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Approach
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Abstract

In this paper we formulate the coordination and optimization problem of an extended supply chain as a bilevel

program. As of today no such approach exists in relevant literature. In our opinion this model better represents

the dynamics of today supply chains, comprised of separately owned entities each striving to maximize their own

profit and still in need of collaborating and trading to supply the market. Bilevel programs are NP hard even in

the linear case. We provide an efficient heuristic to find good solutions.

Keywords:

1 Introduction

In this paper we address the problem of coordinating and optimizing an extend supply chain, i.e., a system made

up of suppliers, manufacturers, distributors, carriers and retailers who collaborate and trade in order to reach the

common objective of supplying products and services to the final customers. We would like to find a supply chain

plan which satisfies a multi item stochastic demand over a time horizon T . The plan will specify the stream of orders

to each element in the supply chain, i.e., the induced demand over the appropriate horizon for each element in the

supply chain. The plan will also specify the inventory and backorders levels, over the time horizon, for each entity in

the supply chain. Finally, for each entity, the plan specifies a detailed schedule of releases, which take into account

resources capacities, processing lead times and local constraints.

Before proceeding further let us analyze which are the benefits of such a plan. First of all, depending on the final

demand pattern, induced demand can be zero for some entities so that we can dynamically adapt the structure of the
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supply chain to take advantage of competition, selecting the best supply chain structure for a given stream of final

demand. Hence, we are merging together a strategic decision, i.e., the optimal supply chain structure, with a tactical

decision, i.e., the actual induced demand at each supply chain entity for a given demand pattern. Traditionally,

these decisions are hierarchical and significant savings can be reached by joining these two decisions problems. We

are also merging other two hierarchical decision: inventory and resource capacity planning, a tactical decision, with

scheduling, an execution level type of decision. Basic optimization theory tells us that potential savings can be

significant.

The next question to be asked is what type of model can be used to solve this optimization problem. First of all,

in order to separate the stochastic issues from the deterministic one, we consider, as in [de Kok, Fransoo 2003] and

[Spitter 2005], a rolling schedule approach in which demand is forecasted over a time horizon and in which only

current decisions are implemented at every entity. We will be assuming that safety stocks are computed separately,

before the optimal plans are computed, so that these are input to the problem. Hence, we have a deterministic

optimization problem that theoretically can be solved by a mathematical program: the objective function optimizes

system wide supply chain costs, as if the entire supply chain were owned by the same entity, subject to system wide

constraints and local constraints. There are two issues with this approach: a computational issue and a modeling

issue. The computational issue is that this mathematical program, modeling a realistic supply chain, can not be

solved in reasonable time. The modeling issue is that a mathematical program does not take into account hierarchy

nor competing objectives. The mathematical programming approach was certainly suitable when many companies

were highly vertically integrated, basically from raw materials to retailing, so that a system wide optimal solution

was the right target and a system wide solution could be enforced at every level of the chain. Now, though, supply

chains are comprised of many independent firms, each with a own objective function that can be in contrast with a

system wide optimal solution. A system wide optimal solution can be applied only if there are side payments that

appropriately divide the savings among competing players, [Chacon 2003]. We believe that an alternative approach

that solves both the computational and the modeling issues is to use a bilevel optimization program in which the

objective function still consists of optimizing system wide performances, e.g., minimizing costs, subject to each

player optimizing its own objective function, e.g., profits,. The program will also have upper level constraints which

coordinate the supply chain and lower level constraints which optimize each player resources. For a nice review

of bilevel and multilevel programs the reader is referred to [Vicente,Calamai 1994] and [Colson et. al. 2005]. The

concept of bilevel program can be seen as a generalization of a Stackelberg game and there have been applications

in the military field, production and marketing since the seventies. So far, though, there are not bilevel or multilevel
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program approach to optimizing supply chains. Our program will minimize an objective function consisting of

purchasing costs, production and transportation costs, inventory and backlog costs. The program is constrained in

order to satisfy final demand, i.e., having the right amount of products at the right time and at the right location.

