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PREFACE

The two general problems which stand in the background of this study
are of an interdependent nature. On the c¢ne hand, of the ''states of matter'
from which a macrocosm may be composed, there must be a specification of the
particular physical system to be considered here. On the other, there is the
task of securing a suitable means for treating the behavior of at least that
system.

Clearly, the first point is concerned with the problem of what the system
in question is. Here | direct attention towards the ''vague'' concept of plasma
which | assume is not a state of matter. but rather, a condition that may on
occasion pervade those states of matter that are commonly recognized: viz.,
gases, liquids and solids.

The second point in turn is related to the complementary problem of
describing what a (class of) system(s) does. Here too, as in the case of the
first point, there are numerous basic issues of concern that require further
investigation, !ndeed, not only the subject matter of plasma physics but also
the present means for its treatment appear to be fluid-like.

A theoretical treatment of problems relating to the gross {i.e. bulk)
behavior of dynamic systems requires a complete set of macroscopic equations.
For gaseous plasmas, a special class of electromagnetic fluids, there appears
at this time to be essentially two general approaches by means of which the
desired relationships are secured. The one is of a particle nature and is
based upon a (non-)equilibrium statistical continuum development; and, the

other is a classical (i.e. linear) continuum mechanical approach.



vili

It is a foremost purpose of this study to consider the possibility of

deriving the basic governing system equations from a 'new' (for plasma

physics) viewpoint: that being rational mechanics and rational thermodynam-
ics T n order to ascertain the possible potential of a modern continuum
mechanical treatment, the methodology of rational mechanics will be used to
develop a particular non-equilibrium mixture theory for the case of a one-
temperature, chemically reactive, non-relativistically moving, magnetizable
and dielectric fluid medium.

Herein consideration is given specifically to the matter of securing
for a plasma bulk a set of general constituent, mixture and electromagnetic
field balance and jump balance relationships. And this, in addition to the
proposal of a set of non-linear mechanical, electromagnetic and energetic
constitutive equations which have been taken as being appropriate to the
model of the system employed. On the basis of said model a set of
equations emerges from the considerations here which is suitable for
further theoretical and empirical investigation of a broad class of
natural and laboratory plasma systems.

This study, in reflecting the tradition of rational mechanics, attempts
to set down a preliminary conceptual framework suitable for the systematic
investigation of plasmas. Although the theory developed here is of modest
mathematical sophistication and treats mixtures of fluids with relatively
simple physical properties, it is nonetheless directed towards the gaining

of an eventual 'breakthrough in understanding' of plasma systems.

It is henceforth to be understood that these two aspects of modern
continuum theory are meant with the mention of only the former. Note
further that footnotes are subsequently placed at the end of the respec-

tive chapters to which they relate.



Further, while recognizing the value of well-motivated and executed
special case studies, the purpose of this endeavor is taken to be served
with the presentation of such results as 2sually form the starting point
for those considerations. A treatment of these matters in greater depth or
an investigation of their applicability must await the results of future

developments.
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A.  [NTRODUCTION

A plasma ! may be understood 2 to be any collection whatsoever of
charged particles (e.g. electrons and io. .) for which there exists co-
operative behavior. This coherent material response is due essentially
to the collective nature of the mutual space-charge (i.e. Coulomb)

interactions between said paricles.

A.1. On representative plasma systems

Both natural as well as laboratory plasmas find, at least in a
statistical continuum description, a partial characterization which ijs
based upon the assumed existence of certain ''microscopic" 3 parameters.
The gquantities which are commonly taken in particle models of plasmas
include, among others, the respective particle number densities, the
system related Debye and mean free path lengths, the Larmor radii and

the charged particle cyclotron frequencies, and soforth.

To the extent that the theoretical concepts from which these various
quantities derive are physically meaningful, one can utilize these para-
meters in terms of their relative magnitudes and numerical values as
criteria for identifying the different plasma regimes. Indeed, it is
possible in a general sense to note some of the different types of
plasma systems by set;ing down, as in Table 1 b, some of their character-
istic property values; and, pictorially as is done in Fig, 1 5.

The genéral topography of gaseous plasma physics having been given,
it is now worthwhile to note further the possibility of classifying the

various plasmas shown; and this most significantly in terms of the



Table 1.

Natural and laboratory plasmas:

selected characteristic properties.

DIMENSION ELECTRON NEUTRAL TEMPERATURE MAGNETIC PLASMA COLLISION ELECTRON DEBYE CONDUCTIVITY
DENSITY DENSITY FIELD FREQUENCY FREQUENCY CYCLOTRON LENGTH
FREQUENCY
L n n T B wp v w, )D o
m m—a m—a i3 T uc-l uc—] ur—' m ohm-I !
LABORATORY
_ 20 22 4 _ ' 12 8 10 -8 4
Gos dischorge 10! 10 10 10 107! 10 10 10 10 10
MFD direct energy _ 4 3 12 11 -
convarsion plarma 10! 10?102 10 1 10?10 10 1077 1-10
= 8 13 5 12 . -5 7
Thermonuclear plosma 10 1 1022 0 10 10 10 10 10 10 10
= 7 12 ) 5
Liquid maetal 107 102° 0 10 1 10" 10 100 107" 10
SPACE
5 -8 5 -5 3 5
Interplanetory plasma 10" 107 o 10 10 10 10 10 10 10
2 N 0 N P
Sunspot 10 10"’ 102%  Ixi0 1 10 10 10" g 10
s 29 -3 16 — 6
forth interiar 10 10 0 104 10 10 10" 10" 45" 10







material response possibilities of said plasmas. Motivated by the needs
of astrophysical and controlled thermonuclear fusion plasma research,
Kantrowitz & Petschek 6 prepared, on the basis of particle arguments,

the particular "equilibrium' classification given in Fig. 2.

Because of their relative importance in influencing plasma behavior,

the thermodynamic variables of electron number density (n) and tempera-
e

ture (T) were taken, together with the strength of the magnetic flux

density (B), as the parameters in terms of which this classification is

expressed. The specific choice of deuterium here follows from practical

advantages it offers: viz., it has only one valence electron and can

thus form only one ion sort; and, it is suitable for investigation of

high-temperature plasma behavior as occurs, e.g., in fusion research.

An additional important condition placed upon this classification
is that of the ratio (8) 7 of the ideal gas kinetic pressure (p = nkT)
to that of the magnetic flux density field (Bz/zuo) being equal toeunity.
Indeed, special emphasis has been placed upon this minimum Timit case
for plasmas of magneto-fluid-dynamics (MFD) wherein the coupling between

the plasma and the electromagnetic field is strong and below which

"useful'' MFD is not to be expected

Let A denote the Debye length for electrons 9. This important
plasma quantity defines for an equilibrium plasma a Debye sphere of

radius AD about a given charged particle; which, given a ''sufficient"

number (ND = nkg) of charged particles therein, shields that particle
from the Coulomb force field due to other charged particles lying out-

side said sphere. The parameter A, is a measure for the relative impor-

D

tance of space-charge effects in a given system here and serves thus



as a criterion for identifying those systems which are (not) to be
considered as plasmas. Conventionally, if L denotes a characteristic

geometric length of a particular system ‘cf. Table 1), then only those

systems for which XD << L are called 1o gaseous plasmas. For the pur-

pose of Fig. 2, L has been taken as being 1 cm

For a statistical continuum approach to the study of plasmas to be
physically sensible, it is at least necessary that the averagesof the

various quantities involved (e.g. charged particle number densities)

1

exist over a volume AB. This requirement is customarily satisfied by

D

the introduction into the considerations of such an approach, of the

condition that ND >> 1. Further, using XD it is possible to introduce

the (electron) plasma frequency “p (a:ni). This important parameter is
e

characteristic of the rate of longitudinal oscillations of electrons in

a plasma due to electrostatic fields; and, as such, is a measure of the

number density of that particle.

In terms of models for the collisional interactions between particles
it becomes possible to secure expressions for the approximate average
distance traversed between particle encounters. These lengths are called
mean free paths and they are important characteristic microscopic prop-
erties of a given system. Here, they are indicated respectively for the
electrons and the one type of ion involved by X and X. The otherwise
possible role played by neutral particles has,eit ma; be observed, been

taken in Fig. 2 as being negligible since the gas in question is 'fully"

ionized 12. Related to these collisions of, but not necessarily between,

electrons and ions are respectively the times 1 (= l/vc) and 1 (= l/vc);
e e i i
where Ve and v. represent the indicated particle collision frequencies.
e i




As is well-known, the trajectories of charged particles in a B field
are in general helices. As such, the motion of a charged particle can be
decomposed into two parts. The one part is a motion paratlel or anti-
parallel to 3; while, the other is a circular motion with a charge-
dependent direction in a plane normal to B. Characteristic of this

latter motion for the case of electrons (ions) is the cyclotron frequency

wc(wc) and its related Larmor radius AL(AL). Lastly, | introduce here
e i e i
for the electrons and ions the not unimportant Hall parameters 8 (=

e
w T o= mc/\)c = A/AL) 13 and 8. These last quantities are (where defined)
ee e e e e i
characteristic for a given plasma of, for example, the degree of aniso-
tropy induced respectively in the electron and ion gases by the B field

related to that system.

Although Fig. 2 relates most directly to a deuterium plasma and not
to any of the other gaseous plasmas found in the systems of Fig. 1, it is
worthwhile nonetheless to consider both figures together. It is necessary
in this regard to appreciate the fact that, at least in principle, it is
possible to prepare for any of the other (e.g. laboratory) plasma regions
of Fig. 1 a classification such as that of Fig. 2. At most it is to be
expected that a certain shifting would occur of the lines of Fig. 2 which
define the regions thereof to be discussed now. The qualitative features
of that figure, which | wish to exploit for illustrative purposes here

would, however, remain

"'High''-density gas plasmas: region §

15 . - .
For such plasmas , electron and ion collision processes dominate
over those of a space-charge electric or magnetic field origin. The

velocity distribution functions of these particles are maxwellian at the



"'same'’ temperature; and, the isotropy of the system is evidenced in parti-
cular by the fact that with 8 << 1 and B << 1, its transport properties

e i
(e.g. electrical conductivity) are scaars.

""High-to-medium'' density gas plasmas: regions T and T-M%

With decreasing n and increasing T, the B field assume; control over
the electron motion wsile the ion behavior, as in region S, is influenced
predominantly by collisions involving those particles. Here too, the
respective particle types possess maxwellian velocity distribution func-
tions, but not necessarily at the same temperature 16. Noting in Fig. 2
the line dividing regions of unequal temperature, it is seen that T-M% is

the portion of region T where electrons and ions enjoy the same tempera-

ture.

In this case 8 > 1 while 8 < 1; the consequence of which is that the
plasma has mixed tsaﬁsport pro;erties, That is, the system now has ani-
sotropic (i.e. tensor) material response with regard to those properties
(e.g. electrical conductivity, diffusion and thermal conductivity) which
are strongly dependent upon the electrons. On the other hand, however,

the isotropy of the plasma is preserved here in terms of the still scalar

fon-dependent properties (e.g. vjscosity).

'"Medium''-density gas plasmas: regions M and M-u°

In the M region, for which n and T can respectively be yet lower and
e
higher, the ions too succumb to the now irresistable influence of the [

field upon their motion. Thus, with 8 >> 1 and 8 >> 1, the anisotropy of
e i
the plasma induced by the B field is total, for all of the transport

properties of the system are now of a tensor character. Not unimportant



is the fact that the tendency which arose in region T for the electrons
and jons to uncouple themselves energetically continués here. Aside
from the region M-M where the rate of energy transfer between these
gases is presumed sufficiently high to keep them at the same tempera-
ture, it is possible (at least in priciple) that in region M each gas

17

assumes a well-defined temperature of its own .

The extent to which this actually occﬁrs, if indeed it does occur,
is now dependent upon additional factors related to the plasma system.
‘With the decline in importance of the collisional processes, there
18 S . .
appears the possibility of, e.g., non-linear wave-particle and wave~
wave interactions which constitute a fundamentally different means of
dissipating energy; and consequently of equilibrating the electron and

ion temperatures.

"Low''~density gas plasmas: regions EM and E

For the EM region the B field is still the major factor influencing

the behavior of the electrons; and thus, with AL < L, the condition B8 >> 1
e e

holds. Here, however, A, > L and the space-charge electric field has thus

it ,
essentially taken over the role of controlling the ion motions. In this
case the transport properties of a given system, if defined, remain
anisotropic.

With a yet further diminishing of n the motion of the électrons,
like that of the ions, becomes primari[j dependent upon said electric

field; it having replaced the hitherto important B field. This is the

region E for which AL
e i

> L and %L > L.



"Very low''-density gases: region G

When n and T are such that AD > L, the system of interest has passed
e
from a plasma condition to that of an ionized, but collisionless 19, gas
of very low density. Such systems lie in region G; but, due to the fact

that a (statistical) continuum description of them is not possible, any

consideration of these systems lies beyond the scope of this study.
Boundaries

The low-density (i.e. lower) boundary of this classification is, as
discussed above, that line for which AD > L. Next, the Jow-temperature
(i.e. left) boundary here occurs at the line denoting a 50 per cent
degree of ionization 20. With increasing n the high-density (i.e. upper)
boundary is defined essentially at all po?nts where the plasma must be
treated with quantum mechanical methods; this being due to the electron
spin-spin interaction degeneracy which appears.

A further increase of n, although not shown here would 21 indicate
the passage of the system tﬁrough the liquid and solid phases of matter,
through a region of relativistic degeneracy, and eventually into the
region of matter existing at nuclear densities; such as white giant and
white dwarf stars, novae, etc. While it does not seem to be known if
these latter circumstances of matter satisfy the definition of a plasma
used here, plasma phenomena are known 22 to exist under certain con-
ditions in the former region of matter (i.e. liquids and solids) that
is ''somewhat'' more condensed than the gaseous systems considered here.
| am thus lead to remark that in general, plasma, rather than being a

“fourth state'' of matter 23, may perhaps be more validly thought of



only as a condition thereof. This contention is strengthened somewhat

by the fact that even with the high-temperature (i.e. right) boundary

of Fig. 2 given as ‘that line for which the speed of electrons closely
approximates that of light, it is possible 24 to further treat the
properties of that gas using the concepts of relativity theory. Although

25

relativistic plasmas do exist , they too, ''like' the quantum plasmas

mentioned above, are not considered here.

A.2. Position of the problem

A.2.a. Purpose

The formal description of the mechanics of a gaseous MFD plasma has
developed essentially along lines analogous to those found in the classi-
cal mechanics of fluids. This more fully matured discipline 26 offers ‘two
methods for attacking a particular problem: the particle approach and the
classical continuum approach. An investigator of plasma behavior may find
upon examining the physical conditions characteristic of a certain
problem (e.g. the particle densities) that one or the other of these

treatments is to be preferred.

Statistical continuum approach

A statistical continuum approach 27 aims inApart to determine, via a
treatment of the presumed microscopic nature of a given éystem‘s matérial
components, the quantities which enter into the macroscopic system
equations (e.g. the so-called ensemble averaged parameterslzs). for the
case of, say, gaseous plasmas, this approach concerns itself also with

the physical composition of a given system, the "structure'' of its ma-



terial components, and the microscopic nature of the interactions which

involve these components.

When the plasma density, for exampl., is such that an assumption of
"continuum'' properties of the system is physically reasonable {such as in
regions S, T, T-Me, M and M-M% here 29) one can augment the individual
partic]e approach (needed in regions E, EM and G 30) by certain statisti-
cal considerations in order to secure the macroscopic equations of that
system. Of importancein general, but in particular for this study,.is
the fact that in the area of gaseous plasma physics deemed suitablie for
laboratory MFD energy conversion purposes (cf. Fig. 1), research based

1 -
upon such an approach is carried out 3 even though the condition ND >> 1

is clearly not satisfied.

With regard to plasma systems in general, partially ionized gases
or otherwise, it is a no less significant point here that the present
body of microphysical knowledge of, e.g. interparticle potential energy
functions 32, non-adiabatic particle interactions 33 and process cross-
sections 3“, appears to be insufficient to permit the establishment of
an adequate statistical continugm model for various plasmas of interest
35. The consequences of such a situation are reflected, e.g., in the
results of any classical mean free path theory 36; which type of theory,
it may be further noted, is itself open to doubt 37. it seems, in addi-
tion, that the Chapman-Cowling formalism 38 which is an impo?tant factor in
contemporary plasma physics research, has also been questioned 39 with

regard to both its degree of relative generality as well as its applica-

bility under particular circumstances.



Generally speaking, for this approach seen in regard to plasma
physics, the concepts of (non-)equilibrium classical kinetic theory and
statistical mechanics are thus seen to serve as one of the bases from

which the conventional MFD system equations have been obtained.

Classical continuum mechanical approach

The statistical continuum approach was,most characteristically,
predicated upon a presumed knowledge of the particulate nature of a
material system. This is not, however, the only manner in which the

macroscopic behavior of plasma systems may be studied.

The plasma investigator also has the option, under appropriate con-
ditions, of attempting to describe a given system by means of a classi-
cal continuum mechanical approach “0. This alternative technique, which
for MFD is neither more nor less general than the statistical continuum
me thod h', provides for the examination of a given system by assuming
from the beginning a macroscopic point of view. In *neglecting' the
particle nature of matter, the so-called physical insight into the be-
havior of the system in question is taken to be relatableto a hopefully

sufficient degree of carefully obtained macro-phenomenclogy.

Of special interest here is the fact that, regardiess of the necessity
of a multi-fluid description of MFD plasmas MZ, the classical continuum
mechanical approach has established in this problem area essentially
only a single-fluid treatment of plasmas “3. Further yet, when the devel-

opment of the system mechanics is complemented by classical irreversible

. Ly . . . . . 4
thermodynamics considerations, serious objection has been raised >

with regard to the derivation of the basic system equations.



For an MFD problem thus, a statistical continuum approach treats
the plasma in terms of its various material components; attempting
thereby to derive the macroscopic equa:i 2ns of a given system from
considerations relating to the individual particle natures of said
components. On the other hand, the method of classical continuum mech-
anics seeks the basic macroscopic relations by initially neglecting
the discrete material nature of a system, then postulating the necessary
kinematical and dynamical expressions, and finally supplementing the

(semi-)empirical information relevant to a particular problem.

Both of these approaches, although differing in attitude, have been
. 4 . .
shown for MFD circumstances 6, to arrive at essentially the same macro-

47 to be

scopic equations. Unfortunately, both approaches also appear
unable to provide a (adequate) general macroscopic description of the
{non=) linear dissipative, l.e. irreversible thermodynamic, processes

which are related to non=equilibrium plasma systems.

On the basis of these considerations, together with the earlier
mentioned shortcomings of these two approaches to the study of dynamic
plasma behavior, | conclude the following: viz., that it is desirable
to examine the feasibility of securing a formalism that could offer
for the same problem area a description with fewer limitations than
that of the statistical continuum method, and a more detailed insight
into the macro-physical character of a given plasma system than that
given by the classical continuum mechanical method. This constitutes

essentially the purpose of this study.



A.2.b. Problem

The genera!l problem which this study attempts to provide a contri-
bution towards solving is that of theestablishment of a unified, self-
consistent and ‘'exact'' theory of the non-linear macroscopic mechanics,
electrodynamics and energetics of finite and bounded real multi-continua
plasma dynamic systems. In terms of the actual systems concerned (cf.
Fig. 1), this probiem poses in general the necessity of describing the
material behavior of real, chemically reactive, radiative, anisotropic,
compressible, inhomogeneous, magnetiiab]e, polarizable, non-equilibrium

and non-linear electro-magneto-mechano-thermo-dynamic mixture systems.

| hasten to point out that this is not just an arbitrary hypotheti-
cal problem. It is concerned with real material systems and its solu-
tion in some physically more adequate sense than has been presented to

L
date is not only highly desirabie, but perhaps even urgent .

This problem unquestionably reflects a framework within which a
generalization of the contemporary approaches to laboratory plasma
physics may be sought. However, and not surprisingly, for numerous phys-
ical and mathematical reasons it does not appear to be possible to bring
the problem as stated above to a ''satisfactory' closure at this time.
Hence, | have not attempted to consider said problem in the degree of
generality expressed above; but, | propose instead to examine it here

in the more restricted sense which | shall now discuss.

Rational mechanical approach

The discipline of rational mechanics, or modern natural philosophy

as it is less commonly called, is in its modern form relatively young



(dating from the mid-1950*s Q9); but, its tradition lies essentially in

the eigthteenth, and to a lesser degree the nineteenth and early twen-
. 0 . .

tieth, century efforts of a handful of ‘en > . It is now, as an exten-
. 1 . , .

sion of geometry > , fundamentally a mathematical science with the pur-

pose of establishing a rigorous theoretical foundation for the study of

the physical behavior of material continua.

The basis here for a non-linear field theory treatment of gross
irreversible material behavior rests essentially upon three general
sets of assumptions. The first concerns itself with the topological
character of the space invoived; while the second and third relate,
respectively, to the kinematics and dynamics of the class of systems

whose behavior is to be described.

Based upon this foundation rational mechanics in particular strives,
via use of an axiomatic approach to its subject matter, to secure phys-

ically well-motivated theoretical models of material systems which are

52 53

, and complete in their construction.

This approach, as explained by Truesdell 5“, consists of four elements:

explicit, self-consistent

viz., primitive quantities, definitions, general axioms, and proved
theorems. In terms of the physical primitive quantities which are de-
fined only to the extent that the mathematical properties are given,
the definitions of additional system-related quantities can be made.
Relationships satisfied by these two elements are physical axioms

(""laws'') and here they are of two types: kinematical and dynamical.

Axioms of kinematics are represented by the set of balance equations
proposed for the type of system under consideration; and, they are valid

for the class of all such systems. On the other hand, the axioms of



"appropriately invariant' and

dynamics are represented by the set of
thermodynamically restricted constitutive equations postulated; which
expressions make the theory system-specific in terms of its material

response possibilities.

Experience and not, of course 55, experiment is the guide which
motivates those assumptions as are made. Rational mechanics draws its
physical motivation from the body of common experience (e.g. ''phenomen-
ology") relevant to the specific problem area(s) under study; while,
its theoretical motivation derives in part and to varying degrees from
the conceptual backgrounds of those other disciplines which concern
themselves with the same subject matter. Here (cf. Fig. 3) these are,
e.g., statistical and classical continuum mechanics. With the estab-
lishment of the proved theorems and their related corollaries 56 for a
given thecry, the formal structure of that particular rational mechani-

cal description is taken to be complete.

In the relatively young discipline of rational mechanics there are
a number of non-trivial open questions which serve to make this field
a controversial one at the present time. For example, the number of

57

basic principles involved and their precise formulation , together
with the (degree of) applicability of an axiomatization procedure to
physical theories 58 remain debatable subjects. Regarding both of these

59

points, | shall endeavour to follow an enligthened course in the sequel

It is on the basis of two points that | propose here a rational
mechanical apprcach to the problem of describing the general material
behavior of plasma systems as a, if not the most, worthwhile of the

presently available alternatives. The first point to be noted is the
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fact that a theory formulated thusly possesses in contrast to numerous,
if not the majority, of plasma theories secured otherwise, not only a

conceptual simplicity, clarity, rigor and a not undesirable aesthetic

quality; but also, with regard to the eventual establishment of results
of permanence 60, the capacity to aid in making itself as self-correct-
ing as might possibly be expected 6]. The second, independent and here
also important point is the recognition of the striking theoretical and
experimental successes of this discipline in other areas of experience
62: and these with regard to problems the solution of whi;h lies beyond

the present capacity of the traditional approaches to provide

Rational mechanics strives towards a unification via mathematics
of the diverse physical sciences; and hence, it does not restrict its
interests and efforts to any one of them in particular. It is in the
above indicated sense that the word 'rational' is employed here. | mean
hereby no offence to those persons who by inclination or circumstance
select to treat physical problems in terms of ad hoc models, approxi-

mative methods, '‘physical intuition', and soforth.

3l

As observed earlier, the establishment of a theoretically '‘adequate
description of the gross non-linear irreversible thermodynamic behavior
of fluid mixtures is a problem meriting study for its own sake; but
also one deserving attention on the basis of practical considerations.
With the applicability of rational mechanics to the investigation of
gaseous plasma systems constituting a main purpose of this study, | now
proceed to further delimit the scope of same. The restri;tions placed
upon this study concern, naturally enough, both its content and its

generality.
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Régarding content, as seen in relation to the aforementioned
general description, | wish to present in greater or lesser degree the
salient points pertinent to a particule: rational mechanical theory:
viz., that for a one-temperature, chemically reactive (but radiation-
less), non-relativistically moving, magnetizable dielectric fluid mix-
ture. The point of view adopted here is that the basis for said treat-
ment is given in the form of a complete set of system balance and jump
balance equations together with the ''appropriate' constitutive equa-
tions indicated therein. The soluytion of these relationships for the
as yet undetermined field quantities, under the boundary and initial
conditions that delimit the problem of interest, is taken to fulfi
the main objective of a thermodynamic constitutive theory for the prob-

lem posed 64.

The content of the treatment of the constitutive equations will be
based upon certain selected rational thermodynamic and modern constitu=
tive theoretical principles. Due, however, to the as yet unresolved
nature of various fundamental problems hereto related, the content of
the rational mechanical treatment of constitutive equations will not
have the ''absolute'' character of generality as found in the set of

balance equations secured by employing the same formalism.

Among these problems are, e.g., the mixed invariance properties
(Euclidean-Galilean/Lorentz invariance of the mechanical/electromagnetic
field equations) of the system, and the problem of ''correctly' identify-

65. Regard-

ing and using entropy concepts in a modern continuum theory
less of these difficulties, the results that can be derived are, with
all due respect for the various points of interpretation, of equal or

greater macroscopic generality than those found from conventional

approaches.
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Liu & MUller 66 have recently examined the problem of describing

the material behavior of single simple 67

heat conducting continua in
an electromagnetic field. In this study | undertake the specific task
of extending, in some respects, their study to a particular case of

non-simple heat conducting Eulerian fluid mixtures which are also in

an electromagnetic field.

For systems of this type where the mixture may contain a (a = 1,2,
..., 8) constituents, | take the foremost objective of a theory such as
that contemplated above to be the following: viz., the calculation, as
functions of position and time, of the field quantities
> > > > >

plx,t),  Tlx,t), v.(x,t), E;(x,t) and B.(x,t).

a a
Here, the fields are respectively the mass density of constituent a,
the absolute temperature of the constituents and the mixture, the velo-
city of constituent a, the total electric field taken with respect to a

stationary observer, and the magnetic flux density.

In a field theory the macroscopic properties of a material system
are considered to be field quantities. Generally speaking, all of the
relationships which reiate the different field quantities to one another
are field equations. In this study (cf. Fig. 3) the term "field equa-
tions' shall be taken to mean the set of balance and jump balance
equations for all the various macroscopic properties of a given system;
together with a set of constitutive equations taken for a specific

material system,

The possible meaningfulness of a transition from the more familiar

approaches of plasma analysis to that of rational mechanics is not
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necessarily made evident with the determination of a set of balance and
jump balance equations (cf. Chpt B). Under less general circumstances
than those considered here, said results when contrasted with those of
more conventional approaches may give the false impression that rational

mechanics has little new to offer.

All the {(dis)similarities to other treatments notwithstanding, the
statement above would constitute a prematurely formed conctusion by an
individual who does not yet realize that any treatment whatsoever of
only the kinematics of a system represents at best only a partial,
albeit important, descriptive element of that system. Thus, Chpt. B
shall present the essentials, for this study, of and related to the
rational mechanical kinematics of a mixture of material and electro-
magnetic field continua. It becomes then in greater measure the burden
most particularly of Chapters C and D treating, respectively, consti-
tutive theory and the problem (introduced in Chpt. B} of entropy, to-

gether with the subsequent chapters, to make clear in some respects

the possible favorability above the more traditional methods of a

rational mechanical investigation of plasma continua behavior.
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Footnotes to Chapter A

! The origin of this word seems to lie with the introduction of the word

""]protoplasm' in the nineteenth century by the biologist Purkinje. The
meaning of "first plasma' was subsequently given to this initial term
by von Moh!, a botanist. In the particular context of plasma physics
here, the word ''plasma is commonly attributed to Tonks & Langmuir
(1929, 1, p.196, footnote 5]; who, perhaps, in studying arc discharges
observed the jelly-like behavior of the medium and were motivated to

use this word.

Kunkel [1966, 8, p.3]. Note, there exist other definitions of plasma in
the literature (cf. for example Sutton & Sherman [1965, A, p.6]), but
these are essentially special cases of that taken here (cf. Kunkel

[1966, 8, p.51).

3 Shkarofsky, Johnston & Bachynski[1966, 12, pp.2-3] make a finer dis-
tinction between ''microscopic' and "macroscopic'' than that which | employ
here. On the basis of an argument related to the combination- and
division-invariance of charges, the Debye length and the plasma frequen-

cy are considered to be macroscopic parameters there,

This table is adapted from that given by Bueren [1966, 2]. The values
for magneto-fluid-dynamic plasmas added here were calculated from

selected experimental results presented in [1966, 9].

Kunkel [1966, 8, p. 8]. Here too, the region denoted for magneto-fluid
dynamics (MFD) direct energy conversion (DEC) systems has been added.
It is perhaps worthwhile to observe that only gaseous plasmas

are represented in this figure. Other known plasma systems which
could supposedly be introduced into, and hence generalize, this

overview include, among others, the following:
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liquid metals (Kirko [1965, 10]), semi-conductors and semi-metals

(Anker-Johnson [1966, 1]} and metals ({1965, 67).

6 .
Kantrovitz & Petschek [1957, 3, p.5]. -‘'s classification, which is
slightly adapted, is but one of a number of various types of

classifications that exist in the literature of plasma physics.

7 The ''plasma beta' is discussed, e.g., by Glasstone & Lovberg [1960,
5, pp.52-53] and Krall & Trivelpiece [1973, 5, p.7].

85utton & Sherman [1965, 17, p.10]. | note that there exist at

present several names for the subject area taken under consideration.
Examples include plasma dynamics, magneto-gas-dynamics, magnetohydro-
dynamics, and soforth. | select the term "‘magneto-fluid~dynamics'

for two reasons: first, it reflects all fluid and fluid-like media;
and, it permits a distinction to be made with, e.g., magneto-solid-
dynamics, This last mentiéned subject which relates to, say, magneto-

elastic media does not enter into the considerations of this study.

? A Debye length is, of course, definable for ions. Further yet, with
some quantum mechanical modifications, the concept of Debye length is

adaptable to the case of solid-state plasmas.
10 Kunkel [1966, 8, p.41, Shkarofsky, Johnston & Bachynski [1966, 12,

p.2] and Spitzer (1962, 8, p.22].

1

-—

Kunke! [1966, 8, p.6], Shkarofsky, Johnston & Bachynski [1966, 12,

. p.3] and Krall & Trivelpiece [1973, 5, p‘h]. With regard to meaning

of this ‘'plasma approximation'' condition, there appears to be some
difference of opinion in the literature. The last two cited references
seem to hold to the position that with diminishing ND one can speak

less and less of the systems as a plasma, and that a fluid description
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of a medium with very low N_, say less than or about equal to unity,

D
is not valid. Gottlieb [1965, 8, p.46], on the other hand, expresses
the view that the number of charged particles per cm_3 may be any
number and the system in question is still a plasma as long as it
satisfies the condition AD << L. | might further add that inasmuch

as the degree of ionization does not enter into the definition of
plasma employed here, it seems reasonable to state that if there are
‘'"enough'’ neutral particles in that cm-3, a continuum description
appears to be possible. Lastly, it may be noted that regardless of the
relative importance of this point, not all authors (cf., e.g. Sutton &

Sherman [1965, 17]) are explicit with regard to their introduction of

it into their respective treatments.

