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CHAPTER 1

FEEDS FOR REFLECTOR ANTENNAS

1.1 Introduction

The parabolic reflector is a popular antenna in the microwave region.
This is the frequency range from 1 GHz to 300 GHz. In this range the
parabolic reflector is used as an antenna for radar, line-of-sight
communications, satellite communications and as an instrument for
radio~astronomical investigations.

The principle of this reflector antenna is that a spherical wave de~
parts from the focal point of the parabola towards the reflector,which
reflects the wave and concentrates a large part of the energy in a
small angle along the axis of the parabola. As a source of the sphe-
rical waves use is mostly made of a small horn antenna.

Such a source is called a feed. It is obvious that the performance of
the reflector antenna depends mainly on the feed used. For instance,
the illumination of the reflector and the spill~over energy along the

rim of the reflector depend on the radiation pattern of the feed.

It is well-known that for a reflector antenna no unique definition of
the bandwidth can be given [1]. However, generally speaking, we can
say that the bandwidth of a reflector antenna is chiefly determined

by the properties of the feed.

The precise requirements which have to be satisfied by the feed depend
on the application for which the antenna will be used.

Let us summarise the most relevant properties of the feed in the four
applications mentioned at the beginning of this section.

For a radar antenna a high gain is necessary, because the range of a
radar system is proportional to the square root of the antenna gain.
This high gain can be obtained if a reflector antenna is used with a
diameter, which is large compared with the wavelength. Moreover, one
should choose the illumination of the reflector in such a way that a
high efficiency is obtained, This requirement implies that the illu-
mination should be as uniformly as possible and the spill-over energy

along the rim of the reflector as low as possible. A radiation pattern



‘with these two properties is called a sector shaped radiation pattern.
The radiation pattern of a conventional feed, such as an open radia-
ting waveguide, deviates cousiderably from a sector shaped radiation
pattern. Therefore modern research on feeds is mainly carried out with
the aim to improve the radiation pattern of conventional feeds. For a
radar antemna it is sufficient that the feed possesses a sector shaped
radiétibn pattern in a rather small frequency range, because the band-

width of a radar antenna is small.

In addition, sometimes a radar antenna should transmit and receive
circularly polarised waves in order to prevent the detection of echoes
from such targets as rain and snow [!]. It is clear that in this case
the feed should be able to transmit and receive circularly polarised

waves without disturbing the other properties discussed above.

An antemna for line-of-sight communications should meet the same high
requirement with regard to the gain as a radar antenna. The bandwidth
of this antenna system is much larger, because the antenna is used for
telephone and T.V, traffic. In the frequency spectrum above | GHz sev-—
eral frequency bands have been allocated for this kind of communica-
tions. Which of the frequency bands mentioned above are used in a
line-of-sight communication system depends on the local situation.

In order to use the frequency bands as effectively as possible the
feed must be suitable for operation in two perpendicular modes of po-
larisation [2]. In that case it is very desirable that the radiation
patterns in two perpendicular planes are the same for the two modes

of polarisation. It is obvious that a symmetrical radiation pattern

with respect to the antenna axis meets this requirement.

One of the most recent applications in the microwave field is communi-—
cation by means of satellites, for instance, the famous Early Bird

(= Intelsat I}, Inteleat II and Intelsat III and in the near future
the Intelsat IV, which are employed for imtercontinental telephone
and T.V. traffic. Again the antenna for satellite-communications
should be suitable for broadband operation, because of the large
amount of information thai must be handled with this system. In order
to get an idea about the bandwidth which is required in these modern
communication systems, it should be noted that a groundstation used
for communications with Intelsat III must be suitable for receiving

in the frequency band 3700 - 4200 MHz and transmitting in the 5925 -



6425M1z band. Besides, the gain and the figure of merit, which is de-
fined as the ratio of the antemna gain and the system noise tempera-
ture, should meet very stringent requirements. Especially in connec-
tion with the low noise requirement a cassegrain antenna is used ex-
clusively. In order to obtain high aperture efficiency and low spill-
over and diffraction losses at the subreflector the principle of dual
shaping has been proposed [3]. In this case it is necessary for the
radiation pattern of the feed to be symmetrical with respect to the
antenna axis in the desired frequency band. The reflectors can be ad-
justed only for one frequency. Therefore it is a coercive demand that
the phase pattern is also independent of the frequency in the desired
frequency band and symmetrical with respect to the antenna axis as
well. However, owing to the principle of dual shaping, it is not nec~
essary that the feed possesses a sector shaped radiation pattern. A
complete list of requirements which should be met by a feed in an an~

tenna of a groundstation can be found in [4] .

The purpose of a radio-astronomical antenna is to detect and to study
celestial radio sources. In order to prevent interference with other
users of the frequency spectyrum, several frequency bands have been
allocated to radio—astronomical research. An example is the frequency
band situated between 1400MHzand 1427 MHz. So the bandwidth which is
needed is small. Radio—astronomical investigations require a high re~

solution and a high sensitivity. A high resclution is obtained with a

large reflector antenna, while a high sensitivity requires that the
system noise temperature is low, So the antenna noise temperature must
be low, for in most cases low noilse receivers are used. The low tempe-
rature is obtained by using a carefully designed feed and applying an
edge illumination of about 20 dB, including the space attenuation. If
the antenna is used for studying the polarisation characteristics of a
radio source, it is necessary that the cross-polarisation in the main
beam should be as low as possible [5]. It can be shown quite easily
that this low cross-polarisation can be realised with a feed with a
symmetrical radiation pattern with respect to the antenna axis [6].In
that case the electric field in the aperture of the reflector has a

constant direction.



Summarising one can say that in general-a good feed should possess one

or more of the following properties: '

(i) a flat or sector shaped radiation pattern in the forward direc-
tion in order to illuminate a reflector as effectively as possi—‘
ble; '

(ii) a power radiation pattern and a phase radiation pattern both of
which are symmetrical with respect to the antenna axis;

{(iii) the feed should possess the two properties mentioned above in a

frequency band as large as possible.

In the next section a survey of the recent literature concerning feeds
for reflector antennas is given. In this survey special attention is

devoted to the three properties of feeds mentioned above.

1.2  Survey of the recent literature concerning feeds

High aperture efficiency and high spill-over efficiency can be at-
tained with a feed which has a sector shaped radiation pattern. The
problem of synthesising a sector shaped radiation pattern has at~
tracted the attention of several investigators in the antenna field.

A remarkable effort has been made by Koch [7]. He started by observ-
ing that the radiation pattern on a field basis is approximately the
Fourier transform of the aperture field. The next consideration was
that an ideal sector shaped pattern can be realised with an aperture
field of the form J; (x) / X; x is the normalised radius of the cir-
cular aperture. The following task was to generateafield to approximate
this situation. This was done by means of a central waveguide and five
conductors with circular cross-section arranged coaxially. A further
improvement of the system was published one year later [8] by the same
author,He claimed to havesucceeded in synthesising a sector shaped ra-
diation pattern. However, up till now no information concerning the
bandwidth of this antenna is available.

A purely experimental approach of the same problem has been followed
by Geyer [9]. He designed a feed for an antenna for line-of-sight com~
munications. He was able to improve the radiation pattern of a circu-
lar horn radiator by placing one or more annular one-quarter wave

chokes around the aperture. Then the radiationm patteran in the H-plane,

10



the E-plane and the 45°-plane became equal in a relative frequency
band of 1 : 1.2, There is still need for a thecretical explanation of
his results. Besides, it is desirable that more design information is
available. The same problem has been also tackled by Thust [10]. He
placed mushroom-shaped e lements on the flange of a horn radiator.

They pointed in the direction of the antenna axis. In this way a more
or less sector shaped pattern was realised in the frequency band 5.925
GHz to 6,425 GHz. In this case too, it will be difficult to give a the-

oretical explanation of the phenomena observed.

In the antenna research work discussed hitherto the main effort was
devoted to the design of a sector shaped radiation pattern. This was
of more importance than obtaining also a completely symmetrical radi-
ation pattern.

In some applications, however, a radiation pattern which is as symme-—
trical as possible is of the utmost importance. As an example we re-
call that the application of the dual shaping principle demands a sym—
metrical radiation pattern and a phase pattern which is symmetrical
with respect to the antenna axis as well. The first effort to design a
horn antenna with equal beamwidth in all planes through the antenna
axis was undertaken by Potter [11]. He was able to improve the radia-
tion pattern of a conical horn antenna by applying two modes., Some-
where in the feed the TM;;-mode is generated apart from the dominant
TE,i-~mode, If the right phase and amplitude relations in the aperture
are applied to these two modes, a vadiation pattern is obtained with
equal beamwidth in the E-plane, H-plane and 453%-plane. The theory of
mode generation as given by Potter has been extended by Nagelberg and
Shefer [12] and by Reitzig [13]. From their work and the paper of Pot-
ter it is impossible to get a clear insight into the bandwidth which
can beobtained with this dual-mode technique. In an effort to improve
the radiation pattern of the dual-mode conical horn antenna Ludwig
[14] used four modes. His aim was to synthesise a symmetrical pattern
with a prescribed dip in the forwarddirection. It can be proved that a
feed with this radiation pattern gives rise to a very high aperture
efficiency. Ludwig obtained some beautiful results; especially the
splitting of the beam is very remarkable. Again, the question of band-
width was not discussed by him, In addition it is obvious that the

problem of mode generation and control is very difficult. Moreover,




completely new methods of measurement should be developed.

Therefore, it is not surprising that one has looked for new means for
generating a prescribed aperture field. A promising approach to the
problem has been given by Minett and Thomas [15] . They studied

the electromagnetic field in the focal region of a parabola on which

a plane wave is incident along the axis of the parabola. From their
considerations they concluded that a symmetrical radiation pattern can
be obtained with a circular horn antenna in which a hybrid mode propa-
gates. In spite of their unsatisfactory theoretical considerations,
they found experimentally a symmetrical radiation pattern, at least
for one frequency. In an accompanying paper, Rumsey [16] published
some calculations concerning symmetrical radiation fields. Also
Simmons and Kay [17] studied the same problem. They found that it was
possible to get a symmetrical radiation pattern by placing transverse
fins in a conical horn with large flare angle. Surprisingly, they re-
ported that the radiation pattern of this antenna is also independent
of the frequency in a relative frequency band of 1 : 1.6. If the fins
are removed the symmetry disappears but the radiation pattern remains
virtually independent of the frequency. A theoretical understanding

of this important phenomenon has not been found up till now. Besides,
there is a need for more practical information, which can be used by the

designer of this kind of antenna.

The phenomenon that the far-field radiation pattern of the horn anten-
.na prqposedvﬁy Simmons and Kay is independent of the frequency, is
completely new. Classical theory of the horn antenna predicts that the
beamwidth is smaller according as the frequency is higher [18], [19].
There is only one example of a horn antenna with a radiation pattern
which is more or less independent of frequency. This is the well-known
horn—~paraboleid antenna, which possesses broadband properties in the
near field of the antenna [20]. This type of antenna has been used as
a feed in the German groundstation antenna for satellite communica-
tions [21]. A disadvantage of the feed is that it must be very large
even if the focal distance is only one-quarter of the diameter of the
pagabqlic reflector. The second disadvantage is the fact that some
distortion of the field occurs, caused by the parabolic reflector. Re-
cently some improvements of the radiation pattern have been realised

by Trentini et al. [22]. They used Potter's dual-mode technique [11},
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~ which implies that the improvements which are reached, probably are

restricted to a small frequency band.

