
 

On the benefit of processor coallocation in multicluster grid
systems
Citation for published version (APA):
Sonmez, O. O., Mohamed, H. H., & Epema, D. H. J. (2010). On the benefit of processor coallocation in
multicluster grid systems. IEEE Transactions on Parallel and Distributed Systems, 21(6), 778-789.
https://doi.org/10.1109/TPDS.2009.121

DOI:
10.1109/TPDS.2009.121

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/TPDS.2009.121
https://doi.org/10.1109/TPDS.2009.121
https://research.tue.nl/en/publications/a73c133a-aa50-44de-8444-e4be67d437d4


On the Benefit of Processor Coallocation
in Multicluster Grid Systems

Omer Ozan Sonmez, Hashim Mohamed, and Dick H.J. Epema

Abstract—In multicluster grid systems, parallel applications may benefit from processor coallocation, that is, the simultaneous

allocation of processors in multiple clusters. Although coallocation allows the allocation of more processors than available in a single

cluster, it may severely increase the execution time of applications due to the relatively slow wide-area communication. The aim of this

paper is to investigate the benefit of coallocation in multicluster grid systems, despite this drawback. To this end, we have conducted

experiments in a real multicluster grid environment, as well as in a simulated environment, and we evaluate the performance of

coallocation for various applications that range from computation-intensive to communication-intensive and for various system load

settings. In addition, we compare the performance of scheduling policies that are specifically designed for coallocation. We

demonstrate that considering latency in the resource selection phase improves the performance of coallocation, especially for

communication-intensive parallel applications.

Index Terms—Coallocation, grid, multicluster, parallel job scheduling.

Ç

1 INTRODUCTION

OVER the last decade, multicluster grids have become the
mainstream execution environment for many large-

scale (scientific) applications with varying characteristics. In
such systems, parallel applications may benefit from using
resources such as processors in multiple clusters simulta-
neously, that is, they may use processor coallocation. This
potentially leads to higher system utilizations and lower
queue wait times by allowing parallel jobs to run when they
need more processors than are available in a single cluster.
Despite such benefits, with processor coallocation, the
execution time of parallel applications may severely increase
due to wide-area communication overhead and processor
heterogeneity among the clusters. In this paper, we
investigate the benefit of processor coallocation (hereafter,
we use “coallocation” to refer to “processor coallocation”),
despite its drawbacks, through experiments performed in a
real multicluster grid environment. In addition, we have
performed simulation-based experiments to extend our
findings obtained in the real environment.

From the perspective of a single parallel application,
coallocation is beneficial if the intercluster communication
overhead is lower than the additional queue wait time, the
application will experience if it is instead submitted to a
single cluster. However, this additional queue wait time is
neither known a priori nor can it be predicted easily due to
the heterogeneity and the complexity of grid systems.
Therefore, in this work, we do not rely on predictions. We
aim to assess the effect of various factors such as the
communication requirements of parallel applications, the

communication technology and the processor heterogeneity
of the system, and the scheduling policies of a grid
scheduler on the coallocation performance of single parallel
applications in terms of the execution time, in particular in a
real multicluster grid system. In addition, we aim to
investigate the benefit of coallocation from the perspective
of scheduling workloads of parallel applications in terms of
the average job response time.

In our previous work, we have focused on the
implementation issues of realizing support for coallocation
in our KOALA grid scheduler [1], and implemented
scheduling policies for parallel applications that may need
coallocation. The Close-to-Files (CFs) policy [2] tries to
alleviate the overhead of waiting in multiple clusters for the
input files of applications to become available in the right
locations. We have shown that the combination of the CF
policy and file replication is very beneficial when applica-
tions have large input files. The (Flexible) Cluster Mini-
mization (FCM) policy [3] minimizes the number of clusters
to be combined for a given parallel application in order to
reduce the number of intercluster messages between the
components of a coallocated application, which turns out to
improve the performance of coallocation for communica-
tion-intensive applications.

In this paper, we extend our previous work with the
following contributions. First, we present an analysis of the
impact of the intercluster communication technology and
the impact of the processor speed heterogeneity of a system
on the coallocation performance of parallel applications.
Second, we investigate when coallocation in multicluster
grids may yield lower average job response times through
experiments that run workloads of real MPI applications as
well as synthetic applications which vary from computa-
tion-intensive to communication-intensive. Finally, we
extend the scheduling policies of KOALA with the Commu-
nication-Aware (CA) policy that takes either intercluster
bandwidth or latency into account when deciding on
coallocation, and we compare its performance to that of
FCM, which only takes the numbers of idle processors into
account when coallocating jobs.

778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010

. The authors are with the Parallel and Distributed Systems Group, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
E-mail: {o.o.sonmez, h.h.mohamed, d.h.j.epema}@tudelft.nl.

Manuscript received 15 Sept. 2008; revised 9 Apr. 2009; accepted 24 June
2009; published online 17 July 2009.
Recommended for acceptance by M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-09-0352.
Digital Object Identifier no. 10.1109/TPDS.2009.121.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



The rest of the paper is organized as follows: Section 2
presents a job model for parallel applications that may run on
coallocated resources. In Section 3, we explain the main
mechanisms of our KOALA grid scheduler and our testbed
environment. In Section 4, we present the scheduling policies
of KOALA that we consider in this paper. In Sections 5, 6, and
7, we present the results of our experiments. In Section 8, we
discuss the challenges and issues of realizing coallocation in
real multicluster grids. Section 9 reviews related work on
coallocation. Finally, Section 10 ends the paper with some
concluding remarks.

2 A JOB MODEL FOR PARALLEL APPLICATIONS

In this section, we present our job model for processor
coallocation of parallel applications in multicluster grids. In
this model, a job comprises either one or multiple components
that can be scheduled separately (but simultaneously) on
potentially different clusters, and together execute a single
parallel application. A job specifies for each component its
requirements and preferences, such as its size (the number
of processors or nodes it needs) and the names of its input
files. We assume jobs to be rigid, which means that the
number of processors allocated to a job (and to each of its
components) remains fixed during its execution. A job may
or may not specify the execution sites where its components
should run. In addition, a job may or may not indicate how it
is split up into components. Based on these distinctions, we
consider three job request structures: fixed requests, nonfixed
requests, and flexible requests (see Fig. 1).

In a fixed request, a job specifies the sizes of its
components and the execution site on which the processors
must be allocated for each component. On the other hand, in
a nonfixed request, a job also specifies the sizes of its
components, but it does not specify any execution site,
leaving the selection of these sites, which may be the same for
multiple components, to the scheduler. In a flexible request,
a job only specifies its total size and allows the scheduler to
divide it into components (of the same total size) in order to
fit the job on the available execution sites. With a flexible
request, a user may impose restrictions on the number and
sizes of the components. For instance, a user may want to
specify for a job a lower bound on the component size or an

upper bound on the number of components. By default, this
lower bound is one and this upper bound is equal to the
number of execution sites in the system. Although it is up to
the user to determine the number and sizes of the
components of a job, some applications may dictate specific
patterns for splitting up the application into components;
hence, complete flexibility is not suitable in such a case. So, a
user may specify a list of options of how a job can be split up,
possibly ordered according to preference. In the experiments
in this paper, we do not include this feature.

