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An LPV identification Framework Based on

Orthonormal Basis Functions
⋆

R. Tóth ∗ P. S. C. Heuberger ∗ P. M. J. Van den Hof ∗

∗ Delft Center for Systems and Control (DCSC), Delft University of
Technology Mekelweg 2, 2628 CD Delft, The Netherlands
(e-mails: r.toth@ tudelft.nl, P.S.C.Heuberger@ tudelft.nl,

P.M.J.vandenHof@tudelft.nl).

Abstract: Describing nonlinear dynamic systems by Linear Parameter-Varying (LPV) models
has become an attractive tool for control of complicated systems with regime-dependent (linear)
behavior. For the identification of LPV models from experimental data a number of methods has
been presented in the literature but a full picture of the underlying identification problem is still
missing. In this contribution a solid system theoretic basis for the description of model structures
for LPV systems is presented, together with a general approach to the LPV identification
problem. Use is made of a series-expansion approach, employing orthogonal basis functions.

Keywords: Identification, Linear parameter-varying systems, Models, All-pass filters

1. INTRODUCTION

Industrial processes often exhibit parameter variations due
to non-stationary or nonlinear behavior or dependence on
external variables. For such processes, the theory of Lin-
ear Parameter-Varying (LPV) systems offers an attractive
modeling framework. This system class can be seen as an
extension of Linear Time-Invariant (LTI) systems as the
signal relations are considered to be linear, but the model
parameters are assumed to be functions of a time-varying
signal, the so-called scheduling variable p. As a result
of this parameter variation, the LPV system class can
describe both time-varying and nonlinear phenomena and
it is particularly suited to model plants that have regime
dependent, e.g. position dependent, linear behavior. Prac-
tical use of this framework is stimulated by the fact that
LPV control design is well worked out, extending results of
optimal and robust LTI control theory to nonlinear, time-
varying plants (Packard (1994); Zhou and Doyle (1998)).

In the past two decades several methods have been devel-
oped for the identification of discrete-time LPV models
from measured data (a few examples are Giarré et al.
(2006); Felici et al. (2006); Tóth et al. (2007b)). Most of
these approaches exploit the fact that an LPV system can
be viewed as a collection of “local” models connected by
scheduling dependent weighting functions. The identifica-
tion approaches that are presented in the literature so far
all take a particular starting point of a fixed model struc-
ture and identification method, usually chosen as a direct
extension of the situation of LTI systems. A general theory
for identification of LPV models is still missing. To a large
extent, this is due to the fact that a structured framework
for the description of this model class is lacking, including
well-defined notions as model transformations, equivalence
classes and canonical forms. As a result the model struc-

⋆ This work was supported by the Dutch National Science Founda-
tion (NWO).

tures, commonly used in LPV identification methods, are
generally not well defined or are limiting the representation
capabilities of the resulting models considerably. In this
paper the behavioral framework, originally developed for
LTI systems (Willems (1991)), is used and extended to the
LPV system class, to overcome the indicated limitations.
On the basis of a solid system-theoretic definition of LPV
systems, several LPV model structures are presented and
consequences for their use in identification are discussed.
Particular attention will be given to a series-expansions ap-
proach in terms of Orthonormal Basis Functions (OBFs).
The question whether the scheduling signal has a static or
dynamic effect on the system coefficients is an important
issue that is discussed in detail.

In this paper we will restrict attention to single input -
single output (SISO) systems, but all results carry over to
the MIMO case in a straightforward way.

2. CONCEPTS AND NOTATION

In a discrete-time setting, LPV systems are commonly
described in a state-space (SS) form:

x(k + 1) = A(p(k))x(k) + B(p(k))u(k), (1a)

y(k) = C(p(k))x(k) + D(p(k))u(k), (1b)

and in a input-output (IO) model representation:

y(k) =

na
∑

i=1

ai(p(k))y(k − i) +

nb
∑

j=0

bj(p(k))u(k − j), (2)

where y and u are the output, respectively input of the
system, x is the state variable. The real-valued system
coefficients (A, B,C, D) and {ai, bj}

i=1,···na

j=0,···nb
, are depen-

dent on the scheduling variable p : Z → P, where P is
a closed subset of R

nP . Note that these representations
are equivalent with their LTI counterpart for a constant
trajectory of p, i.e. p(k) ≡ p̄ for all k, where p̄ ∈ P.

