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Orthonormal basis selection for LPV system identification,
the Fuzzy-Kolmogorov c-Max approach

R. Tóth, P.S.C Heuberger, and P.M.J Van den Hof

Abstract— A fuzzy clustering approach is developed to select
pole locations for Orthonormal Basis Functions (OBFs), used
for identification of Linear Parameter Varying (LPV) systems.
The identification approach is based on interpolation of locally
identified Linear Time Invariant (LTI) models, using globally
fixed OBFs. Selection of the optimal OBF structure, that
guarantees the least worst-case local modelling error in an
asymptotic sense, is accomplished through the fusion of the
Kolmogorov n-width (KnW) theory and Fuzzy c-Means (FcM)
clustering of observed sample system poles.

I. INTRODUCTION

In general, many physical systems and control problems

suffer from parameter variations due to non-stationarity, non-

linear behavior, or dependence on independent variables,

such as space coordinates. These systems vary in size and

complexity from highly advanced aircrafts [1] to induction

motors [2], but they share the common need for accurate

and efficient control of the relevant process variables, which

has to satisfy the rapidly increasing industrial performance

demands. However, accurate modelling of such systems is

in general a complex and tedious task, involving the use of

non-linear partial differential equations, leading to models

with many parameters and high computational complexity.

For processes with mild non-linearities, the theory of LPV

systems offers an attractive framework for modelling and

handling non-linear or time-varying dynamics. These sys-

tems are generally described in a state-space representation
(SSR), where the state-space matrices are usually affine func-

tions of a time-varying parameter vector ζ : Z → Γ. Here Γ
denotes the parameter space. Furthermore, control design in

the LPV framework can be carried out by using LTI control

theory via gain scheduling [3]. Therefore, the LPV approach

can offer a useful venue to meet recent industrial demands.

However, existing methods for identification of such systems

often produce models with high complexity or – for instance

with subspace techniques – with substantial computational

load. Because most control design methods require low-order

models and fast iterations in the identification process, it is

a challenge to develop efficient methods for LPV system

identification that yield models with limited complexity and

computation time. An additional point of concern is that

the McMillan degree of the system may change due to

variations of ζ, especially when the approach is based on

interpolation of local models. One way to overcome these
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problems is to use a fixed-order model structure, capable to

represent the system globally on Γ. Then, identification of the

LPV system is performed by estimating multiple ’local’ LTI

systems around well-placed parameter set-points {ζi} ∈ Γ
[4], [5]. These local models are subsequently interpolated to

synthesize the desired low-order LPV model. However, if the

LTI model structure, used for local identification, is not linear

in the parameters, the interpolation of the estimated models

represents a NP-hard non-linear optimization problem with

pitfalls of local minima or existence of solution. Therefore,

the choice of an easily interpolatable model structure is a

crucial point of this identification approach.

The OBFs-based model representation offers such a struc-

ture with a well worked-out theory in the context of LTI

system approximation and identification [6]. The basis func-

tions are generated by a cascaded network of stable all-pass

filters, whose pole locations represent the prior knowledge

about the system at hand. This approach characterizes the

transfer function of a strictly proper LTI system as

F (z) =
∞∑

k=1

fkφk (z) , (1)

where {fk}∞k=1 is the set of coefficients and {φk}∞k=1 repre-

sents the sequence of OBFs. In practice only a finite number

of terms is used in (1), like in Finite Impulse Response
(FIR) models. In contrast with FIR structures, the OBF

parametrization can achieve almost zero modelling error with

a relatively small number of parameters, due to the infinite

impulse response characteristics of the basis. Furthermore,

interpolation of these models can easily take place through

the interpolation of the coefficients if the set of OBFs is

the same for each local representation. Here, an essential

challenge is to derive a set of OBFs, ’sufficiently rich’ to

describe the varying LPV dynamics at each local parameter

point ζi, with a predefined number of parameters.

In practice, if the physical system is stable, it is a rea-

sonable assumption that some sampled pole locations of the

ζ-dependent pole movements of the LPV system, possibly

with uncertainty bounds, are available as prior information.

