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INTRODUCTION 
 

The primary function of skeletal muscle tissue is to produce force or cause motion. To perform this 
task, chemical energy stored in nutrients (glucose and fatty acids) has to be converted into an 
energy currency that can drive muscle contraction. This process is known as ‘energy metabolism’ or 
‘bioenergetics’ of skeletal muscle cells. It comprises a large number of chemical reactions, which 
are organized in metabolic pathways. In these pathways chemicals are transformed by a series of 
steps into other chemicals, often catalyzed by a sequence of enzymes. Unraveling the makeup of 
this complex network is interesting from a fundamental biological perspective, but also essential to 
understand how a disturbance of muscle bioenergetics can cause metabolic disorders. The need 
for this information is becoming all the more pressing because as a result of modern Western 
lifestyle (physical inactivity and excessive food intake) the society is faced by an epidemic growth 
of metabolic disorders like type 2 diabetes (1).  

31P magnetic resonance spectroscopy (MRS) has emerged as one of the premier methods to 
study bioenergetics of skeletal muscle in vivo. It enables non-invasive measurements of key 
metabolites in skeletal muscle during rest – exercise – recovery protocols. Analyses of these 
dynamics play a vital role in achieving a better understanding of many basic aspects of muscle 
function. In addition, 31P MRS provides an important tool for diagnostic procedures as well as to 
monitor the effects of therapeutic and lifestyle interventions for diseases that have an increasing 
impact in modern society, e.g., type 2 diabetes (2-4) and aging (5,6). Extracting relevant 
information about muscle physiology from these metabolite dynamics is however not a trivial 
procedure. It often requires combining measurement results with prior knowledge and specific 
assumptions on muscle physiology. Mathematical modeling has been proven a powerful tool to 
facilitate these analyses. As such, it can be considered an essential aspect in the application of 31P 
MRS to study muscle physiology.   

For a long time, application of mathematical models for analyses of 31P MRS data has 
remained limited to rather straightforward phenomenological models. Examples of successful 
application of these models are: investigations of the control of mitochondrial respiration (7,8), 
quantification of oxidative capacity in skeletal muscle (9,10) or estimation of glycolytic flux from pH 
time course data (11). The phenomenological modeling approaches are particularly successful in 
quantification of macroscopic physiological parameters, e.g. mitochondrial function or glycolytic 
flux. They are however much less suited for connecting macroscopic in vivo observations to a 
detailed mechanistic understanding at the level of the metabolic networks. Metabolic diseases are 
however often caused by a disturbance at pathway level. It would therefore be potentially very 
powerful if the available methods could be supplemented by new techniques that enable mapping 
of observed metabolite dynamics to a more detailed mechanistic understanding at the level of the 
metabolic pathways.  
 
The scientific discipline known as systems biology aims to bridge the gap between macroscopic 
physiological observations and mechanistic understanding by application of detailed 
computational modeling (12,13). This thesis describes a series of studies in which detailed 
mechanistic models of muscle bioenergetics were developed and applied for analyses of skeletal 
muscle bioenergetics.  
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This chapter provides an overview of the background of the thesis. First, the processes involved in 
skeletal muscle energy metabolism are summarized. Next, a short introduction in 31P nuclear 
magnetic resonance spectroscopy will be provided, followed by a brief section discussing 
phenomenological models which are considered particularly relevant for design, testing or 
application of the mechanistic modeling strategy proposed in this thesis. Developing models that 
capture the full complexity of the relevant metabolic pathway represents a daunting task. 
Obviously, it cannot be achieved in a single effort. It requires an iterative model building strategy 
tailored to overcome challenges associated with the degree of complexity involved. In this chapter, 
formalisms for the development of mechanistic models designed with these challenges in mind 
will be discussed. Next, the progress resulting from previous studies that are a basis for the studies 
described in this dissertation is briefly summarized. Finally, the outline of the thesis is provided.  
 

 

 

SKELETAL MUSCLE ENERGY METABOLISM 
 
Muscle contractions require large amounts of energy; the metabolic rate of muscle cells is 
increased over hundred-fold during rest to vigorous exercise conditions (14,15). Adenosine-
triphosphate (ATP) is used to drive most of all energy depending cellular processes, including 
muscle contraction (16). ATP can therefore be considered the energy currency of the cell. The two 
phosphor-anhydride bonds in ATP are responsible for the high energy content of the molecule; 
energy stored in ATP is released upon hydrolysis of the terminal anhydride bond, thereby forming 
adenosine-diphosphate (ADP) and inorganic phosphate (Pi).  
 The amount of ATP in muscle cells is only sufficient to maintain contractions for a couple of 
seconds. Therefore the ADP has to be rephosphorylated back to ATP. Skeletal muscle cells contain 
three main mechanisms for rephosporylation of ADP (Figure 1). Human muscle cells can store large 
amounts of glycogen (16). Cleavage of glycogen results in formation of glucose-1-phosphate which 
can enter the glycolytic pathway. In this pathway the phosphorylated sugar is broken down to 
pyruvate yielding 2 molecules of ATP. The glycolytic pathway has the ability to produce large 
amounts of ATP in the absence of oxygen. However, it can extract only a relative small amount of 
the chemical energy from the glucose molecules.  

The major part of energy stored in glucose and fatty acids is extracted from these nutrients 
in mitochondria. These organelles can therefore be considered the ‘powerhouse’ of the cell. The 
organelle is surrounded by two lipid bilayer membranes: the inner and outer membrane. The inner 
cavity of mitochondria (matrix) contains enzymes which are involved in the oxidation of 
carbohydrates and fatty acids. These enzymes are organized in the tricarboxylic acid (TCA) cycle 
and the β-oxidation pathway, respectively (16). Pyruvate is transported into the matrix and 
converted by the pyruvate dehydrogenase complex (PDH) to acetyl-CoA. Fatty acids are also 
broken down into acetyl-CoA in the β-oxidation pathway, thereby yielding high energy molecules: 
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). Next, acetyl-
CoA enters the next step in the oxidative process: the TCA cycle, which again yields NADH and 
FADH2. The electron donors NADH and FADH2 transfer their electrons to oxygen in a sequence of 
steps called the electron transport chain (ETC). The enzymes that catalyze these reactions 
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simultaneously create a proton and electrochemical gradient across the inner mitochondrial 
membrane. This proton gradient is used by the F1F0-ATP synthase complex to form ATP from ADP 
and Pi. 

Glycolysis and mitochondria use the chemical energy stored in nutrients to synthesize ATP, 
the third source uses the energy stored in the high energy phosphate bond in phosphocreatine 
(PCr). The reaction (Eq. 1) is catalyzed by creatine kinase (CK).                   

 
ADP + PCr + H+ ↔ ATP + Cr  (Eq. 1) 

 

 

Figure 1. Schematic overview of ATP metabolism in skeletal muscle. ATP is hydrolyzed to drive energy dependent 
processes like e.g., basal metabolism, contractile proteins and ion pumps (ATPase). ATP is resynthesized by 
rephosphorylation of ADP by 3 processes: (i) glycolysis in cytoplasm, (ii) oxidative phosphorylation in the mitochondria, 
(iii) PCr hydrolysis in the cytoplasm (CK). 

 
 
 
 

31P NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY  
 

The first papers demonstrating the use of in vivo 31P magnetic resonance spectroscopy to study the 
cellular bioenergetics date back to the seventies and eighties (17,18). For a review of the early 
progress of the field we refer to Chance et al. (19). Nuclear magnetic resonance spectroscopy 
exploits the property of nuclei that within the same or between different molecules they absorb 
and emit energy at different frequencies, directly related to its chemical environment. In case of 
phosphorous nuclei in skeletal muscle tissue, typically, 7 resonances can be distinguished: 
phosphor-monoesters (PME), inorganic phosphate (Pi), phosphor-diesters (PDE), phosphocreatine 
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(PCr), gamma-ATP, alpha-ATP and beta-ATP. Figure 2A shows a 31P MRS spectrum recorded in 
resting human quadriceps muscle at a magnetic field strength of 1.5T. Resonances of the different 
metabolites are indicated in Figure 2A. The intensity of a resonance reflects the cellular 
concentration of the corresponding metabolite(s). They can be converted to molar concentrations 
by using an internal or external reference. In case of human skeletal muscle tissue often the ATP 
resonance is used as internal reference (for an extensive review see (20)). In addition, the chemical 
shift differences between Pi and PCr provides an accurate measure of cellular pH (21).      

Figure 2B shows a stack plot of a series of spectra recorded during a rest – exercise – 
recovery protocol. At the onset of exercise, cellular ATP demand is larger than ATP synthesis flux. 
The imbalance between ATP demand and supply fluxes is not reflected by a decrease of the ATP 
resonances, instead, a drop in PCr concentration and corresponding increase in Pi is observed. 
During intense muscle contractions these metabolite dynamics are paralleled by a decreasing pH, 
which is predominantly a result of lactate and CO2 accumulation in the muscle cells (16). During the 
recovery period the imbalance between ATP demand and supply flux is reversed (ATP production 
exceeds demand). As a result, Pi is consumed and the PCr pool is replenished again. During 
contraction, ATP is supplied by both the mitochondrial and glycolytic pathways. During recovery 
period following exercise, glycolytic flux is rapidly deactivated (11,14,22). It is therefore assumed 
that during recovery period ATP is supplied almost purely oxidative.              

 

 
Figure 2. Typical example of a 31P MRS spectrum recorded in human quadriceps muscle at rest (A). The individual 
resonances are indicated in the image. Stack-plot of a series of spectra recorded during a rest – exercise – recovery 
protocol (B). Time resolution of the spectra is 30 seconds. The spectra are processed with 10Hz line broadening.    

 
Creatine kinase (CK) catalyzes the reversible transfer of phosphate between PCr and ATP. Its 
biochemical properties play a central role in ATP metabolism of muscle cells. In fact, several key 
assumptions underlying interpretation of 31P MRS data are related to CK enzyme kinetics. 
Therefore, these enzyme properties will be described in more detail.  

Although there is some controversy about the actual value (23), the enzyme has a very high 
activity in vivo. For the physiological range of [PCr], [Cr], [ATP], [ADP] and pH the enzyme is 
therefore assumed to be close to equilibrium (10). The equilibrium relation is given by Eq. 2. 

 
[ADP] · [H+] · [PCr] · Kapp = [Cr] · [ATP] (Eq. 2) 

Where, Kapp is the apparent CK equilibrium constant which has a value of about 1.66*109 (24).  

−20−15−10−50510

rest

start exercise

start recovery

(ppm)
−25−20−15−10−505101520

(ppm)

Pi

PCr

ATP

PDE
PME

γ α β

A B



Chapter 1 

 

6 

 
This relation is often exploited to estimate cellular [ADP] from the observed [PCr], [ATP] and [H+] 
according to Eq. 3.  
  

[ADP]=( [Cr] · [ATP])/( [H+] · [PCr] · Kapp) (Eq. 3) 
 
Estimation of [ADP] requires specific assumptions about the [Cr] at rest. In general, for human 
skeletal muscle tissue, it is assumed that the total creatine (TCr) content is ~ 42mM (20) and ~85% 
of the total creatine pool is phosphorylated at rest (20). Kemp et al. summarized data on metabolite 
concentrations in skeletal muscle at rest (20). Their results indicated a rather large spread in TCr 
content (40 – 50mM) and resting [PCr] (30 – 40mM) reported between studies. In addition, a 
significant correlation between [TCr] and [PCr] was reported. This correlation indicated that 
although [PCr] and [TCr] may vary between subjects, the estimate that ~85% of the [TCr] pool is 
phoshorylated at rest can be considered quite reliable.   

The equilibrium relation combined with the assumption that the enzyme is always near – 
equilibrium provides a basic model of CK. An alternative model can be constructed by considering 
the enzymes detailed kinetic properties (see e.g.: (23,25,26)). These investigations indicated that 
during rapid changes in ATP consumption rates there is probably a small transient disequilibrium 
of up to a few percent. The consequences of this disequilibrium on muscle bioenergetics are 
however small. It seems therefore an appropriate reduction of model complexity to apply the 
equilibrium equation for analysis and modeling of skeletal muscle bioenergetics. 

 
 
 

PHENOMENOLOGICAL MODELING 
 

Mitochondrial input – output relation  
The means by which mitochondrial respiration has been thought to be controlled has undergone 
several revisions over the last decades (see e.g., (27)). Single lumped equation models have been 
developed to test several of these hypotheses. In these studies mitochondria were reduced to a 
single unit characterized by input – output behavior. This input – output behavior refers to a 
classical control scheme in which the inputs reflect the primary regulators and the output is 
mitochondrial respiration or ATP production. The mathematical equation captured a certain 
hypothesis (regarding primary regulator(s) and their mechanism of action) and, by comparing 
model simulations against available experimental data, it was possible to test the hypothesis. This 
strategy has been successfully applied to identify several models that describe the input – output 
behavior by some kinetic (23), hybrid kinetic/thermodynamic (7), or purely thermodynamic 
mechanisms (10). These results indicated that the relation between [ADP] and mitochondrial ATP 
synthesis flux (Jp) or phosphate potential (ΔGp = ΔGp

o’ + RT ln ([ADP][Pi]/[ATP]) and Jp captured 
macroscopic regulatory properties of mitochondria skeletal muscle tissue in vivo well. These 
transduction functions therefore provide an important testable criterion that can be used in the 
process of developing mechanistic models.  
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Quantification of mitochondrial capacity  
The capacity of skeletal muscle cells to synthesize ATP oxidatively, often referred to as the 
mitochondrial function, is one of the primary clinical parameters that is frequently derived from 31P 
MRS measurements. During post – exercise metabolic recovery ATP is produced predominantly by 
oxidative phosphorylation in mitochondria (11,14,22). Because the CK reaction maintains a (near-) 
equilibrium state the PCr recovery rate mirrors mitochondrial ATP synthesis flux. There are different 
methods to quantify mitochondrial function from these dynamics (see e.g., (9)). However the by far 
most applied method is fitting of a mono-exponential function (Eq. 4) to the PCr recovery data. The 
calculated time constant of recovery (τPCr) is used as measure of mitochondrial function.  
   

 PCr-t τ
ePCr(t) = PCr - ΔPCr × e  (Eq. 4) 

Where, PCre is the PCr level after recovery, PCr is the difference between the PCr levels after recovery and at the end of 
exercise, and PCr is the time constant for PCr resynthesis.  

 
This apparent first – order behavior of PCr recovery kinetics was not only established by empirical 
evidence. In addition, analysis of a simple electrical analog model elegantly showed that these 
dynamics were consistent with the chemiosmotic control theory of oxidative phosphorylation (10).  

The time-constant of the mono-exponential function provides a macroscopic measure of 
mitochondrial capacity. It is frequently used to diagnose differences in mitochondrial function 
between patient and control groups (see e.g., (3,4)). What this method however cannot do is 
determine the origin of a decreased mitochondrial capacity, which can be the result of e.g., a shift 
in muscle fiber type to fibers containing less mitochondria, decreased muscle perfusion, decreased 
number of mitochondria, decreased number of mitochondrial proteins or intrinsic mitochondrial 
dysfunction. To identify such possible changes in muscle physiology analyses of muscle biopsy 
samples can be performed. For the analysis of the combined datasets (31P MRS + muscle biopsy 
samples) typically intuitive and statistical approaches are applied (see e.g., (28,29)). Important 
questions that cannot be answered by these methods are: (i) to which extend can the changes in 
muscle physiology identified by the analysis of the muscle biopsy samples explain the decreased 
mitochondrial capacity in vivo; (ii) what is the contribution of individual changes to the in vivo 
functioning of the mitochondria. Answering these questions requires a thorough understanding of 
the oxidative ATP metabolism. Predictive mechanistic models seek to offer such understanding 
captured in a mathematical language. Application of these models to relate the results of the 
muscle biopsy samples to in vivo read-outs of mitochondrial function provides therefore 
interesting opportunities for application of mechanistic modeling.  
 

Estimation of glyco(geno)lytic ATP synthesis flux  
While quantification of mitochondrial function by fitting of a mono-exponential function is a 
straightforward procedure, estimation of glyco(geno)lytic ATP flux requires more complicated 
calculations. During ischemic exercise, glycogen is converted into lactate and protons. The pH 
dynamics provide thus an indirect measure of glycolytic flux which can be used to estimate 
glycolytic flux. Biochemical reactions involve substrates and products whose pKa values differ so 
that net uptake or release of H+ occurs in amounts that depend on pH. For example, the CK reaction 
is coupled to ATP utilization and resynthesis. The sum of these reactions is known as the Lohman 
reaction (Eq. 5).   
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PCr  Cr + Pi + γH+

  (Eq. 5), 
Where, γ = 27.239 – 13.593 pH + 2.144pH2 – 0.108875 pH3 (30) 

 
Glycolytic ATP production reverses the Lohman reaction and involves the following reaction (Eq. 6): 

 
N-glycogen + 3 Pi + 3Cr  3PCr + 2 lactate + (N-1)-glycogen+3δH+ (Eq. 6) 

Where, δ = - 27.57 +14.006pH – 2.2014pH2 + 0.115pH3 (30) 

 
To derive the glycolytic flux from pH dynamics the H+ stoichiometry of these reactions has to be 
taken into account. In addition, protons are buffered in muscle cells by e.g., metabolites, proteins 
or bicarbonate buffer, which can be modeled according to Eq7: 

 
βtot = βfixed + βPi + βPME + βB, (Eq. 7) 

Where, βfixed represent the static proton buffer of muscle cells (for human skeletal muscle typically set to 20 slykes (31,32)); 
βPi represents the contribution of Pi (βPi = 2.303 [H+] 1.58*10-7[Pi] / (1.58*10-7[H+])2); βPME represents the contribution of PME 
(βPME = 2.303 [H+] 6.3*10-7[PME] / (6.3*10-7[H+])2); βB represents the contribution of the bicarbonate buffer 

 
In a closed system such as ischemic muscle the contribution of the bicarbonate buffer (βB) is 
assumed zero (11). By combining the change in protons in the tissue (dpH/dt * βtot) and the protons 
consumed in the CK reaction (γ * dPCr/dt) the equation for the glycolytic ATP (JATPgly) synthesis flux 
becomes (Eq. 8):  
 

JATPGly = 3 ∙ (dpH/dt ∙ βtot + γ ∙ dPCr/dt) / (3 ∙ δ) (Eq. 8) 
 

This phenomenological proton handling model has been successfully validated in ischemic skeletal 
muscle by comparison of predicted lactate ([H+]) accumulation and biochemical measurements of 
freeze-clamped muscle tissue samples (33). So also for this pathway rates obtained from the 
phenomenological model are well suited for testing of mechanistic models.  

 
 

 
FORMALISMS FOR MECHANISTIC MODELING 

 

Design of initial model 
Detailed mechanistic models seek to reconstruct biological networks based on quantitative kinetic 
and thermodynamic information of individual network components. However, the scope of the 
emerging complexity problem is in many cases daunting. For example, with respect to 
mitochondrial biology, recent estimates of the number of proteins that make up the organelles 
hardware are close to 3000 (34-36). Building computational models strictly based on mechanistic 
details requires quantitative information on e.g., reaction mechanisms, kinetic parameters, rate 
constants and molecular concentrations. For most processes this information is not available and, 
consequently, a more practical approach for mechanistic modeling is required. For example 
biochemical data and model parameters are often collected from different species, experimental 
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settings, and cell types (37-39). Moreover, in case mechanistic information is unclear, it is necessary 
to fill the gaps with preferably simple mechanisms without having any kinetic parameters available 
(40). Sometimes it is possible to clamp model variables at physiological concentrations, reducing 
the complexity of the model. By applying this sort of practical solutions (semi)mechanistic models 
can be developed that represent the current state of knowledge of biology.  
 

Model parameterization 
A major challenge in developing mechanistic models is model parameterization. Parameter values 
are usually obtained from 3 different sources: (i) experimentally determined values, (ii) values 
estimated based on some experimental data by application of a parameter estimation algorithm 
and (iii) values estimated in previous computational studies. A first problem encountered is that 
parameters values have typically been determined in vitro. However, in vivo interactions with other 
agents are not included in the in vitro assay environment (e.g., the cytoskeletal matrix) may affect 
enzyme behavior and influence corresponding kinetic parameters. An example of the possible 
impact of the difference between in vitro and in vivo conditions is provided by the work of Teusink 
and colleagues (41) who reconstructed the yeast glycolysis pathway purely based on in vitro kinetic 
data, but failed to reproduce in vivo observed behavior with this model. A second problem is that 
point values are typically not available for all model parameters, either in the literature or because 
of practical problems encountered when trying to obtain the value experimentally. Consequently, 
inferring the unknown values from (dynamical) systems behavior by applying a parameter 
optimization algorithm is required. The number of parameter values that can be accurately inferred 
from the data depends on the amount of information accessible from the data (practical 
identifiability) and the formulation of the model equations (structural identifiability) (42,43). When 
a parameter is non-identifiable, many of the applied parameter estimation algorithms are still able 
to assign a value to such a parameter. However, these values are often poorly constraint, non-
unique and therefore provide a potentially unreliable point estimate of the parameter value (44-
46).  
 

Model (hypothesis) testing 
The mechanistic models provide a basis to test the body of knowledge captured by the model 
against experimental observations. The outcome of such a test can either be that the model is 
consistent with the experimental data or, alternatively that model predictions fail to reproduce the 
experimental data. The first case confirms that the hypotheses captured by the model indeed 
explain the specific biological phenomenon. It is important to realize that this result can never rule 
out the possibility that alternative hypotheses can describe the data as well. This view is identical to 
Karl Poppers’ statement that in the empirical science true validation of a hypothesis is not possible; 
hypotheses can only be invalidated (47). Compared to model verification, falsification can therefore 
be equally informative. It can indicate either a problem with the model parameterization or can 
point towards missing regulatory mechanism(s). For model falsification to become truly 
informative it is necessary to identify problems in model parameterization or sites and mechanisms 
of missing regulation. This can be achieved through intuitive analyses. However, as a result of the 
complexity of these models intuitive analyses are often impractical. A powerful alternative is 
provided by application of mathematical techniques, such as parameter sensitivity analysis.   
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Model analyses; parameter sensitivity analysis 
Parameter sensitivity analysis (PSA) investigates the effect of a variation in parameter values on 
model predictions. The response of interest of the systems output(s) needs to be translated into a 
scalar value, which subsequently can be analyzed and interpreted. Examples of responses that 
have been used are: the area under the curve of an output; deviation from a steady state; or the 
sum of squared difference between model output and experimental data (39). There are different 
methods available to perform PSA (48,49). Local parameter sensitivity analysis (LPSA) is most 
frequently applied. It quantifies the difference in model output as a result of a perturbation of a 
single parameter. By scanning all model parameters in a stepwise approach it is possible to identify 
sensitive parameters (causing a large change in model output) and insensitive parameters 
(affecting model output only minor). The LPSA identifies a causal relation between parameter 
changes and model predictions assuming an accurate model. However, in many cases parameter 
values have only a limited accuracy. Global PSA offers a means to take into account the limited 
accuracy of these parameters (50). They typically explore a larger part of the parameter space by 
simultaneously varying all parameters. To this end, often, a Monte Carlo simulation scheme is 
applied: parameter values are randomly selected from distributions that reflect the parameter 
uncertainty. By (re)performing these simulations a large number of times it is possible to 
numerically sample the parameter space and determine the corresponding solution space. 
Statistical analyses (e.g., Kolmogorov – Smirnov test) can subsequently be used to calculate a 
global sensitivity coefficient for each model parameter from these results (51).  
 

Model refinement 
Failure of experimental confirmation of model predictions can trigger a process of model 
refinement which may also lead to a better understanding of the associated biology. A first step in 
this process is to identify parameters or model components which have a significant control on the 
(false) model predictions. PSA provides a means to do this. In models of biological systems, 
typically, a large number of parameters are insensitive considering the limited number of model 
outputs of interest. Only a subset of parameters significantly influences the model output of 
interest (45). Changing model parameters or introducing new control mechanisms at insensitive 
parts of the model is not likely to improve predictions. On the other hand, sensitive model 
parameters do provide suitable candidates for further analyses. A possible next step is to 
investigate if re-parameterization of the sensitive parameters will improve model predictions. If 
unsuccessful the model is most likely missing essential regulatory mechanisms. In the latter case, 
the sensitive model parameters provide leads to pathway components that are most likely to be 
involved in the additional regulation. This information can therefore focus literature searches or the 
design of new experiments to identify missing control mechanisms. An alternative strategy of 
refining a model is to substitute phenomenological parts by more mechanistic new parts. 
Especially, when model predictions are sensitive to phenomenological model components, 
replacing these parts can contribute to an increased reliability of model predictions.  
 
 

Iterative cycle of model development 
Developing detailed mechanistic models that capture the full complexity of metabolic pathways 
involved in ATP metabolism of skeletal muscle cannot be achieved in a single step. Instead, many 



Introduction 

 

11 

steps of model testing, refining and re-testing are required; a process also referred to as the 
iterative cycle of systems biology (13). It is likely that in order to avoid a standstill in this cycle often 
computational and experimental methods have to be combined in a process known as 
‘experimental based modeling and model based experimental design’ (39). Another characteristic 
of this approach is that model development and obtaining new insights in the associated biology 
go hand-in-hand. It will therefore be not useful to wait for the ‘ultimate’ model of energy 
metabolism in skeletal muscle to be finished before applying it to analyze e.g., 31P MRS data of ATP 
metabolism. Instead, by testing model predictions against 31P MRS data it is possible to identify 
opportunities for model improvement while at the same time it is possible to gain a better 
understanding of the biological processes underlying the experimental observations. As such, a 
synergy is created which may advance both fields.  

 
 
 

MECHANISTIC MODELING OF GLYCO(GENO)LYSIS 
 

The first detailed kinetic model of glyo(geno)lysis in skeletal muscle was developed by Lambeth 
and Kushmerick (38). A schematic representation of the model is provided in Figure 3. The model 
contains detailed kinetic descriptions of 12 pathway enzymes coupled to cellular ATP demand flux 
and ATP buffering (CK + adenylate kinase (AK)). The kinetic parameters, enzyme Vmax values and 
metabolite concentrations at rest were scavenged from different sources in literature. As a result, 
the final model could be termed a ‘Frankenstein - model’; it was based on data from different 
species, including rabit, mouse, pig, human rat and chicken. This demonstrates that even for this 
relative simple and well known pathway it is not possible to develop mechanistic models without 
application of practical solutions. The model was first tested against 31P MRS measurements of PCr 
and Pi dynamics in ischemic mouse skeletal muscle at rest (52). In normoxic skeletal muscle at rest, 
ATP demand and supply are balanced. Consequently the concentrations of PCr and Pi are stable. 
However during ischemia, as a result of the shutdown of ATP supply via oxidative phosphorylation, 
ATP demand exceeds glycolytic ATP production. As a result, PCr is consumed, which is 
accompanied by a complementary increase in Pi. The kinetic model could successfully reproduce 
these dynamics and on top, accurately predict measured lactate accumulation in the cell. 
 In the cytoplasm, each biochemical reaction has an associated proton stoichiometry that is 
generally non-integer and pH-dependent. Therefore, changes in metabolic flux can alter cellular 
pH. In addition, apparent equilibrium constants and maximum enzyme velocities, which are 
functions of pH, are also altered. Including these aspects of the pathway in the model is essential 
for a meaningful interpretation of pH dynamics as reporter of glycolytic flux. Vinnakota and 
colleagues therefore provided a vital contribution by extending the Lambeth and Kushmerick 
model with pH-dependent enzyme kinetics and reaction equilibria to compute the time course of 
pH changes (53). In addition, they verified the model against data reported by Scopes (54,55), who 
reconstructed the glycolytic pathway in a cell free system in vitro. The result showed that for such a 
cell free system model predictions could accurately reproduce reported dynamics of pH, lactate, 
PCr, Pi, ADP, AMP and ATP with only minor adjustments in parameter values; however predictions 
of time courses of hexose-mono-phosphate, fructose-diphoshpate, glycerol-3-phosphate and 
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phosphoglycerates were less accurate. Vinnakota et al. speculated that these predictions could 
probably be improved by adjusting parameterization of phosphofructokinase and aldolase.  
 

 

 
 

Figure 3. Schematic overview of the Lambeth and Kushmerick model of glyco(geno)lysis in skeletal muscle (38). 
Abbreviations denote: GP, glycogen phosphorylase; Gly, glycogen; PGLM, phosphoglucomutase; G1P, glucose-1-
phospate; G6P, glucose-6-phospate; PGI, phosphoglucoisomerase; F6P, fructose 6-phospate; PFK, phosphofructokinase; 
F1,6P2, fructose 1,6-biphosphate; ALD, aldolase; DHAP, dihydroxyacetone-phosphate; TPI, triose phosphate isomerase; 
GAP, glyceraldehyde-3-phosphate; GADPH, glyceraldehyde-3-phosphate dehydrogenase; 13BPG, 1,3-
bisphosphoglycerate; PGK, phosphoglycerate kinase; 3PG, 3-phosphoglycerate; PGM, phosphoglyceromutase; 2PG, 2-
phosphoglycerate; EN, enolase; PEP, phosphoenolpyruvate; PK, pyruvate kinase; PYR, pyruvate; LDH, lactate 
dehydrogenase; LAC, lactate; PCr, phosphocreatine; CK, creatine kinase; ADP, adenosine diphosphate; Cr, creatine; ATP, 
adenosine triphosphate; AK, adenylate kinase; Pi, inorganic phosphate; AMP, adenosine monophosphate. 

 
In a recent study, the model was tested against 31P MRS measurements of metabolite 

dynamics (PCr, Pi, pH) in ischemic muscle at rest (56). Again it was reported that the model could 
reproduce the experimental data fairly well. Moreover, for achieving this result only a small number 
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of parameters were optimized. One of the main conclusions of this study was that glycogen 
phosphorylase B is an important step in the regulation of glycolytic flux in resting muscle and that 
other enzymes play a minor role at most. Additional simulations, not reported in the original paper, 
revealed that predictions of intermediates downstream of glycogen phosphorylase were at un-
physiologically low concentrations (up to a few orders of magnitude lower than experimentally 
observed). These very low concentrations may explain why the control of pathway flux was shifted 
to glycogen phoshorylase  

 
 
 

 MECHANISTIC MODELING OF OXIDATIVE PHOSPHORYLATION 
 
Compared to the glycolytic pathway, the scope of the complexity involved in the mitochondrial 
pathways is several orders of magnitude larger. For example, the current estimate of the number of 
proteins that make up the mitochondrial hardware is ~3000 (34-36). Consequently, at the moment, 
it is not feasible to model mitochondria at the same level of detail as the glycolytic model by 
Lambeth and Kushmerick. Modeling mitochondrial energy transduction requires therefore some 
inventive solutions. For example, by representing some processes, like the TCA cycle (37) or the 
electron transport chain (57)  by single lumped equations, or clamping state variables e.g., matrix 
concentrations of pH or [Pi] to further reduce the complexity (57). By following these approaches 
several mechanistic models of oxidative phosphorylation have been developed (37,57-61). Some of 
these models have a similar origin, share components or apply the same parameter values (see e.g., 
(57) and (60), or (61) and (37)). In this chapter, we do not intend to provide a full overview of 
differences and similarities of all these models. Instead, we focus on the mechanistic models that 
have been applied recently for the analysis of 31P MRS measurements of skeletal muscle 
bioenergetics. In particular, the Beard model (37) which was partly based on the Korzeniewski 
model (61), acted as foundation of the studies described in this thesis. 

The basic components of the model proposed by Beard include a lumped TCA cycle, 
reactions at complex I, III and IV of the electron transport chain, ATP synthesis at F1F0 ATPase and 
substrate transport including adenine nucleotide translocase (ANT) and the phosphate-hydrogen 
co-transporter, and cation fluxes across the inner membrane including fluxes through the K+/H+ 
antiporter and passive H+ and K+ permeation. 16 parameter values were estimated on nine 
independent data curves of isolated cardiac mitochondria obtained from Bose et al. (62). 
Specifically, it was shown that incorporation of a phosphate-dependent activation of complex III is 
required to reproduce the observed data. 
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Figure 4. Schematic representation of the computational model of skeletal muscle energetic (63). Abbreviations denote: 
dehydrogenases (DH), complex I (C1), complex III (C3), complex IV (C4), F1F0ATPase (F1F0), proton leak (H+ leak), adenine 
nucleotide transporter (ANT), Pi-H+ co-transporter (PiHt), K+ - H+ exchanger (KHt), adenylate kinase (AK), creatine kinase 
(CK), lumped cellular ATPase fluxes (ATPase), ubiquinone (Q), ubiquinol (QH2), oxidized cytochrome C (cytC Oxid), 
reduced cytochrome C (cytC Red), adenosine diphosphate (ADP), inorganic phosphate (Pi), adenosine triphosphate (ATP), 
nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide, adenosine monophosphate 
(AMP)   

 
Wu et al. (63) investigated if this model could explain the mitochondrial input – output relations 
([ADP] – Jp, [Pi] – Jp and ΔGp - Jp) that were previously proposed to capture the regulation of 
mitochondria in skeletal muscle in vivo (see section: ‘Mitochondrial input – output relation’). To this 
end, the mitochondrial model component was combined with mathematical descriptions of 
cytoplasmic ATP buffering (CK + AK) and ATP hydrolysis flux. In addition, metabolite 
concentrations were set to values appropriate for skeletal muscle and mitochondrial content was 
adjusted to match the available morphometric data. A schematic representation of the model is 
provided in Figure 4. Model predictions were compared to [ADP] -Jp, [Pi] – Jp and ΔGp - Jp relations 
obtained from 31P MRS measurements human forearm flexor muscle (7). Results of these 
predictions (solid line) versus experimental data are shown in Figure 5. These fits were obtained by 
optimizing only a single model parameter, i.e., [PCr] at rest, which was set at 23.6mM. This 
parameter value was however not consistent with the original dataset for which a [PCr] at rest was 
reported of 36.5±2.7mM (mean±SD, n=20). Adjusting the initial [PCr] to 23.6mM also changed the 
initial [Cr] to 19.1mM. These settings were also not consistent with the assumption that 85% of the 
total creatine pool was phosphorylated at rest, which was applied to calculate cellular [ADP]. The 
dotted lines in Figure 5 represent the simulation results when initial [PCr] was set to 36.5mM. These 
results clearly indicated that the model was not yet consistent with these experimentally observed 
transduction functions and required a more detailed analysis.   

mitochondrial matrix
inter membrane space

cytoplasm
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Figure 5. Model predictions of mitochondrial input – output relations ([ADP] – Jp (A), [Pi] – Jp (B) and ΔGp - Jp (C)). 
Experimental data were obtained from (7). The solid lines show model predictions for settings used in the original paper 
by Wu et al. (63): initial [PCr] set to 23.6mM. The dotted lines show model predictions when initial [PCr] was set according 
to the experimentally determined value: initial PCr set to 36.5mM (7).  

 
 
 

OUTLINE OF THIS THESIS 
 
A lot of research has been conducted to investigate skeletal muscle bioenergetics by application of 
31P magnetic resonance spectroscopy in many different subjects groups. However, still many of the 
experimental observations cannot be directly related to properties of the components of the 
underlying metabolic pathways. The aim of this thesis was to apply a systems biology based 
research strategy combining mechanistic computational modeling and 31P MRS measurements to 
study skeletal muscle bioenergetics. As explained in the section ’formalisms for mechanistic 
modeling’ achieving this goal requires an iterative cycle of model development. Continuing this 
cycle is expected to improve both the predictive power of the model while at the same time new 
insight in the energy metabolism of skeletal muscle is obtained.  
 
It has been shown that PCr, Pi and ATP dynamics in ischemic skeletal muscle at rest were explained 
by a model which integrated known enzyme kinetics of the glycolytic pathway (52,56). However, 
predictions of some of the intermediate metabolites (e.g., hexose-mono-phosphate, fructose-
diphoshpate, glycerol-3-phosphate and phosphoglycerates) were less accurate. This indicated that 
the understanding of the pathway captured by the model was possibly incomplete. In chapter 2 
this was further investigated by testing model simulations against newly recorded dynamics of 
hexose-mono-phosphate (glucose-1P + glucose-6P + fructose-6P) during metabolic recovery 
following intense exercise. This study confirmed that the model indeed missed essential regulatory 
mechanisms. Additional numerical analyses were performed to identify possible missing 
mechanisms. Chapter 3 describes a next loop in the iterative cycle. It was tested if the missing 
mechanism proposed in chapter 2 (i.e., calcium-calmodulin mediated activation of 
phosphofructokinase (PFK)) also played an important role in the control of pathway dynamics 
observed in ischemic, contracting muscle for various excitation frequencies. While previous studies 
mainly focused on investigating pathway dynamics for skeletal muscle at rest, in this chapter a first 
attempt is described to investigate the mechanisms controlling glycolytic flux in contracting 
skeletal muscle by means of application of a mechanistic model.  
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The Beard model of oxidative phosphorylation (37) that was modified by Wu et al. (63) could not 
reproduce the regulation of skeletal muscle observed in vivo as captured by the ADP – Jp and ΔGp - 
Jp transduction functions (Figure 5, dotted lines). Before we could advance to the analysis of clinical 
data of patients, first it had to be investigated why these model predictions failed in reproducing 
these experimental data of healthy humans. Is it caused by a problem in the model 
parameterization? Or is the model missing essential regulatory mechanisms? Chapter 4 describes 
an investigation of the ADP – Jp transduction function. The dataset that was available from (7) and 
is shown in Figure 5 is characterized by a rather wide scatter of individual data points. In an 
attempt to improve the quality of the computational studies a new dataset was recorded in which 
the noise by the scatter of individual data points was reduced and the overall number of data 
points was increased. Next, numerical analyses of the model were used to identify components of 
the molecular network that controlled the ADP sensitivity of mitochondria in silico. The results of 
this investigation were used to significantly improve the predictive power of the model. In a 
different study, the same dataset was used to investigate which regulatory mechanisms explained 
the experimentally observed ΔGp - Jp transduction function. This study is described in chapter 5. 
Two different control schemes were tested: (i) Pi control of respiratory chain activity and (ii) parallel 
activation of ATP consumption and activity of mitochondrial enzymes. In addition, these control 
schemes were tested against a validation dataset recorded in subjects with a sedentary lifestyle 
and track athletes.   
 
In vivo mitochondrial capacity quantified by the rate of post exercise PCr recovery is a physiological 
parameters frequently derived from 31P MRS datasets. Sometimes, additional analyses of muscle 
biopsy samples are used to identify changes in the metabolic pathways responsible for 
observations of a decreased mitochondrial capacity in vivo. State-of-the-art approaches for 
analyses of the combined data remain typically limited to statistical and intuitive strategies. 
Chapters 6 and 7 describe analyses of this type of dataset from a systems biology perspective. 
Specifically, it is investigated to which extend the changes in the metabolic pathways determined 
from the muscle biopsy samples contribute to a decreased mitochondrial capacity in vivo by taking 
into account the functioning and regulation of the underlying metabolic networks captured by the 
mathematical model. In the first part of chapter 6, the extension of the modeling framework from 
a single uniform-cell model to a three-cell model capturing the microscopic heterogeneity of 
skeletal muscle tissue is described. In addition, verification tests of the model are presented. The 
validated model was applied for quantitative analyses of the changes in skeletal muscle physiology 
responsible for a decreased mitochondrial capacity in obese type 2 diabetes patients compared to 
healthy lean control subjects. The results were used to outline a strategy for integration of in vivo 
and in vitro and in silico methods for systems biology of mitochondrial function. In chapter 7 this 
approach was tested in an animal model (8 versus 25 week old Wistar rats). An extensive dataset 
containing both in vivo (31P MRS) and in vitro (high resolution respirometry, immunohistochemistry, 
western blotting, qPCR) measures of mitochondrial function was collected. In silico analyses were 
performed to test if the in vivo observed changes of mitochondrial function were explained by the 
in vitro recorded data taking into account control properties of underlying metabolic pathways as 
captured by the model.      
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Chapters 2 and 3 describe studies of the glycolytic pathway. Chapters 4 to 7 present studies of 
oxidative ATP metabolism. In these studies the pathways were investigated for conditions in which 
only one of them was active (ischemia versus post exercise recovery). In chapter 8 these models 
are combined to investigate if the control mechanisms embedded in these models also explain the 
balance between glycoytic and mitochondrial ATP production during rest – exercise – recovery 
protocols in normoxic skeletal muscle.   
 
The concluding chapter 9 provides a summarizing discussion. In addition, application of the 
iterative cycle of model development will be discussed and possible future directions are 
highlighted.  
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ABSTRACT 
 

The longstanding problem of rapid inactivation of the glycolytic pathway in skeletal muscle after 
contraction was investigated using 31P NMR spectroscopy and computational modeling. In vivo 
dynamics of phosphorylated glycolytic intermediates (hexose-mono-phosphates) during cyclic 
contraction and subsequent metabolic recovery were measured by applying 31P NMR 
spectroscopy. Hexose-mono-phosphates concentration in muscle peaked 40 seconds into 
metabolic recovery from maximal contractile work at 6.9±1.3 mM (mean±SD; n=8) and 
subsequently declined at a rate of 0.009±0.001 mM/s. It was next tested if current knowledge of the 
kinetic controls in the glycolytic pathway in muscle integrated in a computational model could 
explain the experimental data. The model underestimated the magnitude of deactivation of the 
glycolytic pathway in resting muscle resulting in depletion of glycolytic intermediates and 
substrate for oxidative ATP synthesis. Numerical analysis identified phosphofructokinase and 
pyruvate kinase as the most likely kinetic control sites involved in deactivation of the pathway. 
Ancillary hundred-fold inhibition of both phosphofructokinase and pyruvate kinase was necessary 
to correctly predict glycolytic intermediate and ADP concentrations in resting human muscle. 
Incorporation of this information in the model resulted in highly improved agreement between 
predicted and measured in vivo hexose-mono-phosphates dynamics in muscle following 
contraction. It was concluded that silencing of the glycolytic pathway in muscle following 
contraction is most likely mediated by phosphofructokinase and pyruvate kinase inactivation on a 
timescale of seconds and minutes, respectively. 
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INTRODUCTION 
 
Excitable cells like skeletal muscle fibres may undergo rapid and large (up to two orders of 
magnitude) transitions in ATP turnover rate upon activation (1,2). To buffer and balance this large 
dynamic capacity for ATP utilization, excitable cells contain multiple ATP synthetic pathways 
including glycolysis and mitochondrial oxidative phosphorylation (1,2). These pathways and their 
kinetic controls have been extensively investigated and characterized to the point that detailed in 
silico models are now available (3-8). Conversely, these computational models offer powerful 
quantitative tools for rigorous testing of the sufficiency and consistency of current understanding 
and formulation of cellular ATP synthesis and its regulation (9). A specific concern is the fact that 
the majority of the information captured by these models has come from in vitro determinations of 
enzyme kinetics (9,10). However, in the living cell, ancillary interactions (e.g. protein-protein 
interactions (11) or substrate channelling (12)) may greatly influence pathway behaviour. For 
example, it has been documented that the activity of phosphofructokinase (PFK), a key regulatory 
enzyme in the glycolytic pathway, is regulated by attachment to the cellular cytoskeletal matrix in 
addition to classic metabolic regulation by AMP, ADP and inorganic phosphate (Pi) (13-15).  Any 
incorporation of this information in the available computational models of glycolysis, however, has 
been lacking (3-5). As such, it remains to be tested if and how much the latter type of 
‘physiological’ metabolic regulation (as opposed to ‘biochemical’ regulation by metabolite 
concentrations) contributes to pathway flux and concentration control in vivo.  

In the case of glycolysis, there is, in fact, a clear and pressing need for such a test. It has 
been long known that glycolytic flux in skeletal muscle is arrested in non-contracting muscle even 
in the presence of elevated concentrations of the classic metabolic regulators AMP, ADP and Pi. 
This observation was first made almost 30 years ago (16), and has since been independently 
confirmed (17-21). Hypotheses explaining this surprising finding all invoke inactivation of key 
glycolytic enzymes like PFK via some relaxation-related mechanism (e.g., a drop in cytoplasmic 
Ca2+) (16,20,21). However, biochemical details, including sites, magnitude and mechanism of 
pathway inactivation as well as the physiological significance for the resting skeletal muscle state 
all remain yet to be discovered.   

Here, the kinetic controls involved in shutting down glycolysis in non-contracting skeletal 
muscle and its physiological significance for the resting skeletal muscle state are investigated using 
a combination of experimental and computational investigative approaches. First, we performed 
high time resolution dynamic in vivo measurements of the turnover of phosphorylated glycolytic 
metabolites (hexose monophosphates; HMP) in human leg muscle after exhaustive exercise using 
31P NMR spectroscopy. Next, the Lambeth & Kushmerick computational model of glycolysis in 
muscle was used as a platform to investigate if current knowledge of glycolytic flux and 
concentration control incorporated in the model was sufficient to explain the measured HMP 
dynamics (3). Finally, computational strategies, including network analysis, were used to identify 
the kinetic control sites in the glycolytic pathway involved in shutting down glycogen turnover in 
the post-exercise state and to investigate its significance for the resting skeletal muscle state.  
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METHODS 
 

Experimental methods 
 

Subjects 
Eight normally active, healthy male subjects (mean age 26 yrs; range 22-45) participated in the 
study. The nature and the risks of the experimental procedures were explained to the subjects, and 
all gave their written informed consent to participate in the study, which conformed to the 
standards set by the Declaration of Helsinki and was approved by the local Medical Ethical 
Committee of the Máxima Medical Center, Veldhoven, The Netherlands.  
 

31P MRS 
All measurements were performed on a 1.5T whole body scanner (Gyroscan S15/ACS, Philips 
Medical Systems, Best, The Netherlands) equipped with a custom-built non-ferrous, mechanically-
braked bicycle ergometer. Details of the ergometer, its interfacing with the spectrometer for gated 
acquisition during bicycling exercise, subject positioning and familiarization with the exercise are 
described in detail elsewhere (22). A single-turn 31P surface coil (diameter: 6 cm) supplied by the 
manufacturer was positioned over the medial head of the quadriceps muscle of the right leg and 
fastened with velcro strips. The magnet was shimmed using a custom-built rectangular 1H surface 
coil (20x10 cm) positioned over the quadriceps muscle as described elsewhere (22). All 31P NMR 
spectra were acquired using a 90° adiabatic excitation pulse.  Prior to the exercise bout, two 31P 
spectra (16 summed free induction decays (FIDs); 1024 points; sweep width 2 kHz) were obtained 
from the resting muscle in resting position under fully relaxed (TR 15s) and partly-saturated (TR 3s), 
actual experimental conditions to determine saturation correction factors for each resonance.  
Next, subjects performed a bicycling ramp exercise bout consisting of three incremental workloads 
including maximal (1, 2 and 3 kg braking load, respectively). The pedalling rate was 80 rpm set by a 
metronome. Each workload was maintained for 144s during which four 31P NMR spectra (12 
summed FIDs) were collected from the muscle.  During the first 108s of metabolic recovery after 
completion of the exercise test, 31P NMR spectra consisting of four summed FIDs were serially 
collected yielding a time resolution of 12s. In the second phase of recovery, the time resolution was 
decreased to 36s (12 summed FIDs per spectrum). The total scan time was 846s (432s during 
exercise and 414s during recovery, respectively). 15 minutes after exercise had ended the subjects 
performed a second, less intense incremental workload of which the data was not used, except for 
the first spectrum that provided an additional data point in the hexose-monophosphates (HMP) 
recovery dynamics. 

 
Data processing 

Spectra were fitted in the time domain by using a nonlinear least-squares algorithm (AMARES) in 
the jMRUI software package (23). Phosphate-mono-esters (PME), Pi, PCr and ATP signals were fitted 
to Lorentzian line shapes. The three ATP peaks were fitted as two doublets and one triplet, with 
equal amplitudes and line widths and prior knowledge for the J-coupling constant (17 Hz). Maximal 
line widths were constrained at 30Hz. Absolute concentrations of the metabolites were calculated 
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after correction for partial saturation and assuming that the ATP concentration ([ATP]) is 8.2 mM at 
rest (24). Intracellular pH was calculated from the chemical shift difference between the Pi and PCr 
resonances (δ; measured in parts per million) according to Eq. 1 (25): 

 



 


pH 3.276.75 log( )

5.63  
 (Eq.1) 

 
Computational methods 

 
Model description 

The primary purpose of the computational part of this study was to investigate the mechanisms 
involved in the observed HMP dynamics during metabolic recovery form exercise. The analysis also 
required information that was obtained by performing simulations under two additional 
conditions: high ATP demand flux and rest, respectively. The glycolytic pathway substrate supply 
flux was assumed to be different for each of these three conditions: (i) under the metabolic 
recovery conditions, substrate for the glycolytic pathway supply was provided by glucose 
phosphorylation by hexokinase concomitant with net glycogen synthesis. The model for this 
particular condition will be referred to as the ‘recovery condition model’ (Figure 1A). (ii) under the 
condition of high ATP demand (i.e., during exercise), pathway substrate supply was assumed to be 
provided by net glycogen breakdown; the  relative contribution of glucose phosphorylation by 
hexokinase was assumed to be negligible (Figure 1B). (iii) under steady state rest conditions (i.e., 
with respect to ATP metabolism), it was assumed as a first approximation that no net glycogen 
production occurred and pathway supply was provided by glucose phosphorylation through 
hexokinase. The pathway model under this particular condition will be referred to as the ‘resting 
condition model’ (Figure 1C).  

The Lambeth and Kushmerick model of muscle glycolysis (3) was used as platform to 
perform the numerical analyses. This model was parameterized with data of mammalian skeletal 
muscle origin, except for the phosphoglycerate mutase parameters which were obtain from 
chicken skeletal muscle. Minor adaptations were made to model conditions (i) and (iii) described 
above. A schematic representation of the adapted models is shown in Figure 1. The flux equations, 
initial conditions and parameter values have been described previously by Lambeth and 
Kushmerick (3); in the sections below we restrict the description to the details of model 
adaptations. The computational models were implemented using Matlab 7.5.0 (the Mathworks Inc., 
Natick, US). Differential equations were numerically solved using ODE15s. The model did not take 
mitochondrial dynamics into account. The ATPase flux that was set in the model therefore 
corresponded only to the part that was matched by glycogenolytic ATP production.  
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Figure 1. Schematic representation of the computational model. Recovery condition model (A), original Lambeth and 
Kushmerick model (B) and resting condition model (C). Abbreviations: Glu, glucose; HK, hexokinase; PGLM, 
phosphoglucomutase; Gly, glycogen; G1P, glucose-1-phospate; G6P, glucose-6-phospate; PGI, phosphoglucoisomerase; 
F6P, fructose 6-phospate; PFK, phosphofructokinase; F1,6P2, fructose 1,6-biphosphate; ALD, aldolase; DHAP, 
dihydroxyacetone-phosphate; TPI, triose phosphate isomerase; GAP, glyceraldehyde-3-phosphate; GADPH, 
glyceraldehyde-3-phosphate dehydrogenase; 13BPG, 1,3-bisphosphoglycerate; PGK, phosphoglycerate kinase; 3PG, 3-
phosphoglycerate; PGM, phosphoglyceromutase; 2PG, 2-phosphoglycerate; EN, enolase; PEP, phosphoenolpyruvate; PK, 
pyruvate kinase; PYR, pyruvate; LDH, lactate dehydrogenase; LAC, lactate; PCr, phosphocreatine; CK, creatine kinase; ADP, 
adenosine diphosphate; Cr, creatine; ATP, adenosine triphosphate; AK, adenylate kinase; Pi, inorganic phosphate; AMP, 
adenosine monophosphate. 
 
Under resting conditions, ATP is mainly produced by mitochondria, whereas the glycolytic pathway 
accounts for only a minor part of the total ATP production flux. The ATPase flux in resting human 
skeletal muscle tissue was reported by Blei et al.: 8 ± 2μM/s (n=5) (2). The part of the ATPase flux 
that was accounted for by glycolytic ATP production was calculated. Assuming mitochondria 
synthesize 30 moles of ATP per mole of glucose and glycolysis has a net yield of 2 moles ATP per 
mole glucose (27), glycolytic flux would account for 1/15 part of the total ATPase flux under the 
conditions mitochondria rely solely upon pyruvate as substrate. However, under resting conditions 
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muscle mitochondria also oxidize significant amounts of fatty acids. Reported values for the 
percentage of fatty acid utilization vary between 30 and 60 percent (28-30). To include this effect 
and take into account some additional uncertainties due to unknown fluxes through other 
pathway branches, the glycolytic ATP production flux at rest was estimated to be within the range 
of 0.1 and 0.75 μM/s. This range is in accordance with literature values of leg glucose uptake (0.05 – 
0.35mM/min per limb (31-35)), that were converted by assuming a leg has between 7-10 kg of 
muscle mass (35). 