Alfven & F3lthammer (1963, 1, p.134 and p.180] state that a plasma
is slightly (highly) ionized if the degree of ionization is less

(greater) than 1 per cent.
Sutton & Sherman [1965, 17, p.156].
Petchek [1958, 4, p.967].

Cf., for example, Alfven & F&lthammer [1963, 1, pp.169-1970] with

regard to the density-dependence of plasma properties.

Depending upon the relative (in)ability of the bulk electrons, ions
and possibly neutral particles to exchange energy between themselves
at a sufficiently high rate, the respective kinetic temperatures of
these gases may be (un)equal; in which case the system in question
is said to be in a condition of thermal (non-)equilibrium.

An awareness that multiple-temperature plasmas can exist is evi-
denced at least as early as 1929 (cf. Tonks & Langmuir [1929, 1, p.

2011). Kinetic theory considerations of this possibility were given
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shortly thereafter (v. Engel & Steenbeck £1932, 1; 1934, 1]); and,
numerous authors have since discussed (aspects) of this subject.

The first examination of this mat-er in rational mechanics seems
to lie in the work of Truesdell {1957, 5, p.162]. Here also, this
point has been taken under consideration by other researchers in this

field (cf., e.g., Dunwoody & Miiller [1968, 21).

Clearly, the possibly important role played by, e.g., the radiation
field with regard to the establishment and maintenance of individual
component temperature fields should be given close attention in any
p;rticular problem. This study, while recognizing this fact, limits
its scope to those systems for which the physical consequences of
said radiation field on the material response of the plasmas involved

are negligible.

This point is noted, e.g., by Fishman, Kantrowitz & Petschek[1960, &4,

p.961ff1, Sagdeev & Galeev [1969, 6] and Tsytovich [1970, 71.

Sutton & Sherman [1965, 17, p.12]. See also Kantrowitz & Petschek

{1957, 3, p.12]; in addition to noting footnote 10 above.

As shown by Linhart [1969, 3, p.21], the difference between this curve
and that one for, say, 10—2 per cent degree of ionization is that the
latter lies slightly to the left of the former in such a representation.
Cf. Fermi [1966, 4, p.171].

Among others, Shkarofsky, Johnston & Bachynski [1966, 12, p.5] make

mention of this fact.

These words which Crookes [1879, 1, p.164] used in drawing his con-

clusions of a particular investigation of glow discharges (region E)
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30

31

32

33

34
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probably constitute the first formal recognition of the unusual mat-
erial properties (i.e. "plasma behavior'') to be observed in specific

systems under particular circumstances,
cf., for example, Hakim & Mangeny [1968, 3], Lichnerowicz [1967, 151,
Bano & Balescu [ 1965, 3, pp.577-586] and Wasserman & Wells [1963, 111].

Buneman & Pardo [1968, 1], Parker [1967, 16, pp.243-244] and Finkel-
stein [1961, 21.

Grad (1962, 3, p.38] and Eringen [1962, 2, p.393].

Examples of works treating plasma behavior from this point of view
include those of Pai [1962, 41, Fried [1966, 5], Jancel & Kahan
[1966, 6] and Klimontovich [1967, 13].

See here, e.g., Jancel & Kahan [1966, 6] with regard to the thermo-
static (i.e. equilibrium thermodynamics) approach where use is made

of partition functions; and also, the kinetic theory approach which

employs the'concept of velocity distribution functions.
Alfven & Fdlthammer [1963, 1, p.1711].
Ibid.

For example, Sutton & Sherman [1965, 17]. Note again the remarks of

footnote 11 above.

Chang [1967, 21, Sandri & Yates [1966, 11, p.49]1, Hirschfelder [1965,
91, Borkaw [1965, 5, p.2651, Hirschfelder, Curtiss & Bird [1967, 9,

p.18] and Clarke & McChesney [1964, 1, pp.386-390].

Hirschfelder, Curtiss & Bird [1967, 9, pp.928-930], De Barbieri &

Maroli [1967, 3, pp.331-332] and Clarke & McChesney [ 1964, 1, p.348].

Verboom [1969, 8, p.907], Rudge [ 1968, 6, pp.588-589], Kieffer ¢

Dunn [1966, 7, pp.32-331, Shkarofsky, Johnston & Bachynski [1966,



35

36

37

38

39

Lo

41

27

12, p.172] and Clarke & McChesney (1964, 1, p.164 and p.3761.

Grad [1962, 3, p.37]. Examples include dense gaseous, liquid, and
two-phase plasmas. For the issue of, i~ the first instance, dense
gases see Hirschfelder, Curtiss & Bird [1967, 9, p.652]. Egelstaff
(1967, 4, pp.149-150] discusses the situation regarding liquids;

while a commentary upon some aspects of dense plasma behavior can
be found in Robinson [1967, 18]. Lastly, the matter of two-phase

liquid metal plasmas is taken into consideration by, e.g. Petrick

(1966, 101.

Cf. Shkarofsky, Johnston & Bachynski [1966, 12, p.172] and Sutton

& Sherman [1965, 17, p.84 and p.90].
Cohen [1962, 1, p.110] and Sandri & Yates [1966, i1].
Chapman & Cowling [1970, 21].

Alfven & F&lthammer [1963, 1, p.135]. See also the more specific
comments of Goldman & Sirovich [1967, 7], Sutton & Sherman [1965, 17,

p.1261, Cambel [1963, 2, pp.165-166] and Petschek [ 1958, 4, p.970].

As a means for examining plasma behavior, the continuum approach used
thus far seems, according to Stix [1962, 9, p.1 and p.170]1, to have
had remarkable success. An example of such a development is given in

Shkarofsky, Johnston & Bachynski [1966, 12].

Sutton & Sherman [1965, 17, p.295]. Unfortunately, presentations such
as that given there do not do justice to the possibilities of a clas-
sical continuum mechanical approach. Further, of course, such a state-
ment is only true to the extent that a successful statistical continuum
model utilizing essentially more realistic potential energy functions

for the particles involved in any given, but otherwise arbitrary,
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plasma problem does not exist. This latter approach is in principle

the more general of the two.

Slawsky [1961, 4, p.115].

Gross [1958, 2, p.47]. See also footnote 40 above.

A description of this discipline is given by de Groot & Mazur [1963, 5]

Cf. Aono [1972, 1]. Further discussion of essential shortcomings of
the classical thermodynamics of irreversible processes is to be found

in the references cited in footnote 5 of Chapter C.

See, for example, Krall & Trivelpiece [1973, 5, Sects. 3.5.1. and

3.5.2] and Sutton & Sherman [1965, 17, Sect. 8.21].

Among others, van Hove [1957, 2], Fishman, Kantrowitz & Petschek
[1960, 41, Uhlenbeck [1962, 11], Ffrieman [1967, 6], Thom [1967, 19,
pp.70-711, Neufeld [1969, 4] and Tsytovich [1970, 7]. This comment
is, of course, not meant to deny the successes enjoyed by these
methods; but rather, it is meant to serve as a recognition of the
fact that as the limitations of these approaches become clearer, so
does the need for other methods to accomplish what they ar not able

to co.

Cf. Prigogine [1962, 7, p.2], Monroe [1973, 8, pp.564-565] and
Robinson [1965, 13, p.2]. It is perhaps necessary to add here that in
the spirit of rational mechanics (Truesdell & Toupin, henceforth to
be denoted CFT, [1960, 9, Sect. 61]), the approach | take to this prob-

lem is that of attempting to establish a general framework for theor-

ies of plasmas. | do not consider this study tc have the purpose
of accounting for an ever increasing number of specific phenomena as

such.
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Truesdell [1960, 10].
CFT [1960, 9, Sect. 97.
Truesdell [1965, 20, p.27] and Truesdell {1966, 13, p.39].

Cf. Truesdell [1960, 10, p.10]; and, regarding the significance of
self-consistency in the study of plasma behavior, see the discussion

given in Grad [1962, 3, pp.60-61]. See also footnote 53 below.

Aside from the fact {cf. Truesdell [1969, 7, p.6]) that there is no
unique axiomatic basis, but an infinity of equivalent such bases,
the impossibility of establishing a complete set of axioms (cf.
GSdel's incompleteness theorem in Nagel & Newman [1956, 1] for any
given base leads to the conclusion that such an approach is ''incom-

plete'. See, however, the remarks in Nagel & Newman [1956, 1, p.1695].

Truesdell [1969, 7, pp.5-7]. 1 proceed here with the assumption that
there is sufficient physical motivation to support the adoption of
an axiomatic approach. See in this regard, e.g., Synge [1960, 8, p.5,
footnote 1], Truesdell [1966, 13, p.94], Truesdell [1966, 14, p.3],

Lindsay & Margenau [1957, 41 and Bunge [ 1967, 11.
CFT [1960, 9, Sect. 31 and Slawsky [1961, 4, p.1167.

The literature of rational mechanics (cf. for example, Archive for
Rational Mechanics and Analysis) contains numerous papers containing
proved theorems and lemmas of a, say, mechanical and energetic
character.

Riviin [1972, 71.

Riviin {1970, 6, p.134]. Note here further Truesdell [1966, 14, p.3].

With regard to the principles of balance and constitutive nature |
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note here in particular the erudite, and in many respects definitive
treatises CFT [1960, 91 and Truesdell & Noll [1965, 19] which have

become standard works in the field of rational mechanics. In addition
to the literature cited, | mention also the work of Miller [1973, 9]

upon the basis of which this effort also depends.

Cf. Miles [1963, 7, p.317] with regard to CFT [1960, 9]; and note

further Truesdell [1966, 14, p.31,
See Biot [1965, 4, pp.x-xil.

Note here, for example, Coleman, Markovitz & Noll [1966, 3] and Bell

(1973, 11.

Th;s fact seems clearly to support the following point which is un-
fortunately so often forgotten in the professional sciences: viz.
(Truesdell [1966, 14, p.41), that.''when you have the right basic con-
cepts, the solving of problems becomes either easy or impossible.
When you understand what the problem is, the solution is far easier

to find, if it can be gotten at all'',

Clearly, a measure of the above mentioned adequacy is the extent of
(dis)agreement between the predictions of the syétem model proposed
and the available empirical knowledge relevant to that system. Thus,
for the nature of a given system's physical response being found in
the constitutive equations employed, the better the 'physical insight'
of the investigator with regard to the system under study, the more
appropriate will be his constitutive equations and consequently fhe
physically more adequate will be his theory. Note also the discussion

of Sect. F.3.

See Truesdell [1966, 13, pp.99-1001, Grad [ 1961, 3, p.323] and foot-

note 57 above.
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66 Liu & Miller [1972, 5].

6 . . . . . . .
7 The meaning in rational mechanics of the word ''simple' is discussed

in Truesdell & Noll [1965, 19, Sect. 265 and Miiller [1973, 9, pp.43-

NS
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B. BALANCE EQUATIONS

Mechanics is the science which concerns itself with the motions of ma-
terial systems and their causes. The two main complementary branches there-
of which treat these aspects are called, respectively, kinematics ! and dy=-
namics. Kinematics examines the problem of describing motion per se. In do-
ing so, it does not undertake to study the sources of motion nor the forces
thereto related; the inquiry into these matters being the task of dynamics.

Consequently the results of kinematics, known as balance equations, are ap-

plicable to any of a possibly large number of arbitrary physical systems
whose respective motions can be shown to satisfy the principles upon which
said equations rest. The dynamics of a continuous material system, on the

other hand, is contained within the constitutive equations proposed for that

particular system. Although the specific system under study may be thought
of in general as belonging to a class of similar systems, the specific con-
stitutive equations employed limit the diversity of material response pos-
sibilities fo those believed most appropriate for the given system. Consi-
derations pertinent to the establishing of rational mechanical constitutive

equations will be given in the discussion of Chapter C.

It may be recognized on the basis of physical experience that, depend-
ing upon the physical character of the medium being considered, singulari-
ties in the various field quantities may occur, Consequently, a complete
kinematical description of a mixture necessitates the establishing of two
general types of integral balance relationships 2. The first is a balance
equation valid for points of the medium and/or electromagnetic field in
which the fields involved‘Fre regular; and second, is a jump balance equa-

tion for those points in which said fields suffer a finite discontinuity.
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Since the problem at hand involves electromagnetic fields, one is oblig-
ed to consider volumes which may contain moving singular surfaces and sur-
faces which may incorporate singular lines, For regions of the system where-
in the fields and field derivatives in question are suitably continuous 3,
the integral balance expression yields a general differential balance equa-
tion relationship that portrays the local kinematical description of that
region h. Under additional assumptions regarding the possible boundedness
of the mixture- and/or electromagnetic field-related fields, and the dis-
continuity surface(s) and line(s) themselves, a differential jump balance

equation for both of the aforementioned cases can be gotten from their res-

pective integral relations.

Once the general balance equations have been procured, the next step
to be undertaken is the explicit identification of the particular meaning
to be associated with the symbols therein representing a given field quan-
tity, its flux, supply and production 5. In doing so, the set of system ba-
lance equations to be used in the eventual calculation of the fields (A1)
is generated. Here too one notes that it is again the physical nature of
the system involved that motivates the particular selection of those para-

meters that is made.

Recognizing that the material fields thus found in principle by the
procedure described above relate to any given yet arbitrary constituent,
it is now desirable to remark upon the manner to be pursued here with re-
gard to the determination of the mixture field quantities. For the sake of
explicitness, | note the tacit employment to this poiht of the first part
of Truesdell's 6 second metaphysical principle, The set of three such prin-

ciples read as follows:
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""1. All properties of the mixture must be mathematical consequences of
properties of the constituents.

2. So as to describe the motion of a constituent, we may in imagination
isolate it from the rest of the mixture, provided we allow properly
for the actions of the other constituents upon it.

3. fhe motion of the mixture is governed by the same equations as is

the single body.'

The implementation of the third of these principles provides us with the
desired mixture balance equations, together with the definitions of the mix-
ture field quantities expressed in terms of the constituent properties: this

being in accordance with the first principle.

That is what this chapter is about, ! now proceed to secure those re-
lationships which will be taken here as being both relevant and necessary
to a complete kinematical description of the type of material system des-

cribed above.
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B.a. Co-ordinate systems

Since the theory.given here falls ‘ithin the realm of classical mecha-
nics, | assume that the space manifold is R3; a three-dimensional Euclidean

7

vector point space with real co-ordinates /,

Co-ordinate choice

A reference frame is a particular space R,. Upon selecting a basis éi

3
(i =1,2,3) and an origin, such a space may be represented by (0,8). | fur-
ther assume that a system of orthogonal Cartesian co-ordinates X, suffices

for the problem at hand: hence, X = Xiéi is the position vector of a point

in the space.

Trans formations in the common frame

For a theory to have a physical content independent of the choice of
co-ordinates, it must to begin at least be invariant under general co-ordi-
nate transformations. Such invariance is ensured by the use of tensor nota-
tion for the prescription éf the physical quantities entering therein; said

notation is thus forthwith employed here.

Now, there are two ways, both due to Euler 8, in which the continuous
motion of material systems can be described. Motion is classically describ-

ed in terms of point transformations., These are here viewed as taking place

in the total manifold known as Euclidean space=time Rq which consists of R3

together with the one-dimensional manifold of the real (primitive) element

time, denoted by t {~®< t <), which is now introduced.
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The term constituent means here any arbitrary yet uniquely identifia-
ble atomic or molecular matter which admits a field representation. The par-
ticular body manifold composed of all the material points of a given consti-
tuent, say the ath (a =1,2,...,s), and which satisfies the relations (1)
below is defined to be a constituent body, denoted by B. For any constitu-

e 49

ent the center of its mass in a region of space is defined to be the ma-

terial particle of that constituent,

0f the many possible co-ordinate systems one which is referred to as
10 . . . .
a common frame is singled out., It is convenient to select as the common
frame one which may be taken as beingfixed in space; e.g., the '""laboratory

frame" l‘.

The first of two alternative choices of common frame co-ordinates in=
volves the unique identification for all time t of each constituent material

particle for any arbitrary, yet all, constituent bodies. This is accomplish-

ed by the introduction of the material co-ordinates e {a = 1,2,3) which are
a

assumed to be uniquely affixed to each material particle of constituent a.

These co-ordinates may be thought of as always moving with their related ma-

terial particles,

The second possibility concerns the employment of the spatial co-ordi-
nates x, (i = 1,2,3). These identify each point of the ambient space mani-
fold and are referred to the places to, in and from which the particles X
may be motionally related. ’

A constituent configuration is represented by the specification of the
positions of all the material particles of that constituent's body. It is

defined by a continuous one-to-one mapping and, together with its inverse,

is given by
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X) and X = 2-1(;) . (1)
a a

The point transformation which expiesses a continuous motion (cf. Fig.

4.) is assumed to be a continuous sequence of configurations in time. It

and its inverse are defined respectively by

>
X =

o Xy

.
) and X = ¥ Gt (2)
a a a

>, . ->
where x is the place that the particle X occupies at time t.

a
B
a —~
X
a8
B
a

o X}

Fig., 4. A continuous motion for a single constituent,

The assumption made with regard to (1), the constituent deformation,

and (2) have been set down by Truesdell 12 10 a axiom of continuity: The

relations (1) and (2) are assumed to be smooth single-valued functions. |
now make the common (''Fick-Stefan'! ‘3) assumption that at each point of the
system the mixture is considered to be the simultaneous superposition of the
s constituent continua. Upon defining the constituent deformation gradient

F. and the Jacobian J respectively by 14

la
a a
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axi
i« = 3 (3)
o
a
and
R 15
J = det ¥ = %ei.kcas FraFigfey o (4)
a J Ya aJ a Y

the assumption that J is non-singular is made to ensure that the inverse
functions above exisi.

By virtue of the axiom of continuity the development of a rational me-
chanical theory falls into two parts, each of which requires its own treat-
ment. The one part is a theory for continuous fields and the other is a
theory for the finite number of isolated point, line and surface singulari-
ties that may exist in a material system. The two corollaries which follow

. . 1
from thisaxiom are 6:

Corollary 1. Permanence of matter

A material constituent occupying a region of positive and finite volume
cannot be deformed in such a manner that said region vanishes or becomes
infinite.

17 that the condition on J which follows from this corollary

a

It can be shown

is that 0 < J < oo,
a

Corollary 2. Principle of material impenetrabi.lity

Portions of matter never interpenetrate.
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This is interpreted as meaning that for any time t there is at any given

place in the system at most only one of each of the various particles X.
a
The fact that just one particle can occupy a given point at time t follows

from the supposition that there is related to each and every constituent

. . v . . .

deformation one and only one particle X possessing at that time t a given
a

set of co-ordinates x.

The selection of X (for all a) and t as independent variables represents
a
Euler's material description of motion; while, a choice of X and t as va-

riables is his spatial description ]8. This study utilizes the former.

B8.b. Material systems

A material system is a manifold consisting of a set of material par-
ticles. It is thus a body in part or whole., In regarding such systems it is
recognized that experience of the physical nature of a given system dictat~-
es which ones and how many of the known fundamental physical properties must
be ascribed to the different mixture constituents, While recognizing further
the existence of discrete ﬁaterial properties for matter cqnsidered on e.g.
an atomic level, continuum mechanics in general restricts its attention es=~
sentially to those systems for which the physical characteristics may be

assumed to possess continuous distributions,
Mass

The primitive quantities related to constituent particles are two in
number: the mass and the (possible) charge of any given constituent. The
molecular mass m of a constituent is associated with a density distribution
of same (cf. e.g- (5)) and serves as a measure of that constituent's iner-

tia as well as the amount of its matter in 8.
a
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With e (= 1,602 x 10-19 coulomb) the absolute value of electronic char=

ge and Z the integer (negatieve, positive or zero) charge multiplicity, the
a

. P . * *
constituent charge and (mass) specific charge are given for s° (0 < s” < s)

constituents respectively by Ze and q = Ze/m.
a a a a

Mass and charge density

Let n denote the constituent number density. in terms hereof 1| define
a
the following initial set of material properties, The mass density of a con-

stituent is given by

=
p = LJ 2 ’ (6)

the mass fraction by ¢ = p/p for which hold the condition that
a a

1}
n

and the free charge density of a constituent defined by

QF = nle = gp . (8)
a

aa aa

The constituent mass and charge densities are assumed to be continuous and
additive quantities which, as absolute scalars, are invariant under the here

non-relativistic motions of the system.
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Material systems

1 s s
Material systems 9 come in three varieties: curves C, surfaces 8§ and
a a
volumes °U. According to the meaning of a material system given above, each
a
of these three cases is characterized by the fact that it always consists

of the same set of material particles.

Linear velocities

It is on the basis of particle motion that velocity is defined. Thus,

fqr a particle'Y in a given place X at the time t | define 20 the constitu-

a
ent velocity
axi _ 9)
V., = e . 9
a' % 1% = const.
a

Hereby follows that the velocity difference, mass average velocity and dif-

fusion velocity are given respectively by

Vi o= vty {a=1,2,...,s-1) , (10)
a' a s
s
v, = 21 ov ' (1)
i ) i
a=1 as
and
U= v TV . (12)
a - a

z ou;, = 0. (13)
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Material derivatives

A description of material behavior often necessitates a knowledge of
the time rates of change of the various fields involved in a given problem.

It is worthwhile in this study to introduce the material derivatives follow-

. . . . . 21 .
ing the constituent and mixture motions; these being , respectively,

1)

SR
and (14)
] d 3
=g =3 i)

where the relation between (*)? and (*) is clearly that

)= )+ o) - (15)

a

B.c. Material integral kinematics.

The aim of this section is the presentation of expressions for the rate
of change of general integrals for arbitrary volumes and surfaces containing

respectively surfaces and lines of discontinuity.

B.c.i. Volume integrals

For a moving and continuous material volume A)(t) bounded by a mater-
a .
jal surface §(t) as shown in Fig. 5, | now introduce the field ¥ represent-
a a

S
CO’ a

A

Fig. 5. Continuous material volume<).,
a
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ing an arbitrary additive quantity of constituent a (i.e. a field property

proportional to p). It is given by

Yy = J Y oodv . (16)
a a

The parameter wv(;,t) in the integrand of (16) represents here the vo-
a
lume density of a quantity ¥ of constituent a. This parameter is henceforth
a
assumed to be a single-valued continuously differentiable tensor field defin-

ed in the volume over which the integral being considered is taken.

Phase interfaces

In general, the volumes with which one is concerned are not (in terms
of the functions defined therein) continuous throughout the entire region
they represent. It is thus desirable when studying the problem of describ-
ing fluid mixture behavior, to attempt an examination of the problems of
and related to the (usually three-dimensional) interfacial regions which
may exist in multicomponent and multiphase systems. Not only the material
behavior of these regions themselves, but also the reciprocal influences
upon material behavior between them and the bulk regions they separate may.

be of some interest.

A pictorial representation of a deformable and moving interfacial re~

gion, denoted by 1{t), is given in Fig., 6. The material volumeU associated
a
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S (1(v))

Fig. 6. Phase interface, I(t).
with an arbitrary constituent is written as

U o= + U+ V() ;
a a a

and, similarly, the material bounding surface 8 of U is expressed by
a a

o N

=8 + 8 + s(() .
a

a

The region 1(t) will in general require its own set of balance and con-
stitutive equations; which fact in turn increases the difficulty of describ-
ing the behavior of the total system. This being the case, | make for the
sake of expediency the not uncommon assumption that the fields of the mate-
rial system for which the model developed here is to be applicable are such
that the phase interfaces involved, if any, may be represented by surfaces
of discontinuity s(t). Under this assumption the following relations'hold:

Q@ = +Q + s(t) and § = 8 + § + (Sns(t)). (17)
a a a a

a a a
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Singular surfaces

As pointed out earlier, a consequ.- te of the axiom of centinuity is
that a rational mechanical theory describes under general conditions the
kinematics as well as the dynamics in both the sets of regular and singu=-
lar points, Singular points of material media are those in which the func-
tion(s) representing one (or more) of the system related fields may not be
taken as being continuous, The sets of such points may in general compose
lines and surfaces of singularity. The problem of singular lines is of some
importance in a study of material systems interacting with electromagnetic
fields and shall be treated shortly. | begin, however, with a consideration

of singular surfaces 22.

Whether a deformable and moving singular surface s(t) exists in its
own right or, as here, also as an idealization of a phase interface, is of
no consequence to the following development, The intersection of a material

volume VU by s(t) is portrayed in Fig. 7.
a

Fig. 7. Singular surface, s(t).

There A is a unit vector normal to s(t) which is taken as being directed

intoﬂj+. ;0 is a point upon s(t) and U is the velocity of propagation of
a

that surface, Further, it is useful to introduce the speed of displacement

u, of s(t) given by
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u = u.f. (18)

and to denote respectively by w: and w; the limiting values of the func-

a a
. > > > . . + -
tion wv(x,t) as X moves towards Xo from withinQy and?J . In terms of these
a a a
parameters the material rate of change of (16) over a volume containing a

23 generalized Reynolds' trans-

singular surface is given by the well~known

port theorem

awv
= = -
¥y = J =t dv  + J bV dai I ﬂwvﬂun da . (19)
@ 4+ o +. 2@ s(t) @
QU #U S +8
a a a a
Here, the outward directed element of surface area is given by dai = ﬁida

and the jump of ¢ across s(t) at a point ;o has been denoted by
a

+
B, b = v, - ¥, . (20)
a a

B.c.ii. Surface integrals

Consider for any given body B a material surface §. For the case
a a

Fig. 8. Continuous material surface, 8.
a

depicted in Fig, 3 where that surface is continuous and bounded by the ma-

terial curve C(8), | introduce the field parameter It is given for all
aa

constituents by

ot
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= Jg. da, . (21)

[T $3]

At a surface point, denoted by the parameter 2, the integrand E(g,t)
is termed the density of the quantity 2., It, like wv(;,t) above, isaassumed
to satisfy the single-valuedness, cont?nuity and mzltiple differentiability
assumption; but here for fields defined in the surface for which the inte-

gral being considered is taken,

Singular lines

It is possible, as mentioned above in the discussion regarding singular
surfaces, that the surface of a material system may evidence the presence of
. y - 2 . .
lines of discontinuity 4. for the case of a single line the geometry of

such a situation is provided in Fig. 9. There § is divided by the deformable
a

Fig. 9. Singular line, c(t).

moving singular line c(t) into two parts; it may be written as
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§$ = 8§ + 8§ + clt). (22)
a a

The line c(t) moves with a velocity u in the interior of 5+ + 8, but also
a a
intersects G(8) which is given by
aa

C8) = G + e) + (©nclt) . (23)
a

a a a a

Lastly, ;0 is a point on c(t); while A, £ and @ (= A x t) are respectively

the unit principal normal, tangent and binormal vectors to c(t).

The material derivative of (21) taken with respect to particles lying

{-)

upon c{t) and moving with velocity U is, for dl; =, dl and ET the limit~
’ a
ing value of the function £; as here x approaches ;0 from within 5+( ), given
a a
by the also well-known 5 relation
(1
I 2 d (€ x V), dl
= 0= et Vibfde bVl dly
a . - aa L, . a a
§ +8 C +C
a a a a
- J (123 > 0), a1, . (24)
cle)y @
Here, the jump of the field E across c{t) at some point ;o is denoted as
a
follows:
3 IEEANE A (25)
a a a ’
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B.1. Integral balances

The batance of an arbitrary const.tuent quantity with regard to some
region of a system is here expressed initially by an integral relationship
for that region between the material derivative of that quantity and its
influx, supply and production rate 26. Those quantities whose production
terms vanish are said to be conserved and their balance equations become
conservation relationships. These are at most special cases of the general

equations which | now give.
B.T.a. Volume balances

For the first of the two regions of interest here, viz, a volume con-

taining a surface of discontinuity (cf. Fig. 7), ) assume that the balance

equation involving (19) may be given by 27
v o= - J ¥ da, 4 j (¥ + Vo « f ™ da (26)
a _a _ a a a
s"+s ot =(v)
a a a a

where ¢? is the flux through 3+ + 8§ of the constituent quantity, o$ is
a a a a
that quantity's supply density (per unit volume) for said constituent being

considered as a single continuum and 63 is the production rate density (per

a
unit volume) of that quantity. The term Tw is the total supply density (per
a
unit area) by s{t) of ¥, and | would }ike now to comment upon its introduc-

a
tion into this study.
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On singular surfaces and their balances

Dynamic transition regions are usually three-dimensional; and, depend-
ing upon the particular medium involved and its physical environment, also
deformable and moving., As mentioned above, a description of the behavior of
and within said regions, as well as the mutual influences between them and
their adjacent bulk media, requires in general that in addition to the bulk
relations an appropriate set of balance and constitutive equations be es~

tablished for them.

For the sake of simplicity, however, the applicability of this study
is limited to those systems for which phase interfaces, if any, may be des-
cribed in terms of surfaces of discontinuity. For descriptive purposes |
consider such a surface to be a smooth ''thin'' region moving in R3; assuming
further that the constitutive equations of the contiguous bulk media remain

valid up to the surface.

Properties of connection are ascribed to s{t) in the form of distribut=-
ed surface source terms Tw for each bulk quantity that is to be balanced.
a
The discontinuous bulk field parameters are here then assumed, as functions

of time and position upon s{t), to change rapidly but in a suitably conti-

nuous manner across the surface.

An investigation of arbitrary physical singular surfaces and matters
pertaining to the general kinematics and dynamics of them for systems of in-
terest here lies beyond the scope of this initial study. Thus, the model of
a plane and temporally persistent surface of discontinuity assumed here and
employed later is taken primarily on the basis of its relative simplicity;
it being presumed indicative of the function of such surfaces under more

general circumstances.
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I conclude the discussion on integral volume balances by limiting the

considerations of this study to the particular case for which at most ¥ and

v. are singular on s(t), To this end | take 28

v 2y
the fields awv/at, o” and &
a

a a a

to be bounded in the neighborhood of s(t) and the limits of ¢f to be conti-
a

nuous functions of position. It follows then from (17) together with Green's

29

trans formation that the result of equating (19) and (26) is the volume

integral balance equation; viz.,

Y
av ¥ -
7 * (wv vi T ¢7),i -9, - &, dv +
Qy-s(t) a a a a a
a
+ J l]lwv(vi - ”.)ﬁi“ + ﬂ¢wﬁ|ﬂ - 1¥da = 0
s(ryla @ a

B.1.b. Surface balances

The development here closely paraliels that above for the case of vo-

lume balances. For surfaces 8 containing a moving singular line c(t) (cf.
a
Fig. 6) let @?, c?, 6? and T? denote respectively the influx through
a a a a
C - (Cn clt)), supply density (per unit area), its production rate density
a a

(per unit area) and its total supply density (per unit length) by c(t). I

0
now assume 3 for such a surface that

L ol
]
]
—_—
em
a
+
—_—
—_
© Q
sl
+
Qp
sl
=
Qa
i1
+

P {/da; J T?d]i (28)
C- Erc(y)) @ + @ c(t) @
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expresses the balance relationship which concerns (24)., For the specific

case where £, and v, can have a finite discontinuity upon c(t), the para-

meters Bﬁi/gt, 0? :nd 6? are taken as bounded in the proximity of c(t) while
@? is as:umed tg be fisite on the singular line. Equating (24) and (28) and
ihen utilizing (22), (23) and Kelvin's transformation 3 leads to the re-
sult valid for any constituent that
agi .. .
i ikt eijk[(g";)k":‘;i],j T "Z? da +
f c(t)
+ J U« G- DL + 1671 + 138 dl = 0, (29)
(v a a a a

This expression shall be referred to as the surface integral balance equa-

tion.