These can for instance be the result of preliminary local

identification experiments in different points. If a region Ω
in the unit disc D is also given, where the pole variations

are guaranteed to take place, then the problem of efficient

OBF set selection with a pre-defined number (n) of basis

functions, can be tackled through the usage of the KnW

theory for OBFs, derived by Oliveira e Silva [7]. This
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approach provides the selection of a set of OBFs, that ensures

the least possible worst-case local modelling error for the

LPV system at any point of Γ. However, determining the

region Ω from the sampled pole locations in a robust sense

is not a trivial task. In this paper we aim at a well applicable

solution, based on the joint application of the KnW result and

FcM clustering, which is capable of determining such region

Ω and its associated asymptotically optimal basis in the KnW

sense. This solution, which is an improved version of the

algorithms presented in [8] and [9], is developed to solve

the first two steps of a proposed approach for identifying

LPV systems. This approach consists of the following steps:

1) Determination of pole regions by FcM clustering of

sampled pole locations

2) Determination of OBF’s, based on KnW optimization

3) Estimation of local models, with the optimal OBF’s

4) Interpolation of the local model coefficients

In the sequel, the pole clustering approach is only pre-

sented in the context of Step 1 and 2. The paper is orga-

nized as follows: Section 2 introduces the description and

properties of OBFs; Section 3 describes the n-width result

for OBFs to be used later on; in Section 4 the mechanism of

the KnW based FcM pole clustering is given; in Section 5

the applicability of the introduced method is shown through

an example; and finally, in Section 6, the main results of the

paper are discussed.

II. ORTHONORMAL BASIS FUNCTIONS

Because of space limitations we only consider the case of

real rational (finite-dimensional) discrete-time, SISO transfer

functions. For details see [10], [11], [6]. Let G0 = 1 and

{Gi}∞i=1 be a sequence of inner functions (i.e. stable transfer

functions with Gi(z)Gi( 1
z ) = 1), and let {Ai, Bi, Ci, Di} be

balanced SSRs of Gi. Let {ξ1, ξ2, . . .} denote the collection

of all poles of the inner functions G1, G2, · · · . Under the

(completeness) condition that
∑∞

i=1(1−|ξi|) = ∞, the scalar

elements of the sequence of vector functions

Vk(z) = (zI − Ak)−1Bk

k−1∏
j=0

Gj(z), (2)

constitute a basis for H2− (E), the Hardy space of functions,

which are 0 for z = ∞, analytic on E, the exterior of D,

and square integrable on the unit circle T with norm ‖.‖H2
.

These functions (2) are often referred to as the Takenaka-
Malmquist functions. The special cases when all Gi are

equal, i.e. Gi(z) = Gb(z) for ∀i > 0, where Gb has

McMillan degree nb > 0, are known as Hambo functions
or generalized orthonormal basis functions (GOBFs) for

arbitrary nb, 2-parameter Kautz functions for nb = 2, and

as Laguerre functions for nb = 1. Note that for these

cases the completeness condition is always fulfilled. In the

remainder we will only consider the set of Hambo functions.

Let Gb be an inner function with McMillan degree nb > 0
and input-balanced SSR {Ab, Bb, Cb, Db}. Define V1(z) =
(zI−Ab)−1Bb and φj = (V1)j , j = 1, · · · , nb. The Hambo

basis then consists of the functions {φj(z)Gi
b}i=0,··· ,∞

j=1,··· ,nb
. An

important aspect of these bases is that the inner function

Gb is, modulo the sign, completely determined by its poles

{ξ1, · · · , ξnb
} = Ξnb

:

Gb(z) = ±
nb∏

j=1

1 − zξ∗j
z − ξj

, (3)

and it is immediate that the function V1 has the same poles.

Any F ∈ H2− (E) can be written as

F (z) =
∞∑

i=0

nb∑
j=1

fijφj(z)Gi
b(z), (4)

and it can be shown that the rate of convergence of this series

is bounded by maxk |Gb(λ−1
k )|, where {λk} are the poles of

F . In the best case, where the poles of F are the same as the

poles of Gb, only the terms with i = 0 in (4) are non-zero.

