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Abstract

We consider the buffer content of a fluid queue or storage process. The buffer content varies

in a way that depends on the state of an underlying three-state Markov process. In state 0

the buffer content increases at a rate α(x) that is a function of the current buffer level x; in

states 1 and 2 it decreases linearly, with different speeds. We study the steady-state buffer

content, by using level crossing theory and by exploiting relations between the fluid queue

and queues with instantaneous input and/or output.



1 Introduction

In this paper we consider a storage process in which the buffer content is governed by an

underlying three-state Markov process. In state 0 the buffer content increases at a rate α(x)

that is a function of the current buffer level x; in states 1 and 2 it decreases linearly, with

different speeds. The two distinguishing features of the storage model under consideration

are: (i) the input process is non-instantaneous, and (ii) it is workload-dependent. Below we

discuss each of these features in the context of the literature.

In classic queueing models, the workload increases instantaneously when a customer

arrives, and it decreases linearly between arrivals. In the related literature of dam and

storage processes, the input process is sometimes assumed to be non-instantaneous and

thus the buffer content decreases and increases linearly in an alternating manner; an early

example is Gaver and Miller [9]. In the early seventies, motivated by performance issues

in communication networks, fluid queues fed by on/off sources started to attract attention:

buffers fed by a number of independent sources which alternate between on (send fluid in

at a constant rate) and off . Some of the key papers on this topic are by Anick, Mitra and

Sondhi [2], Cohen [8], Kaspi and Rubinovitch [13], Kosten [15, 16, 17], Kosten and Vrieze

[18], Rogers [22] and Rubinovitch [23]. We refer to Kulkarni [19] for a survey; another survey

by Boxma and Dumas [4] focuses on fluid queues with an emphasis on long-tailed on-periods

and its effect on the buffer content.

Early papers on queues with workload-dependent service speed are (again) Gaver and

Miller [9], who allowed the (constant) service speed to depend on whether the buffer content

level is below or above a certain threshold, and Harrison and Resnick [10], who allowed

a more general state-dependent service speed r(x) at level x. Bekker et al. [3] consider

workload-dependent service speeds and arrival rates. Fluid queues with state-dependent

production and release rates were, among others studied in [5], [12] and [24].

We are aware of only one study in which the background process can be in more than

two different states and one of the inflow or outflow rates depends on the buffer content

(Scheinhardt et al. [24]), but the authors restrict themselves to a finite buffer content. Our

paper is related to [6]. In that paper, the buffer content varies linearly in all three states.

However, one of the states there may have a general distribution.

Storage processes are relevant for many application areas: next to classical examples

from water storage, production-inventory and communication systems, there is a growing

interest in storage processes which model energy storage. In the latter application area, it

seems natural to have a background process that determines the speed at which the buffer

content increases/decreases. In the storage of wind energy, for example, different weather
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conditions may be represented by different states of an underlying (semi-)Markov process.

In this application area, it may also be important to allow for an input rate which depends

on the buffer content; indeed, if the buffer content becomes too large, it may become useless

to store more energy, and there might also be more loss of energy.

A second motivating example comes from a production environment. Consider two iden-

tical machines which continuously produce a certain fluid that goes into a buffer. The buffer

is depleted at a fixed demand rate. Each machine is independently subject to breakdowns. If

one machine is broken, a repairman fixes it. If both machines are broken, an extra repairman

has to be hired. We can distinguish three states, corresponding to the number of broken

machines. In state 0, both machines are working and the buffer content increases. In state

1, one machine is broken, and the buffer content decreases at some fixed rate. In state 2,

both machines are broken and the buffer content decreases at a faster fixed rate (the demand

rate). In state 0, production may be regulated, i.e., the machines work at a reduced speed,

so as to avoid too high holding costs. The net increase rate then is a function of the buffer

content level. Under exponentiality assumptions regarding the breakdown and repair times,

the underlying process is Markovian.