B.2. Differential balances

Under assumptions concerning a region of interest and its related sys-
tem fields, the integral balance equations (27) and (29) above will in this
section each be reduced to two specific types of differential balance rela-
tionships. Since a consideration of a material system will thus no longer
involve the region taken as a whole but rather with the points thereof which
determine that region, the description of the system in question maf be

thought of as changing accordingly from a global to a local one.
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B.2.a. Continuous system balances

Volume balances

From (27) it follows in the case of regular volumes for which may be

assumed that $v’ wv, 03 and 63 are continuous and ¢? is continuously diffe-
a a a a a

rentiable, that the volume differential balance equation is

3wv
a v _ v =0
3t + (gv;i + :i),i - :v + :v ¢ (30)

Surface balances

Similarly, for circumstances involving regular surface regions and with
the integrand of the residual equation (29) assumed continuous, the surface

differential balance equation is

9E,
I
a - -> _ 6 ‘g
Tt Vb o osplE v el = oy v By (31)
a a a a a a a

B.2.b. Discontinuous system balances

Volume balances

The balance relationship for the surface of discontinuity region of a
volume follows from the s(t)-integral term of (27). For that term equal to
zero to be valid in general, the assumed smooth integrand thereof must va-

nish; whence follows the volume jump balance equation

[v,(v; = u)d; 1 + n¢?ﬁin = 1. (32)
a a a a
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Surface balances

Fimally, for the singular line portion of a surface region, the c(t)-
integral expression of (29) with its integrand taken to be smooth on c(t)

and vanishing yields the surface jump balance equation; viz,,

€« (V- WE] + fefed = re, . (33)
a a a a
With the securing of equations (30), (31), (32) and (33) 32, it now

becomes possible to proceed with the establishing of a more explicit model
of the kinematical relationships needed for the problem at hand. Such ex-
pressions as will be given are based initially upon proposals (i.e. impli=
cit and explicit assumptions) for the various field quantities, together
with their respective fluxes, supplies and production rates. In this light

these relations may be viewed as having been postulated.

B.3. Mass balance equations

This and the remaining sections of Chap. B have the purpose of propos-
ing a set of differential balance and jump balance equations, for the mate-
rial and electromagnetic fields, which | shall assume to govern the behavi-
or of the class of fluid mixtures envisaged. These relationships are, begin-

ning with those for mass, now given.
B.3.a. Constituents

Aside from diffusion the changes here of a constituent's mass density

| 33

are a consequence only of chemical reactions which involve it, assume

that wv = p while @? and 03

a a a a

(the mass flux and volume supply respectively)
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both are zero. Further, 63 = T, the production rate density for mass; while
a a

the supply density of mass by the surface s(t) is denoted by - ES.

a a
On the basis of these identifications (30) yields the following forms

of the balance equation of mass density of a constituent:

o + ov. . = & .
a aal) a
o + pv., . + u,p . = & (34)
a aad?d ala*d a
and
p = & = u.p . - p6 .d . ;
a a alard a kJakJ

where (3&)2 follows from (3&)1 by means of (12) and gkj = ;(k,j) is the deforma-

tion rate tensor of a constituent. Parentheses placed about indices denote

in this study the symmetrization of the term concerned with respect to the

enclosed indices.

On stoichiometry

Stoichiometry is taken here to be the phenomenological description of
chemical processes in continuum mixtures, It does not concern itself with

3k be looked upon as the '"kinema-

the causes of said processes and may thus
tics' of chemical reactions, For any mixture constituent, of which s* are
charged, let there exist a (a = 1,2,...,n) possible independent chemical

reactions. Further, denote by ya the stoichiometric coefficient of that

a
constituent; and, by A%(x,t) its ath reaction rate density. The first para-

meter indicates the number of constituent molecules participating in a given
‘reaction a either as reactants or as products, while the latter represents
the net rate of production per unit time and volume of the constituent num-

ber density for that reaction.
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The relation for the net production rate density, R, for n may be given
a a

by

I

v%a%, ' (35)

a

© o

1
N
L

Q
]
—_

In general it is necessary in the case of mixtures for which some or all of
the constituents bear charge to account for the supply of both mass and

charge through chemical reactions. Here | examine the question of mass sup-
ply, while in Sect. B.4.b. attention is directed towards the matter of che-

mical reactions and charge.

Letting m be the unit atomic mass (e.g. 1/16 of the 016 oxygen atom

isotope mass) and W = m/m be the constituent molecular weight, any arbitra-

a a
ry T is expressible here in terms of its related mass by
a
n
¢ = mR = ; Y uma® (36)
a aa =i aa

From (36) follows that the various physico-chemical processes available to
the system are prescribed implicitly by the fields Aa(;,t), and that a know-
ledge of all these parameters with regard to that system in turn determines
€. In a continuum theory the chemical kinetic considerations relevant to
fhe specification of the n Aa, or equivalently the s &, are embodied in the

a .
formulation of constitutive equations for these fields. ! shall return to

this point in Chpt. C.
Equation (32) together with the assumption above for Tw provides the

. a
result

#
]

lo (v, - ui)ﬁiﬂ
da a a

(37)

known as the jump balance equation for the mass density p.
aY
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B.3.b. Mixture

The conservation eqcation for the mass of the mixture derives from a

summation over (34) for all constituents, use being made also of (11), and

is given by

6+ ovi g T 0. (38)

Similarly it follows from (37) that

lo{v. - u.)A.1 = 0 (39)

is the jump conservation equation for the mass of the mixture, The transi-
tion from the constituent to the mixture relationships has been accomplished

by the introduction of the mixture conservation of mass assumptions (i.e.

axioms) for € and ES. These are, respectively,

a

[

S oo, (40)

Mo

S
0 and 214
a=1

L m

[
n

Further, | now introduce the first of two additional and important

35

assumptions to be made here; it being

o

Y™ o= 0, (41)
a a

(1]
1}

which expresses for the mixture the conservation of mass In each of the n
homogeneous chemical reactions a. The restrictions on the stoichiometric
coefficients following from (41) are complemented by those on the related
to the coefficients of the charged constituents. These latter conditions

will be given in Sect. B.h.b.
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B.4. The charge-current equations

Here and in the next section | set down those electrodynamic relations
which | assume to be basic to a continuum description of ''slowly moving"
(i.e. non-relativistic) magnetizable dielectric fluid mixtures, Since the
development rests in part upon mixture theoretical considerations, the re-
sults secured evidence some limited generalization of tHe Maxwell electro=
magnetic theory of ponderable matter. Due to the important fact, among
others, that emission, absorption and scattering of electromagnetic radia-
tion cannot be treated at present by phenomenological electrodynamics, |
consider in this study mixtures only under those conditions for which ra-

diation is negligible.

On electrical conductors

Regardless of the region of interest, be it a bulk phase, surface of
discontinuity or both, two types of charge densities may in general be at-

tributed to it: viz, the so-called "free' and '"bound" charges. In9) the free

a

charge density of a constituent is given (cf., (8)) by QF, while on s{t) the
a

singular surface density of free charge is denoted by QSF. Free charges, it
a

will be remembered, are the foremost spurce of the electromagnetic field.
By virtue of their relative mobility they serve as the essential coupling
factor between the mechanics of the mixture and the electromagnetic field
which they generate and with which the mixture interacts.

The sum of each of the quantities QF and QSF for all constituénts yield

a a :
the definitions for the volume and singular surface densities*QF and QSF of

free charge of the mixture; these being respectively
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|
|Ul

F F
=, and  oSF - >F . (42)
a - a

[+7]
I}
—_
[*7
I}
—_

As electricatl conductors ! take here those material media for which the

electrically charged constituents are relatively unconstrained in their dis-
placements under the influence of the fields acting upon them. This point
will be made more explicit in the discussion of the forces of constituent

interaction below.
On dielectrics

Bound charges are characteristic of both electrically neutral consti-
tuents having structure (e.g. atoms and molecules) as well as those which
may also possess a net charge (e.g. atomic and molecular icns)., And further,
for the microscopic structure of its material components being spherically
symmetric or non-symmetric, a constituent may be referred to accordingly as

being either non-polar or polar.

The polarization and magnetization of a constituent represent macro-
scopically the existence for that constituent of electric moments which re-
flect the distribution of its negative and positive bound charges with res-
pect to each other, and magnetic moment which relate to said bound charge
distributions aswell as (possibly) to that of its intrinsic spins., | assume
for the sake of simplicity that a dipole approximation is adequate in this
study. The theory remains, of course, applicable to both non-polar and po-
lar media.

Now let Pi be the polarization'densitx in“Uof a constituent, and in

a a
terms hereof let the related polarization density of the mixture P, be de-

fined by
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P, = P. . (43)

By the term dielectric | shall mean electrically polarizable media in gene~
ral. This definition extends the one usually given which prescribes only

the so-called perfectly electrically insulating media. For mixtures under
the simultaneous influence of different fields it will be seen in Sect, E.6.
that the generalization of definition to include real (i.e. imperfect) elec=

trical insulators is worthwhile.

B.4.a. Coulomb's law: the charge flux equations

The material properties of a mixture system have been assumed tobe de-
terminable from those of the constituents. To prescribe the properties of

the electromagnetic field | introduce a Erinciple of superposition which

states 36 that:
The total electromagnetic field produced by a system of constituents
_is obtained by adding the fields of the individual constituents,
Hereby is made clear that the origin of the total electromagnetic field
lies in the simul taneous superposition of the internal and "external' con-

tributions thereto of all the constituents of the system.

Since the "external' field, for example, may exist in regions of the
system possibly unoccupied by any matter (i.e. vacuum), it seems physical-
ly unreasonable to attempt a formal apportioning of said total field to the
constituents 37 which may on occasion occupy that space. | assume instead
that the total electromagnetic field and mixture fields (defined in terms
of the constituents) are the natural complementary quantities in terms of

which the full set of macroscopic system relationships may be secured.
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For E. denoting the total electric field taken with respect to a sta-

12

tionary observer and €y (= 8,854 x 10 ' farad/m) the permittivity of va-

38

cuum, | follow Truesdell & Toupin anc introduce the first (cf. (67))

Maxwell-Lorentz aether relation: it being that for the charge potentiaI_Di

given by
D, = e . (CLY
. . Lo 39 . -
The partial charge potential of the mixture is
ﬂ)I = D +P, (45)

and the well-known equation for electric flux density is written as

O, +p) = . (46)

From this relation follows that the charge densitx Q of the mfxture is

given by
e = 0,

s

= j;— Qe (Q= QF - Py, is the constituent charge density)
4 ’

a a a a

a=1

= o -p (47)

is called the polarization charge density of the mix-

where the term -P1 1

14

ture.

With a view towards the treatment of the constitutive equation later,
another form of (46) will prove more useful., in terms of the magnetic flux

density B (cf. Sect. B.5.a.) let the electromotive intensity for a consti-

tuent and the mixture be defined respectively by
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i _— eijk;jBk and Si = E. + eijkvak . (48)

Equation (46) may hereby be written in terms of an arbitrary reference con-

stituent, say the sth, in the form ko

1, F
=@ -P ) = 0. ()

0

& . + e¢..,vB . + e..Bv .
o] Pjk ik, j ijkk T, ]

For a region s(t) across which i}has a finite discontinuity, the jump

equation for electric flux that follows from (46) with QF bounded in the vi-

cinity of s(t) is

u(oi + Pi)ﬁiﬂ = QSF ;

or equivalently 4 (50)
~ - SF.

10, + Pyl = epphyfy + QA

where QSF is defined by (42),. Here (cf. Sect, B.k.c.) h. =e. A D] is an
2 J jpapTg
arbitrary field defined on s(t).
From (50)2 it is possible to write that
- S

;.1 = q (51)
where the surface density of charge of the mixture is given by

N L (52)

and [P;A; ] is the mixture polarization density on s(t). For developmental

simplicity in the treatment given below, | make the (otherwise nonessential)

. SF .
assumption that Q° vanishes,
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B.4.b. Charge balance equations

The balance of electric charge wiil, as in the case of mass, be given
in two parts, The first deals with the constituents while the second con-

cerns itself with the mixture as a whole.
B.4.b.i. Constituents

There exist 42 well-established models which describe to an extent
deemed acceptable here the macroscopic electrodynamics of magnetizable, po-
larizable, and non-relativistically moving single material continua. Further,
any mixture considered here is such that it reduces to a single continuum
as the number of its constituents is reduced to unity, With the aforemen-
tioned metaphysical principles (particularly the third) in mind, | thus as-
sume in analogy with the pure single continuum results alluded to above that

the following definitions may be made.

. . . . . . M
The constituent magnetization density is represented by Mk; while, J.
p a a
and Jj are respectively the constituent magnetization and polarization cur-

a
rent densities: these being here given, together with their sum, according-

ly by
M
Jj = ejkl 1k (53)
a
BP_j
4 a >
J. = =— 4+ v.,P + e (FxV) (54)
al t aJal’] Jkd a a 1k
and
M P

Fo= J. o+ JL. (55)
a a
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With 43 b, = Q ¢? = 35, the charge density supply for constituents
a a a E]
ot = 0 and the production rate density for the constituent charge density
a
6$ = q&, it follows from (30) that
a aa

3Q

a T -
— + J. . = qi (56}
at aJ’J aa

is the balance equation for the charge density of a constituent. J} is the
a

constituent current density and is given by

T
J: = Qv, + F. . (57)
aJ an J

Similarly, with the charge density supply by the singular surface Tw,

a
denoted by ESC. equation (32) yields the relationship
a
- - .SC
falv; - v)a b + (a0 = ¢ (58)
aa a a

called the jump balance equation for constituent charge density.

B.h.b.ii. Mixture

From the definition of the mixture magnetization density M, given by

S .
Moo= Z ") (59)
a .

. . . . M
it can be observed that the magnetization current density Jj gotten from

(]}
[}
—_

(53) is given by

Moo e (60)
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Likewise, from (54) and (12) comes the equation for the polarization cur-

rent densitz

p 3P, S s
J, = —k &+ yp + e, Z Bxv Z P
J ot i €iprq (a * ;)q.p * dalst (61)
’ a=1 a=1

The mixture conduction, non-convective and total current densities are here

defined respectively by 4h
S
J'.: = Z QFu‘ ,
J ‘i a al
s
F M P
ST DA J. - P
Lf IR T I Z:Jal.l : (62)
a=1 )
S
JI o= ZJT.
J J
aal
= Qv, + ..
QJ 3

Charge balance expressions for the mixture follow from the summation
over all constituents of the rélations (56) and (58). The results of per-

forming this operation on them are the conservation and jump conservation

eguations hs‘for the mixture charge density given respectively by

=%
=]

@
[ad

T : _ L

+ Jj,; = 0 and lQ(yi_ u i1+ H}i‘ni]l = 0. (63)
Here use has been made of the defini-tions above; 'and, similar to.(40), the
mixture conservation of charge assumptions (i.e. axioms) made in passing

from (56) and (58) to (63) are respectively that
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S S
an = 0 and Z SCo 0. , (64)
a=1 2° am1 @

The condition of charge conservation in each of the homogeneous

chemical reactions follows from the assumption, now introduced, that

s - a
PRI : (65)

Thus, as alluded to in Sect. B.3., the s* electrically charged constituents
represent important physico-chemical constraints on the chemical reaction
processes of mixtures, It is clear, of course, that for those systems for

which the additional condition of charge neutrality

S

Zqo =0 _ (66)

aa
a=1

holds, that the specific charges q of (65) are themselves restricted.
. a ‘

B.4.c. Ampére-Maxwell's law: the current equations

The main aim of this section is the establishment of the macroscopic
electrodynamic relations between the balances of electric charge and the

electromagnetic field which derives from said charges. To this end, for

o (= 1.257 x 10-7 henry/m) the vacuum permeability, I introduce the se-

cond Maxwell-Lorentz aether relation (cf. (44)) for the current potential

Hk and also define the partial current potentia13€k respectively by the

expressions
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S
1 < > 5
Hk = U_o B"< and Jek = Hk - Mk - L (P x V)k . (67)

Consequent to these and earlier definitions, and the assumptions 47
that &, = D, @E =g, - (U xD),, of = JiF and af =0, it follows from (31)

without subscripts that the current balance equation for the mixture may

be written either as

S
’ 3= F Fo.oa
€k He = M (P x v)k],j = Qv +J; + 3¢ (Di +P)
a a
a=1
or, equivalently, as (68)
30,
S,y T Wit 5T

| note here another form of (68) secured with the help particularly

of (12), (&), (48) and (69): it is 'O

v,

9B j
. 1 k s . _
bt gl “ijklie T Skt an vitiLj
L .8 o+ =@ -p ) o+
TN ijkk,j €o 1,
*
— (T +e. . M . -P.v., . +Pv. ) =0 (69)
* O(Jl Cle kyJ Jvl’J IJ)J)
where
s
By ey re Bxd) ) (70)
! é;f aaa Pa 5, g BP
These expressions will be utilized in the development of the constitutive

equations to be proposed later.
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Neglecting the possibility that a surface s(t) may itself possess free,
magnetization and polarization currents, | now set down the jump balance
equation for the current density of the mixture across a surface s(t) mov-
ing with the particular velocity U= unﬁ. It follows from use of (33) with-

out subscripts and the foregoing definitions for E and 35’ and is

S
e, A IH - M - :Ej (® x V)kﬂ + u D, +P,] = 0
JK ) - a a
or, equivalently h9, (71)
S
M ~ -

THe =M - Z(E"")kﬂ Togn tuho= 0

a=1 a a

The arbitrary fields of (71),, g and h,» defined upon s(t) are given by

27

g = ﬁkai] and  h = ekpqﬁpﬂih] H (72)

while, from (50)] under general circumstances and (72)2 it may be seen that

M1 = ha o+ oA . (50),

€ f
q qrs r s q

B.5. Electromagnetic field equations

The equations introduced in this section are those which interrelate,
in regions of volume as well as on surfaces of discontinuity, the non-rela-
tivistic dynamic electric and magnetic fields. With their presentation a
indeterminate set of general electrodynamic relationships will have been
secured. The matter of the under-determined character of these equations is,
as it must be 50, resolved with the specification of the electromagnetic
field-material response properties of the system. | shall take this point

up again in due course {(cf. Chpt. C.).



69

B.5.a. Magnetic flux equations

for Bi the magnetic flux density, e magnetic flux ¢M is defined by
o = |8 0 . (73)

By virtue of the assumption (i.e. axiom)

B, da;, = 0 (74)
StV
introduced now, it may be concluded that the integrand must vanish; or,
that in the volume of interest
B, . = 0, (75)

. . - 3 =+
This well-known result is the conservation equation for 8B,

When the region of volume contains a surface of discontinuity, the eva-

luation of (75) across that surface results in the jump conservation equa-

51

tion for this field

ﬂBiﬁiD = 0 or, equivalently, HBiD = Eijkkjﬁk (76)
where kj’ an arbitrary field upon s(t), is defined by (80)2.

B.5.b. Faraday's law of induction

There still remains something more to be said of a fundamental, as
against a derived, nature concerning the dynamical macroscopic 8 field and
its relation to E; and this most particularly here for moving material sys-
tems interacting with an electromagnetic field in the case of a surface of

discontinuity. To begin, however, | consider regular volumes.
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For 52 £, = Bi' QE = and c? = 6? = 0, equation {31) without sub-

scripts together with (75) yields the familiar result

= =
CijkEk,j = T (77)

known as Faraday's law of induction. It shall prove desirable to have a

form of (77) which lends itself more easily to the development of the forth-

coming constitutive equations. Use of {(12) and (lo8)l herein leads to the

53

desired alternative result; it being

»

8 B - (B.6,, - B & v

kKt :j K, j TR T + ekjlfS;l,j 0. (78)

It follows in a similar manner from a subscriptless equation (33)

B

wherein the possibility of a singular line supply of ﬁ, Tk

is neglected,

that for a moving surface s(t) the expressions

i lE

tijk j kﬂ unﬂBiH or, equivalently, ﬂEiD = fA, - uk, (79)

represent the jump balance equation for £, Here

f = ﬁkﬂEkD and k., = e. A (B] (80)
are arbitrary fields defined upon s{t).

B.6. Linear momentum balance equations

The balance of total linear momentum for mixtures interacting with
an electromagnetic field consists of two parts; one for the material por-
tion of the system {i.e. the constituents and the mixture), and the other
for the electromagnetic field. The presentation of the hereto related con-

siderations of this study is the main purpose of this section.
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B.6.a. Constituents

For any constituent let its density of linear momentum and the flux

thereof, the constituent stress tensor, be given respectively by 55
= L
W), = ev, and TR (81)
a aa a a

The supply and production rate of the density of linear momentum for that
constituent are called respectively the external (body) force density and

" the interaction force density and are given here by the relations

(c:‘vb)i = ob, and @Y. = & . (82)
a aa a a

56

In continuum mechanics the supply term is often presumed to be known ..
This amounts, in fact, to the introduction here of an explicit relation for

pb;. The selection of a 'physically reasonable (electromagnetic) force ex-
aa :
57

pression' remains at present a non-trivial matter ~'. in this study | make

the assumption that

. T _
pby = QE; + ey B o by = QF 4 e BB 0 by (83)
aa a a ala aa a ala

where p bi represents the non-electromagnetic forces that may in general be
ala
present and the remaining terms are those of the Lorentz force. The term

i
a
relates, of course, to the momentum transfer resulting from constituent in-
teractions., Further yet, let the supply from s(t) of linear momentum be
denoted by
=S
(), = & . (84)
a ! a



72

In terms of these quantities it follows from (30) that the balance equa-

tion for the linear momentum of a constituent is

N -

pv, = t.. .~ Q8 -¢€.. §B, -pb. = @ - 2Cv.,
aa' a'dr) aa' leaJ k ala' a' aa'
while (32) yields the result (85)
lov.(v. - u)A.] - [t..A.] = & .
aa‘ aJ J ] a'J J a'

This last relationship is the jump balance equation for its |linear momen-

tum,
B.6.b., Mixture

A summation over (85) for all constituents gives the related equations

for the mixture., From (85)1 comes Cauchy's first law of motion expressing
58

the conservation of linear momentum of the mixture

oV Tty T O e By - "gi =03 (86)

while (85)2 gives the jump baltance equation for that parameter, viz,

. a0 oS
IIpvi(vj - uj)njﬂ - ﬂtijnjﬂ = @ . (86)2

Here, the stress tensor of the mixture is given by

s
<~
ZiJ (;ij - Z:i:.) . . (87)

—_

a=

(88)

©
oo
n
e
)
=
o
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[\
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is the total non-electromagnetic body force density. The supply by the

singular surface for the linear momentum density of the mixture is

S

Y ik (89)

a=1
and the passage from (85)1 to (86)] has taken place under the assumption

(i.e., axiom) of linear momentum conservation of the mixture

S

D om o= 0. (90)
“— a

a=1

B.6.c. Electromagnetic field

From (86)1 it may be seen that the body force density of the electro-

magnetic field in the mixture is given by

pz. = Q§ + eijk%Bk . (91)

It is possible, on the basis of this relation, to secure a iinear momentum
balance equation for the electromagnetic field. In doing so | introduce the
following definitions:

first, the linear momentum density of the electromagnetic field is defined

by the "Abraham vector' Gi where

= . 2
G € kDB 3 (92)
the Maxwell stress tensor for the electromagnetic field is
= -} .
Eij = DiEj + BH; $(D E, + aka)aij ; (93)

and ﬁ?E denotes the supply by the singular surface of G;.
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From (91), (92) and (93) it thus follows that

3G,
L o- ¢, = -pb. (94)

at giisd gl
expresses the balance of the linear momentum density of the electromagnetic

field. Further yet, the parameters above permit the use of (32) by means of

which a jump balance equation for Gi can be gotten: it is given by

£6;Ju + u;ijﬁj]] = A (95)

B.6.d. Mixture-electromagnetic field

From the foregoing considerations it appears clear that for the total

system (matter plus electromagretic field), that 59

]
o

35 v +6) ¢ bvivy -t - ) oo by (96)

' g'd ) o

is its balance equation for linear momentum density. The coupled mixture

and electromagnetic field density of linear momentum and the flux of same

are given here respectively by pv. + G, and pv.v. - t.. - t...
i i ij ij gl

In addition, the jump balance equation is found to be of the form

R .. .SM
Hpvi(vj - uj)njﬂ - 06 du - ﬂ(tij + Eij)"j" = @
or, upon using (39), equivalently as (97)
R . .SM
[[vi]lp(vj - uj)nj - ﬂGi]un - H(tij + Eij)njﬂ = @

Here, the non-electromagnetic part of the interaction force density which

is related to the surface s(t) is written as

&l = m - &t (98)

i i i
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B.7. Angular momentum balance equations

For fluid mixtures having a physic-.' character thought to depend non-
negligibly upon its polar constituents (wherher atomic or molecular), it is
necessary to establish relationships describing the behavior of the inter-
nal angular momenta of the system. And this, of course, even in the case
when there is no electromagnetic field present. These are the matters of

concern in this section, and they shall now be examined briefly.

B.7.a. Constituents

Let 60 the density of total angular momen t um together with its flux be

given for any constituent by

(wv)k = el and (¢¢) = e Xt - m (99)
a aa a J

where ™ is the couple stress tensor 61 of that particular constituent. De-
a .
noting by G the assigned 62 body couple, the supply density of total angu-
aa
lar momentum can be written. It and the production rate of oL, are given
aa

here respectively by

¥ _ = _a
(cv)k = sk”xlpbi + plk and (cv)k = fi - (100)
a aa aa a a

It may be noted that the physical character of ﬁk, like that of ﬁi) is one
a a
of property transfer; this being due to the reactive and diffusive nature

of the system, Lastly, the supply by a singular surface is denoted by

(101)
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Use of the definitions above in (30) leads to the balance equation for

the tota! angular momentum of a constituent; viz,

L,
aa N
+ (pLv.) . - m.. - pl, - A =
ot aaka 2] akJ’J aak ak
(Eklixitij),j + ck”x]obi . (102)
a aa

The jump balance equation for this quantity follows from these parameters

and (32). It is given here by the expression

lIoLk(vi - ui)n.l - ﬂ(cklixlti' + :kj)ﬁ.ﬂ =

s
. (103)
aa a ! aJ J k

[I=-1)

Moment of linear momentum

63

Here the density of moment of linear momentum and its related flux

are given respectively by

(wv)k = oY and (o = =g .xX t.. ; (104)
a

aa a

while, the supply and production rate may be denoted as

v - ¥ - -
Oy = eqyxeby and (@0 = eyt + e xR (105)
aa a a a
The supply of that quantity by a surface s{t) is taken to be
¥ =S
(T )k = g M- (106)
a a

In terms of these parameters it follows from (30) that
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——— . - - m =
5t + ["(ekl"‘l"i)"'],' Ckijti;j Ep i
a d a a a
it ;) * si*iob; s (107)
da aa

which expression is the equation for the balance of the moment of linear mo-

mentum of a constituent, Similarly, utilization of (32) yields the relation-

ship

E(eklixlg;i)(v’ - uj)ﬁ.ﬂ = legyxgt; Al = ¢

=S
. e (108)
a j aldi kti 2l

known as the jump balance equation for said density of moment of linear mo-

mentum,

Internal angular momentum

The desired constituent expressions for internal angular momentum are
secured by taking the difference between the relationships for the total
angular momentum and those for the moment of linear momentum. For the spe-

cific internal angular momentum and the production rate of said quantity

given for any constituent respectively by

v. and 8§ = @A ]ﬁ. . (109)

the balance equation for the internal angular momentum of that constituent

is found to be

- m. . = pl, + €..t.. = & - 2 . (110)
k akJ,J aak ¥|JaJJ k k

The jump balance equation of this quantity is seen from a similar treatment

to be
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Eka(v. -u)A. ] - I

m Al = & , : (1)
L D B A LA k

where the supply by s(t) for the internal angular momentum density of a con-

stituent has been defined as

S - -
Gk = Zk SRR ETE S M (112)

B.7.b. Mixture

Total angular momentum

The total angular momentum of the mixture has a balance equation gotten

via a summation for al)l constituents over (102) and it is

aoLk

VIR T I

= (Cklixltij),j + ek]ixlobi . ) (113)

Here, the new definitions involved are those for the total density of angu-

lar momentum, the couple stress tensor and the body couple of the mixture.

They are given respectively by

S S S

< <
oL, = ol, , m . = Z (m . = oL, u;) andp! = ol .
k 521 aak kj g akJ aakaJ k ég# aak

(114)

It may further be noticed that the transition from (102) to (113) has taken
place under the assumption (i.e. axiom) that the total angular momentum in

the bulk of the system is conserved; i.e., that

A, = 0. (115)
a
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In a like manner a summation for all constituents over (103) yields

the jump balance equation for the total angular momentum of the mixture. It

reads as follows

s uA - S
lot, (v, u A, H(eklix]tij + mkj)njﬂ = A s (116)
where
s
S N _S
A, = /14 zk = & + € 1% (117)
a=1

is the singular surface supply of the total angular momentum of the mixture,

The first term of (117)2, the supply by s{t) of internal angular momentum

of the mixture, is given by

S
=
= ;.5 (118)

Moment of linear momentum

From a summation over {107) for all constituents comes the relation

X pv., + [eklix](pvivj -t..)] . -

ijtiy T k%P (119)

for the balance equation of the moment of linear momentum of the mixture.

Equation (1€8) in turn provides under these arguments the jump balance

equation for this parameter; it being

e, 7oy, vy - u.)ﬁjﬂ - Hek,ixltijﬁ.ﬂ = g . @ . (120)

ki j j
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Internal angular momentum

As was the case regarding the development of the constituent relations,
here too a subtraction of the equations of (jump) balance for the moment of
mixture linear momentum from those for the total angular momentum of the

mixture gives the desired results. Hence, the conservation and jump balance

equations for the internal angular momentum of the mixture are given respec-

tively by 84
ka - ka.,-j - p]k + Ckijtij = 0
and (121)
oo, (v. - u)A.1 - Im A1 = & .
k'j 3 kj'j k

Here, the density of internal angular momentum of the mixture has been de-

fined as

Q. = Z G (122)
1 aa

ZZJ Gk = 0. (123)

For the sake of simplicity in the description from this point on of
the physical response of the system, | wish to make the following remarks.
As can be easily seen from (11)), the constituent stress tensors need not
in general be symmetric. Such a statement is equally valid under general
circumstances with regard to the mixture stress tensor: this on the basis

of (121),. These anti-symmetric stress tensors make possible the treatment
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of a broader class of fluid mixture systems than | wish to consider here.
Hence | introduce at this time the assumption that (121)1 be- required to

satisfy Cauchy's second law of motion t%. That is,

t.. = t.. ; (124)

which relation expresses the fact that the stress tensor of the mixture is

taken to be symmetric.

The general condition to be satisfied in order that said symmetry will
exist foltows from (121)] and can conceivably be met in a number of ways,
each depending upon the physical nature of the particular system being in-
vestigated. | adopt here the point of view that under this assumption | am
restricting the class of mixtures being treated to non-polar media or to
polar mixtures of such a nature that the mixture stress tensor is symmetric.
The prefix 'non'' as used with regard to the polarity of fluid mixtures
should not be taken here in an absolute sense, But rather, those results
established in this study are to be viewed as expressions assumed valid
even for those fluid mixtures whose polarity, if any, may be taken as having
a negligible role in the determination of the mechanical behavior of the
medium. The manner in which this class of fluid mixtures complies with the
symmetry condition (124) is, although unspecified, presumed to be such that
all internal angular momentum related parameters and their govefning equa-

tions ensure the validity of this assumption.

B.8. Energy balance equations

As was the case for linear momentum, the balance of energy for the
total system reflects the contributions thereto of the constituents (and
hence the mixture) and the electromagnetic field. To begin, | consider the

first of these.
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B.8.a. Constituents

Total energy

Equation (30) is again to be employed, and the definitions of the quan-

tities therein are here taken to be the following 66. First,

(125)

. . . 2

is the density of total energy of a constituent; where pe and v~ are res-
aa aa

pectively the densities for that constituent of internal and kinetic energy.

