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PREFACE 

The two general problems which stand in the background of this study 

are of an interdependent nature. On the vie hand, of the "states of matter" 

from which a macrocosm may be composed, there must be a specification of the 

particular physical system to be considered here. On the other, there is the 

task of securing a suitable means for treating the behavior of at least that 

system. 

Clearly, the first point is concerned with the problem of what the system 

in question~· Here I direct attention towards the "vague" concept of plasma 

which I assume is not a state of matter. but rather, a condition that may on 

occasion pervade those states of matter that are commonly recognized: viz., 

gases, I iquids and sol ids. 

The second point in turn is related to the complementary problem of 

describing what a (class of) system(s) does. Here too, as in the case of the 

first point, there are numerous basic issues of concern that require further 

investigation. Indeed, not only the subject matter of plasma physics but also 

the present means for its treatment appear to be fluid-I ike. 

A theoretical treatment of problems relating to the gross (i.e. bulk) 

behavior of dynamic systems requires a complete set of macroscopic equations. 

For gaseous plasmas, a special class of electromagnetic fluids, there appears 

at this time to be essentially H~o general approaches by means of ~~hich the 

desired relationships are secured. The one is of a particle nature and is 

based upon a (non-)equi I ibrium statistical continuum development; and, the 

other is a classical (i.e. I inear) continuum mechanical approach. 
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It is a foremost purpose of this study to consider the possibility of 

deriving the basic governing system equations from a "new" (for plasma 

physics) viewpoint: that being rational mechanics and rational thermodynam

ics 1. In order to ascertain the possible potential of a modern cont i nuum 

mechanical treatment, the methodology of rational mechanics wil I be used to 

develop a particular non-equilibrium mixture theory for the case of a one-

temperature, chemically reactive, non-relativistically moving, magnetizable 

and dielectric fluid medium. 

Herein consideration is given specifically to the matter of securing 

for a plasma bulk a set of general constituent, mixture and electromagnetic 

field balance and jump balance relationships. And this, in addit ion to the 

proposal of a set of non-1 inear mechanical, electromagnetic and energetic 

constitutive equations which have been taken as being appropriate to the 

model of the system employed. On the basis of said model a set of 

equations emerges from the considerations here which is suitable for 

further theoretical and empirical investigat ion of a broad class of 

natural and laboratory plasma systems. 

This study, in reflecting the tradition of rational mechanics, attempts 

to set down a pre! iminary conceptual framework suitable for the systematic 

investigation of plasmas. Although the theory developed here is of modest 

mathematical sophistication and treats mixtures of fluid s with re lat ively 

simple physical properties, it is nonetheless directed towards ' the ga·ining 

of an eventual "breakthrough in understanding" .of plasma systems. 

It is hencefo rth to be understood that t hese two a s pects of modern 

continuum theory are meant with the mention of only the former. Note 

further that footnotes are subsequently placed at the end of the respec

tive chapters to which they relate. 
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Further, while recognizing the value of well-motivated and executed 

special case studies, the purpose of this endeavor is taken to be served 

with the presentation of such results as ~sually form the starting point 

for those considerations. A treatment of these matters in greater depth or 

an investigation of their applicability must await the results of future 

developments. 
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A. INTRODUCTION 

A~ 1 
may be unde r stood 

2
· to be any collect ion whatsoever of 

charged particles (e.g. electrons and io .. • 1 for which t here ex ists co-

operative behavior. This coherent material response is due essentially 

to the collective nature of the mu t ua l space-charge (i .e. Cou lomb) 

interactions between said paricles. 

A. 1. On representative plasma systems 

Both natura l as wel I as labo ratory p lasmas find, at leas t in a 

statistical continuum description, a partial character izat ion which is 

based upon the assumed existence of certain "microscopi c" 3 pa rame te rs. 

The quantities which are commonly taken i n partic le models of p lasmas 

include, among others, the respective particle number dens i t ies, the 

system related Debye and mean free path lengths, the Larmor radii and 

the charged par ti cle cyclotron frequencies, and soforth . 

To the extent that the theoretical concepts from which these various 

quantities derive are physically meaningful, one can uti I ize t hese para-

meters in terms of their relative mag n itudes and numerical values as 

crite ria for ident i fying the different plasma regimes. Indeed, it is 

possi ble in a general sense .to not e some of the di fferen t types o f 

4 
plasma systems by setting down, as in Ta b le 1 , some of t heir character-

i s tic properfy values; and, p ic toriall y as is done in Fi g . 1 5 

The gene ral topog raphy of gaseous p l asma physics hav ing been given, 

it i s now worthwhile to not e f u r th e r the possibility of c la s s i fying the 

various plasmas shown; and this most si gni fi cantly in te rms of the 



Table 1. Natural and laboratory plasmas: selected characteristic properties. 

DIMENSION ElECUON NEUTRAL TEMPUATURE MAGNETIC PLASMA COLLISION ElfCTAON OE BYE CONDUCTIVITY 
DENSITY DENSITY FIELD FREQUENCY FREQUENCY CYCLOTRON LENGTH 

FREQUENCY 

L " " T • w u WH >-o u . p < 

-3 m-3 OK T 
-1 -1 -1 -1 -1 

m m .. , .. , .. , m ohm m 

LABORATORY 
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10-6 4 
Ga1 diuhorge 10 10 10 

N 
MFD direct eneJgy 

10-1 1021 1024 10
3 1012 1012 1011 10-1 

con version plas mo 1 1-10 

Thermonuclear plasma 10-1 1022 0 10
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10 1013 10
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10 10
7 
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Liquid l't1etol 0 10 1 10 
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5 -8 
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Sunspot 10
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4 
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5 
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mater i a 1 res ponse poss i b i 1 it i es o f said p 1 asmas. Motivated by t he needs 

of astrophysical and control led thermonuclear fusion plasma research, 

6 Kantrowitz & Petschek prepared, on the ba.sis of particle arg uments, 

the particular "equilibrium" classification given in Fig. 2. 

Because of the i r relative importance in i nfluencing plasma behavior, 

the thermodynamic variables of electron number density (n) and tempera
e 

.!.!!!:!. (T) were taken, together with the strength of the magnetic f lux 

density (B), as the parameters in terms of wh ich this classification is 

expressed. The speci f ic choice of deuterium here fol lows from pract i cal 

advantages it offers: viz., it has only one valence electron and can 

thus form only one ion sort; and, it is su i table for inves t igation of 

high-temperature plasma behavior as occurs, e.g., in fusion researc h. 

An additional important cond i tion placed upon this classi f ication 

is that of the ratio (B ) 7 of the ideal ga s k inetic 

to that of the magnet i c flux density f ield (82/2µ 0) 

press ure (p = nkT) 
e 

be ing equal to unity . 

Indeed, special emphasis has been placed upon this mini mum li mi t case 

for plasmas of magneto-fluid-dynamics (MFD ) wherein the cou pling be t ween 

the plasma and the electromagnetic field is strong and below whi ch 

8 "useful" MFD is not to be expected 

9 Let AD denote the Debye length for elec t rons Thi s impo r ta nt 

plasma quantity def ines for an equilibr i um plasma a Debye sphe re of 

radius AD about a g i ven charged particle; whkh, given a "suffic i e nt" 

number (ND= nA ~) of charged parti c les t here in , shi e ld s t hat part ic l e 

f rom the Coulomb fo rce field due to othe r charged parti c l es l ying ou t~ 

side said sphere. The parameter AD is a measure for the relat i ve impor

tance of space-charge ef fects i n a g i ven sys tem here and s erves t hu s 
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as a criterion for identifying those systems which are (not) to be 

considered as plasmas. Conventionally, if L denotes a characteristic 

geometric length of a particular syste1" 'cf. Table 1), then only those 

1 0 systems for which AD cc L are cal led gaseous plasmas. For the pur-

pose of Fig. 2, L has been taken as be i ng 1 cm 

For a statistical continuum approach to the study of plasmas to be 

physically sensible, it is at least necessary that theaveragesof the 

various quantities involved (e.g. charged particle number densities) 

exist over a volume A~. This requirement is customarily satisfied 
11 

by 

the introduction into the considerations of such an approach, of the 

condition that ND» 1. Further, using AD it is possible to introduce 

the (electron) plasma frequency w (oc nt). This important parameter is 
p e 

characteristic of the rate of longitudinal osci I lat ions of electrons in 

~ plasma due to electrostaiic fields; and, as such, is a measure of the 

number density of that particle. 

In terms of models for the collisional interactions between particles 

it becomes possible to secure expressions for the approximate average 

distance traversed between particle encounters. These lengths are called 

mean free paths and they are important characteristic microscopic prop-

erties of a given system. Here, they are indicated respectively for the 

electrons and the one type of ion involved by A and A. The otherwise 
e i 

possible role played by neutral particles has, it may be observed, been 

taken in Fig. 2 as being negligible since the gas in question is "fully" 

ionized 12
. Related to these col I is ions of, but not necessarily between, 

electrons and ions are respectively the times 1 (= 1/v ) and 1 (= l/v ) ; 
c . .c 

e e 1 1 

where v and v represent the indicated particle col I is ion frequencies. 
c .c 

e I 
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.... 
As is wel I-known, the trajectories of charged particles i n a B field 

are in general helices. As such, the motion o f a charged particle can be 

decomposed into two parts . The one part i s a mo tion para I lei o r a nti 

paral lei to B; wh ile, the other is a circular motion with a charge

dependent direction in a plane normal t o ii. Characteristic of this 

latter motion for the case of electrons (ions) is the cyclotron f reguency 

wc(~c) and its relat ed _L.;;;a_r __ m-'o_r_r..;;a...;d_i...;u~s >-L (~L). Lastly, I i ntroduce here 
e 1 e 1 

for the electrons and ions the not unimportant Hall parameters B (= 

13 e 
wcT = wc/vc = A/ AL) and B. These last quantities are (where de f i ned) 
ee e e ee i 
characteristic for a given plasma of, for example, the degree of an iso-

tropy induced respec t ive ly in the electron and ion gases by the B fie ld 

related to that s ystem. 

Although Fig . 2 relates most direct ly to a deuterium plasma and not 

to any of the other gaseous plasmas found in the systems of Fig. 1, it is 

worthwhile nonethe less to consider both fi gures togethe r. It i s necessary 

in this regard to apprecia t e the f a c t that, at l eas t in pr inciple , it is 

possible to prepare for any of the other (e.g. laboratory) p l asma regions 

of Fig. I a classi f i cation such as that o f Fig. 2. At most i t i s to be 

expected that a certain shifting would occu r of the l i ne s of Fig. 2 which 

define the regions thereof to be discussed now . The qual itative features 

of that f igure, which I wish to exploit for i I lustrative purposes he r e 

would, however, 
14 

remai n 

"High"-density gas p la sma s: region S 

15 For such plasmas , e l ectron and ion col I i s ion processes domi nate 

over those of a space-charge e lectric o r magnetic field o rigin . The 

velocity di s tribution f unc tion s of thes e pa rticles are max1•el lian at the 



7 

"same" temperature; and, the isotropy of the system is evidenced in parti-

cular by the fact that with B << 1 and B << 1, its transport properties 
e 

(e.g. electrical conductivity} are sca'ars. 

"High-to-medium" density gas plasmas: regions T and T-Me 

-+ 
With decreasing n and increasing T, the B field assumes control over 

e 
the electron motion while the ion behavior, as in region S, is influenced 

predominantly by collisions involving those particles. Here too, the 

respective particle types possess maxwel I ian velocity distribution func

tions, but not necessarily at the same te~perature 16
• Noting in Fig . 2 

the I ine dividing regions of unequal temperature, it is seen that T-Me is 

the portion of region T where electrons and ions enjoy the same tempera-

tu re. 

In this case B > 1 while B < 1; the consequence of which is that the 
e · i 

plasma has mixed transport properties. That is, the system now has ani-

sotropic (i.e. tensor) material response with regard to those properties 

(e.g. electrical conductivity, diffusion and thermal conductivity} which 

are strongly dependent upon the electrons. On the other hand, however, 

the isotropy of the plasma is preserved here in terms of the still scalar 

ion-dependent properties (e.g. vJscosity}. 

"Medium"-density gas plasmas: regions M and M-Me 

In the M region, for which n and T can respectively be yet lower and 
e -+ 

higher, the ions too succumb to the now irresistable influence of the B 

field upon their motion. Thus, with B >> 1 and B >> 1, the anisotropy of 
e i 

the plasma induced by the B field is total, for all of the transport 

properties of the system are now of a tensor character. Not unimportant 
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is the fact that the tendency which arose in region T for the electrons 

and ions to uncouple themselves energetically continues here. Aside 

from the region M-Me where the rate of energy transfer between these 

gases is presumed sufficiently high to keep them at the same tempera-

ture, it is possible (at least in priciple) that in region Meach gas 

17 assumes a well-defined temperature of its own 

The extent to which this actually occurs, if indeed it does occur, 

is now dependent upon additional factors related to the plasma system. 

With the decline in importance of the collisiona l processes, there 

IB h · ·I· f 1. . 1 d appears t e poss1b1 1ty o, e.g., non- 1near wave-part1c e an wave-

wave interactions which constitute a fundamentally different means of 

dissipating energy; and consequently of equilibrating the electron and 

ion temperatures. 

"Low"-density gas plasmas: regions EM and E 

-> 
For the EM region the B field is still the major factor influencing 

the behavior of the electrons; and thus, with AL < L, the condition S >> 1 
e e 

holds. Here, however, ~L > L and the space-charge electric field has thus 
I 

essentially taken over the role of control I ing the ion motions. In this 

case the transport properties of a given s~stem, if defined, remain 

anisotropic. 

With a yet further diminishing of n the motion of the electrons, 
e 

I ike that of the ions, becomes primarily dependent upon said electric 

field; it having replaced the hitherto important B field. This is the 

region E for which AL > L and ~L > L. 
e I 
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"Very I ow"-dens i ty gases: region G 

When n and Tare such that AD > L, the system o f inte res t has passed 
e 

from a plasma condition to that of an ionized, but col I is ionless 19 , gas 

of very low density. Such systems lie in region G; but, due to the fact 

that a (statistical) continuum descript ion of them is not poss ible, any 

consideration of these systems 1 ies beyond the scope of this s tudy. 

Boundaries 

The low-density (i.e. lower) boundary of this classificat ion is, as 

discussed above, t hat line for which AD> L. Next, the low-tempe rature 

(i .e. left) bounda ry here occurs at t he l ine de noting a 50 pe r cent 

degree of ionization 
20

. With increasing n the high-density (i.e. Upper} 
e 

boundary is defined essentially at al 1 points where the plasma must be 

treated with qua ntum mechanical methods; this being due to the e lectron 

spin-spin interaction dege neracy which appears . 

A further increase of n, althoug h not shown here would 21 indicate 
e 

the passage of t he system through the 1 iquid and sol id phases o f matter, 

through a region of relativistic degeneracy, and eventually into the 

region of matter existing •t nuclear densiti es; s uch as white giant and 

white dwar f s tars, novae , etc. Whil e it does not seem to be known if 

these latter circumstances of matter sat i sfy the definition o f a plasma 

used here, plasma phenomena are known 22 to exist under certa in con-

di tions in the former r egion of matter ( i . e. 1 iquids and so l ids) that 

is "somewhat" more condensed than the gaseous systems considered here. 

I am thus l ead to rema rk that in general, plasma, rather t han bei ng a 

23 "fourth state" of matter , may perhaps be more val id ly t houg ht of 
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only as a condition thereof. This contention is strengt:1ened somewhat 

by the fact that even with the high-temperature (i.e. right) boundary 

of Fig . 2 given as ·that line for which the speed of electrons closely 

24 
approximates that of I ight, it is possible to further treat the 

properties of that gas using the concepts of relativity theory. Although 

relativistic plasmas do exist 25 , they too, "like" the quantum plasmas 

mentioned above, are not considered here. 

A.2. Position of the problem 

A.2.a. Purpose 

The formal descr i ption of the mechanics of a gaseous MFD plasma has 

developed essentially along I ines analogous to those found in the c l ass i-

i h . f f I . d Th . f I 1 . d d. . 1 . 2 6 ff ca mec an1cs o u1 s. 1s more u y mature 1sc1p 1ne o ers ·two 

methods for attacking a particular problem: the particle approach and the 

classical continuum approach. An investigator of plasma behavior may find 

upon examining the physical conditions characteristic of a certain 

problem (e.g. the particle densities) that one or the other of these 

treatments is to be preferred. 

Statistical continuum approach 

27 A statistical continuum approach ai ms in part to determine, via a 

treatment of the presumed microscopic nature of a given system's material 

components, the quantities which enter into the macroscopic system 

. 28 
equations (e.g. the so-cal led ensemble averaged parameters ). For the 

case of, say, gaseous plasmas, thi s approa ch concerns i tse l f also wi th 

the physical composit ion of a given system, t he "structure" of i ts ma-
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terial components, and the microscopic nature of the interactions wh ich 

involve these components. 

When the plasma density, for exampl,. , is such that an assumption of 

"continuum" properties of the system is physically reason<.ble (such as i n 

regions S, T, T-Me, M and M-Me here 29 ) one can augment the individua l 

partiile approach (needed in regions E, EM and G 30 ) by certain statisti-

cal considerations in order to secure the macroscopic equations of that 

system. Of importance-- in general, but in particular for th is study, is 

the fact that in the area of gaseous plasma physi cs deemed suitable for 

laboratory MFD energy conversion purposes (cf. Fig. 1), researc h based 

31 
upon such an approach is carried out even though the condition N

0 
>> 1 

is clearly not satisfied. 

With regard to plasma systems in general, partially ionized gases 

or otherwise, it is a no less significant point here that the present 

body of microphysical knowledge of, e.g. interparticle potent ial energy 

f . 32 d. b . . 1 . . 33 d unctions , non-a 1a at1c part1c e 1nteract1ons an process cross-

sections 34 , appears to be insufficient to permit the establishment of 

an adequate statistical continuum model for various plasmas of interest 

35 . The consequences of such a situation are reflected, e.g., i n the 

results of any c lassical mean free path theo ry 36 ; which type of theory, 

it may be further noted, is itself open to doubt 37 . It seems , in addi-

38 
t ion, that the Chapman-Cowling formal ism which is an importan t factor i n 

contempora ry plasma physics r esea rch, has al so been questioned 39 with 

regard to both its degree of relative generality a s wel I a s its appl ica-

bility under par ticu lar circumstances . 
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Generally speaking, for this approac h seen in regard to plasma 

physics, the concepts of (non-)equi librium classical kinetic theory and 

statistical mechanics are thus seen to serve as one of the bases from 

which the conventional MFD system equations have been obtained. 

Classical continuum mechanical approach 

The statistical continuum approach was,most characteristically, 

predicated upon a presumed knowledge of the particulate nature of a 

material system. This i s not, however, the only manner in which the 

macroscopic behavior of plasma systems may be studied. 

The plasma investigator also has the option, under appropriate con-

ditions, of attempting to describe a given system by means of a classi

cal continuum mechanical approach 
40

. This alternative technique, which 

for MFD is neither more nor less general than the statistical cont inuum 

41 
method , provides for the examination of a given system by ass umi ng 

from the beginning a macroscopic point of view. In "neglec t ing" the 

particle nature of matter, the so-called physical insight into the be-

havior of the system in question is taken to be relatableto a hopefu lly 

sufficient degree of carefully obtained macro-phenomenology. 

Of special interest he re is the fact that, r egardl ess of the necessity 

42 
of a multi-fluid description of MFD plasmas , the classical continuum 

mechanical approach has es:abl is~ed in this problem area essentinl ly 

43 only a single-fluid t reatment of pl a smas . Further yet, when t he devel-

opment of the system mec hani cs is compl emented by c las s i cal irrevers ibl e 

h d . 44 . d . 45 t ermo ynam1cs cons• e r a t1ons , ser ious objec tion has been raised 

with regard to the derivation of the basic sys tem equations. 
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For an MFD problem thus, a statistical continuum approach treats 

the plasma in terms of its various material components; attempting 

thereby to derive the macroscopic equa• ·~ns of a given system from 

considerations relating to the individual particle natures of said 

components. On the other hand, the method of classical continuum mech-

anics seeks the basic macroscopic relations by initially neglecting 

the discrete material nature of a system, then postulat i ng the necessary 

kinematical and dynamical expressions, and finally supplementing the 

(semi-)empirical info rmation relevant to a particular problem. 

Both of these approaches, although differ(ng in attitude, have been 

46 
shown for MFD circumstances , to arrive at essentially the same macro-

scopic equations. Unfortunately, both approaches also appear 47 to be 

unable to provide a (adequate) general macroscopic description of the 

(non-) linear dissipative, i.e. irreversible thermodynamic, processes 

which are related to non-equilibrium plasma systems. 

On the basis of these considerations, together with the earlier 

mentioned shortcomings of these two approaches to the study of dynamic 

plasma behavior, I conclude the following: viz., that it is desirable 

to examine the feasib i lity of securing a formal ism that could offer 

for the same problem area a description with fewer limitations than 

that of the statistical continuum method, and a more detailed insight 

into the macro-physical character of a given plasma system than that 

given by the classical continuum mechanical method. This constitutes 

essentially the purpose of this study. 
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A.2.b. Problem 

The general problem which this study attempts to provide a cont ri

bution towards solving is that of theestabl i shment of a unified, self-

consistent and "exact" theory of the non-linear macroscopic mec han ics, 

electrodynamics and energetics of finite and bounded real multi-continua 

plasma dynamic systems. In terms of t he actual systems concerned (cf . 

Fig. 1), this probl_em poses in general the necessity of describing the 

material behavior of real, chemically reactive, radiative, anisotropic, 

compressible, inhomogeneous, magnetizable, polarizable, non-equ i I ibr ium 

and non-I inear electro-magneto-mechano-thermo-dynamic mixture sys t ems. 

I hasten to point out that this is not just an arbitrary hypotheti

cal problem. It is concerned with real material systems and its solu

tion in some physically more adequate sense than has been presented to 

48 
date is not only highly desirable, but perhaps even urgen t 

This problem unquestionably reflects a framework within which a 

generalization of the contemporary approaches to laboratory plasma 

physics may be sought. However, and not surprisingly, for numerous phys

ical and mathemati cal reasons it does not appear to be possi ble to bring 

t he probl em as sta ted above to a " sa ti s facto ry" closure at this ti me . 

Hence, I have not attempted to consider said problem in the degree of 

generality expressed a bove; but, l propose i nst ead to exami ne i t here 

in the more restri c ted sense which I sha l I now discuss. 

Rational mec hani ca l a pproach 

The discipl ine o f rational mecha nic s , or modern natura l philosophy 

as it is less commonly cal led, is in its modern form re lat ively young 
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(dating from the mid-1950's 49); but, i ts tradition lies essent ially in 

the eigthteenth, and to a lesser degree the nineteenth and early twen

tieth, century efforts of a handfu l of en 50 . It is now, as an exten-

51 sion of geometry , fundamentally a mathematical sc i ence with the pur-

pose of establishing a rigorous theoret ical foundation for t he study of 

the physical behavior of material cont i nua. 

The basis here for a non-I inear field theory treatment of gross 

irreversible material behavior rests essentially upon three general 

sets of assumptions. The first concerns itself with the topo log ical 

character of the space involved; while the second and third relate, 

respectively, to the kinematics and dynamics of the class of systems 

whose behavior is to be described. 

Based upon th i s foundation rat ional mechanics in particular strives, 

via use of an ax iomatic approach to· its subject matter, to secure phys-

ical ly wel I-motivated theoretical models of material systems wh ich are 

l . . If . 52 d I 53 · h . · exp 1c1 t, se -consistent , an compete 1n t e 1r construc t ion. 

Th . I . d T d I I 54 . f f 1 1s approach, as exp a1ne by rues e , consists o our e ements: 

viz., primitive quantities, definitions, general axioms, and proved 

theorems. In t e rms of the physical pri miti ve quantities wh i ch are de-

fined only to the extent that the mathematical proper ti es are gi ven, 

the definitions of additional system-related quantities can be made. 

Relationships sat i s f ied by these t wo e l ements are physica l axioms 

("laws") and he re they are o f t1~0 t ypes : k inematical and dynami cal. 

Axioms of kinematics a re r epresented by the set of ba la nce eq uations 

proposed for the type of system under consideration; and, they ar e val id 

for the class of a l I such systems. On the ot her hand, the axi oms of 
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dynamics are represented by the set of "appropriately invar i ant" a nd 

thermodynamically restricted constitut ive equations postulated; which 

expressions make the theory system-specific in terms of its material 

response possibilities. 

55 Experience and not, of course , expe riment is the guide whic h 

motivates those assumptions as are made. Rational mechanics draws i ts 

physical motivation from the body of common experience (e.g. "phenomen-

ology'') relevant to the specific problem area(s) under study; while, 

its theoretical motivation derives in part and to varying degrees from 

the conceptual backgrounds of those othe r disciplines which concern 

themselves with the same subj ect matter . Here (cf. Fig. 3) t hese are, 

e.g., statistical and classical continuum mechanics. Wit h the estab-

1 ishment of the proved theorems and their related coral laries 56 for a 

given theory, the for mal structure of that particular rational mec hani-

cal description is taken to be complete . 

In the relatively young di sci pl i ne of rational mechan i cs there are 

a number of non-trivial open questions which serve to make this · field 

a controversial one at the present time. For example, the number of 

basic principles i nvolved and their precise formulation 57 , together 

with the (degree of) applicability of an axiomatization procedur e to 

physical theories 58 remain debatable subjects. Regarding both of these 

points, I shall endeavour to fol low an en l igthened course in the sequel 59 

It is on the basis of two points that I propose here a rationa l 

mechanical approach to the probl em of describing the general mater i al 

behavior of plasma systems as a, if not the most, worthwhile of t he 

presently avai lable alternatives. The first point to be noted is t he 
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fact that a theory formulated thusly possesses in contrast to numerous, 

if not the majority, of plasma theories secured otherwise, not onl y a 

conceptual simplicity, clarity, rigor and a not undesirable aesthetic 

qua I ity; but also, with regard to the eventual establishment o f results 

60 
of permanence , the capacity to aid in making itself as sel f -cor rect-

61 
ing as might possibly be expected The second, independent and here 

also important point is the recognit ion of the striking t heoretical and 

experimental successes of this discipline in other areas of experience 

62 and these with regard to problems the solution of which lies beyond 

63 the present capacity of the traditional approaches to provide 

Rational mechanics strives towards a un i fication via mathema ti c s 

of the diverse physical sciences; and hence , it does not restrict its 

interests and efforts to any one of them in particular. It is in t he 

above indicated sense that the word "rational" is employed here. I mean 

hereby no offence to those persons who by i nclination or circumstance 

select to treat phys ica l probl ems i n terms o f ad hoc model~, approx i -

mative methods, "phys ical intuition", and soforth. 

As observed earl ie r, the establishment of a theoretically " adequate" 

desc r iption of the gross non-1 inear irrevers i ble thermodynamic behavior 

of fluid mixtures i s a probl em meriting study for it s own sake; but 

also one deserving attention on the basis o f practical cons iderat ions. 

With the appl icabi 1 ity of rational mechanics to the investigat ion of 

gaseous plasma systems constituting a main purpose of thi s s t udy , I now 

proceed to further de limit the scope of same . The restri ctions placed 

upon this st udy concer n, nat urally enough, both it s conten t and its 

genera Ii ty . 
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Regarding content, as seen in relat ion to the aforemen tioned 

general description, I wish to present in greater or les ser degree the 

salient points pertinent to a particu li ' rational mechan ica l t heory: 

viz., that for a one-temperature, chemically reactive (but rad iation-

less), non-relati vi stically moving, magnetizable dielectr ic fl uid mix-

ture. The point of view adopted here i s that the bas i s fo r sa id treat-

ment is given i n the form of a complete set of system balance and jump 

balance equations together with the "appropriate" constitut ive equa-

tions indicated therein . The soluti on of these relationships for the 

as yet undetermi ned field quantities, under the boundary and in itial 

conditions that delimit the problem of interest, is ta ken to f ulfi I 

the main object i ve of a the rmodynamic constitutive theory f o r the prob-

lem 
64 

posed 

The content of the treatment of the constitutive equations wi I 1 be 

based upon certa i n s e lec t ed rational t he rmodynamic and mode rn const i tu-

tive theo retical princ iples. Due , however , to the as ye t un resolved 

.nature of various fundamental problems he reto related, t he content o f 

the rat ional mechanical treatment of cons titutive equations wi 11 not 

have the " absolute" characte r of gene ra li ty as found in the set o f 

balance equations secured by employing t he same fo rmal ism. 

Among these problems are, e.g . , the mi xed invariance prope r ti es 

(Euclidean-Galilean/ Lorentz invariance of the mechanica l/e l ec tromagnetic 

fie ld equati ons ) of the sys t em, a nd the probl em of "co r rec tl y" i den ti fy-

65 ing and using ent ropy concep t s in a modern cont i nuum theor y . Regard -

l ess o f these di f ficulties, the result s t hat can be der i ved are , with 

a ll due respect for the various points of interpretation, of equal or 

greater macroscop ic ge neral i ty tha n those f ound f rom convent iona l 

a pproac hes. 
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Liu c MUiler 66 have recently examined the problem of descr i bing 

the material behavior of single simple 67 heat conducting continua in 

an electromagnetic field. In .this study I undertake the specific task 

of extending, in some respects, their study to a particular case of 

non-simple heat conducting Eulerian fluid mixtures which are also in 

an electromagnetic field. 

For systems of this type where the mixtu r e may contain a (a= 1,2, 

s) constituents, I take the foremost objective of a theory such as 

that contemplated above to be the following: viz., the calcu lation, as 

functions of position and time, of the fiel d quantities 

p Ci::, t l. T(i::, t), 
a 

v. (~. t). 
I 

a 
E. (~, t) 

I 
and B. (~, t). 

I 

Here, the fields are respectively the mass density of constituent a, 

the absolute temperature of the constituents and the mixture, t he velo-

city of constituent a, the total e lectric field taken with res pect to a 

stationary obse r ve r , and the magnetic flux density. 

In a field theo r y the macroscopic prope r ties of a mater i a l system 

are considered to be f ield quantities. Gene rally speaking, al I of the 

relations hips wh i c h relate the diffe rent fi e ld quantiti es to one a nother 

are f ie ld equations . In this study (cf. F ig . 3) the term "f i e ld eq ua-

tions" shall be taken to mean the set of balance and jump balance 

equa tions for al I t he various ma croscopic properties of a g i ven system; 

tog e ther with a set of constitutive equat i ons take n for a s pec ific 

mate ri a l sys t em. 

The possible mean ingfulness o f a t r ans i tion from the mo r e f ami I iar 

approaches of pl asma analysi s to that of r at ional mechanics is not 

(1) 
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necessarily made evident with the determination of a set of balance and 

jump balance equations (cf. Chpt B). Under less general circumstances 

than those considered here, said results when contrasted with those of 

more conventional approaches may give the false impression that rational 

mechanics .has little new to offer. 

All the (dis)similarities to other treatments notwithstanding, the 

statement above would constitute a prematurely formed conclusion by an 

individual who does not yet realize that any treatment whatsoever of 

only the kinematics of a system represents at best only a partial, 

albeit important, descriptive element of that system. Thus, Chpt. B 

shall present the essentials, for this study, of and related to the 

rational mechanical kinematics of a mixture of material and electro

magnetic field continua. It becomes then in greater measure . the burden 

most particularly of Chapters C and D treating, respectively, consti

tutive theory and the problem (introduced in Chpt. B) of entropy, to

gether with the subsequent chapters, to make clear in some respects 

the possible favorabi lity above the more traditional methods of a 

rational mechanical investigation of plasma continua behavior. 
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Footnotes to Chapter A 

The origin of this word seems to I ie with the introduction of the word 

"protoplasm" in the nineteenth century by the biologist Purkinje. The 

meaning of "first plasma" was subsequently given to this initial term 

by von Mohl, a botanist. In the particular context of plasma physics 

here, the word "plasma is commonly attributed to Tonks & Langmuir 

[1929, 1, p.196, footnote SJ; who, perhaps, in studying arc discharges 

observed the jelly-I ike behavior of the medium and were motivated to 

use this word. 

2 Kunkel [1966, 8, p.3]. Note, there exist other definitions of plasma in 

the I iterature (cf. for example Sutton & Shetman [1965, A, p.6]}, but 

these are essentially special cases of that taken here (cf. Kunkel 

[ 1966, 8, p. 5 J) . 

3 Shkarofsky, Johnston & Bachynski[1966, 12, pp.2-3] _make a finer dis

tinction between "microscopic" and "macroscopic" than that which I employ 

here. On the basis of an argument related to the combination- and 

division-invariance of charges, the Debye length and the plasma frequen

cy are considered to be macroscopic parameters there. 

4 This table is adapted from that given by Bueren [1966, 2]. The values 

for magneto-fluid-dynamic plasmas added here were calculated from 

selected experimental results presented in [1966, 9]. 

5 Kunkel [ 1966, 8, p. 8] . Here too, the region denoted for magneto-fluid 

dynamics (MFD) direct energy conversion (DEC) systems has been added. 

It is perhaps worthwhile to observe that only gaseous plasmas 

are represented in this figure. Other known plasma systems which 

could supposedly be introduced into, and hence generalize, this 

overvi ew i nclude, among others, the fol lowing : 
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liquid metals (Kirko [1965, 10)), semi-conductors and semi-metals 

(Anker-Johnson [ 1966, 1 )) and metals ([1965, 6)). 

6 
Kantrovitz & Petschek [1957, 3, p.5). · . 's classification, which is 

slightly adapted, is but one of a number of various types of 

classifications that exist in the I iterature of plasma physics. 

7 The "plasma beta" is discussed, e . g., by Glasstone & Lovberg [1960, 

5, pp.52-53) and Kral 1 & Trivelpiece [1973, 5, p . 7) . 

8 Sutton & Sherman [1965, 17, p . 10). I note that there exist at 

present several names for the subject area taken under consideration. 

Examples include plasma dynamics, magneto-gas-dynamics, magnetohydro

dynamics, and soforth. 1 select the term "magneto-fluid-dynamics" 

for two reasons: first, it reflects all fluid and fluid-like media; 

and, it permits a distinction to be made with, e.g., magneto-sol id

dynamics. This last mentioned subject which relates to, say, magneto

elastic media does not ente r into the considerations of this study. 

9 A Debye length is, of course, definable for ions. Further yet, with 

some quantum mechanical modifications, the concept of Debye length i s 

adaptable to the case of sol id-state plasmas. 

lO Kunkel [1966, 8, p.4), Shkarofsky, Johnston & Bachynski [1966, 12, 

p.2) and Spitzer [1962, 8, p.22) . 

11 Kunkel [ 1966, 8, p .6) , Shkarofsky , Johnston & Bachynski [ 1966, 12, 

p.3) and Kral 1 & Trivelp iece [1973, 5, p.4). With regard to meaning 

of thi s "plasma approximation" condit ion, there appears to be some 

difference of opinion in the 1 iterature. The last two cited references 

s eem to ho ld to the posi tion that with dimini shing N0 one can speak 

less an d less of the systems as a pla sma, and t hat a fluid descript i on 
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of a medium with very low N0 , say less than or about equa l t o unity , 

is not valid. Gott lieb [1965, 8, p.46], on the other hand, exp resses 

the view that the number of charged part icles per cm- 3 may be ~ 

number and the system in question is sti 11 a plasma as long as it 

satisfies the condition A
0 

<< L. I might further add that i nas much 

as the degree of ion ization does not enter into the de finition of 

pl asma employed he re, it seems reasonable to state that if t here are 

"enough" neutral particles in that cm- 3 , a continuum descripti on 

appears to be possible . Lastly, it may be noted that regardless of the 

relative importance of this point, not al 1 authors (cf ., e.g . Sutton & 

She rman [1 965, 17]) are explicit with regard to their introduction of 

it into their respective treatments. 