Blei et al. reported the ATPase rate in resting skeletal muscle; it remained however 
unknown to which extend these values are also valid for skeletal muscle during recovery 
conditions. To include this uncertainty in the analysis the ATPase during recovery was estimated to 
be within a range of 0.1– 10 times the normal resting muscle ATPase activity, which sets the range 
for ATPase during recovery conditions to 0.0001-0.01 mM/s. 
 

Model analysis of recovery dynamics 
The model used to simulate recovery conditions featured a net glycogen production and glucose 
phosphorylation by hexokinase (recovery condition model, Figure 1A). Developing a kinetic model 
of the glycogen production pathways was beyond the scope of this study. Instead, net glycogen 
production was modelled by deleting glycogen phosphorylase flux and substituting it with a net 
glycogen production flux. Glucose phosphorylation is inhibited at high [G6P]. As a consequence, 
G6P supply flux by hexokinase could not be modelled as a constant during recovery period, 
therefore a kinetic model of hexokinase was included. Hexokinase was modelled according to the 
description of (36), Eq. 2. Although this model was developed for a different cell type, i.e. human 
erythrocytes, this description was used since in skeletal muscle tissue the same iso-enzyme is 
predominant too (37).  
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(Eq. 2) 

Kinetic parameter values are listed in Table 1. 

 
The ATPase flux equation was simplified compared to the original model. The mass action equation 
used by Lambeth and Kushmerick was substituted by a single, parameter (unit mM/s) which 
effectively clamped ATPase flux at a certain, adjustable level.  
 
Table 1. Kinetic parameters of hexokinase model, according to (36) 

 
 
 
 
 
 

 
 

Parameter Value Unit 

VmaxHK 0.0078 mM/s 

KATP 1.76 mM 

KGLC 0.040 mM 

KATP,Glc 0.051 mM 

KG6P 0.334 mM 

KGlc,G6P 0.069 mM 
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The model adaptations introduced a few new parameters: kinetic parameters of hexokinase, 
glycogen production flux and ATPase flux. All other parameters were left unchanged from the 
original paper of Lambeth and Kushmerick.  

Hexokinase kinetic parameter values are listed in Table 1. Intracellular glucose 
concentration was clamped at 3mM, according to measurements of Katz et al, who reported 
glucose concentration remained stable during at least the first 10 minutes of recovery following an 
exhaustive bicycle exercise bout (31). VmaxHK was calculated by assuming for [ATP], [Glucose], [G6P] 
and steady state HKflux,, 8.2mM, 3mM, 0.4mM and 2.5μM/s respectively.  
The glycogen production flux (unit μM/s) after a glycogen depleting exercise bout was measured 
by Price et al. (38). From these results the glycogen production flux was estimated to be within a 
range of 0 – 0.75 μM/s.  

The ATPase during recovery was estimated to be within a range of 0.1– 10 times the normal 
resting ATPase activity, which sets the range for ATPase during recovery conditions to 0.0001-0.01 
mM/s. 

The model Vmax parameters were set by Lambeth and Kushmerick according to the Scopes 
et al. data (26). As these parameters were not specifically set for human quadriceps muscle 
uncertainties with respect to these values were also taken into account. Vmax values of glycolytic 
enzymes were assumed to be within a range of 25 – 175 percent of the value determined by 
Scopes et al. This range was set based upon comparison of glycolytic enzyme activities determined 
for multiple species: rabbit, pig, rat and human respectively (26,39,40). 

Lactate efflux was modelled by a mass action flux, Eq. 3, with parameter Klac set to 0.01s-1.  
 

LACeff  = KLac ∙  [Lac] (Eq. 3) 
 
During the first phase of recovery PCr was re-synthesized by mitochondrial function. These 
dynamics were accompanied by Pi, ADP and AMP concentrations that dropped to resting levels. Pi, 
ADP and AMP are important substrates and regulators of the glycolytic pathway. The mitochondria 
exert control on the Pi, ADP and AMP dynamics and thus indirectly on the dynamics of the 
glycolytic pathway. Modelling glycolysis during the full recovery period would therefore require 
including a model of mitochondrial function. However, instead of introducing more complexity to 
the model, we choose a different solution. The first 60 seconds of data were excluded, which 
restricted our analysis to the part of the data were PCr, Pi, ADP and AMP were close to resting 
levels. The part of the data analyzed with the computational model is indicated in Figure 3.  

All initial conditions were left unchanged from the paper by Lambeth and Kushmerick, 
except for the initial conditions of [G1P], [G6P] and [F6P] which were set according to the 
experimental NMR data. The PME detected in the NMR spectra was used to calculate the 
concentration of HMP, which represent the sum of G1P, G6P and F6P (1,16). Individual G1P, G6P 
and F6P concentrations were calculated by assuming phosphoglucomutase and 
phosphoglucoisomerase were close to equilibrium (41,42). Calculated values for initial 
concentrations of G1P, G6P and F6P were 0.26mM, 4.37mM and 1.96mM, respectively.    

For glycogen production flux, ATPase rate and glycolytic enzyme Vmax values we 
determined a range rather than a precise value. A Monte Carlo approach was used to perform 
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simulations for these parameter distributions. Uniform distributions were assumed within the 
determined range. 5000 simulations were run, randomly drawing parameter values from the 
distributions. As a result the computational model predicted a solution space (mean±SD of 5000 
simulations) indicating the influence of the width of the distributions on the accuracy of the model 
predictions. It was tested if 5000 simulations were enough to obtain stable predictions for the 
models solution space. To this end, the solution space calculated based upon 5000 simulations was 
compared to the result obtained with 1000 simulations. These results were similar indicating 5000 
simulations were enough to provide stable predictions. 
 

Maximal glycolytic ATP production capacity 
We calculated the maximal glycolytic ATP production capacity, which was defined as the maximal 
ATP production flux the model can generate while state variables remained within a physiological 
domain. During maximal activation of the glycolytic pathway, pathway substrate supply is 
primarily provided by glycogen breakdown. These conditions were modelled by the original 
Lambeth and Kushmerick model (Figure 1B). Therefore, the Lambeth and Kushmerick model was 
used to calculate the maximal pathway flux (pathway Vmax).  
Maximal pathway flux was calculated by performing a series of simulations, incrementally 
increasing the ATPase rate with a step size of 0.01mM/s. All simulations were run until glycolytic 
ATP production and ATPase fluxes were balanced and steady state was reached. The free energy of 
cytoplasmic ATP hydrolysis (Gp) was calculated according to Eq. 4, (43): 

 

   o
p p iG G RT ADP P ATP' ln([ ][ ] / [ ])  (Eq. 4) 

Where, 'o
pG is -31.8kJ/mol at 37°C. 

 

Previous studies indicated that if Gp increased beyond -48kJ/mole, excitation-contraction 
coupling failed (45). This information was used to constrain the computational dynamic range of 
the model: if Gp increased beyond -48kJ/mole, simulations went out of physiological range and 
the incremental increase of ATPase flux was ended. The ATPase flux at which the simulations were 
ended was then defined as the maximal glycolytic ATP production capacity.   
 

Identification of control points 
We analyzed which enzymes exerted most of the concentration control under resting conditions. 
To this end, resting state model predictions (resting condition model, Figure 1C) were compared to 
literature data of the skeletal muscle resting concentration of a selected subset of metabolites 
relevant to the model:  [ADP], [G6P] and [F-1,6P2].  

Under resting state conditions it was assumed no net glycogen production or consumption 
was present. This was modelled by deleting the glycogen phosphorylase flux from the original 
Lambeth and Kushmerick model. The resting state ATPase flux that was met by glycogenolytic ATP 
production was, as described in the section ‘Estimation of ATPase flux rate’, estimated between 0.1 
and 0.75 μM/s. Under steady state conditions, glycolytic pathway substrate supply, glycolytic ATP 
production and ATPase flux are in balance. Glycolysis yields 2 moles of ATP per glucose molecule. 
This stoichiometry combined with the requirement of steady state conditions determine that 
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glucose phosphorylation flux is balanced to ATPase flux according to Eq. 5. This relation was used 
to set the G6P supply flux in these steady state simulations.  

 
G6Psupply = ½ ATPase (Eq. 5) 

 
The concentration control of individual glycolytic enzymes on the concentration of selected 
metabolites [ADP], [G6P] and [F-1,6P2] was calculated by performing a series of simulations. For 
each simulation a different glycolytic enzyme was inhibited, by multiplying the Vmax of that specific 
enzyme with 0.05 and differences in steady state values of glycolytic intermediates were 
compared.  

 
 
 

RESULTS 
 

31P MRS 
Figure 2 shows a selection of 31P NMR spectra from a large dynamic set acquired from the 
quadriceps muscle at rest (Figure 2A), during exercise at maximal workload (Figure 2B) and during 
metabolic recovery (Figures 2C and D). At the end of the incremental exercise bout, the 
phosphocreatine (PCr) pool was near-depleted and accompanied by complementary increase in Pi. 
During bicycling at the maximal workload, a significant phosphate-monoester (PME) resonance 
appeared up-field of the Pi resonance that was attributed to accumulating phosphorylated 
glycolytic intermediates (hexose-mono-phosphates; HMP) in contracting muscle fibres (1,16). 
During subsequent metabolic recovery, Pi and PCr returned to resting levels within 60s. The PME 
resonance, however, exhibited much slower dynamics and was still clearly observed 240s into 
recovery. The accumulation of HMP is most clearly observed during recovery due to the downfield 
shift of the Pi resonance as a result of rapid ancillary muscle acidification (Figures 2C and D).  
The quantified, pooled results of the 31P NMR measurements in eight muscles are shown in Figure 
3. The PCr concentration decreased from 32.2±3.0 mM (mean±SD; n=8) at rest to 5.9±3.2 mM at the 
end of the high intensity exercise bout, while Pi increased from 4.8±0.8 to 26.8±3.5 mM  (Figure 
3A). Accumulation of HMP started during exercise at the highest workload and peaked at 6.9±1.3 
mM 42s into recovery, after which a slow, but steady consumption (0.009±0.001 mM/s) was 
observed (Figure 3B). The HMP concentration, quantified from a spectrum obtained 15 minutes 
after the end of exercise had returned to resting level (1.1 ± 0.4mM; data point not shown in figure 
3). ATP and total phosphate pool levels remained stable within 10% of resting values throughout 
the entire protocol (8.2 mM and 47 mM, respectively; Figure 3C). Intramuscular pH decreased 0.3 
units during the exercise bout from 7.08±0.02 at rest to 6.75±0.05 at maximal workload (Figure 3D). 
This moderate drop in muscle pH during exercise indicated that the muscle remained well 
perfused during the entire exercise protocol and lactate and CO2 were to a high extend washed out 
of the muscle tissue (46). During the initial phase of recovery, pH dropped another 0.3 units to 
6.46±0.11 as a result of rapid consumption of proton buffer (i.e., Pi; (46)) and recovered slowly 
towards resting value (Figure 3D). 
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Figure 2. Selection of 31P NMR spectra recorded during the rest–exercise–recovery protocol. The spectra at rest (A), end 
of exercise (B), 40 s into recovery (C) and 240 s into recovery (D) are shown. Spectra were apodized with a 10 Hz 
Lorentzian function.  
 

Model simulations of recovery dynamics  
Model simulations of metabolite recovery dynamics were performed in a Monte Carlo approach to 
account for uncertainties in the model parameter values. In this approach, parameter values for the 
ATPase rate, the glycogen consumption and Vmax parameters of glycolytic enzymes were selected 
randomly from a uniform distribution with ranges 0.0001mM/s – 0.01mM/s, 0 – 0.75μM/s and 25% 
– 175% of the value reported by Scopes et al., respectively. HMP dynamics (sum of glucose-1-
phosphate (G1P), G6P and fructose-6-phosphate (F6P) (1,16)) were calculated from the model 
simulations and compared to the experimental data (Figure 4). The predicted HMP consumption 
rate was two orders of magnitude faster than the experimentally determined rate (0.57 mM/s 
versus 0.009±0.001 mM/s, respectively).  
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Figure 3. Quantified metabolite dynamics during the rest – exercise – recovery protocol. The vertical continuous black 
lines separate the data points of the three different workloads and the recovery period. The error bars indicate the 
standard deviation (n = 8). The [PCr] (closed circles) and [Pi] (open squares), [PME] (open triangles), [ATP] (open circles) 
and [total phosphate pool] (closed squares) and the pH (closed diamonds) are shown. The part of the data selected for 
analysis using the computational model are indicated by a horizontal black bar. 

 
Maximal glycolytic ATP production capacity 

 It was next tested if the overly fast kinetics of the recovery conditions model were the trivial result 
of the maximal glycolytic ATP production capacity of the model exceeding reported experimental 
values. The maximal glycolytic ATP production of the computational model was calculated to be 
1.4 mM/s as described in the Methods section. This value agreed well with the rate reported for a 
type I muscle fibre and was about half the value reported for a type II muscle fibre (1.5 and 3.0 
mM/s, respectively (47)). From these results we concluded that two orders of magnitude faster 
consumption of HMP predicted by the model (Figure 5) was not a trivial result.  
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Figure 4. Hexose monophosphate recovery dynamics according to predictions of the original model and experimental 
data. Model predictions of HMP dynamics were calculated by summation of G1P, G6P and F6P dynamics. The solution 
space (shaded area) is indicated by the mean ± S.D. of the 5000 simulations that were run in a Monte Carlo approach. 
Experimental data represent the pooled results of all eight subjects; error bars indicate standard deviation (n = 8). 
 

Identification of control points 
It was next investigated if concentration control in the model was sufficient to reproduce reported 
experimental values of steady state [ADP], [G6P] and [F-1,6P2] (Table 2). Figure 5 shows the effect of 
inhibition of individual glycolytic enzymes by 95% (individual enzyme Vmax value was set to 5% of 
original value) on steady state [ADP], [G6P] and [F-1,6P2]. Measurements of human skeletal muscle 
resting state metabolite concentrations reported in literature are listed in Table 2 and indicated as 
shaded areas in Figure 5. From these results, it followed that the model converged at a non-
physiological steady state without additional enzyme inhibition, indicating inadequate 
concentration control. Model simulations predicted a nearly full depletion of G6P and F-1,6P2 to 
levels of 0.0094mM and 0.00028 mM respectively, whereas reported values range between 0.24mM 
– 0.82mM and 0.04mM – 0.06mM, respectively (31,47-49). Likewise, [ADP] fell to a twofold lower 
value than the consensus value in absence of additional flux inhibition (0.005mM versus 0.01mM 
(1,50-52), respectively). Steady state metabolite concentrations calculated for the case of selective 
ancillary enzyme inhibition by 95% showed that [G6P] was increased by inhibition of PFK and [F-
1,6P2] was increased by inhibition of PK. The steady state [ADP] was affected both by 95% inhibition 
of PFK and PK.   
 
Table 2. Physiological values of metabolite concentrations in resting skeletal muscle. Mean value as well as the range are 
listed. The range represents the lowest and highest reported values.  
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Chapter 2 

 

34 

 
Figure 5. Effect of inhibition of individual enzyme activity on resting muscle steady-state [G6P] (A), [F-1,6P2] (B) and 
[ADP] (C). Inhibition of the enzyme activity was modelled by setting Vmax values to 5%. The predictions of the original 
model are shown as a black bar. The shaded area represents the physiological range and the horizontal continuous black 
line indicates the mean value, as listed in Table 2. Abbreviations: PGLM, phosphoglucomutase; PGI, 
phosphoglucoisomerase; PFK, phosphofructokinase; ALD, aldolase; TPI, triose phosphate isomerase; GADPH, 
glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglyceromutase; EN, enolase; 
PK, pyruvate kinase; LDH, lactate dehydrogenase. 
 

Parameterization of PFK and PK inhibition factors  
We hypothesized that additional inhibition of PFK and PK in electrically-silent skeletal muscle must 
be present. Hereto, inhibition factors in the form of Vmax scalars for PFK and PK were introduced into 
the model. Parameterization of these inhibition factors was performed based upon reported values 
of [G6P], [F-1,6P2] in resting skeletal muscle tissue (Table 2): first, steady state [G6P] was used to fine 
tune the PFK inhibition factor, next, [F-1,6P2] was used to fine tune the PK inhibition factor. [ADP] 
was used only for verification: for the identified inhibition factor values, steady state [ADP] was 
within the physiological range. The magnitude of the inhibition factors were estimated for two 
conditions: the upper and lower values of the estimated ATP consumption rate. This yielded an 
upper and lower bound on the estimate of the PFK and PK inhibition factor. The values of the 
inhibition factors and the corresponding steady state metabolite concentrations ([G6P], [F-1,6P2] 
and [ADP]) are listed in Table 3. 
 
Table 3. Estimated PFK and PK inhibition factor. PFK and PK inhibition factors were estimated for two conditions: the 
upper and lower boundary of the ATP consumption rate at rest, 0.75μM/s and 0.1μM/s, respectively, yielding an upper 
and lower boundary for the estimated PFK and PK inhibition factors. Steady state metabolite concentrations ([G6P], [F-
1,6P2] and [ADP]) predicted by the model that included the inhibition factors are also listed.  

 PFK inhibition PK inhibition [G6P] [mM] [F-1,6P2] [mM] [ADP] [mM] 

Upper bound 0.030 0.021 0.38 0.056 0.009 

Lower bound 0.0037 0.0027 0.40 0.052 0.010 

 
It was tested if introduction of the PFK and PK inhibition factors caused other state variables to go 
out of their physiological range. Hereto, the steady state metabolite concentrations were 
calculated for four cases: (i) no additional inhibition; (ii) inhibition of PFK and PK; (iii) inhibition of 
PFK; (iv) inhibition of PK. Steady state metabolite concentrations were determined using a Monte 
Carlo approach. Parameter distributions were assumed for PFK inhibition factor (0.0037 – 0.030, 
Table 3), PK inhibition factor (0.0027 – 0.021, Table 3) and ATPase rate (0.1 – 0.75 μM/s, see section 
Methods). The results represented by the mean ± SD of the solution space of 5000 simulation runs 
and initial model conditions are listed in Table 4. Initial model conditions were set by Lambeth and 
Kushmerick and represent consensus literature values. Adding PFK and PK inhibition resulted in 
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improved predictions of steady state [G1P], [G6P], [F6P] and [F-1,6P2]. PFK inhibition was 
responsible for the changes observed in [G1P], [G6P], [F6P], whereas PK inhibition was responsible 
for the changes observed in [F-1,6P2]. Predictions of other state variables were not dramatically 
improved or distorted compared to model simulations without inhibition. 
 

Effect of PFK and PK deactivation on recovery dynamics  
Metabolite concentration dynamics during recovery were calculated for the adapted model 
featuring PFK and PK deactivation mechanisms. Simulations were run in a Monte Carlo approach. 
Parameter distributions were assumed for glycogen production flux (0 – 0.75μM/s), ATPase rate 
(0.01 – 0.0001mM/s), PFK inhibition factor (0.0037 – 0.030, Table 3) and PK inhibition factor (0.0027 
– 0.021, Table 3).  HMP dynamics were calculated for the case of both PFK + PK inhibition and PFK 
inhibition only and are shown in Figures 6A and B, respectively. In both cases model predictions 
agreed well with the experimental data. Figures 6C and D show the model predictions of steady 
state [G6P], [F1,6P2] and [ADP] relative to the literature value, in case of PFK and PK deactivation 
(Figure 6C) and only PFK inhibition (Figure 6D). The results were normalized by dividing model 
predictions by the reported literature value. The black line represents the target value of 1, which 
corresponds to ideal situation of a perfect agreement between literature value and model 
prediction. The results show that in case of only PFK deactivation, the model failed to correctly 
predict [F-1,6P2] at steady state indicating both PFK and PK deactivation must be present in resting 
skeletal muscle. Finally, it was investigated if inhibition of all glycolytic enzymes other than PFK and 
PK by 99% or reduced inhibition of PFK and PK (80%) could produce similar results. In either case, 
the HMP dynamics were similar to the original model and did not agree with experimental data 
(data not shown).  
 
 
 

DISCUSSION 
 

The main and novel result of the present investigation of muscle glycolysis was the identification of 
a principal role for the regulation of PFK and PK activity in silencing of glycolytic flux in non-
contracting muscle. Below, these results and possible regulatory mechanisms that may be involved 
in PFK and PK activity control are discussed together with several methodological aspects of the 
study.  
 

Experimental observations 
 The dynamics observed in the PME domain of the NMR spectrum were attributed to G6P, F6P, G1P 
conform to previous studies (1,16). The accumulation of G6P observed during the high intensity in-
magnet exercise protocol agreed with measurements based upon the analysis of muscle biopsy 
samples obtained after high intensity dynamical exercise (31,47,48,53). Essen and Kaijser collected 
five biopsy samples during the first 180 seconds of the recovery period (48) to determine the [G6P] 
dynamics. They also reported [G6P] peaks after about 30 seconds (48). Moreover, the measured 
rate of G6P consumption (0.007±0.001mM/s) agreed well with the rate that we determined non-
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invasively by 31P MRS (0.006±0.001mM/s). The G6P consumption rate was obtained by applying the 
computational model to decompose the measured HMP consumption rate (0.009±0.001mM/s) by 
predicting individual G6P (0.006±0.001 mM/s), G1P (0.0004±0.0002 mM/s), F6P (0.003±0.002 mM/s) 
consumption rates.   
 
Table 4. Model predictions of resting steady state metabolite concentrations. Steady state metabolite concentrations 
calculated for four cases: (i) no additional inhibition (original model); (ii) PFK and PK inhibition; (iii) PFK inhibition; (iv) PK 
inhibition. * indicates improved model prediction as a result of PFK and PK inhibition. $ indicates improved model 
prediction as a result of PFK inhibition. # indicates improved model prediction as a result of PK inhibition. 

State 
variable 

Initial 
conditionsa,b 

[mM] 

Original model 
[mM] (mean±SD) 

PFK and PK 
inhibition [mM] 

(mean±SD) 

PFK inhibiton 
[mM] 

(mean±SD) 

PK inhibition 
[mM] 

(mean±SD) 

G1P 0,059 0,00056± 
0,00024 

0,025±0,011 * 0,025±0,012 $ 0,00057±0,00025 

G6P 0,75 0,0094±0,0040 0,41±0,19 * 0,41±0,20 $ 0,0094± 0,0041 

F6P 0,23 0,0042±0,0018 0,18±0,086 * 0,19±0,089 $ 0,0042±0,0018 

F-1,6P2 0,072 0,00028± 
0,00020 

0,18±0,30 * 2,46e-5±1,42e-5 0,41±0,46 # 

DHAP 0,076 0,0011± 
0,00045 

0,020±0,022 0,00027±0,00011 0,037±0,026 

GAP 0,036 0,021±,0087 0,39±0,43 0,0053± 0,0021 0,71±0,50 

13BPG 0,065 0,0043± 
3,97e-5 

0,0032±0,00071 0,0025±
 0,0005

8 

0,0037±0,0010 

P3G 0,052 0,13±0,00021 0,20±0,042 0,12±0,0074 0,21±0,042 

P2G 0,0050 0,024±3,69e-5 0,036±0,0076 0,021±0,0013 0,039±0,0076 

PEP 0,019 0,012±1,45e-5 0,018±0,0037 0,010±0,00066 0,019±0,0037 

PYR 0,099 0,065±5,05e-5 0,012±0,015 0,088±0,010 0,0051±0,0096 

LAC 1,3 0,84±0,36 0,84±0,36 0,84±0,36 0,84±0,36 

ATP 8,2 8,20±5,0e-5 8,20±0,0046 8,21±0,0013 8,20±0,0051 

ADP 0,013 0,0045±5,0e-5 0,0098±0,0046 0,0070±0,0013 0,0095±0,0051 

AMP 2,0e-05 1,13e-6±2,5e-8 6,49e-6± 
6,94e-6 

2,82e-6±1,11e-6 6,47e-6±7,75e-6 

Pi 4,1 1,82±0,022 3,79±1,35 3,02±0,60 3,36±1,43 

PCr 34,7 38,26±0,037 34,85±2,56 36,49±0,89 35,09±2,89 

NAD 0,50 0,50±0,00017 0,47±0,044 0,50±0,00011 0,46±0,048 
aSee Refs: (54-57)  
bConcentration unreported for skeletal muscle. Estimated values are based upon orders of magnitude seen in other cell 
types. 
 

Model parameterization  
The Lambeth and Kushmerick model of muscle glycogenolysis, like the majority of computational 
models of metabolism (e.g.,(4,6)), contains specific values for all model parameters. The lack of 
information on the exact value of the ATP consumption and glycogen synthesis rates in human 
quadriceps muscle during recovery following exhaustive exercise as well as the postulated PFK and 
PK inhibition factors, however, warranted the use of an alternative approach in the present study. 
Instead of single values, simulations of our adapted model of muscle glycogenolysis were 
performed using a range of values for this particular subset of the model parameters. This allowed 
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investigation of the sensitivity of the model predictions to uncertainties in the value of each of 
these model parameters. Indeed, the predictions of HMP dynamics by the tested adaptations of the 
Lambeth and Kushmerick model that included additional PFK and PK inhibition were sensitive to 
these uncertainties (Figure 6A, B). However, the resulting solution space was still sufficiently narrow 
to allow for detection of improvement of the model predictions after inclusion of the postulated 
additional strong PFK and PK inactivation in non-contracting muscle. Conversely, it allowed for 
validation of the model adaptations by comparison of the simulations to the recorded in vivo HMP 
dynamics. On basis of these findings, we conclude that, in this particular case, the limited 
incorporation of uncertainties in parameter values in a deterministic computational model of a 
biological network through the use of parameter value ranges instead of single parameter values 
was beneficial. Any generic value of this particular model parameterization strategy in 
computational biology remains to be established.   
 

 
Figure 6. Hexose monophosphate recovery dynamics (A and B) and steady-state G6P, F-1,6P2 and ADP relative to 
literature values (C and D), predicted for the case of both PFK and PK inhibition (A and C) and only PFK inhibition (B and 
D). Model predictions of HMP dynamics were calculated by summation of G1P, G6P and F6P dynamics. The solution 
space (shaded area) is indicated by the mean±SD of the 5000 simulations that were run in a Monte Carlo approach. 
Experimental data represent the pooled results of all eight subjects (n = 8); error bars are omitted for clarity of 
presentation. The values of the steady-state G6P, F-1,6P2 and ADP relative to literature values were calculated by dividing 
steady-state model predictions by the mean value reported in literature as listed in Table 2. 
 

Model adaptation: PFK inhibition  
We used model predictions of steady state [ADP], [G6P] and [F-1,6P2] in combination with 
measurements of the concentrations of these metabolites in resting human skeletal muscle tissue 
to identify and parameterize the inhibition factors. As the HMP dynamics were not used in this 
methodology, they provided an independent dataset that could be used for testing the model 
adaptations. Comparison of Figures 4 and 6 shows the clear improvement of model predictions as 
a result of addition of the deactivation mechanisms. This improvement was attributed to the 
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addition of the PFK inhibition factor; not including PK inhibition did not affect predicted HMP 
dynamics, Figure 6A,B. The comparison of HMP model predictions and experimental data provides 
validation of the model adaptations with respect to PFK inhibition.  

Previous studies of silencing of glycolysis in resting muscle have proposed direct or indirect 
(i.e., via a kinase / phosphatase network) inactivation of key glycolytic enzymes by a drop in 
intracellular Ca2+ to explain their experimental observations. Alternatively, PFK deactivation may be 
explained by detachment from the cytoskeleton (13-15). Yet another possible mechanism may be 
related to pH. Specifically, Hand and Somero measured PFK activity as a function of pH at different 
temperatures in Spermophilus beecheyi (58). They found that at pH 6.8 (temperature 37 ºC), there 
was no inhibition of pH on PFK (PFK activity 95% of Vmax), whereas at pH 6.5 PFK activity was nearly 
fully inhibited (PFK activity 5% of Vmax). During the initial phase of recovery, pH dropped from 6.8 to 
6.5 within seconds (Figure 3). As such, pH may have a regulatory function in the work to rest 
transitions. However, it can not explain the deactivation of PFK in a normal resting skeletal muscle 
(pH: 7.05) and therefore we concluded that a pH related mechanism of PFK deactivation cannot be 
the primary mechanism. 
 

Model adaptation: PK inhibition.  
Predictions of resting steady state [F-1,6P2] according to the model with only PFK inhibition were 
over ten thousand times smaller than experimentally determined. Computational analysis of 
inhibition of individual glycolytic enzymes indicated PK inactivation must be present in resting 
skeletal muscle tissue to rise resting [F-1,6P2]. However, no Ca2+ mediated PK inactivation 
mechanism has been reported. Model simulations of recovery dynamics of both PFK and PK 
inhibition and only PFK inhibition showed no difference in predicted HMP dynamics. [F-1,6P2] 
dynamics were however more affected. These predictions provide valuable information about the 
mechanisms of PK inhibition. Analysis of muscle biopsy samples taken after intense exercise 
showed only a twofold increase in [F-1,6P2] from 0.05mM to 0.1mM respectively (48,49). Immediate 
inactivation of both PFK and PK predicted a solution space of [F-1,6P2] accumulation larger than 
experimentally observed, whereas only PFK inhibition predicted a solution space more consistent 
with experimental data. These results indicated that PK inhibition is not present at the onset of the 
recovery period and the deactivating mechanisms is not as fast as PFK inhibition and thus probably 
also not Ca2+ mediated. Feed forward regulation of PK activity by [F-1,6P2] is a well known 
mechanism (59-61) that can explain the PK inhibition at rest. All mammalian PK iso-enzymes are 
sensitive for allosteric regulation of F-1,6P2 except for isoenzyme M1 (59-61), which is the iso-
enzyme found in mammalian skeletal muscle tissue (59-61). However, there is also evidence that a 
single amino acid substitution in the M1 isoenzyme can turn it into an allosteric regulated enzyme 
(62). It is not inconceivable that under in vivo conditions other factors, e.g. metabolites, signalling 
molecules, cause a small conformation change which activates the allosteric regulation in the M1 
isoenzyme. This investigation indicated PK inhibition must occur in parallel to PFK inhibition, albeit 
at a much slower timescale. The underlying mechanism, however, remains to be determined.  
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Silencing of glycolysis in muscle: hypothesis  
The present finding of a slow HMP consumption rate in muscle in the post-exercise state agreed 
well with the observation that in spite of high substrate (ADP, Pi) and activator (AMP) levels, 
glycolytic flux is silenced in non-contracting muscle (16-21). Quistorff et al. did not detect any 
accumulation of HMP during ischemic recovery from which they concluded glycogen 
phosphorylase must be regulated in concert with glycolysis (18). This hypothesis was later refuted 
by results reported by Crowther et al. who found that glycolytic flux was silenced despite a 
significant increase in HMP (>3mM) (20,21). Instead, these results indicated that the deactivation of 
glycolytic flux is controlled at one or more sites downstream of glycogenolysis. Our results confirm 
the findings of Crowther et al. (20,21). Moreover, our computational analysis of metabolite 
concentrations in resting skeletal muscle, validated by reproduction of the HMP dynamics, has for 
the first time identified the most likely sites of this regulation (i.e., PFK and PK) as well as the 
physiological significance of these controls for the skeletal muscle resting state. Specifically, the 
simulations suggest that the inactivation of PFK and PK in non-contracting muscle is necessary for 
cellular metabolite concentration control by preventing depletion of ADP and Pi and associated 
negative effects on other cellular processes including mitochondrial ATP synthesis. Furthermore, 
glycolytic intermediates like G1P, G6P, F6P, F-1,6P2 and DHAP would also be depleted affecting 
fluxes through other branches of the glycolytic pathway. The precise mechanisms involved in the 
rapid deactivation of PFK and the slower deactivation of PK in skeletal muscle indicated by the 
present study to occur in the post-exercise state remain, however, to be elucidated. 

 
Model limitations  

All of the above should be viewed in the context of the limitations of the model simulations. In the 
process of developing computational models very often model parameterization is based upon 
data obtained from different species and or cell types (e.g. (63-65)). Here, we have dealt with this 
problem numerically by performing Monte Carlo simulations to probe the effect of small changes 
in parameter values on simulation results. A further improvement can be made by determining the 
glycolytic enzyme kinetic parameters of human quadriceps muscle.  In addition, incorporation of 
knowledge on the pH dependency of these enzyme kinetics (66) would also further improve the 
basis for the generated hypothesis. Specifically, the NMR data provides quantitative information on 
in vivo muscle pH dynamics that can be used in the computations. With the current model we were 
not able to exploit this data. Finally, the numerical analysis indicated that additional PFK and PK 
deactivation must be present to explain the recorded HMP dynamics. The current model could not 
be used to reveal the precise biochemical implementation of this deactivation. As discussed above, 
the numerically identified hypothesis relates to the work of others indicating a potential role for 
Ca2+ mediated binding of PFK to the cytoskeleton. It can, however, not be ruled out that other 
(unknown) metabolic feedback loops not included in the model, may also  contribute  to the 
predicted magnitude of PFK and PK deactivation. Experimental identification of these control loops 
and addition of this information into future models can be used to gain quantitative insight in 
relative contribution of these feedback loops to the deactivation mechanisms.     
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Summary 
In vivo magnetic resonance spectroscopy revealed a large accumulation of hexosemono-
phosphates during exercise and a subsequent slow turnover during metabolic recovery. 
Computational modelling was used to relate these experimental observations to the control 
mechanisms of the underlying metabolic pathways. Following this approach, the experimental 
observations were translated into a new hypothesis that silencing of glycolysis in skeletal muscle 
tissue involves inactivation of both PFK as well as PK.  



Silencing of glycolysis in muscle 

 

41 

REFERENCES 
 

 1.  Walter G, Vandenborne K, Elliott M and Leigh JS. In vivo ATP synthesis rates in single human muscles during high intensity 
exercise. J Physiol 519 Pt 3: 901-910, 1999 

 2.  Blei ML, Conley KE and Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J 
Physiol 465: 203-222, 1993 

 3.  Lambeth MJ, Kushmerick MJ. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30: 808-827, 
2002 

 4.  Dash RK, Li Y, Kim J, Beard DA, Saidel GM and Cabrera ME. Metabolic dynamics in skeletal muscle during acute reduction 
in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model. PLoS ONE 
3: e3168, 2008 

 5.  Selivanov VA, de AP, Centelles JJ, Cadefau J, Parra J, Cusso R, Carreras J and Cascante M. The changes in the energy 
metabolism of human muscle induced by training. J Theor Biol 252: 402-410, 2008 

 6.  Beard DA. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 1: 
e36, 2005 

 7.  Magnus G, Keizer J. Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Physiol 273: C717-C733, 1997 
 8.  Vicini P, Kushmerick MJ. Cellular energetics analysis by a mathematical model of energy balance: estimation of parameters 

in human skeletal muscle. Am J Physiol Cell Physiol 279: C213-C224, 2000 
 9.  Beard DA, Bassingthwaighte JB and Greene AS. Computational modeling of physiological systems. Physiol Genomics 23: 1-

3, 2005 
 10.  Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van DK, 

Westerhoff HV et al.. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing 
biochemistry. Eur J Biochem 267: 5313-5329, 2000 

 11.  Frieden C. Protein-protein interaction and enzymatic activity. Annu Rev Biochem 40: 653-696, 1971 
 12.  Winkel BS. Metabolic channeling in plants. Annu Rev Plant Biol 55: 85-107, 2004 
 13.  Lilling G, Beitner R. Altered allosteric properties of cytoskeleton-bound phosphofructokinase in muscle from mice with X 

chromosome-linked muscular dystrophy (mdx). Biochem Med Metab Biol 45: 319-325, 1991 
 14.  Marinho-Carvalho MM, Zancan P and Sola-Penna M. Modulation of 6-phosphofructo-1-kinase oligomeric equilibrium by 

calmodulin: formation of active dimers. Mol Genet Metab 87: 253-261, 2006 
 15.  Marinho-Carvalho MM, Costa-Mattos PV, Spitz GA, Zancan P and Sola-Penna M. Calmodulin upregulates skeletal muscle 

6-phosphofructo-1-kinase reversing the inhibitory effects of allosteric modulators. Biochim Biophys Acta, 2009 
 16.  Dawson MJ, Gadian DG and Wilkie DR. Studies of the biochemistry of contracting and relaxing muscle by the use of 31P 

n.m.r. in conjunction with other techniques. Philos Trans R Soc Lond B Biol Sci 289: 445-455, 1980 
 17.  Taylor DJ, Bore PJ, Styles P, Gadian DG and Radda GK. Bioenergetics of intact human muscle. A 31P nuclear magnetic 

resonance study. Mol Biol Med 1: 77-94, 1983 
 18.  Quistorff B, Johansen L and Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic 

recovery. Biochem J 291 ( Pt 3): 681-686, 1993 
 19.  Wackerhage H, Hoffmann U, Essfeld D, Leyk D, Mueller K and Zange J. Recovery of free ADP, Pi, and free energy of ATP 

hydrolysis in human skeletal muscle. J Appl Physiol 85: 2140-2145, 1998 
 20.  Crowther GJ, Carey MF, Kemper WF and Conley KE. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am 

J Physiol Endocrinol Metab 282: E67-E73, 2002 
 21.  Crowther GJ, Kemper WF, Carey MF and Conley KE. Control of glycolysis in contracting skeletal muscle. II. Turning it off. Am 

J Physiol Endocrinol Metab 282: E74-E79, 2002 
 22.  Jeneson JA, Schmitz JP, Hilbers PA and Nicolay K. An MR-compatible bicycle ergometer for in-magnet whole body human 

exercise testing. J Magn Reson , 2009. 
 23.  Vanhamme L, van den BA and Van HS. Improved method for accurate and efficient quantification of MRS data with use of 

prior knowledge. J Magn Reson 129: 35-43, 1997 
 24.  Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P and Radda GK. Energetics of human muscle: exercise-

induced ATP depletion. Magn Reson Med 3: 44-54, 1986 
 25.  Tobin RB, Mackerer CR and Mehlman MA. pH effects on oxidative phosphorylation of rat liver mitochondria. Am J Physiol 

223: 83-88, 1972 
 26.  Scopes RK. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by 

anaerobic glycolysis. Biochem J 134: 197-208, 1973 
 27.  Brand MD. The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33: 897-904, 2005 
 28.  Bradley SJ, Kingwell BA and McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow 

during dynamic exercise in humans. Diabetes 48: 1815-1821, 1999 
 29.  Jensen MD, Nguyen TT, Hernandez MA, Johnson CM and Murray MJ. Effects of gender on resting leg blood flow: 

implications for measurement of regional substrate oxidation. J Appl Physiol 84: 141-145, 1998 
 30.  Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD and Brooks GA. Evaluation of exercise and training on 

muscle lipid metabolism. Am J Physiol 276: E106-E117, 1999 
 31.  Katz A, Broberg S, Sahlin K and Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol 

251: E65-E70, 1986 
 32.  Bergman BC, Butterfield GE, Wolfel EE, Lopaschuk GD, Casazza GA, Horning MA and Brooks GA. Muscle net glucose 

uptake and glucose kinetics after endurance training in men. Am J Physiol 277: E81-E92, 1999 
 33.  Enevoldsen LH, Simonsen L and Bulow J. Postprandial triacylglycerol uptake in the legs is increased during exercise and 

post-exercise recovery. J Physiol 568: 941-950, 2005 



Chapter 2 

 

42 

 34.  Durham WJ, Miller SL, Yeckel CW, Chinkes DL, Tipton KD, Rasmussen BB and Wolfe RR. Leg glucose and protein 
metabolism during an acute bout of resistance exercise in humans. J Appl Physiol 97: 1379-1386, 2004 

 35.  Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP and Tipton IH. Report of the Task Group on Reference Man. 
Oxford, UK: Pergamon Press, 1975 

 36.  Gerber G, Preissler H, Heinrich R and Rapoport SM. Hexokinase of human erythrocytes. Purification, kinetic model and its 
application to the conditions in the cell. Eur J Biochem 45: 39-52, 1974 

 37.  Wilson JE. Hexokinases. Rev Physiol Biochem Pharmacol 126: 65-198, 1995 
 38.  Price TB, Rothman DL, Taylor R, Avison MJ, Shulman GI and Shulman RG. Human muscle glycogen resynthesis after 

exercise: insulin-dependent and -independent phases. J Appl Physiol 76: 104-111, 1994 
 39.  Shonk CE, KOVEN BJ, Majima H and Boxer GE. Enzyme patterns in human tissues II. Glycolytic enzyme patterns in 

nonmalignant human tissues. Cancer Res 24: 722-731, 1964 
 40.  Shonk CE, Boxer GE. Enzyme patterns in human tissues I. Methods for the determination of glycolytic enzymes. Cancer Res 

24: 709-721, 1964 
 41.  Rolleston FS, Newsholme EA. Control of glycolysis in cerebral cortex slices. Biochem J 104: 524-533, 1967 
 42.  Eanes WF, Merritt TJ, Flowers JM, Kumagai S, Sezgin E and Zhu CT. Flux control and excess capacity in the enzymes of 

glycolysis and their relationship to flight metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A 103: 19413-19418, 
2006 

 43.  Jeneson JA, Wiseman RW, Westerhoff HV and Kushmerick MJ. The signal transduction function for oxidative 
phosphorylation is at least second order in ADP. J Biol Chem 271: 27995-27998, 1996 

 44.  Rosing J, Slater EC. The value of G degrees for the hydrolysis of ATP. Biochim Biophys Acta 267: 275-290, 1972 
 45.  Hancock CR, Brault JJ, Wiseman RW, Terjung RL and Meyer RA. 31P-NMR observation of free ADP during fatiguing, 

repetitive contractions of murine skeletal muscle lacking AK1. Am J Physiol Cell Physiol 288: C1298-C1304, 2005 
 46.  Jeneson JA, Bruggeman FJ. Robust homeostatic control of quadriceps pH during natural locomotor activity in man. FASEB J 

18: 1010-1012, 2004 
 47.  Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C and Hultman E. The metabolic responses of human 

type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478 ( Pt 1): 149-155, 1994 
 48.  Essen B, Kaijser L. Regulation of glycolysis in intermittent exercise in man. J Physiol 281: 499-511, 1978 
 49.  Katz A, Lee AD. G-1,6-P2 in human skeletal muscle after isometric contraction. Am J Physiol 255: C145-C148, 1988 
 50.  Roef MJ, Reijngoud DJ, Jeneson JA, Berger R and de MK. Resting oxygen consumption and in vivo ADP are increased in 

myopathy due to complex I deficiency. Neurology 58: 1088-1093, 2002 
 51.  Chen JT, Argov Z, Kearney RE and Arnold DL. Fitting cytosolic ADP recovery after exercise with a step response function. 

Magn Reson Med 41: 926-932, 1999 
 52.  van den Broek NM, De Feyter HM, de GL, Nicolay K and Prompers JJ. Intersubject differences in the effect of acidosis on 

phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol Cell 
Physiol 293: C228-C237, 2007 

 53.  Sahlin K, Katz A and Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. 
Biochem J 245: 551-556, 1987 

 54.  Arnold H, Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem 6: 163-171, 1968 
 55.  Cheetham ME, Boobis LH, Brooks S and Williams C. Human muscle metabolism during sprint running. J Appl Physiol 61: 54-

60, 1986 
 56.  Harris RC, Hultman E and Nordesjo LO. Glycogen, glycolytic intermediates and high-energy phosphates determined in 

biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33: 
109-120, 1974 

 57.  Sahlin K. NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch 403: 193-196, 1985 
 58.  Hand SC, Somero GN. Phosphofructokinase of the hibernator Citellus beecheyi: temperature and pH regulation of activity 

via influences on the tetramer-dimer equilibrium. Physiological zoology 56: 380-388, 1983 
 59.  Hall ER, Cottam GL. Isozymes of pyruvate kinase in vertebrates: their physical, chemical, kinetic and immunological 

properties. Int J Biochem 9: 785-793, 1978 
 60.  Valentini G, Chiarelli L, Fortin R, Speranza ML, Galizzi A and Mattevi A. The allosteric regulation of pyruvate kinase. J Biol 

Chem 275: 18145-18152, 2000 
 61.  Fothergill-Gilmore LA, Michels PA. Evolution of glycolysis. Prog Biophys Mol Biol 59: 105-235, 1993 
 62.  Ikeda Y, Tanaka T and Noguchi T. Conversion of non-allosteric pyruvate kinase isozyme into an allosteric enzyme by a single 

amino acid substitution. J Biol Chem 272: 20495-20501, 1997 
 63.  Wu F, Yang F, Vinnakota KC and Beard DA. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative 

phosphorylation, metabolite transport, and electrophysiology. J Biol Chem 282: 24525-24537, 2007 
 64.  Cortassa S, Aon MA, Marban E, Winslow RL and O'Rourke B. An integrated model of cardiac mitochondrial energy 

metabolism and calcium dynamics. Biophys J 84: 2734-2755, 2003 
 65.  Nguyen MH, Jafri MS. Mitochondrial calcium signaling and energy metabolism. Ann N Y Acad Sci 1047: 127-137, 2005 
 66.  Vinnakota K, Kemp ML and Kushmerick MJ. Dynamics of muscle glycogenolysis modeled with pH time course 

computation and pH-dependent reaction equilibria and enzyme kinetics. Biophys J 91: 1264-1287, 2006 

 
 
  



Silencing of glycolysis in muscle 

 

43 

 



 



 

 

 

 
 
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Adapted from 
 

J.P.J. Schmitz, W. Groenendaal, B. Wessels, R.W. Wiseman 

 P.A.J. Hilbers, K. Nicolay, J.J. Prompers, J.A.L. Jeneson, N.A.W. van Riel  

Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle 
(submitted) 

Combined in vivo and in silico investigations of 

activation of glycolysis in contracting skeletal muscle 

 

Chapter  



Chapter 3 

 

46 

 

 
 
 

ABSTRACT 
 

The hypothesis was tested that the variation of in vivo glycolytic flux with contraction frequency in 
skeletal muscle can be qualitatively and quantitatively explained by calcium-calmodulin activation 
of phosphofructokinase (PFK). Ischemic rat tibialis anterior muscle was electrically stimulated at 
frequencies between 0 and 80 Hz to co-vary the ATP turnover rate and calcium concentration in 
the tissue. Estimates of in vivo glycolytic rates and cellular free energetic states were derived from 
dynamic changes in intramuscular pH and phosphocreatine content, respectively, determined by 
phosphorus magnetic resonance spectroscopy (31P MRS). Computational modeling was applied to 
relate these empirical observations to understanding of the biochemistry of muscle glycolysis. 
Hereto, the kinetic model of PFK activity in a previously reported mathematical model of the 
glycolytic pathway was adapted to contain a calcium-calmodulin binding sensitivity. The two main 
results were: introduction of regulation of PFK activity by binding of a calcium – calmodulin 
complex in combination with activation by increased concentrations of AMP and ADP was essential 
to qualitatively and quantitatively explain the experimental observations. Secondly, the model 
predicted that shutdown of glycolytic ATP production flux in muscle post-exercise may lag behind 
deactivation of PFK (timescales: 5-10 s versus 100 – 200 ms, respectively) as a result of 
accumulation of glycolytic intermediates downstream of PFK during contractions.  
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INTRODUCTION 
 
Glycolysis plays a central role in catabolism and anabolism for all cell types (1,2). Identification of 
regulatory mechanisms has been important to many areas of biomedical research, ranging from 
basic understanding of the biochemistry of carbohydrate utilization to applications in 
biotechnology (3) and drug development for cancer therapies (4). In mammalian cells, skeletal 
muscle has been a key experimental model to study the regulation of glycolysis and 
glycogenolysis. It can increase the glyco(geno)lytic ATP production flux by two orders of 
magnitude during rest to work transitions on a timescale of seconds (5). This exceptionally broad 
and dynamic operational range of glyco(genol)ytic flux puts a high duty cycle upon the control 
mechanism(s) of this pathway. 

Several approaches have been used to elucidate the underlying regulatory mechanisms 
including physical isolation and in vitro kinetic characterization of individual enzymes from skeletal 
muscle providing a wealth of information on the individual components of this pathway (6). The 
application of non-invasive, non-destructive investigative techniques such as in vivo nuclear 
magnetic resonance spectroscopy (MRS) have since allowed studying the behavior of the intact 
pathway in muscle (7). For example, it has been demonstrated that glycolytic flux rapidly shuts 
down in the absence of muscle contraction (8-12). More recently, computational modeling 
approaches have been used to integrate the accumulated knowledge base at the molecular level 
including quantitative formulation of hypotheses on regulatory mechanisms with in vivo flux 
measurements to test this knowledge base against empirical data (6). 

The precise biochemical mechanisms underlying the rapid shutdown of glycolysis in 
muscle upon termination of muscle contraction have remained poorly understood (6,chapter 2).In 
chapter 2 we showed that reproducing this particular pathway characteristic solely on the basis of 
known in vitro enzymes kinetics is not possible. Specifically, silencing of glycolysis in non-
contracting muscle requires rapid deactivation of the key crossover enzymes phosphofructokinase 
(PFK) and pyruvate kinase (PYK) in the pathway (chapter 2). The regulation at the level of PFK was 
predicted to have a dominant role in glycolytic flux control, while in contrast the regulation of PYK 
was found to be more relevant to glycolytic metabolite concentration control particularly with 
respect to intermediate metabolites downstream of PFK. A mechanism that may explain the 
wanting additional regulation at the level of PFK is calcium - calmodulin mediated activation of this 
enzyme by binding of PFK to e.g. cytoskeleton and the contractile proteins (14-16). Whether or not 
this mechanism is qualitatively and quantitatively sufficient to reconcile the observed 
characteristics in vivo remains to be tested.  

Here, this question was further investigated. Testing of the PFK calcium activation 
hypothesis is, however, not straightforward for practical reasons. On the one hand, the (i) 
complexity of muscle cell structure (e.g. cytoskeletonal localization) and (ii) ancillary processes (e.g. 
fast calcium release and uptake and calcium – calmodulin signaling) are difficult to include in an in 
vitro experimental system. On the other hand, in vivo experiments likewise suffer from practical 
limitations. These include the fact that (i) the pathway can only be studied as an integrated system, 
(ii) few biochemical indicators are available to evaluate glycolytic output (for example intermediate 
metabolite concentrations are often unknown), (iii) there is only limited control of individual 
variables (metabolite levels often co-vary with changes in flux (9,10) and, (iv) pathway flux may 
change with negligible variations in steady state metabolite concentrations.  
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 To overcome these limitations, the present investigation of calcium regulation of PFK 
activity in skeletal muscle via PFK - calmodulin interaction has employed an integrative approach 
of combining in vivo measurements of pathway behavior and the extensive database of known 
enzyme kinetics embedded in a computational model. The in vivo read-outs were acquired in rat 
using 31P-MRS of the ischemic tibialis anterior (TA) evoking contractions at different duty cycles, 
thereby inducing varying conditions of myocellular calcium concentration and glycolytic flux. The 
objective of the modeling studies was to reproduce both metabolite and pH dynamics for these 
different electrically-induced contraction protocols and test whether pathway regulation proposed 
within the computational model was consistent with the measured physiologic behavior. It is 
shown that introduction of regulation of PFK activity by binding of a calcium – calmodulin complex 
in combination with classic AMP and ADP activation was qualitatively and quantitatively necessary 
and sufficient for model predictions to be consistent with in vivo behavior.  
 
 
 

METHODS 
 

Study design 
 

The principal aim of this study was to investigate the regulation of glycolysis in muscle in vivo 
through the use of an integrated approach of experiments and computational modeling. The 
experimental work involved 31P MR spectroscopy of the exercising rat TA muscle. To prevent 
complications from oxidative ATP production all experiments were performed under conditions of 
ischemia. Different metabolic workloads and levels of calcium were applied by varying the 
frequency of muscle excitation. From these data measures for the metabolic status of the muscle 
(PCr concentration) and the glycolytic rate (deduced from pH dynamics) were determined. The aim 
of the modeling effort was to test if addition of calcium – calmodulin activation of PFK allowed the 
model to reproduce both metabolic state of the muscle (PCr concentration) and glycolytic rate (pH 
dynamics). The recorded dynamics of the sugar phosphates were used as input signal of the model 
(for detailed description see section: Pathway supply flux). Therefore the model for glycogenolysis 
does not contain a kinetic description of glycogen phosphorylase (GP). The dynamics of GP activity, 
including the activation of GP by calcium (17), were included in the experimentally determined 
input flux.  