A few observations should be added to these concepts:
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• The coefficients in (1a-b,2) are assumed to be a static
(nonlinear) function of the instantaneous value of p.

• The McMillan degree of the LTI systems associated
with (1a-b,2) for p(k) ≡ p̄ can vary for each p̄ ∈ P.

• LPV systems are closely related to Linear Time-
Varying (LTV) systems, with the difference that the
knowledge about the time-varying behavior is limited
by the fact that p is generally unknown in advance
but online measurable during operation.

• Virtually all control design approaches are based on
LPV-SS models, often with the assumption that the
dependence of the matrices on p is affine or rational.

3. LPV MODELS REVISITED

3.1 Approaches to LPV identification

For the identification of LPV models, two major different
approaches can be distinguished:

(1) Local approach
• LTI models are identified in a number of operat-

ing points corresponding to constant scheduling
signals, p(k) ≡ p̄i, i = 1, · · ·Nloc.

• The resulting Nloc local linear models are interpo-
lated (possibly by using data from an additional
global experiment) to an LPV model.

(2) Global approach
• Determine a global LPV model structure and an

identification criterion.
• Use data from a global experiment, i.e. with a

varying p, to estimate an LPV model.

For the estimation step in these identification approaches
both prediction-error methods and subspace methods are
available (Giarré et al. (2006); Felici et al. (2006)). For
interpolation various techniques and approaches have been
introduced, varying from interpolation on pole estimates
to the technique where each local (LTI) model is converted
to a SS canonical form, and subsequently the coefficients
in this model are interpolated.

This sketch of possible approaches directly leads to ques-
tions about the definition and selection of appropriate
model structures. While many identification-related issues
are up for further exploration, as e.g. experiment design,
estimation accuracy, model validation, we will focus on the
questions related to the use of different model structures.

3.2 Model structure considerations

As a first indication that there are theoretical problems
involved with the current practice, let’s consider a LPV-
SS model representation
[

x1(k + 1)
x2(k + 1)

]

=

[

0 a2(p(k))
1 a1(p(k))

] [

x1(k)
x2(k)

]

+

[

b2(p(k))
b1(p(k))

]

u(k),

y(k) = x2(k).

This system can be written in an equivalent IO form:

y(k) = a1(p(k − 1))y(k − 1) + a2(p(k − 2))y(k − 2)

+b1(p(k − 1))u(k − 1) + b2(p(k − 2))u(k − 2),

which is clearly not in the form defined by (2). This simple
example shows that LPV-SS and IO representations are
inequivalent if the coefficient dependence on p is restricted

to be static. In order to obtain equivalence, it is necessary
to allow a dynamic mapping between p and the coefficients,
i.e. {A,B, C, D} and {ai, bj} should depend on (finite
many) time-shifted instances of p(k) (Tóth et al. (2007a)).

Based on the observation that LPV systems are closely
related to LTV systems, it follows that for the definition
of state-space equivalence transformations the concepts
of the LTV theory should be used (Guidorzi and Diversi
(2003)). It can be shown (see Tóth et al. (2007a)) that this
results in transformation matrices and consequently also
in state-space matrices that depend dynamically on p.

3.3 A behavioral approach

From the previous sections it can be concluded that the
classical formulation of LPV models should be adapted
in order to deal with dynamic scheduling dependence. In
Tóth (2008), the behavioral framework, originally devel-
oped for LTI systems (Willems (1991)), is extended to deal
with LPV systems. In this framework a discrete time (DT)
parameter-varying (PV) system S is defined as

S = (T, P, W, B) , (3)

where T = Z is the DT time axis, P denotes the scheduling
space, W is the signal space (the range of the system
signals) with dimension nW and B ⊂ (P × W)T is the
behavior of the system (XT stands for all maps from T to

X). B defines trajectories of (P × W)
T

that are possible
according to the system model. Note that there is no prior
distinction between inputs and outputs in this setting.