12 Alfven & Falthammer [ 1963, 1, p. 134 and p. 180] state that a p lasm~ 

is slightly (highly) ion ized if the deg ree of ionization is less 

(greater) than 1 per cent. 

13 5utton & Sherman [ 1965, 17, p.156]. 

14 
Petchek [1958, 4, p.967]. 

15 Cf., for example, Alfven & Falthammer [1963 , 1, pp.169-1 970 ] wi th 

r egard to the den s ity-dependence of plasma prope rties. 

16 
Depending upon the rela tive ( in) a b il ity of the bulk e lectrons, ions 

and possibl y neutral particles to exc hange energy betwee n themse l ves 

at a sufficient ly hi gh rate, the respect ive kinet ic temperatu res of 

these gases may be (un) equal; in which case the sys tem in question 

i s sa id to be in a condition of therma l (non-)equilibrium. 

An awareness t hat multiple-tempe rature plasmas can exist i s evi-

denced at least a s earl y as 1929 (cf. Tonks & Langmuir [ 1929, 1, p . 

20 1]). Kinetic theory cons iderati ons of this possibil i t y were given 
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shortly the reafter (v. Enge l & Steenbec k [1932 , I; 1934, \]);and , 

numerous authors have since discussed (aspects ) of t hi s s ubjec t. 

The first examination of this ma t ·e r in ra t ional mechanics seems 

to lie in the work of Truesdel l [1957,5, p.\62 ] . Here also, t h is 

point has been taken under consi derati on by ot he r researc hers i n t his 

field (cf . , e.g. , Dunwoody & Mulle r [1 968, 2 ]) . 

17 Clearly, t he possibly important role played by, e . g . , the radiation 

field with regard to the establishment and mai ntenance of indiv idual 

component temperature f ields should be given close attention in a ny 

particular problem. This study, while recogn izing this fact, I imi ts 

its scope to those systems for which the physical consequences of 

said radiation field on the material response of the plasmas i nvolved 

are neg\ igible. 

18 This point is noted, e.g., by Fishman, Kantrow i tz & Petschek[1960, 4, 

p.961ff], Sagdeev & Galeev [ 1969, 6] and Tsytovich [1970, 7]. 

19 Sutton & Sherman [1965, 17, p . 12]. See a lso Kantrowitz & Petschek 

[1957, 3, p . 12]; in addition to noting footnote 10 above. 

20 As shown by Linhart [1969, 3, p.21], the difference between this curve 

-2 and that one for, say, 10 per cent deg ree of ionization is that the 

latter I ies slightly to the left of the former i n such a rep resentat ion. 

21 Cf. Fermi [1966, 4, p . 171] . 

22 Among others, Shkarofsky, Johnston & Bachynski [ 1966, 12, p . 5] make 

mention of this fact. 

23 These words which Crookes [1879 , 1, p. 164] used i n drawing hi s con-

elusions o f a particular investigation of glow d ischarges (region E) 
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probably constitute the first formal recognition of the unusual mat

erial properties (i.e. "plasma behavior") to be observed in specific 

systems under particular circumstances. 

Cf., for example, Hakim & Mangeny [1968, 3], Lichnerowicz [1967, 15], 

Bano & Balescu [1965, 3, pp.577-586] and Wasserman & Wells [1963, 11]. 

25 Buneman & Pardo [ 1968 1 1], Parker [ 1967, 16, pp .243-244 ] and Finkel

stein [ 1961 , 2 J. 

26 

27 

28 

Grad [1962, 3, p.38] and Eringen [1962, 2, p.393]. 

Examples of works treating plasma behavior from this point of view 

include those of Pai [1962, 4], Fried [1966, 5], Janee! & Kahan 

[ 1966 1 6] and Kl imontovich [ 1967, 13]. 

See here, e.g., Jancel & Kahan [1966, 6] with regard to the thermo-

static (i.e. equilibrium thermodynamics) approach where use is made 

of partition functions; and also, the kinetic theory approach which 

employs the concept of velocity distribution functions. 

29 Alfven & F~lthammer [1963, 1, p.171]. 

3o Ibid. 

31 For example, Sutton & Sherman [1965, 17]. Note again the remarks of 

footnote 11 above. 

32 Chang [1967, 2], Sandri & Yates [1966 1 11, p.49], Hirschfelder [1965, 

9], Borkaw [1965, 5, p.265], Hirschfelder, Curtiss & Bird [1967, 9, 

p. 18] and Clarke & McChesney [1964, 1, pp.386-390] . 

33 Hirschfelder, Curt iss & Bird [ 1967, 9, pp. 928-930], De Barb ie ri & 

Maro] i [1967, 3, pp.331-332] and Clarke & McChesney [ 1964, 1, p.348]. 

34 Verboom [1969, 8 , p .9 07], Rudge [1968, 6, pp .588-589], Kieffer & 

Dunn [1966, 7, pp.32-33] , Shkarofsky, Johnston & Bachynski [ 1966, 
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12, p. 172] and Clarke & McChesney [1964, 1, p. 164 and p.376]. 

35 Grad [1962, 3, p.37]. Examples include dense gaseous, liquid, and 

two-phase plasmas. For the issue of, i ' the first instance, dense 

gases see Hirschfelder, Curtiss & Bird [1967, 9, p.652]. Egelstaff 

[1967, 4, pp . 149-150] discusses the situation regarding I iquids; 

while a commentary upon some aspects of dense plasma behavior can 

be found in Robinson [1967, 18]. lastly, the matter of two-phase 

1 iquid metal plasmas is taken into consideration by, e.g. Petrick 

[ 1966' 10 J. 

36 Cf. Shkarofsky, Johnston & Bachynski [ 1966, 12, p.172] and Sutton 

& Sherman [1965, 17, p.84 and p.90]. 

37 Cohen [ 1962, 1, p . 110] and Sandri & Yates [ 1966, 11]. 

38 Chapman&. Cowling [1970, 2]. 

39 Alfven & Falthammer [1963, 1, p. 135]. See also the more specific 

comments of Goldman & Sirovich [1967, 7], Sutton & Sherman [ 1965, 17, 

p. 126], Cambel [ 1963, 2, pp. 165-166] and Petschek [1958, 4, p.970]. 

40 As a means for examining plasma behavior, the continuum approach used 

thus far seems, according to Stix [1962, 9, p.1 and p . 170], to have 

had remarkable success. An example of such a development is given in 

Shkarofsky, Johnston & Bachynski [1966, 12]. 

41 Sutton & Sherman [1965, 17, p .295] . Unfortunately, presentations such 

as that given there do not do justice to the possibi Ii ties of a clas

sical continuum mechanical approach. Further, of course, such a state

ment is only true to the extent that a successful statistical continuum 

model uti 1 izing essentially more realistic potential energy functions 

for the part~cles involved in any given, but otherwise arbitrary, 
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plasma problem does not exist. This latter approach is in principle 

the more general of the two. 

42 Slawsky [1961, 4, p. 115]. 

43 Gross [1958, 2, p.47]. See also footnote 40 above. 

44 A description of this discipline is give n by de Groot & Mazur [ 1963, 5] 

45 Cf. Aono [1972, 1]. Further discussion o f essential sho rtcomings of 

46 

47 

43 

the clas.sical thermodynamics of irrevers i ble processes is to be found 

in the references c i ted in footnote 5 of Chapter C. 

See, for example, Kral I & Trivelpiece [ 1973, 5, Sects. 3.5. 1. and 

3.5.2] and Sutton & Sherman [1965, 17, Sect . 8.2]. 

Among others, van Hove [1957, 2 ], Fishman, Kantrowitz & Petschek 

[1960, 4], Uhlenbeck [1962, 11], Frieman [1967, 6], Thom [ 1967, 19, 

pp.70-71], Neufeld [ 1969, 4] and Tsytov ich [1970, 7]. This comment 

is, of course, no t mea nt to deny the successes enjoyed by these 

methods; but r athe r , it is meant to serve as a recognition of t he 

fact that as the limitations of these .app roaches become clearer, so 

does the need fo r other methods to accomp l ish what they a r not able 

to Go. 

Cf. Prigogine [1962, 7, p.2], Monroe [ 1973 , 8, pp.564-565] and 

Rob i n son [ I 96 5 , 13 , p . 2 ] . I t i s perhaps n e c es s a r y to add he r e t h a t i n 

the spirit of rational mechanics (Truesdell & Toupin, henceforth to 

be denoted CFT, [ 1960, 9, Sect. 6]), t he ap proach I take to this prob

lem is that of attempting to establish a general frame>oJor k for theor-

ies of plasmas. do not consider this study tc have the purpose 

of accounting for an ever increasing numbe r of specific phenomena as 

such. 
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49 
Truesdell [1960, 10]. 

50 CFT [ 1960, 9, Sect. 9]. 

51 
Truesdell [1965, 20, p.27] and Truesdel I [ 1966, 13, p.89 ]. 

52 Cf. Truesdell [1960 , 10, p. 10]; and, regarding the significance of 

self-consistency in the study of plasma behavior, see the d iscussion 

given in Grad [ 1962, 3, pp.60-61 ] . See also footnote 53 be low. 

53 Aside from the fact (cf. Truesdell [1969, 7, p.6]) that the re is no 

unique axiomatic basis, but an infi n ity of equiva lent such bases, 

54 

the impossibi I ity of establishing a complete set of ax ioms (cf . 

G_odel's incompleteness theorem in Nagel & Newman [ 1956, 1] for any 

given base leads to the conclusion that such an approach is "i ncom

plete". See, however, the remarks in Nagel & Newman [ 1956, 1, p.1695]. 

Truesdell [1969, 7, pp.5-7]. I proceed he re with the assumpt ion that 

there is sufficient physical motivation to support t he adoption of 

an axiomati c approach . See in this regard, e.g., Synge [ 1960, 8 , p.5, 

footnote 1], Truesdell [1966, 13, p.94], Truesdell [1966 , 14, p . 3], 

Lindsay & Ma rgenau [1957, 4] and Bunge [1967, 1]. 

55 CfT [ 1960, 9, Sect. 3] and Slawsky [ 1961 , 4, p.116 ] . 

56 The litera ture of rational mechanics (cf. for example, Archi ve for 

Rationol Mechanics and Analysis) contains numerous papers containing 

proved theo rems and lemmas of a, say, mechanical and energet ic 

character. 

57 Rivlin [1972, 7]. 

58 Rivi in [1970, 6, p. 134]. Note here furt her Truesdell [1966, 14 , p.3]. 

59 With regard to the principles of balance and constitut ive nature I 
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note here i n part icular the erudite, and in many respects defi nit i ve 

treatises CFT [1960, 9] and Truesdel I & Nol I [ 1965, 19] which have 

become standard wor ks in the field of rational mechanics. In add i t ion 

to the literature cited, I mention also the wor k of Muller [1973, 9] 

upon the basis of which this effort also depends. 

Cf. Miles [ 1963, 7, p.317] with regard to CFT [ 1960, 9] ; and note 

further Truesdel 1 [ 1966, 14, p . 3]. 

See Biot [1965, 4, pp.x-xi]. 

Note here, for example, Coleman, Markovitz & No l I [1966, 3] and Bel I 

[ 1973, 1 ] . 

63 This fact seems clearly to support the fol lowi ng point which is un

fortunatel y so often forgotte n in t he professional sciences: v i z. 

(Truesdel I [1966, 14, p.4]), that "when you have the rig ht basic con

cepts, the solving of problems becomes either easy or impossib le. 

When you understand what the prob lem is, t he solution is far easie r 

to find, if it can be gotten at all". 

64 

65 

Clearly, a measure of the a bove mentioned adequacy is t he extent of 

(dis)agreement between the predictions of the system model proposed 

and the available empirical knowledge relevant to that system. Thus, 

for the nature of a given system's phy sical res ponse be ing fou nd in 

the const i tutive equations employed, t he bet ter the " physical insight" 

of the investigator with regard to t he system under study, the more 

appropriate wi II be his constitutive equations and consequentl y t he 

physically more adequate wi II be his t heory. Note also the discussion 

of Sect . F. 3. 

See Truesdell [1966, 13, pp.99-100], Grad [ 1961, 3, p . 323] and foot-

note 57 above . 
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66 
Liu & Miil ler [1972, 5]. 

6 l The · · . I h . f h d " . I " . d. d meaning 1n rat1ona mec an1cs o t e wor s1mp e 1s 1scusse 

in Truesdel I & Nol I [ 1965, 19, Sect. 2oj and Miil ler [ 1973, 9, pp.43-

44]. 
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B. BALANCE EQUATIONS 

Mechanics is the science which concerns itself with the motions of ma-

terial systems and their causes . The two main complementary branches there

of which treat these aspects are called, respectively, kinematics 1 and 2.l'.,-

namics. Kinematics examines the problem of describing motion per se. In do-

ing so, it does not undertake to study the sources of motion nor the forces 

thereto related; the inquiry into these matters being the task of dynamics. 

Consequently the results of kinematics, known as balance equations, are ap-

pl icable to any of a possibly large number of arbitrary physical systems 

whose respective motions can be shown to satisfy the principles upon which 

said equations rest. The dynamics of a continuous material system, on the 

other hand, is contained within the constitutive equations proposed for that 

particular system. Although the specific system under study may be thought 

of in general as belonging to a class of similar systems, the specific con-

stitutive equations employed limit the diversity of material response pos-

sibilities to those believed most appropriate for the given system. Consi-

derations pertinent to the establishing of rational mechanical constitutive 

equations wi 11 be given in the discussion of Chapter C. 

It may be recognized on the basis of physical experience that, depend-

ing upon the physical character of the medium being considered, singulari-

ties in the various field quantities may occur. Consequently, a complete 

kinematical description of a mixture necessita~es the establishing of two 

general types of integral balance relationships 2 • The first is a balance 

equation val id for points of the medium and/or electromagnetic field in 

which the fields involved are regular; and second, is a jump balance equa-
4 

tion for those points in which said fields suffer a finite discontinuity. 
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Since the problem at hand involves electromagnetic fields, one is obl ig

ed to consider volumes which may contain moving singu l ar surfaces and sur

faces which may incorporate singular 1 ines. For regions of t he system where

in the fields and field derivatives in question are suitab ly continuous 3, 

the integral balance expression yields a general different i a l balance equa

tion relationship that portrays the local kinematical descr i ption of that 

region 4 • Under additional assumptions regarding the possible boundedness 

of the mixture- and/or electromagnetic field-related fields, and the dis

continuity surface(s} and 1 ine(s) themselves, a differential jump balance 

equation for both of the aforementioned cases can be gotten f rom their res-

p~ctive integral relations. 

Once the general balance equations have been procured, t he next step 

to be undertaken is the exp! icit identification of the particular meaning 

to be associated with the symbols the rein rep resenting a given field quan-

tity, its flux, supply and production 5 In doing so, the set of sys tern ba-

1 ance equations to be used in the eventual ca 1 cu 1 at i on of the fie 1 ds (Al) 

is generated. Here too one notes that it . is again the physical nature of 

the system involved that motivates the particular selection of those para-

meters that is made. 

Recognizing that the material fields thus found in pri nciple by the 

procedure described above relate to any given yet arbitrary constituent, 

it is no1~ desirable to remark upon the manner to be pursued here with re

gard to the dete rmination of the mixture field quantit ies. For the sake o f 

explicitness , I note the tacit employme nt to this point o f the first pa rt 

of Truesdel 1 's 6 second metaphysical principle. The set of three such pr i n

ciples read as fol lows : 



"1. A 11 properties of the mixture must be mathematical consequences of 

properties of the constituents. 

2. So as to describe the motion of a constituent, we may in imagination 

isolate it from the rest of the mixture, provided we allow properly 

for the actions of the other constituents upon it. 

3. The motion of the mixture is governed by the same equations as is 

the single body." 

The implementation of the third of these principles provides us with the 

desired mixture balance equations, together with the definitions of the mix

ture field quantities expressed in terms of the constituent properties: this 

being in accordance with the first principle. 

That is what this chapter is about. I now proceed to secure those re

lationships which wi 11 be taken here as being both relevant and necessary 

to a complete kinematical description of the type of material system des

cribed above. 
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B.a. Co-ordinate systems 

Since the theory . given here falls .·;thin the real m of classical mecha-

nics, I assume that the space manifold is R
3

; a three-d i mensional Euclidean 

vector point space with real co-ordinates 7 

Co-ordinate choice 

A reference frame is a part i cular space R . Upon select ing a basis e. 3 I 

(i = 1,2,3) and an origin, such a space may be represen te d by (O,e). I fur-

ther assume that a system of orthogonal Cartesian co-ordi nates xi suffices 

for the problem at hand: hence, Jt = x.e. is the positi on vecto r of a point 
I I 

in the space. 

Transformations in the common frame 

For a theory to have a physical content independe nt of t he choice of 

co-ordinates, it must to begin at least be invari ant under general co-ordi-

nate transformations. Such invariance is ensured by the use of tensor nota-

tion for the prescription of the physical quantities enter i ng therein; sai d 

notation is thus forthwith employed here. 

Now, there are two ways, both due t o Euler 8 , in which the continuous 

motion of material systems can be desc ri bed . Motion is classica lly describ-

ed in terms of point transformations. These are here vi ewed as taking place 

in the total manifold known as Euclidean space-time R4 which consists of R
3 

t ogether with the one-dimensional mani fold of the rea l (pri mi t ive) element 

time, denoted by t (-oo < t <oo), which is now introduced. 
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The term constituent means here any arbitrary yet uniquely identifia-

ble atomic or molecular matter which admits a field representation. The par-

ticular body manifold composed of al I the material points of a given consti

th tuent, say the a (a= 1,2, .•. ,s), and which satisfies the relations (1) 

below is defined to be a constituent body, denoted by B. For any constitu
a 

ent the center of its mass in a region of space is defined 9 to be the ma-

terial particle of that constituent. 

Of the many possible co-ordinate systems one which is referred to as 

f 
1 O · . 1 d I . . 1 h a common rame 1s singe out. t 1s convenient to se ect as t e common 

frame one which may be taken as being fixed in space; e.g., the "laboratory 

frame" 11 

The first of two alternative choices of common frame co-ordinates in-

valves the unique identification for al I time t of each constituent material 

particle for any arbitrary, yet all, constituent bodies. This is accomplish-

ed by the introduction of the material co-ordinates Xa (a= 1,2,3) which are 
a 

assumed to be uniquely affixed to each material particle of constituent a. 

These co-ordinates may be thought of as always moving with their related ma-

te r i a I part i c I es. 

The second possibi I ity concerns the employment of the spatial co-ordi

nates xi (i = 1 ,2,3). These identify each point of the ambient space mani

fold and are referred to the~ to, in and from which the particles X 
a 

may be motional ly related. 

A constituent configuration is represented by the s pecificat ion o f the 

positions of all the material particles of that constituent's bod y . It is 

defined by a continuous one-to-one niappinq and, together ,., ith its inverse, 

is given by 



... 
x !ex) 

a a 
and 
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x (1) 
a 

The point transformation which expresses a continuous motion (cf. Fig. 

4.) is assumed to be a continuous sequence of configurations in time. It 

and its inverse are defined respectively by 

... 
x x(x, t) 

a a 
and x -+-1 ... 

X (x, t) 
a a 

... ... 
where x is the place that the particle X occupies at time t. 

a 

B 

Fig. 4. A continuous motion for a single const i tuent. 

(2) 

The assumption made with regard t o (1), the con s tituent deformation, 

(2) b d b T d 11 
12 . . f . . Th and have een set own y rues e 1n a axiom o cont1nu1ty: e 

relations (1) and (2) are assumed to be smooth single-valued functions. 

now make the common ("Fick-Stefan" 13) assumption that at each point of the 

system the mi xture is considered to be the simultaneous superposition of the 

s constituent continua. Upon defining the constituent deformation gradient 

F. and the Jacobian J respectively by 14 
I CI 

a a 



and 

F. 
let 

a 

J 
a 

ax. 
I 

ax 
ct 

a 

-+ 

det "F 
a 
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15 

the assumption that J is non-singular is made to ensure that the inverse 
a 

functions above exist. 

(3) 

(4) 

By virtue of the axiom of continuity the development of a rational me-

chanical theory fal Is into two parts, each of which requires its own treat-

ment. The one part is a theory for continuous fields and the other is a 

theory for the finite number of isolated point, line and surface singulari-

ties that may exist in a material system. The two corollaries which follow 

from this axiom are 16
1 

Corollary 1. Permanence of matter 

A material constituent occupying a region of positive and finite volume 

cannot be deformed in such a manner that said region vanishes or becomes 

infinite. 

It can be shown 17 that the condition on J which fol lows from this corollary 

is that 0 < J < oo. 
a 

a 

Corollary 2. Principle of material impenetrabiJity 

Portions of matter never interpenetrate. 
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This is interpreted as meaning that fo r any time t there is at any given 

place in the system at most only one of each of the various particles X. 
a 

The fact that just one particle can occupy a given point at t ime t follows 

from the supposition that there is related to each and every constituent 

deformation one and only one particle X possessing at that t ime ta given 

set of co-ordinates ;. 
a 

The selection off (fo~ all a) and t as independent variables represents 
a 

Euler's material description of motion; while, a choice of; and t as va

riables is his spatial description 18 . This study ut i lizes t he former. 

B.b. Material systems 

A material system is a manifold consisting of a set o f material par-

ticles. It is t hus a body in part or whole. In regarding such systems it is 

recognized that experience of the phys ical nature of a given system dictat-

es which ones and how many of the known fundamental physi cal properties mus t 

be ascribed to the different mixture constituents.While recognizing further 

the existence of discrete material properties for matter cons i dered on e.g. 

an atomic ~eve!, continuum mechanics in general restric ts its attention es-

sential Jy to those systems for which t he ~hysical characteristics may be 

ass umed to possess continuous distr i but ions . 

Mass 

The pri mitive quantities related to constituent particles are two in 

number: the mass and the (possi ble) charge of any given const i tuent. The 

mol ecu lar mass m of a constituent is associated with a density distr ib ution 
a 

of same (cf. e.g. (5)) and serves as a meas ure of that const i tuent's iner-

tia as wel I as the amount o f it s matte r in B. 
a 
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Withe (= 1.602 x 10-l9 coulomb) the absolute value of electronic char-

.ll.!:. and Z the integer (negatieve, positive or zero) charge multiplicity, the 
a 

constituent charge and (mass) specific charge are given for s* (0 ~ s* ~ s) 

constituents respectively by Ze and q 
a a 

Mass and charge density 

Ze/m. 
a a 

Let n denote the constituent number density. In terms hereof I define 
a 

the following initial set of material properties. The mass density of a con-

stituent is given by 

p nm 
a aa 

the total mass density by 

p 

the mass fraction by c • p/p for which hold the condition that 
a a 

s 

1 , 

and the free charge density of a constituent defined by 

nZe 
aa 

qp 
aa 

(5) 

(6) 

(7) 

(8) 

The constituent mass and charge densities are assumed to be continuous and 

additive quantities which, as absolute scalars, are invariant under the here 

non-relativistic motions of the system. 
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Material systems 

Material systems 19 come in three varieties: curves C, surfaces S and 
a a 

volumes<\)'. According to the meaning of a material system given above, each 
a 

of these three cases is characterized by the fact that it always consists 

of the same set of material particles. 

Linear velocities 

It is on the basis of particle motion that velocity is defined. Thus, 

for a particle X in a given place ~at the time t I define 20 the constltu-

ent velocity 

v. 
I 

a 

a 

ax 1 

at ... x --
a 

(9) 
const. 

Hereby follows that tbe velocit·y difference, mass average velocity and dif

fusion velocity are given respectively by 

and 

V. 
I 

a 

v. 
I 

(a= 1,2, ••• ,s-1) 

s 

~I: 
a=1 

which satisfies the condition that 

s 

I: 0 • 

a=1 

( 10) 

( 11) 

( 12) 

( 1 3) 
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Material derivatives 

A description of material behavior often necessitates a knowledge of 

the time rates of change of the various fields involved in a given problem. 

It is worthwhile in this study to introduce the material derivat i·ves follow-

21 
ing the constituent and mixture motions; these being , respectively, 

(')a da 
vi ( ) dt at + ,i a 

and (14) 

(') d a 
vi ( ) dt at' + ,i 

where the relat ion between (')a and ( ' ) i s c learly that 

(') .+ ( 15) 

B.c. Material integra l kinematics 

The aim of this section is the presentation of express ions for the rate 

of change of general integrals for arbitrary volumes and surfaces containing 

respectively surfaces and lines of discontinuity. 

B.c.i. Volume integrals 

For a moving and continuous mat e rial volume '\J(t) bounded by a mater
a 

ial surface S(t) as shown in Fig. 5, I now introduce the f ield ' represent-
a 

Fig. 5. Continuous materia l volume'\}; 
a 

a 
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ing an arbitrary additive quantity of constituent a (i.e. a field property 

proportional top). It is given by 

'¥ 
a 

a 

a 

( 16) 

The parameter iJi (~,t) In the integrand of (16) represents here the vo
v 

a 
lume density of a quantity'¥ of constituent a. This parameter is henceforth 

a 
assumed to be a single-valued continuously differentiable tensor field defin-

ed in the volume over which the integral being considered is taken. 

Phase interfaces 

ln general, the volumes with which one is concerned are not (in terms 

of the functions defined therein) continuous throughout the entire region 

they represent. It is thus desirable when studying the problem of describ-

ing fluid mixture behavior, to attempt an examination of the problems of 

and related to the (usually three-dimensional) interfacial regions which 

may exist in multicomponent and multiphase systems. Not only the material 

behavior of these regions thems.e.lves, but also the reciprocal influences 

upon material behavior between them and the bulk regions they separate may 

be of some interest. 

A pictorial representation of a deformable and moving interfacial re-

gion, denoted by I (t), is given in Fig. 6. The material volumeCU' associated 
a 
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Fig. 6. Phase interface, I (t). 

with an arbitrary constituent is written as 

<tJ <tJ+ + <tJ + V (I ( t)) 
a a a 

and, similarly, the material bounding surface S of<tJ is expressed by 
a a 

S S+ + S- + S(l(t)). 
a a a 

The region I (t) will in general require its own set of balance and con-

stitutive equations; which fact in turn increases the difficulty of describ-

ing the behavior of the total system. This being the case, I make for the 

sake of expediency the not uncommon assumption that the fields of the mate-

ria l system for which the model developed here is to be applicable are such 

that the phase interfaces involved, if any, may be represented by surfaces 

of discont inuity s(t) . Under this assumption the following relations hold: 

CU' <tJ+ + <tJ + s(t) and S S + + S- + (S n s ( t l l . ( 1 7l 
a a a a a a a 
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Singular surfaces 

As pointed out earlier, a consequ, · ;e of the axiom of ccntinuity is 

that a rational mechanical theory describes under general conditions the 

kinematics as well as the dynamics in both the sets of regular and singu-

lar points. Singular points of material media are those in which the func-

tion(s) representing one (or more) of the system related fields may not be 

taken as being continuous. The sets of such points may in general compose 

I ines and surfaces of singularity. The problem of singular I ines is of some 

importance in a study of material systems interacting with electromagnetic 

fields and shall be treated shortly. I begin, however, with a consideration 

22 
of singular surfaces 

Whether a deformable and moving singular surface s(t) exists in its 

own right or, as here, also as an idealization of a phase interface, is of 

no consequence to the fol lowing development. The intersection of a material. 

volumeCU' by s(t) is portrayed in Fig. 7. 
a 

Fig. 7. Singular surface, s(t). 

There ii is a unit vector normal to s(t) which is taken as being directed 

into<t)'+. ;
0 

is a point upon s(t) and~ is the velocity of propagation of 
a 

that surface. Further, it is useful to introduce the ~of d isplacement 

un of s(t) given by 



u 
n 

u. ii. 
I I 
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(18) 

and to denote respectively by ~+ and 
v 

a 
~v the 1 imiting values of the func
a 

from within<tl and<lf. In terms of these tion ~ (~ 1 t) as ~moves 
v 

-+
towards x

0 
a a a 

parameters the material rate of change of (16) over a volume containing a 

singular surface is given by the well-known 23 generalized Reynolds' trans-

port theorem 

'!' 
a 

a 

+ 

a 

J I 
s ( t) + -

S +S 
a a 

Here, the outward directed element of surface area is given by dai 

and the jump of ~v across s(t) at a point ~o has been denoted by 
a 

+ 
~v 
a 

B.c.ii. Surface integrals 

~v 
a 

Consider for any given body B a material surface S. For the case 
a a 

Fig. 8. Continuous material surface, S. 
a 

( 19) 

ii.da 
I 

(20) 

depicted in Fig. 8 where that surface is continuous and bounded by the ma-

terial curve C(S), I introduce the field parameter:::. It is given for al 1 
a a a 

constituents by 



a 
J t;i dai 

S a 
a 
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(21 ) 

At a surface point, denoted by the parameter S, the integrand !(S,t) 
a 

is termed the density of the quantity :'. . It, like 1/Jv(J:°,t ) above , is assumed 
a a 

to satisfy the single-valuedness, continuity and multiple differentiability 

assumption; but here for fields defined in the surface for which the inte-

gral being considered is taken. 

Singular lines 

It is possible, as mentioned above in the discussion regarding singular 

surfaces, that the surface of a mater i al system may ev idence the presence of 

1 • f d · . . 24 F h f . 1 1 • h f 1neso 1scont1nu1ty • ortecaseo a singe inete geometryo 

such a situation is provided in Fig. 9 . There Sis divided by the deformable 
a 

Fig. 9 . Singul ar 1 ine, c(t). 

moving s i ngul ar 1 ine c(t) into two parts; it may be wr i tten as 
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s (22) 
a a a 

The 1 ine c(t) moves with a velocity u in the interior of S+ + S- but also 

intersects C(S) which is given by 
a a 

C(S) C(t)+ + C(t) 
a a a a 

+ (C n c(t)) • 
a 

a a 

(23) 

lastly, ;o is a point on c(t); while n, r and m (= n x r) are respectively 

the unit principal normal, tangent and bi normal vectors to c(t). 

The material derivative of (21) 

upon c(t) and moving with velocity~ 

ing value of the function si as here 
a 

by the also well-known 25 relation 

a I [ 
()!i 
ilt + 

+ s +s 

taken with respect to particles lying 

is, for dl. = L dl ands:(-) the limit-
1 I I 

-> -> f · ah. +(-) · x approaches x
0 

rom wit 1n S , given 
a 

+ I 
a a a a 

I 
c ( t) 

([ t] x l'.i) i d 1 i 
a 

(24) 

Here, the jump of the field ! across c(t) at some point ~o is denoted as 
a 

fol lows: 

r ->-s (25) 
a a 
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B. 1. Integral balances 

The balance of an arbitrary const . cJent quantity wit h regard to some 

region of a system is here expressed initially by an i ntegra l relationship 

for that region between the material derivative of that quant i ty and its 

influx, supply and production rate 26
• Those quantities whose production 

terms vanish are said to be conserved and their balance eq uat ions become 

conservation relationships. These are at most special cases of the general 

equations which I now give. 

B. 1.a. Volume balances 

For the first of the two regions of interest here, vi z . a volume con-

taining a surface of discontinuity (cf. Fig. 7), I assume that the balance 

equation involving (19) may be given by 27 

'!' 
a J 

+ -
S +S 
a a 

4>~ da. + 
I I 

a J 

a a 

(cr ijl 
v 

a 
+ + J T'!' da 

s ( t) a 

(26 ) 

where 4>~ is the flux 
·1 

through s+ + s- of the constituent quantity, aw is 
v 

a ·a a a 
that quantity's supply density (per unit volume) for said constituent being 

cons idered as a single continuum and a~ is the production rat e density (per 
a 

unit volume) of that quantity. The term T'!' is the total supp l y density (per 
a 

unit area) by s(t) of'!', and I would like now to comment upon its introduc-
a 

tion into this study. 
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On singular surfaces and their balances 

Dynamic transition regions are us ual ly three-dimensional; and, depend-

ing upon the particular medium involved and its physical environment, also 

deformable and moving. As mentioned above, a description of the behavior of 

and within said regions, as well as the mutual influences between them and 

their adjacent bul k media, requires in general that in addition to the bulk 

relations an appropriate set of balance and constitutive equat ions be es-

· tablished for them. 

For the sake of simplicity, however, t he applicability of t hi s study 

is I imited to those systems for which phase interfaces, if any, may be des-

cribed in terms of surfaces of discontinuity. For descriptive purposes 

consider such a surface to be a smooth "thin" region movi ng in R
3

; assuming 

further that the constitutive equations of the contiguous bulk med ia remain 

valid up to the surface. 

Properti es of connection are asc r ibed to s(t) in the fo rm of distribut

ed surface source terms T~ for each bul k quantity that is to be balanced. 
a 

The discontinuous bul k field parameters are here then assumed, a s functions 

of time and pos i tion upon s(t), to chan ge rapidly but in a suitably conti-

nuous manner across the surface. 

An investigation of arbitrary phys ical singular surfaces and matters 

pertaining to the general kinematics and dynamics of them for systems of in-

terest here lies beyond the s cope of this initi a l study. Thus, t he model of 

a plane and temporally pers istent s ur face of discontinuity assumed here and 

employed later is taken primarily on the basis o f its relat ive s implicity; 

i t being presumed i ndicative of the f unction of such sur f aces under more 

gene ral circums tances . 
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I conclude the discussion on integral volume balances by limiting the 

considerations of this study to the pa•ticular case for which at most t/i and 

v. are singular on s(t). To this end I take 28 
I the fields at/i v/at, 

t/i a t/i 
a and a 

a a iJ; a a 
to be bounded in the neighborhood of s(t) and the 1 imi ts of <l>i to be conti-

a 
nuous functions of position. It fol lows then from (17) together with Green's 

transformation 29 that the result of equating (19) and (26) is the volume 

integral balance equation; viz., 

f ~-:, + (iJ;v v. <!>~ ) • a :}· dt I a I 1 I v 
cu-s(t) a a a 

a 

+ f ~t/i)vi u i) iii Il + h~n.D ~~}a 0. 
I I 

s ( t) a a a 
(27) 

B.1.b. Surface balances 

The development here closely para I tels that above for the case of vo-

lume balances. For surfaces S containing a moving singular line c{t) (cf. 

~ ~ - ~ ~ Fig. 6) let <l> i' oi, o i and Ti denote respectively the influx through 
a a a a 

C - lC n c(t)), ~s~u~p~p~l~y__;;d~e~n~s~i~t~y (per unit area), its production rate density 
a a 
(per unit area) and its total supply density (per unit length) by c(t). I 

now assume 30 for such a surface that 

- f 4>~ d 1. + f (a~ + oT)dai + f r:- d 1. 
I I I I I 

a a a a a 
C-(C~c(t)) + c ( t) 
a a s +s 

a a 

(28) 
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expresses the balance relationship which concerns (24). For t he specific 

case where ;i and vi can have a finite discontinuity upon c(t), the para-
a a 

meters a;./at, a~ and a~ 
I I I 

are taken as bounded in the proxi mi ty of c(t) while 
a a a 

<P~ is assumed to be finite on the singular line. Equating (24 ) and (28) and 
I 

a 
then uti Ii zing (22), (23) and Kelvin's transformation 31 leads to the re-

suit valid for any constituent that 

l
a;. 