1.3 Formulation of the problem

From the first section it is obvious that a good feed must have a com-
bination of qualities which of course depend on the applic;tion of the
antenna. Much work on feeds has been done, as can be seen from section
1.2, However, most of the work has an experimental character and con—
sequently there is little insight into the precise operation of many
antennas. Therefore, the designer of this kind of antennas does not
have much useful information at his disposal. With special reference
to the application in the field of satellite communications there is a
need for a horn antenna which can handle linearly and circularly po- V
larised waves. Because a conical horn antenna can handle these two
modes of polarisation, it is very suitable for this application, In
the very limited amount of literature on conical horn antennas [23],
[24] there is no indication that the conical horn antenna possesses
frequency-independent properties, with the exception of the article of
Simmons and Kay [17]. One of the results of the present study is that
the conical horn antenna can be used as a broadband antenna, provided
that the dimensions of the antemna are chosen in the right way. It is
the purpose of the present study to collect theoretical and experimen—
tal tools which can be used by the designer of broadband conical horn
antennas. In chapter 2 the attention is not only devoted to the power
pattern of these antennas but alsc to the phase pattern. The phase
pattern 1s very important if the antenna is used as a féed in a re-
flector antenna. In chapter 3 a theory is developed which is concerned
with a symmetrical radiation pattern. Both the theoretical and the ‘

experimental aspects of this problem are studied in some detail.
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CHAPTER 2

FREQUENCY-INDEPENDENT CONICAL HORN ANTENNA

2.1 The radiation pattern of a2 horn antemna

The calculation of the radiation pattern of a horn antenna starts with

Maxwell's equations

3B(r, M)
curl Elr,t) + —=— =0, div B(r,t) = 0
2.1
30(r, D) 2.1
curl Hir,t) - 5y I(r,t) , div Blr,t) = p(g,f)}
where the current distribution I{(r,t) and the charge distribution
p(r,t) are connected by the equation div I{r,1)+ §Eé§111'= G,
In vacuum equations (Z.1) reduce to the following two:
curl E(r) = = jwde H{r}
5 ° ’ (2.2)
curl H{r) = jueey E(0)

In the derivation of (2.2) use has been made of the relations
DAr,t) = e, E(r,t) and Blr,+) = u  H(r,T). Furthermore a time depend-

ence exp{jwt) has been assumed together with the following relations

im
i~
i
-
-+
H

Re(E(r) eij), 2.3
Re{H(r) ejwf),

[
-
-
-
s
-t
i

For the sake of completeness the following relations are also given:

Re(1(r) &N

I,

(2.3Y

ki

.

olr,t = Refp(r) ejw+}

The calculation of the radiation pattern of a horn antenna has been
greatly facilitated by thé use of a representation theorem. The theo-

rem can be formulated in the following way [25].
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Consider the electromagnetic field E{r), H{(r) originating from the
source distributions I(r) and o(r) enclosed by S; (Fig. 2.1) Then the
electromagnetic field in a point P in the region between the two

closed surfaces S and S, is given by the expressions

Fig. 2.1. Illustration for calculating the electromagnetic field in P;
‘ sources are within S;.

(2.4)

1

+ Joeg curip curIP.[{ 0 ox HED Y wir,rt) ds |
S

and H(r) = curtP[{g x Hr b ylr,rt) ds +
§

- j;uo curlp cur‘lP[{Q x E(E')} wir,r') ds (2.5
with 5
| eIk et .
Yir,c'y = i ——TF‘_‘:TT—* and k = wlE uy)? and S = 51 + So.



The operator curlp acts on the coordinates of the point P. The
electromagnetic field in P can be found if the tangential electric
field and the tangential magnetic field on the closed surfaces Sy and
82 are known. Let us choose for 52 a sphere with radius A, which be~
comes infinite. The sources I{(r) and p{r) of the electromagnetic field
are found within the finite surface S,. Then it can be proved [26]that
the contribution of the integral over SZ to the electromagnetic field
in P vanishes. Now the integration in (2.4) and (2.5) can be restricted
to the surface S}. The radiation pattern of a horn antenna can now be

calculated in the following way. (Fig. 2.2) >

Fig. 2.2. Horn antemnna and generator.

As a closed surface 5;, we choose 5y = 5p + SA‘

S~ consists of the outside surface of the antenna (the signal source
included ). ‘

Sp is the aperture of the horn antenna.

In order tc make possible the calculation of the radiation pattern of

an antenna i1t is necessary to formulate some assumptions concerning

the tangential electric and the tangential magnetic field on Sy,

The assumptions are:

(i) the outside of the antenna is perfectly conducting; consequently
nxE(r'y =0 on Sg

(ii) the currents on the outside of the antenna and the signal source
are negligible; consequently n x H(r') = ¢ on Sg;

(iii)the aperture field is the same as would exist in that place if
the horn antenna was not truncated; this implies that the higher

modes, which are excited at the aperture, are negligible.

17



These assumptions give rise to the following comment:

"(i) this assumption offers no problems in practice, because for the
construction of the horn antennas copper and aluminium have been
used;

(ii) the currents on the outside of the horn antenna act as sources for the
radiation field; this assumption implies, however, that the contribu-
tion of these currents to the radiation in the forward direction can
be neglected. ‘

(iii)thié assumption seems to be reasonable, provided the diameter of
the aperture is large compared with the wavelength. If the aper—
ture field is zero at the rim of the aperture, then the effect of
the truncation will be negligible. This situation occurs for the
antennas, which are discussed in chapter 3 of this study. Neg-
lecting the higher modes at the aperture is pot allowed in gener-
al, .especially if the diameter of the apertuée is of the order of
a wavelength. However. in this study we are dealing with horn an-

tennas having a large diameter compared with the wavelength.

In general it is impossible to predict the effect of any of the above
assumptions on the radiation pattern. Justifying these assumptions can
only be done by comparing the experimental results with computations
based on the above assumptions. Summarising we can say that the equa~
tions (2.4) and (2.5) have been reduced to (Fig. 2.3):

Fig. 2.3. Horn antenna with observation point P.

18



S
A
1
+ Jueg curig curlP[ {Q % H(f!)} pir,r') ds (2.6)

H(r) = curlp / {n x H(ZD} Wr,rt) ds o+

Sh

curlp curlp/ fo x ECe ) wir,rty ds | 2.7)

Sa

Juug

The next step is to carry out the vector operations curlp  and
curlp curlp . Because the operators act only on the coordinates of the
observation point P and not on the source point @, it is allowed to

interchange the integration and the vector operations, Then we find

- Jjkry
E(D) =f (“Jk {1+ 'J'J};;:—J 'ez;",r"[f_‘éw x {n x E(E')}D as «
o o ‘

A
~Jkr
! 2(aq- 3 3 yedfoln :
: J‘wsof 3“ - Jkrg (kraw} AT rg (fo X[on{DXWr h) )¢ dse
%A
- Jkr
1 Y 1 vy e KT .
+ waO/ [ij {1+ -—-—-J,kro} T roziﬁ x H(r )}] as (2.8)
Sa
—JKI" \ .
HD) =~/” (-Jk (1 3&;—3 e rz [£é1' x {n x b(§'>}]> ds +
o
S :
~Jjkr
- 2(ayn 3 3 v e el [y :
jwug[ gk (-1 Thrg (kro)Z} Er, (io X[EOX{DXE@ Y ase
Sy ‘
- Jke
o . 1 e o ,
quo./h [2Jk (re jkro) IT ro2 {oxEr >§] ds (2.9)
A



with the following definitions:

-3 s
-
A=
o= F% s (2.10)
H
ro = (‘:(}0!:0}5 .

The region surrounding the antenna at a distance of a few wavelengths
is named the reactive near-field region. This region is of no impor-
tance and is excluded in the following considerations. On the assump~
tion that kry>> 1, the formulae (2.8) and (2.9) are reduced to the fol-

lowing more simple form:

-jkr,
E(e) 71’1_‘/'3 ;” faxE(rh)} zo<r§,”x[r§,” {nxﬂ(ft)ﬂ)ser 2ds
Sa

ZoH(r) = —J—-/ (]) Qxﬁ(r‘)}]+ r_*é”x[[é“x{gxgtg')}])g———gds

with ' (2.12)

Yo 3
o2).

The formulae (2.11) and (2.12) are the mathematical formulation of
Huygens' principle, which says that every surface—element of the aper-—
ture acts as a source of a spherical wave. So the electromagnetic
field in a point P is composed of the contributions of spherical waves
departing from the various points of the aperture.

- Next we restrict ourselves to the situation where S; is a flat circu-
lar surface and in addition we suppose that the origin of the coordi-

nate system coincides with the centre of the circle (Fig.2.4)

The expressions (2.11) and (2.12) are very complicated. However, de-
pending on the distance of F to the aperture, appropriate approxi-
mations are possible. In order to carry out these approximations it is

. (1 . .
necessary to express r, , in the spherical unit vectors a, 8yr @

. L 2re 207 2y

20°



\ ["E"—‘EO P(r,8,¢

e . e e,

Q \
! r! \@
r N
- \‘
9 \
z
Y
°a
Fig. 2.4. Circular aperture and coordinate system.
Then we find [27]
RebN oo oy ] _ rt . ot
oo ¢ gr[}o 5 sing cos(¢ —¢") 2, - cosh cos(¢ 6
r! o '
v 8, [?; sinte - 4 )] . (2.13)

Now we write for s

. (r')? 2 2
re = ¢ = r'sin 8 cos(g ~ $') + —E?—w-[1 - sin 8 cosl¢ ~ ¢')]

’ (rty3
v 0 [WEJ—] _ (2.14)

This expression has been obtained by applying a binominal expansion of
(2.10) [27] and is more precise than the one derived with Newton's
iteration formula for finding a square root of a given number [28].
1f we assume that the diameter D of the aperture is at least a few
wavelengths, then a large part of the energy will be concentrated in a

rather small angle around the antemna-axis (z-axis) and the estimation

!slnz 8 coNe ~ o] << 1 is valid.

The following considerations now give rise to the far field region ap-

proximation. If the distance r, of point P to a point { of the aper-
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ture is large, two approximations in the factor exp(-jkro)/ro can be
carried out, The first is that in the denominater r, is replaced by r.
The second approximation is that the numerator is replaced by

exp [+ jk {-r + r' sin 8 cos{¢ -~ ¢'))].

In the far field region approximation it is also allowed to approxi-
mate 521) by a, , as can be verified from (2.13). After these approxi-

mations we find for the expressions (2.11) and (2.12)

- -Jkr ;
Etp) =z%i'(‘ L a, X/ ({B x E(c

>
T3 + 1 + - 1
and .
-jk e-Jkr ,
Zlr) = 2 — 2, X (Z0 {n x dieh} +
Sa

(2.18)

= .

i 1 H - 1
ra. x {n x E{ﬁ’)} ) gJKr' sin 8 cos(¢ - ¢ ) s

These are the formulae which describe the electromagnetic field at a
largedistance of an aperture. An interesting feature is that the inte-
gral does not depend on the distance r, but only on the angles & and ¢
(Fig. 2.4). So we can write for (2.13) and (2.16)

_j kr- .
-k e
E(r) T — F(8,9) | (2.17)
-jk e-Jkr
ZH(D) = 7% — 2. x F(6,9). (2.18)

(6,¢) vepresents the angular distribution of the radiation and is in
general a complex vector.

From (2.17) and (2.18) the conclusion is drawn that
ZH(r) = a0 x E(0) | : (2.19)
Formula (2.19) implies that the time-average intensity of energy flow

is given by S(L, Dt Re [E(r) x H(D*]= 42,7 |E(D|2 o |

So far we have not discussed the validity of the far field region ap-

proximation. In other words, we have not examined for what minimum
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distance min the far field region approximation is applicable. The
distance rmin is found by the condition that the error in the fase~

exponent is less than A/16. The maximum error is given by

(n/23%2 / 2 Poin 3 thus we find

in

(2.20)

which is a generally accepted limit for the far field region of an

aperture antenna.