 
Experimental methods 

 
Animals 

Adult male Wistar rats (385+/- 22 gram, 15 weeks old, n=28, Charles River Laboratories, France) 
were housed in groups at 20°C and 50% humidity, on a 12-h light dark cycle with ad libitum access 
to water and chow. Principles of laboratory animal care were followed and all experimental 
procedures were approved by the Animal Ethics Committee of Maastricht University, the 
Netherlands. During preparatory surgical procedures and MRS experiments, animals were 
anesthetized using 0.8-1.2% isoflurane (Forene, Abbot GmbH, Wiesbaden Germany) administered 
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via a face mask with medical air and oxygen (0.2 and 0.1 L/min respectively). Temgesic was used as 
analgesic (0.3mg/ml Temgesic in saline solution (1:10), 0.10 mg/kg, Schering-Plough). Body 
temperature was maintained at 37±1°C using heat pads and monitored by a custom build 
monitoring system. In the MR scanner, respiration was monitored using a pressure sensor 
registering thorax movement (Rapid Biomedical, Rimpar, Germany). Ischemia was applied by 
means of a silicone vessel loop (Identi Loops supermaxi blue, Dispo Medical), which was applied 
around the thigh to restrict blood flow in the leg.  

Contractions were induced by using electrical stimuli applied via acute, subcutaneously 
implanted platinum electrodes positioned along the distal nerve trajectory of the n. peroneus 
communis. Excitation of this nerve induced contraction in the TA, extensor digitorum longus (EDL), 
peroneus longus and brevis in the anterior compartment of the rat hind limb (18,19). Stimulation 
voltage ranged between 6-7 V, pulse length was 1 ms. Contractile duty cycles were varied over a 
range of frequencies (5, 10, 40, and 80Hz) and pulse train lengths, summarized in Table 1. For each 
group 4-5 successful measurements were obtained in different animals. All experiments were 
conducted under ischemic conditions. Successful occlusion of oxygen supply to the muscle was 
verified by the absence of any PCr and pH recovery in the 10 minutes after exercise. 

 
Table 1. Summary experimental groups 

Group 
Stimulation 

frequency (Hz) 
Pulse train length 

(#pulses) 
Pulse train 
length (s) 

Duration of the 
experiment (min) 

Group 1 (rest) No stimulation 120 min 
Group 2 1 5 5 20 min* 
Group 3 5 10 2 20 min* 
Group 4 10 10 1 20 min* 
Group 5 40 10 0.25 20 min* 
Group 6 40 20 0.5 20 min* 
Group 7 80 10 0.125 20 min* 

* protocol consisted out of 2 min rest, 8 min electrical stimulation, 10 min rest 

 
31P NMR acquisition parameters 

All MRS measurements were performed on a 6.3 T horizontal Bruker magnetic resonance 
spectrometer (MRS) (Bruker, Ettlingen, Germany). Phosphorus (31P) MRS was performed by using a 
two coil configuration. A circular 1H surface coil (40 mm) was used to adjust the magnetic field 
homogeneity using the available proton signal from water, while a smaller elliptical surface coil 
(10/18 mm) was positioned over the TA to acquire phosphorus data. 31P spectra were acquired 
applying an adiabatic excitation pulse with a flip angle of 90°. A fully relaxed spectrum (TR=20 s, 32 
averages) was measured at rest. A time series of spectra (TR = 5 s, 2 averages) before, during and 
after electrical stimulation of ischemic TA. A time series consisted of 2 minutes rest, 8 minutes 
stimulation and 10 minutes after stimulation. An exception was the experiment without 
stimulation (group 1, Table 1), which had a duration of 120 minutes.  
 

Coil sensitivity profile 
The sensitivity profile of the 31P coil was calculated from a 2D chemical shift imaging (CSI) dataset 
recorded in rest conditions with blood supply intact. 2D CSI acquisition parameters were: FOV, 
25x25 mm2; matrix size, 16x16 (reconstruction 32x32); TR=5000 ms; hamming weighted acquisition 
and post processing with 1800 scans in total, and adiabatic excitation pulse with a flip angle of 90° 
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(identical to the time series experiments). The intensity of the PCr peak was calculated for each 
voxel. The intensity of the PCr peak was integrated over the voxels of the muscle in which 
contractions were induced (TA, EDL and peroneus longus + brevis), and the voxels in which no 
contractions were induced. These calculations indicated that 75% of the signal detected by the 
surface coil, originated from contracting muscle. The residual signal (25%) was received from the 
non-contracting muscle. 
 

Data processing 
31P MR spectra were fitted in the time domain by using nonlinear least squares algorithm in the 
jMRUI software package (20). The PCr peak was fitted to a Lorentzian line shape. The inorganic 
phosphate (Pi) and phosphor-monoester (PME) peaks and α- and γ-ATP peaks were fitted to 
Gaussian line shapes. α- and γ-ATP peaks were fitted with equal peak areas. The β-ATP was not 
quantified because of concerns for the limited bandwidth of the excitation pulse. Absolute 
concentrations were calculated after correction for partial saturation with the assumption that the 
ATP concentration is 8.2 mM at rest (21,22). Intracellular pH was calculated from the chemical shift 
difference between the Pi and PCr resonances (δ; measured in part per million), according to Eq. 1 
(23). 

 





 


pH
3.27

6.75 log( )
5.63  

 (Eq. 1) 

 
The 31P coil received signal from both contracting muscle (75%) and non-contracting muscle (25%), 
(see paragraph on coil sensitivity profile). The metabolite dynamics in the contracting muscle were 
derived from the measured dynamics according to the following calculations. The signal received 
by the 31P MRS coil is described by equation Eq. 2. 
  

    observed contraction contraction non contracting non contractingX t X t F X t F( ) ( ) ( )  (Eq. 2) 

Where, Xobserved, , Xcontraction, Xnon-contracting, Fcontraction, Fnon-contracting denote the measured metabolite concentration, the metabolite 
concentration in contracting muscle, metabolite concentration in the non-contracting muscle, the fraction of the signal 
originating from contracting muscle and the fraction of the signal originating from non-contracting muscle, respectively.  

 
Fcontraction and Fnon-contracting were set according to the values determined from the 2D-CSI dataset: 0.75 
and 0.25, respectively. Xnon-contracting(t) was determined from the ischemia experiment without 
electrical muscle stimulation. According to this dataset ATPnon-contraction(t) could be assumed constant 
during the first 30 minutes at 8.2mM. PCrnon-contracting(t), Pinon-contracting(t) and PMEnon-contracting(t) during the 

first 30 minutes are well described by equations:    non contracting rest restPCr t PCr ATPase t( )
,

   non contracting rest restPi t Pi ATPase t( )
 
 and    non contractingPME t t( ) 0.92 0.000564 , with PCrrest, Pirest and 

ATPaserest set to 33.5 mM, 6.2 mM and 0.01 mM/s, respectively. By adding this information to Eq. 2, 
the equations for calculation of metabolite dynamics in the contracting muscle compartment 
become:   
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  (Eq. 3) 

 
Selection of data included in computational analysis 

The ATP hydrolysis rate was modeled by mass action kinetics, Eq. 4. Because the [ATP] is well 
buffered by creatine kinase at values close to 8.2 mM, effectively the ATP hydrolysis rate is assumed 
constant during exercise. The experimental data included in the numerical analyses were therefore 
limited to the part of the dataset for which it was verified that this assumption was not violated by 
the onset of fatigue. The ATP hydrolysis flux during the experiment was calculated as the sum of 
the PCr breakdown rate and the glycolytic ATP production. Estimation of glycolytic ATP production 
rate was performed by application of a phenomenological model described by Conley et al. (24). 
From these calculations it followed that the assumption of constant ATP hydrolysis rate was not 
violated for conditions of pH > 6.5. Therefore, model simulations were run until pH dropped below 
6.5.  
 

Computational methods 
 

Modeling glycolysis in skeletal muscle  
A previously developed detailed kinetic model of glycolysis in muscle was used as a basis of the 
computational analyses (25). A schematic overview of the model is shown in Figure 1. The model 
includes flux descriptions of the glycolytic enzymes: glycogen phosphorylase (GP), 
phosphoglucomutase (PGLM), phosphogluco-isomerase (PGI), phosphofructokinase (PFK), aldolase 
and triose phosphate isomerase (ALD and TPI), glycerol-3-phosphate dehydrogenase (G3PDH), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), 
phosphoglyceromutase and enolase (PGM and EN), pyruvate kinase (PYK), and lactate 
dehydrogenase (LDH). In addition, the model contained detailed reaction kinetics of cellular ATP 
buffering processes:  creatine kinase (CK) and adenylate kinase (AK). ATP hydrolysis was described 
by mass action kinetics, Eq. 4. 

 
 ATP Hydr ATP Hydrflux k ATP_ _ [ ]  (Eq. 4) 

 
During actual experimental conditions large acidifications in cytosolic pH were observed (7.2 – 6.2). 
The effects of varying proton concentration on enzyme kinetics, pH dependency of enzyme vmax 
and equilibrium constants were included when known. Furthermore, proton buffering by 
metabolites and proteins and other cell structures was modeled by assuming a constant cellular 
buffer capacity (proteins) and dynamical buffer capacity which was calculated from metabolite 
concentrations. The stoichiometry of proton production and consumption was included for all 



Chapter 3 

 

52 

modeled reactions in order to predict cellular proton accumulation. For further details on flux 
equations and kinetic parameter values we refer to the original work published  by Vinnakota and 
co-workers (25). Ordinary differential equations (ODE’s) were numerically solved using ODE15s, 
Matlab 7.5.0 (the Mathworks Inc., Natick, MA, USA)   

Several changes to the Vinnakota model were made: First, the temperature for the model 
simulations was set to 35° C. Since the original framework by Vinnakota et al. used vmax parameters 
determined at 25° C,  all vmax parameters were updated according to values determined at 37° C 
reported by Eagle and Scopes (26).  Second, ATP synthesis flux by oxidative phosphorylation was 
removed because the current experiments were conducted under ischemic conditions. Third, the 
model for pathway supply of phosphorylated glucose was changed and fourth, the kinetic model 
description of PFK was substituted by a new rate equation.  In the following sections the changes 
for the model for pathway supply flux and rate equations of PFK will be described in detail.  
 

 
 
Figure 1. Schematic overview of the computational model. Abbreviations denote: PGLM, phosphoglucomutase; PGI, 
phosphoglucoisomerase; PFK, phoshpofructokinase; ALD, aldolase; TPI, triose phosphate isomerase; GAPDH, 
glyceraldehydes-3-phosphate dehydrogeanse; G3PDH, glycerol-3-phosphate dehydrogenase; PGK, phosphoglycerate 
kinase; PGM, phosphoglyceromutase; EN, enolase; PYK, pyruvate kinase; LDH, lactate dehydrogenase; CK, creatine kinase; 
AK, adenylate kinase; ATPase, ATP hydrolysis; G1P, glucose-1-phosphate; G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; F1,6P2, fructose-1,6-biphophate; DHAP, dihydroxyacetone-phosphate; G3P, glycercol-3-phosphate; GAP, 
glyceraldehydes-3-phosphate; 13BPG, 1,3-biphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, 
phosphoenolpyruvate; PYR, puryvate; LAC, lactate; PCr, phosphocreatine; Cr, creatine; ADP, adenosine-diphospate; ATP, 
adenosine-triphosphate; Ca2CaM, calcium-calmodulin complex; AMP, adenosine-monophosphate; Pi, inorganic 
phosphate; HX, protons bound to cellular proton buffer. 

G3P
G3PDH
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Pathway supply flux 
The original model described by Vinnakota et al. included glycogen phosphorylase (GP) to account 
for the pathway supply flux. However, model simulations revealed that the dynamic range of the 
GP model was insufficient to predict a realistic flux through this pathway (data not shown). This 
model behavior was probably due to lack of allosteric interactions of G6P in the flux descriptions 
and enzyme phosphorylation dynamics. At the moment, no better validated, detailed model of GP 
is available. Therefore it was chosen to deduce pathway influx from our own experimental data. For 
conditions of constant ATP, it was assumed that the PME resonance represented the summed 
concentration of G1P, G6P and F6P, which is in accordance with reports from other investigators 
(5,11). The PME dynamics were well described by a linear function (data not shown). The derivative 
of this linear function was used to model the G1P input flux. The coefficients of the linear relation 
are provided in Table 2. It was assumed that all pathway influx was due to glycogen breakdown. 
The contribution of hexokinase was assumed negligible due to the complete occlusion of muscle 
blood flow blocking glucose supply to the muscles.  
 
Table 2. Linear fit to observed PME dynamics 

Group [PME] t = 0 (mM) Slope (mM s-1)

Group 1 (rest) 0.9 0.00056 
Group 2 (1 Hz) 1.5 0.010 
Group 3 (5 Hz) 1.5 0.022 
Group 4 (10 Hz) 1.5 0.023 
Group 5 (40 Hz) 1.5 0.019 
Group 6 (40 Hz) 1.5 0.019 
Group 7 (80 Hz) 1.5 0.015 

 
Calcium- calmodulin mediated activation of PFK   

The PFK model was substituted by the pseudorandom order, statistical inhibition model originally 
developed by Waser et al. (27) and adapted by Connett (28). In this section the adaptations of this 
model are described. For the full set of equations governing this model the reader is referred to the 
Appendix. Connett reported this model to be superior in terms of reproducing in vitro enzyme 
kinetics compared to the PFK description used by Vinnakota et al. (25). It does not include 
regulation by citrate or fructose -2,6 biphosphate, both of which are strong allosteric modulators of 
PFK in vitro (29). The rationale for not including them in the kinetic model was that for mammals 
the dynamic range of these modulators in skeletal muscle is small and therefore their contribution 
to the control of the enzyme in vivo is very limited (30,31).     

The model proposed by Connett featured an ADP and AMP dependent term to account for 
competitive binding of ADP and AMP to the ATP inhibition site. This term will hereafter be referred 
to as ‘deinhibition’ term. The definition of this term is:  

 

  
AMP ADP

ADPAMP
deinhibition

k k
1  (Eq. 5) 

Where, kAMP and kADP are the AMP and ADP competitive binding constants respectively and AMP and ADP the AMP and 
ADP concentration.  
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Figure 2. Schematic representation of the regulation of PFK as modeled in each model configuration. Model 
configuration i (A) represented the hypothesis in which no regulation of PFK by calcium – calmodulin signaling is present. 
Model configuration ii (B) represented the hypothesis in which binding of calcium – calmodulin complexes to PFK partly 
reliefs ATP inhibition of the enzyme independent of the levels of ADP and AMP. Model configuration iii (C) represented 
the hypothesis in which binding of calcium – calmodulin complexes partly reliefs ATP inhibition by enhancing the 
competititve binding of AMP and ADP to the inhibitory ATP site.   

 
Effectively, an increase of the deinhibition term as a result of elevated AMP and ADP levels relieves 
part of the ATP inhibition thereby activating PFK flux. At physiological concentrations (~8 mM) ATP 
inhibition results in a nearly full deactivation of the enzyme (>95%) (16). Reversing this inhibition 
will therefore result in a significant increase of the enzymes catalytic activity. 
 In the present investigation, three different configurations of the PFK model were 
evaluated (Figure 2). The first configuration (‘model configuration i’) represents conditions in which 
no calcium – calmodulin mediated activation of PFK is present (Figure 2A). This model includes the 
PFK flux equation proposed by Connett (28). The parameter values of kAMP and kADP were estimated 
from the PCr and pH time course data as described in the section ‘Parameter estimation’.  

The second configuration (‘model configuration ii’) included calcium – calmodulin 
activation of PFK (Figure 2B). Two forms of PFK were defined: an inactive (PFKinactive) and an active 
(PFKactive) form (15,16). The inactive PFK was described by the model proposed by Connett (28). 
Upon binding of two calcium – calmodulin complexes the enzymes switches from the inactive to 
the active isoform (16). Activation of the enzyme was suggested to occur via reversing the 
inhibitory effect of ATP (16). To account for this regulatory effect the deinhibition term of the active 
PFK enzyme was modified to a constant (kdeinhib_Act), Eq. 6: 

 
activePFK deinhib Actdeinhibition k _  (Eq. 6) 

 
The value of kdeinhib_Act was estimated from the PCr and pH time course data as described in the 
section ‘Parameter estimation’. Effectively, the value of the deinhibition term of the active PFK 
enzyme was larger compared to the inactive PFK enzyme. Consequently switching from inactive to 
active form stimulates overall PFK flux. The fractions of PFK in active and inactive form were 
described by differential equations Eq. 7 and 8. Switching of the enzyme from inactive to active 
form was stimulated by elevated cellular calcium – calmodulin concentrations, which is in 
accordance with observations by (14-17). The values of kon and koff were estimated from the PCr and 
pH time course data as described in the section ‘Parameter estimation’.    
 

ATP, H+
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    actibe
on active off active

dPFK
k Ca CaM PFK k PFK

dt
2

2 1   (Eq. 7) 

 
 inactive activePFK PFK1  (Eq. 8) 

 
The deinhibition term of configuration ii (Eq. 6) was independent from cellular ADP and 

AMP levels. There are however indications that the flux through the activated PFK enzyme is 
dependent on both cellular calcium and ADP, AMP levels (9). This particular regulatory scheme was 
represented by model configuration iii. To this end, the deinhibition term of the activated enzyme 
was modeled as a function of ADP and AMP concentrations, albeit with different competitive 

binding constants ( act
AMPk and act

ADPk ), Eq. 9.  

 

  activePFK act act
AMP ADP

AMP ADP
deinhibition

k k
1

 
 (Eq. 9) 

 

The values of act
AMPk  and act

ADPk are estimated from the PCr and pH time course data as described in 

the section ‘Parameter estimation’. Compared to the inactive enzyme the values of the competitive 

binding constants act
AMPk and act

ADPk were lower. Consequently, the flux through the active PFK 

enzyme is already increased at low AMP and ADP concentrations (compared to the inactive 
enzyme). The calcium – calmodulin fraction of PFK in active and inactive form was modeled 
identical to model configuration ii: i.e., according to differential equations Eq. 7 and 8.  
 
For the full set of equations governing the PFK model the reader is referred to the Appendix. 
 

Calcium - calmodulin dynamics in muscle 
The differential equations of PFK (de)activation are modeled as a function of Ca2CaM (Eq. 7 and 8). 
As a consequence, the PFK (de)activation kinetics are determined by the particular reaction kinetics 
of calcium-calmodulin binding and unbinding, respectively. The latter were derived from a 
previously developed temperature dependent spatio-temporal model of skeletal muscle calcium 
handling (32,33). The calcium handling model was extended by calcium - calmodulin reaction 
kinetics based on mass action kinetics. The values for the koff and kd were set to 100s-1

 and 3.8 μM, 
and 5000s-1 and 28.9 μM for the formation of Ca2CaM and Ca4CaM respectively (34-37). The spatially 
averaged calcium – calmodulin signal (Ca2CaM) was calculated for 35° C and used as an input of the 
glycolysis model.   
 

Parameter estimation  
The model contained several parameters for which an accurate value was either not available from 
any literature, or were previously estimated in a computational study and likewise had no solid 
experimental basis (Table 3). These parameters were (re-)estimated from the newly recorded PCr 
and pH time-course data using a non linear least squares optimization algorithm (lsqnonlin, Matlab 
7.5.0 (the Mathworks Inc., Natick, MA, USA). The algorithm adjusted parameter values during a 
series of model evaluations with the aim of minimizing the error (SSE) between model predictions 
and PCr and pH time-course data defined by Eq. 10. Because PCr and pH data are expressed in 
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different units, a weighting parameter is required to balance the contribution of PCr and pH time-
course data to the SSE. Instead of applying arbitrary defined weighting parameters, the accuracy of 
the measurement data (quantified by the SD of each data point) was used as weighting value.  
The entire dataset was divided into two groups: i.e., (i) data for parameterization and (ii) data for 
verification.. The parameterization data (at 0, 5, 10, 40 (1 pulse train per 5 s, 10 pulses per pulse 
train) and 80Hz) was used to estimate model parameter values. These parameters, initial conditions 
and the optimal values are given in Table 3. As indicated in the table, the initial parameter values 
were calculated from the MRS data or taken from other studies. An initial guess for the values of the 
PFK, calcium – calmodulin binding constant, i.e., kon and koff was however not available. Therefore, 
the initial values for these parameters were randomly taken from uniform distributions with ranges 
as indicated in Table 3 using a multi-start optimization approach (500 runs).  

 Model predictions were next tested against independent data (i.e, data not used in the 
parameter estimation procedure: 5 pulses per 5 s (1Hz) and 1 pulse train per 5 s, 20 pulses per pulse 
train (40Hz)). For these simulations all parameters were left unchanged, except for the ATP 
hydrolysis rate constant kATP_Hydr. The resulting estimated values of these rate constants are provided 
in Table 3.  
 

Quantification of model fit 
The goodness of fit of the different model configurations to the experimental data was quantified 
by the sum of squared errors (SSE). The SSE was summed over all data used for parameter 
estimation. Data points were weighted by the SD of the experimental data (n=4-5), Eq. 10. 
 

  

     
          

  
2 2

1 1 1

( ( )) ( ) ( ( )) ( )

( ( )) ( ( ))

M N N
observed predicted observed predicted

j i iobserved observed

mean PCr i PCr i mean pH i pH i
SSE

SD PCr i SD pH i
 (Eq. 10) 

Where, PCrobserved(i) represents the mean [PCr] (across-animal) at time point i; PCrpredicted(i) represents the predicted [PCr] at 
time point i; pHobserved(i) represents the mean pH (across-animal) at time point i; pHpredicted(i) represents the predicted pH at 
time point i; SD(PCrobserved(i)) represents the across-animal SD of the [PCr] at time point i; SD(pHobserved(i)) represents the 
across-animal SD of the pH at time point i; j denotes a specific experimental groups (e.g. 0Hz, 5Hz, 10Hz, 40Hz, 80Hz). 

 
Akaike information criterion 

The Akaike information criterion (AIC) (38) was calculated for each model configuration to 
investigate if any improvement in SSE was merely the results of additional degrees of freedom of 
the model. AIC was calculated according to Eq. 11: 

 

AIC = n ∙ ln(SSE/n) + 2*K  (Eq. 11) 
Where, n denotes the number of datapoints (422) and K represents the number of estimated parameters (9, 12 and 13, for 
configuration i ,ii and iii, respectively).  
 
The AIC provides a means to select the preferred model (lowest AIC) taking into account the 
reduction of SSE while penalizing the additional degrees of freedom (K). 
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Table 3. Optimized parameter values. 

Parameter Unit Description Initial 
condition 

Optimized parameter value
 

   model 
conf i 

model 
conf ii 

model 
conf iii 

kATP_Hydr (0Hz) s-1 ATPase rate constant 0Hz 0.001a 0.0020  0.00204  0.0017  

kATP_Hydr (5Hz) s-1 ATPase rate constant 5Hz 0.01a 0.084  0.091  0.068  

kATP_Hydr (10Hz) s-1 ATPase rate constant 10Hz 0.01a 0.072  0.077  0.056  

kATP_Hydr (40Hz) s-1 ATPase rate constant 40Hz 0.01a 0.061  0.065  0.049  

kATP_Hydr (80Hz) s-1 ATPase rate constant 80Hz 0.01a 0.048 0.050  0.041  

BuffCapFixed M Fixed buffer cellular proton 
buffer capacity 

0.0142b 0.068 0.073  0.050  

vmaxPFK mM s-1 Vmax PFK 0.93b 8.76  10.43  10.25  

kAMP mM PFK deinhibition constant 
AMP 

0.002c 0.0017  0.014  0.046  

kADP mM PFK deinhibition constant 
ADP 

0.030c 0.31  0.16  0.24  

kdeinhibAct unitless PFK deinhibition constant 
activated PFK 

1c - 8.72*106  - 

kAMPact mM PFK deinhibition constant 
AMP activated PFK 

0.002c - - 8.97*10-5  

kADPact mM PFK deinhibition constant 
ADP activated PFK 

0.030c - - 0.020  

kon μM-2  s-1 PFK, calcium – calmodulin 
binding constant 

1*104 – 1*109 - 8.70*105  5.00*105  

koff s-1 PFK, calcium – calmodulin 
binding constant 

1*101 – 1*104 - 4.75*103  106  

       

kATP_Hydr  (1Hz) s-1 ATPase rate constant 5Hz 0.005a,d 0.036 0.038  0.032  

kATP_Hydr
  (40Hz, 20 

pulses) 
s-1 ATPase rate constant 40Hz 20 

pulses 
0.02a,d 0.050 0.042  0.072  

a estimated from initial PCr breakdown rate  
b values used as initial condition in (52) 
c values obtained from (10) 
d estimated for validation experiments (Figure 5) 

 

RESULTS 
 

31P magnetic resonance spectroscopy: characterization of pathway dynamics 
The dynamics of cellular metabolites: adenosine-triposphate (ATP), phosphocreatine (PCr), 
inorganic phosphate (Pi) and phospho-monoesters (PME) as well as intracellular pH were 
monitored by 31P magnetic resonance spectroscopy in ischemic rat TA muscle, under varying 
muscle stimulation frequencies (0 – 80 Hz). Figure 3A shows a stack plot of the spectra recorded 
during the 10Hz stimulation protocol. These spectra were obtained by averaging 12 FID’s and 
processed with 5Hz line broadening. In response to muscle contraction and corresponding 
elevated cellular ATP demand flux, the cellular ATP buffer, PCr, is consumed to balance energy 
demand and supply. PCr depletion coincides with the production of Pi, a product of ATP hydrolysis. 
In addition, during stimulation an increasing PME resonance was observed which was in the 
absence of any ATP depletion, attributed to the accumulation of sugar-phosphates (glucose-1P, 
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glucose-6P and fructose-6P) (5,11). Figure 3B-C shows an example (10 Hz) of the PCr and pH 
dynamics used for model testing (data expressed as mean ± SEM). The part of the data used for 
model testing is indicated in the figure. Any PCr and, or pH recovery was not observed during the 
period after stimulation. This observation validated the successful occlusion of blood circulation 
and obstruction of O2

 delivery to the muscle cells.  
 

 
 
Figure 3. Characterization of in vivo pathway dynamics. Typical result of the experimental data obtained to characterize 
in vivo pathway behavior. A stack plot of spectra obtained at 10Hz stimulation is shown (A). These spectra were obtained 
by averaging 12 FID’s and processed with 5Hz line broadening. Phospho-monoester (PME), inorganic phosphate (Pi), 
phosphocreatine (PCr) and adenosine-tri-phoshate (ATP) resonances are indicated. Pooled PCr (B) and pH (C) dynamics at 
10Hz stimulation (n=5). Error bars indicate SEM. The part of the data analyzed by the computational model is indicated by 
a black arrow. 

 
Model simulations vs. experimental data 

Model simulations according to the three different model configurations were compared to the 
experimental data, Figure 4. Panels A-E show the PCr dynamics for all model configurations; panels 
F-J show the pH dynamics for all model configurations. The goodness of fit was used to test the 
hypothesis represented by each model configuration. Model configuration i (red lines) represented 
conditions lacking any calcium activation of PFK, whereas configuration ii (green lines) and iii (blue 
lines) both include calcium activation of PFK, albeit according to a different kinetic mechanism. 
Both model configurations i and ii failed in reproducing the experimental data. In contrast, model 
configuration iii could successfully reproduce both the energetic state of the muscle (PCr) as well as 
the glycolytic flux (pH dynamics) simultaneously. Compared to the model configuration i and ii the 
sum of squared errors was reduced more than eightfold (386.7 and 354.6 vs. 44.8, respectively). The 
calculated AIC for model configuration i and ii and iii were: -8.1, - 49.4 and -920.5 respectively. The 
large reduction in AIC for model configuration iii compared to i and ii indicates that the 
improvement in the model fit (reduction in SSE) was much larger than could be expected from the 
additional number of estimated parameter. Based on these results it was concluded that model 
configuration i and ii could not explain the in vivo sampled pathway dynamics. In contrast, these 
results provided evidence that calcium – calmodulin mediated activation of PFK in combination 
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with activation of the enzyme by increased concentrations of AMP and ADP (model configuration 
iii) can explain the recorded dynamics of glycolytic flux in skeletal muscle in vivo.  

 

 
 
Figure 4. Quantitative hypotheses testing; experimental data vs. model simulations. Experimental data are indicated in 
black. Error bars indicate SEM (n=4-5). Simulation results according to model configuration i (without calcium activation 
of PFK, red lines) and model configuration ii and iii (with calcium activation of PFK, green and blue, respectively) are 
shown. Optimized model parameter values listed in Table 3 were obtained by fitting model stimulations to these data. 
Panels K-O show predictions according to model configurations iii (solid lines) of ATP supply flux by PCr hydrolysis (grey 
lines) and, glycolysis (black lines) and ATP demand flux (blue lines), compared to values derived from the experimental 
data by using the phenomenological model (dots) described by Conley et al. (9).  

 
Panels K-O of Figure 4 show the predicted ATP supply flux by PCr hydrolysis (grey lines) and, 
glycolysis (black lines) and ATP demand flux (blue lines), compared to values derived from the 
experimental data by using the phenomenological model described by Conley et al. (24). For clarity 
of presentation these predictions are only showed for the model configuration iii. These results 
demonstrate that the fluxes predicted by the mechanistic model and the phenomenological model 
are consistent with one another. In retrospect, the predictions of model configuration iii were also 
consistent with the calculations used to identify the part of the data at which the model 
assumption of constant ATP hydrolyses rates were not violated. The model predictions show that 
for conditions of pH > 6.5 the sum of PCr breakdown rate (PCr dynamics) and glycolytic ATP 
production (pH dynamics) remain constant while being consistent with the experimental data.  
 

Model verification: model testing against independent data 
The veracity of the model was increased by using the algorithm on independent data sets 
Experimental data of groups with a different number of excitation pulses per 5 seconds (compared 
to the data used for parameter estimation) was used: i.e., 1Hz continuous stimulation (5 pulses / 5 s) 

30

40

0 Hz

30

40

5 Hz

30

40

10 Hz

30

40

40 Hz

30

40

80 Hz

0 5000
0

10

20

30

PC
r (

m
M

)

0 100 200
0

10

20

30

0 100 200
0

10

20

30

0 100 200
0

10

20

30

0 100 200 300
0

10

20

30

0 5000
time (s)

7

0 Hz

0 100 200
time (s)

7

5 Hz

0 100 200
time (s)

7

10 Hz

0 100 200
time (s)

7

40 Hz

0 100 200 300
time (s)

7

80 Hz

6

6.5

7

pH

6

6.5

7

pH

6

6.5

7

pH

6

6.5

7

pH

6

6.5

7

pH

0 5000
6

time (s)

0.03
0 Hz

0 100 200
6

time (s)

0.8
5 Hz

0 100 200
6

time (s)

0.8
10 Hz

0 100 200
6

time (s)

0.8
40 Hz

0 100 200 300
6

time (s)

0.8
80 Hz

0.01

0.02

(m
M

/s
)

0.2

0.4

0.6

(m
M

/s
)

0.2

0.4

0.6

(m
M

/s
)

0.2

0.4

0.6

(m
M

/s
)

0.2

0.4

0.6

(m
M

/s
)

0 5000
0

time (s)
0 100 200

0

time (s)
0 100 200

0

time (s)
0 100 200

0

time (s)
0 100 200 300

0

time (s)

A B

F G

C

H

D E

I J

N OMLK

PC
r (

m
M

)

PC
r (

m
M

)

PC
r (

m
M

)

PC
r (

m
M

)



Chapter 3 

 

60 

and 40Hz (1 pulse train per 5 s, 20 pulses per pulse train). Experimental data versus model 
predictions are shown in Figure 5. These results show that the model can describe the behavior of 
the pathway for conditions of varying number of muscle excitation pulses. Model simulations are 
shown for the different configurations. The results show that only model configuration iii (blue 
lines) can reproduce the data. These results therefore act as validation of model configuration iii 
and they falsify model configuration i and ii. Panels E-F show the predicted ATP supply flux by PCr 
hydrolysis (grey lines) and, glycolysis (black lines) and ATP demand flux (blue lines), compared to 
values derived from the experimental data by using the phenomenological model described by 
Conley et al. (24). For clarity of presentation these predictions are only showed for the model 
configuration iii. 
 

 
Figure 5. Model verification; comparison of model simulations and independent data for other stimulation frequencies 
than used for parameterization. Model simulations according to configuration i, ii and iii are indicated in red, green and 
blue, respectively. Experimental data are indicated in black and correspond to muscle stimulation protocols of 1 Hz 
continues stimulation (A and C) and 40Hz (1 pulse train per 5 s, 20 pulses per pulse train) (B and D). Error bars indicate 
SEM (n=4-5). Panels E-F show predictions according to model configurations iii (solid lines) of ATP supply flux by PCr 
hydrolysis (grey lines) and, glycolysis (black lines) and ATP demand flux (blue lines), compared to values derived from the 
experimental data by using the phenomenological model (dots) described by Conley et al. (9). 

 
Model predictions: deactivation of glycolysis post exercise 

It has been well documented that glycolysis is rapidly silenced after termination of muscle 
contraction (8-12). We tested if adding calcium regulation of PFK to the model could indeed 
explain this pathway characteristic. Figure 6 shows model predictions of a rest – exercise (60s, 5Hz 
continuous muscle stimulation) – recovery protocol. The ATP synthesis by the pathway post-
exercise is reflected in the PCr dynamics. The inset of Figure 6A shows a small PCr resynthesis and 
thus glycolytic ATP production, post-exercise. The time constant of the PCr resynthesis is between 
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5 to 10 seconds and the ATP produced by the pathway during this period is ~1mM. These 
predictions are in excellent accordance with the time constant and magnitude of the PCr recovery 
due to glycolytic ATP production reported by Forbes et al. and Crowther et al. (10,39). This result 
showed that the model can reproduce transients observed in other independent datasets, 
providing addition model verification. Results of simulation were explored to determine the origin 
of this small glycolytic ATP production in the first few seconds of recovery. It was concluded that 
these dynamics were caused by accumulation of pathway intermediates downstream of PFK 
(Figure 6B). Recovery of these intermediates to baseline levels occurred in 5 - 10 s, thereby yielding 
~1 mM ATP. Figure 6C shows PFK flux, which closely tracked the rapid pulsatile Ca2+ release and re-
uptake during exercise. As a result, PFK flux was quickly deactivated post-exercise. In addition, the 
sum of the fluxes through the ATP producing steps in the pathway (PGK + PK) is shown. These 
simulation results provided further evidence that, although PFK flux is quickly silenced (100 – 200 
ms), ATP production by glycolysis lags behind by 5 – 10 s.  

 

 
Figure 6. Model predictions of the silencing of glycolysis in non-contracting muscle. Simulations of exercise (5Hz 
continuous muscle excitation, 60s) – recovery protocol. The dotted line indicates the end of exercise (time = 60s). At the 
onset of recovery a small PCr resynthesis is observed (A). The PCr dynamics reflects the glycolytic ATP production at the 
beginning of recovery. Model simulations of the summed concentration of glycolytic intermediates downstream of PFK 
(F1,6P2 + DHAP + G3P + GAP + 13BPG + 3PG + 2PG + PEP) are shown in (B). Panel (C) shows the PFK flux (grey) and the 
PGK + PK flux (black). PGK and PK are the ATP generating steps of the pathway. These predictions show that although 
PFK flux is quickly deactivated post-exercise, ATP production flux (PGK+PK flux) is deactivated at a slower timescale.  

 
Model predictions: PFK activation dynamics 

The time constant of activation and deactivation of calcium - calmodulin binding to PFK have to 
this date remained unknown. This process was included in the model and values of kinetic kon and 
koff parameters were inferred from the in vivo experimental data. Simulations with the 
parameterized model were performed to investigate the (de)activation kinetics of PKF-1 for two 
stimulation frequencies, 10 and 40Hz Figure 7A-B. In addition, kinetics of calcium – calmodulin (red 
lines) and calcium (blue lines) are shown that were used as input of the model and drive the 
(de)activation of PFK are shown. For illustrative purposes the concentrations of these two 
molecules were scaled to the same order of magnitude as the fraction activated PFK. For calcium – 
calmodulin 1 unit corresponds to 0.040 μM and for calcium 1 unit corresponds to 30 μM.  
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Figure 7. Calcium, calcium – calmodulin and PFK (de)activation kinetics. Predictions of (de)activation kinetics of PFK 
(black), calcium – calmodulin kinetics (red) and calcium kinetics (bue) for 10Hz (A) and 40Hz (B). For illustrative purposes 
the concentrations of calcium - calmodulin and calcium were scaled to the same order of magnitude as the fraction 
activated PFK. For calcium – calmodulin 1 unit corresponds to 0.040 μM and for calcium 1 unit correspondes to 30 μM. 

 
 
 

DISCUSSION 
 

The principal result of this investigation was that incorporation of calcium - calmodulin mediated 
modulation of PFK activity combined with activation of the enzyme by increased levels of AMP and 
ADP into a kinetic model of glycolysis in skeletal muscle significantly improved prediction of in vivo 
glycolytic flux in ischemic skeletal muscle. This main result, its implications as well as several 
methodological considerations will be discussed. 
 

Methodological considerations: Computational Modeling 
The modeling framework developed by Vinnakota and coworkers (25) was selected as basis for this 
investigation. A unique property of this specific model of glycolysis in muscle is that it includes a 
detailed description of proton buffering by metabolites and pH dependency of the different 
reactions. Modeling these aspects of the pathway in detail was essential because pH dynamics 
were used as reporter of glycolytic flux. Moreover, during the experiments large changes in pH 
were observed (7.2 – 6.2) which strongly influences glycolytic flux (see e.g. (40,41)).  

In this study the explanatory power of incorporation of calcium regulation of glycolytic flux 
at the level of PFK was investigated in detail. It is, however, well known that calcium stimulates 
glycogen phoshporylase (GP) flux via enzyme phosphorylation (17). This process was not explicitly 
modeled, but instead the dynamics of GP activity were implicitly taken into account by using the 
recorded dynamics of the sugar phosphates as input signal of the model. This methodology 
allowed simplifying the analyses while still taking the calcium changes of GP activity into account. 
For the modeling of the calcium – calmodulin dynamics a similar strategy was applied. These 
dynamics were sampled from a previously developed model of calcium handling in fast twitch 
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skeletal muscle. Fast twitch is also the dominant (>95%) fiber type of rat TA muscle (42). This 
calcium handling model was shown to have excellent performance in reproducing calcium – dye 
dynamical data for excitation frequencies ranging from 1 to 80Hz (33,43) and was therefore 
considered a good representation of this aspect of muscle physiology. 
 

Methodological considerations: in vivo 31P MRS measurements in ischemic rat muscle. 
Electrical stimulation along the distal nerve trajectory of the n. peroneus communis induced 
contractions in the TA, EDL, peroneus longus and brevis, which was previously validated by 
functional MRI recordings (18,19). Analysis of the sensitivity profile of the 31P coil by chemical shift 
imaging (CSI) indicated that 25% of the recorded signal originated from non-activated muscle. This 
problem is not unique for this specific study. For example, it is well known that MRS recordings 
during voluntary exercise in humans often represent the lumped dynamics of both activated and 
non-activated motor units (44-46). Nevertheless, to  improve the quality of the analysis this partial 
volume problem was taken into account and corrected for by a data post-processing step 
described in the 'Methods' section. The percentage of signal originating from the non-contracting 
muscle is an influential parameter in these calculations. It was therefore verified that the outcome 
of the study was not sensitive to the specific value of this parameter. Specifically, all simulations 
(parameter optimizations and model predictions) were performed assuming the signal originating 
from non-contracting muscle to be 20 or 30 percent. The results of these simulations (data not 
shown) indicated that reported conclusions were indeed not sensitive to the specific value of this 
parameter.   

 
Calcium modulation of PFK activity 

In chapter 2, model predictions lacking any regulation by calcium previously illustrated additional 
regulation must be present in vivo. Numerical analysis indicated PFK as most likely site for the 
additional control (chapter 2). In addition, based on evidence provided by experimental studies 
(15,16,47) it was hypothesized that calcium – calmodulin activation of PFK has a dominant role in 
controlling the response of pathway dynamics for varying muscle stimulation frequencies. This 
specific mechanism was therefore tested in the computational analysis. The effects of calcium – 
calmodulin on PFK activity were reported to occur in a biphasic manner (15): at physiological Ca2+ 

concentrations PFK is activated, however if the Ca2+ concentration in the cells rises to pathological 
levels PFK is deactivated again. In the model only the activation of PFK was included. The rationale 
for this choice was that the analysis was restricted to the part of the data in which ATPase rate 
remained constant (pH>6.5). For these conditions it was not expected Ca2+ concentrations rise to 
pathological conditions.   

The kinetic model of calcium-calmodulin mediated PFK (de)activation was constructed 
using available information in the literature. Activation of PFK is thought to occur via binding of 
two calcium-calmodulin complexes to a PFK-dimer (16). This binding reduces the inhibition of the 
enzyme by ATP (16). At physiological concentrations (~8mM) ATP inhibition results in a nearly full 
deactivation of the enzyme (>95%) (16). Therefore reversing this inhibition will result in a 
significant increase of the enzymes catalytic activity. By competitive binding to the inhibition site 
AMP and ADP are able to reverse the ATP inhibition of the inactive form of PFK (28).  It remains 
unknown whether for the activated form of the enzyme deinhibition is likewise mediated by 
competitive binding of ADP and AMP, albeit with a lower binding constant, or alternatively, if it is 
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independent of ADP and AMP levels. Irrespectively, both scenarios were evaluated using the 
computational model (model configuration ii and iii, respectively). A detailed analysis showed that 
only a model containing deinhibition mediated by competitive binding of ADP and AMP could 
reproduce the experimental data. A possible concern could be that comparison of the three 
models was biased because each model had a different number of degrees of freedom; in general, 
models with a greater number of free parameters tend to fit data better. This concern was 
quantitatively addressed using the Akaike-test. A large reduction in the value of AIC indicated that 
improvement of the fit of model iii was larger than could be expected from the few additional 
degrees of freedom, suggesting a biological component responsible. Although kinetic data for 
validation of this prediction are unavailable, it is consistent with results reported by Crowther et al. 
where that both elevated calcium levels and increased ADP and AMP levels were required to 
increase flux downstream of glycogen phoshorylase (9). Further confidence in the validity of the 
computational model was provided by verification against data not used for parameter estimation 
(see Figure 5). Finally, a corollary of the particular kinetic model for calcium control of PFK that was 
developed and used here, is that the kinetics of PFK activation and deactivation were almost 
exclusively (but see Eq. (9)) determined by the reaction kinetics of calcium-calmodulin interaction. 
Empirical studies have shown that the latter are extremely rapid (kd 100 s-1 or faster; see Methods).  
As a result, PFK (de)activation in the model was equally rapid. No data was available in the 
literature to verify that this model corollary is accurate, and remains to be tested. 
  

Silencing of glycolysis in non-contracting muscle  
It has been well documented that glycolysis is quickly silenced after termination of muscle 
contraction (9-12,24). In the present investigation these observations were reproduced by the 
absence of PCr resynthesis in the period after stimulation. Two independent studies reported a 
deactivation of the pathway in the order of 10 – 20 seconds (10,39). This timescale is slow 
compared to the rapid deactivation of PFK (100 – 200 ms), see Figure 6. However, simulations 
revealed that after intense muscle contractions the deactivation of the pathway is delayed as a 
result of accumulation of intermediates downstream of PFK. In addition, simulations indicated that 
glycolytic ATP production during the first seconds of recovery is dependent on the intensity of the 
preceding exercise (data not shown) and may explain the experimental observations that a 
complete absence of glycolytic flux at the onset of recovery occurs (8,12). These findings may have 
important implications for the analyses of PCr recovery kinetics. PCr recovery kinetics are believed 
to predominantly reflect oxidative ATP production rate and this rate of PCr recovery is frequently 
used as a measure of in vivo oxidative capacity and/or mitochondrial function (48). Two 
experimental studies already suggested that the first 10 seconds of recovery may be contaminated 
by glycolytic ATP production. The current simulation study provided additional support for this 
contention. These results therefore imply that in order to obtain PCr kinetics that truly reflect the 
oxidative ATP synthesis it is advisable to exclude the first 10 seconds of recovery from the data 
analyses.  
 

Parallel activation of ATP consumption and glycolytic ATP production 
The results of this study indicate that to meet energetic demands parallel activation of glycolytic 
ATP supply flux and muscle contraction by the same signaling event, i.e., calcium release in the 
myoplasm, is necessary. The effect of varying calcium stimulation frequency on parallel activation 
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of these pathways has only been addressed in relatively few studies. Conley et al. used 31P MRS to 
determine the effect of varying muscle excitation at low frequencies (0.5 – 3 Hz) (24) and 
concluded that at these low stimulation frequencies glycolytic flux scales linearly with contraction 
frequency. A similar conclusion was inferred from the model simulations. PFK (de)activation 
kinetics remained pulsatile for muscle excitation frequencies < 10 Hz. For this range of stimulation 
frequencies PFK activation was linearly related to muscle excitation. These simulations yield results 
with much broader implications for glycolytic flux than previously suggested in part because 
reproducing these characteristics also reported by Crowther et al. also permits model predictions 
for much higher frequencies. Remarkably, at these frequencies, the fusing of individual PFK 
activation pulses was qualitatively similar to force dynamics of fast twitch muscle. These 
predictions also suggest that for these stimulation frequencies (>10 Hz) activation of PFK remains 
closely linked to muscle ATP demand flux. We speculate that the regulation of glycolysis in skeletal 
muscle is optimized to facilitate this parallel activation throughout the wide dynamical range of 
muscle excitation frequencies. 
 

Future outlook 
Recently Vinnakota and coworkers used the previous version of this computational model of 
glycolysis in skeletal muscle to analyze metabolite and pH dynamics in resting mouse EDL and 
soleus muscle (25). Although their model simulations reproduced these dynamics fairly well, the 
simulations failed to describe recorded dynamics during muscle excitation. A possible explanation 
for this model limitation was the lack of feed forward regulation downstream of glycogen 
phosphorylase, activated during mechanical work. This study has found that adding regulation by 
calcium mediated activation of PFK improves the consistency of model predictions and 
experimental data over a wide operational range of muscle excitation frequencies (0 – 80 Hz). We 
therefore concluded that the proposed model does provide an improved basis for modeling 
energy metabolism in skeletal muscle. In this context, relevant questions or model limitations open 
for future study will be discussed below.  

The predictions of the current model were tested for conditions of ischemia. It will be 
interesting to investigate if these predictions are also accurate for conditions of normoxia. This 
requires adding a description of ATP production by oxidative phosphorylation to the 
computational model and sampling the behavior of both mitochondrial and glycolytic pathway 
experimentally under normoxic conditions. In the present investigation the experimental read-out 
of the PME resonance allowed to bypass the need for a flux equation of glycogen phosphorylase 
(GP). For future studies it may become relevant to add this flux description. Hereto, an improved 
model of GP including allosteric regulation by G6P and the effects of enzyme phosphorylation on 
kinetic parameters is probably required. The present analysis was based on the experimental data 
in which muscle fatigue had no detectable effect on cellular ATP hydrolyses rate. Acquiring an 
experimental read-out and modeling the effects of muscle fatigue on ATP hydrolysis rate will be a 
key step towards computational analyses of the remaining of the data.     
 With respect to extending the research on this topic, it may also be very interesting to 
investigate the role of calcium – calmodulin signaling on the flux control of glycolysis in tissues 
other than muscle. Based upon the current results it is predicted that calcium – calmodulin 
signaling has a very dominant flux control in skeletal muscle, but there is also evidence indicating 
this signaling mechanism activates glycolytic flux in nervous tissue (49,50), but also various types of 
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cancerous tissues (51-54). In this view, it will be of particular interest to study if calcium-calmodulin 
related alterations in glycolytic flux observed for these cell types will also arise from model 
predictions.  
 

In summary 
An integrative experimental and computational modeling approach was applied to test the 
hypothesis that calcium – calmodulin mediated activation of PFK in skeletal muscle is an important 
signal in flux control underlying in vivo pathway behavior. Model simulations revealed that 
incorporation of these mechanisms into a detailed model of skeletal muscle glycolysis was required 
for model predictions to be consistent with experimental data, thereby providing quantitative 
support for the hypothesis. Model predictions indicated that the (de)activation kinetics of PFK in 
response to different stimulation frequencies is very similar to force dynamics in fast twitch muscle. 
However, in spite of these very fast PFK deactivation kinetics overall shut down of glycolytic ATP 
production in non-contracting muscle post-exercise may be delayed by 5 – 10 seconds as a result 
of accumulation of glycolytic intermediates downstream of PFK.   
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APPENDIX 
 

Model configuration i: 
The PFK rate equation of model configuration i (obtained from Connett (10), Eq. 12.  
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Model parameter values are provided in Table 4. 

Parameter Value 

6
1

F P
mK  68.49 μM  * 

6
2

F P
mK  58.70 μM * 

1
MgATP
mK  26.54 μM * 

2
MgATP
mK  37.81 μM * 

6F P
iK  4.33 μM * 

MgATP
iK  124.60 μM * 

ATPH
iK  0.649 μM * 

aK  0.0812 μM * 

k 0.990 * 

c1 19.09 * 

c2 2.63 * 

ADP
AK  Estimated (Table 3) 

AMP
AK  Estimated (Table 3) 

* value obtained from (10) 

 

Table 4. Parameter values PFK model 
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Model configuration ii: 
Model configuration ii contained two PFK forms, an inactive modeled according to Eq. 11 and an active form for which 
the deinhibition term was described by Eq. 13. 
 

 deinhib Actdeinhibition K _  (Eq. 13) 

 
Activation and deactivation of PFK by binding of calcium – calmodulin was modeled by differential equations Eq. 14 and 
15: 
 

    actibe
on active off active

dPFK
k Ca CaM PFK k PFK

dt
2

2 1  (Eq. 14) 

 inactive activePFK PFK1  (Eq. 15) 

 
Parameter values of model configuration ii are listed in Table 3 and 4. 

