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SparseRC: Sparsity Preserving Model Reduction for
RC Circuits with Many Terminals

Roxana Ionuţiu, Associate Member, IEEE, Joost Rommes, and Wil H. A. Schilders

Abstract—A novel model order reduction (MOR) method,
SparseRC, for multiterminal RC circuits is proposed. Specifically
tailored to systems with many terminals, SparseRC employs
graph-partitioning and fill-in reducing orderings to improve
sparsity during model reduction, while maintaining accuracy via
moment matching. The reduced models are easily converted to
their circuit representation. These contain much fewer nodes and
circuit elements than otherwise obtained with conventional MOR
techniques, allowing faster simulations at little accuracy loss.

Index Terms—Circuit simulation, graphs, model reduction,
moment matching, partitioning, passivity, sparsity, synthesis.

I. Introduction

DURING THE design and verification phase of very
large-scale integrated circuits, coupling effects between

various components on a chip have to be analyzed. This
requires simulation of electrical circuits consisting of many
nonlinear devices together with extracted parasitics. Due to
the increasing amount of parasitics, full device-parasitic sim-
ulations are too costly and often impossible. Hence, reduced
models are sought for the parasitics, which when recoupled to
the devices can reproduce the original circuit behavior.

Parasitic circuits are very large network models containing
millions of nodes interconnected via basic circuit elements:
R, RC, or RLC(k). Of the circuit nodes, a special subset form
the terminals. These are the designer specified input/output
nodes and the nodes connecting the parasitics to the nonlinear
devices. Parasitic networks with millions of nodes, RC ele-
ments, and thousands of terminals are often encountered in
real chip designs. A reduced order model for the parasitics
ideally has fewer nodes and circuit elements than the origi-
nal, and preserves the terminal nodes for reconnectivity. The
presence of many terminals introduces additional structural
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and computational challenges during model order reduction
(MOR). Existing MOR methods may be unsuitable for circuits
with many terminals as they produce dense reduced models.
These correspond to circuits with fewer circuit nodes, but
more circuit elements (Rs, Cs) than the original circuit, and
may even require longer simulation times than originally.
Furthermore, if terminal connectivity is affected, additional
elements such as current/voltage-controlled sources must be
introduced to reconnect reduced parasitics to other devices.

The emerging problem is to develop efficient model reduc-
tion schemes for large multiterminal circuits that are accurate,
sparsity preserving, and also preserve terminal connectivity.
The method, SparseRC, proposed here achieves these goals by
efficiently combining the strengths of existing MOR method-
ology with graph-partitioning and fill-reducing node reorder-
ing strategies, achieving tremendous reduction rates even for
circuits with terminal numbers exceeding thousands. Reduced
RC models thus obtained are sparser than those computed via
conventional techniques, have shorter simulation times, and
also accurately approximate the input/output behavior of the
original RC circuit. In addition, the reduced RC parasitics can
be reconnected directly via the terminal nodes to remaining
circuitry without introducing new circuit elements.

A comprehensive coverage of established MOR methods is
available in [1], while [2] collects more circuit simulation-
specific contributions. Mainly, MOR methods are classified
into truncation-based (modal approximation [3]/balancing [4])
and Krylov-based methods, from which we mention PRIMA
[5], SPRIM [6], or the dominant spectral zero method [7] as
they are passivity preserving.1 Generally, however, traditional
MOR techniques cannot be applied to very large circuits with
many terminals, due to computational limitations together with
the aforementioned sparsity and reconnectivity considerations.
While the multiterminal problem has been addressed in numer-
ous works such as [8] and [9], it is usually less clear whether
their performance scales with the number of ports, especially
as this exceeds thousands.

Recent developments in model reduction for large multi-
terminal R-networks were achieved in [10] (denoted here as
ReduceR), which uses graph tools, fill-in minimizing node
reorderings, and node elimination to obtain sparse reduced
R-networks. Toward obtaining sparse reduced models for
multiterminal RC(L) networks, the sparse implicit projection

1Only passive reduced order models guarantee stable results when recoupled
to other circuit blocks in subsequent simulation stages [5].

0278-0070/$26.00 c© 2011 IEEE
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(SIP) method [11] also proposes reordering actions prior to
eliminating unimportant internal nodes, and makes several
important analogies between related node elimination-based
methods (e.g., TICER [12] and [13]) and moment-matching
MOR by projection (e.g., PRIMA [5]). In fact, the fundamental
projection behind SIP can be traced back in the pole analysis
via congruence transformations (PACT) methods of [14] and
[15] for reducing multiterminal RC(L) networks.

As will be shown, SparseRC combines the advantages of
ReduceR and SIP/PACT into an efficient procedure, while
overcoming some of their computational limitations; using
graph partitioning, circuit components are identified which are
reduced individually via a PACT-like projection [denoted here
as the extended moment matching projection (EMMP)] while
appropriately accounting for the interconnection between com-
ponents. The reduction process is simplified computationally,
as smaller components are reduced individually. The final
SparseRC reduced circuit matches by default two moments
at DC of the original circuit’s multiport admittance, and can
be extended with dominant poles [3] or additional moments
to improve accuracy at higher frequency points, if needed.
Through partitioning, the relevant nodes responsible for fill-in
are identified automatically; SparseRC preserves these along
with the terminals to ensure the sparsity of the reduced model.
This feature makes SparseRC more efficient than ReduceR or
SIP; it avoids the unnecessary computational cost of monitor-
ing fill-in at each node elimination step.

A related method is PartMOR [16], which is based on
the same partitioning philosophy, but constructs the reduced
models in a different manner. PartMOR realizes selected
moments from each subnet into a netlist equivalent, while
SparseRC is implemented as block moment matching pro-
jection operating on the matrix hierarchy which results from
partitioning. This construction enables SparseRC to match
admittance moments per subnet as well as for the recombined
network. With global accuracy thus ensured, the approxima-
tion quality of the final SparseRC reduced model is guaranteed
irrespective of the partitioning tool used or the number/sizes
of partitions.

This paper focuses on RC reduction. For RC, a reducing
transformation which matches multiport admittance moments
is sufficient to ensure accuracy and can be so constructed
as to improve sparsity. For RLC, however, additional accu-
racy considerations have to be accounted for as to capture
oscillatory behavior. Hence, constructing a projection which
simultaneously ensures accuracy and sparsity is more involved.
RLC circuits can be partitioned with the same framework
using a second order susceptance-based system formulation
which reveals the network topology [17]. On the other hand,
the dense nature of inductive couplings for RLCK circuits
may prevent finding a good partition. These topics are subject
to ongoing research; for an existing RLC partitioned-based
approach, we refer to PartMOR [16].

The remainder of this paper is structured as follows.
Section II formulates the multiterminal model reduction prob-
lem. The SparseRC partitioning-based strategy is detailed
in Section III, the main focus of this paper. Numerical re-
sults and circuits simulations are presented in Section IV.

Section V concludes this paper. Some conventions on notation
and terminology follow next. Matrices: G and G are used
interchangeably for the conductance matrix, depending on
whether the context refers to unpartitioned or partitioned
matrices, respectively (similarly for the capacitance matrix
C, C, or the incidence matrix B, B). Graphs: G (nonbold,
noncalligraphic) is a graph associated with the nonzero pattern
of the circuit matrices, C (nonbold, noncalligraphic) is a
component of G, and nzp is the nonzero-pattern of a matrix,
i.e., its graph topology. Dimensions: p, number of circuit ter-
minals (external nodes), the same for the original and reduced
matrices/circuit, n, the number of internal nodes of the original
circuit, k, the number of internal nodes of the reduced circuit,
and N, number of matrix partitions. Nodes: circuit nodes
prior to partitioning are classified into terminals and internal
nodes; separator nodes are a subset of the original nodes
identified through partitioning as communication nodes among
individual components. Terminology: a partition/subnet/block
describes the same concept. An individual graph/circuit/matrix
component identified from partitioning; similarly, a separator,
border is a component containing only separator nodes.

II. Problem Formulation

This section provides the preliminaries for model reduction
of general RC circuits and identifies the challenges emerging
in multiterminal model reduction. The building block for
SparseRC is described: EMMP for reducing multiterminal
RC circuits.