Sometimes one is interested in the radiation pattern of an aperture
antenna in a region between the reactive near field region and the far
field region. It is named the radiating near field region [29]. The
hornparabeloid possesses its broadband properties [20], [21] in this
region. If one wishes to calculate the electromagnetic field in the ra-
diating near—field region a careful treatment of (2.11) and (2.12) is
needed. Especially the question, what approximations are allowed is
very difficult to answer [30]. Kikkert [31] applied the following ap—
proximations:

® o

(ii) r, in the denominator is replaced by r

is replaced by R

1
(iii) exp{-jkry) is approximated by exp -jk[r-r' sing cos(¢-¢')+£%;fﬂ

Then the expressions (2.11) and (2.12) can be replaced by

. - . Coay Ly Arn?
z%r x {n x 5([')}})6JKF' sin @ cose = 1) ~Jk 57— 45 | (2.21)

(r1)?
L o
a x {n x g(g*)})eﬂ‘“ sin 8 cosly = 81 = Jk 5= 45 (2.22)
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In order to derive similar expressions as given in(2.17) and (2.18) it
is necessary to replace F{(€,4) by F(6,¢,r). So the angﬁlar distribu-

tion of the radiation depends on the distance r. But, the relation
ZH(r) = a_ x E(r) (2.23)

is still valid,

Kikkert [31] used the formulae (2.21) and (2.22) to calculate the elec-
tromagnetic field of the hornparaboloid in the radiating near-field
region. The diameter of the aperture of the hornparaboloid was 10i. He
compared his calculations with the measurements of the amplitude and
the phase of the electromagnetic field in this region. His conclusion
is that the agreement between the measurements and the calculations is
rather good, provided the distance of the point of observation to the
aperture is larger than twice.the diasmeter of the aperture. The reason
why the formulae (2.21) and (2.22) are written down here is because
they will greatly facilitate the discussion on broadband conical horn
antennas in the following section. A rather extensive discussion of
the limits of the radiating near-field region can be found in the book
of Hansen [27].

The formulae (2.21) and (2.22) are not very convenient for later con-
siderations. Therefore, the vector products are carried out (see ap -

pendix A).

The following results are obtained:

1 27
kgl =i
Eq = ﬁ%—e JK([[ [{E:‘ + ZOH(;} cos 8} cos (¢ - ¢') +
oo

i A Y e tund :
+ {E] - ZgH1 cos b}sinCe- ¢'>]e-‘“" costeme)mIve%, 4o de? (2.24)

¢
and
1 2n
a2
o [l ooyt -
o0

H - -yl
-‘{E; cos 8 f ZoHé} sinl¢ - ¢v)]eJuD cos(¢ ¢')e Jvo o dp de'(2.25)
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with

28 : diameter of aperture,

pa = rf,
Kka? .
V='§'r-'7 U=k65'n6‘

In these expressions the aperture fields are primed and written in
circular coordinates. The unprimed radiation fields are given in spher-—
ical coordinates (Fig. 2.4). These formulae are exactly the same as

for the fields in the far field region except for a factor exp[-jve?],

which in this region is negligible.

2.2  Theory of frequency-independent conical horn antennas

From the expressions (2.11) and (2.12) one can see that the electro-
magnetic field in a point P in the radiating near-field region of an
aperture consists of the contributions of spherical wavelets origi~
nating from various points in the aperture. Every wavelet arrives at

a point P with a phase which is a function of the electric distance
between the field point P and the aperture point  under consideration.

So this phase is 2 function of the frequency. Now suppose that point P

'1§<£,+§~| }; \/ Vo2
N /1N
MAVNNS LT\

10
0 ~‘~“‘*-._
8,01 0,1 1.0
r
2077

Fig. 2,5 On-axis time-average intensity of energy flow against distance
to aperture. Normalised to unity at r = 2D%/X.
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is on the axis of the aperture. Suppose further that the aperture is
an equiphase plane. Then it is easily seen that the factor éxp{-jvoz]
in the formulae (2.24) and (2.25) takes into account the fact that the
wavelets arrive at P with a phase which is different for the various
wavelets, Hansen [32] calculated the tlme-average intensity of energy
flowlng—¥T at P at a distance r from the aperture, in the case of a
constant-phase circular aperture and with a tapered illumination

{1 = p?). Prom his results (Fig. 2.5) if can be seen that in the radi-
ating near field region the time-average intensity of energy flow as a

function of the distance to the aperture has maxima and minima.

The maximum at distance r = 0.2 D?/ix (D is the diameter of the aper-
ture) has an interesting property. In fact, in the neighbourhood of
this point the derivative with respect to the wavelength is small in
a relatively large region. This means that we may expect that in the
neighbourhood of this point a circular aperture with tapered illumina-
tion (1 - p?) and constant-phase distribution has a radiation field
which, in a certain frequency band, is almost independent of the fre-

quency.

This frequency-independent property of the radiation field is restric-
ted to the near field region. However it is possible to remove the re-
gion, where this frequency-independent property occurs , to other re—
gions up to infinity., To prove this assertion we consider two circular
aperture antennas, one with a constant-phase field distribution and
amplitude distribution E'{p,¢'), H'(p,¢'), and the other with the same
amplitude distribution but with QQédratic phase distribution. Thus the
fields in the‘aperture in the second case are given by

E'(p,8")[exp ~jkdp?] and H'(p,¢')[exp -jkdp?], where the gquantity kd
is the phase difference between rim and centre of the aperture. Then
in each of the two cases the electromagnetic field in the radiating
near-field region is given by the formulae (2.24) and (2.25), provided

in the second case v is replaced by
' = k(d 2]
vio= T 5E . (2.26)

This means that the electromagnmetic field at a distance ry from amn

aperture antenna with constant-phase distribution is the same as the
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electromagnetic field of an aperture antenna with quadratic phase dis-
tribution, but now at a distance r, from the antenna and on condition

that

= . (2.27)

The only restriction is that rqy and r, are in the radiating near field
region or in the far field region. Now it is clear that with the
choice of the appropriate phase distribution it is possible to remove
the region in which an aperture antenna exhibits frequency-independent
properties, to any distance from the aperture, including infinity.

In the case calculated by Hansen the frequency-independent properties
appear at a distance r = 0.2 D2/A. Thus v = gn. Suppose that we wish
to realise the same radiation pattern as in the case studied by Hansen,
but now at infinity. Then it is necessary to choose d in such ‘a way
that kd = %ﬂ. This means that d = gk. In the remaining part of this
study we shall consider ©only the far field region, except when in-

dicated otherwise.

Up till now we have suggested that a circular aperture with a quadra-
tic phase field distribution, having the property that the phase dif-
ference between rim and centre of the aperture is about half a wave-
length, has a radiation pattern which is only slightly dependent on
the frequency, at least in the forward direction. This phenomenon of-
fers the possibility to design a frequency-independent antenna, espe-

cially in the microwave region..

In fact, the theory of this section can now be applied to a conical
horn antenna. In a conical horn antenna a spherical wave can propagate
and then produces a quadratic phase field distribution across the aper-
ture provided the flare angle of the cone is small. Furthermore the
length of the horn should be chosen so large that the phase difference
between rim and centre of the aperture is approximately half a wave-
length. Next we shall prove this assertion. For that purpose let us
write down the expressions for the electromagnetic field in a conical

waveguide., (Fig. 2.6)
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Fig. 2.6. Conical horn antenna.

In practice the electromagnetic field in a conical horm antenna is
mostly excited by coupling the cone to a circular waveguide in which
the TE;;-mode prdpagates. )
Therefore we shall assume that in the conical waveguide the TE;, -mode

too, propagates. The expressions for the electromagnetic field of this
wode have the following form:

ER =0,

E, = ~ 1 h. (KR} —_— p! (cos 8) cos ¢

8 R v sin @ v ’

E o= thor &Pl ccos 83] sin ¢,

¢ R v de v (2.28)
Ho= o 2Dy Ry P (cos 8)sin ¢

R Juwuy R v v ’

] Y _d_ 1 H

H, = o hv (kR) 7 [Pv(cose)] sin ¢ s

d =
H¢ Tato (kR) pe Pv(cos ) cos ¢
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The derivation of (2.28) can be found in [24] or [33]. ?i(cos 8) is the
associated Legendre function of the first kind and of the order v. The
prime in h;{kR} means differentiatingﬂwith respect to R. Furthermore
hv(kR} = (7 KR/2)% H$%i<kR)’ where Hif; represents a Hankel function

of the second kind and of the order v+i. The choice of the Hankel func-
tion of the second kind together with the assumed time—dependence

exp [+ Jwt] gives rise to a outwards propagating wave. The value of v

is determined by the condition that the tangential electrical field

vanishes at the boundary § = u,.
Thus

i-[Pl (cos e% =0 (2.29)
d8 v g = .

= a, ,
Fradin [34] has given the value of v for several flare angles a,. His

results are collected in Fig. 2.7.

10
v
s b
) I i Fig. 2.7. Mode number v against
0 30 60 90 flare angle og.

—» 0,{(deg.)

We are now able to derive the condition under which the phase field
distribution is a quadratic function of the radius.

Moreover, we shall study the condition under which the phase differ-
ence between rim and centre of the aperture is approximately half a
wavelength.

From Fig. 2.6 it can be seen that

= RGOS 8 1
x = R Tos © pa tTan 36 . (2.30)
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Furthermore,

d =aten § ag and ' (2.31)

fan 30

Tan la, (2.32)

pa tan 30 = pd

X
#

Suppose that ag < 159, then tan oy = oy with an error of 2.5%, and the

following approximation holds

R

tan 8 _ .
Fana P9 (2.33)

x = pd
So the phase field distribution is indeed a quadratic function of the
radius, provided u, is small enough, for instance, oy & 15, From

Fig. 2.7 we see that in this case v >> 1.

In order to be sure that the phase difference between centre and rim
of the aperture is approximately half a wavelength, a second require-
ment concerning the geometry of the cone is necessary. From Fig. 2.6

we see that

d =R (——l—- - 0 : (2.34)
COS Oy

2
o
If we approximate cos a, by 1 - 59 , then we see that

d =R <2 - (2.35)

~

We know that ¢ should be chosen in such a way that d zh. For the case
that ay = 7/12 rad, we find that R/x & 14,4 and kR = 90. So the follow-
ing inequality holds

kR >> v »> 1,

Within this approximation we can write [33]

PO S .
(k) X gl Z D) JKR

hy (2.36)

d h_{kR)
v

—d—R—-—" Jk h'\)(kR) .
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Using (2.28) and (2.36) we can prove quite easily that

(2.37)

So the wave impedance is approximated by the impedance of free space.

Having specified the dimension of the horn antenna we shall compute
the radiation pattern of the antenna. For this computation we use the
formulae (2.24) and (2.25). In order to apply these as conveniently as

possible we look for useful approximations of the aperture fields. The

dPy (cos 6)
de

Pé (cos 6) respectively. These functions are difficult to

8 — dependence of E¢ and Ee is described by the functionms

and —
sin ©
deal with. However, because of the small flare angle it is possible to
approximate E¢ and Ee in terms of Bessel functions, which are well
known. With a view to finding the approximations for E¢ and Ee we note
that the following relation [35] , [36] provides a basis for these ap-

proximations:
P Y (cos 0) = {(v + 3) cos 38} M (a) {1+ 0(sin? do)} | (2.38)

(v+®, sin 6 > 0 and a finite and # C)

a = (2v + 1) sin 30,

Because we are interested in a formula for PE (cos 8) we use the rela-

tion [35] , [36]

T(v+p+l) -u }

Tomnr ) Pv (cos 6)
(2.39)

205 (cos 6) sin mu = ﬂ’{PS (cos 8) cos um -

with QS (cos 6) the associated Legendre function of the second kind
and order v. T'(x) is the Gamma function. Using the relation T'(1 + x) =

X I'{x) and substituting p = 1 we find

. _
Plicos 8) = —v(ve1) 2LLZvDSINE0] o 0 qy J1[@vrD)singe]
Y S} V+3

(v+i)coss
(2.40)
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Now we compute

1 H P
dPn(cosﬁ); —ylor D) Jl[(Zv*})Sln%@] N (2v+1) cos 16 o
48 vtz 2

vy e 1)) [(2v s 1) sinde ] . (2.41)
After applying the boundary condition E¢ = { we obtain
(2v + 1) sin fo_ = i1, (2.42)

j;l being the first zero of J;(x). In the region a, € 15 the values

of v computed from (2.42) are virtually identical with the values of
Fig. 2.7. Next we wish to introduce the radius ¢ in the formula for

E¢ and Ee and we note that

5in

(Zv + 1) sin 28 = (2v + 1} sin %u0>sin

Furthermore, we see chat (Fig. 2.6) sin 30 = § sind = P8/2R and

sin fo, Fa/2R.