 
Model configuration iii: 

Model configuration iii contained two PFK forms, an inactive modeled according to Eq. 11 and an active form for which 
the deinhibition term was described by Eq. 16. 
 

  act act
AMP ADP

AMP ADP
deinhibition

K K
1  (Eq. 16) 

 
Activation and deactivation of PFK by binding of calcium – calmodulin was modeled by differential equations Eq. 14 and 
15.  
Parameter values of model configuration iii are listed in Table 3 and 4. 
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ABSTRACT 

The transduction function for ADP stimulation of mitochondrial ATP synthesis in skeletal muscle 
was reconstructed in vivo and in silico to investigate the magnitude and origin of mitochondrial 
sensitivity to cytoplasmic ADP concentration changes. Dynamic in vivo measurements of human 
leg muscle phosphocreatine (PCr) content during metabolic recovery from contractions were 
performed by 31P-NMR spectroscopy. The cytoplasmic ADP concentration ([ADP]) and rate of 
oxidative ATP synthesis (Jp) at each time point were calculated from creatine kinase equilibrium 
and the derivative of a mono-exponential fit to the PCr recovery data, respectively. Reconstructed 
[ADP]-Jp relations for individual muscles containing more than 100 data points were kinetically 
characterized by nonlinear curve fitting yielding an apparent kinetic order and ADP affinity of 
1.9±0.2 and 0.022±0.003 mM, respectively (means±SD; n = 6). Next, in silico [ADP]-Jp relations for 
skeletal muscle were generated using a computational model of muscle oxidative ATP metabolism 
whereby model parameters corresponding to mitochondrial enzymes were randomly changed by 
50-150% to determine control of mitochondrial ADP sensitivity. The multiparametric sensitivity 
analysis showed that mitochondrial ADP ultrasensitivity is an emergent property of the integrated 
mitochondrial enzyme network controlled primarily by kinetic properties of the adenine nucleotide 
translocator. 
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INTRODUCTION 
 
The metabolic regulation underlying energy balance in mammalian cells has long been subject of 
investigation, in particular regulation of mitochondrial ATP synthesis (1). At first, a relatively 
straightforward picture emerged from studies in isolated mitochondria: a feedback control loop 
involving transduction of changes in the extramitochondrial concentrations of the ATP hydrolysis 
products ADP and Pi to the intramitochondrial ATP synthetic network during cellular work 
explained energy balance (2,3). 31P NMR spectroscopy (4) and computational modeling (5) later 
showed that mitochondrial sensing of concentration changes in ADP alone sufficed to explain 
energy balance in skeletal muscle. In cardiac muscle, however, near-constant phosphocreatine 
(PCr), and thereby ADP, concentrations were measured during work jumps (6). This observation 
lead to the proposition of a second, if not alternative, mitochondrial metabolic control mechanism 
in excitable cells such as cardiac muscle – i.e., a feedforward control loop involving direct or 
indirect transduction of intracellular calcium concentration changes to the mitochondrial ATP 
synthetic network (1). More recently, yet another alternative respiratory control mechanism of 
particular relevance to energy balance in the heart has been identified (7). It involves a mix of 
feedforward and feedback kinetic effects of Pi on multiple reactions in the oxidative ADP 
phosphorylation pathway (8). 
  What has been relatively lacking for each of the postulated respiratory control signals, in 
particular calcium, is a thorough kinetic characterization of the corresponding mitochondrial 
transduction function f([X],Jp), where [X] is the extra-mitochondrial concentration of signal 
molecule X and Jp equals the rate of mitochondrial ATP synthesis. The need for explicit knowledge 
of these transduction functions in respiratory control model validation has recently become all the 
more pressing due to a surge in availability of computational models of mitochondrial oxidative 
metabolism that require proper validation criteria (9-14). Of these wanting kinetic functions, the 
transduction function f([ADP], Jp) has been most thoroughly investigated (2,3,15-18). Characterized 
initially as ‘approximately hyperbolic’ with a ‘Km’ in the range of 20-30 μM (2,3), it was later reported 
that this function is in fact sigmoidal with an apparent kinetic order of at least two (17). Two 
independent studies have since, albeit indirectly, confirmed the non-Michaelis-Menten (non-MM) 
nature of the ADP stimulation of mitochondrial ATP synthesis (19,20).  
 According to Koshland’s classification of biological sensory systems, a sigmoidal ADP 
transduction function with a Hill coefficient greater than 1 would indicate that mitochondria are 
ultrasensitive to variations in extramitochondrial ADP concentration changes (21). Normal 
sensitivity was defined as the sensitivity corresponding to a hyperbolic input-output function such 
as in MM kinetics (i.e., Hill coefficient equals 1) (21). Importantly, mitochondrial ultrasensitivity, but 
not normal sensitivity to ADP was shown to explain energy balance by feedback respiratory control 
for a range of mammalian cell types including skeletal and cardiac muscle (17). The hypothesis of 
mitochondrial ADP ultrasensitivity has, however, not been generally embraced. Quantitative 
formalisms based on MM kinetics of ADP stimulation of mitochondrial ATP synthesis have 
continued to be used in the field of muscle energetics to evaluate mitochondrial function on basis 
of 31P NMR spectroscopy measurements (22). A possible explanation may be the lack of any verified 
mechanistic basis for second order kinetic behavior of ADP stimulation of mitochondria. Non-MM 
kinetics of ATP-ADP exchange across the inner membrane catalyzed by the adenine nucleotide 
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translocator (ANT) has been proposed but not confirmed as origin of mitochondrial ADP 
ultrasensitivity (17). 
 Here, the magnitude and control of mitochondrial ADP sensitivity are further investigated. 
We collected multiple high time resolution 31P NMR spectroscopy data sets on PCr concentration 
dynamics in human muscle during recovery from exercise to reconstruct the in vivo mitochondrial 
ADP transduction function with a high number of data points for accurate kinetic characterization. 
The result confirmed second order kinetics of ADP stimulation of mitochondrial respiration. Next, 
we investigated the control of mitochondrial ADP sensitivity by conducting a network analysis of a 
computational model of mitochondrial oxidative ADP phosphorylation in muscle (14). Hereto, a 
multi-parametric sensitivity analysis (MPSA) was performed involving generation of multiple 
random sets of parameter values for all mitochondrial enzymes in the model followed by 
reconstruction and characterization of the mitochondrial ADP transduction function for each set. 
The results indicated that mitochondrial ADP ultrasensitivity is an emergent property of the 
integrated mitochondrial metabolic network determined primarily by the kinetic properties of the 
ANT. 
 
 
 

METHODS 
 
  Subjects 
Six healthy, normally active subjects (four male, two female; mean age ± SD: 31 ± 12 years) 
participated in the study. The nature and the risks of the experimental procedures were explained 
to the subjects and all gave their written informed consent to participate in the study, which was 
approved by the local Medical Ethical Committee of the Máxima Medical Center, Veldhoven, The 
Netherlands. 
 
  31P Magnetic resonance spectroscopy  
31P MRS was performed at 1.5 Tesla (Gyroscan S15/ACS, Philips Medical Systems, Best, The 
Netherlands) as described previously (41). Briefly, after localized shimming 31P signals were 
collected using a 6-cm diameter surface coil placed over the M. vastus lateralis (spectral width, 2000 
Hz; number of data points, 1024). From the dimension of the coil and the size and geometry of a 
typical upper leg, it was estimated that the majority of the signal in the unlocalized 31P MRS 
measurements originated from the M. vastus lateralis, with minimal contaminations from the 
adjacent M. rectus femoris and underlying M. vastus intermedius. Spectra were acquired during a 
rest-exercise-recovery protocol with a repetition time of 3 s and 2 scans yielding a time resolution 
of 6 s. The first 20 spectra (2 min) were measured at rest, after which the subjects started the 
exercise. Exercise consisted of dynamic, single-leg extensions every 1.5 s in the supine position 
using a home-built MR compatible ergometer (23). The initial workload varied per subject and 
ranged between 7.5 and 12.5 W. This level was maintained for the first min and the workload was 
then increased by 5 W each min. Subjects performed exercises of different durations and 8-12 data 
sets were collected per subject during 4-8 different sessions, with at least 15 min rest between 
different protocols within one session. The position of the 31P surface coil was marked on the leg 
during the first session and the coil was placed at the same location in subsequent sessions. 
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 31P MRS data analysis  
Spectra were fitted in the time domain by using a nonlinear least squares algorithm (AMARES) (24) 
in the jMRUI software package (25) as described previously (23). PCr, Pi and ATP signals were fitted 
to Lorentzian line shapes. Absolute concentrations of the phosphorylated metabolites were 
calculated after correction for partial saturation and assuming that [ATP] is 8.2 mM at rest (26). 
Intracellular pH was calculated from the chemical shift difference between the Pi and PCr 
resonances (27). All data sets had an end-exercise pH ≥ 6.7. The free cytosolic ADP concentration 
([ADP]) was calculated from pH and [PCr] using a creatine kinase equilibrium constant (Keq) of 
1.66×109 M-1 (28) and assuming that 15% of the total creatine is unphosphorylated at rest (29), 
using the equation (Eq. 1): 
 

+
eq

[ATP][Cr]
[ADP] =

[PCr][H ]K
      (Eq. 1) 

  
The molar free energy of cytosolic ATP hydrolysis was calculated according to (Eq. 2): 
 

 0'
p p iΔG = ΔG + RTln [ADP][P ] / [ATP]  (Eq. 2) 

Where,  0'
pG  is -31.8 kJ/mol at 37°C (30). 

 
The PCr recovery time course, PCr(t), was fitted to a mono-exponential function (Eq. 3): 
 

 
   PCrt

e ePCr t PCr PCr e( / )( )  (Eq. 3) 
Where PCr, is the PCr level after recovery, PCr is the difference between the PCr levels after recovery and at the end of 
exercise, and PCr is the time constant for PCr resynthesis.  

 
The PCr resynthesis rate at time t (VPCr(t)) was calculated from the derivative of the fitted PCr 
recovery time course (Eq. 3). During recovery from exercise, PCr is resynthesized purely as a 
consequence of oxidative ATP synthesis (27,31,32). Because the creatine kinase reaction is much 
faster than oxidative ATP production(20), VPCr(t) reflects mitochondrial oxidative phosphorylation 
flux. Covariations of VPCr(t) with thermodynamic (Gp) and kinetic ([ADP]) adenine nucleotide 
concentration functions were analyzed by nonlinear curve fitting of a Hill function of the form (Eq. 
4): 
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 (Eq. 4) 

Where, Qmax and Qmin the maximal and minimal net ADP phosphorylation fluxes1, x0.5 the Gp or [ADP] value at half-
maximal VPCr, and nH the Hill coefficient (17).  

 
This analysis was performed for each subject separately, using the pooled data from all the exercise 
protocols of that subject (8-12 data sets per subject). Only data points with VPCr(t) > 0.02 mM/s were 
included in the analysis. All nonlinear curve fitting was performed using MATLAB (version 7.3, 
Mathworks, Natick, Massachusetts, USA). 
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 Statistical analysis 
All data are expressed as means ± SD. Statistical analyses were performed using the SPSS 15.0 
software package (SPSS Inc, Chicago, IL, USA). Because of the small number of subjects, the non-
parametric Wilcoxon Signed Ranks test was used for paired comparisons of the data. The level of 
significance was set at P < 0.05. 
 
 Simulation and analysis of in silico mitochondrial ADP transduction functions in muscle 
The computational model of skeletal muscle oxidative ATP metabolism featuring a detailed 
biophysical model of mitochondrial oxidative ADP phosphorylation by Wu and co-workers (14) was 
used as platform for all in silico investigations of the origin of mitochondrial ADP ultrasensitivity. 
First, an analysis was performed of the sensitivity of the macroscopic parameters Qmax, K50 and nH of 
in silico reconstructed [ADP]-Jp relations for muscle towards 19 mitochondrial parameters in the Wu 
model (Table 1). This particular set consisted of 15 mitochondrial parameters of which the value 
had been previously estimated by model fitting (denoted by reference ‘5c’ in Table 2 of ref. (14)) 
and 4 mitochondrial parameters (kO2, Km,ADP, θ and β, respectively)  of which the value had been 
taken from a computational model by Aliev and co-workers (denoted by reference ‘26’ in Table 2 of 
ref. (14)). The design of this multi-parametric sensitivity analysis (MPSA) was based on methods 
described elsewhere (33) including statistical analysis (34). Next, the MPSA results were used to 
investigate if any set of model parameter values existed that would give rise in silico to 
mitochondrial ADP ultrasensitivity. Hereto, the model was fitted to an in vivo [ADP]-Jp data set from 
an individual muscle whereby only model parameters with a significant Kolmogorov-Smirnov test 
score in the MPSA (see below) were varied. 
 
 MPSA 
Multiple random samples were taken from a 50-150% range of the default value for each of the 19 
kinetic parameters of the mitochondrial enzymes in the model (Table 1) plus 5 dummy parameters 
yielding multiple random sets of parameter values for simulation and analysis of in silico [ADP]-Jp 
relations for muscle. An optimized Monte Carlo sampling scheme was used to sample from the 
multidimensional distribution while guaranteeing that individual parameter ranges were evenly 
covered. In this case the parameters were sampled from a logarithmic uniform distribution within 
the defined range. The vectors containing the parameter samples were combined to obtain N 
parameter combinations. It was verified that the number of Monte Carlo runs N was sufficiently 
large to guarantee a good representation of all possible parameter value combinations (see 
below). The sampling and combination process was done with Latin Hypercube Sampling whereby 
each parameter range is divided into N equally probable intervals from which only one sample is 
drawn. These samples are permuted and stored in a vector (with N samples for each parameter). 
Subsequently, these permuted vectors of all p parameters are combined in an N-by-p matrix. After 
the initial combination process, the minimum distance between the sample points is maximized. 
The Latin hypercube was generated using the function lhsdesign of the Statistics Toolbox of 
MATLAB. The number of Monte Carlo runs N was 5000. 
 The model was simulated for each set of parameter values and characterized with respect 
to the particular Qmax, K50 and nH of the corresponding in silico [ADP]-Jp relation by fitting of a 3 
parameter Hill function (Eq. 4 with Qmin set at 0; in this case, x0.5 = [ADP]0.5 = K50). This particular Hill 
function rather than Eq. 4 was used for computational ease on grounds that Qmin was very small 
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compared to Qmax and not significantly different from 0 (see Results; Table 2). To quantify the 
similarity of each of the simulations with respect to the reference simulation the sum of squared 
differences was calculated as criterion function. Each set of parameter values was then classified as 
either ‘unacceptable’ or ‘acceptable’ by comparing the value of the criterion function to a certain 
threshold. Specifically, the set of parameter values was scored ‘unacceptable’ if the criterion 
function value was greater than the threshold, and ‘acceptable’ in all other cases. The average 
value of the criterion function for the total ensemble of simulations was used as threshold value 
(34).  
 
Table 1. Overview of the mitochondrial model parameters tested in the multi-parametric sensitivity analysis. 

Parameter 
number 

Model 
parameter 

Description

1 r Dehydrogenase parameter 
2 kPi, 1 Dehydrogenase parameter 
3 kPi, 2 Dehydrogenase parameter 
4 XDH Dehydrogenase parameter 
5 XC1 Complex I activity 
6 XC3 Complex III activity 
7 kPi, 3 Complex III parameter 
8 kPi, 4 Complex III parameter 
9 XC4 Complex IV activity 

10 KO2 Complex IV parameter 
11 XF1 F0F1-ATPase activity 
12 XANT ANT activity 
13 Km, ADP Michaelis constant ANT 
14 θ ANT parameter 
15 kPiHt H+/Pi- co-transporter parameter 
16 XPiHt H+/Pi- co-transport activity 
17 XKH K+/H+ antiporter activity 
18 XHle H+ leak activity 
19 β Mitochondrial matrix buffering capacity 

 
The influence of each parameter on the model output was evaluated statistically using the 
Kolmogorov-Smirnov (K-S) test (34). Hereto, the distributions of the individual parameter values 
associated with the ‘unacceptable’ and the ‘acceptable’ cases were compared. For each parameter, 
the cumulative frequency was calculated for all ‘unacceptable’ and ‘acceptable’ cases. The 
sensitivity is evaluated by a measure of the separation of the two cumulative frequency 
distributions. The K-S test for the ith parameter is represented as (Eq. 5):  
 

    i i iK S S Ssup ( ) ( )  (Eq. 5) 

Where, S> and S< are the cumulative frequency functions corresponding to ‘unacceptable’ cases and ‘acceptable’ cases, 
respectively, and θi is the parameter.  

 
The value of K-S is determined as the maximum vertical distance between the cumulative 
frequency distribution curves for n ‘unacceptable’ and m ‘acceptable’ cases, n + m = N. A larger K-S 
score indicates that the model is sensitive to variation in that parameter. The highest K-S score of 
the dummy parameters was used as threshold for statistical significance – i.e., parameters with a K-



Chapter 4 

 

80 

S score above the threshold were classified as sensitive. Finally, the K-S scores were summarized in 
a ranking of the sensitive parameters. This ranking was also used to verify that the number of 
Monte Carlo runs N was sufficiently large to guarantee a good representation of all possible 
parameter value combinations. For sufficiently large N the ranking of the sensitive parameters is 
independent of the exact number of samples (33).  
 
 Model fitting 
To test if any set of model parameter values existed that would give rise in silico to mitochondrial 
ADP ultrasensitivity, the model was fitted to an in vivo [ADP]-Jp data set from an individual muscle 
(subject #2) whereby only model parameters with a significant K-S score were adjusted. Model 
fitting was performed using a nonlinear least-squares optimization method employing the 
lsqnonlin algorithm in the parameter estimation toolbox in MATLAB. Subsequently, in silico [ADP]-Jp 
covariations were computed for the model with the fitted parameter values and kinetically 
characterized by curve fitting of Eq. 4. 

 
 
 

RESULTS 
 

 In vivo mitochondrial ADP transduction function in muscle 
Figure 1 shows typical examples of 31P MR spectra obtained from the vastus lateralis muscle of an 
individual subject (i) at rest (Fig. 1A), (ii) at the end of exercise (Fig. 1B) and (iii) at two time points 
during recovery (Figs 1C and 1D). Figure 2 shows the corresponding plot of the PCr concentration 
against recovery time together with the mono-exponential fit of the recovery data (solid line). The 
PCr resynthesis rate was calculated from the derivative of the fitted PCr recovery time course for 
each time point sampled during recovery. For this particular population of 6 subjects, the maximal 
PCr resynthesis rate was 0.73 ± 0.05 mM/s. End-exercise (maximal) ADP concentration and (lowest) 
molar Gibbs free energy of cytosolic ATP hydrolysis were 86 ± 8 μM and -52.8 ± 0.4 kJ/mol, 
respectively. 
 
Table 2. Results of the unconstrained curve fitting of Eq. 4 to the (Gp, VPCr) data for the 6 subjects. 

subject Qmax (mM/s) Qmin (mM/s) Gp,0.5 (kJ/mol) nH 

1 0.81 -0.04 -58.1 24.9
2 0.76 -0.02 -58.9 25.9
3 0.69 -0.09 -58.8 21.8
4 0.70 -0.04 -57.9 23.5
5 0.86 -0.03 -57.8 23.8
6 0.65 -0.03 -57.9 22.7
     

mean 0.74 -0.04 -58.2 23.8
SD 0.08 0.02 0.5 1.5 

Where, Qmax, represents maximal net PCr resynthesis flux; Qmin, minimal net PCr resynthesis flux; Gp,0.5, molar free energy 
of cytosolic ATP hydrolysis at half-maximal VPCr; nH, Hill coefficient. 
  
To estimate the PCr resynthesis rate asymptotes Qmax and Qmin in the muscle cells, we analyzed the 
thermodynamic flow-force relation of PCr resynthesis (35,36). This relation was characterized by 
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unconstrained fitting of Eq. 4 to the (Gp, VPCr) data (Figure 3). Almost the full range of sustainable 
energy balance states was covered by the experimental data points, resulting in accurate 
estimation of the flux asymptotes Qmax and Qmin (Table 2). The group mean value for Gp at half-
maximal VPCr was -58.2 ± 0.5 kJ/mol. 
  

 
Figure 1. Typical M. vastus lateralis 31P MR spectra for one subject at rest (panel A, number of scans = 60), at the end of 
exercise (panel B, number of scans = 2) and at 15 and 117 s of recovery (panels C and D, respectively, number of scans = 
2). Spectra were processed with 5 Hz line broadening. Pi indicates inorganic phosphate; PDE, phosphodiesters; PCr, 
phosphocreatine; and ,  and  indicate the three phosphate groups of ATP. For this subject the PCr depletion at the 
end of exercise (panel B) was 81% and the corresponding end-exercise pH was 6.72. 

 
The values for Qmax and Qmin determined from the thermodynamic flow-force relation were next 
imposed as constraints on the fit of Eq. 4 to the ([ADP], VPCr) data (Figure 4, solid line) to determine 
the apparent affinity and kinetic order of mitochondrial ADP sensing. The results of the analysis for 
each of the subjects studied are summarized in Table 3. Group mean values for [ADP]0.5 and nH were 
22 ± 3 μM and 1.9 ± 0.2, respectively. Eq. 4 was also fitted to the ([ADP], VPCr) data without imposing 
any constraints on the flux asymptotes (Figure 4, dotted line; Table 4). The fitted values for Qmax and 
Qmin were similar to the values obtained from the thermodynamic flow-force relation (Table 2), 
except for one muscle (subject #3). Fitted estimates of [ADP]0.5 and nH were not different from the 
values obtained from the constrained fit (Table 3).  
Lastly, the PCr resynthesis rate, VPCr(t), was also correlated with the ADP concentration at each 
measurement point using a hyperbolic function (nH=1 in Eq. 4) corresponding to the classic MM 
ADP respiratory control model (37). The result for a single muscle is shown in Figure 4 (dashed line). 
The MM ADP control model was incompatible with the experimental data at high flux values 
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causing overestimation of the maximal net PCr resynthesis flux Qmax (0.98 ± 0.13 mM/s versus 0.74 ± 
0.08 mM/s (Table 2); pP < 0.05). In addition, the MM ADP control model predicted a 7-fold higher 
net mitochondrial ATP hydrolysis rate at low ADP concentrations than the second order control 
model (Qmin -0.27 ± 0.04 mM/s versus -0.04 ± 0.02 mM/s (Table 2); P < 0.05).  
 
Table 3. Results of the curve fitting of Eq. 4 to the ([ADP], VPCr) data for the 6 subjects with Qmax and Qmin constrained to 
the values obtained from the thermodynamic flow-force relation (Table 2). 

subject [ADP]0.5 (μM) nH

1 25 1.9
2 19 2.1
3 18 1.7
4 23 1.9
5 24 1.8
6 22 1.7
   

mean 22 1.9
SD 3 0.2

Where, [ADP]0.5 denotes the ADP concentration at half-maximal VPCr; and nH, represents the Hill coefficient. 

 

 
Figure 2. PCr concentration during rest, exercise and recovery obtained from the corresponding data set shown in Figure 
1 (time resolution 6 s). The recovery of PCr (starting at t = 0) was fitted to a mono-exponential function (solid line). The 
time constant for PCr recovery was 46.8 s. 

 
 Multi parameter sensitivity analysis 
The results of the MPSA are summarized in Figure 5. The K-S scores with respect to the Qmax, ADP 
affinity (K50) and Hill coefficient (nH) of the mitochondrial ADP transduction function for each of the 
19 mitochondrial kinetic parameters and 5 dummy parameters (parameters 20-24; Table 1) are 
shown in Figures 5A, B and C, respectively. The threshold score for significant sensitivity 
determined by the dummy parameters K-S scores (34) was 0.03-0.04 (Figure 5A-C). On this basis, all 
three macroscopic kinetic parameters of the mitochondrial ADP transduction function were found 
to exhibit significant sensitivity to the particular kinetic properties of three mitochondrial enzymes 
in the model – i.e., the lumped tricarboxylic acid dehydrogenase activity (TCA-DH; parameters 1-4), 
respiratory chain Complex III (CIII; parameters 6-8) and the adenine nucleotide transporter (ANT; 
parameters 12-14), respectively (Figure 5A-C). Within this subset, the ANT parameter sensitivity was 
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dominant (Figure 5A-C). Specifically, the Qmax of the mitochondrial ADP transduction function 
exhibited significant sensitivity to model parameters 1-4, 7, 12 and 14 corresponding to TCA-DH 
parameters kPi,1, kPi,2, r and XDH, Complex III parameter kPi,3 and ANT parameters XANT and θ, 
respectively (Table 1) whereby the sensitivity to the ANT parameter XANT was dominant (K-S score 
0.46 versus 0.05-0.07 for TCA-DH and Complex III parameters, respectively) (Figure 5A). Likewise, 
the apparent kinetic order of the ADP transduction function (nH) exhibited significant sensitivity 
only to all TCA-DH parameters (model parameters 1-4, Table 1) and all ANT parameters (model 
parameters 12-14, Table 1) whereby the sensitivity to ANT parameter θ was dominant (K-S score 
0.63 versus 0.09-0.13 for all other ANT and TCA-DH parameters, respectively (Figure 5B). Finally, the 
overall mitochondrial ADP affinity K50 exhibited significant sensitivity to the TCA-DH parameters 
kPi,1, r and XDH (model parameters 1, 3 and 4, respectively; Tabel 1), Complex III parameters XC3 and 
kPi,3 (model parameters 6 and 7, respectively) and ANT parameters Km-ANT and θ (model parameters 
13 and 14, respectively) whereby the sensitivity to θ was again dominant (K-S score 0.47 versus 
0.04-0.07 for all other significant parameters, respectively) (Figure 5C).  
 
Table 4. Results of the unconstrained curve fitting of Eq. 4 to the ([ADP], VPCr) data for the 6 subjects. 

subject Qmax (mM/s) Qmin (mM/s) [ADP]0.5 (μM) nH

1 0.78 -0.03 24 2.1
2 0.72 -0.03 18 2.3
3 0.62 -0.01 18 2.3
4 0.65 -0.05 21 2.0
5 0.83 -0.07 22 1.7
6 0.64 -0.05 21 1.7
     
mean 0.71 -0.04 21 2.0
SD 0.09 0.02 2 0.3

Where Qmax, denotes the maximal net PCr resynthesis flux; Qmin, minimal net PCr resynthesis flux; [ADP]0.5, ADP 
concentration at half-maximal VPCr; nH, Hill coefficient. 
 

 
Figure 3. PCr resynthesis rate as a function of the molar free energy of cytosolic ATP hydrolysis (filled circles) for an 
individual muscle (subject 2). The unconstrained, 4-parameter fit of Eq. 4 to the data is shown by the solid line. 
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Figure 4. PCr resynthesis rate as a function of ADP concentration (filled circles) for an individual muscle (subject 2). Eq. 2 
was fitted to the data: 2-parameter fit with Qmax and Qmin constrained to the values obtained from the thermodynamic 
flow-force relation (solid line), unconstrained, 4-parameter fit (dotted line), and 3-parameter fit with nH constrained to 1 
(dashed line). 

 
 Model fitting 
The MPSA results were next used to investigate if any set of model parameter values existed that 
would give rise to in silico mitochondrial ADP ultrasensitivity. First, the transduction function for the 
default parameterization of the model (14) was characterized. Figure 6A shows the [ADP]-Jp 
covariation computed for the default set of model parameter values together with a set of 
experimental [ADP]-Jp data points obtained in an individual muscle. By scaling XANT and XDH, the in 
silico Qmax of oxidative phosphorylation was adjusted to 0.8 mM/s corresponding to the in vivo 
estimate for this particular muscle (Table 2; subject #2). This required a twofold increase of XANT and 
a threefold increase of XDH to 0.016 mM/s and 0.260 mM/s, respectively. Curve-fitting of Eq. 4 to the 
simulated data showed that the ADP transduction function for the default parameterization of the 
model was hyperbolic (nH 1.06) with Qmax and Qmin of 0.80 and -0.02 mM/s, respectively, and a K50 of 
0.16 mM. Clearly, the first-order in silico mitochondrial ADP sensitivity for the default model 
parameterization was incompatible with the measured in vivo response of Jp to [ADP] changes in 
muscle (Figure 6A). Figures 6B and 6C show the computed variations of the mitochondrial 
membrane potential (Δψm) and redox potential (([NADH]/[NAD])m) with [ADP], respectively, for the 
default parameterization. Both potentials were predicted first to rapidly increase at very low [ADP] 
and subsequently gradually drop towards limit values of 170 mV and 1.3, respectively (Figures 6B 
and C). 
 Figures 6D-I show the results of the model fitting to the same in vivo [ADP]-Jp data set for 
two cases. In the first case, only the model parameters with the highest MPSA K-S score (i.e., ANT 
parameters XANT and θ; Figure 5A-C) were adjustable parameters in the fitting yielding XANT = 0.041 
mM/s and θ = 1.0 (versus 0.016 mM/s and 0.35 in the default case, respectively). Figure 6D shows 
the corresponding fit of Eq. 4 to the computed [ADP]-Jp covariation for this particular model 
parameterization in comparison to the measured [ADP]-Jp covariation in the individual muscle. The 
in silico ADP transduction function in this case was sigmoidal with a Hill coefficient of 1.5 and a K50 
of 0.025 mM corresponding to ADP ultrasensitivity (21). The fitted estimates for Qmax and Qmin were 
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0.82 and -0.02 mM/s, respectively. Figures 6E and 6F show the computed variations with [ADP] of 
Δψm and ([NADH]/[NAD])m for this particular model parameterization. Both potentials exhibited a 
steeper drop over the physiological range of ADP concentration changes in muscle compared to 
the default model parameterization (but without any initial rise at low [ADP]) followed by a more 
rapid stabilization at 165 mV and 1.1, respectively, at ADP concentrations above 0.2 mM. Figures 
6G-I show the results for an alternative model fitting. In this case, all model parameters with a 
significant K-S score except θ were adjustable parameters in the fitting, yielding XANT = 0.32 mM/s, 
XDH = 0.12 mM/s and r = 3.1 (versus 0.016 mM/s, 0.26 mM/s and 4.6 for the default case in Figure 6A, 
respectively). The ADP transduction function for this model parameterization was likewise 
sigmoidal with fitted estimates of Qmax, Qmin and K50 of 0.81 mM/s, -0.02 mM/s and 0.023 mM, 
respectively (Figure 6G). The Hill coefficient was in this case even higher than in the former case 
(i.e., 2.1 versus 1.5, respectively). However, for this particular model parameterization 
([NADH]/[NAD])m collapsed over the physiological range of ADP concentration changes in muscle 
accompanied by Δψm falling below 150 mV (Figure 6H and I). 

 
 

 

DISCUSSION 
 

The present in vivo and in silico investigations of the magnitude and origin of mitochondrial 
sensitivity to cytoplasmic ADP concentration changes in human skeletal muscle has yielded two 
main results. First, it was found by 31P MRS that the in vivo affinity and kinetic order of ADP 
stimulation of mitochondrial oxidative ADP phosphorylation in human skeletal muscle were 0.022 
± 0.003 mM and 1.9 ± 0.2, respectively. Secondly, it was found by computational analysis that these 
kinetic characteristics of mitochondrial ADP sensing and transduction, respectively, are primarily 
determined by the kinetic properties of the mitochondrial adenine nucleotide transporter. Below, 
these results and aspects of the underlying analysis are discussed. 
 
 In vivo mitochondrial ADP transduction function: analysis.  
The previous investigation of the mitochondrial ADP transduction function used, amongst others, 
in vivo data sets on the covariations of the mitochondrial ATP synthesis rate Jp with cytosolic Gp 
and [ADP] in contracting forearm muscle (17). Hereto, muscle PCr, Pi and ATP concentrations and 
pH were measured in individual subjects typically at six electrical nerve stimulation frequencies 
(17). As such, the (Gp, Jp) and ([ADP], Jp) relations in individual subjects were only sparsely sampled 
(7 points in each data set). As a consequence, adequate sampling of the underlying physiological 
relationship to determine the Hill coefficient was achieved only by pooling data sets of six subjects 
yielding 42 data points ((17); Figure 2). This introduced additional scatter as a result of intersubject 
variation in muscle fiber type composition giving rise to a 3-fold range in ATPase activity at a 
particular twitch contraction frequency (38). In the present study, this problem was circumvented 
by taking an alternative approach: the relationship between mitochondrial ATP synthesis flux and 
Gp and [ADP], respectively, was reconstructed from the densely sampled (6 s time resolution) PCr 
recovery time course following muscle contractions (Figures 3 and 4). Moreover, multiple data sets 
were obtained from each subject. As a result, single subject data sets therefore typically contained 
100+ (range: 109-206) data points (Figures 3 and 4) compared to 7 data points in the previous 
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study (17). In particular, much improved sampling of the Gp-Jp covariation was obtained at very 
low fluxes (Figure 3). As a result, accurate estimation of the mitochondrial flux asymptotes (and 
thereby nH) was achieved in individual subjects (Tables 2 and 3). In fact, fully unconstrained fitting 
of a sigmoidal relation to individual ([ADP], Jp) data sets yielded the same results as two-parameter 
fits with flux asymptotes fixed at values obtained from the thermodynamic flow-force analysis (nH: 
2.0 ± 0.3 versus 1.9 ± 0.2, respectively; Tables 3 and 4). These values were not different from the 
value previously obtained for skeletal muscle (i.e., 2.1 (17)). 
 A second methodological difference with the previous investigation of the mitochondrial 
ADP transduction function regarded the calculation of the mitochondrial ATP synthesis rate Jp 
corresponding to each [ADP] data point. In both cases, the derivative of the exponential fit to the 
time course of PCr was used to compute the net ATP turnover flux at each time point. However, in 
the previous study, a subsequent subtraction step was necessary to correct for any non-oxidative 
ATP synthesis flux evidenced from progressive acidification of the contracting muscle fibers (17). 
The magnitude of this flux was estimated from the pH time course (17). In the present study, no 
such correction was necessary because the muscle was electrically silent during recovery. It has 
been previously shown that anaerobic ATP synthesis flux is negligible under these conditions 
(27,31,32,39,40). Indeed, fitting of a bi-exponential function to the PCr time course during recovery 
failed to detect any significant second source of ATP synthesis (data not shown). If any, only the 
first PCr concentration time point at 3 s into metabolic recovery may have had a contribution from 
non-mitochondrial ATP synthesis (41). In that case, the data points in Figure 4 at the highest ADP 
concentrations would need to be correlated with lower mitochondrial Jp values. If anything, this 
would render the fitted transduction function even more, not less sigmoidal. 
 
 In vivo mitochondrial ADP transduction function: magnitude of the kinetic order  
The first main result of the present investigation of the magnitude and origin of mitochondrial ADP 
ultrasensitivity is that the apparent kinetic order of the in vivo mitochondrial transduction function 
f([ADP], Jp) in skeletal muscle is 1.9 ± 0.02 (range: 1.7 – 2.1; Table 3). This value is in close agreement 
with the outcome of a previous investigation of the precise value of this macroscopic kinetic 
parameter in isolated mitochondria and human forearm muscle (2.4 and 2.1, respectively) (17). As 
such, the present investigation constitutes the first direct in vivo confirmation of the previously 
formulated hypothesis that mitochondria are ultrasensitive to extramitochondrial ADP 
concentration changes (17). Previous confirmations had come only from indirect evidence (19,20). 
 This result impacts the field of bioenergetics in two ways. Firstly, after having been 
previously dismissed as an irrelevant regulatory mechanism in cardiac energetic (6), feedback 
control of mitochondrial ATP synthesis has recently returned to the center of attention (7). This 
renewed interest has been spurred by the discovery of multiple stimulatory effects of Pi on the 
mitochondrial metabolic network involved in oxidative ADP phosphorylation in cardiac and 
skeletal muscle (8). Indeed, a recent review of contemporary knowledge of cardiac energetic 
elaborately discuss the impact of this discovery on understanding energy balance in the heart (7). 
 No mentioning was made, however, of the other ATP hydrolysis product, ADP and its particular 
role in feedback control of ATP synthesis in the heart (7). Yet, it was previously shown that 
mitochondrial ADP ultrasensitivity may for a large part explain the measured covariation of [ADP] 
and myocardial oxygen consumption (17). Therefore, the present affirmation of the hypothesis of 
mitochondrial ADP ultrasensitivity suggests that both this particular mechanism as well as the 
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multiple stimulatory roles of Pi both contribute to the efficacy of feedback respiratory control in 
striated muscle energetics. Importantly, the apparent allosteric stimulatory effects of ADP and Pi on 
mitochondrial ATP synthesis appear to operate independently. This conclusion is based on the 
finding that the magnitude of mitochondrial ADP ultrasensitivity quantified by the Hill coefficient 
of the transduction function (21) was sensitive only to a subset of the parameters in the 
mitochondrial metabolic network model whereby the multiple stimulatory roles of Pi were 
mathematically implemented (Figure 5B). Secondly, the result impacts computational modeling of 
mammalian cell energetic. Specifically, the affirmation of second order for the mitochondrial ADP 
transduction function provides a firm and tractable validation criterion for evaluation of past (9-14) 
and future computational models of mitochondrial oxidative metabolism. 
 
 In vivo mitochondrial ADP sensing and transduction: origin of ADP ultrasensitivity 
Koshland identified three distinct generic biochemical mechanisms that may endow a biological 
network with ultrasensitivity (21). For the particular case of mitochondrial ultrasensitivity to 
cytoplasmic ADP concentration changes, concrete indications exist for the possible involvement of 
two of these mechanisms – i.e., the presence of allosteric network elements and multi-site network 
activation, respectively (21). Specifically, three alternative biochemical implementations of multi-
site activation have been demonstrated in mitochondria – i.e., multi-site kinetic activation by 
calcium (1), by inorganic phosphate (8), and multi-site phosphorylation (42). Likewise, in vitro 
evidence has been obtained for non-MM kinetics of ADP-ATP exchange catalyzed by the ANT 
(43,44). The latter mechanism was previously invoked to explain mitochondrial ADP ultrasensitivity 
in the original communication (17). However, that particular hypothesis for the origin of 
mitochondrial ADP ultrasensitivity has awaited validation. The present investigation has yielded 
new evidence that the kinetic properties of ANT indeed principally determine the macroscopic 
mitochondrial property of ADP sensitivity. This is the second main result of the investigation.  
 The evidence for this conclusion that was obtained in this study was twofold. Firstly, the 
MPSA of the computational model of skeletal muscle oxidative ATP metabolism including a 
detailed biophysical model of mitochondrial oxidative ADP phosphorylation (14) identified an ANT 
parameter as the primary determinant of mitochondrial ADP sensitivity both with respect to ADP 
sensing (K50) as well as transduction (nH) (Figures 5B and C). This particular parameter, θ, is a 
phenomenological parameter in the rate equation for the ADP-ATP exchange reaction catalyzed by 
ANT of the model that was analyzed ((14); see Appendix). The K-S scores for this parameter only 
were one order of magnitude higher than the statistical threshold and 5 to 10-fold higher than any 
other model parameter (Figures 5B and C). Secondly, the results of the model fitting to an in vivo 
[ADP]-Jp data set from an individual muscle showed that mitochondrial ultrasensitivity to ADP 
concomitant with homeostasis of the mitochondrial membrane and redox potentials could be 
obtained in silico if, and only if the ANT parameter θ was included in the set of adjustable 
parameters in the model fitting (Figure 6). 
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Figure 5. K-S scores of the 19 model parameters (o) and 5 dummy parameters (◊) from the multi-parametric sensitivity 
analysis of the model for each of the three macroscopic kinetic parameters of the mitochondrial transduction function: 
(A) Qmax, (B) nH and (C) K50. Shaded areas indicate the threshold of significance set by the K-S scores of the 5 dummy 
parameters in each graph. 
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The default ADP sensitivity of the mitochondrial network in the model was insufficient, as indicated 
by the hyperbolic nature of the simulated [ADP]-Jp relation for the default model parameterization 
(Figure 6A). Changing θ from its default value of 0.35 to the fitted optimum of 1.0 concomitant with 
a 2.5-fold increase of the Vmax of ANT resulted in an almost 5-fold increase in mitochondrial ADP 
sensitivity compared to the default parameterization of the model (nH 1.5 versus 1.06 and K50 0.025 
versus 0.16 mM, respectively; Figures 6A and 6D). Importantly, these specific values of in silico 
mitochondrial ADP affinity and transduction closely agreed with the experimentally determined 
values of these macroscopic mitochondrial kinetic parameters in muscle (Table 3). Furthermore, 
simulation showed that homeostasis of the mitochondrial membrane and redox potential at high 
ADP concentrations was superior compared to the default model parameterization (Figures 6B and 
C versus 6E and F, respectively). In contrast, Δψm and particularly ([NADH]/[NAD])m collapsed at 
physiological ADP concentrations in muscle for the alternative combination of fitted model 
parameters (including the Vmax of ANT but not θ) that yielded mitochondrial ADP ultrasensitivity 
(Figure 6H and I, respectively). Specifically, simulation showed that ([NADH]/[NAD])m in this case 
near-instantaneously collapsed to almost zero when mitochondria were activated by cytoplasmic 
accumulation of ADP and Δψm dropped below the critical value of 150 mV at a, for muscle, only 
moderately elevated cytoplasmic ADP concentration of 0.07 mM (Figures 6H and I). It has been well 
established that the reaction catalyzed by mitochondrial F1-ATPase reverses from net ATP 
synthesis to ATP hydrolysis for Δψm values below 150 mV (11). 
 Finally, it could perhaps be argued that the maximal Hill coefficient for in silico 
mitochondrial ADP transduction that was obtained by fitting of θ and XANT falls short of 
reproducing the in vivo estimate of this macroscopic parameter (1.5 versus 1.9 ± 0.02 (range: 1.7 – 
2.1), respectively; Table 3). In that case, there would maximally be need for another twofold 
increase in sensitivity by some kinetic mechanism that remained unidentified in the present 
computational studies likely because it was not included in the particular mitochondrial 
computational model that was analyzed. Since multi-site kinetic activation of the mitochondrial 
network by Pi has been explicitly incorporated in the model (14), it is more likely another kinetic 
mechanism must be involved. In that case, some form of kinetic regulation by calcium may appear 
a tenable first hypothesis for several reasons. First of all, the computational mitochondrial model 
platform for our computational studies did not yet include implementation of calcium balance (nor 
of any metabolic regulatory effect of calcium; (14)). Secondly, it has been well established that 
calcium can modify TCA-DH activity in mitochondria (1). Thirdly, the kinetic parameters of the TCA-
DH were found to have significant control, albeit small compared to θ, of the Hill coefficient of the 
mitochondrial ADP transduction function (Figure 5B). However, we were unable to further increase 
nH above 1.5 by additionally changing any of the TCA-DH parameter values within a 10-fold range 
(data not shown) indicating that, if any, none of the known calcium effects on TCA-DH activity (1) 
would be involved. Any significant contribution of calcium activation of other enzymes in the 
mitochondrial network (e.g., direct activation of ATP synthase (1) or indirect activation of the redox 
proton pumps via covalent modification by kinases (42)) also appears unlikely since none of these 
mitochondrial enzymes had any significant MPSA K-S score (Figure 5B). As such, it may well prove 
difficult to identify any ancillary kinetic mechanisms and their biochemical implementation in the 
mitochondrial metabolic network that may further increase the macroscopic kinetic order of ADP 
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transduction from 1.5 to 1.9. However, the present study illustrates that computational modeling 
and network analysis provide powerful tools to conduct such an investigation.  
 

 
 
Figure 6. Simulations of the covariation of Jp (in mM/s), Δψm (in mV) and ([NADH]/[NAD])m with cyoplasmic ADP 
concentration (in mM) for three different model parameterizations. Open symbols correspond to measured in vivo [ADP]-
Jp covariation in an individual muscle (subject 2). (A)-(C): default model parameterization with XANT and XDH 0.41 and 0.269 
mM/s, respectively. In (A), the simulated relation was kinetically characterized by unconstrained, 4-parameter curve-
fitting of Eq. 4 yielding fitted estimates for with Qmax, Qmin, nH and K50 of 0.80 mM/s, -0.02 mM/s, 1.06 and 0.16 mM, 
respectively. (D)-(F): fitted model parameterization I with XANT = 0.41 mM/s and θ = 1.0. XDH was kept at 0.269 mM/s. In (D), 
the simulated relation was kinetically characterized by unconstrained, 4-parameter curve-fitting of Eq. 4 yielding fitted 
estimates for with Qmax, Qmin, nH and K50 of 0.82 mM/s, -0.02 mM/s, 1.50 and 0.025 mM, respectively. (G)-(I): fitted model 
parameterization II with XANT = 0.32 mM/s, XDH = 0.12 mM/s and r = 3.1. In (G), the simulated relation was kinetically 
characterized by unconstrained, 4-parameter curve-fitting of Eq. 4 yielding fitted estimates for with Qmax, Qmin, nH and K50 
of 0.81 mM/s, -0.02 mM/s, 2.10 and 0.023 mM, respectively. 
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 Implications for kinetic modeling of ANT 
The adjustment of the value of ANT parameter θ from 0.35 to 1.0 that, together with a 2.5-fold 
increase in Vmax of ATP-ADP exchange, transforms the ADP sensitivity of the mitochondrial 
metabolic network in the Wu model (14) from normal to ultrasensitivity represents not merely an 
arbitrary model optimization. Instead, it has a significant mechanistic implication. In the Wu model 
(14), θ is a phenomenological partition coefficient that determines the magnitude of the effective 
Δψm components on the intermembrane space and matrix sides of the inner membrane (Δψm-i and 
Δψm-x, respectively) with respect to the transport of ADP and ATP across the inner membrane 
(Appendix). The phenomenological partitioning of Δψm into Δψm-i = θ*Δψm and Δψm-x = (1-θ)*Δψm, 
respectively, was originally introduced in the kinetic modeling of the ATP-ADP exchange reaction 
catalyzed by the ANT by Korzeniewski and Froncisz (45) and later parameterized by fitting of in vitro 
mitochondrial adenine nucleotide uptake data yielding θ= 0.35 (46). It has since been used in other 
computational models of mitochondrial ATP synthesis including the model analyzed here (14,47).  
 The results of the present investigation invalidate this particular kinetic model of 
mitochondrial ATP-ADP exchange as a suitable component of any computational model that seeks 
to simulate the behavior of mitochondria in living cells. Specifically, the result of the model fitting 
that  θ should be 1 rather than 0.35 to adequately simulate ATP metabolism in muscle indicated 
that the partitioning of Δψm into any cytoplasmic and matrix component introduced on basis of in 
vitro data is not appropriate in vivo and should be omitted. The adjusted ANT rate equation is 
shown in the Appendix (Eq. 8). The mechanistic implication of this conclusion is that the transport 
rate of the cytoplasmic adenine nucleotides into the mitochondria remains sensitive both to mass 
action as well as the electrochemical potential over the inner mitochondrial membrane, whereas 
the transport rate of adenine nucleotides from inside the mitochondria to the outside in vivo is 
apparently sensitive to mass action only (Appendix; Eq. 8). 
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APPENDIX 
 
The rate equation for ATP-ADP exchange across the inner mitochondrial membrane catalyzed by the ANT in the model of 
Wu et al. (14) is (Eq. 5): 
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  (Eq. 5) 

 
where [fX]i and [fX]x are the magnesium-unbound species of ATP and ADP in the mitochondrial intermembrane space 
and matrix, respectively, and Δψm is the mitochondrial membrane potential (14). The kinetic parameters XANT and Km,ADP 
(parameters 12 and 13 in Table 1, respectively) correspond to the ANT activity (in mol/s/l mito) and the ANT Michaelis 
constant (in M), respectively (14). Parameter θ is a phenomenological coefficient introduced by Korzeniewski and 
Froncisz (45) that determines the magnitude of the effective Δψm components on the intermembrane space and matrix 
sides of the inner membrane (Δψm-i and Δψm-x, respectively) with respect to the transport of ADP and ATP across the inner 
membrane according to (Eq. 6 and 7):  
 

Δψm-i = θ∙Δψ m (Eq. 6) 
 

Δψm-x = (1- θ)∙Δψ m (Eq. 7) 
 
The default value of θ in the Wu model was 0.35 (14) and identical to the value previously derived by Korzeniewski on 
basis of model fitting to in vitro data of adenine nucleotide uptake in isolated mitochondria (46). 
For the case θ = 1, Eq. 5, reduces to (Eq. 8): 
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ABSTRACT 
 

The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal 
muscle was investigated. Hypotheses of key control mechanisms were included in a biophysical 
model of oxidative phosphorylation and tested against metabolite dynamics recorded by 31P 
nuclear magnetic resonance spectroscopy (31P MRS). Simulations of the initial model featuring only 
ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation 
between myoplasmic free energy of ATP hydrolysis (ΔGp = ΔGp

o’ + RT ln ([ADP][Pi]/[ATP]) and the 
rate of mitochondrial ATP synthesis at low fluxes (<0.2mM/s). Model analyses including Monte 
Carlo simulation approaches and metabolic control analysis (MCA) showed that this problem could 
not be amended by model re-parameterization, but instead required reformulation of ADP and Pi 
feedback control or introduction of additional control mechanisms (feed forward activation), 
specifically at respiratory Complex III. Both hypotheses were implemented and tested against time 
course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and 
validation data obtained by 31P MRS of sedentary subjects and track athletes. The results rejected 
the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback 
control of respiratory chain complexes by inorganic phosphate is essential to explain the 
regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range.  
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INTRODUCTION 
 
The means by which oxidative ATP synthesis is controlled has remained an intensively studied 
topic during the past decades (1). The first control scheme that was proposed involved a feedback 
signal of cellular ATP hydrolysis products, i.e. ADP and Pi (2). More recently, a second control 
mechanism was proposed: i.e. parallel activation of cellular ATP demand and production (feed 
forward activation). It was hypothesized that parallel activation (feed forward regulation) of cellular 
ATP demand and production was essential to explain energy homeostasis (1,3). Since then, several 
sites of Ca2+ stimulation present in the mitochondrial network as well as a vast protein 
phosphorylation network controlled by Ca2+ signaling have been discovered (4). These data 
provided further support of the parallel activation hypothesis. However, although both control 
mechanisms have a firm basis in literature, it is still unclear to which extend each of these 
mechanisms contributes to the cellular energy homeostasis of the intact system (see e.g. (5,6) 
versus (1) and (7)). In addition, related questions, like e.g., the role of these control mechanisms in 
the development and progression of metabolic diseases, are considered important topics for future 
research (8). 

Answering these questions requires a thorough understanding of the integrated system 
(9,10). Computational modeling has been proposed as an important research tool for keeping track 
of biological complexity and developing such 'systems - level' understanding (11,12). Although 
most models are constructed by integration of information obtained under in vitro experimental 
conditions, the goal of these models remains to represent in vivo conditions. It is therefore essential 
to test and improve them with in vivo data.  

31P magnetic resonance spectroscopy (MRS) provides a non-invasive method for measuring 
metabolite dynamics (PCr, Pi, ATP) during rest, exercise and recovery conditions in human skeletal 
muscle (13). In chapter 4, 31P MRS was used to sample the transduction functions between 
regulatory metabolites (ADP, Pi) or thermodynamic potential (ΔGp = ΔGp

o’ + RT ln [ADP][Pi]/[ATP]) 
and the oxidative ATP synthesis flux (JP). These transduction functions capture important 
characteristics of the regulation of oxidative phosphorylation in vivo and can therefore be applied 
for testing and validation of computational models of oxidative ATP metabolism.  

The computational model of oxidative energy metabolism developed by Beard and 
coworkers (14) is among the most advanced models currently available. At first, it was developed 
to describe oxidative ATP metabolism in cardiac myocytes. At the moment, it has excellent 
performance in reproducing 31P MRS observed metabolite dynamics in cardiac cells (5,6). In 
addition, we showed that the model reproduced the transduction function between ADP and Jp 

recorded in skeletal muscle fairly well (chapter 4). However, it has also been reported that at low 
respiration rates and corresponding ATPase fluxes (ATPase < 0.2mM/s) the model systematically 
underestimates ADP and Pi concentrations (15,16), which is most evident in predictions of the ΔGp - 
Jp relation. These limitations are probably not a severe shortcoming for modeling of cardiac 
energetics. The normal physiological ATPase range of cardiac myocytes does not include these low 
fluxes. However, in case of skeletal muscle, or other excitable cell types, like neurons, the problem 
is considerably more significant, as these cells often experience low flux conditions.  

It was studied if the observed model limitations are a result of inadequate 
parameterization; or alternatively, if the model is lacking essential control mechanisms. The latter 
will also have important physiological implications. Specifically, three hypotheses were tested: (i), 
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the model is not missing control mechanisms, but merely requires parameter optimization; (ii), the 
missing control can be explained by addition of a substrate feedback mechanisms (by e.g. Pi) 
acting on a subset of model components; or (iii), the missing control can be explained by addition 
of feed forward regulation (by e.g. Ca2+ signaling and protein phosphorylation) acting on a subset 
of model components.  

To test these hypotheses, first, the relation between ΔGp and Jp was obtained from high 
time resolution 31P MRS recordings of metabolite dynamics (PCr, Pi, ATP, ADP, pH) during recovery 
from exercise. The relation was determined for healthy human subjects (control group; data were 
obtained from chapter 4) and two other populations, i.e., subjects with sedentary lifestyle and track 
athletes (validation datasets). Next, numerical analysis and model simulations were applied to test 
which of the three hypotheses could explain both control and validation datasets. The results 
rejected the solution of model re-parameterization or addition of regulation by a feed forward 
control mechanism. Instead, our findings provide new evidence in support of a substrate feedback 
related control mechanism that acts on the respiratory chain complexes, and at Complex III in 
particular, which regulates ΔGp at low respiration rates in skeletal muscle.  
 
 
 

METHODS 
  

Experimental data 
Healthy, normally active control subjects - The experimentally sampled Gp – Jp, relation was 
obtained from human quadriceps muscle of healthy, normally active subjects using in vivo 31P NMR 
spectroscopy. These data were already presented in chapter 4. Full details regarding the methods 
of these experiments are described in chapter 4.  
   