Our model contains several ingredients that make it of general interest: a non-instan-

taneous input process, an input rate that is a function of the buffer content, and a non-trivial

three-state underlying Markov process. Various choices of the model parameters yield special

cases which have been studied before, like ordinary two-state fluid models (let α(x) ≡ α) and

two-state models with one workload-dependent input rate (let the rate of one of the states

1 or 2 go to infinity). We show how one can use level crossing theory to reduce the study of

the buffer content to that of the buffer content process restricted to particular states of the

Markov process. The evolution of the buffer content during the time periods in which the

Markov process is in other states, is replaced by a jump upward or downward. This gives

rise to (more classical) queues with instantaneous input and/or work removal. The paper of

Kella and Whitt [14] establishes relations between a broad class of fluid queues and queues

with instantaneous input.

The paper is organized as follows. Section 2 contains a detailed model description. In that

section we also argue, using level crossing theory, that in order to determine the steady-state

buffer content distribution, it suffi ces to obtain the steady-state buffer content distribution

during two out of the three periods of the underlying Markov process. Sections 3 and 4

are successively devoted to the steady-state buffer content distribution during 0-periods and

1-periods. A key role in the analysis is played by a homogeneous second-order differential

equation for the density of the buffer content process in state 0. We show, using the Maple

computer algebra system [20], that this differential equation can be solved explicitly for
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particular choices of α(x). Numerical results are presented in Section 5. The paper concludes

in Section 6 with a brief summary and suggestions for possible extensions.

2 Model Description

Consider a three-state Markov process J = {J(t) : t ≥ 0} with state space {0, 1, 2} and
generator

0

1

2


−µ µ 0

λ −(λ+ η) η

0 ν −ν

 .
Using the balance equation approach, we find the steady-state probabilities for this

process as,

p0 =
νλ

ηµ+ νµ+ νλ
, p1 =

νµ

ηµ+ νµ+ νλ
, p2 =

ηµ

ηµ+ νµ+ νλ
. (1)

Next consider a buffer with content process {Y (t), t ≥ 0}, that is governed by the under-
lying Markov process J in the following way.

• If J(t) = 2 then the buffer content decreases at a constant rate b.

• If J(t) = 1 then the buffer content decreases at a constant rate b− a > 0.

• If J(t) = 0 then the buffer content grows at a rate α(x) > 0 when Y (t) = x.

• If Y (t) = 0, then the buffer content stays at 0 in states 1 and 2; when J returns to

state 0, the buffer content starts to increase again.

The above model corresponds to the machine production example of Section 1. In partic-

ular, State 2 corresponds to two broken machines, and the buffer depletes at the full demand

rate b. State 1 corresponds to one broken machine, while the other machine produces at

full speed a which is not suffi cient to compensate the demand (depletion) rate b, so the net

output rate is b − a > 0. If the buffer content becomes zero, it stays that way until both

machines are back in operation; backorders are not allowed. State 0 corresponds to both

machines working and so the buffer content grows. The rates λ, µ, ν, η correspond to the

following: When one machine is broken λ is the repair rate. If both machines are broken,

the total repair rate is ν > λ. The breakdown rate of a machine is η. In principle, the rate

to leave state 0, µ, equals 2η in the production example.
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It is clear that level 0 is reachable from any starting state x > 0. Furthermore, the

‘mountain’process Y = {Y (t) : t ≥ 0} is a regenerative process whose cycle is terminated
at the end of the unsatisfied demand period (idle period) and the two-dimensional process

(Y,J) is a Markov process. We assume that the conditions for stability are fulfilled so that

Y = limt→∞ Y (t) represents the equilibrium random variable of the mountain (the latter

limit is defined in terms of weak convergence). We refer to [7] for an extensive discussion of

stability conditions for queueing models with work-modulated arrival and/or service times;

one may translate the increments during 0-periods in our model into service requirements

that depend on the work found upon arrival, and subsequently use the stability conditions

from Model 1 of [7].

Clearly, the distribution FY (·) of Y has an atom at 0, designated by πY , and for all x > 0,

FY (x) is an absolutely continuous distribution with density fY (x) so that

FY (x) = πY +

∫ x

0

fY (y) dy. (2)

We focus on the density fY (·) of the mountain process. By the law of total probability,

fY (x) = f0(x)p0 + f1(x)p1 + f2(x)p2, (3)

where fi(·) is the conditional density of Y given that i machines are broken and pi is the

equilibrium probability that i machines are broken; p0 + p1 + p2 = 1.