A. Model Reduction

Similarly to [14], consider the modified nodal analysis
(MNA) description of an RC circuit as follows:

(G + sC)x(s) = Bu(s) (1)

where MNA matrices G, C are symmetric, nonnegative def-
inite, corresponding to the stamps of resistor and capacitor
values, respectively. x ∈ R

n+p denote the node voltages
(at the n internal nodes and the p terminals) and n + p

is the dimension of (1). u ∈ Rp are the currents injected
into the terminals. The outputs are the voltage drops at the
terminals: y(s) = BT x(s). The underlying matrix dimensions
are G, C ∈ R(n+p)×(n+p), B ∈ R(n+p)×p. In model reduction, an
appropriate V ∈ R(n+p)×(k+p), k ≥ 0 is sought, such that the
system matrices and unknowns are reduced to

Ĝ = VTGV, Ĉ = VTCV ∈ R(k+p)×(k+p)

B̂ = VTB ∈ R(k+p)×p, x̂ = VTx ∈ Rk+p

and satisfy (Ĝ + sĈ)x̂(s) = B̂u(s).
The transfer function H(s) = BT(G + sC)−1B characterizes

the system’s behavior at the input/output ports (here, at the
terminal nodes) over the frequency sweep s. After reduction,
this becomes Ĥ(s) = B̂T(Ĝ + sĈ)−1B̂. A “good” reduced
model/circuit generally satisfies the following:

1) gives a small approximation error ‖H−Ĥ‖ in a suitably
chosen norm, for instance, by ensuring that Ĥ matches
moments of the original H at selected frequency points;

2) preserves passivity (and stability implicitly);
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3) can be computed efficiently.
For multiterminal circuits especially, new conditions emerge:

4) for reconnectivity purposes, the incidence of current
injections into terminal nodes is preserved (i.e., B̂ is a
submatrix of B);

5) Ĝ and Ĉ are sparse.
SparseRC is a multiterminal RC reduction method which
meets targets 1)–5), as will be shown.

B. Multiterminal RC Reduction with Moment Matching

The EMMP is a moment matching reduction method
for multiterminal RC circuits derived from PACT [14]
(and conceptually similar to SIP [11]). Being suitable for
multiterminal RC circuits with relatively few terminals only,
this projection will be applied, after partitioning, in a block-
wise manner inside SparseRC, as described in Section III-B.
The description here covers only material from [14] that is
relevant for SparseRC.

1) Original Circuit Model (1): G, C ∈ R(n+p)×(n+p), B ∈
R

(n+p)×p: Recalling (1), let the nodes x be split into selected
nodes xS (terminals and separator nodes2) to be preserved, and
internal nodes to be eliminated xR, revealing the following
structure:([

GR GK

GT
K GS

]
+ s

[
CR CK

CT
K CS

])[
xR

xS

]
=

[
0

BS

]
u. (2)

Note that [14] uses a simple block separation into “purely”
terminal nodes xS and internal nodes xR. Promoting separator
nodes along with terminals inside xS will ultimately positively
influence the sparsity of the reduced model. The congruence
transform applied to (2), XT GX, XT CX, XT B, where [14]

X =

[
I −G−1

R GK

0 I

]
, x

′
= XT x (3)

yields([
GR 0
0 G

′
S

]
+ s

[
CR C

′
K

C
′ T
K C

′
S

])[
xR

x
′
S

]
=

[
0

BS

]
u (4)

where

G
′
S = GS − GT

KG−1
R GK, W = −G−1

R GK (5)

C
′
S = CS + WT CRW + WT CK + CT

KW (6)

C
′
K = CK + CRW.

Expressing xR in terms of x
′
S from the first block-row of (4),

and replacing it in the second gives

[(G
′
S + sC

′
S)︸ ︷︷ ︸

Y′
S
(s)

−s2 C
′ T
K(GR + sCR)−1C

′
K︸ ︷︷ ︸

Y′
R

(s)

]x
′
S = BSu. (7)

The expression (7) represents the circuit’s multiport admit-
tance, defined with respect to the selected nodes xS . Y

′
(s)

captures the first two multiport admittance moments at s = 0
[14]. This is formalized as Proposition 1.

Proposition 1: For a multiterminal RC circuit of the form
(2), the first two moments at s = 0 of the multiport admittance
are given by G

′
S and C

′
S from (5) to (6).

2See Sections I and III-A for the definition of separator nodes.

Proof: See Appendix A.
The practical consequence of Proposition 1 is that, as with

ReduceR, the path resistance of the original circuit is precisely
(5) and, as shown next, is preserved by the reduced model. In
addition to the path resistance, the slope of an RC circuit’s
response is captured by the second moment, namely, (6).

2) Reduced Circuit Model: Ĝ, Ĉ ∈ R(k+p)×(k+p), k ≥ 0: By
Proposition 1, the reduced model which preserves the first two
admittance moments of the original (2) is revealed: eliminate
nodes xR (and the contribution Y

′
R) and retain nodes x

′
S . The

corresponding moment matching projection is obtained by
removing from X of (3) the columns corresponding to xR as
follows:

V =

[ −G−1
R GK

I

]
, (8)

Ĝ = VT GV = G
′
S, Ĉ = VT CV = C

′
S (9)

B̂ = VT B = BS, x̂ = VT x = x
′
S. (10)

For simplicity, the reducing projection V from (8) shall
be referred to further-on as the EMMP. It matches multiport
admittance moments defined by terminals and the preserved
internal nodes, rather than, as in PACT, by terminal nodes only.
In other words, EMMP is the extension of the PACT [14] or
SIP [11] projection to include the separator nodes.

a) On the Singularity of G: Conductance G and capac-
itance C matrices describing parasitic RC circuits in MNA
form are often singular, thus one must ensure that the EMMP
projection (8) inverts only nonsingular GR blocks. This is
easily achieved by exploiting the properties of MNA matrices
(e.g., definiteness, diagonal dominance), and a simple grouping
of nodes so that internal nodes (i.e., rows/columns) responsible
for the singularity of G are excluded from GR (and promoted
to GS) without any accuracy loss. Similar actions for ensuring
the invertibility of GR are detailed in [14].

Reduction via the EMMP already meets some of the
challenges defined at the beginning of Section II. 1) Two
multiport admittance moments are preserved irrespective of
the separation level of x into xR and xS , provided that xR

are internal nodes (thus the incidence matrix BR = 0); this
ensures that accuracy is maintained via moment matching also
when EMMP is later applied in the partitioned framework (see
Section III-B). 2) Passivity is preserved [14], as V is a congru-
ence transformation projecting the original positive semidef-
inite matrices G and C into reduced matrices Ĝ, Ĉ which
remain positive semidefinite, and 4) the input/output incidence
matrix BS remains unaltered after reduction. Consequently, the
reduced model can be reconnected directly via the terminal
nodes to remaining circuitry (e.g., nonlinear devices), without
introducing new circuit elements such as controlled sources.
The efficiency 3) and sparsity 5) considerations however are
not met by EMMP alone when the original circuits have
nodes, circuit elements, and terminals exceeding thousands.
First, constructing G−1

R GK is either too costly or unfeasible.
Second, Ĝ, Ĉ from (9) may become too dense.

C. Fill-In and Its Effect in Synthesis

Usually, G and C describing circuits from real chip designs
are large and sparse, while the Ĝ and Ĉ as obtained from (9)
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Fig. 1. (a) RC circuit to be reduced, containing p = 4 terminals and n = 2
internal nodes. Node 3 is a special internal node with many connections to
other nodes. (b) Dense reduced model, where all internal nodes (3 and 4) were
eliminated, but more circuit elements are generated. (c) Sparse reduced model
(with fewer circuit elements) obtained from keeping node 3 and eliminating
only node 4.

are small, but dense. Furthermore, they are only mathematical
constructions, thus a synthesis procedure is required to convert
the reduced matrix representation back into a RC netlist. This
is obtained by unstamping the nonzero entries of Ĝ and Ĉ into
the corresponding resistor and capacitor topology, respectively,
while B̂ (being a submatrix of BS) is mapped directly into
the original current injection at terminals. Unstamping is
done via RLC equivalent circuit synthesis (RLCSYN) [17].
The dimension of Ĝ and Ĉ gives the number of nodes, while
the number of their nonzero entries dictates how many Rs and
Cs are present in the reduced netlist. Therefore, while limiting
the size of Ĝ and Ĉ, it is critical to also ensure their sparsity.

The simple example in Fig. 1 compares two reduced netlists
derived from a small circuit. The dense reduced model has
fewer nodes but more R, C elements than the original, while
the sparse reduced model has both fewer nodes and R, C

elements. The sparse model was obtained by preserving a
node which would introduce fill-in if eliminated. Identifying
such nodes by inspection is no longer possible for very
large circuits. In practice, such nodes can be identified using
reordering techniques, as explained next.

1) Improving Sparsity with Node Reorderings: At the basis
of sparsity preserving MOR lies the following observation:
the congruence transform X from (3) is a partial Cholesky
factorization [18] of G [11]. Just as fill-reducing matrix
reorderings are used for obtaining sparser factorizations, so
can they be applied for sparsity preserving model reduction.
These lie at the heart of ReduceR [10] and SIP [11], where
the idea is to preorder the matrix for instance with constrained
approximate minimum degree (CAMD) [19], [20], so that
nodes responsible for fill-in are placed toward the end of the
elimination sequence, along with the terminals. By eliminating
the nodes one by one and keeping track of the fill-in generated

Fig. 2. Graph partitioning with separation of terminals.

at each step, the circuit with the fewest number of elements
can be determined. For circuits with challenging topologies,
however (i.e., with more internal nodes, terminals, or circuit
elements), these actions are either too costly or even unfeasible
(see the results in Section IV-B). SparseRC avoids them
by exploiting graph partitioning and an appropriate matrix
structure which allow for separator (fill-creating) nodes to be
identified and skipped automatically in the reduction process,
thus ensuring a desirable level of sparsity.