¥
So (2v + 1) sin:48 = jyipand we find

i - JKR B
£, - _ed v & vlvrD) J1Gy0) sin b, (2.43)

A §imilar computation yields

.1
AL, kR Jytine?
Eo= o320 2T () o cos é, (2.44)
] R JiiP

The computation of the radiation pattern of a conical horn antenna is
possible by using the formulae (2.24) and (2.25). In these formulae
the aperture fields are written in cylindrical components, while in
(2.37), (2.43) and (2.44) spherical components are used to describe
the electromagnetic field in the horn. So before’the substitution of

the aperture fields in the formulae (2.24) and (2.25), the following
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transformations are necessary:

E; =E, cos @ = Ey {2.45)
H; - Ha cos § = H6 s (2.46)
E$ - E¢ . (2.47)
Hé = H¢ . (2.48)

The relations (2.45) and (2.46) are valid because the flare angle of
the cone is small. Expressions (2.47) and (2.48) mean a change in no-
tation. In the derivation of (2.45) to {2.48) incl. we have neglected
the space loss caused by the distance x (Fig. 2.6). For a horn with

R = 14,4 » and d ~ 34 this results im an error of about 3%.

After all these preparations we find for the electromagnetic field in

the aperture Sg:

EP = ZoHé , Eé = —ZOH; (2.49)
with

E; = f(p)e’Jkdp2 cosd' and Eé = g(p)e_jkdpg sin ¢! (2.50)
where Jl(i{lﬂ)

fler = Jie
and (2.51)

glp) = = A 41U e)

A is a constant. In the following considerations we take A = |,

In order to study the frequency-independent properties of the conical
horn antenna in more detail we substitute the formulae (2.49) and

(2.50) in the expressions (2.24) and (2.25). Using the relation [37]:

; Caed ! =
IUPCOStOmO) 1 (yoy w2 T JM, (up) cos nlpme") (2.52)
n=1
we find

_ Jka® o-Jkr 1+ cos®
2

Ee Zr

cos ¢ I-{u,v) (2.53)
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with 1

.,
f [{fto) - g(p)}Jo(up)-{f(p)«*g(p)}Jg(uo)]e IV 0do

and ©

-
E, - - e oIk 12005 8 gin oy 1ytu,w)

]

IE(U,V)

(2.54)
with 1

—iypl
Iy(u,v) = f [{f(p) - g(p)}Jo(up)+{f(p)+g(p>}azmp)]e %040
and o

u=ka sin 8, v = kd ,

For further considerations it is convenient to have the following re-

lations at our disposal:

TEDC drolent] = 425" [€l%, = 425 (I 121,12z,

Use has been made of (2.19). The power radiated per unit solid angle
is P{8,4) = r218(6,¢)] and is of course independent of the distance r;
it is given by the expression
~1fka? : 8 .
P(6,¢) = 3Z, (-é-) cos”z {coszq;th(u,v)|2+sm2¢11,,,«:u,v>|2} .
(2.55)

By inspection it can be seen that IE(O,V) = IH(O,V). Suppose that

P(6,4) has a maximum value for 6=0. Then this value is given by
2
- 2
P(0,0) = 32 (—‘i}) |1e(0,0) ]2 (2.56)

The power radiation pattern F(8,¢) is defined by means of the follow-

ing expression

. Ple,e)
Fle,4) ——LLP(O,O) (2.57)
From (2.55), (2.56) and (2.57) it follows immediately that

F(o,8) = |00, "Zcos"S { cos2e| 1g u,v) [ 2+sin2g | 1,0u,v) |2}, (2.58)

Next we define the power radiation pattern in the E-plane and in the
H-plane (¢ = 0.and ¢ = % respectively).

The power radiation pattern in the E-plane becomes
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8

Fele) = F(8,0) = 1 Ip(0,v) {72 | I Cu,v) |2 cost 5

Fe(e) = flu,v) cos® % . (2.59)

For the power radiation pattern in the H-plane we find

i

LR - 8
Fate) = Feo,2) = | 1,00,v) [=2 | 1,(u,v) |? cos* 5

Fato) = fH(u,v} cost %, . . (2.60)

The functions fE(u,v} and fF(u,v) are defined by the relations {(2.59)
and (2,60) respectively.

Let us now return to the conical horn antenna and its frequency-inde-
pendent properties. That the antenna indeed possesses these properties
appears most clearly by studying the power radiation pattern FH in the
H~plane and the power radiation pattern FE in the E-plane. The func-—
tions FH and FE depend on 6 and on the quantities u and v. These quan-
tities contain the dimensions d and a. If d and a are given, then the
flareangle o, can be found by means of equation (2.31). To be sure

that the results of the following calculations are applicable as gene-
rally as possible, it is preferable to study the functions fH(u,v) and
?E(u,v}. This is & resonable procedure because we are dealing with an-
tennas which have a rather large aperture. This means that a large part
of the energy is concentrated around the axis of the antenna., Thus the

) . .
factor cos*é represents only a minor correction.

Substitution of the expressions (2.51) in the formulae for fE(u,v) and
fH(u,v) gives
] 2
C ] ! ~jvp?
fo tdiie) dotup) = da(jiie)datup) e pdp
folu,v) =) 2 T — (2.861)
Lt ~-jvp
doljriple pdp
o]
and 1
2
.o ! ) ~jvp?
{¢0(411p) Jo(up) + JZ(Jllp)Jz(up)} e pdp
fuv) =g I — . (2.62)
Jotirreie ™ P odp
o]
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Inthederivationof [2.61) and (2.62) the following recurrence relations

of the Bessel function have been used

' m
I (2) = s dplz) = Jm+1(z) s
' (2.63)
== 0
Jm (z)= 7 dplz) + 1(z),
For purposes of comparison we prefer to calculate the functions
! _ 1pl0
fE(u,v} 10°Y1og fE(u,v} , (2. 64)
! 10 4 )
fH(u,v) = 10*%1og fH U,v) .
16
ma _,
T sin ©
\" 14
i\
\ 12

1/4 1/2 3/4 1

e 3/ X

Fig. 2.8. Beamwidth of perfectly conducting conical horn antenna with
small flare angle; H-plane.
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These functions have been computed with the ELX8 digital computer.With
a view to getting a convenient representation of the numerical results,
the following procedure has been adopted. In a rectangular coordinate
system lines of constant beamwidth have been plotted. As an example,
the 10~dB line in the H-plane has been found in the following manner.
Take f,,

B
satisfies the equation f;(u,v) = 10,

{u,v) = 10, prescribe the number v and find the number u, which

Then we plot the quantity E% =
u
v

along the abscissa. Along the ordina-
T asin @

—g
in Fig. 2.8 and Fig. 2.9 for the H~plane and the E-plane respectively.

b e

te we plot the quantity a = The results are collected
From Fig. 2.8 it can be seen that the beamwidth is indeed highly inde~-
pendent of frequency on condition that 3/8 =« d/% < 3/4. The condition
3/8 < 4/% < 3/4 implies a relative bandwidth of 1 : 2. Especially the
10-dB beamwidth is nearly constant in the frequency region where

3/8 < 4/% < 3/4. The 5-dB beamwidth and the 20-dB beamwidth are some-
what more dependent on the frequency. If the dimensions of a conical
horn antenna are given, then the value of d is fixed. Suppose that
this antenna is used in a frequency band so that ¢/ <-i/4. Then the
aperture is approximately an equiphase plane and the classical theory
of horn antennas can be applied. This theory predicts that the beam—
width is larger according as the frequency is lower., This fact can

also be observed in Fig. 2.8.

Let us now choose A in such a way that d/x varies from { to {. This

gives also rise to a relative bandwidth 1| : 2. However, the picture is
now different. For the value of 9/i given by 1/2 < 9/% < 3/4 thé beam-
width is still constant as a function of frequency. For the values of
d/% between 3/4 and | the beamwidth increases as /1 increases.Besides

the phenomenon of the splitting of the beam is observed for 7/8<9/0<1,

This means that the function %g (u,v} does not have its maximum value
for 8 = U, but for two other values of 8 on either side of the direc~
tion & = 0, So therg are two values of 9 for which the function fH(u,v}
has a value which is, for instance, 1 dB higher than the value of
fH(u,v) for 6 = O. Fig. 2.8a shows the main lobe of a radiation pattern

with beamsplitting.



relative power (dB)

] Fig. 2.8%, ‘Tllustration of beamsplitting.
20 40 60

——

A glance at Fig.19 shows immediately that the beamwidth in the E-plane
is more dependent on frequency. Furthermore, we see that the beamwidth
_in the H-plane and in the E-plane is different for the same frequency.
This means that the power radiation pattern is asymmetric with respect
to the angle ¢. We also observe that sometimes the beamwidth‘is not
uniquely defined, since the radiation pattern does not decrease mono-

tonously with increasing 6. This phenomenon is illustrated in Fig.2.9a.

Moreover we observed that the splitting of the beam takes place at a
lower frequency. In spite of these imperfections we can say that a co-
nical horn antenna with a quadratic phase distribution exhibits indeed

frequency-independent properties.

relative power (dB)

Fig. 2.92. Illustration of a power
radiation pattern in which the

| power decreases non-monotonously,

60

—» 8
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Fig. 2.9. Beamwidth of perfectly conducting conical horn antenna with
small flare angle; E-plane.

The sidelobes in the E-plane are caused by the fact that E; is rather
large at the rim r' = a. To prove this assertion we have computed the
power radiation pattern of an aperture with a field distribution given
by (2.49) and (2.50) and with g(p) = ~f(p) = =J1(j11p). Now we are
sure that E; is zero at the rim ¢' = a. The results of this computation
show that indeed the sidelobes have disappeared. We also have computed
the power radiation pattern of an aperture with a field distribution

. f
given by (2.49) and (2.50) and glp) = -flg) = =Jy{jy110). We know that
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J1(0) = 0 and Jj(j;l) = 0.58, S0 we should expect that high sidelobes
exist in the power radiation pattern. A computation confirmed this ex-
pectation,

In the final part of tﬂi; section we shall study the gain of such a
horn antenna. The definition of the gain function G(& ¢) is given by
the relation

F(8,¢)

1
ot

G(8,) = s (2.65)

where PT represents the power radiated by the antenna. P* can be found
by effecting an integratioh of Poynting's vector over the aperture Sp

of the antenna. Using the relations (2.49) and (2.50) we find

a 2w a 2w -
Py = /[ $Re[ExH"]r1dr1dy! = %zg‘// [IE 12+ Ey|2Ir dr g’ =
o o ‘ o o
1
47" a2[{|fcp>]2 + |atp)|2} pdo . (2.66)
o

Suppose that P(6,¢) has a maximum value for 8, , ¢,. Then the gain G
of the antenna is defined by G = G(85,¢,7. Next we restrict ourselves

to the case that 8, = 0. Then we find for the gain
i

- 2 2
| ka _[{f(p) - g} e e odp |
G = 7 -
ﬁ]f(p}lzéb(p)iz}pdg

o

a (2.67)

In the derivation of (2.67) use has been made of (2.56). The integral
in the denominator of (2.67) is calculated im the following way. Sub~
stituting the expression (2.51) in this integral and replacing J{la

by x and A by 1 gives
J‘t
! 2

) [ {22 ¥ oo T
)

This integral can be transformed to the next two after using (2.63)
‘ 11 J]

11
1,0 2 2 ) 1,."\2 [ .
IARE! JE) xdx - 2 /i1 J1 (X)) Jp(x) dx
' o 0o ‘ :
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For the first integral we find {38]

it
Jll

! 2 2 2
][ x J20x) dx = L [{J;(jii)}é SR URAIY ] -

o]

! 2 2 1 e
*('J%'}“ [{Jl{.jil)} * (~1 2 {91} ]
Ji1

The second integral
J"

11
1,0 3?2 ! 1 ¢ R
-2{1/414 Jpix) 00 dx = '(TT"‘> {41010}
J11

(=]

For the gain G we then find

i
1 -tynd
/Jo(j“p} e 477 odp
G

This formula can be written in the somewhat more simple form

2
2(ka)?

(o} (-2}

G = C{ka)? A(v) with C = 8.38 and

1
1 _vaz 2
Alvy = Jo(jllc) e pdp
©

(2.68)

(2.69)

The gain of an antenna is mostly expressed in decibels. Therefore we

study the quantity g = 10}%)og & and we find that

g = 201%0g 3%3 - t{v)

where
Liv) = = 10'010g Alv) - $.23

The function L{v) has been plotted in Fig, 2.10.