Next, the flux of the quantity (125) is given by

vi + g (126)

where q is the flux of internal energy of the constituent. Third,

a
o$ = p(bivi + r) (127)
a aaa a
represents the supply of total energy; with pr being the density of body
aa
heating. And lastly,
¢v = & + JE, (128)
a a a

is the production rate for the constituent of its total energy density.

Here, & is the total energy production rate while the last term denotes the
a
power expended by the electromagnetic field on that constituent.
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From these definitions, together with (30), follows the relation

2
3o (e + 3v)
-a—i-a—a + [p(e+%v2)v.]. =
a a a a '’
~ T
= (t..v.) . = q, . + plb.v, +r) +8& + J.E, (129)
a'dal ) ar! aaa' a a at!

called the balance equation of total energy of a constituent. Upon intro-

ducing the supply by the surface s{(t) of this quantity
T = & + &, (130)

where the two terms denote respectively the non-electromagnetic and the

electromagnetic parts of said supply, it follows from (32) that

To(e + v (v; = u)A ] + D(g; -t v)ad = &M 4+ &F . (131)
a a a a a aJ aJ '

This expression is termed the jump balance equation of the total energy.

Kinetic energy

Here the balance equation for the kinetic energy of a constituent de-

rives from a multiplication of (85)1 by v, and it is given by
a

Evi)]vi . (132)
aa a

]
™
~

+

v O

m
+
[v]
[
-
o
+
©
o
+
o
§
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Introduction

of (132) into (129) now provides the desired result; viz.

pe - t..v. . + q. . = pr = F.& =
aa a'dalsd al*d aa a'al
“ - 2 ~ ”
= & - &(e + v) - (mi - cvi)vi
a aa a a aa a
or, equivalently, (133)
pE + pe .U, = t..v. . + q. . - pr - F.& =
aa aa’la’l a'da'd add aa a'a'
~ - 2 -
= & - (e + gv7) = (ﬁ'\i - cv.)vi .
a aa a a aa a

These relations are termed the balance equations of the density of internal

energy for a constituent.

B.8.b. Mixture

A summation over (133)2 gives the equation of balance of the internal

energy of the mixture

&€ - t..v. . + q. . = or - & =
pe 1] V) qJ;J P 3' !
Hereto belong the following new definitions:
s s
2 2
pe = E ole + 3u8) = pe! + Z%ou
perCI a 5=1 2@

is the internal

q, = [q. - t..u, - ofe + éuz)u.]
J a’ a'da' aa a a
a=1
s
= q{ - ;} Clt..u. o+ ole + iuz)u.]
J 5;1 a'la' aa a a

energy density of the mixture; with pe'

(134)

(135)

its "inner part'';

(136)
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represents the flux of internal energy of the mixture, its inner part being

|
qj; and lastly, the density of body heating of the mixture is

S
or S (r + b.u.) (137)
= pAir . U. .
éJ] a a alal

It should be noted that the assumption (i.e. axiom) of conservation of ener-

gy of the mixture made in going from (133)2 to (134) has been that

-

& = 0. (138)
a=1°
Equation (131) when summed over for all constituents gives
L2 _ - _ ~ _ .SM _SE
{o(e + 3v )(vi ui)niﬂ + |[(qi tjivj)niﬂ = &7 + &
or, using {(39), equivalently : (139)
(e + &vzﬂp(vi - w4 [[(qi - tov)Ad = &My S

jijoi

B.8.c. Electromagnetic field

The balance equation of energy for the electromagnetic field is here

simply given by the well-known relationship

a
m m

- (140)

L%
+
m wv
-

where, the energy density, flux of same (i.e. the Poynting vector) and the

power expended on the sources (i.e. charges and currents) are given respec-

tively by

Lo T
E = 3(0E, + BH), :i = e pEfy and E = JE {141)



86

Upon defining the quantity involved by b, =€, and denoting formally

its flux and its supply by a singular surface respectively as

¥ = s - ev. and T = &°, (142)
E

utilization of (32) provides the jump balance equation for the density of

electromagnetic field eﬁergy: it is

feu - [s.A. ] = & . (143)
£ " :

B.8.d. Mixture-electromagnetic field

The developments of this section culminate with the merging of the re-
sults above in such a manner as to provide expressions for energy that are

applicable to the total system. Here then, the conservation equation for

the coupled densities of material and electromagnetic field internal ener-

gies is (for symmetric tij)

3
57 (o + E) + loev; + :i),i tisve,y t

+ .. - r - b.v. = 0. (144

95, ? PRI )

From (139) and (143) the jump balance equation here is seen to be either

lp(e + irvz)(vi - u)Al - [[E]Iun +
Lo aSM
+ lfq; - tY * :i)ni]l =&

or, again using (39), equivalently (145)
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fe + &vzﬂo(v. - u)f. - Qelu + [(q. - t..v. -S.)A.] = &,
i i’ n .

B.9. Entropy balance equations

In a rational mechanical theory the selection and utilization of an
entropy principle is of cardinal importance. This is so first with regard
to the closure of the set of system balance equations, and then too in con-

nection with the securing of the necessary constitutive equations.,

Generally speaking, there does not seem to be complete unanimity among
the practioners of modern continuum mechanics regarding the formulation and
interpretation of the various field parameters and/or their governing equa-
tions 67. An example of this situation may, in particular, be found with re-
gard to the matter of the establishment of an entropy principle 68. For the
problem at hand the considérations below and the entropy inequalities re-
sulting therefrom have been introduced primarily on the basis of their com-

patibility with the study of Liu & Muller 69.

B.9.a. Constituents

Equation (30) serves once again as the departure point from which the

70, the quantity

development of the desired balance equations begins. Here
involvéd is the entropy density of a constituent; it and its flux being de-
noted respectively by

Y. = pn and @7 = -.Ie(qi + eijkngk) . (146)
a aa a a a’a
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The supply density and 'production' rate A for that same constituent are

in turn expressed as follows:
vo_ L
v = Ter and g, = oY . (147)
a aa a aa

Here T is the (absolute) temperature of all cohstituents, and thus al-
. 2 . . .
so of the mixture 7 . The motivation for the selection of an entropy flux
for constituents such as that introduced here is found in the more general

result derived by Liu & Miller 73

for the case of a single continuum. With
a view towards looking eventually into the physical character of the mix-
ture systems here when they are ''close to equilibrium', | consider that the
generglization introduced here of the linearized single=fluid result of

Liu & Miller suggests itself as an acceptable possibility. Similarly, the
constituent entropy supply relation préposed here follows from the single-

7“. On the basis of the discussion above, |

fluid considerations of Liu
deem the generalization (1&7)1 of his derived non=relativistic fluid result

to be a satisfactory choice here,

Given the identifications (146) and (147) above, it follows from (30)

that the entropy '‘balance' equation for a constituent s

N 1 1 A
on + [=lq; + eijkaij)]’i Tor + & =py . (148)
aa a aa aa aa aa

For a supply by a surface s(t) of the entropy density of a constituent de-

noted by - Ys, equation (32) together with the definitions above yields
a a
the relation
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Ton(v, - ui)ﬁil] + lI%(qi + eiijJ.Mk)ﬁil] S~ (149)
aa a a a’ 3 a

termed here the jump 'balance'' equatior. f the constituent entropy density.

B.9.b. Mixture

The result of a summation for all constituents over {148), together

with the assumption {i.e. axiom) that the entropy production density of

the mixture

oy = LDY (150)

satisfies the condition that py 2 0 75, is the relationship

s S
— Orl

. 1
pn  + E-.le(qi + Z eijkg’j:k Cjiu_j”,i - —=z0. (151)
a=1 a=1

This is the entropy balance equation for the mixture. The definitions which

relate the constituent relations to this equation are as follows:

S S
pn = on and or, = or (152)
|
aa aa
a=1 a=1

are respectively the entropy density and the inner part of the body heating
of the mixture; and,

L2
c = ple + 3u” - Tn)éj. - t.. . (153)

ji
a aa a a a
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For this last relation it may be observed that

S S

N7 - - -
) gji = ple Tn)sJ.i Z:Ji . (154)

a=1 a=1

This means that for €, n and tji given by constitutive equations (cf. Chpt.
a
C), only s=1 of the Cji are independent,
a
Upon summing (149) for all constituents and making the assumption

(i.e. axiom) in doing so that the supply by a surface s(t) of entropy den-

sity of the mixture

Yo = Y ' (155)
a

fulfills the requirement that YS > 0, the following relation-is found:

w
w

-~ 1 ~
IIpn(vi - ui)niB + ﬂ-_—l_-(qi + J Eijkfjank - :Ej Cjiu.)niﬂ >0 . (156)
a=1 a=1

This is the jump balance equation for the mixture entropy density. Use once

again of (39), together with the assumption that T is continuous across

s(t), allows (156) to be rewritten in the form

Tﬁnﬂp(yi - ui)ﬁi + Hqiﬁiﬂ +

s s
N . ! -

+ [ 1 Eijkfj:kniﬂ - E_i1 gji:jnin > 0. (157)
a= a=

This relation shall be employed shortly in the subseguent development of

the entropy principle here.
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B.10. Selected equations: a recapitulation

For developmental purposes below . is worthwhile to collect here the
set of equations which shall be referred to, directly or in terms of their

equivalents, in the sequel to this chapter. These relationships are now given.

Balance and conservation equations

z + Z;j’j = 2 . (158)
SRR IR IR T LTI T
|j=tji (160)
pE - tijvi,j + S or - 3i8i =0 (161)

S S
. ! - -4 >
ph + [-f(qi + Z eijk{‘,jzk Z gJi:J)],I T prl 2 0 (162)

a=1 a=1
o, = (163)
D,
F F i
T I I B T (164)
B, , =0 (165)
8.

[ 166
6ijkEk,j 3t (166)
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Jump balance equations

le(vi - ui)ﬁiﬂ = & (167)
a a a
oA ) A0 .SM
[[Vi]]p(vj uJ.)nj [[Giﬂun H(tij + Eij)nj]] = i (168)
Le + 12 Io(v; - u)d, - Iebu, + Tla; = 50 = SR, - (169
<§-
Tlnlp (v, - ui)ﬁi + lq;A 1 + II/_J eijkgj:kﬁi]]
=1
S
< .
- I[ZJ Cji”;”i“ z 0 (170)
a=1 a a
[[‘:Di]] = eijkhjﬁk (171)
II.J(’k]l = gﬁk+ unhk (172)
8,1 = eijkkjﬁk (173)

[E;] = fA, - uk, (174)
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Footnotes to Chapter B

! Note CFT [1960, 9, Sect. 81.

2 With regard to integral principles see, for example, CFT [1960, 9,

Sect. 71.

3 The degree to which field quantities in a given region of a system
are continuous is set down in an assumption of smoothness. In this
study | assume whatever degree of smoothness is required to ensure
the validity of the relationships concerned. This point is touched
upon by Truesdell in CFT [1960, 9, Sect. 16].

b Cf. Post [1962, 6, pp.25-26] and Bergmann [1949, 1, p.1771.

5 Motivated by the work of Truesdell [1962, 10, p.2339] and Kelly

(1964, 4, p.133], | too divide the total supply of a field quantity

of a constituent into two parts. The one part relates to the con-
stituents as though they were single continua; while the second part
accounts for the density of the production rate (i.e. supply or
transfer) of the given field quantity due to, e.g., the diffusive

and reactive interaction of the constituents. This latter contribu-
tion to the total supply is generally not taken as being known a priori
as is the former; but rather, it is most properly described in terms of
appropriately formulated constitutive equations. The developments
pertaining to balance equations in regions of volume and surface
containing respectively singular surfaces and lines are given here in

the sections beginning with Sect. B.1.

6 Truesdell [1969, 7, p.837.

7 CFT [1960, 9, Sect. 13].
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| ‘refer the reader to CFT [1960, 9, Sect. 66A] and the references

given there for the historical aspects of this matter.

Cf. Alts [1970, 1, p.12]. The reader is cautioned not to confuse
these ''particles' of continuum mechanics with those of the constit-
uents {e.g. electrons, atoms, etc.) in terms of which they are

defined.

CFT [1960, 9, Sect. 15].
Jaunzemis [1967, 12, p.67J.

CFT [1960, 9, Sects. 15 and 65].
CFT [1960, 9, Sect. 158].

Not altogether unusual, both direct and index notation shall be used
in this study. For the latter Cartesian tensor notation is employed.
As above, Greek letter indices relate to material co-ordinates while
spatial co-ordinates aregivenby Latin letters. Both sets of indices
range over 1,2,3 and, following Einstein, repeated indices'indicate

a summation.

The alternator (or permutation symbol) Eijk is a third-order tensor

defined by €k = 1, -1 or 0 if, respectively, the indices ijk are an

jk

even or odd permutation of 1,2,3 or if any two indices are equal.
CFT [1960, 9, Sects. 16 and 65].
Cf. for example CFT [1960, 9, (16.4)].

The use of the names Lagrangian and Eulerian for the material and

spatial descriptions respectively has been shown by Truesdell (CFT
[1960, 9, Sect. 66A and the references therein]) to be misnomers;

both descriptions having resulted from work done by Euler.
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CFT [1960, 9, Sect. 731].
CFT [ 1960, Sect. 158]
Ibid.

CFT [1960, 9, Chpt. C1.

CFT 1960, 9, Sects. 81 and 192]. Cf. also Miller [1973, 9, p.24]

and Kelly [1964, 4],

| follow Kelly [ 1964, 4, pp.134-137] and Miller. [1973, 9, pp.26-28]
in this study in noting that the results of such considerations are
significant with regard to a theory of material media interacting
with an electromagnetic field. Truesdell & Toupin (CFT [ 1960, 9,
Sect. 184]) note that "Singularities located upon lines seem not to

have been studied from a general viewpoint.'.
Cf. Kelly [ 1964, 4, p.136] and Miller [1973, 9, p.27].
Note the comments of footnote 5 above.

Cf. CFT {1960, 9, Sect. 193], Kelly [1964, 4] and Miiller [1973, 9,

p.241.
CFT [1960, 9, Sect. 193] and Kelly [1964, 4, pp.133-134].

Ericksen (CFT [1960, 9, Sect. App,26]) points out a historical
motivation for using the terminology ''Green's transformation'' in
place of, e.g., '""Gauss' theorem', ''divergence theorem'' etc. Although
writers in modern continuum mechanics seem divided in their choice of
name for the mathematical results involved, | follow the CFT here.
For a region of volume admitting singular surfaces the appropriate

expression is given, e.g., by Jaunzemis [1967, 12, p.198].

Cf. Kelly [1964, 4] and MUller [1973, 9, pp.26-271.
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The so-called "'Stokes' theorem'' has been shown by Truesdel) (cf.
Ericksen, CFT [1960, 9, Sect. App. 281) to have, in fact, derived
from the studies of Kelvin. For the sake of proper attribution |
here too follow the CFT and use the terminology ''Kelvin's transfor-
mation'. In the situation where the surface region of interest con-
tains a singular line, the relevant expression here may be found in,

e.g., Jaunzemis [1967, 12, p.199].

Cf., for example, Kelly [1964, 4].

CFT [1960, 9, Sect. 1591.

Aris [1965, 2, p.811.

Cf. Gyarmati [1970, 5, p.28] and Miiller {1973, 9, p.192].

The principle of superposition | introduce here is, with some slight
modification, that given by Podolsky & Kunz [1969, 5, p.47]. It is
to be noted that it too, like the mechanical principles of Truesdell
(cf. footnote 6), is of a metaphysical nature. In this regard see

p. 274.of the cited work by Podolsky & Kunz.
This approach was taken by Kelly [1964, 4, pp.146-152].

CFT [1960, 9, Sect. 279]1. These relationships are postulated as hold-
ing in preferred Euclidean (or Galilean) frames of reference and

they serve to couple the charge-current andvthe electromagnetic fields,
Now, the Maxwell's equations for the electromagnetic field are known
to be invariant under Lorentz transformations. | thus assume that
since the mechanics of mixtures here is classical, and examined in
terms of inertial Euclidean (or Galilean) frames, that there exists

a frame of reference which is simultaneously Lorentzian and inertial

for which the developments here are valid. See in this regard Mdller
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01973, 9, p.1303.
CFT (1960, 9, (233-35)2]-
CF. Liu & Miller [1972, 5, (2.20),% ar. iller 1273, 3. p.132..

Z

CF. CFT {1960, 9, p.6897 and Liu ¢ miiller 1972, 5, (4.4), .

See, for example, Jackson L1967, 11, Panofsky & Phillips 1962, 5°,
Penfield, Jr. & Haus [1967, 17}, Stratton L1941, 1' and CFT . 1960, 3,
Chpt. FJ.

Cf. Kelly [1964, 4, p.150].
Cf. CFT [1960, 9, p.636].
Cf. CFT [1960, 9, p.677].

Note CFT [1360, 9, (279.1)2 and (283.35)1]; the latter equation cited
being generalized here. This result has also been secured by Demiray

& Eringen [1973, 3, (3.5)1].
Cf. Kelly [1964, 4, (4.113)].
Cf. Liu & MUltler [1972, 5, (2.20)1] and Muller [1973, 9, p.132].

This result generalizes, by virtue of its mixture character, that
given by Truesdell & Toupin (CFT [1962, 9, p.639]), Liu & Miller

[1972, 5, (4.4)_]1 and MUller [1373, 9, p.126|. The formal inclusion of

3
current densities upon s{t) is a trivial matter. Such densities have
been disregarded here for the sgke of simplicity in the further

development of this theory. Equation {71) including a surface current

term has been given by Demiray & Eringen [ 1373, 3, (3.2)25.

See, for example, Sommerfeld {1963, 3, pp.13-201 and Kline & Kay

[1965, 11, p.33;. Note here also footnote F7.
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CFT [1960, 9, (278.9) and (278.12)1, Liu & Miller [1972, 5, (h.u)zj

and Miiller (1973, 9, p.120.and p.143].
Cf. Kelly [1964, 4, (4.85)] and Miller [1973, 9, p.120].
Cf. Liu & Mbller [1972, 5, (2.19)]] and Miller [1973, 9, p.1311.

CFT [1960, 9, (278.8) and (278.11)1, Liu & Miller [1972, 5, (h.h)]]

and Miller [1973, 9, p.121 and p.143].

With regard to (81) and (82) see, e.g., Kelly [1964, 4, p.139].

CFT (1960, 9, Sect. 1571.

Cf. Penfield, Jr. & Haus [1967, 171 and CFT [1967, 9, Sects. 284 and
2861.

CFT [1960, 9, Sect. 200]. The integral basis of this relationship de-
rives here essentially from a constituent version of Euler's first
law (ibid, Sect. 196) and the Euler-Cauchy stress principle (ibid,
Sect. 200). In contrast to popular misconception (see, e.g., Sﬁtton

& Sherman [1965, 17, p.297] and Haase [1969, 2, p.228]) such a result
is not the consequence of Newton's laws of motion which have been
pointed out by Truesdell & Toupin (CFT [1960, 9, Sects. 2 and 1961)

as being inadequate for this purpose; not to mention others.
Cf. MU)ler [1973, 9, p.1301].
Cf. Kelly [1964, 4, p.1411],

CFT [1960, 9, p.538] notes for single continua the introduction of
the (anti-symmetric) couple stress tensor as a means of accounting
for torques not arising from forces. Kelly [1964, 41, e.g., extended

that development to the case of mixtures.

The body couples are, like the body forces, presumed known; and they
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too must be specified. Due, however, to the assumption (124) they need

not be made explicit in this study.

These definitions are gotten from a multiplication of (35), by

Ekli Xy and are introduced solely for the formal convenience they

of fer.
Cf. CFT [1960, 9, (205.10)] and Kelly [1964, 4, (4.37) and (4.39)1].
Similar to the remarks made in footnote 53 for the case of linear

momentum, (121). is secured by means of Euler's second law (CFT [1960,

1
9, Sect, 196]) and the Euler-Cauchy (couple) stress principle (ibid,

Sect. 200); both of which are expressed in a constituent form.
CFT [1960, 9, p.546]. See here also Miiller [1968, 9, (2.17)].

Cf. CFT [1960, 9, Sect. 2431, Kelly [1964, 4, pp.142-143], Truesdell

[1969, 7, pp.84-85] and MUller [1973, 9, p.36].

For example, see Truesdell [1969, 7, pp.93-941, Green & Naghdi

[1969, 1] and Craine, Green & Naghdi [1970, 41.

See, e.g., Green & Naghdi [1971, 47, Liu [1973, 6, p.27] and Demiray

& Eringen {1973, 3, p.910].
Liu & Muller [1972, 5]. Note also Miller [1973, 9, p.731].
Cf. Truesdell [1969, 7, p.33].

For mixtures with constituents whose energetic coupling is non-

negligible the term pymay (cf. Truesdell, ibid) '""be of any amount'’; it
aa

being subject only to the restriction assumed for (150). The less

general case wherein each constituent is accorded its own entropy

inequality has been examined in various degrees by, e.g., Green &

Naghdi [ 1971, 4] and Demiray & Eringen [1973, 3]. Such treatments



72

73

74

75

100

have, however, been pointed out by Dunwood & Miiller [1968, 2, p.347]
and Truesdell [ibid, p.93] as being physically deficient in that

regard.

The temperature T(x,t) is a primitive (i.e. physically undefined)
scalar field quantity in rational thermodynamics. (Cf. Truesdell
1968, 7] and Truesdell [1969, 7, Lecture 1].) Here T(;,t) is taken
to be a function having positive values for all X and t: i.e. T > 0.
A many-temperature theory of mixtures would indeed prove both inter-
esting and valuable. However, mixture continua behavior in general,
and that of mixture continua interacting with an electromagnetic
field in particular, represents a problem area barely investigated
at present. | thus conclude (cf. Miller [1968, 4, p.6]) that it is
worthwhile to limit the considerations here to single-temperature

systems,
Liu & Miller [1972, 5, p.1691].
Liu [1973, 7, pp.113-114]. Cf. also Miiller [1968, 4, p.7].

Cf. Truesdell [1969, 7, p.88].



C. CONSTITUTIVE EQUATIONS

The relationships secured thus far describe essentially the kine-
matics of a moving and chemically reactive mixture interacting with an
electromagnetic field. Balance equations are, however, unable to provide
any insight into the action of a system upon a portion of itself and
the subsequent reaction (i.e. material response) of that part upon the
system 1. For example, the balance equations for physically similar
material media (e.g. all noble gases) evidence no formal difference in
their general structure. The distinction between physical systems comes

with the characterization of their response properties.

A continuum description of material behavior is a phenomenological
one. It is the knowledge and understanding of the phenomenology relevant
to a given system that must lead to the constitutive equations which
serve to give that system its own macro-identity. Constitutive equations
are, as a result of analysis and abstraction of physical experience, a
definition of ideal material systems: i.e., mathematical models of real
media. The formulation of édequate constitutive equations is a most
formidable task 2; shortcomings here, for example, in the case of matter
in an electromagnetic field being generally considered as the origin of

theoretical and experimental disagreement

It is a twofold task that constitutive equations fulfil. They pres-
cribe the material response of a system and in doing so serve to make
the balance equations thereof determinate h. The spirit of the approach
taken here requires that these relationships be such that the second
part of Truesdell's second metaphysical principle given above be satis-

fied.
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As was the situation commented upon in connection with the entropy
principle, the manner in which one '‘properly' allows for constituent
interactions does not yet appear to be an entirely settled uponmatter.
The possible shortcomings and discrepancies notwithstanding, | assume
that an adapted methodology of a rational mechanical constitutive theory

I

such as that employed by Liu & Miiller ? offers a reasonably secure way of

deriving the constitutive equations for this problem.

The balance equations given earlier indicate that constitutive
equations must be provided for the following ''dependent' 6 scalar (S),

vector (Vi) and tensor (Tij) fields:

s a% el g (a=1,2,...,s),
V, i@, q), PN (a=1,2,...,8)
a a a
and
Tij : tij’ Cij (a=1,2,...,5).

The "independent'' scalar and vector field variables upon which these

fields may depend have in this study been assumed to be the following 7

S :p, T ° (a =1,2,...,s)
a
and
Vi : g,k, T,k' :k’ Ek’ Bk (a = 1T2,...’S).

By assuming that the material response of any system is an
intrinsic (i.e. observer independent) physical property of that system,
it is desirable to establish constitutive equations that reflect this

viewpoint. That is, for any given system the constitutive relations are
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assumed to be invariant under co-ordinate transformations and form-

invariant under observer transformations

A change of reference frame (cf. Sect. B.a.), or observer transfor-

mation, is expressed here by a Euclidean transformation

X, = .Oij(t)xj + 4 (1) and t* = t-a (3)

where the arbitrary quantities oij(t)’ di(t) and a are respectively a
time~dependent orthogonatl tensor and vector, and a constant. The scalar,
vector and tensor constitutive field quantities (1) and the field

variables upon which they are presumed to depend are called objective

when they transform under (3) according to the following relations ]0:
s = s,
vVioo= 0, (L), (for polar vectors),
p! iJ pl
. .
v = o (t)fo,. (t)v, (for axial vectors) )
A | Pq | oAl
and
TV =

¥ 0 (805, ()T

0f the fields (1) and (2) above all are taken to be objective

with the exception of ﬁi, Vi and Ek' With a view towards the coming
a a
developments it is necessary to secure those combinations of variables

involving these fields that are objective. With regard to mi I follow
a
@, - Evi. Furthermore the objective vectors
a aa
gotten here from Vi and Ek are, respectively, the velocity difference
a

. . . 12
V, and the electromotive intensity &, .
b s

. Muller H and replace it by
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The set of objective and independent field variables is given by

<} p,k’ T: T,k' Vk’ 8k and Bk (5)
a a b s

and F is taken to denote any element of the set of constitutive fields

o | ]
Eviy q;, Poo Moy t‘j and cij’ (6)
a aa a a a a

where, a = 1,2,...;5 and b = 1,2,...,s-1. The principle of equipresence 13

as employed here leads to the result that the constitutive equation of any

particular F is given implicitly by t
F = 3"(9: D,k’ T, T,k' Vk’ gk’ Bk); (7)
a a b~ s

where, in general, F is appropriately a scalar, vector or (an-order)
tensor functional of its arguments. | assume 15, however, that ¥ is
representable by a function. On the basis of (7) this study is thus seen
to concern itself with the bulk material behavior of mixtures of inviscid,

chemically reactive, heat conducting, magnetizable and dielectric fluids.

Although the equations of motion are not invariant under changes
of frame, the constitutive equations should be formulated in such a
manner that the material response of a system E; independent of any
observer. The preservation under an observer transformation of the
character of the functions F is expressed }n an axiom of form-invariance

Lo . . 16, . :
known as the principle of material frame-indifference : it stating

*
that & = ¥ In terms of the scalar, vector and tensor constitutive

fields in (&) this means that the now isotropic functions F are such

that the following reiations hold:
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S{p, 0., p T, 0, T 0.V, 0, 0 B )
A T S UL P O T 1001918k
= 5(9’ P k? Tn T k? “‘kr Sk, Bk)’ (8)]
a a’ 2 b~ s
V.(py 0,0 ,, T,0,T 0.V, 0, 0
P00 Ok T kT Ol Ok 10,10;,8)
= 0. V.(p,p ,» T, T ,V, &, 8) (8)
i, a,k vk bk sk k 2
and
le(Z' o_jkz,k’ T 00T OJk\ék’ jk§k’ 10,4108y
0. ko_lek] (O: D k' T: T,k' Vk’ ak' Bk). (8)3
b s

The specification of constitutive equations in rational mechanics

includes some mention of the symmetry restrictions to be imposed upon

these relationships. Such conditions are inherent in the choice of the
group of orthogonal transformations for which the constitutive equations
are assumed valid. When it is the proper (full) orthogonal group which
is involved, the system in question is sdid to possess hemihedral

(holohedral) isotropy 7. the former case is examined here.

| note in passing that the forms (7) of the various constitutive
equations are used in obtaining the reduced entropy inequality which
follows shortly. But before | take up that matter, it is necessary to

secure the explicit relationships for the constitutive equations above.
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C.1. Constitutive equation representations

Let S(m)

(n) (

(m=1,2,...,s+1) be a scalar and vy

n=1,2,...,25+2)
be a generic vector in terms of which the argument fields of (7) may be

expressed. In general, thus, (7) may now be written as

n
=3
o
—_
[%)
—
3
=
<
X o~
3
-
—
—_
o
-

L0 0 T .
131100, Py,

which relation is equivalent to (8). Now, the development of explicit
form-invariant constitutive equations from (10) utilizes an invariant-
theoretical methodology of rational mechanics. The particular approach

| foliow here is due to Pipkin & Riviin ]8.

Let the 32 i . be continuous single-valued functions which

]2...I] (m)

depend upon the now assumed uniformly bounded fields § and Vén), and

which possess whatever degree of smoothness may be required. Under
Lo Lo . 1 . .
these conditions it is possible E without loss of generality to make

. . . 20 .
the convenient, but otherwise non-essential , assumption that the

iﬁ ; ; are polynomial functions of the argument fields 2].

1727700

For pr) (p=1,2,....1) the components of an arbitrary generic

(n)
k

(4)), | form the absolute (polynomial) scalar invariant S under the

p .
vector which has the same transformation properties as does V (cf.

group of proper orthogonal transformations: viz.
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The polynomial character of .the invariant S makes possible its

expression as

Here Su denotes the polynomial functions invariant under the group of
proper orthogonal transformations which are elements of an integrity
basis appropriate to the vectors V

-(p)

that are multilinear in Vi

én) in R,. The Iu are those invariants

3
and which derive from an integrity basis

b .
for those vectors together with the Vén),

The integrity basis for the Sa is here (cf. Appendix C-1) that

finite set of absolute scalar (polynomial) invariants formed 22 from

the absolute scalars p and T together with the inner products (Iél),

a
Iéz)), determinantal products (Aﬁ) and products of these both (Ai), of

the vectors Vin). It depends upon the specific scalar, (polar or axial)
vector and tensor nature of the 5} ; ; what elements the integrity
APTERL
. . , 2 . .
basis for the Ia will contain 3. The integrity bases related to the

specific constitutive fields considered here are given in the appendices

cited below.

An integrity basis should, in terms of the numbers of elements it
contains, be minimal. It should further be such that no (polynomial)
invariant member thereof is expressible in terms of any other(s); in
which case it is said to be irreducible 2“. Although of some importance,
the non-trivial matters of proving minimality and demonstrating the
irreducibility of the integrity bases given here lie beyond the scope
of this study. | view this neglect of an otherwise essential point as

being acceptable here on the grounds that rather than work, for example,



108

with the full non-linear constitutive equation representations, | shall
employ in the sequel a reduced form of same for which the absence of
such minimality and irreducibility considerations is of no consequence.

It may be noted in passing that due regard has, of course, been given

in the non-linear representations below to the well-known relation 25
6ip 6J'P *kp
iikpar = |%iq 81 Sql - (13)
6|r <Sjr 6kr

Thus, in closing this section, the general representation of any

particular form=-invariant (polynomial) constitutive equation here that

folldws from (12) is seen to have the so-called canonical form 26
il 3l
(m) | (n) o
F. . . (s vi') = S — - - . (14)
Tplgeee Tk A OO
a=1 i 12 i

’

The (polynomial) coefficients Sa are the material response functions

which characterize, i.e. define, a given system. They relate to the
various possible effects that may occur within that system under a
particular set of circumstances. Rational mechanics can only establisH,
within a given context, the number of such coefficients; and, the thermo-
dynamic restrictions upon them. Being of a phenomenological nature, it
does not fall to rational mechanics to provide physical insight into

the atomic or molecular background of these coefficients; this remaining

the task of other disciplines.
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C.1.a. Non-linear representations

Objective scalars

. th -
For scalars, i.e. 0 -order tensors, J is seen from (10) to be an
. R . . (m) (n)
absolute (polynomial) scalar invariant of the fields § and v, .
The objective scalars, taken as functions of the variables denoted by
these fields, can thus in general depend upon the sets of variables 27

1 2 A A .
Ié ), lé ), Ak and AO; these being given in Appendix C-1.