Also, the program is constrained in order to maximize each player profit subject to local constraints, representing

usually production and transportation constraints. We will assume that each player will implement a just in time

policy, consistent with the rolling schedule approach, and when ordering it will select the least costly purchase

pattern. A similar rational attitude is assumed for the consumers that will select the cheapest retailers. Each entity

in the supply chain has a price function and a cost function. Both functions depend on the demand the entity faces

over the time horizon T as well by a given current state. The cost function depends also on the chosen plan. In the

next section we will formulate the problem while in the second we will give a heuristic to find a good solution. The

heuristic repeatedly solves a mixed integer program with a non linear objective function. In the last section we give

a simple method to represent this non linear mixed integer program as a linear mixed integer program. The reason

for this modification relies on the fact that methods to solve linear mixed integer programs are more mature than

methods to solve non linear mixed integer programs so that the corresponding software have comparatively better

performances. Computational work is ongoing.

2 Problem Formulation

We have a general, capacitated supply chain represented, as usual, as a network in which each node represents an

element in the supply chain and in which a direct link between two nodes represents a possible flow of goods or

services between the two adjacent nodes. The supply chain is providing q items to the final market and there are a

total of m items in the supply chain. A forecast of the q items over a time horizon T is given as well as exogenous

forecast for each intermediate item. Each resource will define its own safety stock si for each item for any time

period. Each resource in the network is characterized by a current state, that gives information about some relevant

key indicators. When entity i is faced with a stream of demand di = (O1i111, . . . Ojilst, . . . , OnimrT ) (where Ojilst is

the order of item l placed at i from customer j at time t to be transhipped via transportation mode s) covering the

entire time horizon T , it will select the plan p that optimize its profit function. Hence, the local problem faced by

any entity i is:

Max Πi = Revi(Qi, state)− CTi (Qi, pi, state)
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s.t.

Qi ≤ di

pi(Qi) feasible towards prodution and/or transportation constraints

Here Revi(Qi, state) is the revenue collected by producing and/or transhipping Qi and CTi (Qi, pi, state) is the

relative total cost. Beside the usual costs we also consider the cost of modifying plan, i.e., we cost the distance

between the optimal plan and the current plan codified in state, c(ddist(pi, pold)). This is to properly trade off

the additional revenue of modified forecast and the replanning cost that can cause delays in other scheduled jobs.

Practical application would suggest how this cost is relevant. The distance function can be any relevant distance,

from the euclidean to a makespan distance. Note that the same optimal plan p∗i can correspond to many possible

combination of customers orders. We assume though that if Q∗i < di the plan p∗i is modified in such a way that

p∗i (Q
∗
i + ε) would be unfeasible for any vector ε. Similarly, one could modify the revenue function in such a way

that Q∗i = di always. We distinguish between a production plan and a transportation plan. The production plan

ppi = (...,Kit, Git,mit,Mit, L
p
it, ...) is characterized, for each time t, by an output vector Kit, an input vector Git, a

minimum load mit, a maximum capacity Mit and a production lead time Lpit. The output vector represents all the

items produced by resource i during the production lead time. It will be represented by [ki1t, . . . , kimt]. The input

vector represents all the items needed to produce the output. It will be represented by [gi1t, . . . , gikt]. W.l.g. let us

assume that ki1t = 1. Then a unit order release at time t will need gijt for all j to produce kijt for all j. Hence, if

we release at time t an order Rit it will produce Ritkijt for any output item j and it will need Ritgijt for any input

item. We assume a finite capacity modeled by the constraints Rit ≤ Mit i.e., we can not release more than Mitkijt

of output. Similarly the transportation plan ptris = (..., Qminijlt , Q
max
ijlt , L

tr
ijlst...) is characterized by Qminijlst, a minimum

load for transhipping item l at time t from i to j via transportation mode s, Qmaxijlst, the maximum capacity and