We also introduce the projected scheduling behavior

BP = {p ∈ P
T | ∃w ∈ W

T s.t. (w, p) ∈ B}, (4)

and for a given p ∈ BP, we define the projected behavior

Bp = {w ∈ W
T | (w, p) ∈ B}. (5)

With these concepts we can define LPV systems as follows:

Definition 1. (DT-LPV system). Let T = Z. The para-
meter-varying system S is called LPV, if the following
conditions are satisfied:

• W is a vector-space and Bp is a linear subspace of
W

T for all p ∈ BP (linearity).
• For any (w, p) ∈ B and any τ ∈ T, it holds that (w(¦+

τ), p(¦ + τ)) ∈ B, in other words qτ
B = B (time-

invariance), with q the forward time-shift operator.

Note that in terms of Definition 1, for a constant schedul-
ing trajectory, p(k) ≡ p̄, the associated system G =
(T, W, Bp̄) is an LTI system. In a next step, the behavior
B of LPV systems has to be specified in terms of math-
ematical representations. The coefficients in these repre-
sentations will become (nonlinear) functions of p. In order
to describe this functional dependence of a single real-
valued coefficient, we employ functions r : R

n → R that
are considered to be in the set R = ∪n∈NRn, where Rn

is the set of essentially 1 n-dimensional real-meromorphic
functions (being a quotient of analytical functions). This
function specifies how the resulting coefficient is dependent
on n variables, that are selected -in a unique ordering-
from the set {qipj}

i∈Z

j=1,··· ,nP
. In order to specify the (time-

varying) coefficient we introduce the operator

⋄ : (R,BP) → R
Z defined by r ⋄ p = r

(

p, qp, q−1p, . . .
)

.

1 In the sense that r(x1, · · · , xn) does depend on xn.
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Thus the value of a (p-dependent) coefficient r in an LPV
system representation at time k is given by (r ⋄ p)(k).

In the sequel the (time-varying) coefficient sequence (r ⋄
p) will be used to operate on a signal w (like ai(p)
in (2)), giving the varying coefficient sequence of the
representations. In this respect an important property
of the ⋄ operation is that multiplication with the shift
operator q is not commutative, in other words

q(r ⋄ p)w 6= (r ⋄ p)qw.

To handle this multiplication, for r ∈ R we define the shift
operations −→r ,←−r as

−→r = r′ ∈ R s.t. r′ ⋄ p = r ⋄ (qp),
←−r = r′′ ∈ R s.t. r′′ ⋄ p = r ⋄ (q−1p),

for p ∈ (RnP)Z. With these notions we can write

q(r ⋄ p)w = (−→r ⋄ p)qw and q−1(r ⋄ p)w = (←−r ⋄ p)q−1w.

Next we introduce difference equations with varying coeffi-
cients as the representation of the behavior. Let R[ξ]nr×nw

be the ring of matrix polynomials in the indeterminant
ξ and with coefficients in Rnr×nW , then a PV difference
equation is defined as follows:

(R(q) ⋄ p)w :=

nξ
∑

i=0

(ri ⋄ p)qiw = 0, (6)

where R(q) =
∑nξ

i=0 riq
i, nξ = deg(R), and ri ∈ Rnr×nW .

In this notation q operates on the signal w, while the
operation ⋄ takes care of the time/scheduling-dependent
coefficient sequence. Note that as the indeterminant ξ is
associated with q , multiplication with ξ is non commuta-
tive on R[ξ]nr×nW , i.e. ξr = −→r ξ and rξ = ξ←−r .

3.4 LPV kernel representation

Using the previously introduced concepts, we can define
the kernel representation (KR) of an LPV system in the
form of (6). More precisely, we call (6) a representation
of the LPV system S = (Z, RnP , RnW , B) with scheduling
signal p and signals w if

B = {(w, p) ∈ (RnW × R
nP)

Z
| (R(q) ⋄ p) w = 0}. (7)

In the sequel we only consider LPV systems, whose be-
havior can be described by (7). An important property
of these systems is that they have a kernel representation
where R has full row rank (Tóth (2008)).

3.5 IO representation

For practical applications, a partitioning of the signals
w into input signals u ∈ (RnU)Z and output signals y ∈
(RnY)Z, i.e. w = col(u, y), is often convenient. Note that
this partitioning is not trivial and can neither be chosen
freely. For details see (Willems (1991); Tóth (2008)). Using
an IO partition, the IO representation of S is defined as

(Ry(q) ⋄ p) y = (Ru(q) ⋄ p)u, (8)

where Ru and Ry are matrix polynomials with mero-
morphic coefficients, and where Ry is full row rank and
deg(Ry) ≥ deg(Ru). Using the same type of decomposition
as in (6), we derive the following form of an IO represen-
tation na

∑

i=0

(ai ⋄ p) qiy =

nb
∑

j=0

(bj ⋄ p) qju. (9)

It is apparent that (9) is the ‘dynamic-dependent’ coun-
terpart of (2).