Using the same argument as in [6] we conclude that the direct computation of f2(x) is

redundant because by level crossing theory (LCT),

α(x)f0(x) = (b− a)f1(x) + bf2(x), (4)

so that by (4) we only have to compute separately f0(x) and f1(x):

fY (x) = f0(x)

[
p0 + p2

α(x)

b

]
+ f1(x)

[
p1 − p2

(
1− a

b

)]
. (5)

A typical realization of Y is shown in Figure 1, along with the corresponding buffer content

processes V0 and V1 where Y is restricted to the time epochs in which J(t) = 0 and

J(t) = 1, respectively. The probabilities pi in (3) are the steady-state probabilities of the

Markov chain J; they are given in (1). In the next two sections we successively determine

f0(x) and f1(x), thus obtaining fY (x) via (5).
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Figure 1: The sample paths of Y (t), V0(t) and V1(t).

3 Computation of f0(·)
To compute f0(x) we have to compute the steady-state density of the process V0 = {V0(t) :

t ≥ 0} whereV0 is generated byY by deleting the time periods in whichY is decreasing and

gluing together the time periods in which Y is increasing. As a result of this construction,

V0 is a production process that increases according to the state-dependent production rate

α(·) and between negative jumps. There are no idle periods. The negative jumps are i.i.d.

random variables having a special phase-type distribution G(·) whose LST is given by

G∗(θ) =
λ(ν + bθ)

(λ+ η + (b− a)θ)(ν + bθ)− ην . (6)

This is derived by observing that an arbitrary negative jump consists of N + 1 jumps related

to type-1 periods, which are exp((λ+ η)/(b−a)) distributed, and N jumps related to type-2

periods, which are exp(ν/b) distributed, whereN is geometrically distributed with parameter
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η/(λ+ η). Inversion of (6) yields,

1−G(x) = C1e
−d1x + C2e

−d2x, (7)

where,

d1,2 =
1

2

(
λ+ η

b− a +
ν

b

)
± 1

2

√(
λ+ η

b− a +
ν

b

)2
− 4

λν

(b− a)b
,

and,

C1 = 1− C2, C2 =
λ/(b− a)− d1

d2 − d1
.

By LCT we have the balance equation [see also Equation (2) of Harrison and Resnick [10]:

α(x)f0(x) = µ

∫ ∞
x

[1−G(w − x)]f0(w) dw. (8)

In order to solve the integral equation (8) for the unknown function f0(x), we convert it to

an equivalent ordinary differential equation with suitable boundary conditions. To that end,

we first multiply both sides of (8) by e−d1x, and differentiate both sides w.r.t. x. Dividing

the result by e−d1x results in the integro-differential equation,

f0(x)[α′(x)− d1α(x) + µ(C1 + C2)] + α(x)f ′0(x) = µC2(d2 − d1)ed2x
∫ ∞
x

e−d2wf(w) dw. (9)

Now multiplying both sides of (9) by e−d2x and once again differentiating both sides of the

resulting equation and finally dividing the result by e−d2x and collecting the terms gives

A1(x)f ′′0 (x) + A2(x)f ′0(x) + A3(x)f0(x) = 0 (10)

where

A1(x) = α(x)

A2(x) = 2α′(x)− α(x)(d1 + d2) + µ(C1 + C2)

A3(x) = [α′′(x)− d1α′(x)]− d2[α′(x)− d1α(x) + µ(C1 + C2)] + µC2(d2 − d1).

The two natural boundary conditions for this ODE are, (i)
∫∞
0
f0(x) dx = 1, and (ii)

α(0)f0(0) = µ
∫∞
0
f0(w)[1−G(w)] dw; i.e., (8) should hold for x = 0.

We consider two relevant choices of α(x), for which f0(x) can be determined explicitly

which will be discussed in Section 5: (i) α(x) = Be−rx, and (ii) α(x) = 1/(x + s). We will

show in Section 5 that the general solution of (10) when α(x) = Be−rx is given in terms

6



of Whittaker functions, and when α(x) = 1/(x + s), the solution is found in terms of the

hypergeometric functions (Abramowitz and Stegun [1, Ch. 13]).

