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SUMMARY 

The actuator disc is the first mathematica! model of a propeller, helicopter- or wind 

turbine rotor, introduced by R.E Fronde one century ago. His concept of the actuator 

disc concerns a permeable surface covered with a uniform normal load, whlch 

represents the action of the rotor. The performance predietien by momenturn theory 

based on this concept is very simple, reason why it is still used to predict the 

performance of rotors. However, the accuracy of this predietien leaves much to be 

desired: a survey of experimental data shows that in all rotor flow states the average 

velocity of the flow through the rotor is 10 to 15% higher than predicted by 

momenturn theory. This suggests a 'natura!' concentration effect to be present: 

artificial concentrator systems such as rotors with shrouds or tipvanes show this 

increased mass flow through the rotor. The momenturn theory for these concentrator 

systems shows that the appropriate way to account for this effect is to add edge forces 

to Froude's concept. The characteristic of these edge forces is that they are 

perpendicular to the local flow, so cannot perform work. Consequently, only a part of 

the total load on the rotor perfarms work. In Froude's actuator disc concept this 

distinction is not made: the entire load converts power. 

The question arises whether the actuator disc including edge forces is a better 

representation of the action of conventional rotors than Froude's concept is. A 

confirmative answer is obtained in two ways. It is shown that the load on the 

chordwise bound vorticity of the rotor blade does not perform work, which confiicts 

with Froude's assumption of the load converting power being equal to the total load. 

Furthermore an experiment on a model rotor in hover bas been conducted which 

indeed shows the load converting power to besmaller than the totalload on the rotor. 

The wake contraction bas been compared with the prediction by the momenturn 

theory including edge forces. The agreement is very reasonable, in contrast with the 

classica! prediction. The prediction of the average velocity through the rotor also 

improves compared with the classica! prediction, but remains too low. The conclusion 

of this part is that the addition of edge forces to Froude's concept improves the 

performance prediction for rotors significantly, although discrepancies between 

prediction and measurements remain. 
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From the literature numerical as well as experimental data are known regarding flows 

induced by actuator discs, which seem to conflict wîth Froude's results. Therefore the 

second part of the work concerns the actuator disc itself, and focuses on the question 

whether the edge farces are an inherent part of the load, instead of merely an addition 

to Froude's concept in order to imprave the representation of real rotors. A numerical 

as well as analytica! approach has been followed. A non-linear, viscous finite element 

calculation has been set up for the flow of a two dimensional actuator strip with a 

smooth load distribution. By increasing the Reynolds number and the steepness of the 

distribution as far as the numerical metbod allowed, and by extrapolation of the data 

the inviscid flow induced by a uniform load is approached. The results of this 

extrapolation comply with the classica! performance prediction. Using the results of 

our numerical method, most of the mentioned experimental and numerical data from 

the literature can now be explained. For the remaining data ( one numerical and one 

experimental) this still is impossible. 

The analytica! approach first proceeds from actuator discs with a smooth load 

distribution. Illustrated by an exact salution of Wu's actuator disc equation, arelation 

between the externally applied normal load and a tangential (in-plane) force density 

has been established. If the thickness of the disc is zero, the order of this force density 

is too low to yield a contribution to the resultant load. For a non-zero thickness the 

in-plane force density yields a resultant load. In order to explain the physical origin of 

this force density, we set up the hypothesis that it is the shear stress required to 

generate vorticity on streamlines passing the disc, even if the Reynolds number based 

on the disc radius is infinitely large. For one specific case this has been confirmed; in 

general the interpretation of the origin is incomplete. 

For the disc and strip covered with a uniform Ioad, the flow is singular at the edge. 

The singularity is a vertex which, in case of steady flow, carries a non-zero edge force. 

The order of this force is the order of the velocity at the edge. This order is unknown, 

so the force can be infinitely smalt. The answer to the question of the existence of edge 

forces as an inherent part of the load awaits an analytica! or numerical study towards 

the entire flow field, induced by discs or strip with a constant uniform load. 
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Chapter 1 

INTRODUCTION 

The subject of this thesis is the classica! actuator disc in axial flow. It is the oldest 

mathematica! representation of a propeller or wind turbine in fluid dynamic 

calculations. The concept was introduced by R. E. Froudet [1889] one century ago, as a 

continuation of the work of Rankine [1865] on the momenturn theory for propellers. 

Froude's actuator disc is still used as an easy qualitative diagnostic model, and any 
textbook on rotary wing aerodynamics starts with it. lts importance in performance 

prediction for propellers and helicopter rotors is nowadays smal!, but this is different 

in wind turbine performance prediction. Almost any currently used method is basedon 

Froude's actuator disc concept, despite experimental and numerical evidence that this 
application displays systematic shortcomings. The application of wind energy in the 

last decades generated a renewed interest in the actuator disc. This interest sterns not 

primarily from an academie point of view, but is stimulated by the need for cheap, 

reliable performance prediction methods. 

The prediction of the performance of the actuator disc is based on the momenturn 

theory as developed by Rankine and Froude. Often this momenturn theory is 

considered to be the souree of the discrepancies mentioned before between prediction 

and measurement. The present research investigates the limitations of the actuator 

disc concept itself. Chapter 2 poses the problem, illustrated by numerical and 

experimental results found in literature. An extension of Froude's concept is proposed 

by the addition of edge forces. 

The improvement of the performance prediction of rotors by using a momenturn 

theory accounting for these edge forces is the subject of part I. Chapter 3 presents this 

modified momenturn theory. Chapter 4 describes an experiment on a model rotor in 

1The initials are mentioned bere to distinguish R. E. Froude from W. Froude. Subsequent references to 
Froude always apply to R. E. Froude, so the initials will be omitted. 
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hover and investigates the ability of this momenturn theory to predict the performance 

of a real rotor. 

Part II has a different character. It treats the actuator disc and strip flow from the 

flcid dynamic point of view. Since the actuatordiscis represented by a force field, and 

the flow induced by this force field is characterized by the shedding of vorticity, the 

main question is how to model the generation of vorticity by force fields in an ideal 

flcid. The appropriate equation of motion descrihing the relation between the action of 

force fields and the generation of vorticity is discussed in Chapter 5. Chapter 6 then 

proceeds with a numerical approach of the problem by discussing numerical results 

from literature, and by presenting our own calculations on an actuator strip. Chapters 

7 and 8 deal with an analytical approach. In Chapter 7 the generation of vorticity by 

smooth force :fi.elds is discussed, and illustrated by two examples of flows in which 

vorticity is generated by force fields. Chapter 8 treats the problem of a force field 

which is discontinuons at the edge. This discontinuity induces a flow singularity at the 

edge. The type of this singularity is determined, and is compared with other solutions 

known from the literature. 

The final Chapter 9 summarizes the results of both parts, and discusses some 

unresolved problems. An important one is the question whether the actuator disc 

concept including edge forcesis merely an improved representation of a real rotor (the 

approach of part I) or is dictated by the flow equations as treated in part 11. 

Chapters 2 and 9 may be read together, without detailed knowledge of the chapters 

in-between. These chapters contain the statement of the problem (Chapter 2) and a 

comprehensive survey and discussîon of the results ( Chapter 9). 

Parts of the work described in this thesis combined with related work have been 

reported at several wind energy and rotorcraft conferences. The corresponding papers 

can be considered as progress reports in Dutch (van Klik [1985a, 1985b, 1988]) and 

English (van Kuik [1986, 1987, 1989a, 1989b]) 
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Chapter2 

THE ACTUATOR DISC PROBLEM 

The origin of the present research is to be found in the unsatisfactory accuracy of 
performance prediction methods based on Froude's actuator disc concept. Experiments 

on rotors as well as on two-dimensional actuator strips reported in the literature are 
discussed. The differences between the measured performance and the performance 

prediction based on Froude's results suggest an extension of Froude's concept by the 

addition of edge forces in order to imprave the prediction. The critical evaluation of 

this extension is the subject of the following chapters. 

2.1. The role of Froude,s actuator disc m performance 
prediction by momenturn theory 

The concept of the actuator disc was established by Fronde [1889], after Rankine 

[1865] had introduced the use of momenturn theory. The striking result of Froude's 

analysis was that the increase or decrease of the velocity at the disc amounts to 

Figw:e 2.1. Froude'a actuator diac concept. 
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exactly half the increase or decrease of the velocity in the ultimate slipstream. 
Lanchester [1915] was the first to pred.iet the performance in two typical actuator disc 

flow states: the disc in hover and the disc extracting the maximum amount of energy 

from the flow. This maximum is usually called the Betz-maximum, after Betz [1920]: 

only recently Bergey [1979] called attention to Lanchester's publication. Lanchester's 

results are still considered to describe the ideal performance of a wind turbine and a 

helicopter rotor in hover. 

Dwing to its simplicity the actuator disc momenturn theory plays a prominent role in 
current performance prediction methods for wind turbine applications. Unfortunately 

this application calls for the highest accuracy of the momenturn theory compared with 

propeller and helicopter rotor applications. Figure 2.2 presents schematically the 

performance of all rotors in axial flow. The velocity disturbance at the disc Ui is shown 

as a function of the thrust T and the undisturbed velocity U 0 • The curves with 

T = constant are congruent: a dimension analysis shows that the dimensionless 

quantities U0 //l'/(p7rR2) and Uï/.ff/(p7rR2) are related uniquely. Using these 
dimensionless velocity scales, the 3-D surface of ligure 2.2 becomes the 2-D ligure 2.4, 

where the scales are defined quantitatively. In figure 2.2 Ui and T have the same 
direction; a negative sign of U0 indicates that the thrust acts against the undisturbed 

wind speed. The average velocity through the rotor is Ud = U0 +Ui. For u> 0 this 
velocity bas the same direction as the thrust, so the rotor puts energy into the flow. 

For u < 0 energy is taken from the flow. 

In all performance prediction methods, Ui is very important: once Ui is known, the 

performance is known. 1t depends non-linearly on T and U0 , and especially for heavily 

loaded wind turbines (high T, low U0 ) any small varlation of U0 or T induces large 

variations of Ui. This implies that the model for predicting Ui has to be very accurate: 

any small inaccuracy in the relation between U0 , T and Ui may cause large differences 

between prediction and measurement. 

An essential extension of the actuator disc momenturn theory has been given by 

Glauert [1935]. In this pubHeation Glauert includes the results of many other 

investigators, particularly Drzewiecki [1892] and Prandtl [1919]. In order to distinguish 

Glauerts momenturn theory from the actuator disc momenturn theory, it is called the 

blade-element momenturn theory. The main features are: 

- Glauert assumes that each annulus of the disc can be considered as an actuator 

"annulus", independent of its neighbouring annuli (figure 2.3). 

- According to Drzewiecki [1892] the thrust within each annulus is assurned to be 



6 Chapter 2 

exerted by the blade elements within the considered annulus. The load on the blade 

elements depends on the local velocity. Drzewiecki assumes that this velocity is built 

up from the undisturbed wind speed Uo and the rotational velocity nr. Glauert 

accounts for the de- or acceleration of the flow by using momenturn theory. Both 

consider each element to be independent from its adjacent elements. 

- For a given blade-element load the classica! momenturn theory applied to tbe 

annulus provides tbe velocity in tbe annulus at tbe rotor. However, this velocity has 

to he known in order to determine the load on the element, using two-dimensional 

aerofoil data. Usually an iterative procedure is necessary to determine the load and 

the velocity together. 

- Froude's result of the induced velocity being half tbe induced velocity in tbe fully 

developed wake is used in each element without any modification. The effect of the 

finite number of blades is accounted for by a tip correction factor developed by 

Prandtl [1919]. This correction factor influences the elements near the blade tip. It 

decreases the load and consequently tbe resulting velocity at the element, but 

Froude's result remains unaffected. No correction is applied for the finite aspect ratio 

of tbe blades. 

Since Glauert the blade-element momenturn theory has remained uncbanged 

essentially. Adapted for modern numerical treatment, tbe metbod has been actualized 

by Wilson, Lissaman & Walker [1976]. Their metbod is the current performance 

prediction metbod in wind turbine design. In tbe next section we will show that tbe 

results of this metbod are far from satisfying in case of off-design performance 

prediction. Still tbere exists hardly any non-empirica! research on the impravement of 

tbe blade-element momenturn theory, except the work done by Viterna & Corrigan 

[1981]. They proposed to include a new tip-<:orrection factor in the design method: this 

correction accounts for the aspect ratio of the blade so it is essentially different from 

Prandtl's tip correction. Especially in the tip region their correction alters the flow 

field: there the velocity at the rotor is not the average of the velocity far up- and 

downstream as assumed by Fronde. Although this correction cannot be founded in the 

frameworkof the classica! momenturn theory, it provides good results for fast running 

wind turbines. This suggests that the tip flow requires improved modeling. 

Not discussed in this thesis is the development of performance predietien methods 

basedon vortex theory insteadof momenturn theory. A thorough comparison of these 

methods can be found in de Vries (1979]. A common feature of many vortex methods is 

that for computational efficiency the velocity at the rotor disc is assumed to be the 

average of the upstream and downstream values, which is exactly Froude's result. 
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Therefore it is not surprising that the results of these vortex methods agree very well 

with the momenturn theory results, which implies that the accuracy is limited. This 

accuracy is the subject of the next section. 

---------------

-------- ---------

Figure 2.3. The actuator "annulua". 

2.2. The momenturn theory results compared with theory and 
experiments 

In general, the results obtained by the actuator disc or blade-element momenturn 

method provide food for thought: the agreement with experiments is rather bad (van 

Bussel & van Kuik, [1985]). For a specific wind turbine the performance can be 

calculated reasonably as far as the power is concerned, but the thrust prediction is not 

satisfactory. In off-design conditions the calculated power as well as the thrust are far 

from the measured data. The thrust is underestimated systematically. Furthermore 

Stoddard [1977] reports measured values of the thrust which exceed the theoretica! 

upper limit as predicted by the momenturn theory by 20% to 50%. 

Figure 2.4 (on page 8) is a dimensionless presentation of figure 2.2, and shows the 

usual way of presenting the actuator disc performance. For a constant thrust T, the 

induced velocity at the disc Ui is given as a function of the undisturbed wind velocity 

U0 • Both veloeities have been made non-dimensional by .fF{2pÄ which is the induced 

velocity at the rotor according to the classical momenturn theory in case of hover, with 

A being the rotor area and p the fluid density. Also we show the combination of two 
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compilations of experiments on real rotors, obtained by Stoddard [1977] and Johnson 

[1980]. For the propeller flow the momenturn theory underestimates the induced 

velocity, while for the wind turbine flow this is overestimated. As the induced velocity 

bas a different sign in both flow regimes, the total velocity at the disc Ud = U0 + Ui is 

underestimated in all flow states: the mass flow through the rotor is always higher 

than predicted by the classica! momenturn theory. The right hand side of figure 2.4, 

the propeller regime, is well known in helicopter literature, as is the left-hand side in 

wind turbine literature. The combination of both in one figure is not usual, so the 

systematic deviation bas not been noticed before. 

Hütter [1977] bas investigated this increased mass flow through the rotor in case of 

wind turbines. He observed that the performance exceeds the Lanchester-Betz 

maximum by 4% to 13%. As an explanation he suggests that turbulent mixing of the 

propeller 

\~ 
wind /\ 
turbine/ \ 

-4 -3 

\ 
\ 

\ 

-2 -1 

U; /.JT/2pA 

0 

CompDation of experiments 
by Johnson [1980] ~ 
by Stoddard [1977] ~ 
classical momenturn 
theory. _ _.,.. 

2 3 

lb /.JT/2pA 

Figure 2.4. The aystematic dcviation of experimenial rotor resulta fmm dusical momentum 
theory rcsulta. 
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wake flow with the flow adjacent to the wake generates an increased momenturn of the 
wake, by which the average velocity and the performance increase. However this 

explanation cannot he valid for a helicopter rotor in hover or for propellers. In the 
hover case the flow outside the wake has an opposite direction compared with the wake 

flow itself, see figure 2.2, so turbulent mixing only lowers the wake velocity. The same 

is true for the propeller flow: the velocity outside the wake is smaller than the wake 

velocity, so mixing has a decelerating effect on the wake flow. 

From the literature two actuator strip experiments are known, which show the same 

deviations from the classica! momenturn theory. Lee & Greenberg [1984] performed a 

two-dimensional experiment in a shallow water tank (shallow enough to ignore the 

third dimension): they simulated a line momenturn souree by an array of closely 
spaeed nozzles, injecting high-velocity, turbulent, incompressible jets into the flow. By 

rapid mixing of the jets, and tuning of the jet flow in order to have a negligible mass 

injection combined with a high momentum, this arrangement is meant to simulate an 

actuator strip with constant load. The ambient velocity was zero, so the hover result 
should he obtained. The classica! theory prediets a value 0.5 for the ratio of average 

velocity at the strip to average velocity in the far field. Measured at the nozzle outlet 

line, the experimental ratio varies from ~0.46 to ~0.55, depending on the number of 

nozzles, flow rate, etc., and on the jet Reynolds number. The highest Reynolds 

number, which yields the best approximation of inviscid flow, gives the ratio 0.55. We 

have obtained these data by integration of the measured velocity distribution given by 

Lee & Greenbergt. In this integration, the mass flow near the edge (approximately 10% 

of the strip length) is assumed to be zero. The possibility of reversed flow and the 

uncertainty where to assume the actual strip position, see section 6.2.5, prohibit a 

clear interpretation of these experimental results with respect to a deviation from 

Froude's results. The only mechanism which can increase the average velocity at the 

strip beyond the value predicted by the momenturn theory is turbulent mixing of the 

wake flow with the outer flow. However, as discussed befare in this section, this is 

possible only in flows which have a decelerating wake. Therefore no explanation for the 

exceeding of Froude's factor 0.5 is available, except for possible experimental 

inaccuracies. 

Castra [1971] reports an experiment on a wire gauze placed in a wind tunnel from wall 

to wall. Such a gauze decelerates the flow passing through it more or less uniformly, 

1 This distribution is shown in figure 6.15. 
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and represents the "wind turbine 11 actuator disc. The ratio of screen area to 

windtunnel cross section area was 0.045, so there is little fear for blockage effects. 

Castro observed that the gauze started to act as a solid plate at a thrust coefficient 

CT= PÖ~A above 1.2, where T denotes the thrust, A the screen area, U the 

undisturbed velocity and p the :fluid density. Below CT = 1.2 there was a clearly 

defined wake flow with a vortex sheet separating the wake from the outer flow. Above 

CT = 1.2 the :flow bebind the disc was stagnant accompanied by unsteady vortex 

shedding. The classical actuator disc theory expects this to occur at CT = 1.0, as then 

all kinetic energy of the flow passing the disc should be absorbed by the di~c. 

The effect of turbulent mixing in the wake cannot clarify this deviation. According to 

Hütter [1977] this effect can increase the average velocity through a wind turbine 4% 

to 13%. The boundary of the wake of a wind turbine consists of spiraling tip vortices 

which enable a larger amount of turbulent mixing than a smooth vortex sheet does as 

present in Castro's experiment. Therefore this mixing cannot clarify Castro's results. 
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Figure 2.5. Comparison of clasaical momentum theory with non-llilear numerical methods.. 
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The condusion we can draw from this survey of experimental results is that the 
velocity at the rotor disc or at the gauze is systematically higher than predicted by 

Froude's result. Therefore it is obvious to compare Froude's concept of the actuator 
disc with a disc concept which accounts for such an increased velocity: the disc with 

edge forces. This actuator disc concept bas been developed for rotors making use of 

concentrators like shrouds or tipvanes. These devices increase the flow through the 

rotor in an artificial way. The present analysis suggests a natura! concent ration effect 

to he present by which an extension of Froude's concept with edge farces seems 

appropriate. In the following sections we will give this extension a more solid basis. 

Besides the experimental data, also numerical data exists which show a discrepancy 

with momenturn theory results. For completeness they are shown in this section in 
figure 2.5. Lee & Greenberg [1984] report results of a 2-D actuator strip flow field 
calculation. Schouten [1983] also performed an actuator strip flow field calculation, 

using a similar model. Marlsen [1985] performed a calculation on a heavily loaded 

actuator cylinder: it represents the cross-section with the horizontal plane of a vertical 

axis Darrieus wind turbine. The methods are discussed iri Chapter 6, the results are 

shown in figure 2.5.: all show the same deviation from momenturn theory results. All 

data are obtained by 2-D calculations. Greenberg [1972] publisbed 3-D results, which 
show exactly the same deviation. 

2.3. The force field of a real rotor and wing compared with the 
actuator disc force field 

In the present work, the actuator discis defined as a permeable surface on which force 

densities are distributed. This distribution induces a pressure jump across the disc, 

without any jump in the velocity. Would the actuator disc concept have any physical 

background, then it should he the result of the force field of a real rotor subjected to a 
sequence of limits: 

- the thickness and chord length of the blades vanish to zero, so the blades become 
lifting lines 

- the number of lifting lines increases to infinity, while at the same time the bound 

vorticity of each line goes to zero; the torque produced by the load on the lifting 
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lines is kept constant in this limit; the rotor has become a permeable disc covered 

with bound vorticity 

- the angular speed of thls disc increases to infinity, keeping the converted power 

constant and decreasing the torque by means of decreasing the strength of the 

vorticity; then the angular momenturn of the wake vanishes, and only axial and 

radial flow veloeities remain. 

In thls thesis we do nat work out the mathematical description of thls sequence of 

limits, but restriet ourselves to a comparison of the force field of a rotor blade with the 

actuator disc force field. We will show that an important physical feature of Froude's 

actuator disc theory is not valid in case of a real rotor flow. In Froude's disc model the 

entire axialload performs work: the load connected to the change of axial momenturn 

is the same as the load converting power. 

Figure 2.6 shows a possible rotor configuration. The blade is assumed to be a thin, flat 

plate having zero pitch angle {the leading and trailing edge follow the same path). Thls 

assumption will be discussed later on. The blade is a lifting surface covered with a 

distribution of spanwise and chordwise bound vorticity as shown schematically in the 
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Figure 2.6. The axial force on lhe bound vorlicity of a rotor blade. 
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figure. This vorticity continnes as free vorticity in the wake and rolls up into a strong 
tip vortex and a weak root vortex. If the velocity component perpendicular to the 

bound vorticity is non-zero, a force acts on this vorticity. It is perpendicular to the 

vorticity, so the force on the chordwise vorticity has only radial and axial components. 

lt cannot contribute to the torque, so it cannot perform work. On the other hand it 

contributes to the axial thrust, as the chordwise bound vorticity experiences non-zero 

spanwise (radial) velocities. 

The direction of the force E on the vorticity depends on the local relative velocity y 

and the vorticity strength ::t by E = -p Y"::t· The sign of ::r is as shown in the figure. 
The chordwise vorticity is concentrated near the tip, where it manifests itself as the 

tip vortex. The average spanwise velocity experienced by the chordwise bound 

vorticity is the average of the spanwise velocity on the suction and pressure side of the 

tip. This average velocity at the tip is directed inboard, resulting in an initially 

inboard displacement of the tip vortex. In other words, the radial velocity at the tip is 

always directed towards the axis, so only the sign of the chordwise vorticity 

determines the sign of the axial force on this vorticity. However, the sign of the 

spanwise and chordwise vorticity are related uniquely. As a consequence, the 

orientation of the force on the spanwise and chordwise bound vorticity is always 

identical, irrespective of the sign of the vorticity: the tip load always increases the 

totalload. 

This condusion is a guideline for improving the actuator disc model. Artificially 

concentrated rotor flows (by tipvanes or shrouds) show exactly the same property: the 

load on the shroud or tipvane does not perform work, but contributes to the totalload 

acting upon the flow (van Holten 11981]). This leads to an increased velocity at the 

rotor disc (increased with respect to Froude's prediction). In the previous section, such 

an increased velocity was indeed observed for real rotor flows. 

For the rotor blade of figure 2.6, the previous argumentation is straightforward. It is 

limited only by the assumption of a zero pitch angle. If the pitch angle is non-zero, the 

chordwise bound vorticity contains an axial component. The force on this component 

contributes to the torque, so does perform work by which the previous analysis 

becomes more complicated. However, this assumption does not alter the determination 

of this qualitative difference between a blade load and Froude's actuator disc load. 

Furthermore, the rotor with zero pitch angle is a realistic one: if the angular speed is 

sufficiently high, attached flow is obtained and the rotor acts as a wind turbine. 

The load due to chordwise bound vorticity is not a purely mathematical phenomenon. 