I ...i. + 
a t 

S-c(t) 
a 

+ I 
c(t) 

mt x (~ 
a a 

~) ]. Il 
I 

+ + T~H. di 
I I 

a 
0 • (29) 

This expression shall be referred to as the surface integral balance equa-

ti on. 

B.2. Differential balances 

Under assumptions concerning a region of interest and its related sys-

tern fields, the integral balance equations (27) and (29) above wi 11 in this 

section each be reduced to two specific types of differential balance rela-

tionships. Since a conside ration of a material system will thus no longer 

involve the region taken as a whole but rather with the points t hereof which 

determine that region, the description of the system in question may be 

thought of as changing accordingly from a global to a local one. 
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B.2.a. Continuous system balances 

Volume balances 

From (27) it follows in the case of regular volumes for which may be 

assumed that ~ , ~ , a~ and a~ are continuous and <!>~ is continuously diffe-
v V V V I 

a a a a a 
rentiable, that the volume differential balance equation is 

+ <!>~) • 
al 'I 

+ (30) 

Surface balances 

Similarly, for circumstances involving regular surface regions and with 

the integrand of the residual equation (29) assumed continuous, the surface 

differential balance equation is 

ae; i 
_a_ + 
at + 

B.2.b. Oiscontinuous system balances 

Volume balances 

a~ 
I 

a 
+ -E; a. 

I 
a 

(31) 

The balance relationship for the surface of discontinuity region of a 

volume follows from the s(t)-integral term of (27). For that ter~ equal to 

zero to be val id in general, the assumed smooth integrand thereof must va-

nish; whence fol lows the volume jump balance equation 

[~v(vi - ui)iii Il 
a a 

+ ll <P~ii.] 
I I 

a 
(32) 
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Surface balances 

Finally, for the singular 1 ine portion of a surface region , the c{t)-

integral expression of (29) with its integrand taken to be smooth on c(t) 

and vanishing yields the surface jump balance equation; viz., 

Ht 
a 

x (~ - ~) J. £. Il 
I I 

a 
+ h~L] 

I I 
a 

T~L 
I I 

a 

With the securing of equations (30), (31), (32) and (33) 32 , it 

(33) 

now 

becomes possible to proceed with the establishing of a more explicit model 

of the kinematical relationships needed for the problem at hand. Such ex-

pressions as wi I I be given are based initially upon proposals (i.e. impl i-

cit and explicit assump tions) for t he various field quantities, together 

with their respective fluxes, supplies and production rates. In th i s light 

these relations may be viewed as having been postulated. 

B.3. Mass balance equations 

This and the remaining sections of Chap. B have the purpose of propos-

ing a set of differenti a l balance and jump balance equations, for the mate-

rial and electromagnetic fields, which I s hal I assume to govern the behavi-

or of the class of fluid mixtures e nvisaged. These relations h ips are, begin-

ning with those fo r mass, now given. 

B.3.a. Constituents 

Aside from di f fusion the changes here of a constituent's mass density 

are a consequence only of chemica l reac ti ons which invo lve it. I ass ume 33 

p while ~f and a~ (the mass flux and volume supply respectively) 
a a a 
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both are zero. Further, 8~ = c, the production rate density for mass; while 
a a 

the supply density of mass.£¥. the surface~ is denoted by To/ 
a 

_s 
c 
a 

On the basis of these identifications (30) yields the following forms 

of the balance eguation cf mass density of a constituent: 

' c " + pv .. 
a aaJ ,J a 

" + pv .. + u." . c (34) 
a aaJ ,J aJ a ,J a 

and 

" c u .p . "'\ ·dk. 
a a aJ a'J a J a J 

where (34) 2 fol lows from (34) 1 by means of (12) and dk. = v(k ') is the deforma -
a J a ,J 

tion rate tensor of a constituent. Parentheses placed about indices denote 

i.n this study the symmetrization of the term concerned with respect to the 

enclosed indices. 

On stoichiometry 

Stoichiometry is taken here to be the phenomenological description of 

chemical processes in continuum mi xtures. It does not concern i tself with 

h f . d d th us 34 b 1 k d h "k . t e causes o sa 1 processes an may e oo e . upon as t e 1 nema-

t i cs" of chemical reactions. For any mixture constituent, of which s* are 

charged, let there exist a (a = 1,2, ••• , n) possibl e independent chemical 

reactions. Further, denote by ya the stoichiometric coefficient of that 

a th 
constituent; and, by .'.a(~ 1 t) its a reaction rate density. The first para-

meter indicates the number of constituent molecules participat ing in a given 

reaction a either as reactant s or as products, while the latte r represents 

the net rate of production per unit time and volume of the constituent num-

ber density for that reaction. 
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The relation for the net production rate density, R, for n may be given 
a a 

by 

n 

R !~ 
/ l/10.. 

a 
o.=1 

a 
(35) 

In general it is necessary in the case of mixtures for which some or all of 

the constituents bear charge to account for the supply of bot h mass and 

charge through chemical reactions. Here I examine the question of mass sup-

ply, while in Sect. B.4.b. attention is directed towards the matter of che-

mical reactions and charge. 

16 
Letting m be the unit atomic mass (e.g. 1/16 of the 0 oxygen atom 

isotope mass) and W m/m be the constituent molecular weight, any arbitra-
a a 

ry c is expressible here in terms of its related mass by 
a 

c 
a 

mR 
aa 

n 

I 
Cl=l 

y°wmA0 

a a 
(36) 

From (36) fol lows that the various physico-chemical processes ava il able to 

the system are prescribed implicitly by the fields A0 (~,t), and t hat a know-

ledge of al I these parameters with regard to that system i n tu rn determines 

c. In a continuum t heory the chemica l kinet i c considera ti ons re levant to 
a 
the spec ifica tion of then A

0
, or equival e ntly th e s c, are embod ied in the 

a 
formulation of constitutive equations for these fields. I s hall return to 

this point in Chpt. C. 

Equa tion (32) togeth e r with the as sumption above fo r T1 p rovides the 

res u It 

[p (vi - u i ) iii Il 
a a 

_$ 
c 
a 

known as the jump ba lance equation f or t he mass density p . 

" 

a 

(37) 
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B. 3. b. Mixture 

The conservation eq~ation for the mass of the mixture derives from a 

summation over (34) for all constituents, use being made also of (11), and 

is given by 

p + pv . . 0 
J ,J 

(38) 

Similarly it fol lows from (37) that 

[ p (vi - u i) iii] 0 (39) 

is the jump conservation equation for the mass of the mixture . The transi-

tion from the constituent to the mixture relationships has been accomplished 

by the i ntroduction of the mi xture conservation of mass assumptions (i.e. 

axioms) for c and cs. These are, respectively, 
a a 

s 

~c 
L__, a 
a=l 

0 and 

s 

L -S c 

a=l a 
0 • 

Fu r ther, I now introduce the first of two additional and important 

. d h . b . 35 assumptions to be ma e ere; it erng 

s 

I 
a=l 

y°'w 
a a 

0 ' 

(40) 

(41) 

which expresses for the mixture the conservation of mass in each of the n 

homogeneous chemical reactions ~ . The restrictions on the stoichiometric 

coeff i c ients fol lowing from (41) are complemented by those on the related 

to the coefficients of the charged cons tituents. Thes e latter conditions 

will be given in Sect. B.4.b. 
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B.4. The charge-current equations 

Here and in the next section I set down those electrodynamic relations 

which I assume to be basic to a continuum description of "slowly moving" 

(i.e. non-relativ istic) magnetizable dielectric fluid mixtures. Since the 

development rests in part upon mixture theoretical considerations, the re-

sults secured evidence some 1 imited generalization of the Maxwel I electro-

magnetic theory of ponderable matter. Due to the important fact, among 

others, that emission, absorption and scattering of elect romagnet i c radia-

tion cannot be treated at present by phenomenological electrodynamics, I 

consider in this study mixtures on ly under those conditions for wh i ch ra-

diation is negligible. 

On electrical conductors 

Regardless bf the region of interest, be it a bulk phase, surface of 

discontinuity or both, two types of charge densities may in general be at-

tributed to it: viz. the so-cal led "free" and "bound" charges. ln'\J the free 
a 

charge density of a constituent is given (cf. (8)) by QF, while on s(t) the 
aSF 

singular surface density of free charge is denoted by Q • Free charges, it 
a 

wil I be remembered, are the foremost spurce of the elect romagnetic f ield. 

By virtue of their relative mobility they serve as the essential coupling 

factor between the mechanics of the mixture and the electromagnetic field 

which they generate and with which the mixture interacts. 

F SF 
The sum of each of the quantities Q and Q for all constituents yie ld 

a a 
the definitions for the volume and singular surface densities QF and QSF of 

free charge of the mixture; these being respectively 
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s 
QF 

/, 
QF and QS F 

/. 
QSF ( 42) 

a=l a 
a=l a 

As electrica-1· conductors I take here tnose material media for ,,hi ch the 

electrically charged constituents are relatively unconstrained in their dis-

placements under the influence of the fields acting upon them. This point 

will be made more explicit in the discussion of the forces of constituent 

interaction below. 

On dielectrics 

Bound charges are characteristic of both electrically neutral consti-

tuents having structure (e.g. atoms and molecules) as well as those which 

may also possess a net charge (e.g. atomic and molecular ions). And further, 

for the microscopic structure of its material components being spherically 

symmetric or non-symmetric, a constituent may be referred to accordingly as 

being either non-polar or~· 

The polarization and magnetization of a constituent represent macro-

scopical ly the existence for that constituent of electric moments which re-

fleet the distribution of its negative and positive bound charges with res-

pect to each other, and magnetic moment which relate to said bound charge 

distributions aswel 1 as (possibly) to that of its intrinsic spins. I assume 

for the sake of simplicity that a dipole approximation is adequate in this 

study. The theory remains, of course, applicable to both non-polar and po-

larmedia. 

Now let Pi be the polarization density in'\Jof a constituent, and in 
a a 

terms hereof let the related polarization density of the mixture Pi be de-

fined by 



P. 
I 

s 

I P. 
· -' I 

a=l a 
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(43) 

By the term dielectric I shall mean electrically polarizable media in gene-

ral. This definition extends the one usually given which prescribes only 

the so-called perfectly electrically insulating media. For mixtures under 

the simultaneous influence of different fields it wi 11 be seen in Sect. E.6. 

that the generalization of definition to include real (i.e. imperfect) elec-

trical insulators is worthwhile. 

B.4.a. Coulomb's law: the charge flux equations 

The material properties of a mixture system have been assumed to be de-

terminable from those of the constituents. To prescribe the properties of 

the electromagnetic field I introduce a principle of superposition which 

states 36 that: 

The total electromagnetic field produced by a system of constituents 

is obtained by adding the fields of the individual constituents. 

Hereby is made clear that the origin of the total electromagnetic field 

lies in the simultaneous superposition of the internal and "external" con-

tributions thereto of al I the constituents of the system. 

Since the "external" field, for example, may exi·st in regions of the 

system possibly unoccupied by any matter (i.e. vacuum), it seems physical-

ly unreasonable to attempt a formal apportioning of said total field to the 

constituents 37 which may on occasion occupy that space. I assume instead 

that the total electromagnetic field and mixture fields (defined in terms 

of the constituents) are the natural complementary quantities in terms of 

which the ful I set of macroscopic system relationships may be secured. 
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For Ei denoting the total electric field taken with respect to a sta

tionary observer and £
0 

(= 8.854 x lD-
12 farad/m) the permittivity of va

cuum, I fol low Truesdel 1 & Toupin 38 anc. .ntroduce the first (cf. (67)) 

Maxwel I-Lorentz aether relation: it being that for the charge potential . Di 

given by 

D. £ oE i I 
(44) 

The partial char~e potential of the mixture 39 is 

'.Dl Dl +pl (45) 

and the wel I-known equation for electric flux density is written as 

(46) 

From this relation follows that the charge density Q of the mixture is 

given by 

Q 0 1 1 • 
s 

Iu 
a=l a a 

QF - P
1 1 

is the constituent charge density) 
a a ' 

(Q 

QF - p 1, 1 (47) 

where the term -P
1 1 

is cal led the polarization charge density of the mix-
• 

tu re. 

With a view towards the treatment of the constitutive equation later, 

another form of (46) wi 11 prove more useful. In terms of the magnetic flux 

density B (cf. Sect. B.5.a.) let the electromotive intensity for a consti-

tuent and the mixture be defined respectively by 
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E. + and 
I 

E. + 
I 

£ •• kv .Bk 
lj j 

(4~) 

Equation (46) may hereby be written in terms of an arbitr.ary reference con-

th . 40 stituent, say the s , 1n the form 

+ 0 • (49) 

For a region s(t) across which iJj has a finite discontinuity, the~ 

equation for electric flux that follows from (46) with QF bounded in the vi

cinity of s (t) is 

[(Di + pi) fi i] QSF 

equivalently 
41 

or 

[Di +Pi] £ •• kh .fik + QSF_ n. 
I j j I 

where QSF is defined by (42) 2 • Here (cf. Sect. B.4.c.) hj 

arbitrary field defined on s(t). 

From (50) 2 it is possible to write that 

where the surface density of charge of the mix ture is given by 

(50) 

is an 

(51) 

(52) 

and [PiniB i s the mixture polarization density on s(t). For deve lopmental 

simp licity in the treatment given below, I make the (o therw i se nonessen tia l ) 

assumption that QSF vanishes. 
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B.4.b. Charge balance eguations 

The balance of electric charge wi 11, as in the case of mass, be given 

in two parts, The first deals with the constituents while the second con-

cerns itself with the mixture as a whole. 

B.4.b.i. Constituents 

There exist 42 well-established models which describe to an extent 

deemed acceptable here the macroscopic electrodynamics of magnetizable, po-

larizable, and non-relativistically moving single material continua. Further, 

any mixture considered here is such that it reduces to a single continuum 

as the number of its constituents is reduced to unity. With the aforemen-

tioned metaphysical principles (particularly the third) in mind, I thus as-

sume in analogy with the pure single continuum results alluded to above that 

the following definitions may be made. 

The constituent magnetization density is represented by Mk; while, J~ 
a aJ 

and J~ are respectively the constituent magnetization and polarization cur
aJ 

rent densities: these being here glven, together with their sum, according-

ly by 

J~ £ "k lMl k I 

aJ J a , 
(53) 

aP. 

/ aJ 
v .PI 1 + c .kl (P x ~) l k at + 

aJ aJa ' J a a ' 
(54) 

and 

'J. J~ + / 
aJ aJ aJ 

(55) 
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With 43 w = Q, ~~ = 6., the charge density supply for constituents 
av a aJ aJ 

0 and the production rate density for the constituent charge density 

qc, it fol lows from (30) that 
aa 

aQ 
a at + qc 

aa 
(56) 

is the balance equation for the charge density of a constituent. J'. is the 
aJ 

constituent current density and is given by 

(57) 

Similarly, with the charge density supply by the. singular surfacer', 

denoted by c5c, equation (32) yields the relationship 
a 

[Q(vi - ui)iii] 
a a 

_sc 
c 
a 

cal led the jump balance equation for constituent charge density . 

B. 4. b. i i • Mi x tu re 

a 

(58) 

From the definition of the mixture magnetization density M1 given by 

it can be observed that the magnetization current density J~ gotten from 
J 

(53) is given by 

J~ 
J 

(59) 

(60) 
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likewise, from (54) and (12) comes the equation for the polarization cur

rent density 

l 
J 

aP. 
= --1. + at 

s 

+ £jpq I 
a=l 

s 

(P x ~) 
a a q,p +I (61) 

The mixture conduction, non-convective and total current densities are here 

44 defined respectively by 

J~ 
J 

if. 
j 

s 

I: 
a=.1 

F 
JJ + 

QFu. 
a aJ 

J~ + 
J 

+ 

s 

l I (62) - u.P I 1 J aJ a ' am! 

Charge balance expressions for the mixture fol low from the summation 

over all constituents of the relations (56) arid (58). The results of per-

forming this operation on them are the conservation and jump conservation 

eguations 45 · for the mixture charge density given respectively by 

T 
JJ . ,J 

0 and 0 • (63) 

Here use has been made of the defini .tions above; and, similar to (40), the 

mixture conservation of charge assumptions (i.e. axioms) made in passing 

from (56) and (58) to (63) are respectively that 



s 

I qc 
a=l aa 

0 
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s 

and I cSC 

a•l a 

0 • 

The condition of charge conservation in each of the homogeneous 

chemical reactions follows from the assumpt ion, now introduced, that 

s 

I 0 • 

a=l 

(64) 

(65) 

Thus, as alluded to in Sect. B.3., the s * electrically charged constituents 

represent important physico-chemical constra i nts on the chemical reaction 

processes of mixtures. It is clear, of course, that for those systems for 

which the additional condition of charge neutrality 

0 

holds, that the specific charges q of (65) are themselves restricted. 
a 

B.4.c. Ampere-Maxwell's law: the current equations 

(66) 

The main aim of this section is the establishment of the macroscopic 

electrodynamic relations between the ba lances of electric charge and the 

electromagnetic field which derives f rom said charges. To th.is end, for 

µ
0 

(= 1.257 x 10-7 henry/m) the vacuum permeability, I introduce the se

cond Maxwel 1-Lorentz aether relation (cf. (44)·) for the current potential 

Hk and also define the partial current potential~ respectively by the 

46 expressions 
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0 

and 
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Jek 

s 

I 
a=l 

47 Consequent to these and earlier de f initions, and t he ass umptions 

(6 7) 

that ~i = -'.Di, <I>~ =.rek - (~ x ml k ' crT = Ji and a7 = o. it fol lows from (31) 

without subscripts that the current balance equation for t he mi xture may 

be written either as 

s 

I 
a=l 

or, equivalently, as 

£ •• kHk . IJ ,j 

-T -T J (P xv\ . 
a a ,J 

ao. 
I 

+ -at 

I note here another form of (68) secured with the help par ticularly 

of (12), (44), (48) and (69): it is 
48 

where 

+ 

+ _!_ (J ~ + £ •. kMk . - P . v. . + P. v. . ) 
£

0 
I IJ ,J Jl,J IJ,j 

s 
~ 

) [ qP u i 
/--' aaa 
a=1 

+ £. 
I pq 

(P x 

a 
~) J 
a q ,p 

v .f, . . 
JS I 'J 

0 

(68) 

(69) 

(70) 

These expressions wi II be utilized in t he development of t he constitutive 

equations to be proposed late r. 
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Neglecting the possibility that a surface s(t) may itself possess free, 

magnetization and polarization currents, I now set down the jump balance 

eguation for the current density of the mixture across a surface s ( t) mov-
_,. 

ing with the particular velocity u = u n. It follows from use of (33) with-

out subscripts and 

49 or, equivalently 

the fore going 

s 

-I 
a=l 

s 

I (P x 

a=l a 

n 

definitions fort and is, and is 

+ 0 

0 • 

The arbitrary fields of (71) 2 , g and hk, defined upon s(t) are given by 

g and "k n tD ] ; pq p q 

(71) 

(72) 

while, from (50) 1 under general circumstances and (72) 2 it may be seen that 

E h ii q rs r s + (50) 2 

B.5. Electromagnetic field eguations 

The equations introduced in this section are those which interrelate, 

in regions of volume as wel I as on surfaces of discontinuity, the non-rel a-

tivistic dynamic electric and magnetic fields. With their presentation a 

indeterminate set of general electrodynamic relationships wil I have been 

secured. The matter of the under-determined character of these equations is, 

as it must be 50 , resolved with the specification of the electromagnetic 

field-material response properties of the system. I shal 1 take this point 

up again in due course (cf. Chpt. C.). 
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B.5.a. Magnetic flux eguations 

For Bi the magnetic flux density, e magnetic flux ¢M is defined by 

f B. da. 
I I 

(73) 

By virtue of the assumption (i.e. axiom) 

B. da . 
I I 

0 (74) 

introduced now, it may be concluded that the integrand must vanish; or, 

that in the volume of interest 

B • • 
I ,1 

0 • (75) 

This well-known result is the conservation eguation for B. 

When the region of volume contains a surface of discontinuity, the eva-

luation of (75) across that surface results in the jump conservation equa

tion for this field 5l 

0 or, equivalently, (76) 

where kj' an a~bitrary field upon s(t), is defined by (80) 2. 

B.5.b. Faraday's law of induction 

There sti 11 remains something more to be said of a fundamental, as 

against a derived, nature concerning the dynamical macroscopic B field and 

-+ 
its relation to E; and this most particularly here for moving material sys-

terns interacting with an electromagnetic field in the case of a surface of 

discontinuity. To begin, however, I consider re9ular volumes. 
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For 
52 ~i =Bi, ~~ = k and a~= a~= O, equation (31) without sub

scripts together with (75) yields the familiar result 

£. 'kEk . 
I J 'J 

known as Faraday's law of induction. It shal I prove desirable to have a 

(77) 

form of (77) which lends itself more easily to the development of the for.th-

coming constitutive equations. Use of (12) and (48)
1 

herein leads to the 

desired alternative result; it being 53 

+ + 0 • 

It fol lows in asimilar manner from a subscript less equation (33) 

wherein the possibility of a singular I ine supply of B, T~ is neglected, 

that for a moving surface s(t) the expressions 54 

c . kii . [ Ekll 
IJ J 

u ff B. Il 
n ' 

or, equivalently, 

represent the jump balance equation for E. Here 

and k. 
I 

£. ii [ B Il 
I pq p q 

are arbitrary fields defined upon s(t). 

B.6. Linear momentum balance equations 

fii.-uk. 
I n I 

The balance of total linear momentum for mixtures interacting with 

(78) 

(79) 

(80) 

an electromagnetic field consists of two parts; one for the material por-

ti on of the system (i.e. the constituents and the mixture), and the other 

for the electro~ognetic field. The presentution of the hereto related con-

siderations of this study is the main purpose of this section. 
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B.6.a. Constituents 

For any constituent let i ts densi t y of linear momentum and the f lux 

th f th . b . . l b 55 ereo , e const1 tuent stress tensor, e given respect i ve y y 

and -t .. 
alJ 

(81) 

The supply and production rate of the density of linear momentum for that 

constituent are cal led respectively the external (body) force density and 

the interaction forte density and are g i ven here by th~ relations 

and m. 
I 

a 
(82) 

56 In c.ontinuum mechanics the supply term is often presumed to be known 

This amounts, in fact, to the introduction here of an explicit relation for 

pbi. The selection of a "physically reasonable (electromagnetic) force ex-

aa 5 
press ion" remains at present a non-trivi~l matter 7• In this study I make 

the assumption that 

(83) 

where p bi represents the non-electromagnetic forces that may i n general be 
aOa 

present and the remaining terms are those of the Lorentz force. The term mi 
a 

relates, of course, to the momentum transfer resulting from constituent in-

teractions. Further yet, let the supply from s(t) of linear momentum be 

denoted by 

_s 
m. 

I 
a 

(Bit) 



72 

In terms of these quantities it follows from (30) that the balance equa-

tion for the linear momentum of a constituent is 

' pv i - t. . . - Qt;i 
aa a 1 J ,J aa 

while (32) yields the result 

[pv. (v. - u.)fl.Il 
aa 1 aJ J J 

[t .. fl.] 
a I J J 

_s 
m. 

I a 

iii. - CV. 
I I 

a aa 

(85) 

This last relationship is the jump balance equation for its linear momen-

tum. 

B.6.b. Mixture 

A summation over (85) for all constituents gives the related equations 

for the mixture. From (85) 1 comes Cauchy's first law of motion expressing 

the conservation of linear momentum of the mixture 58 

while 

Here, 

pv. - t. .. - Qt;. - E. ' k'J.Bk pb. I I J ,j I I J J QI 

(85)2 gives 

[pv. (v. 
I J 

the stress 

t.. 
I J 

pb. 
a' 

the jump 

- u.) fl. Il 
J J 

tensor of 

s 
~ 

( t .. L a'J 
a=1 

s 

I p b. 
aOa I a=1 

balance equation for 

[ t. . fl. Il 
_s 
m. 

IJ J I 

the mixture is given 

- pu. u.) 
aa'aJ 

0 (86) 1 

that parameter, viz. 

(86)2 

by 

(87) 

(88) 
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is the total non-electromagnetic body force density. The s upp ly by the 

singular surface for the I inear momentum density of t he mixture is 

_s 
m. 

I 

s 

~ 
_s 
m. 

(__,I I 
a a=l 

and the passage from (85) 
1 

to (86)
1 

has taken place under t he assumption 

(i.e. axiom) of linear momentum conservation of the mi xture 

0 • 

B.6.c. Electromagnetic field 

(89) 

(90) 

From (86) 1 it may be seen that the body force density of the electro

magnetic field in the mixture is given by 

pb . 
E' 

+ (91 ) 

It is possible, on the basis of this relation, to secure a linear momentum 

balance equation for the electromagnet i c field. In doing so I i'ntroduce the 

following def initions: 

first, the 1 inear momentum density o f t he electromagnet i c f ie l d is defined 

by the "Abr~ham vector" Gi where 

G. 
I 

E •• kD.Bk 
IJ J 

the Maxwel I stress tensor for the electromagnetic field is 

and m~E denotes the supply by the si ngular surface o f Gi. 

(92 ) 

(93 ) 
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From (91), (92) and (93) it thus follows that 

aG. 
I 

at t. . . 
EI J ,j 

-pb. 
E' 

(94) 

expresses the balance of the 1 inear momentum density of the electromagnetic 

field. Further yet, the parameters above permit the use of (32) by means of 

which a jump balance equation for Gi can be gotten: it is given by 

+ [t. .ii.] 
EI J J 

_SE 
m. 

I 

B.6.d. Mixture-electromagnetic field 

(95) 

From the foregoing considerations it appears clear that for the total 

system (matter plus electromagnetic field), that 59 

(pv.
1 

VJ. - t .. - t. .) . 
I J EI J ,J 

is its balance eguation for 1 inear momentum density. 

and electromagnetic field density of 1 i near momentum 

are given he re respectively by pvi + G. and pv. v. -
I I J 

pb. 
o' 

The 

and 

t.. -
IJ 

0 (96) 

coupled mixture 

the flux of same 

t . .• 
E'J 

In addition, the jump balance eguation is found to be of the form 

[pv.(v. - u.)ii.] 
I J J J 

or, upon using (39), equivalently as 

[ (tiJ' + t. . )fi.ll 
E'J J 

[ (tij' + t. .)ii.] 
EI J J 

_SM 
m. 

I 

_SM 
m. 

I 

(97) 

Here, the non-electromagnetic part of the interaction force density which 

is related to the surface s(t) is written as 

_SM 
m. 

I 

_S _SE 
m. - m. 

I I 
(98) 
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B.7. Angular momentum balance equations 

For fluid mixtures having a phys i c , · character thought to depend non-

negligibly upon i ts polar constituents (wne~her atomic o r mol ecular), it is 

necessary to establish relationships describing the behavior o f the inter-

nal angular momenta of the system. And t his, of course, eve n i n the case 

when there is no elec tromagneti c fie ld present. These are t he matters of 

concern in this section, and they shal 1 now be examined briefly. 

B.7.a. Constituents 

60 d . f l l h . h . fl b Let the ens1ty o tota angu a r momentum toget e r wi t its ux e 

given for any constituent by 

(iji)k and (99) 
a 

where mk. is 
a J 

the couple stress tens or 
61 

of that parti cul a r constituent. De

assigned 
62 

body couple, the supply density of total angu-noting by p lk the 
aa 

lar momentum can be written. It and the production rate of P Lk are given 
aa 

here respectively by 

(olji) Ek Ii .x lpb i + p lk and (a~)k i\ (1 00) 
v k 

a aa aa a a 

It may be noted that the physical character of 1\, _like that of mi, is one 
a a 

of property transfer; this being due to the reactive and diffus i ve nature 

o f the system. Lastly , the supply by a singular surface is denoted by 

( I 0 1) 
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Use of the de f initions above in (30) leads to the balance equation for 

the total angular momentum of a constituent; viz. 

( 102) 

The jump balance equation for this quantity follows from t hese pa rameters 

and (32). It is given here by the expressi on 

[ p Lk (vi - u i) iii E 
aa a 

Moment of linear momentum 

(103) 

Here 63 the density of moment of l i near momentum and its related flux 

are given respectively by 

(iji)k and (104) 
a 

while, the~ and production rate may be denoted as 

and 

The~ of that quantity by a surface s(t) is taken to be 

( 106) 

In t e rms o f thes e parameters i t fol lows from (30) that 



a~ ( e: k I ix I~ i) 

at 
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( 107) 

which expression is the equation for the balance of the moment of 1 inear mo-

mentum of a constituent. Similarly, utilization of (32) yields the relation-

ship 

( 108) . 

known as the jump balance equation for said density of moment of 1 inear mo-

men tum. 

Internal angular momentum 

The desired constituent expressions for internal angular momentum are 

secured by taking the difference between the relationships for the total 

angular momentum and those for the moment of linear momentum. For the~-

cific internal angular momentum and the production rate of said quantity 

given for any constituent respectively by 

and ( 109) 

the balance equation for the internal angular momentum of that constituent 

is found to be 

+ ( 110) 

The jump balance equation of this quantity is seen from a si milar treatment 

to be 



[pf\(v. - u.)n.D 
aa aJ J J 

78 

[mk.n.] 
a J J 

(111) . 

where the supply by s(t) for the internal angular momentum density of a con-

stituent has been defined as 

( 112) 

B. 7.b. Mixture 

Total angular momentum 

The total angular momentum of the mixture has a balance equation gotten 

via a summation for all constituents over (102) and it is 

+ (113) 

Here, the new definitions involved are those for the total density of angu-

Jar momentum, the couple stress tensor and the body couple of the mixture. 

They are given respectively by 

s s s 

plk I plk mkj I (mk. - plk u;) and p 1 k ~ p 1 k • L, 
a=l aa a=l 

a J aa aJ 
a=l aa 

( 114) 

It may further be noticed that the transition from (102) to (113) has taken 

place under the assumption (i.e. axiom) that the total angular momentum in 

the bu 1 k of the sys tern is conserved; i • e., that 

s 
.....--., 

' I nk 
.J 

a=I a 

0 • ( 115) 
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In a I ike manner a summation fo r a l l const i tuents over (10 3) yi elds 

the jump balance equation for the tota l angular moment um of the mixture. It 

reads as fol lows 

+ mk .)ii. ] 
J J 

( 11 6) 

where 

+ ( 117) 

is the singular surface supply of the t o tal angular momen t um of the mi x t ure. 

The firs t term of (11 7) 2 , the supply by s (ti of inte rnal angular momen tum 

of the mixture, is given by 

s 
~ os L 
a=l a 

Moment of I inear momentum 

( 118) 

From a summation over (107) for a l I constituents comes t he relation 

( 11 9) 

for the balance equation of the momen t of linear momentum of the mixture . 

Equation (1C8) in turn provi des unde r these argumen t s t he jump ba l ance 

eq uati on fo r t h is parame t e r; it be i ng 

llc k 1.>· 1t .. ii.] 
I I J J 

( 120) 
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Internal angular momentum 

As was the case regarding the development of the constituent relations, 

here too a subtraction of the equations of (jump) balance for the moment of 

mixture linear momentum from those for the total angular momentum of the 

mixture gives the desired results. Hence, the conservation and jump balance 

equations for the internal angular momentum of the mixture are given respec-

6/i 
ti ve I y by 

and 

[mk.n . ] 
J J 

0 

( 121) 

Here, the density of internal angular momentum of the mixture has been de-

fined as 

s 

Pl\ I Pl\ 
a=l aa 

( 122) 

and by virtue of (90). (109) 2 and (115) it is seen that 

s 

I ck 0 • 

a=l a 
( 123) 

For the sake of simplicity .in the description from this point on of 

the physical response of the system, I wish to make the fol lowing remarks. 

As can be easily seen from (11J), the constituent stress tensors need not 

in general be symmetric. Such a statement is equally val id under general 

circumstances with regard to the mixture stress tensor : this on the basis 

of (121) 1• These anti-symmetric stress tensors make possible the treatment 
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of a broader class of fluid mixture systems than I wish to consider here. 

Hence I introduce at this time the assumption that (121) 1 be reriuired to 

satisfy Cauchy's second law of motion lS. That is, 

t. . 
IJ 

t .. 
JI 

(124) 

which relation expresses the fact that the stress tensor of t he mixture is 

taken to be symmetric. 

The general condition to be satisfied in order that said symmetry will 

exist foHows from (121) 1 and can conce i vably be met in a number of ways, 

each depending upon the physical nat ure of the particular system being in-

vestigated. I adopt here the point of view that under this assumption I am 

restricting the class of mixtures being treated to non-po lar media or to 

polar mixtures of such a nature that t he mixture stress tens or is syrmietr ic . 

The prefix "non" as used with regard to the polarity of flu i d mixtures 

should not be taken here in an absolute sense. But rather, those results 

established in this study are to be viewed as expressions assumed valid 

even for those fluid mixtures whose polarity, if any, may be taken as hav i ng 

a negligible role in the determination of the mechanical behav i o r of the 

medium. The manner in which this class of fluid mixtures complies with the 

symmetry condition (124) i s , a lthough unspecified, presumed to be s uch tha t 

al I internal angular momentum related parameters and their governing equa-

tions ensure the va l idity of this assumption. 

B.8. Energy ba lance equat ions 

As wa s the case for 1 inear momentum, the balance of e ne rgy for th e 

total system reflects the contributions t hereto of the const i t ue nts (and 

hence the mixture) and the electroma gnet i c field. To beg i n, I consi der the 

first of these. 
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B.8.a. Constituents 

Total energy 

Equation (30) is again to be employed, and the definitions of the quan

tities therein are here taken to be the fol lowing 66 • First, 

ljiv 
a 

p (£ + ~}) 
a a a 

(125) 

is the density of total energy of a constituent; where PE and ~p} are res-
aa aa 

pectively the densities for that constituent of internal and kinetic energy. 

Next, the flux of the quantity (125) is given by 

<l>lji 
k 

a 
+ 

where qk is the flux of internal energy of the constituent. Third, 
a 

alji 
v 

a 

( 126) 

( 127) 

represents th~~ of total energy; with pr being the density of body 

heating. And lastly, 

alji 
v 

a 

aa 

is the production rate for the constituent of its total energy density. 

(128) 

Here, e is the total energy production rate while the last term denotes the 
a 

power expended by the electromagnetic field on that constituent. 



83 

From these definitions, together with (30), follows the relation 

2 ap (c + ~v ) 
a a a 

( t .. v.) . 
a' J a' ,J 

+ [p(c+!})v .J . 
a a a aJ 'J 

q .. 
a I JI 

+ p( b.v . + r) 
I I 

a a a a 
+e + J'.E. 

I I 
a a 

( 129) 

cal led the balance equation of total energy of a constituent. Upon intro-

ducing the supply by the surface~ of this quantity 

T'!' 

a 

_SM _SE 
e + e 
a a 

where the two terms denote respectively the non-electromagnetic and the 

electromagnetic parts of said suppl y , it follows from (32) that 

2 
[p (c + -h) (vi - ui)iii ] 

a a a a 

(130) 

( 131) 

This expression is termed the jump balance equation of the total energy. 