Subjects with sedentary lifestyle - The data of sedentary humans used for model validation were 
obtained from de Feyter et al. (17). This dataset was recorded using the same methodology as 
described in chapter 4. The inter – subject difference in mitochondrial capacity in the study by de 
Feyter et al. was rather large (range: 0.31 – 0.82 mM/s). It was chosen to select the data of 2 subjects 
with the lowest mitochondrial capacity. As a result the scatter of data points decreased, making the 
dataset more appropriate for rigorous model testing, while the Gp – Jp, relation was  still 
sufficiently sampled (> 300 samples). Analysis of muscle biopsy samples taken from the same 
subjects (18) showed that the decreased mitochondrial capacity correlated well with in vitro 
measures of mitochondrial content (CS and SDH activity). These results provided additional 
verification that the selected sedentary subjects had a decreased mitochondrial content.  
 
Athletes - The data recorded in athletes has not been published before. For all experiments, the 
nature and risks of the experimental procedures were explained to the subject. All gave their 
written informed consent to participate to the study, which conformed the standards set by the 
Declaration of Helsinki and was approved by the local Medical Ethics Committee of the Máxima 
Medical Centre, Veldhoven, The Netherlands.   

The applied methodology was identical to the two other datasets (normally active, 
sedentary), with the only exception being that for this study a bicycle ergometer was used and the 
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sample time of the measurements was decreased from 6 to 3s. Details of the ergometer can be 
found elsewhere (19). The track athletes (age: 22+/-2 mean+/-SD, n=3) participated in national and 
international level competition and trained for more than 8 hours a week.  

 

 
 
Figure 1. Schematic representation of the computational model of skeletal muscle energetics. Abbreviations denote: 
dehydrogenases (DH), complex I (C1), complex III (C3), complex IV (C4), F1F0ATPase (F1F0), proton leak (H+ leak), adenine 
nucleotide transporter (ANT), Pi-H+ co-transporter (PiHt), K+ - H+ exchanger (KHt), adenylate kinase (AK), creatine kinase 
(CK), lumped cellular ATPase fluxes (ATPase), ubiquinone (Q), ubiquinol (QH2), oxidized cytochrome C (cytC Oxid), 
reduced cytochrome C (cytC Red), adenosine diphosphate (ADP), inorganic phosphate (Pi), adenosine triphosphate (ATP), 
nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide, adenosine monophosphate 
(AMP)   

 
Model description 

A detailed biophysical model of mitochondrial oxidative ADP phosphorylation previously described 
by Wu et al. (16) was used as the basis for the present computational study. The model 
distinguished three cellular compartments: mitochondrial matrix, mitochondrial inter membrane 
space and cell cytoplasm. A schematic representation of the model is provided in Figure 1.  

Model parameterization was updated according to the results presented in chapter 4: 
dehydrogenase activity (X_DH), ANT activity (X_ANT) and ANT parameter (θ) were set to 0.269 mol 
s-1 M-1 (L mito)-1, 0.041 mol s-1 (L mito)-1 and 1, respectively. In addition, proton leak activity (X_Hle) 
was adjusted from 200 mol s-1 M-1 mV-1 (L mito)-1 to 33 mol s-1 M-1 mV-1 (L mito)-1. The rationale 
behind this adjustment was to decrease the fraction of protons entering the matrix through the 
leak in resting skeletal muscle (ATPase=0.01mM/s) to values within the range observed 
experimentally (35-50%) (20). Adjusting the value of X_Hle decreased this fraction from 92% in the 
original parameterization to 50% according to the new parameterization.  

mitochondrial matrix
inter membrane space

cytoplasm
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Ordinary differential equations were implemented in Matlab (version 7.5.0; Mathworks, Natick, MA) 
and numerically solved using ODE15s with relative and absolute tolerance set to 10-8 and 10-8 
respectively. Details of the simulation and parameter estimation protocols are provided in the 
Appendix.  

 
 
 

RESULTS 
 

Model testing: analysis of model parameterization 
Model predictions of the ΔGp - Jp relation were employed to test the hypothesis that the model 
harbors all essential control mechanisms, but requires parameter optimization. The experimentally 
sampled ΔGp - Jp data were identical to the data presented in chapter 4. It was investigated which 
part of this dataset could be reproduced by the models’ original parameterization. Predictions 
according to the model are shown in Figure 2A (red line). While for ATPase > 0.2mM/s, model 
predictions and experimental data match well, for ATPase < 0.2mM/s the results show a clear 
discrepancy between predictions and data. These results confirmed that the original model failed 
to adequately describe rest and low exercise conditions.  
 

 
 
Figure 2. Model predictions of the Gp - Jp relation according to the initial model parameterization (red line) and after 
parameter optimization (blue line) (A). (B) shows the results of sampling of the model solution space by a Monte Carlo 
simulation approach. The 10 simulations with the best fit to all experimental data (blue lines), to high flux data points     
(Jp > 0.4mM/s, red lines) and to low flux data points (Jp < 0.1mM/s, green lines) are shown. Experimental data points are 
indicated by .  
 
Next, it was investigated if adjusting the model parameterization could improve model predictions. 
To this end, two different methods were applied. The first involved application of a parameter 
estimation algorithm (Levenberg – Marquardt minimization). 27 adjustable parameters were 
included in this procedure. For more details of the parameter estimation procedure, a description 
of the parameters and the optimized values, the reader is referred to the Appendix (Table 3). Figure 
2A (blue line) shows model predictions vs. experimental data after optimization of parameter 
values. Although from a purely mathematical point of view these model predictions represent an 
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improved fit of the model (the sum of squared errors decreased from 4396.5 kJ2/mol2 to 530.3 
kJ2/mol2), additional simulations with the re-parameterized model predicted non – physiological 
behavior. Specifically, the predicted ΔGp - Jp relation is expected to follow a sigmoidal relation in 
which the upper asymptote reflects maximal mitochondrial ATP synthetic flux (Vmax) (21,22). Model 
predictions show that the reparameterized model (Figure 2A, blue line) did not approach an 
asymptote in the high flux domain, but instead continued to rise. Consequently, the predicted Vmax 

(~2.5 mM/s) significantly overestimated previously reported values, which ranged between 0.62 
and 0.83 mM/s (chapter 4). Furthermore, the model failed in predictions of the experimentally 
observed ADP – Jp transduction function. For example, the predicted [ADP] at half maximal flux 
(K50ADP), was ~0.2mM, which is about tenfold larger than calculated from the experimentally 
sampled ADP – Jp relation (chapter 4). It was also tested if including both the ΔGp - Jp and ADP – Jp 

data in the parameter optimization procedure could improve the performance of the model. 
However, in this case, the transduction function of the reparameterized model became very similar 
to the initial model and was rejected because it failed to describe rest and low exercise conditions 
(data not shown).  In the previous approach large changes of model parameter values were 
allowed (Appendix Table 3). As a result of these changes in parameter values non – physiological 
model behavior was observed. In an attempt to study model predictions which were more 
constrained to the physiological domain, model behavior was sampled for a large number of 
parameter sets around the initial parameterization. A Monte Carlo simulation approach (10,000 
simulations) was applied to randomly select parameter values within the range of 0.1 – 2 times the 
values of the initial model parameterization (uniform distribution). Figure 2B, shows the 10 
simulations with the best fit to all experimental data (blue lines), to the high flux data points 
(ATPase > 0.4mM/s, red lines) and to the low flux data points (ATPase < 0.1mM/s, green lines). 
These results indicated that the model can either fit the high flux domain experimental data (red 
lines) or the low flux domain experimental data (green lines), but cannot reproduce all data points 
with a single set of parameters (blue lines).    
 On the basis of the results above it was concluded that reparameterization of the model did 
not suffice to reproduce the experimental data. An alternative explanation would be that the 
model was lacking essential regulatory control mechanisms. This possibility was investigated in the 
remainder of the study.  
 

Mathematical analysis of model control points: metabolic control analysis 
A first essential step in testing hypotheses of additional control was to identify the subset of model 
components that were most likely involved. Metabolic control analysis (MCA) was applied to 
identify components influencing Gp at low flux conditions. MCA has been described in multiple 
review papers (see e.g., (23)). In brief, MCA is a quantitative framework for relating steady state 
fluxes or concentrations in a biochemical network to properties (control coefficients) of the 
networks individual components. The control coefficients reflect the sensitivity of model 
predictions (steady state flux or concentrations) to a change in the activity (Vmax) of an individual 
network component. The model parameters that were included in the MCA are listed in the 
Appendix (Table 4). The list was constructed by selecting all model parameters representing 
enzyme activities (Vmax). Enzyme activity parameters of creatine kinase, adenylate kinase, the 
mitochondrial K+/H+ exchanger and magnesium binding fluxes were excluded from the analysis 
since at steady state the fluxes through these enzymes were zero and consequently, control 



Chapter 5 

 

104 

coefficients could not be calculated.  The control coefficients were calculated for resting skeletal 
muscle (ATP demand: 0.01mM/s (24)) because for this condition model predictions failed most 
dramatically (Figure 1). In this section only the results relevant for the present investigation are 
described. 
 

 
Figure 3. Normalized concentration control coefficients for cellular phosphate potential (Gp). Concentration control 
coefficients were calculated for cellular ATPase rate 0.01mM/s. The model parameters that were included in the MCA are 
listed in the Appendix (Table 4). 

 
According to the theory of metabolic control analysis, the concentration control coefficients sum to 
0 (23). Normalized concentration control coefficients were calculated for Gp, Figure 3. The 
concentration control coefficients were normalized by scaling the sum of positive control 
coefficients to 1. Consequently, the sum of negative concentration control coefficients summed to 
-1. The positive concentration control of Gp was for 60% located at complex III, whereas the 
remaining part of the positive control was distributed among the other components of the 
network. The negative control was shared between proton leak (control coefficient -0.35) and 
cellular ATP demand (control coefficient -0.65). Complex III, the proton leak and cellular ATP 
demand were therefore proposed as possible candidates for additional regulation. Additional 
simulations revealed that by adjusting the proton leak flux it was indeed possible to predict the 
experimentally observed Gp at rest. However, it required increasing the proton leak flux until 
over 99 percent of all protons entered the matrix through the leak. The physiological range of the 
proton leak in skeletal muscle is between 35 and 50% (20). Since the proton leak at rest accounted 
already for 50% of the proton flux into the mitochondrial matrix, this network component was 
ruled out as a potential site of additional regulation. Simulations also confirmed that by increasing 
cellular ATP demand it was possible to reproduce the experimentally observed Gp at rest (-64 
kJ/mol). However, this could only be achieved when the cellular ATP demand at rest was increased 
15-fold, from 0.01mM/s to 0.15mM/s. The cellular ATP demand flux in human skeletal muscle at rest 
has however been measured accurately by a variety of experimental methods (25). The reported 
values range from 0.002 to 0.02mM/s, median value: 0.01mM/s. Increasing basal ATP demand to 
0.15mM/s corresponded to unphysiological conditions. It was therefore chosen to set the basal ATP 
consumption flux to the experimentally observed value (0.01mM/s). Consequently, in addition to 
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the proton leak flux, also basal ATP demand flux was ruled out as possible solution for improving 
model predictions. It was therefore chosen to focus on complex III as the primary site of additional 
control. 
  

Hypotheses of additional regulation 
The original model provided insufficient control to capture the regulation present in skeletal 
muscle in vivo. In this section two alternative model configurations are defined, according to the 
two currently leading hypotheses: i.e. (i) substrate feedback regulation  (6), and (ii) feed forward 
activation (parallel activation) mediated by protein phosphorylation (1). For both configurations, 
complex III was selected as the site of the additional control.  

 
Substrate feedback regulation - The original model already included substrate feedback regulation 
of the dehydrogenases and complex III, which was described by a phenomenological hyperbolic 
activation term as a function of matrix Pi concentration. In the new model this term was 
substituted by a Hill equation which can describe both a hyperbolic relation (nH = 1) as well as a 
sigmoidal relation (nH > 1). The Hill equation captured a wider range of regulatory functions and 
thus a wider range of potential control mechanisms. The new flux equation for complex III was 
defined as follows: 
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Feed forward activation (parallel activation) - In the feed forward activation model two states of 
complex III were defined; a phosphorylated active state (Xphos) and dephosphorylated inactive state 
(Xdephos). The flux through these model components (complex III, Eq. 2) was calculated as the 
weighted sum of the fluxes through the phosphorylated active (weighting parameter FA) and the 
dephosphorylated inactive states (weighting parameter FIA) of complex III. kineticEqC3 denotes the 
kinetic description of the flux through complex III according to the original model. 
  

 3 3 3C A phos c IA dephos cF F X kineticEq F X kineticEq  (Eq. 2) 

Where, 
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The activity of the regulatory kinase-phosphatase system controlling the fraction of complex III in 
the phosphorylated and the dephosphorylated state was modeled with parameters Kon and Koff 
yielding differential equations Eq. 3 and Eq. 4. According to the parallel activation hypothesis, the 
equilibrium between the phosphorylated and dephosphorylated states (Kon/Koff) was modeled as a 
function of cell energy demand. Hereto Koff was described by Eq. 5, in which the energy demand of 
the cell was expressed by the cytoplasmic ATPase flux JAtC 
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Newly introduced model parameters were estimated based upon the experimental data of the   
ΔGp - Jp transduction function recorded in healthy, normally active human subjects (Table 1 and 2). 
Full details of the parameterization procedure are provided in the Appendix.   
 
Table 1. Parameter values model configuration i, substrate feedback at complex III 

Parameter name Value (mean +/- SD) Unit

XCIII 54.24 +/- 4.28 mol s-1 M-3/2 (L mito)-1 
nH 4.02 +/- 0.35 unitless 

K50Pi 6.43 +/- 0.52 mM 

 
Table 2. Parameter values model configuration ii, parallel activation at complex III 

Parameter name Value (mean +/- SD) Unit

XA 1.46 +/- 0.21 unitless 
XIA 0.030 +/- 0.010 unitless 
nH 1.35 +/- 0.11 unitless 

K50AtC 0.094 +/- 0.015 mmol (L cell water)-1 s-1 

Kon 0.033 +/- 0.006 s-1 

K’
off 52.64 +/- 17.4 s-1 

 
It was tested if the two model configurations could reproduce the Gp - Jp relation after parameter 
optimization. These simulations were run in a Monte Carlo simulation approach to probe the effect 
of the uncertainty in the newly introduced model parameter values on model predictions. 1000 
simulations were run and parameter values were randomly selected from the 95.4% confidence 
interval (mean±2SD) of normal distributions with mean and SD as reported in Tables 1 and 2. The 
selected parameters were limited to ± 2SD to ensure no negative parameter values were drawn. 
The calculations were performed for both model configurations and results are shown in Figure 
4A,B. The solution space of the model was represented by the mean (solid blue line) and standard 
deviation (dashed blue line) of the 1000 simulations obtained in the Monte Carlo approach. In each 
sub-figure the simulation of the original model lacking additional regulation is indicated in red. The 
solution space of the substrate feedback model (configuration i) was more constraint compared to 
the parallel activation model (configuration ii), which is probably a result of the smaller number of 
parameters included in the substrate feedback model configuration. Nevertheless, the mean of the 
solution space was for both model configurations consistent with the experimentally observed       
ΔGp - Jp relation.  

 



Pi control of respiratory chain activity 

 

107 

 
 
Figure 4. Model predictions of the relation between cellular phosphate potential (Gp) and mitochondrial ATP synthetic 
flux (Jp) according to model configuration i (metabolic feedback regulation) (A), model configuration ii (regulation by 
parallel activation) (B). Model predictions are indicated as the mean (solid blue line) and SD (dotted blue line) of the 1000 
simulations that were run in a Monte Carlo approach. Predictions of the original model are shown in red. Experimental 
data points are indicated by . 

 
Mitochondrial redox state, inner membrane potential and mitochondrial ADP sensitivity 

Because both model configurations could reproduce the control dataset, it was next investigated if 
model predictions of important mitochondrial state variables were within physiological range. 
Figures 5A-D show model predictions of the mitochondrial redox state (Jp - NADH/NAD) and 
membrane potential (Jp  - Ψ) at different cellular ATP demand fluxes. These simulations were also 
run in a Monte Carlo approach to probe the effect of uncertainty in model parameterization (SD 
reported in Table 1,2). Results of the original model lacking any additional regulation are indicated 
in red (Figure 5). Compared to the original model, the newly added regulatory elements decreased 
the inner membrane potential (Ψ) at low flux conditions. For both model configurations 
predictions of Ψ and NADH/NAD remained within their physiological range (150 - 200mV, 0.3 - 
100 respectively). Model predictions of Jp - NADH/NAD were very similar for both model 
configurations (blue) as well as the original model (red). The predictions of Jp - NADH/NAD relation 
are in good correspondence with experimental observations in isolated mitochondria (26). The 
experimental data indicate an NADH/NAD ratio at State 3 respiration of about 1. NADH/NAD ratio 
was found to increase at lower ATP turnover fluxes eventually approaching a value of 100 at State 4 
respiration. In addition, it was tested if predictions according to the two model configurations 
reproduced a sigmoidal Gp - Jp relation, physiological Vmax value and experimentally observed 
ADP - Jp relation. It was concluded that both model configurations successfully reproduced these 
physiological characteristics and data (data not shown).  
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Figure 5. Model predictions of mitochondrial redox state (NADH/NAD) and membrane potential (Ψ) at different 
mitochondrial ATP synthesis rates (Jp) according to model configuration i (A-B) and model configuration ii (C-D). Model 
predictions are indicated as the mean (solid blue line) and SD (dotted blue line) of the 1000 simulations that were run in a 
Monte Carlo approach. Predictions of the original model are shown in red. 

 
Model testing against independent data 

Based on predictions of physiological end-points (NADH/NAD, Ψ) it was not possible to 
discriminate between the model configurations. Furthermore, steady state model predictions of 
both configurations were consistent with the experimentally observed Gp - Jp relation (Figure 4). 
The experimental data was however recorded during post exercise recovery period. It was 
therefore also tested if model predictions derived from simulations of post exercise recovery were 
consistent with the data. In addition, also independent data of athletes and obese sedentary 
subjects was used. A well known difference in phenotype between these groups is the 
mitochondrial density in skeletal muscle; the athletes having more mitochondria, the sedentary 
subjects having less. It was tested if the model could reproduce the data for all these phenotypes 
by adjusting only the mitochondrial volume density. All other parameters, included the ones of the 
newly introduced regulatory mechanisms were left unchanged. The results of these simulations are 
shown in Figure 6A-C. The substrate feedback model (red lines) could reproduce the experimental 
data for all three phenotypes. In contrast, the parallel activation model (blue lines) could only 
reproduce the experimental data of the healthy, normally active human subjects and failed in 
reproducing any of the two independent datasets.  

In addition, it was also investigated if the parallel activation model could reproduce the 
two independent datasets by adjusting its parameterization. In fact, this was indeed possible, but 
only in the specific cases that parameters Kon and Koff were tuned to make the time constant of 
deactivation of the mitochondria (transition of phosphorylated, activated complex III into the non-
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phosphorylated inactive state, A  IA) similar to the time constant of metabolic recovery (PCr, Pi 
recovery). The experimentally observed time constant of metabolic recovery was quantified by a 
mono-exponential fit to the PCr recovery data. The corresponding time constant was 82±6.4s, 
15±6.5s and 28±5.4s for the sedentary, athletes and healthy control subjects, respectively (mean+/-
SD). The predicted time constant of mitochondrial deactivation (A  IA) was 29.5s (mono-
exponential fit), which matches the experimentally observed time constant of metabolic recovery 
of the healthy control subjects well (28±5.4s). After adjusting the values Kon and Koff to fit the data of 
sedentary subjects or athletes, the predicted time constant of deactivation was 91.6s and 14.7s, 
respectively. These values are again similar to the time constant of metabolic recovery measured 
for these subjects (82±6.4s and 15±6.5s, respectively). It was concluded that the model could only 
reproduce the Gp - Jp relation of a dataset if the time constant of metabolic recovery matched the 
time constant of deactivation of the mitochondria. However, in these cases, the model failed in 
reproducing the other two datasets. The substrate feedback model could predict all datasets 
without re-parameterization of the regulatory mechanism. The substrate feedback model was 
therefore defined as the most robust and selected as best model configuration and thus the most 
likely hypothesis.    

 

 
 

Figure 6. Model predictions of the Gp - Jp relation during post exercise recovery. Results are shown for normally active 
healthy subjects (A), sedentary subjects (B), athletes (C). Experimental data are indicated by . Model predictions 
according to the substrate feedback model (model configuration i) are indicated by a red line. Model predictions 
according to the parallel activation model (model configuration ii) are indicated by a blue line.  

 
Model testing against 31P MRS observed metabolite recovery dynamics 

Model simulations were tested against 31P MRS observed recovery dynamics (PCr, Pi, ATP, pH). For 
each population (control subjects, athletes, subjects with sedentary lifestyle) an individual dataset 
was selected. It was necessary to test model simulations against an individual data instead of the 
mean±SD of all recorded data, because these datasets were characterized by differences in end-
exercise pH and level of PCr depletion. In Figure 7, model simulations for the original model (red 
lines), model configuration i (blue lines) and model configuration ii (green lines) are compared to 
PCr (open circles), Pi (grey triangles), ATP (closed diamonds), and pH (open diamonds) recovery 
dynamics. Full details of the simulation protocol are provided in the Appendix. Model predictions 
according to the original model failed in predicting the correct PCr and Pi levels at fully recovered 
state for the control subject and the athlete dataset. The parallel activation model (model 
configuration ii) could not reproduce metabolite dynamics for the control subject and the subject 
with sedentary lifestyle. Remarkably, model configuration ii reproduced the Gp - Jp relation of the 
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control data well (Figure 6), but it failed in reproducing the metabolite (PCr, Pi) dynamics of the 
same dataset (Figure 7). This result is explained by the effect of end - exercise pH. The calculations 
for the Gp - Jp relation were performed for resting pH (7.05) because the relation was insensitive 
to changes in pH. The calculations of the metabolite dynamics (PCr and Pi recovery) are however 
sensitive for end – exercise pH, which was therefore taken into account in the simulations. The 
substrate feedback model (model configuration i) could reproduce the dynamics of all datasets. 
The results show this model configuration can also reproduce the time constant of metabolic (PCr, 
Pi) recovery for the different datasets. These simulations therefore provide again further evidence 
that the substrate feedback model is the best model configuration.  

 

 
 

Figure 7. Model predictions versus 31P MRS observed metabolite dynamics during post exercise recovery period. 
Experimental data and model simulations of a healthy control subject (A,D), athlete (B,E) and subject with a sedentary 
lifestyle (C,F) are shown. Model simulations according to the original model, model configuration i and model 
configuration ii are indicated by red, blue and green lines respectively. Experimental data of PCr, Pi, ATP and pH are 
indicated by open circles, grey triangles, closed diamonds and open diamonds respectively. 

 
 
 

DISCUSSION 
 
The main result of this investigation was twofold. First, it was identified that the control 
mechanisms captured by a detailed biophysical model of oxidative phoshporylation in human 
skeletal muscle could not explain the empirically observed Gp - Jp  relation, even not after 
parameter optimization. Second, the results support the hypothesis that substrate feedback 
control of the respiratory protein complexes plays an important role in the regulation of 
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mitochondrial ATP synthesis in skeletal muscle by controlling ΔGp at low ATPase rates in muscle. 
These main results as well as several methodological considerations are discussed. 
  

Methodological considerations  
The computational model that was used as a basis for this investigation builds on a series of 
previously published models (14,16). A possible concern for applying this model could be the use 
of a homogenous unit to represent skeletal muscle tissue. It is well known that skeletal muscle is a 
heterogeneous tissue in which distinct cell types are present (27). These cell types differ in size, 
force generating capacity, but also mitochondrial density. In the current model this was not taken 
into account; skeletal muscle tissue was modeled by a single cell in which an averaged 
mitochondrial density was represented. It was therefore investigated in more detail if this choice 
affected the study outcome. Three different cells were defined, each with a different mitochondrial 
density. The mean density was equal to the value used in the single cell model. Predictions of the 
ΔGp – Jp relation were identical when comparing the average of the three cells and the single cell 
model. From these results it was concluded that this specific model assumption did not affect the 
overall outcome of this study.  

Another important model assumption was that ATP was produced purely through 
oxidative processes. This choice was justified by limiting the analyses to data recorded during post 
exercise recovery period. For this period it is well established that the PCr dynamics reflect almost 
purely oxidative ATP synthesis (24,28-30).   

The current analysis was conducted under the assumption that changes in cellular pH as a 
result of e.g. lactate acidosis did not significantly affect the ΔGp – Jp relation. This assumption was 
verified by analysis of the experimental data. The data of healthy normally active subjects was 
obtained during multiple exercise bouts of varying length and intensity. As a result, the ΔGp – Jp 

relation was sampled for varying conditions of end – exercise pH. It was investigated if varying 
conditions of cellular pH influenced the observed ΔGp – Jp relation (data not shown). The results 
indicated that the ΔGp – Jp relation was insensitive to cellular pH, which validated the model 
assumption.  

The model of oxidative phosphorylation that was chosen as a basis for the analysis was 
previously derived from a model parameterized based upon data of cardiac mitochondria (14). The 
conversion to a skeletal muscle model mainly comprised adjusting metabolite pool sizes and 
structural parameters (e.g., mitochondrial volume percentage). In contrast, the kinetic parameters 
of oxidative phosphorylation remained unchanged. An assumption underlying these studies 
therefore is that the parameterization derived from the cardiac mitochondria is also representative 
for skeletal muscle. The experimental data used to parameterize the original model were taken 
from Bose et al. (31). Bose et al. also reported that they conducted the experiments with 
mitochondria collected from skeletal muscle. It was reported that the results of the skeletal muscle 
mitochondria were very similar to that of cardiac mitochondria. In addition, the assumption is 
further supported by proteomics studies, which show that cardiac and skeletal muscle 
mitochondria are very similar (32). Furthermore, it was tested if failure of model predictions at low 
ATP turnover rates could be a result of one or more of the parameter values to be incorrect for 
skeletal muscle. Optimizing model parameters could however not solve the problem. Next, the 
results of the metabolic control analysis were used to investigate which model parameters 
influenced predictions of ΔGp. These results showed that the majority of the concentration control 
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was located at complex III. Conversely, they indicated that model predictions were insensitive to 
changes in other parameters. It was therefore concluded that possible small deviations in 
parameter values as a result of the cardiac origin of the model did not affect the overall outcome of 
the study. Nevertheless, these results do not rule out the possibility that in future studies other 
model predictions actually are sensitive to multiple (other) kinetic parameters. Analysis of the 
differences in behavior of skeletal muscle and cardiac mitochondria and translation of these 
differences to models’ parameterization may therefore become an important topic of future 
research.           

Some physiological parameters that were not modeled in detail were taken into account in 
the analysis implicitly. For example, nutrient supply was captured by the lumped dehydrogenase 
flux (XDH) and oxygen availability will affect mitochondrial dynamics through complex IV flux (XC4). 
The control coefficients determined for XDH and XC4 therefore also implicitly reflect control of these 
physiological parameters.  
 The two models used to describe the additional regulation are of phenomenological 
nature. For testing and evaluating of these concepts the models were found very insightful. 
However, one should remain careful with the deduction of statements related to the molecular 
mechanisms of the regulation. For example, although the results clearly indicate the signal 
modulating respiratory chain activity to be related to cellular substrate levels, it cannot be ruled 
out that molecular implementation of this regulation involves e.g. protein (de)phosphorylations or 
other post translational modifications. The results of this study therefore do not contradict with 
recent evidence of the vast mitochondrial protein phosphorylation network (1).  
 

Regulation of oxidative ATP production in skeletal muscle  
It was concluded that a substrate feedback related control signal provided the best explanation for 
the additional regulation. The evidence supporting this conclusion was twofold: the model 
configuration representing the substrate feedback control mechanism could reproduce both the 
control dataset (healthy volunteers) and the validation datasets (subjects with sedentary lifestyle 
and track athletes) without re-parameterization, whereas the parallel activation model could not. 
Secondly, the parallel activation model could reproduce the data of humans with a sedentary 
lifestyle or track athletes if re-parameterized. However, this occurred only in the specific case that 
parameter settings caused the time constant of deactivation (transition of phosphorylated, 
activated complex III into the non-phosphorylated inactive state) to match the time constant of 
metabolic recovery. This result indicated that the regulatory mechanisms could still involve post 
translational modifications (e.g. protein phosphorylation) but that the key control signal is 
probably closely linked to substrate levels (e.g. Pi, ADP, ADP/ATP). In chapter 4 we proposed that 
the order of the ADP sensitivity provides a tractable validation criterion for evaluation of 
computational models of oxidative ATP metabolism. Experimentally a second order Hill - 
coefficient was observed (1.9+/-0.2). Analysis of the computational model revealed that the 
mitochondrial ultra-sensitivity to ADP was primarily controlled by the kinetic parameters of the 
adenine nucleotide transporter (ANT). Reformulation of the ANT kinetics increased the Hill - 
coefficient of the model from 1 to 1.5. Although this was an important step forward, the 
computational model still underestimated the experimentally observed Hill - coefficient (1.5 vs. 1.9, 
respectively). It was concluded that the kinetic mechanisms required for the remainder of the 
difference in Hill - coefficient were not yet included in the model and remained to be identified. 
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Specifically, multisite Pi activation of the mitochondrial network was ruled out as mechanism 
because it was already explicitly incorporated in the model. However, in the new model, the Pi 
activation term of the Complex III flux description was updated. The modification of the Pi 
activation term could also affect the models corresponding Hill – coefficient. In fact, model 
simulations revealed that the changes applied in the new model increased the Hill - coefficient to 
1.8, which is close to the experimental observations (1.9+/-0.2). On this basis, it was concluded that 
in addition to the kinetic parameters of ANT, Pi modulation of respiratory chain activity contributes 
to the model predictions of second order kinetics of mitochondrial sensitivity to ADP.  
 The regulation of skeletal muscle oxidative ATP metabolism has also been investigated 
extensively by Korzeniewski and colleagues (see e.g. (33-35)). The model that was developed and 
updated in these studies overlaps in part with the model used in the current investigation: i.e., part 
of the models topology and some flux equations and parameter values are identical. Interestingly, 
the studies by Korzeniewski and colleagues point towards a principal role for parallel activation in 
the regulation of oxidative phosphorylation in skeletal muscle (35). Although, at first, this result 
seems conflicting, Korzeniewski and colleagues evaluated many other quantitative but also 
qualitative characteristics of skeletal muscle energy metabolism (like e.g., PCr overshoot behavior 
or asymmetry between PCr on - off kinetics). In the present study we focused on 31P MRS observed 
metabolite dynamics, and, in particular the ΔGp – Jp relation. Our results however do not rule out 
the possibility that regulation by parallel activation is essential to explain other characteristics of 
energy metabolism in muscle. At the moment, these models share the same ANT flux equation. In 
chapter 4 we concluded that this particular component has a dominant role in controlling the 
model sensitivity to ADP. Moreover, it was concluded that the K50ADP (i.e., [ADP] at half maximal 
velocity) derived from predictions of the ADP – Jp relation should be decreased about tenfold (from 
~0.2mM to 0.021mM) by adjusting ANT parameter θ to match the experimentally observed ADP – 
Jp relation. Adjusting the ADP sensing of the model increased the models’ sensitivity to control by 
substrate feedback regulation (ADP, Pi). This step in model development provides an explanation 
for why the current model did not require multi step parallel activation for reproducing the 
experimentally observed ΔGp – Jp relation. 
 The physiological implications of the added regulation on e.g., membrane potential and 
mitochondrial redox state were also explored. The model predicted a decreased inner membrane 
potential at low flux conditions. For instance, under resting conditions, the membrane potential 
dropped by 25mV as a result of the added regulation. These predictions may provide a clue about 
the functionality of the regulation. A high mitochondrial membrane potential is believed to be a 
major source of cellular ROS production (36) and corresponding cellular damage. There is an 
increasing amount of evidence that mitochondria regulate membrane potential by e.g., the 
concentration of uncoupling proteins in the inner membrane (37,38). We speculate that the 
proposed Pi regulation of respiratory chain activity has a similar function: it prevents high 
membrane potentials under low flux conditions protecting the cells against excessive ROS 
production. 
 

Significance and future prospective 
It is concluded that explaining the experimentally observed relation between ΔGp and Jp in skeletal 
muscle in vivo requires increasing the control of the Pi activation term of complex III in a detailed 
model of oxidative ATP metabolism. The significance of this result is twofold. First, it provides new 
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evidence supporting a dominant role for substrate feedback regulation in the control of 
mitochondrial ATP synthesis in skeletal muscle. Second, the proposed adaptations provide an 
important step towards developing a computational model of ATP metabolism in skeletal muscle 
representing in vivo conditions. The updated model was shown to reproduce 31P MRS observed 
metabolite dynamics throughout the entire dynamical range of ATPase fluxes in skeletal muscle in 
vivo. To the best of our knowledge, this is the first detailed computational model that is 
quantitatively consistent with 31P observed metabolite dynamics throughout this full range. Hence, 
it provides an improved basis for future studies of energy metabolism in muscle. From this 
viewpoint, application of the model may not remain limited to healthy subjects, but may also 
include analysis of for example mitochondrial (dys)function related to obesity, type 2 diabetes or 
aging. Specifically, model simulations can quantify the contribution of changes in specific 
physiological parameters (e.g., mitochondrial content, enzyme activities) observed in these 
patients to 31P MRS recordings of mitochondrial function in vivo (time constant of post exercise PCr 
recovery). This study can test the relevance of the current model for the analysis of metabolic 
diseases in humans. 
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APPENDIX 
 

Simulation and parameter estimation protocols 
 

Testing of initial model, Figure 2A   
The Gp – Jp relation was calculated from a series of steady state simulations, hereto the ATP consumption in the 
cytoplasm was incrementally increased (starting value: 0.01mM/s, step size: 0.01mM/s) until the steady state cytoplasmic 
ADP concentration exceeded a level of 0.1mM. Simulations were run for 108s to ensure a steady state was reached. Next, 
ATP consumption was decreased to 0.01mM/s in order to simulate post exercise recovery conditions.  

Parameter estimation was performed using Matlab routine lsqnonlin (Levenberg - Marquardt algorithm) with 
option DiffminChange set to 10-6. All other options were set to default values. The error between experimental data and 
model predictions of steady state behavior as well as post exercise recovery conditions were used as objective function. 
The parameter estimation procedure was run 100 times, every time randomly perturbing the initial parameter values by 
+/-10 percent. The model fit with the overall lowest mean squared error was selected as final parameter set (Table 3).    

 
Table 3. Adjustable model parameters 

Parameter 
name 

Description Value original 
model 

Value 
optimized 

model 
(Figure 1A) 

Unit

R Dehydrogenase parameter 4.559 7.61 unitless 
kPi,1 Dehydrogenase parameter 0.1553 0.317 mM 
kPi,2 Dehydrogenase parameter 0.8222 3.70 mM 
XDH Dehydrogenase activity 0.16 0.735 mol s-1 M-1 (L mito)-1 

XC1 Complex I activity 4405 14057 mol s-1 M-2 (L mito)-1 
XC3 Complex III activity 4.887 4.10 mol s-1 M-3/2 (L mito)-1 
kPi,3 Complex III parameter 0.3601 0.560 mM 
kpi,4 Complex III parameter 5.651 0.334 mM 
XC4 Complex IV activity 6.766×10-5 10.6×10-5 mol s-1 M-1 (L mito)-1 
kO2 Complex IV parameter 0.12 0.11 mM 
XF1 FoF1-ATPase activity 1000.0 699.8 mol s-1 M-1 (L mito)-1 

XANT ANT activity 0.041 0.112 mol s-1 (L mito)-1 
Km,ADP Michaelis constant ANT 3.5 ×10-3 13.0×10-3 mM 
kPiHt H+/Pi- cotransporter parameter 0.2542 0.270 mM 
XPiHt H+/Pi- cotransporter activity 3.850 ×10-5 18.9×10-5 mol s-1 M-1 (L mito)-1 
XKH K+/H+ antiporter activity 5.651 ×107 11.9×107 mol s-1 M-2 (L mito)-1 

Ppi Mitochondrial membrane permeability to 
inorganic phosphate 

327 796.5 μm s-1 

PA Mitochondrial outer membrane 
permeability to nucleotides 

85.0 117.2 μm s-1 

Ctot 

 
total cytochrom C concentration 

 
2.7 3.97 mmol (L IM water)-1 

Qtot 

 
total ubiquinol concentration - Q+QH2 

 
1.35 1.26 mmol (L matrix 

water)-1 

NADtot total matrix NAD(H) concentration - 
NAD+NADH 

2.97 2.59 mmol (L matrix 
water)-1 

Xbuff matrix buffering coefficient 100 118.64 M-1 

KDT Mg-ATP binding constant 24×10-6 231.9×10-6 M 
KDD Mg-ADP binding constant 347×10-6 309.1×10-6 M 

gamma mito membrane area per cell volume 5.99 15.1 μm-1 

θ ANT parameter 1 0.960 unitless 
Total matrix 

ADP+ATP 
Total matrix ADP+ATP 10 8.66 mmol (L matrix 

water)-1 
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Testing of initial model, Figure 2B  
The Gp – Jp relation was calculated as described in 'Testing of initial model, Figure 2A'. 10 000 simulations were 
performed in a Monte Carlo simulation approach randomly selecting parameter values within the range of 0.1 – 2 times 
the values of the initial model parameterization. A few parameter sets caused numerical problems when solving the ODE 
system. These were automatically stopped by the algorithm, excluded from further analyses and substituted by a new 
simulation. Overall less than 5 percent of the simulations required such substitution. The goodness of fit was quantified 
by calculating the mean squared error between model simulations and experimental data.  
 

Metabolic control analysis, Figure 3  
The model parameters included in the metabolic control analysis are listed in Table 4. This list was constructed by 
selecting all parameters representing enzyme activities (Vmax). Enzyme activity parameters of creatine kinase, adenylate 
kinase, the mitochondrial K+/H+ exchanger and  magnesium binding fluxes were excluded from the analysis since at 
steady state the fluxes through these enzymes were zero and consequently, control coefficients could not be calculated. 
The flux and concentration control coefficients were calculated for an increase in enzyme activity of one percent.   
 
Table 4. Overview of mitochondrial model parameters included in the metabolic control analysis 

Parameter name Description

XDH Dehydrogenase activity 
XC1 Complex I activity 
XC3 Complex III activity 
XC4 Complex IV activity 
XF1 FoF1-ATPase activity 

XANT ANT activity 
XPiHt H+/Pi- cotransporter activity 
XHle H+ leak activity 

MitoAdn Mito. outer membrane permeability to nucleotides 
MitoPi Mito. outer membrane permeability to Pi 

XAtC Cytoplasm ATPase activity 

 

Flux control coefficients were calculated according to Eq. 8 (23). ydh

xase

J
EC , ydhJ  and xaseE , denote the flux control 

coefficient, a flux through a particular reaction (ydh), and an enzyme concentration (xase), respectively.  
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  (Eq. 8) 

 

Concentration control coefficients were calculated according to Eq. 9 (23). 
xase

S
EC , S and xaseE , denote the concentration 

control coefficient, the concentration of a particular metabolite, and an enzyme concentration (xase), respectively.  
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 (Eq. 9) 

 
It has been verified that all flux control coefficients summed to 1 and all concentration control coefficients summed to 0. 
 

Parameter estimation substrate feedback and parallel activation models  
Model parameters were estimated in a two step approach. The first step was selection of initial model parameter values. 
A wide range of parameter values was explored in a Monte Carlo simulation approach randomly drawing parameter 
values within selected ranges. For each model configurations, in total, 50 000 simulations were run. 
 The Gp – Jp relation was calculated as described in 'Testing of initial model, Figure 1A'. The set of parameters 
that yielded the best fit to the experimental Gp – Jp relation, quantified by the mean least square error was then 
selected as starting point for the second step in the parameter estimation procedure. In this next step, model parameter 
values were optimized by applying a non linear least square optimization algorithm: i.e., Matlab routine lsqnonlin 
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(Levenberg - Marquardt algorithm) with option DiffminChange set to 10-6. All other options were set to default values. The 
error between experimental data and model predictions of steady state behavior as well as post exercise recovery 
conditions were used as objective function. The optimization algorithm was started 100 times, every time adding +/-25% 
of random noise to the parameter values obtained in step one. The optimal parameter values obtained in this second 
step are listed in Tables 1 and 2 as the mean and standard deviation of the 100 optimization runs.  
 

Model testing, Figure 4  
The Gp – Jp relation was calculated as described in 'Testing of initial model, Figure 2A'. 1000 simulations were run and 
parameter values were randomly selected from the 95% confidence interval (mean ± 2SD) of a normal distributions with 
mean and SD as reported in Tables 1 and 2. The selected parameters were limited to ± 2SD, to ensure no negative 
parameter values were drawn. The solution space of the model was represented by the mean and standard deviation of 
the 1000 simulations. It was verified that 1000 simulations were enough to obtain a stable solution.  
 

Predictions of mitochondrial redox state and membrane potential, Figure 5  
The relations between mitochondrial redox potential and ATPase rate and membrane potential and ATPase rate were 
calculated for steady state conditions. Different steady states were obtained by incrementally increasing the cytoplasmic 
ATPase rate (starting value: 0.01mM/s, step size: 0.01mM/s). Simulations were run for 108s to ensure a steady state was 
reached. The simulations were run in a Monte Carlo simulation approach as described in ‘Model testing, Figure 4'. 
 

Model testing, Figure 6  
The Gp – Jp relation was calculated for post exercise recovery conditions. The ATP consumption in the cytoplasm was 
incrementally increased (starting value: 0.01mM/s, step size: 0.01mM/s) until the steady state cytoplasmic ADP 
concentration exceeded a level of 0.065mM. Simulations were run for 108s to ensure a steady state was reached. Next, 
ATP consumption was decreased to 0.01mM/s in order to simulate post exercise recovery conditions.  

The mitochondrial density for simulations of sedentary subjects was set to 0.0235 percent and 0.030 percent for 
model configuration i and ii, respectively. The mitochondrial density for simulations of athletes was set to 0.085 percent 
and 0.080 percent for model configuration i and ii, respectively. 

 
Prediction of 31P observed metabolite dynamics during post – exercise recovery period, Figure 7   

PCr and Pi recovery are sensitive to cellular pH. Simulations of these metabolite dynamics therefore required to take pH 
dynamics into account. pH was modeled as described by Kemp et al. (39,40), Eq. 10.  
 

 


     
1

( (7.05 ) ( ) ))CK

dpH
pH m J

dt
 (Eq. 10) 

            

0.16 1
, , 2.3 [ ] (1 )6.1 6.751 10 1 10

m buffCap PipH pH  

 Where, λ denotes the apparent proton efflux rate parameter, JCK the flux through creatine kinase and buffCap the 
cytosolic buffer capacity (20 slykes (i.e. mmol∙L-1∙pH-1)).   

 
The simulations comprised two parts: i.e., initialization and recovery. The mitochondrial volume percent was set to the 
values also used to determine the Gp – Jp in Figure 6. During the initialization of the model the pH was clamped at the 
experimentally observed end – exercise pH. ATPase demand flux was adjusted to obtain steady state predictions of [PCr] 
and [Pi] which matched the experimentally observed end – exercise conditions. The steady state values were used as 
initial conditions of the recovery simulations. During recovery ATPase demand flux was set to resting values (0.01mM/s). 
pH dynamics were modeled by Eq. 10. The proton efflux parameter, λ, was adjusted to reproduce the experimentally 
observed pH dynamics. Simulations were performed for the original model and model configuration i and ii and 
compared to an individual dataset of a control subject, athlete and subject with sedentary lifestyle. The total creatine 
concentration was calculated from experimentally observed resting PCr concentration assuming that 15% of the total 
creatine is unphosphorylated at rest (41).   
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ABSTRACT 
 
A decreased mitochondrial function is associated with many different diseases or aging. For design 
of therapies it is essential to understand which factors contribute to the decreased oxidative 
capacity in vivo. At the moment, this information cannot be obtained from in vivo methods. 
Analysis of muscle biopsy samples allows identifying changes in muscle physiology. It remains 
however very challenging to relate these in vitro observed changes to the functioning of the 
systems in vivo. We propose to apply mechanistic mathematical modeling to connect these in vitro 
measures of oxidative capacity to in vivo mitochondrial function. To this end, first our previously 
developed model of skeletal muscle bioenergetics was extended from a single-fiber to a three-fiber 
model (type I, IIA, IIX). In addition, several essential model verification tests were conducted. It was 
shown that: (i) the model could reproduce the effect of progressive inhibition of individual 
OXPHOS components on mitochondrial respiration rate, (ii) the three cell model could reproduce 
the ADP–Jp and ∆Gp–Jp mitochondrial input - output functions, (iii) the mechanistic model 
reproduced the PCr recovery time course data just as accurate as the current gold-standard, i.e., the 
mono-exponential function. Subsequently, as a case study, the model was applied to investigate to 
which extend different adaptations in muscle physiology contributed to a decreased mitochondrial 
function documented for type 2 diabetes patients with a sedentary lifestyle compared to healthy 
lean control subjects. These results were used to outline a possible strategy for applying the 
mechanistic models in future studies of mitochondrial (dys)function. 

 
 
 



Numerical dissection of mitochondrial function 

 

123 

INTRODUCTION 
 
Skeletal muscle mass represents about 30 – 40 percent of the human body weight (1). This tissue is 
a major site for carbohydrate and fatty acid utilization. As such, it plays a significant role in whole 
body metabolism. Within skeletal muscle cells the majority of the processes involved in the 
conversion of carbohydrates and fatty acids to energy accessible by other cellular processes occur 
in mitochondria. Normal function of mitochondria is essential for a healthy metabolism. 
Conversely, a decreased mitochondrial function has been associated with many diseases, like e.g., 
mitochondrial myopathies (2), chronic heart failure (3), type 2 diabetes (4) or the aging process (5). 
For design of therapies it is essential to understand which factors (e.g., a reduced mitochondrial 
density, change in muscle fiber type composition, altered mitochondrial protein content or an 
intrinsic dysfunction) contribute to the decreased oxidative capacity in vivo.  

In vivo mitochondrial function can be measured non – invasively by 31P magnetic resonance 
spectroscopy (MRS) (6). During exercise phosphocreatine (PCr) and ADP are converted into creatine 
(Cr) and ATP in order to balance ATP demand and supply fluxes. During recovery following 
exercise, the PCr pool is resynthesized almost purely oxidatively (7-10). The rate of PCr recovery 
therefore reflects in vivo mitochondrial function (6). Although 31P MRS provides a measure of the 
functioning of the intact system under physiological conditions, the origin of a delayed PCr 
recovery cannot be deduced from these data. A prolonged PCr recovery time can originate from 
several factors, for example, a reduced mitochondrial density, change in muscle fiber type 
composition, altered mitochondrial protein content or an intrinsic dysfunction (i.e. a lower 
mitochondrial ATP synthesis flux per mitochondrion). Therefore, sometimes, additional analyses of 
muscle biopsy samples are performed to identify changes in muscle physiology that are possible 
responsible for the decreased mitochondrial function (see: e.g. (11,12)). It remains however very 
difficult to determine the contribution of these changes to the functioning of mitochondria in vivo. 
Moreover, often, multiple changes are observed. As a result, identifying the factors responsible for 
the changed mitochondrial function in vivo requires dissecting a multi-factorial process.  

The main difficulty for relating in vivo and in vitro measures of mitochondrial capacity is that 
it requires taking into account the regulation and functioning of a complex molecular interaction 
network present in the mitochondria. A possible strategy to overcome this problem is to develop 
mechanistic mathematical models that capture the key complexity of the molecular interaction 
network. Subsequently, model simulations provide a means to explore how changes observed at 
the molecular level influence predictions of the functioning of the mitochondria as observed in 
vivo. In chapters 4 and 5 we demonstrated that our current model has advanced to the point it can 
reproduce the mitochondrial input – output relations (ADP – Jp and ΔGp - Jp) that characterize the 
regulation of mitochondria in vivo. This model represents a single (uniform-type) muscle fiber. It is 
however well known that skeletal muscle tissue contains distinct fiber types with different 
oxidative capacities (6.0, 4.5 and 2.3 volume percent for type I, IIA and IIX fibers respectively (13)). A 
change in muscle fiber composition can therefore also affect the in vivo measured mitochondrial 
capacity. In addition, predictions of the inhibition of individual OXPHOS components (intrinsic 
mitochondrial dysfunction) on the rate of respiration are not yet verified.  

Thus, before the model can be applied for relating in vivo and in vitro measures of oxidative 
capacity it is important to include the fiber-type heterogeneity in the model and conduct 
additional model verification tests.  To this end, the mathematical framework was extended from a 
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uniform-fiber model to a three-fiber model (type I, IIA, IIX). In addition several key model 
verification experiments were conducted: (i) model predictions of progressive inhibition of 
individual OXPHOS components on the rate of respiration were tested; (ii) predictions of the three-
fiber model were compared to previously recorded mitochondrial input – output relations (chapter 
4 and 5); (iii) the accuracy of the mechanistic model for reproducing PCr recovery kinetics was 
compared to the current gold-standard for analysis of these data, i.e., fitting of a mono-exponential 
function.  

The second part of the chapter describes a case study to illustrate how the validated model 
can be applied to study changed mitochondrial function in skeletal muscle. Hereto, we selected an 
intensively studied population with a decreased mitochondrial function, i.e., the comparison of 
healthy lean control subjects and type 2 diabetes patients (see e.g. review: (14)). Changes in muscle 
physiology that were proposed to underlie the in vivo observed decreased mitochondrial capacity 
were obtained from literature and translated to the mathematical model by adjusting the 
corresponding model parameters. Next, model simulations were compared to experimentally 
determined PCr recovery halftimes in type 2 diabetes patients to quantitatively evaluate the 
contribution of different factors to the decreased mitochondrial capacity in vivo. These analyses 
revealed that the model could reproduce the prolonged PCr recovery period observed in these 
patients based on changes in in vitro markers of mitochondrial function. These results were used to 
outline a strategy for applying the mechanistic models in future studies of mitochondrial 
(dys)function in skeletal muscle. 

 
 
 

METHODS 
 

Description cell model  
The computational model of skeletal muscle oxidative ATP metabolism that was used as a basis for 
this study was described in (15) and updated according to modifications proposed in chapters 4 
and 5. A schematic representation of the model is provided in Figure 1A. The model contains a 
detailed biophysical description of the electron transport chain, oxidative phosphorylation, 
adenine nucleotides and Pi transport across the mitochondrial membranes and cellular ATP 
buffering (creatine kinase and adenylate kinase). pH dynamics during post exercise recovery were 
modeled (Eq. 1) as described by Kemp et al. (16,17).   
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Where, λ denotes the apparent proton efflux rate parameter, JCK the flux through creatine kinase and buffCap the 
cytosolic buffer capacity (20 slykes (i.e., mmol∙L-1∙pH-1)).  

 
A new parameter (MitoVmax) was introduced to adjust the apparent mitochondrial Vmax while 
keeping all other parameter values fixed. To this end, all flux descriptions of the mitochondrial part 
of the model were multiplied by MitoVmax. This parameter allowed accounting for small subject 
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specific differences in the mitochondrial capacity by scaling all mitochondrial fluxes (see Table 4). 
The model was implemented in Matlab 7.5.0 (The Mathworks, Natick, MA, USA). Ordinary 
differential equations were solved numerically by using ODE15s with absolute and relative 
tolerances set to 10-8. 
 

Description three-fiber model  
Metabolite dynamics of the three fiber model were calculated as the weighted average of three cell 
models (Eq. 2), each representing a specific fiber type: i.e., type I, IIA and IIX respectively. A 
schematic representation of the three-fiber model is provided in Figure 1B. 
  

     average typeI typeI typeIIA typeIIA typeIIX typeIIXM X M X M X M  (Eq. 2) 

Where, XtypeI, XtypeIIA, XtypeIIX denote the fraction of the muscle composed of type I, type IIA and type IIX cells respectively. 
MtypeI, MtypeIIA, MtypeIIX denote the dynamics of a metabolite according to the fiber type specific model.  