The gain of a conical horn antenna can now be found from formula

(2.70)

(2.70) and Fig. 2.10, provided the conditions, under which the formu—

lae (2.50) and (2.51) are derived, are fulfilled. These conditions are:

oy < 15© and kR 3> 1. From equation (2.70) and Fig. 2.10 we conclude

that a maximum gain for prescribed diameter 2a and fixed frequency is



L(V)dB,_—

) Fig., 2.10. The function L{v)
-10 4 1 1 s ; ' against d/a.
10/32 ) 20/32

— /A

obtained if d = 0; this implieé thaﬁ the aperture ‘is an eduiphése
plane. So the slant length | = R*di(Fig. 2.6) should be infinite long.
This raises the question of how to obtain a maximum gain for pres—.
cribed parameters, for instance, the slant length |. Let us now éonsi-
der a conical horn antenna with fixed slant length |. The dimensions
of the antenna are completely determined if we ‘also choose the dia -
meter 2a, Formula (2,70) suggests that for a fixed frequemcy a large
gain can be realised if we choose 2a large. However, this gives also
rise to a large value of d/) and thus to a large value of L(v). So
there seems to be an optimum value of the gain for prescribed slant
Eigngth | and fixed frequency. Let us try to’find tﬁe condition for

f&hich this optimum gain is obtained for fixed slant length and fre-
quency.

From Fig., 2.6 it can be derived that

d/a = (a/A)Z/(ZE/A,provided a, <150, 2.71)
Then
a = 101009 C + 101%10g 2L + 101010g v AGY) | @2

So the gain has a maximum value if101%jog v A(v)has a maximum value.
The function 10*%log v (A)v has been plotted in Fig. 2.11.
The maximum value of the gain occu?s if d/x = 25/64. And in thaﬁncase

we find for the gain

2

g = 2010%|0g %a - 2,86  [dB] . : (2.73)
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j> P TR SO TN WO S W S and fixed frequency.

It should be noted that the results given in the formulae (2.70) and
(2.73) can also be found in [39]. However, no derivation of the re-
sults is given there and a reference is lacking also. To the bast of
the autor's knowledge Gray and Schelkunoff were the first to calculate
the gain of a conical horn antenna. They did not publish the results
of their calculations, but thesé can be found in a paper by King [40].
In this paper it is pointed out that optimum gain for fixed axial
length R can be obtained if d/5 = 0,3. It is very easy to prove that
the expression (2.71) is also valid if we replace | by the axial
length R, provided d¢ << R, which implies that the horn antenna should
be long. So with our theory it may be expected that maximum gain for
fixed axial length occurs when we choose 4/x = 25/64, It should be
noted that the exact value of 9/3 for which the function 101%log vA(y)
has a maximum can not be found accurately. From Fig. 2.11 we observed
that the choice 9/A = 0.3 gives rise to a difference in gain of 0.2 dB
compared with the choice 9/ = 25/64. Recently Hamid [41] reported a
good agreement between the calculations of Gray and Schelkunoff and
his own calculations of the gain of a conical horn antenna. He report-—
ed a difference of + (.09 dB between the gain calculated by him and
the results of King., The calculations of Hamid are based on the geom~
etrical theory of diffraction of J.B. Keller.

It is also possible to choose a fixed value of the angle a, and a fixed
frequency and to adjust the length of the horn antenna in such a way.

that a maximum gain is obtained. If o, is constant, then 3/d is con-

Fig. 2.11. Maximum gain for fixed slant length



stant, as can be derived from (2.31). The expression (2.69) can be

. written in a somewhat other form

2
G (g) cvZ Alv) ., (2.74)

. 10101og v2A(v) (dB)

_T

Fig, 2.12., Maximum gain for fixed

L
1, TR TN W RS TR SN NS flare angle and fixed frequency.

— /R

The guantity 10!%log vZA(v) has been plotted in Fig. 2.12. Now we see
that the gain has a maximum if d = 0.53 A and this value of d deter~

mines the value of 2a.

Suppese that the dimensions of the horn antenna are specified, then
equation (2.74) can be used for finding the frequency for which the
gain has a maximum. Again we find fhat,d = 0.53 A, where d is a fixed
quantity. In conclusion we may say that frequency independence of the
gain occurs in the same frequency region where the beamwidth is fre-
quency-independent. Obviously, the requirement for minimum frequency-
dependence of the beamwidth is the same as for maximum gain, as was

also to be expected from Fig. 2.5.
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2.3 Experimental investigation of the power radiation pattern of a

frequency-independent conical horn antenna with a small flare

angle.

The main conclusion of the precedingsection is that a conical horn an~
tenna possesses a power radiation pattern which under certain conditi-
ons is independent of frequency, especially in the H-plane. Besides,it
is obvious that Fig. 2.8 and Fig. 2.9 together can be used as a design
chart. However, in the derivation of the results plottéd in the two

diagrams mentioned above some approximations have been made. These ap—
proximations restrict the usefulness of Fig. 2.8 and Fig. 2.9 somewhat.
In this section we shall first investigate the limits of the.useful-

ness of these two diagrams. In the latter part of this section we shall

describe experiments that confirm the theoretical predictions.

Suppose that we wish to design a conical horn antenna with a power. ra-—
diation pattern independent of the frequency in a relative frequency
band of 1 : 2. From Fig. 2.9 we see that we have to choose d/x < 3/4
in order to prevent the main lobe of the pattern from splitting. On
the other hand we must choose d/x > 3/8 in order to be sure that the
desired frequency band is obtained. Fig. 2.8 shows that the choice

3/8 < d/x < 3/4 indeed gives rise to a power radiation pattern, which
is independent of the frequency, although some broadening of the beam
occurs at the lower end of the desired frequency band. Fig. 2.9 shows

us that the pattern in the E-plane will vary somewhat more with frequen-

cy.

In the preceding section we have assumed that oy < 15°, This imposes a
restriction with respect to the power radiation pattern which can be
realised with antennas of the type that we are discussing. Let us in-—

vestigate this question in more detail. From this preceding section we

know that
d =a fan £ oy or (2.31)
ggf% ) (2.75)
So g < % %7 and E% > 24,



wa

From Fig, 2.8 we see that sin elo’H = 4.8, where 2 elo’H denotes

d
the 10 dB beawmwidth in the H-plane.
Thus
. 4.8 _
sin elg,H <=7 = 0.2 and
(2.76)
8310 1 < 120,
4
In a similar way we find for the 20 dB beamwidth in the H-plane
o .
OZO’H < 1g%, } (2.77)

A comparison of Fig. 2.8 with Fig. 2.9 shows that the beamwidth in the
E-plane is somewhat larger than in the H-plane.

The theory developed so far can be used only for the design of broad-
band conical horn antennas with a rather narrow beam., These antennas
are very suitable as feeds in cassegrain antennas, where the feeds il-
luminate a rather small subreflector. More details concerning casse-
grain antennas are given in [42]. In practice the 10-dB beamwidth or
the 20~dB beamwidth of the feed is specified and it is the task of the
designer of the feed to meet the required specification. This can be

done by using the following formulae

40
820,14
& 30r
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2 2014
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Fig. 2,13, 10~-dB beamwidth and 20-dB beamwidth in H-plane of frequency-
independent conical horn antenna with small flare angle against
flare angle ag.
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a . Ta .

T sin elQ,H = 4,8 "'d— sin 920,H = 7,7 . (2.78)
Using (2.78) and the relation

d=a tan 3 a (2.31)

we have calculated the curves of Fig. 2,13, which gives the flare angle

%, for prescribed beamwidth in the H-plane. By means of the relation

_ 2
R/d = a—c—)g (2.35)

<> i i 3

0 5 10 15
—~>a0(deg.)

Fig. 2.14. Length of frequency-independent conical horn antenna with small

flare angle against flare angle.

we can find R/d. The results are given in Fig. 2.14 and show that large
values of R/d are necessary if the flare angle a, becomes small. This
is the case if we try to design an antenna with a power radiatiom pat-
tern with a rather narrow beam. Up till now we have not found the val-
ues of oy and R/d. The dimensions of the conical horn antemna are com—
pletely specified if the value of 4 is known. The value of d depends

on the frequency band for which the antenna will be used. From the
first part of the section we know that the value of d/) is between 3/8

and 3/4, Suppose that the lowest frequency for which the antenna will
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be used is given by f;, then Ay = c/f; and
d = 2. (2.79)

Summerising we may formulate the design procedure as follows. Choose
the 10-dB beamwidth in the H-plane. From Fig. 2.13 the 20-dB beamwidth
and the angle o, are found. Now Fig. 2.14 gives the value of R/d. The
choice of d depends on the desired frequency band, in which the antenna
will be used. If d is known, R can be found and this completes the de-

sign.

In order to verify the theory developed in this study we have compared
the measured power radiation pattern of a conical horn antenna with

the theoretical power radiation pattern. The measurements have been

carried out in the frequency band between 7 GHz and 14 GHz. The dimen-
sions of the horn antenna are given in Fig. 2.15. They are not exactly
equal to the dimensions obtained from the design procedure of the first
part of this section. The reason for the discrepancy is that this horn
antenna was already available before the theory, described in the pre-

sent study, was developed.

In fact, some preliminary measurements with the horn have already been
described [4]. Suppose that f; = 7 GHz. Then from (2.79) it follows
that d = 16.1 mm. This value differs only slightly from the actual
value of 17.4 mm. So the antenna can be used for an experimental veri-

fication of the theory.

|

Fig. 2.15. TIllustration of frequency-independent conical horn antenna.

2a = 264mm; d = 17,4mm; a, = 159.
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The TE,,-mode in the horn is launched by coupling the cone to a circu-

lar waveguide in which the TEj;j-mode propagates. The diameter of the

waveguide is 28 mm . In order to investigate, whether the dominant

mode can propagate through the waveguide for frequenciles between 7 GHz

and 14 GHz without exciting higher modes, we have composed a table with

the cut-off frequencies f. of several modes which can possible be ex~

cited.

Table |
mode f.[GHz]
TEq, 6.281
THg 8.206
TEsy 10.420
M1y 13.075
TEp, 13,075
Ty, 17.520

The table gives rise to the following considerations:

i

(ii )

the circular waveguide can be used for frequencies aboven 6.281
GHz. However, it is advisable to choose the lowest frequency
somewhat above 6.281 GHz, to be sure that the losses are low,
Moreover, the connection between the generator and the trans-—
mitting antenna at the test.range consists of a normal X-band
waveguide with a cut~off frequency of 6.557 GHz. So it was de-
cided te start the measurements at 7 GHz,

There are several modes with a cut-off frequency between 7 GHz
and 14 GHz, So in principle these modes can be excited if there
are discontinuities in the waveguide. A discontinuity is the con-
nection between the waveguide and the cone. For physical reasons
we may say that only modes with the same 2'-dependence as the
TE;-mode can be excited. So it must be expected that the TM; -
mede will be excitedjin the frequency band from 17.075 CHr to

14 GHz,






Photograph 2. Equipment for the measurement of the radiation pattern of
antennas. (Scientific—-Atlanta instruments).

ctograpl . Conical horn antenna under test on the turntable.
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(iii) If there is a good agreement between the computed and the mea-
sured power radiation pattern in the frequency band from 13,075
GHz to 14 GHz, then we may draw the conclusion that the influ-
ence of higher modes, excited at the waveguide-cone transition,

is negligible as far as the radiation pattern is concerned.

For the measurement of the power radiation pattern use has been made
of an antenna test range of 180 m. length. The antenna under test is
used as a receiving antenna and ié mounted on a turntable., The antenna
under test rotates while a plane wave is incident upon it. The plane
wave is produced by a transmitting antenna situated at & distance of
180 m. from the turntable, So the far field region condition (2.20) is
satisfied. The transmitting antenna is a paraboloid reflector type with

a diameter of 1.20 m.
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Fig. 2.16. Beamwidth of conical horn antenna of Fig. 2.15 against frequency.
e 3 theoretical, H-plane,
wmw~y theoretical, E-plane,
e , experimental, H-plane,

0 , experimental,E-plane.