Kinetic energy 

Here the balance equation for the kinetic energy of a con~tituent de-

rives from a multiplication of (85) 1 by vi and it is given by 
a 

' pv. v. 
I I 

aa 

( 132) 
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Introduction of ( 132) into ( 129) now provides the desired result; viz. 

pc t . . V. + q .. Pr 3/;i 
aa a I J a I ,j aJ .J aa a a 

e c(c + t/) (m. 
I 

cvi) vi 
a a a a a aa a 

or, eq u i val en t l y, ( 133) 

pc + pc . u. t .. v. + q .. pr (ti Ci 
aa aa .J aJ a' J a I ,j aJ .J aa a a 

e c(c + tv2 ) (mi CV.) v. 
I I 

a a a a a aa a 

These relations are termed the balance eguations of the density of internal 

~for a constituent. 

B.8.b. Mixture 

A summation over (133) 2 gives the eguation of balance of the internal 

~of the mixture 

PE pr 

Hereto belong the following new definitions: 

s 

pc ~ 
a=l 

I pc 

s 
~ 

+ L_, 
a=l 

0 • (134) 

(135) 

is the internal energy density of the mixture; with pc 1 its "i nner part"; 

s 

I 
a=l 

I 
q. 

J 

s 

I 
a=1 

t .. u . 
a' J a' 

[ t .. u . 
a I J a i 

+ 

p(c + tu2)u .J 
a a a aJ 

o (c + t u2)u.J 
a a a aJ 

( 136) 
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represents the flux of internal energy of the mixture, its inner part being 

I 
qj; and lastly, the density of body heating of the mixture is 

s 

pr ~ p(r 
~ 
a=l a a 

+ ( 137) 

It should be noted that the assumption (i.e. axiom) of conservation of ener-

gy of the mixture made in going from (133)
2 

to (134) has been that 

0 • ( 138) 

Equation (131) when summed over for all constituents gives 

[p(E + ~v2)(v. - u.)n . D + [(q.
1 

- t .. v . )n . ] 
I I I JI J I 

_SM _SE 
e + e 

or, using (39), equivalently (139) 

[ E + ,v2 ]p ( v. - u.) R. + [ (q. - t . . v.) R.] 
I I I I JI J I 

B.8.c. Electromagnetic field 

The balance equation of energy for the electromagnetic field is here 

simply given by the we! I-known relationship 

-e 
E 

( 140) 

where, the energy density, flux of same (i.e. the Poynting vector) and the 

p<bwer expended on the sources (i.e. charges and currents) are given respec-

tively by 

E 

E 
E .. kE.Hk and e 

I J J E 
J: E. 

I I 
( 141) 
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Upon defining the quantity involved by~ = £ 1 and denoting formally 
v E 

its flux and its supply by a singular surface respectively as 

S . - EV. 
EI E I 

and 
_SE 
e (142) 

utilization of (32) provides the jump balance equation for the density of 

electromagnetic field e~ergy: it is 

[E]u 
E n 

[ s. ii.] 
EI I 

_SE 
e 

B.8.d. Mixture-electromagnetic field 

( 143) 

The developments of this section culminate with the merging of the re-

suits above in such a manner as to provide expressions for energy that are 

applicable to the total system. Here then, the conservation equation for 

the coupled densities of material and electromagnetic field i nternal ener-

gies is (for symmetric tij) 

at (pt: + d + (pt:V i + s.) . t. . v. + 

E EI • I IJ I ,j 

+ q .. Pr pb . v . 0 (144) 
J ,J EI I 

From (139) and (143) the jump balance equation here is seen to be either 

or, again using (39), equivalently 

[du + 
E n 

+ [(qi - t..v. + S.)ii.] 
I J J EI I 

_SM 
e 

( 145) 
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B.9. Entropy balance equations 

[ e:] u 
E n 

+ [(q.
1 

- t .. v. - S.)ii.] 
I J J EI I 

In a rational mechanical theory the selection and uti 1 ization of an 

.SM 
e 

entropy principle is of cardinal importance. This is so first with regard 

to the closure of the set of system balance equations, and then too in con-

nection with the securing of the necessary constitutive equations. 

Generally speaking, there does not s eem to be complete unanimity among 

the practioners of modern continuum mechanics regarding the formulation and 

interpretation of the various field parameters and/or their governing equa

tions 67 • An example of this situation may, in particular, be found with re

gard to the matter of the establishment of an entropy principle 68 For the 

problem at hand the considerations below and the entropy inequalities re-

suiting therefrom have been introduced primarily on the basis of .their com-

69 patibility with the study of Liu & MUller 

B.9.a. Constituents 

Equation (30) serves once again as the departure point from which the 

. 1 ' b . H 7o h . development of the des1 red ba ance equations eg1ns. ere , t e quantity 

involved is the entropy density of a constituent; it and its f lux being de-

noted respectively by 

ijJ 
v 

a 
Pn 
aa 

and <I> ~ 
I 

a 
( 146) 
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The supply density and "production" rate 71 for that same constituent are 

in turn expressed as fol lows: 

1 r pr 
aa 

and o'iJ 
v 

a 
PY 
aa 

( 147) 

Here Tis the (absolute) temperature of all constituents, and thus al

so of the mixture 72 • The motivation for the selection of an entropy flux 

for constituents such as that introduced here is found in the mo~e general 

result derived by Liu & Muller 73 for the case of a single continuum. With 

a view towards looking eventually into the physical character of the mix-

ture systems here when they are "close to equi 1 ibrium", I consider that the 

generalization introduced here of the linearized single-fluid result of 

Liu & Muller suggests itself as an acceptable possibility. Similarly, the 

constituent entropy supply relation proposed here fol lows from the single

fluid considerations of Liu 74 • On the basis of the discussion above, I 

deem the generalization (147)
1 

of his derived non-relativistic fluid result 

to be a satisfactory choice here. 

Given the identifications (146) and (147) above, it follows from (30) 

that the entropy "balance" equation for a constituent is 

For a 

noted 

Pll + 
aa 

supply by: a 

by T'l' s 
y 

a a 
the relation 

1 
i' pr 

aa 
+ c11 

aa 
PY 
aa 

( 148) 

surface~ of the entropy density of a constituent de

equation (32) together with.the definitions above yields 
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aa a 

89 

s 
y 

a 
( 149) 

termed here the jump "balance" equatior. f the constituent entropy density. 

B.9.b. Mixture 

The result of a summation for al I constituents over (148), together 

with the assumption (i.e. axiom) that the entropy production density of 

the mixture 

s 

PY I PY 
a=l aa 

satisfies the condition that PY 

Pn + 

~ 0 75 . is the relationship 

s 

\ c .. u.)J . 
L_, aJ I J , 1 

a=l 

(150) 

( 151) 

This is the entropy balance equation for the mixture. The definitions which 

relate the constituent relations to this equation are as fol lows: 

Pn 

are respectively 

of the mixture; 

c .. 
JI a 

s 

I Pn 

a=l aa 

the entropy 

and, 

P (e: + tu2 

a a a 

and Pr I 

density and 

Tri) 6 .. 
JI a 

s 

I pr 

a=l aa 

the inner 

t .. 
JI a 

part of the body 

(152) 

heat in~ 

( 153) 
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For this last relation it may be observed t hat 

s 
~ 
L, 
a=l 

c .. 
JI a 

p (£-Tn) o .. 
JI 

s 

I 
a=1 

t .. 
J I a 

(154) 

This means that for £ 1 n and t.j given by constitutive equations (cf. Chpt. 
aJ 

C), only s-1 of the C .. are independent. 
aJ ' 

Upon summing (149) for all constituent s and making the assumpt ion 

(i.e. axiom) in doing so that the supply by a surface~ of entropy den-

sity of the mixture 

s 
y ( 155) 

fulfil ls the requirement that y
5 

<: 0, the following relation is found: 

s 

+ +I 
a=l 

s 

- I 
a=l 

c . . u.) fi . Il "' 0 • 
aJ I aJ I 

( 156) 

This is the jump balance equation for the mixture entropy density. Use once 

again of (39), together with the assumption that T is continuous across 

s(t), allows (156) to be rewritten in the form 

+ 

s 

""' + UL_, 
a=l 

+ 

s 

[~ c .. u.fi .] ;,: o. (157) L aJ i aJ i 

a=l 

This re lati on sha ll be employed shortly in the subsequent development of 

the entropy principle here. 
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B. 10. Selected equations: a recapitulation 

For developmental purposes below is worthwhile to collect here the 

set of equations which shall be referred to, directly or in terms of their 

equivalents, in the sequel to this chapter. These relationships are now given. 

Balance and conservation equations 

p + p v .. c ( 158) 
a aaJ ,J a 

pvi t. . Qt;i £. 'k'J.Bk p b. m. - CV. ( 159) 
a I J ,j I I I 

aa aa I J aJ aOa a aa 

t.. t .. ( 160) 
IJ JI 

PE t .. v .. + q .. pr a. e. 0 ( 161) 
I J I ,J J ,J I I 

s s 

Ph + +I I 0 ( 162) 

a=l a=l 

'D· . I 1 1 
( 163) 

F J1'.° 
<f.D; 

Eij~,j Q vi + + --I at 
(164) 

B. 
I ,i 

0 ( 165) 

oB. 

£. "kEk . 
I 

I J ,J - at ( 166) 



Jump balance equations 

[p (vi - ui)1\] 
a a 

_s 
c 
a 
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[v.]p(v. - u.)n. - [G.]u - [(t . . + t..)n . ] 
_SM 
m. 

I J J J I n I J EI J J I 

[£ + !v2]p(v. - u.)n. 
I I I 

- [du + [ (qi - t .. v. - s . ) ii. ] 
E n JI J E1 1 

5 

T[l')]p(vi - ui)ni + [qini] + [L £ijk&/\iii] -
a=l a a 

s 

- [""' c . . u.n . D <: o 
~ JI JI 
a=l a a 

['J)i] Eijkhjnk 

iffik] gnk + unhk 

[Bi] Eijkkjnk 

[ E i] fii. - u k. 
I n I 

( 167) 

(168) 

( 170) 

( 171) 

( 172) 

( 173) 

( 174) 



93 

Footnotes to Chapter B 

Note CFT [1960, 9, Sect. 8]. 

2 
With regard to integral principles see, for example, CFT [1 960 , 9, 

Sect. 7]. 

3 The degree to which field quantities in a given region of a system 

are continuous is set down in an assumption of smoothness. In this 

study I assume whatever degree of smoothness is required to ensure 

the validity of the relationships concerned. This po int is touched 

upon by Truesdell in CFT [1960, 9, Sect. 16]. 

4 Cf. Post [1962, 6, pp.25-26] and Bergmann [ 1949, 1, p . 177] . 

5 Motivated by the work of Truesdell [1962, 10, p.2339] and Ke ll y 

6 

[1964, 4, p. 133], I too divide the total supply of a field quantity 

of a constituent into two parts . The one part relates to the con

stituents as though they were single continua; while the second part 

accounts for the density of the production rate (i.e. supply or 

transfer) of the given field quantity due to, e . g., t he dif fu sive 

and reactive interaction of the consti t uents. Th i s latter cont ribu

tion to the total supply is generally not taken as being known a pr ior i 

as is the former; but rather, it is most properly described i n terms of 

appropriately formulated constitu t ive equations. The developments 

pertaining to balance equations i n regions of volume and sur face 

containing respective ly singular surfaces and lines are given here in 

the sections beginning with Sect. B. 1. 

Truesdell [1969, 7, p. 83] . 

7 CFT [1960, 9, Sect. 13]. 
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8 I refer the reader to CFT [1960, 9, Sect. 66A] and the references 

given there for the historical aspects of this matter. 

9 Cf. Alts [1970, 1, p. 12]. The reader is cautioned not to confuse 

these "particles" of continuum mechanics with those of the constit-

uents (e.g. electrons, atoms, etc.) in terms of which they are 

defined. 

lO CFT [1960, 9, Sect. 15]. 

11 Jaunzemis [1967, 12, p.67]. 

12 CFT [1960, 9, Sects. 15 and 65]. 

l3 CFT [1960, 9, Sect. 158]. 

14 Not altogether unusual, both direct and index notation shall be used 

in this study. For the latter Cartesian tensor notation is employed. 

As above, Greek letter indices relate to material co-ordinates while 

spatial co-ordinates are given by Latin letters. Both sets of indices 

range over 1 ,2,3 and, fol lowing Einstein, repeated indices indicate 

a summation. 

15 The alternator (or permutation symbol) E. "k is a third-order tensor 
IJ 

defined by Eijk = 1, -1 or 0 if, respectively, the indices ijk are an 

even or odd permutation of 1,2,3 or if any two indices are equal. 

16 CFT [1960, 9, Sects. 16 and 65]. 

1 7 Cf. far examp I e C FT [ 196 0 , 9, ( 1 6. 4) ] . 

18 The use of the names Lagrangian and Eulerian for the material and 

spatial descriptions respectively has been shown by Truesdel I (CFT 

[1960, 9, Sect. 66A and the references therein]) to be misnomers; 

both descriptions having resulted from work done by Euler. 
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19 
CFT [1960, 9, Sect. 73]. 

2° CFT [1960, Sect. 158]. 

21 
Ibid. 

22 
CFT [1960, 9, Chpt. CJ. 

23 
CFT[l960, 9, Sects. 81 and 192]. Cf. also Muller [1973, 9, p.24] 

and Kelly [1964, 4]. 

24 
I f o I I ow Ke I I y [ 1 96 4 , 4 , pp . 1 3 4- 1 3 7J and Mu 1 1 e r [ 1 9 73 , 9 , pp . 2 6- 2 8] 

in this study in noting that the results of such considerations are 

significant with regard to a theory of material media interacting 

with an electromagnetic field. Truesdel 1 & Toupin (CFT [1960, 9, 

Sect. 184]) note that "Singularities located upon 1 ines seem not to 

have been studied from a general viewpoint.". 

25 Cf. Kelly [1964, 4, p.136] and Muller [1973, 9, p.27]. 

26 
Note the comments of footnote 5 above. 

27 Cf. CFT [1960, 9, Sect. 193], Kelly [1964, 4] and Muller [1973, 9, 

p.24]. 

28 
CFT [1960, 9, Sect. 193] and Kelly [1964, 4, pp.133-134]. 

29 Ericksen (CFT [1960, 9, Sect. App.26]) points out a historical 

motivation for using the terminology "Green's transformation" in 

place of, e.g., "Gauss' theorem", "divergence theorem" etc. Although 

writers in modern continuum mechanics seem divided in their choice of 

name for the mathematical results involved, I follow the CFT here. 

For a region of volume admitting singular surfaces the appropriate 

expression is given, e.g., by Jaunzemis [1967, 12, p.198]. 

30 Cf. Kelly [1964, 4] and Muller [1973, 9, pp.26-27]. 
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31 The so-ca 11 ed "Stokes' theorem" has been shown by Truesde 11 (cf. 

Ericksen, CFT [1960, 9, Sect. App. 28]) to have, in fact, derived 

from the studies of Kelvin. For the sake of proper attribut ion I 

here too fol low the CFT and use the termi no logy "Kelvi n 's transfo r-

mation". In the situation where the surface region of interes.t con-

tains a singular line, the relevant expression here may be found in, 

e.g., Jaunzemis [ 1967, 12, p.199] . 

32 Cf., for example, Kelly [1964, 4]. 

33 CFT [1960, 9, Sect. 159]. 

34 Aris [1965, 2, p . 81]. 

35 Cf. Gyarmati [1970, 5, p.28] and Muller [1973, 9, p.192]. 

36 The . . I f . t . I . d h . . h 1 . h pr1nc1p e o superpos1 ion intro uce ere 1s, wit some s 1g t 

modification, that given by Podols ky & Kunz [1969, 5, p.47]. It i s 

to be noted that it too, like the mechanical princ iples of Truesdell 

(cf. footnote 6), is of a metaphysical nature. In this regard see 

p. 274 -of the cited work by Podolsky & Kunz. 

37 This approach was taken by Kelly [ 1964, 4, pp. 146-152]. 

38 CFT [1960, 9, Sect. 279 ] . These relationsh i ps are postu lated as ho ld

ing in pre fe rred Euclidean· (or Gali lean) frames of reference and 

they serve to couple the charge-current and the electromagnetic fields. 

Now, the Maxwel I's equati0ns for the electromagnetic field a r e known 

to be i nvariant unde r Lorent z transformat ions. I thus assume that 

since the mechanics of mixtures he re i s classical, and examined in 

terms of inertial Euclidea n (or Gali l ean) f rames, that there exists 

a frame of reference which is simultaneously Lorentz ia n and inertial 

for which the developments here are val id. See in this regard Mi.ii l~r 
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[1973, 9. p.130]. 

39 
CFT L1960, 9, (233.35)

2
]. 

48 
Cf. Liu & Muller L1972, 5, (2.20)

2 
a1 '1ull e r 19 73 , :;, p .13 2 . 

41 
Cf. CFT [1960, 9, p.689] and Liu 

42 
See, for example, Jackson ~1967, II, Panofsky & Phillips 1962 , 5", 

Penfield, Jr. & Haus [1967, 17i, Stratton L1941, I ' a nd CFT ~ 196 0, 9 , 

c hp t. F]. 

43 
cf. Ke I I y [ 1964. 4. p. 150 J. 

44 
cf . CFT [ 1960. 9, p.636]. 

45 cf . CFT [ 1960. 9, p.677]. 

46 
Note CFT [1960, 9, (279.1)

2 
and (233.35)

1
]; the latter equation cited 

being generalized here. This result has also been secured by Demi ray 

& Eringen [ 1973, 3, (3.5)]. 

47 Cf. Kelly [ 1964, 4, (4. I IQ)]. 

48 
Cf. Liu & Muller [ 1972, 5, (2 .20)

1
1 and Muller [1973. 9. p.13ZJ. 

49 
This result generalizes, by virtue of its mixture character, that 

given by Truesdel I & Toupin (CFT [ 1968, 9. p.639J), Liu & ~1ul ler 

[1972, 5, (4.4)
3

J and Muller L1973, 9, p . 126 1. The formal inclusion of 

current densities upon s(t) is a trivial matter. Such densities have 

been disregarded here for the sc;ke of simplicity in the further 

development of this theory. Equation (71) including a surface current 

term has been given by Demi ray & Eringen i 1973, 3, (3.2)
2 

i. 

50 See, for example, Som;nerf,,lc! 1:1963, 9. pp.13-20i and Kline & Kay 

l1965, 11, p.33 j . Note here also footnote F7. 
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51 CFT [1960, 9, (278.9) and (278.12) ], Liu & Mui ler [1972, 5, (4.4) 2 J 

and Mul 1 er [1973, 9, p.120 and p.143]. 

52 cf. Kelly [ 1964, 4' (4.85)] and Muller [ 1973, 9, p.120]. 

53 cf. Liu & Mtil 1 er [1972, 5, ( 2. 19) 1 ] and Mti I 1 er [ 1973, 9, p. 131 J. 

54 CFT [1960, 9, (278.8) and (278.11)], Liu & Muller [1972, 5' (4. 4) 1 J 

and Mu 11 er [1973, 9, p.121 and p.143]. 

55 With regard to (81) and (82) see, e.g., Kelly [1964, 4, p.139]. 

56 CFT [1960, 9, Sect. 157]. 

57 Cf. Penfield, Jr. & Haus [1967, 17] and CFT [1967, 9, Sects. 284 and 

286 ]. 

58 CFT [1960, 9, Sect. 200]. The integral basis of this relationship de

rives here essentia l ly from a constituent version of Euler's first 

law (ibid, Sect. 196) and the Euler-Cauchy stress principle (ibid, 

Sect. 200). In contrast to popular misconception (see, e.g., Sutton 

& Sherman [1965, 17, p.297] and Haase [ 1969, 2, p.228)) such a result 

is not the consequence of Newton's laws of motion which have been 

pointed out by Truesdell & Toupin (CFT [ 1960, 9, Sects. 2 and 196]) 

as being inadequate for this purpose ; not to mention others. 

59 Cf. Mt.ill er [1973, 9, p . 130) . 

60 Cf. Kelly [1964, 4, p. 141 ]. 

61 
CFT [1960, 9, p.538 ] notes for single continua the introduction of 

the (ant i-symmetric) couple s tress tenso r as a means of account ing 

for torques no t a r ising from forces. Kelly [1964, 4], e .g., extended 

that development to the case of mixtures. 

62 
The body couples are, 1 ike the body forces, presumed known; and they 
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too must be specified. Due, however, to the assumpti on ( 124 ) they need 

not be made exp I icit in this study. 

These definit ions are gotten from a multiplication of (35) 1 by 

e: kli x 1 and a re introduced so l e ly for the forma l conven ience they 

offer. 

64 Cf. CFT [1960, 9, (205.10)] and Kelly [1964, 4, (4.37) a nd (4.39)]. 

Similar to the remarks nade in foot no te 53 for the case of I inear 

momentum, (121) 1 is secured by means of Euler's second law (CFT [1960 , 

9, Sect. 196]) and the Euler-Cauc hy (couple) stress pr i nc i p le (ibid, 

Sect. 200); bot h of which are exp ressed in a consti t uen t fo rm. 

65 CFT [1960, 9, p .546]. See here also Mui ler [1968, 9, (2. 17) ] . 

66 Cf. CFT [1960, 9, Sect. 243], Kelly [ 1964, 4, pp. 142-143 ] , Truesdel 1 

[1969, 7, pp.84-85] and Mui ler [ 1973, 9, p.36]. 

67 For example, s ee Truesdel 1 [1969, 7, pp.93-94], Green & Nag hdi 

[ 1969, 1] and Craine, Green & Nag hd i [ 1970, 4]. 

68 See, e.g., Green & Naghdi [1971, 4 ] , Liu [1973, 6, p.2 7] and Demi ray 

& Eringen [1973, 3, p.910]. 

69 Liu & Mui ler [ 1972, SJ. Note also Mui ler [1973, 9, p. 73]. 

7° Cf . Truesde l I [ 1969, 7, p.33]. 

7l For mix tures with constituents whose energetic coupling i s non-

negligible the term pymay (cf . Truesdell, ibid) "be of a ny amount"; it 
aa 

being subject only to the res tr iction assumed for (150). The less 

genera l cas e wherein each constituent is accor ded it s own ent ropy 

inequality has been examined i n va r ious degrees by, e .g., Green & 

Naghd i [1971, 4] and Demi ra y & Er i ngen [1973, 3] . Suc h t rea tments 
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have, however, been pointed out by Dunwood & Mul l e r [1968, 2, p.347] 

and Truesdell [ibid, p.93] as be i ng physically def icient in that 

regard. 

72 + The temperature T(x,t) is a pri mitive (i.e. physically undefi ned) 

73 

74 

75 

scalar field quantity in rational thermodynamics. (Cf . Truesdell 

[1968, 7] and Truesdell [1969, 7. Lecture 1].) Here T(~.t) is taken 

to be a function having positive values for all; and t: i.e . T > 0. 

A many-temperature theory of mixtures would indeed prove both inter-

esting and valuable. However, mixture continua behavior in general, 

and that of mixture continua interacting with an e lectromagnetic 

field in particular, represents a problem area barely investigated 

at present . I thus conclude (cf. Muller [1968, 4, p.6]) that it is 

worthwhile to I imit the considerations here to single-temperature 

systems. 

Liu & Muller [ 1972. 5. p. 169 ] . 

Liu [1973, 7. pp.113-114]. c f. also Muller [1968, 4, p. 7]. 

Cf. Truesde II [ 1969. 7. p. 88] . 
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C. CONSTITUTIVE EQUATIONS 

The relationships secured thus far describe essentially the kine-

matics of a moving and chemically reactive mixture interacting with an 

electromagnetic field. Balance equations are, however, unable to provide 

any insight into the action of a system upon a portion of itself and 

the subsequent reaction (i.e. material response) of that part upon the 

system 
1

. For example, the balance equations for physically similar 

material media (e.g. all noble gases) evidence no formal difference in 

their general structure. The distinction between physical systems comes 

with the characterization of their response properties . 

A continuum description of material behavior is a phenomenological 

one. It is the knowledge and understanding of the phenomenology relevant 

to a given system that must lead to the constitutive equations which 

serve to give that system its own macro-identity. Constitutive equations 

are, as a result of analysis and abstraction of physical experience, a 

definition of ideal material systems: i.e., mathematical models of real 

media. The formulation of adequate constitutive equations is a most 

formidable task 
2

; shortcomings here, for example, in the case of matter 

in an electromagnetic field being generally considered as the origin of 

theoretical and experimental disagreement 3 

It is a twofold task that constitutive equations fulfil . They pres-

cribe the material response of a system and in doing so serve to make 

1 . h f d . 4 Th . . f h h the ba ance equations t ereo eterminate . e spirit o t e approac 

taken here requires that these relationships be such that the second 

part of Truesdel 1 's second metaphysical principle given above be sat is-

fled. 
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As was the situation commented upon in connection wit h the entropy 

principle, the manner in which one "properly" allows for constituent 

interactions does not yet appear to be an entirely settled upon matter. 

The possible shortcomings and discrepancies notwithstanding, I assume 

that an adapted methodology of a rational mechanical constitutive theory 

such as that employed by Liu& Muller 5 offers a reasonably secure way o f 

deriving the constitutive equations for this problem. 

The balance equations given earlier indicate that constitutive 

equations must be provided for the fol lowing "dependent" 6 scalar (S), 

vector (V
1
.) and tensor (T .. ) fields: 

I J 

s ,.,r:,, £ 

' 11 (a 1 ,2, ... , s), 

v. mi, I 
p i' M. (a 1'2' .. ., s) 

I qi' I 
a a a 

and 

T .. t i j ' c .. (a 1 ,2, ... , s) . 
I J a a'J 

The "independent" scalar and vector field var i ables upon wh ich these 

fields may depend have in this study been assumed to be the following 7 

and 

s 

v. 
I 

p, T 
a 

(a 1'2' ... 's) 

(a 1 ,2, .. .,s). 

By assumi ng t hat the material response o f any system i s an 

intrinsic (i.e. observer independen t) physical proper ty of tha t system, 

it is de si rable to es tablish constitut i ve equations that reflect thi s 

viewpoint . That is, for any g i ven system t he constitutive relations are 

(1) 

(2 ) 
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assumed to be invariant under co-ordinate transformations and form

i nvariant under observer transformations 8 

A change of reference frame (cf. Sect. B.a . ), or observer transfor

mation, is expressed here by a Euclidean transformation 9 

* )( and * t t - a 

where the arbitrary quantities 0 . . (t), d. (t) and a are respectively a 
I J I 

time-dependent orthogonal tensor and vector, and a constant . The sca lar, 

vector and tensor constitutive field quantit ies (1) and the fie l d 

variables upon which they are presumed to depend are called objective 

10 when they transform under (3) according to the following relations 

s* s, 

0 . J ( t)V. 
I p I 

(for polar vectors), 

ID (t) ID . . (t)V. 
pq IJ A I 

(for axial vectors) 

and 

Of the fields (1) and (2) above all are taken to be object i ve 

with the except ion of mi, vk and Ek. With a view towards t he coming 
a a 

developments it is necessary to secure those comb inations of variables 

Involving these fields that are objective. With regard to mi I fol low 
a 

Muller 11 and replace it by mi - evi . Furthermore the objec tive vectors 
a aa 

gotten here from vk and Ek are, respectively, the velocity d if ference 

d 1 
a . . . " 12 Vk an thee ectromot1ve 1ntens1ty ~ k 

b s 

( 3) 

(4) 
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The set of objective and independent field variables is given by 

and (5) 

and F is taken to denote any element of the set of constitutive fields 

and (6) 

where, a= 1,2, ... ,s and b 13 1 ,2, •.. ,s-1. The principle of equipresence 

as employed here leads to the result that the constitutive equation of any 

14 particular' F ls given implicitly by 

(7) 

where, in general, :Fis appropriately a scalar, vector or (2nd_order) 

tensor functional of its arguments. 15 h h r,;- ·1 s assume , owever, tat v 

representable by a function. On the basis of (7) this study is thus seen 

to concern itself with the bulk material behavior of mixtures of inviscid, 

chemically reactive, heat conducting, magnetizable and dielectric fluids. 

Although the equations of motion are not invariant under changes 

of frame, the constitutive equations should be formulated in such a 

manner that the material response of a system is Independent of any 

observer. The preservation under an observer transformation of the 

character of the functions :F is expressed in an axiom of form-inva~ianc~ 

known as the principle of material frame-indifference 16 : it stating 

that;;*= :F. In terms of the scalar, vector and tensor constitutive 

fields in (6) this means that the now isotropic functions :fare such 

that the following relations hold: 
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s (p. 0 'kp k' T, O.kT k' 
a J a' J • o.kvk' 

J b 
o.k&k' 

J s 
IO IO.kBk) pq J 

s (p. p k' T, r,k' 'k' &k' Bk)• 
a a' b s 

v. (p' 
I a 

0 'kp k' 
J a' 

T, O.kT k' J • o.kvk' 
J b 

0 'k&k. 
J s 

lopqlojkBk) 

and 

The specification of constitutive equations in rational mechanics 

includes some mention of the symmetry restrictions to be imposed upon 

these relationships. Such conditions are inherent in the choice of the 

group of orthogonal transformations for which the constitutive equations 

are assumed valid. When it is the proper (full) orthogonal group which 

is involved, the system in question is said to possess hemihedral 

(holohedral) isotropy 17 : the former case is examined here. 

I note in passing that the forms (7) of the various constitutive 

equations are used in obtaini·ng the reduced entropy inequality which 

follows shortly. But before I take up that matter, it is necessary to 

secure the explicit relationships for the constitutive equations above. 
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C. 1. Constitutive equation representations 

(m) ) Let S ( m = 1 , 2,. . ., s+ 1 
(n) ( be a scalar and Vk n 1,2, •. .,2s+2) 

be a generic vecto r in terms of which the argument fields of (7) may be 

expressed. In general, thus, (7) may now be written as 

Under the pri nciple of material frame-indifference it follows that 

whi ch relation is equivalent to (8). Now, the development of exp licit 

form-invariant constitutive equations from (10) utilizes an invariant-

theoretical methodology of rational mechanics. The particular approach 

18 I follow here is due to Pipkin & Rivi in 

Let the Y. . . be cont inuous s ingl e-va lued function s which 
1 1 1 2· .. 1 1 

depend upon the now assumed uniformly bounded fields S(m) and V~n), and 

which possess whateve r degree of smoothness may be required. Under 

these conditions it is possible 19 without loss of genera lity to make 

the conve nient, but otherwise non-essent ia l 
20

, assumption that the 

21 :F. . . are po lynomi al functions of the argument fields 
I 11 2 • .. I l 

For V~p) (p = 1, 2, . . . . I) the components of an arbitrary generic 
I 

vector whic~ has the same transformation properties a s does V~n) (cf . 

(4)), I fo rm the absolute (polynomial) sca lar invariant Sunder the 

group of prope r orthogonal transformations: viz. 

s 

(9) 

(11) 
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The polynomial character of the i nvariant S makes poss ibl e its 

expression as 

m 

s ~ 
/__, s I a a 
o: =l 

Here Sa denotes th e polynomial functi ons invariant under the g roup of 

proper orthogonal transformations whi ch are elements of a n integ r it y 

basis appropriate to the vectors V(n) · R The I are those invariants k 1 n 3 · a 

that are multi! inear in V~p) and which derive from an integr i ty basis 
I 

for those vectors togetherpwith the V~n) 

The integrity basis for the Sa i s here (cf. Appendix C-1) that 

finit e set of absolute scala r (polynomi a l) invariants formed 22 from 

the absolute scalars p and T together with the inner prod ucts 

I ~ 2 )), determinantal · ;roducts ( 11~) and products of these both 

( I (1) 
a , 

( llA), of 
0 

(n) 
the vectors Vk . It depends upon t he spec i fic scala r , (po lar or axial) 

vector and tensor nature of the :F. . . what elements t he i ntegrity 
I 1 1 2 •.• I I 

b . f h I . 11 . 23 Th . . b 1 d h as1s o r t e a w1 contain . e 1ntegr1ty ases re ate to t e 

specific constitutive fields considered here are given i n t he a ppendices 

cited below. 

An i ntegri ty basis should, in t erms of the numbers o f elements it 

contains, be mini mal. It shou ld further be such that no (po lynomi al) 

invariant member t he reof is expressible i n terms of any other(s); in 

24 
which case it is said to be irreduci b le . Although of some importance, 

the non-trivial matte r s of prov ing mi ni mality a nd demon s t ra ting the 

irreducib i lity of the integ rity bases given here lie beyond the scope 

of this study. view thi s neg l ect of an otherwise essential po i nt as 

being acceptable here on the grounds that rather than wo r k , for exampl e, 

( 12) 
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with the full non-1 inear constitutive equation representations, I shall 

employ in the sequel a reduced form of same for which the absence of 

such minimality and irreducibility considerations is of no consequence. 

It may be noted in passing that due regard has, of course, been given 

in the non-1 inear representations below t o t he wel I-known relation 25 

6. o. 6kp rp JP 

£ i j k£pq r 6 . 6. 6kq rq Jq 

6. 6. 0kr rr Jr 

Thus, in closing this section, the general representation of any 

particular form-invariant (polynomial) constitutive equation here t hat 

fol lows from (12) is seen to have the so-cal led canonical form 26 

m 

I 
a =l 

The (polynomial) coefficients Sa are the material response functions 

which characterize, i.e. define, a given system. They relate to the 

various possible effects that may occur within that system under a 

particular set of circumstances. Rational mechanics can only establ ish, 

( 13) 

(14) 

within a given context, the number of such coeffici e nts; and, the thermo -

dynamic restrictions upon them. Being of a phenomenological nature, it 

does not fall to rat ional mechanics to provide physical insight into 

the atomic or molecular background of these coefficients; this rema i ning 

the task of other di sci pl ines. 
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C.l.a. Non-linear representations 

Objective scalars 

th For scalars, i.e. 0 -order tensors, ::Fis seen from (10) to be an 

absolute (polynomial) scalar invariant of the fields S(m) and 

The objective scalars, taken as functions of the variables denoted by 

these fields, can thus in general depend upon the sets of variables 27 

r( 2) IC.A and tf· these being given in Appendix C-1. 
B ' k o' 

Objective polar vectors 

Let Vi denote the polar vector function the representation of which 
p 

is desired. The introduction of an arbitrary polar vector, say ai, nakes 

possible the formation of an absolute scalar invariant S 
p 

argument fields (2) togetherwithai' which is linear in 

means that 

4 

a.If. of the 
Ip I 

a. . He re this 
I 

s 
p 

+ ~ vp~Z) (I*) 11 ~ 2 ) (a i) / _"' 
6=1 

+ 

4 

+ -, - v;3)(11*)E~(a.); 
/__. p I 

>. =I 

where, by virtue of (13), I have defined the two sets of invariants 
28 

* I and * 11 

From the expression (15) follows, upon differentiation with respect 

to the vector a.
1

, the imp! ici t form of the vector V. representation; it 
p' 

being 

( 1 5} 

( 16) 



110 

4 a 11 ( 1) (a.) 4 
al 1?) (ai) 

v. ~ v( 1)(1*) I l v(2)(1*) + + 
p' L pY aa. ~Pc aa. 

y=l I 6=1 I 

4 A 

I v~ 2 l(11*) 
aE,\ (a i) 

+ aa. 
,\=l p I 

The terms 11~ 1 )(ai)' 11~ 2 )(ai) and E~(ai) are given respectively in 

Appendix C-2 (tables 1-3); and use thereof in (17) yields the result 

sought. 

