ≤ u∗. Hence, we conclude that (SS3) holds. Note that we can get
(SS4) in a similar fashion.

As next step, we prove the uniqueness of a weak solution to SPm(s, ū0, v̄0)
on [0, T ]. Let (ū1, v̄1) and (ū2, v̄2) be weak solutions of SPm(s, ū0, v̄0) on [0, T ]
and put ū = ū1 − ū2 and v̄ = v̄1 − v̄2 on Q(T ). Then (SS3) implies that

〈ūt, z〉X +
κ1
s2

∫ 1

0

ūyzydy +
s′

s
ū(·, 1)z(·, 1) +

1

s
(ψ(ū1(·, 1))− ψ(ū2(·, 1)))z(·, 1)

=

∫ 1

0

(fm(ū1, v̄1)− fm(ū2, v̄2))zdy +
s′

s

∫ 1

0

yūyzdy for z ∈ X a.e. on [0, T ]. (22)

By taking z = ū in (22) we have

1

2

d

dt
|ū|2H +

κ1
s2
|ūy|2H +

s′

s
|ū(·, 1)|2 +

1

s
(ψ(ū1(·, 1))− ψ(ū2(·, 1)))ū(·, 1)

≤ Cm(|ū|H + |v̄|H)|ū|H +
κ1
2s2
|ūy|2H +

1

2κ1
|s′|2|ū|2H a.e. on [0, T ]

so that

1

2

d

dt
|ū|2H +

κ1
2s2
|ūy|2H ≤ Cm(|ū|H + |v̄|H)|ū|H +

1

2κ1
|s′|2|ū|2H a.e. on [0, T ].
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We can also obtain the inequality for v̄. Accordingly, by adding these two
inequalities and Gronwall’s inequality we show the uniqueness.

Finally, in order to prove (17), we put u(t, x) = ū(t, x
s(t)

) and v(t, x) =

v̄(t, x
s(t)

) for (t, x) ∈ Qs(T ) and un(t, x) = ūn(t, x
sn(t)

) and vn(t, x) = v̄n(t, x
sn(t)

)

for (t, x) ∈ Qsn(T ) and n. Then Lemma 3.3 guarantees the following inequal-
ity:

1

2

d

dt

∫ sn

0

|un − g|2dx+
γ

2

d

dt

∫ sn

0

|vn − h|2dx

+κ1

∫ sn

0

|unx|2dx+ κ2γ

∫ sn

0

|vnx|2dx+ ψ(un(·, sn))(u(·, sn)− g)

+
1

2
s′n(|un(·, sn)− g|2 + γ|vn(·, sn)− h|2) + Cφ

∫ sn

0

|γvn − un|q+1dx

≤ −g′
∫ sn

0

(un − g)dx− γh′
∫ sn

0

(vn − h)dx (23)

−
∫ sn

0

φm(γvn − un)(g − g∗)dx+ γ

∫ sn

0

φm(γvn − un)(h− h∗)dx

−s′ng(un(·, sn)− g)− γs′nh(vn(·, sn)− h) a.e. on [0, T ],

We integrate (23) on [0, t1] with respect to t for 0 < t1 ≤ T . Then on account
of the lower semi continuity of integral, we obtain by letting n→∞

1

2

∫ s(t1)

0

|u(t1)− g(t1)|2dx+
γ

2

∫ s(t1)

0

|v(t1)− h(t1)|2dx

+κ1

∫ t1

0

∫ s

0

|ux|2dxdt+ κ2γ

∫ t1

0

∫ s

0

|vx|2dxdt+

∫ t1

0

ψ(u(·, s))(u(·, s)− g)dt

+
1

2

∫ t1

0

s′(|u(·, s)− g|2 + γ|v(·, s)− h|2)dt+ Cφ

∫ t1

0

∫ s

0

|γv − u|q+1dxdt

≤ −
∫ t1

0

g′
∫ s

0

(u− g)dxdt−
∫ t1

0

γh′
∫ s

0

(v − h)dxdt

−
∫ t1

0

∫ s

0

φm(γv − u)(g − g∗)dxdt+ γ

∫ t1

0

∫ s

0

φm(γv − u)(h− h∗)dxdt

−
∫ t1

0

(s′g(u(·, s)− g) + γs′h(v(·, s)− h))dt for 0 < t1 ≤ T.
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Relying on uniqueness, (ū, v̄) is also a weak solution of the problem SPm(s, ū(t0), v̄(t0))
on [t0, T ] for 0 < t0 ≤ T . Hence, it holds that

1

2

∫ s(t1)

0

|u(t1)− g(t1)|2dx+
γ

2

∫ s(t1)