It is well known on wings with a small aspect ratio but is also noticeable for moderate 
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Figure 2.7a Figure 2.7b 
The tip load on the chordwise bound vorticity of a wing (a) wi.th aspect ratio b/c = 6, and a rotor 
blade (b) wi.th aspect ratio R/c = 4.8. 

aspect ratio's. Küchemann [1978] shows a measured load distribution of a wing with 

aspect ratio 6, tigure 2. 7a: the tip load is clearly recognized. Figure 2. 7b shows the 

measured load on a blade tip of a model rotor in hover, reported by Gray and 

co-workers [1980]. Again a tip load is present, which supports the previous analysis. 

The 2-D equivalent of the actuator disc is the actuator strip. Mathematically it is a 

distribution of force densities on a 2-D area. Usually it is assumed to be infinitely thin, 

by which it becomes a line. We explain the physical origin by a simHar sequence of 

limits as was used for the disc at the beginning of this section. Starting from a cascade 

of finite span wings travelling bebind each other, the thickness and chord of each wing 

are assumed to vanish, meanwhile maintaining the same resultant load. Then the 

number of wings (which have become lifting lines) is increased to infinity while the 

vorticity strength and the load on each line are decreased. This is done in such a way 

that the resulting force in travelling direction per unit of lengthof the cascade remains 

constant. Finally the speed of the vortex sheet, which is the result of this transition, is 

increased to infinity, keeping the converted power constant by diminishing the 

strength of and the load on the vortex sheet. Then the veloeities induced in travelling 

direction become zero, and the :D.ow has become two dimensional in each plane 

perpendicular to this direction. The remainder of the original wing load is the 

distribution of a force field on a slit in the 2-D plane: the actuator strip. 

It is clear that the analysis regarding disc loads increasing momenturn but not doing 

work, is valid for wing loads as well: assume a :D.at-plate wing, travelling in its own 

plane in an oblique parallel flow. The force on the (tip) chordwise vorticity contributes 

to the normal force, so to the change of downward momenturn of the :D.ow. It does not 
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contribute to the force in travelling direction. Consequently it does nat contribute to 
the work done by the wing. 

The results of this section show that the tip flow and tip laad are nat modeled 

satisfactorily in Froude's concept of the actuator disc. In the previous section we 

showed that Froude's predietien of the velocity through the rotor is toa low in all rotor 

flow states. The subject of the remaining chapters is to investigate the relation 

between bath observations. This problem is nat new at all: Lanchester was the first to 

discuss this as is clear from the next section. However, our proposed extension of 

Froude's concept is new: the addition of edge farces impraves bath the prediction of 

the velocity through the rotor as well as the representation of the rotor blade tip load. 

2.4. The actuator disc concept extended with edge farces 

Lanchester [1915] was aware of some shortcomings of the actuator disc concept. In hls 

artiele he discusses this concept proposed by Fraude. Although he finally agrees with 

this concept, he clearly defines the weak points as may be seen from the following two 

quotations: 

Page 103: 

"We may conceive the actuator as defined by a circle, whose center is situated on 

the line of thrv.st and whose plane is normal to the direction of motion. Th~re is no 

real need that the boundary of the imaginary plane constituting the "actuator" 

shov.ld be circv.lar, but it is better to think of some definite form; also it is tacitly 

understood that the actuator is a hypothetical simplification, and as such is a 

stepping-stone to the study of the screw propeller. 

Speaking academically, the weak point of the whole conception is that there is no 

proof offered that either the work done (i.e., energy expended} or the momentum 

communicated, is strictly confined to the column of fluid passing through the 

actuator, and there is, in fact, nothing to restriet or confine the fluid as in the case 

of effluz theory, by which the problem is rendered really definite. It is, as I 

understand it, qv.ite candidly admitted by Mr. Frov.de that the regime contemplated 

by his theory is not capable of ezact expression. This, h.owever, is no obstacle to the 

application of any theory in real hydrodynamica; if it were necessary for the 
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engineer to await the pleasure of the pure mathematician in these matters, the 

subject would have made scarcely perceptible progress since the time of Noah. In 

such a case as the present, ij the method of treatment contains 80 per cent. or 90 

per cent. of troth, it may demand acceptance." 

Page 108/109: 
"Having said this much, the writer would like to add that there remain many 

difficulties in the theory of Mr. Froude 's actuator of a detail kind. The admitted 

difficulty relating to the edge ofthe actuator is probably more apparent than real; it 

is mainly due to attempting to juggle with infinities. Thus the actuator is supposed 

to be of zero thickness; it is, in fact, a surface. In spite of this it is presumed to 

impart a uniform degree of acceleration to the fluid right up to its edge. Now, at 

the edge it is manifestly impossible to maintain any finite pressure difference 

between the front and rear faces; hence, even if the actuator have infinitesimal 

thickness in its central part, it must run to a finite thickness at the edge; or, ij it is 

finite in the middle, its thickness must become infinite at the edge. Obviously, with 

the conditions given, difficulties of regime are bound to arise: the rate of 

communication of acceleration (ij one really must visualize the scheme in detail} 

requires to fade away at the edges of the actuator, and the vortex sheet will become 

a stratum containing rotation. 

As a matter of fact, the difficulties largely disappear, and at the same time we 
more nearly approach the conditions of practice, ij we modifu the original 

conception in the manner already indicated - namely, if we substitute an 

intermittently operating actuator for the continuously operating version, and 

substitute jor the uniformly moving slip stream a wake consisting of a series of 

vortex rings. The action of an impulse distributed uniformly over an area of 

circular form is well understood; it gives rise to a vortex ring, the stream lines of 

which have been ascertained by the unimpeachable methods of mathematical 

analysis. However, as in the case of Mr. Froude's device, there is the same little 

dijficulty relating to the edge of the area over which the impulse is given, we have to 

suppose in rigid theory that the impulse region is cut of! at its periphery by a 

filament or core of come kind. Strictly speaking, there must be a boundary surface 

rendering the region one of double connectivity. This difficulty is overcome in 

reality by the fact that (just as in the preceding discussion} the edge ojthe actuator 

becomes the seat of rotation and the vortex motion proper is built up around the 

core so produced. 
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Now it may beat once observed, as already stated, that the conditions proper to the 

original Froude actuator no longer apply; a considerable proportion of the energy 

representing the work done by the actuator is in the outer portions of the vortex 

rings emitted, only a part of the energy, in fact, remains in the fiuid whose 

rearward momenturn represents the thrust reaction. Thus, in our fundamental 

equation, we have: 2 

W ork done per second greater than 2 

and momenturn per second as before, 

and velocity u, where force acts 

or 
uo +u 

> ro 
2 " 

Lanchester's predietien for the 'intermittently eperating actuator' agrees qualitatively 

with the performance of rotors, figure 2.4, with the numerical results for actuator 

strips, figure 2.5, and with the results of the strip experiments of Lee & Greenberg 

[1984] and Castro [1971]. The determination of an invalid assumption in the 

momenturn theory applied to rotors (previous section: not the entire thrust but only a 

part of it contributes to the conversion of power), the systematic deviation of 

experimental results from the classical prediction (section 2.2), and Lanchester's 

considerations suggest an extension of Froude's actuator disc concept by edge forces. 

The momenturn theory based on this concept bas been developed for rotors with 

shrouds or tipvanes. These devices increase the mass flow through the rotor in an 

artificial way: figure 2.4 gives rise to think of a natural concentrator effect to be 

present. The momenturn theory for discs with edge forces meets the considerations 

mentioned above. Therefore the starting point for the following chapters is the 

actuator disc with edge forces. 

2 Notations according to tigure 2.8; m denotes the maas of fluid passing the disc per second, 
according to Froude•s hypothesis. 
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Figures 2.8 and 2.9 show the differences between the Froude's actuator disc concept, 

and the one including edge forces. The impravement of the performance prediction for 

rotors using this extended concept is investigated in Part I, by discussing the actuator 

disc momenturn theory accounting for the edge forces (Chapter 3) and by performing 

an experiment on a model rotor in hover and trying to interpret the results with this 

momenturn theory. Part 11 analyses the force and flow field of actuator discs and 

strips, as the previous line of thoughts raises the question whether Froude's concept is 

correct in representing the edge flow. This investigation is done by a numerical as well 

as an analytica! approach ( Chapter 6 and 7/8 respectively) aft er ha ving established the 

appropriate equation of motion (Chapter 5). 

edge 
force 

-~- disc lood t.p 

Uoo 

Figure 2.8. The classical actuator disc concept. Figure 2.9. The concept includ.ing edge forcea. 
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Part I : The representation of a rotor by an actuator disc 
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Chapter3 

THE USE OF THE ACTUATOR SURFACE WITH 
EDGE FORCESIN THE AXIAL MOMENTUM THEORY 

The axial momenturn theory and the actuator disc or strip are closely coupled in the 

context of performance prediction. The adjective axial denotes that only the change of 

momenturn in the direction of the normal on the surface is considered. The axial 

momenturn theory does not account for changes in angular momenturn resulting from 

the applied torque. 

The momenturn theory treated here concerns only the actuator strip or disc discussed 

in section 2.4: a surface covered with a distribution of constant, axial load tagether 

with edge farces. The momenturn theory which deals with such a force distribution is 

already available, as it has been developed for augmented rotors (rotors with shrouds 

or tip vanes) by van Holten [1981]. Therefore only a. brief survey is given bere. 

3.1. Momenturn theory including edge forces 

The momenturn theory including edge forces is not different from Froude's classica! 

theory in applying the conservation la.ws of mass, momenturn and energy, but differs in 

the assumed force distribution. In the classical theory the total axial force, whlch of 

course is balanced by the change of axial momenturn of the flow, equals the force doing 

work; in the present theory, there is a distinction between these terms, as a part of the 

force distribution is normal to the local flow (so does not perfarm work) but still has 

an axial component. 

Figure 3.1 shows the stream tube being used as control volume. At the cross section Ao 

the flow is supposed to be undisturbed. The cross section A is ebasen fa.r enough 
lil 

downstream, so tha.t the wake contraction or divergence is completed. The bonnding 

streamlines are the downstream vortex sheets sepa.rating the wake from the outer 
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flow, and the upstream streamlines enclosing the same mass flow. The circumference of 

the surface is denoted by S: in 3-D this equals 2?rR, while in 2-D this becomes 21 for a 

strip of length L in the direction normal to the 2-D plane. So per unit of length the 

2-D 11 circumference11 S equals 2. T is introduced as total thrust. In 3-D, the dimensions 

of Tand A are [N] and [m2]; in 2-D the respective dimensions are [N/m] and [m]. The 

momenturn balance reads: 

(3-1) 

where F .1. q, ,ax is the axial component of the edge force, and F .b.H the normal surface 

load changing the Bernoulli constant H = p + tf2py.y . The contribution of the 

pressure on the boundary of the control volume is zero, as proved by Glauert [1935]. 

His proof proceeds from a disc placed in a wind tunnel. By drawing the momenturn 

balance for the region between the walls and the streamtube passing through the disc, 

the limiting condition of a tunnel of a very large radius shows that the contribution of 

the pressure to this balance vanishes. Since the pressure contributes equally but with a 

different sign to the momenturn balance for the streamtube passing the disc, the 

pressure term is absent also in the latter balance. Glauerts proof requires no 

specification of the force field, so it is valid as well for surfaces with edge farces. 

Consequently the pressure term does not enter the momenturn balance (3-1). 

On each streamline which passes the actuator surface we apply Bernculii's law 

separately upstream and downstream of the surface: 

(3-2) 

Equation (3-2) is straightforward for a streamline which passes the actuator surface 

once. Near the edge the streamlines can have a spiralling shape, by which they pass 

the surface more than once. However, by continuity considerations it is clear that such 

streamlines pass the surface one time more in downstream direction than in upstream 

direction, by which a resultant jump .b.H remains. Streamlines outside the wake have 

passed the actuator surface not at all or equally in both directions, so do not 

experience a final change of H. Therefore (3-2) is valid for all streamlines inside the 

control volume of figure 3.1. 
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Figure 3.1. The control volume o( the momenturn theocy 

The mass balance simply is: 

(3-3) 

The bar above üd denotes that it is the average velocity. Since um is constant by (3-2), 

the average value equals the value on each streamline. The combination of (3-1) to 

(3-3) with F .LW= 0 gives the well-known classical result üd = ! (Uo+um). The 

deviat ion from this classical value is denoted by éüd, so: 

(3-4) 

With T ~H = F ~HAd, T .LW= F .LW,axS the total thrust is T = T ~H + T .LW. By 
manipulation of (3-1) through (3-4) the "new" term éüd appears to be connected to 

the edge forces: 

T éü _ .LW 1 
d- ~d (u -U) m o 

T ,y, (u + U) .L ~ m o = T~H 2 
(3-5) 

so: 
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(3-6) 

(3-7) 

The increase of velocity Óüd is determined by the axial component of the edge force, 

F .Lilt ax,and by the surface load F LlH' This jump itself is not affected by Ë.L 111 : by (3-2) , 
the work done per unit mass of flow remains the same, but the amount of mass is 

changed by assuming t 111 ~ 0. A positive Óûd supposes the axial component of .Ê.Lq, to 

have the same direction as .EaH· 

The momenturn theory including edge forces does not give a closed solution, since the 

ratio T .Lq,/T LlH is still unknown. This ratio cannot be provided by the mass, energy 

and momenturn balance, as it depends on the local velocity distribution near the edge, 

instead of resultant distributions. On the other hand, suppose the flow field of an 

actuator surface is known. Then the momenturn theory extended with a radial 

momenturn balance, provides the determination of Ë.L 111• This radial balance is very 

simple in the 2-D flow situation with U 0 = 0. With the upper half plane of the flow 

field as control volume, this balance reads: 

+m 
t~,rad = - J (p-po) dxcenterline (3-8) -

The momenturn itself does not enter the balance, as the transport in y-direction is 

zero: outside the wake at a large distance r, I v I varles as r-1 due to the conservation of 

mass. The momenturn vanishes for increasing ras r-2 and the momenturn transport as 

r-1. Insection 6.1.2 (3-8) is elaborated using the data of the actuator strip calculations 

of Lee & Greenberg !1984]: indeed a non-zero value of F .L~ is found. 



The a.zio.l momenturn theD1'1f urith edge fe>1'ce& 

3.2. Typical results for the actuator disc as the i deal 
wind turbine and propeller 

1!5 

The equations (3-2), (3-6} and (3-7} are sufficient to provide qualitative expressions 

for the induced velocity and power for the ideal rotor in hover. With U0=0, the 

velocity at the disc Üd equals the induced velocity Üï. which is: 

The power is: 

p = 

[ - ] T ud ~ 
classica! D.H 
theory 

T T 
= ~= p ~ 

D.H [ ] classica} D.H 
tbeory 

(3-9) 

(3-10} 

In (3-9} and (3-10} the classical expressions are related to T D.H" This seems quite 

arbitrary as T = T D.H in the classica! theory. However, the notation used in (3-9} and 

(3-10} expresses most clearly the change of the induced power and velocity if T .~.w is 

increased while T D.H is constant. This is what happens when a rotor without edge 

forces having a eertaio T = T D.H' is provided with edge forces. The notation 'classica! 
theory' then refers to the situation without edge forces, and is independent of the 

change of total thrust. If the classical expressions were related to T instead of T D.H 

the values of [ ]classical theory were not independent of the increase of T, so could not 
be used as reference values. 

The factor T /T D.H determines the shift of the results compared to the classical 

predictions: an increase of mass flow and of converted power. The same is true for the 

actuator disc as the ideal windturbine. It is convenient to express the results in 

dimensionless coefficients: 
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Cp = !PI 
1 2 
"2"pU o Ad 

CT = T 
1 2 
"2"pU o Ad 

(3-11) 

c IF .1HI 

T.1H 
= 1 u2 

7[P o 

Substitution of (3-1), (3-2), (3--6) and (3-7) gives: 

ud ~ [ 1 + J 1 - CT ] ~ u = 
0 .1H T .1H 

CT = C +C 
TllH T.~.w,ax 

(3-12) 

Cp = ~ [ 1 + J 1 -CT .1H] CT 

The classical results are reeavered by equating CT,.1H to CT. lf CT,.1H is considered 

as an independent variable, the (yet unknown) relation between CT and CT,LlH 

provides CT . CT .1H is a measure of the amount of extracted kinetic energy per unit 

of mass: as in the' classical theory, CT,.1H = 1 is the maximum value since u
00 

= 0 in 

that case. This results in CT,max> 1. A first estimate of the maximum Cp is obtained 

by assuming CT,LlH/CT to he approximately constant. Then Cp is written as: 

(3-13) 

which yields: 

c ~ ~~ = [cP ] d?- . 
p max T .1H max classical T .1H 

theory 

(3-14) 
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Apparently not only the maximum thrust but also the maximum power output is 

increased compared to the classical prediction. In the windturbine state, the efficiency 

of the actuator disc is increased; the opposite is true for the disc in the propeller state: 

the power needed to establish a certain thrust is higher than classically predicted. In 

both cases this is due to the increased mass flow through the disc. 

The result is that the momenturn theory including edge forcesindeed prediets a shift of 

the performance diagram (figures 2.4 and 2.5) towards the observed experimental and 

numerical values. A prerequisite to this condusion is that !:_.llH and E.1.w ax have the 

same orientation. The physical origin of the edge force is found in forces''at the blade 

tips (section 2.3). The axial component of the edge force then represents the lift force 

at the chordwise bound vorticity. This extra contribution to the lift on the blade 

always increases the totallift or, in rotor terms, the total thrust. 

A quantitative result cannot be obtained yet, as the ratio of !:_.llH to tw ax is 

unknown. Based on the survey of experiments in figure 2.4, a 10% increase of induced 

power is expected. For a propeller this implies a 10% increase of power loss, for a wind 

turbine the maximum attainable efficiency then increases from the classical value 0.59 

to 0.65. 

3.3 The conservation laws for general non uniform load 
distributions 

The load distribution consisting of a constant, normal surface load with edge forces, is 

a particular non-uniform load distribution: owing to the uniform surface load it is 

possible to combine the conservation laws for mass, momenturn and energy in order to 

derive explicit expressions for the induced power etc .. For a general non-uniform Ioad 

distribution a closed-form solution for the converted power is not possible since this 

requires the distri bution of the velocity at the disc or strip to be known. Assume a disc 

or strip with area Ad covered with a distribution of .E, which is not specified further. 

The :flow upstream is assumed to have the uniform velocity U0 • Using the notations of 

fig. 3.1, the momenturn balance reads: 
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T = J F x dA = I p u00 ( u00 -U 0 ) dA . 

Ad Aoo 

(3-15) 

As explained in section 3.1, the pressure term does not enter momenturn balance. The 

power converted to or from the flow is determined by: 

p = I f.y dA 

Ad 

(3-16) 

and the conservation of mass in the streamtube passing through the surface is 

expressed by: 

(3-17) 

If the laad is uniform and normal, as in the classical momenturn theory, the integrals 

are easily evaluated since also u and H are constant in the far wake. The power then 

becomes P = F f u dA = T Üd, where T = FA is the thrust and Üd the average 

velocity through the disc. Substitution of (3-15) into (3-16) yields the well-known 

classica] results. For any non-uniform distribution of F or Ud it is clear that P :f: T Üd, 

and the results of the classical theory do not apply. 

It is clear that a real rotor has a non-uniform load. The distribution with edge lorces is 

a partienlar non-uniform distribution; as shown in the previous section, the induced 

power then exceeds the classical prediction of induced power if CT > CT .6H . In 
' chapter 2 we showed that for a real rotor the thrust converting power is smaller than 

the total thrust, by which CT > CT aH• while at the same time an increase of 
' induced power compared with the classica! prediction was observed. Therefore it is 

expected that the constant surface load with edge farces is a better representation of 

the non-uniform rotor laad than the constant load in Froude's concept. This is 

investigated in the next chapter, in the interpretation of measurements on a rotor. 
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EXPERIMENTAL VERIFICATION OF 
THE MOMENTUM THEORY INCLUDING EDGE 
FORCES ON A MODEL ROTOR IN HOVER 

Thls is the only chapter concerning a rotor with a fini te number of blades. 

A real rotor differs from an actuator disc in some important features: the finite number 

of blades, the load on the blades which is not constant and the increase of angular 

momenturn of the wake. The classical momenturn theory tries to predict rotor 

performance by direct application of the actuator disc results and ignoring all 

differences between the physical rotor and the mathematica! disc. Therefore the 

10-15% discrepancy mentioned in Chapter 2 is not too surprising. The sameprocedure 

is foliowed now. The momenturn theory basedon the actuator disc concept with edge 

forces, whlch is referred to as the modified momenturn theory, is applied in a 

straightforward manner to a real rotor in ho ver. The performance prediction is 

compared with the measured performance. Again a perfect agreement is not ex:pected 

due to the important differences between rotor and disc, but a significant improvement 

should be the result. The first section discusses the interpretation of the momenturn 

theory for real rotors. Then the main features of the ex:perimental metbod are 

ex:plained; the details are found in appendix E. Finally the results are presented. The 

installation of the rotor model and equipment, the preparation of the measurements 

and preliminary results have been reported in Dutch in Beekman [1985], van der Hoek 

& Pel [1987J and van Schijndel [1987]. 

4.1. The momenturn theory for real rotors 

In Chapter 3 the actuator disc momenturn theory including edge forces bas been 

described. Applica.tion of this theory to a real rotor situation necessitates an adapted 
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interpretation of the results. The mass- and momenturn balances underlying this 

metbod are integral balances: the total amount of axial momenturn and mass flow in 

the wake is coupled to the tot al thrust at and the total mass flow through the rotor. 

The distribution of the velocity at the rotor does not appear in the results. Both 

balances have to be satisfied exactly; that is to say: within the accuracy of the 

measurements. 

The momenturn balance bas been the subject of experiments reported by Vermeulen 

[1979). He measured the total thrust on a wind turbine model (2 blades, R = .36 m, tip 

speed ratio f!R/U
0 

= 6.6) placed in a windtunnel (cross-section 3.18 m2). At a 

downstream distance of 1.67 diameter the velocity, static pressure and turbulence 

profiles were measured. The change of momenturn determîned in this way differed only 

" 1,3% from the measured thrust, which is the order of the measurement accuracy. 

The way of applying the energy equation is the weak point in the momenturn theory, 

since bere the distribution of the force and flow field at the disc is important. The 

application of the momenturn theory including edge forces on a real rotor in fact 

implies that the thrust can be divided into two parts: the load doing work, distributed 

uniformly on the rotor disc, and the load not doing work, located at the disc edge. It is 

this assumption that is to be validated by the experiment. 

The thrust doing workis denoted by Twork' which is equivalent toT 6.H in chapter 3. 
The energy balance (3-2) is valid in an average sense since u , the velocity in the far ro 
wake, is not constant across the wake. Therefore the disc load F 6.H is replaced by 

Twork/1fR2, and uro by üro' being the value averaged on the wake cross section. The 

combination of (3-2) and (3-6) then yields fora rotor in haver (U 0 = 0): 

(4-1) 

where üd is the average velocity through the rotor. The thrust component T work is 

defined as the effective thrust doing work: 

(4-2) 
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where P is the power. The average mass flow through the rotor defines Üd which is 

determ.ined by the mass balance: 

(4-3) 

where Awake is a plane perpendicular to the rotor axis sufficiently far downstream: the 

contraction of the wake must be completed to ensure that the net mass flow through 

the wake boundary is zero. Figure 4.1 shows schematically the tip vortex trajectories 

for a 2-bladed rotor, with the expected axial velocity distribution in the plane Awake· 

Figure 4.2 shows the vortex sheet. If Ttotal' P and üd are known, (4-1) prediets üm 

which should equal üA . The word "should" is used as two difficulties are 
wake 

encountered in equating ü to üA . First it is difficult to choose the downstream 
m wake 

distance of A sufficiently large, as the diffusion of the vortices and vortex sheets 

increases rapidly. From literature (Kocurek & Tangier [1977]) it is known that for a 

2-bladed rotor, 4 complete windings of the spiraling tip vortices are visible in smoke 

pictures. Further downstream the vortices dissolve and one cannot distinguish a wake 

structure anymore. The second problem is to define the wake cross-section area on 

which üA is averaged. This is quite arbitrary, but it is common to define the radial 
wake 

distance of the tip vortex kemel as the radius of the wake. This necessitates a clearly 

distinguishable tip vortex position. In the experiment a downstream distance x= tR is 
chosen. In the discussion on the results we will see whether this was acceptable. 

_A_ 

Figure 4.1 Figure 4.2 

Tip vortex trajectorie& for a 2-bladed rotor The vortex sheet. 
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1/ ~I l--- T ___ w.!! -f 
!\ I /1 
I' /1 

......... _ I -/ I : --T-- I 

Figure 4.3. Survey of symbols and sign conventions. 

