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Abstract 

The paper reports the development and application of a SPH (smoothed particle hydrodynamics) based simulation of 
rapid filling of pipelines, for which the rigid-column model is commonly used. In this paper the water-hammer 
equations with a moving boundary are used to model the pipe filling process, and a mesh-less Lagrangian particle 
approach is employed to solve the governing equations. To assign boundary conditions with time-dependent 
(upstream) and constant (downstream) pressure, the SPH pressure boundary concept proposed recently in literature is 
used and extended. Except for imposing boundary conditions, this concept also ensures completeness of the kernels 
associated with particles close to the boundaries. As a consequence, the boundary deficiency problem encountered in 
conventional SPH is remedied. The employed particle method with the SPH pressure boundary concept aims to 
predict the transients occurring during rapid pipe filling. It is validated against laboratory tests, rigid-column solutions 
and numerical results from literature. Results obtained with the present approach show better agreement with the test 
data than those from rigid-column theory and the elastic model solved by the box scheme. It is concluded that SPH is 
a promising tool for the simulation of rapid filling of pipelines with undulating elevation profiles. 
 
Keywords: Rapid filling of pipelines; Undulating elevation profile; SPH 

1. Introduction 

Fluid transients in liquid-conveying pipelines involve large pressure variations, which may cause 
considerable damage. Water hammer is probably the best known and extensively studied phenomenon in 
this respect [1]. Rapid filling of an empty pipeline with undulating elevation profile may occur under 
gravity and by pumping. While the water column is driven by a high head, air is expelled by the 
advancing water column. If the generated air flow is not seriously blocked by valves, the water column 
_______________ 
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grows with little adverse pressure and may attain a high velocity. When the advancing column impacts a 
sharp bend or a partially closed valve, severe water-hammer pressures occur [2, 3, 4]. Also, water column 
separation may occur at high elevation points of the pipeline. It changes the hydraulics significantly and 
may cause pressure surges more harmful than the initial water hammer when the separated columns rejoin 
[5, 6]. Therefore, better understanding of the rapid filling process is of high importance. A reliable model 
that can predict the magnitude of the water column velocities, the possible occurrence of column 
separation and the induced overpressure in the system is highly desirable. 

For the 1D modelling of the rapid filling of pipelines, the rigid-column model [5] based on a set of 
ODEs is commonly used. It gives reasonable results as long as the flow remains axially uniform. When 
the water column is disturbed somewhere in the system, pressure oscillations along its length or even 
column separation may occur and the rigid-column model will fail.  The elastic model based on a set of 
PDEs for unsteady flow in conduits [1] is capable of dealing with potential fast transients in rapid pipe 
filling. However, the elastic model with a moving boundary is difficult to solve using traditional mesh-
based methods. A recent attempt is the fully implicit box or Preismann finite-difference scheme, 
employed by Malekpour and Karney [7]. This method uses a fixed spatial grid and a flexible temporal 
grid, where the Courant number is time dependent. The obtained results gave acceptable agreement with 
the laboratory tests by Liou and Hunt [5]. However, a serious and unsolved numerical convergence 
problem occurred due to an uncontrollable large Courant number. 

In this paper, the SPH particle method is employed to solve the full elastic model with a moving 
boundary. The SPH computations are compared with laboratory measurements, rigid-column theory and 
numerical results of the box scheme. Good agreements are obtained, especially in the deceleration phase 
of the filling process, where the SPH results completely coincide with the laboratory tests. The present 
Lagrangian particle model, which takes the moving boundary into account in a natural way, is a promising 
tool for slow, intermediate and fast transients in the pipe filling process. 

2. Governing equations 

Consider a pipeline equipped with a valve, with upstream a reservoir and downstream open to air as 
sketched in Fig. 1. Two pipe segments with different slopes represent a simple undulating elevation 
profile. The valve is located at a distance L0 from the inlet. After the valve is opened, the water will 
advance into the pipe. At the early phase of the filling, the driving reservoir pressure dominates and 
induces a high acceleration up to a maximum velocity. With its length and velocity increasing, inertia and 
skin friction decelerate the water column. Sometime after the water column arrived at the end of the 
pipeline, a steady flow will develop. 

The following assumptions are made: 
• The pipe segment that has been filled remains full and a well-defined front exists. This assumption 

allows for a one-dimensional model to be used.  

 
Fig. 1. Definition sketch of filling of a pipeline with undulating elevation profile. 
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• The air in the empty pipe can flow out with negligible resistance, and consequently it has no effect on 
the motion of the water column. 

• The Darcy-Weisbach friction law developed for steady pipe flow can be used. This is a reasonable 
assumption for turbulent pipe flows. 