Remark 1 Another case for which (8) can be handled is the case where α(x) ≡ 0 for x ≥ K,

for some finite positive K. This corresponds to a finite buffer of size K, that is, the buffer

level always fluctuates between 0 and K. Introducing f̂0(x) = f0(K − x), one may then

convert (8) into a Volterra integral equation for f̂0 that can be solved using Picard iteration.

4 Computation of f1(·)
To compute f1(x) we have to compute the steady-state density of the process V1 = {V1(t) :

t ≥ 0} where V1 is generated by Y by deleting the time periods in which both machines are

broken or both are working. Note that V1 can be interpreted as a special work process of a

single server queue with Poisson jumps and additional negative customers; so the jumps can

be positive as well as negative. The negative jumps are independent exp(ν/b) distributed

random variables but the positive jumps are state dependent. The balance equation obtained

from LCT is

(b− a)f1(x) + η
∫∞
x
e−(ν/b)(w−x)f1(w) dw

= λ
∫ x
0
e−µ(A(x)−A(w))f1(w) dw + Ce−µA(x),

(11)

where

A(x) =

∫ x

0

1

α(w)
dw. (12)

The two terms in the lefthand side correspond to the two possibilities to downcross level x: (i)

while one machine is working or (ii) with a downward jump (when the one working machine

breaks down). The two terms in the righthand side correspond to the two possibilities to

upcross level x: with a jump from some level w ∈ (0, x) or with a jump from 0. As solving

(11) is laborious, we prefer to follow another approach; one that is based on an idea in [6].

Let us denote the steady-state value of the V0-process just before and just after a jump by

Z0 and W0, respectively. Let us further denote the value of the V1-process just before an

upward jump by W1.

Step 1 During 0-periods, the V0-process increases monotonously at rate α(x) when the

level is x. PASTA implies that the steady-state distribution of the V0-process equals
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that at the end of the 0-period, i.e., after an exp(µ) distributed amount of time. Hence

Z0
d
= V0.

Step 2 W0
d
= max(Z0 − G, 0), where the distribution of G is the H2-distribution given in

(7).

Step 3 The values of the V1-process just before upward jumps can be matched one-to-one

with the values of the V0-process just after downward jumps. Hence W1
d
= W0.

Step 4 PASTA implies that the distribution of the V1-process just before upward jumps is

the same as the steady-state distribution of the V1-process. Hence V1
d
= W1.

Combining Steps 1-4 yields the following lemma:

Lemma 1
V1

d
= max(V0 −G, 0). � (13)

Thus, the knowledge of f0(·) yields f1(·). In particular,

f1(x) =

∫ ∞
t=0

f0(x+ t) dG(t),

and,

Pr(V1 = 0) =

∫ ∞
x=0

f0(x)(1−G(x)) dx.

5 Numerical Examples

In this section we present a numerical study of the two cases presented in Section 2 where

the α(x) function assumes different forms.

5.1 Case 1: α(x) = Be−rx

As shown in Section 3, the computation of f0(x) involves solving a second order ordinary

differential equation given in (10). Solving this ODE with the help of the computer algebra

system Maple [11] we obtain

f0(x) = c1WM

(
1

2
φ1,

1

2
φ2, φ3e

rx

)
× exp

(
−1

2

φ4e
rx + φ5x

φ6

)
+c2WW

(
1

2
φ1,

1

2
φ2, φ3e

rx

)
× exp

(
−1

2

φ4e
rx + φ5x

φ6

)
,
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where φi, i = 1, . . . , 6 are functions of the problem data (a, b, η, µ, λ, ν, B, r) and where c1
and c2 are the arbitrary constants to be determined using the boundary conditions. The

independent solutions WW (ξ, ρ, x) and WM(ξ, ρ, x) are the “Whittaker W”and “Whittaker

M”functions, respectively (see Abramowitz and Stegun [1, Ch. 13]). These special functions

are given as,

WW (ξ, ρ, x) = e−x/2x1/2+ρK

(
1

2
+ ρ− ξ, 1 + 2ρ, x

)
,

WM(ξ, ρ, x) = e−x/2x1/2+ρH

(
1

2
+ ρ− ξ, 1 + 2ρ, x

)
,

with the Kummer functionK(a1, a2, x) being one of the independent solutions of another 2nd

order ODE [i.e., xy′′(x) + (a2− x)y′(x)− a1y(x) = 0] and H(a1, a2, x) as the hypergeometric

function

H(a1, a2, x) =
∞∑
n=0

Γ(a1 + n)/Γ(a1)

Γ(a2 + n)/Γ(a2)

(
xn

n!