Lijlst the transportation lead time. The production cost function Cpi (RiKi, p
p
i , state) depends on the actual releases

Ri over the time horizon, by the chosen production plan and by the current state. Similarly, the transportation

cost function Ctis(Ois, p
t
is, state) depends by the actual orders, by the chosen plan and by the current state. The

price charged to client j, pij(Ojis, statei, states) = pp(Oji, statei)+
∑
s∈Sijl p

t
s(Ojis, states) is divided in a purchasing

price pp(Oji, statei), which depends on the total purchasing pattern of client j over the time horizon and by the

current state of entity i, and in a transportation price pts(Ojis, states) which depends on the transportation mode

s, on the purchasing pattern along that transportation mode and by the current state of transhipper s. In this way

we indifferently allow in house transportation capability as well the use of third party logistic. Note that the state
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indicators used in the cost function and those used in the price function are usually different. For example, the state

parameter in the price function could signal an excess amount of inventory of some item and hence some discounting

scheme. We will distinguish furthermore two type of resources in the network: those resources that have input and

output inventories Iinpijt , Iijt, e.g., production centers, and those resources that have only one type of inventories,

Iijt, e.g., whareouses/distribution centers, retailers. The problem that a benevolent central planner would solve

is that of meeting forecasted demand at the minimum cost while satisfying supply chain constraints. Costs taken

into consideration are purchasing costs, production and transportation costs, inventory and backlogging costs. The

possible contrast between the social allocation and each player self interest is best represented via a bilevel program

in which the leader is the social planner while the followers are the separated entities. Before we describe the program

let us summarize all variables and parameters needed.

n : number of resources (nodes) in the network

m : total number of items in the system

q : total number of end items

Dlt : exogenous demand of end item l at time t

dilt : amount of end demand of item l faced by i at time t

Dilt : exogenous demand of item l faced by i at time t

si : safety stock at entity i

Oi : demand (customer orders) faced by entity i over the time horizon

pilt : unit price for item l charged by entity i at time t for exogenous demand

Oijlst : amount of item l ordered by customer i from supplier j

via transportation mode s at time t

Qminijlst : minimum order quantity for item l transhipped

via transportation mode s from entity i to entity j at time t

Qmaxijlst : maximum order quantity for item l transhipped

via transportation mode s from entity i to entity j at time t

Ltrijlst : ATP transportation lead time of item l

from supplier i to customer j at time t
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Rit : release at resource i at time t

Ri : release at resource i over the entire horizon

mit : available to promise, minimum load at resource i at time t

Mit : finite, available to promise, capacity at resource i at time t

Kit = (ki1t, . . . , kimt) : output vector at resource i at time t

Git = (gi1t, . . . , gimt) : input vector at resource i at time t

Lpit : ATP production lead time at resource i at time t

−→
O ij : purchasing pattern from customer i to entity j over the time horizon

−→
O ijs : purchasing pattern from customer i to entity j

over the time horizon via transportation mode s

statei =: current, given state at i

pij(
−→
O ji, statei, state−→s ) =: (ppij(

−→
O ji, statei) +

∑
s∈Sij p

s
ij(
−→
O jis, states)

price charged to customer j from entity i for the purchasing pattern of client j.

It is made of two parts: a purchasing price and a transportation price

Cpi (Ri, p
p
i , statei) : production cost at entity i

Ctis(Ois, p
t
is, stateis) : transportation cost cost at entity is

Iilt : inventory level of item l at resource i at time t

Bilt : backlog level of item l at resource i at time t

hilt(Iilt) : holding cost of item l at resource i at time t

βilt(Bilt) : backlog cost of item l at resource i at time t

Jil : suppliers index set, providing item l to entity i

Ji : index set of suppliers to i

Clil : client index set, ordering item l from i

Sijl : transportation mode index set, carrying item l from i to j

Sij : transportation mode index set from i to j

Si : index of transportation modes available at i
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Revi(Oi; state) : revenue incurred at i by selling Oi when in state