Thus, the general non-linear representation of an arbitrary polar 

vector which is taken to be a function of the variables (2) may be 

written as 

s 

v. ~ [ V( l) (I*) 6 . (3) * v( 2)(1*)B.B J }_, + V l (I I )€: . . kB. + p k + 
pl 

a=l 
Pa 1 1 k Pa 1 J J Pa 1 1 k a' 

s-1 

I r V( l) (I*) 6 . (3) * v( 2)(1*)B.B ] vk + + V 2 (II )€: . . kB . + + 

a=l 
·Pa2 1 k Pa 1 J J Pa2 1 k a 

+ 

+ [ 
( 1) * ( 3) * 

Vp4 ( I ) 6 i k + V 4 ( I I ) E •• kB. 
p I J J 

From this expression it thus follows that the specific non-1 inear 

representations for the polar vectors mi 
a 

the relationships below: viz., 

- Cv i, 
aa 

I 
qi and Pi are given by 

a 

( 17) 

( 18) 
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m. - CV. 
I I 

a aa 

s 

2= [ ( 1) * (3) * (2) * ] 
:b 1 (I ) 6 i k + m l ( 11 )c . . kB . + :bl (I )BiBk p + 

b=l 
ab I J J b'k 

s-1 

I [ ( 1) * (3) * (2) * l + :b2 (I ) 6 ik + m 2 (II )c . . kB. + m 
2 

(I )B . Bk vk + 

b=l 
ab I J J ab I J b 

[ ( 1) * (3) * ( 2) * J 
r,k + :3 (I ) 6 i k + m

3 
(II )c.kB. + :3 (I )BiBk + 

a I J J 

[ ( 1) * (3) * ( 2) * ] 
ck 

(19)29 + :4 (I ) o i k + m4 (II ) c .. kB. + :4 (I )BiBk 
a I J J s 

for a 11 a; 

s 
I I [ ( 1) * (3) * ~~2)<1*)BiBk] qi ~ 1 (I ) 6 i k + ql (II )c .. kB. + p k + 

a=l 
a I J J a' 

s-1 

I [ ( 1) * (3) *) ~~2) (1*)BiBkJ vk + ~2 (I ) 6 i k + q2 (II £ijkBj + + 

a=l 
a a 

+ [ ( 1) * 
q3 (I ) 6 i k + 

( 3) * ' 
q

3 
(II ) c ijkBj + q~2)(1*)BiBk ] r,k + 

+ [ ( 1) * 
q4 (I ) 6 i k 

(3) * 
+ q

4 
(II )c .. kB . 

IJ J 
+ (2) * l q4 (I )BiBk ~k; (20)30 

a nd, 

s 

" r (1) * (3) * P(
2

)(1*)B.B J P . /_ pl(l)o ik + p 1 (II )c .. kB. + p + 
I ab I J J ab J I k b'k 

a b~ lab 
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s-1 
v [p ( l ) ( I *) o. (3) * P( 2)(1*)B.B] vk + l_. + P 2 (I I )£ .• kB. + + 

b=l 
ab2 1k ab I J J ab2 I k b 

l:j1>(1*)0ik 
(3) * 

:?> (1*>eiek} T k + + P3 (I I hijkBj + + 
a ' 

[:!1) (1*)oik 
(3) * P!2>(1*>eisk] &k + + :4 (I I )E;ijkBj + 

a s 

for a 11 a. 

Objective axial vectors 

In a manner like that used to determine the representation of V., 
P' 

now proceed to find for an axial vector function v1 its necessary rep
A 

resentation. Here ci serves as an arbitrary axial vector by means of 

which I set down the absolute scalar invariant SA= c.V. of the fields 
'A' 

(2} that includes ci, and is linear in ci. It is here given by 

4 4 12 4 
+ )Vv(3>(11*)11(9)(c.) 

L_, L_.. AmjJ 1 

rr=l tjl=l 
+II 

r=l a=l 

v< 4 > (11*) 11 (S} (c.). 
Ar/a r/a 1 

Differentiation of this relation with respect to ci provides the 

following implicit representation here of the vector V.: 
A' 

+ 

(21) 31 

(22) 

12 4 . a11(5}(c.) 

+ >-- L x~~! ( 11 *> __ T'"""~-~-i -·-. (23) 
T=l a=l 
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Appendix c-3 {Tables 4-7) in turn provide the terMS to be differentiated 

in (23) and the result of carrying out the indicated operation gives the 

vector V. its exp! icit form here. 
A1 

Consequent to (23) the non-I inear representation for the axial 

objective vector M. Is thus of the form 32 
I 

a 

s s-1 -,.- p -,- v 
+ /--' M "k p + 

/~ M "k vk + 

b=l 
ab

1 b'k 
b=l 

ab I b 

T 
+ Mi k T k 

a ' 

where the last four coefficients in {24) are given, for all a, in 

Appendix C-4. 

Objective tensors 

The last general representation with which I am concerned here is 

that for a 2nd_order absolute tensor function T ... Following the same 
IJ 

procedure 33 employed above, I now take two arbitrary polar vectors ai 

and b. and construct an absolute scalar invariant ST= a.T .. b. of the 
J I I J J 

fields (2) together with a
1 

and bi, which is bilinear in these two 

vectors. The scalar ST may thus be written here in the form 

t {l)(t*)..,.a•+b + t{Z)(1*)(..,.a·"'B){+b·*) (3 )(11*) b B 
tl + t ijk ai j k + 

8 8 

+ /~ <4 )(11*)E~{ai)(b·B) + /. t{S)(11*)(a·B)EP(b.) 
- q> q> I 

+ 

fi.=1 qi=l 

(24) 
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4 4 

+ t(6)(1*)11(6)(a. b.) + 
YE YE I' I 

4 4 

+ I 
µ•1 

+ 

4 4 

II 
W"'l A"'l 

A differentiation of this expression with respect to the vectors 

ai and bj brings forth the implicit representation of the required tensor; 

said relationship being here of the form 

8 

+I 
x"'l 

4 4 
~v 

+ /__. /_. 
y=l <.=1 

+ 

4 4 

+ / ... 
X=l 

a2 11,( 11 ) (a. ,b.) 
AE I I 

aa. ab. + 
I J 



4 4 
~~t(9>c1*) 

+ L~ I~ OE 
6=1 £=1 

<la.ab, 
I J 
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a211 (l 5) (a. b.) 
O)J I. I 

aa.ab. 
I j 

+ 

a2 11< 14>(a. b.) 
XW I 

1 
I 

+ 

+ 

Upon introduction of the appropriately differentiated terms here, gotten 

with the help of Appendix C-5 (Tables 8-16), it is possible to rewrite 

(25) more explicitly. 

(25) 

On the basis of the foregoing considerations, the general non-linear 

representations here for the objective (2nd_order) tensors t .. and C .. 
a' J a' J 

can, for all a, now be given. Due to their complete similarity of form, 

34 I set down only the representation of tij; it being 
a 



... 1 s-1 s 
' -(8) *) ( .. i v -(8) • ("' "J v ·(8) • "' " + L t 23(11 r,, V• )J) + L t 24(11 )&(IV•• J) + L ·tb31(11 )pb,(i(vTxo)J) + 
b•l ab b b-l ab • b b•l • 

s-1 

+ """ -(8) *) ,,.. ") + L t 42111 v11"''" J) 
b•l ab b s 

-(8) • *"" -(8) ( • +" t 43 (11 )Tqfo••)J) + t 44 II J&(l(&xu).) + 
a "s a st J 



l s 

s-1 
~ t(lol (1*) (oo·B) +2= t1 10l o*Hv·Bl t(l0)(1*)(vT•B) -(10) • ~ + J 
L. + + t 34 (l)(E·B)T(i6') + 
,c=l ab 31 b b=l ab 32 b a33 a S I j 

[f t(!~l <1*)(op·Bl 

s-1 

+ +I ;!1°lu*Hii·Bl + tU0l (I *)(vT·a) -<10) • + a J + + t44 (I )(&• ) &(;8·) 
b•l ab b b=l ab 42 

b • a s s J 

[f t <: ~l ( 11*) (vp·B) 

s-1 

+ + L «~~) 01 *Hii·a) + t(l2) (11*) (vT•B) + t(!f)(ll*)(t•B)l B(i (VpxB) ") 
c=l abc c 1 abc c ab 31 ab s b J 

c= 

s-1 

~ t(j~l ( 11*)(vp·Bl 

s-1 

·I + L t(lZ)(11*)(V·S) + ;Oz) (11*) (il"T·Bl + i:(!~l (I t*H&·s>] B(i (~xii) j) + 

b=l c=l abc c c=l abc22 c ab 32 ab s 

+ ~ 
s-1 

;( 12J (I 1*)(vp·BJ '"' i:(izl(l1*J(v·al t(tZ)(11*)(vT·B) tl 12) (I I *)(t·B)] s (i (vrxih J) + L + + 
ab 13 b b=I ab 23 b .33 • 3 s 

[I ;:<:~l (I 1*)(vo·a> 

s-1 

+I i(tz>(11*)(v·sl + t(lZJ (11*) (vT•B) + il!
2
lo1*><t·aJ} B(. (txB) ') + 

b=l ab b b=l ab
24 

b .34 a s I S J 
+ 

b<c b<t 

+ 



·17) • *., t'
43

(11 )T,.(o<o)., + 
ab 'II... I S J-

;;(~i(1*><v·e) + 
abc c 

·,(9)(1*><"r.t) + -(9)(1')(* 7 ). a 
ab 13 ' 

0 

.'b 14 ~·• j ~,[i 0j] + 

s· 1 [:t <(iio*)(vo·il'l 
s-1 

;(9l (I *)(&·el 1 ~ I t(9 ) (I*) (V•B) t(9) (1*) (oT·B) vcs. 1 +L + + + 

b•1 c~ abc c c=l abc22 c ab 23 • ab 
24 

s b I J 

+ rt t<~J (l*J <'7o·ii> + t<9l (I*) (V•B) + ;:< 9l(1*)('iT·B) + t(;l(l'J(&·ii+ + 

[b•1 
ab b ab 32 b a 33 • • 

: s s·l 

+ lI •'b(~; (I*> (Vpb•B) + I tb(~~(I *> (Vb·B) + 
b=l b•l • 

B[ j (Vp•B) jl + 
s 

B[.(VxB),J + 
I b J 

+ [f i<i~>(l1*Hvo·Bl s-1 

·I t< 12>(11*)(ii·a) + t( 11 ) ( 11*) ('ir.iJ) + t<~jl<11*Ht·s)J B[ I (VTxa) J J + 

b•l ab b b•l 
ab 

23 b • 33 • s 

[:t i(il>(11*Hvo·Bl 
•-1 

+ I t(l1l (11*> (ii·a) + ;(liJ (11*> (oT·B) + t(ll) (11 *> (t·B) l B[i (£xi). l (26) 
iJ;;;'( ab b b•l 

ab 24 b a 3 • • s J 
+ 

The brackets (parentheses) placed about indices mean that it ls the anti-symmetric {symmetric) 

cornponent of that term. with regard to the enclosed lndlces, which is being considered. 



119 

C.1 . b. Linearized representations 

The results of the foregoing section, although interesting, do not 

lend themselves easily for purposes of a pragmatic nature . It is thus 

worthwhile to consider them initially in some restricted sense. Since 

a I inearization process is a means by which the desired simplification 

can be effected, and since the results of such a process are assumed 

here to be meaningful for physical systems "close to equi I ibrium" (cf. 

Chpt. E), I now limit the applicability of the non-linear constitutive 

equations above to those (classes of) systems for which a I inearization 

in the variables p . , V., T . and 
a, I b I , I 

Objective scalars 

&i is sensible 35 

s 

L LI L 
The I inearized objective scalars A~ s and n are here (polynomial) 

functions of reduced set of variables I, where 36 

{p (a ; 1,2, ... ,s), T, s2J. 
a 

Ob j ective vectors 

The linearized representations for the objective polar vectors 

deriving from (19), (20) and (21) are, with all the material coeffi-

(27) 

cients thereof now functions of I, given here respectively by the fol low-

ing relationships. 

L L 
iii . - CV. 

I I 
a aa 

s 

I 
b;J 

L2 L3 
m be .• kB. + m bB . Bk)p k 

a 1 J a 1 b' 
+ 
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s-1 
L4 LS L6 I + (mab0 ik +mbE .. kB. + mab 8 i 8 k)~k + 

a I J 
b=l 

L7 La L9 
+ (ma 0 i k + m £. . kB. + m B.Bk)T k + 

a I J a I , 

LlO Ll 1 L12 (2a)37 + (ma 0 i k + m E . . kB. + ma 8 i 8kH;k a IJ s 

for a 11 a, Due to (B90) only s-1 of these terms are independent, which 

in turn means that the material coefficients in (2a) a re not a 11 inde-

pendent. The restrictions thereon are given by the fol lowing conditions: 

LI 
s 

L2 L3 I 0 I 0 I 0 (29) 1 mab mab mab 

a=l a=l a=l 

with b = 1 ,2, ... ,s; 

s 
L4 L 

s 
LS 

s 
L6 I I I mba - c mba 0 mba 0 

b=l 
a b=l b=l 

with a = 1, 2, ••• , s-1; (29)2 

L7 
s 

La L9 

I I 0 
~ 0 (29)3 m 0 m L_. m 

a a a 

a=l a=l a=l 

and 

s s 
Ll 1 

s 
L12 """' LlO ~ """' o. (29)4 L m 0 l__, m 0 !~ m 

a a a 
a=l a=l a=l 
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LI 
s 

LI L2 L3 -,-
q . /__. (qa 6 ik +qE..kB. + q B. Bk)p k + 

I a I J a 1 a' 
a= l 

s-1 
L4 L5 L6 ~ 

+ /___. (qa 6 ik + qa c ijkBj + qaBiBk )Vk + 

a=l 
a 

L7 L8 L9 
+ (q 6 ik + q c .. kB. + q BiB k) T,k + 

I J 

LlO Ll 1 L12 
(30)38 + (q 6 ik + q c i j kB + q BiBk)&k. 

s 

It is worthwhile to pause here i n o rder that the versa ti Ii ty of 

a rational mechanica l constitutive theory may be illustrated. If (3 0) , 

fo r exampl e , is rewritten in t he form 

LI 
s s- 1 
~ p ~ v T & q. -;__. l( i k p - /__, Kik vk - Ki k T -

K i k &k' I 
' k 

'k a a a s 
a=l a a=l 

V T L7 LS 
the n the material coefficients K ik and Kik (= q 6 ik + q ciJ" kB 

a j 
are respectively the tensor Dufour 39 

and "heat " conduct ion 
40 

coefficients 

for the mix ture. The 
L7 T 
q 6 ik term of Ki k may be recognized as the t he r mal 

conductivity coefficient of t he 

L8 
coefficient q c .. kB . relates to 

I J 

f am i I i a r (Bio t - ) Four i er 1 aw 
4 1 ; wh i I e 

42 L 11 
the Rigg i-Leduc effect The q c .. kB 

I J 

f & I · h E · h effect 4 3 term o Kik re ates 1n turn to t e tt1 ng ausen 

Th e signif i cant poi nt here is t hat the presence of specifi c kn01; n 

t he 

ef fec ts, i n addi,ion to other perha ps unknown o nes , in any gi ven rat i onal 

mec hanica l constituti ve equa t i on i s a Ci recl consPquence of t llL' selec ti on 

o f indepe nJen t constiLut ivt' va r ia bles lc f. { 2) ) . ',fi: h incc.oe;:, i •c; i ; 
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meaningful insight into the phenomenology of a given system, it becomes 

possible in rational mechanics to propose an also increasingly more 

44 satisfactory s e t of such variabl es 

The methodology of this approach to the study of material behavior 

is thus seen to possess an inherent capac i ty for self-correct ion . It is 

at once both rigorous as wel I as flexi b le; providing (at leas t i n 

principle) a means of successively approximating its theor ies to the 

physical experience which they attempt to describe ~ A cont inuously 

improving agreement between observat ion and explanation i s, of course, 

the end res u I t. 

To continue, the Ii near i zed representation for the constituent 

po 1 a r i za ti on is given by 45 

L s 
Ll L2 L3 

P. I: (Pab6 ik + p bE. "kB + P bB.Bk) p k + 
I a IJ a I b' a b=l 

s - 1 
L4 LS L6 

+ L (Pab6 ik + p bE. "kB. + pabBiB k )~k + 
a I J 

b=l 

+ + 

+ 

wher e , for example, the material coefficients of bk are re la t ed to the 
s 

elect r ic susceptibi I ity tensor o f any given constituent. The appropri a te 

such coefficient for the mixture foll ows from the us e o f t he de finiti on 

46 
(B43) which involves this expression 

(31) 



123 

The linearized representation wh ich fo l lows from (24) for t he 

axial objective vector M. is seen here to be of the form 47 
I 

a 

L L 
M B. 

I 
a 

L 
for all a. M may be thought of as the coe ffi cient of magnet ic suscepti-

a 
bil ity of a constituent; while, similar to the case of polariza ti on, 

48 
the use of (B59) provides the relation appropriate to the mixture 

Objective tensors 

Lastly, the I inearized representat ions for the 2nd_order tensors 

49 t .. and C • . derive from (26) and are, respectively, 
a I J a I J 

and 

L 
t .. 
a'J 

L 
c .. 
a'J 

Ll L2 
t 6 .. +tB.B . + 
a 1 J a 1 J 

L3 
t .£ . 'kBk a IJ 

L 1 L2 L3 
C 6 .. + C B. B. + C £ .. kBk. 

a IJ a 1 J a IJ 

Once again, al I of the material coeff ic ients concerned are funct ions of 

the invariants I . 

(32) 

(33) 
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C.2. Appendices 

Appendix C-1 

{p (a 
a 

1,2, ... ,s), T, p . p . (a< b), p 
1
v. (b"' 1,2, .• .,s-1), 

a' 1 b'J a' b 1 

I (2) -
8 

A 
Ii 

K 

and, 

2 
p . T ., p . Ei' V.V . (a < b), V.T., V. Ei' (T .) , 
a'

1 
'

1 
a'

1 
s a

1
b

1 
a

1 
'

1 
a

1 
s '

1 

2 
{(p kBk) (a" 1,2,. . .,s), (p kBk)(V.B.) (b • 1,2,. • • ,s-1), 

a' a' bJ J 

1, 2, . . . , s; b = 1,2,. .. ,s-1), c .. kp . T . Bk' 
I j a, I , j 

c . . kp .p .Bk (a < b), c .. kV.V.Bk (a < b ) } ; 
IJ a' 1b,J IJ a'bJ 

(34) 

(35) 

(36) 



(a < b < c), 

(a < b), ( a < b) , 

(a < b), (a < b), 

(c I j k~ i ~j~k )~,I BI 
(a < b), 

( a < b < c), 

(a < b) , (a < b), (a < b), 

(a < b < c), (a < b), (a < b), 

(a < b), (a < b), (a < b), 

(a < b < c.), (a < b), (a < b) , 

(a < b) I 

(a < b < c), 

(a < b), ( a < b) , (a < b) , 

(a < b < c), (a < b), (a < b), 

(a < b)). (J)) 
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Appendix C-2 

Table 1. II (l) (a . ): polar absolute scalars I inear in a.
1 y I 

Table 2. 

Table 3 . 

1. p . a. (a 
at I I 

1, 2, ... , s) 

1, 2, ... , s-1) 

11 ~ 2 ) (a i): axia 1 absolute scalars 

1. (p kBk)(a.B.) (a 1. 2 •• • • 's) 
, I I 

a 

2. (VkBk)(aiBi) (a 1 ,2, •.• , s-1) 
a 

1 i near in a. 
I 

3. (T kBk)(a.B.) 
, I I 

4. (EkBk) (aiBi) 
s 

w 
E>.. (a i): axial absolute scalar triple products 1 i nea r in 

1. £ • • ka. p .Bk (a = 1, 2, .• ., s) 3. £ . • ka. T .Bk 
I J I a, J . I J I ,J 

2 . £ •• ka.V.Bk (a 1, 2, ..• ,s-1) 4. £ • • ka.E.Bk 
I J I aJ I J I SJ 

a . 
I 
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Append i ;< C-3 

Table 4. axial absolute scalars I inear in c .. 
I 

1. B.c. 
I I 

2. (p kBk) (p . c.) (a, b 1, 2, .•. , s) 10. (p kBk)(T .c.) 
a' b' I I a' t I I 

3 . (VkBk)(p .c.) (a 1,2, .. .,s-1) 11. (VkBk) (T .c . ) 
a b' I I a , I I 

4 (TkBk)(p .c.) 12. (TkBk)(T .c. ) 
, b' I I , ,J I 

5. (CkBk)(p .c.) 
S b' I I 

13. (Ck Bk) (T . c. ) 
S , I I 

6. (p kBk)(V.c.) 14. (p kBk)(C.c.) 
a' b I I , I I 

a s 

7, (VkBk) (V.c.) 15. (VkBk) (Cici) 
a b I I a s 

8. (T kBk) (V .c.) 16. (T kBk) (t;.c.) , I I , SI I 

9, (CkBk)(V . c.) 17. (&kBk) (Cic i) 
S b I I s s 

Table 5. 1\ 
Ev (ci): axial absolute scalar t ri ple products I i nea r in ci. 

1. £ •. kc . p .Vk (a = 1, 2, ... ,s; s. £ •• kc. v .c k 
IJ la,Jb b = 1,2,. .. ,s-1) I J I aJ S 

2. £ • . kc. p .T ,k 
6. £. 'kc . T .&k I J I a, J I J I ,JS 

3. £ • • kc .p .ck 7. £ •. kc .p · P k (a < b) 
I J I a' J 5 I J I a' J b ' 

4. £ . • kc . V.T k 8 . £ •. kc . V .Vk (a < b) 
I J I aJ , I J I aJ b 
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Table 6. 11 (9) (c.): pseudoscalars independent of c.
1
-pseudoscalar 

1Tlji I 

triple products 1 inear in ci absolute scalars. 

1. (p B)(£ .. kc.B.pk) (a,d 1,2,. . .,s) 9, (p B )(£ .. kc.B.T k) 
a'n n IJ 1 Jd' a'n n IJ 1 J , 

2. (VB )(£ .. kc.B .p k) (a 1,2,. . .,s-1) 10. (VB )(£ .. kc.B.T k) 
an n IJ 1 Jd' an n IJ 1 J , 

3, (T B )(£ .. kc.B,p k) 11. (T B )(£. .kc . B . T k) 
,n n IJ 1 Jd' ,n n 1 J t J , 

4. ([; B ) (€. . kc. B . p k) 12. ([; B )(£ .. kc . B.T k) 
Sn n IJ I Jd' Sn n IJ I J • 

5, (p B ) (c .kc.B.Vk) 13. (p ,n8n) (£ijkciBj[;k) 
a'n n IJ 1 Jd a s 

6. (VB ) (£ .. kc.B . Vk) 14. (VB )(€..kc.B.[;k) 
an n IJ 1 Jd an n IJ 1 Js 

7, (T B ) (£ .. kc . B.Vk) 
,n n tJ 1 Jd 

15. (T B )(£. . kc.B.[;k) 
,n n IJ I JS 

8. ([; B )(£ .. kc.B . Vk) 16. ([; B ) (€. .kc.B .[;k) 
Sn n IJ I Jd Sn n IJ I JS 



Table ]. triple products~pseudoscalar products absolute scalars linear in c
1

. 

I. (a • 1 ,2, ... , s; 25. 
b. 1,2, ... ,s-1) 

2. 26. 

3. 27. 

4. 28. 

5. (a < b < c) 29. (a < b < c) 

6. (a < b) 30. (a < b) 

7. (a < b) 31. (a < b) 

8. (a < b) 32. (a < b) 

9. (a < b < c) 33. (a < b < c) 

10 . (a < b) 34. (a < b) 

11. (a < b) 35. (a < b) 

12. (a < b) 36. (a < b) 

13. 37. 

14. 38. 

15. 39. 

16. 40. 

17 . (a < b < c) (a < b < c) 

18. (a < b) 42. (a < b) 

19. (a < b) 43. (a < b) 

20. (a < b) 44. (a < b) 

21. (a < b < c) (a < b < c) 

22. (a < b) 46. (a < b) 

23. (a < b) 47. (a < b) 

24. (a < b) 48. (a < b) 
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Hf' I k "' 
!£...__ 

c<d 

c<d 

c<d<f 

c<d 

c<d 

H(!)(1*)(0T·B) + 
•b 

"(~)(l*l(&·"ft) -> 
ab s 

c<d 

c<d<f 

s-1 s-1 } 
(4) . • 1- -+ -+ LL "1211<11 )[V·(V•&ll 61k 

c•I d""I abed c d s 

c<d 

(3) • + + l ~ + M 41 (11 )(&·B) c 1 .kBJ , 
abc s J 

(38) 



"<~>c1*Hih·il> 
ab 

c<d<f c<d 

c<d c<d c<d<f 

(39) 



H~k 
a 

and 

b<c 

s 

I (2) • 
M 2 ( II )c .. kp . 

ab 1J bd 
b•I 

s s s-1 

LL L M~j~(11')[00 -(v0 xvJJ 
b;J ~ d:J abed b c d 

b<c 

b<c b<c <d 

(~O) 



b<c<d b<c 

b<c b<c b<c<d 

(41) 
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Appendix C-5 

Table 8. pseudoscalar triple products linear i n a . . 
I 

1. E, 'ka . p .Vk (a 1t2' . .. , s; 5. E . . ka . V. t;k 
IJ 1a,Jb b 1, 2, ... , s-1 ) I J I aJ S 

2. Eijkaip ,j T ,k 
6. E. 'ka.T .t;k 

a I J I ,JS 

3, E, ' ka.p . &k 7. E. 'ka .·p .p k ( a < b) 
IJ i a,Js I J I a ,J b' 

4 . EijkaiVjT,k 8 . E .. ka.V . Vk (a < b) 
a IJ lajb 

Table 9. E:(bi ) : pseudoscalar triple products linear in b .. 
I 

1. E. 'kb . p .Vk (a 1'2' ... , s; s. c. 'kb.V.&k 
IJ 1a.Jb b 1,2, ... ,s-1 ) I J I aJ S 

2 . £. 'kb. p . T k 6. E. 'kb . T .&k 
I J I a, J , I J I , JS 

3. Eijkbjp ,j&k 7, E. ' kb.p ,p k (a < b) 
a s IJ 1a,J b ' 

4. EijkbiVjT, k 8. c. . kb.V.Vk (a < b) 
a I J I aJ b 
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(6) 
Table 10. 11 (a.,b.): polar ab.solute scalars bi 1 inear in a.

1 
and b.

1
• 

Y8 I I 

1. (p .a.) (p .b.) (a,b = 1,2, ... ,s) 9. (p . a . ) (T .b.) 
a' I I b' J J a, I I ,J J 

2. (V . a.) (p .b.) (a 1,2, .. .,s-1) 10. (V .a.) (T .b.) 
al I b,j J a I I ,J J 

3. (T .a.) (p .b .) 11. (T .a.) (T .b.) 
, I I b, J J , I I ,J J 

4. (t;.a.) (p .b.) 12. (Ciai) (T,jbj) 
SI I b'J J s 

5, (p .a . )(V.b.) 13. (o,iai)(C}j) 
a' I I bJ J a s 

6. (V .a.) (V .b .) 14. (V .a.) (t;.b .) 
a I I bJ J a I I SJ J 

7. (T . a . ) (V . b.) 
, I I bJ J 

15. (T .a.) (C.b.) 
, I I SJ J 

8. (~ia i) (~}j) 16. (t;.a . )(C.b . ) 
SI I SJ J 
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Table 11. 
( 10) 

I I (a., b.) : polar absolute scalars I inear in a.-axial abso
lute triple products I inear in b. ~boslute Y\J I I 

scalars. 
1 

1. (p .a.)(E.klb.P kBI) (a,b 1,2, ... ,s) 9. (p .a.)(E.klb . T kBI) 
a' 11 J Jb' a' 11 J J, 

2. (V.a . )(€;.klb . P kBl) (a 1,2, ... ,s-1) 10. (V.a.)(E.klb.T kB\) 
a' 1 J Jb' a' 1 J J ' 

3. ( T . a . ) ( E . k I b . p k B1 ) 1 I I j j b, 
11. (T .a . )(E. klb . T kBI) 

, I I j J , 

4. (t;.a.)(e:.klb.p kBl) 
SI I J J b' 

12. (t;. a. ) ( E. k I b. T kB I ) 
SI I J J , 

5. (p .a . )(E. 
1

b.VkBI) 
a'I I jk jb 

13. (p .a . )(E.klb.f;kBI) 
a' I I J JS 

6. (V.a.)(e:.k 1b.VkBl) 
a I I J J b 

14. (vi a i ) ( E j k I b j ek B 1 ) 
a s 

7. (T .a . )( e: .k
1
b.VkBI) 

, I I j J b 
15. (T .a.)(e:.klb .f; kBI) 

, I I J JS 

8. (t;. a . ) ( e: . k I b. V kB I ) 
SI I j J b 

16. (t; i a i ) ( E j k I b j e k 8 1 ) 
s s 
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Table 12. 
(11) 

111. E (ai,bi): ax ial absolute scalar triple produc ts linear in 
a i -polar a bsolute scalars I i near in b i absolute 
scalars. 

3. 11. ( c k
1
a.T kBl)(T . b.) 

I I , , J J 

4. 12. 

5. ( E.kla.p kBl)(V.b . ) 
I I b' aJ J 

13. (E.kla. p kBl)(C.b.) 
I 1 Ii ' SJ J 

6. (E.kla.VkBI) (V . b.) 
I 1 b aJ J 

14 . (E.kla . VkBl) (C.b.) 
I I b SJ J 

7. 15 . 

8. 16. 



Table 13. 

1. (gp·B) (a.B . ) (p .b.) 
a I I b,j J 

2. (V·B)(a.B.)(p lJ) 
a I I b' 

3. (gT·B) (a
1
B

1
) (p .b.) 

b' J J 

4 . . (&·B) (a
1
s.) (p .b.) 

S I b' J J 

5, (°9p·B) (a . B. ) (V.b , ) 
a I I bJ J 

6, (V·B) (a.B.) (VJb.) 
a I I b J 

7, (gT·B) (a.B.) (V.b.) 
I I bJ J 

8. (E·B) (a.B.) (V.bJ) 
S I I bJ 

138 

axial absolute scalars l I near in a
1
-polar 

absolute scalars linear In b
1 

absolute 
scalars. 

(a,b ~ 1,2, .. .,s) 9, (°9p·B)(a.B.)(T .b.) 
a I I , J J 

(a= 1,2, ... ,s-1) 10 . (V·B) (a.B.) (T .b.) 
a I I ,J J 

11. (°9T·B) (a . B. (T .b . ) 
I I ,J J 

12. (l·B) (a.B.) (T .b.) 
S I I 1 J J 

13. (°9p·B) (a.B.) (EJb.) 
a I I S J 

14. . (V·B)(ais 1)(Ejbj) 
a s 

15. (gT • B) (a. B.) (E. b j) 
I I SJ 

16. (E · B) (a. B. ) (E . b . ) 
S I I SJ J 
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Table 14 . 
( 14) 

11 (a .,b.): polar absolute sca l ars linear in a . -axial 
absolute scalars linear in b. absblute 

TW I I 

scalars. 

1. (Vp·B)( p .a.)b.B. (a,b 1,2, ... ,s) 
a b' I I J J 

2. (Vp· s)(v.a.)b.B. (b 1,2, ... ,s-1) 
a b I I J J 

3, (\Ip ·B) (T . a.) b . B. 
a , I I J J 

4. (vp • B) (t;. a. ) b. B. 
a SI I J J 

s. (V·B) (p .a.)b.s. 
a b, I I J J 

6. (V·B)(v.a.)b.B. 
a b I I J J 

7. (V· B) (T . a.) b. B. 
a , I I J J 

8. (V • B) ( t; . a . ) b . B . 
a SI I J J 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

I 

(vT·B)(p . a.)b . B. 
b, I I J J 

(VT· B) (V. a.) b . B. 
b I I J J 

(vT·B) (T 'iai )b/j 

(vT·s) (t; .a. )b .s. 
SI I J J 

(l·s)(p .a . lb .s . 
s b, I I J J 

({•B)(V . a.)b.B, 
S . b I I J J 

({·s) (T . a.) b. B . 
s , I I J J 

(l-BJ (t;. a.) b. B. 
5 5 I I J J 



Table 15. 

1. (9p·B)(a.B.)£.klb.p kBl 
b I I J JC' 

2. 

3, Ch·s) (aiBihjk1bl ,ks1 
c 

4. (&'-s)(aiBi)Ejklbjp ,kBl 
s c 

5. (9p·B) (a.B.)£.klb.VkBl 
b I I J JC 

6. (V·B) (a.B.)ck 1b.VkBl 
b I I J JC 

] . (9T·B)(aiBi)£jklbjVkBl 
c 

8. (E·B) (aiBihJklb/kBl 
s c 
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axial absolute scalars linear in a.-axial 
absolute scalar triple products li~ear in 
b. absolute scalars. 

I 

(b,c = 1,2, .. .,s) 9. (9p·B)(a.B.)£.k 1b.T kBl 
b I I J J , 

(b = 1,2, ... ,s-1) 10. (V·B)(a.B.)£.klb.T kBl 
b I I J J , 

11. (9T·B)(a.B.)£.klb.T kBI 
I I J J , 

12. ({·B)(a.B.)£.klb.T kBl 
S I I J J , 

13. (9p·B) (a.B.)£.k 1b.&kBl 
-b I I J JS 

14. (v·o)(a.B.)£.k 1b .&kBl 
b I I J JS 

15. (9T·B) (aiBi)Ejklb}kBl 
s 

16. (8·s) (ai Bi )e:jkl b}kBl 
s s 



Table 16. 

1. (9°p·B) (b.B .)£.kl a .p kBI 
b J J I IC' 

2. (V·B) (b.B.)£.k 1a. p kBI 
b J J I I C ' 

3. (9T·B) (b.B.)€.kla. p kBI 
J J I IC, 

4. (C·BJ (b.B.) c k 1a .p kBJ 
S J J I IC' 

5. (Vp·B) (b.B.ls .k 1a.VkBI 
b J J I IC 

6 . (V· B) (b.B.)E.k 1a .VkBI 
b J J I I C 

7. (9T·B) (bl)€ikla i VkBI 
c 

8 . (C, s) (bjBj) € iklaiVkBI 
s c 
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axial absolute scalars I inear i n b. -axi al 
absolute tr i ple products linea r in

1
a . absolute 

I 
scalars. 

(b,c 1,2, .. .,s) 9. (9p·B) (b .B. )£. kla.T kBI 
b J J I I , 

(b 1,2,. . .,s- 1) 10. (V·B) (b.B. )E. k 1a.T kBl 
b J J I I , 

11. (9T·B)(b.B.)ckla.T kBI 
J J I I , 

12. (C·B)(b.B.)c k 1a.T kB I 
S J J I I , 

13. (9p ·B) (b.B.) c k 1a.&kBI 
b J J I IS 

14. (~ · B ) (bjBjh ik lai~ kB I 

15. (9T·B) (b/jhikl ai&kBI 
s 

16 . (&°·B) (bjBj h ik lai&kBI 
s s 
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Footnotes to Chapter C 

2. 

3 

With regard to material systems in motion and their interaction with 

an electromagnetic field, note the comments of Fano, Chu & Adler , 

[1960, 3, p.378]. 