)
where Γ(z) =

∫∞
0
e−ttz−1 dt is the gamma function evaluated at z > 0; (Abramowitz and

Stegun [1, Ch. 13]). We should point out that although these special functions are defined

in terms of infinite sums and solution of a differential equation, they have been implemented

in computer algebra systems such as Maple [11] which makes their pointwise evaluations

relatively straightforward.

Recall that since f0(x) is a proper density, it must satisfy the condition
∫∞
0
f0(x) dx = 1.

Thus, in principle, determination of the coeffi cients c1 and c2 requires the integration of the

Whittaker functions. Since this is quite a challenging operation, we follow an alternate route

and solve the ODE in (10) using numerical techniques in the following example.

Consider now the problem with the parameter values (B, r) = (1
2
, 1), (η, µ, λ, ν) =

(1, 2, 1, 3) and (a, b) = (1, 3
2
). With these values we find (d1, d2) = (5.236, 0.764), and

(C1, C2) = (0.276, 0.724) from which we can calculate the c.d.f. G(t) given in (7). To solve

the ODE (10) numerically for f0(x), we impose the boundary conditions
∫∞
0
f0(x) dx = 1,

α(0)f0(0) = µ
∫∞
0

[1−G(w)]f0(w) dw, f0(0) > 0, and f0(xmax) = 0 where xmax is a large but

finite constant. We implement the “shooting method”of solving of boundary value prob-

lems (Roberts and Shipman [21]) and find that at f0(0) = 2.820 the boundary conditions

are satisfied and the solution for f0(x) is found as in Figure 2.

Now, to determine f1(x), we use the relation

f1(x) =

∫ ∞
0

f0(x+ t) dG(t) =

∫ ∞
0

f0(x+ t)g(t) dt, (14)
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x
0 1 2 3 4

f0(x)

0

0.5

1

1.5

2

2.5

Figure 2: The density f0(x) in Case 1.

where, from (7), we find G(x) = 1 − (C1e
−d1x + C2e

−d2x), and G′(x) = g(x) = C1d1e
−d1x +

C2d2e
−d2x. Performing the integration (numerically) in (14) for each value of x, we find f1(x)

as in Figure 3.

x
0 1 2 3 4

f1(x)

0

0.2

0.4

0.6

0.8

1

Figure 3: The improper density f1(x) in Case 1.

We note that since f1(x) is not a proper density, in this case we find
∫∞
0
f1(x) dx = 0.295.

The atom π1 which would make f1(x) a density is thus π1 = 1−0.295 = 0.705 which can also

be calculated from (13) as π1 = Pr(G > V0) = Pr(V1 = 0) =
∫∞
0
f0(t)[1−G(t)] dt = 0.705.

Using now the result for the steady state probabilities in (1) of the Markov process J, we

find

p0 =
3

11
, p1 =

6

11
, p2 =

2

11
, (15)

from which we can determine the improper density fY (x) in (5) which is given in Figure 4.
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Since
∫∞
0
fY (x) dx = 0.463, the atom πY in (2) is found as πY = 1 − 0.463 = 0.537, thus,

FY (x) = 0.537 +
∫ x
0
fY (y) dy which can be evaluated numerically for each x.

x
0 1 2 3 4

fY(x)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: The improper density fY (x) in Case 1.

Since the atom πY and the improper density fY (x) are available, we can also calculate

the mean and variance of Y easily. In particular, we have,

E(Y ) = 0 · πY +

∫ ∞
0

xfY (x) dx = 0.115

Var(Y ) = [0− E(Y )]2 · πY +

∫ ∞
0

[x− E(Y )]2fY (x) dx = 0.035

and so
√

Var(Y ) = 0.186.