These request structures give users the opportunity of
taking advantage of the system considering their applica-
tions’ characteristics. For instance, a fixed job request can be
submitted when the data or software libraries at different
clusters mandate a specific way of splitting up an
application. When there is no such affinity, users may want
to leave the decision to the scheduler by submitting a
nonfixed or a flexible job request. Of course, for jobs with
fixed requests, there is nothing a scheduler can do to
schedule them optimally; however, for nonfixed and
flexible requests, a scheduler should employ scheduling
policies (called job placement policies in this paper) in order
to optimize some criteria.

3 THE SCHEDULER AND THE SYSTEM

In this section, first, we briefly describe the KOALA grid
scheduler [1], which is the basis of the work presented in this
paper, and second, we describe our testbed, the DAS3 [4].

3.1 The KOALA Grid Scheduler

The KOALA grid scheduler has been designed for multi-
cluster systems such as the DAS-3 which have in each
cluster a head node and a number of compute nodes. The
main distinguishing feature of KOALA is its support for
coallocation.

Upon submission of a job, KOALA uses one of its job
placement policies (see Section 4) to try to place job
components on suitable execution sites. If the placement of
the job succeeds and input files are required, the scheduler
informs the job submission tool to initiate the third-party file
transfers from the selected file sites to the execution sites of
the job components. If a placement try fails, KOALA places
the job at the tail of the placement queue, which holds all
jobs that have not yet been successfully placed. The
scheduler regularly scans the queue from head to tail to
see whether it is able to place any job.

For coallocation, KOALA uses an atomic transaction
approach [5] in which job placement only succeeds if all
the components of a job can be placed at the same time. This
necessitates the simultaneous availability of the desired
numbers of idle nodes in multiple clusters. KOALA tries to
allocate nodes using the resource managers of the clusters
in question. If all the allocation attempts for all components
succeed, the job is initiated on the allocated nodes after the
necessary file transfers. In this study, we map two
application processes per node, since all the clusters in
our testbed comprise nodes of dual processors.

Currently, KOALA is capable of scheduling and coallocat-
ing parallel jobs employing either the Message Passing
Interface (MPI) or Ibis [6] parallel communication libraries.
In this paper, we only consider MPI jobs, which have to be
compiled with the Open-MPI [7] library. Open-MPI, built

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 779

Fig. 1. The job request types supported by KOALA.



upon the MPI-2 specification, allows KOALA to combine
multiple clusters to run a single MPI application by
automatically handling both intercluster and intracluster
messaging.

3.2 The DAS-3 Testbed

Our testbed is the third-generation Distributed ASCI
Supercomputer (DAS-3) [4], which is a wide-area computer
system in The Netherlands that is used for research on
parallel, distributed, and grid computing. It consists of five
clusters of, in total, 272 dual-processor AMD Opteron
compute nodes. The distribution of the nodes over the
clusters and their speeds is given in Table 1. As can be seen,
the DAS-3 has a relatively minor level of processor speed
heterogeneity. The clusters are connected by both 10 Gb/s
Ethernet and 10 Gb/s Myri-10G links both for wide-area
and for local-area communications, except for the cluster in
Delft, which has only 1 Gb/s Ethernet links. On each of the
DAS-3 clusters, the Sun Grid Engine (SGE) [8] is used as the
local resource manager. SGE has been configured to run
applications on the nodes in an exclusive fashion, i.e., in
space-shared mode. As the storage facility, NFS is available
on each of the clusters.

4 JOB PLACEMENT POLICIES

The KOALA job placement policies are used to decide where
the components of nonfixed and flexible jobs should be sent
for execution. In this section, we present three job
placement policies of KOALA, which are the Worst Fit, the
Flexible Cluster Minimization, and the Communication-
Aware placement policy. Worst Fit is the default policy of
KOALA which serves nonfixed job requests. Worst Fit also
makes perfect sense in the absence of coallocation, when all
jobs consist of a single component. The two other policies,
on the other hand, serve flexible job requests and only apply
to the coallocation case.

4.1 The Worst Fit Policy

The Worst Fit (WF) policy aims to keep the load across
clusters balanced. It orders the components of a job with a
nonfixed request type according to decreasing size and
places them in this order, one by one, on the cluster with the
largest (remaining) number of idle processors, as long as
this cluster has a sufficient number of idle processors. WF
leaves in all clusters as much room as possible for later jobs,
and hence, it may result in coallocation even when all the
components of the considered job would fit together on a
single cluster.

4.2 The Flexible Cluster Minimization Policy

The FCM policy is designed with the motivation of
minimizing the number of clusters to be combined for a

given parallel job in order to reduce the number of
intercluster messages. FCM first orders the clusters accord-
ing to decreasing number of idle processors and considers
component placement in this order. Then, FCM places on
clusters one by one a component of the job of size equal to the
number of idle processors in that cluster. This process
continues until the total processor requirement of the job has
been satisfied or the number of idle processors in the system
has been exhausted, in which case the job placement fails (the
job component placed on the last cluster used for it may be
smaller than the number of idle processors of that cluster).

Fig. 2 illustrates the operation of the WF and the FCM
policies for a job of total size 24 in a system with three clusters,
each of which has 16 idle processors. WF successively places
the three components (assumed to be of size 8 each) of a
nonfixed job request on the cluster that has the largest
(remaining) number of available processors, which results in
the placement of one component on each of the three clusters.
On the other hand, FCM results in combining two clusters for
a flexible job of the same total size (24), splitting the job into
two components of sizes 16 and 8, respectively.

4.3 The Communication-Aware Policy

The CA placement policy takes either bandwidth or latency
into account when deciding on coallocation. The perfor-
mance of parallel applications that need relatively large
data transfers is more sensitive to bandwidth, while the
performance of parallel applications which are dominated
by interprocess communication is more sensitive to latency.
In this paper, we only consider the latter case, and run the
CA policy with the latency option.

The latencies between the nodes of each pair of clusters
in the system are kept in the information service of KOALA

and are updated periodically. CA first orders the clusters
according to increasing intracluster latency, and checks in
this order whether the complete job can be placed in a
single cluster. If this is not possible, CA computes for each
cluster the average of all of its intercluster latencies,
including its own intracluster latency, and orders the
clusters according to increasing value of this average

780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010

TABLE 1
Properties of the DAS-3 Clusters

Fig. 2. An example comparing the WF and the FCM placement policies.



latency. As in the FCM policy, CA then splits up the job
into components of sizes equal to the numbers of idle
processors of the clusters in this order (again, the last
component of the job may not completely fill up the cluster
on which it is placed).