CTi (Oi; p
p
i ; state) : total cost incurred at i by producing Oi according to production plan ppi when in state

Revis(Ois, stateis) : revenue incurred at (is) by selling Ois when in state

CTis(Ois, p
tr
i , stateis) : total cost incurred at (is) by transhipping Ois according to plan ptri when in state

The bilevel mathematical model is as follow:

Min

T∑
t=1

n∑
i=1

m∑
l=1

pilt(dilt +Dilt) +
n∑
i=1

∑
j∈Ji

(ppji(
−→
O ij , statej) +

∑
s∈Sji

psji(
−→
O ijs, states))+

+
∑
i

(Cpi (RiKi, p
p
i , state) +

∑
i

∑
s∈Si

Ctis(
−→
O is, p

t
is, state

s) +
T∑
t=1

n∑
i=1

m∑
l=1

(hilt(Iilt) + hilt(Iiilt) + βilt(Bilt))

s.t.∑
i:i retailer

dilt = Dlt ∀ l = 1, . . . q, ∀ t = 1, . . . T

dilt = 0 if retailer i does not sell item l

dilt ≥ 0 otherwise

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

∑
τ :τ+Ltr

jilsτ
=t

Oijlsτ − dilt − silt ∀ end item l and ∀ retailer i selling item l

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

∑
τ :τ+Ltr

jilsτ
=t

Oijlsτ −
∑

j:j∈Clil

∑
s:Sijl

Ojilst −Dilt − silt ∀ intermediate items l and

resources i with only one type of inventory

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑

τ :τ+Lpr
iτ

=t

Riτkilτ −
∑
j∈Clil

Ojilt −Dilt − silt ∀ items l and all resources i

with two types of inventories

Iiilt −Biilt = Iiilt−1 −Biilt−1 +
∑
j:Jil

∑
s:Sjil

∑
τ :τ+Ltr

jilsτ
=t

Oijlsτ −Ritgilt − silt ∀ items l and all resources i

with input inventories

Iil0 = Iil0 ∀ items l and all relevant resources i

Iiil0 = I
i

il0 ∀ items l and all relevant resources i

mit ≤ Rit ≤Mit ∀ i = {1, . . . , n}, ∀ t = {1, . . . , T}

Rit ≤
Iinpilt

gilt
for all input item l, ∀ i, ∀ t
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Qminijlst ≤ Oijlst ≤ Qmaxijlst ∀ i, j, s, t

ppi = (...,mit,Mit, Git,Kit, Lit, ...) ∀ i

ptris = (..., Qminijlst, Q
max
ijlst, L

tr
ijlst, ...) ∀ (is)

Max Revi(x
p
i , statei)− C

T
i (x, ppi , statei) ∀ i

s.t.

xpi ≤ RiKi

plan ppi can produce xpi and satisfies all production constraints at entity i

Max Revis(xtris), stateis)− CTis(xis, ptris , stateis) ∀ i

s.t.

xtris ≤ Ois

plan ptris can tranship xtris and satisfies all transportation constraints at entity (is)

3 Problem Solution

This is a difficult problem to solve to optimality in its general form. We should at least have some assumptions

on the cost functions and on the feasible sets. If we though would like to keep its generality (and hence its wide

applicability in practical situation) we need to use heuristic. We would like our heuristic to perform well and being

possible optimal or close to it.

W.l.g. we can assume that each entity production and transportation costs can be written as CTi (x, pi, statei) =