III. KOLMOGOROV n-WIDTH FOR OBFS

Finding appropriate model sets to perform system identifi-

cation is a much studied problem with the main conclusion,

that in general each particular identification problem requires

a model set that is tailored to the characteristics of the system

to be identified. An arbitrary model set is adequate only to

approximate a certain subset of H2− (E), in the sense that

the model set is sufficiently rich to describe only the systems

belonging to that subset, with a relatively small number of

statistically meaningful parameters. One approach to find

appropriate model sets is based on the n-width concept [12],

which was shown to result in appropriate model sets for

robust modelling of linear systems [13]. Oliveira e Silva [7],

[6, Ch. 11] showed that GOBF model structures are optimal

for specific subsets of systems. In the following, the basic

ingredients of this approach for discrete time, stable, SISO

systems are described.

Let S ⊂ H2− (E) denote a set of systems whose optimal

approximation is needed. Let Φn = {φi}n
i=1 be a sequence

of n linearly independent elements of H2− (E), and let

Ψn = Span(Φn). The distance dH2− (F, Ψn) between F ∈
H2− (E) and Ψn is defined as

dH2− (F, Ψn) = inf
H∈Ψn

‖F − H‖H2
. (5)

If Mn is the collection of all n-dimensional subspaces of

H2− (E), then the Kolmogorov n-width of S in H2− (E) is

wn (S,H2− (E)) = inf
Ψn∈Mn

sup
F∈S

dH2− (F, Ψn) , (6)

which means the smallest possible approximation error for

the worst-case F in S. The subspace Ψ̆n ∈ Mn, for which

wn is minimal, is called the optimal subspace in the KnW

sense. A well know result in this context is that the set of

pulse functions {z−i}n
i=1 is optimal for the class of stable

systems analytical in the region (|z| > R), R ∈ R+
0 . The

worst-case approximation error is proportional to Rn.

Let Gb be an inner function with McMillan degree nb > 0,

and let {φj}nb
j=1 be the first nb Hambo functions as defined

in the previous section. Denote by S ⊂ H2− (E) the set of

functions that are analytic in the region {z,
∣∣Gb

(
z−1

)∣∣ > ρ},
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and are square integrable on the boundary of that region,

where ρ > 0 is often referred to as the decay rate.

Proposition 1: (Oliveira e Silva, 1996). For ∀ne ∈
N, Span

{
φj (z)Gi

b (z)
}i=0,...,ne−1

j=1,...,nb
is optimal in the Kol-

mogorov n = ne ×nb-width sense for the set S. The worst-

case approximation error is proportional to ρne .

This remarkable result shows that for the specified region

one can not improve on the worst case error by adding new

poles to the nb basis poles.

In practical situations we are dealing with the opposite

problem, referred as the inverse Kolmogorov problem, where

we are given a region of non-analyticity Ω ⊂ D, for instance

based on sampled pole locations and we want to find the

inner function Gb to describe/approximate this region in the

form Ω (ρ,Ξnb
) = {z,

∣∣Gb

(
z−1

)∣∣ ≤ ρ} with ρ as small as

possible. For a given number of poles nb, this comes down

to the following min-max problem:

min
ξ1,··· ,ξnb

max
z∈Ω

nb∏
j=1

∣∣∣∣ z − ξj

1 − zξ∗j

∣∣∣∣ . (7)

See [6, Chapters 10 and 11] for details on this non-linear

optimization problem and solution methods.

IV. FUZZY-KOLMOGOROV c-MAX CLUSTERING

A. The clustering algorithm

Objective-function-based, fuzzy clustering algorithms,

such as the FcM, have been used in a wide collection of

applications [14], [15]. Generally, FcM partitions the data

into overlapping groups, that describe an underlying structure

within the data [16]. This enables the determination of the

region Ω on the basis of the observed poles, not only

by hard borders, but with membership based, overlapping

areas, which incorporate both the local and the global

data coherency. Moreover, FcM clustering does not rely

on assumptions about the data common to other methods,

making it useful in the situation of pole clustering where little

prior knowledge exists. To exploit these fruitful properties,

in the following such a Fuzzy-Kolmogorov c-Max (FKcM)

algorithm is presented, which provides a joint solution for

Step 1 and 2 of the proposed identification scheme, based

on the fusion of the KnW theory and the FcM technique.

Let c be the number of clusters and Ic an index set

defined as Ix = {1, . . . , x} ⊂ N. A cluster i ∈ Ic is

represented by its center (or prototype) vi ∈ D. Furthermore,

membership functions µi : D → [0 1] determine the ‘degree

of membership’ to cluster i for z ∈ D. By using a threshold
value ε, we obtain a set

Ω = {z ∈ D | ∃i ∈ Ic µi(z) ≥ ε}. (8)

We can now formalize the problem we will consider.