In fact, the CA policy does not guarantee the best
solution to the problem of attaining the smallest possible
execution time for a coallocated parallel application, since
this problem is NP-complete. However, it is a reasonable
heuristic for small-scale systems. For larger systems, a
clustering approach can be considered, in which clusters
with low intercluster latencies are grouped together, and
coallocation is restricted to those groups separately.

5 THE IMPACT OF SYSTEM PROPERTIES ON

COALLOCATION PERFORMANCE

In this section, we evaluate the impact of the intercluster
communication characteristics and the processor speed
heterogeneity of a multicluster system on the execution
time performance of a single parallel application that runs
on coallocated processors.

5.1 The Impact of Intercluster Communication

In a multicluster grid environment, it is likely that the
intercluster communication is slower than the intracluster
communication in terms of latency and bandwidth, which
are the key factors that determine the communication
performance of a network. This slowness, in fact, depends
on various factors such as the interconnect technology that
enables the intercluster communication among the pro-
cesses of a parallel application, the distance between the
clusters, the number and capabilities of the network
devices, and even the network configuration. Therefore,
depending on the communication requirements of a parallel
application, the intercluster latency and bandwidth may
have a big impact on its execution time performance.

In this section, we first present the results of experiments
for measuring the communication characteristics of our
testbed, and then, we present the results of experiments for
assessing the impact of intercluster communication on
execution time performance.

With the DAS-3 system, we have the chance to compare
the performance of the Myri-10G and the Gigabit Ethernet

(GbE, 1Gb/s) interconnect technologies. When the cluster in
Delft is involved in the coallocation of a parallel job, GbE is
used for the entire intercluster communication, since it does
not support the faster Myri-10G technology. For all other
cluster combinations, for coallocation, Myri-10G is used,
even though they all support GbE. Table 2 shows the
average intracluster and intercluster bandwidth (in mega-
byte per second) and the average latency (in millisecond) as
measured between the compute nodes of the DAS-3 clusters
(the values are diagonally symmetric). These measurements
were performed with an MPI ping-pong application that
measures the average bidirectional bandwidth, sending
messages of 1 MB, and the average bidirectional latency,
sending messages of 64 KB, between two (co)allocated
nodes. The measurements were performed when the system
was almost empty. With Myri-10G, the latency between the
nodes is lower and the bandwidth is higher in comparison to
the case with GbE. The measurements also indicate that the
environment is heterogeneous in terms of communication
characteristics even when the same interconnection technol-
ogy is used. This is due to characteristics of the network
structure such as the distance and the number of routers
between the nodes. For example, the clusters Amsterdam
and MultimediaN are located in the same building, and
therefore, they achieve the best intercluster communication.
We were not able to perform measurements between the
clusters in Delft and Leiden due to a network configuration
problem; hence, we excluded either the cluster in Delft or the
cluster in Leiden in all of our experiments.

The synthetic parallel application that we use in our
execution time experiments performs one million
MPI_AllGather all-to-all communication operations each
with a message size of 10 KB. The job running this
application has a total size of 32 nodes (64 processors),
and we let it run with fixed job requests with components
of equal size on all possible combinations of one-four
clusters with the following restrictions. We either exclude
the cluster in Delft and let the intercluster communication
use the Myri-10G network, or we include the cluster in
Delft, exclude the one in Leiden, and let the intercluster
communication use GbE.

Fig. 3 shows the execution time of the synthetic applica-
tion averaged across all combinations of equal numbers of
clusters. Clearly, the execution time increases with the
increase of the number of clusters combined. However, the

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 781

TABLE 2
The Average Bandwidth (in Megabyte Per Second,

Top Numbers) and Latency (in Millisecond, Bottom Numbers)
between the Nodes of the DAS-3 Clusters

(For Delft-Leiden, See Text)

Fig. 3. The execution time of a synthetic coallocated MPI application,
depending on the interconnect technology used and the number of
clusters combined.



increase is much more severe, and the average execution
time is much higher, when GbE is used—coallocation with
Myri-10G adds much less execution time overhead. These
results indicate that the communication characteristics of the
network are a crucial element in coallocation, especially for
communication-intensive parallel applications. However,
the performance of coallocation does not solely depend on
this aspect for all types of parallel applications, as we will
explain in the following section.

5.2 The Impact of Heterogeneous Processor
Speeds

Unless an application developer does take into account
processor speed heterogeneity and optimizes his applica-
tions accordingly, the execution time of a parallel application
that runs on coallocated clusters will be limited by the speed
of the slowest processor, due to the synchronization of the
processes. This is a major drawback of coallocation espe-
cially for computation-intensive parallel applications which
do not require intensive intercluster communications.

We have run a synthetic parallel application combining
the cluster in Leiden (which has the fastest processors, see
Table 1) with each of the other clusters in the DAS-3 system
and quantified the increase in the execution time over
running the application only in Leiden. The synthetic parallel
application performs 10 million floating point operations
without any I/O operations and interprocess communica-
tions except the necessary MPI initialization and finalization
calls. As the results in Table 3 indicate, there is a slight
increase in the execution time ranging from 7 to 17 percent
due to the minor level of processor speed heterogeneity in
DAS-3. Therefore, in this paper, we do not consider the
slowdown due to heterogeneous processor speeds in our
policies. Nevertheless, the FCM policy can easily be enhanced
such that it does consider the processor speeds when
coallocating in systems where this slowdown can be high.

6 COALLOCATION VERSUS NO COALLOCATION

In this section, we investigate when coallocation for parallel
applications may be beneficial over disregarding coalloca-
tion. In Section 6.1, we present the applications that we have
used in our experiments. In Section 6.2, we present and
discuss the results of the experiments conducted in the
DAS-3 system. We have performed additional experiments
in a simulated DAS-3 environment, in order to investigate
the performance of coallocation for a wide range of
situations. We present and discuss the results of these
simulation-based experiments in Section 6.3.

6.1 The Applications

For the experiments, we distinguish between computation-
and communication-intensive parallel applications. We
have used three MPI applications: Prime Number [9], Poisson

[10], and Concurrent Wave [11], which vary from computa-
tion-intensive to communication-intensive.

The Prime Number application finds all the prime
numbers up to a given integer limit. In order to balance
the load (large integers take more work), the odd integers
are assigned cyclically to processes. The application exhibits
embarrassing parallelism; collective communication meth-
ods are called only to reduce the data of the number of
primes found, and the data of the largest prime number.

The Poisson application implements a parallel iterative
algorithm to find a discrete approximation to the solution of
a two-dimensional Poisson equation on the unit square. For
discretization, a uniform grid of points in the unit square
with a constant step in both directions is considered. The
application uses a red-black Gauss-Seidel scheme, for which
the grid is split up into “black” and “red” points, with every
red point having only black neighbors and vice versa. The
parallel implementation decomposes the grid into a two-
dimensional pattern of rectangles of equal size among the
participating processes. In each iteration, the value of the
each grid point is updated as a function of its previous
value and the values of its neighbors, and all points of one
color are visited first followed by the ones of the other color.