Objective polar vectors

Let Vi denote the polar vector function the representation of which
p
is desired. The introduction of an arbitrary polar vector, say an makes
possible the formation of an absolute scalar invariant § = aiVi of the
p P

argument fields (2) together with a which is linear in a;- Here this

means that A

4 4
~ * <
s = vV amWay vV @ Gy s
P . pY Y i . Pd §
y=1 6=
4
< (3) *, A
+ /. g* (r )Ex(a )s
A=1
where, by virtue of (13), | have defined the two sets of invariants 28
* () (2) A A o (n (),
| = {Ia , IB s Ak’ Ao} and I = {lQ ) I& i.

From the expression (15) follows, upon differentiation with respect

to the vector ar, the implicit form of the vector vi representation; it
P

being

(15)

(16)



4 (1) 4 (2)
o A Ty s AR
\F{i /_‘ \;Y () aai * /_J;,/é () Bal +
y=1 8=1
4 A
(2), * aEA(ai)
+ vEO) ——— . (17
ZE: PA Bai )
A=1
The terms IliI)(ai), Iléz)(ai) and Eﬁ(ai) are given respectively in

Appendix C-2 (tables 1-3); and use thereof in (17) yields the result

sought.

Thus, the general non-linear representation of an arbitrary polar
vector which is taken to be a function of the variables (2) may be

written as

v, = 7 [V(:)(I*)é.k s v Me s v(f)(l*)e.sk}ok ¥
A : Pa e Pa BRIy
s-1
+ 7 {V(;)(I*)é,k + v(g)(n*)e..ks. + V(g)(l*)B.Bk} v, oo+
5;1 ‘Pa ' ~ Pa HkJ Pa { a
fy(1) (3) ), * (2) /\*
+ [v3 (16, =+ oy )eijkBj + V7 )B;Bk] T ¥
P P P
(1) % (3);,* (2),*
+ v )8, + v e, B. + v (17)s.8 | &§ . 18
[P4 ( ik PLI ( Pjkj Pf-l ) k] Ok (18)
From this expression it thus follows that the specific non-linear
representations for the polar vectors ﬁi - Evi, q: and Pi are given by

a aa a
the relationships below: viz.,



for all a;

[
[
-

v
]

™

o
]
—_

a3 ()65

T

g, - s
:ég)(”*)eukBJ még)(l*)aiﬂk} \ék +
:§3)(|a e 8 :éZ)('*)B Bk] o
m£3)(ll*)eijkBJ m(Z)('*)Bin] ‘, (19)29
3 5 4
253)("*)6i5k35 252)(|*)BiakJ ° K +
22(3)(”*)Eijkaj :2(2)“*)8in‘ e ot
q3(3)(“*)5ijkej CHEI R
“1(.3)(”*)6{3.(% + qﬁ”(l*)aiak ik (20)30
::?)(||*)Cijkaj zéf)(i*)a!sk 0



(1]
)
—

< [ ), =
+ P {17)s,
'E/=;T b2 ik
[ (1) *
+ P3 (1 )5ik
_a
(1)
+ Py (1 )<sik
|2
for all a.

Objective axial vectors

(3),,*
P2 (1 )e
ab2
P31,
a
(3)(H e,
a

112

i3k

‘JkJ

ukJ

(2),, * ]
Py (17)8.B,

ab

3

a

(2),,*
P“ (1 )B:Bk
a

p(2) (1")8.8,

v +
bk
T,k +
31
By (21)
S

In a manner like that used to determine the representation of Vi' I

p

now proceed to find for an axial vector function Vi its necessary rep-

resentation. Here €,

which | set down the absolute scalar invariant $

(2) that includes Ci» and is linear in <,

17
- vt (4)
S, = j;- Ve (1 )ll ()
L=1
4
%)
m=1 =T

Differentiation of this relation with respect to <,

+

(3)(Il )”(9)(c )

8

S
vl A

=1

A

A A

*JEN(c,)

77 (L’)(u )II(S)(C)

=1 g=1

following implicit representation here of the vector Vi:

17 (4)
i APRre: ac
z=1
4 b (9}
TR T My )
/, /T A dc

8

‘_I
/oW

v=1

2

1
X
/
1=

—Ak

serves as an arbitrary axial vector by means of
= Civi of the fields

It is here given by

(22)
provides the
A
3E( )
(2)(Il ) ———-f—— +
<
(5)
137 (c.)
(“)(n) T/" L (23)
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Appendix C-3 (Tables 4-7) im turn provide the terms to be differentiated
in (23) and the result of carrying out the indicated operation gives the

vector Vi its explicit form here,
A

Consequent to (23) the non-linear representation for the axial

objective vector Hi is thus of the form 32
a
s s-1
M, = Mm(l")ai . Woo \/ nvikvk +
e s
a a b= b b b:T ab b
T &
+ Mo T,k + MLE (24)
a a s

where the last four coefficients in (24) are given, for all a, in

Appendix C-4,

Objective tensors

The last general representation with which | am concerned here is
that for a an—order absolute tensor function Tij' Following the same
procedure 33 employed above, | now take two arbitrary polar vectors 3,

and b. and construct an absolute scalar invariant ST = aiTijbj of the

fields {2} together with a, and b, which is bilinear in these two

vectors. The scalar S; may thus be written here in the form

aibjBk +

8

v dMamdeeEn -,
A=

t(s)(||*)(§-§)52(b;) +

A

—k
<]
i
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4 4
+ ZZ ig) (1 );!(GJ(ai,bi) +

y=1 e=1
h o 4 ooy
' (7 * (10) Al - (8) (]])
)7, b UL T anb) vy DTN CRT R
y=1 u=1 A=1 e=1

w=1

§=1 p=1 w=1 A=]

4
c S @M s Z? 0V @ e
&

b 4y
< (11),, .~ (15) (12), .* (16)
vl S U T agb) ¢ ZZ tn (U7 (agsby)

A differentiation of this expression with respect to the vectors

i

said relationship being here of the form

#
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&
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a. and bj brings forth the implicit representation of the required tensor;

b.)
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Upon introduction of the appropriately differentiated terms here, gotten
with the hetp of Appendix C~5 (Tables 8-16}, it is possible to rewrite

(25) more explicitly.

On the basis of the foregoing considerations, the general non-linear
representations here for the objective (an~order) tensors tij and cij
a a
can, for all 2, now be given. Due to their complete similarity of form,
34

| set down only the representation of tij; it being
a
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The brackets (parentheses} placed about indices mean that it is the anti-symmetric (symmetric)

component of that term, with regard to the enclosed indices, which is being considered.
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C.1.b. Linearized representations

The results of the foregoing section, although interesting, do not
lend themselves easily for purposes of a pragmatic nature. It is thus
worthwhile to consider them initially in some restricted sense. Since
a linearization process is a means by which the desired simplification
can be effected, and since the results of such a process are assumed
here to be meaningful for physical systems ''close to equilibrium' (cf.
Chpt. E), t now limit the applicability of the non-linear constitutive
equations above to those (classes of) systems for which a linearization

in the variables o P Vi' T ; and 8i is sensible 35.

a’ b ’ s

Objective scalars

L L L

The ilinearized objective scalars A? el and n are here (polynomial)
functions of reduced set of variables |, where 36
2
I = {p (a=1,2,...,s), T, B°}. (27)

Objective vectors

The linearized representations for the objective polar vectors
deriving from (19), (20) and (21) are, with all the material coeffi-
cients thereof now functions of |, given here respectively by the follow-

ing relationships.

S
L L L L L
A e B 2 3
B 2 Mt Mantigl t manBi B0k
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for all a. Due to (B90) only s-1 of these terms are independent, which
in turn means that the material coefficients in (28) are not all inde-

pendent. The restrictions thereon are given by the following conditions:

S S S
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m = 0 m = 0 m = 0 29)
Zgj b Zgj ab jgj ab (29
a=1 a=1 a=1
with b =1,2,...,s;
s s s
S S O ST TR = S
ba = /, M™a T /. M™a =
b=1 b=1 b=1

witha=1,2,...,s-1

M"‘
3~
[T N
1
o
3
[
W
o
\\/
L
3
[TV
1
o
—
N
0
2
A

a=1 a=1 a=1
and
s s s
< boo_ LR STz (29)
ZiJ a ZiJ a /iJ a &

[

]
1]
n
(]}
]



| — L, L, L
i/, (00 0 + 958 5u8; + 9388 )0+
a=1 a
s=1
— L L L
N iy 5 6
v a8y e By BBy, ¢
a=1 a
L L L
7 8 9
+ (q éik + q € kB + g Bin)T,k +
L L L
10 11 12 38
* (@76, +a &8+ Bin)Ek' (30)
It is worthwhile to pause here in order that the versatility of
a rational mechanical constitutive theory may be illustrated. If (30),
for example, is rewritten in the form
L s -1
| ~ o] r- Vv T 8
, = - T 0 - <., V, = x, T - kY &
i ik /L Sik Tk ik Lk ik Tk
ey a a,k e a a s
L L L
. - v T 7 8 9
then the material coefficients :ik and Kik (= q 5ik +q EijkBj +q Bin)
are respectively the tensor Dufour 39 and "heat" conduction 4o coefficients
L

7

for the mixture. The g 6ik term of KIk may be recognized as the thermal

conductivjty coefficient of the familiar (Biot-)Fourier law h]; while the

‘g 42 L
coefficient g EijkBj relates to the Riggi-Leduc effect . The q EijkBj
term of zg relates in turn to the Ettinghausen effect h3.

ik

The significant point here is that the presence of specific known
effects, in addicion to cther perhaps unknown ones, in any given rational
mechanical constitutive equation is a direct consequence of the selection

of independent constitutive variaebles (cf. (2)). With increavingiy
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meaningful insight into the phenomenology of a given system, it becomes
possible in rational mechanics to propose an also increasingly more

LY

satisfactory set of such variables

The methodology of this approach to the study of material behavior
is thus seen to possess an inherent capacity for self-correction. It is
at once both rigorous as well as flexible; providing (at least in
principle) a means of successively approximating its theories to the
physical experience which they attempt to describe. A continuously
improving agreement between observation and explanation is, of course,

the end result.

To continue, the linearized representation for the constituent

polarization is given by

L L L L
P, = (P16-+P25 B+P3BB)p +
i /, Vab ik T TabSijkoj ab i k’? k
a b
b=1
s-1
+ (;4 §.. + tS e.. B, + ;6 B.B )V +
ab ik ¥ Tabijkoj T Tab ik’ k
b=1
L L L
7 _ .8 9
+ (P8 PaeijkBJ + PaBin)T,k +
L L L
10 1 12 .
+ (P8 + Pyl + Py Bin)Ek ; (31)

where, for example, the material coefficients of Sk are related to the

s
electric susceptibility tensor of any given constituent. The appropriate
such coefficient for the mixture follows from the use of the definition

46
(B43) which involves this expression .



123

The linearized representation which follows from (24) for the

. 4
axial objective vector Mi is seen here to be of the form /
a
L L
M, = M B (32)
‘a a
L
for all a. M may be thought of as the coefficient of magnetic suscepti-
a

bility of a constituent; while, similar to the case of polarization,

the use of (B59) provides the relation appropriate to the mixture

Objective tensors

. . . n
Lastly, the linearized representations for the 2 d-order tensors

t and cij derive from (26) and are, respectively, b9
a a
L L L L
Z .1 2 3
i; T WS BBy ot
and (33)
L L L L
C.. = clo. +c%.8, + 3. B .
ald aij a i j a ijkk

Once again, all of the material coefficients concerned are functions of

the invariants |.
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C.2. Appendices

Appendix C-1
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T g 6)% ()% (34)
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Appendix C-2

Table 1. II$1)(a.): polar absolute scalars linear in a;

a*t ! 3 T,iau
2. va. (a= 1,2,...,5-1) b ga,
a s

Table 2. Iléz)(ai): axial absolute scalars linear in a
1. (z,ksk)(aisi) (a =1,2,...,s) 3. (T,kBk)(aiBi)
2. (vB,)(a;B;) (a=1,2,...,s5-1) b (§,8,)(a;B,) '

a s

Table 3. Eg(ai): axial absolute scalar triple products linear in a,

1. e...a.p .B (a=1,2,...,s) 3. _eiJ.kaiT,jBk
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Table 4.

Table 5.

E

(’4) ,
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T,kBk) v, oF )

(6,8,) (V;c;)
S b

I\(

"
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ijk i0dp b

=
—
1]
non
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Ele Ig,J Jk

€.. C.
ijk IZ,J

‘8k
s

EijkciZjT,k

axial absolute scalars linear

10.

17.

7.

inc,.

(b BT €
a' 1]
BT e

(T kBk)(T ,C. )

(EkBk)(T,ici)

okk)(SC)
a

B (&;c,)

E)

(T kk)SC)

(€8, E1c)

€,..¢c.V.§
ijk laJsk

€ijkCiT,J":’k

Eijk iP ,Jb,

€..,.c.V.V
ijk |ank

c.): axial absolute scalar triple products linear in ;-

(a < b)

(a < b)
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Table 6. II:E)(ci): pseudoscalars independent of c.-pseudoscalar

triple products linear in <; absolute scalars.

1. (g,an)( Ichlst,k) (a,d = 1,2,...,8) 9. (Z’an)(eijkciBjT'k)
2. (\a/nsn)(eijkci Jd'k) (a =1,2,...,s-1) 10. (Zan)( IchlBJT )

3. (T B)(e

nBn ijkcisz,k) 11, (T,an)(EijkciBjT )

,k

L, (Ensn)( ik IBJd’k) 12. (ian)(eijkciBJT,k)
5. (z'an)( K JX W) 13. (g’an)(eijkcingk)
6. (v B )(e cIB vk) 1h, (ann) € 5kCi8; B, 8 )
7. (T’an)( ik IBJZk) 15. (T,nB ) (e ch B 8 )

8. (Ean)( Pjk IBJVk) 16. (8 B )(el C

i858
S
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Appendix €-5

Table 8. Ei(ai): pseudoscalar triple products linear in a.

1,2,...,s; 5.
1,2,...,s-1)

[T

—_

[T
o

€.. a.VvV.§
ijk 'aJsk

Eijkaig,_jT,k 6. EijkaiT,jfk
3. e...a.p .§ 7. €...a.p . (a<b
ijk Ia’Jsk ijk Ig,Jg,k )
€...a,V.T 8. e...a.V.V (a<hb
ijk i Wk ijk |ank )
Table 9. E:(bi)i pseudoscalar triple products linear in bi'
1. €,. b.p .V (a=1,2,...,s; 5. e,, b.V.§
ijk Ia'ka b =1,2, ,5-1) ik IaJsk
€. .. b.p .T 6. Lo b T
ijk ,g,J .k Eijki ,_]Ek
3. e,..b.p .§ 7. €...b.p .p {(a < b)
KTk . kT dpsk
8. e..b. V.V (a < b)

€., b.,V.T .
ijk Pyl ,k ijk rank
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Table 10. Ilég)(aifbi): polar absolute scalars bilinear in a, and b_.
1 (Z»iai)(g»ibi) (a,b =1,2,...,s) 9. (Z’iai)(T'ij)

2. (Z‘a‘)(E'JbJ) (a =1,2,...,s-1) 10. (Ziai)(T,ij)

3. (T,iai)(g'jbj) 11. (T,iai)(T’jbj)

b, (Eiai)(z,jbj) 12, (Eiai)(T,jbj)

5+ (0,12 (Vyo ) | 13 o 2 (Ejp )

6. (Ziai)(zjbj) 14, (Ziai)(gjbj)

7. (T,iai)(zjbj) ‘ 15. (T’iai)(gjbj)

8. (fiaf)(ﬁ'bi) 16. (Siai)(ijbj)
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1
Table 11. Iliuo)(ai,bi): polar absolute scalars linear in a.-axial abso-
lute triple products linear in b dboslute
scalars.

1. (Z .a.)(e, ,b.o BI) (a,b =1,2,...,s) 9. (Z’ia')( Jk]bJT,kB“

2 (Z .a.) (e ikl Jo By (a=1,2,000,8-1) 0. (Ziai)(ejk]bjT,kB])
3 (T’lal)( Jk] J K B,) i1 (T’Iai)( nL T’kBl)
4 (Sa ) (e iK1 Jb’kB]) 12 (Elal)( k1T, B))
5 (a" ) Jk‘be Bp) 13. (o ;a;)(e JkleSkBl)
6 (Zia ) (e k]bJXkB]) 14 (Zla ) (e £ k1P kB])

7. (T’iai)(ejk]ijkB]) 15. (T La, ) (e k,bJa )

b, Sks)

jk17]j

8. (giai)(s. b.V,B.) 16. (8ia])( |
S S

JKIZG K



(k)

(e,

a;p
b

a.Vv
i

,kBl)

KBy ¢

(1) .
Table 12. "Ae (ai’bi)'

{p .b.)

ZrJ J

b
o ik
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axial absolute scalar triple products linear in
a,-polar absolute scalars linear in bi absolute
scalars,

(a =1,2,...,5=1) 10. (eik'aisz')(T'jbj)
11. (EiklaiT,kBl)(T,jbj)

12, (Eiklaikal)(T,ij)

13, (egpq9;0 kBl)(Ejbj)
a. b,

ik 2]

15, (EiklaiT,kBl)(Ejbj)

6. (eik]aiEkBl)(EJbJ)

S S



Table 13. ||(’3)(a bo):

Se

(vp -8) (a8, )(o iy

v§)aB) )

b
©, 1%

@18 (0) 6 ;o)

E B)(a;B.) (o 055
(vz-ﬁ) (2,8 (Vb))

(;/-E) (a;8,) (Vb))
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axial absolute scalars linear in a.-polar
absolute scalars linear in bi absolute
scalars.

(a,b =1,2,...,5) 9. (?Z-ﬁ)(aisi)(r,jbj)
(a = 1,2,...,s=1) 10. (Z.B)(aiai)(T,jbj)
1. (VT-B)(aiBi(T,jbj)

12. (E-ﬁ)(aiBi)(T,ij.)

13 Go-B)la8) 6)0))

a

the  (V-B) (a;8,) (80))

a

15. (VT-B)(aiBi)(EJbJ)

16. (E-B)(aiBi)(Eij)
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Tabie 14, H,(w)(a.,b.): polar absolute scalars linear in a.-axial
— Tw 1 . N .
absolute scalars linear in bi absolute
scalars.
1. (J-B)(o .a.)b.B. (a,b=1,2,...,s) 9. (VT-B)(p .a.)b.B.
ST AT
a b b
2. (%-B)(v.a.)b.B. (b=1,2,...,5-1) 10. (37-B)(v.a,)b.B.
[ | L R |
a b b
3. (Vo+B)(T .a.)b.B, 1. (9T-B)(T .a.)b.B,
a s s 17 7]
b, (Vo B)(&,a,)b.B. 12, (7T-8)(8,a,)b B,
a S s JJ
5. (VB) (o ;2:)b.B. 13, (€+8) (o ;a.)b.B.
a b 1 e prl i
6. (V-B)(va,)b8 4. €-8)(v.a)b8
a b 4] b [
7. (V-B)(T .a.)b.B 15, €-8)(T .a.)b.8B,
a Wi i) s [ |
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Table 15. IIé;S)(ai,bi): axial absolute scalars linear in a.-axial

absolute scalar triple products linear in
bi absolute scalars.

>

(Vo-B) (a;B))

0 €510 18

(V-B)(a.B,)e. b.o B
b A ISR I

(VT+B)(a,B.)e. .b.o B
R EASTY 12,65 : R T T R RN

(€-8)(a,8,)e

. .b.o B
. K17 18,k

> > >
(Vg‘g)(a;Ba)EJkubjkal_ 13- @ocB)laB ey 08,8
A > >
(\é-§)(aiai)ejk]bj\c/kal 14 (X.B)(alBI)EJk]bJEkBI
>_ > ) +>_ >
(VT-B)(aiBi)eJk]ijkB] 15. (VT-B)(aiBi)ejk]bj(sz]

(E-E)(aiai)ewbj\clkB] 6. (8-8)(a.B.)e, b‘EkBI
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Table 16. Ilw (a.,Bi): axial absolute scalars linear in b,-axial
absolute tripie products linear in'ai absolute

scalars.

2 (Z-_B’)(bJBJ)elk]aizlkB’ (b =1,2,...,5-1) 10. (Z-ﬁ)(bJBj)eiklaiT’kBl
3. (%T-E)(bJBJ)s'k]aiz’kB] 1 ($T-§)(bJB.)eik‘aiT’kB]
} (z:;.ﬁ)(bjs 22 ) 12 (g-g)(bJB.)eik]aiT,kBl
5 (vz-ﬁ)(b B.)e klal\c/keI 13 (VE-ﬁ)(bJB )e klaizs;kal
6 (\Z-E)(bJB.)eik]ai\C/kBl 14 (g g)(bjB.)eiklai{;kB]
7 ($T-§)(bJB.)eik]aikaI 15.  (IT+B) (bJBJ)elklai{s;kB]
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ootnotes to Chapter €

1. . . . .
With regard to material systems in motion and their interaction with

an electromagnetic field, note the comments of Fano, Chu & Adler,

L1960, 3, p.3781.

z Note Truesdell & Noll [1965, 19, Sect. 20].

3

4

5

6

Post [1962, 6, p.2].
Cf. Jaunzemis (1967, 12, pp.281-282]. See here also footnote F7.

Liu & Miller [1972, 5]. There are, of course, other (e.g. linear)
theoretical approaches to the problem of formulating constitutive
equations. The motivation for the employment of the non-linear field
theoretical approach used here lies in the particular significance of
same as pointed out by Truesdell & Noll [1965, 19, pp.3-4]. The short-
comings of a classical thermodynamics of irreversible processes (TIP)
approach have served to further strengthen the relative meaningfulness
of the method utilized here. These matters are discussed, for example,
in CFT [1960, 9, p.64L, footnote 3], Truesdell [1966, 13, pp.L49-52]

and Truesdel) (1969, 7, pp.11t-149].

At present it appears that the process of denoting specific field
variables as being either ''dependent'' or 'independent' is not yet
subject to a set of basic principles (cf. Eringen [1967, 5, pp.144-
145]), Regardless of the questionable necessity for such principles,
there seems to be some degree of common consent regarding ‘‘natural"’
choices of variables under certain conditions {cf. Miiller [1963, 4,
p.121). In this study | adopt a preference for constitutive field

identification compatible with that of Miller [1968, 4, p.9] and
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Liu & MUller [1972, 5, pp.150-151]. See also Demiray & Eringen [1973,

2, {3.1) and (3.2)1.

The importance of incorporating the fields D,k in the set of indepen-
dent constitutive variables was first recog?ized by Miller [1968, 4,
pp.12-13]; and, Miller has termed ''simple' those mixtures for which
these variables are not taken into consideration. Analogous to

the definition of non-simple single fluid continua given by Liu [1973,

6, p.27], | define non-simple fluid mixtures to be those materials

having p and Py as independent field variables. Exclusion of the
former ?rom (g) thus restricts this study to a sbecial class of said
mixtures. Further, | note that a desire to examine a model of
reasonable simplicify has prompted the adoption of a less general
velocity and temperature field dependence of the material response of
the mixture (and hence the constituents) than was the case respectively
in Muller [1968, 4] and Liu & Miller [1972, 5]. Specifically, the ab-

sence of the field variables v will preclude dilatational and shear

a
viscosity effects in this theory; and, exclusion of aT/at (or more

kl.j

essentially the objective variable T) may be expected to have conse-
quences in any consideration of, e.g., the speed of thermal waves in
such a mixture as is treated here (cf. Liu & Miller [1972, 5, p.1681).
It will become clear in the sequel that a generalization of this
theory can be effected by, for example, including these neglected
variables as well as possibly others in (2). | eschew from

commenting upon the possible outcome of such a step.

Regarding these assumptions see, for example, CFT [1960, 9, p.700

and Sects. 2 and 196} and Truesdell [1966, 14, p.25].



9

13

144

CFT [1960, 9, p.453] and Truesdell [1966, 14, p.22]. It may be noted
further that there would be no difference in the results here if the
development involved a Galilean transformation (cf. CFT [1960, 9, p.
453]) instead of a Euclidean transformation. This point was made also

by Liu & Miller £1972, 5, p.151, footnotel)..
See, for example, Miller [1973, 9, p.17].
Miller [1968, 4, p.12].

For Vk the result is given by, e.g. Miller [1973, 9, p.165] while the
b .

result for the electromotive intensity follows an analogous devel-
opment as given by Miiller [ibid, pp. 118-119] for a single-continuum.
fhe selection of a particular constituent as defining a reference
fluid (in this case) is not uncommon; examples being found, among
others, in Ingram & Eringen [1967, 10, p.293] and Miller [1968, &4,

p.10].

Cf. Truesdell [1966, 13, pp.42-43 and p.45], CFT [1960, 9, pp.703-
7047 (which states said principle in an older form) and Jaunzemis
[1967, 12, p.285]. The applicability of this principle to the study of
mixtures was made clear by Miller [1968, 4, p.9]. | note that the
substance, as well as the framing, of this (or a like) principle is
still a matter of discussion at the present time. In his commentary
hereon, Truesdell [1969, 7, p.84, footnote] has anticipated some of
the criticism raiéed later by, e.g., Rivlin [1970, 6, pp.133-134] and
Rivlin [1972, 7]. Although the principle of equipresence in its pre-
sent form may suffer from ambiguity in one or more Eespects (Green &
Laws [1967, 8, pp.274~2753), it has been shown by Fisher & Leitman

1970, 3, p.309] in a particular case that a violation of this
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principle leads to an aphysical theory. The meaningfulness of the
equipresence principle is, in addition, borne out by the stability
considerations of Ziegler [1971, 6]. Bressan [1972, 2, p.6] has
examined this point and, in strengthening this principle, has intro-

duced the ''‘principle of strong equipresence''.

See, for example, Miller [1968, 4, p.9], Liu & Miller [1972, 5, p.

1511 and Demiray & Eringen [1973, 2, p.893].
| follow Miller [1968, 4, p.9] in taking this step.

This principle is discussed by numerous writers on (aspects of)
rational mechanics. References include, among other possibili-
ties, the following: Noll [1958, 31, Noll {1959, 1, pp.280-281], CFT
[1960, 9, pp.702-703]1, Truesdell [1966, 13, pp.5-6] and Miiller [1973,
9, p.45, footnotel. The principle of material frame-indifference is,
similar to that of equipresence, a matter still open to discussion.
Riviin [1970, 6, p.121] has given an example of the difficulty
that may arise through the use of this principle; while, on the basis
of particular kinetic theory arguments first Miller [1972, 6] and
then Edelen & McLennan [1973,4] have found grounds which may neces-
sitate a reframing, or qualification, of the present principle of
material frame-indifference.
It should be noted that in general one may treat not only
absolute, but also relative, from-invariant function(al)s; this matter
having been taken up by, e.g., Pipkin & Rivlin [1968, 5]. Here, | con-

sider only the case of absolute invariants.

Pipkin & Rivlin [1960, 7, p.543]. Material systems are defined in

rational mechanics with the postulation of specific constitutive
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equations. A subsequént élassification of these systems can be made in
terms of their respeétive symmétry properties. The investigation of
these properties relates to thg so-cailed isotropy group of a parti-
cular material system; a discussion of which may be found in CFT
(1960, 9, p.701], Truesdell & Nol) [1965, 19, Sect. 311, Truesdell

[1966, 13, pp.9-14] and Truesdell [1966, 14, pp.56-64].

Pipkin & Riviin [1959, 2]. This presentation-parailels that of

Spencer [1971, 5].
Green & Adkins [1960, 6, p.8, footnote §1.

Cf. Pipkin & Winemann [1963, 8]. Note also the remarks of Truesdell
€ Noll [1965, 19, p.61, footnote 1] and Pipkin & Rivlin [1968, 5, p.

5, footnote (3)1.
Cf. Pipkin & Rivlin [196Q, 7, p.543, footnote 1].

Note in this regard Cauchy's theorem. An exposition hereof may be

found in, e.g., Truesdell & .Noll [1965, 19, Sect. 11].

This may be seen, for example, in an often referred to paper by

Smith [1965, 161].

Pipkin & Rivlin [1968, 5, p.4, footnote (1)] point out the meaning

of irreducibility as it is taken in the context of rational mechanics.

For this relation as an expression in mathematics, as well as an
element of a rational mechanical constitutive theory see, e.g.,

Pipkin & Rivlin [1959, 2, p.138].

Wineman & Pipkin [1964, 7, p.1861. With the functions involved being
viewed as polynomials, the operation of differentiation may, as noted
by Spencer [1971, 5, p.259, footnotel, be considered as an algebraic

process.
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Cf. Liu & Miller [1972, 5, p.162] and Miller [1973, 9, p.134].

In neither of the papers given as references in footnote 27 was this
necessary {(cf. Pipkin & Rivlin [1959, 2, p.138]) distinction made.
The consequence of this oversight is that some of the material
coefficients in the various constitutive equation representations

given are looked upon as being somewhat more general than they are.

Such a term, although not given, is implicit in the paper of Miller
[1968, 4]; but, due to the single-fluid nature of their study, Liu &

Miller [1972, 5] cannot have such an expression.

This result ''generalizes' that one which is implicit in the paper by
Miller [1968, 4] and the single-fluid expression given by Liu & Miller

(1972, 5, p.162, (5.2)]].

Cf. Liu & Miiller [1972, 5, p.162, (5.2)2] and note that the defini-
tion (B43) of polarization of the mixture relates this ''more' general

result to that of their single-fluid.

Cf. Liu & Miiller [1972, 5, p.162, (5.3)] where, similar to the case
of polarization, the definition (B59) of the magnetization of the
mixture yields a result directly comparable with that indicated
above. Clearly, the absence of electromagnetic field considerations
in the study by Miller precludes such a result as this, or that for

the polarization,

It may be mentioned that an alternative procedure whereby the
absolute scalar invariant is given by ST = AijTij’ with Aij being an
arbitrary tensor, can on occasion be used to advantage. See in this

regard, e.g., Adkins [1960, 1]. The results of both approaches under

general conditions are, however, according to Smith (private communi-
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cation) equivalent.

This expression, while not stated in the study of Miller [1968, 4] is,

however, given in a '"'less' general foi~ by Liu & Miller [1972, 5, p.163,

(5.4)1. It is, as a constituent relation, related to this latter single-

fluid result through the definition (B87) of the stress tensor of the

mixture.

In terms of the constitutive equations being considered as polynom-
ials this means (cf. Pipkin & Rivlin (1960, 7, p.54k]) that 2"°-

and higher-order terms in the non-linear constitutive relations above
which contain these field parameters are neglected. The order of
‘approximation made, as well as the variables for which that operation
is carried out, is a matter dictated by the nature of any given in-
vestigation. In the interest of securing tractable expressions in
general, and examining the specific iqfluence of a B field upon the
material response of fluid mixtures in particular, | have made

the linearization and variable choices indicated. In a problem with
an electrohydrodynamic (EHD) character the role of the electric field
would be studied. For the more general case of magneto-electric (or
bianisotropic) fluid mixtures, see the considerations of Benach &

Miller [1974,1]. Lastly, | remark that in the development which

follows, a superposed letter L denotes a linearized parameter.
Cf. Miiller [ 1968, &4, pp.21-22] and Liu & Mlller [1972, 5, p.165].