Note Truesdel I & Nol I [1965, 19, Sect. 20]. 

Post [1962, 6, p.2]. 

4 
Cf. Jaunzemis [1967, 12, pp . 281-282]. See here also footnote F7 . 

5 Liu & MLll ler [1972, 5]. There are, of course, other (e.g. I inear) 

theoretical approaches to the problem of formulating constitutive 

equations. The motivation for the employment of the non-I inear field 

theoretical approach used here I ies in the particular significance of 

same as pointed out by Truesdell & Nol I [1965, 19, pp.3-4]. The short

com i ngs of a classical thermodynamics of irreversible processes (TIP) 

approach have served to further strengthen the relative meaningfulness 

of the method uti I ized here. These matters are discussed, for example, 

in CFT [1960, 9, p . 644, footnote 3], Truesdell [1966, 13, pp.49-52] 

and Truesdell [1969, 7, pp.111-149]. 

6 At present it appears that the process of denoting specific field 

variables as being either "dependent" or "independent" is not yet 

subject to a set of basic principles (cf. Eringen [1967, 5, pp. 144-

145]). Regardless of the questionable necessity for such principles, 

there seems to be some degree of common consent regarding "natural" 

choices of variables under certain conditions (cf. MLll ler [1963, 4, 

p. 12]). In this study I adopt a preference for constitutive field 

identification compatible with that of Mui ler [1968, 4 , p . 9] and 
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Liu & Mui !er [ 1972, 5, pp. 150-151) . See a l so Demi ray & Eringen [ 1973, 

2, (3.1) and (3 .2)]. 

7 The importance of incorporating the fields p k in the set of indepen
a' 

3 

dent constitutive variables was first recognized by Mul ler [ 1968, 4, 

pp.12-13); and, Muller has termed "s imple" those mixtures for wh ich 

these variables are not taken into consideration. Analogous to 

the definition of non-simple single flui d continua given by Liu [ 1973, 

6, p.27), I define non-simple fluid mixtures to be those mate ri als 

having o and p k as independent field va r iables. Exclusion of the 
a a' 

former from (2) thus restricts this study to a special class of said 

mixtures. Further, I note that a desire to examine a model of 

reasonable simplicity has prompted the adoption of a less ge nera l 

velocity and temperature field dependence of the mate r ial response of 

the mixture (and hence the constituents) t han was the case respectively 

in Mui !er [ 1968, 4 ) and Liu & Mui !er [ 1972, 5). Specifically, t he ab-

sence of the field variables vk . wil I preclude di latat1 onal a nd shear 
a 'J 

viscosity effects in this theory; and, exclusion of aT/at (or mo re 

essentially the objective variable T) may be expected to have conse-

quences in any consideration of, e.g., the speed of thermal waves in 

such a mixture as i s treated her e (cf. Liu & Mui ler [ 1972 , 5, p. 168)) . 

It wi II become clear in the sequel that a generalization of this 

theory can be effected by, fcir example, i ncluding these neglec ted 

variables as wel I as possibly other s in (2). I eschew from 

commenting upon the poss ible outcome of such a step. 

Regarding these a s s umpti ons see , for exampl e, CFT [ 1960 , 9, p . 700 

and Sects. 2 and 196J and Truesdell f. 1966, 14, p.25 ] . 
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9 CFT [1960, 9, p.453) and Truesdel I [1966, 14, p.22). It may be noted 

further that there would be no difference in the results here if the 

development involved a Galilean transformation (cf. CFT [1960, 9, p. 

453]) instead of a Euclidean transformation. This point was made also 

by Liu & Muller [1972, 5, p. 151, footnote]). 

lO See, for example, Mui !er [1973, 9, p. 17). 

11 
Muller [1968, 4, p.12). 

12 
For Vk the result is given by, e.g. Muller [1973, 9, p. 165) while the 

b 
result for the electromotive intensity follows an analogous devel-

opment as given by Muller [ibid, pp. 118-119) for a single-continuum. 

The selection of a particular constituent as defining a reference 

fluid (in this case) is not uncommon; examples being found, among 

others, in Ingram & Eringen [1967, 10, p.293) and Muller [1968, 4, 

p. 1 OJ. 

13 Cf. Truesdell [1966, 13, pp.42-43 and p.45), CFT [1960, 9, pp.703-

704) (which states said principle in an older form) and Jaunzemis 

[1967, 12, p.285). The applicabi I ity of this principle to the study of 

mixtures was made clear by Mui ler [1968, 4, p.9]. I note that the · 

substance, as well as the framing, of this (or a I ike) principle is 

sti II a matter of discussion at the present time . In his commentary 

hereon, Truesdel I [ 1969, 7, p.84, footnote] has anticipated some of 

the criticism raised later by, e.g., Rivi in [ 1970, 6, pp.133-134) and 

Rivi in [1972, 7). Although the principle of equipresence in its pre-

sent form may suffer from ambiguity in one or more respects (Green & 

Laws [1967, 8, pp.274-275]), it has been shown by Fisher & Leitman 

[1970, 3, p.309) in a particular case that a violation of this 
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principle leads to an aphysical theory. The meaningfulness of the 

equipresence principle is, in addition, borne out by the stab i l i ty 

considerations of Ziegler [1971, 6]. Bressan [1972, 2, p.6] has 

examined this point and, in strengthening this principle, has intro

duced the "principle of strong equipresence". 

See, for example, Muller [1968, 4, p.9], Liu & Muller [1972, 5, p. 

151] and Demiray & Eringen [1973, 2, p.893]. 

15 I fol low Mui ler [ 1968, 4, p.9] in taking this step. 

16 This principle is discussed by numerous writers on (aspects of) 

rational mechanics. References include, among other possibil i-

ties, the following: Noll [1958, 3], Noll [1959, 1, pp.280-281], CFT 

[1960, 9, pp.702-703], Truesdel I [1966, 13, pp.5-6] and Muller [1973, 

9, p. 45, footnote]. The principle of material frame-indifference is, 

similar to that of equipresence, a matter stil 1 open to discussion. 

Rivlin [1970, 6, p. 121] has given an example of the difficulty 

that may arise through the use of this principle; while, on the basis 

of particular kinetic theory arguments first Muller [1972, 6] and 

then Edelen & McLennan [1973,4] have found grounds which may neces

sitate a reframing, or qualification, of the present principle of 

material frame-indifference. 

It should be noted that in general one may treat not only 

absolute, but also relative, from-invariant function(al)s; this matter 

having been taken up by, e.g., Pipkin & Rivlin [1968, 5]. Here, I con

sider only the case of absolute invariants. 

17 Pipkin & Rivi in [1960, 7, p.543]. Material systems are defined in 

rational mechanics with the postulation of specific constitutive 
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equations. A subsequent classification of these systems can be made in 

terms of their respective symmetry properties. The investigation of 

these properties relates to the so-cai led isotropy group of a parti

cular material system; a discu·ssion of which may be found in CFT 

[1960, 9, p. 701 ], Truesdel I & Nol I [ 1965, 19, Sect. 31 ], Truesdet I 

[1966, 13, pp.9-14) and Truesdell [1966, 14, pp.56-64). 

Pipkin & Rivi in [1959, 2). This presentation parallels that of 

Spencer [ 1971 , 5]. 

19 Green & Adkins [1960, 6, p.8, footnote§), 

20 Cf. Pipkin & Winemann [1963, 8]. Note also the remarks of Truesdel I 

21 

& Noll [1965, 19, p.61, footnote 1) and Pipkin & Rivi in [1968, 5, p . 

5, footnote (3)). 

Cf. Pipkin & Rivi in [1960, 7, p.543, footnote 1). 

22 Note in this regard Cauchy's theorem. An exposition hereof may be 

found in, e.g., Truesdell &.Noll [1965, 19, Sect. 11). 

23 This may be seen, for example, in an often referred to paper by 

Smith [ 1965, 16). 

24 Pipkin & Rivi in [1968, 5, p.4, footnote (1)] point out the meaning 

of irreducibility as it is taken in the context of rational mechanics. 

25 For this relation as an expression in mathematics, as wel I as an 

element of a rational mechanical constitutive theory see, e.g . , 

Pipkin & Rivlin [1959, 2, p. 138]. 

26 Wineman & Pipkin [1964, 7, p. 186). With the functions involved being 

viewed as polynomials, the operation of differentiation ma.y, as noted 

by Spencer [1971, 5, p.259, footnote], be considered as an algebraic 

process. 
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27 Cf. Liu & Muller [1972, 5, p.162] and Muller [1973, 9, p.134]. 

28 In neither of the papers given as references in footnote 27 was this 

necessary (cf. Pipkin & Rivi in [1959, 2, p.138]) distinction made. 

The consequence of this oversight is that some of the material 

coefficients in the various constitutive equation representations 

given are looked upon as being somewhat more general than they are. 

29 Such a term, although not given, is implicit in the paper of Muller 

[1968, 4]; but, due to the single-fluid nature of their study, Liu & 

Mui ler [1972, 5] cannot have such an expression. 

30 This result "generalizes" that one which is implicit in the paper by 

Mui ler [1968, 4] and the single-fluid expression given by Liu & Mui ler 

[ 1972, 5, p.162, (5.2) 1]. 

31 Cf. Liu & Mui ler [ 1972, 5, p.162, (5.2) 2J and note that the defini-

tion (843) of polarization of the mixture relates this "more" general 

result to that of their single-fluid. 

32 Cf. Liu & Mui ler [ 1972, 5, p.162, (5.3)] where, simi Jar to the case 

of polarization, the definition (859) of the magnetization of the 

mixture yields a result directly comparable with that indicated 

above. Clearly, the absence of electromagnetic field considerations 

in the study by Muller precludes such a result as this, or that for 

the polarization. 

33 It may be mentioned that an alternative procedure whereby the 

absolute scalar invariant is given by ST =A .. T . . , with A .. being an 
I J I J I J 

arbitrary tensor, can on occasion be used to advantage . See in this 

regard, e.g., Adkins [1960, 1]. The results of both approaches unde~ 

general conditions are, however, according to Smith (private communi-
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cation) equivalent. 

34 This expression, while not stated in the study of Muller [1968, 4] is, 

however, given in a "less" general fo1- by Liu & Muller [1972, 5, p . 163, 

(5.4)]. It is, as a constituent relation, related to this latter single-

fluid result through the definition (887) of the stress tensor of the 

mixture. 

35 In terms of the constitutive equations being considered as polynom-

ials this means (cf . Pipkin & Rivlin (1960, 7, p.544]) thilt 2nd_ 

and higher-order terms in the non-I inear constitutive relations above 

which contain these field parameters are neglected. The order of 

~pproximation made, as wet l as the variables for which that operation 

is carried out, is a matter dictated by the nature of any given in-

vestigation. In the interest of securing tractable expressions in 

+ 
general, and examining the specific influence of a B field upon the 

material response of fluid mixtures in particular, havF made 

the linearization and variable choices indicated. In a problem with 

an electrohydrodynamic (EHD) character the role of the electric field 

would be studied. For the more general case of magneto-electric (or 

bianisotropic) fluid mixtures, see the considerations of Benach & 

Muller [1974,1]. Lastly, I remark that in the development which 

fol lows, a superposed letter L denotes a I inearized parameter. 

36 Cf. Mui ler [ 1968, 4, pp.21-22] and Liu & Mui ler [ 1972, 5, p. 165]. 

37 For the case of a binary mixture, note the result given by Mui ler 

[ 1968, 4, p .22 ]; and, for ans constituent mixture see Mui ler [1973, 

9, p.172]. Observe also the relation of the conditions (29) 1_4 

to those in the last cited reference . 



149 

38 Cf. Pipkin & Rivlin [1960, 7, p.545]. Muller [1968, 4, p.21) and 

Liu & Muller [1972, 5, p.164, (5.15)
2

J. 

39 The Ii terature on the Dufour (or di ff us ion thermo) effect is somewhat 

unclear in expressing a unique meaning as to what in fact this effect 

is . Hirschfelder, Curtiss & Bird [1967, 9) state (p.8, footnote) that 

this effect constitutes the flux of energy resulting from concentra-

tion gradients; while later (pp.521-522) they mention this effect in 

terms of an expression wherein it relates to the constituent velocity 

differences. Although this is in agreement with the results of Chapman 

& Cowling [1970, 2, pp.142-143], it is not consistent with their first 

statement regarding this effect. Further yet, Slattery [1972, 8, p. 

472] in echoing Hirschfelder, Curtiss & Bird extends the meaning 

they gave to this effect so as to include its dependence also upon 

pressure gradients. Haase [1969, 2, p.359], on the other hand, sub-

scribes to the opinion that this effect is defined in terms of mass 

fraction gradients; calling in essence the pressure gradient de-

pendence of the internal energy flux the "pressure thermal" term. 

Inasmuch as an expression for the difference of constituent 

velocities can depend on numerous terms, each of which may play a 

role in "driving" the relative diffusion(s) of concern, and of which 

the concentration gradients are only a single possible cause, I wish 

to suggest the following step towards clarification. It would be 

1·1orthwhile to retain the definition of the Dufour effect as deriving 

from concentration gradients. The coefficient for this effect would 

~ 
then be a combination here, for example, of ~ ik and that tern, in--

eluding ~~k' expressing the dependence of Vk on sai d gradients . 
b 
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In this study, however, I fol lm"' common practice ( cf. Mui !er L 19 73, 9, 

p. 172] with regard to a rational mec hanics development ) and make the 

ide ntification given. 

Cf., for example, Cambel [ 1963, 2, p.210] and Haa se l 1969 , 2, p.464 i. 

Haase [1969, 2, p.333, footnote ]. 

Pipkin & Rivl i n [ 1960, 7, p.545], Pag e & Adams [1965, 12, p . 2 56] and 

Chapman & Cowling [1970, 2, p .369]. 

P i pkin & Rivi in [ 1960, 7, p.545] and Page & Adams [1965, 12, p.256]. 

Note here, in addition to the comments of Truesdell [ 1966, 14, pp. 

3-4], the remarks of footnote 7 above . 

45 
Cf. Liu & Muller [1972, 5, p.164, (5.15)

2
J. 

46 
Benach & Muller [ 1974, 1, (4.9) 1J. 

47 Cf. Liu & Muller [1972, 5, p .165, (5 .17)] and Mul .ler [1 9 73, 9, p. 

145, (104)2]. 

48 
Note Liu & Muller [1972, 5, p.165] and Benach & Mu ller [ 1974 , 1, 

(4.9)2] . 

49 Cf. Liu & Mull e r [1972, 5, p.165, (5 . 16 )] with rega rd to t he s tr ess 

t e nso r (33)
1

; a nd observe, that this relation like the ot her given 

above have material respons e coeffic i ents whi c h a re less general 

(in terms o f the temperature field) than those given i n t he r eference 

cited. 
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D. A MATTER OF PRINCIPLE: ENTROPY 

This chapter has the task of setting down a two-part principle of 

entropy for volumes comprising sets of regular and singular points 1; and 

further, of establishing the direct results here (i.e. restrictions on the 

constitutive equations) of that principle. 

D. 1. Entropy principles 

Regular volumes 

To begin, (8152) 2 is eliminated between (8134) and (8151). Use now of 

(815), and (885) 1 to eliminate the body forces in this last result, gives 

the expression 

s [t, p (~ + Tn) + I puiui (ti j + cij)uiJ ,j 
a=l aa a a a a 

s s s 
1 

[qi I t;.Mk I C .. u.)T . I (mi - cv.)u. "f + 
£ i j k + 

aJa aJ I aJ ' I I I 
a=l a=l a=l a aa a 

s s 

[ti j -I t i j) 
1 ':::::---

+ p /_j u. p . + 

y=l y a=l 
a 1a'J 

f [t .. 

s 

t .. ) ~1 d .. + + p u. u. + (ti j -I + 
~. alJ aa 1aJ YIJ p alJ 

a=l - a y=l 

s s 5 

~ (~ t; .Mk) . ~ + /, t .. w .. + 
£ i j k + 'Ji Ci " 0 (1) 

a I J a I J /_, aJa ' 1 

a=l a=l a=l a a 

Here, w .. (= v[. ']) is the 
I J I , J a a 

2 (8152) 2 presumed known 

spin tensor of constituent a. With p b. and 
a0a 1 

a thermodynamic process in V is defined to be a 
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solution for the fields (Al) of the equat ions (8158) to (8 161) and (8163) to 

(8166) taken together with the constitut i ve equations (C?) . 

The entropy principle in V assumed ~ere may be stated as fo l lows: 

For al 1 t he rmodynamic processes in V the entropy i nequality 

(Dl), or equivalently (8151), must be val id. 

Singular surfaces 

A surface of discontinuity s(t), here "plane", which permits the 

passage of a single mixture constituent is cal led a semipermeab le wal I. In 

terms of such wal Is the second part of t he entropy principl e, i.e. that on 

s(t), is assumed: 

For semipermeable walls in parallel motion, across which the 

temperature field is continuous, for which the densities of 

mixture entropy supply and production remain fi n ite, and at 

which the tange ntial velocity components of al 1 const i tuents 

vanish, the normal component of the entropy flux is assumed 

to be continuous; that is (cf. (8157)), 

s 

+ [I 
a=l 

s 

( >, c . . u.n.] 
/_ al i aJ ' 
a=l 

0 . 

It is desirable with a view towards the forthcomi ng developments to 

(2) 

record an equiva lent expression of (2 ) which wil I be more usefu l than that 

re lation. The fir s t s tep involved i s the determination of [ q in iD from 

(8169) and (8170), wi th eSM = m~Mu. 4 , fo l lowed by its subst i tution in (2). 
I I 

Performance of these operations leads to the expressi on 



153 

+ [tki(vk - uk)iii] + [du [ G i u i JI un [ s. ii. ] 
E n EI I 

s s 

[I -
[ t. .u.ii.] + 

£ i j k f; .Mkii . ] [ )__, ckiukiii] 0 (3) 
EI J I J 

a=l 
aJ a 1 

a=l a a 

In order to further rewrite this relationship, I now make use of the fol low-

ing expressions: 

and 

[du 
E n 

[ c + ~ ( v i - u i ) (vi - u i ) ] p ( v I - u l ) ii l , 

[ t .. u . ii.] 
E'J I J 

[ s. ii.] 
EI I 

s 

£ • • k[~ 
I j / __, 

a=l 

(4) 

(5) 

(6) 

(7) 

(8) 

The last three results given above may, however, be yet further developed. 

In doing so they become, respectively, 

s 

c .. k[~) &.Mk - E .Hk]ii. 
'J _,, aJ a J ' 

a=l 



and 

[E. D. 
I J 

[ ( 

[(~ x 

+ [ ( 5 i 

+ Ek l j 
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s 

(
_,.u _,.) 

£ .. kll/ x B .Mk ] ii. 
IJ ~ a Ja I 

a=l 

+ 

C(o. + P.)k . - 6.h.J(ii. ii . 
I I J I J I J 

+ BiHj](iiiiij - 6 ij)un 

. P. + B.M. )J (ii.ii . - 6 i j) Un I J I J I J 

s 

s) /j I 
_,. 

x ~)j ] (nii\-+ B. (P 6 ij) Un + I 
a=l 

a a 

+ p.) k. 6. h. Il (ii . ii. 2 - - 6 i j) Un + 
I J I J I J 

s 
·~ 

2 
6 i j) Un 

[HI x ~)1J£ lkj (~ Ekhliijun + - Ml - /__, kkii j Un 
a 

a=l 

(9) 

+ 

( 10) 

(11) 

Here, use has been made of the r e lations for the ave rage value of a field 5 

and of a product of fields which "suffer" a jump; these bei ng given here, 

respectively, for arbitrary fields A and B by 

A and llAB] A[B] + [A] B ( 12) 

Sub s titution of (4), ( S), (9 ), ( 10) a nd (11) into (3) now yie lds a jump 

balance equation of mixture entropy of the form 



155 

s s 
~ .,..--., 

(P [,2_, ckiuk]f\i £ .• k[ E. ' ~}k]f\i I~ 
x + 

IJ j 
a;l a a a;l a a 

s 

+ £ . "k[;·. lj ~ 

a;l 

(->u x ->) ] B .Mk fi. 
ja I 

+ 
a 

+ [{P x B) . ]n.u2 
I I n 

s 

IT(~ x B) . P . + B. ~ 
I J I /_, 

a;l 

-> 
( p x ~) . ] ( f\ . f\ . - 0 . . ) u 
a a J 1 J IJ n 

0 . ( 13) 

This is the expression for the jump balance equation which derives from the 

second part of the entropy principle stated above. It is to this relation-

ship that I shall return (cf. Chpt. E) after I have first examined more 

closely the entropy principle in V and its foremost consequences here; this 

I do now. 

0.2. Admissible thern~dynamic processes in V 

The entropy inequality (1) is now first rewritten by means of the 

introduction of the appropriate constitutive equations(C?), fol lowed by the 

performing of the indicated differentiations and a regrouping of terms. The 

resu l t of carrying out this operation i s g iven by 



s OP I 

( ac an 1 L, a >" p--·Tar-·; "1af""'.""T,k · 
ar,k ,k a•I a ,k 

r* ~ au;(
0
t;J + 

0
c1J) - ~ uj&; 3°? 1 T kj 

[ · ,k fu fu a a ,k ' 
- f [-·-f u (t + c ) - '"""1' u& ~] p + 
~ ao L i ij 0 1J .-.

1 0jai ai:.ib,k b,kJ 
b•I b'k ~ a a 

[
t + .! (t 
5
ij + ~~i~J p lj 

s-1 [ 
t.. I .·J 

••1 

s 

'""" L 
a=\ 

, 0 . 

6 . • £·Pl 
IJ S S 

s-1 

-I 
a•l 

o .. 8-i<>]dJ; + 
IJ a . S 

( 14) 
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The establishment in any given physical context of "appropriately" 

invariant and restricted constitutive equations is presumed here to be a 

main purpose of a constitutive theory. Regarding the first point, the 

principle of material objectivity has been employed (cf. Chpt. C) in the 

treatment of the invariance considerations here. For the second point it may 

be noted that the class of all possible thermodynamic processes of this 

study has been restricted by the entropy principle in V assumed above. It 

thus remains to examine its restrictive nature with regard to the constitu-

tive equations (C?); which step I now take. 

Elimination of restricted fields 

To this end I now introduce a principle of consistency 6 which states: 

Constitutive equations proposed for a given system must be 

consistent with the balance equations of mechanics, electro-

dynamics and energetics taken for that system. 

Here this means that only the equations (8158) and (8163) to (8166), or 

their equivalents, serve to constrain the fields (Al). This so because 7 

regardless of the prevailing conditions of the fields (Al), the supply 

terms (882) 1 and (8152) 2 are considered to be determined by them and the 

balance equations in which they appear (i.e. (885) 1 and (8134)) are satis

fied. 

begin first by taking account, in a manner similar to that of Liu and 

Mtlller 8 , of the constraints on the fields (Al) due to the relations (8163) 

to (8166); that being the employment of the Lagrange multiplier method of 

Liu 9 in the further evaluation of the entropy principle in V. 
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Using (B162) and the equivalent electrodynamic field equations (B78), 

(B75), (B69) and B(49), the condition to be satisfied may be written as 

Pn + 
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Bk B4 ck C4 
where the Lagrange multipliers of Liu A ' A ' As and As may be functions 

of the variables (C2). Upon rewriting (15) in terms of ( 14) fol lowed by a 

distribution ·of the A-terms throughout, the result that emerges is given by 
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Anticipating the reasoning noted below with regard to (20), the expres-

sions for the Lagrange multipliers are (cf. Appendix D-1) 

0 ' 

0 ' 

and 

B4 
s 

-JI /\ 

a=l 

1 
+ 6 £ j rl 

[

au. (t. [ + ci[r) aP. j' 
_a_' _a_'_a""~-1-J _a __ - ~[ r~i -a&_al-'J 

s s 

['"· (L . < C • • ) 
aP. 

a 1 a 11 a'J _ I 

u.&. a M.V.] as. + oB. ala' al al J J 

s [au i (ti [ r + Ci [ r) aP · 1 I 
I a a a - u & a u. 

al 1 J SJ a[ rai ~ 
a=l s s -

For notational simplicity now let 

I e I 
£ 

s 

; L l·P 
a=l a a 

(17)2 

(18) 

Use of this relation and introduction of t he results above, toget he r with 

(B34)
3 

which serves to take care of the constraint condition (B158), into 

(16) brings forth the fol lowing result; viz., 
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Preliminary conditions f rom the entropy pri nc iple in V 

Examinat ion of (19) reveals an essential fact here; namely t he 1 inearity 

of that relationship i n the particular variabl es 

p k , vk, t. t k, Bk ' tk' T 
'kj ' p k' ' d .. ' b' J JI b' a ' s a 

d .. w . . - w .. Bk . t; k . and w .. (20) 
JI a'J s'J 'J s 'J s'J s 

Thus, the coefficients of these parameters are by virtue of the constitutive 

assumptions (C7) seen to be independent of them. Now, the entropy principle 

in V requires (1) (or equivalently (19)) to hold for al 1 thermodynamic pro-

cesses in V; and, to satisfy the inequality (19) under this condition it 

must be concluded here that the coefficients of the derivatives (20) vanis h 

identically. 

That being the case, the conditions o n t he non-linear const i tut i ve 

equations which follow directly from the entropy principle in V are 
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Pre I iminary results from the entropy principle in v 

now take note of the foremost direct consequences of t he conditions 

above; which results represent the initia l derived restrictions on the con

stitutive fields involved. Equations (21) and (22) indicate that e 1 and n 

are independent of p k (b = 1,2, •. • ,s); whi le (22) and (23) mean that these 
b. 

fields are also independent of T k' Use of the identity . 
s-1 p 

(6 - i)v I., ad p dk 
d=l 

introduced now, together with (22) and (24) leads to the conclus ion that 

(a 1,2,. • .,s-1) • 

From (22) and (25) it fol lows that 

and (22) together with (26) yields the result that 

+ 

s [au . (t.(. + ci[r) -) a a
1 

a
1 

r a 
_, af ~~~a~i-1 -J~~-a=l s 

It may be seen from (21) and (25) that the Pk are independent of p k 
b, 

(37) 

(38) 

(39) 

( 40) 

(b 1,2,. • .,s); and further, from (23) and (25) that it i s a lso i ndepe ndent 

of T k' Now, from (21) and (24) it fol lows that , 
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The express ions (23) and (24) lead to the result 
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Thus, on the basis of (41) and (42), it cannot be concluded in general 

that :i, 1 ike Pi, is independent of the gradients of the constituent den

sities and the temperature gradient. A further result concerning the polari-

zatlon is seen to derive from (24) and (25); it being that 

tij 

aP. 
I 

- e: _a_ B 
kim a 1 m 

s 

(a 1 ,2, ••• ,s-1) • 

Adding (29) and (30) gives, with regard to (B87) 

+ 

s 

I pp a(e - Tn) 
6 .• -

a 
ap IJ 

a=l a 

s 

I 
a=l 

-;- -;-

( B ( i MJ. ) - B • M o .. ) 
a a 1 J 

s 

ie:kr1( 6 i0jk - 6k0 ji) L 
a=l 

s s 

I p u. u. + I aa 1 aJ 
a=1 a=l 

+ 

and (Bl 24), 

C(/·) 
a aJ 

(43) 

the resu 1 t 

(44) 

From this relationship a mean pressure of the mixture, rr = - 1/3 ti i' may be 

int reduced. It is he re given by the expression 
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I wish to note here that, due to the mixture nature of t he problem at 

hand, it is not possible with the present degree of descr i pt i ve generality 

to give a lucid physical interpretation <or each and every t erm given in the 

initial results above. These general results are nonethe l ess relevant in 

greater or lesser degree to the procuring of that eventual physical insight 

towards which attention is directed in this study. It is possible, however, 

to make yet furt her progress here witho ut compromising said ge nerality; t h is 

being accomplished below essentially by the exploitation of only some of t he 

knowledge gained to this point. 

Reduced entropy inequality 

With the elimination of the restricted fields as necessitated by t he 

entropy principle in V, a considerable simplification of (19) is achieved. 

The reduced entropy inequality in this study is thus found t o be of the form 
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Admissible thermodynamic processes in V 

note here that with p bi and (8152) 2 known, those solutions for the 
aOa 

fields (Al) which fol low from the equations (8158), (8159), (8161), (8163) 

to (8166), together with the constitutive equations (C7) which satisfy the 

reduced entropy inequality (49), are called 11 admissible thermodynamic 

processes in V. Without making additional assumptions regarding the physical 

nature of the (class of) systems involved, it is not possible to go beyond 

(49). Such assumptions as may be made relate to specific physical systems 

the description of which is more 1 imited than was the case to this point. 

Under general circumstances, the relationships as given above lend 

themselves neither to simple interpretation nor to an easy derivation of 

more definite results. In the following chapters I shall consider this point 

more closely. 
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D.3. Appendix D-1 . 
Ek 04 Bk B4 

The Lagrange multipliers As , As , A and A 
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In terms of these parameters I now rewrite the Bk' Bk ., tk and Ek . co-
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efficients of (16), each of which must identically vanish, in the form 
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0. (59) 3 

Differentiation with respect to vn 

2 8k 

of (59) 1, then of (59) 
3 

and lastly 
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2 84 Contraction on the jk-indices yields a A /avnavi = 0, so (60) now reads 
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Under (62) 1 and (65) 1 it follows from the condition that the coefficient 

of ~k . vanish, together with (859), that 
s • J 

s 
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a=l l

au.(t .. + 
a I a I J 

+ 

Upon multiplying this expression by £rjk it follows directly that, with a 

change of indices, the desired relationship is given here by 
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Footnotes to Chapter D 

2 

Whereas Mui ler [ 1968, 4] developed the ~roperties of a mi xture of non

electromagnetic fluids in terms of an entropy principle set forth only 

for regular points, Liu & Mui ler [1972, 5, Sect. 4] and Mui ler [ 1973, 

9, pp. 142-143] uti I ize in their single-fluid treatments a pa r ticular 

material surface of discontinuity in order to exploit t he character 

of singular points in their systems with regard to securing additional 

insight into the entropy flux properties of those systems. For the 

mixture problem at hand, I too adopt the singular surface approach 

.mentioned; but, of necessi ty, I consider the more general case where 

such a surface i s not material for al I of the mixture constituents. 

Cf. Coleman & No l l [1963, 3, p. 171, footnote 1]. 

3 Ibid [1963, 3, p.169]. It is important to note here that i n contrast 

especially to classical the rmodynami cs (cf . Truesdell [ 1966, 14, pp. 

234-235] and Truesdel I [1969, 7, p.4]) where only homogeneous, i.e. 

position-independent, processes are treated, such a deve lopment as 

this has a foundation intimatel y connected with mater ial moti ons and 

4 

as such descr ibes thermodynami c processes a s functions o f bo th position 

and time . 

Mui ler [ 1973, 9, p.131]. 

5 (12) 1 may perhaps be cal led "Friedrichs' mean value" since he defined 

and subsequentl y used i t, toge t her with Kranzer [1958, 1] , in the 

study of shock waves in MFD. See in th is regard , e . g. , Sutton & 

Sherman [1965, 17, pp.324-326]. 

6 CFT [1960, 9, p. 700 ] . 
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7 
Coleman & No l I [ 1963, 3, p . 171 ] . 

8 
Liu & Mui ler [ 1972, 5, Sect . JJ. 

9 Liu [ 1972, 4 ] . 

IO Cf. Muller [1973, 9, pp.172-173] with regard to the prese nce of the term 

~pu2 in (46) and (4 7) 
aa 

1 1 
Co I ema n & ifo I I [ 196 3, 3 , p. 168 J . 
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E. ON EQUILIBRIUM PROPERTIES OF FLUID MIXTURES INTERACTIN G WITH AN ELECTRO-

MAGNETIC FIELD 

The consideration s above have been see~ to lead t o rather general re-

suits which are applicable in pri nc iple t o a broad class of mixt ure systems. 

Aside from the complexity of said results, additional motiva ti on for fur-

ther s impli f ication of the model they represent is found here i n the lack 

at present of a comparable theory from di sci pl ines other t han rational me-

chanics. 

Result s of an increas ingly specific nature can be secured only upon 

the introduction of an al so increas ing number of limitati ons on the mode l 

being developed. Of particular signif i cance are restrict ions on admissible 

thermodynamic processes in V; and it is to these that attention is now di-

rected. 

E.1. On eguilibrium 

A fluid mixture egui librium in V is defined here to be an admissible 

thermodynamic process in V for which t he following conditions ho ld 1: first, 

the constituent ve locities are equal, un i fo rm and time-i ndependent; next, t he 

tempe rature field is uniform and time-i ndependent; and lastly , t he reaction 

rate den s iti es a l 1 vanish identically. The imp! icati ons of the f irst condi-

ti on are clearly the equality of al I el ect romotive intensi ti es and the va-

nishing of the velocities Vi and ui. 
a a 

\Ji th due regard t o th e degree o f smoothness assumed , I note tha t con -

st itutive functions and their rep resent a tions can be expanded about an equi -

librium at any point in V. Systems for wh ich higher t han second-order terms 
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of an expansion in an assumed set of variables are physically negligible are 

said here to be "close to equilibrium" 2 in V. Under these conditions I as-

sume that it is prudent to employ linearized constitutive equations. Matters 

pertaining to the stability of equilibria in V, although of some importance, 

fall beyond the scope of this study 3. 

E.2. Egui l ibrium and the entropy principle in V 

Consequent to the definition given above, an evaluation of the relations 

(021)-(036) and (044)-(047) reveals that in equilibrium (denoted by IE)' for 

which e 1 
= e, the new relati

0

ons not satisfied identically are.given by: 

a(e - Tri) IE 1 
- £ p · 1 B (a 1 ,2, ... ,s-1) . 

avk p kim a 1 E m 
a 

(1) 

a(e - Tri) IE 
- 2. p I a&k P k E • 

s 

(2) 

a(e - Tri) IE 1 

oBk - P MklE 
(3) 

B-. M. JI + &[ i p j J I E 
0 . 

L I J E 
(4) 

s a(e - Tri) IE 

tij IE -~ pp 0 .• + 
&(/j) IE a 

ap IJ 
a=l a 

-
(B ( i Mj) IE 6.i11 o .. ) . 

E I J 
(5) 
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I: 
a=l a 

a 

and 

c .. , 
a 1 J E 

op (e - Tri) IE 
P op 8 i j 
a a 

+ (B .M., 
J a 1 E 

-+- _.., 

B. M 8 . . ) 
a E 1 J 

On magnetizable fluid mixtures 

(&.P., 
'aJ E 

t.-Pi 8 . . ) + 
a l E IJ 

(a 1 ,2, ••• ,s) . 

(6) 

(7) 

The class of fluid mixtures described thus far may evidence material 

behavior dependent upon both the magnetization and polarization of ~he con-

stituents involved . As such, the model here includes two sub-classes of me-

dia each of which may be considered in its own right; these being those 

mixtures for which e i ther Mi or Pi may be disregarded. 
a a 

For the sake of ease in the exploitation of the conditions above, I 

make the otherwise non-essential assumption that P. , vanishes 4 . The eva
a1 E 

luation in equilibrium of the constitutive fields shal 1 now be denoted where 

useful by means of a superposed letter "E". 

With the specific free energy of the mixture in equilibrium given by 

E 
'!' 