52



\
W
— 10
¥
\
A5\
o
N H-PLANE E-PLANE
g
o 20
B4
3]
o>
H
3
~ A
(i o v
\' \’
Vv v
30
20 (4] 20

Fig. 2.17. Power radiation pattern of the conical horn antenna of Fig. 2.15
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In photo | an antenna under test is mounted on the turntable.Onther{ght
hand side of photo 2 the receiver used in the measurements is shown.
The right part of the console contains the recording equipment and some
instruments for operating the turntable. A more comprehensive descrip-
tion of this type of measurements can be found in [43] and [44], where

many references are also given.

With the equipment described above we have measured the power radia-
tion pattern of the antenna of Fig. 2.15 as a function of frequency.
The results of the measurements have been collected in Fig. 2.16 to—
gether with theoretical results, and they show good agreement. It
should be noted that beamsplitting is observed for frequencies between
13 GHz and 14 GHz. Furthermore it was impossible to sketch the 20 ¢B
line between 13 GHz and 14 GHz owing to the capricious behaviour of

the sidelobes.

For purposes of illustration the complete power radiation paftern in
the H-plane and the E-plane has been included for the frequencies 8GHz,
13 GHz and 14 GHz and are shown in Fig. 2.17, Fig.2,17a and Fig. 2.17b
respectively., The agreement between theoretical en experimental results
is good for 8 GHz. In Fig.2.17a we observe that the theoretiéally pre-
dicted beamsplitting in the E-plane does not occur in the experimenti-
cal results. In Fig.2.17b we have shifted both the theoretical and the
experimental power radiation pattern in the E-plane about 2 ¢B with
respect to the H-plane patterns. This was done to keep the curves
within the frame of the diagram., In fact, the value of the maxima of
f(0,v) and fg(0,v) are equal as can be seen from (2.59) and (2.60).
From Fig. 2.17bwe concluded that at 14 GHz beamsplitting in the E-plane
oceurs indeed. Another conclusion is that the agreement between theore-
tical and experimental results is mot so good at this frequency. Proba-
bly this is caused by the excitation of the TMj;-mode. Finally, we have
measured the V.S.W,R, of the antenna as a function of the frequency. We
found that the V.S.W.R. was less than 1.15 in the frequency range be-
tween 7 GHz and 14 GHz.

In conclusion we may say that conical horn antennas with a bandwidth of
I : 2 can be designed as described in this section and the agreement
between theoretical predictions and experimental results is resonably
good. The bandwidth is restricted by the occurrence of the beamsplitting

of the pattern and the excitation of higher modes at the transition from
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waveguide to come. In cases where beamsplitting presents no difficulties,
a larger bandwidth can be obtained. However, in that case it is neces-—

sary to improve the bandwidth of the waveguide, which is coupled to the
conical horn antenna.
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Fig. 2.17%, Power radiation pattern of the conical horn antenna of Fig. 2.15
at 13 GHz.

w.—wy theoretical, H-plane,
—ewwy theoretical, E-plane,

, experimental,H-plane,

, experimental,E~plane.
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Fig. 2.17P, Power radiation pattern of the conical horn antenna of Fig. 2.15
at 14 GHz.
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2.4  Theory of the equiphase surfaces of a frequency-independent coni-

cal horn antenna with a small flare angle.

In the preceding two sections it was found both theoreticallyvand exper—
imentally that the conical horn antenna has a power radiation pattern
which is independent of frequency in a relative frequency band | : 2,
provided the dimensions of the horn are chosen correctly. From Fig.2.13
we draw the conclusion that the 20 dB beamwidth of this type of antenna
is less than 20°, So this antenna is very suitable as a feed in a casse-
grain antenna. A cassegrain antenna consists of a large paraboloid re-

flector and a small hyperboloid reflector (Fig. 2.18).

Fig. 2.18. Diagram of cassegrain antenna.

The feed illuminates the hyperboloid reflector. This implies that the

beamwidth of the power radiation pattern of the feed should be narrow.

The theory of the cassegrain antenna starts with the assumption that

the equiphase planes of the feed are spherical, at least in the vicinity
of the hyperboloid reflector. This assumption allows the designer of a
cassegrain antenna to treat the feed as a point source, located at the
so called phase centre, It is important that the position of the phase
centre is independent of the frequency in the same frequency band where
the beaumwidth is constant. In fact, a change in the position of the
phase centre disturbs the phase distribution over the paraboloid re-
flector and this gives rise to a reduction of the gain of the casse-

grain antenna [45].
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So it is important to study the equiphase surfaces of the conical horn
antenna with frequency-independent power radiation pattern. To start
this study we repeat the formulae (2.53) and (2.54), which give the

electric field in the far field region

Y 2 .
_ Jkac ~jkr 1 + cos 8
Ee T — cos ¢ IE(u,v) , (2.53)
a2 .
E¢ =”!;i e Jkr 1 +2cos 8 gin ¢ IH(U’V) ) (2.54)

The functionsIH(u,v) and IE(u,v) are both complex for allvaluesof u
and v except v = 0. So IH(U,O) and IE(U,O) are real functions. In case
v = 0 we ave dealing with an aperture SA(Eig.2.3)with a constant phase
field distribution. An open circular waveguide is an example of such an
aperture, The equiphase surfaces are now given by r = constant. This
implies that the equiphase surfaces are spheres and the phase centre

coincides with the centre of the aperture SA'

If the functions IH(U,V) and IE(u,v) are complex, then we may write

Lyu,v) = |10, el (el (2.80)
and
Itu,v) = TG, o g tu, V)] (2.81)

and wH(u,v} - wH(O,v) describes the phase variations in the H-plane
with respect to the point u = 0, along a circle with radius r. The func
tion ¢E(U’V) - wE(O,v) has the same meaning, but now in the E-plane.
The conclusion that can be drawn now is that the sphere with radius r
is not an equiphase surface. In this case, too, the equiphase surfaces
may be spheres, but the centre of the spheres does not coincide with
the origin of the coordinate system. However, this is only possible if
the functions wH(u,v) and wE(u,v) are identical. If the functions
$H(u,v) and wE(u,v} differ, we may conclude that the centre of curva-
ture of the equiphase lines in the H-plane is not the same point as the
centre of curvature of the equiphase lines in the E-plane. We shall now
speak about the phase centre in the H-plane and the phase centre in the
E~plane respectively. We shall now show that the above situation occurs
in the conical horn antennas, the properties of which are described in
this study. To study the position of the two phase centres in more de-~

tail the functions
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Fig., 2.21. Curves of constant xH(e)/d—value against d/A for a conical horn
antenna with small flare angle.

60
8, (u,v) = 2% [y, tuv) = 9 ,(0,0)]

and (2.82)

60 ‘
¢E(u,v) = %;— [$E(u,v) - wE(O,v)]

have been computed for several values of u and v. In Fig., 2.19 and Fig.

2,20 we have plotted ¢H(u,v) and @E(u,v) respectively as function of

= Uly = E%—sin ¢ for some values of d/A. In Fig. 2.19 we have plotted
na

$,{u,v)  only for values of 3

sin 6 which are within the 20 dB points,
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Fig. 2.22. Curves of constant XE(e}f’d—value against d/i for a conical horn
antenna with small flare angle.

This can be verified by comparing Fig. 2.19 with Fig. 2.8. The same
policy has been followed with respect to Fig., 2.20. With these curves
it is possible to find the equiphase lines in the H~plane and the E~
plane. In Fig. 2.23 a diagram of a conical horn is given and it is sup~

posed that point P 1s in the far field region of the antenna,

If the circle with radius r and centre 0 is known, then the equiphase

(u,v), The

. A
line through P can be constructed, because XH(G) * 525



Fig. 2.23, Horn antenna and equiphase line PQ in far field region.

same procedure can be adopted for finding the equiphase line through P
in the E-plane. In the latter case xE(e) = 3%6»¢E(u,v). From the fact
that the functions ¢H(u,v) and ¢E(u,v) are positive we conclude that
the two centres of curvature are shifted intc the horn.

Now that we are able to find the equiphase lines in the H-plane and the
E-plane, there remain two questions to be solved. First we ﬁave to in-
vestigate whether the equiphase lines in the H-plane and the E-plane
are circles or not. In the second place we have to investigate the
frequency dependence of the equiphase lines. We prefer to investigate
first the second question. For this purpose we have composed a diagram
(Fig. 2.21), which gives lines of constant xH(e)/d as é function of
d/x.

In Fig. 2.22 the same information has been gathered for the E-plane.
From these two diagrams we conclude that the equiphase lines in the
H-plane and in the E-plane are indeed independent of frequency in the
range % < g < 1. In the range 3/8 < d/x < { the equiphase lines are
slightly dependent on the frequency. Suppose that the antenmnas under
discussion is used as a feed in a reflector antemna, then the phase
efficiency [4] of this reflector antenna can be found using the dia-

grams Fig. 2.21 and Fig. 2,22,

For the investigation concerning the questionwhether the equiphase lines
are circles we adopt the following procedure. Fig. 2.24 shows a circle

with radius r and an equiphase line in the H~plane through P. Suppose
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this equiphase line is a circle with centre 0. Then we compute the dis-
tance p between 0 and O' from the phase variations xH(B). 1f the equi-

phase line is a circle then p does not depend on the angle 8.

0!

Fig. 2.24. Geometrical figure for calculating the phase centre of a horn
antenna.

Let 0'Q = r + p and Q5 = xH(Q).

Applying the cosine rule we find
(r +p)2 s p2 + {r + %,(0) f2 2p{r + %, (8) } cos 8,
which gives

X (8) {x (8) + 2r}

P ¥ S T-cos 87 - 2XH(8) cos 8 7 (2.83)

Expression (2.83) simplifies if r is very large and 8 # 0, In that
case we may write, except for & = O,
T-os 6" (2.84)

Using the definition of xh(e) and substituting the first expression

of (2.82) gives

p 1 wH(u,v) - wH(O,v) N . (2.85)
d/H 27 1 - cos 8

(=%}
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In a similar way we find for the E-plane

P i l~ wE(u,v) - wE(O,V) A 2.86)
djE 27 1 - c¢os 6 d -’ : )

The functions (E)H and (g)E have been calculated as a function of 8
for the antenna of Fig. 2,15, These calculations have been performed
for three values of d/i. The results of the computations are gathered
in Fig. 2.25 and Fig. 2.26. From these diagrams we may conclude that

no phase centre in H-plane or E-plane exists.
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Fig. 2.25. Location of phase centre of comical horn antenna in H-plane for
some values of d/X.
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Fig. 2.26. Location of phase centre of conical horn antenna in E-plane for
some values of d/x.
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However, on closer examination we see that for small values of 9/% the
equiphase lines in the H-plane and the E-plane are approximately cir-
cles, at least in the vicinity of the directiom & = 0., Fotr large val-
ues of 9/% the equiphase lines arenot circles. This phenomenon has an
influence on the phase efficiency as a function of frequency. In order
to investigate this effect it is advisable to use the diagrams in Fig.
2.21 and Fig. 2.22. However, it should be noted that this investigation
can be carried out only if the dimensions of the reflector antenna are
known. As we are studying the properties of the feed only, it is clear

that this investigation is outside the scope of the present study.

From the previous discussion we have concluded that Fig., 2.21 and Fig.
2.22 are important for the practical use of the broadband feeds, the

properties of which are described in the present study. Therefore there
is need for an experimental verification of the theoretical results of

this section. These experiments will be described in the next section.

2.5 Experimental investigation of the phase radiation patterm of a

frequency-independent conical horn antenna with a small flare

angle.

From the preceding section we have learned that the frequency-inde-
pendent antennas which are the subject of the present study, have no
phase centre. The second conclusion was that the phase efficiency of

a paraboloid reflector antenna, illuminated by a frequency-independent
conical horn antenna, can be determined using Fig. 2,21 and Fig. 2.22.
So there is need for an experimental confirmation of the theoretical
results of Fig. 2.21 and Fig. 2.22. Unfortunately, Fig. 2.21 and Fig.
2.22 are not suitable for a direct experimental confirmation, because
the results of phase measurements are given in terms of degrees, while
in Fig. 2.21 and Fig. 2.22 the information concerning the phase radia~
tion pattern is gathered in terms of distances. However, the diagrams
of Figs. 2.21 and 2.22 are derived from the same numerical results as
those of Figs., 2.19 and 2.20. The only difference is that in Figs.2.2]
and 2.22 more information has been collected than in Figs. 2.19 and

2.20, which are only given for the purpose of reference. To obtain an
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experimental confirmation of the numerical results which are used for
composing Figs. 2.21 and 2,22 it is sufficient to measure the quanti-
ties @H(u,v) and ¢E(u,v). Therefore, it was decided to measure these

quantities as a function of 8 for some values of d/i.