0

|v(t1)− h(t1)|2dx

+κ1

∫ t1

t0

∫ s

0

|ux|2dxdt+ κ2γ

∫ t1

t0

∫ s

0

|vx|2dxdt+

∫ t1

t0

ψ(u(·, s))(u(·, s)− g)dt

+
1

2

∫ t1

t0

s′(|u(·, s)− g|2 + γ|v(·, s)− h|2)dt+ Cφ

∫ t1

t0

∫ s

0

|γv − u|q+1dxdt

≤ −
∫ t1

t0

g′
∫ s

0

(u− g)dxdt−
∫ t1

t0

γh′
∫ s

0

(v − h)dxdt (24)

−
∫ t1

t0

∫ s

0

φm(γv − u)(g − g∗)dxdt+ γ

∫ t1

t0

∫ s

0

φm(γv − u)(h− h∗)dxdt

−
∫ t1

t0

(s′g(u(·, s)− g) + γs′h(v(·, s)− h))dt for 0 ≤ t0 < t1 ≤ T.

Therefore, by dividing it by t1 − t0 and letting t1 ↓ t0 we can obtain (24).
Thus we have proved this Proposition. �

4. Interfaces propagate asymptotically like
√
t as t → ∞

In this section, we finally prove the main result – Theorem 2.2.

4.1. Proof of the existence of a weak solution

We suppose (A1), (A2) and (A3). Then, since fm is Lipschitz continuous
on IR for each m > 0, by Theorem 1.1 of [3] P(fm) has a unique weak solution
{s, u, v} on [0, Tm] for some Tm > 0.

First, we show that P(fm) has a weak solution on [0,∞). In fact, let
[0, T ∗m) be the maximal interval of existence of a weak solution of P(fm). We
assume that T ∗m is finite. Obviously, Lemma 3.2 implies that

0 ≤ u ≤ u∗ and 0 ≤ v ≤ v∗ on Qs(T
∗
m)

so that s′(t) = ψ(u(t, s(t)) ≤ ψ(u∗) for 0 ≤ t < T ∗m, where u∗ and v∗ are
positive constants given in the proof of Lemma 3.2. Accordingly, there exists
a number s(T ∗m) > 0 such that s(t) → s(T ∗m) as t ↑ T ∗m. Therefore, on
account of (17) we infer that ū, v̄ ∈ L2(0, T ∗m;H1(0, 1)), where ū and v̄ are
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functions defined by (10). Similarly to (20), ū, v̄ ∈ W 1,2(0, T ∗m;X∗). This
shows that there exist ū(T ∗m), v̄(T ∗m) ∈ L∞(0, 1) such that ū(t)→ ū(T ∗m) and
v̄(t)→ v̄(T ∗m) weakly in H as t ↑ T ∗m. Hence, by applying Theorem 1.1 of [3],
again, we can extend the solution beyond T ∗m. This is a contradiction, that
is, P(fm) has a weak solution on [0,∞). Moreover, it is obvious the weak
solution of P(fm) is also a weak solution to P(f), in case m ≥ γv∗+u∗. Thus
we have proved the existence of a weak solution to P(f) on [0,∞). �

4.2. Proof of the upper estimate for the free boundary position

Let {s, u, v} be a weak solution of P(f) on [0,∞) and ū and v̄ are functions
defined by (10). Then (S4) leads to:

〈ūt(t), z〉X +
κ1
s2(t)

∫ 1

0

ūy(t)zydy + (
s′(t)

s(t)
ū(t, 1) +

s′(t)

s(t)
)z(1)dt

=

∫ 1

0

(f(ū(t), v̄(t)) +
s′(t)

s(t)
yūy(t))zdy for z ∈ X and a.e. t ∈ [0,∞).

Accordingly, by taking z = s2y, we have

〈ūt, s2y〉X + κ1

∫ 1

0

ūydy + ss′(ū(·, 1) + 1)

=

∫ 1

0

(f(ū, v̄)s2ydy + ss′
∫ 1

0

ūyy
2dy a.e. on [0,∞).

It is clear that (see [10, Proposition 23.23])

〈ūt, s2y〉X =
d

dt

∫ 1

0

ūs2ydy−
∫ 1

0

2ūss′ydy,

∫ 1

0

ūs2ydy =

∫ s

0

xudx a.e. on [0,∞).