The Concurrent Wave application calculates the ampli-
tude of points along a vibrating string over a specified
number of time steps. The one-dimensional domain is
decomposed by the master process, and then, distributed as
contiguous blocks of points to the worker processes. Each
process initializes its points based on a sine function. Then,
each process updates its block of points with the data
obtained from its neighbor processes for the specified
number of time steps. Finally, the master process collects
the updated points from all the processes.

The runtimes of these applications in the DAS-3 are
shown in Fig. 4. Each application has been run several
times on all combinations of clusters (excluding the cluster
in Delft; the interconnect technology is Myri-10G) as fixed
job requests with a total size of 32 nodes and components of
equal size (except for the case of three clusters in which we
submit components of sizes 10-10-12 nodes), and the results
have been averaged. The results demonstrate that as the
Concurrent Wave application is a communication-intensive
application, its execution time with multiple clusters
increases markedly, from 200 seconds as a single cluster
to 750 seconds when combining four clusters. The Poisson
application suffers much less from the wide-area commu-
nication overhead, while the Prime Number application is

782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010

TABLE 3
Execution Time of a Synthetic Application When Coallocating

the Cluster in Leiden with Each of the Other Clusters

Fig. 4. The average execution times of the applications depending on
the number of clusters combined.



not affected by it at all, since it is a computation-intensive
parallel application.

6.2 Experiments in the Real Environment

In this section, we present our experiments in the DAS-3.
We first explain our experimental setup, and then, discuss
the results.

6.2.1 Experimental Setup

In our experiments, we use three workloads that each
contains only one of the applications presented in
Section 6.1. In the experiments in which no coallocation is
employed, the workloads are scheduled with the WF
policy, and in the experiments in which coallocation is
used, the workloads are scheduled with the FCM policy
(and all job requests are flexible).

We consider jobs with total sizes of 8, 16, and 32 nodes so
that the jobs can fit on any cluster in the system in case of no
coallocation; the total sizes of the jobs are randomly chosen
from a uniform distribution. For every application, we have
generated a workload with an average interarrival time
determined in such a way that the workload is calculated to
utilize approximately 40 percent of the system on average.
The real (observed) utilization attained in the experiments
depends on the policy being used, since the theoretical
calculation of the utilization (i.e., the net utilization) is based
on the average single-cluster execution times of the
applications. When there is no coallocation, there is no
wide-area communication, and the real and the net
utilizations coincide. The job arrival process is Poisson.

We use the tools provided within the GrenchMark project
[12] to ensure the correct submission of our workloads to the
system, and run each workload for 4 hours, under the policy
in question. We have excluded the cluster in Delft, and the
interconnect technology is Myri-10G.

In the DAS-3 system, we do not have control over the
background load imposed on the system by other users. These
users submit their (nongrid) jobs straight to the local resource
managers, bypassing KOALA. During the experiments, we
monitored this background load and tried to maintain it
between 10 and 30 percent across the system by injecting or
killing dummy jobs to the system. We consider our experi-
mental conditions no longer to be satisfied when the back-
ground load has exceeded 30 percent for more than 5 minutes.
In such cases, the experiments were aborted and repeated.

In order to describe the performance metrics before
presenting our results, we first discuss the timeline of a job
submission in KOALA, as shown in Fig. 5. The time instant
of the successful placement of a job is called its placement
time. The start time of a job is the time instant when all
components are ready to execute. The total time elapsed
from the submission of a job until its start time is the wait
time of a job. The time interval between the submission and
the placement of a job shows the amount of time it spends
in the placement queue, i.e., the queue time. The time interval
between the placement time and the start time of a job is its
start-up overhead.

6.2.2 Results

We will now present the results of our experiments for
comparing the performance with and without coallocation
with the WF and FCM policies, respectively, for workloads
of real MPI applications. Fig. 6a shows the average job
response time broken down into the wait time and the
execution time for the workloads of all three applications,
and Fig. 6b shows the percentages of coallocated jobs.

First of all, we have observed in our experiments that the
start-up overhead of jobs is 10 seconds, on average,
regardless of the number of clusters combined for it, and
hence, from the values of the wait time shown in Fig. 6a, we
conclude that the wait time is dominated by the queue time.
Compared to what we have observed in [3] with Globus
DUROC [13] and the MPIGH-2 [14] library for coallocation,
the DRMAA-SGE [15] interface and the Open-MPI [7]
library for coallocation yield a much lower start-up over-
head, by a factor of 5 on average.

Fig. 6a indicates that for the workloads of the Prime and
Poisson applications, the average job response time is lower

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 783

Fig. 5. The timeline of a job submission in Koala.

Fig. 6. Real experiments: (a) the average job response times and (b) the percentages of coallocated jobs of the workloads.



when the workloads are scheduled with FCM compared to
when they are scheduled with WF; however, the average
job response time is higher for the workload of the Wave
application with FCM. The FCM policy potentially de-
creases the job wait times since it is allowed to split up jobs
in any way it likes across the clusters. Given that the
execution times of the Prime Number and Poisson applica-
tions only slightly increase with coallocation, and the
substantial reduction in wait time results in a lower average
job response time.

For the Wave application, coallocation severely increases
the execution time. As a consequence, the observed utiliza-
tion also increases, causing higher wait times. Together, this
leads to higher response times. As Fig. 6b indicates, a
relatively small fraction of coallocation is responsible for the
aforementioned differences in the average job response
times between no coallocation and coallocation.

We conclude that in case of moderate resource conten-
tion (i.e., 40 percent workloadþ 10-30 percent background
load), coallocation is beneficial for computation-intensive
parallel applications (e.g., Prime) and communication-
intensive applications whose slowdown due to the inter-
cluster communication is low (e.g., Poisson). However, for
very communication-intensive parallel applications (e.g.,
Wave), coallocation is disadvantageous due to the severe
increase in the execution time. In the next section, we
further evaluate the performance of no coallocation versus
coallocation under various workload utilization levels
using simulations.

6.3 Experiments in the Simulated Environment

In this section, as in the previous section, we first explain
the experimental setup, and then, present and discuss the
results of our simulations.

6.3.1 Experimental Setup

We have used the DGSim grid simulator [16] for our
simulation-based experiments. We have modeled the KOALA

grid scheduler with its job placement policies, the DAS-3
environment, and the three MPI applications based on their
real execution times in single clusters and combinations of
clusters. We have also modeled a synthetic application whose
communication-to-computation ratio (CCR) can be modified.
We define the CCR value for a parallel application as the ratio
of its total communication time to its total computation time,

when executed in a single cluster. We set the total execution
time of the application to 180 s in a single cluster irrespective
of its CCR. For instance, for a CCR value of 1.0, both the
communication and the computation part of the application
take 90 s; for a CCR value of 0.5, these values are 60 and 120 s.
When the application runs on coallocated clusters, the
communication part is multiplied by a specific factor that is
calculated from the real runs of the synthetic application on
the corresponding coallocated clusters, and the total execu-
tion time of the application increases accordingly.