E 
e 

E 
Tri 

Equations ( 1) and (2) thus become respective 1 y 

(8) 
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0 (a 1 ,2, ... , s-1) and 

E 
a'!' 

ack 
s 

E 

0 (9) 

which relations in turn indicate the fact that '!' is not a function of the 

velocity differences or the electromotive intensity. Thus, in agreement 

with (C27), 

E 
'!' 

E 2 
'!' (p, T ,B ) 

b 
(b 1,2, ... ,s) . 

Examination of (3) under the same conditions gives 

1 E 
- - M 

p k 

Using (10) and (C32) note that (11) can .be rewritten as fol lows 

where 

From 

E s 

"' M L 
a=l 

( 12) it i s 

E 

l!.._ B 
aB2 k 

E 
M 
a 

1 E 
-M 
p k 

thus found that 

1 E 
- - MB 

2p k 

E 
..!. MB 
p k 

whi ch when integ rat ed yields the res ult tha t 

r(p . n 
b 

( 10) 

(11) 

( 12) 

( 13) 

( 14) 

( 15) 
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Here ~(p,T) is the specific free energy of the mixture in the absence of an 
b 

electromagnetic field 5 

The entropy inequality condition (D22) when evaluated in equi I ibrium 

becomes 

E 
J') ( 16) 

Use herein of (15) provides upon integration the result for the specific en-

tropy of the mixture in equilibrium, viz. 

~ (p ,T) 
b 

+ -2p 
0 

82 

J ~ oT 
( 17) 

where the specific entropy of the mixture in the absence of an electro-mag-

netic field is given by 

~ (p 'T) 
b 

Lastly, because 

E E 
e 

E 
'¥ + 

i t fol lows from the use of 

EIE 
~ (p ,T) 

b 

( 18) 

E 
Tri ( 19) 

( 15) and ( 17) in (19) 2 that 

82 

~ 
2o J (MIE T ) dB 2 

oT ' 
0 

(20) 
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The term ~(p,T) denotes the specific internal energy of t he mi xture for the 
b 

case of no electromagnetic field; it being defined by 

~ (p ,T) 
b 

E.3. Stress tensor 

* '¥ -
* Tl! 

CT 

From (C33) 1 it follows unde r equilibr i um conditions that 

L 
+ t 28.8. 

I J 

where, having taken account of (8124). 

L 
s 

L L 
s 

L L 
s 

L 

t, I t 1 t2 I t2 and t3 I t3 
a=l a a=l a a=l a 

On ma~netizable fluid mixtures 

E 

(21) 

(22) 

0 • (ZJ) . 

For the special case of mixtures for which Pi is zero it also follows 
a 

from (5), with due regard to (7), (C32) and (19) that 

s a'¥ IE -'l:: PP ap 0 iJ 
a=l a a 

or, with the use of (15), 

s +I 
a=l 

82 . 

I PP f a (~)d82 ] o . . ap p IJ 
a 

0 a 

(24) 

(25) 
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Here 

s 

p(p ,T) I * p (p 'T) and P~P 'T) 
d'¥ 

(26) pp ap b a b -3 b a a=l a 

(with a,b = 1 ,2, •.. ,s) denote, respectively, the pressure of the mixture 

in the absence of an electromagnetic field and the pressure, suggested by 

that relationship, of a constituent under the same conditions. 

I now wish to consider the deviatoric expansion of the last term of 

(25). For this purpose I denote the mean normal "magnetic stress" and the 

magnetic stress deviator respectively by 

and B .. 
IJ 

B. B. - .'.J3cS .• 
I J I J 

(27) 

Upon introduction into (25) of (27), (C32) and (13), together with the 

expansion of the integral term therein, it is seen that the stress of the 

mixture in equilibrium may be written as 

-po .. 
I J 

(28) 

where the pressure of the mixture and the electromagnetic field is 

s 

p * p I (29) 

a=1 

E.4. Chemical potential 

In order to determine the material behavior of a fluid mixture of va-

riable composition, it is in general necessary to examine the role played 

by both the homogeneous and the heterogeneous chemica l reactions involvi ng 

that mixture. Although appreciating the importance under certa in conditions 

of the latter type of reactions, I further restrict this study to a more 
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explicit investigation of only the former. In this section I .take up in par-

ticular the problem of determining the chemical potentials for a mixture of 

fluids interacting with an electromagnetic field. 

The entropy principle on s(t) revisited 

Surfaces of two kinds are of particu la r interest here. The first to be 

mentioned prohibits the passage of matter and thus serves to enclose some 

region of volume. Such a surface defines a mechanical boundary of that re-

gion and is representable as a material surface. In contrast, the second 

type of surface is porous to some extent and hence permits the transfer of 

mass. A surface with this character has earlier been termed a semi-permea-

ble membrane. It is in terms of such a membrane that I now cons ider further 

6 the entropy principle on s(t); and, following an approach due to Muller 

thereby determine the chemical potential of a mixture constituent. 

A plane membrane in parallel motion is a material surface for all con-

stituents a except that arbitrary one, say b, for which it is taken to be 

permeable. Upon considering such a membrane as separating two mixtures of 

the type being considered here, the selective nature of its permeability is 

expressible in terms of the system velocities : viz. 

and thu.s 

v. 
I 

a 
u. for 

I 
a #- b 

and (..!. 1) ( ) 
p 0ab - ; P vk - uk · 
b 

(30) 

(31) 
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In addition to satisfying the conditions prescribed by the entropy 

principle on s(t), this membrane is also assumed to have negligible (if any) 

surface tension, charges and currents . With (30) and (31) I first continue 

here the general development of the jump balance relation of entropy (013); 

after which, the specific result found here for magnetizable mixtures wi 11 

be noted. To begin, however, it may be noted that 

and 

p. 
J 

[ ~ .!?..... k p 

b 

+ 

s 
v 

£ •. k[ / 
I J /_,J 

a=l 

+ 

Mk 
[ B .!?_ 

k p 
b 

+ 

(33) 

+ 
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Introduc ti on of these relati ons hips in t o ( D1 3) y ields 

[ - ck . ii.i\ p b I I 

b 

P . M. 
bJ J 

+ (- t;k - + Bk ~)(ri. r\ - 6 j k ) + 
0 p J 
b b 

+ ~ ( v . - u. )(v . - u . ) 
I I I I 

+ 

p 
H~ x e) (2. 

k p 

(< - Tn) + 

[( r x eJ.nn .u2 
I I n 

s 

rr ( ~ x el . P. 
I J 

+ B. "";- (P x ~).]( ii . ii . - 6 . . ) u 
I /.. _ _, a aJ I J IJ n 

= 0 . 

a=l (35) 

A fur the r re vi s i on of (35) i s poss i b l e and i s sec ure d from an eva lua ti on of 

the last fo u r t e rms t he re in. 

To be gin, use of (6 12) leads t o t he fo l lowi ng express i on 

s 

B. l~ (P x ~) . B. (P x ~) . + B. >~ (r ~). 
I J I J I J 

a=l a a a= l a a 
(36) 

and t he s ubst ituti on o f t h i s equation into (35) imp I ies t hat there a re t wo 

se t s o f t erms whi ch may no.v be cons ide red. The first i s 
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[ B. 
I I 

a=l 

(P x t'.iJ.] u 
I n a a 
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-+ pk 
+ [ (~ x B) (- -

k p 

-+ 

[(Bx fli(vi - ui)D p (v 1 - u1)n 1 

-+ 
p 

[(B x %)i(vi - ui)Ilo( v1 - u1)n 1 (37) 

b 

and second, the remaining terms may be given as 

+ [ (P x B). lln. u2 
I I n 

ll(~ x B).P. + B. (P x ~).D(n.n. - o .. )u 
I J I J I j IJ n 

-+ pk 
-[(~ x B) -Do(v - u

1
)n

1 
+ 

k p 1 

+ 

Addition of (37) and (38) gives the result 

-+ p 

-[ (B x %i i (vi - u i l Do ( v 1 - u 1ln 1 . 

b 

Now, upon recognizing the fact that by (B87) and (6154) 

s - I 
(tki + /__, ck i )nink £ - Tri - p /_, ;J 

a=l a a=l 

P (~. A)2 
a a 

(38) 

(39) 

(40) 

a substitution of (39) and (40) i nt o (35) brings the jump balance eq uation 

for entrop y into the fol low i ng fo rm 

0 • (4 1) 
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Here, the quantity K which is seen to be continuous across s ( t ) is called 
b 

the chemical potential in non-eguilibrium of constituent b; it be i ng given 

by 

K 
b 

1 c - -- k.n.nk + 
p b I I 

b 

p 
+ (s x E.j .ii.[ (v . 

p I I J 
b 

s 

+ .!. ~ 
p L_, p ("°ti. ii) 2 

a a a=l 

P . M. 
(t; ~ bJ - -

- 6 jk) Bk p-) (nj°k + k p 

b b 

- uj)fi} ~(vi - ui) (vi - ui) + 

(b 1 ,2, ••• ,s) (42) 

The chemical potential of any constituent b in eguilibrium, µ , fo llows f rom 
b 

(42); it being given in general here by the expression 

µ 

b 

1 c I - -- k" n.nk 
p b I E I 
b 

+ 

On magneti zable fluid mixtu res 

p, I 
(t; ill -

k p 
b 

Unde r the additi ona l assumption that P.I vanishes (43) becomes 
bJ E 

µ 

b 
1 c I - -- k" n . nk 
p b I E I 
b 

whil e from (7) and (8) it i s fo und that 

(43) 

(44) 
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ck. I fi.r\ 
ap'!' IE & (fijfik - 6 j k) Bk 

E 
+ p b I E I ap p 

b b b 

(45) 

Introduction of (45) into (44) thus yields the relationship 

µ 
ap'!' IE 

b ap 

b 

(46 ) 

where, upon using (15) it follows that for any constituent b the (magneto-) 

chemical potential is here given by 

µ 

b 
~ (p ,T) 
b a 

B2 

1 J aM IE 2 
2 ap dB 

0 b 

(47) 

for a,b = 1,2, •.• ,s. The chemical potential of constituent b i n the absence 

of an electromagnetic field, ~. in (47) is written as 

~ (p 'T) 
b a 

* dp'!' 
ap-

b 

b 

(48) 

From (7), (8) and (46) it is thus seen, e.g., that for any constituent b in 

a magnetizable mixture the following general relation ho lds: viz., 

pµ6.. + 
bb IJ 

B.MI 6 .. ) • 
b E IJ 

(49) 

It is of some consequence that µ is, at least in principle, a measura-
b L 

ble quantity 7. Clearly, together with a knowledge of M, it permits the em
b 

pirical determination o f the constitutive quantity C .. in equilibrium. Fu r 
b' J 

ther yet is its role in e.g. the chemical reactions and diffusion processes 

of the mixture, to which po ints I shall return shortly. But first I wish t o 

set down another expression wherein the chemical potentials of the mixture 

constituents in equilibrium are also important. 
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E.5. Gibbs-Duhem equation 

Jn the thermodynamics of mixtures a Gibbs-Duhem equation is the means 

b h . 8 . . f y w 1ch the compos1t1on dependence o µand the constituent pressures can 
b 

be examined. From (47) it may be seen that 

s p s p B2 s p 
b 

)___. 
b * 1 I -;:-b~ 2 

/_. µ µ 2 ) - dB p 
b 

p 
b ___, P op 

b=l b=l 0 b=l b 

(50) 

Using (26) and (48) herein gives in turn that 

2 s p B_s_p~ * I b E. * L £ E dB2 )____, µ + '!' 2 p 
b 

p P op 
b=l 0 b=l b 

(51) 

which, upon introduction of ( 15) and (29) becomes 

s p 
E 

E 
.,....-- b 2 M B2 
)____. µ E. + '!' + 3; p 

b p 
b=l 

(52) 

The relations above are seen to be empirically determinable from the 

properties of the individual ("pure") constituents 9 . Thus, an additional 

significant point here is that with the realization of the Gibbs-Duhem equa-
E E 

tion (52), with M known, a means, for establishing the function'!' has been 

secured. It is by virtue of this result that a further development of the 

equilibrium conditions (1)-(6) becomes possible. 

E.6. Chemically (non-) reacting fluid mixtures 

For mixtures in which there are no chemical reactions the terms care 
a 

zero; and, hence, the reduced entropy inequality (D49) assumes the form 



a(£ - Tn) 
3p 

6 
i j 

b 
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s 

~p I 
b a=l 

+ 

s 

T ~TL 
a=l 

s 

TI 
a=l 

s 

~ t. .)-Ju. 
/,YIJ bl 
y=l 

.s 

£ijk I 
a=l 

u.(t . . + C .. ) 
aJ aJ 1 aJ 1 

o . 

s 

)__, 
a=l 

in. u. 
I I 

a a 

(53) 

For single-phase (i.e. homogeneous) mixtures composed of s constituent 

fluids, a criterion of equilibrium is lO that the entropy p roduction y (cf. 

(8150)) of those mixtures vanish. In general said production is here the 

left~hand-side of the reduced entropy inequality (049), i.e. 

Y " o ; 

and, this in turn reduces for the case where chemica l reactions are negli-

gible to the expression (53). 

Thus, upon denoting by XA the variables T k and Vk which vanish in 
• a 

equilibrium, it is seen that y which is generally a function of the varia-

bles (C6) satisfies the relations hip 

YIE 
y{p. p k' T, 0. o • ck. Bk) 0 (54) 

a a• 

That is f y equals zero (its min i mum value) in equi 1 i bri um. 
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The wel I-known conditions 11 which ensure (54) are that the first and 

second derivatives of y taken with respect to XA be respectively zero and 

positive; these requirements being expressed by 

ay I 
~E 0 and llo~:~xBIEll is positive semi-definite. (55) 

Investigation of (53) under (55) 1 with XA = T,k yields the result that 

the flux of internal energy in equilibrium, rather than being zero, is given 

by 12 

L 

q · 1 I E 
or by 

q ·I I E 
-ME. "k~'Bk 

I J J 
(56) 

where use has been made of (C32) and (13). 

The consequence of applying (55) 
1 

to (53) with XA = Vk is that the in
·a 

teraction force density in equilibrium may be written as 

ap (c-TrillE 
ap P, i 

a 
a 

On magnetizable fluid mixtures 

s o(t . . + c .. )I 
)

, __ a_1 J __ a_'_J__.._E P • 

~ op b ,J 
b=l b 

(57) 

With regard to plasmas the special case of magnetizable fluids is once 

again of particular interest. Hence, although (57) can also be examined for 
L 

situations of non-vanishing P . 
13 , I do not consider this point here. 

From (8). (46) and 

s oµ 

), r r-p a 
m. I ap + 
a

1 
E b=l 

l l a 
b 

(49) 

I 
a 

the re I at ion (57) can be written 

~ -> 1 

B. op Jo i j 
a ( t. ·I + 

a 1 J E 
B .M ·I ) 

Ja ', E l ,o . 
ap 

b b 
J b ,J 

in the form 

(58) 
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It may in addition be noticed from (57) together with (8154) that (cf. (B90)) 

0 • 

A comparison of (C33) 
1

, (22) 
1 

and (25) suggests the decomposition 

t..I +s.M.I 
a 1JE Ja 1 E 

[-t + 8-i11 + 
a a E 

where 

Differentiation of this expression with respect to p leads to 
b 

+ B. M. I ) 
J a 1 E 

op 
b 

o"MI 
9.2..ll + .L op op 

b b 

and, using (47) and this last result in (58) gives 

(59) 

(60) 

(61) 

p M ] 
- P 2 - p (o - ~).L(1-) s .. 

ap ab p ap p 1 J 
a b b 

~ - a E E .. kBk}P .• (62) 
ap IJ b'J 

b 

Linearized constitutive equations 

Unde r equilibrium conditions evaluation of the representation (C 30) of 

thP intPrn~l PnPrnv fl11x nivPc:. th~ t 
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L' I q. 
I E 

s 

I 
a=l 

Ll I (q 6. k 
a E 1 

+ + L31 q B.Bk)p k + 
a E I a' 

+ L 111 + q E •• kB. 
E I J J 

(63) 

Comparison of this result with (57) leads to the conclusion that 

~11 = L21 = ~31 = ~ 10 1E = ~12,E 0 Llll L 
qa while q E = M 

a E E a E 
(64) 

Hence, in general 
LI 

is here such that 
14 

qi 

s-1 

1-: + 

a=l 

+ + 

+ (65) 

Remembering that c has been taken to vanish, it is possible in a simi-
a 

Jar fashion to that above to consider the linearized representation (C28) 

for mi under equi I ibrium conditions. The resulting expression is for al 1 
a 

constituents of the form 

~.1 
s 

L 1 I L2 I L3 I ~. (mab E0 ik + mab /ijk8j + m b B.Bk) p k + 
a 1 E b=l 

a E I b' 

LlOI L 111 L121 (66) + (m 6.k + m £ .. kB . + ma EBiBk)Ck . a E 1 a E 1 J J 
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From (62) the conclusion d ra1~n regardi ng (66) is that 

* * 
L 1 I 

ap aµ P H 
a a 

p ( 6 - ~)i__(2._) 
mab E ail p ail ab p dp p 

b 
a 

b b 
(67) 

L2 ~ L3 E 
0 mab 3p mab 

b 

and that 

LlOI ~111 ;121 0k either m 0 or 0 • 
a E a E a E 

(68) 

In general, for an equ ilibrium in V the electromotive i n tensity 0k need 

not vanish; neither here by definition nor empirical l y. I thus assume hence-

forth that the restrict ions (68) 
1 

on the inte r act ion fo rce den s i ty coe ff i ci-

ents represent the physically more reasonab le conditi on s to be satisfied . 

Two meaningful implications o f the assumption on non-zero 0k in equ i 

librium may now be mentioned . First, the de f inition given ear l ier for die-

lectri cs (cf. Sect. B.4.) is seen to be more general t han that usuall y g i ven. 

And second, regardless o f the capacity of the mi x t u re to conduct electr i ci-

ty, the flux of internal energy is seen from (56) to a l so be non-zero. 

here 

Lastly here, it fol lows from ·(C28), together wit h (67) and (6 8) 
1

, that 

L 
m. 

I 
a 

s { ap -. - fa 
/__, lail + 
b=l b 

* aµ 
a pap 

a b 

P H 
P (6ab - ~)i__(2._)l 6 .. 

P dP P j I J 
b 
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E.6.a. Law of mass action 
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LS 
m b£ .. kB. a I J 

+ 

+ 
L9 
mB.Bk)Tk a I , 

(69) 

For chemically reacting mixtures the reduced entropy inequality (D49) 

leads, under the definition of thermodynamic equilibrium in V, to additional 

conditions on the system. Using (B36) ~nd (B40)
1

, the expression in (D49) 

involving c assumes after some manipulation the form 
a 

s 

-I 
a=l 

(mi - cvi lu; 
a aa a 

(70) 

An equilibrium evaluation of (D49) with (70) therein under the condi-

ti ons 

AalE 0 and oy I 0 
oAa E 

gives the resu It that 

s op (e I - Tn) IE ~ 

)~ yaw 0 
a a op 

a=l a 

On ma9netizable fluid mixtures 

With the help of (19) and (46) this equi I ibrium condition becomes 

s 

I yawµI 
a=l a aa E 

0 

(71) 

(72) 

(73) 
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which result is an expression of the so-cal led law of mass act i on for a mix-

ture interacting with an electromagnetic field. Introduction herein of the 

relation (47) for the (magneto-)chemical potential yields 

s 
~ 

yaW(~ 
!~ 
a=l a a a 

E.7. Gibbs' equation 

1 
2 0 . (74) 

In classical non-equilibrium thermodynamics 15 the l ocal balance equa-

ti on for the entropy of a mixture fol lows from an assumption of macroscopic 

state variables in terms of which a differential of entropy i s established. 

Said entropy is expressible as a funct ion of the state parameters (e.g . in -

ternal energy, mass fractions, etc.) and their differentials i n such a man-

ner that substitution of t~e balance equations of these quant l ties for the i r 

counterparts in that functional relati on yields the desired res ult . 

It is not my purpose here to attempt an examination of the premi ses 

from which such results are derived i n that di sci pl ine. Rat her, I shal I s how 

in this section that the essential result (i.e. the diffe rent i a l of entropy 

equation) with which the classical approach begins fol lows here as a result 

of con s idera tions of a very lim ited specia l case. 

On magnetizable fluid mixtures 

It follows from (D18) and (D22 ) t hat in an equilibrium for which P.I 
a 

1 
E 

vani shes 

(75) 
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where (19) gives that 

(76) 

Differentiation of (76) with respect top and B2 yields, respectively, the 
b 

results 

~ ~ - ~ and T~ ~ - ~ T op op op 
oB

2 
oB

2 
oB

2 
b b b 

(77) 

Now, s i nee nlE n(p ,T,B2)1E' 
b 

s 

~ ~ ~ 
T dnlE I T 

0 
dp + T dT + T dB

2 

p b dT 
oB

2 
b=l b 

or, using (77)' 

T dnlE I
s o'l'IE 

- _.I.!. dp 
___, op b 

b= 1 b 

~2 -
2 

dB . 
oB 

(78) 

From (20) the differential of internal energy is found to be 

s 
~ 

+ I _1 

b=l 
{ o ~ 

op 
b 

J
B2 [" LI a~ I E 

-2 - (M E - T 'T ) P ap o 

0 b 

LI 0 ~IE 2 
2p (M E - T dT )dB . (79) 
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Further, utilization of (15) and (46) leads to the result that 

_+~ 
L., op dp 
b=l b b 

s 

-I; 
b=l 

(80) 

It follows now from a substitution of (12) and (79) into (78) that a~ 

eguation for a mixture interacting with an electromagnetic f ie l d is given 

here by the relationship 

.!.~ 
s 
~ 

µ 

.:1s) dp d111E dT .!.I - b 
+ ( op - + + T OT T~ p p b 

b=l b 

1~ 1 I 2 (81) + -( + 2j) M E)dB . 
T oB2 

An expression equivalent to this one, but written in terms of the total 

density p and mass functions c, can be secured through the use of 
b 

c p/p (cf. Sect. B.b.), their derivat i ves and (52): it is 
b b 

* * * .!. .2.£ dT (.2.£ 1 * d11 + "f 2 p)dp + T OT · op p 

s-1 

+I * 
+ [ .2.£ - (µ - µ)]de 

ac b s b 
b=l b 

(82) 
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Foo t no t es to Chapte r E 

A rational mechan i cal de f inition of eq u i li brium i s made i n te rms o f 

those physically 1•ell-motivated cond i t ions that must be sat i s fi ed in 

order that the en tropy product ion de ns i t y (here (049)) eq ua I ze r o. It 

is in particular in teresting to observe that for ra ti ona l mechanical 

theorie s with dif fe ren t degrees of g en era l ity, but whi ch cons i der the 

same subject matter , the requirements f or equi I ibrium need not be the 

same . For example, s ingle-continuum theor i es of media i n terac t i ng 

with an electromag netic field suc h a s t hat of Liu & Mu i I er [ 1972 , 5, 

p. 16 3] and Ml.ii ler [1973, 9, p. 144] r equi re , say , the non- con vect ive 

current density (tj (cf. (B62)
2

) to van ish . In this theor y , however, 

such a condition need not, and i ndeed i n general cannot, be se t down. 

For the special ca se of this theo ry where Pi = 0 and Mi = f o r al I 
a a 

c ons tituent s the r esult that J. i s zero i n equi I ibrium i s recove red. 
I 

2 
See CFT [1 960, 9 , p .652, foot no t e l ] . Note fu r the r Liu & Mu l le r 

[1972, 5, p.1 64 ] and Hirschfe l der, Curtiss & Bird [196 7 , 9 , p . 5 15 

and p.709]. Regarding experience con sul t , e . g., Kantrowitz & Pet schek 

[19 57 , 3, p.5] and Sutto n & Sherman [ 1965 , 16 , p. 212] . No t e a l so foot-

note F 12 . 

With the except i o n of setting down t he condition (55)
2 

and t he d is

cus s ion given in Sect. F.3. I do not approach here the d i ff i cu l t 

ma tte r o f s t ab i Ii ty . It may be v1or t hwhi l e to point out that t he us e of 

linear i zed con s t i t utive eq uations is ma de , v-1 it h phys i c al mo t i vation , 

o nce aga i n f o r purposes of deve l o pmental s impli c ity ; and that the 

ab sence of s tab i I i t y co nsiderati on s he re is no t a consequence of that 

fac t . 
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4 
See footnote c35. 

5 The kinematics of mixtures of magnet i zable fluids here depends upon 

both the electric and magnetic fields. :he material response thereof 

has, however, been taken to depend on ly upon the magnetic flux density. 

For such systems in the absence of said field, it thus fol lows that 

6 

the constitutive relations are reduced in their descriptive content 

essentially to expressions appropriate to such media in the absence 

of an electromagnetic field. 

Cf., for example, Muller [1973, 9, pp. 174-176] and note t he d i fference 

in approach there (and thus here) with that of Mui ler [ 1968, 4, p.24] . 

7 This point is discussed somewhat by Muller [1973, 9, pp. 177- 173]. 

8 

From a "practical" viewpoint (cf. Slattery [ 1972, 8, p.499 ] ) the gen

erally difficult empirical determination of chemical potentia l s may 

serve as a motivation to avoid their introduction into t heoretical 

considerations such as these . That such potentials can be measured 

under certain circumstances may be seen in the discussion of, say, 

Sage, [1965, 14, Chpt. 9]. I take the position that the usefulness 

in principle of chemical potentials should stimulate efforts to exploit 

same in practice. 

Denbigh [ 1971, 1, p .2 15] . Note f urther CFT [1960. 'l, pp.649-650] 

and footnote DJ. 

9 This maybeseenbyconsider·ing the definitions (859), (8 135 ) , (8 152)
1

, 

(C32), (29) and (47) for the various quantities of LOncer n . 

JO Slat ter y [1972, 8 , p . 432] . 

II Cf. Liu & Muller r 1972, ), p.1 63 J. 
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12 This interesti ng and potentially important result fo r p lasma physics 

research was first obtained and discussed by Liu & Mui ler [1972, 5, 

p.169 and pp . 173-174 ] for the spec i al case of elect ri cally non -

conducting mag net izable fluids. It was found there as a consequence 

of the use of t he particular de f i ni t ion(s) of equilibrium they em-

ployed as were d ictated by the si ng le-fluid nature of t he i r t heory. 

Here, by virtue of the mi x ture character of the model, the material 

response of the systems involved is such that this result i s generall y 

applicable to both electrical conducto r s and non-conductors. 

l3 Cf. Benach & Mu i ler [ 1974, 1] . 

14 
It b d may e note th<.t the coefficien t 

p 
Kik in the abb reviated ex-
a 

pres s ion for (C30) is zero . 

l5 E.g., de Groot & Mazur [.1963, 5]. 
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F. ON SPECIFIC PLASMA SYSTEM FIELD EQUATIONS 

The foregoing chapters have serve~ •o establish a particul ar general 

rational dynamic model for a multi-continuum fluid medium interacting wi t h 

an electromagnetic field. The methodology of the approach invo l ved init ia l

ly the consideration of a single, physically identifiable , but otherwise 

arbitrary constituent; and, a treatment of its properties was seen to lead 

in turn to those of the class of mixtures considered he re. 

A total (plasma) system consists configurationally of two parts: the 

system interior and the system boundary . Clear ly, a "complete" phenomenolo

gical description of any given material system should when necessary be able 

to present a treatment of each of t hese parts together with a physically 

acceptable representation of their interaction. Real media (e.g. MFD plas

mas) due to their inherent physical complexity do not, however, seem in ge 

neral t6 l end themselves to such a detailed g lobal analysis as that indicat

ed here. On the basis of t hi s fact I have 
1 

restricted my attention pr imari 

ly to the system bulk (i.e. interior); having accommodated the system boun

dary by means of a disconti nu ity surface representation. 

An adequate treatment of a given system has bee n assumed 2 to be ex

pressi b le in t e rms of a physically wel I-moti vated set o f field equations; 

and it is to these relations that I again direct attention in t he next t .io 

sections. Thereafter I discuss brief l y in sect i ons F.3 . and F. 4. respecti ve

ly some general aspects of empiricism, and boundary and initial condit ions, 

as re lated to this study. 
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F. 1. System interior eguations 

It is, of course, the specific material media and field quantities of 

a given physical system which determine the composition of the interior 

thereof. Regarding a theoretical possibility which I deem relevant to both 

the general pr.oblem 3 and illustrative of my purpose 4 here, I propose to 

give now a resume of the expressions of balance and material response to 

be gotten from this study for the following plasma system. 

Aside from the electromagnetic field, the mixture is taken to consist 

materially of three continua: viz., an electron, an ion (of one type), and 

an electromagnetically neutral gas continuum; where, in addition, the last 

two constituents are in their respective "ground energy states". As an exam-

pie of such a system, one may think of the system as being a tertiary plas-

ma mixture consisting of electrons and, say, neutral argon atoms and the 

first ionized constituent thereof. 

F. 1.a. Balance, conservation and constitutive equations 

For the case at hand I now identify the three partial continua involv

ed by letting the subscript a in the arbitrary constituent relations deriv

ed earlier assume only the values a= 1, 2 and 3; these denoting respective

ly the electron, ion and neutral gases. For the sake of conven ience only, I 

take as the reference (i.e. the sth) constituent the neutral gas continuum; 

and, I consider here only such mixtures as are "close to equilibrium". With 

their general forms having been discussed earlier, I now summarily present 

the relationships of concern here. 



Constituent mass ba lances 

where 

P + pv .. 
a aaJ 'J 

L 
c 
a 

L 
3 

L 
c = L y<\im1{'( I) 
a ;;;Jaa 

Constituent charge balances 

L 
aQ 

LT L 
a qc at + J. 

aJ • j aa 

where 

L 
QF 
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Q - PI 1 
a a a ' 

L L 
J. £ . k I Ml k + 
aJ J a • 

L L L 

QF 

L 
aP . 
aJ 
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M. M( I) B. p. (I) 
11 I I 
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LT 
qp J. 
aa aJ 

L 

+ v.P 1 I + 
aJ a ' 

0 and for a 

L 
P. 

3 L 

~ [ P1 (I) ' + 
L~ ab u i k 

L2 
p b (I )c . . kB. a I j j I 

a b=l 

(1) 

(2) 

(3 ) 

L 
Qv . + J. 
aaJ aJ 

(4 ) 

L 

c · k 1 (P 
J a 

x t) 1 k 
a • 

2 and 3, 

+ 
L3 
p b(l)B.Bk ]p k + 

a I b, 
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L7 La 
+ [ P (I ) 6. k + P (I)£ . . kB. 

a 1 a 1 J J 

L9 
+ P (l)B . Bk]T k + a I , 

the material coeffic ients of the partial polarizations sti II being func-

tions of the variables I . 

Linear momentum balance eguations 

where 

L 

L 
t. .. 

. a I J 'J 

t .. 
a'J 

L 1 
t (I) 6 . . 

IJ 
+ 

L2 
t (I) B. B. 

a a 

= E. 
I 

and for al I three con!tituents 

L 
iii . 

I 
a 

+ 

* d)J 

+ p 2 
dP 

a b 

I J 
+ 

p b. 
a0a

1 

L 
iii. 

I 
a 

L 
+ m9 (1)B . Bk] T k a I , 

L 
CV . 

I aa 
(6) 

(7) 

(8) 
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Mixture angular momentum balance relationship 

L L 
t. . : t .. 

I J JI 

where 

L 
t .. 

I J 

3 

I 
a=l 

L 
(tij - pu.u . ), u. 
a aa 1aJ a 1 v. - v. 

I I 
a 

and v. 
I 

Mixture internal energy bala'nce equation 

L L L L 
p (£). t v - q - pr - 'l-J.f,J. ij i,j j,j 0 

where 

3 3 

p = I~ 
a=l 

+ ~I tPu2 
a=1 aa 

3 

-I 
a=1 

L 
+ P(E + tu2)u.] 

a a a · aJ 

2 

I L4 
[q (I) o.k 

a J 
a=l 

0 

3 
= .!. V pv. 

PL aa1 
a~t 

(9) 

(10) 

(11) 

( 12) 

( 13) 

( 14) 
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Mixture 

where 

and 

Pr 
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(t. 

J 

3 

I 
a=l 

3 

P ( r 
a a 

""°' F L [Q u. 
a aJ 

a=l 
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+ b. u.) 
I I 

a a 

L L 

L 
<lP . 

aJ 
+ - + at 

+ v · P 1 1 + £ • k 1 (P x ~l 1 k J • 
aJ a ' J a a ' 

&. 
J 

entropy 

L 
p (11). 

L 

11 

L 
c . . 
JI 

a 

= 

balance egua ti on 

[ 1 L 
3 

L 3 

2 .. u.)] . 
~ -I + "f(qi + L £. . k& . Mk 

1 J aJ a aJ' aJ '' 
a=l a=l 

L 
11(1) 

L 1 
C (I) 6 . . 

J I 
+ 

L2 
C (I) B .B. 

J I 
+ 

a a 

( 15) 

( 16) 

( 17) 

Pr I 
- - ~ 0 

T 
( 18) 

(19) 

(20) 

(21) 
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Electric flux density equation 

L 
QF '.D. (22) 

I, i 

where 

L L 

'.Di D. + P. 0. E E. (23) 
I I I 0 I 

L 3 L 
2 

P. I P. and QF ~QF (24) 
I I La 

a=2 a a=l 

Mixture current balance eguation 

L 
L 

F / 
a'.D. 

E. 0 k.Jek • I (25) Q vi + + Tt I J ,J I 

where 

L L 3 L 

~ Hk Mk 
~ (P x ~) (26) - j_, k 
a=2 a a 

2 

Bk and / ~ F (27) Hk µo I L Q ui 

a=l a a 

Mixture charge conservation equation 

L 
LT aQ 0 (28) at + J. 

J • j 

where 

L 
2 3 L L L L . 
~· F I Q L~ 

- p 1 1 and } Qvj + aj (29) 
a ' J 

a=l a=2 
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Magnetic flux density conservation equation 

B. . 
I, I 

0 • (30) 

Electromagnetic induction equation 

as. 
£ •• kEk . 

I J 'J 

I 

at (31) 

It 1vi 11 be remembered 6 that a primary aim of such a theory of mixtures 

as that given here is the determination of the field quantities 

p (;,t) , T(;,t) , and B.(;,t); 
I 

(Al) 
a 

which, in this particular case (i.e. a= 1,2,3), are 19 in number. All of 

the expressions above are clearly not independent. However, those relation-

ships thereof which in principle make said calculation possible and for 

which the system of equations and unknowns is determinate 7 are the fol low-

ing: viz., (1), (6). (11). ( 18) , (25) and (31). After setting down in Sect. 

F.2. the equations fourJd here for the boundaries and interfaces of a plasma 

system, I shall comment somewhat further in Sect. F,3. with regard to the 

problem of solving these relationships. 

F. 1.b. On mass and charge transport 

It is of considerable theoretical interest and practical importance 

that physical insight additional to that given by (612) be gained here into 

the nature of constituent mass and charge diffusion in a multi -continuum mix-

ture of fluids. \./hi le the mathemutical investigation of this subject was be

gun by Fick 8 in the mid-nineteenth century, it remains yet a problem area 

intensively studied. Thus, it seems that it can be fairly stated here that 

the general treatment of diffusion for plasmas leaves much to be desired 9 
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This section has as its foremost purpose the presentation of those e x-

press ions for mass and charge flux that result from a unified mechanical, 

electromagnetic and energetic non-I inear L~eory of diffusion lO For the 

sake of convenience, however, shal I employ the theory above in a severely 

restricted form in order that a special case of particular interest here 

may be considered 
11 

On magnetizable fluid mixtures 

The development here proceeds from the balance equation (B85)
1 

for the 

I inear momentum of an arbitrary mixture constituent; and it may, with the 

use of (B15), be expressed for al I s constituents in the form 

p v. 
I 

aa 
+ u. v .. 

aJ a 1 'J 

iii. 
I 

a 
CV . 