For the case of a binary mixture, note the result given by Miller
[1968, 4, p.22]; and, for an s constituent mixture see Miiller [1973,
9, p.172]. Observe also the relation of the conditions (29)1_1+

to those in the last cited reference.
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Cf. Pipkin & Rivlin (1960, 7, p.545], MUller [1968, 4, p.21] and

Liu & Miller [1972, 5, p.164, (5.15)2].

The literature on the Dufour (or diffusion thermo) effect is somewhat
unclear in expressing a unique meaning as to what in fact this effect
is. Hirschfelder, Curtiss & Bird [1967, 91 state (p.8, footnote) that
this effect constitutes the flux of energy resulting from concentra-
tion gradients; while later (pp.521-522) they mention this effect in
terms of an expression wherein it relates to the constituent velocity
differences. Although this is in agreement with the results of Chapman
& Cowling (1970, 2, pp.142-143], it is not consistent with their first
statement regarding this effect. Further yet, Slattery (1972, 8, p.
4723 in echoing Hirschfelder, Curtiss & Bird extends the meaning
they gave to this effect so as to include its dependence also upon
pressure gradients. Haase [1969, 2, p.359], on the other hand, sub-
scribes to the opinion that this effect is defined in terms of mass
fraction gradients; calling in essence the pressure gradient de-
pendence of the internal energy flux the ''pressure thermal'' term.
Inasmuch as an expression for the difference of constituent
velocities can depend on numerous terms, each of which may play a
role in 'driving" the relative diffusion(s) of concern, and of which
the concentration gradients are only a single possible cause, | wish
to suggest the following step towards clarification. ft would be
worthwhile to retain the definition of the Dufour effect as deriving
from concentration gradients. The coefficient for this effect would

then be a combination here, for example, of < and that term, in-

ik

cluding (Yk’ expressing the dependence of V on said gradients.

bk
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In this study, however, | follow common practice (cf. Miller 11973, G,
p.172] with regard to a rational mechanics development) and make the

identification given.
Cf., for example, Cambel [1963, 2, p.210] and Haase 1969, 2, p.b46hLj.
Haase [1969, 2, p.333, footnote].

Pipkin & Rivlin [1960, 7, p.545], Page & Adams [1965, 12, p.256] and

Chapman & Cowling [1970, 2, p.369].
Pipkin & Rivlin [1960, 7, p.545] and Page & Adams [1965, 12, p.256].

Note here, in addition to the comments of Truesdell [1966, 14, pp.

3-47], the remarks of footnote 7 above.

Cf. Liu & Miller [1972, 5, p.164, (5.15)2]

Benach & Miller [1974, 1, (“.9)]]-

Cf. Liu & Miller [1972, 5, p.165, (5.17)] and Miiller (1973, 9, p.
145, (10&)2].

Note Liu & Muller [1972, 5, p.165] and Benach & Miller [1974, 1,
(4.9),].

Cf. Liu & Miller [1972, 5, p.165, (5.16)) with regard to the stress
tensor (33)]; and observe, that this relation like the other given
above have material response coefficients which are less general

(in terms of the temperature field) than those given in the reference

cited,
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D. A MATTER OF PRINCIPLE: ENTROPY

This chapter has the task of setting down a two-part principle of
. . . 1.
entropy for volumes comprising sets of regular and singular points ; and
further, of establishing the direct results here (i.e. restrictions on the

constitutive equations) of that principle.

D.1. Entropy principles

Regular volumes

To begin, (8152)2 is eliminated between (B134) and (B151). Use now of
(B15), and (B85), to eliminate the body forces in this last result, gives

the expression

a=1 La=1
3 s s
e i - e 3
- = + €.., &.M - C..u, - (M. - &v.)u. +
T [ql F, ik aJak AVINSEDN I Y AV aal al
a= a=1 a=1
s S
1N
+ |t., - t..| — u +
[ i Y'JJ o /4 5%
v=1 a=1
S S P
+ ; t.., + pu.u, + ( - t..) 2d.. +
4 [ i 1] a0 p [}
= le aa a =1 Y a
s s s
* v tlJ t * (/J EIJkSJ k)" * i 8'8' = 0 (1
a a a
a=1 a=1 a=1

Here, w.., (= V[i .]) is the spin tensor of constituent a. With p bi and
a a-'+ 2 ala
(8152)2 presumed known “, a thermodynamic process in V is defined to be a
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solution for the fields (A1) of the equations (B158) to (B161) and (B163) to

(B166) taken together with the constitutive equations (C7).

The entropy principle in V assumed rere may be stated as follows:

For all thermodynamic processes in V the entropy inequality

(D1), or equivalently (B151), must be valid.

Singular surfaces

A surface of discontinuity s(t), here "plane'', which permits the

passage of a single mixture constituent is called a semipermeable wall. In

terms of such walls the second part of the entropy principle, i.e. that on

s(t), is assumed:

For semipermeable walls in parallel motion, across which the
temperature field_is continuous, for which the densities of
mixture entropy supply and production remain finite, and at
which the tangential velocity components of all constituents
vanish, the normal component of the entropy flux is assumed

to be continuous; that is (cf. (B157)),

Tinlolv; - u)A, + [q;f;1 =+

S S
M -~
+ ’ .. M A, - C..u.n. = 0. 2
QJ] €k §Jak"'” [y, a“:Jn,n (2)
a= a=

It is desirable with a view towards the forthcoming developments to
record an equivalent expression of (2) which will be more useful than that
relation. The first step involved is the determination of Hqiﬁiﬂ from
_SH _ _SM
&7 = myu,

(B169) and (B170), with h, followed by its substitution in (2).

Performance of these operations leads to the expression
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Tlndo(v, - u)d, - e+ -lsv2 - viudolyy - u])ﬁ] +
+ ﬂtki(vk - uk)ﬁiﬂ + ﬂ;ﬂun - 06 ulu, - ﬂéiﬁiﬂ -
S S
" ~ . -~ . _
- ﬂ;ijuinjﬂ + H;{J Eijk Ejzkniﬂ - ﬂ/{J gki:kniﬂ = 0. (3)
a=1 a=1

In order to further rewrite this relationship, | now make use of the follow-

ing expressions:

- e + 5v2 - viuiﬂp(v] - ul)nl =

= - B+ 3v; = ud (v - u)lelyy - upddy (4)
[t (v = wdil = I g i delvy - u)f, (5)
s s
1[:/; PR LR LR eijk[[; B - EA
- MGy, = - Tegp, 0B IAWE ©)
and
[[E]]un - [[Eij“iﬁjﬂ = - QgD+ BiHjn(ﬁiﬁj - Gij)“n' (8)

The last three results given above may, however, be yet further developed.

In doing so they become, respectively,

S

N R
. §M - EHIA. =
s/ Sk kI
a=1

= I(- 8P + BkMJ)(ﬁjﬁk - djk)v.ﬁ-ﬂ N §)kkaiﬁiH -
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s s
e, [E. » (B x ) 1A, e, 0 (G xB).M 18, -
ijk J/ga ak' le/Ja ak'
a=1 =
- s
E.h @ H DRCEIRE
€k EjMin €ijk KM ~ M T g PV R (9)
a a
a=1
e. [D.B JA.u> = - [(D. +P.)k. - B.h.1(A.A. - §. )u +
ijk-"j k™ i n i i’ i ij ij
+ [P xB8).1a.u° , (10)
I I n
and
- [E.D, + B.H.I(A.A, - 8., )u_ =
i i i ij"n
= - I in+BiHj)](ninj _6ij)un -
s
<~
- E(T;xB)P.+3.2 (P x¥).1(A.A, - &, Ju +
J YV H 1)
551 0@ @
+ [(D +P|)k - Bih.]](n' j —diJ.)un +
s
- N ~
+ e By, v [HI Moo (E x ;)1 €hg ke - (D)
=1
Here, use has been made of the relations for the average value of a field >
and of a product of fields which ''suffer' a jump; these being given here,
respectively, for arbitrary fields A and B by
A = 3(A* + A7) and [AB) = AIB] + [A]B . (12)

Substitution of (4), (5), (9), (10) and (11) into (3) now yields a jump

balance equation of mixture entropy of the form
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[Tn - e - 3lvy - udlvy - ) + o g Ahy +
P M,
+ (=g e DA -5 Tl - uE -
S S
A _ —
Ty, gki“k]]”. sijklEy / (Z ) :) Iy o+
a=1] a=1
S
‘ Vs
+ EleH/KJ (4 B)ijﬂn - (v x B)kkainlﬂ +
a=1 a a
+ H(3 X g)iﬂnlui -
S
> e 2 > u _
- 0V x B)iPJ. + B, /., (Z x :)-](”i"j - GIJ)un = 0 (13)
a=1

This is the expression for the jump balance equation which derives from the
second part of the entropy principle stated above. It is to this relation-
ship that | shall return (cf. Chpt. E) after ! have first examined more

closely the entropy principle in V and its foremost consequences here; this

I do now.

D.2. Admissible thermodynamic processes in V

The entropy inequality (1) is now first rewritten by means of the
introduction of the appropriate constitutive equations(C7), followed by the
performing of the indicated differentiations and a regrouping of terms. The

result of carrying out this operation is given by
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The establishment in any given physical context of "appropriately"
invariant and restricted constitutive equations is presumed here to be a
main purpose of a constitutive theory. Regarding the first point, the
principle of material objectivity has been employed (cf. Chpt. C) in the
treatment of the invariance considerations here. For the second point it may
be noted that the class of all possible thermodynamic processes of this
study has been restricted by the entropy principle in V assumed above. It
thus remains to examine its restrictive nature with regard to the constitu-

tive equations (C7); which step | now take.

Elimination of restricted fields

To this end | now introduce a principle of consistency 6 which states:

Constitutive equations proposed for a given system must be
consistent with the balance equations of mechanics, electro-

dynamics and energetics taken for that system.

Here this means that only the equations (B158) and (B163) to (B166), or
their equivalents, serve to constrain the fields (A1). This so because
regardless of the prevailing conditions of the fields (A1), the supply
terms (B82)] and (BISZ)2 are considered to be determined by them and the
balance equations in which they appear (i.e. (B8S)] and (B134)) are satis-

fied.

| begin first by taking account, in a manner similar to that of Liu and
Muller 8, of the constraints on the fields (A1) due to the relations (B163)

to (B166); that being the employment of the Lagrange multiplier method of

Liu 9 in the further evaluation of the entropy principle in V.
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Using (B162) and the equivalent electrodynamic field equations (B78),

(B75), (B69) and B(49), the condition to be satisfied may be written as
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B, B, Sk by

where the Lagrange multipliers of Liu A k, A l‘, A° and A° may -be functions

of the variables (C2). Upon rewriting (15) in terms of (14) followed by a

distribution of the A-terms throughout, the result that emerges is given by
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Anticipating the reasoning noted below with regard to (20), the expres=-

sions for the Lagrange multipliers are (cf. Appendix D-1)
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For notational simplicity | now let
s
5
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e =@ e

Use of this relation and introduction of the results above, together with
(8310)3 which serves to take care of the constraint condition (B158), into

(16) brings forth the following result; viz.,
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Preliminary conditions from the entropy principle in V

Examination of (19) reveals an essential fact here; namely the linearity

of that relationship in the particular variables

Dk gk T e B D g g g g
d.., w.. = w.., B . and w,. . (20)
oJ ald :IJ k,j? Ek, s

Thus, the coefficients of these parameters are by virtue of the constitutive
assumptions (C7) seen to be independent of them. Now, the entropy principle
in V requires (1) {or equivalently (19)) to hold for all thermodynamic pro-
cesses in V; and, to satisfy the inequality (19) under this condition it
must be concluded here that the coefficients of the derivatives (20) vanish

identically.

That being the case, the conditions on the non-linear constitutive

equations which follow directly from the entropy principle in V are
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‘S'{ul(;I[Jﬁ-al[J) i

— ] a
/s
a=1

= Ur.¢.
aak] a-a k]
s

al al[l’+§I[l’) aPi_
$8, 8y - Gl[jék]r)[ 0 e aa =0, (35)

B .M, P,
Z{[raﬂ * E[laJ] *

a=
Ju_(t + C ) P
ad aq[l aq[l q]} o

* *Clk[jsij[ T T Ut T (36)
S
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Preliminary results from the entropy principle in V

| now take note of the foremost direct consequences of the conditions
above; which results represent the initial derived restrictions on the con-
stitutive fields involved. Equations (21) and (22) indicate that e’ and n
are independent of g’k (b =1,2,...,8); while (22) and (23) mean that these

fields are also independent of T K Use of the identity
’

w
[
—_

|

=
<
1]
[+
N
-_—\
—_
O
1]
a
1

introduced now, together with (22) and (24) leads to the conclusion that

aP.
an a' _ 8
3—Vk = '-Eskim—sT—Bm (a—l,Z,...,s-l) . (3)
a

From (22) and (25) it follows that

=~

an

ask
s

hel B
Q
—

-
—_
w
0
-

and (22) together with (26) yields the result that

s aMk aP.
i = lr— a - v al +
3B, T e/, T i Y 3
a=1
1 - 5 a:i(;i[rJrg‘[r) a:i-
+ € > — - ur §. . (“0)
20 krl " 9T 38]] a[ral 88]]
a=1 S s

It may be seen from (21) and (25) that the P, are independent of p
b’
(b =1,2,...,s); and further, from (23) and (25) that it is also independent

of T . Now, from (21) and (24) it follows that
’
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aP.
a

©im 5o Bp = O (a=1,2,...,5-1; (41)
b’ b=1,2,...,s) .

The expressions (23) and (24) lead to the result

aP.
i

a
im ET—T B, = 0 (a=1,2,...,s) . (42)
, .
Thus, on the basis of (41) and (42), it cannot be concluded in general
that Pi’ like Pi’ is independent of the gradients of the constituent den-
a

sities and the temperature gradient. A further result concerning the polari-

zation is seen to derive from (24) and (25); it being that

o, °Pi
W; = - ekim 3—] Bm (a = ‘,2,.-.,5'1) . ’ (l"3)
a S

Adding (29) and (30) gives, with regard to (B87) and (B124), the result

s S S
3(e = Tn) 7 7
t., = - 28 - g - . P,
TR e T I IR (!
a=1 a a=1 a=1
S
- My - BRe ) v (bh)
(IaJ) s W
a=1
s rou_(t +C ) aP.
! ad aq(r aq(r a'
+ odey (Boy - B, 30 v aE |
a=1 s]) a a s])

From this relationship a mean pressure of the mixture, = = - 1/3 t;;» may be

introduced. It is here given by the expression

s s s s
— ~ <~ 1N 0 > > >
o= Y a(ea ) -%/ oul 4 x §P + %/ BeM +
— a e —4 aa — a a —+  a
a=1 a a=1 a=1 a=1
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1 ~
* 3% B/
a=1

3
s])

s Tou (t + C )
: {aq ICIGRECI

Expressions of conditions on the fields Cij as secured from (29), (30)

a
and (31) are respectively found 10 to be
| s a(t
c = o 3ple - Tn) . 'pu2 5 _ X " b
(i) > ) ® |t /. gk
a b=1
s

=i bb'b aa'aJ HJ
] an
> >
*o Bty T M) 7 U(ibq v (2
a 2 b=1 0 © 5i)
| s-1 s
C(i‘) Bp(ea - In) %puz 5.+ o
st'd s e ss J — — b
S a=1 b=1
o s
57 (&,.P [
- =2 pu.u. + opu.u. - Py -8 .
P b~T ob' ss's s('sJ) s s '
é:l 3 8Pq
+ > - b
+ (B,.M,, - B-MS§..) - &
(ig3) s 1 L./ b(ipa V5)
a=1 b=1
t C
= [Palfat * St
- de (8 5k BkGJI)/_J %)
a=1 s
and
= a(;kti * gk[i) S azq
C... = u + Ue.
fijl /(‘ k 3V, /. YLi%q v,
a (.1b b1 210069 700
- &..P, B .M. (a=1,2, ,s-1)
a[laJ] [laJ]

(48)
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| wish to note here that, due to the mixture nature of the problem at

hand, it is not possible with the present degree of descriptive generality
to give a lucid physical interpretation “or each and every term given in the
initial results above. These general results are nonetheless relevant in
greater or lesser degree to the procuring of that eventual physical insight
towards which attention is directed in this study. !t is possible, however,
to make yet further progress here without compromising said generality; this
being accompiished below essentially bf the exploitation of only some of the

knowledge gained to this point.

Reduced entropy inequality

With the elimination of the restricted fields as necessitated by the
entropy principle in V, a considerable simplification of (19) is achieved.

The reduced entropy inequality in this study is thus found to be of the form

s s _
~ - T
[) o 2le = Tn) 5., + 1 (t.. - ;;H t.. ) fu, =
- 3p iJ RN TS
b=1 b v=1
s
3 >_'
- = u.{t.. + C..)lp .
ab 5;1 al ald aIJ Jb,J
s s
- 7 ﬁl'ul + 9 a(e a; TT]) + _1_27 8|P, - _:)_Vlul ¢ -
5;1 aa a p ‘;; Yy aa |a
s s
21 + DR N -
T | Fijk /L gk VR LN
- a=1 a=1
S s aPJ
3 N N a
- T—= , wu.f{t.. +¢C.. - T u.§, —|T . =2 0. (49)
T /L aJ(aJ' aJ‘) e a'gJ AT |,



Admissible thermodynamic processes in V

| note here that with o bi and (8152)2 known, those solutions for the
ala
fields (A1) which follow from the equations (B158), (B159), (B161), (B163)
to (B166), together with the constitutive equations (C7) which satisfy the

reduced entropy inequality (49), are called 1 admissible thermodynamic

processes in V. Without making additional assumptions regarding the physical
nature of the (class of) systems involved, it is not possible to go beyond
(49). Such assumptions as may be made relate to specific physical systems

the description of which is more limited than was the case to this point.

Under general circumstances, the relationships as given above lend
themselves neither to simple interpretation nor to an easy derivation of
more definite results. in the following chapters | shall consider this point

more closely.
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0.3. Appendix D-1. The Lagrange multipliers N , A, A " and A .

Let
s an
_ 1 a
Ajk = GJk + Z Eo 38k » (SO)
a=1 s
an
1 a
A = LV, o — e, 1
qk Skqi :, e 38, (51)
S ’aPI
_ e _ on _ 1 a
Ae = "[a . T 38, o Z g. aa_k] , (52)

S - oM P aP

N 1
c . = —— |, mm— = Y e 4 (U.!S -ué ) —_— +
qjk a(_1v € |\q_;n 3B, q 3B, Jra 9] af;k:I

+ € ViV, = —— g ., (53)
qlk SI J NS qjk
$ an
1 a
0., = e..v. + Z-—-—, (54)
Jjk lesi £ €, O K .
S 3ui(ti. + IJ) aPI
E., = Z 28 8T . oy = - MV, (55)
jk [ 3B, alal Tq aka)
a=1 s
[ 3P|
dc an 17 a
F = Pl = T —/— - - E: =7 » (56)
k [ask 3, /L aSJ
s s a=1 ]
s aM P P
G =7-1—e -in-v-i-l-(ua —ué)i'r (57)
qjk - e, | 9in 3fs}k 9 afs;k dora Jar] agk

and
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s aui(tiJ. + cij) 3P,
N7 a a a a
H., = - u.f = - € M (58)
jk /# aﬁk alal a{;k jki i
a=1 s i
In terms of these parameters | now rewrite the ék' Bk,j’ {;;k and Ek'j co-
efficients of (16), each of which must identically vanish, in the form
8
ABk + REFEAI + + A =0
qk k
B, By, &q Elo
A u, + A + A% C .+ + A D, + E. =0
o jk ajk jk jk
&
S =
- A Aqk + + Fk = 0
B & b b
A . + + A G . + A v, + A 4. + H. = 0;
fqjk ajk ] jk jk
which equations shall be referred to respectively as |, Il, Ill and IV.
A
On A~ and A
&q
From 111, (50) and (56) it follows that A° is independent of Vi
Therefore, noting that
s-1 p
v, = v, - 97 LY ,
< i CRVAPRN I
s a=1
a differentiation with respect to vy of I, 1l and IV yields respectively
the results
B 8
LS L (
v, kqi ’ 59)]
8 8
k 4 8q 3P
A A s [ 1 j
v uj v djk oA 5—qu L] +quk(dll_j+vld_jl)j[ *
is [ k
&y &y
an® 3
o Okt A ik 0 (59),
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8 & g &y
k i P, k S
ah s |_ 1 j s oA _
TV quk + A [ E; aak} + A Gji + e Ajk = 0. (59)3
s

Differentiation with respect to v, of (59)1, then of (59)3 and lastly

&
2 8 k

of (59)2 feads respectively to 3°A k/avnavi =0, 327" /3v dv, = 0 and
& 6
ﬁs +A§qe (6,8, +6& & )+£ +3A'Sb =0 (60)
v v, °jk qlk1i%n ¥ %105 BV, “njk oV Cijgk = Y-
2,5
Contraction on the jk-indices yields 3°A /avnavi = 0, so (60) now reads
¢ &y &y
e s, §..) . s =0 (61)
qik®Jn T Fqnk®ji v, “njk Bv, Cijk T U
For i # ] # n this equation becomes
&, 8,
s s
A 3A _
av; “njk v Cigk =0 (62)
&y &, &y &y

whence fol lows that ap® /avi = 0 since aA® /av3 =0, ar® /avI and 3A° /av2
= 0 for, respectively, the combinations of indices (i=1, J=2, n=3 and k=3),
(i=1, j=2, n=3 and k=3) and (i=2, j=3, n=1 and k=1). Thus (61) implies that
8y
> = 0. (63)

. 8
With this result (59), shows that aA k/avi

0; and since (59)2 becomes

8
4 4
dA s - 6k
v S TR S T 0 (64)
it may be concluded that
84 . ABb
A5 =0 and L (65)
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Under (62)1 and (65)1 it follows from the condition that the coefficient

of § vanish, together with (B59), that

Sli

B s aui(tl + ci.) oP,
OIS P aad o, 2
q qu (i i 88k aJa' 38k

a=1 s 3

Upon multiplying this expression by Erjk it follows directly that, with a

change of indices, the desired relationship is given here by

s du. (t, +C.. ) aP.
ABk o o j;ﬂ al a|[r a|[r . 3l (66)
k ® / 3% rbi 3,

a=1 s]:| a a s

On A

B
The last Lagrange multiplier relation sought is that for A ", It

follows from the coefficient of the Bk i

term in (16). Using (62)1, (65)1

and (66) there in, the expression found is

B Yiﬂ aui(tij + cij) oP,
Ao % ) _jL—EEE_——E_—_ - g 3%— + MV - % M.u. +
é;T j ala j a a{ Jgd
1 s -aui(t ot Ci[r) aP.
+ oge U a_a u a (67)
irt 3/ 88]] a[r i 38]]
a=1 s s
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Footnotes to Chapter D

6

Whereas Miiller [1968, 4] developed the properties of a mixture of non-
electromagnetic fluids in terms of an entropy principle set forth only
for regular points, Liu & Miller [1972, 5, Sect. 4] and Miller [1973,
9, pp.142-1437 utilize in their single-fluid treatments a particular
material surface of discontinuity in order to exploit the character

of 'singular points in their systems with regard to securing additional
insight into the entropy flux properties of those systems. For the

mixture problem at hand, | too adopt the singular surface approach

mentioned; but, of necessity, | consider the more general case where

such a surface is not material for all of the mixture constituents.
Cf. Coleman & Noll [1963, 3, p.171, footnote 1].

Ibid [1963, 3, p.169]. It is important to note here that in contrast
especially to classical thermodynamics (cf. Truesdell [1966, 14, pp.
234-235] and Truesdell [1969, 7, p.4]) where only homogeneous, i.e.
position-independent, processes are treated, such a development as
this has a foundation intimately connected with material motions and

as such describes thermodynamic processes as functions of both position

and time.
Miller £1973, 9, p.131].

(12)1 may perhaps be called ''Friedrichs' mean value' since he defined
and subsequently used it, together with Kranzer [1958, 1], in the
study of shock waves in MFD. See in this regard, e.g., Sutton &

Sherman [1965, 17, pp.324-326].

CFT [1960, 9, p.7001].
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/ Coleman & Noll [1963, 3, p.171]

8 Liu & MUller [1972, 5, Sect. 3].

9 Liu 1972, 41.

10 Cf. Mlller [1973, 9, pp.172-173] with regard to the presence of the term

-lypu2 in (46) and (47)
aa

1 Coleman & Woll [1963, 3, p.168].
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E. ON EQUILIBRIUM PROPERTIES OF FLUID MIXTURES INTERACTING WITH AN ELECTRO-

MAGNETIC FIELD

The considerations above have been seen to lead to rather general re-
sults which are applicable in principle to a broad class of mixture systems.
Aside from the complexity of said results, additional motivation for fur-
ther simplification of the model they represent is found here in the lack
at present of a comparable theory from disciplines other than rational me-

chanics.

Results of an increasingly specific nature can be secured only upon
the introduction of an also increasing number of limitations on the model
being developed. Of particular significance are restrictions on admissible
thermodynamic processes in V; and it is to these that attention is now di-

rected.

E.T. On equilibrium

A fluid mixture equilibrium in V is defined here to be an admissible

thermodynamic process in V for which the following conditions hold 1: first,
the constituent velocities are equal, uniform and time-independent; next, the
temperature field is uniform and time-independent; and lastly, the reaction
rate densities all vanish identically. The implications of the first condi-
tion are clearly the equality of all electromotive intensities and the va-

nishing of the velocities \li and ;-
a a

With due regard to the degree of smoothness assumed, | note that con-
stitutive functions and their representations can be expanded about an equi-

librium at any point in V. Systems for which higher than second-order terms
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of an expansion in an assumed set of variables are physically negligible are
said here to be ''close to equilibrium' Z in V. Under these conditions | as-

sume that it is prudent to employ linearized constitutive equations. Matters
pertaining to the stability of equilibria in V, although of some importance,

fall beyond the scope of this study 3.

E.2. Equilibrium and the entropy principle in V

Consequent to the definition given above, an evaluation of the relations

(D21)-(D36) and (DLL)-(D47) reveals that in equilibrium (denoted by E), for

which eI = e, the new relations not satisfied identically are.given by:
3(e - Tn) E
v = T cin I‘ B, (a=1,2,...,5-1) , (1)
k E
a
3(e - Tn)
E 1
I (2)
38k 0 k‘E
s
3(e - Tn)
E 1
= -=HN , (3)
BBk 4] k‘E
BLiMj]‘E * g[ipj]‘E =0 (4)
s 3(e = Tn) £
. = = op §.. + 8P -
e 7. TERC TSN
a=1 a
- (B, .M, - BH| s ),
o], - B g
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S
ale - Tn)
E 1 2
WE =Zoo e +§§'I5|E +-3~'§.T1E (6)
a
a=1 a
and
3 (e - Tn) . 5
C.. = §.. - (&P, - §.P1 5..) +
aIJ)E a BZ *J "al|E ale Y
+ (B.M, - BH 8. (a=1,2,...,s) (7
Ja'lE ale '

On _magnetizable fluid mixtures

The class of fluid mixtures described thus far may evidence material
behavior dependent upon both the magnetization and polarization of ‘the con-
stituents invéived. As such, the model here includes two sub-classes of me-
dia each of which may be considered in its own right; these being those

mixtures for which either M, or Pi may be disregarded.
a a

For the sake of ease in the exploitation of the conditions above, |
make the otherwise non-essential assumption that Pi vanishes h. The eva-
a |E
luation in equilibrium of the constitutive fields shall _now be denoted where

useful by means of a superposed letter "E''.

With the specific free energy of the mixture in equilibrium given by

E
¥ = e - Tn. : (8)

Equations (1) and (2) thus become respectively



£ £
% = 0 (a=1,2,...,5-1) and g—z- = 0;
K K
d S
£
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which relations in turn indicate the fact that ¥ is not a function of the

velocity di fferences or the electromotive intensity. Thus, in agreement

with (C27),

E E 2
Yy = “F(D»T;B )
b

Examination of (3) under the same conditions gives

E
¥

%)
x m

aBk

°[—
x

Using (10) and (C32) | note that (11) can be rewritten as follows

E E

Y 3y

8. - 2 B

k 3B
where

E =k

M = y M.
YR
a=1

(b =

1,2,0..,8)

(10)

(11)

(12)

(13)

(14)

(15)
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Here ¢(p,T) is the specific free energy of the mixture in the absence of an

> 5
electromagnetic field .

The entropy inequality condition (D22) when evaluated in equilibrium

becomes

E
E
- -
n = =7 - (16)

Use herein of (15) provides upon integration the result for the sEecific en-

tropy of the mixture in equilibrium, viz.

2
* 1 ° oM E 2
n = nlp,T) + = dB” (17)
2p aT
E b
0
where the specific entropy of the mixture in the absence of an electro-mag-

netic field is given by

%(E,T) - g—i (18)

Lastly, because

E E E E
= ¢ =¥ + Tn, (19)

it follows from the use of (15) and (17) in (19)2 that

2

dB” . (20)
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The term ;(p,T) denotes the specific internal energy of the mixture for the
" ¢
case of no electromagnetic field; it being defined by

*
e, ) = ¥ - 7 %; . (21)
b

E.3. Stress tensor

From (C33), it follows under equilibrium conditions that
1 q

L L
t, . = t,. = té8,. + t,B.B. (22
IJ}E zau‘E 1] 2707 )

On magnetizable fluid mixtures

For the special case of mixtures for which Pi is zero it also follows

a
from (5), with due regard to (7), (C32) and (19) that

S
|, - ) "
. = - ..o B.M, - M| 8..) ; 2
t'J’E Z "‘; ® °1] (J |’E lE ij (
a=1 a
or, with the use of (15),
2.
s B
M
t.. = [-plp,T) + z pp J -g— (-JE)dB2 §.. -
e b a [ ij
a=1 .~ 0 a
N
- (BJ.Hi‘ - ﬁ.M’Edij). (25)
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Here
s
* * * a¢
Ble,T) = 5 3,1 and plo,T) = po = (26)
b ‘4 ab a'b f
a=1 a
(with a,b = 1,2,...,s) denote, respectively, the pressure of the mixture

in the absence of an electromagnetic field and the pressure, suggested by

that relationship, of a constituent under the same conditions.

I now wish to consider the deviatoric expansion of the last term of

(25). For this purpose | denote the mean normal "magnetic stress'' and the

magnetic stress deviator respectively by

1
-B-BkBk and BU. = BiBJ. ﬂsaij. 27)

Upon introduction into (25) of (27), (C32) and (13), together with the
expansion of the integral term therein, it is seen that the stress of the

mixture in equilibrium may be written as

= -p§.. - M|B.. (28)

where the pressure of the mixture and the electromagnetic field is
2

: B
p=5--2—MEBZ+-%-J(M,E ) J—)dB. (29)
0

3

E.L4. Chemical potential

In order to determine the material behavior of a fluid mixture of va-
riable composition, it is in general necessary to examine the role played
by both the homogeneous and the heterogeneous chemical reactions involving
that mixture. Although appreciating the importance under certain conditions

of the latter type of reactions, | further restrict this study to a more
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explicit investigation of only the former. In this section | take up in par-
ticular the problem of determining the chemical potentials for a mixture of

fluids interacting with an electromagnetic field.

The entropy principle on s(t) revisited

Surfaces of two kinds are of particular interest here. The first to be
mentioned prohibits the passage of matter and thus serves to enclose some

region of volume. Such a surface defines a mechanical boundary of that re-

gion and is representable as a material surface. In contrast, the second
type of surface is porous to some extent and hence permits the transfer of
mass. A surface with this character has earlier been termed a semi-permea-
ble membrane. It is in terms of such a membrane that | now consider further
the entropy principle on s{t); and, following an approach due to Miiller 6,

thereby determine the chemical potential of a mixture constituent.