As in Section 6.2.1, we use workloads that each contains
only one of MPI or the synthetic applications. In the
experiments in which no coallocation is employed, the
workloads are scheduled with the WF policy, and in
the experiments in which coallocation is used, the work-
loads are scheduled with the FCM policy. For the workloads
of the Wave application, we also consider the case in which
FCM is limited to combine two clusters at most.

We consider jobs with total sizes of 8, 16, and 32 nodes so
that the jobs can fit on any cluster in the system in case of no
coallocation; the total sizes of the jobs are randomly chosen
from a uniform distribution. For every application, we have
generated 17 workloads with net utilizations ranging from
10 to 90 percent in steps of 5 percent. The job arrival process
is Poisson. We assume that there is no background load in
the system. Each workload runs for 24 simulated hours,
under the policy in question, and we have again excluded
the cluster in Delft.

6.3.2 Results

Fig. 7a shows the percentage of change in the average job
response time (AJRT) for the workloads of the MPI
applications when they are scheduled with FCM in
comparison to when they are scheduled with WF. Fig. 7b
illustrates the observed utilization versus the net utilization
for the same workloads when they are scheduled with
FCM. In Table 4, for each policy-workload pair, we present
the net utilization interval in which saturation sets in and
jobs are piled up in the queue and the wait times constantly
increase without bounds.

When the resource contention is relatively low (up to
40 percent), with the job sizes included in the workloads,
most jobs are placed in single clusters without a need for
coallocation; hence, we observe no difference in the average
job response times. For the computation-intensive Prime

784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010

Fig. 7. Simulation experiments: (a) percentage of change in the average job response time for the workloads of the MPI applications when they are
scheduled with FCM in comparison to when they are scheduled with WF, and (b) the observed utilization versus the net utilization when the
workloads are scheduled with FCM.



application, the performance benefit of coallocation in-
creases with the increase of the contention in the system,
since jobs have to wait longer in the placement queue in case
of no coallocation. In addition, as Table 4 shows that the
workload of the Prime application causes saturation at lower
utilizations when coallocation is not considered; the satura-
tion point is in between 85-90 percent net utilization for WF
W-Prime, and between 90-95 percent for FCM W-Prime.

We observe that for the Poisson application, coallocation is
advantageous up to 75 percent net utilization, since the lower
wait times compensate for the increase of the execution times.
However, beyond this level, saturation sets in, and conse-
quently, the average job response times increase.

For the Wave application, the extreme execution time
increase of the jobs with coallocation increases the observed
utilization in the system, as shown in Fig. 7b, which as a
result causes an early saturation (see also Table 4). In
addition, we see that limiting coallocation to two clusters
yields a better response time performance than in case of no
limit. However, the benefit is minor.

In order to compare real and simulation experiments, in
Table 5, we present the net utilizations imposed by the
workloads in the real and the simulation experiments where
the percentages of change in the average job response times
match. It turns out that the net utilization in the real
experiments is lower than the net utilization in the corre-
sponding simulation experiments, which is probably due to
the background load in the real experiments having different
characteristics than the workloads of MPI applications.

Fig. 8 shows the change in the average job response time
for the workloads of the synthetic application with various
CCR values. Comparing the results to those of the real MPI
applications, we see that W-Prime matches CCR-0.1, W-
Poisson matches CCR-0.25, and W-Wave matches CCR-4.
The results with the workloads of the synthetic application
exhibit the following. First, parallel applications with very
low CCR values (i.e., 0.10) always benefit from coallocation.
Second, for applications with CCR values between 0.25 and
0.50, coallocation is beneficial to a certain extent; with the
increase of the contention in the system, the performance
benefit of coallocation decreases and after some point, it
becomes disadvantageous. Finally, for applications with

CCR values higher than 0.50, coallocation is disadvanta-
geous since it increases the job response times severely.

7 PERFORMANCE OF THE PLACEMENT POLICIES

Although we have observed that it would be really
advantageous to schedule communication-intensive applica-
tions on a single cluster from the perspective of the execution
time (see in Fig. 4), users may still prefer coallocation when
more processors are needed than available on a single cluster.
In this section, we compare the FCM and CA policies in order
to investigate their coallocation performance for commu-
nication-intensive parallel applications.

7.1 Experiments in the Real Environment

In this section, we present our experiments in the DAS-3.
We first explain our experimental setup, and then, discuss
the results.

7.1.1 Experimental Setup

In our experiments in this section, we use workloads
comprising only the Concurrent Wave application [11], with
a total job size of 64 nodes (128 processors). We have
generated a workload with an average interarrival time
determined in such a way that the workload is calculated to
utilize approximately 40 percent of the system on average.
The job arrival process is Poisson.

We handle the background load in the way mentioned in
Section 6.2.1. We run the workload for 4 hours, under the
policy in question. In the first set of experiments, we have
excluded the cluster in Delft, and in the second set of
experiments, we have excluded the cluster in Leiden and
included the one in Delft; the interconnect technology used
by a job is GbE when the cluster in Delft is involved in its
coallocation, and Myri-10G otherwise.

7.1.2 Results

Fig. 9 shows the performance of the FCM and CA policies
when scheduling the workload of the Wave application on
the sets of clusters without and with the one in Delft.

In terms of the average job response time, the CA policy
outperforms the FCM policy, irrespective of the involve-
ment of the cluster in Delft, which has a slow intercluster
communication speed. The difference in response time is
moderate (50 s) or major (230 s) depending on whether the

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 785

TABLE 5
The Net Utilizations in the Real and the Simulation Experiments

Where the Changes in AJRTs Match
Fig. 8. Simulation experiments: percentage of change in the average job
response time for the workloads of the synthetic application (with
different CCR values) when they are scheduled with FCM in comparison
to when they are scheduled with WF.

TABLE 4
The Net Utilization Intervals in Which the
Policy-Workload Pairs Induce Saturation



cluster in Delft is excluded (communication speed has a low
variability across the system) or included in the experi-
ments (communication speed has a high variability across
the system), respectively.

The CA policy tries to combine clusters that have faster
intercluster communication (e.g., the clusters in Amsterdam
and MultimediaN). However, as it is insensitive to
communication speeds, the FCM policy may combine
clusters with slower intercluster communication, which
consequently increases the job response times. The increase
is more severe when the cluster in Delft is included in the
experiments, since it is involved in many of the coalloca-
tions for the jobs due to its large size.

We conclude that considering intercluster latency in
scheduling communication-intensive parallel applications
that require coallocation is useful, especially when the
communication speed has a high variability across the
system. In the following section, we extend our findings in
the real environment by evaluating the performance of the
FCM and CA policies under various resource contention
levels in a simulated DAS-3 environment.

7.2 Experiments in the Simulated Environment

In this section, again, we first explain the experimental setup,

and then, present and discuss the results of our simulations.