It follows that

d

dt

∫ s

0

xudx+ κ1

∫ 1

0

ūydy + ss′ =

∫ 1

0

f(ū, v̄)s2ydy a.e. on [0,∞). (25)

We can obtain the similar equation for v̄ to (25). Accordingly, we see that

d

dt

∫ s

0

x(u+ v)dx+ κ1

∫ 1

0

ūydy + κ2

∫ 1

0

v̄ydy + ss′ = 0 a.e. on [0,∞). (26)
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By integrating it, it holds that∫ s(t)

0

x(u(t) + v(t))dx+ κ1

∫ t

0

u(τ, s(τ))dτ + κ2

∫ t

0

v(τ, s(τ))dτ +
1

2
s2(t)

=

∫ s0

0

x(u0 + v0)dx+ κ1

∫ t

0

g(τ)dτ + κ2

∫ t

0

h(τ)dτ +
1

2
s20 for t ∈ [0,∞).

Making use of the positivity of u and v, we observe that

1

2
s(t)2 ≤ 1

2
s20 +

∫ s0

0

x(u0 + v0)dx+ (κ1g
∗ + κ2h

∗)t for t ∈ [0,∞),

where g∗ = |g|L∞(0,∞) and h∗ = |h|L∞(0,∞). This inequality guarantees the
existence of a positive constant C∗ satisfying

s(t) ≤ C∗
√
t+ 1 for t ≥ 0. �

Proof of the lower estimate for the free boundary. First, we show∫ t

0

∫ s

0

|vx|2dxdτ ≤ K1(s(t) + 1) for t ≥ 0, (27)

where K1 is a positive constant. In fact, Proposition 3.5 implies

1

2

∫ s(t)

0

|u(t)− g(t)|2dx+
γ

2

∫ s(t)

0

|v(t)− h(t)|2dx

+κ1

∫ t

0

∫ s

0

|ux|2dxdτ + κ2γ

∫ t

0

∫ s

0

|vx|2dxdτ +

∫ t

0

s′u(·, s)dτ

≤ 1

2

∫ s0

0

|u0 − g(0)|2dx+
γ

2

∫ s0

0

|v0 − h(0)|2dx

+

∫ t

0

s′gdτ −
∫ t

0

g′
∫ s

0

(u− g)dxdτ − γ
∫ t

0

h′
∫ s

0

(v − h)dxdτ

−
∫ t

0

∫ s

0

φ(γv − u)(g − g∗)dxdτ + γ

∫ t

0

∫ s

0

φ(γv − u)(h− h∗)dxdτ

−
∫ t

0

(s′g(u(·, s)− g) + γs′h(v(·, s)− h))dτ

≤ 1

2

∫ s0

0

|u0 − g(0)|2dx+
γ

2

∫ s0

0

|v0 − h(0)|2dx (28)
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+g∗(s(t)− s0) + (u∗ + g∗)s(t)

∫ t

0

|g′|dτ + γ(v∗ + h∗)s(t)

∫ t

0

|h′|dτ

+s(t)C4(

∫ t

0

|g − g∗|dxdτ + γ

∫ t

0

|h− h∗|dxdτ)

+(g∗(u∗ ∗+g∗) + γh∗(v∗ + h∗))(s(t)− s0) for t ≥ 0.

Obviously, by (A2) we can take a positive number K1 satisfying (27).
Recalling (26), we have∫ s(t)

0

x(u(t) + v(t))dx+ κ1

∫ t

0

u(τ, s(τ))dτ + κ2

∫
Qs(t)

vxdxdτ +
1

2
s2(t)

=

∫ s0

0

x(u0 + v0)dx+ κ1

∫ t

0

g(τ)dτ +
1

2
s20

≥ κ1g0t for t ≥ 0

so that

κ1g0t ≤ κ2(

∫
Qs(t)

|vx|2dxdτ)1/2(s(t)t)1/2 + (u∗ + v∗)

∫ s(t)

0

xdx+
1

2
s2(t)

+
κ1

κ
1/p
0

∫ t

0

|s′|1/pdτ

≤ κ2(K1s(t) +K1)
1/2(s(t)t)1/2 +

1

2
(u∗ + v∗)s(t)

2 +
1

2
s2(t)

+
κ1

κ
1/p
0

(

∫ t

0

|s′|dτ)1/pt1−1/p

≤ K2(s(t) + 1)s(t) +
κ1g0

2
t for t ≥ 0,

where K2 is a positive constant. Then it holds that

κ1g0
2
t ≤ K2s(t)

2 +
κ1g0

4
+

1

κ1g0
K2

2s(t)
2 for t ∈ [0, T ].

Hence, it is easy to see that

κ1g0
4
t ≤ (K2 +

1

κ1g0
K2

2)s(t)2 for t ≥ 1.

In case 0 ≤ t ≤ 1, we have

s0
√
t ≤ s0 ≤ s(t).

Thus we have now completed the proof of the Theorem. �
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