Problem 2: For a given c, find a region Ω, as described

above, such that Ω contains all sampled pole locations (and

possibly the associated uncertainty areas), and such that the

GOBFs, with poles in the cluster centers {vi}c
i=1, are optimal

in the KnW sense, n = c, with respect to Ω and with the

corresponding decay rate ρ as small as possible.

The solution is based on finding clusters in concord with the

KnW concept, and subsequently finding a maximal value

for ε such that all sampled poles are inside Ω. The latter is

equivalent to minimizing ρ. In the sequel we focuss on the

first part, i.e. finding n-width-based clusters.

Let Z = [zk]Nk=1 ∈ DN , be the set of N ∈ N observed

poles for clustering. Denote V = [vi]
c
i=1, and introduce the

membership matrix U = [µik]c×N , where µik is the degree

of membership of zk to cluster i. To constrain the clustering

it is required that U ∈ McN , where

McN =

{
U ∈ [0, 1]c×N |

c∑
i=1

µik = 1 for ∀k ∈ IN , (9)

0 <
N∑

k=1

µik < N for ∀i ∈ Ic

}

characterizes the fuzzy constraints.

Furthermore, distances dik are introduced between vi and

zk to measure dissimilarity of Z with respect to each cluster.

The dissimilarity measure needs to be closely connected with

the original KnW problem to derive an algorithmic solution

of Problem 2. Thereto, the following metric on D is chosen:

κ(x, y) =
∣∣∣∣ x − y

1 − x∗y

∣∣∣∣ : D × D → R+
0 , (10)

called the Kolmogorov metric (KM), and we will use dik =
κ(vi, zk). In the sequel, it is going to be shown that KM

relates the FcM asymptotically to the KnW theory, and in

this way to the solution of Problem 2.

Fuzzy clustering can be viewed as the minimization of the

FcM-functional [14], Jm (U,V) : McN × D → R+
0 , which

in the FKcM case can be formulated as

Jm(U,V) = max
k∈IN

c∑
i=1

µm
ikdik. (11)

Here the design parameter m ∈ (1,∞) determines the

fuzziness of the resulting partition. It can be observed,

that (11) corresponds to a worst-case (max) sum of error
criterion, contrary to the mean squared error criterion of the

original FcM, see [14]. The exact relation of (11) with the

KnW optimality of (U,V) is explained later. The following

theorem yields the ingredients for the approach to solve

Problem 2:

Theorem 3: (Optimal Partition) For a fixed m ∈ (1,∞),
the fuzzy partition (Û, V̂) can only be a local (global)

minimum of Jm if for ∀i ∈ Ic and ∀k ∈ IN :

µ̂ik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
c∑

l=1

(
dik

dlk

) 1
m−1

]−1

if I(k)
s = ∅,

1
nk

if i ∈ I(k)
s ,

0 if i /∈ I(k)
s 
= ∅,

(12)

v̂i = arg min
v∈D

γi(v, Û), (13)

where dik = κ(v̂i, zk), I(k)
s = {i ∈ Ic | dik = 0} (singular-

ity set) with Card
(
I(k)

s

)
= nk and γi(v,U) is the minimal
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value of γ ∈ [0, 1] fulfilling the constraints:[
v
1

]∗ (
µ2m

ik Υ1k − γ2Υ2k

) [
v
1

]
≤ 0, ∀k ∈ IN , (14)

where

Υ1k =
[

1 −zk

−z∗k z∗kzk

]
, Υ2k =

[
z∗kzk −zk

−z∗k 1

]
.

The proof is omitted because of space limitations.

In the FcM case, minimization of (11) subject to (9) is

usually tackled by alternating optimization [14], steering the

solution towards a settling partition in the sense of Theorem

3. For the FKcM this yields the following algorithm:

Algorithm 4: (Fuzzy-Kolmogorov c-Max)
A5.1 Initialization

Fix c and m; and initialize V(0) ∈ Dc, l = 0.
A5.2 Membership update

With (12), solve Ul+1 = arg min
U∈McN

Jm

(
U,Vl

)
.