7.2.1 Experimental Setup

In our simulations, we use workloads comprising only the

Concurrent Wave application, with total job sizes of 32, 48,
and 64 nodes. The total sizes of the jobs are randomly chosen

from a uniform distribution. We have generated 13 work-
loads with net utilizations ranging from 20 to 80 percent in
steps of 5 percent. The job arrival process is Poisson. We

assume that there is no background load in the system. Each
workload runs for 24 simulated hours, under the policy in
question.

In the first set of experiments, we have excluded the
cluster in Delft, and in the second set of experiments, we have
included the cluster in Delft and excluded the one in Leiden.

7.2.2 Results

Figs. 10a and 10b illustrate the average job response time
results of the FCM and CA policies scheduling the work-

loads of the Wave application on the set of clusters either
excluding the one in Delft or including it, respectively.

The CA policy outperforms the FCM policy for almost all
utilization levels in both sets of experiments. As the

utilization increases, the gap between the results of the
two policies becomes wider. When the cluster in Delft is

excluded, the system is saturated between 75 and 80 percent
net utilization level; however, when it is included, the
system is saturated between 60 and 70 percent net

utilization, which is much less. The reason is that coallocat-
ing the cluster in Delft increases the job response times

more severely.
We also see that the simulation results are consistent

with the real experiments as the difference in the
performance of the two policies is much larger when the

cluster in Delft is included than when the cluster in Delft is
excluded. This fact supports our claim that taking into

account intercluster communication speeds improves the
performance, especially when the communication speed
has a high variability across the system.

To conclude, the results provide evidence that we should

omit clusters that have slow intercluster communication
speeds when coallocation is needed. In other words, in large

systems, we should group clusters with similar intercluster

786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010

Fig. 9. Real experiments: performance comparison of the FCM and CA
policies.

Fig. 10. Simulation experiments: performance comparison of the FCM and CA policies. (a) Cluster in Delft excluded. (b) Cluster in Delft included.



communication speeds, and restrict coallocation to those
groups separately.

8 CHALLENGES WITH SUPPORTING COALLOCATION

Although we have demonstrated a case for supporting
coallocation in a real environment with our KOALA grid
scheduler, there are still many issues to be considered
before processor coallocation may become a widely used
phenomenon in multicluster grids and grid schedulers. In
this section, we discuss some of these issues, related to
communication libraries, processor reservations, and sys-
tem reliability.

8.1 Communication Libraries

There are various communication libraries available [6], [7],
[14], [17], [18] that enable coallocation of parallel applica-
tions. However, all these libraries have their own advan-
tages and disadvantages; there is no single library we can
name as the most suitable for coallocation. Some include
methods for optimizing intercluster communication, some
include automatic firewall and NAT traversal capabilities,
and some may depend on other underlying libraries.
Therefore, it is important to support several communication
libraries as we do with the KOALA grid scheduler (e.g.,
MPICH-G2 [14], OpenMPI [7], and IBIS [6]).

8.2 Advance Processor Reservations

The challenge with simultaneous access to processors in
multiple clusters of a grid lies in guaranteeing their
availability at the start time of an application. The simplest
strategy is to reserve processors at each of the selected
clusters. If the Local Resource Managers (LRMs) of the
clusters do support advance reservations, this strategy can be
implemented by having a grid scheduler obtain a list of time
slots from each LRM, reserve a common time slot for all job
components, and notify the LRMs of this reservation.
Unfortunately, a reservation-based strategy in grids is
currently limited due to the fact that only few LRMs support
advance reservations (e.g., PBS-pro [19], Maui [20]). In the
absence of an advance reservation mechanism, good alter-
natives are required in order to achieve coallocation; for
instance, with KOALA, we use a reservation mechanism (see
[1]) that has been implemented on top of the underlying LRM.

8.3 System Reliability

The single most important distinguishing feature of grids as
compared to traditional parallel and distributed systems is
their multiorganizational character, which causes forms of
heterogeneity in the hardware and software across the
resources. This heterogeneity, in turn, makes failures
appear much more often in grids than in traditional
distributed systems. In addition, grid schedulers or re-
source management systems do not actually own the
resources they try to manage, but rather, they interface to
multiple instances of local schedulers in separate clusters
which are autonomous and have different management
architectures, which makes the resource management a
difficult challenge.

We have experienced in our work on KOALA that even
only configuring sets of processors in different adminis-
trative domains in a cooperative research environment are

not a trivial task. Due to incorrect configuration of some of
the nodes, during almost all our experiments, hardware
failed and jobs were inadvertently aborted. To accomplish
the experiments that we have presented in this study, we
have spent more than half a year and have submitted more
than 15,000 jobs to get reliable results. We claim that
coallocation in large-scale dynamic systems such as grids
require good methods for configuration management as
well as good fault-tolerance mechanisms.

9 RELATED WORK

Various advance reservation mechanisms and protocols
for supporting processor coallocation in grid systems have
been proposed in the literature [21], [22], [23], [24], [25],
[26]. Performance studies on coallocation, however, mostly
studied in simulated environments; only a few studies
investigate the problem in real systems. In this section, we
discuss some of the studies that we find most related to
our work.

In [27], [28], [29], we study through simulations
processor coallocation in multiclusters with space sharing
of rigid jobs for a wide range of such parameters as the
number and sizes of the job components, the number of
clusters, the service time distribution, and the number of
queues in the system. The main results of our experiments
are that coallocation is beneficial as long as the number and
sizes of job components, and the slowdown of applications
due to the wide-area communication, are limited.

Ernemann et al. [30] present an adaptive coallocation
algorithm that uses a simple decision rule to decide whether
it pays to use coallocation for a job, considering the given
parameters such as the requested runtime and the
requested number of resources. The slow wide-area com-
munication is taken into account by a parameter by which
the total execution time of a job is multiplied. In a
simulation environment, coallocation is compared to keep-
ing jobs local and compared to only sharing load among the
clusters, assuming that all jobs fit in a single cluster. One of
the most important findings is that when the application
slowdown does not exceed 1.25, it pays to use coallocation.

Röblitz and coworkers [31], [32] present an algorithm for
reserving compute resources that allows users to define an
optimization policy if multiple candidates match the
specified requirements. An optimization policy based on a
list of selection criteria, such as end time and cost, ordered
by decreasing importance, is tested in a simulation
environment. For the reservation, users can specify the
earliest start time, the latest end time, the duration, and the
number of processors. The algorithm adjusts the requested
duration to the actual processor types and numbers by
scaling it according to the speedup, which is defined using
speedup models or using a database containing reference
values. This algorithm supports so-called fuzziness in the
duration, the start time, the number of processors, and the
site to be chosen, which leads to a larger solution space.