A plane membrane in parallel motion is a material surface for all con-
stituents a except that arbitrary one, say b, for which it is taken to be
permeable. Upon considering such a membrane as separating two mixtures of
the type being considered here, the selective nature of its permeability is

expressible in terms of the system velocities: viz.

V. = u, for a#b; (30)

and thus

ol{v, - u) = p{v, ~u) and u = (1-6 - l)p(v -u) (31)
kT Y kT Y% k o % TPV T

bb a b
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In addition to satisfying the conditions prescribed by the entropy
principle on s(t), this membrane is aiso assumed to have negligible (if any)
surface tension, charges and currents. With (30) and (31) | first continue
here the general development of the jump balance relation of entropy (D13);
after which, the specific result found here for magnetizable mixtures will

be noted. To begin, however, it may; be noted that

5 S
~ - ~ /] 1 . A
-l Cpjuln; = '[[_J 8 "3 kit e (vy - upd, =
a=1 a a a=1 b
S
1 .. 1 o R
= 'IEZ Cifify 'Egki”.”k”"("l - upay o, (32)
a=1 @ b
s P
+ s - - " - - A - -
e klE; Z (_P; * :)kl‘”i = “k"SL ("J”k éjk)ﬂp(vl up)f,
a=
P.
b . »
- ﬂ&kp— (nJ K éjk)lip(v' ulf, o+
b
P
P k
LB - DIely, - A (33)
b
and
- "
\ PO P _ -
sijkll/"l (:xﬁ)j:kﬂni = - [B, 5 (nJ.nk éjk)]]p(v] ul)n] +
a=1

(.6, - éjk)]]o(v] Suday . (34)
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Introduction of these relationships into (D13) yields

PJ. Mj
1 . b bdy . o .
( D—Ekinink volg o BkC_)(n_jnk_OJk) *
b b b
+ (v, = u)lv. - u.) - (e -Tn) +

s
1 N . -
+ 5 (tki + /{J Cki)n nk]]p(vl - ul)n] +
a=1
> ‘-> Pk Ek
+ b(v xB) (— - =)iplv, - u)A, -
o 1 1771
b
- H(; x §)kkaiﬁlﬂ + ﬂ(g x g)'ﬂﬁ ut -
<
> > . > > ..
- I(v x B)IPJ + BI /. (P x v)Jﬂ(n]nj - éIJ)u =
o oe e

(35)

A further revision of (35) is possible and is secured from an evaluation of

the last four terms therein.

To begin, use of (B12) leads to the following expression

S

B. 5 (Pxv). = B.(BxVv). + B, F x0). (36)
t s a a ! J ! 4 3 aJ
a=1 a=1

and the substitution of this equation into (35) implies that there are two

sets of terms which may now be considered. The first is
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. S
I8, Z @) du + LB

and second, the remaining terms may be given as

- - > > 2
-[{v x ﬁ)kkainiﬂ + [(P x B)iﬂn|un -
- I(vxB).P. + B (FxV).I(A.A, -5 )u
i ij°n
> > Pk
= -[(v x B)k E_Mo(v] - ul)n' +
+ u(ExE)uuo(v - u)A (38)
o’ 1 |
Addition of (37) and (38) gives the result
P
L@ <2y - u)dolv, - A, (39)
b
Now, upon recognizing the fact that by (B87) and (B15k)
s s
Le . v, ¢ )RA, = e-Ta - L o(tn? (40)
3 ki P Ki ik n 0/40 . »
a=1 ¢ a=1 2 a

a substitution of (39) and (40) into (35) brings the jump balance equation

for entropy into the following form

g, 3 = 0. (41)
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Here, the quantity K which is seen to be continuous across s(t) is called
b
the chemical potential in non-equilibrium of constituent b; it being given

by
J MJ'
Cleoaa S
E <3 Eki":"k + (& B o) (AR, =650 +
b b b
P
+ (B x %)iﬁl[(vJ - u )ﬁj] - %(vI - u')(vI - u|) +
b
S
+ 1Y @M b= 1,2,...,8) . (42)
e a=1 aa

The chemical potential of any constituent b in equilibrium, u, follows from

b
(42); it being given in general here by the expression
w = K =
b b|E
PJ "
1 P b- |E b- [Ey /a =
el L G B, — )(nJ.nk 6jk) . (43)

b b E b b

On magnetizable fluid mixtures

Under the additional assumption that Pj vanishes (43) becomes

e
c.| A.4, - B (., -6.) , (k)
b

while from (7) and (8) it is found that



190

Y| g bJ‘E
ik 3p k o
b b

3
=}
n
+
(=]

(A.A, -6&.) . (45)

Introduction of (45) into (44) thus yields the relationship

apY¥ £
no= ; (46)
b o
b

where, upon using (15) it follows that for any constituent b the (magneto-)

chemical potential is here given by

oM
b= e, - g J E g2 (47)
b b a

for a,b = 1,2,...,s. The chemical potential of constituent b in the absence

of an electromagnetic field, ﬁ, in (47) is written as

b
* 3%
Hle,T) = 2=, (48)
b a o
b

From (7), (8) and (46) it is thus seen, e.g., that for any constituent b in

a magnetizable mixture the following general relation holds: viz.,

= ous.. + [(B.M, ) (49)

C. .
b'J e bb ' Jb“e b

It is of some consequence that py is, at least in principle, a measura-
ble quantity 7. Clearly, together wi?h a knowledge of h, it permits the em-
pirical determination of the constitutive quantity gij in equilibrium, Fur-
ther yet is its role in e.g. the chemical reactions and diffusion processes
of the mixture, to which points | shall return shortly., But first | wish to

set down another expression wherein the chemical potentials of the mixture

constituents in equilibrium are also important.
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E.5. Gibbs-Duhem equation

In the thermodynamics of mixtures a Gibbs-Duhem equation is the means

by which 8 the composition dependence of u and the constituent pressures can
b
be examined. From (47) it may be seen that

S s B2
—g —g* 1 ;EME 2

=y = ) =u - = y = ds” . 0
Lol T /e ZJ/_JO % (50)
b=1 b=1 V] b=1 b

Using (26) and (48) herein gives in turn that
2

=3 ooy 1 b
) 24 = ¥o- = 2 ds? ; 1
/ OE oV ZJLO 30 (51)
b=1 o] b=1 b

which, upon introduction of (15) and (29) becomes

oo o

o=
ol m
N

u
oo

+

< m

+
wilrn

B . (52)

The relations above are seen to be empirically determinable from the
properties of the individual ('pure') constituents 9. Thus, an additional
significant point here is that with the realization of the Gibbs-Duhem equa-

E E
tion (52), with M known, a means, for establishing the function ¥ has been

secured. It is by virtue of thisresult that a further development of the

equilibrium conditions (1)-(6) becomes possible.

E.6. Chemically (non-)reacting fluid mixtures

For mixtures in which there are no chemical reactions the terms are

O,
3

zero; and, hence, the reduced entropy inequality (D49) assumes the fo
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S s
< - —_— -
;> {[p 3(68 T + = (t - t. ) fu. -
) & ] o 1] i ] b|
a=1 b =17
s s
- %— ul(ti + Ci.)JO .- o fou, -
g =712 a PANE é;ﬁ a a
s s
1 [ ~ 7
- =9, + € ;) &.M - C..u, -
T ijk /£, aJak / aJlaJ
a=1 a=1
s
]
- T = u. (t., + ) -
T R ji
a=1
S aP .,
a’
- T u.§. -—-JT 20 (53)
i2j o o1
=1aa

For single-phase (i.e. homogeneous) mixtures composed of s constituent
fluids, a criterion of equilibrium is 10 that the entropy production y (cf.
(B150)) of those mixtures vanish. In general said production is here the

left-hand-side of the reduced entropy inequality (DH9), i.e.

=<
v
o

H
and, this in turn reduces for the case where chemical reactions are negli-

gible to the expression (53).

Thus, upon denoting by XA the variables T K and Vk which vanish in
’
a

equilibrium, it is seen that vy which is generally a function of the varia-

bles (C6) satisfies the relationship

Y = Y(p; p,k' T, 0, 0, Sk' Bk) = 0. (5")
E a a

That is, vy equals zero (its minimum value) in equilibrium,
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The well-known conditions ' which ensure (54) are that the first and
second derivatives of y taken with respect to XA be respectively zero and
positive; these requirements being expressed by
2

oY
3X,9%g

Al
5%,

is positive semi-definite. (55)

E E

Investigation of (53) under (55)‘ with X, =T K yields the result that
the flux of internal energy in equilibrium, rather than being zero, is given

by 12

§.8 (56)

or by q; = -Meijk 55

Gl = e 8 ] ]

where use has been made of (C32) and (13).

The consequence of applying (55)1 to (53) with XA = Vk is that the in-
‘a

teraction force density in equilibrium may be written as

ap(e - Tn) £ —31 8(;ij * gij) £
A = ;> ——————5—--L- s (57)
| 9]
a b

p . -
Ip N
E a a b=1

On magnetizable fluid mixtures

With regard to plasmas the special case of magnetizable fluids is once

again of particular interest. Hence, although (57) can also be examined for
L

situations of non-vanishing Pi 13, I do not consider this point here.
a

From (8), (46) and (49) the relation (57) can be written in the form

N
s 3u 3M a(:ij| + BJ_Mi )]
R T NN
al £ 4 U g o] el P Jb’J
b=1 b b b



194

It may in addition be noticed from (57) together with (B154) that (cf. (B90))

= 0. (59)

A comparison of (C33)1, (22)1 and (25) suggests the decomposition

M
sl
t, + B.M =[-,§+§-M + pp == 15, ., B
a'J’E Ja'le a a a az J i ‘Jk k
where (60)
BZ
Mooy f MlEdBZ
0

Differentiation of this expression with respect to p leads to

b
* >
M
a(; 'E + Bj: E) ( az B aa - { (lM)T}
= {- == + B + = — (= +
ap [ ap 3 ) p‘; o p J)7i]
b b b b a
3t3
a |E X
e fijkPk; (61)
b
and, using (47) and this last result in (58) gives
s 3p an o M at3
o a a ayad I a |E
= < .- = - - D) (- A B ..
:i £ :E: ap Z 3p p((s.ab p)ap(p ) 5|J 3o Can k g,J (62
b=1 b b b b

Linearized constitutive equations

Under equilibrium conditions evaluation of the representation (C30) of

Fha tmtarnal ararcayg £liiv Ailvuce e
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LI L1 L2 L3
q. = j;q (q_| 8. q°| €..,B. q’| B.B )o +
e i ale ik alg ijk7j alg i k a,k
a=1
L L L
10 11 12
+ (q Eaik + EeijkBj + EBin)Sk . (63)

Comparison of this result with (57) leads to the conclusion that

L L L L L L
q; = qi = qz = q10 = q]2 = 0 while q]] =M. (64)
E E E E E E
L) 1
Hence, in general q; is here such that
s=1
LI — L L5 L
. Z_J (qaélk qaeijkBj + anin)\a/k +
a=1
L L L
7 8 9
+ {q 6ik q EijkBj + q Bin)T,k +
L
+ oM B8, (65)

S

Remembering that ¢ has been taken to vanish, it is possible in a simi-~
a
lar fashion to that above to consider the linearized representation {(C28)

for ﬁi under equilibrium conditions. The resulting expression is for all
a
constituents of the form

L = L L L
mi = ;}_ ( 1b dik + m2b Ei'kB’ + m3b B.Bk)p ot
a'lE = able abig tikJ g ! Kpe
L L
10 11 12
+ (ma Edik +om, Eeijk j + o, EBin)Sk . (66)
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From {62) the conclusion drawn regarding (66) is that

L 9p 3u 0 M
m' B - ) KA
ab £ 9p Z ap ° ab p’o0  p
b b b
[3)
3
ot
;2 . ._a|E ;3 = 0
ab 3p : ab
b
and that
L L L
either m]0 = m]’ = m'? = 0 or Gk = 0. (68)
E alE e

In general, for an equilibrium in V the electromotive intensity Gk need
nat vanish; neither here by definition nor empirically. | thus assume hence-
forth that the restrictions (68)1 on the interaction force density coeffici-

ents represent the physically more reasonable conditions to be satisfied.

Two meaningful implicétions of the assumption on non-zero Ek in equi-
librium may now be mentioned. First, the definition given earlier for die-
lectrics (cf. Sect. B.4.) is seen to be more general than that usually given.
And second, regardless of the capacity of the mixture to conduct electrici-

ty, the flux of internal energy is seen from (56) to also be non-zero.

Lastly here, it follows from {C28), together with (67) and (68)1, that

here

p an 0
S (.°P Ly M
ao- (2. 02 - o, - 2a2yls -
i | %0 3 ab p'op o ) i)

a -4 a

b=1 b b b

a3 ‘

- 2 E B lp +
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f—'l L, L L
o, M o mpei Byt mpBiBY ¢
. b
b1
L L L
7 8 9
oM tomenBy o mBBIT (69)

E.6.a. Law of mass action

For chemically reacting mixtures the reduced entropy inequality (D49)
leads, under the definition of thermodynamic equilibrium in V, to additional
conditions on the system. Using (B36) and (BHO)], the expression in (D49)

involving € assumes after some manipulation the form

S n

(M. - ev.)u. - j;— jg: Yawm [%& (eI - Tn) 1A% . (70)
al [ /. aa P

a=1 aa a a=1 a=1 a

An equilibrium evaluation of (D49) with (70) therein under the condi-

tions

/\"E = 0 and AT (71)
e
gives the result that
|
- N (e - Tn) £
v > = 0. (72)
~4 3 a [
a=1 a

On magnetizable fluid mixtures

With the help of (19) and (46) this equilibrium condition becomes
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which result is an expression of the so-called law of mass action for a mix-

ture interacting with an electromagnetic field. Introduction herein of the

relation (47) for the (magneto-)chemical potential yields

s B4
YNNG - g f £ a8?) = o (74)
od [e]
a a a
a=1 0 a

E.7. Gibbs' equation

15

In classical non-equilibrium thermodynamics the local balance equa-
tion for the entropy of a mixture follows from an assumption of macroscopic
state variables in terms of which a differential of entropy is established.
Said entropy is expressible as a function of the state parameters (e,g. in-
ternal energy, mass fractions, etc.) and their differentials in such a man-

ner that substitution of the balance equations of these quantities for their

counterparts in that functional relation yields the desired result.

It is not my purpose here to attempt an examination of the premises
from which such results are derived in that discipline. Rather, | shall show
in this section that the essential result (i.e. the differential of entropy
equation) with which the classical approach begins follows here as a result

of considerations of a very limited special case.

On magnetizable fluid mixtures

It follows from (D18) and (D22) that in an equilibrium for which P,
a |E

TB—ZJ.I.—E=3—E;JT£ ; (75)

vanishes
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where (19) gives that
M = ele - ve - (76)

Differentiation of (76) with respect to p and B2 yields, respectively, the

b
results
an|E ) 3&|E aw|E e ) 2| a\v|E
T = - and T = - . 77
b b b
. 2
Now, since ”|E =nfp,T,B )‘E’
b
S
—— 3n an an
N\ _J_E E E 2
= T
Tdn'E /—JT 5 dg + T 3T dT  + TaBZ dB
b=1 b
or, using (77),
. .
— oY Y
T dn de|. - e do - e d8? . (78)
E E AVREE I a8

b=1 b

From (20) the differential of internal energy is found to be

B2 ZL
* "M
de = (_B_t-: + = T E de)dT +
E 3T 20 2
T
0
2 L
s B
+ N a_E. - _1_ [3_ ([E\ -7 o E) -
4 P 20 a0 E aT
b=1 0 b
L L
L M L oM
1 _ Ey ] a2 1 ) E\ o2
5 (M E T 5T )JdB }dp 7 (M £ T 5T ydB® . (79)
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Further, utilization of (15) and (46) leads to the result that

P b b

= oy, o~ '
- do = -) = (u-¥_)dp . (80)
B ) _ |E

b=1 b b=1
It follows now from a substitution of (12) and (79) into (78) that a Gibbs'
equation for a mixture interacting with an electromagnetic field is given

here by the relationship

S u
de — J€ ¥
1 E 1 ' E b E
= - T = - 2 d
dn| g TaTd+T)1(ap o+p)g+
b= b
de
1 E 1 2
+ T (aBZ + -Z'B-M|E)dB . . (81)

‘An expression equivalent to this one, but written in terms of the total

density p and mass functions ¢, can be secured through the use of
b

¢ =p/p (cf. Sect. B.b.), their derivatives and (52): it is

b b .

* 1 3¢ 1 %8 1«
dn =TﬁdT +T(—a'p- - p—zp)do +
s-1 .
1 3 * _ x
+ = [5= - (6= wlde. (82)
T/ "oc b s b
b=1 b



Footnotes to Chapter E

: A rational mechanical definition of equilibrium is made in terms of
those physically well-motivated conditions that must be satisfied in
order that the entropy production density (here (D49)) equal zero. It
is in particular interesting to observe that for rational mechanical
theories with different degrees of generality, but which consider the
same subject matter, the requirements for equilibrium need not be the
same. For example, single-continuum theories of media interacting
with an electromagnetic field such as that of Liu & Miller [1972, 5,
p.163] and Miller [1373, 9, p.144] require, say, the non-convective
current density Zj (cf. (862)2) to vanish. In this theory, however,
such a condition need not, and indeed in general cannot, be set down.
For the special case of this theory where Pi = 0 and Mi =0 for all

a a
constituents the result that Z} is zero in equilibrium is recovered.

See CFT [1360, 9, p.652, footnote 1]. Note further Liu & Miller

[1972, 5, p.164] and Hirschfelder, Curtiss & Bird [1967, 9, p.515

and p.709]. Regarding experience consult, e.g., Kantrowitz & Petschek
{1957, 3, p.5] and Sutton & Sherman [1965, 16, p.212]. Note also foot-

note F12.

With the exception of setting down the condition (55)2 and the dis-
cussion given in Sect. F.3. | do not approach here the difficult
matter of stability. [t may be worthwhile to point out that the use of
linearized constitutive equations is made, with physical motivation,
once again for purposes of developmental simplicity; and that the
absence of stability considerations here is not a consequence of that

fact.
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See footnote C35

The kinematics of mixtures of magnetizable fluids here depends upon
both the electric and magnetic fields. ‘he material response thereof
has, however, been taken to depend only upon the magnetic flux density.
For such systems in the absence of said field, it thus follows that
the constitutive relations are reduced in their descriptive content
essentially to expressions appropriate to such media in the absence

of an electromagnetic field.

Cf., for example, Miller [1973, 9, pp.174-176] and note the difference

in approach there (and thus here) with that of Miller [1968, 4, p.24].

This point is discussed somewhat by Muller [1973, 9, pp.177-173].
From a "practical' viewpoint (cf. Slattery [1972, B, p.4991) the gen-

erally difficult empirical determination of chemical potentials may

_serve as a motivation to avoid their introduction into theoretical

considerations such as these. That such potentials can be measured
under certain circumstances may be seen in the discussion of, say,
Sage, [1965, 14, Chpt. 91. | take the position that the usefulness
in principle of chemical potentials should stimulate efforts to exploit

same in practice.

Denbigh [1971, 1, p.215]. Note further CFT [1960. 9; pp.649-650]

and footnote D3.

This may be seen by considering the definitions (B59), (B135), (BISZ)],

(€32), (29) and (47) for the various quantities of concern .
Stattery (1972, 8, p.4327.

Cf. Liu & MUlier 11972, 5, p.163].
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This interesting and potentially important result for plasma physics
research was first obtained and discussed by Liu & Miller [1972, 5,
p.169 and pp.173-174] for the special case of electricaliy non-
conducting magnetizable fluids. It was found there as a consequence

of the use of the particular definition(s) of equilibrium they em-
ployed as were dictated by the single-fluid nature of their theory.
Here, by virtue of the mixture character of the model, the material
response of the systems involved is such that this result is generally

applicable to both electrical conductors and non-cenductors.
Cf. Benach & Miller [1974, 1].

It may be noted that the coefficient K?k in the abbreviated ex~
a

pression for (C30) is zero.

E.g., de Groot & Mazur [1963, 5].
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ON SPECIFIC PLASMA SYSTEM FIELD EQUATIONS

The foregoing chapters have servec *to establish a particular general
rational dynamic model for a multi-continuum fluid medium interacting with
an electromagnetic field. The methodology of thé approach involved initial-
ly the consideration of a single, physically identifiable, but otherwise
arbitrary constituent; and, a treatment of its properties was seen to lead

in turn to those of the class of mixtures considered here.

A total (plasma) system consists configurationally of two parts: the
system interior and the system boundary. Clearly, a ''complete' phenomenolo-
gical description of any given material system should when necessary be able
to present a treatmentvof each of these parts together with a physically
acceptable representation of their interaction. Real media (e.g. MFD plas-
mas) due to their inherent physical complexity do not, however, seem in ge-
neral to lend themselves to such a detailed giobal analysis as that indicat-
ed here. On the basis of this fact | have ! restricted my attention primari-
ly to the system bulk (i.e. interior); having accommodated the system boun-

dary by means of a discontinuity surface -representation.

An adequate treatment of a given system has been assumed 2 to be ex-
pressible in terms of a physically well-motivated set of field equations;
and it is to these relations that | again direct attention in the next two
sections. Thereafter | discuss briefly in sections F.3. and F.b. respective-
ly some general aspects of empiricism, and boundary and initial conditions,

as related to this study.
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F.1. System interior equations

It is, of course, the specific material media and field quantities of
a given physical system which determine the composition of the interior
thereof. Regarding a theoretical possibility which | deem relevant to both

3

the general problem “ and illustrative of my purpose 4 here, | propose to
give now a résumé of the expressions of balance and material response to

be gotten from this study for the following plasma system.

Aside from the electromagnetic field, the mixture is taken to consist
materially of three continua: viz., an electron, an ion (of one type), and
an electromagnetically neutral gas continuum; where, in addition, the last
two constituents are in their respective ''ground energy states''. As an exam-
ple of such a system, one may think of the system as being a tertiéry plas-
ma mixture consisting of electrons and, say, neutral argon atoms and the

first ionized constituent thereof.

F.1.a. Balance, conservation and constitutive equations

For the case at hand | now identify the three partial continua involv-
ed by letting the subscript a in the arbitrary constituent relations deriv-
ed earlier assume only the values a = 1, 2 and 3; these denoting respective-
ly the electron, ion and neutral gases. For the sake of convenience only, |
take as the reference (i.e. the sth) constituent the neutral gas continuum;

and, | consider here only such mixtures as are ''close to equilibrium'. With
their general forms having been discussed earlier, | now summarily present

the relationships of concern here.
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Constituent mass balances

L
b+ opv. = & (1)
a aa’l?) a
where
3
L \ L
g = >_ YA wma* (1) . (2)
a a—z—f a a

L
3Q LT L
3% + J. . = qi (3)
aJ’J aa .
where
L L L - L -
: ) ) T
O L R T ()
a a a’ aa 2’ aa’ a
L
L L 3:_1 L $.s
3’, = g M + — + V.E + €, x V) ,
o) jk1_1,k ot a_lal,l jkl a 1,k
L L L 5
Moo= M(I)Bi , Pi(l) =0 and for a=2 and 3, (5)
a a !
L = L L, 3
Pio= TP 6+ P (e By + Pab(')Bin]g,k *
@ b=1
—3_ Lh L L6
+ /{J [Pab(')élk * Pab(|)€ijk8j Pab(|)B|Bszk *
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L7 Lg Ly
[Pa(l)sik + Pa(l)eijkej + Pa(l)Bin]T'k +
L L L
10 11 12 .
[Pa (1)5ik P, (I)CijkBj + ?1 (I)Binjgk ;

the material coefficients of the partial polarizations still being func-

tions of the variables |.

Linear momentum balance equations .

L L L L L
ov. =~ t,. . - Q8 - e..%8 - ob, = @ - &v, 6)
aa' a8 aa' IJkaJ k ala' a' aa'
where
L L L L .
t., = t1(|)6.. + tZ(I)B.B. + t3(|)e.. B,
ij a ij a i a ijk 'k
(7
§ = E. + ¢,, v.B ,
al i IJkaJ k
and for all three constituents
*
3, aP an P M
L
m = J.—E + p_a. - p[ -éJi I—-J I -
':i / l 3 ) ab p) 3 (pj| ]
b=1 L b ) b
atBk
T c:jkBk]g,J
2
L L L
N - h 5 6 .
o Dy e+ (e 8, + mab(')Bin]gk *
b=
L L . L
7 8 9 8
+ [ma(l)sik + ma(l)eijkBj + ma(l)Bin]T,k . _ (8)
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. Mixture angular momentum balance relationship

where

3 L
L 1
Ei- = :E: (:‘J g:iu.), u. = v v, and vi =3
j =1 a a a o=
Mixture internal energy balance equation
L L L
o= t,Lv, . - .. T opr - & = 0
o (€) 'JvliJ qJ'J 3'JSJ
where
3 L 3
1 71 1 2
p = Py € = SE + = ou” ,
a aa
a=1 . a=1
L
-y,
L LI 3 L L 2
q. = q. - ZE: [ti'ui + ple + Huu.l ,
J J a'Ja a'a a al
a=1
LI 2 Lh L5 L6
qj = ). [qa-(l)djk + qa(l)ejlkB] + qa(l)BjBk]Zk +
a=1

B L
U PR QR

L

+ M(I)ejlkBIt;k ,

Ly -
q (I)BjBk]T’k' +

(9

(10)

(11)

(12)

{13)

(14)
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Mixture entropy
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where

and

L
p{n)’

o

ji

olr + biui) ,
aa aa
a=1
L
3 3P,
L
N A F !
R S B TALL TR Tl
aa
a=1
L é 5
AR ARUNLE
a’a a a
Ej + E_jklkal
balance equation
3 3
L L L
1 T\ \
+ =( + € &.M —YC..u.)}
q] a/?i IJkaJak '3_:1 il
L
n(n -,
L L L
clrs. o+ cEs e+ Sl)e 8
ji ji jikk
a a a
3
or
4 aa

w
[0}

(15)

(16)

(18)

(21)
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Electric flux density equation

L
D. . = QF
iy
where
L L
ﬂ)l = Di + PI ’ D| = g Ei ’
. 2

L L

Pi =7Pi and QF =Z\Q
L4 4 ‘a

N
')
[

a=

L
L )]
=qof F i
IS S e R N T
where : i -
: L2
J()‘I<=Hk-Mk-Z_J(:x;)k’
a=2
2
Hk = i— Bk and Jf = ;} QFui
Yo — a a
a=1
Mixture charge conservation equation
L
L
oQ T
= + J. . =0
ot JaJ
where
2 3
L . L L.
Q = j;- QF - P, and J
—4 a3 A J

(24)

(26)

(27)

(28)

(29)
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Magnetic flux density conservation equation

Electromagnetic induction equation

BBi
S STLN R Tl ' (31)
It will be remembered 6 that a primary aim of such a theory of mixtures

as that given here is the determination of the field quantities

o(x,t) 4 T8, v (0, E(X1) and B (x,0); (A1)
a a
which, in this particular case (i.e. a = 1,2,3), are 19 in number. All of
the expressions above are clearly not independent. However, those relation-
ships thereof which in principle make said calculation possible and for
which the system of equations and unknowns is determinate 7 are the follow-
ing: viz., (1), (6), (11), (18), (25) and (31). After setting down in Sect.
F.2. the equations found here for the boundaries and interfaces of a plasma
system, | shall comment somewhat further in Sect. F.3. with regard to the

problem of solving these relationships.

F.1.b. On mass and charge transport

It is of considerable theoretical interest and practical importance
that physical insight additional to that given by (B12) be gained here into
the nature of constituent mass and charge diffusion in a multi-continuum mix-
ture of fluids. While the mathematical investigation of this subject was be-
gun by Fick 8 in the mid-nineteenth century, it remains yet a problem area
intensively studied. Thus, it seems that it can be fairly stated here that

the general treatment of diffusion for plasmas leaves much to be desired I



This section has as its foremost purpose the presentation of those ex-
pressions for mass and charge flux that result from a unified mechanical,
electromagnetic and energetic non-linear Lheory of diffusion ]O. For the
sake of convenience, however, | shall employ the theory above in a severely
restricted form in order that a special case of particular interest here

may be considered ]].

On magnetizable fluid mixtures

The development here proceeds from the balance equation (B85)I for the
linear momentum of an arbitrary mixture constituent; and it may, with the

use of (B15), be expressed for all s constituents in the form

pv. + u.v, . - t.. . - Q& - e..F.B - p b, =
i J.i,] alJ,J aal IJkaJ k aOa'

=m - &v. . o (32)

The result of dividing (32) by p and subtracting the expression secured for

a
the sth (i.e. the reference) constituent from that for any other constituent
a is given by
( VR u ) L PRI
v, - u.v - )= =t - t.. . -
¢ I J. 1) Je1s) p1],) noch)sy)
a a“a s 5 @ o S
- e - ey - dg - Laoe s - (b - b =
¢ aa' © 55! £ al S Oa 0s
3 a s
[ 1 . - -
= —& - =@ - (&v, - &v.) (33)
o i o i i
a s aa ss
a s
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| now limit the class of mixtures for which (33) is to be used here to
these systems for which chemical reactions, constituent polarizations and
terms non-linear in p i Vi’ T i and ﬁi may be neglected; and also for which
I 2 a’ b ! a
M = M(p,T,B") and the constituent specific magnetizations are density-
a aa 12
independent . Under these conditions use of linearized relationships

for the constitutive fields is acceptable and it thus follows from (BS)

and (Bh7)2, (B53), (C32), (E60) and (E69) respectively that

L L L L
Q = g, & = . , M. = MB. ,
b bb  bd JR kT b
L * > —IF L L3
t,. = (-p + B-M)s - B, t’e, . B,
b' b b ' Jp b '
and (34)
L
) s r(3p 3 at>
M = [ —E - p —RJé - —E— € B p
i 30 3p | ij 3p Pjkok |5,
b =1 Ly by d d
s L, L L
AY
* (my 8 1 Mg KB M aBi BV *
d
d=1
L L L
7 8 9
om r ome Byt mBBIT L

Introduction of the relations (34) together with the use of (B10),
13

(848), (D37) and (E46) leads, after some calculation to the following

form of (33); viz.,
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s=1
Fo.v V, ¢ (h-~1n) ., + DT £, B B
Moo= (1w -
b=]. cbl_]b_j cl c s N clk k c]kn n,k
-.(q-98& - (b, - b)) . (35)
1 1 1
c s Oc 0s
. . 14
Here, the coefficients F i le and Eyi are given respectively by
cb'd ¢ c
I I
F - (&b _ sbjy . b _ _sbjgg
cb]J 0 0 b 0 p 17
-C S c S
L
mib b '“gb b
L e [ CHS -~ g(dsb-—) Srgle s (38
c ¢ S
* L L
P P (ol ol
= e L sl d-h -2 -
ik — )3T||e ) ) ol ik
c S
c s c s
L L
L9 L9 L8 L8 t3 t3\
mc ms mc mS 3 c s B( )
S ] L L I eSS e _pJ‘*"iij”
c c S [+ S
and
L L L L
M My . t3 t3\
£, = | - 2, - 2355 - 2l 8. (38)
1k o p | 1k 2| o ol 1jk7J
c 3B .
c s c s
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Now, with
s-1 0
v Y6 h G 6, -9 (39)
. = u. where = - ,
b d/—;] bdd’ bd bd s

the relationship secured by solving (35) for the diffusion flux of mass of

an arbitrary constituent a is given here by

s=1 s-1 s=1
< 1m0 LN
oui=// p (G F”{/ (Gu] +(ﬁ-ﬁ)]+D]ka-
aa b;T 621 a ba bc &;T cdd c s ! c '
©OEBB T - a8 - (b - b))l ; (40)
c c s Oc 0s
or, with the introduction of
s-1
T L (1)
il ba b il
ac =7 ba bc
by
s-1 s-1
ou.=voH]< (Gu) + (i-w + D, T -
i il ! 1 Tk ,k
aa 4 aac -4  cdd c s c
c=1 d=1
- EianBn,k - (g-q)& - (b - b)) ‘ {42)
c c s Oc 0s

This relationship, a generalization of Fick's first equation of diffu-
sion ]5, has-been cast into a form permittingla rough comparison with those
expressions secured from, say, ''classical' particle approach considerations

6; which results it also generalizes. Aside from the possibly important
acceleration term (G u,)’ 17 and the extended physical scope of the T

1 cdd ok
efficient , it is of particular interest here to note the presence of a

co-

. . R . 1
new term which is related to the non-uniformity of [
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Now, the non-convective electric current density is given for the spe-
cial case under consideration here by (B62) without the polarization terms.