4.2. The determination of the power 

In the remainder of this chapter we use the cylindrical coordinate system (x,r,<p) 

having its origin at the rotor center. The downstream direction is taken as positive, see 

figure 4.3. The corresponding velocity components are u, v, and w respectively. Fîgure 

4.4 shows the integration volume G, with surface A. This surface is divided into two 

parts: A1 being the plane perpendicular to the x-axis, at x = .5R, and A
0 

being the 

surface of a semi-spbere with an infinite radius. 

In the inertial frame of reference the flow is unsteady but periodic. The power is 

determined by the dot product of f and y, using the unsteady Euler equation (5-5): 

p = ni! . ! dG = I !H ! . y H + p! . ril dG 

= IJI y_.!'_H dG+ ~IJI~py.y dG. (4-4) 

The last term in the right-hand side of (4-4) expresses the time derivative of the 
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amount of kinetic energy in control volume G. Since G is spherical and the flow is 

periodical, this amount is constant in time by which the last term in ( 4-4) becomes 

zero. Then P is rewritten as a surface integration using Gauss' divergence theorem, 

and the continuity equation l7. . y = 0: 

V. V H dG = J ~J [ y . (y H) - H Y . y] dG 

= JJ vn H dA 
A 

{4-5) 

Here A is the surface of the integration volume G, consisting of A
0 

+ A 1. Far 

upstream, so at A
0

, y tends to zero and the Bernoulli constant is H
0 

= p
0

. Since by 

conservation of mass 

dA = 0 ' {4-6) 

H
0 

may be subtracted from the integrand of ( 4-5) yielding v n{H - H
0

): At A
0 

H 

equals H
0

, so the expression for P becomes: 

G 

I 
. A, 
. - -- --- - -/1--
I 
I 

Figure 4.4. Definition of the integration volume G wiih llllrl'ace A.. 
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(4-7) 

The change of H in the wake is connected to the azimuthal velocity component w, by 

the relation: 

H-H = pwOr, 
0 

(4-8) 

which has been obtained by Thwaites [1960, p. 473] and de Vries [1979, p. B2]. 

Substitution of (4-11) yields: 

P = I I p u w Or dA1 . (4-9) 

Al 

Since P = Q 0 where Q is the torque on the rotor axis, the right-hand side of (4-9) 
divided by 0 expresses the increase of the angular momenturn of the flow. (4-7) and 

(4-9) are equivalent. In the following we will use (4-7). Equation (4-8) is used to 

determine the azimuthal velocity in the wake. 

4.3. The measuring devices 

The model itself is described in appendix E. The main features are repeated here: 

- 2 straight untwisted blades 

- chord c = 1/10 R; R = 0.51 m 

- blade-pitch angle so ( 4-10) 

- 0 = 1811' radia.ns per second (9 Hz) 

- rigid bla.de mounting. 

The mea.suring devices are: a hot wire, a balance, a pitot-;;tatic tube a.nd a. total 

pressure tube. 
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The balance is used for the thrust measurement. During this measurement, the model 
has been mounted on a hinge; the thrust was compensated by the balance force. The 

rotor was in exactly the same position as during the other measurements where the 
hub was fixed. 

The hot wire is 5 mm long (Z/R = 0.01), and the diameter to length ratio is 1/1000. 

This provides an independenee of the hot wire signal with respect to the tangential 
velocity component. This is calibrated, see appendix E. The wire is situated in plane 

A~, see figures 4.3 and 4.5. Since it is directed radially, the wire measures .j u2 + w2. 
The sampling frequency of the digital recording system is chosen in such a way that 

222 measuring points per revolution are taken. The position of a one-per-revolution 

trigger pulseis known, so the time dependency can be transferred to a tp-dependency. 

Three series of 9 revolutions are recorded at each wire position. 

The same wire is used to determine the position of the tip vortex core in plane A1. 

Now the wire bas a tangential direction, measuring .j u2 + v2. In the core itself this 

velocity is almost zero, while it is very large just outside the core. If the tip vortex 
core passes the wire, the wire signal shows a sharp discontinuity. By traversing the 
wire radially until this discontinuity appears, the radial position of the tip vortex is 

determined. 

Figure 4.5. The position of the hot wire 
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A._pitot-static tube is used to measure the average kinematical pressure for r/R ~ 0.4. 

Close to the rotor axis the hot-wire measurements are not possible, and the average 

velocity is extrapolated to r = 0. The pitot-tube measurements are used as 

confirmation of this extrapolation, not for quantitative values. 

A common total-pressure tube is used to determine the average total pressure. The 

dimensions of the tube itself and of the connecting flexible hoses are chosen such that a 

non-linear response of the Betz-manometer is avoided, yielding as result the true 

average total pressure. 

The sensitivity of the total-pressure tube to misalignment of the flow is calibrated (see 

appendix E, a misalignment of 15o is not felt by the tube). At each radial position, the 

tube was aligned to the averaged flow direction known from preliminary 

measurements. 

Not really a measuring device, but a necessary tooi for the study of the flow system is 

stroboscopic photography of smoke injected in the flow. The smoke jet is traversed 

radially, and the phase delay between trigger pulse and stroboscopic flash is adjusted 

to have pictures every 10o of tp. 

4.4. The elaboration of the measurements 

The following data are the result of measurements: 

- the total thrust 

- in plane A~, x/R = .5 : - the local values of J u2 + w2 for .4 ~ r ~ 1 

- average values of the total pressure H for .4 ~ r/R S 1 

- the position of the tip vortex core 

- the air density p. 

By ( 4-8) the total pressure data B(r) - Ho also provide the velocity component w(r), 

where the bar denotes averaging on the azimuthal position tp. The combination of the 

hot wire and total pressure data yields an approximation for the axial velocity u(r): 
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Figure 4.6. .J u2 + w2 in plane At, x/R = 0.5, shown in a c:o-rotating frame of reference. The 

grid consists of linea with constant r/R and constant I(J. The iocrement of '{J is 5°. 

The positions '{J = oo and 1800 are the blade positions. 

u(r) = J u2(r) + w2(r) - [ H(r) -Ho] 
2 

p nr (4-11) 

Figure 4.6 shows .J u2 + w2 as measured with the hot wire in plane A1: the 

distribution with respect to cp is fairly uniform except at the tip vortex positions 

( tp"' 900 and cp"' 2700). Since this concerns only a small region of the rotor disc, the 

error made by the approximation ( 4-11) is assumed to be small. In the same way 

equation ( 4-7) for the power P is approximated by: 

p = 211" I u(r) [H(r)- H
0
J nr rdr. 

Al 

( 4-12) 

Insection 4.6 this will be discussed. The distributions of u(r) and H(r) - H0 are shown 

in figures 4.8 and 4.9 respectively. 
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The air density p is the only variabie not free to choose. It varied 2% during the 

measurements. A dimension analysis shows that this variation can be canceled by 

introducing a non-dimensional representation. The reference velocity is usually taken 

to be the average wake velocity u which is not known yet. Therefore only a partial 
CD 

non-dimensional representation is used: all relevant quantities are divided by the air 

density pat the time of the measurement. 

Before the results are presented, we summarize all steps necessary to obtain the ratio 

Twork/T, with reference to the equations used: 

measured 

measured 

.j u 2 + w2 
At 

measured 

Tfp 

4 -8 4 -12 

4 -11 4 -3 

Figure 4.7. Schematic of the power, thrust and velocity measurementa. 

The average flow through the rotor is determined by (4-3) in plane A 1 at x/R = 0.5: 

ud = IJ u d\ = J u(r) d[:Rr = 2.21 
A

1 
1rR A

1 

mfs. ( 4-13) 

The power of the rotor is given by ( 4-12): 

9.08 (4-14) 

The interpolation of the measured data for 0 ~ r/R ~ 0.4 is a linear one; at r = 0, u 

and B' are assumed to be zero. This is confirmed by the measurement of the 

kinematica! energy ! p y.y by a standard pitot-static tube. 

• 



Ezperimentalverification on a model ,.oto,. in h.o11e,. 

The total thrust is: 

1 PT = 4.98 
4 2 m /s. 

With (4-2), the component of the thrust doing work Twork is determined: 

!T = p work 

ü 
OR 

0.1 

0 

1 p 

P u
d 

= 4.12 4 2 
m fs. 

1.0 

Figure 4.8. The distribution of the uimuthally averaged a:Dal. velocity Ü(r) in plane A1. 
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(4-15) 

(4-16) 

The results (4-12) through (4-16) are required to pred.iet the ultimate wake 

contraction R /R by the momenturn theory. The experimental determination of R for ro ro 
this model is only approximate. Figure 4.10 shows the tip vortex trajectory: the wake 

contraction is not completed in plane A1 at x/R = 0.5, so R1 > Rro, where R1 is the 

radius of the tip vortex as measured by the hot wire: 

( 4-17) 

Based on figure 4.6 and on a study of the smoke pictures in figure 4.10, R1 is also 

determined as=: 0.8 R. A separate measurement of R
00 

at a position x> 0.5R is not 

possible. Figure 4.10 shows that the vortex cores are not visible any more as the vortex 

structure has desintegrated. The smoke pictures indicate a smalt contraction for 

x > O.SR, but a quantitative estimate is difficult. A reasonable estimate is: 



[ ~] z 0. 77 :1: 0.01. 
n. est imated 

This agrees with the common experimental value which is about 0.74 to 0.77. 

1.0 

0 
0 

~R \ I p 
0 

1.0 

Figure 4.8. The distribution of the asimuthally averaged B(r) - B 0 in plane At. 

4.5. Comparison with momenturn theory results 

Using (4-15) and (4-16) the ratio Ttotal/Twork is: 

T total _ 1 21 T-----:- - . , 
work 
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( 4-18) 

(4-19) 

or: only 83% of the thrust is effective in doing work. Substitution of (4-19) in (4-1) 

gives as prediction for üd/üm: 

u 
Cl) 

1 Ttotal 
~ "...--- = 0.61 . 
~ ~work 

Since ÜdR2 = ü R 2 this implies: 
00 00 

[ 
R ] m = 0.78 , 
Ir pred icted 

(4-20) 

(4-21) 
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which agrees very well with the experimental value 0.77 of (4-18). The classica! 

momenturn theory prediets R /R = 11. = 0. 707. 
00 

Equations ( 4-20) and ( 4-21) concern relative values. An absolute prediction of the 

average velocity through the rotor lid is provided by (4-1), which becomes using 

( 4-19): 

m/s, ( 4-22) 

which is 13% lower than the measured value 2.21 m/s. This should be compared with 

the preelietion by the classical momenturn theory Ud = .j T/2pÄd = 1. 74 m/s, which is 

21% lower than the measured value. 

Figu.re 4.10. Flow visualization by stroboscopic photography of smokc filament&. The left 
photograph shows a crOIIII-tleCtion through the vortex sheet, while the right one shows 
the tip-vortex, both at tp = 1600. 

4.6. The accuracy of the experiment 

The accuracy of the results is determined by the accuracy of the measurements, and by 

the (propagation of) errors in the subsequent steps shown in figure 4. 7. 
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The experimental sourees of inaccuracy are the model and its surroundings, and the 

measurements themselves. In the subsequent steps the deterrnination ofü(r) by (4-11) 

and the approximation (4-12) for the power expression (4-7) introduce the largest 

errors. The other equations denoted in figure 4.7 do not generate errors: w(r) is 

determined by (4-8) which expresses an identity; the deterrnination of Üd by (4-3) is 

exact, and Twork is given by the definition (4-2). Therefore the weak point in the 

scheme of figure 4.7 are equations (4-11/12). This equation is exact if u(r) and w(r) 

are distributed uniformly with respect to the azimuthal coordinate rp. Since the 

dis tribution of .J u2 + v2 in plane A 1 is fairly uniform, see figure 4.6, also the 

distributions of u and w are expected to be so. The determination of the inaccuracy of 

(4-11) is covered by an overall check of the accuracy which is presented below. From 

trial calculations we expect a maximum of 5% inaccuracy to be present in ( 4-12). 

The sourees of inaccuracy inherent to the measurement equipment are the following. 

The hot wire does not yield the local value of the velocity, but a value averaged over 

the wire length (1% of the radius R). The calibration of the wires is accurate up to 1% 

(see appendix E). As all measurements are averaged on at least 25 revolutions, while 

the angular speed is kept constant within 0.5%, the velocity measurements are 

assumed to be very accurate. The traversing mechanism used to vary the radial 

position of the wire and the total pressure tube is adjusted by hand. The estimated 

accuracy of this radial position is 1% of the radius R. The reading of the Betz 

manometer is averagedon at least 50 revolutions, and is assumed to he accurate up to 

5%. Finally we have the measurements of the thrust T and the air density p: the 

accuracy of these steady measurements is deterrnined by the accuracy of the 

equipment, which is better than 1%. 

The draught in the hall where the model was installed tagether with the instability of 

the vortex break down and possibly some recirculation via the surroundings caused the 

averaged flow field in plane A 1 to swing slightly around the position r = 0. 

Furthermore the velocity distri bution in plane A 1 shows some asymmetry, as shown by 

figure 4.6. This can he the result of a dissimHar development of the two tip vortices if 

their strengtbs are not perfectly equal owing to model inaccuracies. Nevertheless, the 

pattern is very regular which indicates that the swinging of the wake still results in a 

well-defined average mass flow. 

The effect of the latter phenomena: model inaccuracies, draught and influence of walls, 

floor and ceiling, prohibits a formal estimate of the final accuracy. As an overall check 

which covers all sourees of inaccuracy except the use of ( 4-12) instead of ( 4-7), the 

axial momenturn balance has been checked. This balance is written as: 
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(4-23) 

The first term on the right-hand side is the momenturn flux, the second term accounts 

for the static pressure in the wake. The first term equals 5.40 m4/s2, being 1.08 times 

the left-hand side. The static pressure has not been measured but is approximated by 

the difference of li(r), measured by the total pressure tube, and fp(u2 + w2) + tpv2. 

The first term of the kinematica! pressure bas been measured by the hot wire, the 

second will be estimated. The radial velocity v reaches significant values near the 

boundary of the wake formed by the tip vortices. By camparing the dis tribution of Ü( r) 

in figure 4.8, we assume that lvl in plane A1 is non-zero only for 0.7 5 r/R S 0.84, 

with a maximum of 0.05ujfm at r/R = 0.77. A linear distribution is assumed 

between the positions 0.7R, 0.77R and 0.84R. Then the contribution of tv2 to the 

thrust balance amounts -Q.29 m4/s2. This yields for the pressure term in (4-23): 

::: - 0.045 - 0.29 = - 0.335 (4-24) 

Substitution in ( 4-23) shows that the momenturn balance is satisfied within 1. 7%. 

However it should be noted that the pressure is determined by a very inaccurate 

method, since it is obtained by subtraction of two quantities of nearly equal 

magnitude. A conservative condusion is that the momenturn balanceis satisfied with a 

margin < 5% of the total thrust. As the measured difference between Twork and Ttotal 

amounts 17%, this difference is considered to be significant. 

4. 7. Discussion and condusion 

The main result is that the effective part of the thrust, defined as the thrust doing 

work, is only 83% of the total thrust. Using this ratio in the momenturn theory with 

edge forces, the prediction of the wake diameter equals the experimental wake 

diameter, while the classical theory prediction is 8% too low. The prediction of the 
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average velocity through the rotor planeis worse: the momenturn theory of chapter 3 

yields a result which is 13% too low. A clear improvement is present with respect to 

the classica! prediction, which is 21% too low. Nevertheless the deviation from the 

experimental value is not satisfactory. The origin of this deviation must be sought in 

the use of the energy balance (3-2), as we will show. 

As discussed in chapter 3, the average velocity in the far wake is determined by the 

energy balance alone, while the prediction of the average velocity through the rotor is 

the result of a combined application of the balances of mass, momenturn and energy. 

Now the velocities um and ud appear to exhibit similar deviations between measured 

and predicted values, which indicates that the application of (3-2) is the souree of the 

discrepancy in the prediction of the velocities. For a rotor in hover (3-2) reads with 

F t.H = Twork/1rR2
: 

T work _ 1 u 2 ---;rw- - J p til ' 
(4-25) 

so using ( 4-16) the predicted value is: 

u = 3.175 
m predicted 

m/s, ( 4-26) 

while 

u 
m measured =IJ ,..}j,dA = 3.72 

A m 
1 

mfs, (4-27) 

where we have used (4-13) and (4-18). The large difference between (4-26) and (4-27) 

shows that (3-2), which was derived fora disc with a uniform load is unable to predict 

u fora rotor accurately. This is not too surprising: (3-2) represents the application of 
til 

Bernoulli's law on a single strearnline. Only because F t.H is constant for the disc in 

chapter 3, it is allowed to write F LlH = T .1H/1fR2 = tf2Pu!. The condition of constant 

F t.H is certainly not satisfied in the rotor flow, by which (4-25) is doubtful. 

The aim of the experiment was to compare measured results with values predicted by 

the momenturn theory in which the rotor load is represented by a specific non-uniform 

load, namely the disc with constant surface load and discrete edge forces, instead of a 

uniform load as assumed by Froude. Therefore an essential step is the reptacement of 

the real load distribution by an equivalent artificial distribution. This is done in 
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section 4.1, based on two criteria: the total thrust on the disc T = Tsurface + Tedge 
equals the rotor thrust, and the thrust originating from the disc surface load is 

T surface = T work = P /lid· The latter relation is a definition of Twork and reptaces the 
energy balance (3-2) in case of real rotor flows. Apparently this interpretation of the 

energy balance is appropria.te as far as it concerns momenturn theory expressions 

which depend on T and Twork such as (4-1). T and Twork are integra.ted load 

distributions; as soon as the local value of the load is concerned, as is in (3-2), this 

interpretation of the energy balance is not allowed. 

The final condusion is that the momenturn theory including edge forces t.ogether with 

the definition (4-2) of the effective thrust improve the performance prediction 

significantly compared with respect to the classica! momenturn theory. The effective 

thrust, defined as the part of the total thrust which converts power to the flow, is only 

83% of the total thrust. Using this ratio, the wake contraction is predicted very 

a.ccurately. The prediction of the absolute value of the velocity through the rotor 

shows a clear impravement compared with the classica! prediction, but is still 13% 

below the measured value. The impravement of this prediction requires an analytica! 

model for the rotor which accounts for a more detailed non-uniform load distribution 

than the specific non-uniform model of chapter 3: a uniform distribution on the disc 

surface with discrete forces on the disc edge. 
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Part 11 : The force and flow field of the actuator surface 
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THE EQUATION OF MOTION 

This chapter is an introduetion to the numerical analysis of the 2-D actuator strip flow 
in chapter 6, and the analytica! analysis of the actuator strip and disc in chapters 7 

and 8. The actuator disc and strip are distributions of a force density over a surface 

and the problem is to determine the flow induced by these force density distributions. 

Kinematically the flow is determined by the vorticity shed from the actuator strip or 

disc. Therefore we discuss in the first section the appropriate equation of motion 
descrihing the generation of vorticity by force density distributions. The specific force 

field of an actuator strip or disc is defined in the second section, while a dimensional 

analysis determines the region of validity of possible flow solutions in the third section. 
If the distinction between the actuator strip and disc is of no importance, we use the 

notation actuator surface. 

5.1. The equation of motion including the force field term 

We assume the fluid to be incompressible, homogeneaus and inviscid. Inviscid flow is 

defined bere as the result of viseaus flow in the limit Re-+ oo, where Re is the 

Reynolds number defined in section 5.3. The force density distributions represent the 

action of bodies on the flow, and are confined to a lim.ited region: force fields acting 

tbraughout space such as gravity fields are excluded. In case of the actuator surface 

flow the origin of the force field is explained in section 2.3. There the sequence of limit 

operations is listed which transfarms the force field of a rotor blade to the force field of 

an actuator disc. Such an actuator disc is permeable and accupies no space: the body, 

in this particular case the rotor blade, bas disappeared during this sequence of lim.its. 

The externally applied force density is denoted by fext defined in section 5.2, and is 

perpendicular to the surface over which it is distributed. 

The equation of motion to describe viseaus flows induced by a force density 
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distribution is the Navier-Stokes equation with the additional term fext: 

Dy 

p D t = - y p + ~t + 11 'Fy · (5-1) 

Since the flow is incompressible the continuity equation is: 

V. V = 0 . (5-2) 

These equations suffice to determine the flow for a given fext· If the viscous term in 

(5-1) is absent, this equation becomes the Euler equation with the force density term 

added. 

Now we submit (5-1) to the limit of increasing Reynolds number. It is convenient to 

transferm the equation using non-dimensional variables to: 

Dv' 
= f - V p' + 1 V2 v' -ext - RëL - (5-3) 

Dt' 

where v' = v/U, r = fL/ pU2, p' = p/ pU2, t' = Ut/L and ReL = pUL/ 11· U and L are 

the characteristic velocity and length. We assume that it is possible to define such a 

Reynolds number, which is discussed in section 5.3. The limit ReL ....., oo yields the 

Euler equation unless I V2y' I increases proportional with ReL at the same time. In 

section 5.3 we will show that this is the case for actuator surfaces with smooth force 

distributions, and we cannot a priori assume that the viscous term V2y in (5-1) 

vanishes for ReL ....., oo. Therefore this shear stress term is maintained in the equation 

of motion until the order of it is known. As the shear stress is a force density, we 

denote it as bhear stress· The complete distri bution of f then is: 

= .Îext + fshear stress 

fshear stress = 11 V2y = - 11 Ï. " 1!!. • 
(5-4) 

The externally applied force field is free to choose; fsbear stress depends on fext and on 

the flow itself, and is not known a priori. However, for zero viscosity it is clear that 

bbear stress can he non-zero only for infinite valnes of V2y. 

Rewriting (5-1) and substitution of (5-4) yields the formulation of the equation of 



The equation of motion 51 

motion to be used in this chapter and chapters 7 and 8: 

V R = f+P!"!!!.-P(Jf, (5-5) 

where H is the Bernoulli constant p + iPY·Y· The equations (5-1) and (5-4) + (5-5) are 
equivalent and it depends on the actual flow problem which formulation is most 

convenîent. Suppose the viseaus salution is known by solving {5-1). Submîtting this 

salution to the limit Re -+ oo then yields the required salution including the remainder 

of the shear stress. The alternative approach is to use (5-5) with the appropriate 

kinematica! boundary conditions. For the actuator disc or strip flow these conditions 
apply at infinity and, in case of the strip, at the symmetry line (see for example 

section 6.2.2). Suppose {5-5) can be solved for f, then comparison of this salution with 
{5-4) will show whether a shear stress component of fis present or not. In appendix F 

we have applied bath methods to the flow along a solid boundary in order to 

investigate the equivalence. Now the boundary condition is no-slip and zero normal 

flow at the solid boundary. The following quotation of Meyer {[1982], page 91, with 

some adaptations in order to be readable here) indicates that the shear stress is 

non-zero in case of flows along a solid boundary, although the Reynolds number 

becomes infinite: "We must generally anticipate that I V2x'l -1m somewhere in the fluid 

as Re-+ m, for otherwise the term Re-t V2x' would indeed become negligible in {5-9} so 

that the salution of {5-9} would tend to a solution of the Euler equation of motion, 

which has been shown ... to be v.suaUy incompatible with the no-slip condition." 

Indeed the shear stress term in the viseaus salution of {5-1), given by Prandtl's 

boundary layer equations, appears to remain finite for Re -+ oo. The application of 

(5-5) yields an identical result for the tangential force density, which is the shear 

stress. 

The equation descrihing the generation of vorticîty is given by taking the curl of {5-5): 

1 f:Jw 
-Vxf = or + (! . Y) !!!. - (!!!, . Y) ! p- -

Dw 
= Dt - (!!!_. Y)! (5-6) 
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The last term describes changes of already existing vorticity. The generation of 

vorticity on streamlines which are irrotational before passing the actuator surface is 

determined by Y " f. 

With f interpreted as in (5-4), (5-5) or (5--6) is used in the following chapters as the 

equation of motion, except in section 6.2 where viseaus calculations with increasing 

Reynolds numbers are basedon (5-1). Equation (5-5) is the usual equation of motion 

in the literature on flows induced by force fields, see e.g. von Karman & Burgers 

[1935], Wu [1962), Greenberg [1972) and Sparenberg [1985]. In none of these references 

the distinction between fext and fshear stress is made: implicitly f is assumed to 

represent the externally applied force density. 

5.2 Definition of fext 

The specific distributions of fext on actuator surfaces are described bere. As far as the 

3-D disc is concerned, the restrietion is made that azimuthal force components are 

absent (except in section 7.1). As a consequence, also the azimuthal velocity 

component is zero, so the force field and flow field are completely described in a 

meridional plane through the disc axis. Figure 5.1 shows a cross-,section through such a 

disc, or through a 2-D strip. Also shownis the local cartesian coordinate system (x,y) 

in the plane of the cross-,section. The x-coordinate is normal to the surface. The 

thickness of the surface is e. The distribution of fext is assumed to be smooth, with : 

for lxl < e/2 

for lxl ~ e/2 
(5-7) 

The distribution of fis such that J fext dx across the surface equals F, irrespective of 

the thickness e. This implies that the distribution beoomes a delta function for f.-+ 0: 

fext = ~ F t5(x) for e-+ 0 , (5-8) 
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where E = ~F is the normal surface load. 
The distribution of E along the surface determines the type of flow. A particular 

distribution is E being constant on the surface with a step function at the edges. This 
is the subject of chapter 8; the other chapters deal with smooth distributions. 