A5.3 Cluster center update
With (13), solve Vl+1 = arg min

V∈Dc
Jm

(
Ul+1,V

)
.

A5.4 Check of convergence
If Jm

(
Ul+1,Vl+1

)
has converged, then stop, else

l = l + 1 and goto Step A5.2.

B. Properties of the FKcM

In order to explain the specific choices for the fuzzy

functional (11) and the dissimilarity measure (10), we use

the following theorem.

Theorem 5: (Limiting property of Jm)
Let {(U,V)} be a collection of optimal partitions for Jm

each associated with a different m and with no singularity

(i.e. I(k)
s = ∅ for ∀k ∈ IN and ∀m), then:

a. lim
m

+→1

Jm(U,V) = max
k∈IN

min
i∈Ic

{dik} ,

which corresponds to the hard partitioning of Z, i.e.

µik ∈ {0, 1} for ∀ (i, k) ∈ IcN = Ic × IN . Here, V
corresponds to a 1-width optimal Laguerre base.

b. J2(U,V) = max
k∈IN

[
c∑

i=1

dik

]−1

,

which is the maximum of the harmonic means based

distance of each zk to the resulting clusters.

c. lim
m→∞Jm(U,V) = lim

m→∞c1−m max
k∈IN

[
c∏

i=1

dik

]1/c

Furthermore, Jm(U,V) decreases monotonically with

m, and J∞(U,V) = 0.
Thus for a large m, Jm corresponds to a close approxi-

mation of (7), enabling the FKcM to solve directly Problem

2. However, if m → ∞, then µik → 1/c for ∀ (i, k) ∈ IcN ,

which can cause numerical problems. Therefore, to obtain a

well approximating solution of Problem 2, a value of m ∈
(2,∞) should be used. Based on theoretical investigation

and experience, m ∈ [5, 10] yields satisfactory results.

The FKcM-functional (11) is a bounded (0 ≤ Jm ≤ c)
monotonically descending function both in {dik} and U,

which allows Algorithm 4 to always converge (in practice).

This convergence point can either be a local minimum or

a saddlepoint of Jm, fulfilling Theorem 3. For the standard

FcM, convergence to a strict local minimum can be shown,

but the underlying reasoning does not hold for the FKcM

case, as Jm is discontinuous on McN ×Dc. The convergence

of the FKcM is still subject of research.

Generally, (13-14) is a bilinear matrix inequalities (BMIs)

constrained minimization problem if γi and vi are both

unknowns. However, for a fixed γ = γ∗, (13-14) becomes1:

Problem 6: For a given γ∗ does exist any v ∈ D such that[
v
1

]∗
Qk

[
v
1

]
≤ 0, ∀k ∈ IN? (15)

Here Qk =
(
µ2m

ik Υ1k − (γ∗)2 Υ2k

)
.

Problem 6 is a well defined LMI feasibility problem (both

D and (15) are convex). Therefore, if (15) is feasible for γ∗,

then it characterizes a convex set of solutions V (γ∗) ⊂ D
fulfilling the constraints of (14). Then, convexity of Problem

6 implies that ∃γ0 ∈ [0, 1] with Card
{V (

γ0
)}

= 1 and

�γ∗ < γ0 satisfying Problem 6. Based on this, an upper

bound for γ0 with arbitrary precision can be found by

bisection based search [17].

Initialization of Algorithm 4 effects the obtained partition

as it defines which local minimum of Jm will be attractive.

Therefore, it is advisable to repeat the algorithm multiple

times with different initial choices for V(0) on D and then

select the best by comparison of the achieved decay rate

ρm = max
z∈Ω

∏c
j=1

∣∣∣ z−vj

1−zv∗
j

∣∣∣, nb = c, and visual inspection of

the tight fitting of the boundary region
{
z | Gb

(
z−1

)
= ρm

}
with respect to Z, where Ξc = V.

C. Cluster merging
The determination of the number of ‘natural’ groups in Z,

i.e. the best suitable c for clustering, is also important for

the successful application of the FKcM method. Similarity

based adaptive cluster merging (ACM) is frequently used

for this purpose [15], but other strategies exist also. ACM is

more suitable for problems where little is known about the

statistical properties of the data, like in the pole clustering

case. The basic idea is the following: a measure of similarity

is introduced with respect to cluster pairs. A cluster pair

is merged when its similarity does not decrease between

iterations and if also this pair is the most similar of all cluster

pairs. However, merging is only applied if the similarity

measure exceeds a certain threshold value, εs ∈ [0, 1].