It follows from the introduction of (4Z) into that relation that the genera-

lization here of Ohm's equation for the diffusion flux of charge is given by

s s-1 fs-1
' -1 1 1 .
& = E CELIS —]{(—6 - lgouP]” o+ (m - ) +
g 0 cd o 1 N
a d d s ddd [ [

(b, - b )} + KikT,k + Li181 + (S x H E)i-(43)

.20 . -
Here, the thermo-electric and electrical conductivity tensors are denot-

ed, respectively, by 21
s s-1 s s-1
K = Z qu':]le and L = Z qfq - q)H_:] . (4h)
a=1 c=1 _aaac [+ a=1 c=1 ac s.ac

F.2. System boundary and interface equations

In general, a surface of discontinuity can represeht not only a mecha-
nical, electromagnetic and/or energetic boundary or interface for the total
material system in V; but also, depending upon the physical circumstances

involved, an interface between, and a boundary of regions therein.

Boundaries and interfaces of, say, a plasma (region) in V constitute
in themselves physical systems the treatment of which, together with that
for the (rest) of the system interior, may in certain cases 22 be absolute-
ly essential to the securing of an adequate description of the behavior of
the plasma as a whole. Such a treatment could perhaps follow the methodolo-

2’7’; but, ! con-

gy employed here for the study of the interior of the system
sider this important problem too as lying beyond the scope of this initial

study.
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As was the case in Sect. F.l.a., the relevant jump balance equations
here have been examined earlier. Hence, with a = 1, 2 and 3 still denoting
respectively the electrons, ions and neutral gas continua, | consider it

sufficient to present them now without further comment.

Constituent mass equation

lolv, = u)db = & (45)
aa a
Constituent charge equation
L L sc
falv, - u)Al + L&FRD = &7 . (46)
aa a a

Mixture-electromagnetic field linear momentum equation

L SH
v, v. = u)A, = 6. Ju = f{t.,+ t..)Aa,] =
[ IDD(J J J ﬁ Iﬂn IJ EIJ J 1
where (47)
3
_SM >_‘ .S _SE
M. = D ||
I a a| ]
a=1
Mixture-electromagnetic field energy equation
L 2
fe + v Jolv. - u.)Aa. - [elu +
i i’ n
E
L
+ 0lq. - t..v. - S)A. 1 = &M
] JI J El 1
where . . (48)
3
SM SM
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Mixture entropy equation

L L
TInle (v, - u)A, + lg;n,1
3 3
- . <~ .
+ 1 €.. EMA.T - I C..u.A. D =2 0. (49)
Z{J leaJak i ,{J aJIaJ i
=1 a=1
Electric flux density equation
L .
o SF..
1D, 3 eiJ.khJ.nk QA . (50)
where
2
F ' SF
°F - 7(15 . (51)
. d a
a=1
Mixture current equation
L
mKiE = gh ¢ unhk . (52)
Mixture charge equation
L L
talv, - u)f ) + [§A D = 0. (53)
Magnetic flux density equation
8,0 = e k0 (54)
Electromagnetic induction equation
.0 = fA. - wuk (55)
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F.3. On solutions and applications

The mathematical description of the behavior of a given medium under
a particular set of circumstances is given by the solution to the set of
governing equations of that system appropriate to those conditions. At least
in principle, with the exception of boundary and/or initial conditions dis-
cussed below, all of the ingredients necessary here to calculate the fields
(A1) as functions of position and time for a given (but not arbitrary) phy-
sical region V are represented by the set of equations noted earlier in

,Séct. F.1. ’

Before examining this point further, there is an important observation
that | wish to make regarding the constitutive equations employed in that
set of equations. The material response coefficients here are continuous

25

. 2 .
functions 4 of I = {p {a=1,2,3), T, Bz} and not constants “°. Further,

2 26
under the requirement that they satisfy the reduced entropy inequality 5
the constitutive coefficients are themselves, either individually or in

. . . . . . c 2

combination, also subject to certain (in)equality conditions 7. Hence, the
coefficients of the plasma system equations here are neither arbitrary in

the variables upon which they depend, nor entirely unrestricted and inde-

pendent of one another in terms of their range of variability.

Now, with regard to such equations as these and the matter of their

. . . 28 . . .
solution, rational mechanics appears to view as physically meaningful
{but not exclusively 29) problems thereto related that are ''properly posed.
30

-Problems of physical mathematics are called properly posed if they satis-
fy the three-part postulate of Hadamard: viz., a solution for the problem

should exist that is unique and stable. This concept rests upon the not
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necessarily correct belief 3 that a high-fidelity mathematical description

of the physical nature of a material svstem is securable from its governing

equations together with the ‘‘data' (e.g. 3 the boundary and/or initial con-
33

ditions , constitutive coefficients and configurational aspects of the

system) indicated therein, Although this approach seems adequate in most
34 35

cases , there are an increasing number of physically meaningful pro-

blems which in one or more respects donot satisfy the requirements above;

36

i.e., the so-called "improperiy posed'' problems .

0On the existence of solutions

While the physical phenomena related to a given material system exist
in their own right, it is desirable to ensure that solutions of the descrip-

tive equations of that system also exist. Unfortunately, investigation of

37

here relevant problems such as, e.g., domains of existence , the relation-

38

ship of solution existence to problem data , and the determination of ne-

cessary and sufficient conditions for solution existence in general has

39. With the exception of certain important results (e.g. the

hardly begun
Cauchy-Kovalevsky theorem), it seems at the present time that the difficult
matter of demonstrating the existence of a solution is in all but relative-

ly few situations unsettled.

On the uniqueness of solutions

The issue of descriptive completeness for a given problem is generally
taken 4o to be resolved with the establishment of a solution thereof that
is uniquely determined by the data of that problem. Although the question

. . b1
of uniqueness is supposedly less difficult than that of existence , here
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too relatively little study has been devoted to the problem of uniqueness
. Lz - ‘ ' . . ) .
in general 2 and to the relationship of arbitrary (e.g. non-analytic) data

43

to solution uniqueness in particular .

Further, aside from the fact that there are cases where existence
. , . R 4
theorems are invalid but for which uniqueness can be proved , there are
more importantiy problems for which this condition is as such considered an

L5

inappropriate one for a soiuti&n to fulfil . There are, however, cases for
which this aspect of a properiy-posed problem can be salvaged; but then, by
means of additional a priori assumptions which restrict either the constitu-
"tive equations or the boundary conditions 46 (i.e. the allowed solutions “7)
of that problem. From a practical viewpoint, i.e. one of application, it is

Lg . Lo . . .
clear in any case that the criterion of uniqueness is a desirable one to

be met by any given solution.

On the stability of solutions

This last and very significant condition stipulates 49 that the solu~
tion to a given problem must depend in a continuous manner upon the data
of that problem. The fulfilment of the stability requirement thus necessi-

v 50

tates that for ''sufficiently smal changes in said data, the solution

thereto related must in turn experience an arbitrarily small change.

There are 51, however, meaningful and here relavant problems for which

this condition cannot be satisfied in an arbitrary yet total physical re-

gion V 52. Generally speaking, the content of this requirement appears 53

to also need a great deal more investigation; and this with particular re-
gard to the determination of criteria to be met by both data and solutions

54

in order to ensure satisfaction of this postulate .
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Now, it will be remembered (cf. Sect. A.2.b,) that the calculation
of the fields (A1) was taken to be the main aim of this type of mixture
theory. And further, that {cf. Sect. D.;.).it is in particular those
solutions for a region V which are physically admissible that are of
concern in this study.

By virtue of the structﬁre of the system equations above it can readily
be seen that at this level of developmental generality very little can be
said concerning the desired solutions. From what has been said above it
should be clear that it is not always possible, or even necessary, that
a physical problem be properly posed. Although such problems do appear

55

in practice to be dominant , the generally held contenticn 56 that only

such problems are physically meaningful is known by a small but growing

57

number of researchers to be incorrect . The essential difference between
problems that are properly posed and those that are not lies 58 in the
role played by the data of a given physical problem with regard to the
mathematical model thereof.

It is thus important to note that in general the matter regarding
the approach(es) by which the class of admissible thermodynamic processes
in V for the fields (A1) can be established remains an open one here.
This does not mean that further systematic progress towards the goal
set is no longer possible. On the contrary, from a comprehensive com-
parative study of these and other better understood relations, additional
‘insight into the mathematical character of said solutions and the system

data could be gained. Such an undertaking does not, however, fall within

the scope of this endeavor.
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Oon agglications

The approach from this point onwards to the system of general partial
differential equations given in Sect. F.1.,a., is essentially the same as
that elsewhere in mathematical physics. Their applicability to the investi-
gation of any given detail problem obviously requires that they be made
(more) tractable; the degree of simplification depending upon the circum-

stances of the particular problem involved.

Steps in this direction can be made in two ways. The first entails
the introduction of physical approximations such as, e.g., dimensibna]
analysis arguments 59 which make possible further treatment of a reduced
class of dynamicaily homologous systems 60. Not unimportant here is the
possibility that a rational mechanical development such as that here
can, at Jeast in some special and already ‘'well-studied' cases, suggest
new experiments.

The next step involves the use of mathematical approximations {e.g.
perturbation techniques, etc.). Here too, rational mechanics could aid
in the process of determining how its results, the system equations,
could be utilized most fully with the aid of modern computing methods.

It must be emphasized, however, that the primary mathematical concern
at this point is one of determining applicable solutions to said equations
and not the formulation thereof. Indeed, while the former matter involves

. R . 61
approximations, the latter is 'exact' .
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F.4. On empirical considerations

Generally speaking there seem to he three types of empirical data.
First are those data necessary for the physical determination of the con-
stitutive equations required for a given system; such data being possibly
of a micro~ and/or macroscopic nature. Then there are two kinds of data
which, assuming existence etc., retate directly to the solutions of the
complete set of macroscopic equations for (regions of) V. One of these is
concerned with the determination of the usually dynamic system boundary and
initial conditions; while, the other data are those representing the empi-
rical results meant to be compared with some specific theoretical predic-

tion based upon the above mentioned system of equations.

Regarding the microscopic empiricism related to this study t wish to
say the following. The investigation of what may be termed the quantum dy-
namic properties of matter (e.g. ihterparticle forces) does not fall within
the realm of plasma physics as such; and certainly not within that of ra-
tional mechanics. Rather, it is the subject matter of disciplines concerned
most directly with, say, atomic and molecular physics and physical chemis~
try. Although such properties undoubtedly determine (to some degree) the

macro-nature of a plasma system, a detailed knowledge of them does not fol-

low from plasma considerations.

At present empirical plasma physics concerns itself essentially with
the measuremental determination of the parameters entering into the macro-
scopic system equations (e.g. constituent number densities, temperature(s),
etc.); and, the macro-process characteristics of plasmas (e.g. flow proper-
ties). The former quantities are of considerable importance in connection
with the study of plasmas in general while the latter relate more to the

detai led understanding of a particular given plasma system.



225

There is some understanding in plasma physics of the difficulties in-
volved with regard to the physical determination 62 and mathematical speci-

fication 63

of dynamic boundary and/or initial conditions. Unfortunately,
however, it appears that much less appreciation is shown there with regard
to the significant role played by constitutive equations in the determina-

tion of plasma behavior in general.

in this regard it is most important to realize the following fact; viz.;
knowledge of a micro-physical nature which is indispensable to particle theo~
ry approaches to the description of plasma behavior is, generally spoken, at
. R 6k . . . 65 .
present often either inadequate or more important inaccessible . This

point has great significance with regard to degree of validity, or equiva~

lently the range of applicability, of the results of such approaches.

Rational mechanics, on the other hand, has been shown here to lead to
results which are, although simpler in conceptual development, more general
and physically relevant than those in common usage. Not only the theoretical
but also the practical advantages of this approach can be noted as follows.
in general, rational mechanical constitutive equations such as those propos=-
ed here (cf. Chpt. C.) have at least the following properties: viz., they
are properly invariant and take account of the symmetry properties of the
medium in question; they permit the description of non-linear materfal res-
ponse; they are applicable to the study of non-homogeneous processes in
non-equilibrium systems; they have coefficienfs that are not constants but
functions of macroscopic field variables; they exhibit numerous known and
even more unknown independent (i.e. uncoupled) and dependent {(i.e. coupled)
effects; and, they are susceptible, at least in principle, to determination

physically within a program of rational empiricism 66.
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Footnotes to Chapter F

! See page Lk,
2 Here, on page 13; note also Benach & Miller [1974, 1, Chpt. 21,

3 See page 14,

4 This point is discussed on page 19.

? As is well-known, electrons possess by virtue of their spins an in-
trinsic (spin) magnetic moment. It is in terms of this property that
a (induced) magnetization density may be assumed to exist for
the electron gas continuum; which mixture constituent consists, indeed,
wholly of free (i.e. 'conduction") electrons.

Now, the electron gas kinematics leading to a diamagnetic condi-
tion for the system, the electron cyclotron motions, are described by
the balahce, conservation and jump balance equations for that‘constit“
uent. -On the other hand, the .alignment parallél (and to a lesser degree
anti-parallel) to 8 of the electron spins relates to the dynamics of
the electron continuum.

It is in particular the condition of paramagnetism resulting from
such alignments which is of concern here. The description of this prop-
erty is, as it should be, a matter for constitutive theory. The spin=-
dependent character of this latter condition requires a quantum
mechanical explanation; while the -former does not. A discussion of
(aspects of) this matter may be found, e.g., in Bates [1951, 1, pp.
52-53 and p.1547, Van Vieck [1352, 2, pp.349-353 and pp.359-360] and
Bozorth [ 1961, 1, p.4671.

The retention or neglect of either one or both of these properties

in a given problem should depend upon the demonstrated reiative (in)-
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significance of their respective contributions to each other as well
as to the other possible terms which must also be considered in the
problem of concern. Regarding the somewhat cavalier attitude taken

in plasma physics with regard to this matter, see Grad [1971, 2].
Cf. page 20.

The importance of determinacy (i.e. that n equations are needed to
"determine'' n quantities) is here or elsewhere a relative one; and,
the demand for its satisfaction essentially a blind one. Although
it is usually considered a ''self-evident" requirement to be met in
the treatment of a system of equations, there are (cf. Courant &
Hilbert [1965, 7, p.231]), for example, over-determined {improperly
posed (cf. Sect. F.,3.)) problems that are physically meaningful.

In connection with a system of equations and the matter of jts
determinedness it is worthwhile to note CFT [13960, 9, p.701, foot-
note 2] and the caution pointed out by Truesdell [1966, th, pp.117~

181,
Fick [1855, 1],

Cf. Monroe [1973, 8] and Grad [1971, 3]. It may be further noted here
that there exists considerable discrepancy in the literature of plasma
physics regarding the acceptability of theoretical results for the
problem of diffusion. For example, McDaniel [1964, 5, pp.489-490] ex~
presses the view that the results of Chapman-Enskog theory consider-
ations are 'of wide applicability and give good results'. in contrast
hereto it has been stated by Sutton & Sherman [1965, 17, p.126} that
‘'the Chapman-Enskeg method is incorrect in principie when applied to

ionized gases'. See also footnote A39.
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The general history of diffusion research that is relevant to this
study may be found in CFT [1960, 9, Sect. 295], Truesdel) [1962, 10]

and Truesdell & Noll [1965, 19, Sect. !30].

See Benach & Miller [197k, 1, Sect. 5] for a treatment of the some-
what more general case which involves consideratign also of the con-

stituent polarizations.

Most particulariy, a desire once again for developmental simplicity
motivates the linearizations assumed here. At least two essential
consequences of such linearizations are, first, that the descriptive

scope of the theory is restricted to media sufficiently dilute that

‘higher-order terms are justifiably neglected; and second, such systems

are ''close to equilibrium'' (cf. footnote E2). it is perhéps necessary
to remark that a non-linear theory that is linearized remains

just that: a non-linear and not a linear theory. Lastly, the assumed
density-independence of the specific magnetizations does not mean that

the magnetizations are densify independent.

This treatment parallels that given by M{ller [1973, 9, pp.182-
185] for the simpler case of non-electromagnetic fiuids. Note also in

this regard Truesdell [1962, 10].

all possess the same

By inspection it is clear, that F 1 le and Elk

cb c
general form; viz., that of a tensor component Aij = Ai(!)dij +

AZ(I)BiBJ. * A3(3)EikJ.Bk.

Fick [1855, 1, p.66]. While Fick did not identify his expression
thusly, more recent workers in this field have: cf., for example,

McDaniel [196k4, 5, p.49 and p.489] and Slattery [1972, 8, p.478]1. The

so-called second equation of Fick (Fick [ibid, egns. (1) and (2)}]) is
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noted as such by, e.g., Hirschfelder, Curtiss & Bird (1967, 9, pp.
518-519] and Slattery [1972, 8, p.479]; which relationship is the

actual equation for diffusion.

Cf. Hirschfelder, Curtiss & Bird [1965, 9, Sects. 11.1 and 11.2] and

Sutton & Sherman (1965, 17, p.1761.
See Miiller [1968, 4, p.36] and MUller [1973, 9, pp.185-186].

The prediction by Chapman and experimental verification by Dootson
(cf. Chapman & Dootson [1917, 1]) of thermal diffusion in gases is,
according to Hirschfelder, Curtiss & Bird [1967, 9, p.473], “one of
a number of historically interesting instances of the prediction of
experimentally observable phenomena by rigorous theoretical analysis'';
while Clarke & McChesney [ 1964, 1, p.149] consider it ‘'one of the
triumphs of the theory'' (of Chapman and Enskog)}. | consider it na
less noteworthy that such a result emerges naturally here as else-
where (cf., for example, Miller [1968, 4, Sect. 10]) from the con-

siderations of rational mechanics.

Cf. Benach & Miiller [1974, 1, (5.6)] which result evidences yet an-

other new term; one arising from the inclusion there of the constituent

polarizations in the model treated.

Thermo-electric effect relationships have been secured and discussed
for the case of scalar material coefficients by Spitzer [1962, 8, hp.
143-146]; and, for the more difficult case involving tensor coeffi-
cients by Shkarofsky, Johnston & Bachynski [1966, 12, Sect. 3-7 and
p.433]. The result presented here generalizes the results of these
authors; among others. |t may be said in passing that the knowledge
(cf. Hall [1964, 2]) of the possibly important role played by the

thermo-electric effect in laboratory, say MFD, plasmas appears to
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have been neglected by "experimentalists' in this field.

From (36) and (41) it follows that Lik’ similar for example to F K
cb

also possesses the general form Li = LI(I)éik + Lz(')Bin +

k

LB(,)E. Here (cf. Alfven & F3lthammar [1963, 1, p.131]), L](t),

kB
Lz(!) and L3(I) relate, respectively, to the ''Pedersen (i.e. cross-)
conductivity', the usual scalar conductivity, and the “Hall conductiv=~

ity'". Note further the absence of mixture rules jin these considerations.

For example, those considerations involving mechanical, electromagnetic

and/or energetic interfaces and 'boundary layers''.

Cf. the investigation of Fisher & Leitman [1970, 3] concerning a

'single~continuum approach to this problem.

See page 108 with regard to this point; noting, that said coefficients

are implicit functions of both position -and time.

The development of a rational mechanical theory such as that given

here permits the material response coefficients of concern to depend

in a physically meaningful and mathematically responsible manner upon,
essentially, any number of assumed independent field quantities. On

the other hand, the traditional approaches to the description of plasma
behavior do not seem to consider the possibility of, say, a B-field
dependence of said coefficients.This, together with the fact that nu-
merous studies of plasma phenomena utilize arguments of dimensional
analysis in which the various non-dimensional parameters are evaluated
in terms of these coefficients under conditions of parameter constancy,
leads to the following observation: viz., in practice these approaches
are severely limited in the theoretical independence of their trans-
port properties on external fields; said prdperties thus "'unwillingly"

being forced to act as constants with respect to those fields.
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29

30

31
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See the discussion of Chpt. D regarding admissible thermodynamic

processes in V,

Under less general conditions than those taken here the reqguirement
that constitutive equations must satisfy the reduced entropy inequal-
ity can be used (cf. MUller [1968, 4, p.231) to establish explicit
conditions of (in)equality to be met by the various material coeffi-
cients involved in a given treatment. Due, However, té the excessive
number of such coefficients related to this study, { have not under-

taken to determine tkese conditions.

CFT (1960, 9, p.701], Jaunzemis [1967, 12, p.343] and Bressan [1972,

2, p.51.
Note, e.g., CFT [ibid, footnote 4J.

Courant & Hilbert [1965, 7, p.227], Lavrentiev [1967, 14, p.1] and
Payne [1973, 10, p.1]. Other identifications for this property ihclude
the following: proper and correctiy set (John [1955, 1, p.591]); cor~
rect (Lavrentiev [1967, 1&, p.11); just set (CFT [19460, 9, p.7011);

well set ([ibid, footnote 4]); and, well posed (Payne [1973, 10, p.2]).

See Courant (1952, 1, p.277], Finn & Noli [1957, 1], Lavrentiev [1967,

14, p.2] and Payne [1973, 10, p.2].

Cf., for example, Payne [1973, 10. p.1] and Ishimaru (1963, 6, p.600].
For the solution of a particular dgtail problem the general equations
of , say, Sect. F.l.a. may be considered as they stand; or, they may be
reduced to other expressions in common usage. Regardless of the choice
made, at least the following information remains to be given. First,

a determination must be made for which media and under exactly what

specific physical conditions {e.g. for what ranges of independent
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parameter variation) the above cited totality of equations are phys-
ically valid, and if desired, applicable,.

And next, the system related intzrface and boundary conditions
(cf. Sect. F.2.) and/or the parameter initial values must be supplied.
""What can be said by way of answer'!, note Courant & Friedrichs [1963,
L, p.367]1 with particular regard to the problém of boundary conditions,
“is still tentative and far from a clear-cut mathematical statement'.
See also Lieberstein [1972, 3, p.252]. |

It goes almost without saying that physical data are subject to

‘'observational error''; which error is always hoped, and apparently

n

most often taken, to be ''small''.

it should be borne in mind that, similar to constitutive equations,
these conditions are postulated; their motivation in any given problem
lying in the relevant physical insight of the investigator of the sys~

tem in question. Note also in this regard footnote A6L.

Cf. Ames [1965,.1, p.-475] and Payne [1973, 10, p.2]. It is interesting
to note that indeed some problems must be considered under the condition
of being properly posed if they are not to lead to aphysical conclu-
sions. An example of such a situation results in a ‘‘thermo-dynamic

paradox''; which matter is discussed by Ishimaru [1963, 6].
Payne [1973, 10, p.2] and Lavrentiev [1967, 14, p.2].

Similar to the situation pointed out in footnote 30 above. there

exist various names for this condition. Some of them are: improperliy
posed (John [1955, 1], Courant § Hilbert [1965, 7, p.280] and Payne
(1973, 10, p.1]); ill-posed and non-well-posed {Payne [1973, 16, p.11};
not well-posed (Ames [1965, 1, p.477]); and, incorrect (Lavrentiev

(1967, 14, p.11).
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Domains of existence in V are defined by the regions '‘bounded' therein
by such dynamic surfaces of discontinuity (e.g. interfaces) as may be
present. See again in this regard the relationships of Sect. F.2. and
note the discussion of Courant & Hilbert [1965, 7, pp.147-153]; and,

say, that of Shercliff [1965, 15, p.1211.

For example, the matter of non-analytic data is raised by Courant &
Hilbert [1965, 7, p.2371; while Payne [1973, 10, p.3 and 7]) comments

in general upon this point.

Liebérstein [1972, 3, p.74] and Payne [1973, 10, p.3]. The present
attitude from a point of view of application regarding the existence
of solutions seems to be the following (Jordan & Eringen [1964, 3,
p.1131): '"in the absence of an existence theorem, demonstration of the

phenomena under consideration will have to suffice."
Courant & Hilbert [1965, 7, p.2271.
Payne [1973, 10, p.3]. Cf. also Lieberstein [1972, 3, p.7h].

Mathematically, an example of this is given in the study of Finn &
Noll [1957, 1]. Slattery [1972, 8, p.69], in reflecting the approach
taken by most physical researchers, states that one only asks for '‘a'
solution; leaving it, similar to the case of existence cited above, to
experiment to suggest the uniqueness thereof. In principle at least,

it is clear that such an attitude is an unfortunate one with particular

regard to meaningful physical research and application.
See Courant [1952, 1, p.278].
Courant & Hilbert [1965, 7, p.237].

Courant & Hilbert [1965, 7, p.227].

6 . "
John [1955, 1, p.592] and CFT [1960, 9, p.701, footnote &1.
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The term "allowed" reflects the roleplayed by the (here unspecified) mathe~
matical conditions to bemet inorder that a set of equations be considered
salvable. The fulfilment of saidconditions establishes the actual class of

admissible thermadynamic process inV available to this theoretical model.
Courant [1952, 1, p.278].

Lieberstein [1972, 3, pp.74~75 and p.81], Courant & Hilbert [1965, 7,

p.127] and Courant [1952, 1, p.2771.

Cf. John [1955, 1, p.5917.

Courant [1952, 1, pp.277-278], Courant & Hilbert [1965, 7, p.2781 and

Lavrentiev [1967, 14, p.2].

A particular example hereof is that of a mixture of electromagnetic
fluids moving in V and in which there are propagating singular suffaces.
If the given data become discontinuous in V, the solution to the
relationships involving gaid data will become discontinuous (cf. Courant

& Hilbert [1965, 7, p.486] and Payne [1973, 10, p.71).

Not unlike the situation noted for the properties of existence and
uniqueness, it may be observed (Payne [1973, 10, pp.6-7]) that here, in
the case of improperiy posed problems, ''One usually tries to deal with
«vs {such) ... problems by measuring an err-abundance of data and then
trying to compensate for the tack of knowledge.'

From a rational mechanical point of view this situation, while
understandable, is unacceptable. One is here indeed compelled to

inquire into the possibility of bringing method into this problem.

This point has considerable import with regard to the use of mathe~
matical approximation methods (e.g. numerical techniques) in the
treatment of physical problems. See, e.g., Courant & Hilbert

[1965, 7, p.227].
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Payne {1973, 10, p.2].

Note, e.g., Petrowski [1955, 2, pp.72-73] and Sommerfield (1964, 6, p.

2363,
Courant & Hilbert [1965, 7, p.230] and Payne [1973, 10, p.21].
John [1955, t, p.5921.

The significance of the kinematic properties related to a given medium
with regard to the determination of the (degree of) appticability of
the constitutive equations proposed for that system is briefly noted
by Jaunzemis [1967, 12, pp.297-298]. Concerning dimensional analysis

see Ericksen {1960, 9, p.797, footnote 41,

The matter of similarity transformations, scaling laws (i.e. axioms!)
and sofarth appear to play an impartant role {n the area of physical

applications.

The theory given here is mathematically exact in the sense that the
development thereof, essentially fulfilled with the procuring of the
non-linear constitutive equations, was free of mathematical approxi-
mations, The development of the theory beyond that point could, in
principle at least, have been carried through without introducing the
linearizations of said relationships used later; which introduction was,
once again, motivated by the desire for ''concrete' results.

Physically, the theory is exact to the extent that the postulated
applicability of Euclidean (or Galilean) transformations holds for a
mixture of electromagnetic fluids. According to Toupin (L1263, 10, p.
1071), however, for the conditions under which the media of concern
in this theory are taken to exist, | may conclude that there is support

for this assumption.
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See, e.g., Thom [1965, 18, p,383],
Note again the remarks of footnote 32 above.
Regarding inadequacy see page 11 and footnotes A32-35.

It is sufficient here to note the remarks of Chapman & Cowling

£1970, 2, p.71.

With a rational mechanical theory serving as a departure point,
explicit criteria deriving therefrom (g.g. restrictions on the
constitutive equations) can conceivably be used in the design of
detail experiments which yield phenomena possessing a fow, if not
vanishing, degree of degeneracy (i.e. phenomenon coupling).

In strong contrast to numerous experiments conducted, this
approach, taking as full advantage as possibie of all availahle
intra~ and interdisciplinary knowledge relevant to the system in
question, makes possibhie at least in principle a unique empirical
determination of the macroscopic structure of the constitutive
equations of that system.

With the knowledge thus gained it becomes possible, depending

upon the meaningfulness of said results (i.e. their physical repro-

ducibility) to move further in a number of directions: viz., new

experiments can be prepared which will serve to improve the foregoing

results, or which have the purpose of investigating particular

system related phenomena of interest (e.g. flow hebhavior). The end

result of a succession of such experiments would not inconceivably be

physically applicahle systems which have equally well-understood

design, control and optimization properties.
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G. CONCLUSIONS AND CLOSURE

The theory develaped here demonstrates clearly the feasibility of
employing rational mechanics as a serious new alternative to the problem of
describing the dynamic behavior of a general class of plasma systems.
Indeed, this particular non-linear constitutive theory has been seen to

yield not only known, but also new iesults of a rather general character.

While for some problems of interest this theory is readily observed to
be either too broad or too restricted with regard to its generality, a
truely meaningful delimiting of its range of applicability must await the
outcome of further careful study of both its physical contents as well as
its mathematical character. Nonetheless, by virtue of the fact that applic-
able results of less generality can be recovered from this model with the
aid of additional simpiifying assumptions, a certain measure of confidence

in said theory may be assumed to exist.

Closure

Even more essential to recognize here than the aforementioned results
is the matter of the approach itself and the spirit underiying it. The
attitude taken by rational mechanics with regard to its subject matter is
such that it, at least, suggests not only the possibility of, but also a

means for, the systematic establishment of a ''total’ macroscopic theory of

plasmas.

The general theoretical framework set down here can, to the bast of my
knowledge, serve as an initial basis for the first comprehensive assimila-

tion, organization, interpretation and reduction of the large body of
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knowledge regarding plasmas; both theoretical and empirical as well as

intra~ and interdisciplinary. Due ta thé directness, logical simplicity,
mathematical rigor and physical clarity »f this approach, | contend that
rational mechanics has much to offer to the study of plasmas that is both

necessary and worthwhile.
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TOWARDS A RATIONAL DYNAMICS OF PLASMAS

STELLINGEN

The education of enlightened and responsible technologists would be
enhanced by the explicit introduction into their studies of a more
adequate historical perspective of, and a relevant contemporary

motivation for the subject matter to be considered.

The support of foundations research studies would be a meaningful step
towards the securing of a comprehensive and mature leadership in tech-

nology.

Bunge, M. : Foundations of Physics.

Springer-Verlag, Berlin-Heidelberg-New York (1967).

In a society with an increasing degree of relative ignorance the need
to (re)consider the function of mass communication media therein appears

to be under-estimated.

The process of democratization would be well-served with the securing
of more rational criteria to be satisfied by persons occupying positions

of authority and decision.

The introduction of a layer of color into automobile tires could serve

as a worthwhile measure of the wear, and thus the safeness, thereof.

Happiness is being understood.

24 May 1974 Robert Benach