Figu:re 5.1. Cross section through an actuator au:rface 

5.3 Dimension analysis of actuator surface flow 

In section 5.1 the equation of motion (5-5) is considered to be the result of the 

Navier-Stokes equation for vanishing viscosity, expressed by Re -+ IJ)' which requires 

that it is possible to define such a Reynolds number. If we consider infinitely thin 

surfaces with semi-infinite length, the surface does not have a length scale. Therefore 

it is not obvious if it is possible to define a Reynolds number for such surfaces. 

This problem is treated first. 

The semi-infinite actuator strip 

Suppose we have a semi-infinite actuator strip having thickness f, loaded with a 

surface distri bution with characteristic strength ,E. The flow is viscous. An undisturbed 

parallel flow U 
0 

may be present. The available parameters are: f [m],F [kg/ms2], the 

Duid density p [kgfm3], the kinematic viscosity v [m2/s] and, if present, the velocity 

U
0 

[m/s]. It is always possible to define a second scale: 



u = J 2F 
p ' 

soit is possible to define 

Re =!. 
f ll 

ru or v o 
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(5-9) 

(5-10) 

If there is no undisturbed flow U 
0

, it is clear that a necessary condition for inviscid 

flow induced by semi-infinite strips with zero thickness cis that the ratio cjv becomes 

infinite if the limits c-+ 0 and v-+ 0 are taken. Schmidt & Sparenberg [1977, see also 

section 8.3.1] discuss the flow induced by an infinitely thin actuator strip with 

semi-infinite length, with U
0 

= 0. They assume the flow to be inviscid, by which c/v is 

implicitly assumed to be infinite. In order to avoid such an implicit assumption we 

proceed in the remainder of this thesis from a surface ha ving a fini te thickness c placed 

in a fluid with zero kinematic viscosity v, after which the limit f-+ 0 is taken. 

One exception to this treatment is made: in appendix C we discuss the alternative 

sequence of limits for the flow induced by a semi-infinite strip in absence of an 

undisturbed flow: the thickness c is assumed to be zero before the limit v-+ 0 is taken. 

Then the independent parameters are F [kg/ms2], p [kg/m3] and v [m2/s]. Although 

the strip does not have a characteristic dimension, still a length scale t is available: 

(5-11) 

but an independent velocity scale cannot be defined. If the velocity scale (5-9) is used, 

we do not have an independent length parameter. Therefore it is not possible to define 

a Reynolds number, by which it is impossible to define inviscid flow. 

The viscous solution is presented in appendix C. The generation and diffusion of 

vorticity is determined by the non-dimensional ratio r2/(vt}, where r is the distance 

from the strip edge and t the time parameter. Letting v-+ 0 results in a rescaling of the 

solution: for very small r or very large t the viscous diffusion becomes finite. 

The actuator surface with finite dimension 

If the actuator surface has a finite dimension L, it is always possible to define a 

Reynolds number, using the velocity scale (5-9}: 
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L~F ReL=--11 p . (5-12) 

The value of Ree can he expressed in the shear stress term in the Navier-Stokes 

equation (5-1). This term is rewritten as 11 V2y = -11 Y x 1!1. using the continuity 

equation (5-2). For streamlines which exhibit a finite increase of vorticity 1:!.1!1, on 

passing the surface, the average value of -11 Y " 1!1. is: 

-IIÎ"1!1 = -~JY"1!i.dx = o[~] = o(Re;1
] (5-13) 

{. 

where x is the coordinate normal to the surface, see figure 5.1. The necessary 

conditions for (5-13) to be valid are that the streamlines are not tangent to the 

surface, and that the increase of vorticity on the streamlines is finite. Then (5-13) 

shows that the non-viscous term in the Navier-Stokes equation (5-1) is of 0(11/ e). As a 

consequence inviscid flow cannot be defined by the limit ReL -> oo alone if the 

thickness f ~ 0: then also the ratio 11/ e needs to be known. 

Equation (5-13) does not determine whether the viscous term is finite or not. This 

becomes clear only after evaluation of ishear stress for each specific flow case, as we will 

do in chapters 7 and 8. 

Finally the relation between the Reynolds number and the dimensionless thrust 

coefficient CT, defined in (3-11 ), is discussed. We assume an undisturbed velocity U 
0 

to be present. Using the length scale (5-11) the Reynolds number is defined as 

Rel= lU
0
fv. Substitution of (5-11) relates this Reynolds number to the thrust 

coefficient: 

F 1 
= = 

lpu2 Re2 
2 0 l 

(5-14) 

Only in the trivial case of CT = 0, Rel becomes infinite. In all other cases it is finite, 

which implies that O(l) = O(v). 
Also a second length scale can be defined: 
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(5-15) 

The thrust coefficient CT equals the ratio of the square of the two length scales: 

CT= (K/l)2. It determines the possibility of linearization of the flow equations, which 

is not treated here. 
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Chapter6 

NUMERICAL ANAL YSIS 
OF THE ACTUATOR STRIP FLOW 

This chapter consists of two parts: the numerical methods and results found in 
literature are discussed briefly, and calculations performed within the framework of 

this thesis are presented. All methods concern 2-D flows. The only 3-D, non-linear 

calculations known to the author have been carried out by Greenberg [1972]. The 

results for the actuator disc with constant, normal laad show the same features, 

qualitatively as well as quantitatively, as the 2-D results of Lee & Greenberg [1984] 

which are discussed bere. 

The methods of Madsen [1985,1988], Lee & Greenberg [1984] and Schouten [1983] have 

in camman that the flow is treated as inviscid, and that the surface is infinitely thin; 

the results are plotted in figure 2.5. Our calculations are reported in detail in Peters 

[1989] and concern flows with a finite Reynolds number, while the surface bas a 

non-2ero thickness. By increasing the Reynolds number and decreasing the thickness it 

is attempted to establish the inviscid limit for infinitely thin surfaces. 

6.1. Inviscid calculations 

6.1.1 The actuator cylinder of Mad.sen [1985,1988] 

Madsen calculated the 2-D flow through an actuator cylinder (see section 2.2). He 

assumes a normal force density distribution on a circle, in such a way that no 

discontinuities are present. As singularities are avoided by doing so, the problem is 

suitable for an iterative salution on a orthogonal grid. 

Madsen introduces the perturbation velocity r which is related to the undisturbed 

velocity !Io in x-direction and the local velocity y by: 
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v• = v-U . - - ....:...0 (6-1) 

The equation of motion (5-5) then becomes: 

a v• 
P u o a ~ = - Y P + ! - P (!* · Y) v• · (6-2) 

According to von Karman & Burgers [1935] the last term is interpreted as the induced 

or second-order force g. The divergence of (6-2) combined with the conservation of 

mass (5-2) yields a Poisson-equation for p: 

v2 P = Y . ! + Y . g . (6-3) 

Since this equation is linear it is equivalent with: 

p = Pf + Pg 

V2 Pf Y.f (6-4) 

V2 p = Y.g g 

The linear solution Pf is obtained easily if the distribution of f is known. This linear 

solution is used for the first approximation of y•, with which gis known, and a second 

approximation can be made, etc. 

A drawback of this method is that convergence problems are encountered if the 

Cp(y)l---------

maximum 
Cp 

llP(y) 
llP 

max 

~ 
1.0 

llP 
0.5 !"---'----------... 

0 '---------~---'--...1.1 0 
0 1.0 

Figure 6.1. The resultant load dist.ribution and the flow field of Madsen•a actuator cylinder. 
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gradients of the force field distribution are steep. Figure 6.1 shows the maximum 

attainable force distribution which yielded a convergent solution. The distribution 

shown is the resultant distribution in undisturbed flow direction, being the summation 

of the upstream and downstream side of the cylinder. The results exceed the classical 

momenturn theory results for constant distributions: the power coefficient Cp = 0.616 

is higher than the maximum value (0.593) predicted by this theory. The thrust 

coefficient CT= û.98, while the average flow through the cylinder ü/U
0 
~ 0.63. 

The accuracy of the computation is indicated by Madsen in terms of deviation of the 

mass balance (0.20%) and the axial momenturn balance (0.57%). Nothing is said about 

numerical dispersion. If this should be significant, it can be considered as a numerical 

viscosity. 

6.1.2 The actuator strip of Lee & Greenberg [1984] 

The strip of Lee & Greenberg induces an acceleration of the flow. Emphasis wil! be 

given to the hover case, for which the undisturbed flow Is zero. The equation to be 

solved numerically is (8-18) in section 8.3.2. In this section also the built-in edge 

singularity is discussed. The strip has a constant, normalload, so each strip edge sheds 

a vortex sheet into the flow. The strength and shape of the sheet are the unknowns. 

The boundary condit i ons are: the sheet has to be a streamline (a kinematical 

Figun: 6.2. The actuator strip flow in hover, Leek Greenberg [1984) 
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condition), and the pressure jump across the sheet must be zero (a dynamica! one). By 

assuming a set of suitable chosen basic functions descrihing the strength and shape of 

the sheet, and applying the boundary conditions at several collocation points, the 

coefficients of these functions are calculated iteratively. One of the strength functions 

contains the square-root edge singularity. Figure 6.2 shows the resulting flow field for 

the hover case. The accuracy is specified by the deviation from the two boundary 

conditions. Both are said to be satisfied "at a large number of x-points'' within 0.1 %. 
As we will show in section 8.3.2, the square root singularity is not correct: it cannot 

satisfy the dynamica! boundary condition. However, as this singularity is integrable, 

the !ar-field effect will be the same as that of a discrete vortex which is the type of 

singularity we propose in section 8.1. Except in the region close to the edge, the flow 

field remains the same whether the edge singularity is such a discrete vortex or a 

vortex sheet square root singularity with an equivalent strength. In Lee & Greenherg's 

calculations the boundary conditions are satisfied except close to the edge, so the 

strength of the singularity is considered to be appropriate. The square root singularity 

is always connected with a suction force which, in case of the actuator strip, manifests 

itself as an edge force. Therefore we can perform a quantitative check of the 

momenturn theory including edge forces, using the data of Lee & Greenberg for the 

hover case (U0 = 0). These data are sufficient to determine the edge force. Having 

done this, the momenturn theory of chapter 3 provides a preelietion of the velocity in 

the far wake, which can be compared with the numerical result of Lee & Greenberg. 

They calculate the ratio of the average velocity through the strip ûstrip to the average 

velocity in the far wake ü to be 0.5535, while the preelietion of the classical 
Q) 

momenturn theory amounts 0.5. The predietien of this ratio by the momenturn theory 

including edge forces is given by (3-9), which is rewritten as: 

listrip - 0 5 T - 0 5 [ 1 + F .L 'ljl,ax l 
UQ) - • T LlH - . tip R . (6-5) 

Here Llp is the pressure jump across the strip. T is the total thrust in x-direction, and 

T LlH = Llp 2R the total thrust minus the contri bution of the edge forces F .L 'ljl,ax· The 

length of the strip is 2R. The radial component of the edge force is known by 

substituting the data of Lee & Greenberg (see figure 6.3) in (3-8): F~'ljl,rad/(Llp R) = 
- 0.205. Since the direction of the vortex sheet near the edge is given by Lee & 

Greenberg, the ratio of the axial and radial components of F •1, is known: the 
-.LV' 

suction force at a square root singularity is tangent to the sheet. 
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Then F •1• a is known and (6-5) prediets iist . /u to be 0.5454, which agrees very .J..,.,, x np m 
well with the numerical result 0.5535. Therefore the discrepancy, mentioned by Lee & 

Greenberg, between their numerical result and the momenturn theory result is only 

apparent: the use of a square root singularity implies the presence of edge forces, which 

on its turn implies that the momenturn theory accounting for these forces should be 

used to compare with, instead ofthe classica! theory. As shown above, this comparison 

does not show a discrepancy. 

Dato trom Lee & Greenberg 
[1984] 

'ru .. 

i 

-2 ?IR 2 

-.5 

Figure 6.3. Velocity and pressun: on ihe symmeiry line oC the actuator strip. 

6.1.3 The actuator strip of Schouten [1983] 

Schouten performed a calculation including an undisturbed flow U o with a strip load 

Llp = 2pU~, using a metbod simHar to the one of the previous section. An important 

difference is the choice of the edge singularity: Schouten assumes the Schmidt & 

Sparenberg spiral, discussed in section 8.3.1. In the calcula.tions it is replaced by a 

discrete vortex, merely as a. convenient representa.tion of this semi-infinite spiral. The 

result is shown in figure 6.4. The classica! momenturn theory prediets R /R = 0.6. 
IJ) 

Schouten finds 0.6094; the deviations by ongoing iterations are 6x10-&. Schouten's 

result can be interpreted only if edge forces are assumed to be present, unless 

numerical inaccuracies cause the difference with the classica! result. This is suggested 

by Schouten himself. 
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Figure 6.4. The actuator strip a.ccording to Sehouten [1983J 

6.2. Viseaus calculations (Peters [1989]) 

Peters' numerical analysis of the actuator strip and disc flow proceeds from a different 

starting point: a standard finite element computer code (SEPRAN) is used to calculate 

the flow induced by smooth distributions of f on a surface with finite thickness t:. By 

increasing the Reynolds number and the gradient of f near the edge, and decreasing the 

thickness as far as the code permits, the inviscid, infinitely thin surface is approached. 

The equation of motion is (5-1), the Navier-Stokes equation with the force density 

term fext added. The force field fext is defined by (5-7) and (5-8). The undisturbed flow 

is zero: U0 = 0. The metbod is illustrated using the strip calculations; the disc results 

reported in Peters [1989] show the same features. 

6.2.1 The force distribution and the definition of tbe Reynolds number. 

Figure 6.5 shows the (x,y) coordinate system. The width of the strip is L = 1; by 

reasons of symmetry, all figures show the upper half plane, in which y = L/2 denotes 

the strip edge. The distri bution of fext is given by: 
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with g(x) = m 
2 cosh 2(mx/L) 

(6~) 

h(y) = à ( 1 - tanh [ I f 1-à ] ] . 
The distribution functions g and h are shown in figure 6.6 for m = 17. m is called the 

steepness parameter. For m -+ m, h .... 1 for y $ L/2 and h .... 0 for y > L/2. For all m 

the same resultant force is obtained: with A as the area on which fis distributed: 

for all m . {6-7) 

For fini tem, the definition of the strip length is not unambiguous. Included in {6~) is 

a definition of Lindependentof m: L/2 equals the y value of the point where h{y)=0.5. 

The thickness f of the strip is defined in an analogous way: it is the distance in 

x-direction between the points where g(x) = 0.5 g{O): 

f = ! arccosh {./2) . {6-8) 

For infinite m, the thickness f becomes zero and the distri bution function g becomes 

-25 0 

strip edge 
at x=O 
y=L/2 

Figu:re 6.5 The computatioDal griel uaed for m = 17, R;. = 25M 
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Figu.re 6.6 The force density di.stribution in x-direction (left) and y-direction (right) for m = 17 

an appro:ximation of a delta function. In this way, m determines the gradients of the 

distribution and the strip thickness at the same time: for increasing m, e equals the 

"gradient length" Lv shown in figure 6.6. The ratio Lv/Lis : 

(6-9) 

The Reynolds numbers defined insection 5.3 are: 

u L 
ReL 

m 
= -

V 

(6-10) 
u f 2 

Ree 
m 

= = m arccosh( .j2) ReL , 
V 

where u is the ultimate slipstream velocity at the strip centerline in inviscid theory. 
m 

Using Bemauili's law it is clear that u =J(2F / p), by which u is seen to coincide with 
m m 

the velocity scale (5-9) in the dirneusion analysis of section 5.3. 
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Figure 6.7 The flow for m = 17, ReL= 2594 

6.2.2 The computational metbod 

Making the velocity dimensionless with u , the pressure with pu 2, and the force 
ro ro 

density with pu 2 /L, the Na vier Stokes equation becomes: 
ro 

1 2 
(x . i) .! = f - i p + lrë V .! , 

L 
(6-11) 

where all variables are to be interpreted as dimensionless. The method of solving 

(6-11) is an iterative one: the n-th approximation (.!)n of the flow field is determined 

using the previous approximation (.!)n+ The non-linear convective term in (6-11) is 

linearized using the so-called Newton iteration. As starting solution (.!)o the 

convective term is put zero. The iteration is stopped when the relative error 

(.In- .!n-t)/.!n is smaller than IQ-6. In order to achieve a high Reynolds numbers 

solution, the converged solution of a lower Reynolds number is used as starting 

solution. For each value of m and the desired Reynolds number, also a series of 

solutions is found for different Reynolds numbers, all smaller than the desired one. The 

highest attainable values of m and Re1 are 17 and 2600 respectively. For higher 

Re-numbers instahilities were encountered. 

Figure 6.5 shows the computational domain and the finest grid used. The radius of the 

circle is chosen as 2.51, since the wake is expected to be fully developed then. The 

boundary conditions are: at the circular boundary, the velocity component tangential 
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to the circle is zero; at the line of symmetry, the normal component v and the 

derivative &u/ fJy are zero. 

The method uses Crouzeix-Ra.viart elements with 1 calculation point for the pressure 

and 7 for the velocity on each element. The equations for the pressure and velocity are 

disconnected by means of a penalty function method. The pressure is calculated 

afterwards from the velocity field (Segal [1987]). 

c 

Figure 6.8 Details of the fiow for m = 17, ReL = 2594. a: aimamlines b: velocity veciom 

c: lilles with con.ltaui vorticity d: lilles with constaui pieUUie 
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6.2.3 Results for m=17, ReL ... m 

Figure 6.6 shows the force distribution for m 17. The thickness E is ~ 0.1 L. The grid 

used is shown in figure 6.5. The Reynolds number ReL is 2594, by which ReE= 269. 
Figure 6.7 shows the streamlines; enlarged sketches of details near the strip are shown 

in figures 6.8a through d. The momenturn balance in x direction is satisfied within 

0.3% of the tot al thrust; the balance in y direction shows errors of 1%. The mass 

balanceis satisfied ·within w-•%. 
The power P, needed to accelerate the flow, is obtained by calculating I I f . y dxdy, 
and compared with the power predicted by the classica! momenturn theory, Pclassical· 

0.6 ....----------------------------, 

ü 

.../2FIP' -

0.55 
-

-' 

- = 
0.5-~--r---r--r---r--r--r-~--~--r---~--~--~--~ 

0 2 

Figure 6.9 Average velocity at the •trip, for m = 17 as a function of ReL 

The influence of ReL is shown in fignre 6.9: for ReL> 1000 the value of average strip 
velocity is practically independent of the Reynolds number. Figures 6.10alb support 

this conclnsion: the distribntion of vorticity is hardly affected by doubling ReL. The 

valne of P I Pclassical for infinite ReL is obtained by plotting PI Pclassical against 
ReL -I, see figure 6.11. Linear ex:trapolation then yields: P / Pclassicai = 0.9901 for 

m = 17 and ReL-> oo. 

6.2.4 Extrapolation towards infinite m 

Figure 6.12 shows a survey of all valnes of P I P classica! as a function of m and the 

grid used. The valnes shown are the ex:trapolated valnes for ReL -> oo. Grid 1 is the 

rongbest grid, grid 3 is the finest grid which is shown in fignre 6.5. It is clear that 

increasing m requires a finer grid in order to avoid numerical dispersion; below a 
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Figure 6.10 Vorticity distribution for m = 17, ReL= 1231 (a) and ReL = 2594 (b) 

certain m, there is no need to use a refined grid: for m < 7 grid 1 and 2 yield the same 

results, as do grid 2 and 3 for 7 S m S 12. 

The data of the Re1 -+ oo extrapolations for m = 10, 13, 15 and 17 on grid 3 are used 

to obtain an extrapolation for m-+ oo. A curve fit using PI Pclassical = c1 exp(c2lm) 

then yields 1.02 as the probable value for infinite m. The accuracy of this extrapolation 

is limited by several effects. Variation of the grid size R for m = 10 showed a 0.7% 

decrease of power if R I L is increased from 2.5 to 4. Furthermore the data for the m 

1.05 .,---------------------------------------------------. 

--X 

--

0.95 -+, -------.------,....----...,.-----------....,.-----.....------.....,....-----l 
0 0.001 0.002 0.003 0.004 

Figure 6.11 E.nrapolation of the power P , m = 17, for ~ --. 00 
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Figure 6.12 P /P cl for all m, erlrapolated for Re ..... 00 

values used may be sensitive for the grid itself. For m = 17 the distribution and the 

size of the grid cells near the edge were refined. This decreased the result about 1%. 

Using the available data, the best possible extrapolation for infinite m and Re1 leads 
to the following estimation: 

P fP classica! = 1.01 : 0.02 (6-12) 

The main drawback of this extrapolation is the limited number of data points. Of all 

numerical methods discussed in the previous section, the metbod of Madsen comes 

ciosest to the present one, as the distribution of F is smooth. Madsen finds for his 

actuator cylinder P / Pclassical ~ 1.05 which is notcompatible with (6-12). Apart from 
differences in flow state (Madsen's flow is decelerating instead of accelerating; a 

cylinder is used instead of a strip) an explanation may be found in the equivalent m 

value of Madsen's calculation. His distribution function is shown in figure 6.1, and is 

given in Madsen [1985]. The maximum of d(F/Fmax)/dy is ::: 16.9. Referred to the 

same scale as used in figure 6.6a, where y::: 0.7 agrees with y = 1.0 of figure 6.1, this 

maximum derivative is about 2.8 times the maximum derivative for m = 17 in our 

method. As this derivative is proportional with m according to (6-9), the equivalent m 
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Figure 6.13 Vorticity distribut.ion for different values of m 

of Madsen's distribution is approximately 46. This may explain the differences in 

results of both methods; at the sametime this confirms the restricted value of (6-12). 

Finally the change in vorticity distribution as a function of m is shown in figure 6.13. 

The maximum vorticity increases 300% in passing from m = 5 to m = 17. For m = 17, 

the location of the point with maximum vorticity is x ~ 0, y ~ 0.4 while for smaller m 

this location is downstream of the strip. A singularity at the strip edge in case of 

infinite m, which is expected according to chapter 8, is compatible with the tendency 

of figure 6.13. 

6.2.5 The interpretation of the strip experiment of Lee & Greenberg [1984) 

As already mentioned in section 2.2, Lee & Greenberg performed an actuator strip 

experiment without undisturbed flow: U0 = 0. The general description is given there; 
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the interpretation of the results is presented bere. The typical Reynolds number 

~ was of order 105, where L is the strip length. The equivalent thickness of the 

strip corresponds with the 'merging length' of the jets: the length in which the 

momenturn is transferred to the ambient flow by diffusion of the jets. According to Lee 

& Greenberg this length is about 0.4L. We compared our numerical results for m = 14 

and ReL= 2600 with these experiments. For m = 14 the thickness of the strip is 

~ 0.131 a.ccording to (6-8). Lee & Greenberg observed pressure minima a.t the location: 

L/30 downstreamof the injection line and L/20 inboard of the edge. Peters found this 

minimum pressure to occur at L/40 downstreamof the upstream side of the strip and 

L/20 inboa.rd of the edge (figure 6-14). The flow field at the strip itself is compared in 

figure 6-15, which show a much better agreement than Lee & Greenherg's numerical 

result. The average velocity through the strip is 3.5% higher than the value .5, 

expected by the classical momenturn theory. 
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Comparison at a downstream distance L shows large discrepanties which, as noted by 

Lee & Greenberg, are probably due to turbulence. 

The coneinsion of this numerical interpretation of the strip experiments is that 

calculations with a finite thickness and a smooth force distribution improve the 

agreement with the experimental data considerably. Although the experiment was 

intended to simulate a strip with constant load, probably a more gradual distribution 

is realized physically which explains this improved correlation. Lee & Greenherg's 

condusion that the position of the pressure minima determine an effective strip length 

of about 0.9L is unnecessary. Their main reason for introducing this reduced length 

was to remove the 10% discrepancy between their numerical results and momenturn 

theory results. As already noted in section 6.1.2, this discrepancy has its origin in 

oomparing with a momenturn theory excluding the presence of edge forces, while their 

numerical model introduces edge forces. 
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Figure 6.15 Comparison of ~he aperimenial and numerical laUlts of Lee k Greenberg 

wi~h ~he laUlts for m = 14, ReL = 2594. 
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Chapter7 

THE GENERATION OF VORTICITY BY FORCE FIELDS 

This chapter contains the first part of our analytica! study towards the actuator 

strip/disc flow. The second part is presented in Chapter 8. From a kinematica! point of 

view, the main feature of such a flow is the generation of vorticity by the strip/ disc 

load, and we derive the relation between force and flow field for two specific cases: the 

flow through an actuator disc which is derived as an exact solution of Wu's [1962] 

equation, and the flow through an actuator surface with a smooth load distribution. 