V. RESULTS OF APPLICATION

As an example, we consider an asymptotically stable LPV

system S, also considered in [8], given in a parameter-affine

controller canonical form:

x (k + 1) = (A0 + A1ζ (k)) x (k) + Bu (k) (16)

y (k) = Cx (k) + Du (k) (17)

where ζ : Z → [−1, 1], is the scheduling parameter and

A0 =
[
01×4 A021

I4×4 A022

]
;A1 =

21
800

·
[
01×4 A121

I4×4 A122

]
;

1It can easily be shown that for γ = 1 a solution always exists
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B =
[
1 01×4

]T ;C =
[
I1×5

]
;D = 0,

where A021 = 0.155, A121 = 0.1, A022 = [−1.155,
3.244,−4.561, 3.302]T , and A122 = [−0.1, 1,−1, 0.1]T .

By fixing ζ to set-points {ζi}np

i=1 = {−1;−1+h; . . . ; 1},

where h = 0.4, np = 6 local LTI representations of S
are obtained, whose pole locations are samples of the ζ-

dependent pole movements. In our identification approach,

these LTI systems represent the results of local identification.

For the obtained N = 6 · 5 pole locations, the FKcM

algorithm was applied with different values of m and both

with fixed number of clusters c = 5 (denoted by m2c5 for

m = 2) and also with the application of ACM (denoted

by ad). In [8], 3 different metrics-based FcM solutions

were given which clustered the same pole set into 5 fuzzy

sets. This number agrees with the number of sets by visual

inspection and the order of the local LTI systems.

The results of the algorithm are presented in Table I and

Figure 1. By using the cluster centers as basis poles, Ξnb=c =
V, the resulting Kolmogorov region Ω(ρ,Ξc) is also given

in the figures (bold line) with the corresponding ρ in Table I.

In Figure 2, the membership function of a cluster is presented

for m = 2 and 25. Based on these and the previous results

of [8], the following observations can be made:

• The values of Nav
1 are relatively low, but they are

growing with m. Explanation lays in Theorem 5, by

which Jm → 0 as m → ∞. This property introduces

both increased computational error and flat shapes of

membership surfaces for large m (compare Fig. 2.b to

2.a). Flat surfaces give smaller improvement towards the

minimum of Jm in each iteration of Algorithm 4, than

the peak-weighting of the m = 2 case. Compared to the

algorithms of [8], the magnitude of Nav is the same,

however the bisection based solution of (13) results in

a significantly increased computational time.

• The FKcM with ACM (εs = −15dB) always converges

to a 5-cluster-based partition for low m, but in case of

higher values of m, the merging will also have different

attractive solutions, like the m8ad5 and m8ad8 cases.

Here both the 5 and the 8 cluster-based partitions are

attractive, depending on the initial condition. However,

m8ad5 achieves a lower Hp
3 than m8ad8, suggesting

that m8ad5 corresponds better to the natural data struc-

ture. In this way, if the FKcM with ACM converges to

partitions with different c, then selection of the one with

the lowest Hp yields the most valid partition.

• χ 2 is small in all of the cases, showing that each parti-

tion represents well the underlying structure. However,

χ is not comparable for different m. The results in [8]

used m = 2, thus comparison only to m2c5 is available,

giving that m2c5 performs worse. Explanation lies in

the peaking value of the m2c5 associated membership

functions, like in Figure 2.a. As χ has a decreasing

tendency with growing c and an increasing tendency

for growing m, therefore the fact that χ25c5 < χ8ad5

supports that m25c5 corresponds better to the underly-

ing data structure in the KnW sense than m8ad5.