3.6 State-space representation

Without going into details about the definition of so
called latent variables, we formulate the discrete-time SS
representation, based on an IO partition (u, y), as a first-
order PV difference equation system in the latent variable
x : Z → X:

qx = (A ⋄ p)x + (B ⋄ p)u, (10a)

y = (C ⋄ p)x + (D ⋄ p)u, (10b)

where X ⊆ R
nX is the state space and (A, B,C, D) are

matrices of appropriate dimensions with their entries being
meromorphic functions in R. It is apparent that (10a-b)
are the ‘dynamic-dependent’ counterparts of (1a-b).

3.7 Properties

Using the behavioral framework, it is now possible to
consider equivalence of behaviors, and related equivalent
transformations between the different LPV system repre-
sentations. For details see (Tóth (2008)). In this frame-
work, transformations between different representations as
well as state transformations into a different coordinate
system generally involve dynamically dependent relations.

4. AN ORTHONORMAL BASIS FUNCTIONS
APPROACH

4.1 Series-expansion representations

In this section we introduce a series-expansion type of
model structure for LPV systems, via the concept of OBFs
(Heuberger et al. (2005)). A major motivation is the linear-
in-the-parameters property of these structures, which is
beneficial in prediction-error identification. A second merit
of these structures is that they allow a relatively simple
interpolation of local LTI models with varying McMillan
degree. Furthermore it was shown in Boyd and Chua
(1985) for nonlinear Wiener models (LTI system followed
by a static nonlinearity) that, if the LTI part is an OBF
filter bank, then such models are general approximators of
nonlinear systems with fading memory.

The transfer function F ∈ H2 of a (local) linear model can
be written as

F (z) = D +
∞
∑

i=1

wiφi(z), (11)

where {φi}
∞
i=1 is a basis for H2 and wi ∈ R. In the

theory of Generalized Orthonormal Basis Functions, the
functions φi(z) are generated by applying a Gram-Schmidt
orthonormalization to the sequence of functions

1

z − λ1

, · · ·
1

z − λnb

,
1

(z − λ1)2
, · · ·

with stable pole locations λ1, · · ·λnb
. The choice of these

basis poles determines the rate of convergence of the series
expansion (11).

An alternative derivation is based on a balanced realiza-
tion {Ab, Bb, Cb, Db} of the inner function

Gb(z) =

nb
∏

i=1

1 − zλ∗
i

z − λi

, (12)
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where the functions {φi(z)} are the scalar elements of the
vector functions

(zI − Ab)
−1

BbGj
b(z), j = 1, 2, · · · . (13)

By using a truncated expansion in (11) an attractive model
structure for LTI identification results, with a well worked-
out theory in terms of variance and bias expressions. The
series expansion (11) can be extended to LPV systems,
such that for a given basis {φi}

∞
i=1 and a specific IO-

partitioning (u, y), an LPV system can be written as

y = (D ⋄ p)u +
∞
∑

i=1

(wi ⋄ p)φi(q)u, (14)

with wi ∈ R. An obvious approach is to use a truncated
expansion, i.e. with {φi}

n
i=1, as a model-structure candi-

date for LPV identification. Note that these expansions are
formulated in the time domain (using the shift operator q),
as there exist no frequency-domain expressions for LPV
systems. Similar to the LTI case, this structure is linear in
the coefficients {wi}

n
i=1. An important question that arises

is wether the basis functions φi can be chosen such that a
fast rate of convergence can be accomplished for all possi-
ble scheduling trajectories p. Note that the representation
(14) is equivalent with a state-space description (10a-b),
where the matrices A and B are independent of p.

4.2 Basis selection

In order to select a basis, it is obviously required to
obtain knowledge about the system to be modeled. For
the LTI case it is well-known that an optimal basis can
be chosen using knowledge about the system poles. It
can be shown that the same property holds for LPV
systems, where knowledge of the poles of all possible
local LTI models is required. In practice this knowledge
is generally not available and one has to resort to limited
prior-information resources, such as expert knowledge or
preliminary identification experiments.