As a simple check of the above calculations, we observe that the second boundary condi-

tion α(0)f0(0) = µ
∫∞
0
f0(w)[1−G(w)] dw is satisfied since α(0) = 1

2
, f0(0) = 2.820, µ = 2,

and
∫∞
0
f0(w)[1−G(w)] dw = 0.705.

5.2 Case 2: α(x) = 1/(x+ s)

For this case, we compute the density f0(x) by solving the second order ODE given in (10)

with α(x) = 1/(x + s). We obtain the solution in terms of the generalized hypergeometric

functions F (·, ·, x) (Abramowitz and Stegun [1, Ch. 13]),

f0(x) = c1F

(
κ1,

1

2
, κ2(x)

)
exp(−κ3(x))

+c2F

(
κ4,

3

2
, κ2(x)

)
κ5(x) exp(−κ3(x))(x+ s)

11



where κi(x), i = 1, . . . , 5 are functions of the problem data (a, b, η, µ, λ, ν, B, r) and where c1
and c2 are the arbitrary constants to be determined using the boundary conditions. Similar

to the implementation of the Whittaker functions, the generalized hypergeometric function is

also implemented in Maple which makes the pointwise evaluation of these functions relatively

straightforward. But, as before, since the solution must satisfy the condition
∫∞
0
f0(x) dx =

1, and since it becomes diffi cult to integrate generalized hypergeometric function, we choose

an alternate route and determine the density f0(x) by numerically solving the ODE in (10).

We use the same set of parameters as in Case 1, i.e., (η, µ, λ, ν) = (1, 2, 1, 3) and (a, b) =

(1, 3
2
), and consider α(x) = 1/(x + 2) (so s = 2). Using again the shooting method and

solving the ODE (10) with α(x) = 1/(x + s) numerically with f0(0) = 2.725, we find the

density f0(x) in Figure 5.

x
0 1 2 3 4

f0(x)

0

0.5

1

1.5

2

2.5

Figure 5: The density f0(x) in Case 2.

To find the improper density f1(x), we again use the relation (14) and evaluate this

function for each value of x. The resulting solution is plotted in Figure 6. The integral

of this improper density is found as
∫∞
0
f1(x) dx = 0.319 implying that the atom is π1 =

1 − 0.319 = 0.681 which also follows from (13) as π1 = Pr(G > V0) = Pr(V1 = 0) =∫∞
0
f0(t)[1−G(t)] dt = 0.681.

Since the steady state probabilities are given in (15), improper density fY (x) in (5) is

found as in Figure 7.

The integral of the improper density fY (x) is computed as
∫∞
0
fY (x) dx = 0.480 from

which we obtain the atom of Y as πY = 1− 0.480 = 0.520. As before, the c.d.f. of Y can be

evaluated numerically for each x via FY (x) = 0.520 +
∫ x
0
fY (y) dy. Finally, we compute the

mean and variance of Y and find E(Y ) = 0.144 and Var(Y ) = 0.056, with
√

Var(Y ) = 0.238.

To check the above calculations, we note that since α(0) = 1
2
, f0(0) = 2.725, µ = 2, and
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Figure 6: The improper density f1(x) in Case 2.
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Figure 7: The improper density fY (x) in Case 2.

∫∞
0
f0(w)[1−G(w)] dw = 0.681, the second boundary condition is also satisfied.

6 Conclusions and Suggestions for Further Research

We have studied a make-to-stock inventory model, in which the buffer content varies in a way

that depends on the state of an underlying three-state Markov process. We have derived

the buffer content distribution for the case in which the buffer content increases at some

level-dependent rate α(·) in state 0, and decreases linearly in states 1 and 2.

We finally mention several interesting and relevant possibilities for further research. (i)

Other choices of α(·). (ii) In some applications, one might have a level-dependent rate down.
(iii) If b < a, then there are two states “up”and one state “down.”(iv) It would be interesting

to allow for more than 3 states of the underlying Markov process. (v) The results of the

13



present study might be used for optimization and control purposes. For example, one might

want to choose α(·) in order to optimize some cost function.
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