TABLE I

COMPARISON OF ALGORITHMIC RESULTS IN TERMS OF Nav , THE

AVERAGE NUMBER OF ITERATIONS1 ; c, THE NUMBER OF OBTAINED

CLUSTERS; χ, THE XIE-BENI VALIDITY INDEX2 ; ρ, THE WORST-CASE

KOLMOGOROV DISTANCE ; AND Hp , THE NORMALIZED ENTROPY3

Test case m2c5 m8ad5 m8ad8 m25c5
Nav 28 41 45 67
c 5 5 8 5
χ (dB) −19.00 −11.75 −13.15 −12.82
ρ (dB) −10.82 −14.32 −26.52 −15.67
Hp 1.38 1.93 2.79 1.93

• The resulting Ω(ρ, Ξc) Kolmogorov region is relatively

tight in all cases except m2c5. ρ is also acceptable which

means small modelling error if the Ξc defined GOBFs

are used for identification. In the m8ad8-case, ρ is the

best, which is the consequence only of the larger (c =
8) number of GOBFs. Among the c = 5 partitions,

m25c5 is the best in the KnW sense with a very tight

bound, which is in agreement with Theory 5. It is also

superb to the solutions of [8] where the best achieved

ρ was -13.48dB. However, m2c5 is worse compared to

these results which suggests that larger values of m can

ensure only the quality of the FKcM obtained solution.

In conclusion, the FKcM solutions for the considered

example are converging relatively fast to optimal partitions

in terms of Theorem 3. In concord with Theorem 5, as

m increases, these partitions are giving better solutions of

Problem 2. ACM also ensures proper selection of an efficient

number of GOBFs in the KnW sense, if the different settling

partitions are compared in terms of Hp. Furthermore, validity

of the derived partitions is supported by low χ in each

cases. It is important to note that by applying a gradient

search method, like the mechanism described in [6, Ch.

11], in order to solve (7), similar results can be obtained,

however the computational load of such approaches is much

higher and convergence to a global minimum is also not

guaranteed. Further, problems may rise at points where

(7) is discontinuous as there the gradients may not exist.

With the presented FKcM method a good trade of between

computational complexity and quality of the solution can be

achieved by choosing m wisely. It is true, that for even a

relatively small m, the algorithm delivers almost optimal

results with a much smaller computational load than the

gradient search methods and no problems of local non-

differentiability. Furthermore, through the specific choices of

m and Jm, the cost function (11) can be shaped such that

some of the local minima of (7) can be avoided. Moreover,

online selection of the number of needed OBFs can be hardly

implemented theoretically into a gradient search method,

while in the fuzzy domain, strategies like the ACM work

1Nav is based on the results of 10 runs starting from random V(0).
2For checking the validity of (U,V) the Xie-Beni validity index χ [18]

was applied, which gives a common ground of comparison between different
FcM partitions. The smaller χ is, the better the corresponding fit.

3In case of naturally separated data (like in the example), for checking
that clusters produced by FcM algorithms are also well-separating, the
Normalized Entropy [14] can give a handle. The smaller Hp is, the more
valid the hypothesis is that the clusters match with the natural data groups.
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(b) m = 8, c = 5 (ACM)
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(c) m = 8, c = 8 (ACM)

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis

Im
ag

in
ar

y 
ax

is

(d) m = 25, c = 5

Fig. 1. Results of FKcM clustering: sampled poles (o), resulting cluster centers (×), and Kolmogorov boundaries (bold lines).

perfectly. Besides these, the FKcM also produces additional

information, namely it delivers exact definitions of pole

clusters. An other important remark is that in case of LTI

identification, uncertainty bounds of the estimated model are

available, which can be mapped into D in terms of pole

uncertainties. By modification of the FKcM algorithm it is

possible to deliver a solution for Problem 2 in a robust sense.

Because of the complexity of these modifications, which lead

through the utilization of robust LMIs and the hyperbolic

geometry of D for convex uncertainty regions in the KM

based topological sense, the exact details are omitted.
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Fig. 2. Membership functions of a cluster in FKcM clustering

VI. CONCLUSIONS

The FKcM-based pole clustering, presented in this paper,

offers an attractive procedure to determine pole regions and

the associated asymptotically KnW optimal GOBFs, based

on local observations of an LPV system. The determined

bases can be used for fixed-order local identification of the

physical process. This contribution enables the direct use of

the KnW result, improving the approach of [8] as no other

optimization is needed after obtaining the pole clusters. The

method, discussed in this paper is the first step of realizing

the presented identification approach. A next step in our

research will focuss on the interpolation of the local models.

The authors thank Carsten Scherer and Niels Vergeer for

their contribution through many fruitful discussions.
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