Jones et al. [33] present several bandwidth-aware
coallocation metaschedulers for multicluster grids. These
schedulers consider network utilization to alleviate the
slowdown associated with the communication of coallo-
cated jobs. For each job modeled, its computation time and

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 787



average per-processor bandwidth requirement are assumed
to be known. In addition, all jobs are assumed to perform all-
to-all global communication periodically. Several schedul-
ing approaches are compared in a simulation environment
consisting of clusters with globally homogeneous proces-
sors. The most significant result is that coallocating jobs
when it is possible to allocate a large fraction (85 percent) of
a single cluster provide the best performance in alleviating
the slowdown impact due to intercluster communication.

The Grid Application Development Software (GrADS)
[34] enables coallocation of grid resources for parallel
applications that may have significant interprocess com-
munication. For a given application, during resource
selection, GrADS first tries to reduce the number of
workstations to be considered according to their availabil-
ities, computational and memory capacities, network
bandwidth, and latency information. Then, among all
possible scheduling solutions, the one that gives the
minimum estimated execution time is chosen for the
application. Different from our work, GrADS assumes that
the performance model of the applications and mapping
strategies is already available or can be easily created. While
they present their approach’s superiority over user-directed
strategies, we handle the coallocation problem for various
cases and present a more in-depth analysis.

In addition to the benefit of coallocation from a system’s
or users’ point of view, various works also address the
performance of a single coallocated parallel application [35],
[36], [37]. A recent study by Seinstra and Geusebrock [38]
presents a work on the coallocation performance of a
parallel application that performs the task of visual object
recognition by distributing video frames across coallocated
nodes of a large-scale Grid system, which comprises
clusters in Europe and Australia. The application has been
implemented using the Parallel-Horus [39] tool, which
allows researchers in multimedia content analysis to
implement high-performance applications. The experimen-
tal results show the benefit of coallocation for such
multimedia applications that require intensive computation
and frequent data distribution.

10 CONCLUSION

In this paper, we have investigated the benefit of processor
coallocation in a real multicluster grid system using our
KOALA grid scheduler [1] as well as in a simulated
environment using our DGSim tool [16]. Initially, we have
assessed the impact of intercluster communication char-
acteristics of a multicluster system on the execution time
performance of a single coallocated parallel application.
Then, we have evaluated the coallocation performance of a
set of parallel applications that range from computation- to
communication-intensive, under various utilization condi-
tions. Finally, we have evaluated two scheduling policies
for coallocating communication-intensive applications. We
conclude the following.

First, the execution time of a single parallel application
increases with the increase of the number of clusters
combined. This increase depends very much on the
communication characteristics of the application, and on
the intercluster communication characteristics and the
processor speed heterogeneity of the combined clusters.

Second, for computation-intensive parallel applications,
coallocation is very advantageous provided that the

differences between the processor speeds across the system
are small. For parallel applications whose slowdown due to
the intercluster communication is low, coallocation is still
advantageous when the resource contention in the system is
moderate. However, for very communication-intensive
parallel applications, coallocation is disadvantageous since
it increases execution times too much.

Third, in systems with a high variability in intercluster
communication speeds, taking network metrics (in our case,
the latency) into account in cluster selection increases the
performance of coallocation for communication-intensive
parallel applications.

Although there is a large opportunity for many scientific
parallel applications to benefit from coallocation, there are
still many issues that need to be overcome before coalloca-
tion can become a widely employed solution in future
multicluster grid systems. The difference between inter-
and intracluster communication speeds, efficient commu-
nication libraries, advance processor reservations, and
system reliability is some of these challenges.

ACKNOWLEDGMENTS

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl), which is
supported by a BSIK grant from the Dutch Ministry of
Education, Culture and Science (OC&W), and which is part
of the ICT innovation program of the Dutch Ministry of
Economic Affairs (EZ).

REFERENCES

[1] H. Mohamed and D. Epema, “Koala: A Co-Allocating Grid
Scheduler,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 16, pp. 1851-1876, 2008.

[2] H.H. Mohamed and D.H.J. Epema, “An Evaluation of the Close-
to-Files Processor and Data Co-Allocation Policy in Multiclusters,”
Proc. IEEE Int’l Conf. Cluster Computing (CLUSTER ’04), pp. 287-
298, 2004.

[3] O.O. Sonmez, H.H. Mohamed, and D.H.J. Epema, “Communica-
tion-Aware Job Placement Policies for the KOALA Grid
Scheduler,” Proc. Second IEEE Int’l Conf. e-Science and Grid
Computing (E-SCIENCE ’06), p. 79, 2006.

[4] “The Distributed ASCI Supercomputer,” http://www.cs.vu.nl/
das3/, 2009.

[5] K. Czajkowski, I. Foster, and C. Kesselman, “Resource Co-
Allocation in Computational Grids,” Proc. Eighth IEEE Int’l Symp.
High Performance Distributed Computing (HPDC ’99), p. 37, 1999.

[6] R.V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and
H.E. Bal, “Ibis: An Efficient Java-Based Grid Programming
Environment,” Proc. Joint ACM ISCOPE Conf. Java Grande (JGI
’02), pp. 18-27, 2002.

[7] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J. Dongarra, J.M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H.
Castain, D.J. Daniel, R.L. Graham, and T.S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Imple-
mentation,” Proc. 11th European PVM/MPI Users’ Group Meeting,
pp. 97-104, Sept. 2004.

[8] Sun Grid Computing, http://wwws.sun.com/software/grid/,
2009.

[9] The Prime Number Application, http://www.mhpcc.edu/
training/workshop/mpi/samples/C/mpi_prime.c, 2009.

[10] H.H. Mohamed and D.H.J. Epema, “The Design and Implementa-
tion of the KOALA Co-Allocating Grid Scheduler,” Proc. European
Grid Conf., pp. 640-650, 2005.

[11] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon,
and D.W. Walker, Solving Problems on Concurrent Processors.
Vol. 1: General Techniques and Regular Problems. Prentice-Hall,
Inc., 1988.

788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 6, JUNE 2010



[12] A. Iosup and D.H.J. Epema, “Grenchmark: A Framework for
Analyzing, Testing, and Comparing Grids,” Proc. Sixth IEEE Int’l
Symp. Cluster Computing and the Grid (CCGRID ’06), pp. 313-320,
2006.

[13] “The Dynamically-Updated Request Online Coallocator (DUR-
OC),” http://www.globus.org/toolkit/docs/2.4/duroc/, 2009.

[14] “MPICH-G2,” http://www3.niu.edu/mpi/, 2009.
[15] “Distributed Resource Management Application Api,” http://

www.drmaa.net/w/, 2008.
[16] A. Iosup, O. Sonmez, and D. Epema, “DGSim: Comparing Grid

Resource Management Architectures through Trace-Based Simu-
lation,” Proc. 14th Int’l Euro-Par Conf. Parallel Processing (Euro-Par
’08), pp. 13-25, 2008.

[17] “Grid Ready MPI Library: MC-MPI,” http://www.logos.ic.i.
u-tokyo.ac.jp/h_saito/mcmpi/, 2008.