 
The values of for XtypeI, XtypeIIA, XtypeIIX were set according to experimental data obtained for human 
vastus lateralis (18) (0.5, 0.4 and 0.1, respectively). The three fiber type specific models were defined 
by a set of fiber type specific parameters, Table 1. In chapter 5 we reported that model predictions 
of the Pi concentration at rest are determined by Pi activation of the respiratory chain. To predict 
the fiber type specific Pi concentration listed in Table 1, the complex III parameter K50Pi was set to 
4.0mM for slow (type I) and 11.0mM for fast twitch (type IIA, IIX) fibers.   
 

 
 
Figure 1. Schematic representation of the cell model (A) and three fiber model (B) of skeletal muscle energetics. 
Abbreviations denote: dehydrogenases (DH), complex I (C1), complex III (C3), complex IV (C4), F1F0ATPase (F1F0), proton 
leak (H+ leak), adenine nucleotide transporter (ANT), Pi-H+ transporter (PiHt), K+ - H+ transport (KHt), adenylate kinase 
(AK), creatine kinase (CK), lumped cellular ATPase fluxes (ATPase), ubiquinone (Q), ubiquinol (QH2), oxidized cytochrome 
C (cytC Oxid), reduced cytochrome C (cytC Red), adenosine diphosphate (ADP), inorganic phosphate (Pi), adenosine 
triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), 
adenosine monophosphate (AMP).  
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Table 1. Fiber type specific parameter values  
Parameter Type I Type IIA Type IIX References 

Mitochondrial volume percentage  6.0% 4.5% 2.3% (19) 
[PCr] rest (PCraverage) ×0.9 (PCraverage) ×1.1 (PCraverage) ×1.1 (20,21) 
[Cr] total [PCrtypeI]rest / 0.85 [PCrtypeIIA]rest / 0.85 [PCrtypeIIX]rest / 0.85 (22) 
[Pi] rest 4mM 2mM 2mM (13) 

Contribution to muscle average 50% 40% 10% (18,23) 

 
Parameter estimation 

The models’ parameterization was left unchanged except for the parameters listed in Table 2 and 
the newly introduced parameter MitoVmax. The rationale for re-estimating these parameter values 
was to improve the flux control exerted by the individual steps in the model; increasing the Vmax 

value decreases the flux control, decreasing the Vmax value increases the flux control. These 
parameters were re-estimated on the basis of the experimentally sampled relation between 
individual enzyme inhibition and the maximal rate of respiration (state 3 respiration) reported by 
Lettelier et al. (24). The newly introduced parameter MitoVmax could not be optimized on the 
inhibition - respiration curves because these data were normalized. Therefore the data sampling 
the transduction function between ADP – Jp and ΔGP - Jp were used to estimate MitoVmax. These data 
were identical to the data presented in chapters 4 and 5.  

Details of the simulation protocols used to reproduce these experimental observed 
relations are described in the Appendix. The parameter values (Table 2) were optimized by 
applying a non linear parameter optimization algorithm implemented in Matlab (lsqnonlin), using 
manually pre-tuned values as initial conditions. lsqnonlin options TolFun and TolX were set to 10-6, 

all other options were set to default values. The difference between model simulations and 
experimental data was used as objective function. 
  
Table 2. Re-estimated parameter values 

Parameter Description Value Unit 

XC1 Complex I activity  671.7 mol s-1 M-2 (L mito)-1 

XC3 Complex III activity  254.7 mol s-1 M-3/2 (L mito)-1 

XC4 Complex IV activity 1.23 × 10-5 mol s-1 M-1 (L mito)-1 

XF1F0 F1F0ATPase activity 2.0 mol s-1 M-1 (L mito)-1 

XANT ANT activity 0.097 mol s-1 (L mito)-1 

XPiTransporter Pi - H+ cotransport activity 1.76× 106 mol s-1 M-1 (L mito)-1 

XA Permeability of mitochondrial outer membrane to nucleotides 506.3 μm s-1 

XPi Permeability of mitochondrial outer membrane to Pi 840.3 μm s-1 

Vmaxmito Mitochondrial Vmax scaling parameter 0.50 Unitless 

 
Model predictions of prolonged PCr recovery in T2D patients  

It was investigated if the prolonged PCr recovery period in T2D patients could be predicted by 
adjusting model parameters according to experimental data obtained from the analyses of muscle 
biopsy samples. The model of oxidative ATP metabolism in healthy lean control subjects was used 
as a basis for these simulations. Model parameters MitoVmax and λ were set to the mean of the 6 
subject specific values (Table 4): i.e., 0.50 and 0.50mM s-1 (U pH)-1, respectively. Available data was 
translated into three different hypotheses of the mechanisms underlying the prolonged PCr 
recovery period in type 2 diabetes patients: i shift in muscle fiber type composition, ii decreased 
mitochondrial content in all muscle cell types and iii decreased mitochondrial content in 
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combination with a decreased intrinsic mitochondrial function due to a decreased capacity of the 
ETC and TCA. These hypotheses were in good accordance with recent review papers (e.g.: (14,25-
27)). 
 Each hypothesis was translated to the model by adjusting parameter values as listed in 
Table 3. For each parameter a range of values was defined, which reflected the variation in results 
of different studies. The shift in muscle fiber type (hypothesis i) was based on data of (28-30). The 
fiber type shift was implemented according to the relation: PercentagetypeI=50%-X, 
PercentagetypeIIA=40%+½X, PercentagetypeIIX=10%+½X, in which X denotes a value between 0 and 20%. 
The decrease in mitochondrial content in all muscle cells (hypothesis ii) was implemented by 
multiplying the mitochondrial volume percentage with a factor between 0.65 and 0.73, which 
corresponds to observations of (31-33). The additional decrease in capacity of TCA cycle + ETC 
(hypothesis iii) was implemented by multiplying dehydrogenase, complex I, complex III and 
complex IV activities (XDH, XC1, XCIII, XIV, respectively) by a factor between 0.45 and 0.90 (31,32). 

Model simulations of PCr recovery kinetics were performed as described in the Appendix 
(section: PCr recovery kinetic in individual fiber types). The only difference was that according to the 
experimental studies with diabetes patients (11,34-36), cellular pH and the level of PCr depletion 
was set to 7.05 and 30%, respectively. The rate of PCr recovery was quantified similar to the 
experimental studies, i.e. by fitting of a mono exponential function. A Monte Carlo simulation 
approach was applied to sample the range of parameter values: simulations were performed 100 
times, each time randomly drawing parameter values from a uniform distribution with boundaries 
set according to ranges defined in Table 3. The results were presented as a scatter plot of all 
individual simulation results as well as the mean PCr recovery halftime calculated from the 
ensemble. Comparison of predictions of PCr recovery halftimes with experimental observations in 
T2D patients were used to test each hypothesis. 
 
Table 3. Parameter settings for quantitative hypotheses testing 

Hypothesis i

Parameter Range References
Percentage type I muscle cells  50 - 30%* (28-30) 
Percentage type IIA muscle cells 40 - 50%* (28-30) 
Percentage type IIX muscle cells 10  - 20%* (28-30) 

Hypothesis ii

Parameter Range References
Mitochondrial content    65 - 73 % of reference model (healthy conditions) (31-33) 

Hypothesis iii

Parameter Range References
Mitochondrial content 65 - 73 %  of reference model (healthy conditions) (31-33) 
Capacity of TCA cycle and ETC# 40 – 90 % of reference model (healthy conditions) (31,32) 

#the decreased capacity of TCA and ETC was implemented by decreasing the XDH, XC1, XC3 and XC4 according to the listed 
values. 
* The first numbers of the range represent the healthy condition; parameter values were constraint according to the 
relation: PercentagetypeI = 50% - X, PercentagetypeIIA = 40% + ½X, PercentagetypeIIX = 10% + ½X, in which X denotes a 
percentage between 0 and 20% 
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RESULTS 
 

Model verification 
Model simulations of enzyme inhibition – respiration curves according to  the parameter values 
listed in Table 1 and experimental data obtained from (24) are shown in Figure 2A-F. Inhibition - 
respiration curves are shown for complex I (A), complex III (B), complex IV (C),  F1F0ATPase (D), ANT 
(E) and phosphate carrier (F). These results demonstrate that the single cell model is consistent 
with these experimental data thereby providing important verification of the distribution of the 
flux control exerted by different steps in the single cell model. In previous studies, the relation 
between [ADP] – Jp (dPCr/dt) and deltaGp – Jp (dPCr/dt) were used as important physiological 
endpoints for testing the in vivo relevance of the single-fiber model (chapters 4 and 5). It was 
investigated if the new multi - fiber model could still reproduce these datasets, Figure 3. The 
present results show that although predictions of individual fiber type kinetics are clearly distinct, 
the calculated muscle average matches well with the experimental data. These results therefore 
confirmed that after updating the model parameterization according to values listed in Table 1 and 
extension of the model from a uniform-fiber to a three-fiber model, the predictions of these 
transduction functions remained consistent with these in vivo data.    
 

 
Figure 2. Predictions (black lines) of the relation between enzyme inhibition and state 3 respiration compared to 
experimental data (grey diamonds). Inhibition – respiration curves are shown for specific inhibition of complex I (A), 
complex III (B), complex IV (C), F1F0ATPase (D), ANT (E) and the phosphate carrier (F). Experimental data was obtained 
from Lettelier et al. (24).  
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Figure 3. Predictions of ADP – Jp (A) and ΔGp – Jp (B) transduction functions compared to experimental data. Dynamics of 
type I, type IIA and type IIX muscle fibers are indicated by red, magenta and blue lines respectively. The calculated muscle 
average is indicated by a black line. Experimental data (grey diamonds) were identical to the data presented in chapters 4 
and 5 

 
Predictions of PCr recovery kinetics in healthy lean control subjects 

Simulations were run to test if the biophysical model could reproduce the PCr recovery kinetics 
dynamics recorded in vastus lateralis of healthy human subjects (chapter 4). Simulations were 
compared to data of six individual subjects. For each subject multiple (8 - 12) experiments were 
available (with varying end exercise [PCr] and pH). The performance of the model was evaluated by 
comparing simulation results to the gold-standard for the analysis of PCr recovery kinetics: i.e., 
fitting of a mono – exponential function. In Table 4 the goodness of fit (R2) is listed for both the 
biophysical model and the mono-exponential function. These results demonstrate that the 
biophysical model accurately reproduced the time course data (R2 is very close to 1 for all datasets), 
similar to the golden – standard method. Figure 4 shows a typical example of model predictions vs. 
data of an individual subject. These results show that the predicted individual fiber type dynamics 
(type I, red; type IIA, magenta; type IIX, blue) are different from the experimentally observed 
kinetics. In contrast, the weighted average of the individual fiber types (black lines) matches well 
with the experimental data. The PCr recovery halftime predicted by the biophysical model was 
compared to the halftime obtained by fitting of a mono-exponential function, Figure 5. These 
results further confirmed that the model can reproduce PCr recovery halftimes throughout the 
investigated range of end exercise PCr depletion (32 - 77%) and pH (6.6 – 7.0).  
 
Table 4. Goodness of fit biophysical model and mono exponential model. 

Subject Vmaxmito (unitless) λ (mM s-1 (U pH)-1) R2
 biophysical model R2 mono exponential function

1 0.50 0.38 0.99+/-0.0044 0.99 +/- 0.0039 

2 0.53 0.42 0.99 +/- 0.0051 0.99 +/- 0.0055 

3 0.50 0.47 0.99 +/- 0.0049 0.99+/-0.0048 

4 0.53 0.75 0.98 +/- 0.0084 0.99+/-0.0089 

5 0.50 0.51 0.97+/-0.024 0.98+/-0.023 

6 0.43 0.33 0.99+/-0.0040 0.99+/-0.0033 

Mean +/- SD 0.50+/-0.037 0.50+/-0.15   
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Figure 4. Example of predicted PCr and pH recovery dynamics. Results of an individual subject (subject 2) are provided 
for conditions of a relative small (A and C) and high (B and D) degree of PCr depletion. Experimental data are indicated by 
grey triangles. Predicted dynamics of fiber type I, IIA and IIX are indicated by red, magenta and blue lines, respectively. 
The calculated muscle average is indicated by a black line.   

 
 

 
 
Figure 5. Predicted PCr recovery halftime according to biophysical model compared to the PCr recovery halftime 
determined by fitting of a mono-exponential function. Data points were obtained from simulations of 6 individual 
subjects. For each subject multiple datasets (8 - 12) were available with varying end exercise PCr depletion (32 - 77%) and 
pH (6.6 – 7.0). The dotted line represents the x = y diagonal.     
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Predictions of prolonged PCr recovery period in T2D patients 

Available data obtained from the analyses of muscle biopsy samples was summarized by three 
hypotheses of mechanisms underlying the prolonged PCr recovery in T2D patients. Each 
hypothesis was incorporated in the model by adjusting model parameterization as listed in Table 3. 
Model predictions of the effect of these parameter changes on predicted PCr recovery halftime 
were used to test these hypotheses against PCr recovery halftimes observed in obese T2D patients, 
Figure 6. The error bars of the experimental observations indicate the SEM reported in these 
studies. The dotted line indicates predicted PCr recovery halftime of healthy lean control subjects 
(16.6s). 100 model simulations were run in a Monte Carlo simulation approach randomly drawing 
parameter values from uniform distributions with upper and lower boundaries set to the values 
listed in Table 3. Each simulation result is shown as individual points. In addition, the mean PCr 
recovery halftime of the ensemble was calculated and is indicated by a black line. These results 
reveal that hypothesis i (shift in muscle fiber type) even in an extreme case (-20% type I, + 10% type 
IIA, +10% type IIX) can explain only part of the increase in PCr halftime. In contrast, hypothesis ii 
(~30% decrease in mitochondrial content) is quantitatively consistent with the studies reporting a 
relative mild decrease in mitochondrial capacity (PCr recovery halftimes < 24s) (11,35). The 
estimate of PCr half-time corresponding to hypothesis iii (~30% decrease in mitochondrial content 
+ 10 - 65% decrease in ETC + TCA cycle capacity) is in good accordance with studies reporting the 
most severe decrease in mitochondrial capacity (PCr recovery halftimes > 24s) (34,36).  
 

 
 
Figure 6. Experimental observations of prolonged PCr recovery in type 2 diabetes patients compared to predictions 
according to different hypotheses.  The mean ± SEM of the PCr halftime reported by: 1.) Schrauwen – Hinderling et al. 
(36), 2.) de Feyter et al. (34), 3.) Phielix et al. (11) and 4.) Meex et al. (35) are shown. PCr halftime representing healthy 
conditions (16.6s) is indicated by a dotted line. Predictions according to hypothesis i (shift in fiber type composition), ii 
(decrease in mitochondrial content) and iii (decrease in mitochondrial content + decrease in enzyme activity of ETC and 
TCA) are represented by individual results of the simulations run in a Monte Carlo simulation approach (black dots) as 
well as the mean of the ensemble (black line). 
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DISCUSSION 
 
In this chapter two main results are presented. First, the mathematical model of oxidative ATP 
metabolism in skeletal muscle was further improved and extended from a uniform-fiber model to a 
three-fiber model. Second, the model was applied for the analyses of literature data of type 2 
diabetes patients to illustrate the potential of its application in future studies of mitochondrial 
(dys)function in skeletal muscle.  
 

Methodological considerations 
We propose to apply a biophysical model to relate in vitro markers of oxidative capacity to 
measurements of mitochondrial function in vivo, i.e., PCr recovery kinetics. In order to enhance the 
significance of these model predictions, first, several key verification test of the model were 
performed. It was shown that the model is consistent with experimental data on the effect of 
inhibition of key steps in the mitochondrial pathway on overall rate of respiration (Figure 2). The 
rate of respiration is closely linked to the rate of mitochondrial ATP production and thus also to the 
time constant of PCr recovery. Therefore, these results enhance the significance of predictions of a 
change in Vmax of individual model components or a subset of components (e.g. decrease in ETC 
capacity according to hypothesis iii) on the PCr recovery time constant. In addition, the model was 
shown to reproduce PCr recovery dynamics of lean healthy subjects over a range of end-exercise 
PCr and pH levels, (Table 3, Figure 3, 4 and 5) as well as ΔGp – Jp and [ADP] - Jp transduction 
functions. On this basis it was concluded that the model represents oxidative ATP metabolism in 
skeletal muscle of healthy lean subjects well and can act as a reference for evaluating the effect of 
changes in oxidative ATP metabolism in other patient or subjects groups (e.g. T2D) compared to 
healthy lean control subjects.  

Some aspects of muscle physiology were not included in the model. For example, 
regulation by calcium signaling was not considered, because it was previously concluded that this 
regulation has not a dominant role in the control of 31P MRS observed metabolite dynamics (Pi, PCr, 
ATP) in skeletal muscle in vivo (chapters 4 and 5). In addition, in the current model ATP production 
by glycolysis was not included. The rationale behind this choice was that the analysis was limited to 
post exercise PCr recovery dynamics, for which it is well established that these dynamics almost 
purely reflect oxidative ATP synthesis (7,8,10). In addition, oxygen supply to muscle cells was not 
modelled in detail. Instead, the present analyses were performed under the assumption that 
oxygen supply was not limiting (37).  
 

Predictions of individual fiber type dynamics 
The multi - fiber model predicted metabolite dynamics in individual fiber  types. The significance of 
these predictions is enhanced by the lack of robust experimental methods to determine individual 
fiber type kinetics in human quadriceps muscle. Non – invasive methods like 31P MRS are limited to 
recordings of metabolite dynamics averaged over all muscle cell types. Dissection and analysis of 
single muscle fibers from biopsy samples obtained at multiple time points provides an alternative 
(21,38). However, this invasive method has a low time resolution and, due to the complex assay, 
available data are sparse and characterized by a relative large coefficient of variation (21,38). In 
good accordance with the qualitative trends observed from these data, the predicted rate of PCr 
recovery was fastest in type I and slowest in type IIX fibers, with type IIA fibers being intermediate 
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(Figure 4). In addition, model predictions provided new insight in the behavior of individual fibers. 
For example, the predicted ΔGp – Jp relation was clearly distinct between fibers: type I fibers 
followed a sigmoidal relation, whereas for type IIA and IIX fibers a linear trend was observed.  
 

Numerical analyses of mitochondrial function 
We proposed that the mathematical model can be used as a tool for future studies of 
mitochondrial function in skeletal muscle. To illustrate this concept, data comparing type 2 
diabetes patients and healthy lean control subjects were analyzed. The rationale for selecting these 
two populations is that already a large database of experimental studies comparing these 
populations is available in literature (see e.g., review (14)). It is however important to note that the 
reported differences between healthy lean control subjects and obese T2D patients are not 
necessarily related to insulin resistance of the muscle cells, but represent the combined effect of 
the difference in age, BMI, lifestyle and insulin sensitivity. The current study therefore provides no 
answers to the question if the decrease in mitochondrial function in these patients is (partly) 
caused by insulin resistance (11,35,36) or is a result of the age and sedentary lifestyle of the patients 
(34). Nevertheless, it still provides a relevant case for illustrating the potential of mathematical 
modeling for analyses of this type of data. 

 To the best of our knowledge the hypotheses represented by the three model 
configurations represent the corollary of available data well and are in good accordance with 
recent review papers (14,25-27). Multiple studies reported a fiber type shift with a general trend 
towards less oxidative fiber types (28,30,39,40), but, a similar number of studies reported no effect 
(29,41-43). Our analysis shows that even for an extreme case of fiber type shift only a part (<50%) of 
the prolonged rate of PCr recovery can be explained. In the other two hypotheses the fiber type 
shift was not included. These hypotheses were based on the data obtained from muscle 
homogenates which represent an average of all muscle fibers. The decrease in mitochondrial 
content considered in hypotheses ii and iii can thus still be a result of a fiber type shift, a decrease 
in mitochondrial content per fiber type or a combination of both. The calculations for hypotheses ii 
and iii show that each is consistent with part of the experimentally observed range of PCr recovery 
halftime (range:  23.1 - 28.4s). It was calculated that a ~30% decrease in mitochondrial content is 
sufficient to explain a prolongation of PCr recovery halftime up to 24s (11,35). However, for the 
studies reporting cases of even more severe mitochondrial dysfunction (PCr recovery halftime > 
24s) (34,36) additional factors are likely to be involved. The calculations revealed that for these 
cases a ~30% decrease in mitochondrial content is most likely also accompanied by an additional 
10 - 60% decrease in TCA cycle and ETC capacity. These results illustrate how model predictions can 
provide quantitative insight in effect of the changes in muscle physiology on functioning of the 
mitochondria observed in vivo.  
 

Significance and future perspective  
It was concluded that the novel three-fiber model of oxidative ATP metabolism could accurately 
reproduce measurements of the influence of inhibition of individual steps in oxidative 
phosphorylation on the rate of oxygen consumption, ΔGp – Jp and [ADP] - Jp transduction functions 
recorded in vivo and PCr recovery kinetics. These successful model verification experiments 
significantly improved the basis of the model for application in future studies. Developing and 
applying mathematical models has been considered an essential step for obtaining a thorough 
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understanding of biological systems. The extension and validation of the model obtained in this 
study therefore contribute to the ongoing effort of obtaining a 'systems - level' understanding of 
the regulation and functioning of energy metabolism in health and disease. In addition, application 
of the algorithm on literature data of type 2 diabetes patients illustrated how such model can be 
applied to analyze the contribution of different factors to the functioning of the mitochondria as 
observed in vivo. For this specific case study, the input data was obtained by integration of data 
from different studies. A next step for testing the model and approach will be to acquire all 
necessary data (in vivo + in vitro) in a single study and subsequently apply the model to analyze 
these data. Such a combined experimental and computational study is essential to further confirm 
the generic value of the approach.   
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APPENDIX 
 

Simulation protocols 
 

Enzyme inhibition - respiration curves 
Enzyme inhibition - respiration curves were obtained from Lettelier et al. (24). Details on the experimental protocols are 
described elsewhere (24). In brief, mitochondria were isolated from rat skeletal muscle. Maximal mitochondrial 
respiration rate (State 3 respiration) was obtained by addition of 10mM Pi, 2mM ADP and 10mM pyruvate + 10 mM 
malate as oxidizable substrates. Progressive inhibition of specific steps in the mitochondrial oxidative phosphorylation 
pathway was induced by rotenone (complex I), antimycin (complex III), KCN (complex IV), carboxyatractylate (ANT), 
mersalyl (phosphate carrier) and oligomycin (ATP synthase).   

Simulations of the enzyme inhibition – respiration relations were performed with the single-cell model. 
Simulations of state 3 respiration were performed by setting Vmax parameters of cytoplasmic enzymes which were 
removed in the isolation procedure to zero (creatine kinase, adenylate kinase and ATPase). Initial metabolite 
concentrations were set according to experimental conditions: Pi 10mM; adenine nucleotides (AMP, ADP, ATP) in 
cytoplasm and inter membrane space 0mM. Model simulations were run until steady state was reached (1000s). 
Subsequently, state 3 respiration experiments were simulated by increasing the cytoplasmic ADP concentration to 2mM 
and continuing the simulation for 180s. State 3 respiration was defined as the maximal rate of O2 consumption following 
the addition of ADP.  

Enzyme inhibition respiration curves for specific steps in the mitochondrial pathway were calculated by 
running multiple state 3 respiration experiments while progressively decreasing the Vmax value of the specific process.  
 

PCr recovery dynamics 
Experimental data of PCr recovery dynamics of individual subjects (n=6) were recorded in the study described in chapter 
4. Each subject participated in multiple (8 - 12) rest – exercise – recovery experiments with varying end-exercise PCr and 
pH levels. The PCr and pH recovery dynamics were used for model testing.  

The PCr recovery simulations were performed with the three-cell model. The simulation protocol consisted of 
two steps. First, initial conditions for the simulations of the post exercise recovery dynamics were determined. Hereto pH 
was clamped at the experimentally observed end-exercise value. Next, ATPase rate was progressively increased until 
predicted steady state [PCr] matched the experimentally observed value. Subsequently metabolic recovery was 
simulated. To this end, cellular ATPase demand was decreased to resting values (0.01mM/s (7)) and the pH clamp was 
removed. The end exercise pH was assumed similar for the three fiber types. This assumption was supported by the 
narrow peak width of the Pi resonance in the 31P spectra obtained at the end of exercise. The percentage of end – 
exercise PCr depletion was assumed similar for all fiber types. This assumption corresponds to a recruitment scheme of 
ballistic contractions. Although any heterogeneity in PCr concentration between muscle fibers certainly cannot be ruled 
out, it was found that this assumption allowed reproducing PCr recovery times constants for the entire range (32 – 77%) 
of investigated PCr depletion levels (see Figure 3). Therefore, in retrospect, it was concluded that this assumption did not 
conflict with available data. These simulations were performed for individual subjects. To account for differences in 
oxidative capacity and apparent proton efflux between subjects MitoVmax and λ were optimized based on the PCr and pH 
recovery dynamics (optimized parameter values provided in Table 3). The pH data included in the parameter estimation 
procedure was limited to the first 5 points during recovery. The rationale for this choice was that during the remainder of 
the recovery period the Pi resonance became difficult to distinguish from the noise and consequently yielded inaccurate 
and unreliable pH estimates.   
 

ADP –Jp and ΔGp – Jp transduction functions  
The transduction functions between cellular ADP concentration and the mitochondrial ATP synthesis flux (ADP - Jp) and 
cellular phosphate potential and the mitochondrial ATP synthesis flux (ΔGP - Jp) characterize the regulation of 
mitochondrial flux (Jp) in vivo (chapter 4). Experimental data sampling these transduction functions was identical to the 
data presented in chapter 4. Simulations of these transduction functions were performed with the three – fiber model. To 
sample the entire flux range, model predictions of the transduction functions were derived from simulations of an 
intense exercise protocol (end – exercise ADP = 0.15mM and pH = 6.7). Simulations were performed as described in 
section: ‘PCr recovery dynamics’. Predictions of metabolic recovery were used to reconstruct the transduction functions. 
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Mitochondrial ATP synthetic rate (Jp) was calculated from derivative of PCr dynamics (dPCr/dt). ΔGP was calculated 
according to Eq. 3. 
 

' ln([ ][ ] / [ ])   o
p p iG G RT ADP P ATP  (Eq. 3) 

Where, ' o
pG is -31.8kJ/mol at 37°C. 

 
 
 

  



Numerical dissection of mitochondrial function 

 

137 

REFERENCES 

 
 1.  Janssen I, Heymsfield SB, Wang ZM and Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 

yr. J Appl Physiol 89: 81-88, 2000 
 2.  Wallace DC. Mitochondrial diseases in man and mouse. Science 283: 1482-1488, 1999 
 3.  Drexler H, Riede U, Munzel T, Konig H, Funke E and Just H. Alterations of skeletal muscle in chronic heart failure. 

Circulation 85: 1751-1759, 1992 
 4.  Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 307: 384-387, 2005 
 5.  Trounce I, Byrne E and Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in 

ageing. Lancet 1: 637-639, 1989 
 6.  Prompers JJ, Jeneson JA, Drost MR, Oomens CC, Strijkers GJ and Nicolay K. Dynamic MRS and MRI of skeletal muscle 

function and biomechanics. NMR Biomed 19: 927-953, 2006 
 7.  Blei ML, Conley KE and Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J 

Physiol 465: 203-222, 1993 
 8.  Conley KE, Blei ML, Richards TL, Kushmerick MJ and Jubrias SA. Activation of glycolysis in human muscle in vivo. Am J 

Physiol 273: C306-C315, 1997 
 9.  Dawson MJ, Gadian DG and Wilkie DR. Studies of the biochemistry of contracting and relaxing muscle by the use of 31P 

n.m.r. in conjunction with other techniques. Philos Trans R Soc Lond B Biol Sci 289: 445-455, 1980 
 10.  Quistorff B, Johansen L and Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic 

recovery. Biochem J 291 ( Pt 3): 681-686, 1993 
 11.  Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, Hoeks J, Kooi ME, Moonen-Kornips E, Sels JP, 

Hesselink MK et al.. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in 
muscle of male type 2 diabetic patients. Diabetes 57: 2943-2949, 2008 

 12.  Praet SF, De Feyter HM, Jonkers RA, Nicolay K, van PC, Kuipers H, van Loon LJ and Prompers JJ. 31P MR spectroscopy 
and in vitro markers of oxidative capacity in type 2 diabetes patients. MAGMA 19: 321-331, 2006 

 13.  Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73: 195-262, 
2000 

 14.  Rabol R, Boushel R and Dela F. Mitochondrial oxidative function and type 2 diabetes. Appl Physiol Nutr Metab 31: 675-683, 
2006 

 15.  Wu F, Jeneson JA and Beard DA. Oxidative ATP synthesis in skeletal muscle is controlled by substrate feedback. Am J Physiol 
Cell Physiol 292: C115-C124, 2007 

 16.  Kemp GJ, Taylor DJ, Styles P and Radda GK. The production, buffering and efflux of protons in human skeletal muscle 
during exercise and recovery. NMR Biomed 6: 73-83, 1993 

 17.  Kemp GJ, Thompson CH, Taylor DJ and Radda GK. Proton efflux in human skeletal muscle during recovery from exercise. 
Eur J Appl Physiol Occup Physiol 76: 462-471, 1997 

 18.  Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE and Toma K. Fiber type composition of the 
vastus lateralis muscle of young men and women. J Histochem Cytochem 48: 623-629, 2000 

 19.  Howald H, Hoppeler H, Claassen H, Mathieu O and Straub R. Influences of endurance training on the ultrastructural 
composition of the different muscle fiber types in humans. Pflugers Arch 403: 369-376, 1985 

 20.  Sahlin K, Soderlund K, Tonkonogi M and Hirakoba K. Phosphocreatine content in single fibers of human muscle after 
sustained submaximal exercise. Am J Physiol 273: C172-C178, 1997 

 21.  Soderlund K, Hultman E. ATP and phosphocreatine changes in single human muscle fibers after intense electrical 
stimulation. Am J Physiol 261: E737-E741, 1991 

 22.  Boska M. ATP production rates as a function of force level in the human gastrocnemius/soleus using 31P MRS. Magn Reson 
Med 32: 1-10, 1994 

 23.  Travnik L, Pernus F and Erzen I. Histochemical and morphometric characteristics of the normal human vastus medialis 
longus and vastus medialis obliquus muscles. J Anat 187 ( Pt 2): 403-411, 1995 

 24.  Letellier T, Malgat M and Mazat JP. Control of oxidative phosphorylation in rat muscle mitochondria: implications for 
mitochondrial myopathies. Biochim Biophys Acta 1141: 58-64, 1993 

 25.  Dumas JF, Simard G, Flamment M, Ducluzeau PH and Ritz P. Is skeletal muscle mitochondrial dysfunction a cause or an 
indirect consequence of insulin resistance in humans? Diabetes Metab 35: 159-167, 2009 

 26.  Phielix E, Mensink M. Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94: 252-258, 2008 
 27.  Schrauwen-Hinderling VB, Roden M, Kooi ME, Hesselink MK and Schrauwen P. Muscular mitochondrial dysfunction and 

type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 10: 698-703, 2007 
 28.  Gaster M, Staehr P, Beck-Nielsen H, Schroder HD and Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 

diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50: 1324-1329, 2001 
 29.  He J, Watkins S and Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in 

type 2 diabetes and obesity. Diabetes 50: 817-823, 2001 
 30.  Hickey MS, Carey JO, Azevedo JL, Houmard JA, Pories WJ, Israel RG and Dohm GL. Skeletal muscle fiber composition is 

related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 268: E453-E457, 1995 
 31.  Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH and Kelley DE. Deficiency of subsarcolemmal mitochondria in 

obesity and type 2 diabetes. Diabetes 54: 8-14, 2005 
 32.  Kelley DE, He J, Menshikova EV and Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. 

Diabetes 51: 2944-2950, 2002 



Chapter 6 

 

138 

 33.  Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S et al.. Reduced 
mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic 
parents. J Clin Invest 115: 3587-3593, 2005 

 34.  De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ and Prompers JJ. Early or advanced stage type 2 
diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158: 643-653, 2008 

 35.  Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, van de WT, Sels JP, 
Schrauwen P and Hesselink MK. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by 
exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59: 572-579, 
2010 

 36.  Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, Jeneson JA, Backes WH, van Echteld CJ, van Engelshoven JM, 
Mensink M and Schrauwen P. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients 
with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50: 113-120, 2007 

 37.  Haseler LJ, Lin A, Hoff J and Richardson RS. Oxygen availability and PCr recovery rate in untrained human calf muscle: 
evidence of metabolic limitation in normoxia. Am J Physiol Regul Integr Comp Physiol 293: R2046-R2051, 2007 

 38.  Karatzaferi C, de HA, Ferguson RA, van MW and Sargeant AJ. Phosphocreatine and ATP content in human single muscle 
fibres before and after maximum dynamic exercise. Pflugers Arch 442: 467-474, 2001 

 39.  Marin P, Andersson B, Krotkiewski M and Bjorntorp P. Muscle fiber composition and capillary density in women and men 
with NIDDM. Diabetes Care 17: 382-386, 1994 

 40.  Nyholm B, Qu Z, Kaal A, Pedersen SB, Gravholt CH, Andersen JL, Saltin B and Schmitz O. Evidence of an increased 
number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM. Diabetes 46: 1822-1828, 
1997 

 41.  Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF and Dela F. Strength training increases insulin-mediated glucose 
uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 53: 294-305, 2004 

 42.  van Loon LJ, Koopman R, Manders R, van der WW, van Kranenburg GP and Keizer HA. Intramyocellular lipid content in 
type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol 
Endocrinol Metab 287: E558-E565, 2004 

 43.  Zierath JR, He L, Guma A, Odegoard WE, Klip A and Wallberg-Henriksson H. Insulin action on glucose transport and 
plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39: 1180-1189, 1996 

 
 
  



Numerical dissection of mitochondrial function 

 

139 

 



 



 

 

 

 
 
 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Adapted from: 

 

J.P.J. Schmitz, J. Ciapaite, N.M.A. van den Broek, R.A.M. Jonkers,  

K. Nicolay, P.A.J. Hilbers, J.J. Prompers., J.A.L Jeneson, N.A.W. van Riel 

Integration of in vivo, in vitro and in silico methods for systems biology of mitochondrial function 

(In preparation) 

Integration of in vivo, in vitro and in silico methods for 

systems biology of mitochondrial function 

Chapter  



Chapter 7 

 

142 

 
 
 

 
 

ABSTRACT 
 

Mitochondrial ATP synthesis capacity in skeletal muscle is studied by a variety of methods, 
including in vivo, in vitro and in silico approaches. We investigated if the insight obtained by these 
methods can be enlarged by combining them in a systems biology research approach. The strategy 
was tested in an animal model of decreased mitochondrial function: 8 versus 25 week old Wistar 
rats. 31P magnetic resonance spectroscopy revealed a decreased mitochondrial capacity in vivo in 
the older animals (PCr recovery rate constant decreased from 0.013±0.00082s-1 to 
0.0082±0.000021s-1). End-exercise pH varied between groups (6.91±0.04 and 6.79±0.03, at 8 and 25 
weeks, respectively). In vitro analyses of tissue samples identified several differences in muscle 
physiology: mitochondrial content was decreased by 17±5% and the capacity of electron transport 
chain and TCA cycle was decreased 22±2%. Simulations of a mechanistic mathematical model 
accurately reproduced the prolongation of PCr recovery period based on the observed differences 
in muscle physiology. Model analyses quantified that a major part of the decreased oxidative 
capacity was due to the decreased mitochondrial content (~54%). The remaining part was a result 
of the difference in end exercise pH (~12%) and decreased capacity of ETC and TCA cycle (~32%). 
These results demonstrate the feasibility of applying in silico analyses for integration of in vivo and 
in vitro markers of mitochondrial dysfunction.  
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INTRODUCTION 
 
Mitochondria are versatile organelles involved in many different cellular processes, e.g., signaling 
events (1), heat generation (2), and apoptosis (3). Re-synthesis of ATP from its hydrolyses products 
ADP + Pi is, however, considered its primary task. Normal function of these organelles is considered 
essential to life. In fact, an increasing number of studies place mitochondrial dysfunction at the 
center of several diseases. For example, dysfunction of mitochondria in skeletal muscle has been 
associated with type 2 diabetes (4), chronic heart failure (5) or the aging process (6).  

A variety of methods has become available to investigate mitochondrial function in skeletal 
muscle including in vivo, in vitro and in silico techniques. The gold-standard to determine the 
mitochondrial ATP generating capacity in vivo is 31P magnetic resonance spectroscopy (MRS) (7). 
This method can accurately determine the rate of post exercise phosphocreatine (PCr) recovery, 
which reflects the rate of oxidative ATP synthesis (7). Although 31P MRS can thus diagnose the 
functioning of the intact system, it cannot be used to identify the origin of any observed 
mitochondrial dysfunction. This knowledge is however key for design of therapeutic strategies. 
Therefore, in diagnostic studies of mitochondrial diseases, typically, additional analyses of muscle 
tissue samples are performed. Isolation of mitochondria from these tissue samples allows to 
determine in vitro respiration rates for varying substrate conditions using high-resolution 
respirometry (8). Additional biochemical and histological analyses of tissue samples provides 
information at the level of the metabolic pathways, e.g.: protein content / enzyme activity, 
mitochondrial content. At the same time, integration of available biochemical information on the 
mitochondrial pathways has yielded computational models of mitochondrial oxidative 
phosphorylation (9). These models offer unique opportunities for in silico studies of questions that 
cannot be addressed experimentally. 

In and by itself, each of the available methods provides valuable information. Thus far 
however, (personalized) pharmaceutical therapy has been predominantly designed on the basis of 
in vitro data. Examples of studies reporting such treatments are riboflavin therapy for complex I 
deficiencies (10),  menadione + ascorbate treatment of a complex III deficiency (11), or vitamin E 
treatment in case of an ANT defect (12,13). Treatments however are often effective in only a subset 
of patients (14). Moreover, it remains in many cases unclear why some patients respond well to 
treatment while others do not respond at all (14). Even well-defined mitochondrial disorders 
(caused by a single gene mutation) can cause a complex pattern of adaptations in muscle 
metabolism. These adaptations include for example compensatory mechanisms (up-regulation of 
alternative enzymes or pathways) or are a result of lack of physical activity caused by (severe) 
exercise intolerance. For an improved design of (personalized) treatment it is crucial to answer 
questions like: (i) which changes in muscle physiology contribute the most to the decreased 
mitochondrial capacity?, (ii) which potential targets allow for the largest gain in overall 
mitochondrial function?, and (iii) what are the risks for possible side effects of therapies? Answering 
these questions requires to combine all available pieces of information (in vivo, in vitro and in silico) 
in an integrative approach (15). Such an integrative research strategy is also referred to as a 
‘systems biology’ or ‘systems medicine’ approach (15). Mathematical modeling provides a powerful 
tool for data integration and is therefore considered a cornerstone of such an approach (15).  

We propose to apply mathematical modeling to integrate in vivo and in vitro 
measurements of mitochondrial function. The ultimate aim of this effort is to design a method by 
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which the best therapeutic targets and corresponding therapies can be predicted by applying 
models that comprise patient specific parameters (based on in vitro data). However, before such 
model can be applied for medical purposes, first, multiple steps of thorough model testing are 
required. Chapters 4 to 6 already describe several studies that contribute to this process. The model 
described in these chapters accurately reproduced key characteristics of mitochondria in vivo (i.e., 
transduction functions, PCr recovery kinetics) as well as the effect of inhibition of individual steps in 
OXPHOS on the respiration rate in vitro. It remains however to be tested if the quality of this model 
is indeed at a level at which it can be applied to integrate different experimental measurements of 
mitochondrial function and yield reliable predictions and new insight that may eventually be used 
for improving therapies or design of  new (pharmaceutical) treatments.  

The aim of the current study was to perform such a test. The approach was tested in an 
animal model: 8 versus 25 week old Wistar rats. A schematic overview of the study design is 
provided in Figure 1. The functioning of mitochondria in vivo was determined by 31P MRS. 
Biochemical analyses of muscle samples were performed to identify adaptations of the 
mitochondrial pathway (e.g. enzyme activities, protein content, mitochondrial content). The two 
main questions that followed from the combined in vivo and in vitro datasets were: (i) can the set of 
pathway adaptations (in vitro data) explain the functioning of the integrated pathway in vivo?, (ii) 
what is the contribution of individual pathway changes to the in vivo functioning of the 
mitochondria? To answer these questions in silico analyses were performed. The changes in muscle 
physiology observed in vitro were translated to the model by adjusting corresponding parameter 
values. Model predictions were then compared to in vivo data to test if the pathway adaptations 
could explain the in vivo recorded decreased mitochondrial function.  
 

 
 
Figure 1. Schematic overview of the study design.  
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METHODS 
 

Animals  
10 male Wistar rats age 8 weeks and 10 male Wistar rats age 25 weeks (248±12 and 460±21 gram, 
respectively, Charles River Laboratories, France) were housed in groups at 20°C and 50% humidity, 
on a 12-h light dark cycle with ad libitum access to water and chow. Principles of laboratory animal 
care were followed and all experimental procedures were approved by the Animal Ethics 
Committee of Maastricht University, the Netherlands. During preparatory surgical procedures and 
MRS experiments, animals were anesthetized using 0.8-1.2% isoflurane (Forene, Abbot GmbH, 
Wiesbaden Germany) administered via a face mask with medical air and oxygen (0.2 and 0.1 L/min 
respectively). Body temperature was maintained at 37±1°C using heat pads and monitored by a 
custom build monitoring system. In the MR scanner, respiration was monitored using a pressure 
sensor registering thorax movement (Rapid Biomedical, Rimpar, Germany). Contractions in the 
Tibialis Anterior muscle (TA) of the right leg were induced by using electrical stimuli applied via 
acute, subcutaneously implanted platinum electrodes positioned along the distal nerve trajectory 
of the n. peroneus communis. Stimulation voltage ranged between 5-10 V, pulse length was 6 ms. 
A short pulse train of 10 muscle excitations at 80Hz was applied every second. After the 31P MRS 
measurements the animals were allowed to recover. On the next day the animals were sacrificed. 
The TA muscle of the left leg was collected for high resolution respirometry experiments. The TA 
muscle of the left leg was collected and cut into three equally sized pieces; two were immediately 
frozen in liquid nitrogen and the third piece was embedded in Tissue-Tek (Sakura, Alphen aan de 
Rijn, The Netherlands) and frozen in liquid nitrogen cooled isopentane.        

 
31P NMR acquisition parameters 

All MRS measurements were performed on a 6.3 T horizontal Bruker magnetic resonance 
spectrometer (MRS) (Bruker, Ettlingen, Germany). Phosphorus (31P) MRS was performed by using a 
two coil configuration. A circular 1H surface coil (40 mm) was used to adjust the magnetic field 
homogeneity using the available proton signal from water, while a smaller elliptical surface coil 
(10/18 mm) was positioned over the TA to acquire phosphorus data. 31P spectra were acquired 
applying an adiabatic excitation pulse with a flip angle of 90°. A fully relaxed spectrum (TR=20 s, 32 
averages) was measured at rest. A time series of spectra (TR = 5 s, 2 averages) before, during and 
after electrical stimulation of TA. A time series consisted of 3 minutes rest, 2 minutes stimulation 
and 10 minutes after stimulation.  

Intracellular pH was calculated from the chemical shift difference between the Pi and PCr 
resonances (δ; measured in part per million), according to Eq. 2 (16). 

 





 


pH
3.27

6.75 log( )
5.63

  (Eq. 2) 

 
Mitochondrial function was quantified by fitting of a mono-exponential function: 

 
    t kPCr

ePCr t PCr PCr e( )   (Eq. 3) 
Where, PCre is the PCr level after recovery, ΔPCr is the difference between the PCr levels after recovery and at the end of 
exercise, and kPCr is the rate constant for PCr resynthesis. 
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Isolation of mitochondria 
Mitochondria were isolated from one whole TA muscle through a differential centrifugation 
procedure (17). Briefly, TA muscle was excised, washed in ice-cold 0.9% KCl, freed of connective 
and adipose tissue, weighed, and minced with scissors in ice-cold medium A (5 ml for 1 g tissue) 
containing 150 mM sucrose, 75 mM KCl, 50 mM MOPS, 1 mM KH2PO4, 5 mM MgCl2, 1 mM EGTA, and 
0.4 mg/mL bacterial proteinase type XXIV (pH 7.4). Next, 20 mL of medium B containing 250 mM 
sucrose, 0.1 mM EGTA, 20 mM MOPS, and 2 mg/ml BSA (pH 7.4) was added, and the mixture was 
homogenized using a Potter-Elvehjem homogenizer. The homogenate was centrifuged at 800 g for 
10 min, 4°C. The resulting supernatant was centrifuged at 10,000 g for 10 min, 4°C. The pellet was 
resuspended in 15 mL of fresh ice-cold medium B and centrifuged at 10,000 g for 10 min, 4°C. 
Mitochondrial pellet was resuspended in 100 μL of medium B. Protein content was determined 
using the BCA protein assay kit (Pierce, Thermo Fisher Scientific Inc., Rockford, IL, USA).  
 

High resolution respirometry  
Oxygen consumption rate was measured at 37°C using a 2-channel high-resolution Oroboros 
oxygraph-2 k (Oroboros, Innsbruck, Austria). Mitochondria (0.15 mg/mL) were incubated in 1 mL of 
assay medium containing 110 mM KCl, 20 mM Tris, 2.3 mM MgCl2, 5 mM KH2PO4, and 1 mg/mL BSA 
(pH 7.3), and supplemented with either 5 mM pyruvate plus 5 mM malate as the oxidizable 
substrate. An ADP-regenerating system consisting of excess hexokinase (4.8 U/mL) and glucose 
(12.5 mM) was used to maintain steady-state oxygen consumption rates. ATP (1 mM) was added to 
initiate state 3 respiration. Oxygen consumption in resting state (state 4) and uncoupled state 
(state U) was determined after the addition of 1.25 μM carboxyatractyloside and 1 μM carbonyl 
cyanide 3-chlorophenyl hydrazone, respectively. The signals from the oxygen electrode were 
recorded at 0.5s intervals. Data acquisition and analysis were performed using Oxygraph-2k-
DatLab 4.2 software (Oroboros, Innsbruck, Austria).  
 

Determination of the relative mitochondrial copy number 
Genomic DNA was isolated from a 25-mg transversal slice of midbelly TA using the GenElute 
Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich). Mitochondrial DNA (mtDNA) content 
relative to peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) gene was measured 
using real-time PCR as described previously (18). Primers for mtDNA were as follow: forward 5′-
ACACCAAAAGGACGAACCTG-3′ and reverse 5′-ATGGGGAAGAAGCCCTAGAA-3′; and for PGC1α, 
forward 5′-ATGAATGCAGCGGTCTTAGC-3′ and reverse 5′-AACAATGGCAGGGTTTGTTC-3′. The 
relative mtDNA copy number was calculated using the ΔΔCt method (19).  
 

 Western blot analysis 
Frozen transversal sections of midbelly TA (100–150 mg) were homogenized in 10 vol of cold RIPA 
buffer (1% Nonidet P40 substitute; 0.5% Na deoxycholate; 0.1% Na dodecyl sulfate; 150 mM NaCl; 
and 50 mM Tris, pH 8) supplemented with protease inhibitor cocktail (dilution 1:200; SigmaAldrich). 
Homogenates were solubilized for 2 h at 4°C and centrifuged at 12000 g for 15 min at 4°C. 
Supernatants (10 μg of total protein) were resolved by SDS-PAGE.  

After electrophoresis, proteins were transferred to polyvinylidene difluoride membranes 
(Millipore, Bedford, MA, USA). After blocking, membranes were incubated with MitoProfile® Total 
OXPHOS Rodent WB Antibody Cocktail (1:2000, MitoSciences, Eugene, OR, USA) containing 
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monoclonal antibodies against Complex I, II, III, IV and ATP synthase subunits, rabbit anti-adenine 
nucleotide translocase antibody (ANT; 1:200) or or goat anti-GAPDH antibody (both from Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. After washing with PBS containing 0.1% 
Tween, membranes were treated with horseradish peroxidase-conjugated goat anti-rabbit IgG 
(Pierce; Thermo Fisher Scientific, Rockford, IL, USA) for 1 h at room temperature. The 
immunocomplexes were detected using SuperSignal West Dura Extended Duration Substrate 
(Pierce) and quantified using Quantity One 1-D 4.4.0 analysis software (Bio-Rad Laboratories, 
Hercules, CA, USA).  
 

Statistical analysis 
Data are presented as means ± SEM unless otherwise stated. The listed n values represent the 
number of animals used for a particular experiment. Statistical significance of the differences was 
assessed using two-sided unpaired Student’s t-tests in PASW statistics 18.0 statistical package 
(SPSS, Chicago, IL). Level of statistical significance was set at P 0.05. 
 

Description of the mathematical model 
The computational model of skeletal muscle oxidative ATP metabolism described in chapter 6 
(uniform-fiber model) was used as a basis for this study. The single-fiber model was applied 
because immunohistochemical analysis of the muscle samples revealed no differences in fiber type 
composition between animal groups (data not shown). The model contains a detailed biophysical 
description of the electron transport chain, oxidative phosphorylation, adenine nucleotides and Pi 
transport across the mitochondrial membranes and cellular ATP buffering (creatine kinase and 
adenylate kinase). The model was implemented in Matlab 7.5.0 (The Mathworks, Natick, MA, USA). 
Ordinary differential equations were solved numerically by using ODE15s with absolute and 
relative tolerances set to 10-8. 
 

Predictions of PCr dynamics at 8 weeks (reference model)  
The mitochondrial content in the original model was set to values corresponding to human 
quadriceps muscle. TA muscle of Wistar rats contains predominantly (>95%) fast twitch fibers 
which have a low mitochondrial content. It was therefore required to re-estimate the mitochondrial 
volume fraction. This parameter was decreased manually to 0.0165 in order to reproduce the 
observed PCr recovery rate constant in 8 week old rats. 

The simulations of PCr dynamics consisted out of 2 steps. First, initial conditions for the 
simulations of the post exercise recovery dynamics were determined. Hereto pH was clamped at 
the experimentally observed end-exercise value (6.91). ATPase rate was progressively increased 
until the initial steady state [PCr] matched the experimentally observed value (10mM). Next 
metabolic recovery was simulation, by decreasing cellular ATPase demand to resting value 
(0.01mM/s, chapter 3). Identical to the experimental data, mitochondrial function was quantified by 
the rate constant of a mono exponential recovery function fitted to the simulation PCr recovery 
kinetics (Eq. 3).  
   

Predictions of PCr dynamics at 25 weeks  
The model fitted to the recovery rate constant at 8 weeks was used as a reference for predictions of 
mitochondrial function at 25 weeks. Model parameterization was changed according to the 
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experimentally observed differences in muscle physiology: i.e., difference in end exercise pH, 
mitochondrial content and capacity of the TCA cycle and ETC. Parameter values were changed 
according to the relative difference, see Table 2. Each parameter change was represented by a 
normal distribution representing the uncertainty of the mean of the experimental observations (σ 
= SEM). Simulations were performed by following a Monte Carlo approach. 100 simulations were 
performed randomly drawing parameter values from the normal distributions defined in Table 2. 
Simulations results were represented by the mean ± SD of the ensemble.   
 
 
 

RESULTS 
 

In vivo mitochondrial function  
Figure 2A shows a stack-plot of 31P MRS spectra recorded during a rest-exercise-recovery protocol 
of tibialis anterior (TA) muscle of Wistar rats. During exercise PCr is consumed by creatine kinase to 
buffer the transient mismatch between ATP demand and production by glycolysis and 
mitochondria. During exercise pH dropped from 7.16±0.02 and 7.11±0.04 at rest to 6.91±0.04 and 
6.79±0.03 at the end of exercise. The rate of PCr recovery, quantified by rate constant of a mono – 
exponential function (kPCr), was used as measure of in vivo mitochondrial function (7). The rate 
constant of PCr recovery (kPCr) were 0.013±0.00082s-1 and 0.0082±0.00021s-1 (mean±SEM, n=10) 
for 8 and 25 week old rats respectively, Figure 2B. The statistically significant differences between 
the two groups (p < 0.001) confirmed the reduced mitochondrial capacity in vivo in this animal 
model.  
 