The following sections show how SparseRC, building upon
the EMMP in combination with graph-partitioning and some-
times additional fill-reducing orderings, maintains 1), 2), 4)
and in addition meets 3) efficiency and 5) sparsity require-
ments. These are crucial for successfully reducing challenging
networks arising in industrial problems.

III. SparseRC Reduction Via Graph Partitioning

The analogy between circuits and graphs is immediate; the
circuit nodes are the graph vertices, while the connections
among them via R, C elements form the edges in the graph.
For very large multiterminal circuits to be manageable at all
with limited computational resources, a global partitioning
scheme is proposed, visualized with the help of Fig. 2.3

Essentially, an original large multiterminal circuit is split into
subnetworks which have fewer nodes and terminals and are
minimally connected among each other via separator (cut)
nodes. SparseRC reduces each subnet individually, up to
terminals and separator nodes. As all separator nodes are
automatically preserved, sparsity is improved.

A. Partitioning and the BBD Form

Implemented as a divide and conquer reduction strategy,
SparseRC first uses graph decompositions (based on the nzp
of G + C) to identify individual subnets, as well as the
separator nodes through which these communicate. Through
partitioning, the original circuit matrices are reordered into the
bordered block diagonal (BBD) [21] form; individual blocks
form the subnets to be reduced, while the border blocks collect
the separator nodes which are all preserved. The separator
nodes are identified with the help of a separator tree indicating
which of the subnets resulting from partitioning are in fact sep-
arators (this is usually a direct functionality of the partitioning
algorithm, see for instance the MATLAB [22], [25] manual

3The two-way partitioning is presented here for simplicity; a natural
extension is partitioning into N > 2 subnets.
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Fig. 3. Circuit matrices after partitioning, in BBD form (original-left ver-
sus reduced-right). For clarity, block dimensions are not drawn to scale; in
practice, the separators are much smaller than the independent components,
thus the borders are “thin.” The individual blocks are reduced up to terminals,
the borders are retained and updated. The number inside each independent
component denotes the reduction step; this number is also stamped into
the corresponding border blocks to mark fill-in. Example: reducing C1 also
updates the separators C3 and C7 and the corresponding borders. The “root”
separator C7 is updated from reducing all individual blocks C1, 2, 4, 5.

pages of nesdis reordering). In the conquer phase, indi-
vidual blocks are reduced with the EMMP from Section II-B
and the border blocks are correspondingly updated to maintain
the moment matching property. A graphical representation of
the 7-component BBD partitioning and reduction is shown in
Fig. 3.4 It is emphasized that, as reduction progresses, fill-in
is isolated to the reduced parts of C1, C2, C4, C5, the separator
blocks C3, C6, C7, and the corresponding connection borders.
As components are minimally connected, fill-in generated on
the border is minimized.

B. Mathematical Formulation

The mathematical derivation of SparseRC follows, show-
ing how reduction progressively traverses the BBD matrix
structure, reducing individual components and updating the
connectivity among them. Herein, G and C shall denote the
original circuit matrices, while G, C shall directly refer to
matrix blocks associated with the EMMP reduction from
Section II-B. Reconsider the original RC circuit in MNA form
as follows:

(G + sC)x(s) = Bu(s) (11)

of dimension n + p, where n are internal nodes and p are
terminals. The appropriate projection V ∈ R(n+p)×(k+p), k ≥ 0,
is sought, which reduces (11) to

Ĝ=VTGV ∈ R(k+p)×(k+p) , Ĉ=VTCV ∈ R(k+p)×(k+p) (12)

x̂=VT x ∈ R(k+p) , B̂=VTB ∈ R(k+p)×p. (13)

As illustrated in Section III-A, V is constructed step-wise
using the BBD matrix reordering. Mathematically, this is
shown via the simplest example of a BBD partitioning: a
bisection into two independent components communicating
via one separator (border) block. General reduction for a
multilevel BBD partitioned system follows similarly. Consider

4In implementation both G and C are in BBD form, in Fig. 3 G denotes
simultaneously the corresponding blocks from both matrices.

the bisection of (11) as follows:⎡⎣G11 0 G13

0 G22 G23

GT
13 GT

13 G33

⎤⎦ + s

⎡⎣C11 0 C13

0 C22 C23

CT
13 CT

13 C33

⎤⎦ [x1

x2

x3

]
=

[B1

B2

B3

]
. (14)

Reducing (14) amounts to applying the EMMP from Sec-
tion II-B on the individual components [here, C1 := nzp(G11 +
C11) and C2 := nzp(G22 + C22)]. The separator [here, C3 :=
nzp(G33 + C33)] is kept and updated twice with the projections
reducing C1 and C2, respectively. Naturally, the reduction
is applied to the communication blocks G13, C13,G23, C23.
Updating the separator and communication blocks at each in-
dividual reduction step ensures the preservation of admittance
moments for the total recombined circuit (see Theorem 1 in
Section III-C).

1) Step 1: Consider the reduction of subnetwork C1 with
EMMP, based on splitting x1 of (14) into x1R

and x1S
, i.e., into

the internal nodes (to be eliminated) and selected nodes (to be
preserved) of subnet C1 as follows:⎡⎢⎢⎣

G11R
G11K

0 G13R

GT
11K

G11S
0 G13S

0 0 G22 G23

GT
13R

GT
13S

GT
23 G33

⎤⎥⎥⎦+s

⎡⎢⎢⎣
C11R

C11K
0 C13R

CT
11K

C11S
0 C13S

0 0 C22 C23

CT
13R

CT
13S

CT
23 C33

⎤⎥⎥⎦ (15)

xT = [xT
1R

, xT
1S

, xT
2 , xT

3 ]T , BT = [0,BT
1S

,BT
2 ,BT

3 ].

Recognizing in (15) the structure (2), the EMMP-based trans-
formation which reduces the network (15) by eliminating the
internal nodes x1R

is given by⎡⎢⎣ −G−1
11R

G11K
0 −G−1

11R
G13R

IS1 0 0
0 I2 0
0 0 I3

⎤⎥⎦ = V1. (16)

As with (8)–(10), the reduced model for (15) is computed from
G

′
S =VT

1GV1, C
′
S =VT

1CV1. The reduced system is

G
′
S =

⎡⎣Ĝ11 0 Ĝ13

0 G22 G23

ĜT
13 GT

23 G̃33

⎤⎦ , C
′
S =

⎡⎣Ĉ11 0 Ĉ13

0 C22 C23

ĈT
13 CT

23 C̃33

⎤⎦ (17)

BS =

⎡⎣B̂1

B2

B3

⎤⎦ , x
′
S =

[x̂1

x2

x3

]
(18)

where

Ĝ11 =G11S
− GT

11K
G−1

11R
G11K

(19)

Ĝ13 =G13S
− GT

11K
G−1

11R
G13R

(20)

G̃33 =G33 − GT
13R

G−1
11R

G13R
(21)

Ĉ11 = C11S
+ WT

11C11R
W11 + WT

11C11K
+ CT

11K
W11 (22)

Ĉ13 = C13S
+ WT

11C13R
+ CT

11K
W13 + WT

11C11R
W13 (23)

C̃33 = C33 + WT
13C11R

W13 + WT
13C13R

+ CT
13R

W13 (24)

B̂1 =B1S
, x̂1 = x

′
1S

with (25)

W11 = −G−1
11R

G11K
, W13 = −G−1

11R
G13R

. (26)

The BBD form provides an important structural advantage,
both in terms of identifying fill-in, as well as in implemen-
tation: reducing one subnet only affects the entries of the
corresponding separator and border blocks, leaving the rest
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of the independent subnets intact. Notice from (17) to (18)
how reducing subnet C1 has only affected its corresponding
connection blocks to C3, and the separator block C3 itself.
The blocks of subnet C2 are not affected. This is because C1

communicates with C2 only via the separator C3. Therefore,
while reducing C2, the already computed blocks of the reduced
C1 will no longer be affected. Only the connection blocks
from C2 to C3 and the separator C3 itself will be updated.
Mathematically, this is shown next.