The equation of motion is the steady version of (5-5): 

.Y.H=f+pyx~ (7-1) 

and the continuity equation (5-2). The distribution of the force density satisfies (5-4), 

where fext is the externally applied force density ( 5-7/8), and fshear-stress the force 

density resulting from viscosity. This term is unknown a priori. As in Chapter 5 we use 

the word surface to denote a strip or disc if the distinction is of no importance. 

7.1. The force density fin Wu1s equation illustrated by an exact 
solution 

The actuator disc problem is treated thoroughly by Wu [1962]. He considers actuator 

discs placed normal to the undisturbed flow U 
0

, ha ving an axisymmetric but otherwise 

arbitrary load distribution. The angular velocity of the disc is n. The coordinate 

system is the cylindrical system (x,r,cp) with the origin at the disc center. The flow 

field induced by the force field is also axisymmetric, so it is possible to use the 3-D 

Stokes streamfunction 1/J. This is the vector potential of Ys' the velocity in a meridional 

plane (each plane containing the axis r = 0), so Ys = Y" ~cp#r (see e.g. Batchelor 

[1970], page 79). Together with the azimuthal velocity component v cp' 1/J describes the 
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flow field completely. Using the definition for the circulation r =21fT V lP instead of V lP 

itself, Wu's equation descrihing the flow through an actuator disc is: 

(7-2) 

The last term contains f J.'I/J' which is the force density component normal to the 

streamtube. The denvation of (7-2) is repeated here. 

The vorticity w lP is expressed in two ways. The first relation uses the kinema ti cal 

relationship wiP= ~lP· (Y x y) =~lP· (Y x Y x ~1{)1/J/r), which becomes after evaluation: 

(7-3) 

The second relation is obtained using the component of (7-1) which lies in the 

meridional plane, and is normal to the streamtube . We use a local cartesian 

coordinate system (s,n) in this plane, with s tangential to the streamline and n 

perpendicular to it. The unit veetors are ~s and ~ respectively. Then this component 

reads: 

(7-4) 

The terros Mand wx are rewritten as: 

(7-5) 

where we have used v 
8 
= ~s· (Y x ~IP#r) = ~ ~· Substitution of (7-5) into (7-4) yields 

the second expression for w . Writing e . f as f ·" and v ras r /21f' this becomes: 
lP -n - J.'l' lP 
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(7-6) 

Finally H has to be expressed in r. The power produced by an element of the actuator 

discis (!. y) 11"dr2, which must equal n dQ = n fvl11"dr2. Therefore: 

f. y = n r f!p • (7-7) 

The dot product of (7-1) with y yields a second expression for f. y: 

! . .! = (,! . i) H . (7-8) 

The tp-eomponent of (7-1) reads fiP =- p (vx wr - vr wx). Bath vorticity components 

are a function of v lP: wx is given in (7-5), while wr equals- 8v ";ax. Then fiP becomes: 

(7-9) 

The combination of {7-7) through (7-9) yields: 

(7-10) 

with H = H
0 

, r = 0 upstream of the disc, and downstream but outside the wake. 

The combination of {7-10), {7-3) and {7-6) finally gives Wu's equation (7-2). 

The term f.~..,p is non-zero only at the disc itself. Wu suggests that this force term may 

be neglected, as it should be the component of the axial force density normal to the 

streamtube. A significant value of f..~..,p then requires a large radial velocity component 

at the disc, which is not present in genera!. Hówever, we have found an exact salution 

of Wu•s equation including the f.~..,p term as a purely radial force density. 

The exact salution proceeds from a disc with thickness f and radius R. The 

undisturbed parallel flow U0 is perpendicular to the disc. The kinematica! part of the 

salution is given in the cylindrical coordinate system {x,r,I{J) by: 
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Figure 7.1. An e:uct aolution o! Wu'a equation: "aolid body" rotation o! a cylindrkal wake. 

'1/J 
2 = U

0 
1r r 

V = nr r ~ R x~ f/2, (7-11) tp 

= x +//2 n r r > R -f/2 ~ x~ +f/2 

= 0 elsewhere. 

The flow defined by (7-11) is sketched in figure 7.1 for t being zero: it is asolid body 

rotation of the wake. The wake is the region x~ t/2, r ~ R. Now '1/J = U
0 

n2 

everywhere. Outside the wake and disc r = 0; inside the wake r /27r = Or2. Since 

fJ.'I/J # 0 only at the disc, substitution of these expressions in (7-2) shows that (7-11) 

satisfies (7-2) everywhere outside the disc. At the disc Wu's equation simplifies to: 

1 8(v r) 2 fJ.'I/J w:-T< Or -v r) = !.r . 
r o lP P o 

(7-12) 

where r = 2n viP, v
8 
= U

0 
and 8/8'1/J= (rU

0
)-18/8r have been substituted. It is clear 

that f •1• is purely radial, sof •1.: f. With the swirl velocity v given by (7-11), fris 
J.~ J.~ r lP 

evaluated as: 

(7-13) 

Equations (7-11) and (7-13) present an exact solution ofWu's equation (7-2). 
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The other components of f are determined 1>y (7-8) and (7-9). Substitution of (7-10) 
and (7-11) yields: 

f 
C!·YlH u nr (7-14) = = tp Ur p Of 

f 1 [ ] ffiE1
2 

[ 1 x ] (7-15) = - (v.y)H-f v = p ~--x uo - tp tp f f 

The resultant expressions for the disc load .E. are obtained by integration of f across the 

disc thickness f: 

FJ.'I/J = F = ~n2r f (7-16) r 

Ftp = p uo nr (7-17) 

F = ~ (Or)2 . (7-18) x 

For f ~ 0 only F and F remain: F is û(f). The swirl v is discontinuons across the 
tp x r tp 

disc for f ~ 0, so the discis a vortex sheet with strength :x= - ~tpv lfJ = - ~tpnr. Now let 

v tp,disc denote the average swirl velocity at the disc, which equals 1 nr by (7-11). 

Then Ydisc = ~U 
0 

+ ~tptnr by which we see that (7-17 /18) represent the two 

components of .E. = - p ydisc " :J.. 

From the physical point of view the exact solution of Wu's equation presented here 

may be considered as a trivial actuator disc flow. However, it clearly shows that fJ.'I/J 

can have its origin in radial force densities: it is not merely a component of fx normal 

to the streamtube. Finally this solution shows the only actuator disc flow with 

vx = constant at the disc. This is an assumption often made in pedormance prediction 

methods. The results of these methods can be considered as the first order solution, 

with the flow of figure 7.1 as the zero'th order. Van der Spek [1986] has set up a 

numerical iterative metbod to solve Wu's equation and a first order solution is 

obtained. 

The most remarkable feature of this solution is the presence of fr. For a finite thickness 
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even a radial surface load Fr results; for the infinitely thin di se the radial force density 

does not yield a surface load. The question arises whether this radial force density is a 

necessary component of the disc load. In other words: is it possible to apply the disc 

load Fx (7-17) and Fep (7-18) without the radial fr or Fr (7-13/16)? In case of the 

infinitely thin disc indeed frappears to be a necessary component as we will show. For 

f f 0 this is not known. 

Assume (7-17) and (7-18) to be the disc load, based on the distributions (7-14) and 

(7-15) respectively. The disc is infinitely thin. The product uv at the downstream . ep 
side of the disc (denoted by x= o•) is determined by the increase of angular 

momenturn across the disc. Since v ep = 0 upstream of the disc this yields: 

(7-19) 

The second relation between u and v ep is found by integration of (7-8) across the disc. 

Since, by (7-14), fep is constant with respect to x, and f u fx dx = ux=O F x for f ..., 0, 

this integration yields: 

F +- F = u x v ep,disc ep u D.H , (7-20) 

where v ep,disc is the value of v ep averaged on the disc thickness. Since fep is constant 

with respect to x, it is clear that this average value equals ~v 0 •. Using (7-10) the ep, 
right-hand side of (7-20) beoomes ~P nr uv 0 •. Since F and F are known, (7-19) ep, x ep 
and (7-20) can now be solved for u and v 0 •. The solution is: u = U0 and ep, 
v ep,O• = nr. The radial velocity is zero by the continuity equation. These are the 

values at the downstream side of the disc. By (7-20) also H is known, so {)pf ûr at 

x= o• can be determined: 

.!.8D=~. 
p 7fi r 

(7-21) 

Since the pressure gradient and v ep are in equilibrium, there will be no wake expansion 

or contraction downstream of the disc. Consequently the velocity is the same at all 

downstream distances, and the solution is given by "'= Uo'IIT2 , V ep = nr in the wake 

and v ep = 0 outside the wake. Substitution of this in (7-2) reeovers (7-13), the 

expression for fr. 
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This implies that the force field is not free to choose: a prescribed surface force field F 

has to be supplemented by a tangential force density, which depends on the flow field. 

The same dependency is found in appendix F for the flow along a solid boundary. 

There ftangential was shown to he the remainder of vV2y for infinite Reynolds number, 

by comparison with the boundary layer solution. Now we compare the force field 

(7-13/14/15) with the definition of fin (5-4): f = fext + Îshear stress· It is clear that the 

azimuthal ftp and axial fx represent the externally applied force density, while the 

radial f is the shear stress force density. According to the analysis in section 5.3, r . 
fshear stress is of the same order as Re ;t. being the inverse of the thickness based 

Reynolds number, although the order itself was unknown. By (7-13) this order is 

known to be 0(1) for this specific actuator disc flow. Further discussion on this subject 

is postponed to Chapter 9. 

In the next section, sirnilar relations for the force- and flow field are obtained for discs 

without azimuthal velocities, and for the 2-D equivalent, the actuator strip. For 

completeness the simplified versions of Wu's equation for these specific actuator 

surface flows are derived here. 

If the angular velocity 0 is increased to infinity, meanwhile keeping the converted 

power// f. Y. dA constant, (7-7) and (7-9) show ftp and v I{)= r /2n to van:ish like {}-t. 

By (7-10) the product Or remains finite, so Wu's equation (7-2) then becomes: 

(7-22) 

The 2-D equation is derived analogous to the 3-D equation. In a cartesian coordinate 

system (x,y,z) with x parallel with U
0

, y normalto x in the 2-D plane and z normalto 

this plane, the streamfunction '1/J is defined by y =i " ~1/J. Analogous to {7-3) the 

kinematical relation between w and '1/J is: 

(7-23) 

With n as the coordinate in the 2-D plane normal to a streamline, the relation between 

f •1,, Hand v is given by the n-component of {7-1). Analogous to (7-4/5) this reads: 
J.or s 
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(7-24) 

The combination of (7-23) and (7-24) yields the strip equation, equivalent to (7-22): 

(7-25) 

The right-hand sides of (7-22) and (7-25) differ by the occurrence of r in (7-22): this is 

due to 1/J having a different dimension in 2-D and 3-D flows. For a constant, normal 

load, the right-hand side term in bath equations is non-zero only at the wake 

boundary. 

7.2. The smooth actuator surface force field. 

The actuator surfaces in this section are 2-D strips, or 3-D discs without azimuthal 

farces and velocities. Then the flow indoeed by the disc is described completely in the 

meridional plane. lf necessary the distinction between the strip and disc will be 

denoted, but in general the name actuator surface is used. Figure 7.2 shows a cross 

section through an actuator surface, thickness f, and the cartesian coordinate system 

(x,y) and the orthogonal curvilinear system (s,n), the latter having scale factors hs and 

hn. The x coordinate is normal to the surface while n is normal to the streamline. The 

unit veetors are denoted by ~ with the appropriate index. The velocity is assumed to 

be steady and continuons across the strip. The distribution of Îext is given by (5-7 /8). 

The equation of motion is (7-1). For simplicity the undisturbed upstream flow is 

assumed to befree of vorticity with the Bernoulli constant H = H
0

. 

Application of Stokes' theorem to y ,. f on area A gives: 

b d d 

J ~ . ! hsds - J ~ . ! hsds = 
a c 

- p ! (y ,. !0 . ~y dy (7-26) 

where the positions a through d are shown in figure 7.2. From (7-1) it is clear that: 
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Figure 7.2. Cr«MB section through an actuator sutfacc. 

J ~·! hsds = Hx=f/2- Ho . 
f. 

Substitution of (7-27) into (7-26) yields: 

d 

Hb- Hd = pI u w dy ' 

or: 

[ ~y J = p (uw) = 12 . 
uv X=f./2 X f. 
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(7-27) 

(7-28) 

(7-29) 

Expression (7-29) is used to simplify the tangential component of the equa.tion of 

motion (7-1), which is: 

8H 
fy = 7]y + puw. (7--30) 

The ta.ngential surface loa.d F y is: 
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Fy = I fy dx = c [ : + p uw] . 
y X=f/2 

f 

(7-31) 

where c is a constant depending on the distribution of fy. Obviously 0 < c < 1 ; the 

values c = 0 and 1 are excluded as these imply fy being singular at x = 1 and 0 

respectively. This is incompatible with the assumption of smooth distributions. 

Substitution of (7-29) now gives: 

[OH] F = 2c f 7JV 
Y Y x=f/2 

(7-32) 

This result leads to the condusion that it is not possible to apply merely a 

non-constant normal load F x: assuming such a load distribution yields, by (7-27), a 

non-zero value for ( öH/ f:iy)x=f/2. Then (7-32) shows that F y is non-zero. 

For f ... 0, the average tangential force density is easily expressed in the normal load 

distribution. Integration of the x-component of (7-1) across the thickness f yields: 

F x = I fx dx = ( Hx=f/2 - H0 ) - I p vw dx (7-33) 

f f 

Since only smooth distributions of F x are assumed, vw remains fini te for f ... 0. For an 

infinitely thin disc F x then becomes: 

F = LlH = H / 2 - H x f 0 
for f ... 0 . (7-34) 

The average value of the force density T equals F / f, so using (7-31/32/33): 

-f LlH -x= -f- pvw (7-35) 

and 

T = ~ + puw = y uy 2c [ 8H] 
0y X=f/2 . 

(7-36) 

Substitution of (7-34) yields an alternative expressionforT y: 
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dF 
= 2c x 

y êly (7-37) 

lf fy is distributed symmetrically, c = 1 by which (7-37) becomes identical to (F-8) in 
appendix F. As in the previous section and in appendix F, again a relation is found 

between the externally applied surface load F and a resulting tangential force density 

fy. The explanation of this is the same as in the previous section, where the solution of 

Wu's actuator disc equation was discussed: fy represents the shear stress. 

For the actuator surfaces discussed here the condusion is that it is not possible to 

apply an arbitrary normal actuator surface load F without accepting a dependent 

tangential force density f. This condusion is valid for actuator surfaces wi th a 

smooth distribut ion of the normal force as long as the streamlines arenottangent 

to the surface. It does not depend on the thickness of the surface. If the thickness is 

non-zero, this tangential force density results in a tangential surface load. 
For infinitely thin surfaces, this tangential force density is of mathematica! interest 

only: since force densities, not resulting in surface- or discrete loads, do not change the 

momenturn or energy of the flow, only F = L\H is important in the deterrnination of x 
the flow induced by the force field. However, this may be different for surface load 

distributions which show discontinuities. Such a discontinuity is present at the edge of 

an actuator surface with constant, normal surface load, which is the subject of the next 
chapter. 
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THE EDGE SINGULARITY OF AN ACTUATOR 
SURFACE WITH ACONSTANT NORMAL LOAD 

Froude's concept of the actuator disc and strip assumes a constant pressure jump 

~.àP = J fextdx, where the integration is performed across the thickness f of the strip 

or disc. In this expression ~ is the unit normal vector, while fext is the externally 

applied force density defined in (5-7/8). Now we draw a closed contour C lying in the 

2-D plane (in case of the strip), or in a plane intersecting the disc, see figure 8.1. If one 

edge is enclosed by the contour, the integral f!. ~cis non-zero; in all other cases it is 

zero. Since this contour can be made arbitrarily small, as long as the edge is enclosed, 

this implies that Y " f '/: 0 at the edge. Therefore non-conservative force densities, 
defined as not being a gradient of a scalar, must be present at the edge. The surface 

distri bution fext itself is conservative. 

The aim of this chapter is to investigate the character of the edge singularity and to 

find out whether non-conservative force densities at the edge are the resultant of it. 

The equation of motion is (5-5), and the force field fext satisfies (5-7/8). The actuator 

surface is the 2-D strip or 3-D disc without azimuthal forces and velocities, as in 

section 7.2. 

8.1. A discrete vortex as edge singularity 

Figure 8.1 shows an actuator strip or cross-section through a disc in a meridional 

plane, which is a plane containing the disc axis. The area of the cross-section is 

denoted by S and A is the edge area, being a part of S. The cartesian coordinate 

system (x,y,z) and the cylindrical system (r,9,z) have a common origin in the center of 

A. The direction of z is normal to the plane; x is normal to the symmetry line of the 

surface and y is normaltozand x. The force density distribution is defined by: 



Tke edge .tingulal'ity 

y 

Figure 8.1. The edge of the actuator surface 

.Y_xf = ~z g(r,e) 

f = ~ f(x) 
with f ::::: Q 

f = ~ f(x) 
f(x) = F ó(x) 

while: 

fL2 

J f(x) dx = F 

fl2 

at A, r ~ E/2, 0 ~ e ~ 2r 

at remainder of S 

85 

for r = ff, 0 ~ e ~ 11" and lxl = f/2 (8-1) 

for r = ff, '/!" ~ e ~ 2'11" 
for f .... 0 , 

for all f. • (8-2) 

F is the surface load which is constant outside the edge area A. Outside A, no vorticity 

is shed into the flow according to (5-6) since .Y. x f = 0 for constant F. Then F equals 

the jump in the Bernoulli constant flH as is clear from (7-33). Far upstream we 

assume the flow to be undisturbed with the Bernoulli constant equal to H
0

. Then 

H = H
0 

+ F on all streamlines which have passed the surface in the region S - A. 

These streamlines constitute the wake. At the edge A .Y. x f # 0, so vorticity is shed 

into the flow forming a vortex sheet. This sheet separates the wake flow from the flow 

not having passed the surface, and exhibits a constant jump flH in the Bernoulli 

constant. 

The functions f(x) and g(r,e) are free to be chosen as long as (8-1) and (8-2) are 

satisfied. For given functions the boundary conditions and the right-hand side of the 
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differential equation ï x f = ~zg(r,e) are known. This determines the distribution of f 
at A uniquely provided that there is no non-trivia! salution of ï " f = 0. The curl of 

the equation of motion, given by {5-6) with (~. ï) x= 0, provides the expression for 

ï" f: 

öw Dw 
ï " f = P of + (x . .V.) ~ = UT {8-3) 

If .V. " f = 0 no vorticity is generated, so the force field does not influence the 

kinematics of the flow. In the context of this chapter such a distribution is trivia!, and 

is ignored. Therefore for given functions f(x) and g(r,e) the force density field is 

determined completely. 

The curl of f gets order c2 for f...,. 0, as we will show. Assume a closed curve C, 

enclosing the edge region A completely. The index c denotes the component along C, 

and de is an element of C. Then Stokes' theorem combined with {8-2) yields: 

~ ·l J ï " f dA = J fc de = F . {8-4) 

For f._. 0 

F 
~ . (ï " f) = A. = 0( c-2) for f_.O . (8-5) 

Since Y " f = 0 outside A the left-hand side integration can he extended beyond the 

contour C. The combination of (8-4) and {8-5) then shows that Y " f = F ó{x)ó{y) for 

f..,. 0. According to van de Pol & Bremmers [1964J, page 316/317, this two dimensional 

delta function can he written as a delta function in r, by which: 

~ . (Y x f) = 2 ó{r) F for f..,. 0 . (8-6) 

For f ... 0, (8-5) shows that D~/Dt becomes 0{ c2) which implies singular flow. 

Furthermore by {8-6) D~/Dt becomes independent of e. 

Equation (8-3) describes the generation of vorticity by the force density fields. If the 

convective term in (8-3) is zero, all vorticity remains at the edge area A, and an 

unsteady flow results. On the other hand, a steady salution requires that the vorticity 

is transported away from the edge. We discuss hoth solutions separately; in general the 
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flow may be a combination of both. 

First the flow with (y . Y) Jl:l. = 0 is treated. We apply Stokes' theorem on (8-3), with 

the circle C defined by r > E/2 as path of integration, and use (8-4): 

ar 
OT (8-7) 

For E -+ 0, region A becomes a singular point, carrying a discrete vortex r which 

increases linearly in time. The situation with (y . Y) Jl:l. = 0 will occur if the force field 

is put on at time t = 0 in a flow field which was at rest for t < 0. At t = 0 a vortex 

will be generated by the force field according to {8-7}. During the initial phase the 

edge flow is characterized by self-induced veloeities only, since the velocity induced by 
vorticity generated elsewhere is negligible. After a while this velocity induced by other 

vorticity becomes significant, by which (y . Y) Jl:l. becomes non-zero at the edge. The 

vorticity generated at the edges will be transported downstream instead of being 

accumulated at the edge. After a sufficiently large time a steady flow will be obtained, 

in which the generation of vorticity at the edge is in equilibrium with the 

transportation of it downstream. According to this interpretation, (8-7) describes the 
generation of the starting vortex pair (2-D flow) or ring (3-D flow) of the actuator 

surface. 

Now we assume the flow to be steady, and (8-3} is written as: 

(8-8) 

where v s is the velocity at the streamline s, and 8/ 8s denotes differentiation along the 
streamline. For E -+ 0, the left-hand side gets order e-2 and becomes circular symmetrie, 

due to (8-5/6). In this limit, owf Os becomes O(f.t.w/ E), where f.t.w is the increase of the 
vorticity on the streamline while passing the surface. An infinite value of f.t.w implies a 

discontinuity of the velocity; the demand for circular symmetry of the right-hand side 

of (8-8) then requires such a discontinuity to occur at each e for fixed r < E, which is 

impossible. Therefore we assume f.t.w to remain finite for all f. Then 8wf8s = 0( c 1) 
for E-+ 0, so the combination of (8-5) and (8-8) shows: 
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for f-+ 0 . 

Due to the circular symmetry of the flow dictated by (8-6), v 
8 

-+ v9 and 

r = ~ v9 r de = O(l) fou .... o . 
c 
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(8-9) 

(8-10) 

As in the unsteady solution (8-7) we find the discrete vortex as edge singularity. Now 

the flow is steady, so the generation of vorticity at the edge is in equilibrium with the 

transport of vorticity downstream; the average velocityvat the edge is non-zero. The 

flow field near the edge is dominated by the singularity, so the vortex sheet which 

carries the vorticity downstream spirals around the edge with decreasing velocity for 

increasing radius. This is a well-known conneetion between a vortex as edge of a 

vortex sheet, and the sheet itself, e.g. in the case of the roli-up of trailing vorticity of a 

finite wing. 

The combination of the edge vortex and the spirally wound vortex sheet may remove a 

possible objection against the proposed edge singularity: the velocity induced by a 

vortex ring (core f, radius R) on itself, is known to he proportional to ln(e/R). This 

self-induced velocity becomes infinite for f .... 0, which evidently conflicts with the 

present solution. However, the vorticity distributed on the vortex sheet spiral also 

induces a velocity field at the vortex core, which can remove this logarithmic 

singularity. This problem can only he solved analytically if the asymptotic behavier of 

the vortex sheet spiral is known; if not a numerical analysis with e/R .... 0 has to 

provide the answer. In this thesis we restriet ourselves to local considerations, so this 

problem remains unsolved. For the actuator strip flow this problem does not exist. 

Although we do not know the general flow field, we can sketch the flow field around 

the edge, based on the numerical results of Lee & Greenberg [1984], see section 8.3.2 

and 6.1.2. The division between the flow passing through the surface and flowing along 

it, is formed by the vortex sheet and by the dividing streamline. This streamline ends 

in a "free" stagnation point at the sheet. The strearnlines entering the spiral region 

pass the surface in downstream direction once more than in upstream direction, so 

experience a final pressure jump equal to dp. In case of hover, so with no ambient 

flow, all streamlines pass the surface so there is no dividing streamline, see figure 6.2. 
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Figure 8.2. Sketch of the flow pattem nea.r the edge, for a decelerating (left) and accelerating 
(right) flow. 