In principle, it is possible to carry out these measurements with two
probes. One probe has a fixed position P (Fig. 2.24) with respect to
the antenna under test. The other is moving along an arc of a circle PS.
Connecting these two probes to a phase-~measuring circuit we obtain the
quantities ¢H(u,v) ’ ¢E(u,v) respectively, as a function of 6, However,
this method is not very convenient for the following reason. The dis-
tance r (Fig. 2.24) should be so long that the probes are in the far
field region of the antenna under test. This requirement imposes a res-

truction on the distance r, which is given by

r> —2—%?; ’ (2.20)
D being the diameter of the antenna under test. For an antenna with
D= 10), we find r > 200A. To measure the phase variations q:H(u,v) and
¢E(u,v} with an accuracy of, for instance,2nw/72 rad, it is necessary
to be sure that the distance r is constant within A/72, which obviously
offers mechanical problems. The X/72 criterion has been chosen because
the accuracy of the phase measuring circuit is approximately 5°. Even
if we choose a less stringent criterion than 1/72, for instance, A/16,

the method proposed above gives mechanical problems.

A better method of measuring ¢H(u,v) and ¢E(u,v} ig the following. The
antenna under test rotates around the point O,which coincides with the
centre of the aperture of the antenna under test. At the same time a
plane wave is incident upon the antenna along P 0. This plane wave is
produced by a transmitting antenna in P. The reference signal is cou-
pled out from the transmission line between the generator and the
transmitting antenna (Fig. 2.27).

It can be proved that the phase variations, which are measured, if the
antenna under test rotates around an axis through O, are indeed equal
to ¢H(u,v) and @E(u,v) fespectively. The proof of this assertion can
not be given by means of the well-known reciprocity theorem of anten—
nas. This theorem states that the ratio of the gain function of an an-

tenna used as a transmitting antenna and the effective receiving cross-
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1: generator 3: antenna under test
2: transmitting antenna 4: phase measuring circuit

5: recorder

Fig. 2.,27. Diagram of the measuring system for the measurement of phase
variations.

section of the antenna, when the antenna is used as a receiving anten-
na is the same for all antennas. So this theorem is formulated in terms
of energy, and consequently it cannot be used for proving the above
assertion, which is concerned with measuring of phase-differences.How~
ever, the proof of the above assertion can be derived from a recent
paper of De Hoop [46]. The details of the proof are found in appen-

dix B.

The accuracy of the measuring method proposed above is chiefly deter—
mined by the accuracy with which the axis of rotation coincides with
the aperture.Té be sure that thisis indeedthe case, the following
method has been adopted. Suppose that an open circular waveguide is
mounted on the turntable in such a way that the aperture of this radi-
ator coincides with the axis of rotation. Then we know from the prece-
ding section and from the paper of De Hoop [46] that the phase varia -
tion is zero if the waveguide rotates. We shall use this criterion to
determine whether the axis of rotation lies within the aperture of the
conical horn antenna. Therefore, the antenna is mounted on the turn-
table and a thin metal plate is connected to the antenna. The plate
coincides with the aperture of the antenna. In the centre of the plate

is a hole, which acts as the aperture of a circular waveguide. The dia~

67



meter of the hole 'is 28 mm. and the thickness of the plate is | mm.Thé~

details of the system are given in Fig. 2.28.

o & ev——— ¢ —— 4 — o . bt

Fig. 2.28. Conical horn antenna with plate.

The precise position of the antenna with respect to the turntable is
found by mounting the antenna on the turntable in such a way that the
measured phase variagion is zero if the antenna rotates. Next, the
plate is removed and the measurement of the phase variation is repeated.
In this case the quantities ¢H(u,v) and ¢£(u,v) respectively are mea-
sured, In Fig. 2.29 an example of the results of these two measurements
has been plotted. The measurements have been carried out for the an -

tenna of Fig. 2.15 and for the frequency 8.6 GHz.

The methed of measuring described above has been used to measure the
quantities ¢H(u,v) and ¢E(u,v) for several frequencies. The measure-
ments have been performed for the antenna of Fig. 2.15. An anechoic
chamber, designed by Emerson and Cuming, was used. The distance r be-
tween the transmitting antenna and the antenna under test was 4.8m. So
the distance requirement (2.20) is satisfied for frequencies below 10
GHz . However, for frequencies above 10 GHz the requirement (2.20) is

not satiesfied. For frequencies below 15 GHz the requirement

re = (2.87)

can be satisfied . So it is to be expected that the results of the
measurements for frequencies above 10 GHz deviate somewhat from the

theoretical predictions.

Photograph 3 shows a picture of the antenna mounted on the turntable
in the anechoic chamber, Photograph 4 shows the same picture, but now
with the plate connected to the antenna., Finally we report that the

receiver of photograph 2 is used as the phase measuring circuit.
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Fig, 2.29. Measured phase variations in H-plane at g6 GHz.
a: antenna of Fig. 2.15,
b: antenna of Fig. 2,15 with plate.
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Photograph 3. Conical horn antenna of Fig. 2.15 mounted on a turntable in
the anechoic chamber.
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Photograph 4. Conical horn antenna of Fig. 2.15 with plate mounted on a
turntable in the anechoic chamber.
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Fig. 2.30 Measured phase variations in H-plane of the antemna of Fig. 2.15
, theoretical.

o % = 0.5000, (.; = 0.7500,
d

« ¢ - o0.5625, mg - 0.8125.

*g = 0.6250,
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Fig., 2.31. Measured phase variations in E-plane of the antenna of Fig. 2.15
, theoretical.

o g = 0.5000, +»§ = 0.7500,
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The results of the measurements are collected in Fig. 2.30 and Fig.
2.31 for the H-plane and the E-plane respectively. Tabel II can be

used for converting the 9/ values into frequencies.

Teble |

9/ f£[GHz ]
0.5000 8.6
0.5625 9.7
0.6250 10.8
0.7500 12.9
0.8125 14.0

This table has been composed assuming that d = 17,4mm. From Fig. 2.30

and Fig. 2.31 the following conclusions and comments may be formulated:

(i) the agreement between experimental results and theoretical pre-
dictions is rather good for frequencies below 10.8 GHz,especially
in the H-plane. In fact, the maximum deviation between theory and
experimental results was less than 25°, The experimental results
are slightly smaller than the theoretical predictions. An expla-

nation of this deviation has not been found;

(ii) the discrepancy between experimental and theoretical results at

14 GHz might be caused by the excitation of the TMy;-mode;

(iii) the discrepancy between experimemtal and theoretical results at
the higher frequencies might be also caused by the fact that the
distance requirement (2.20) is not satisfied for frequencies

above 10 GHz.

In conclusion we may say that the agreement between experimental re-
sults and theoretical predictions is rather good. So the diagrams of
Fig. 2.21 and Fig. 2.22 can indeed be used for determining the phase
efficiency of a paraboloid reflector antenna, illuminated by a fre-

quency~independent conical horn antenna.
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CHAPTER 3

CONICAL HORN ANTENNAS WITH SYMMETRICAL RADIATION PATTERN

3.1 Circular aperture with a symmetrical radiation pattern.

In the sections 2.2 and 2.3 we have seen that the radiation pattern of
a conical horn antenna is not symmetrical with respect to the antenna-
axis. A second phenomenon that was observed is that there exist rather
high sidelobes in the E~plane. This implies that the conmical horn an -
tenna of Fig. 2.15 is not very suitable as a feed in a cassegrain an -
tenna, as drawn schematically in Fig. 3.1. In order to prove this as -
sertion we have computed the fraction of the total energy which is ra-
diated within the cone angle 8§ for various values of 8,

Fig. 3.1. Diagram of cassegrain antenmna,

The calculations have been performed for the frequency 8 GHz. The re -
sults are collected in Fig. 3.2, Together with Fig. 2.17 we may formu-
late the following conclusions, If the system is designed in such a way
that in the H-plane the edge illumination at the subreflector is 10 dB,
then only 63% of the energy is intercepted by the subreflector. If we
apply an edge illumination of 15 dB then 88% of the energy is inter -
cepted by the reflector. Finally we see that 91% of the energy will

reach the subreflector if the edge illumination is 20 dB.

This unfavourable situation is, of course, caused by the high sidelobes
in the E-plane. Therefore it would be desirable if a conical horn an-
tenna could be designed with a symmetrical radiation pattern which,for

instance, is identical with the radiationm pattern in the H-plane of
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Fig. 3.2 Fraction of the energy radiated within a cone-angle § against 6.
Antenna of Fig., 2.15.

the antenna of Fig. 2.15. Moreover, we recall that a feed for a para-
bolic reflector for radio-astronomical lnvestlgatlons should possess
a symmetrical radlation pattern as well. Thxs is of importance if one
wishes to study the polarisation charactevistics of radio sources. In
case of antennas for radio—astronomical investigations, however the
feed is placed at the focus of the paraboloid. Therefofe, in this case,
a feed with a beamwidth larger than that of the antemna of Fig. 2.15
should be applied. So we see that it is necessary to have at our dis-
posal a theory concerning feeds with symmetrical radiation patterns.
In the remaining part of this section we shall develop a theory of
symmetrical radiation patterns of circular apertures. In the following
considerations use will be made of a special class of solutions of

Maxwell's equations. These solutions were discovered by Rumsey [47].

. To introduce these sclutions we observe that, if the equations
curl E{r) = - quoVﬁ(E) and curl H(r) = jwe  E(r) possess  solutions

of the type E{r) = CH(r), then C = » dZg

Substitution of the relation E(r) = C H(rJ) in each of the two Maxwell
equations. shows immediately that C = + jZ,. We shall denote these two
types of solution by gaig) and EB([).

(158}

(£) = = JZHg(D) 3.1

E () = JZH (r) and P

It is very interesting to\stgdy Poynting's vector of this type of elec-
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tromagnetic field. We find

o
—
-
p
it

Re(E, (el x Re(n (med®M=zy xp . -
=0~ - - o~ar © “al

77 Zo Hy ¥ by (3.2)

In expression (3.2) we have assumed that H_ = H + jJH. ; soH and
-g  -ar ~ai —ar

ﬂai represent the real and imaginary part of 53. The asterisk denotes

complex conjugate.

For the other solution we find

- - : Ve *
(D)= = 25 Hgp X Mgy =7 37 2o Hg X Hy- 3.3

We notice that Sa and SB have the remarkable property that they are in-
dependent of time.

The types of electromagnetic field as discussed above were first studied
by Rumsey. Some other properties of these fields, which are not relevant
to the present considerations, can be found in [47]. Especially ele~
mentary sources which generate the electromagnetic fields (3.1) is given.
It is possible to find other sources of the electromagnetic fields (3.1).

Therefore the following lemma has been formulated.

Fig. 3.3. Antenna within closed surface S,

Lemma 1.

If the electric and magnetic fields on a closed surface S are related
by the relation £(r') =+ JZ H(r') (Fig. 3.3), then the electric end
magnetic fields in a point P are also related by E(r) = » JZ_ H(p).

Proof. Substitution of E(r') = = jZO H(r') in the expressions (2.4)

and (2.5) immediately gives the result
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E(r) = + JZ_ H(r). (3.4)

In the next lemma we formulate a property of the radiation field of an
antenna with aperture SA.(Fig. 2.2) and we assume that the tangential
electric field and the tangential magnetic field are zero on the sur-

face SC'

Lemma 2.

If the electric and magnetic fields in an aperture SA satisfy the rela-
tion Ea(f') =+ 1z, Ha(f'), then the electromagnetic field in the far
field region is circularly polarised in every point. The sense of polar-
isation is counter-clockwise with respect to the direction of propaga-~

tion.