A possible scheme for the basis selection is given by the
following steps:

(1) Identify a number of local linear models in several
different operating regimes p̄i, i.e. using data with a
constant scheduling signal p(k) ≡ p̄i.

(2) Cluster the poles in groups of the complex plane and
find optimal cluster centers (these centers will be used
as basis poles)

In this procedure use is made of minimization of a distance
measure, which is relevant for the worst-case approxi-
mation error of the representation (14). This scheme is
motivated by the extension of the classical Kolmogorov
n-width result of Pinkus (1985) to OBFs, as obtained by
Oliveira e Silva (1996). These results states that for a given
LTI inner function Gb, the first n OBF’s generated by Gb

(see Section 4.1) are optimal in the n-width sense for the
set of LTI systems having poles in the region

{z ∈ D | |Gb(z−1)| ≤ ρ}.

Here ρ is the rate of convergence in the series expansion, D

is the unit disc, and n is a multiple of the number of basis
poles nb. For the basis-selection problem we are dealing
with the inverse problem, i.e. given a region of poles Ω,
approximate this region as

Ω ≈ Ω(Ξ, ρ) = {z ∈ D | Gb(z−1) ≤ ρ}. (15)

The n optimal OBF poles Ξ = {λ1, · · · , λn} are therefore
obtained by solving the following Kolmogorov measure
minimization problem,

min
Ξ⊂D

ρ = min
Ξ⊂D

max
z∈Ω

∣

∣Gb(z−1)
∣

∣ = min
Ξ⊂D

max
z∈Ω

∣

∣

∣

∣

∣

n
∏

k=1

1 − zλ∗
k

z − λk

∣

∣

∣

∣

∣

As stated above, in a practical situation the knowledge
about the pole region Ω is limited. In the next section we
present an approach to obtain a simultaneous solution for
the problems of reconstructing Ω from experimental data
and the Kolmogorov measure minimization problem.

4.3 A fuzzy clustering approach

Objective-function-based fuzzy clustering algorithms, such
as Fuzzy c-Mean clustering (FcM), have been used in a
wide collection of applications (Bezdek (1981)). In this
section we give the extension of FcM to the so-called Fuzzy-
Kolmogorov c-Max (FKcM) algorithm, which enables the
determination of the region Ω on the basis of observed
poles with membership based, overlapping areas. We as-
sume that we are given a set of poles Z = {z1, · · · , zN}.

Let c be the number of clusters, that we wish to discern
and let vi ∈ D denote the cluster center of the i-th cluster.
We define membership functions µi : D → [0, 1], that
determine for each z ∈ D the ‘degree of membership’ to
cluster i. By using a threshold value ε, we obtain a set

Ω = {z ∈ D | ∃i ∈ {1, . . . , c}, µi(z) ≥ ε}. (16)

With these preliminaries we can now formulate the prob-
lem we consider:

Problem 2. For a given c, find a region Ω, as described
above, such that Ω contains Z, and such that the OBFs,
with poles in the cluster centers {vi}

c

i=1, are optimal in
the Kolmogorov n-width sense, n = c, with respect to Ω
and with a minimal corresponding decay rate ρ.

To measure dissimilarity of Z with respect to each cluster,
we introduce distances dik = κ(vi, zk) between vi and zk,
where κ is the Kolmogorov metric on D, defined by

κ(x, y) =

∣

∣

∣

∣

x− y

1 − x∗y

∣

∣

∣

∣

. (17)

Analogously we define µik = µi(zk) and we regulate the
membership functions by the so-called fuzzy constraints:

c
∑

i=1

µik = 1 and 0 <
N

∑

k=1

µik < N.

Fuzzy clustering can be viewed as the minimization of the
FcM-functional (Bezdek (1981)), Jm, which in the FKcM
case can be formulated as

Jm = max
1≤k≤N

c
∑

i=1

µm
ikdik. (18)

Here the design parameter m ∈ (1,∞) determines the
fuzziness of the resulting partition. Note that Jm is a
function of the membership data µik and the cluster
centers vi. It can be observed, that (18) corresponds to
a worst-case (max) sum-of-error criterion, contrary to the
mean-squared-error (MSE) criterion of the original FcM.