8.2. The possible existence of edge forces 

The steady flow around the edge is char~cterized by a bound vortex at the edge, which 

is capable of carrying a resultant force f. We start again with a finite value of f. The 

equation of motion, written in the form (7-1), is integrated on the edge area A, see 

figure 8.1: 

f = IJ [ Y H - p (y " ~] d A 
A 

(8-11) 

The Bernoulli constant H is finite everywhere, so the first term between the brackets 

vanishes in the limit f -+ 0. The flow is steady and the velocity y averaged on the edge 

area must be non-zero, so for f -+ 0 (8-11) beoomes : 

fedge = - p I I .Y " .1:!:1 dA = - p y " r 
A 

with r = IJ ~dA 
A 

for f-+ 0 

(8-12) 

y is the average velocity at A induced by the far-field vorticity and/or the undisturbed 
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flow. The order of magnitude of i cannot be derived from local considerations. Only a 

complete solution, including the far field, can provide this order, which is the order of 

ti' edge at the same time. As i;/: 0 also ti' edge ;/: 0 but we do not know whether it is o( 1 ), 
so may be infinitesimal small, or 0(1) so has a finite value. 

In appendix D we present a reduction ad absurdurn proof which concludes that the 

edge force must be finite: this proof proceeds from the limit of an actuator strip for 

vallishing dimensions, meanwhile keeping the resultant force constant: then a singular 

force remains. If this force is perpendicular to the undisturbed flow, the well-known 

vortex flow should be the result. A strip without edge forces cannot yield the vortex 

flow as the result of this limit, as we show in appendix D. The strip including edge 

forces is able to do so: if the edge forces are assumed to be 0(1), indeed the 

well-known force on a discrete vortex results. However, the proof has a limited 

validity: it does notprovide the order of the edge forcesin a straightforward manner. 

lt only concludes that the edge forces must be finite, in order to yield the desired limit 

behavior of the strip for vanishing length. 

We now can write down the complete force field of an infinitely thin actuator surface 

with a constant, normal surface load inducing a steady flow. Returning to the 
introduetion of this chapter, we use the distinction conservative and non-conservative: 

Ex = Econs = ~D-H 

F..J.f/J = :F = -p (i" r)edge -non-cons 

for e.,..... 0, (8-13) 

with: 

r = 0(1) 

vedge f 0 but of unknown order. (8-14) 

Here ~x is the unit vector normal to the surface, f..J.f/J is normal to the stream-tube. 
The result (8-13) is consistent with section 7.2, equations (7-35/36), where smooth 

force fields are discussed. Only the term 7JfiJ7JY in (7-36) does not appear in (8-13): 

since H is finite, the order of this term for e -1 0 is ct. Integration on the edge area A 

which is 0( e2) does not yield a fini te contribution. 



The edge. 1ingu.larity 91 

8.3. The comparison with other edge singularity solutions 

Greenberg [1972] and Lee & Greenberg [1984] give numerical results for actuator discs 

and strips, based on the equations of Wu discussed in section 7.1. At the edge, they 

assume a square root singularity in the vortex sheet strength, based on their integral 

equations. Schmidt & Sparenberg [1977] present a spiral solution for the flow around 

the actuator strip edge. 

8.3.1 The spiral solution of Schmidt & Sparenberg [1977] t 

This solution is based on a particular property of actuator strips with a constant, 
normal surface load F, see appendix A: the flow induced by such a force field depends 

only on the magnitude of F, and on the positions of the edges of the strip. The surface 

itself may have any position as long as the edges remain the same. The edges of the 

strip are the teading edges of the vortex sheets. Therefore the flow induced by an 

infinitely thin actuator strip with a constant, normal load F is identical to the flow 

induced by 2 serni-infinite, infinitely thin plates, carrying a constant load F and 

coinciding with the vortex sheets. The load F equals the pressure jump t.p. If the 
original actuator strip is assumed to be serni-infinite only one vortex sheet remains. If 
furthermore the undisturbed parallel flow is assumed to be zero, the kinematical 

problem has become: how to design a semi-infinite, infinitely thin lifting sheet with a 

constant pressure jump t.p with only self-induced veloeities present? This problem can 

be solved as an irrotational flow problem. Schrnidt & Sparenberg use conformal 

transformation techniques to derive their solution, which is given here briefly in 

equations (8-15/16) and ligure 8.3. The shape of the vortex sheet is an eiponential 

spiral r = e e, ligure 8.3a. The complex potential is: 

1-i 

X (z) = cz2 
(8-15) 

c2 = 4t.p 
p(e 21r-I) 

The vortex sheet is characterized by a constant strength 1 and velocity v, being the 

Also to be found in Sparenberg (1984). 



Figure 8.3a. The exponential spiral. Figure 8.3b. Flow between two wa.lla. 

average of the velocity on both sides of the sheet: 

Ï 

V 

= h-<e1T + 1) 

= ~l 
p 7 

Chapter 8 

(8-16) 

Schmidt & Sparenberg obtain (8-15) by conformal transformation of the flow between 

two parallel walls in the (-plane, see figure 8.3b, using z=e(l+i)( 

The shape of the sheet is equiangular: at each position (r,e) at the sheet, the angle 

between the unit radius vector~ and the tangent at the sheet is 'Tr/4. In one revolution 

the radius of the sheet increases or decreases by a factor e2
1T or e-21r respectively. The 

vortex sheet strength 7 and the velocity v are constant along the sheet. This implies 

that we obtain exactly the same flow field if we change the scale of the flow pattem by 

a factor e2n1r, where nis an integer. In other words: the solution is independent of any 

length scale. 

We compare the original actuator strip force field with the force field on the spiral by 

evaluating ï " f on both surfaces. The equivalence of the strip and spiral is based on 

the assumption that ï " fis identical for both surfaces, see appendix A. The strip as 

well as spiral are covered by a normal, constant distribution of f yielding a pressure 

jump t:lp = F = 1 f dn, with n normal to the surface and the integral taken across the 

thickness e of the surface. Since eis assumed to be zero, f equals 6(n)F. Weenclose the 

edge area A by a circle C, see figure 8.4. Using Stokes' theorem on area A we obtain 

expression (8-4) for both the strip and the spiral: IJ ï " f dA = F. Bowever, 

evaluation of ï" finalocal orthogonal (s, n) coordinate system, with s tangential and 

n normalto the surface, does not yield the same result for both surfaces. We integrate 

ï " f across the infinitely thin thickness e of the surface. Since f is normal to the 
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Figure 8.4. The spiral and strip with constant, normal load as equivalent actuator 11lll:ÛI(:es 

surface the integral becomes: 

J Y" { dn 
f 

I df 
= rsdn = 

f 

(8-17) 

It is clear that dF n/ds is infinite at the edge of the strip sirree the distri bution of F is a 

step function. This implies that dF n/ ds must be in:finite at the center of the spiral too. 

However, dFn/ds : 0 everywhere at the spiral. Furthermore, owing to the absence of 

any scale in the spiral flow, the edge cannot be defined, and it is not possible to 

investigate any limit behavior of dF n/ds fors - 0. 
In order to introduce a scale in the solution of Schmidt & Sparenberg, we have studied 

in appendix B the flow around an exponential spiral with finite length. This flow is 

defined on a multi-branched Riemann surface. If the limit towards an infinite length is 
taken, an infinite spiral is obtained and indeed (8-15) is the result. However, in 

contrast with the metbod of Schmidt & Sparenberg, this derivation yields the 

conditions for the solution at infinity. These imply that the flow cannot bedescribed in 

the 2-D plane since the equations of motion are not satisfied at infinity: there the 

streamlines are normal to each other at the branch line. 

8.3.2 Greenherg's square root singularity 

Greenberg [1972] and Lee & Greenberg [1984] present numerical solutions of Wu's 

equation (7-2) for the 2-D respectively 3-D flow, especially for the case of constant, 

normal surface load. Here we discuss the 2-D solution; the 3-D solution is similar. The 
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physical interpretation of their non-linear integral equation, being the converted 

Wu-equation, is the following: at each position (x,y) in a cartesian coordinate system, 

the velocity disturbance is induced by vorticity of yet unknown strength, lying at a 

streamline of yet unknown shape. The leading edge of the vortex sheet is the strip 

edge. By assuming a set of suitable chosen basic functions to describe the strength and 

shape of the vortex sheet, the coef:ficients of these functions are calcula.ted itera.tively. 

Greenberg argues tha.t one of the functions to descri he the vorticity distribution, must 

conta.in a. square root singularity, as this should be dictated by the kernel of the 

integral equation: 

w(x,y) = Jhlnr•(x,y,s)'Y(s)ds 

L 

(8-18) 

where the integration is performed along the vortex sheet L, with s as are length 

parameter, and r* the dista.nce from (x, y) to the position s. Equa.tion (8-18) is exa.ctly 

the same equa.tion as the one descrihing the flow around a flat pla.te edge (Sparenberg 

[1984]), which indeed results in the square root singula.rity of 1· A necessary condition 

for this however, is tha.t with s as distance from the lea.ding edge, 

lim (radius of curvature) f. 0 . 
S-+0 

(8-19) 

This is shown by our following analysis. The normal velocity at a steady vortex sheet 

bas to be zero. If the position at the sheet is characterized by s0, the normal velocity is 

given by ~ / as0• Using (8-18}, this condition for zero normal velocity becomes:. 

(8-20) 

Assume lJr•/ as ~ 1 for s < f with f measured from the leading edge of the sheet along 

L. At a certa.in position s0 < t:, (8-20) may be written as: 

f 

J 'Y(s) 8~ ds + (contribution of L fors > t:) = 0 . 
0 0 

(8-21} 
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The second term will be finite, so the first term bas to satisfy, with x = s/s0 : 

E/s0 J -y(x) xh dx = 0(1) . (8-22) 
0 

For so'"" 0, 1 = 1/./X is a solution, which appears after substitution: 

and replacing x by 1/y inthelast term: 

1 1 

= 2JME- 2J~ = o. x-1 y-1 (8-23) 

0 0 

The square root singularity indeed is a solution of (8-18), but a necessary condition for 

this is that Or* /iJs ..... 1 for s < f, where f can be made arbitrarily small. 

A spiraling flow which is expected due to the discrete vortex as leading edge, does not 
satisfy (8-19), so cannot have a square-root singularity. Furthermore, a vortex sheet 

with such a singularity cannot satisfy the dynarnical boundary condition: a constant 

jump in H. If, by the metbod of Appendix A, the vortex sheet is considered as a lifting 

vortex sheet, this condition becomes: the pressure jump .ö.p must be constant along the 

sheet. From the flat plate flow with the square root singularity we known that the 

pressure jump either is zero (if the plateis normalto the undisturbed flow), or infinite. 

A finite pressure jump is inconsistent with a square-root singularity of I· Nevertheless, 

at some distance from the edge, the induced velocity field will be independent of the 

type of the ,...&ngularity. Since the square root singularity is integrable, the use of this 

singularity instead of a discrete vortex singularity will not influence the general flow 

properties, provided that the magnitudes are correct. 

Inherent to Greenherg's metbod are the edge suction forces connected to the 

square-root singularity. This explains Greenherg's results, shown in figure 2.5: the 

discrepancy between the classica! actuator disc momenturn theory and hls numerical 

results is caused by the fact that this theory does not account for the edge forces. On 

the other hand, the good correlation with rotor experiments ( compare figures 2.4 and 
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2.5) confirms the qualitative condusion of Part I, that the actuator disc including edge 

forces is a better representation of a real rotor than the classical disc. 
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Chapter9 

DISCUSSION ON THE RESULTS; CONCLUSIONS 

This chapter consists of three parts. First an extensive survey of the results is 
presented; some of the results give reasons for discussions, which are indicated briefly 
in the second section. The last section formulates the conclusions. 

9.1 Survey of the results 

9.1.1 Part I: the rotor problem 

The momenturn theory applied to rotors. 

In section 2.2 the performance of rotors in axial flow predicted by the classica! 

actuator disc momenturn theory, is compared with experimental results, which reveals 

a systematic deviation: in all flow states of propellers and wind turbine rotors the 

measured average velocity at the rotor is higher than predicted. 
This momenturn theory assumes a real rotor to be represented by a disc with a 

uniform load. Apart from problems introduced by this crude approximation such as 

the effect of neglecting the finite number of blades, a main drawback is that the theory 

appears to proceed from an invalid assumption, if it is applied to rotors: it is assumed 
that the entire axial thrust couverts power to or from the flow. Bowever, for rotor 

blades having zero pitch, flat plate aerofoils, we have shown that the load on the 

chordwise bound vorticity yields a contribution to the thrust without contributing to 

the torque (section 2.3). This implies that the thrust performing workis smaller than 

the tot al thrust. This is also true for rotors ha ving a different blade geometry, 

although the proof then depends on the assumption that the out-of-the-rotor-plane 

component of the chordwise tip vorticity is negligible. In practical operation of all 

rotors this is the case. 

• 
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The momenturn theory including edge forces. 

Both observations lead to the idea that a 'natural' concentration effect exists, in 

contrast with artificial concentrators such as tipvanes or shrouds. The representation 

of such an effect by an actuator disc model is obtained by introducing edge forces, to 

be added to Froude's concept. These farces do not perfarm work, since they are 

perpendicular to the local velocity. The momenturn theory accounting for these forces 

requires the ratio between the total Ioad (surface load + edge load) and surface load 

alone to be known (chapter 3). For real rotors, this is the ratio between the total 

thrust and the thrust doing work T /T work· If this ratio exceeds the value 1.0, as 

indicated above, indeed the performance pred.ietion is improved qualitatively by the 

introduetion of edge forces in the momenturn theory. A quantitative result cannot be 

obtained as the ratio itself is still unknown. However, in order to confine to the 

experimental data from literature, the predicted converted power should be 

approximately 10% higher than the value predicted by the momenturn theory basedon 

Froude's concept. For a wind turbine this implies that the maximum attainable 

efficiency is increased from Cp = 0.59 , which is the classical Lanchester-Betz opper 

limit, to Cp = 0.65. 

The experiment. 

In the experiment (chapter 4) we have used the momenturn theory indoding edge 

farces to pred.iet the performance of a 1 m diameter rotor model in hover. This requires 

the ratio T/Twork to be known. We have defined Twork as the ratio of the powerPand 

the average velocity Üd. The thrust T has been measured by a balance, while P and Üd 

are obtained from measurements in the wake. The result is that T/Twork = 1.21, so 

only 83% of the thrust is effective in doing work. Using this value in the momenturn 

theory of chapter 3, the pred.ietion of the rotor wake contraction Rrar wake/R becomes 

0.78, which agrees very well with the experimental value 0.77. The classical pred.ietion 

amounts to /l = 0.707. 

The pred.ietion of Üd, the average velocity through the rotor disc, is also improved, 

although still13% too low. The classical pred.ietion is 21% too low. The origin of this 

13% deviation is to be found in the application of the energy balance in the momenturn 

theory in order to obtain Twork· In the actuator disc flow, each streamline passing the 

discis de- or accelerated equally. For a real rotor this is certainly not true, for which 

reason the energy balanceis replaced by Twork = P/Üd. Apparently this interpretation 

of the energy balance is appropriate as far as it concerns momenturn theory 

expressions, such as the wake contraction, which depends on the resultant loads T and 

• 
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T work· As soon as the distri bution of the load is concerned, as in the preelietion of 

velocities, this interpretation of the energy balance impraves the prediction, but still is 

not accurate enough. lmproving this requires a description of the energy balance which 

accounts for non-uniform distributions. 

8.1.2 Part 11: The actuator disc problem 

Numerical and experimental data from literature. 

The uniformly loaded actuator disc exhibits a flow singularity at the edges, the nature 

of which bas to be determined. The theoretica! question arises whether this singula.rity 

implies edge forces, since numerical and experimental data. a.va.ilable in litera.ture seem 

to indicate such (chapter 2). 

Lee & Greenberg [1984] report 2-D actuator strip experiments in a shallow water tank. 

Although difficult to interpret owing to the limited amount of data, the measurements 

indicate a devia.tion of average velocity through the strip (~4%), as compared with the 

classical prediction. The calcula.tions by the sa.me a.uthors also show a deviation: 10%. 

Schouten [1983] reports a. 2-D calculation similar to those of Lee & Greenberg on a less 

hea.vily loa.ded strip, showinga deviation of 1.6%. Castro [1971] studies the maximum 

deceleration of a steady a.ir flow by a 2-D screen in a wind tunnel. The classical 

momenturn theory prediets this to occur at a dimensionless loa.d coefficient of 1.0, 

while Castro finds 1.2. Finally Madsen [1985} describes calcula.tions on a 2-D, 

decelerating flow through an actuator cylinder. The power converted from the flow 

exceeds the value of the classical momenturn theory by 4%. 

Interpreta.tion of these data.. 

The observations mentioned a.bove suggest the implicit existence of edge forces. An 

analysis of the numerical methods reveals the following {section 6.1): 

Lee & Greenberg postulate that the leading edge of the vortex sheets, which originate 

at the strip edges, consists of a square root singularity in the vortex sheet strength 7· 

Such a singularity implies a discrete teading edge suction force, by which their metbod 

does not represent an actuator disc with a uniform load, as suggested by the authors. 

Schouten's metbod is similar: in hls numerical model he uses a discrete vortex to 

model the teading edge of the vortex sheet. This implies a discrete force to be present 

if the local velocity at the edge is non~ero. Consequently the results of both methods 

do not ra.ise the question whether the edge force is inherently connected to the 
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actuator disc. On the other hand they confirm numerically the statement that adding 

edge forces improves the modeling of a rotor by an actuator disc. 

Concerning the numerical work found in literature, only Madsen's metbod cannot be 

interpreted; also the experimental work of Lee & Greenberg and Castro needs to be 

explained. We will return to this later on. 

Our own numerical approach. 

A non-linear, viscous finite element calculation bas been performed in order to study 

the flow induced by smooth force fields in absence of an ambient flow (Peters [1989], 

section 6.2). The actuator disc flow with a uniform surface load is approached by 

increasing both the Reynolds number and the steepness of the load distribution as far 

as possible. By systematic varlation of the calculation area and of the size and 

distribution of the grid cells, the influence of the numerical method on the results bas 

been minimized. The calculations have been performed for both a 2-D actuator strip 

and a 3-D actuator disc. The 3-D results confirm the 2-D results, presented bere: 

- the Reynolds number is defined on the basis of the strip length L and the centerline 

velocity far downstream Ufar wake = /1FTP, with F as the strip load at the symmetry 

line. The maximum Re number used is 2600. The increase of Re above 1500 appears 

to hardly affect the calculated power and average velocity through the strip. The 

increase of the steepness of the load distribution near the edges, mea.nwhile 

maintaining the same resultant thrust, yields an increase of calculated power; the 

increase itself becomes smallerand smaller for increasing steepness. 

- for each distribution, the limit value of the power P/Pclassical for Re-+ oo has been 

deterrnined by extrapolation. These 'inviscid' data are used to extrapolate the value 

of the power ratio for infinite steepness at the edges: the step function distribution. 

The value so found is 1.01 :1: 0.02, so no significant deviation from thé classica! 

prediction is found. 

- the numerical calculations allow an interpretation of the experiments of Lee & 

Greenberg [1984]: the position of minimum pressure and the velocity profile at the 

strip are reproduced satisfactorily. This is achieved by assuming a finite thickness of 

the strip and a non-uniform load distribution. The calculated average velocity 

through the strip is 3.5% higher than predicted by the classica! momenturn theory, 

which agrees with the experimental value which is 4% higher. However, it bas to be 

noted that we did not investigate the significanee of this 3.5% deviation as we did in 

the other calculations described above. Lee & Greenberg assume the strip to be 

infinitely thin with a uniform load. They need to introduce an 'effective' strip length 



Su'I"Vey of result1; conclU8i0118 101 

in their numerical metbod to be able to interpret the experiments. Our result 

indicates that the experimental set-up, although intended to represent a constant 

load actuator strip, is better represented by a strip with a non-uniform load having a 

finite thickness. 

The latter calculation shows that, using our numerical method, the velocity through a 

disc or strip with a non-uniform load distribution can exceed the maximum value set 

by Froude's concept. The explanation for this is that for such a non-uniform load the 

thrust converting power can be smaller than the total thrust (section 3.3). This 

depends on the distri bution of the velocity which is not known a priori. If T > T work, 

the disc with a non-uniform load distribution is better represented by a disc with edge 

forces of appropriate strength, than by a disc according to Froude's concept, since this 

does not allow the inequality of T and Twork· 

Comparison of the present numerical work with Madsen's results. 

ConeerDing the numerical work one interpretation problem remains: the extrapolation 

of our data for increasing steepness are in agreement with the classical momenturn 

theory, while Madsen's result exceeds the classical power prediction by 4%. 

The common points in both methods are: both use finite elements, proceeding from a 

smooth load distribution. The computational domain of both methods has 

approximately the same size, and increasing the domain yields similar results. The 

differences are : Madsen's metbod is inviscid, while the load is distributed on an 

infinitely thin cylinder. The load decelerates the ambient parallel flow. In our 

calculations the flow is viscous and induced by a load on a strip with thickness, in 

absence of an ambient flow. Finally Madsen's resultant load distribution is 2.8 times 

steeper than the maximum steepness used in the present calculations. Remaining 

differences may concern numerical dispersion in the metbod of Madsen, ·details of 

which are not known to the author. The discussion on the numerical work is continued 

in the next section. 

The analytica! approach: the eguation of motion. 

This concerns the generation of vorticity by force fields, distributed on 2-D actuator 

strips and 3-D actuator discs, the latter without azimuthal forces and veloeities 

(except insection 7.2). The equation of motion is (section 5.1): 

YH = i + p. y x !:11.- p 8yf öt , (5-5) 
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and the generation of vorticity is described by the curl of it: 

(5-6) 

where we used (11.1 . Y) x = 0 since x bas no component in the direction of 11.1· The usual 

interpretation of fis that it represents the e.xternally applied force density, but it may 

contain the internal force density fshear stress = J.1. V2x as well: written dimensionlessly 

and expressed in the vorticity !:IJ, this term equals Rei, 1 Y " 11.1 , which leaves the 

possibility that it remains fini te for ReL-+ oo if Y x 11.1 becomes infinite. Here L denotes 

the lengthor radius of the surface. A sudden increase of !:IJ on a streamline passing an 

infinitely thin actuator strip yields such an infinite value. 

Three e.xamples of steady flow where D11.1/Dt # 0 indeed show that a tangential (in 

plane) component of the force density fis required in order to satisfy (5-5): the flow 

along asolid wall (where D!:ll/Dt # 0 implies the no-slip condition), an exact solution of 

Wu's actuator disc equation, namely a solid body rotation of the cylindrical wake, and 

the flow induced by an actuator surface with a smooth load dis tribution (appendix F, 

section 7.1 and 7.2 respectively). In case of the flow along a solid wall, this is verified 

by performing the limit ReL-+ oo with respect toPrandtl's boundary layer equation's : 

indeed the shear stress at the surface remains 0( 1 ). Since the thickness on which 

fshear stress is distributed is zero for ReL -+ oo, it does not contribute to the resultant 

load. The exact solution of Wu•s equation shows the same feature: applying a normal 

and azimuthal surface load F x and F rp respectively, requires a radial force density 

fr = 0(1) to be present. If the thickness is non-zero, even a radial surface load 

Fr= O(e) results. The flow induced by a smooth actuator surface force field also 

requires a tangential force density f of 0(1). Again for a non-zero thickness e this 

results in a tangential surface load F of 0( e ). 

The uniform. normalload distribution. 

An infinitely thin actuator surface covered with a constant, normalload F = I f dn, 

where nis directed normalto the surface and f = ó'(n) F, induces a singular flow at the 

edge since Y x fis singular: this singularity is a discrete vorte.x (section 8.1). If y, the 

velocity averaged on the edge area, is zero, the vorticity generated according to (5-6) 

accumulates at the edge, and an unsteady flow results. A steady flow requires a 

non-zero value of ! at the singularity; this velocity transports the vorticity 

downstream along the vorte.x sheet which emerges from the edge. Since the vortex is 
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fixed, it carries a force - p y" .[. The order of magnitude is the order of y, which is 
known to be non-zero in case of a steady flow, but still can be infinitely small. The 

order ca.nnot be derived by local considerations alone, a.nd awa.its a.n a.nalytical or 

numerical approach todetermine the entire flow field including the singularity. 

Comparison withother edge singularity solutions. 