I 
aa 

t. . . 
a I J ,J 

p b. 
aOa 

1 

(32) 

The result of dividing (32) by p and subtracting the expression secured for 
a 

the sth (i.e. the reference) constituent from that for any other constituent 

a is given by 

( v . - vi)" + (u. v .. - u . v .. ) t .. + t .. 
I aJ a 1 ,J SJ S 1 ,J p a I J 'j 0 5 I J 'j a s a s 

(_I_ Qt; . Qt;i) 
I 1 ( b.) (p 'Jj - 'J.)c .. kBk b. -

p I p 0 SJ I J Oa 
I os' aa SS a 

a s a 

m. r.i. (cv. CV.) ( 33) 
() I n I I I 

a s aa SS 
a s 
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I now I imi t the class of mixtures for which (33) is to be used here to 

these systems for wh i ch chemical reactions, constituent po lar i zations and 

terms non-linear in p . , V., T . and Ci may be neglected; and also for which 
-+ a, I b I 'I a 
M = M(p,T,B2) and the constituent spec ifi c magnetizations are density-
a a a 12 independent Under these conditions use of I inearized re lationships 

for the constitutive fields is acceptable and it thus fol lows from (B8) 

and (B47) 2 , (B53), (C32), (E60) and (E69) respectively that 

and 

Q 

b 

L 
t .. 
blJ 

L 
iii. 
bl 

+ 

L L 
qp 'J. £ .klMl k . 
bb bJ J b • 

L L 
(-p + iJ.f110 .. B .M . 

Jbl b b 

s [ ["P I "~ 
d=l d 

+ 

IJ 

a CJ 
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b oP I J 

d 

+ 

LB 
m £ . . kB. 

a IJ 
+ 

L L 
M. M B. 
bl b 

I 

L3 
+ t c . kB k b I J 

L 
3~3 . ] 
-a- <. . kBk P . 

p I J d 'J 
d 

+ 

L9 
m B. Bk)T k . a I , 

+ 

Introduction of the relations (34) together with the use of (1310), 

(B48), (D37l and (E46) leads, after some calculation 13 to t he following 

form of ( 3 3) ; vi z . , 

(34) 
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+ (~ 
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s • 

+ 
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Oc Os 1 

14 
Here, the coefficients F 1 ., Olk and Elk are given respectively by 
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G 
bd 

0 

(6 - j_) 
bd p 

(39) 

s 

the relationship secured by solving (35) fo r the diffusion flux of mass of 

an arbitrary constituent a is given here by 

s-1 s-1 s-1 
~~ -1-1 ,r~ 
/_ 

) p (G F . l 1 ) 
·----' /~ a ba be 1 lL__. 
b=l c=l d=l 

(q - q) ~I 
c s 
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by 
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H i 1 
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LG Fil 
b=l ba be 
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[ 

s-1 
-1 ' 

pH .. 
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+ 

+ (~ 
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- b ) ] 
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1 (40) 

(41) 

(~ - ~) 1 
c s • 

+ 

- b i] 
Os l 

(42) 

This relationship, a generalization o f Fick's first equation of diffu

sion 15 , has · been cast into a form permitting a rough comparison with those 

expressions secured from, say, "classica l " particle approach cons ideration s 

16 ; which res ults it also generalizes . Aside from t he poss ibl y impo rtant 

acceleration term (G u
1
) · 17 and the extended physical scope o f the T k co-

cdd • 
ff . · IS · · f · I . h h f e 1c1ent , 1t 1s o part1cu ar interest ere to note t e presence o a 

new term which is rela ted to the non-uni formity of i 19 
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Now, the non-convective electric current density is gi ven for the spe-

cial case under consideration here by (862) without the polarization terms. 

It follows from the introduction of (4Z \ into that relation that the genera-

I ization here of Ohm's equation for the diffusion flux of cha rge is given by 

s s-1 

II 
a=l c=l 

-1ti~1 I 
qp H i I L c( (p- 6 cd 
aaac d=l d d 

+ ~) I 
s • 

+ 

s 

+ 

Here, the thermo-electric 
20 

and electrical conductivity tensors are denot-

21 ed, respectively, by 

s s-1 

II 
a=l c=l 

-1 
qpH ilDlk 
aaac c 

and 

F.2. System boundary and interface equations 

s s-1 

II 
a=l c=l 

q(q 
a c 

-1 
q)H i l . (44) 
s ac 

In general, a surface of discontinuity can represent not only a mecha-

nical, electromagnetic and/or energetic boundary or interface for the total 

material system in V; but also 1 depending upon the physical c ircumstances 

involved, an interface between, and a boundary of regions t here in . 

Boundaries and interfaces of, say, a plasma (region) in V constitute 

in themselves physical systems the treatment of which, together with that 

for the (rest) of the system interior, may in certain cases 22 be absolute-

ly essential to the securing of an adequate description of the behavior of 

the plasma as a whole. Such a treatment could perhaps follow the methodolo

gy employed here for the study of the interior of the system 23 but, I con-

sider this important problem too as lyi ng beyond the scope of this initial 

study. 



217 

As 1.;as the case in Sect. F.1.a., t he relevant jump balance equations 

here ha ve been examined earlier . Hence, with a= 1, 2 and 3 st i 11 denoting 

respectively the electrons, ions and neutra l gas continua, I consider it 

sufficient to present them now without further comment. 

Constituent mass equation 

[p(v. - u.)n.Il 
I I I 

a a 

Constituent charge equation 

L 
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(4 7) 

(48) 
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Mixture entropy equation 

L 
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Electric flux density eguation 
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Mixture current eguation 
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Electromagnetic induction equation 
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(SO) 
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F.3. On solutions and applications 

The mathematical description of the behavior of a given medium under 

a particular set of circumstances Is given by the solution to the set of 

governing equations of that system appropriate to those conditions. At least 

in principle, with the exception of boundary and/or initial conditions dis-

cussed belo1v, al I of the ingredients necessary here to calculate the fields 

(A1) as functions of position and time for a given (but not arbitrary) phy-

sical region V are represented by the set of equations noted earlier in 

Sect. F. 1. 

Before examining this point further, there is an important observation 

that wish to make regarding the constitutive equations employed in that 

set of equations. The material response coefficients here are continuous 

functions 24 of I = {p (a c 1 ,2,3), T, s2} and not constants 25 . Further, 
a 

under the requirement that they satisfy the reduced entropy inequality 26 , 

the constitutive coefficients are themselves, either individually or in 

combination, also subject to certain (in)equality conditions 27 • Hence, the 

coefficients of the plasma system equations here are neither arbitrary in 

the variables upon .vhich they depend, nor entirely unrestricted and inde-

pendent of one another in terms of their range of variability. 

Now, with regard to such equations as these and the matter of their 

solution, rational mechanics appears 28 to vie1v as physically meaningful 

(but not exclusively 29 ) problems thereto related that are "properly posed". 

,Problems of physical mathematics are cal led properly posed 30 if they sat is-

fy the three-part postulate of Hadamard: viz., a solution for the problem 

should exist that is unigue and~· This concept res rs upon the not 
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necessarily correct belief 31 that a high-fidelity mathematical description 

of the physical nature of a material svstem is securable from its governing 

equations together with the "data"(e.g. 32 the boundary and/or initial con

ditions 33 , constitutive coefficients and configurational aspects of the 

system) indicated therein. Although this approach seems adequate in most 

cases 34 , there are 35 an increasing number of physically meaningful pro-

blems which in one or more respects do not satisfy the requirements above; 

i.e .. , 36 the so-cal led "improperly posed" problems 

On the existence of solutions 

While the physical phenomena related to a given material system exist 

in their own right, it is desirable to ensure that solutions of the descrip-

tive equations of that system also exist. Unfortunately, investigation of 

here relevant problems such as, e.g., domains of existence 37 , the relation

ship of solution existence to problem data 38 , and the determination of ne-

cessary and sufficient conditions for solution existence in general has 

hardly begun 39 • With the exception of certain important results (e.g. the 

Cauchy-Kovalevsky theorem), it seems at the present time that the difficult 

matter of demonstrating the existence of a solution is in all but relative-

ly few situations unsettled. 

On the uniqueness of solutions 

The issue of descriptive completeness for a given problem is generally 

taken 40 to be resolved with the establishment of a solution thereof that 

is uniquely determined by the data of that problem. Although the question 

of uniqueness is supposedly less difficult than that of existence 41 , here 
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too relatively 1 ittle study has been devoted to the problem of uniqueness 

42 in general and to the relationship of arbitrary (e.g. non-analytic) data 

to solution uniqueness in particular 43 

Further, aside from the fact that there are cases where existence 

theorems are invalid but for which uniqueness can be proved 44 , there are 

more importantly problems for which this condition is as such considered an 

inappropriate one for a solution to fulfil 45 • There are, however, cases for 

which this aspect of a properly-posed problem can be salvaged; but then, by 

means of additional a priori assumptions which restrict either the constitu

tive equations or the boundary conditions 46 (i.e. the allowed solutions 47 ) 

of that problem. From a practical viewpoint, i.e. one of application, it is 

clear 48 in any case that the criterion of uniqueness is a desirable one to 

be met by any given solution. 

On the stability of solutions 

This last and very significant condition stipulates 49 that the solu-

ti on to a given problem must depend ln a continuous manner upon the data 

of that prob 1 em. The fulfilment of the stab i 1 i ty requirement thus necess i -

tates that for "sufficiently smal 111 50 changes in said data, the solution 

thereto related must in turn experience an arbitrarily small change. 

There are 51 , however, meaningful and here relevant problems for which 

this condition cannot be satisfied in an arbitrary yet total physical re

gion V 52 • Generally speaking, the content of this requirement appears 53 

to also need a great deal more investigation; and this with particular re-

gard to the determination of criteria to be met by both data and solutions 

54 in order to ensure satisfaction of this postulate 
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Now, it wil 1 be remembered {cf. Sect. A.2.b.) that the calculation 

of the fields (Al) was taken to be the main aim of this type of mixture 

theory. And further, that {cf. Sect. D .. ) it is in particular those 

solutions for a region V which are physically admissible that are of 

concern in this study. 

By virtue of the structure of the system equations above it can readily 

be -seen that at this level of developmental generality very little can be 

said concerning the desired solutions. From what has been said above it 

should be clear that it is not always possible, or even necessary, that 

a physical problem be properly posed. Although such problems do appear 

in practice to be dominant 55 , the generally held contention 56 that only 

such problems are physically meaningful is known by a small but growing 

number of researchers to be incorrect 57 . The essential difference between 
58 

problems that are properly .posed and those that are not lies in the 

role played by the data of a given physical problem with regard to the 

mathematical model thereof. 

It is thus important to note that in general the matter regarding 

the approach(es) by which the class of admissible thermodynamic processes 

in V for the fields. {Al) can be established remains an open one here. 

This does not mean that further systematic progress towards the goal 

set is no longer possible. On the contrary, from a comprehensive com-

parative study of these and other better understood relations, additional 

insight into the mathematical character of said solutions and the system 

data could be gained. Such an undertaking does not, however, fall within 

the scope of this endeavor. 
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The approach from this point onwards to the system of general partial 

differential equations given in Sect. F.1.a. is essentially the same as 

that elsewhere in mathematical physics. Their applicability to the investi-

gation of any given detail problem obviously requires that they be made 

(more) tractable; the degree of simplification depending upon the circum-

9tances of the particular problem involved. 

Steps in this direction can be made in two ways. The first entails 

the introduction of physical approximations such as, e.g., dimensional 

analysis arguments 59 which make possible further treatment of a reduced 

class of dynamically homologous systems 60 . Not unimportant here is the 

possibility that a rational mechanical development such as that here 

can, at least in some special and al ready "wel I-studied" cases, suggest 

new experiments. 

The next step involves the use of mathematical approximations (e.g. 

perturbation techniques, etc.). Here too, rational mechanics could aid 

in the process of determining how its results, the system equations, 

could be uti Ii zed most fully with the aid of modern computing methods. 

It must be emphasized, however, that the primary mathematical concern 

at this point is one of determining applicable solutions to said equations 

and not the formulation thereof. Indeed, while the former matter involves 

61 approximations, the latter is "exact" 
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F.4. On empirical considerations 

Generally speaking there seem to ~e three types of empirical data. 

First are those data necessary for the physical determination of the con

stitutive equations required for a given system; such data being possibly 

of a micro- and/or macroscopic nature. Then there are two kinds of data 

which, assuming existence etc., relate directly to the solutions of the 

complete set of macroscopic equations for (regions of) V. One of these is 

concerned with the determination of the usually dynamic system boundary and 

initial conditions; while, the other data are those representing the empi

rical results meant to be compared with some specific theoretical predic

tion based upon the above mentioned system of equations. 

Regarding the microscopic empiricism related to this study I wish to 

say the following. The investigation of what may be termed the quantum dy

namic properties of matter (e.g. interparticle forces) does not fall within 

the realm of plasma physics as such; and certainly not within that of ra

tional mechanics. Rather, it is the subject matter of disciplines concerned 

most directly with, say, atomic and molecular physics and physical chemis

try. Although such properties undoubtedly determine (to some degree) the 

macro-nature of a plasma system, a detailed knowledge of them does not fol

low from plasma considerations. 

At present empirical plasma physics concerns itself essentially with 

the measuremental determination of the parameters entering into the macro

scopic system equations (e.g. constituent number densities, temperature(s), 

etc.); and, the macro-process characteristics of plasmas (e.g. flow proper

ties). The former quantities are of considerable importance in connection 

with the study of plasmas in general while the latter relate more to the 

detailed understanding of a particular given plasma system. 
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There is so~e understanding in plasma physics of the difficulties in-

1 d . h d h h . 1 d . . 62 d h . 1 . vo ve wit regar tot e p ys1ca eterm1nat1on an mat emat1ca spec1-

63 fication of dynamic boundary and/or initial conditions. Unfortunately, 

however, it appears that much less appreciation is shown 'there with regard 

to the significant role played by constitutive equations in the determina-

tion of plasma behavior in general. 

In this regard it is most important to realize the following fact; viz., 

knowledge of a micro-physical nature which is indispensable to particle theo-

ry approaches to the description of plasma behavior is, generally spoken, at 

present often either inadequate 64 or more important inaccessible 65 • This 

point has great significance with regard to degree of validity, or equiva-

lently the range of applicability, of the results of such approaches. 

Rational mechanics, on the other hand, has been shown here to lead to 

results which are, although simpler in conceptual development, more general 

and physically relevant than those in common usage. Not only the theoretical 

but also the practical advantages of this approach can be noted as follows. 

In general, rational mechanical constitutive equations such as those propos-

ed here (cf. Chpt. C.) have at least the fol lowing properties: viz., they 

are properly invariant and take account of the symmetry properties of the 

medium in question; they permit the description of non-1 inear material res-

ponse; they are applicable to the study of non-homogeneous processes in 

non-equilibrium systems; they have coefficients that are not constants but 

functions of macroscopic field variables; they exhibit numerous known and 

even more unknown independent (i.e. uncoupled) and dependent (i.e. coupled) 

effects; and, they are susceptible, at least in principle, to determination 

66 physically within a program of rational empiricism 
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Footnotes to Chapter F 

See page 44. 

2 Here, on page 19; note also Benach & Mtil Jer [1974, 1, Chpt. 2]. 

3 See page 14. 

4 This point is discussed on page 19. 

5 As is well-known, electrons possess by virtue of their spins an in

trinsic (spin) magnetic moment. It is in terms of this property that 

a (induced) magnetization density may be assumed to exist for 

the electron gas continuum; which mixture constituent consists, indeed, 

wholly of free (i.e. "conduction") electrons. 

Now, the electron gas kinematics leading to a diamagnetic condi

tion for the system, the .electron cyclotron motions, are described by 

the balance, conservation and jump balance equations for that constit

uent. On the other hand, the Alignment parallel (and to a l•sser degree 

anti-parallel) to B of the electron spins relates to the dynamics of 

the electron continuum. 

It is in particular the condition of paramagnetism resulting from 

such alignments which is of concern here. The description of this prop

erty is, as it should be, a matter for constitutive theory. The spin

dependent character of this latter condition requires a quantum 

mechanical explanation; while the ·former does not. A discussion of 

(aspects of) this matter may be found, e.g., in Sates [1951, I, pp. 

52-53 and p.154], Van Vleck [1952, 2, pp.349-353 and pp.359-360] and 

Sozorth [1961, 1, p.467]. 

The retention or neglect of either one or both of these properties 

in a given problem should depend upon the demonstrated relative (in)-
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significance of their respective contributions to each other as well 

as to the other possible terms which must also be considered in the 

problem of concern. Regardin~ the so~ewhat cavalier attitude taken 

in plasma physics with regard to this matter, see Grad [1971, 2]. 

6 Cf. page 20. 
• 

7 The importance of determinacy (i.e. that n equations are needed to 

"determine" n quantities) is here or elsewhere a relative one; and, 

the demand for its satisfaction essentially a blind one. Although 

it is usually considered a "self-evident" requirement to be met in 

the treatment of a system of equations, there are (cf. Courant & 

Hilbert [1965, 7, p.231]), for example, over-determined (improperly 

posed (cf. Sect. F.3.)) problems that are physically meaningful. 

In connection with a system of equations and the matter of its 

determinedness it is worthwhile to note CFT [1960, 9, p.701, .foot

note 2] and the caution pointed out by Truesdell [1966, 14, pp. 117-

118]. 

8 Fi ck [ 1855, I ] . 

9 Cf. Monroe [1973, 8] and Grad [1971, 3]. It may be further noted here 

that there exists considerable discrepancy in the literature of plasma 

physics regarding the acceptability of theoretical results for the 

problem of diffusion. For example, McDaniel [1964, 5, pp.489-490] ex

presses the view that the results of Chapman-Enskog theory consider

ations are "of wide appl icabi 1 ity and give good results". In contrast 

hereto it has been stated by Sutton & Sherman [1965, 17, p.126] that 

"the Chapman-Enskog method is incorrect in principle when applied to 

ionized gases". See a 1 so footnote A39. 
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The general history of diffusion research that is relevant to this 

study may be found in CFT [1960, 9, Sect. 295], Truesdel 1 [1962, 10] 

and Truesdell & Noll [1965, 19, Sect. 130]. 

11 
See Benach & Muller [1974, 1, Sect. 5] for a treatment of the some-

12 

what more general case which involves consideratiC£,n also of the con

stituent polarizations. 

Most particularly, a desire once again for developmental simplicity 

motivates the linearizations assumed here. At least two essential 

consequences of such linearizations are, first, that the descriptive 

scope of the theory is restricted to media sufficiently dilute that 

·higher-order terms are justifiably neglected; and second, such systems 

are "close to equi 1 ibrium" (cf. footnote E2). It is perhaps necessary 

to remark that a non-I inear theory that is I inearized remains 

just that: a non-linear and not a linear theory. Lastly, the assumed 

density-independence of the specific magnetizations does not mean that 

the magnetizations are density independent. 

l3 This treatment parallels that given by Muller [1973, 9, pp.182-

185] for the simpler case of non-electromagnetic fluids. Note also in 

this regard Truesdel 1 [1962, 10]. 

14 By inspection it is clear, that F 1., o1k and Elk all possess the same 
cb J c c 

general form; viz., that of a tensor component A .. = A1(1)a .• + 
I J I J 

l5 Fick [1855, 1, p.66]. While Fick did not identify his expression 

thusly, more recent workers in this field have: cf,, for example, 

McDaniel [1964, 5, p.49 and p.489] and Slattery [1972, 8, p.478]. The 

so-cal led second equation of Fick (Fick [ibid, eqns. (1) and (2)J) is 
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noted as such by, e.g., Hirschfelder, Curtiss & Bird [1967, 9, pp. 

518-519] and Slattery [1972, 8, p.479]; which relationship is the 

actual equation for diffusion. 

16 Cf. Hirschfelder, Curtiss & Bird [1965, 9, Sects. 11.1 and 11.2] and 

Sutton & Sherman [1965, 17, p. 176]. 

l7 See MOiler [1968, 4, p.36J and MQl ler [1973, 9, pp.185-186]. 

18 The d. . b Ch d . l 'f. . b D pre 1ct1on y apman an exper1menta ver1 1cat1on y ootson 

(cf. Chapman & Dootson [1917, 1]) of thermal diffusion in gases is, 

according to Hirschfelder, Curtiss & Bird [1967, 9, p.479], "one of 

a number of historically interesting instances of the prediction of 

experimentally observable phenomena by rigorous theoretical analysis"; 

while Clarke & McChesney [1964, 1, p.149] consider it "one of the 

triumphs of the theory" (of Chapman and Enskog). I consider it no 

less noteworthy that such a result emerges naturally here as else-

where (cf., for example, MUiler [1968, 4, Sect. 10]) from the con-

siderations of rational mechanics. 

19 Cf. Benach & MDl ler [1974, 1, (5.6)] which result evidences yet an-

other new term; one arising from the inclusion there of the constituent 

polarizations in the model treated. 

20 Thermo-electric effect relationships have been secured and discussed 

for the case of scalar material coefficients by Spitzer [1962, 8, pp. 

143-146J; and, for the more difficult case involving tensor coeffi-

cients by Shkarofsky, Johnston & Bachynski 1966, 12, Sect. 3-7 and 

p.433]. The result presented here generalizes the results of these 

authors; among others. It may be said in passing that the knowledge 

(cf. Hall [1964, 2]) of the possibly important role played by the 

thermo-electric effect in laboratory, say MFD, plasmas appears to 
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have been neglected by "experimentalists" in this field. 

21 
From (36) and (41) it follows that L.k, similar for example to F 1., 

I Cb J 

22 

also possesses the general form Li k L1 (I )6ik + L2( I) Bi Bk + 

L3(1)t:ijkBj' Here (cf. Alfven & Falthammar [1963, 1, p.131]), L1(1), 

L2 (1) and L
3

(1) relate, respectively, to the "Pedersen (i.e. cross-) 

conductivity", the usual scalar conductivity, and the "Hall conductiv-

ity". Note further the absence of mixture rules in these considerations. 

For example, those considerations involving mechanical, electromagnetic 

and/or energetic interfaces and "boundary layers". 

23 Cf. the investigation of Fisher & Leitman [1970, 3] concerning a 

single-continuum approach to this problem. 

24 See page 108with regard to this point; noting, that said coefficients 

are implicit functions of both position and time. 

25 The development of a rational mechanical theory such as that given 

here permits the material response coefficients of concern to depend 

in a physically meaningful and mathematically responsible manner upon, 

essentially, any number of assumed independent field quantities. On 

the other hand, the traditional approaches to the description of plasma 

behavior do not seem to consider the possibility of, say, a B-field 

dependence of said coefficients.This, together with the fact that nu-

merous studies of plasma phenomena utilize arguments of dimensional 

analysis in which the various non-dimensional parameters are evaluated 

in terms of these coefficients under conditions of parameter constancy, 

leads to the fol lowing observation: viz., in practice these approaches 

are severely limited in the theoretical independence of their trans-

port properties on external fields; said properties thus "unwillingly" 

being forced to act as constants with respect to those fields. 
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26 See the discussion of Chpt. D regarding admissible thermodynamic 

processes in V. 

27 Under less general conditions than those taken here the requirement 

that constitutive equations must satisfy the reduced entropy inequal

ity can be used (cf. Muller [1968, 4, p.231) to establish explicit 

conditions of (in)equal ity to be met by the various material coeffi

cients involved in a given treatment. Due, however, to the excessive 

number of such coefficients related to this study, I have not under

taken to determine trese conditions. 

28 CFT [1960, 9, p.701], Jaunzemis [1967, 12, p.343] and Bressan [1972, 

2. p. 5]. 

29 Note, e.g., CFT [ibid, footnote 4J. 

3° Courant & Hilbert [1965, 7, p.227], Lavrentiev [1967, 14, p. 1] and 

Payne [1973, 10, p.1]. Other identifications for this property include 

the following; proper and correctly set (John [1955, 1, p.591]); cor

rect (Lavrentiev [1967, 14, p.1]); just set (CFT [1960, 9, p.701]); 

wel 1 set ([ibid, footnote 4]); and, well posed (Payne [1973, 10, p.2]). 

31 See Courant [1952, 1, p.277], Finn & Noll [1957, 1], Lavrentiev [1967, 

14, p.2] and Payne [1973, 10, p.2]. 

32 Cf., for example, Payne [ 1973, 1 O. p.1 J and lshimaru [ 1963, 6, p.600]. 

For the solution of a particular detail problem the general equations 

of, say, Sect. F. 1.a. may be considered as they stand; or, they may be 

reduced to other expressions in common usage. Regardless of the choice 

made, at least the following information remains to be given. First, 

a determination must be made for which media and under exactly what 

specific physical conditions (e.g. for what ranges of independent 
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parameter variation) the above cited totality of equations are phys-

ically valid, and if desired, applicable. 

And next, the system related int,:rface and boundary conditions 

(cf. Sect. F.2.) and/or the parameter initial values must be supplied. 

"What can be said by way of answer", note Courant & Friedrichs [1963, 

4, p.367] with particular regard to the problem of boundary conditions, 

"is still tentative and far from a clear-cut mathematical statement". 

See also Lieberstein [1972, 3, p.252]. 

It goes almost without saying that physical data are subject to 

"observational error"; which error is always hoped, and apparently 

iri0st often taken, to be "smal 111
• 

33 It should be borne in mind that, similar to constitutive equations, 

these conditions are postulated; their motivation in any given problem 

lying in the relevant physical insight of the investigator of the sys

tem in question. Note also in this regard footnote A64. 

34 . 
Cf. Ames [1965, 1, p.475] and Payne [1973, 10, p.2]. It is interesting 

to note that indeed some problems must be considered under the condition 

of being properly posed if they are not to lead to aphysical conclu-

sions. An example of such a sHuation results in a "thermo-dynamic 

paradox"; which matter is discussed by lshimaru [1963, 6J. 

35 Payne [1973, 10, p.2] and Lavrentiev [1967, 14, p.2]. 

36 
Similar to the situation pointed out in footnote 30 above. there 

exist various names for this condition. Some of them are: improperly 

posed (John [1955, 1], Courant & Hilbert [1965, 7, p.280] and Payne 

[1973, 10, p.1]); ill-posed and non-well-posed (Payne [1973, 10, p.1]); 

not well-posed (Ames [1965, 1, p.477J); and, incorrect (Lavrentiev 

[1967, 14, p.1]). 
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37 Domains of existence in V are defined by the regions "bounded" therein 

by such dynamic surfaces of discontinuity (e.g. interfaces) as may be 

present. See again in this regard the relationships of Sect. F.2. and 

note the discussion of Courant & Hilbert [1965, 7, pp. 147-153]; and, 

say, that of Shercl iff [1965, 15, p.121]. 

38 For example, the matter of non-analytic data is raised by Courant & 

Hilbert [1965, 7, p.237]; while Payne [1973, 10, p.3 and 7J) comments 

in general upon this point. 

39 Lieberstein [1972, 3, p.74] and Payne [1973, 10, p.3]. The present 

attitude from a point of view of application regarding the existence 

of solutions seems to be the following (Jordan & Eringen [1964, 3, 

p. 113]): "In the absence of an existence theorem, demonstration of the 

phenomena under consideration will have to suffice." 

4° Courant & Hilbert [1965, 7, p.227]. 

41 Payne [1973, 10, p.3]. Cf. also Lieberstein [1972, 3, p.74]. 

42 Mathematically, an example of this is given in the study of Finn & 

Noll [1957, 1]. Slattery [1972, 8, p.69], in reflecting the approach 

taken by most physical researchers, states that one only asks for "a" 

solution; leaving it, similar to the case of existence cited above, to 

experiment to suggest the uniqueness thereof. In principle at least, 

it is clear that such an attitude is an unfortunate one with particular 

regard to meaningful physical research and ~ppllcation. 

43 See Courant [1952, 1, p.278]. 

44 Courant & Hilbert [1965, 7, p.237]. 

45 Courant & Hilbert [1965, 7, p.227]. 

46 
John [1955, 1, p.592] and CFT [1960, 9, p.701, footnote 4J. 
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The term "allowed" reflects the role played by the (here unspecified) mathe-

ma ti ca 1 conditions to be met in order that a set of equations be considered 

solvable. The fulfilment of said conditions establishes the actual class of 

admissible thermodynamic process in V available to this theoretical model. 

Courant [1952, 1, p.278]. 

49 Lieberstein [1972, 3, pp.74-75 and p.81], Courant & Hilbert [1965, 7, 

p. 127] and Courant [1952, 1, p.277]. 

5° Cf. John [1955, 1, p.591]. 

51 Courant [1952, 1, pp.277-278], Courant & Hilbert [1965, 7, p.278] and 

Lavrentiev [1967, 14, p.2]. 

52 . 
A particular example hereof is that of a mixture of electromagnetic 

fluids moving in V and in which there are propagating singular surfaces. 

If the given data become discontinuous in V, the solution to the 

relationships involving said data will become discontinuous (cf. Courant 

& Hilbert [1965, 7, p.486] and Payne [1973, 10, p.7J). 

53 Not unlike the situation noted for the properties of existence and 

uniqueness, it may be observed {Payne [1973, 10, pp.6-7]) that here, in 

the case of improperly posed problems, "One usually tries to deal with 

{such) ••. problems by measuring an over-abundance of data and then 

trying to compensate for the lack of knowledge." 

From a rational mechanical point of view this situation, while 

understandable, is unacceptable. One is here indeed compelled to 

inquire into the possibility of bringing method into this problem. 

54 This point has considerable import with regard to the use of mathe-

matical approximation methods (e.g. numerical techniques) in the 

treatment of physical problems. See, e.g., Courant & Hilbert 

[1965, 7. p.227]. 
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55 Payne [ 1973, 10, p.2]. 

56 Note, e.g., Petrowski [1955, 2, pp.72-73] and Sommerfield [1964, 6, p. 

236 . 

57 Courant & Hilbert [1965, 7, p.230] and Payne [1973, 10, p.2]. 

58 John [1955, 1, p.592]. 

59 The significance of the kinematic properties related to a given medium 

with regard to the determination of the (degree of) applicability of 

the constitutive equations proposed for that system is briefly noted 

by Jaunzemis [1967, 12, pp.297-298]. Concerning dimensional analysis 

see Ericksen [1960, 9, p.797, footnote 4], 

60 The matter of similarity transformations, scaling laws (i.e. axioms~) 

and soforth appear to play an important role in the area of physical 

applications. 

61 The theory given here is mathematically exact in the sense that the 

development thereof, essentially fulfilled with the procuring of the 

non-linear constitutive equations, was free of mathematical approxi

mations. The development of the theory beyond that point could, in 

principle at least, have been carried through without introducing the 

linearizations of said relationships used later; which introduction was, 

once again, motivated by the desire for "concrete" results. 

Physically, the theory is exact to the extent that the postulated 

applicability of Euclidean (or Galilean) transformations holds for a 

mixture of electromagnetic fluids. According to Toupin ([1963, 10, p. 

107]), however, for the conditions under which the media of concern 

in this theory are taken to exist, I may conclude that there is support 

for this assumption. 
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62 See, Thom [1965, 18, p.383]. e.g.• 

63 Note again the remarks of footnote 32 above. 

64 Regarding inadequacy 11 and footnotes A32-35. see page 

65 It is sufficient here to note the remarks of Chapman & Cowling 

[ 1970. 2' p. 7J. 

66 With a rational mechanical theory serving as a departure point, 

explicit criteria deriving therefrom <.e.g. restrictions on the 

constitutive equations) can conceivably be used in the design of 

detail experiments which yield phenomena possessing a low, if not 

vanishing, degree of degeneracy (i.e. phenomenon coupling). 

In strong contrast to numerous experiments conducted, this 

approach, taking as full advantage as possible of all available 

intra- and interdisciplinary knowledge relevant to the system in 

question, makes possible at least in principle a unique empirical 

determination of the macroscopic structure of the constitutive 

equations of that system. 

With the knowledge thus gained it becomes possible, depending 

upon the meaningfulness of said results (i.e. their physical repro

ducibi 1 ity) to move further in a number of directions: viz., new 

experiments can be prepared which will serve to improve the foregoing 

results, or which have the purpose of investigating particular 

system related phenomena of interest (e.g. flow behavior). The end 

result of a succession of such experiments would not inconceivably be 

physically applicable systems which have equally well-understood 

design, control and optimization pr.operties. 
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G. CONCLUSIONS AND CLOSURE 

The theory developed here demonstrates clearly the feasibility of 

employing rational mechanics as a serious new alternative to the problem of 

behavior of a general class of plasma systems. 

Indeed, this particular non-linear constitutive theory has been seen to 

yield not only known, but also new 1esults of a rather general character. 

While for some problems of interest this theory is readily observed to 

be either too broad or too restricted with regard to its generality, a 

truely meaningful delimiting of its range of applicability must await the 

outcome of further careful study of both its physical contents as well as 

its mathematical character. Nonetheless, by virtue of the fact that appl ic

able results of less generality can be recovered from this model with the 

aid of additional simplifying assumptions, a certain measure of confidence 

in said theory may be assumed to exist. 

Closure 

Even more essential to recognize here than the aforementioned results 

is the matter of the approach itself and the spirit underlying it. The 

attitude taken by rational mechanics with regard to its subject matter is 

such that it, at least, suggests not only the possibility of, but also a 

means for, the systematic establishment of a "total" macroscopic theory of 

plasmas. 

The general theoretical framework set down here can, to the bast of .r:y 

kno,cledge, serve as an initial basis for the first co""pret:ensive assimila

tion, orqanization, interoretation and reduction of the large body of 
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knowledge regarding plasmas; both theoretical and empirical as well as 

intra- and interdisciplinary. Due to the directness, logical simplicity, 

mathematical rigor and physical clarity ·)f this approach, I contend that 

rational mechanics has much to offer to the study of plasmas that is both 

necessary and worthwhile. 
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As the first of four children I was born in Cleveland, Ohio (U.S.A.) 

on 20 July 1940. With the conclusion of my primary and secondary "education" 

I entered military service in March, 1959 for a period of six years. Shortly 

thereafter in February, 1960 I matriculated to the University of Miami at 

Coral Gables, Florida. 
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TOWARDS A RATIONAL DYNAMICS OF PLASMAS 

STELLINGEN 

1. The education of enlightened and responsible technologists would be 

enhanced by the explicit introduction into their studies of a more 

adequate historical perspective of, and a relevant contemporary 

motivation for the subject matter to be considered. 

2. The support of foundations research studies would be a meaningful step 

.towards the securing of a comprehensive and mature leadership in tech

nology. 

Bunge, M. Foundations of Physics . 

Springer-Verlag, Berl in-Heidelberg-New York (1967). 

3. In a society with an increasing degree of relative ignorance the need 

to (re)consider the function of mass communication media therein appears 

to be under-estimated. 

4. The process of democratization would be well-served with the securing 

of more rational criteria to be satisfied by persons occupying positions 

of authority and decision. 

5. The introduction of a laye r of color into automobile tires could serve 

as a worthwhile measure of the wear, and thus the safeness, thereof. 

6. Happiness is being understood. 

24 May 1974 Robert Benach 