• The resistance of the open valve is negligible.  
• The compressibility is taken into account through the wave speed, while the density remains constant. 

The transient flow in a pipe is governed by the following 1D continuity and momentum equations [1]: 
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where P = pressure, V = velocity, ρ = water density, c = speed of sound, g = gravitational acceleration, θ = 
pipe inclination angle, λ = friction factor, D = pipe diameter, x and t denote spatial coordinate and time, 
respectively, and d/dt is the material derivative. The initial conditions are 
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in which K = the entrance loss coefficient and L(t) = the water column length. The velocity head and 
entrance head losses have been included in the upstream boundary condition. 

3.     SPH method 

In SPH the spatial derivative of a function f is approximated by 
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where the subscripts a and b are the indices of the particles, mb and ρb are the mass and density of particle 
b, W(x-xb, h) is the kernel function with h the smoothing length, and q=rab/h with rab=|xa-xb| the distance 
between the particles. The kernel used herein is the cubic spline function; see [8] for details about SPH. 

Replacing the spatial derivatives in Eqs. (1) and (2) with the approximation (6),  one obtains the discrete 
SPH formulation given by the ODEs 
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The fact that the density is nearly constant has been used in the derivation of Eqs. (8) and (9). To alleviate 
possible oscillations at sharp wave fronts, an artificial viscosity term Πab has been added to the 
momentum equation. It has the following form 
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The rate of change of particle position is  

a
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t
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4. Boundary conditions 

To impose the boundary conditions given by Eq. (5), the novel SPH pressure boundary concept 
proposed by Kruisbrink et al. [9] is employed and extended. Assume that at time t fluid particle r 
(reservoir) is the one closest to the reservoir and that its velocity is Vr (previous time step or initial value) 
(see Fig. 2a). To apply the upstream boundary pressure, a set of particles with spacing ∆x (∆x is the initial 
fluid particle spacing) is placed in the reservoir. Their velocity is Vr and their pressure 
is )]2/()1([ 2

in gVKHgP rR +−ρ= . The number of pressure inlet particles, Npip, depends on the smoothing 

length h, as the kernel associated with particle r needs to be fully supported. Since the radius of the kernel 
is 2h, to meet the above requirement an integer Npip > 2h/∆x must be taken. When a pressure inlet particle 
enters the pipe, it becomes a fluid particle and a new pressure particle is generated in the reservoir. The 
pressure boundary condition at the moving water front can be imposed in the same way. Suppose that at 
time t particle f (front) is located at the water front and its velocity is Vf (see Fig. 2b). A set of pressure 
particles is placed downstream of particle f. The pressure of these particles is zero, and their velocity is set 
equal to Vf. The number of pressure outlet particles, Npop, should be an integer larger than 2h/∆x too. With 
the defined pressure inlet and outlet particles, all fluid particles are fully and properly supported. 

5. Numerical results and conclusion 

The SPH method is applied to Liou and Hunt’s [5] experiments. One is referred to [5] for the details of 
the test rig, which comprises a 6.66 m long pipe of 22.9 mm inner diameter. The calibrated steady friction 
factor is 0.0245 and the entrance-loss coefficient is 0.8. A realistic speed of sound c = 1000 m/s is used in 
SPH, and there are about 650 particles when the pipe is full. Figure 3 compares the predicted velocities 
against water column length (measured from inlet) with the measurement of Liou and Hunt [5], their 
rigid-column results and the solution of Malekpour and Karney [7]. Among the results from the different 
models and methods, the SPH solution agrees the best with the measurement, although the maximum 
velocity is not fully reached. The solution of the box scheme [7] matches the late phase of the filling 
process well, but under-predicts the velocity in the early phase. The rigid-column results are presented in 
three different curves labelled as 0, 10D and 20D, where 10D and 20D represent the length of a virtual  

 

a)    b)  

Fig. 2. Illustration of pressure particles for (a) upstream inlet condition and (b) downstream moving water front.  
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Fig. 3. Velocity vs. column length for laboratory tests [5], rigid-column model [5], and elastic model solved by the box scheme [7] 
and the present SPH method. 

pipe segment ahead of the inlet [5]. In fact, a better solution can be obtained without adding any virtual 
pipe if the velocity head were included in the upstream boundary condition used by Liou and Hunt [5]. 
This has also been demonstrated in [7, 10, 11].  

SPH seems to be a viable method for simulating pipe filling processes. Although it has been applied 
herein to a relatively slow filling process, waterhammer – due to possible column impact – has been taken 
into account in the formulation. 
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