2) Step 2: Partition now the reduced G
′
S , C

′
S matrices (17),

(18) by splitting component C2 according to x2R
and x2S

as
follows:⎡⎢⎢⎣

Ĝ11 0 0 Ĝ13

0 G22R
G22K

G23R

0 GT
22K

G22S
G23S

ĜT
13 GT

23R
GT

23S
G̃33

⎤⎥⎥⎦+s

⎡⎢⎢⎣
Ĉ11 0 0 Ĉ13

0 C22R
C22K

C23R

0 CT
22K

C22S
C23S

ĈT
13 CT

23R
CT

23S
C̃33

⎤⎥⎥⎦ (27)

x
′
S

T
= [x̂T

1, xT
2R

, xT
2S

, xT
3 ]T , B

′
S

T
= [B̂T

1, 0,BT
1S

,BT
3]. (28)

As before, the EMMP-based transformation which reduces the
network (27) by eliminating nodes x2R

is given by

⎡⎢⎣IS1 0 0
0 −G−1

22R
G22K

−G−1
22R

G23R

0 IS2 0
0 0 I3

⎤⎥⎦=V2. (29)

The reduced model is obtained by projecting (27) and (28)
with V2. Ĝ =VT

2G
′
SV2, Ĉ=VT

2C
′
SV2, B̂=VT

2BS, x̂=VT
2x

′
S :

Ĝ =

⎡⎣Ĝ11 0 Ĝ13

0 Ĝ22 Ĝ23

ĜT
13 ĜT

23 G33

⎤⎦ , Ĉ =

⎡⎣Ĉ11 0 Ĉ13

0 Ĉ22 Ĉ23

ĈT
13 ĈT

23 C33

⎤⎦ (30)

B̂ =

⎡⎣B̂1

B̂2

B3

⎤⎦ , x̂ =

[x̂1

x̂2

x3

]
(31)

where (19)–(26) hold and

Ĝ22=G22S
− GT

22K
G−1

22R
G22K

(32)

Ĝ23=G23S
− GT

22K
G−1

22R
G23R

(33)

G33=G̃33 − GT
23R

G−1
22R

G23R
(34)

Ĉ22=C22S
+ WT

22C22R
W22 + WT

22C22K
+ CT

22K
W22 (35)

Ĉ23=C23S
+ WT

22C23R
+ CT

22K
W23 + WT

22C22R
W23 (36)

C33=C̃33 + WT
23C22R

W23 + WT
23C23R

+ CT
23R

W23 (37)

B̂2=B2S
, x̂2 = x

′
2S

with (38)

W22=−G−1
22R

G22K
, W23 = −G−1

22R
G23R

. (39)

As seen from (34) and (37), separator blocks G33 and C33

are the further updated blocks G̃33, C̃33 (previously obtained
from reducing C1). The reduced model retains the BBD
form, and the separator nodes are preserved in the blocks
corresponding to G33 and C33. The p terminals are distributed
among C1, C2, C3 as seen from the form of B̂ in (31). Equa-
tions (25), (31), and (38) together show that the input/output
incidence matrix is preserved after reduction, thus the reduced
netlist obtained from RLCSYN [17] unstamping preserves

connectivity via the terminal nodes. In the general case, block-
wise reduction of finer BBD partitions (into N > 2 subnets)
follows in the same manner as the bisection framework pre-
sented here, with the appropriate projections of separator and
border blocks. The moment-matching, terminal connectivity,
and passivity requirements remain satisfied.

3) Options for Further Improving Sparsity: Partitioning
provides an additional structural and computational advan-
tage; if necessary, additional reordering and minimum-fill
tracking options such as those employed by ReduceR/SIP
can be applied per subnet. Naturally, such operations come
at additional computational cost, but are still more efficient
than monitoring fill-in directly from the unpartitioned circuit.
So, while separator nodes already improve sparsity globally
and automatically, fill-monitoring actions may further identify
additional internal nodes to be preserved locally in each
subnet. For instance, in the reduction scenario of Step 1
(see Section III-B1), the G11, C11 blocks of (14) would be
reordered with CAMD and fill-tracking would identify which
additional internal nodes should be preserved along with
terminals in x1S

. This may improve sparsity inside Ĝ11, Ĉ11

(and correspondingly in Ĝ13, Ĉ13, G̃33, C̃33) even beyond the
level already achieved by preserving the separators nodes. In
Section IV, examples are provided to illustrate this effect.
Nevertheless, such fill-monitoring operations are not always
necessary; the sparsity level achieved directly from partitioning
and preserving separator nodes is often sufficient. This is
discussed in Section III-D1.

C. Moment Matching, Passivity, and Synthesis

Note that as Ĝ =VT
2G

′
SV2 =VT

2VT
1 GV1V2 (similarly for Ĉ, B̂),

the reducing projection from (12) to (13) is V := V1V2, with
V1, V2 as deduced in (16) and (29), respectively. In efficient
implementations, however, V1, V2, and V are never formed
directly, rather they are formed block-wise as just shown. Only
W11, W13, W22, W23 from (26) and (39), respectively, are
explicitly formed. Next, it is shown that the V constructed from
successive EMMPs matches the first two admittance moments
at the end of the reduction procedure.

Theorem 1: Consider the original circuit (14) with matrices
partitioned and structured in BBD form, which is reduced by
applying successive EMMP projections (see Section II-B) on
each subnet. The final reduced model (30), (31) preserves the
first two multiport admittance moments around s=0 of each
individual subnet and of the entire recombined circuit (14).

Proof: See Appendix A.
1) Matching Behavior at Higher Frequency Points: Al-

though SparseRC is mainly based on matching the first two
admittance moments at s = 0 (which proved sufficient for most
experiments of Section IV), it is possible, when necessary,
to additionally improve approximation at higher frequency
points. One possibility is to include contributions from the
otherwise neglected term Y

′
R(s) of the admittance response (7).

Let for simplicity Q be a transformation which reduces Y
′
R(s).

One can for instance perform the traditional PRIMA [5] reduc-
tion of Y

′
R(s) which constructs, for a chosen expansion point

si, the Krylov subspace as follows: Km(A−1CR, A−1C
′
K) =

span
[
(A−1CR)m−1A−1C

′
K

]
, where A=GR + siCR. If Km ⊆ Q,
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then Q matches 2m multiport admittance moments of Y
′
R(s)

at si. As a special case, if si = 0, then Q matches 2m multiport
admittance moments at zero of (7), additionally to the 0th and
1st which are matched by default. Another option is to include
in Q eigenvectors associated with the dominant eigenvalues
of Y

′
R(s), similarly to the pole matching proposed in [14].

Be it obtained either from moment or pole matching (or a
combination of both), it is easily verified that the projection Q
which reduces Y

′
R(s) enters the transformation (3) as follows:

XQ =

[
Q −G−1

R
GK

0 I

]
.

To form XQ within the partitioned framework, reconsider
the reduction of subnet 1 from Section III-B1. The reducing
transformation there is V1 (16), which preserved the first two
admittance moments at s = 0 and eliminated entirely the
contribution of internal nodes x1R

. Rather than eliminating
x1R

, let Q1 be the transformation which reduces the internal
matrices G11R

and C11R
. Similarly, during the reduction of

subnet 2 (Section III-B2), let Q2 be the transformation which
reduces G22R

and C22R
. Q1 and Q2 enter the projection for the

recombined network as follows:

XQ =

⎡⎢⎢⎢⎣
Q1 W11 0 0 W13

0 IS1 0 0 0
0 0 Q2 W22 W23

0 0 0 IS2 0
0 0 0 0 I3

⎤⎥⎥⎥⎦ (40)

where (26) and (39) hold. Note that (40) is the extension with
Q1 and Q2 of the default projection V of (41) which matches
the first two multiport admittance moments at s = 0.

In a similar manner, a projection can be constructed which
matches directly moments at si �= 0 of the entire multiport
admittance (7) (see [15] for details, which pertains more
to RLC reduction). Given that a circuit’s offset and slope
at DC are precisely the first two admittance moments at
s = 0 [14], matching these is a natural choice. We emphasize
that, in contrast with SparseRC, direct moment matching
at s = 0 cannot be achieved via PRIMA [5], or SPRIM
[6] since the original G matrix is singular. To summarize,
should additional accuracy be necessary when reducing RC
circuits with SparseRC, it is safer to match the first two
admittance moments at s = 0 and improve the response with
contributions from the internal Y

′
R(s) term as described above.

This approach was implemented in the partitioned framework
for two examples in Section IV-A2; the RC transmission
line (TL) example where moments of Y

′
R(s) are matched in

addition, and the low noise amplifier (LNA) where dominant
eigenmodes of Y

′
R(s) are additionally matched.

SparseRC matches two moments at s = 0 by default.
Hence, extra poles/moments can be added, if needed, after the
default reduction, by rearranging the projection XQ so that
the extra Qi columns are formed in a separate reduction run.
The decision on whether to add extra poles or moments is
difficult to make a priori, as is the case for any moment-based
reduction method. One approach would be to compare the
response of the original and default reduced order model for
large frequencies. Should significant deviations be observed,
then the addition of extra poles/moments is recommended. In

PACT [14], poles are added based on a specified error and
maximum operating frequency.