In the litera.ture, two edge singularity solutions are known: Greenberg [1972] a.nd Lee 

& Greenberg [1984) use the square root singularity in the vortex sheet strength "f, a.nd 

Schmidt & Sparenberg [1977) derive a. 2-D spiraling flow as edge flow. The square root 

singularity is shown to require a non-zero radius of curvature of the sheet near the 

edge, in order to be a solution of the governing integral equation (section 8.3). 
Furthermore, such a singularity is connected to either infinite or zero pressure jumps; 

it is incompatible with a finite pressure jump as at the uniform load surface. The spiral 

flow of Schmidt & Sparenberg is a.n a.nalytical solution for a semi-infinite spiralling 

vortex sheet having its core at the edge of the actuator strip. We have derived the 

same solution by starting with a finite spiral flow, a.fter which the length is increa.sed 

to infinity. This yields the flow conditions a.t infinity, which are unknown in the 

metbod of Schmidt & Sparenberg. These conditions show that a 2-D description of the 

flow is not possible, since the solution requires a multi-bra.nched lliemann surface. 

Looking a.t one turn of this surface yields a 2-D description, but then the equation of 
motion is not satisfied at infinity. 

9.2 Discussion on the results 

The results presented in the previous section give ca.use to discussion, and generate 

questions. These mainly concern the results of Part II: the actuator surface problem. 

- In comparing experimenta.l and numerical actuator surface results with the classical 

performance prediction, interpretation probieros remain regarding Castro's strip 

experiment a.nd the numerical work of Marlsen a.nd of ourselves. The interpretation 

of experiments a.nd numerical work from literature is difficult, so maybe the 

contradiction is only apparent. Ca.stro's a.nd Madsen's data suggest that the cla.ssical 

prediction is not an upper bound, while our data comply with this prediction. lt 

should be remembered that the classical prediction is based on a uniform load 

distribution, so surfaces with a non-uniform Ioad may exceed this prediction. The 
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distribution on Madsen's cylinder is non-uniform; the distribution on the strip in 

Castro's experiment is not known. The distribution on our strip and disc is also 

non-uniform, but much smoother than Madsen's distribution. This difference might 

also explain the different results. This can he verified by perloriDing a calculation 

with our program using Madsen's distribution. However, this was not possible for 

several, practical reasons. 

The occurrence of an in-plane force density at a surface where vorticity is generated 

(the solution of Wu's equation, the flow along asolid boundary and the flow induced 

by a smooth actuator surface force field) is remarkable. For the flow along the solid 

boundary the origin of this is identified as the remainder of the viscous term in the 

Navier-Stokes equation for ReL .... oo, with L as characteristic length scale. For the 

actuator surface flows with zero thickness E the same interpretation is possible, since 

then Y" !:!! becomes infinite on streamlines experiencing a jump in vorticity while 

passing the surface. In that case the order of the shear stress at the surface, 

expressed as v Y x J:!!, can remain finite for ReL .... oo. This reasoning only offers an 

explanation, but not an confirmation as was obtained in case of the boundary layer 

flow. Furthermore this explanation does not hold for surfaces with a non-zero 

thickness: then Y x !:!! remains fini te so the shear stress 11 Y x !:!! vallishes anywhere for 

v .... 0. Yet we have found that applying a non-uniform, normallaad on an actuator 

surface requires a non-zero tangential load to he present. We do not have an 

explanation on solid grounds for this, but only the following hypothesis. The flow 

through an actuator surface and the boundary layer flow along a solid surface have 

in common that vorticity is generated by the force field distributed on the surface. 

For the boundary layer flow it is clear that a finite thickness of the layer is coupled 

to a finite value of the Reynolds number. Assuming the velocity and length in the 

Reynolds numher to he finite, this implies a finite value of v. Probably the same is 

true for actuator surfaces. In our approach the limits of vanishing thickness and 

vanishing viscosity are uncoupled. If we assume that they are coupled as in the 

boundary layer flow, a fini te thickness of the actuator surface combined with a fini te 

value for 11 yields a resultant shear stress load at the surface. If the order of 11 is small 

enough for the diffusion of vorticity to he negligible, we arrive at the situation that 

the shear stress is negligible everywhere in the flow, except at the actuator surface. 

This would explain the occurrence of the shear stress load. To make this line of 

arguments more than an hypothesis, an analytical description of the limits t .... 0 and 

11-1 0 for the actuator surface flow is required, starting from the Navier-Stokes 
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equation. 

- The denvation of the edge singularity being a vortex is valid for the actuator strip as 

well as the disc. In tbe latter case, a discrete vortex ring is present, which is known 

to have an infinite self-induced velocity. This clearly conflicts the assumption of 
steady flow for whicb it bas been derived. However, the vortex is the leading edge of 

a vortex sheet which spirals around tbe vortex. The velocity induced by the vorticity 

contained in the spiral may canceltbis own-induced velocity. This can be confirmed 

only by an analytica! asymptotic metbod wbich accounts for tbe entire flow field, or 

by a numerical procedure. Concerning tbe actuator strip, this problem does not 
exist. 

- In the mathematica! proof of the possible existence of a force on the edge of an 

actuator with constant load one essential step is missing: the determination of the 
order of magnitude of i at the edge. The question whether _r =-pi x !: = 0(1), so 

bas a finite magnitude, or o(l), so can be infinitely small, cannot be solved by local 
considerations alone. The answer awaits either an analytica! approach including the 

far field, or a new numerical metbod allowing steeper distributions for the force 
density. 

If tbe edge force should appear to be an inherent part of the load, the interpretation 

of it's origin is not complete. It is obvious to look at the shear stress as in case of 

smooth distributions of the actuator surface load. However, we do not know the 
order of the sbear stress term v .Y. x !:ll in the flow singularity at the edge. 

Furtbermore, the extrapolation of tbe data of our numerical work towards a strip 

with a constant load, confirms the power prediction based on Froude's concept, 
whicb excludes edge forces. The question wbether this extrapolation changes if more 

data are accounted for, cannot be answered now since our numerical metbod does 

not allow very steep distributions of the force field .. 

The only indication we have that the edge force bas a finite order of magnitude 

comes from the rednetion ad absurdurn proof in appendix D. This proof proceeds 

from an actuator strip, baving a resultant thrust T perpendicular to the undisturbed 

flow U0 • The assumption is made that the flow induced by this strip must become a 

vortex flow if the strip is submitted to a limit of vanishing dimensions, meanwhile 

keeping T constant and perpendicular to U0 • We showed that Froude's concept can 

not yield this vortex flow as a result of this limit: tbe thrust T can be maintained 
finite in the limit only if an infinite amount of energy is converted to or from the 

flow. The strip with edge forces submitted to the sarne limit does yield the 
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possibility that the required vortex flow results. The weak point of this proof is that 

it depends on several assumptions. Therefore the question whether the edge force is 

finite remains unanswered. 

9.3 Conclusions 

The final conclusions are: 

- The representation of a rotor by an actuator rosc with edge forces improves the 

performance preroetion significantly. The momenturn theory based on Froude's 

concept proceeds from an invalid assumption if applied to rotors: only a part of the 

thrust converts power to or from the flow. Both statements are confirmed by the 

experiment on the model rotor in hover. A general quantitative performance 

preroetion is not possible yet, since the ratio of total thrust to thrust converting 

power is not known. For a wind turbine the representation of the rotor by the disc 

with edge forces implies that the maximum attainable efficiency is higher than the 

classical Lanchester-Betz limit 0.59. 

- The experimental result of Castro [1971] and the numerical results of Madsen [1985] 

cannot he explained by the momenturn theory based on Froude's concept. The 

adrotion of edge forces to this concept yields a shift of the performance pred.ietion 

which then allows an interpretation of these experiments. 

- The extrapolation of our numerical data of viscous flows through strips with smooth 

load distributions, towards the inviscid flow induced by an actuator strip with a 

uniform load complies with the classical results, based on Froude's concept without 

edge forces. Bowever, this extrapolation can change if more data are accounted for, 

which was not possible with our method. An indication for this is that Madsen's 

result exceeds the classical result, which shöuld not he possible according to our 

extrapolation. 

- The experimental data of Lee & Greenberg [1984] are confirmed by our calculations, 

while an analysis of their edge singularity yields an interpretation of their numerical 

data. Both subjects were not ciarifled satisfactorily by the authors. 

- The actuator surface force field is not completely free to choose: if the surface is 

covered with a smooth, normal surface load, an in-plane force density must he 

present. For surfaces with a non-zero thickness this force density results in a finite 

in-plane surface load. An exact solution of Wu's actuator disc equation has been 
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found whlch confirms these features. For the special case of the generation of 
vorticity at a solid boundary, also the tangential force density has been found. By 

comparison with the boundary layer equations at an infinite Reynolds number, thls 

force density is identified as the remainder of the shear stress. 

- The edge singularity of an infinitely thln actuator surface with a constant, normal 

load is determined to be a vortex. lf the flow is steady, the vortex experiences a 

discrete force which is non~ero, but has an unknown order of magnitude. 
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Appendix A 

SPARENEERG'S TRANSLATION THEOREM 

Actuator surfaces with constant, normal surface load exhibit a peculiar property (see 

Sparenberg [1984]): the position of the surface is not important for the flow field 

generated by the force field, as long as the edge of the surface remains at the same 

place. Sparenberg derived this theorem for surfaces which are infinitely thin. Here we 

proceed from surfaces with thickness, after which the limit of vanishing thickness is 

taken. 

Figure A.1 shows two actuator strips (or cross-i!ections through 3-D actuator discs 

without azimuthal forces a.nd velocities, see section 7.2) having the same edge, defined 

by r 5 E/2. The center of the edge is the origin of the cartesia.n (x,y) coordinate system 

and the cylindrical (r,e) coordinate system, see figure A.l. The surfaces have the same 

constant, normalload outside the edge region: 

with E = J ~ f(x) dx (A-1) 

f 

Figure A.I. Two forc:e field dist;n"buÜODB, haviPg U.e lla.IIle edge. 
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The distribution function f(x) is the same for both force fields; for t-+ 0 it becomes a 

delta function: f(x) = ó(x) F. At the edges, the distribution of the force density is not 

prescribed. However, for all edge distributions (8-4) shows that 

{A-2) 

where At and A2 are the edge areas. Since At equals A2, (8-5) shows for E-+ 0: 

(A-3) 

so by (8-6): 

(A-4) 

Equation (A-4) results in two identical flow fields, if the start and boundary 

conditions are equal. By assuming identical undisturbed flows at the start of the action 

of the force fields, these conditions are satisfied. As fa.r as the pressure field is 

concerned, this remains the same outside the region enclosed by the two surfaces, and 

differ F in the enclosed region. 

In this way, the flow induced by a plane actuator surface is identical with the flow of 

an actuator surface aligned with the vortex sheets up to downstream infinity, where 

the surface crosses the wake, figure A.2. The Bemoulli constant H has the same value 

throughout the flow field, and the sheets maintain a constant pressure jump .llp. The 

kinematica! problem bas been transferred to a potential flow problem of finding the 

shape of the vortex sheets. 

act. 
surface 

vortex sheet 
"--- act. surface 

ond 
vortex sheet 

' act. 
surface 
at ... '1 

~ 
Figure A.2. Two a.ctuaior surfa.ces generatmg the IIBil1tle flow field. 
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AppendixB 

THE EXPONENTlAL SPIRAL WITH INFINITE LENGTH 
AS THE LIMIT OF A FINITE LENGTH SPIRAL 

In section 8.3.1 the flow around an infinitely long exponential spiral r = ell is 

described. Schmidt & Sparenberg [1977] found thls flow by conformal transformation 

of the flow of Figure 8.2b. 

Schouten [1983] derived thls flow by conformal transformation of the flow around a 

semi-infinite flat plate in the (-plane, figure B.1, using the transformation: 

1-i I' z = ." . (B-1) 

We try to establish the flow around the semi-infinite spiral by first determining the 

flow around a fini te spiral, after whlch the length of the spiral is increased to infinity. 

Thls fini te spiral is obtained by transformation of the finite flat plate flow (figure B.2), 

using a similar transformation. 

ÎTj CD 

Figure B.l The flow around a half-infinite plate Figure B.2 The flow around a finite plate 
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After some trial and error we find that the transformation 

1-i 1'4 z = ., (B-2) 

maps the flat plate into a finite length spiral, as we will show. With ( = peirp and 

z = reie (B-2) becomes: 

or: 

by which: 

e i(e -ln r + kl 2?r) 4 i(4rp + k2 2?r) 
re e = P e 

re9 e 
i(9-lnr) 4 i4(rp+k;) 

= P e 

e = 2 ln p + 2 ( rp + k ; ) 

ln r = 2 In p - 2 ( rp + k ; ) } 

(B-3) 

(B-4) 

where k, k1 and k2 are integers. We choose k to be zero. Then the semi flat plate 

defined by p ~ b/2, rp = n 'Ir (n integer) is transformed toa finite length spiral: 

x 

Figurc B.3 The cxponentia.l. spiral with finiie length 



The e:r:ponential 1piral with infinite length 

The position of the edge is given by 

r edge 

Gedge 

and the length i is 
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(B-5) 

(B-6) 

(B-7) 

Figure B.3 shows one mapping of the exponential spiral. For increasing b the spiral 

remains at the same place, but continnes itself along the line r=ee. The kernel of the 

spiral is the transformation of the origin of Figure B.2. The mapping (B-2) or (B-4) is 

multivalued: each period Go~ G ~ Go + 21r in the z-plane is the transformation of 

one quadrant of the ( -plane. Although the flat plate flow is symmetrie with respect to 

the imaginary axis, the spiral flow does not have a periodicity as the scale of the 

transformation is a function of cp: for example the positions p = b/2, cp = 0 respectively 

21r in the ( -plane are mapped to different radial positions in the z-plane, differing e -411' 

as can be seen from (B-6). With k chosen to be zero in (B-4), the mapping of the flat 

plate flow in the ( - plane requires four turns of the Riemann surface. Figure B.4 

shows the flow in these turns, being the mapping of the flow in the quadrants in the 

z- plane defined by -11"/2 ~ cp ~ 0, 0 ~ cp ~ ?r/2, 1rj2 ~ cp ~ ?r, 1r ~ cp ~ 37f/2. These 

quadrants and conesponding turns of the Riemann surface are numbered -1, 1, 2, 3 

respectively. The branch line of the Riemann surface coincides with the spiral and its 

continuation. The spiral flow pattern on turns -1 and 2, and on turns 1 and 3 are 

identical except for the scale and the direction of the streamlines: for example the scale 
of turn 3 is e -2

11' ~ 0.002 times the scale of turn 1. 
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Figu:re B.4. 

I 

Figu:re B.5. 

-

2 

3 -1 

The flow in the s-plane which is the rault 
of the mapping of the flow of figun: B.5. 
The flow pattem numbered -1 corresponds with 
the quadrant -1 in figure B.5, and 110 on. Apalt 
from the acale and the orientation, pattcms -1 
and 2 are equal, as are pattcms 1 and 3. This 
is illustrated by the magnification of the 
center of pattem 3. The branch line of the 
Rietnann 81liface is indicated by - • - • - • 

The flow a.mu.nd the fiat plate. The definition 
of the quadrant& is: -1 : 4/2 ~ tp ~ 0 

1 : 0 ~ VJ ~ ?:/2 
2 : ?:/2 ~ VJ ~ 'K 
3 : 'K ~ VJ ~ 3?:/2 

Appendiz B 
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The complex potential of the flat plate flow is: 

(B....S) 

Substitution of the transformation (B-2) yields the complex potential of the spiral flow 

in the z-plane: 

J l-1 2 
x(z) = iU0 z 

2
- [ ~ J . (B-9) 

The behaviour of the complex potential for b -+ oo is shown by the Taylor expansion 
with respect to b·1: 

1-i 

b 1 z 2 
x(z) ::: - uo 2 1 - 2~ + ... -... + ... 

[~] 

b 
u 1-i 

0 2 = -Uo2 + oz - ... + ... - (B-10) 

Apart from the constant term, the first term in (B-10) equals the complex potential 

(8-15) of the Schmidt & Sparenberg spiral flow. This infinite-spiral-flow appears to be 

the first relevant term in the series expansion of the finite-spiral-flow with respect to 

the (length) -1. At the same time we have determined the constant c in the solution of 

Schmidt & Sparenberg: c = U0fb. Only if this ratio is kept constant in the limit for 

increasing spirallength, a non-trivial flow results. We will elaborate this special case 

in the following analysis. 

We consider the entire lliemann surface instead of one turn with a branch line. Then 

both sides of the spiral, denoted by + and- according to figure B.3, are characterized 

by the same r and e. Consequently the complex potential x. the magnitude of the 

velocity I d x/ dz I and the pressure do not exhibit a jump across the spiral. This may be 
different if we consider only one turn, with the branch line coinciding with the spiral as 
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in figure B.4. Then e + and e _ differ 21r. The complex potential (B-9} is used to 
determine the velocity and pressure jump across the spiraL The + and - sides of the 

spiral are defined by: 

r ee ::: r+ = r 

} e+= e 

e e + 21r 

which corresponds with figure B.4, turn 1. The velocity is given by: 

~ 
. = V -IV x y 

At the + side, 

= 

so: 

-ie e 

(B-11) 

(B-12) 

(B-13) 
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(B-14) 

In the same way I v _I is determined with r _ = r + and e _ = e + + 21r according to 

(B-11): 

(B-15) 

Using (B-14) and (B-15), the pressure jump is: 

(B-16) 

After substitution of (B-6) this becomes: 

211" : 

1+e~-0edg~J . 
(B-17) 

For large negative valnes of (0- eedge), soforb-+ UJ or e-+ -m, this simplifies to 

(B-18) 

and we have reeavered expression (8-15) derived by Schmidt & Sparenberg, with 

c = U 
0

/b. This means that iudeed their infinite spiral flow can he obtained from a 

finite spiral flow by increasing the length of the spiral to infinity. However, the 

segment of the branch line which does not coincide with the spiral but is the 

continuation of it, cannot he removed from the flow field. Therefore the flow 

discontinuity at the branch line B.4 remains. This implies that a description of the 

flow in the 2-D plane is impossible: at infinity the equations of motion are not 

satisfied. In Schmidt & · Sparenbergs derivation of the spiral flow these conditions at 
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infinity were not found. By starting with the finite spiral we have been able to 

complete the solution. The final result is that thls solution indeed presents the flow 

induced by an infinite exponential spiral, but that it requires a multi-branched surface 

to be described consistently. Therefore it does not represent a 2-D flow induced by 

such a spiral. 
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THE VISCOUS SOLUTION OF THE FLOW 
INDUCED BY A SEMI-INFINITE, INFINITELY 
THIN ACTUATOR STRIP 

Je3 

In section 5.3 we presented a dimension analysis regarding a semi-infinite, infinitely 

thin actuator strip with constant, normal load and with no undisturbed flow present. 

It appeared that an inviscid solution can be obtained only if the ratio f/v (thickness to 

kinematic viscosity) is infinite. If the strip is a priori assumed to be infinitely thin, 

instead of defining a limit f .... 0, the ratio I'./ V is unknown. Assuming that this ratio is 

finite, only a viscous flow is possible. 

The viscous solution is presented in this appendix, which is based on van Helden 

[1988]. The curl of the Navier-Stokes equation (5-5) for 2-D flows is: 

~ 1 2 
"'lrr"t = - Î " f + (v . î) w + v V w 
UL p - - - -

(C-1) 

The flow is assumed to start from rest, so at t = 0 the non-linear term (:y:.î) !H. = 0. 

Since 8!!!/at and y " ! are non-zero only at the edge, and v V2!!;! has no preferential 

direction, the flow will be circular symmetrie with respect to the edge and (:y:. î) !H. 

remains zerofort > 0. 

With (r, e) as polar coordinates and the edge as origin, (C-1) is written as: 

(C-2) 

First ~ Y " f is treated as a unit point souree in space and time: it is the result of a 

pulse at t = 0 and r = 0. The exact solution of {C-2) fort > 0 is: 

w(r,e,t) (C-3) 
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Now Y x f f; 0 for 0 $ t $ t
0

. Since {C-2) is linear, the salution is obtained by 

integration of (C-3): 

tor t 2 o -r 
w{r, 0, t) = I 1 e4v(t-r) d 

v( t-r) T • 
{C-4) 

0 

The upper boundary of integration must be the lowest value of t and t
0

. By 

substitution of p = r2/4v{t-r), {C-4) simplifies to: 

pl 

w{r, 0, t) I 
e-p 

{C-5) = - dp p 
Po 

with Po = r2 /4vt 

pl = m if t $ t
0 

= r2 / 4v ( t-t
0

) if t>t
0 

. 

If t $ t
0

, the definite integral is known as the exponential integral E1{r2/4vt), whi.ch is 

tabulated in e.g. Abramowitz & Stegun [1965,p.228]. For t > t
0

, the salution is the 

difference of two exponential integrals, so: 

{C-6) 
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AppendixD 

THE FORCE ON A 2-D DISCRETE VORTEX OBTAINED 
BY AN ACTUATOR STRIP LIMIT 

The actuator strip is a distribution of force densities on a 2-D infinitely thin strip. lf 

the length of the strip is also assumed to tend to zero, meanwhile maintaining a 

resultant load, an isolated, discrete force Ë. is the result. If this discrete force is 

perpendicular to the main flow, the resultant flow should be a vortex flow. We 
investigate this for both actuator strip concepts which are discussed in the main text: 

Froude's concept of a strip with a uniform load, and the concept of a strip with a 

uniform load and edge forces. 

We assume the Froude's classica! actuator strip concept with the uniform surface load 

F. The resultant load is r = Ft., where t. is the strip length. A finite force r reqmres 

F-+ m for t.""' 0. By applyîng Bernoulli's law separately upstream and downstream of 
the strip, as in (3-2), it is clear that .!n(u2- U2) is proportional toF , where u is the 

T m 0 m 
velocity in the fully developed wake. The mass of fluid passing the actuator strip is 

proportional to t. F 
1/2, so the power needed to maintain the flow is proportional to 

t. F
3
/2 which beoomes infinite in this limit. Therefore the classica! strip, submitted to 

the limit of vanishing dimension, cannot yield the 2-D vortex flow as this flow requires 

no power to be put into the flow. 

Now we assume an actuator strip with constant normal load F and two edge forces 

F J.?jJ = -p! x ras given by (8-13), placed parallel to the ambient flow !!a (figure D.l). 
The flow singularity at the edges is assumed to be the vortex singularity as derived in 

section 8.1. 

The edge forces depend only on the local velocity !, and vortex strength r.. Both are 

determined by the undisturbed velocity U 
0 

and the load on the strip f. Due to the 

asymmetry of the flow with respect to the strip symmetry line, the edge vortices will 

have unequal strength. This does not change if the length of the strip t. is changed. The 

limit t. -+ 0 keeping F constant results in the following changes of the flow: 



Figu:re D.I. An adualor strip with asymmelric flow. 

- the mass of flow transported in the wake beoomes zero: the velocity increase 

remains finite due to the finite E_, while the width of the wake becomes zero. The 

work done by the force field also becomes zero. 

- the two vortex sheets cancel each other except at the edges. For t - 0 this 

cancellation occurs at an infinitely small distance r. The two edge vortices 

constitute a vortex doublet. As the strength of the vortices is and remains 

unequal for t - 0, one discrete vortex remains with strength r :f 0, being the 

difference of the two edge vortices. The order of r is not known. 

- the velocity induced by a discrete vortex at its own position is zero, so ! = ~· 
The resultant force on the resultant vortex then is: 

F.,,=-pU xr, 
-.LY' -'-() -

(D-1) 

so indeed the well-known vortex flow is the result of this limit procedure. 

The condusion of this rednetion of absurdurn proof is the following: the compression of 

the strip into a discrete point, meanwhile maintaining a resultant load, does not yield 

the vortex flow unless edge force are assumed to be present. 
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AppendixE 

JUSTIFICATION OF THE EXPERIMENT 

E.I. Model description 

The model is a stripped version of the Graupner "sky-Lock EH-1 11 model helicopter: 

only the (electrical) drive mechanism and the two blades are used. The blades are 
untwisted and have a fixed pitch angle 8p and a stiff blade root mounting. The pitch 

angle is measured as the angle between the rotor plane and the flat lower side of the 
blade profiles. The profile itself is not specified. Figure E.l shows the blade data. 

Figure E.2 sketches the experimental set up and the surroundings. Figure 4.4 in 

chapter 4shows the model and the hot wire support. 

! 60 I 70 1 
-4)--t;=_:...-~~-~~·=---~ 

510 mm 

Figure E.I. Rotor blade geometry 

E.2. Description and calibration of the measurement devices 

The hot wires used are university-made wolfram wires, length 5 mm, thickness 5p., 

without coating, mounted normal to the probe axis. The control equipment is also 

university-made and is based on the constant temperature anemometry. The wires are 

calibrated in a DISA calibration nozzle in the range v = 0 to 12 mfs. King's relation 

between wire voltage E and velocity v: E2 = A + Bva is used as calibration curve. A 

numerical curve fit determines the constants A, B and a with an accuracy of :::: 1%. 