[18] “GridMPI,”http://www.gridmpi.org/, 2009.
[19] “Portable Batch System-PRO,” http://www.pbspro.com/

platforms.html, 2009.
[20] “Maui Cluster Scheduler,” http://www.clusterresources.com/

pages/products/maui-cluster-scheduler.php, 2009.
[21] F. Azzedin, M. Maheswaran, and N. Arnason, “A Synchronous

Co-Allocation Mechanism for Grid Computing Systems,” Cluster
Computing, vol. 7, no. 1, pp. 39-49, 2004.

[22] J. Sauer, “Modeling and Solving Multi-Site Scheduling Problems,”
Planning in Intelligent Systems: Aspects, Motivations and Methods,
A.M. Meystel, ed., pp. 281-299, Wiley, 2006.

[23] A.C. Sodan, C. Doshi, L. Barsanti, and D. Taylor, “Gang
Scheduling and Adaptive Resource Allocation to Mitigate
Advance Reservation Impact,” Proc. Int’l Symp. Cluster Computing
and the Grid (CCGRID), pp. 649-653, 2006.

[24] J. Li and R. Yahyapour, “Negotiation Model Supporting Co-
Allocation for Grid Scheduling,” Proc. IEEE/ACM Int’l Conf. Grid
Computing, pp. 254-261, 2006.

[25] C. Qu, “A Grid Advance Reservation Framework for Co-
Allocation and Co-Reservation across Heterogeneous Local
Resource Management Systems,” Proc. Int’l Conf. Parallel
Processing and Applied Math. (PPAM), pp. 770-779, 2007.

[26] C. Castillo, G.N. Rouskas, and K. Harfoush, “Efficient Resource
Management Using Advance Reservations for Heterogeneous
Grids,” Proc. IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS ’08), pp. 1-12, 2008.

[27] A.I.D. Bucur and D.H.J. Epema, “The Maximal Utilization of
Processor Co-Allocation in Multicluster Systems,” Proc. 17th
Int’l Symp. Parallel and Distributed Processing (IPDPS ’03),
p. 60.1, 2003.

[28] A.I.D. Bucur and D.H.J. Epema, “The Performance of
Processor Co-Allocation in Multicluster Systems,” Proc. Third
Int’l Symp. Cluster Computing and the Grid (CCGRID ’03),
p. 302, 2003.

[29] A.I.D. Bucur and D.H.J. Epema, “Scheduling Policies for Processor
Coallocation in Multicluster Systems,” IEEE Trans. Parallel
Distributed Systems, vol. 18, no. 7, pp. 958-972, July 2007.

[30] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R.
Yahyapour, “On Advantages of Grid Computing for Parallel Job
Scheduling,” Proc. Second IEEE/ACM Int’l Symp. Cluster Computing
and the Grid (CCGRID ’02), pp. 39-46, May 2002.

[31] T. Roblitz and A. Reinefeld, “Co-Reservation with the Concept of
Virtual Resources,” Proc. Fifth IEEE Int’l Symp. Cluster Computing
and the Grid (CCGrid ’05), pp. 398-406, 2005.

[32] T. Röblitz, F. Schintke, and A. Reinefeld, “Resource Reservations
with Fuzzy Requests: Research Articles,” Concurrency and Compu-
tation: Practice and Experience, vol. 18, no. 13, pp. 1681-1703, 2006.

[33] W. Jones, L. Pang, W. Ligon, and D. Stanzione, “Bandwidth-
Aware Co-Allocating Meta-Schedulers for Mini-Grid Architec-
tures,” Proc. IEEE Int’l Conf. Cluster Computing, pp. 45-54, 2004.

[34] H. Dail, F. Berman, and H. Casanova, “A Decoupled Scheduling
Approach for Grid Application Development Environments,”
J. Parallel and Distributed Computing, vol. 63, no. 5, pp. 505-524,
2003.

[35] A. Plaat, H.E. Bal, and R.F.H. Hofman, “Sensitivity of Parallel
Applications to Large Differences in Bandwidth and Latency in
Two-Layer Interconnects,” Future Generation Computer Systems,
vol. 17, no. 6, pp. 769-782, 2001.

[36] T. Kielmann, H.E. Bal, S. Gorlatch, K. Verstoep, and R.F. Hofman,
“Network Performance-Aware Collective Communication for
Clustered Wide-Area Systems,” Parallel Computing, vol. 27,
no. 11, pp. 1431-1456, 2001.

[37] R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal, “Efficient Load
Balancing for Wide-Area Divide-and-Conquer Applications,”
Proc. Eighth ACM SIGPLAN Symp. Principles and Practices of
Parallel Programming (PPoPP ’01), pp. 34-43, 2001.

[38] F.J. Seinstra and J.M. Geusebroek, “Color-Based Object Recogni-
tion by a Grid-Connected Robot Dog,” Proc. Conf. Computer Vision
and Pattern Recognition (CVPR), 2006.

[39] F.J. Seinstra, J.-M. Geusebroek, D. Koelma, C.G. Snoek, M.
Worring, and A.W. Smeulders, “High-Performance Distributed
Video Content Analysis with Parallel-Horus,” IEEE MultiMedia,
vol. 14, no. 4, pp. 64-75, Oct.-Dec. 2007.

Omer Ozan Sonmez received the BSc degree
in computer engineering from Istanbul Technical
University, Turkey, in 2003, and the MSc degree
in computer science from the Koc University,
Turkey, in 2005. He is currently working toward
the PhD degree at the Parallel and Distributed
Systems Group, Delft University of Technology,
The Netherlands. His research interests focus
on resource management and scheduling in
multicluster systems and grids.

Hashim Mohamed received the BSc degree in
computer science from the University of Dar-es-
Salaam, Tanzania, in 1998, and the MSc degree
in technical informatics and the PhD degree in
2001 and 2007, respectively, from the Delft
University of Technology, The Netherlands,
where he currently works as a software pro-
grammer. Between June 1998 and January
1999, he worked at the University of Dar-es-
Salaam Computing Center as a systems ana-

lyst/programmer. His research interests are in the areas of distributed
systems, multicluster systems, and grids in general.

Dick H.J. Epema received the MSc and PhD
degrees in mathematics from Leiden University,
The Netherlands, in 1979 and 1983, respec-
tively. From 1983 to 1984, he was with the
Computer Science Department, Leiden Univer-
sity. Since 1984, he has been with the Depart-
ment of Computer Science, Delft University of
Technology, where he is currently an associate
professor in the Parallel and Distributed Systems
Group. During the academic year 1987-1988, the

Fall of 1991, and the Summer of 1998, he was also a visiting scientist at
the IBM T.J. Watson Research Center, Yorktown Heights, New York. In
the Fall of 1992, he was a visiting professor at the Catholic University of
Leuven, Belgium. His research interests are in the areas of performance
analysis, distributed systems, peer-to-peer systems, and grids.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SONMEZ ET AL.: ON THE BENEFIT OF PROCESSOR COALLOCATION IN MULTICLUSTER GRID SYSTEMS 789