2) Passivity and Synthesis: As with PACT [14], the re-
ducing projection V is a congruence transformation applied
on original symmetric, nonnegative definite matrices, which
gives reduced symmetric, nonnegative definite matrices (30).
Consequently [14], the final reduced model (30), (31) is
passive and stable, and the reduced netlist obtained from
RLCSYN [17] unstamping remains passive irrespective of the
values of the resulting R, C elements. If reduction is performed
with the default two-moment matching at s = 0 (which was
sufficient in all experiments except the two-port RC line of
Section IV-A2b), the projection V of (41) guarantees that
the unstamping of Ĝ generates only positive resistors. This
is ensured by the special form of V which performs a Schur-
complement operation on the original matrix G [23] (note that
a standard moment matching projection as in PRIMA [5] does
not guarantee positive resistors from unstamping, even though
the reduced Ĝ is symmetric positive definite). While there
may be negative capacitances resulting from unstamping Ĉ,
they do not violate the passivity of the netlist, nor its direct
usability inside a simulator such as Spectre [24]. Furthermore,
they do not prejudice the quality of the resimulation results as
confirmed by Section IV. In fact, as also motivated in SIP
[11], dropping negative capacitors from the reduced netlist is,
in practice, a dangerous operation, so all capacitors are safely
kept in. In the case of reduction with additional accuracy
as in Section III-C1, the unstamping of Ĝ may generate
negative resistors; these again posed no difficulties in the
simulations performed (e.g., AC, transient, periodic steady
state). PartMOR [16] presents an alternative reduction and
synthesis strategy which ensures positive-only elements.

D. SparseRC Algorithm

The SparseRC pseudocode is outlined in Algorithms 1
and 2, which describe the most relevant reduction case of
matching the first two admittance moments at s = 0. To
summarize Algorithm 1, from the original circuit matrices
G, C and a vector of indices e denoting the original lo-
cation of terminals (external nodes), SparseRC outputs the
reduced circuit matrices Ĝ, Ĉ, and the vector ẽ denotes the
new terminal locations. As an advanced option, “do−minfill”
specifies whether additional fill-reducing orderings should be
employed per partition. The graph G defined by the circuit
topology (the nzp of G + C) is partitioned into N components.
A permutation P (which reorders the circuit matrices in BBD
form) is obtained, together with a vector Sep indicating which
of the N components is a separator. For each nonseparator
component Ck, defined by nodes ik, the corresponding matrix
blocks are reduced with EMMP while accounting for the
communication of Ck to the remaining components via the
separator nodes isep. All separator components are kept, after
having been appropriately updated inside EMMP.

The G, C matrices supplied at each step to EMMP (line
8 of Algorithm 1) are updated in place, and the reduction
follows according to Algorithm 2. The ik index selects the
component to be reduced (say, Ck) from the supplied G, C,
while isep are the indices of separator nodes through which
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Algorithm 1 (Ĝ, Ĉ, ẽ) = SparseRC(G, C, e, do minfill)
Given: original G, C, original vector of terminal indices e, do−minfill (0/1) option

for minimum-fill reordering per subnet
Output: reduced Ĝ, Ĉ, updated vector of terminal indices ẽ
1: Let graph G := nzp(G + C)
2: (P, Sep) =partition(G, N)
3: G = G(P, P), C = C(P, P), e = e(P) � reorder in BBD
4: for component Ck = 1 . . . N do
5: if Ck �∈ Sep then � Ck is not a separator
6: ik = index of nodes for component Ck

7: isep = index of separator nodes connecting Ck to components Ck+1 . . . CN

8: (G, C, e) = EMMP(G, C, ik , isep, e, do−minfill)
� reduce Ck with EMMP

9: else keep separator component Ck

10: end if
11: end for
12: Ĝ = G, Ĉ = C, ẽ = e

Algorithm 2 (Ĝ, Ĉ, ẽ) = EMMP(G, C, ik, isep, e, do−minfill)
Given: initial G, C, corresponding vector of terminal indices e, do−minfill (0/1)

option for minimum-fill node reordering
Output: reduced Ĝ, Ĉ, corresponding vector of terminals ẽ
1: if do−minfill then � find additional internal nodes to preserve
2: (ik , isep, e) = reorderCAMD(G, C, ik , isep, e)
3: � find optimal minimum fill ordering per subnet
4: end if
5: (iint , iext) = split(ik , e) � split ik into internal and external nodes
6: iR = iint � internal nodes to eliminate
7: iS = [iext , isep] � selected nodes to keep
8: GR = G(giR, iR), CR = C(iR, iR)

GK = G(iR, iS ), CK = C(iR, iS )
GS = G(iS, iS ), CS = C(iS, iS )

9: W = −G−1
R GK � construct reducing projection

10: G(iS, iS ) = GS − GT
KW � update entries for selected nodes

11: C(iS, iS ) = CS + CT
KW + WT CK + WT CRW

12: G(iR, iR) = { }, C(iR, iR) = { } � eliminate iR nodes
G(iR, iS ) = { }, C(iR, iS ) = { }, e(iR) = { }

13: Ĝ = G, Ĉ = C, ẽ = e

ik communicate with the rest of the circuit. If desired, at
the entry of EMMP these nodes are reordered with CAMD,
as to identify additional internal nodes which may further
improve sparsity from reducing Ck (this operation, however,
is only an advanced feature and often unnecessary). Internal
and external nodes of component Ck are identified. Internal
nodes iR will be eliminated and selected nodes iS will be
preserved (i.e., terminals of Ck, corresponding separator nodes,
and possibly some additional internal nodes obtained from
step 2). The corresponding matrix blocks are identified and
the update matrix W is formed. The blocks corresponding
to selected nodes iS are updated, while those corresponding
to the eliminated iR nodes are removed. At output, Ĝ, Ĉ
are reduced: internal nodes were eliminated only from the
component defined by node indices ik; nodes corresponding
to the other components are untouched. The terminals of the
reduced model are indexed by ẽ.

As a few computational remarks, to ensure numerical sta-
bility while forming the reduced matrix blocks at step 11 of
Algorithm 2, we apply rescaling to C (and/or G). Based on
Theorem 1, it is also ensured that the global moment matching
projection which underlies SparseRC inherits the proved [11]
full-column-rank properties of the SIP/PACT projection.

1) On the Partitioning Strategy: It was shown how preserv-
ing internal nodes along with terminals improves the sparsity
of the reduced model. Good reduced models are sparse and
small, i.e., have minimum fill and few preserved internal
nodes. Toward achieving a suitable tradeoff between sparsity
and dimension, one may naturally ask: a) what are the optimal
partitioning criteria and the number of generated subnets N,
and b) when are additional fill-reducing node reorderings and
fill-monitoring actions needed aside from partitioning?

a) Choice of N: Through partitioning, the aim is to
minimize the communication among subnets (via a small
number of separator nodes) and spread the terminals across
partitions, as to minimize the fill-in generated from reducing
each partition (up to its terminals) and inside the separator
blocks. Toward achieving this goal, this paper relies on the
general-purpose partitioner nested dissection (NESDIS, part
of [25]) the choice however is by no means exclusive. In
[26], for instance, the usage of the hypergraph partitioner
Mondriaan [27] is documented. NESDIS partitions a graph so
that communication among subnets is minimized, however it
cannot control explicitly the distribution of terminals across
parts. With NESDIS, terminals get spread indirectly, as a
consequence of partitioning. While estimating an optimal
N is an open problem which must simultaneously account
for multiple factors (number of terminals, internal nodes,
elements, potential fill-in), we provide some guidelines as
to quickly determine a satisfactory value to be used with
NESDIS. For our experiments, N was mostly determined
immediately by inspecting the ratio of terminals to internal
nodes in the original graph, p

n
. For netlists with small p

n
[for

instance, p

n
< 1

10 ], a coarse partitioning is already sufficient to
achieve few terminals per subnet and ensure sparsity (certainly,
as long as the resulting number of nodes per subnet enables the
computation of the corresponding block projection). Such cir-
cuits are the ideal candidates for SparseRC based on NESDIS
partitioning alone, without extra fill-reducing ordering actions.

b) Additional Fill-Monitoring Actions: For circuits with
large p

n
ratios though, finer NESDIS partitions are needed to

achieve a small number of terminals per subnet (see the Filter
net in Section IV-B). Also, additional fill-reducing orderings
and minimum-fill tracking actions may further improve the
sparsity attained from partitioning, at the cost of preserving
more internal nodes. In Section IV examples illustrate the
sparsity, dimensionality, and computational implications of
the partitioning fineness and, where needed, of fill-monitoring
actions.

c) Clarifying Remarks: The functionality of SparseRC
is not tied strictly to the partitioner used or the choice of N.
It is assumed that the original circuits (graphs) are sparse.
The sparsity of the original circuit will dictate the partitioning
performance and consequently the dimension and sparsity
level of the reduced circuit. Precise judgements on the optimal
N or the necessity of additional fill-monitoring operations
cannot be made a priori. These could be resolved by the
following multiterminal graph optimization problem [26]; for
a multiterminal network G = (V, E), of which P ⊂ V

are terminals, |P | = p, find an N-way partitioning with
the objective of minimizing the number of separator nodes
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subject to the following constraints: a) the separator nodes and
terminals are balanced across the N parts, and b) eliminating
the internal nodes from each subnet introduces minimum fill in
the parts determined by terminals and separator nodes. Solving
this problem is a separate research topic and subject to ongoing
research. As concerns the approximation quality, the SparseRC
model will always be at least as good as a PACT [14] reduced
model. Due to Theorem 1, SparseRC guarantees not only local
but also global moment matching for the recombined network,
irrespective of N or the partitioner used.