 
 

Figure 2. Stack plot of a representative time series of spectra recorded at age 25 weeks (A). Spectra were obtained by 
averaging 4 FID’s (time resolution 20s) and processed with 15Hz line broadening. PCr rate constant (kPCr) of animals at 
age 8 and 25 weeks (B). Error bars denote SEM.  
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State 3, 4, U respiration of isolated mitochondria 
Mitochondria were isolated from the TA muscle and state 3, 4 and uncoupled  state (state – U) 
respiration experiments were performed with malate and pyruvate as oxidizable substrates  (Figure 
3 and Table 1). State 4 respiration was non – significantly different between the two groups (p = 
0.15, n=10). In contrast, state 3 and state U were significantly lower in 25 week old rats (p < 0.001, 
n=10). The decrease in state 3 and state U was rather similar (22±2% and 17±2%, respectively), 
indicating that the difference in intrinsic mitochondrial function could be attributed to decreased 
capacity of TCA cycle and electron transport chain (ETC).      
 

 
Figure 3. State 3, 4, U respiration of isolated mitochondria. Error bars denote SEM.  

 
Table 1. State 3, 4, U respiration of isolated mitochondria (nmol O2/min/mg protein) 

 State 3 respiration State 4 respiration State U respiration  

8 weeks 531.4±8.3 30.1±0.9 606.7±11.0 

25 weeks 416.4±4.8 28.4±0.7 507.9±6.6 

 
mtDNA copy number and Western Blotting analysis 

mtDNA copy number was measured to determine if on top of the difference in intrinsic 
mitochondrial function also the number of mitochondria was changed, Figure 4A. Relative mtDNA 
copy number was significantly decreased from 2483±90 (mean±SEM, n=10) to 2056±88 
(mean±SEM, n=10), which was statistically significant (p=0.004). These data indicate a decrease in 
mtDNA copy number in TA muscle of 25 week old rats of about 17±5%. Western blotting analyses 
was applied to determine protein levels of complex I through IV, F1F0ATPase, ANT and GAPDH. The 
latter was used as housekeeping enzyme (Figure 4B). The decreased protein content of OXPHOS 
complexes in the Western Blotting results represents the combined effect of the decrease in 
mitochondrial content (mtDNA copy number) and the decrease in intrinsic mitochondrial function 
(state 3, U respiration). After correction for the decrease in number of mitochondria (mtDNA copy 
number) of 17±5%, the remaining difference in protein expression of OXPHOS complexes agrees 
quite well with the respiration measurements indicating a ~20% decrease in the capacity of 
OXPHOS.  
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Figure 4. mtDNA copy number (A) and protein content of OXPHOS complexes determined by western blotting analysis 
(B). Errobars indicate SEM. 

 
In silico analyses  

The experimental data revealed 3 differences between the 8 and 25 week old rats that could 
contribute to the decrease in mitochondrial function in vivo (Table 2): i.e., 17±5% decrease in 
mitochondrial content, 22±2% decrease in the capacity of the ETC + TCA cycle and a lower end 
exercise pH (6.91±0.04 vs. 6.79±0.03, respectively). Model simulations were used to: (i) test if these 
in vitro observations could quantitatively explain the measured prolongation of PCr recovery 
period and (ii) to dissect the contribution of each individual factor.  
 
Table 2. Parameter changes for model of 25 weeks   

Parameter Value in reference model  
(8 weeks) 

Value for 25 weeks 
(mean±σ) 

Difference 8 and 25 weeks  
(mean±σ) 

End exercise pH 6.91 6.79±0.03 - 0.12±0.03 
Mitochondrial  
volume fraction  

0.0165% 0.0137±0.0007% - 17±5% 

Capacity of  
TCA cycle and ETC #  

1 0.78±0.02 - 22±2% 

# the decreased capacity of TCA and ETC was implemented by decreasing the Vmax parameters of dehydrogenase, 
complex I, complex III and complex IV flux according to the listed values. 

 
First, it was verified that the reference model could accurately reproduce the PCr recovery rate 
constant of 8 week old rats (control group), Figure 5A. Parameterization of the reference model was 
then changed according to the experimental data summarized in Table 2 in order to yield a model 
of the oxidative metabolism in 25 week old rats. The predicted PCr recovery rate constant 
according to this model was 0.0082±0.0008s-1 (Figure 5A), which is identical to the experimentally 
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observed value in 25 week old rats (0.0082±0.00021s-1). Additional model simulations allowed 
decomposing the contribution of individual factors to the decrease in mitochondrial function in 
vivo. The predicted PCr recovery rate constants were 0.0122±0.0003s-1, 0.0103±0.0009s-1 and 
0.0113±0.0003s-1 for the difference in end-exercise pH, mitochondrial content and intrinsic 
mitochondrial function, respectively. This corresponds to 12, 54 and 32% of the decreased 
mitochondrial capacity observed in 25 weeks old rats (Figure 5B), respectively.   
 

 
 
Figure 5. Comparison of experimentally observed and predicted mitochondrial function (PCr recovery rate constant) of 
animals at age 8 and 25 weeks (A) and, in silico decomposition of contribution of individual factors to decreased 
mitochondrial capacity in vivo (B). Error bars on experimental data denote SEM. Error bars on model predictions represent 
SD of the ensemble.   
 

 
 

DISCUSSION 
 
In the present investigation a novel, systems biology based research strategy for studying 
mitochondrial (dys)function was successfully tested. The key advantages of the approach, its 
generic value as well as several methodological considerations will be discussed.  
 
State-of-the-art approaches to study mitochondrial dysfunction typically involve a combination of 
in vivo and in vitro measurements of markers of mitochondrial function (see e.g. (20,21)). These 
methods are very complimentary: in vivo data provide a read-out of the functioning of the intact 
system and in vitro markers identify changes in muscle physiology possible related to the observed 
behavior. Analyses of these data are usually restricted to a combination of statistical and intuitive 
approaches (see: e.g. (20,22)). A promise of the current era of systems biology is to understand the 
integrated function of complex biological systems in order to predict and rationally manipulate 
their behavior, with the ultimate aim of improving human health (23). In order to obtain such 
understanding, the analyses of available data have to be advanced beyond the level of statistical 
and intuitive methods. 
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We propose to perform such a more insightful and predictive analysis by application of 
mathematical models of pathway biochemistry. An important aim in the design of the study was to 
combine the in vivo and in vitro recorded datasets in such a way they become the most informative. 
It was chosen to use the in vitro data to parameterize the model and apply the in vivo data for 
model testing. Specifically, we did not apply parameter estimation to fit the PCr recovery period of 
25 week old animals. The rationale for this was that many model parameters influenced the rate of 
PCr recovery (e.g. mitochondrial volume content, enzyme Vmax parameters). Consequently, a 
parameter estimation algorithm would identify an infinite number of solutions to fit the 
prolongation of PCr recovery period. These results would be unreliable and inconclusive. It was 
therefore decided that the in vivo data would be most valuable when used purely for model 
testing.  

A topic that is receiving increasingly more attention in the field of computational systems 
biology is how to account for measurement uncertainty in numerical analyses (24-27). 
Measurements of physical quantities always have a limited accuracy. In general, experiments are 
therefore repeated multiple times to empirically determine the coefficient of variation which 
reflects the measurement uncertainty. We exploited this information to estimate the uncertainty in 
predictions of PCr recovery rate constants by means of a numerical Monte Carlo approach. This 
method is already applied for quantification of uncertainty propagation in many different fields of 
science and engineering (see e.g., (28)). However, application of this strategy is not yet common 
practice in systems biology. In this particular investigation, the results of this method were 
considered very insightful. They provide quantitative information which allows assessing the 
robustness of predictions.  

In chapter 6 mathematical modeling was applied to integrate literature data of type 2 
diabetes patients obtained from multiple studies. Although this study already illustrated part of the 
benefits of a systems biology approach, it did not yet act as proof-of-concept. An important 
limitation of the previous study was that the data had to be collected from several different studies. 
As a result, the variance in data and associated uncertainty which had to be taken into account was 
rather large. Therefore model predictions could not be tested rigorously. The design of the current 
study overcomes these limitations: (i) all data were collected in a single study and (ii) selection of an 
animal model prevented variation due to genetic variability or lifestyle differences present in 
humans.  

The first striking outcome of the study was that the mathematical model accurately 
predicted the prolongation of the PCr recovery period based on experimentally observed changes 
in muscle physiology. Because this result was achieved without the need of any additional 
parameter estimation it acts as strong validation of the model and research strategy. A promise of 
systems biology is that the knowledge captured by the model will yield new insight or predictions. 
In the current investigation additional insight was obtained from predictions of the individual 
contribution of differences in muscle physiology to the decreased capacity of mitochondria in vivo. 
These predictions revealed that a major part (54%) of the mitochondrial dysfunction was a result of 
the decrease in mitochondrial content, whereas the remaining part was a result of a decreased 
capacity in TCA cycle and ETC (32%) and the difference in end exercise pH (12%). These results 
demonstrate a major benefit of the proposed systems biology based data analyses method: i.e., it 
allows dissecting the individual contribution of changes in muscle physiology to the functioning of 
the integrated system based on contemporary knowledge of pathway biochemistry. This type of 
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information is crucial to obtain a more effective understanding of the impact of possible therapies 
aimed at improving mitochondrial function. For example, for this animal model it was predicted 
that the biggest gain in mitochondrial function can be achieved by reversing the decrease in 
mitochondrial content. Stimulation of mitochondrial biogenesis by exercise training (29,30) is 
therefore likely to be more effective than pharmaceutical stimulation of electron transport chain 
activity (31). These results illustrate how the proposed approach can eventually provide guidance 
for designing therapeutic strategies.  

Mitochondrial disorders are characterized by a wide variety in phenotypes (32), therefore 
(pharmaceutical) treatments are often effective in only a subset of patients (14). Moreover, it 
remains in many cases unclear why some patients respond well to treatment while others do not 
respond at all (14). Especially for this group of metabolic disorders, there is thus an obvious need 
for predictive tools to design personalized treatments. The current study demonstrates the 
feasibility of obtaining a predictive model based on information that is also typically obtained from 
diagnostic muscle biopsies in patients. Further development and testing of the model for 
application in such a clinical context is considered a very relevant topic for future studies.   
 The work presented in this paper contributes to the ongoing effort of unraveling the 
complexity and regulation of mitochondrial function. This field has a rich history of application of 
mathematical modeling to identify the regulation of oxidative ATP synthesis (see e.g.: (9)). An 
important motivation for these past studies was that the understanding captured by the 
mathematical models could eventually be used to investigate the role of mitochondrial function in 
human health. As a result of many iterative steps the models have advanced considerably 
throughout the years. The current study demonstrates the feasibility of a translational step towards 
application of the newest generation models for (diagnostic) studies of mitochondrial function. As 
such this investigation provides a starting point for extension of the applied systems biology based 
strategy to (pre-)clinical studies of mitochondrial function in for example mitochondrial diseases 
(32), type 2 diabetes (4), chronic heart failure (5) or aging (6). These future studies are essential to 
further confirm the generic value of the method and may contribute to a more widespread 
application of systems biology in (clinical) biomedical research. 
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ABSTRACT 
 

Skeletal muscle cells contain high amounts of glycolytic enzymes and mitochondria to supply the 
ATP required for muscle contractions. We investigated the biochemical mechanisms that balance 
the contribution of glycolytic and mitochondrial flux to net ATP synthesis by an integrated in vivo 
and in silico systems biology approach. The mathematical model was developed by combining two 
previously validated mechanistic models of oxidative phosphorylation and glycolysis. In vivo 
dynamics of ATP metabolism in skeletal muscle were obtained by 31P MRS of rat tibialis anterior 
muscle during rest, electrically induced muscle contractions and metabolic recovery. Experimental 
data were recorded for varying contraction intensities. Comparison of model simulations and 
experimental data revealed that substrate feedback regulation (ADP, Pi) of oxidative 
phosphorylation together with substrate feedback (AMP, ADP, Pi) + calcium mediated feed forward 
activation of glycolysis explained in vivo dynamics of ATP metabolism in skeletal muscle for a wide 
variety of experimental conditions (normoxia, ischemia, 1 – 80Hz muscle excitation frequencies). 
Additional simulations with the validated model indicated that the relative contribution of 
oxidative phosphorylation and glycolysis to net ATP generation during exercise is predominantly 
controlled by the mitochondrial capacity. In contrast, glycolytic capacity influenced the balance 
only minor. These novel results were explained by the differences in ADP and Pi sensitivity of both 
pathways.  
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INTRODUCTION 
 
Skeletal muscle contains high amounts of glycolytic enzymes and mitochondria to metabolize 
carbohydrates and fat, respectively, in order to produce the vast amounts of ATP required to 
maintain energy balance during contraction and relaxation of the tissue. Slow-twitch muscle fibers 
predominantly rely on mitochondrial fat oxidation for ATP, while fast-twitch fibers generate ATP 
predominantly by metabolizing glycogen, both oxidatively (i.e., glycolysis coupled to 
mitochondrial pyruvate oxidation) and non-oxidatively (‘anaerobic’; endproduct lactate) (1). The 
basis for this stratification of metabolic energy source and capacity amongst these different fiber 
types is genetic (2,3) and maintained, amongst others, by excitation-transcription coupling 
involving sensing and signal transduction pathways such as CaM2 kinase (2,3). 

Recruitment of oxidative versus glycolytic ATP production upon neural excitation of a 
muscle is thought to be under a combination of excitatory and metabolic control (1). Calcium and 
the ATP hydrolysis products ADP, AMP and Pi, respectively, are known potent activators of 
mitochondrial and glycolytic ATP production (1). Depending on the dynamic range of ADP, AMP, Pi 
and calcium accumulation during a given contractile duty cycle and the particular sensitivities of 
the oxidative and non-oxidative ATP synthesis pathways to these stimulants, each of these 
pathways contributes to a varying extent to the maintenance of energy balance in the active 
muscle. For example, in resting muscle non-oxidative ATP synthesis contributes very little, if any, to 
cellular ATP production, whereas in maximally activated human gastrocnemius muscle it has been 
found to contribute as much as 75% of total flux (4). Here, we seek to develop a quantitative 
formalism to describe the balance between oxidative and glycolytic ATP production over the full 
dynamic range of muscle metabolic activity. This knowledge is of importance from a fundamental 
biochemical and physiological perspective, but also may have significant use in exercise 
physiology and sports science or understanding of clinical symptoms in exercise intolerance. At the 
core of this effort lies the development of a mechanistic computational model of muscle energy 
metabolism that features both the oxidative and glycolytic ATP synthetic pathways, as well as 
captures the main regulatory mechanisms that control flux through each of these pathways. At 
present, no such model is available.  

Typically, the regulation of pathway fluxes in vivo has been investigated for conditions 
when only one of the pathways was active. For example, glycolysis has been predominantly 
studied during ischemia (5-7). In contrast, the regulation of oxidative phosphorylation has been 
typically studied during low intensity contractions (8) or post exercise recovery conditions (9). For 
these conditions it is assumed that the contribution of glycolysis to total ATP synthesis flux is 
negligible (8-10). A similar experimental design was applied in the studies described in chapters 3, 
4 and 5; i.e., glycolysis was studied during ischemia (chapter 3) and the regulation of oxidative 
phosphorylation was studied during post exercise recovery (chapters 4 and 5). By comparison of in 
vivo recorded pathway dynamics and mechanistic model simulations it was concluded that 
oxidative ATP metabolism is predominantly controlled by metabolic feedback signals [ADP] and 
[Pi] (chapter 4 and 5). The dynamics of anaerobic glycolysis were explained by the combined 
effects of metabolic feedback signals ([AMP], [ADP], [Pi]) and feed forward activation by calcium 
mediated activation of glycogen phosphorylase (GP) and phosphofructokinase (PFK) (chapter 3). 
These results are summarized in Figure 1. It remains however elusive if these control mechanisms 
also explain the observed glycolytic and mitochondrial flux for conditions when both pathways are 
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active (exercising muscle under aerobic conditions). It is, for example, unknown if the processes 
connecting glycolytic and mitochondrial pathways (pyruvate import and mitochondrial redox 
shuttles) have a notable regulatory role on the flux through either of these pathways. As a result it 
remains unknown which modelling approach should be applied to represent these processes; if it 
is actually necessary to include detailed mechanistic descriptions of these processes in the 
computational model, or alternatively, if a relative simple phenomenological representation 
suffices to explain in vivo observed pathway dynamics.  
 

 
 
Figure 1. Schematic representation of the key regulatory signals controlling ATP generation in skeletal muscle according 
to the results presented in chapters 3, 4 and 5. Substrate feedback (ADP, Pi) control has a dominant role in the control of 
oxidative phosphorylation (1).  The dynamics of anaerobic glycolysis were explained by the combined effects of 
metabolic feedback signals ([AMP], [ADP], [Pi]) (2) and feed forward activation by calcium mediated activation of 
glycogen phosphorylase (GP) and phosphofructokinase (PFK) (3).   
 
In an attempt to further advance our understanding of the control mechanisms that regulate 
mitochondrial and glycolytic ATP supply during normoxia we combined in vivo measurements of 
muscle ATP metabolism with in silico pathway reconstruction and analysis. The in vivo read-outs 
were acquired using 31P MRS of the tibialis anterior (TA) evoking contractions at three different 
workloads. The computational model of oxidative phosphorylation (chapter 7) was integrated in 
the model of glycolysis (chapter 3). As a first approximation, mitochondrial pyruvate import flux 
and redox shuttle flux were modeled phenomenologically. Next, model analyses were applied to 
test if model predictions were sensitive to possible regulation exerted by these processes. These 
analyses provided insight in the question if these processes should be modeled in more detail, or if 
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the phenomenological approach was justified. The first objective of the modeling studies was to 
test if these regulatory mechanisms (Figure 1) could reproduce the experimentally observed 
metabolite and pH dynamics.  The second objective was to use the integrated model to investigate 
how different physiological parameters (e.g. mitochondrial content, glycolytic enzyme content) 
influences the balance between glycolytic and oxidative ATP synthesis.    
 

 
 

METHODS 
 

Experimental Methods 

 
Animals 

Adult male Wistar rats (376±13 gram, 14 weeks old, n=14, Charles River Laboratories, France) were 
housed in groups at 20°C and 50% humidity, on a 12-h light dark cycle with ad libitum access to 
water and chow. Principles of laboratory animal care were followed and all experimental 
procedures were approved by the Animal Ethics Committee of Maastricht University, the 
Netherlands. During preparatory surgical procedures and MRS experiments, animals were 
anesthetized using 0.8-1.2% isoflurane (Forene, Abbot GmbH, Wiesbaden Germany) administered 
via a face mask with medical air and oxygen (0.2 and 0.1 L/min respectively). Temgesic was used as 
analgesic (0.3mg/ml Temgesic in saline solution (1:10), 0.10 mg/kg, Schering-Plough). Body 
temperature was maintained at 37±1°C using heat pads and monitored by a custom build 
monitoring system. In the MR scanner, respiration was monitored using a pressure sensor 
registering thorax movement (Rapid Biomedical, Rimpar, Germany).  

Contractions were induced by using electrical stimuli applied via acute, subcutaneously 
implanted platinum electrodes positioned along the distal nerve trajectory of the n. peroneus 
communis. Excitation of this nerve induced contraction in the tibialis anterior (TA), extensor 
digitorum longus (EDL), peroneus longus and brevis in the anterior compartment of the rat hind 
limb (11,12). Stimulation voltage ranged between 6-7 V, pulse length was 1 ms. Contractile duty 
cycles were varied over a range of frequencies (2, 5 and 80Hz) and pulse train lengths, summarized 
in Table 1. For each group 4-5 successful measurements were obtained in different animals.  
 
Table 1.  Muscle excitation parameters for each experimental group.  

 Excitation frequency  Pulse train duration 
(number of excitations) 

Number of pulse  
trains / 5s. 

Total number of 
excitations / 5s.  

Group 1 2 8 1 8 

Group 2 5 15 1 15 

Group 3 80 10 3 30 
 

31P NMR acquisition parameters 
All MRS measurements were performed on a 6.3 T horizontal Bruker magnetic resonance 
spectrometer (MRS) (Bruker, Ettlingen, Germany). Phosphorus (31P) MRS was performed by using a 
two coil configuration. A circular 1H surface coil (40 mm) was used to adjust the magnetic field 
homogeneity using the available proton signal from water, while a smaller elliptical surface coil 



Chapter 8 

 

162 

(10/18 mm) was positioned over the TA to acquire phosphorus data. 31P spectra were acquired 
applying an adiabatic excitation pulse with a flip angle of 90°. A fully relaxed spectrum (TR=20 s, 32 
averages) was measured at rest. A time series of spectra (TR = 5 s, 2 averages) before, during and 
after electrical stimulation of the TA. A time series consisted of 2 minutes rest, 3 minutes 
stimulation and 15 minutes recovery after stimulation.  
 

Data processing 
31P MR spectra were fitted in the time domain by using the nonlinear least squares algorithm in the 
jMRUI software package (13). The PCr peak was fitted to a Lorentzian line shape. The inorganic 
phosphate (Pi) and α- and γ-ATP peaks were fitted to Gaussian line shapes. α- and γ-ATP peaks 
were fitted with equal peak areas. Due to the limited bandwidth of the excitation pulse, the β-ATP 
had lower amplitude and was not fitted. Absolute concentrations were calculated after correction 
for partial saturation with the assumption that the ATP concentration is 8.2 mM at rest (14,15). 
Intracellular pH was calculated from the chemical shift difference between the Pi and PCr 
resonances (δ; measured in part per million), according to Eq. 1 (16). 

 





 


pH
3.27

6.75 log( )
5.63

  (Eq. 1) 

Where, δ is the chemical shift difference in part per million (ppm). 

 
The 31P coil received signal from both contracting muscle (75%) and non-contracting muscle (25%), 
(see chapter 3 paragraph on coil sensitivity profile). The metabolite dynamics in the contracting 
muscle were derived from the measured dynamics according to the following calculations. The 
signal received by the 31P MRS coil is described by equation Eq. 2. 
 

    observed contraction contraction non contracting non contractingX t X t F X t F( ) ( ) ( )  (Eq. 2) 

Where, Xobserved, , Xcontraction, Xnon-contracting, Fcontraction, Fnon-contracting denote the measured metabolite concentration, the metabolite 
concentration in contracting muscle, metabolite concentration in the non-contracting muscle, the fraction of the signal 
originating from contracting muscle and the fraction of the signal originating from non-contracting muscle, respectively.  

 
Fcontraction and Fnon-contracting were set according to the values determined from the 2D-CSI dataset: 0.75 
and 0.25, respectively. The values for Xnon-contracting(t) were set to the metabolite concentrations 
observed in skeletal muscle at rest: i.e., 2, 35 and 8.2 mM for Pi, PCr and ATP, respectively.   
 
 
 

Computational Methods 
 

Model description 
The glycolytic model described in chapter 3 (model configuration iii) was combined with the model 
of oxidative phosphorylation of chapter 7. A schematic overview of the integrated model is shown 
in Figure 2.  
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Figure 2. Schematic representation of the computational model. The mitochondrial component was described in 
chapter 7 and the glycolytic pathway was already described in chapter 3. Newly introduced model components are 
indicated in grey.  

 
Compared to the model described in chapter 3, some small changes were made to the model 
description of the glycolytic pathway. In addition, the model contained several newly introduced 
components. These components are indicated in grey in Figure 2. A more detailed description of 
the changes to the glycolytic model and the newly introduced model components will be provided 
in the following paragraphs.  
 
 Changes glycolytic model 
In chapter 3, experimentally observed PME concentration (Glucose-1P+Glucose-6P+fructose-6P) 
was used as input to model the carbohydrate pathway supply flux by glycogen phosphorylase. For 
the current set of spectra, the PME resonance could not be estimated reliably because the 
concentration stayed below the detection limit of ~1mM in these particular experiments. The sum 
of glucose-1P, glucose-6P and fructose-6P was therefore assumed to remain at its initial value 
(0.059mM, 0.6mM and 0.32mM, respectively). This assumption was modelled by setting glucose-1P 
supply flux equal to PFK flux.  
 The reaction: 3DHAP NADH G P NAD   catalyzed by glycerol-3-phosphate dehydrogenase 

(G3PDH) was not included in the model by setting the Vmax value of the corresponding flux to zero. 
The rationale for this choice was that this model component pushed the cytoplasmic NADH/NAD 
ratio to values close to zero. This resulted in non-physiological predictions of pyruvate 
concentration (~1mM) in the cytoplasm at rest, which is about 10 times higher than experimentally 
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observed (17). Removing the G3PDH flux solved this problem. It was verified that all other state 
variables were close to the expected values (initial conditions) reported by Lambeth and 
Kushmerick (18). In addition, the Vmax values of all enzymes downstream of PFK (ALD, TPI, GAPDH, 
PGK, PMG, EN and PK) were increased 3-fold. This model adaptation was necessary to prevent 
excessive accumulation (>10mM) of pathway intermediates in this part of the pathway. The 3-fold 
difference in Vmax values is within the range of variation observed between species (19-21).       
 

 Monocarboxylate transport + proton efflux 
The glycolytic model described in chapter 3 was applied for ischemic conditions. For these 
conditions it was assumed the muscle cells are a closed system and all lactate and proton 
molecules remain in the muscle cells.  This assumption was certainly not valid for the current study. 
Therefore a description of lactate and proton efflux was added to the model.  

Transport of lactate and protons by the monocarboxylate transporters (MCT) was modelled 
identical to Vinnakota et al. (22). Extracellular pH and lactate concentration were set at 7.4 and 
1.3mM respectively (23).  

MCT facilitates efflux of both lactate and protons. There are however many other processes 
that can contribute to proton efflux (e.g., Na+/H+ exchanger). The combined effect of these 
processes was modelled phenomenological according to Eq.  3. 

 
ProtonEfflux = λ · ( pH - pHrest )   (Eq.3) 

Where, λ is a phenemenological proton efflux rate constant. The value of λ was estimated from the in vivo data (see 
section: ‘parameter estimation’). pHrest represents the pH at rest which was set according to the experimental data to 7.15.  

 
CO2, HCO3 generation and transport 

Mitochondrial CO2, HCO3 generation and transport was modelled as described in (22). In brief, CO2 
production was derived from mitochondrial ATP synthesis rate assuming a P/O ratio of 4.2 and a 
respiratory quotient (RQ) of 1. HCO3 generation in the myoplasm by carbonic anhydrase (CA, 

2 2 3CO H O HCO H   ) and passive CO2 transport across the sarcolemma were both included in the 

model. Extracellular CO2 was set to 1.2mM (24). 
 

Mitochondrial  pyruvate  influx + redox shuttles  
Mitochondrial pyruvate influx and conversion to acetyl-CoA by pyruvate dehydrogenase (PDH) and 
redox shuttling between cytoplasm and mitochondrial matrix are highly regulated processes (25). 
On forehand, it was unknown if it was necessary to model these processes mechanistically. If the 
control exerted by these processes on glycolytic versus mitochondrial flux was negligible also a 
much simpler phenomenological rate equation could be applied. As a first approximation, we 
chose to represent these processes by a phenomenological rate equation. Subsequently, it was 
tested if model predictions / main study outcomes were sensitive to perturbations (±50%) of these 
fluxes or if they had a negligible influence on simulation results (see: ‘results’ + ‘discussion’ 
sections). These analyses were used to evaluate if this part of the model required a more 
mechanistic model description or if, for this particular application, the phenomenological approach 
sufficed. Mitochondrial pyruvate influx was calculated from mitochondrial ATP synthesis rate 
assuming one pyruvate molecule yields 15 ATP molecules (Eq. 4). The proposed phenomenological 
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model agrees well with experimental observations that PDH activity is proportional to oxygen 
consumption rates (26,27). 

 

influx
pyruvate p

1
Mito J

15
  (Eq. 4) 

Where, Jp denotes the mitochondrial ATP synthesis flux.  
 

It was assumed that the dynamics of the redox shuttle flux followed the mitochondrial pyruvate 
influx. For each pyruvate molecule imported in the mitochondria one NADH molecule was 
converted to NAD in the cytoplasm.   

 
Parameter estimation 

The model contained a subset of parameters for which an accurate value was not available or 
previously optimized in a computational study. These parameters were therefore (re-)estimated 
from the in vivo recorded pH and PCr dynamics. They are listed in Table 2 and include, the ATPase 
rate constant (kATP_Hydr), mitochondrial volume percentage (MitoVol%), proton efflux rate constant 
(λ), cytoplasmic buffer capacity (BuffCapFixed) and PFK parameters (vmaxPFK, kAMP, kADP, kAMPact, kADPact, 
kon,  koff). Model parameters were estimated from the three newly recorded datasets in normoxic 
skeletal muscle (2, 5, and 80Hz) and three datasets previously recorded under ischemic conditions 
(chapter 3: rest, 10Hz, 80Hz). Parameters were estimated using a non linear least squares 
optimization algorithm (lsqnonlin, Matlab 7.5.0 (the Mathworks Inc., Natick, MA, USA) using 
manually tuned values as initial conditions. The difference between experimentally obtained and 
simulated PCr and pH dynamics was used as the error term (Eq. 5).  
 
 

  

 
  

M N N
observed predicted observed predicted

j i iobserved observed

mean PCr i PCr i mean pH i pH i
SSE

SD PCr i SD pH i
2 2

1 1 1

( ( )) ( ) ( ( )) ( )
( ) ( ) )

( ( )) ( ( ))
  (Eq. 5) 

Where, PCrobserved(i) represents the mean [PCr] (across-animal) at time point i; PCrpredicted(i) represents the predicted [PCr] at 
time point i; pHobserved(i) represents the mean pH (across-animal) at time point i; pHpredicted(i) represents the predicted pH at 
time point i; SD(PCrobserved(i)) represents the across-animal SD of the [PCr] at time point i; SD(pHobserved(i)) represents the 
across-animal SD of the pH at time point i; j denotes a specific experimental groups. 
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Figure 3. PCr and pH dynamics recorded by 31P MRS during rest – exercise – recovery. Results are shown for 2Hz (A,D), 
5Hz (B,E) and 80Hz (C,F) experimental groups. Start and stop of the exercise period is indicated by dotted lines. Error bars 
denote SEM.  

 
 
 

RESULTS 
 
 31P magnetic resonance spectroscopy  
The dynamics of cellular metabolites: adenosine-triposphate (ATP), phosphocreatine (PCr), 
inorganic phosphate (Pi) and intracellular pH were monitored by 31P magnetic resonance 
spectroscopy in rat TA muscle, under varying muscle stimulation frequencies (see Table 1). Figure 
3A-F show PCr and pH dynamics in the contracting muscle that were used for model testing.  In 
response to muscle contraction and corresponding elevated ATP demand flux, the cellular ATP 
buffer, PCr, is consumed to balance energy demand and supply. PCr depletion coincides with the 
production of Pi (data not shown), a product of ATP hydrolysis. In addition, a decrease in muscle pH 
was observed during the period muscle contractions were induced. The observed proton 
accumulation was larger for more intense muscle contractions. These observations are consistent 
with the notion that the contribution of glycolytic ATP supply increases with exercise intensity. 
After the muscle contractions were stopped (marked by a dotted line), PCr was resynthesized and 
Pi levels were restored. Consequently, the Pi resonance in the spectra became smaller and even 
disappeared in the noise after about 60 seconds. As a result, for the remaining part of the recovery 
period, the estimates of cell pH became unreliable. pH recovery dynamics are therefore only shown 
for the first 60 seconds of recovery period.  
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Table 2. Optimized parameter values. 

Parameter Unit Description Previously used 
values (chapter 3) 

Optimized 
parameter value 

kATP_Hydr (2Hz) s-1 ATPase rate constant 2Hz - 0.035 
kATP_Hydr (5Hz) s-1 ATPase rate constant 4Hz - 0.059 

kATP_Hydr (80Hz) s-1 ATPase rate constant 80Hz - 0.078 
kATP_Hydr (0Hz) 

ischemia 
s-1 ATPase rate constant 0Hz ischemia 0.0017 0.0014 

kATP_Hydr (10Hz) 
ischemia 

s-1 ATPase rate constant 10Hz ischemia 0.056 0.046 

kATP_Hydr (80Hz) 
ischemia 

s-1 ATPase rate constant 80Hz ischemia 0.050 0.033 

BuffCapFixed M 
Fixed buffer cellular proton buffer 

capacity 
0.050 0.014 

vmaxPFK mM s-1 Vmax PFK 10.25 23.1 
kAMP mM PFK deinhibition constant AMP 0.046 0.0080 
kADP mM PFK deinhibition constant ADP 0.24 0.87 

kAMPact mM 
PFK deinhibition constant AMP 

activated PFK 
8.97*10-5 3.33*10-5 

kADPact mM 
PFK deinhibition constant ADP 

activated PFK 
0.020 0.13 

kon μM-2  s-1 PFK, calcium – calmodulin binding 
constant 

5.00*105 6.11*105 

koff s-1 PFK, calcium – calmodulin binding 
constant 

106 49.3 

MitoVol% percent Mitochondrial volume percentage - 2.0 

λ 
mM  

Unit pH-1 s-1 Proton efflux parameter - 5.0*10-3 

 
Model (hypotheses) testing       

Comparison of model simulations and experimental data was used to test if the control 
mechanisms captured by the model explained the PCr and pH dynamics for the different 
contraction intensities, Figure 4 A-F. In order to obtain these results a subset of the model 
parameters (see, Table 2) was re-estimated. These parameters were previously estimated based on 
the data recorded during ischemia (chapter 3). In order to ensure that although some parameter 
values were a little adjusted the model could still reproduce the ischemia data, a part of these 
datasets (0Hz, 10Hz, 80Hz) was included in the parameter estimation process. Simulation results for 
these ischemia experiments are shown in Figure 4 G-L.  



Chapter 8 

 

168 

 
 
Figure 4. Model simulations (black lines) compared to experimental data (PCr and pH dynamics) for normoxic conditions 
(A-F) and ischemia (G-L). Data recorded during ischemia were already presented in chapter 3.  Error bars denote SEM 
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  Model predictions: mitochondrial versus glycolytic flux 
Figure 5A-C shows the predicted glycolytic and mitochondrial ATP synthesis flux during the rest - 
exercise – recovery protocols. These simulation results were used to quantify the relative 
contribution of both processes to total ATP production flux, see Figure 6. The predicted 
contribution of glycolysis was 8.3, 16.2, 37.0 and 48.4% for rest and exercise conditions (1Hz, 5Hz 
and 80Hz) respectively. These results are in good accordance with several basic notions on muscle 
physiology: i.e., (i) at rest, ATP is largely supplied via oxidative phosphorylation; (ii) glycolysis is 
activated during exercise and (iii) its contribution increases at higher workloads; (iv) during 
recovery phase, the glycolytic flux decreases rapidly and ATP is almost purely synthesized in the 
mitochondria again.  
 

 
Figure 5. Model predictions of ATP consumption flux (grey lines), mitochondrial ATP synthesis (black lines) and glycolytic 
ATP synthesis flux (dotted lines) during rest – exercise – recovery for 2Hz (A), 5Hz (B) and 80Hz(C) experimental groups.  

 

 
Figure 6. Relative contribution of aerobic and anaerobic ATP synthesis fluxes to net ATP generation.  

 
Next, the influence of different cellular processes on the balance between mitochondrial and 
glycolytic flux was investigated. The processes that were included in this analysis are: (i) 
mitochondrial capacity, (ii) glycolytic capacity, (iii) lactate + proton efflux, (iv) mitochondrial 
pyruvate influx, (v) G6P concentration. The set of model parameters that represented each of these 
processes is listed in Table 3. The influence of +/-50% parameter perturbations on the relative 
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contribution of glycolytic and mitochondrial flux was quantified for rest and exercise conditions 
(80Hz), Figure 7. The parameter perturbations had a relatively small effect on the balance between 
mitochondrial and glycolytic flux at rest (Figure 7A). The effect of adjusting mitochondrial content, 
mitochondrial pyruvate influx and lactate + proton efflux had a negligible influence on the fluxes. 
An increased glycolytic capacity and G6P concentration resulted in an increased glycolytic flux at 
rest. However, also for these parameter perturbations, the large majority of ATP was produced 
oxidatively.  For exercise conditions (Figure 7B) the predictions were somewhat different. The 
influence of the mitochondrial pyruvate influx and lactate + proton efflux rate was again negligible 
small. The changes in flux as a result of adjusting glycolytic capacity and G6P concentration, 
however, were also rather small.  In contrast, changes in mitochondrial capacity had a very 
significant influence in the predicted balance between mitochondrial and glycolytic flux.  

 

 
 

Figure 7. The influence of +/-50% parameter perturbations on the relative contribution of glycolytic and mitochondrial 
flux quantified for rest (A) and exercise conditions (80Hz, B).  The set of model parameters that represented each of these 
processes is listed in Table 3. 
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Table 3.  Model parameters that represented a process included in the sensitivity analysis. If a process is represented by 
more than one parameter (e.g., glycolytic capacity, lactate + proton efflux) all parameters were adjusted at once.  

Process  Parameters 

Mitochondrial capacity Mitochondrial volume percentage (MitoVol%) 
Glycolytic capacity Vmax parameters of all glycolytic enzymes (PGLM, PGI, PFK, 

ALD, TPI, GAPDH, PGK, PGM, EN, PK, LDH) 
Lactate + proton efflux Vmax MCT, proton efflux rate constant (λ), passive CO2 

permeation flux rate constant (PSVCO2) 
Mitochondrial pyruvate 

influx 

influx
pyruvateMito  (see: Eq. 4) 

G6P concentration Initial [G6P] 

 
The influence of mitochondrial and glycolytic capacity on the observed balance between the 
contributions of both processes to net ATP synthesis was further investigated. In particular, the 
relation between changes in mitochondrial and glycolytic capacity and predictions of cellular [ADP] 
were analyzed. Figure 8 shows predictions of cytoplasmic [ADP] versus mitochondrial and 
glycolytic ATP synthesis fluxes during exercise in time (colour coding). These results show that 
adjusting glycolytic or mitochondrial capacities influences [ADP] during exercise.  Decreasing 
glycolytic or mitochondrial capacity (panels B and D) increased the rate of ADP accumulation 
during exercise and the end-exercise [ADP]. Increasing glycolytic or mitochondrial capacity (panels 
C and E) had the opposite effect; it decreased [ADP]. The effect of changing the capacity of each of 
these processes on cellular [ADP] was thus very similar.  In addition, the simulations indicated that 
the observed variation in [ADP] (0.1 – 0.3 mM) as a result of ±50% perturbations of glycolytic 
capacity affected mitochondrial flux only minor (compare for example, end-exercise fluxes in 
panels A, B and C). At these [ADP], mitochondria operated already close to their Vmax levels and 
were consequently rather insensitive to changes in [ADP]. In contrast, the variation in [ADP] as a 
result of ±50% perturbations of mitochondrial capacity affected glycolytic flux considerably 
(compare for example, end-exercise fluxes in panels A, D and E). These differences in pathway 
sensitivity to ADP explain why adjusting the mitochondrial capacity did influence the glycolytic flux 
while the opposite was not observed (Figure 7).      
 

 
 

DISCUSSION 
 
The first main result of this investigation was that the developed model successfully described the 
balance between oxidative and glycolytic ATP production for the full dynamic range of muscle 
metabolic activity between rest and maximal. These results provided, for the first time, quantitative 
evidence that the regulation of glycolytic versus mitochondrial ATP synthesis flux is explained by 
the combined effects of of substrate feedback regulation (ADP, Pi) of oxidative phosphorylation 
and substrate feedback (AMP, ADP, Pi) and feed-forward regulation (Ca2+) of glyco(geno)lysis. 
Second, model predictions revealed that the balance between mitochondrial and glycolytic flux 
during exercise is very sensitive to mitochondrial capacity. Other factors, like e.g., glycolytic 
capacity, were predicted to have a much smaller influence. In this section, these main results, their 
physiological implications and several methodological considerations will be discussed. 
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Figure 8. Predictions of cytoplasmic ADP concentration versus mitochondrial (crosses) and glycolytic (dots) ATP 
syntheses fluxes during exercise in time (color coding). Simulation results are shown for the reference simulation (A), 
±50% perturbations of glycolytic capacity (B and C) and ±50% perturbations of mitochondrial capacity (D and E). 

 
 Methodological considerations 
The model that provided the basis for this investigation was constructed by combining a model of 
oxidative phosphorylation (chapter 4 and 5) with a model of glycolysis (chapter 3). The 
mitochondrial module did not include a detailed mechanistic descriptions of pyruvate influx, TCA 
cycle or redox shuttles. The pyruvate influx in the mitochondria and conversion to acetyl-CoA and 
redox shuttle activity are highly regulated processes (25). On forehand it was unknown if these 
control mechanisms contribute to the regulation of mitochondrial versus glycolytic flux. It was 
therefore decided to represent pyruvate influx and redox shuttles by a phenomenological 
equation and to test if model predictions were sensitive to changes in activity of this flux. These 
experiments (Figure 7) revealed that these processes had a negligible small influence on the 
balance between mitochondrial and glycolytic flux, justifying application of a phenomenological 
model equation. Similar considerations were taken into account for the lactate and proton efflux. 
As a first approximation, extracellular [lactate], [CO2] and pH were clamped at resting values. It was 
verified that model predictions were not sensitive to +/-50% perturbations of lactate and proton 
efflux rates (Figure 7).  

For the comparison of model predictions and experimental data a subset of model 
parameters was optimized (Table 2). These parameters can be divided into three categories: newly 
introduced parameters (proton efflux rate constant λ), parameters which modelled specific 
experimental conditions (ATPase rate constants) and PFK parameters + buffer capacity. The values 
of this latter category were previously estimated based on PCr and pH time course data during 
ischemia (chapter 3). It was therefore crucial to verify that the new parameter values were still 
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consistent with the data during ischemia. The simulations shown in Figure 4G-L confirmed this was 
indeed the case. These results indicated that these glycolytic pathway dynamics during ischemia 
and normoxia are explained by a single set of regulatory mechanisms. The new parameter values 
can therefore be considered an improved and more accurate set, representing the same regulatory 
mechanisms.  

Although the match between experimental data and model simulations was already of 
high-quality (Figure 4), the predictions of pH dynamics for the 2Hz muscle excitation protocol 
could be further improved. The predicted pH declined a bit too fast at the onset of exercise, which 
resulted in a small offset in pH for the remaining part of the time course. The initial peak in 
glycolytic flux was caused by pathway intermediates that were accumulated during the pre-
simulation model equilibration phase. The model fit could be improved by reducing the G6P 
concentration at rest from 0.6mM to 0.4mM, which resulted in a smaller accumulation of pathway 
intermediates. To further improve the accuracy of predictions at low exercise intensities it could be 
necessary to extend the model with key processes controlling G6P concentration: i.e., glycogen 
phosphorylase, glycogen synthase and cellular glucose import flux and phoshporylation by 
hexokinase.     

 
Regulation of mitochondrial and glycolytic fluxes during rest – exercise recovery  

It is widely accepted that during rest – exercise – recovery transitions the relative contribution of 
glycolysis and mitochondria to total ATP supply shifts (28). It was concluded that this emergent 
behaviour is largely explained by the combined effects of ADP and Pi substrate feedback 
regulation of oxidative phosphorylation in combination with AMP, ADP, and Pi substrate regulation 
+ calcium mediated feed-forward activation of glycolysis.  

The first piece of evidence supporting this conclusion was the high-quality fit of the 
mathematical model capturing these control mechanisms and the PCr and pH time course data 
recorded at different workloads. PCr and pH dynamics have been frequently applied as reporter of 
glycolytic or mitochondrial ATP synthesis. For example, an increased glycolytic component present 
at more intense muscle contractions is often reflected by an accelerated muscle acidosis (28). As a 
result of the high activity of the creatine kinase enzyme in vivo, the derivative of PCr dynamics 
(dPCr/dt) represents the difference between ATP demand and supply fluxes (29). PCr time course 
data are often exploited as measure of mitochondrial ATP synthesis flux during post exercise 
recovery (9) or to determine glycolytic flux during ischemia (5). The combined PCr and pH 
dynamics are therefore considered well suited for testing the control mechanisms embedded in 
the model.  
 The model predicted that in rest 8.3% of all ATP is provided by glycolysis, which may vary a 
bit depending on cellular glycolytic capacity or G6P concentrations (see, Figure 7). Assuming that 
at rest mitochondria rely for 50% on pyruvate as oxidizable substrate (30-32) and that the ATP  
yield for one glucose molecule is about 15:1 for mitochondria and glycolysis respectively, the 
expected glycolytic contribution to total ATP supply flux is 3.3%, which is about 2-3 fold lower than 
predicted. These predictions suggest that skeletal muscle cells at rest release small amounts of 
lactate, which has been confirmed by experimental data (33-35).  
 During aerobic exercise the contribution of glycolysis to net ATP synthesis was predicted to 
increase at higher workloads. These results are in good accordance with traditional notions in 
muscle physiology (28,36). The predicted shift towards a larger glycolytic contribution was a result 
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of the increased feed-forward activation signal which acted only on the glycolytic pathway. In 
addition, differences in ADP and Pi sensitivity between the pathways contributed as well. Oxidative 
phosphorylation is more sensitive to changes at relatively low [ADP], while the glycolytic pathway 
is more sensitive to changes at higher ADP levels. Consequently, the relative activation of 
mitochondria is the largest at low ADP and Pi levels, which occur during low intensity exercise; the 
contribution of glycolysis increases at higher ADP and Pi levels, which are associated with high 
intensity exercise.  
 During the recovery period, ATP supply was predicted to shift rapidly towards a dominant 
contribution by oxidative phosphorylation. This rapid silencing of glycolytic flux is in good 
accordance with experimental observations (6,10,37). The model predicted that these deactivation 
kinetics were not instantaneously, but that glycolytic flux remained elevated for the first few 
seconds of recovery and were completely silenced after 20 – 30 seconds of recovery period. These 
results are in good accordance with the deactivation time reported by two other independent 
studies (6,38). Previously, these deactivation kinetics were already predicted for ischemic 
conditions. The current analysis shows that they can also be expected during aerobic conditions.  
 
  Pasteur versus Crabtree effect  
Model analysis revealed that changes in the mitochondrial capacity have a very strong influence on 
the contribution of glycolysis and oxidative phosphorylation to net ATP synthesis during exercise: 
increasing the mitochondrial capacity shifted the balance towards oxidative phosphorylation while 
decreasing mitochondrial capacity increased glycolytic flux. In classic biochemistry, this regulatory 
effect (inhibition of glycolysis by respiration) is known as the ‘Pasteur effect’. There is some 
(indirect) experimental evidence that can be explained by the existence of this effect in skeletal 
muscle tissue. For example: (i) experiments in humans comparing glycogenolytic flux during 
normoxia and ischemia revealed an increased flux during ischemia (39) (ii) it has been documented 
that the lactate threshold is correlated with the oxidative capacity of muscle cells (40); (iii) 
endurance training increases the respiratory capacity of skeletal muscle cells and results in a 
decreased glycolytic flux during exercise (41,42); (iv) one of the main clinical symptoms of 
mitochondrial myopathies are high blood lactate concentrations, which are a result of increased 
glycolytic flux in the muscle cells (43). The current investigation provides a mechanistic explanation 
for these experimental observations. Glycolysis and oxidative phosphorylation are both activated 
by ADP and Pi, albeit with a different sensitivity (see section: regulation of mitochondrial and 
glycolytic fluxes during rest – exercise recovery). Changes in the mitochondrial capacity are reflected 
in the [ADP] and [Pi] during exercise (lower mitochondrial capacity increases [ADP] and [Pi]; higher 
mitochondrial capacity decreases [ADP] and [Pi]). Via these changes in [ADP] and [Pi], mitochondria 
influence glycolytic flux. In the computational analyses the mitochondrial capacity was adjusted by 
adjusting mitochondrial volume percentage (see, Table 3). It is important to note that this is not the 
only model parameter that influences the mitochondrial capacity (see e.g., chapters 6 and 7). 
Adjusting for example, mitochondrial enzyme content (Vmax values) resulted in a change in 
mitochondrial capacity, which in turn affected the predicted balance between mitochondrial and 
glycolytic flux (data not shown). It was concluded that each model parameter that influenced the 
mitochondrial capacity, via this effect, can also change the relative contribution of mitochondrial 
versus glycolytic flux.      
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 While changing mitochondrial capacity had a large influence on glycolytic flux, adjusting 
glycolytic capacity caused only minor changes in mitochondrial flux. This regulatory process 
(inhibition of respiration by glycolysis) is also known as the ‘Crabtree effect’. At first this result may 
seem counterintuitive, but it is explained by the differences in ADP and Pi sensitivity of both 
pathways. Mitochondria are very sensitive to changes in ADP at concentrations between 0.01 and 
0.1mM, while for ADP > 0.1mM mitochondrial flux approximates Vmax (see chapter 4 and Figure 8). 
Glycolysis is less sensitive for ADP; the pathway is activated at higher ADP concentrations. 
Adjusting the glycolytic capacity was also reflected in changes in cytoplasmic ADP (Figure 8), but 
these differences occur in the domain mitochondria are less sensitive (ADP>0.1mM). Consequently, 
mitochondrial flux remained approximately the same even though glycolytic capacity was 
adjusted.  
 Interestingly, at rest the exact opposite was observed. For these conditions (ADP ~ 0.01mM) 
mitochondria are very sensitive to changes in ADP whereas glycolysis is not. As a result, changes in 
mitochondrial capacity (and corresponding changes in ADP and Pi) do not affect glycolytic flux 
while the opposite was observed.   
 
 In summary  
In this chapter we demonstrate successful integration of a model of glycolysis (chapter 3) and 
mitochondria (chapter 7), yielding the first detailed mechanistic model, that is consistent with in 
vivo dynamics of ATP metabolism in skeletal muscle for a wide range of experimental conditions 
(normoxia, ischemia, 1 – 80Hz muscle excitation frequencies). The primary physiological 
implication of this result is that the regulation of glycolytic versus mitochondrial flux in skeletal 
muscle is predominantly controlled by substrate feedback regulation (ADP, Pi) of oxidative 
phosphorylation combined with substrate feedback (AMP, ADP, Pi) + calcium mediated feed 
forward activation of glycolysis. To the best of our knowledge, there is, at the moment, no 
alternative set of mechanisms that was shown to be consistent with in vivo data for such a wide 
range of physiological conditions. In addition, simulations revealed that the relative contribution of 
oxidative phosphorylation and glycolysis to net ATP generation during exercise is predominantly 
controlled by the mitochondrial capacity; in contrast, glycolytic capacity influenced the balance 
only minor. These results also have important physiological implications. They suggest, for 
example, that the difference in mitochondrial and glycolytic fluxes observed between different 
muscle fibers (type I (oxidative) versus type IIA and IIX (glycolytic)) are a result of differences in 
mitochondrial capacities between fibers (36) whereas the observed differences in glycolytic 
capacity of the muscle fibers (36) are expected to have a much smaller influence.  
 
  



Chapter 8 

 

176 

REFERENCES 
 

 1.  Meyer RA, Foley JM. The Handbook of Physiology, Volume 12, Exercise: Regulation and Integration of Multiple Systems, 
Chapter: 18: Cellular processes integrating metabolic responses to exercise 841-869 Bethesda: American Physiological Society, 
1996 

 2.  Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R and Williams RS. A 
calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499-2509, 1998 

 3.  Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99: 414-423, 2005 
 4.  Walter G, Vandenborne K, Elliott M and Leigh JS. In vivo ATP synthesis rates in single human muscles during high intensity 

exercise. J Physiol 519 Pt 3: 901-910, 1999 
 5.  Conley KE, Blei ML, Richards TL, Kushmerick MJ and Jubrias SA. Activation of glycolysis in human muscle in vivo. Am J 

Physiol 273: C306-C315, 1997 
 6.  Crowther GJ, Kemper WF, Carey MF and Conley KE. Control of glycolysis in contracting skeletal muscle. II. Turning it off. Am 

J Physiol Endocrinol Metab 282: E74-E79, 2002 
 7.  Crowther GJ, Carey MF, Kemper WF and Conley KE. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am 

J Physiol Endocrinol Metab 282: E67-E73, 2002 
 8.  Jeneson JA, Westerhoff HV, Brown TR, Van Echteld CJ and Berger R. Quasi-linear relationship between Gibbs free energy 

of ATP hydrolysis and power output in human forearm muscle. Am J Physiol 268: C1474-C1484, 1995 
 9.  Kemp GJ, Taylor DJ and Radda GK. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal 

muscle. NMR Biomed 6: 66-72, 1993 
 10.  Quistorff B, Johansen L and Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic 

recovery. Biochem J 291 ( Pt 3): 681-686, 1993 
 11.  De Feyter HM. Lipids & Mitochondria in Diabetic Muscle, Dissertation: Eindhoven University of Technology, 2007 
 12.  De Feyter HM, Lenaers E, Houten SM, Schrauwen P, Hesselink MK, Wanders RJ, Nicolay K and Prompers JJ. Increased 

intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of 
type 2 diabetes. FASEB J 22: 3947-3955, 2008 

 13.  Vanhamme L, van den BA and Van HS. Improved method for accurate and efficient quantification of MRS data with use of 
prior knowledge. J Magn Reson 129: 35-43, 1997 

 14.  Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P and Radda GK. Energetics of human muscle: exercise-
induced ATP depletion. Magn Reson Med 3: 44-54, 1986 

 15.  Veech RL, Lawson JW, Cornell NW and Krebs HA. Cytosolic phosphorylation potential. J Biol Chem 254: 6538-6547, 1979 
 16.  Tobin RB, Mackerer CR and Mehlman MA. pH effects on oxidative phosphorylation of rat liver mitochondria. Am J Physiol 

223: 83-88, 1972 
 17.  Sahlin K, Katz A and Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. 