The crucial property of (18) is that it can be shown (Tóth
et al. (2009)) that for large values of m minimization of
Jm is equivalent to the Kolmogorov measure minimization
problem. For details as well as a detailed description of
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Fig. 1. IO signal flow graph of (a) the W-LPV OBF model
(see (19)) and (b) the H-LPV OBF model (see (20)).

the optimization algorithm see Tóth et al. (2009). In Tóth
(2008), also the robust extension of the basis selection is
discussed, i.e. not only pole estimates are considered, but
also their corresponding uncertainty regions.

For the determination of the actual number of clusters
in these algorithms, so-called adaptive cluster merging is
applied. Starting from a relatively large initial number
of clusters (typically around N/2), the adaptive merging
steers the algorithm towards the natural number of groups
that can be observed in the data, assisting the selection of
the required number of OBFs in (14).

4.4 OBF-based model structures

We assume that the basis-selection step has been com-
pleted and we are given a set of ng basis functions
{φi(z)}

ng

i=1 with good approximation properties for the set
of local LTI behaviors corresponding to constant schedul-
ing signals. In the next step we construct model structures
for the identification of an LPV system S. To keep the
notation simple, we restrict attention to strictly proper
models (D = 0 in (14)). The IO dynamics of the LPV
model can now be written as

y(k) =

ng
∑

i=1

(wi ⋄ p) (k)φi(q)u(k). (19)

Introduce Φng
= [ φ1 . . . φng ]⊤ and W = [ w1 . . . wng ]⊤

as shorthand notations. Then (19) can be visualized as
in Fig. 1a, where y̆i(k) = φi(q)u(k). Because of the close
resemblance of this structure to classical Wiener models
this model structure is referred to as a Wiener LPV OBF
(W-LPV OBF) model. A closely related model structure,
depicted in Fig. 1b, is the Hammerstein LPV OBF model
(H-LPV OBF), that results from the description

y(k) =

ng
∑

i=1

φi(q) (wi ⋄ p) (k)u(k). (20)

This latter structure can be motivated from the LTI series
expansion (11), by changing the order of the arguments.
This change has no effect in the LTI case, but certainly
results in a different LPV structure. In the sequel we
will restrict attention to the Wiener model structure.
Furthermore we assume that the coefficient functions wi

have only a static dependence on p, so we can write
(wi ⋄ p) (k) = wi(p(k)) in (19). As stated before, the W-
LPV OBF structure has a direct SS realization:

qx = Ax + Bu (21a)

y = (W ⋄ p) x, (21b)

where the constant matrices A and B are completely de-
termined by {φi}

ng

i=1. This illustrates that the dependence
on p is only present in the output equation, with the result

that the assumption of static dependence is much less
restrictive than in (10a-b). With respect to the actual es-
timation with these model structures we again distinguish
a local and a global approach (Tóth et al. (2007b)):

Local estimation approach: This approach is based on a
number Nloc of “local” experiments, i.e. data collection
with a constant scheduling signal p(k) ≡ p̄j ∈ P, resulting
in data sequences {uj(k), yj(k)} for j = 1, . . . , Nloc. Based
on these data, Nloc LTI-OBF models are estimated using
a standard least-squares criterion in a one-step-ahead
prediction error setting with Output Error (OE) type of
noise model:

ε(k) = yj(k) −

ng
∑

i=1

θijφi(q)uj(k), (22)

where {θij} are real-valued coefficients. Note that – under
the condition that the data are informative – there exists a
unique analytic solution to this estimation problem. These
estimated coefficients can now be considered as “samples”
of the function wi(p), in the sense that wi(p̄j) = θij . As
a second step we use interpolation to obtain estimates of
the function wi(p), for instance by assuming a polynomial
dependence of wi on p, or by making use of splines etc.

Global estimation approach: For this approach we need to
assume a specific functional dependence of the functions
wi on p and we propose to use a linear parametrization for
this purpose, such as a polynomial dependence

wi(p(k)) = θi0 + θi1p(k) + . . . + θinr
pnr(k).

Here we assumed for simplicity that p is a one-dimensional
signal. A global data set {u(k), y(k), p(k)}N

k=1 is collected,
which is assumed to be informative with respect to (19).
It is straightforward that – using a least-squares criterion–
a unique analytic solution can be obtained for the param-
eters θij . Note that the restriction to static dependence
can be relaxed for the global approach by allowing wi

to depend on time-shifts of p(k) as well. Because of the
postulated OBF structure, both approaches will always
result in asymptotically stable models.