Ci(x, statei) + Ci(x, p, statei) i.e., in a part that does not depend on the specific plan and another part that does

instead depend on the specific plan. Just to give an example, costs that do not depend on the specific plan are indirect

material, labor payments, overhead, etc, while set up costs are obviously dependent on the specific plan. In order to

solve the previous problem we adopt the following strategy: for each entity i we compute the set Soli = {x1, x2, ..., xp)

such that Revi(xj , statei)−C(xj , statei) ≥ Revi(y, statei)−C(y, statei) ∀ i ∈ Soli and ∀y /∈ Soli. Soli is hence the

set of the p most profitable production (transportation) patterns for entity i without considering costs associated to

the plans. Then for each of this pattern we compute the least cost feasible production (transportation) plan. If a
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feasible plan does not exists for some of the xi we drop it from Soli. Note that if the costs associated with these

plan are more or less the same then Soli would be the set of the p optimal solutions also for the entire objective

function. In any case Soli is a good approximation. Let us call Pi the set of the p best plan for entity i. We associate

to each of these plans a 0− 1 variable ziw and we index all the relevant parameters by the chosen plan. We extend

also the production and transportation function to be zero when the decision variable is 0 and the same as before

otherwise. Cpiw(RiKiw, p
p
iw, state, ziw) = 0 if ziw = 0 and Cpiw(RiKiw, p

p
iw, state, ziw) = Cpiw(RiKiw, p

p
iw, state) if

ziw = 1. Similarly for the transportation function.

Hence we can consider the following non linear, integer program:

Min

T∑
t=1

n∑
i=1

q∑
l=1

pilt(dilt +Dilt) +
n∑
i=1

p∑
w=1

(
∑
j∈Ji

ppji(
−→
O ijw, statej) +

∑
s∈Sji

psji(
−→
O ijws, states))+

+
∑
i

p∑
w=1

Cpiw(RiKiw, p
p
iw, state, ziw)+

∑
i

∑
s∈Si

p∑
w=1

Ctisw(−→O is, p
t
isw, state

s, ziw)+
T∑
t=1

n∑
i=1

q∑
l=1

(hilt(Iilt)+hilt(Iiilt)+βilt(Bilt))

s.t.∑
i:i retailer

dilt = Dlt ∀ l = 1, . . . q, ∀ t = 1, . . . T

dilt = 0 if retailer i does not sell item l

dilt ≥ 0 otherwise

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ − dilt ∀ end item l and ∀ retailer i selling item l

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ −
∑

j:j∈Clil

∑
s:Sijl

Ojilst −Dilt ∀ intermediate items l and

resources i with only one type of inventory

Iilt −Bilt = Iilt−1 −Bilt−1 +
p∑

w=1

∑
τ :τ+Lpr

iwτ
=t

Riwτkilwτ −
∑
j∈Clil

Ojilt −Dilt ∀ items l and all resources i

with two types of inventories

Iiilt −Biilt = Iiilt−1 −Biilt−1 +
∑
j:Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ −
p∑

w=1

Riwthilwt ∀ items l and all resources i

Oijlst =
p∑

w=1

Oijlswt

with input inventories

Iil0 = Iil0 ∀ items l and all relevant resources i

Iiil0 = I
i

il0 ∀ items l and all relevant resources i
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ziwmiwt ≤ Riwt ≤Miwtziw ∀ i = {1, . . . , n}, ∀ t = {1, . . . , T}

Riwt ≤
Iinpilt

Giwlt
for all input item l, ∀ i, ∀ t

zjwQ
min
jilswt ≤ Oijlswt ≤ Qmaxjilswtzjw ∀ i, j, s, t

p∑
w=1

ziw ≤ 1

ppiw = (...,miwt,Miwt, Giwt,Kiwt, Liwt, ...) ∀ i

ptriws = (..., Qminijlswt, Q
max
ijlswt, L

tr
ijlswt, ...) ∀ (is)

zi ∈ {0, 1}

What we are doing here is splitting each resource i into p resources and requiring that exactly one of these images

being active. By solving the previous program to optimality two things can happen: the problem is infeasible or it is

feasible. If it is infeasible we need to add more plans i.e., increasing p, otherwise let d∗i and p∗i the optimal allocation

for each player. We solve each player profit maximization problem with d∗i as upper bound. We find an optimal

plan p̃i and an optimal quantity Q̃i. We add the new plan p̃i. If Q̃i 6= d∗i we remove p∗i and recompute the optimal

allocation. We stop when Q̃i = d∗i for all i. In order to prove convergence result we need to add some hypothesis.