2) Computational Complexity: The computational com-
plexity of SparseRC is dominated by the cost of computing
W inside EMMP (line 9 in Algorithm 2), for each of the
Nmax < N nonseparator components. With nmax denoting the
maximum number of internal nodes for a component (i.e., the
maximum size of block GR), and mmax the maximum size of
GS , the cost of one EMMP operation is at most O(nα

maxmmax),
with 1 < α ≤ 2 [28]. When n and p are large and the circuit
is partitioned, one aims at nmax 
 n and mmax 
 p [note that
mmax = pmax + smax, with pmax denoting the maximum number
of terminals per component (i.e., length of iext) and smax the
maximum number of separator nodes connecting a component
Ck to components Ck+1 . . . CN (i.e., length of isep)]. Therefore,
especially for netlists with many internal nodes n and many
terminals p, the total cost O(Nmax(nα

maxmmax)) of SparseRC
is much smaller than the O(nαp) cost of constructing (if at
all feasible) a PACT reducing projection directly from the
original, unpartitioned matrices. The results in Section IV-A,
Table I confirm this through netlists 6.RX and 7.PLL which
contain more than 300 000 internal nodes and 4000 terminals.
For a graph G = (V, E) with |V | = n + p nodes and |E| edges,
the cost of NESDIS partitioning (being based on METIS
[29]) is O(|E|) hence cheap to perform for sparse graphs
(here, |V | is the number of circuit nodes and |E| the number
of resistor and capacitors). Should additional reorderings be
employed per subnet, the cost of CAMD is O(|V ||E|) [19],
[20], [30], and also a fast operation.

The cost for the advanced option of tracking fill-in is more
expensive, especially for networks with nodes and elements
exceeding thousands. The operation becomes a partial Gaus-
sian elimination up to terminals, which may reach O(|V |3) in
the worst case. Nonetheless, such fill-monitoring operations
are only an optional, advanced feature of SparseRC which
was rarely needed in our experiments.

With ingredients of SparseRC in hand, we summarize
its properties in light of the reduction criteria defined in
Section II-A. SparseRC meets the accuracy 1), passivity 2),
and terminal reconnectivity 4) requirements while reducing
multiterminal RC circuits via a block-wise EMMP reducing
projection. The efficiency 5) of SparseRC is ensured via
a partitioning-based implementation, which reduces much
smaller subnets (also with fewer terminals) individually
while maintaining the accuracy, passivity, and reconnectivity
requirements of the entire circuit. The sparsity 3) of the
SparseRC reduced model is enhanced by preserving a
subset of internal nodes which are identified automatically
from partitioning and where necessary, from additional fill-
reducing orderings. The performance of SparseRC in practice

is shown by the numerical and simulations results presented
next.

IV. Numerical Results and Circuit Simulations

Several parasitic extracted RC circuits from industrial ap-
plications are reduced with SparseRC. For each circuit, the
terminals are nodes to which nonlinear devices (such as diodes
or transistors) are connected. During a parsing phase, the
multiterminal RC circuit is stamped into the MNA form (11)
and reduced with SparseRC. The reduced model (30), (31)
is synthesized with RLCSYN [17] into its netlist description.
As connectivity via the external nodes is preserved with
SparseRC, no voltage/current controlled sources are generated
during synthesis. The nonlinear devices are directly recoupled
via the terminal nodes to the reduced parasitics. The reduced
circuit is resimulated with Spectre and its performance is
compared to the original simulation.

Most of the circuits are reduced with the default options
of SparseRC; matching only the 0th and 1st order multiport
admittance moments at s = 0 and also without employing addi-
tional fill-tracking options. For some examples, the function-
ality of advanced options within SparseRC is demonstrated,
such as: additional moment or pole matching, or additional
fill-monitoring actions per subnet.

SparseRC was implemented in MATLAB (version R2007a);
all reduction experiments were performed on a Linux (Ubuntu)
machine with 3.9 GB RAM main memory and two Intel(R)
Core(TM)2 Duo, 2.4 GHz, CPUs. All Spectre simulations were
run on a Linux (Redhat) machine with 16 GB RAM main
memory and six Intel(R) Xeon(R) X5460, 3.1 GHz, CPUs.
A. General Results

Table I collects the main SparseRC reduction results for
various multiterminal netlists obtained from real chip designs,
and compares the results obtained with PACT.5 Each block row
consists of a netlist example with the corresponding number
of terminals p (the same before and after reduction). For each
netlist, the sparsity before and after reduction are recorded here
as the number of circuit elements, i.e., #R, #C. The reduc-
tion rate (Red. Rate) shows the percentage reduction for the
corresponding column quantity. For instance, the percentage
reduction in internal nodes ni is Pn =

100(niOrig.
−niSpRC )

niOrig.

, similarly

for #R, #C. The Red. Rate in simulation time is computed as
a speed-up factor: Sim. TimeOrig

Sim. TimeSpRC
(similarly for PACT). The ap-

proximation error is measured as the root-mean-square (RMS)
value of the difference between the signals of the original and
the reduced circuit. Several simulations are performed, includ-
ing: AC, noise, transient, (quasi) periodic steady state, and
(quasi) s-parameter, usually a combination of these for each
circuit depending on the underlying application. Due to space
limitations, we can only present some of the simulation figures,
however, the simulation timings recorded in the tables repre-
sent the sum of all analysis types performed for one circuit.
The error RMS value is recorded for one analysis only, but is
representative of all analysis types performed for that circuit.

5For simplicity, “PACT” is used here only as a short term to denote
SparseRC reduction without partitioning; the full PACT methodology [14]
also includes more advanced analysis such as pole matching.
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TABLE I

Reduction for Various Netlists with SparseRC Versus PACT (SparseRC with No Partitioning)

Net Type ni #R #C
Sim.

Time (s)
Total Red.
Time (s)

Error
(RMS)

1. Transmission Orig. 3231 5892 3065 0.51 – –
line (TL) SparseRC 21 165 592 0.01 0.39 2.5e-4
p = 22 Red. rate 99.35% 97.20% 80.69% 51 X –

2. Low noise Orig. 29 806 53 285 12 025 1525 –
amplifier (LNA) SpRC-dp 50 308 2608 13 53.4 4e-4

p = 79 Red. rate 99.8% 99.4% 78.3% 117 X –
3. Mixer−3 Orig. 757 1393 2353 1900 –

(MX3) SpRC-mf 40 137 810 754 1.09 1.6e-7
p = 110 Red. rate 94.72% 90.17% 65.58% 2.52 X –

4. Interconnect Orig. 16 216 26 413 173 277 1730 –
structure (IS) SpRC 208 10 228 72 748 18 3.49 3.5e-5

p = 646 Red. rate 98.72% 61.28% 58.02% 96.1 X –
5. Mixer−7 Orig. 67 119 194 7.15 –

(MX7) SpRC-mf 11 59 187 5.51 0.32 1.2e-8
p = 66 Red. rate 83.58% 50.42% 3.61% 1.3 X –

6. Receiver Orig. 788 081 1 416 454 1 961 224 NA –
(RX) SpRC 6719 95 162 845 699 520 589.4 NA

p = 15171 Red. rate 99.15% 93.28% 56.88% ∞ -
7. Phase-locked Orig. 377 433 593 786 555 553 NA –

loop (PLL) SpRC 3905 46 499 312 351 3710 151.54 NA
p = 4041 Red. rate 98.97% 92.17% 43.78% ∞ –
8. Filter Orig. 32 140 47 718 123 696 1140 –
p = 5852 SpRC 6882 31 995 155 011 700 185.06 1.4e-5

Red. rate 78.59% 32.95% −25.32% 1.63 X –

Type ni #R #C
Sim.