Each day of measuring the calibration is repeated. 
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The wires are also calibrated for the sensitivity to the velocity component in the 

direction of the wire. Wires with a very high length-to-diameter ratio should register 

only the normal component v of the velocity v, or: 
n -

v measured = I v I cos a ' (E-l) 

where a is the angle between ! and the plane normal to the wire. Figure E.3 shows the 

calibration. The angle a is varled by rotating the probe around an axis normal to the 

plane of the wire and wire supports. Indeed (E-1) is satisfied. The deviation for 

a --+ 9Qo is due to interference with the wire supports, which is unavoidable. 

The total messure tubes have an inner diameter of 7.5 mm, and an outer diameter of 

1.2 mm diameter. This tube is calibrated with respect to misalignment errors. This is 

done in a closed wind tunnel. With a as the angle between flow direction and tube 

axis, the relative error is < 1.5% for a< 20o, see figure E-5. 
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Figure E.3. Calibration of the hot wire with respect to crO&B wind l!eilsitivity. 

E.3. Hot wire data processing 

129 

This consists of two parts: data recording and evaluation. The recording is perlormed 

using a transient recorder (8 bits accuracy, GOULD Biomation 2805) and a personal 
computer. The recorders take 2000 data with a sample time of 5 p,s. At the same time 

the one-per-rev trigger pul se is recorded. These data ( covering approximately 9 

revolutions) are transmitted to the computer and stored on floppy discs. The software 

used is university-made. The entire system is calibrated by sampling and storing a 

known input voltage. 

;:~ I Uo= 5,6 "Ys [ 
.1 

a(') 

-.1 

Figure E.4. Calibration of the total preasure tube with t:apect to misalignment. 
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The evaluation is described in van der Hoek & Pel [1987, in Dutch]. First the 

constancy of the rotor rpm is checked: only periods (data blocks between two trigger 

pulses) having 222±1 data points are admitted. If the block contains 223 data points, 

number 223 is skipped; if the total is 221 points, number 222 is added being equal to 

number 221. Then the calibration curve is used to calculate the velocity. Finally all 

values having the same sequence number (ranging from 1 to 222) are averaged in order 

to obtain the magnitude of the local velocity component normalto the wire. 
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THE BOUNDARY LA YER FLOW FOR INFINITE 
REYNOLDS NUMBERS 

191 

In chapter 5 the question was raised whether the non-dimensional viscous term 

Re-1 V2y' in the Navier-Stokes equation can remain finite if the Reynolds number Re is 

increased indefinitely. The dash above y indicates that it is a non-dimensional term, as 

in section 5.1. Here we investigate thls question for the flow along a solid boundary, 

using two different methods. The viscous salution is known by a special form of the 

Navier-Stokes equation: Prandtl's boundary layer equations, which are subjected to 

the limit Re .... m. The second approach is to use (5-5), where the shear stress is 

included in the force density term:{, tagether with the n<H!lip condition. The Reynolds 

number is assumed to be infinite. The salution for the force density distribution will 

show whether a tangential Ïshear stress is present. 

We use the same non-dimensional representation as in (5-3). In a local, 2-D, cartesian 

x'- y' coordinate system with x' tangent and y' normal to the surface, Prandtl's 

boundary layer equations read according to Meyer, [1982, page 116]: 

au· au· - + -= 0 
{}x' &y' 

au· , au· lJp~ 1 #u· 
u'- + v- = --- + Tr::---rr 

{}x' &y' 8x I .n.e &y I I. 

(F-1) 

v' = 0 for y' = 0 

lim 1 u' (x', y') = u' (x', o') 
y'Rel ...... oo e 

The index e denotes the "potential flow" values just outside the boundary layer. At 

y' = 0 so at the surface itself, the first two equations of (F-1) degenerate into: 
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{Jp' e 

8x' 

1 cfu · = 
Re--;J?-

at y' = 0 . (F-2) 

Since the left-hand side is independent of Re, also fre ~ remains constant for 

Re -1m. Returning to the original notation with dimensions, this shows that the viscous 

stress term p. ~ remains non-zero at asolid surface even if the Reynolds number is 

infinitely large. This result seems to contradiet the well-known statement that the 

viseaus drag of a body in inviscid flow is zero. However, the local drag is JP. ~ dy 

integrated across the thickness of the boundary layer. Since the integrand is finite and 

thickness is infinitely thin for Re ...... m , the local drag is zero. Therefore the fini te order 

of magnitude of the viseaus term for Re-+ m is of mathematical interest only. This 

may be different for flows where a singularity is present: the order of the viscous term 

may be increased then. 

Now we try the second approach by using the steady version of (5-5) with I defined by 

(5-4). Figure F.l shows asolid surfaceS with the local system (x, y), with x tangent 

to the surface and y normal to it. The surface itself is denoted by y = 0, while y = o. 
represents the situation just outside the surface. I is distributed on S. 

Figme F.l. Flow along a surfaceS with the no-slip rondit.ion 

At the surface the no-slip condition gives: 

(F-3) 

so the Bernoulli constant is: 
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Ho= P . o. (F-4} 

Using (F-3}, (5-5} gives for the tangential derivative of H: 

!tang 
{} 

= 1JX Ho at y = 0. (F-5} 

The combination with (F-4} yields: 

!tang 
{} 

at y = 0. (F-6) = 7JXPo. 

Since: 

{} {} {} 
(F-7) oxPo. = ox (p -p ) = ox Fnormal . o. 0 

the relation between tangential and normal force distributions finally becomes: 

{} 
!tang = 1JX F normal (F-8) 

F al can be expressed in kinematica! terms using the Bernoulli equation for norm 
y = o.: 

{} [ 1 2] OX p + 2 p V 0+ = O . (F-9) 

The combination of (F-7) and (F-9) then yields: 

Enorm al 

=-pyx2_' (F-10) 

with: 
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::t. = - e " (v - v ) = - e " v 

l -y -o. -o -y -o. 
(F-11) 

1 1 y = 2 (Yo. + Yo) = 2Yo + 

Equation (F-11) is a well-known ex:pression. Due to the no-slip condition, the surface 

is a vortex sheet with strength ::t. and velocity y on which a force is acting. 

Also ~ang can be ex:pressed in ! and .:z: 

f -tang 

=-p[[!·!]!+!"!"!]_ . 
y-o. 

The flow is free of rotation at y = 0 ., so this simplifies to: · 

!tang= -p [ [!·!] ·!] _ · 
y-o. 

(F-12) 

(F-13) 

(F-8), (F-10) and (F-13) constitute the relations between the tangential force density 

and normal surface force on the one hand and the velocity and vorticity on the other 

hand. Only for constant, normal surface forces, ~ang and the increase of ::t. are zero. All 

other distributions require ~ang :#: 0, by which the strength of the vortex sheet is in- or 

decreased. In other words: the generation of a vortex sheet at a solid surface supposes 

the presence of tangential force densities, which implies a non-eonstant normal force 

distribution. 

The result (F-6/8) is the same as (F-2), but now obtained without using the boundary 

layer equations. It is clear that ~ang = fshear-stress = p. V2 y, and that both methods 
are equivalent. 
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Samenvatting 

De remmende/trekkende schijf (actuator disc) is het eerste wiskundige model van een 

propeller, helikopter- of windturbine rotor, een eeuw geleden door R.E. Froude ont

wikkeld. Deze schijf is oneindig dun en heeft een doorlaatbaar oppervlak waarop een 

uniform krachtveld is aangebracht. Dit krachtveld stelt de kracht van de rotor voor, en 

versnelt of vertraagt de stroming. Deze wordt verondersteld wrijvingsloos te zijn. De 

voorspelling van de prestaties van rotoren door middel van de, op dit concept geba

seerde, impulstheorie is erg eenvoudig en wordt nog veelvuldig toegepast. Echter het 

vermogen dat rotoren aan de stroming toevoeren of onttrekken is systematisch 10 tot 

15% hoger dan het vermogen dat door de impulstheorie voorspeld wordt. Nu is uit de 

ontwikkeling van rotoren waarbij op een kunstmatige manier het rotorvermogen is 

opgevoerd, b.v. door de rotor in een ringvleugel te plaatsen of te voorzien van 

tipvanen, een tweede schijfmodel bekend: het model van Froude met daaraan krachten 

op de rand van de schijf toegevoegd. Dit schijfmodel met randkrachten leidt tot hogere 

waarden van het voorspelde vermogen dan Froude's model. De vraag is nu of het 

model met randkrachten niet een betere voorstelling is van rotoren, ook zonder ring

vleugels of tipvanen, dan Froude's model zonder randkrach ten. 

Op twee manieren is hierop een bevestigend antwoord gevonden. Een verschil tussen 

beide schijfmodellen is dat in Froude's model alle krachten die op de schijf werken 

arbeid verrichten, terwijl dat niet het geval is in het model met randkrachten: deze 

krachten staan loodrecht op de lokale stroming en verrichten geen arbeid. Uit een 

analyse van het krachtveld van een rotorblad blijkt dat ook hier slechts een deel van 

het krachtveld arbeid verricht, zodat het schijfmodel met randkrachten een betere 

benadering is voor de rotor dan het model zonder randkrachten. Dit is tevens 

experimenteel bevestigd door metingen uit te voeren aan een schaalmodel van een 

stilhangende helikopterrotor. Uit de snelheids- en drukmetingen in het zog van deze 

rotor blijkt dat inderdaad slechts een deel van de totale kracht arbeid verricht. De 

overeenkomst tussen voorspelde en gemeten prestaties blijkt duidelijk verbeterd te zijn 

door het toevoegen van de randkrachten aan Froude's model: de kontraktie van het 

zog wordt goed voorspelt door de impulstheorie met randkrachten, maar de voorspelde 

snelheid door het rotorvlak is nog te laag, al is de overeenkomst met de gemeten 

waarde duidelij'k beter dan bij de voorspelling zonder randkrachten. 

In het tweede gedeelte van het proefschrift wordt de vraag gesteld of de randkrachten 

een inherent onderdeel van de trekkende/remmende schijf zijn, in plaats van een vrij te 

kiezen toevoeging. Biervoor is zowel numeriek als analytisch de relatie tussen een 
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krachtveld en de daardoor geïnduceerde stroming bestudeerd, waarbij dit krachtveld 

geen relatie met een rotor hoeft te hebben. Uit de literatuur zijn experimentele en 

numerieke resultaten bekend van stromingen geïnduceerd door krachtvelden op schij

ven, welke strijdig lijken met Froude's theorie. Ter verifiëring hiervan is een eigen 

numerieke studie verricht. Deze betreft de viskeuze, twee-dimensionale stroming 

geïnduceerd door een trekkende schijf met dikte, belegd met een vloeiend verlopend 

krachtveld. Vervolgens is, zoveel als het computerprogramma het toeliet, het Rey

noldsgetal opgevoerd, de dikte naar nul teruggebracht en de krachtveldverdeling aan 

de randen steiler gemaakt. Door extrapolatie van de resultaten wordt dan het geïndu

ceerde vermogen benaderd van de niet-viskeuze stroming door een oneindig dunne 

schijf met een uniforme krachtverdeling. De uitkomst van deze extrapolatie is gelijk is 

aan de voorspelling op basis van Froude's model. Tevens geeft deze studie een inter

retatie van sommige van de genoemde numerieke en experimentele resultaten. Eén 

experimenteel en één numeriek resultaat uit de literatuur, beide niet in overeen

stemming met Froude's model maar wel met het model met randkrachten, kunnen niet 

verklaard worden. 

De analytische studie heeft geresulteerd in een exacte oplossing van de vergelijking van 

Wu, welke de basis is van alle numerieke methodes ter berekening van de schijf

stromingen. Voor niet-uniforme krachtvelden welke twee dimensionaal zijn of drie 

dimensionaal zonder een azimutbale komponent, is afgeleid dat een verdeling van 

alleen een normaal krachtveld niet kan bestaan: zo'n verdeling vereist de aanwezigheid 

van een tangentiaal krachtveld. De verklaring voor het optreden hiervan is nog niet 

volledig. Een hypothese is dat dit krachtveld de schuifspanning voorstelt welke ver

bonden is met het opwekken van wervelsterkte. Een voorwaarde hiervoor is dat de 

orde van deze schuifspanning eindig blijft, ook al gaat het Reynoldsgetal naar oneindig. 

Voor één bijzonder geval is dit aangetoond. Daarnaast is de stroming op de rand van 

Froude's schijf bestudeerd. De krachtsverdeling is hier discontinu, en veroorzaakt een 

singulariteit in de stroming: een wervel. Indien de stroming stationair is draagt deze 

wervel een kracht. De ordegrootte hiervan is de ordegrootte van de snelheid ter plaatse 

van de singulariteit, welke ongelijk nul maar verder onbekend is. De grootte van de 

randkracht kan dus oneindig klein zijn. Dit is pas bekend na een analytische of 

numerieke studie betreffende het gehele stromingsveld geïnduceerd door schijven met 

een uniforme normaalbelasting. 
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Nawoord 

Allereerst wil ik prof. Vossers en Paul Smulders bedanken voor het feit dat zij het 

initiatief hebben genomen de promotiebaan te kreëren, die ik 4 jaar in Eindhoven 

vervuld heb. Niet gehinderd door enige financiële verantwoording of formele voort

gangsrapportages heb ik gewoon kunnen werken, wat in deze tijd van kontraktresearch 

steeds minder voorkomt. De behoefte aan dit promotiewerk is voortgekomen uit de 

windenergiegroep o.l.v. Paul Smulders. Door de a.ktiviteiten van deze groep heb ik ook 

het nodige geleerd op waarschijnlijk het moeilijkste toepassingsgebied van wind

energie: het oppompen van water door windmolens die het met een minimum aan 

onderhoud en maximum aan betrouwbaarheid gedurende tientallen jaren moeten doen, 

zonder enige bewaking of sturing van buitenaf. 

Ik ben veel verschuldigd aan mijn kamergenoot en stille stimulans Bram Wijnands. 

Bovendien waren zijn hulp en adviezen, en ook die van Louis Wasser en Eep Voort

huizen hard nodig bij het experiment. 

De diskussies over het onderzoek zijn een onmisbaar element van het onderzoek zelf, en 

hebben vele fouten en slordigheden mijnerzijds blootgelegd. Miko Hirschberg heeft mij 

meerdere malen het vuur aan de schenen gelegd, uiteindelijk tot beider voldoening. Het 

bewaken van de grote lijn door prof. Vossers en het nauwgezette kommentaar van prof. 

Schram hebben mij zeer veel geholpen. Paul Smulders wist regelmatig verwarring te 

scheppen door de vinger op al dan niet vermeende zwakke plekken in de redenering te 

leggen: dit leidde altijd tot meer helderheid. Tenslotte hebben Gerrit Schouten, 

Nord-Jan Vermeer en de hoogleraren Dragt en Steketee, allen van de TU-Delft, het 

nodige bijgedragen ter verbetering van het proefschrift. 

Het onderzoek heeft gelukkig ook enige studenten aangesproken: het experiment is 

mede voorbereid en uitgevoerd door Pieter Beekman, Karin van Schijndel, Hans van 

der Hoek en Leo Pel. Aan het analytische en numerieke werk hebben Roel Kusters, 

Alex van der Spek, Wim van Helden en René Peeters meegewerkt. 

Het boekje zelf is het laatste loodje. Gelukkig heeft Riet Bedet het meeste typewerk 

gedaan; toen ik later zelf de tekstverwerker de baas moest worden hebben Irene de 

Jong en Henk Oldenkamp mij bij nacht en ontij geholpen. De meeste tekeningen zijn 

gemaakt door Toon Nijman en Martin Lemmen van Stork Product Engineering. 

Tot slot: promoveren eindigt vroeg of laat in een aanslag op alle andere aktiviteiten en 

op het geduld van je partner. Ik bedank haar ervoor dat dit geduld groot genoeg is 

gebleken. 
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Stellingen behorende bij het proefschrift 
110n the limitations of Froude1s actuator disc concept" 

van G.A.M. van Kuik. 



1. Sabinin heeft het maximale rendement van een ideale windmolen analytisch vastge

steld op 69%, hetgeen 1,15 keer het Lanchester-Betz maximum is. Hoewel dit resultaat 

gestaafd wordt met experimentele gegevens, is de berekening onjuist vanwege de incor

recte voorstelling van het begin van de stroombuis door de rotor: Sabinin laat het begin 

van het wervelvlak dat deze stroombuis omhult niet oprollen tot een startwerveL 

C.N.H. Loci, 1988, A dim;.s&ion of "The theory of en ide1II windmi/1" 6y G. Sahnin and 1.1 &ummary of 

eqerimenlcl ruulil of windmills, A.R.C. report T.i/(11$. 

2. Lighthili heeft een analytisch model ontwikkeld voor de stroming door een twee

dimensionale trekkende schijf met uniforme belasting zonder hoofdstroming, door te ver

onderstellen dat deze stroming equivalent is aan die door Borda1s tuit. Een belangrijk 

argument hiervoor is dat volgens Lighthili het schijfmodel niet consistent is bij de rand. 

Echter, het drukveld bij de rand van de schijf wordt gekenmerkt door oneindige gradiën

ten, terwijl deze eindig zijn bij de rand van de tuit. Dit is geen aanleiding om een 

inconsistentie te veronderstellen in de schijfstroming. 

J. Lighllli/1, 1979, A simple fluid flow model of ground effttt on ho vering, Journol of Fluid Me~llcnic1, 

11, p. 181. 

3. De Schmidt & Sparenberg spiraalstroming behoort tot de klasse van oplossingen van 

Prandtl voor de potentiaalstroming om half-oneindige logaritmische spiralen. Indien deze 

spiraalstromingen beschouwd worden als zijnde het limietresultaat van stromingen om 

eindige spiralen, waarvan de lengte naar oneindig gaat zoals beschreven in appendix B, 

dan geldt voor deze gehele klasse de volgende konklusie: de stroming om de half-oneindige 

Prandtlspiralen kan niet als een twee-dimensionale stroming worden beschouwd omdat op 

oneindig niet wordt voldaan aan de Laptace vergelijking voor de potentiaal. Dit verklaart 

waarom er nooit een fysische betekenis voor deze klasse van spiralen gevonden is. 

L. Prondtt 19!4, Ü6er die Enlstd.ung von Wirbeln in der idealen FTtiuigleit, mit Anwendung ouf die 

Trogjl'ûgellheorie und andere Aufgahn, uil: Vonrlige ouf dem Gebiete der Hpdro- und Aerodpnamik, 

door von Karman en Levi-Cevita, p. 18, Springer Verlag, 19!4, Berlin. 

Appendir B van dit proeftchrift. 

4. In de meeste handboeken voor rotoraerodynamica wordt vermeld dat de optimale cir

culatie verdelîng voor propeller- of helikopterbladen een uniforme verdeling is. Dit is 

echter alleen aangetoond voor schijven met een continu verdeelde belasting en niet voor 

rotoren met een eindig aantal bladen. Het is dan ook niet vreemd dat Miller met een 

numerieke methode vindt dat een niet-uniforme verdeling beter is dan de uniforme 

verdeling. 

I'i.H.Miller, 1981, A 1implijied approach tothefree wake analy1is of a Ilovering rotor, Verlies, i, p. 89. 



5. In een ideale wrijvingsloze, onsamendrukbare vloeistof Bernculii's wet voor stati

onaire stromingen opgevat worden als het equivalent van het behoud van mechanische 

energie voor ideale massadeeltjes (zie Batchelor). Het drukverschil t.o.v. een vrij te kiezen 

referentie druk stelt dan de potentiële energie voor. Deze interpretatie van Bernculii's wet 

maakt de samenhang tussen vloeistofmechanica en deeltjesmechanica duidelijker zicht

baar dan de "totale druk" interpretatie die men in de meeste leerboeken 8.8lltreft. 

G.K.Batchelor, 1970, An introduetion to Fluid Dynamic1, Cam6ridge Univer1ity Preu, p. 157. 

6. In een twee-dimensionale, rotatievrije stroming van een wrijvingsloze onsamendruk

are vloeistof geldt niet alleen de Laplace vergelijking voor de snelheidspotentiaa.l, maar 

ook voor een dimensieloze versnellingspotentiaal. Deze is gedefiniëerd als de logaritme van 

het quotiënt van de totale en dynamische druk. 

Th. van Holten, niet gepu6liceerd werk. 

7. Het tipvaan onderzoek beoogt door een vergroting van de massastroom door een 

windturbine het rendement hiervan te verbeteren. Het is echter vastgelopen op de geïn

duceerde weerstand van de tipvanen. Deze is in de loop van het onderzoek reeds gere

duceerd tot 30% van de weerstand van vleugels van dezelfde afmetingen, door het neutra

liseren van de opgerolde tipwerveL Niet alle losgelaten wervelsterkte komt in de tipwervel 

terecht. Een volledige opheffing van de geïnduceerde weerstand vereist dat ook het over

blijvende wervelvlak wordt geneutraliseerd. Een verdere voortgang van het onderzoek 

vereist dan ook een veel verfijnder aerodynamisch model voor het beschrijven van de 

wervelstructuur dan tot nu toe is gebruikt. 

8. De publikatie van Rauh & Seelert bediscussiëert de theorie van Betz betreffende het 

rendement van een ideale windturbine. Hun voornaamste punt van kritiek, nl. dat de druk 

op de wand van de stroombuis die door de windturbine gaat een bijdrage kan leveren in de 

impulsbalans terwijl Betz deze bijdrage weglaat, is reeds in 1925 door Thema weerlegd. 

Verder citeren ze de verkeerde publikatie van Betz als zijn eerste publikatie over dit 

onderwerp. 

A. Rauh, W. Seelert, 198./., The Betz optimum efficiency for windmill1, Applied Energy, 11 p. 15. 

D. Thomt>, 19S5, Grund6iitzliche6 zur einfachen Strah/theorie der Schrau6e, Zeillchrift für Flugmecht>nil: 

und Motorluftlchiffahrt, lD., p. S06. 



9. Bij veel windturbines wordt het asvermogen bij hoge windsnelheden beperkt door het 

teveel aan uit de lucht opgenomen vermogen ter plaatse te dissiperen in warmte i.p.v. 

rechtstreeks minder vermogen op te nemen. Dit dissiperen gebeurt door de bladen te laten 

overtrekken. Zowel het uit de lucht opgenomen vermogen als het gedissipeerde vermogen 

variëren zeer sterk. Bovendien zijn bij een hoge windsnelheid beide grootheden van 

dezelfde orde. Het rotor-as vermogen, zijnde het verschil hiertussen, kan dan ook slechts 

grof geregeld worden, gepaard gaande met grote wisselingen van de belastingen. Hiermee 

wordt de turbine een vermoeiingsmachine. 

10. Hoeijmakers heeft een numerieke methode ontwikkeld voor de berekening van het 

oprollen van een continu wervelvlak Hierbij wordt de kern van het opgerolde vlak ver

vangen door een discrete wervellijn welke met het wervelvlak verbonden is door een zoge

naamd 11feeding sheet". Dit leidt tot de introduktie van een koppel ter plaatse van de 

opgerolde wervel. In aero-acoustische toepassingen betekent deze discretisatie dat een 

extra aero-acoustische quadrupooi wordt geïntroduceerd. Bij twee-dimensionale 

berekeningen in een vlak loodrecht op het zog van een draagvlak, het zgn. Trefftz vlak, 

leidt deze discretisatie tot het niet constant zijn van de kinetische energie in dit vlak 

tijdens het oprollen. Hierdoor is deze methode ongeschikt om de geïnduceerde weerstand 

van het draagvlak te berekenen. 

H. W.M. Hoeijmal:era, 1989, Computational aerodynamica of ordered vortez fiowa, proefschrift, NLR 

rapporl NLR TR 88088 U. 

11. De televisiekursus "Klassieke Mechanica" van Teleac geeft Aristoteles te weinig eer 

van zijn werk door simpelweg te stellen dat zijn opvatting van rust als eindpunt van alle 

beweging foutief is. Het door Teleac getoonde voorbeeld van zijn ongelijk, nl. een balletje 

dat in een dalvormige schotel op en neer blijft rollen wanneer het eenmaal bovenaan is los

gelaten, zou Aristoteles gelijk gegeven hebben als dit experiméntje niet enige sekonden 

maar enige minuten had geduurd. 

12. Zolang in de pers nog gesproken wordt over stammenonlusten als het gaat over kon

flikten tussen volkeren in één land zoals in Zuid-Afrika, Namibië en Oeganda, terwijl 

gelijksoortige konflikten beschreven worden als nationa.liteitskwesties wanneer het 

TsjechcrSlowakije, Joegoslavië of Roemenië betreft, is er sprake van een Europees superi

oriteitsgevoel t.o.v. Afrika. Het gebruik van het woord 11stammenonlusten11 óók voor 

Europa zou dit gevoel snel relativeren. 