Biochem J 245: 551-556, 1987 
 18.  Lambeth MJ, Kushmerick MJ. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 30: 808-827, 

2002 
 19.  Scopes RK. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by 

anaerobic glycolysis. Biochem J 134: 197-208, 1973 
 20.  Shonk CE, Boxer GE. Enzyme patterns in human tissues I. Methods for the determination of glycolytic enzymes. Cancer Res 

24: 709-721, 1964 
 21.  Shonk CE, Koven BJ, Majima H and Boxer GE. Enzyme patterns in human tissues II. Glycolytic enzyme patterns in 

nonmalignant human tissues. Cancer Res 24: 722-731, 1964 
 22.  Vinnakota KC, Rusk J, Palmer L, Shankland E and Kushmerick MJ. Common phenotype of resting mouse extensor 

digitorum longus and soleus muscles: equal ATPase and glycolytic flux during transient anoxia. J Physiol 588: 1961-1983, 2010 
 23.  Musch TI, Terrell JA. Skeletal muscle blood flow abnormalities in rats with a chronic myocardial infarction: rest and exercise. 

Am J Physiol 262: H411-H419, 1992 
 24.  Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80: 681-715, 2000 
 25.  Harris RA, Bowker-Kinley MM, Huang B and Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv 

Enzyme Regul 42: 249-259, 2002 
 26.  Putman CT, Jones NL, Lands LC, Bragg TM, Hollidge-Horvat MG and Heigenhauser GJ. Skeletal muscle pyruvate 

dehydrogenase activity during maximal exercise in humans. Am J Physiol 269: E458-E468, 1995 
 27.  Spriet LL, Heigenhauser GJ. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. 

Exerc Sport Sci Rev 30: 91-95, 2002 
 28.  Guyton AC, Hall JE. Textbook of Medical Physiology 10th ed. Philadelphia: Saunders company, 2000 
 29.  Kushmerick MJ. Energy balance in muscle activity: simulations of ATPase coupled to oxidative phosphorylation and to 

creatine kinase. Comp Biochem Physiol B Biochem Mol Biol 120: 109-123, 1998 
 30.  Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD and Brooks GA. Evaluation of exercise and training on 

muscle lipid metabolism. Am J Physiol 276: E106-E117, 1999 
 31.  Bradley SJ, Kingwell BA and McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow 

during dynamic exercise in humans. Diabetes 48: 1815-1821, 1999 
 32.  Jensen MD, Nguyen TT, Hernandez MA, Johnson CM and Murray MJ. Effects of gender on resting leg blood flow: 

implications for measurement of regional substrate oxidation. J Appl Physiol 84: 141-145, 1998 
 33.  Bender PR, Groves BM, McCullough RE, McCullough RG, Trad L, Young AJ, Cymerman A and Reeves JT. Decreased 

exercise muscle lactate release after high altitude acclimatization. J Appl Physiol 67: 1456-1462, 1989 
 34.  Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol 587: 5591-5600, 2009 



Regulation of glycolytic versus mitochondrial flux 

 

177 

 35.  Stanley WC, Gertz EW, Wisneski JA, Neese RA, Morris DL and Brooks GA. Lactate extraction during net lactate release in 
legs of humans during exercise. J Appl Physiol 60: 1116-1120, 1986 

 36.  Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73: 195-262, 
2000 

 37.  Dawson MJ, Gadian DG and Wilkie DR. Studies of the biochemistry of contracting and relaxing muscle by the use of 31P 
n.m.r. in conjunction with other techniques. Philos Trans R Soc Lond B Biol Sci 289: 445-455, 1980 

 38.  Forbes SC, Paganini AT, Slade JM, Towse TF and Meyer RA. Phosphocreatine recovery kinetics following low- and high-
intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Regul Integr Comp Physiol 296: R161-
R170, 2009 

 39.  Greenhaff PL, Soderlund K, Ren JM and Hultman E. Energy metabolism in single human muscle fibres during intermittent 
contraction with occluded circulation. J Physiol 460: 443-453, 1993 

 40.  Ivy JL, Withers RT, Van Handel PJ, Elger DH and Costill DL. Muscle respiratory capacity and fiber type as determinants of 
the lactate threshold. J Appl Physiol 48: 523-527, 1980 

 41.  Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl 
Physiol 56: 831-838, 1984 

 42.  LeBlanc PJ, Howarth KR, Gibala MJ and Heigenhauser GJ. Effects of 7 wk of endurance training on human skeletal muscle 
metabolism during submaximal exercise. J Appl Physiol 97: 2148-2153, 2004 

 43.  Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC and Rowland LP. Mitochondrial myopathy, encephalopathy, lactic 
acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16: 481-488, 1984 

 
 



 



 

 

 

 
 
 
 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

  

Summarizing discussion and future perspective 

Chapter 



Chapter 9 

 

180 

SUMMARIZING DISCUSSION 
 
The primary function of skeletal muscle tissue is to produce force or cause motion. To perform this 
task, chemical energy stored in nutrients (glucose and fatty acids) has to be converted into an 
energy currency that can drive muscle contraction. This process is known as ‘energy metabolism’ or 
‘bioenergetics’ of skeletal muscle cells. It consists of a large number of chemical reactions, which 
are organized in metabolic pathways. Unraveling the makeup of this complex network is 
interesting from a fundamental biological perspective, but also essential to understand how a 
disturbance of muscle bioenergetics can cause metabolic disorders.  
 31P magnetic resonance spectroscopy (MRS) has emerged as one of the premier methods to 
study bioenergetics of skeletal muscle in vivo. It enables to measure dynamics of key metabolites in 
energy metabolism of skeletal muscle during rest – exercise – recovery protocols. Extracting 
relevant information about muscle physiology from these metabolite dynamics is however not a 
trivial procedure. It remains particularly challenging to relate in vivo observed metabolite dynamics 
to an understanding of the underlying processes at the level of the metabolic pathways. A possible 
solution for bridging this gap between macroscopic measurements and mechanistic 
understanding at pathway level is application of detailed computational modeling. This 
dissertation describes a series of studies in which a mechanistic model of muscle ATP metabolism 
was developed and applied for analysis of skeletal muscle ATP metabolism. 
 
 Application of the iterative cycle of model development 
Developing a model that captures the full complexity of all pathways associated with ATP 
metabolism in skeletal muscle represents a daunting task. It certainly cannot be achieved in a 
single effort. In Chapter 1 we outlined an iterative model building strategy designed to overcome 
the difficulties associated with developing a mechanistic model of a complex biological system.  
We proposed that by iteratively (re-)testing the model against (newly recorded) data it is possible 
to progressively strengthen the models’ performance and to improve its predictive power. The 
subsequent Chapters of this thesis demonstrate the application of this strategy. At the start of this 
process, the models by Lambeth and Kushmerick (1) and Beard and co-workers (2,3) were the most 
advanced models of glycolysis and oxidative phosphorylation in skeletal muscle available. 
However, they failed in reproducing many of the in vivo observed metabolite dynamics. After 
several iterations, the eventual model (Chapter 8) was improved to the point it was consistent with 
in vivo data recorded for a wide range of physiological conditions (normoxia, ischemia, 1 – 80Hz 
muscle excitation frequencies). On top, the model was successfully applied for integration of in vivo 
and in vitro measures of mitochondrial (dys) function in an animal study (Chapter 7).  These results 
have significantly broadened the scope for application of the model in future studies of skeletal 
muscle bioenergetics (see section ‘future perspective’). 
 In systems biology typically two methods for model building are distinguished (4). Bottom-
up approaches try to reconstruct pathways by starting with detailed characterization (e.g. rate 
equation) of individual pathway components (enzymatic processes). These formulations are 
subsequently integrated to predict systems level behaviour. In ‘top-down’ systems biology, the 
main objective is to discover new molecular mechanisms using an iterative cycle that starts with 
experimental data, followed by data analysis and data integration to determine correlations 
between concentrations of molecules, and ends with the formulation of hypotheses concerning 
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co- and inter-regulation of groups of those molecules (4). The model building strategy applied in 
the studies described in this thesis does not fit to one of these two approaches, but resembles a 
hybrid method, which combines characteristics of both approaches. The initial models were 
developed according to a bottom-up approach. Subsequently, we tried to identify missing 
regulatory mechanisms from a top-down perspective, i.e., by using experimental data obtained at 
physiological ‘systems’ level and mathematical analyses tools (e.g. parameter sensitivity analysis) 
we defined hypotheses of missing regulations, as illustrated in Chapters 2, 4 and 5. By adopting this 
strategy we could circumvent some of the limitations of the bottom-up or top-down approaches.  

A particular problem for bottom-up approaches is that in vitro determined kinetic 
parameters not necessarily reflect in vivo conditions as a result of interactions (e.g. protein – 
protein interactions, substrate channeling) not present in the in vitro assay environment. By 
(re)optimizing key model parameters based on in vivo data it is possible to capture these in vivo 
processes in the model. Another challenge encountered in a pure bottom-up approach is that for 
some pathways or processes the available mechanistic information is rather limited, which can 
seriously delay progress of the model building cycle. For example, in Chapter 8 such a problem was 
encountered. Including a detailed, validated description of the mitochondrial pyruvate import, 
redox shuttles and TCA cycle would require an enormous effort. On forehand, it was unknown if 
the model predictions of interest were actually sensitive for these processes and thus, if 
undertaking this effort was necessary for answering the research questions. We therefore decided 
to represent these processes, as a first approximation, by simple phenomenological rate equations. 
Subsequent model analyses revealed that these model components had a negligible small 
influence on the model predictions of interest. These results justified the choice of a 
phenomenological rate equation and prevented the model building process from getting stuck at 
mechanistic descriptions of these processes. A limitation of the ‘top – down’ approach is that, as a 
result of their phenomenological nature, they often yield non-predictive models (4). Because the 
modeling framework used as a basis for our studies was designed according to a bottom – up 
approach we did not encounter this problem. Instead, the (top-down) adaptations introduced in 
the model actually strengthened the predictive power of the model, as illustrated in Chapters 3, 6, 
7 and 8. In these studies the model was shown to reproduce independent datasets with no or only 
minor changes to the model. 

An important aim of the applied approach was to create a synergy between model 
development and gaining novel insight in muscle physiology. To facilitate this process, application 
of a method referred to as: ‘quantitative hypothesis testing’ was found particularly helpful. 
According to this approach, the model is considered a hypothesis formulated in a mathematical 
language. Testing of model predictions against experimentally observed pathway dynamics 
provided a means to test this hypothesis. The insights obtained by the results of these tests are 
summarized in the sections below. In addition, failure of predictions provided an important 
contribution in the process of model development: it was exploited as opportunity for improving 
the model. Application of mathematical model analyses (e.g., parameter sensitivity analysis) 
provided a key tool in this procedure. Identification of sensitive model parameters provided a 
means to guide model adaptations. Successful application of this strategy was demonstrated, for 
example in Chapters 2, 4, and 5.  
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 Regulation of glycolysis in skeletal muscle in vivo 
The Lambeth and Kushmerick model of glycogenolysis was developed by integrating known 
enzyme kinetics scavenged from different literature sources (1). The main control mechanisms 
present in this initial model was substrate feedback (AMP, ADP, Pi) regulation of flux. This first 
version of the model could reproduce PCr, Pi, and pH dynamics in ischemic skeletal muscle at rest 
(5,6). However, it was also reported that predictions of some pathway intermediates (e.g. hexose – 
monophosphates (HMP, G1P + G6P + F6P)) were less accurate (7). In addition, the model could not 
explain the rapid silencing of glycolytic flux in non-contracting muscle. These results indicated that 
the model might be missing some essential control mechanisms.  

In a study described in Chapter 2, this possibility was further investigated. First, 31P MRS 
was applied for high time resolution in vivo measurements of the turnover of phosphorylated 
glycolytic metabolites (hexose – monophosphates) in human leg muscle after exhaustive exercise. 
Next, it was tested if the control mechanisms captured by the model were sufficient to explain the 
observed HMP dynamics. This test revealed that the model could not reproduce the slow 
consumption dynamics of HMP during post exercise recovery. Model analyses (parameter 
sensitivity analysis) were applied to identify the most likely hypotheses of missing regulatory 
mechanisms. Based on these results it was concluded that the mathematical model was missing 
additional control mechanisms at the level of phosphofructokinase (PFK) and pyruvate kinase (PK). 
In addition, it was proposed that these missing mechanisms were also involved in the rapid 
silencing of glycolytic flux in non-contracting muscle.  

In a follow-up study part of this hypothesis was further tested, as described in Chapter 3. It 
was investigated if a mechanism explaining the additional control at the level of PFK (i.e., calcium-
calmodulin mediated activation of the enzyme) was indeed necessary for explaining pathway 
dynamics observed in ischemic, contracting muscle. Again, an integrative in vivo and in silico 
research approach was applied. Pathway dynamics reflected by PCr and pH dynamics were 
recorded in ischemic rat TA muscle at rest and for a wide variety of electrically induced muscle 
contraction frequencies (1 – 80 Hz). Comparison of model simulations and experimental data 
showed that the addition of this control mechanism was necessary and sufficient to accurately 
reproduce the recorded pathway dynamics. In addition, model simulations confirmed that 
deactivation of PFK in the absence of elevated calcium levels provided a mechanistic explanation 
for the rapid silencing of glycolytic ATP synthesis in non-contracting muscle.  

Chapter 3 provided quantitative evidence that the regulation of glycolysis in skeletal 
muscle in vivo is predominantly controlled by the combined effects of substrate feedback (AMP, 
ADP, Pi) regulation and calcium mediated feed-forward activation of flux. These control 
mechanisms were however only tested for ischemic conditions. In an attempt to further challenge 
this hypothesis (and model) we investigated if the model could also reproduce pathway dynamics 
recorded during aerobic conditions. This study is described in Chapter 8. Metabolite dynamics 
were again recorded in rat TA muscle using 31P MRS. The glycolytic model was combined with a 
validated model of oxidative phosphorylation (Chapters 4 - 7). Testing of model predictions against 
PCr and pH dynamics revealed that the mechanisms captured by the model could also explain the 
regulation of glycolysis during aerobic conditions.  
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Regulation of oxidative phosphorylation in skeletal muscle in vivo 
Chapters 4 – 7 describe investigations of mitochondrial bioenergetics. The starting point for these 
studies was provided by the model developed by Beard and co-workers (2,3). The main regulatory 
mechanism embedded in this model was substrate feedback (ADP, Pi) regulation of flux. The initial 
version of this model however failed in reproducing the relation between ADP – mitochondrial ATP 
synthesis (Jp) and phosphate potential (∆Gp) – Jp  (Chapter 1, Figure 5). These transduction functions 
capture macroscopic characteristics of the regulation of oxidative ATP synthesis in skeletal muscle 
and are therefore considered important quality criteria for evaluating the models’ performance.  It 
was first investigated if the failing model predictions indicated a problem in the model 
parameterization or if they were a result of missing regulatory mechanisms.  

First, the sensitivity of mitochondria to ADP (captured by the ADP – Jp relation) was 
investigated (Chapter 4). A new dataset was recorded which sampled the ADP - Jp and ∆Gp – Jp 
relations with increased accuracy and sample density. The first main result of this study was that 
the newly recorded dataset confirmed previous observations that the signal transduction function 
of oxidative phosphorylation is approximately second order in ADP. The significantly improved 
accuracy and increased sample density of the experimental data also provided improved 
opportunities for model testing. This particular property of the dataset was also exploited in 
Chapter 4. As expected (Chapter 1, Figure 5), the initial model failed in reproducing the data. Multi-
parameter sensitivity analysis was applied to identify model components that controlled the ADP 
sensitivity of mitochondria in silico. These results were used to significantly improve the predictive 
power of the model (ADP – Jp relation). In addition, they indicated that the apparent ADP sensitivity 
of oxidative phosphorylation is an emergent property of the mitochondrial control network 
controlled primarily by the kinetics of the adenine nucleotide transport (ANT).   

A similar study design was applied to investigate the control mechanisms underlying the 
∆Gp – Jp relation, as described in Chapter 5. Initial testing of the modified model presented in 
Chapter 4 showed that especially at low metabolic rates the cellular [ADP] and [Pi] and 
corresponding ∆Gp were underestimated by the model. Moreover, analysis revealed that this 
problem could not just be amended by reparameterization. This result suggested that the model 
was missing essential control mechanisms. Numerical analysis identified OXPHOS complex III as the 
most likely site for the additional control. In the second part of the study two different control 
schemes for the missing regulation were tested: (i) substrate feedback regulation by inorganic 
phosphate or (ii) regulation of flux by parallel activation of ATP consumption and production by a 
similar signaling event (e.g. calcium). Both hypotheses were implemented and compared to time 
course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and 
validation data obtained by 31P MRS of sedentary subjects and track athletes. The results rejected 
the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback 
control of respiratory chain complexes by inorganic phosphate is essential to explain the 
regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range.  
 Chapter 8 describes an investigation on the role of ADP and Pi substrate feedback 
regulation of oxidative phosphorylation on the regulation of relative contribution of mitochondrial 
versus glycolytic ATP synthesis flux. The mitochondrial model component was combined with the 
validated model of the glycolytic pathway (Chapters 2 and 3). The integrated model was verified 
against data recorded in rat TA muscle during rest – exercise – recovery using 31P MRS.  Simulations 
of the validated model indicated that the ADP, Pi feedback signal is a key mechanism in the 
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regulation of glycolytic versus mitochondrial flux. In addition, they revealed that the observed 
balance during exercise is predominantly controlled by physiological parameters that influence the 
mitochondrial capacity (e.g. mitochondrial enzyme content, mitochondrial volume percentage, 
oxygen availability). In contrast, glycolytic capacity influenced the balance only minor.  
 
 Systems biology of mitochondrial function  
In vivo mitochondrial capacity quantified by the rate of post exercise PCr recovery is a physiological 
parameters frequently derived from 31P MRS datasets. Sometimes, additional analyses of muscle 
biopsy samples are used to identify changes in the metabolic pathways responsible for 
observations of a decreased mitochondrial capacity in vivo. State-of-the-art approaches for 
analyses of the combined data remain typically limited to statistical and intuitive strategies (see: 
e.g. (8,9)). A promise of the current era of biology is to understand the integrated function of 
complex biological systems in order to predict and rationally manipulate their behavior with the 
ultimate aim of improving human health (10). In order to obtain such understanding, the analyses 
of available data have to be advanced beyond the level of statistical and intuitive methods. In 
Chapters 6 and 7 we described two studies that explored if such more insightful analyses can be 
performed by integration of in vivo, in vitro and in silico methods.  

In the first part of Chapter 6 an extension of the modeling framework from a single 
uniform – type cell model to a three – cell type model (type I, IIA, IIX) was presented. In addition, 
several essential additional verification tests were conducted: (i) It was shown that the model could 
reproduce the effect of progressive inhibition of individual OXPHOS components on mitochondrial 
respiration rate, (ii) the three cell model remained consistent with the ADP – Jp and ∆Gp – Jp 
transduction functions presented in Chapters 4 and 5, (iii) the mechanistic model was shown to 
reproduce the PCr recovery time course data just as accurate as the current gold-standard, i.e., the 
mono-exponential function. Subsequently, the model was applied to investigate to which extend 
different adaptations in muscle physiology contributed to a decreased rate of post-exercise PCr 
recovery documented for type 2 diabetes patients with a sedentary lifestyle compared to healthy 
lean control subjects. The prolongation of the PCr recovery period in these patients was predicted 
by integrating available data of in vitro markers of mitochondrial function in the mechanistic 
model. These results were used to outline a possible strategy for applying the mechanistic models 
in future studies of mitochondrial (dys)function.   
 In a follow-up study the proposed method was tested in an animal model of decreased 
mitochondrial function: 8 versus 25 week old Wistar rats. This study was described in Chapter 7. 31P 
MRS revealed a decreased mitochondrial capacity in vivo (quantified by PCr recovery rate constant) 
in the animals at age 25 weeks. Additional in vitro analyses of muscle tissue samples identified 
several changes in muscle physiology which possible contributed to the decreased mitochondrial 
function in vivo. The first principal result of this study was that the mathematical model accurately 
predicted the decreased mitochondrial function in vivo based upon the in vitro measurements. In 
addition, model predictions provided more insight in the contribution of the different factors 
responsible for the decreased mitochondrial function: a major part of the decreased oxidative 
capacity was due to the decreased mitochondrial content (~54%); the remaining part was a result 
of the decreased capacity of ETC and TCA cycle (~32%) and difference in end exercise pH (~12%). 
These results demonstrate the feasibility of applying the developed model for integration of in vivo 
and in vitro markers of mitochondrial dysfunction.  
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FUTURE PERSPECTIVES 
 
The developed mathematical model provides an excellent basis for future investigation of skeletal 
muscle bioenergetics. In this section, we will discuss three possible directions in which this work 
can be extended: (i) continuing the iterative cycle of model development; (ii) connecting ATP 
metabolism to other pathways; (iii) application in (pre-) clinical studies.   
 
 Continuing the iterative cycle of model development 
The investigations described in this thesis predominantly used in vivo data for model testing and 
development. In addition, it was verified that predictions of (non-observable) internal state 
variables (e.g., mitochondrial redox potential, membrane potential or glycolytic intermediate 
metabolites) were in the right order of magnitude (glycolytic intermediates) or matched expected 
values (mitochondrial redox state (NADH/NAD): ~0.3 - 100, membrane potential: 160 – 180mV). 
Conducting new experiments that provide an experimental read-out of some of these variables is 
expected to provide a new impulse to the process of model development.  
 Some of the processes in the current model were parameterized based on in vivo data (e.g., 
parameters of phosphofrutokinase, adenine nucleotide transport and Pi regulation of respiratory 
chain activity). An advantage of this method, compared to traditional in vitro kinetic assays, is that it 
circumvents the problem of identifying optimal assay conditions representing the ‘true’ in vivo 
environment (11). Nevertheless, it would further strengthen the basis of this modeling work if the 
proposed model adaptations could be supported by in vitro determined enzymes kinetics. As 
explained, the grand challenge for such studies will be to design an in vitro assay environment that 
represents the in vivo conditions well.    
 
 Connecting ATP metabolism to other pathways 
ATP metabolism is at the center of the metabolic pathways in skeletal muscle cells. It is thus 
connected to many other relevant pathways. Including some of these processes in the modeling 
framework provides interesting opportunities for future studies. For example, it is well known that 
the supply of oxidizable substrates (carbohydrates and fatty acids) to mitochondria switches 
depending on e.g. metabolic rates (12). A disturbance of this metabolic flexibility is associated with 
e.g., type 2 diabetes (12). There is evidence that exercise training can (partly) restore this metabolic 
flexibility which is paralleled by an improved insulin sensitivity of skeletal muscle tissue (13). The 
molecular mechanisms responsible for this beneficial effect remain however poorly understood 
(13). Identification of these mechanisms is interesting since they could provide leads for 
pharmaceutical intervention targets. To investigate these processes by means of a mechanistic 
modeling approach requires extending the current framework with a detailed description of 
pyruvate and fatty acid import in the mitochondria, TCA cycle and β – oxidation pathways. 
Although such a step is certainly non-trivial, a starting point could be provided by e.g., the work of 
Wu and colleagues, who already started to build a mechanistic description of the TCA cycle (14). 
The β – oxidation and TCA cycle pathways are certainly not the only pathways relevant for future 
investigations. Other pathways that are closely linked to ATP turnover rates and also provide 
interesting opportunities for future directions are, for example, the insulin signaling pathway (15), 
ROS generation by electron transport chain (16,17) or mitochondrial biogenesis pathways (18,19).    
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 Application in clinical studies of mitochondrial function 
A decreased mitochondrial function can be caused by many different factors. As explained in 
Chapters 6 and 7, the origin of a decreased oxidative capacity cannot be deduced from in vivo 
measurements. Analysis of muscle biopsy samples provides additional information of changes in 
muscle physiology possibly responsible for the decreased mitochondrial function. It remains 
however very difficult determine the contribution of these in vitro observed adaptations to the 
functioning of the mitochondria in vivo. This information is however crucial for the design of 
(pharmaceutical) therapies. As described in Chapter 7, we successfully tested application of the 
computational model to relate in vivo and in vitro measures of mitochondrial function in an animal 
study.  This study provided a proof-of-principle required for extension of the approach to clinical 
studies of mitochondrial function in for example, mitochondrial diseases (20), type 2 diabetes (21), 
chronic heart failure (22), or aging (23). These future studies are essential to further confirm the 
generic value of the method and may contribute to a more widespread application of systems 
biology in (clinical) biomedical research.       
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SUMMARY 
 

‘’Systems Biology of Energy Metabolism in Skeletal Muscle’’ 
 

The primary function of skeletal muscle tissue is to produce force or cause motion. To perform this 
task chemical energy stored in nutrients (glucose and fatty acids) has to be converted into an 
energy currency that can drive muscle contraction (adenosine-tri-phosphate, ATP). This process is 
known as the energy metabolism of skeletal muscle and consists of a large number of chemical 
reactions that are organized in metabolic pathways. Unraveling this complex network is important 
from a fundamental biological perspective, but also essential to understand how a disturbance of 
muscle bioenergetics can cause metabolic disorders.  
 
31P magnetic resonance spectroscopy (MRS) has emerged as one of the premier methods to study 
skeletal muscle energy metabolism in vivo. It, however, remains challenging to relate the observed 
metabolite dynamics to an understanding of the underlying processes at the level of the metabolic 
pathways. A possible solution for bridging this gap between macroscopic measurements and 
mechanistic understanding at pathway level is the application of mechanistic computational 
modeling. This dissertation describes a series of studies in which a mechanistic model of ATP 
metabolism was developed and applied in the analysis of skeletal muscle bioenergetics. 
 
Skeletal muscle cells contain two primary processes that are responsible for the conversion of 
glucose and fatty acids into ATP. These processes are known as glycolysis and oxidative 
phosphorylation in mitochondria. The initial mathematical models of these processes were 
obtained by integration of known enzyme kinetics and thermodynamics. Testing of these models, 
however, showed that they failed to reproduce many of the in vivo observed metabolite dynamics, 
as has been described in chapter 1 and 2. These results indicated that the models might be missing 
essential regulatory mechanisms or that the model parameterization required changes. First, the 
physiological implications of necessary model adaptations were investigated in a series of studies 
described in chapters 2 – 5.   
 
Numerical analysis of the initial glycolysis model revealed that the experimentally observed slow 
turnover rate of phosphorylated sugars post exercise could only be explained by rapid deactivation 
of phosphofructokinase (PFK) and pyruvate kinase (PK) in non-contracting muscle. In particular the 
deactivation of PFK was crucial for adequate control of pathway flux. Therefore, in a follow-up 
study, it was tested if the missing regulation at the level of PFK could be explained by calcium – 
calmodulin mediated activation of this enzyme. To this end, pathway behavior, represented by 
phosphocreatine (PCr) and pH dynamics, was measured in ischemic skeletal muscle for a wide 
variety of muscle excitation frequencies (0 – 80 Hz). Next, it was shown that addition of the calcium 
– calmodulin mediated activation of PFK was necessary to accurately reproduce these data. These 
results provided important new quantitative support for the hypothesis that this particular 
mechanism has a key role in the regulation of glycolytic flux in skeletal muscle. 
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The initial model of oxidative phosphorylation was first tested against empirically determined 
mitochondrial input – output relations, i.e., [ADP] – mitochondrial ATP synthesis flux (Jp) and 
phosphate potential (ΔGp) – Jp. These empirically determined relations were derived from 31P MRS 
measurements of metabolite dynamics post-exercise. They capture key features of the regulation 
of oxidative phosphorylation in vivo and are therefore considered relevant for testing the quality of 
the mathematical model. Numerical model analysis (i.e., parameter sensitivity analysis) was applied 
to investigate which components significantly influenced predictions of these input – output 
relations. Based on these results it was concluded that the adenine nucleotide transporter (which 
facilitates the exchange of ATP and ADP across the inner mitochondrial membrane) has a 
dominant role in controlling the ADP sensitivity of mitochondria. Furthermore, we identified that Pi 
feedback control of respiratory chain activity was essential to explain measurements of ΔGp at low 
metabolic rates. These insights were used to improve the predictive power of the model, as 
described in chapters 4 and 5.   
 
In the studies described in chapters 2 - 5 the glycolytic and mitochondrial model components were 
tested for conditions in which only one of the two processes was active (ischemia and post exercise 
recovery, respectively). It remained therefore unknown if the control mechanisms included in these 
models could also explain the contribution of mitochondrial versus glycolytic ATP synthesis for 
conditions in which both processes are active (aerobic exercise). In an attempt to answer this 
question, dynamics of ATP metabolism were recorded during a full rest – exercise – recovery 
protocol under aerobic conditions and subsequently used for testing of the integrated 
mitochondrial + glycolytic model. The results presented in chapter 8 showed that the integrated 
model could accurately reproduce the observed metabolite and pH dynamics for varying exercise 
intensities. The main physiological implications of these results were that, substrate feedback 
control (ADP + Pi) of oxidative phosphorylation combined with substrate feedback control (ADP + 
AMP + Pi) and control by parallel activation (calcium – calmodulin mediated activation of PFK) of 
glycolysis, provides a set of key control mechanisms that can explain the regulation of ATP 
metabolism in skeletal muscle in vivo for a wide range of physiological conditions.   
 
By application of several cycles of model development it was possible to improve the models 
performance to the point it was consistent with 31P MRS measurements of muscle bioenergetics in 
both healthy humans and animals. As described in chapters 6 and 7, it is was investigated  if the 
model could be applied to analyze the adaptations of muscle physiology that underlie changes in 
mitochondrial capacity that occur in for instance type 2 diabetes patients or with aging. A decrease 
of mitochondrial capacity in these subjects can be diagnosed accurately by determining the rate of 
PCr recovery post exercise. However, the changes in muscle physiology responsible for any 
observed difference in oxidative capacity cannot be deduced from these measurements. Therefore 
additional muscle biopsy samples are collected and analyzed for in vitro markers of oxidative 
capacity. State-of-the-art analyses of these data are typically limited to statistical or intuitive 
approaches. We investigated if the insight obtained from the combined in vivo + in vitro data sets 
could be increased by application of our mathematical model. To this end, first, the model was 
extended from a single uniform cell type model to a three types cell model (type I, IIA, and IIX), 
capturing the microscopic heterogeneity of muscle tissue. In addition, several key validation tests 
were conducted, as described in chapter 6. Subsequently, we demonstrated that the model could 
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explain the prolongation of PCr recovery period observed in type 2 diabetes patients by 
integrating available literature data of in vitro markers of mitochondrial function. Although this 
result was already very promising, it was also concluded that the approach could be tested more 
rigorously by obtaining all data (in vivo + in vitro) in a single study. Therefore, the method was 
further tested in an animal model of decreased mitochondrial function: 8 versus 25 week old Wistar 
rats. The first main result of this study was that the mathematical model could accurately 
reproduce the delayed PCr recovery kinetics in 25 week old animals based on in vitro determined 
changes in muscle physiology. In addition, model predictions provided quantitative insight in the 
individual contribution of the different factors responsible for the decreased oxidative capacity. 
This type of information is considered very relevant for the design of (pharmaceutical) therapies 
aimed at improving mitochondrial function. For example, model predictions of the physiological 
changes that contribute the most to the decrease in oxidative capacity provide potentially 
promising targets for therapy design. Based on these considerations it was concluded that 
application of the mathematical model provides new promising opportunities for future studies of 
mitochondrial (dys)function in skeletal muscle.  
 
In conclusion, through application of a series of iterative cycles of model development combined 
with multiple new experimental studies it was possible to develop a detailed mechanistic model of 
ATP metabolism that was consistent with in vivo observations of skeletal muscle bioenergetics for a 
wide range of physiological conditions. This process provided new insight in the key control 
mechanisms embedded in the metabolic pathways that have a dominant role in regulating ATP 
metabolism in skeletal muscle in vivo. In addition, we successfully demonstrated the feasibility and 
added value of application of the model for integration of in vivo and in vitro measurements of 
oxidative capacity in future studies of mitochondrial (dys)function in, for example, type 2 diabetes, 
aging or mitochondrial myopathy.     
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‘’Systeembiologie van de Energiehuishouding in Skeletspiercellen’’ 
 

Het leveren van kracht of beweging is een van de belangrijkste taken van skeletspieren. Hiervoor 
moet chemische energie, aanwezig in voedingsstoffen zoals glucose en vetzuren, omgezet worden 
in een vorm die cellen kunnen gebruiken voor onder andere contracties (adenosinetrifosfaat, ATP). 
Dit proces wordt ook wel de energiehuishouding van skeletspiercellen genoemd. Het bestaat uit 
een groot aantal chemische reacties, welke georganiseerd zijn in zogenaamde ‘metabolic 
pathways’. Het ontrafelen van de structuur en de regulatie van dit complexe reactienetwerk is 
interessant vanuit fundamenteel biologisch oogpunt, maar ook essentieel om te kunnen 
achterhalen hoe een verstoring van de energiehuishouding in spiercellen metabole ziekten tot 
gevolg kan hebben. 
 
31P magnetische resonantie spectroscopie (MRS) is een van de beste technieken om het 
energiemetabolisme van skeletspieren in vivo te bestuderen Het is echter moeilijk om de in vivo 
gemeten dynamica te relateren aan inzichten in het functioneren van de onderliggende 
moleculaire processen. Een mogelijke oplossing voor het verbinden van macroscopische in vivo 
metingen en mechanistisch inzicht op het niveau van de metabolic pathways is het ontwikkelen en 
toepassen van mechanistische mathematische modellen. Dit proefschrift beschrijft een aantal 
studies waarin mechanistische wiskundige modellen van ATP metabolisme zijn ontwikkeld en 
toegepast op het energiemetabolisme van skeletspiercellen.  
 
Skeletspiercellen hebben twee processen die verantwoordelijk zijn voor de omzetting van de 
chemische energie opgeslagen in glucose en vetzuren in ATP. Deze processen zijn glycolyse and 
oxidatieve fosforylering in mitochondria. De initiële mathematische modellen van deze processen 
zijn ontworpen door integratie van bekende enzymkinetiek en thermodynamica. Zoals beschreven 
in hoofdstuk 1 en 2, kunnen deze modellen echter veel van de dynamische data verkregen 
doormiddel van in vivo metingen niet reproduceren. Deze bevindingen impliceren dat in de 
modellen essentiële regulerende mechanismen ontbreken of dat de parameterizering verbeterd 
moet worden. In een reeks van studies beschreven in hoofdstukken 2 – 5 zijn de fysiologische 
implicaties van noodzakelijk modelaanpassingen onderzocht.  
 
Numerieke analyse van het initiële glycolyse model heeft aangetoond dat experimentele 
observaties van trage consumptie van gefosforyleerde suikers in de herstelperiode na inspanning 
alleen kunnen worden verklaard door snelle deactivering van fosfofructokinase (PFK) en pyruvaat 
kinase. In het bijzonder de deactivering van PFK was belangrijk voor adequate regulatie van 
pathway activiteit. Daarom hebben we in een vervolgstudie getest of de ontbrekende regulatie 
van PFK verklaard kan worden door activering van dit enzym als gevolg van binding van een 
calcium – calmoduline complex. Eerst is dynamische data van glycolyseactiviteit verkregen in 
ischemische spier voor verschillende frequenties waarop spiercontracties geïnduceerd werden (0 – 
80 Hz). Op basis van het vergelijken van modelsimulaties en deze data is geconcludeerd dat 
activering van PFK door binding van een calcium – calmoduline complex noodzakelijk is om de 
experimentele data nauwkeurig te reproduceren. Deze resultaten verschaffen nieuw kwantitatief 
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bewijs dat dit mechanisme een belangrijke rol speelt in de regulatie van de glycolyseactiviteit in 
skeletspiercellen.  
  
Het initiële model van de oxidatieve fosforylering hebben we getest tegen empirisch bepaalde 
mitochondriële input – output relaties ([ADP] – mitochondriële ATP synthese (Jp) en 
fosfaatpotentiaal (ΔGp) – Jp). Deze empirisch bepaalde relaties zijn afgeleid van 31P MRS metingen 
tijdens de herstelperiode na inspanning en reflecteren de regulatie van mitochondriële ATP 
synthese in vivo. Deze datasets zijn daarom zeer geschikt voor het testen van de kwaliteit van de 
wiskundige modellen. Numerieke analysetechnieken (bijvoorbeeld parameter 
gevoeligheidsanalyse) zijn toegepast om te identificeren welke model componenten de 
voorspellingen voor deze input – output relaties sterk beïnvloedt. Op basis van deze resultaten is 
geconcludeerd dat de adenine nucleotide transporter, welke verantwoordelijk is voor transport 
van ADP en ATP over het binnenmembraan van de mitochondria, een dominante rol heeft bij het 
reguleren van de ADP gevoeligheid van dit organel. Daarnaast hebben we door middel van 
simulaties aangetoond dat Pi feedback regulatie van de activiteit van de ademhalingsketen 
essentieel is voor het verklaren van de gemeten ΔGp bij condities van laag ATP verbruik. Deze 
inzichten zijn gebruikt om de voorspellende waarde van het model te verbeteren, zoals 
beschreven in hoofdstuk 4 en 5. 
 
In de studies beschreven in hoofdstukken 2 tot en met 5 zijn de modellen voor glycolyse en 
mitochondria afzonderlijk getest voor condities waarbij maar één van deze processen actief was 
(ischemische condities en herstel na inspanning, respectievelijk). Op basis van deze resultaten blijft 
onduidelijk of de regulerende mechanismen aanwezig in de modellen ook verantwoordelijk zijn 
voor de relatieve bijdrage van mitochondriële en glycolytische ATP synthese onder 
omstandigheden dat beide processen tegelijkertijd actief zijn (inspanning onder aerobe condities). 
In een poging deze vraag te beantwoorden hebben we, doormiddel van 31P MRS, dynamische data 
verkregen tijdens een rust, inspanning en herstel experiment uitgevoerd onder aerobe condities. 
Deze experimentele gegevens zijn vervolgens gebruikt om het geïntegreerde model van 
glycolytische en mitochondriële ATP synthese te testen. De resultaten van dit onderzoek zijn 
gepresenteerd in hoofdstuk 8 en tonen aan dat het gecombineerde model de dynamische data 
goed kan reproduceren. De belangrijkste fysiologische implicaties van deze resultaten zijn dat 
substraatfeedback regulatie (ADP + Pi) van oxidatieve fosforylering in combinatie met 
substraatfeedback regulatie (ADP + AMP + Pi) van glycolyse en regulatie door parallelle activering 
van glycolyse (activering van PFK door calcium – calmoduline binding) de regulatie van ATP 
metabolisme in skeletspier in vivo kan verklaren voor een grote variatie van fysiologische condities.  
 

Doormiddel van het doorlopen van verschillende cycli van model ontwikkeling was het mogelijk 
de modellen te verbeteren, zodanig dat ze consistent zijn met 31P MRS metingen van energie 
metabolisme in gezonde proefpersonen en proefdieren. Zoals beschreven in hoofdstuk 6 en 7 
hebben we vervolgens onderzocht of dit model ook toegepast kan worden voor de analyse van 
veranderingen in de spierfysiologie verantwoordelijk voor een afname van de mitochondriële 
capaciteit in bijvoorbeeld type 2 diabetes patiënten of bij veroudering. Een afname in de 
mitochondriële capaciteit kan nauwkeurig worden gediagnosticeerd door het bepalen van de 
snelheid waarmee de PCr concentratie in cellen herstelt na inspanning. Echter, de veranderingen in 
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de spierfysiologie die verantwoordelijk zijn voor de afname in oxidatieve capaciteit kunnen niet uit 
deze metingen afgeleid worden. Daarom worden in sommige studies spierbiopsies uitgevoerd om 
doormiddel van in vitro bepalingen veranderingen in spierfysiologie te identificeren. State-of-the-
art technieken om deze data te analyseren blijven meestal gelimiteerd tot statistische en intuïtieve 
methoden. Wij hebben onderzocht of het inzicht dat verkregen kan worden op basis van deze 
gecombineerde in vivo en in vitro datasets vergroot kan worden door applicatie van het model. 
Hiervoor is het model eerst uitgebreid van een uniform cel model naar een drie celtypes model 
(type I, IIA en IIX). Dit model kan op basis van informatie over de veranderingen in spierfysiologie, 
gerapporteerd in vorige studies, het vertraagde herstel van de PCr concentratie in spiercellen van 
type 2 diabetes patiënten verklaren. Hoewel dit resultaat al veelbelovend is, is op basis van deze 
studie ook geconcludeerd de toegepaste methode rigoureuzer getest kan worden door alle data 
(in vivo en in vitro) te verzamelen in één en dezelfde studie. Dit studieontwerp is toegepast op een 
diermodel met een verminderde mitochondriële functie, namelijk, 8 versus 25 week oude Wistar 
ratten. Het eerste belangrijke resultaat van deze studie was dat het model de vertraging in het 
herstel van PCr in de 25 weken oude dieren zeer nauwkeurig kon reproduceren op basis van de in 
vitro geïdentificeerde veranderingen in spierfysiologie. Daarnaast demonstreert dit onderzoek een 
belangrijke toegevoegde waarde van het toepassen van het model. Namelijk dat het mogelijk 
wordt kwantitatief inzicht te verkrijgen in de bijdrage van individuele veranderingen in 
spierfysiologie aan de totale verandering in mitochondriële capaciteit gemeten in vivo. Deze 
informatie kan van belang zijn voor het ontwerpen van nieuwe (farmaceutische) therapieën voor 
het herstel van mitochondriële functie. Veranderen in spierfysiologie die de belangrijkste bijdrage 
leveren aan het totale verlies in oxidatieve capaciteit bieden bijvoorbeeld potentieel de meest 
belovende aanknopingspunten voor het ontwikkelen van nieuwe therapieën. Op basis van deze 
studies hebben we geconcludeerd dat het wiskundig model nieuwe, veel belovende 
mogelijkheden biedt voor toekomstige studies naar mitochondriële (dis)functie in skeletspiercellen.  
 
Concluderend, door het combineren van verschillende cycli van modelontwikkeling en 
experimentele studies was het mogelijk een mechanistisch model van ATP metabolisme te 
ontwerpen dat consistent is met in vivo observaties van de energiehuishouding in skeletspiercellen 
voor een grote verscheidenheid aan fysiologische condities. Dit proces heeft nieuwe inzichten 
opgeleverd over de moleculaire mechanismen die een dominante rol spelen bij de regulatie van 
ATP metabolisme in skeletspiercellen. Daarnaast, heeft dit onderzoek succesvol de haalbaarheid en 
toegevoegde waarde aangetoond van het toepassen van het ontwikkelde model voor de 
integratie van in vivo en in vitro metingen van oxidatieve capaciteit in toekomstige studies naar 
mitochondriële (dis)functie in bijvoorbeeld, type 2 diabetes, veroudering of mitochondriële 
spieraandoeningen.  
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DANKWOORD 
 
Zo, het zit er bijna op. Deze laatste drie pagina’s moeten nog geschreven worden en dan is mijn 
proefschrift echt voltooid. In de afgelopen 4 jaar heb ik ondervonden dat een belangrijk aspect van 
het succesvol uitvoeren van een promotieonderzoek ligt in het hebben van plezierige 
samenwerking en het vinden van voldoende momenten om juist even niet bezig te zijn met 
wetenschap. Ik wil deze laatste zinnen dan ook gebruiken om iedereen die op deze manier een 
bijdrage heeft geleverd aan dit proefschrift daarvoor te bedanken.  
 
Peter, ik heb altijd met veel plezier in jouw onderzoeksgroep gewerkt. Nadat in het voorjaar van 
2008 mijn subsidieaanvraag bij NWO niet gehonoreerd werd, zag jij toch mogelijkheden om mijn 
ideeën te realiseren binnen het ‘predicct’ project. Je hebt altijd veel vertrouwen in mijn 
beslissingen getoond, mij de vrijheid gegund zelf een eigen koers uit te stippelen en de 
mogelijkheden gecreëerd om dit plan ook daadwerkelijk tot uitvoer te brengen. Hiervoor ben ik je 
erg dankbaar.  
 
Klaas, hoewel ik eigenlijk ‘te gast’ was in jouw onderzoeksgroep heeft het voor mij nooit zo 
aangevoeld. Ik kijk met veel plezier terug op de interacties die wij gehad hebben. Jouw 
enthousiasme voor wetenschappelijk onderzoek en in vivo NMR hebben altijd erg aanstekelijk op 
mij gewerkt. 
 
Natal, een academische omgeving is niet altijd even goed of duidelijk georganiseerd, ook dat heb 
ik de afgelopen vier jaar geleerd. En, een promotie kent hoogtepunten, maar zeker ook 
tegenslagen. Gelukkig was jij, als stabiele factor, altijd aanwezig om tegenslagen of 
organisatorische problemen te bespreken en samen te zoeken naar oplossingen. Het is leuk om 
successen te vieren, maar zeker zo fijn als er mensen om je heen zijn die helpen als zaken niet zo 
lopen als gepland.  
 
Jeroen, de dynamiek die ontstaat als wij samen aan een wetenschappelijk probleem werken is een 
grote drijfveer geweest voor mijn onderzoek. Ik zou geen recht doen aan je bijdrage aan dit werk 
als ik niet zou vermelden dat jouw ideeën, in bijna alle gevallen, de basis vormden voor de 
projecten waar ik aan gewerkt heb. Ik kijk met een grote glimlach terug op onze werk- en 
congresbezoeken in het buitenland; ook aan het ‘in leven houden’ van onze antieke MRI scanner 
heb ik goede herinneringen overgehouden. Je betrokkenheid, enthousiasme en kijk op het leven 
maken je een goede mentor en een fijn mens.  
 
Jeanine, onze samenwerking is de afgelopen 4 jaar steeds intensiever geworden en, al 
terugblikkend, onmisbaar voor het slagen van mijn promotieonderzoek. De pH - studie van Nicole 
vormt de experimentele basis voor hoofdstukken 4 en 5, en de studies beschreven in hoofdstukken 
3, 7 en 8 waren onmogelijk zonder de experimentele opstelling die onder jouw leiding ontwikkeld 
is. Jij stond altijd klaar om met mij mee te denken hoe we nieuwe experimenten uit konden voeren 
en, in veel gevallen, je eigen AIO’s in te schakelen om mij te helpen. Bedankt! 
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De verschillende technieken die nodig waren om dit onderzoek uit te voeren zijn erg divers. 
Gelukkig kon ik altijd rekenen op de hulp van fijne collega’s om te zorgen dat moeilijke 
experimenten toch een succes werden, daar ben ik jullie erg dankbaar voor. Willemijn, ons 
gezamenlijk werk dat geleid heeft tot hoofdstuk 3 en 8 heb ik altijd erg inspirerend gevonden. 
Jolita, I am very grateful for your help with all the in vitro measurements. Bart en Nicole, de MRS 
experimenten die met proefdieren uitgevoerd moesten worden, waren geen succes geweest 
zonder jullie hulp. Richard, zoals je ziet heeft jouw bijdrage aan mijn onderzoek een zeer 
prominente plek gekregen. 
 
Larry, Leonie, David en Jo, het beantwoorden van wetenschappelijke vragen is alleen mogelijk als 
proefopstellingen slim ontworpen zijn en dierexperimenten met de grootste zorg worden 
voorbereid en uitgevoerd. Het is fijn dat ik hiervoor op jullie expertise heb kunnen bouwen.  
 
Bob, Dan, Ron, Kalyan and Fan, I always really enjoyed the visits to Wisconsin and Michigan. Your 
advice and suggestions, sharing of model codes, or expertise on how to conduct complex 
experiments helped me a lot in performing my research.  
 
Joep, Chu, Jan-Jurre, Robert, Fianne, Gijs, Sandra, Boris, Bram, João, Linsen en Niek, jullie hebben 
allemaal bijgedragen aan mijn onderzoek tijdens een stage of afstudeerproject. Ik vond het erg 
leuk en leerzaam om jullie op deze manier ook te kunnen helpen bij jullie eigen studie. 
 
Bob, Hans, Klaas, Bas, Jeanine, thank you for participating as member of the reading committee or 
defense committee. I am very much aware of your busy agendas and I am grateful that you made 
time available for reading my thesis, preparing questions and being present at my defense 
ceremony.  
 
Hans en Dick, hoewel het combineren van high density surface EMG en 31P MRS uiteindelijk een 
zijproject binnen mijn promotieonderzoek is geworden, heb ik hier wel altijd met veel genoegen 
aan gewerkt. Onze gezamenlijke meetings bij Dick op de kamer vond ik altijd erg inspirerend. Ik 
ben blij dat we uiteindelijk een mooi artikel hebben kunnen publiceren over dit onderzoek.  
 
Hanny, Harm, Luc, Stephan, René, Jeanine, Victor, Jolita, Chu en Carlijn, het project dat wij samen 
hebben opgestart en de tijdsplanning die we voor ogen hadden is erg ambitieus gebleken. 
Gelukkig kan Miranda nu het stokje van mij overnemen zodat het project gewoon voltooid kan 
worden. Ik heb onze samenwerking altijd als heel plezierig ervaren, waarvoor dank. Al 
terugblikkend, heb ik veel geleerd van het opstarten van dit onderzoek; ervaringen waar ik in de 
toekomst nog veel aan denk te gaan hebben.  
 
Koen, bedankt voor het helpen met de ‘final touch’ van het coverdesign.  
 
I also want to thank all members of the Computational Biology and Biomedical NMR group for the 
feedback and suggestions during group meetings, for the nice discussions during lunch and joyful 
drinks and dinners in the evenings or weekends.   
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Promoveren is als een berglandschap, het heeft pieken en dalen. Om hier goed mee om te kunnen 
gaan is relativeren en het hebben van voldoende momenten van afleiding erg belangrijk. Ik ben 
dan ook erg blij dat ik een fijne groep vrienden en familie heb die hier, waarschijnlijk onbewust, 
veel bij geholpen hebben.  
 
Pap en mam, jullie volgen mijn stappen letterlijk al vanaf het eerste moment. Gaande mijn 
ontwikkeling is ook jullie rol blijven veranderen, maar altijd wel heel belangrijk voor me gebleven. 
Het geeft me een fijn gevoel te weten dat ik altijd terug kan vallen op jullie adviezen, steun en 
oprechte interesse. Ik vind dan ook dat het gereedkomen van dit proefschrift bovenal gezien moet 
worden als een symbolische kroon op de stappen die we samen gezet hebben. 
 
Lieve Hanneke, woorden schieten eigenlijk tekort om jouw bijdrage aan dit werk op papier uit te 
drukken. Ik zal het toch proberen …  
Promoveren wordt vaak omschreven als een zwaar traject, met veel tegenslagen, frustraties en 
onzekerheden. Ondanks dat ik deze ervaringen deel, ben ik de afgelopen vier jaar altijd heel 
gelukkig geweest. Het samen opzoeken en genieten van leuke dingen, de steun en begrip waar ik 
altijd op kan rekenen, maar bovenal je liefde vormen het belangrijkste fundament voor dit geluk. 
Door de energie die jij me geeft, was het voor mij heel eenvoudig negatieve ervaringen om te 
buigen in iets positiefs en in oplossingen te blijven denken.   
Ik hoop dan ook dat we nog lang samen onze dromen kunnen najagen, zodat we elkaar als 
individuen kunnen blijven versterken.  
 
 

Joep 
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