Time (s)
Total Red.
Time (s)

Error
(RMS)

Orig. 3231 5892 3065 0.51 – –
PACT 0 40 231 0.01 0.1 6.1e-4

Red. rate 100% 99.32% 92.46% 51 X –
Orig. 29 806 53 285 12 025 1525 –
PACT 0 111 1080 9 0.92 1e-3

Red. rate 100% 99.79% 91.02% 169.4 X –
Orig. 757 1393 2353 1900 –
PACT 0 111 1117 831 0.03 9.4e-7

Red. rate 100% 92.03% 52.53% 2.28 X –
Orig. 16 216 26 413 173 277 1730 –
PACT 17 6844 66 758 17 3.56 5.6e-4

Red. rate 99.9% 74.09% 61.47% 101.7 X –
Orig. 67 119 194 7.15 –
PACT 0 56 308 9.12 0.01 7.1e-8

Red. rate 100% 52.94% −58.76% 0.78 X –
Orig. 788 081 1 416 454 1 961 224 NA –
PACT NA NA NA NA NA NA

Red. rate NA NA NA NA –
Orig. 377 433 593 786 555 553 NA –
PACT NA NA NA NA NA NA

Red. rate NA NA NA NA –
Orig. 32 140 47 718 123 696 1140 –
PACT 0 414 500 5 927 790 > 24 h 68.5 NA

Red. rate 100% −768.64% −4692% NA –

Sim. Time: Spectre [24] netlist simulation time; Total Red. Time: partitioning plus reduction time.

For most examples, excellent reduction rates (above 80%)
in the number of internal nodes ni were obtained. The number
of internal nodes ni in the reduced model represent the
special internal nodes which, if otherwise eliminated, would
have introduced too much fill-in. They are the separator
nodes identified automatically from partitioning (plus, where
suitable, some additional internal nodes identified from fill
monitoring operations). With ni thus preserved, very good
reduction rates were obtained in the number of circuit ele-
ments: mostly above 60% reduction in resistors and above 50%
for capacitors. The effect of reducing internal nodes as well as
the number of circuit elements is revealed by significant speed-
ups attained (mostly above 2X) when simulating the reduced
circuits instead of the original. Even more, for the largest
examples (netlists RX, PLL) simulation was only possible after
reduction, as the original simulations failed due to insufficient
CPU and memory resources. In addition, the reduction times
recorded in Table I show that these reduced netlists were
obtained efficiently.

1) Reduction Without Partitioning: For comparison, re-
sults for SparseRC without partitioning (essentially, PACT)
are also recorded in Table I. PACT amounts to running the
SparseRC Algorithm 1 of Section III-D with N = 1 in line 2.
The results reveal the strength of SparseRC especially when
reducing challenging circuits with very large node and terminal
numbers (e.g., nets 6–8). First, the computational advantages
of partitioning for very large netlists are revealed through
examples PLL and RX, for which an unpartitioned PACT
projection could not even be computed. For the smaller exam-
ples, the PACT reduction times are smaller than the SparseRC
ones, indicating that partitioning is not necessary. Second,
partitioning and the preservation of separator nodes improves
the sparsity of the reduced models. This is confirmed by the

Fig. 4. MX3. Transient simulation of the original (red) and SparseRC (blue)
overlap. The error signal (black) has an RMS value of 1.6e-7.

Filter and MX7, where the unpartitioned approach resulted in
dense reduced netlists which were slower to simulate than the
originals (the effect would be the same for PLL and RX).

Next, selected simulation results are presented. The MX3 net
comes from a mixer circuit. Here, the SparseRC model was
obtained by further reordering the partitioned circuit matrices
(obtained via NESDIS) with CAMD and by keeping track of
fill-in during the block-wise reduction process. The transient
simulation in Fig. 4 shows that the original and SparseRC
curves are indistinguishable.

2) Improving Accuracy at Higher Frequencies: Two ex-
amples in particular demonstrate possibilities for improving
the approximation accuracy beyond matching the 0th and 1st
moment at s = 0, as described in Section III-C1.

a) LNA: Two reduced models, SparseRC-dp and PACT,
were computed for net LNA from Table I. SparseRC-dp
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Fig. 5. LNA. Noise analysis comparison of original (red) versus two reduced
models: in blue, SparseRC-dp (moment patching at s = 0 with additional
dominant poles), and in pink, PACT with default moment matching at s = 0.

Fig. 6. RCtline. Bode plot for original and two reduced SparseRC models:
by matching the first two admittance moments at s = 0 only (red) and by
matching in addition higher moments from the Y

′
R term per subnet (blue).

denotes a reduced model obtained from a partition into N=3
components where, for each component, the two default mo-
ments at s=0 are matched plus approximately eight dominant
poles of the internal contribution Y

′
R. These dominant poles

were computed with the subspace accelerated dominant pole
method [3]. In Fig. 5, the noise simulations are shown for
the original, SparseRC-dp, and PACT models. The effect
of improving the SparseRC response with dominant poles
is visible in Fig. 5. This was also confirmed in transient
simulation, which gave an RMS error of 4·10−4 for SparseRC-
dp, smaller than 1·10−3 for PACT (see Table I).

b) Two Port RC TL: A uniform RC TL with two
terminals (one node at the beginning, and one node at the
end of the line) is considered, with a cascade of 10 000 R-C
sections. The circuit was partitioned into N = 2 subnets (and
one separator block). Two reduced SparseRC models were
computed: without and with additional matching at higher
moments. The latter model was computed with the projection
(40), which matched a combination of moments of the Y

′
R

term per subnet: two moments at 0, one at s = 1010 and
one at s = 1014 were chosen. The Bode magnitude plot of

Fig. 7. PLL. Reordered (a) G and (b) C in BBD form after NESDIS
partitioning (dimension n + p = 381 474 nodes).

Fig. 8. PLL. Reduced (a) Ĝ and (b) Ĉ obtained with SparseRC (dimension
n + p = 7946 nodes). The BBD structure is retained and the matrices remain
sparse.

the frequency response for the original and the two reduced
models is shown in Fig. 6. The behavior at higher frequencies
is indeed approximated more accurately for the reduced model
which preserves additional moments.

B. Advanced Comparisons

Nets PLL and Filter, two of the largest and most challenging
netlists from Table I are analyzed in detail in Table II. The
purpose of the analysis is threefold: 1) the advantages of
SparseRC over existing methodologies are revealed; 2) the
effects of various partitioning sizes and of additional reorder-
ings are shown; and 3) possible limitations and improvement
directions for SparseRC are identified.

1) PLL: The original simulation was for this circuit failed
due to insufficient CPU and memory resources even on a larger
machine, but reduction makes the simulation possible. The
original G and C matrices, reordered and partitioned in BBD
form are shown in Fig. 7. The borders are visible, collecting
the separator nodes that will be preserved along with the
terminals. The reduced matrices retain the BBD structure and
are sparse, as seen in Fig. 8.

Two SparseRC reduced models were computed, SpRCc and
SpRCf , based on a coarse and fine NESDIS partitioning,
respectively, with the relevant statistics shown in Table II.
Both reduced models achieved excellent reduction rates in
internal nodes and circuit elements, and were fast to simulate.
After a coarse partitioning, the reduction time was smaller than
after the fine partitioning due to less computational overhead
in forming the reduced matrices per subnet. The SpRCf

reduced model however was faster to simulate than SpRCc,
possibly due to the fact that, although larger in node numbers
than SpRCc, SpRCf has fewer circuit elements. Determining
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TABLE II

Advanced Comparisons for Very Large Examples

Net Type ni
Pni

(%)
#R

PR

(%)
#C

PC

(%)
Sim.

Time (s)

Sim.
Speed-Up

(X)

Red.
Time (s)

Partition
Time (s)

N

# Part.
AvgN
Size

AvgS
Size

Avg-p
Size

Avg. Red.
Time (s)

7. PLL
p = 4041

Orig. 377 433 – 593 786 – 555 553 – NA – – – – – – – –

SpRCc 3905 98.97 46 499 92.17 312 351 43.78 689 ∞ 116 36 255 2949 32 29 0.86
SpRCf 12 861 96.59 56 582 90.47 243 350 56.20 656 ∞ 1199 394 2423 304 11 3 0.93

PartMOR 5392 98.57 138 628 76.6 209 835 62.22 836 ∞ 1410 559 229 − − − −
PACT NA NA NA NA NA NA NA NA NA – – – – – –
SIP-mf NA NA NA NA NA NA NA NA > 24 h – – – – – –

8. Filter
p = 5852

Orig. 32 140 – 47 718 – 123 696 – 1140 – – – – – – – –

SpRC 6882 78.59 31 995 32.95 155 011 −25.32 700 1.63 X 163 22.60 2065 29 8 4 0.15
SpRC-mf 16 729 47.95 32 760 31.35 116 272 6.00 783 1.46 X 1237 19.44 2065 29 8 4 1.19

PACT 0 100 414 500 −768.64 5 927 790 −4692 > 24 h NA 69 – – – – – –
SIP-mf 30 935 3.75 46 399 2.76 123 135 0.45 892 1.28 X 11 648 – – – – – –

N is the number of subnets, AvgN Size is the average size of a subnet, AvgS Size/Avg.–p Size are the average number of separator nodes/terminals per subnet,
and Avg. Red. Time is the average reduction time per subnet.