In particular the procedure converge very quickly if the profit function is increasing up to capacity, i.e. selling more

is better than selling less. This is because Q̃i = d∗i and once feasibility is reached we need to add only one round of

plans. As to feasibility, in a well functioning market the most profitable plans for each company should be able to

cover the market, otherwise there would be space for competition.

4 Price and cost modeling

We will assume the following price and cost structures. For each player i we have a discount unit production price

function, i.e.,

ppijl1 if Ojil ∈ [qil1, qil2[

ppijl2 if Ojil ∈ [qil2, qil3[

....

ppijlv if Ojil ∈ [qilv, qilv+1]

ppijl1 > ppijl2 > ... > ppijlv

Here Ojil is the total amount of item l ordered by customer j to supplier i over the entire horizon T along any
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transportation mode. Hence Ojil =
∑T
t=1

∑
s∈Sijl Oijlst.

We also define other variables OPijlk for k = 1, . . . v and we consider the following additional constraints:

ppijl =
v∑
k=1

Ipilkp
p
ijlk

v∑
k=1

Ipilk = 1wjil

Ojil =
v∑
k=1

OPjilk

Ipilkqilk ≤ OPjilk ≤ I
p
ilkqilk+1 ∀ k = 1, ...v

wjil, I
p
ilk ∈ {0, 1}

Here Ipilk is an indicator function that select the appropriate price and wjil ∈ {0, 1} indicates if an order for item l

is placed from j to i. The relative total production price charged from i to j for item l is then:

ppijlOijl

We will assume the following transportation price function. A fixed cost cFijlst if transportation mode s is selected at

time t and a unit transportation cost per each mode

ptijlst1 if Ojilts ∈ [qilst1, qilst2[

ptijlst2 if Ojilst ∈ [qilst2, qilst3[

....

ptijlstu if Ojilst ∈ [qilstu, qilstu+1]

We do not require here prices to be in order so that by increasing v, i.e., by reducing the interval length we can

represent any function.

Here Ojilst is the total amount of item l shipped from i to j with transportation mode s at time t.

Other price structure can also be defined.

We have then
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ptijlst =
u∑
k=1

Itijlstkp
t
ijlstk

u∑
k=1

Itijlstk = Sjilst

Ojilst =
u∑
k=1

OP tjilstk

Itijlstkqijlstk ≤ OP tjilstk ≤ Itijlstkqijlstk+1 ∀ k = 1, ...u

Sjilst, I
t
ijlstk ∈ {0, 1}

Here Sjilst indicates if an order for item l placed from j to i at time t will be carried along transportation mode s

and Itijlstk selects the price.

The total transportation price is hence

T∑
t=1

numijlt∑
s=1

cFijlstSjilst + ptijlstOjilst

where numijlt is the number of transportation mode from i to j for item l at time t.

As to the cost function we will have a production and a transportation cost for each plan. We will have a fixed cost

if a plan (production or transportation cost) is selected and a unit cost function that will be approximated as before

by a step function. We have a fixed production cost for plan w CPFw and a unit cost function per item per plan

cpilw =
u∑
k=1

Indilwkc
p
ilwk

u∑
k=1

Indilwk = ziw

Ordilw =
T∑
t=1

KiwtlRiwt

Ordilw =
u∑
k=1

IndilwkOrselectilwk

Indilwkqilwk ≤ Orselectilwk ≤ Indilwkqilwk+1 ∀ k = 1, ...u

Indilwk ∈ {0, 1}

Similarly for the transportation cost. In the end we can write the following MIP:
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Min

T∑
t=1

n∑
i=1

m∑
l=1

pilt(dilt +Dilt) +
n∑
i=1

∑
j∈Ji

m∑
l=1

numbreak∑
k=1

ppjilkOP
p
ijlk +

T∑
t=1

numijl∑
s=1

cFijlstzjilst +
numbreak∑

k=1

ptrijlstOP
tr
jilstk+

n∑
i=1

v∑
w=1

(cFiwziw +
numbreak∑

k=1

cpiwkORiwk) +
∑
i

∑
j

∑
s

∑
w

(ctFijswzijsw +
numbreak∑

k=1

ctijswkOSijswk)+

+ +
T∑
t=1

n∑
i=1

m∑
l=1

(hiltIilt + hiltI
i
ilt + βiltBilt)

s.t.