4.5 Approximation of dynamic dependence

To alleviate the restrictions caused by the assumption
of static dependence in the suggested model structures,
extensions for these structures were proposed in Tóth
et al. (2008). Here we only consider the Wiener case.
The idea is still to use weighting functions with static
dependence, but with the introduction of an additional
feedback loop around each basis component with a gain
incorporating also static dependence. For this new model
structure what we call Wiener Feedback (WF-LPV OBF)
model, it is apparent that by setting the feedback gains
to zero, the previous structure result. This immediately
indicates an increase in the representation capability. The
W-LPV OBF can be represented in SS form by

qx = (A − BV (p)C)x + Bu (23a)

y = W (p)Cx, (23b)

where the constant matrices A, B and C are again com-
pletely determined by {φi}

n
i=1 and V (p) is a diagonal

matrix. For the estimation of the functions W and V
again a linear parametrization using polynomials or spline
functions is suggested. To overcome the nonlinear opti-
mization problem associated with the parallel estimation
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Table 1. Validation results of 100 identifica-
tion experiments with the Wiener (W), Ham-
merstein (H), and the Wiener Feedback (WF)

model structures.

MSE (dB) VAF (%)

SNR W H WF W H WF

no noise -34.96 -30.73 -39.75 99.00 97.47 99.42

35 dB -34.77 -30.42 -39.17 98.99 97.21 99.39

20 dB -32.75 -28.96 -35.01 98.71 96.94 99.00

10 dB -31.81 -27.72 -32.38 98.19 96.01 98.59

of the parameters of W and V , the approach uses a sep-
arable least squares optimization scheme. For algorithmic
details see Tóth et al. (2008). It should be noted that the
better representation capability comes at a price. First
of all, there is no longer an analytic solution available.
Secondly, there is no guarantee that the resulting models
are asymptotically stable.

5. EXAMPLE

To illustrate the applicability of the introduced model
structures, we consider the following asymptotically stable
LPV system S, given in LPV-IO form:

a0 (p) y = b1 (p) q−1u −
5

∑

i=1

ai (p) q−iy,

where p : Z → [0.6, 0.8] and a0 (p) = 0.58 − 0.1p, a1 (p) =
− 511

860
− 48

215
p2+0.3(cos(p)−sin (p)), a2 (p) = 61

110
−0.2 sin (p),

a3 (p) = − 23
85

+ 0.2 sin (p), a4 (p) = 12
125

− 0.1 sin (p),
a5 (p) = −0.003, b1 (p) = cos(p).

Using 8 basis functions, obtained through the FKcM algo-
rithm (see Tóth et al. (2009, 2007b) for details) and a 2nd-
order polynomial-based parametrization of the coefficients
W and a 3rd-order polynomial-based parametrization of
V , identification of S with the global approach has been
carried out, with the W-LPV, H-LPV, and WF-LPV OBF
model structures. Each experiment has been repeated 100
times with different realizations of input, scheduling sig-
nals in 4 different white output noise setting. See Table 1
for the results in terms of average MSE and VAF (Vari-
ance Accounted For). The resulting signal-to-noise ratio
(SNR) of the noise settings is also indicated. As expected,
all approaches identified the system with adequate MSE
and VAF even in case of extremely heavy output noise,
which underlines the effectiveness of the proposed identi-
fication philosophy. As expected, the W-LPV and H-LPV
structures based on coefficients with static dependence
could not fully cope with the variations in the parameters
{ai}

5
i=0 . However, the W-LPV identification provided

better results than the H-LPV structure due to the differ-
ent approximation capabilities of these models (see Tóth
et al. (2007b)). For all cases, the WF-LPV model provided
better estimates than the pure static-dependence based
model estimates. This clearly shows the improvement in
the approximation capability due to the approximation of
dynamic dependence with feedback-based weighting.

6. CONCLUSION

Using a solid system theoretic definition of LPV systems
in terms of behaviors, LPV model representations are
presented and brought into a unifying framework. Real-
valued meromorphic functions are used to specify dynamic

dependence of the system coefficients on the scheduling
signal. A series expansion approach is presented for mod-
eling LPV systems, including an optimization procedure
for selecting optimal basis functions. The series-expansion
models can be used in both local and global identification
methods, and their use is illustrated in an example.
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