the appropriate balance between preserved internal nodes ni

and sparsity, and its influence on simulation time remains to
be further studied. A direct PACT reduction is immediately
dismissed, due to the prohibitive computational and density
considerations. A SIP-based reduced model was attempted,
but the fill-in monitoring actions were too expensive (> 24 h).

a) Comparison with PartMOR: For the PLL, statistics
of a reduced PartMOR model are also included, thanks to
the authors of [16]. Compared to PartMOR, SpRCc has fewer
internal nodes and circuit elements. The SparseRC models
were faster to simulate, and also obtained in a shorter par-
titioning and reduction time. Although there is no original
simulation to compare the reductions against, Fig. 9 shows
the AC simulation waveform for the two SparseRC models,
and PartMOR. SpRCc and SpRCf overlap, confirming that
the accuracy of SparseRC is robust to changes in the partition
strategy, due to guaranteed local and global moment match-
ing. The reduced PartMOR model was determined by local
matching of the 0th and 1st moments at DC, however with no
guarantee of matched moments for the recombined network
(personal communication with PartMOR [16] authors, March
14, 2011). Thus, since the accuracy of PartMOR is dependent
on the number of partitions, finer partitioning would likely
be needed to reach what we infer are the correct waveforms
produced by SparseRC. While PartMOR offers advantages in
other respects, such as guaranteed positive elements, these
results motivate a more thorough investigation into combining
the strengths of both methods in the future.

2) Filter: This netlist is more challenging due to its large
ratio p

ni
> 10−1. Two SparseRC reduced models were com-

puted: SpRC, based on NESDIS partitioning alone, and SpRC-
mf, where, after partitioning, each subnet was reordered with
CAMD and additional internal nodes were preserved via fill-in
monitoring operations. In both cases, a fine partitioning was
needed to distribute the terminals across subnets. Although
the SpRC-mf has much fewer circuit elements than SpRC, it
takes longer to simulate, due to the presence of many internal
nodes ni. The fill-monitoring operations inside SpRC-mf also
make the reduction time significantly longer than for SpRC.
The PACT reduced model is the smallest in dimension (has
no preserved internal nodes) but extremely dense and useless
in simulation. An SIP reduced model was also computed:

Fig. 9. PLL. AC analysis of reduced models: SpRCc (red) and SpRCf (blue)
are overlapping as expected. PartMOR (magenta) deviates slightly.

Fig. 10. Filter. AC analysis of original (red), reduced SparseRC model
(blue), and reduced SIP model with minimum fill-track (magenta) match
perfectly.

CAMD reordering and fill-monitoring actions were applied
on the original netlist’s graph to determine the reduced model
with minimum fill. The result is shown in Fig. 11, where the
minimum fill point is identified after eliminating only the first
1200 internal nodes. The SIP reduced circuit is larger, has
more elements than SparseRC, and is slower to simulate. Also,
the SIP reduction time was much larger than SparseRC. The
AC analysis comparison of SparseRC and SIP match with
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Fig. 11. Filter. Determining the dimension of the SIP reduced model from
CAMD reordering and node-wise elimination. The minimum fill point is
reached after eliminating the first 1200 of the 32 140 internal nodes (for clarity
only the first 1400 internal nodes are shown).

the original, is shown in Fig. 10. This further strengthens
the advantages of partitioning: aside from enhancing sparsity
by preserving separator nodes, it also makes fill-monitoring
actions cheaper to perform. In summary, SparseRC achieves
the best tradeoff in terms of accuracy, dimension, sparsity,
reduction time, and resimulation time. Finally, the Filter
example reveals several directions for improving the SparseRC
methodology. It indicates that other reduction transformations
and/or further sparsification methods may be appropriate for
circuits with many more capacitors than resistors. Also, cir-
cuits with large p

n
ratios are the most difficult to partition and

reduce with a satisfactory sparsity level. This could be resolved
with the help of partitioners which could directly control the
distribution of terminals, and remains for further research [26].

V. Conclusion

In this paper, SparseRC was presented, which is a ro-
bust and efficient reduction strategy for RC circuits with
many terminals. It reduced testcases where traditional model
reduction fails, due to either the large dimension of the
original problem or the density of the final reduced circuit.
Developed on the divide and conquer principle, SparseRC
used graph-partitioning to separate a network into minimally
connected components. These were reduced individually with
an appropriate update of the interconnections among them.
This guaranteed that two multiport admittance moments were
matched for the entire net irrespective of the partitioning
size or strategy. SparseRC reduced circuits contained fewer
nodes and circuit elements compared to conventional MOR
results. As challenging industrial testcases showed, significant
speed-ups were obtained when resimulating SparseRC reduced
models in place of the original circuits.

Appendix A

Proofs of Theorems

Proof of Proposition 1: Expressing xR in terms of xS

from the first block-row of (2), and replacing it in the second
gives the circuit’s multiport admittance: Y(s)xS =BSu, where

Y(s)=(GS +sCS)−(GK +sCK)T(GR+sCR)−1(GK +sCK). The first
moment of Y(s) at s = 0 is: Y(s)|s=0 = GS −GT

KG−1
R GK = G

′
S .

From the first derivative:
dY
ds

(s) = CS −CT
K(GR +sCR)−1(GK +

sCK)−(GK+sCK)T(GR+sCR)−1CK+(GK+sCK)T(GR+sCR)−1CR(GR+
sCR)−1(GK + sCK), the second moment at s = 0 is obtained:
dY
ds

(s)|s=0 =CS−CT
KG−1

RGK−GT
KG−1

RCK+GT
KG−1

RCRG−1
RGK =C

′
S.

Proof of Theorem 1: By Proposition 1, the reduced
subnet 1 defined by Ĝ11 (19) and Ĉ11 (22), preserves the first
two multiport admittance moments at s = 0 of the original
subnet 1 defined by G11, C11. The same holds for the reduced
subnet 2, defined by Ĝ22 (32) and Ĉ22 (35). It remains to prove
the admittance moment matching between the original (14)
and reduced (30), (31) recombined circuits. This is shown
by reconstructing from the individual EMMPs, an EMMP
projection V associated with entire circuit (14), as follows.
Recall G from (15), where in addition nodes x2 of the second
subnet are split into x2R

and x2S
as in Section III-B2 as follows:

G=

⎡⎢⎢⎢⎢⎣
G11R

G11K
0 0 G13R

GT
11K

G11S
0 0 G13S

0 0 G22R
G22K

G23R

0 0 GT
22K

G22S
G23S

GT
13R

GT
13S

GT
23R

GT
23S

G33

⎤⎥⎥⎥⎥⎦ .

Recall V = V1V2 = with V1 from (16) and V2 from (29).
Inside V1, let I2 = blockdiag(IR2 , IS2 ) be partitioned according
to the splitting of x2 into x2R

and x2S
, respectively. Then, by

straightforward matrix multiplication

V =V1V2 =

⎡⎢⎢⎢⎣
−G−1

11R
G11K

0 −G−1
11R

G13R

IS1 0 0
0 −G−1

22R
G22K

−G−1
22R

G23R

0 IS2 0
0 0 I3

⎤⎥⎥⎥⎦ . (41)

Let P be the permutation which interchanges the second with
the third block-row of (41). Then, denoting VP = PV

VP=

⎡⎢⎢⎢⎢⎣
−G−1

11R
G11K

0 −G−1
11R

G13R

0 −G−1
22R

G22K
−G−1

22R
G23R

IS1 0 0
0 IS2 0
0 0 I3

⎤⎥⎥⎥⎥⎦ . (42)

Define the permuted matrices GP = PGPT , CP = PCPT ,
BP = PB, and notice their structure as follows:

GP=

⎡⎢⎢⎢⎢⎣
G11R

0 G11K
0 G13R

0 G22R
0 G22K

G23R

GT
11K

0 G11S
0 G13S

0 GT
22K

0 G22S
G23S

GT
13R

GT
13S

GT
23R

GT
23S

G33

⎤⎥⎥⎥⎥⎦ :=

[
GR GK

GT
K GS

]
(43)

similarly CP :=

[
CR CK

CT
K CS

]
, BP =

⎡⎢⎢⎣
0
0
B1S

B2S

B3S

⎤⎥⎥⎦ :=
[

0
BS

]
. (44)
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From (43) and (44), and the analogy with Section II-B, one

recognizes immediately in (42) the EMMP: VP=

[
−G−1

R GK

IS1S23

]
,

where IS1S23 = blockdiag(IS1 , IS2 , I3). From Proposition 1, the
reduced model obtained by projecting (43) and (44) with
VP matches the fist two DC multiport admittance moments
(defined with respect to BS , the total number of terminals
and separator nodes of the recombined circuit). Since P is
a permutation, PTP = I, it follows that this reduced model
is precisely: VT

PGPVP = VTGV = Ĝ, VT
PCPVP = VTCV = Ĉ,

VT
PBP = VTB = B̂, where (30)–(39) hold.
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