Oijl =
T∑
t=1

∑
s∈Sijl

Oijlst

Oijl =
numbreak∑

k=1

OP pijlk

numbreak∑
k=1

Ipjlk = zijl

Ipjlkqjlk ≤ OP
p
ijlk ≤ I

p
jlkqjlk+1 ∀ k = 1, ...numbreak

zjil, I
p
jlk ∈ {0, 1}

numbreak∑
k=1

Itijlstk = zjilst

Ojilst =
numbreak∑

k=1

OP trjilstk

Itijlstkqijlstk ≤ OP trjilstk ≤ Itijlstkqijlstk+1 ∀ k = 1, ...numbreak

zjilst, I
t
ijlstk ∈ {0, 1}

ORiw =
numbreak∑

k=1

ORiwk

ORiw =
T∑
t=1

Riwt

IOpiwkqiwk ≤ ORiwk ≤ IO
p
iwkqiwk+1 ∀ k = 1, ...numbreak
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numbreak∑
k=1

IOpiwk = ziw

ziw, IO
p
iwk ∈ {0, 1}

Oijsw =
T∑
t=1

m∑
l=1

Oijlswt

Oijsw =
numbreak∑

k=1

Oijswk

IOtijswkqijswwk ≤ Oijswk ≤ IOtijswkqijswk+1 ∀ k = 1, ...numbreak

numbreak∑
k=1

IOtijswk = zijsw

zijsw, IO
t
ijswk ∈ {0, 1}

∑
i:i retailer

dilt = Dlt ∀ l = 1, . . . q, ∀ t = 1, . . . T

dilt = 0 if retailer i does not sell item l

dilt ≥ 0 otherwise

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ − dilt ∀ end item l and ∀ retailer i selling item l

Iilt −Bilt = Iilt−1 −Bilt−1 +
∑
j∈Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ −
∑

j:j∈Clil

∑
s:Sijl

Ojilst −Dilt ∀ intermediate items l and

resources i with only one type of inventory

Iilt −Bilt = Iilt−1 −Bilt−1 +
p∑

w=1

∑
τ :τ+Lpr

iwτ
=t

Riwτkilwτ −
∑
j∈Clil

Ojilt −Dilt ∀ items l and all resources i

with two types of inventories

Iiilt −Biilt = Iiilt−1 −Biilt−1 +
∑
j:Jil

∑
s:Sjil

p∑
w=1

∑
τ :τ+Ltr

jilswτ
=t

Oijlswτ −
p∑

w=1

Riwthilwt ∀ items l and all resources i

Oijlst =
p∑

w=1

Oijlswt

with input inventories

Iil0 = Iil0 ∀ items l and all relevant resources i

Iiil0 = I
i

il0 ∀ items l and all relevant resources i

ziwmiwt ≤ Riwt ≤Miwtziw ∀ i = {1, . . . , n}, ∀ t = {1, . . . , T}
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Riwt ≤
Iinpilt

Giwlt
for all input item l, ∀ i, ∀ t

zjwQ
min
jilswt ≤ Oijlswt ≤ Qmaxjilswtzjw ∀ i, j, s, t

p∑
w=1

ziw ≤ 1

ppiw = (...,miwt,Miwt, Giwt,Kiwt, Liwt, ...) ∀ i

ptriws = (..., Qminijlswt, Q
max
ijlswt, L

tr
ijlswt, ...) ∀ (is)

zi ∈ {0, 1}
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