Proof. From expression (2.19) we know that a. xE

Lemma 1 gives the relation EL(D) = jZz 1 (o).
So jfa,. x E () }=JZ H (D) = E,(r) and

ja x{E . a b= + E .

o * Eap 2 R IR T )

And we see that

E_.=-jE

af (3.5)

ag¢

for every value 6 and ¢.

A similar property can be formulated for the electromagnetic field
given by EB = -jZo HB'
If the electric and magnetic fields in the aperture SA satisfy the re-

lation EB(E') = -jZo H.(r'), then the electromagnetic field in the far

B
field region is circularly polarised in every point. The sense of po =
larisation is clockwise with respect to the direction of propagation.
The components of the electric field in the far field region are re-

lated by

E,.=+jE

86 (3.6)

Bo

In the following lemmas we shall restrict ourselves to a circular aper-—
ture SA as defined in Fig. 2.4. Furthermore we assume a quadratic phase

distribution across the aperture SA.
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Lemma 3

Let the electromagnetic fields in the aperture SA be given by
1y = 4 1
EAr') =+ ] ZH (r ) and

H t
(k') =g (rt) I
- =al

. frh-
- 1 1 —JV('ji
gaT(r ) {fd1(r } ay t ga1(r ) §¢’} e a};

3, and §¢, are the unit vectors in the circular aperture SA'

with
(3.7}

Then the electromagnetic field in the far field region is given by:

o . ind .
Eal@ J Eal¢ Fa]ir,e) e with
=1 'ka? ~jkr
F@](r,e) = e x

1

[Bfmtp) = J 94y (p) cos 0Fx {9, tue) - Jn”(up)}

O tund
~ifa f -Jve
J{gal(o> + Jfaqip) cos 6}{Jn_!{up> + Jn*T(UD)}] e odo. (3.8)

Proof. From the substitution of the relations given in (3.7) in the

expression (2.24) and using the relations

27
. o ! n=-1 1
‘/reJﬁ¢1COS(Q_$!}eJJO cos(¢ ? )d¢’ — IeJn¢{Jn_,(uD)'Jn+](UD%
0 2n (3.9)
. . 4t cn=1 iR
‘/ednwsin(i]}"it')eJup cos(¢=¢ )dd;' =_J-“Jl’l 1eJ'-¢{3n_1(up}+Jn”(up)}

0

the result (3.8) follows immediately.

Although the next three lemmas are quite similar to lemma 3, we shall
formulate them rather extensively. This method of working offers the
opportunity to define all the quantities needed in the following argu-

mentation.
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Lemma 4.

Let the electromagnetic field in the aperture SA be given by

im
—~
"

=
[ ]

iz, ﬁa(r') and

H ¥
Jne with 3.10)

m

—~
5

=
[}

.-
gaz(r ) e

s
ty = 1 [ ~Jvls
gdz(r ) {faz(r ) .t ggz(r ) é@'} e (a)%

Then the electromagnetic field in the far field region is given by

E.,. =-jE ="Fp(rs0) e ™ yith

«l a2

a1 jka2 -] ’
Fa(ri8) = J7 1 L8 o Jkr
1
/Bfaz(p) = gyp(0) cose} X{Jn‘l(ug) - Jn”(up)}

0
P4
+j¥ga2(p> +j f () cos e)}kJn_l<up> + Jn+1(up)g e Y 6dp. (3.11)

Proof. From the substitution of the relations given in (3.10) in the

expression (2.24) and using the relations

2n
-1 t H -t T -]
fe Jné cos(¢-¢'}e*5u° cos{¢-¢ >d¢' A ‘e an’{dn_](up)-dn”(up)}
zn (3.12)

0
e ) o s
fe dnd7 g in(g-g el WP COSLOTE D g iy jhTe JM{Jn_‘(up)*Jn”(usﬂ}

0
the result (3.1!) follows immediately.
The next two lemmas are given without proof.
Lemma 5.

Let the electromagnetic fields in the aperture SA be given by

EB(C') = - jzoﬂs(g') and
H 1
Eglr') = §3,<r*)>eJ“¢ with (3.13)
Y
gm(r’) = {fm(r’} a_y + gsl(r ) a¢,}e J (a)
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Then the electromagnetic field in the far field region is given by

810 FB1(r,e) edn¢ with

1

_oin-t jka?  -jkr [ . i _
FSI(F’G)' J ¢ {fBI(p)+J98](p)cose}{Jn_1(up} Jn+1(up}

0

fva?
- - —Jvp
J{QST(Q) JfB‘(p)cosa}{Jn_}(up) + Jn+1(up)}} e

odp. {3.14)

Lemma 6.

Let the electromagnetic fields in the aperture SA be given by

E(C) = =) Z (") and

8

-} 1
E (') = g, (rt) o I

= with (3.15)

. C’)z
1y L ' 1y ~Jviz
gaz(r ) {fBz(r ) @yt ggzir ) §¢,} e ajl .

Then the electromagnetic field in the far field region is represented

by

E Foo(r,8) oM

g20 = "JEa2y 7 Pz
1

F o {(r.8) = jn'l Jﬁéi.e'Jkr Bf (p)+] ‘p)ﬂose}{d {up)=~J {upﬁ

g2+’ 4r g2'P T8y PrC n-1 n+l

0 Cion2
g te) -jfBZ(p)cose}{Jn_1(uo}+Jn*I(up)}] e I pdp (3.16)

Next we formulate a property of the power radiation pattern of an aper-

ture SA with aperture fields as specified in lemma 3.
Let the electromagnetic fields in the aperture SA be given by

E(r') = j Zoﬁa(f') and

EIVARA
o (3.7)
Elrty = e (r") eJn¢ .
=a - =al
Then in the far field region Poynting's vector is
sty = 71 2
2l zZ, ]Fa1(r,e)| a - (3.17)
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From the lemmas 2 and 3 we know that

ZH (D) = J E (D) = <) (g + igy) F tr,e) &l

¢
Applying formula (3.2) we find

i *
S(ry = Z_ == Q% x H ) =
== 02j \a” -a

- 1 .
z 53’]Fal(r,e)]2 {(ge - Jz

° ) x tagg +J §¢)} =

b

-1
o

2
z ]Ful(r,e)i 3.

So we see that the aperture fields as specified in (3.7) give rise to
a radiation field with the property that the power radiation pattern
is symmetrical with reépect to the antenna-axis. This is not a remarka-
ble property, because it can be proved thaf a circular aperture with
+jng

an electromagnetic field of the type e gives rise to a symmetrical

power radiation pattern. The precise form of the power radiation pattern
depends of course on the vector function 231(r‘)°

However, one general property of the function Fal(r’e) can be derived
quite easily. Using the property of the Bessel function that Jn(O) = 0
with the exception that J,(0) = |, we see that Fa1(r,6) is zero for

8 = 0 if n # 1. Therefore we conclude that especially the case n = |
igs of practical importance. It should be noted, however, that antennas
with a radiation pattern which has a zero in the forward direction are
sometimes used for autotracking purposes [48], [49]. But the study of

these antennas is beyond the scope of the present study.

Finally, it is obvious that the aperture fields of the lemmas 4,5 and

6 give rise to symmetrical power radiation patterns as well.

So far we have formulated properties of radiation fields which are
circularly polarised in every point, and we have introduced aperture
fields which can generate them. With these types of electromagnetic
field one can compose also radiation fields with a symmetrical power
radiation pattern, but which are linearly polarised. In fact, it is
well~known that a linearly polarised plane wave can be decomposed into
two circularly polarised plane waves, one of them with clockwise polar-

isation, the other with counter-clockwise polarisation. On the other
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hand, one can find a linearly polarised plane wave as a superposition
of two circularly polarised plane waves, one of them with clockwise
polarisation, the other with counter-clockwise polarisation. We shall
use this idea to construct radiation fields which are linearly pola-
rised and possess symmetrical power radiation patterns. Moreover, we

shall derive the aperture fields, which can generate them.

Theorem 1.
A superposition of the radiation fields as specified in the lemmas 3
and 6 produces a radiation field which is linearly polarised, provided

we choose

1y - !
fa\(r ) fsz(r ) and

Moreover, the power radiation pattern is symmetrical with respect to
the antenna - axis. The aperture fields which can generate this elec~

tromagnetic field are represented by

' ~ -jvpg
g, = 2f@1(p> cos ng' e ,

v . . . —jvp?
E¢ = 21 ga](p) sin ng! e ,

) (3.18)
L . ¢ -Jjve
Zoﬁr qu‘(o) sin n¢' e R
' . ' ~jvp? .

ZOH¢ = =2] gai(a) cos n¢' e with
o ="'a .

Proof. From the lemmas 3 and 6 we know that

= Jr\'d} e = {E
Eaie e Fa1( ,81 and Ea1¢ JE&IS’
- minde o4 ==L
Bapg =@ " Fgplrh®) and Egoy =mjEg,-
With the choice fq1(r') = fBz(r') and 9@1(r') = —982(r‘} we see that
Fa1(rs®) = Foo(r,6).

The sum of the two fields is now given by

1T
3§

g = Eale + EBze = ZFuiir,S) cos né  and
c : . ) {(3.19)
= b + = - d ol
6 als 826 ZFQ}(r,e) sin ng.
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So the phase~difference between the two components of the electric
field is O or =, which means that the electromagnetic field is linearly

polarised.

The magnetic field can be found from (3.19) with the relation

ZHD) = 3 x E(r). (2.19)

Then we find for the time-average of Poynting's vector

55T - -1
U T Il (ENCRTA P - ETE,

which is independent of the angle ¢. Thus the power radiation pattern
is symmetrical with respect to the antenna-axis. The aperture fields,
which give rise to the radiation field as specified in (3.19), can be
found by summing up the aperture fields as specified in lemma 3 and 6.
We then find

ndt Zindgts —ivpl —iypd
E; ={ fal(p)e+Jn¢ * fBz(p)e Jné je Ve, 2f 1 (plcos n¢!e wver

. [ i 1 -1 2 t 3 2
E = {goﬂ(o)e+Jn¢ * ggplple ine JeTIVP =2jg,,(e)sin no. e Jves

i ' 7 1 -yml —tunl
ZH. - {~J‘fm<p)e””¢ v Jigye It TV izt L torsin ng! &7TYP,

s ey a2 a2
ZH, = {‘J9a1(039+Jn¢ + Jgg,(0le né e Jve =-2jg,,(p)cos nd'e Jve;

which completes the proof.

From the electromagnetic fields as discussed in lemma 3 and 6 we can
find a radiation field similar to the one of theorem 1. The only diffe-

rence is that we have to assume

ty o . ¥ 1y = t
fa1(r ) fBz(r ) 9y (r } gSZ(r J.

However, on closer examination we see that these fields are the same

as those of theorem 1, apart from a rotation in ¢ (and ¢') over %ﬁ .
Combining the electromagnetic fields of lemma 4 and 5 we can formulate

a theorem similar to theorem 1. We shall state it without proof.

84



Theorem 2.
Superposition of the radiation fields as specified in lemma 4 and 5
produces a radiation field which is linearly polarised, provided we

choose

'y o= -t
faz(r ) f61(r ) and

t F— ¥
gaz(r ) o= 981(r 3o

Moreover, the power radiation pattern is symmetrical with respect to
the antenna-axis. The aperture fields, which generate this electro-

magnetic field are given by

t iy
Er = 2 fqzlo) cos né' e Jve R
E; =—2jga2(p> sin ng' e JY? , 3.209
! B ¥ 'jVDz '
Zohr =) fa2(p) sin ng 2] ,
! f ¢ 1 _va2
ZoH¢ =‘2J9a2\9) cos ng' e .

It should be noted that the aperture fields of (3.18) and (3.20) are
indeed of a different type. So, in general, they will give rise to a
different power radiation pattern in the two cases.

The choice

L]

1 - [
faz(r 3 fsl(r )} and

vy o 1
gaZ{r ) 981(r 3
leads to a symmetrical power radiation pattern as well. However, this

pattern is the same as specified in theorem 2, apart from a rotation
i

]
over ¢ (and ¢') of T

At this point of the considerations it is useful to return to the
beginning of this section. There we have stated that there is a need
for symmetrical power radiation patterns, which are of the same form

as, for instance, the H-plane pattern of the antenna of Fig. 2.15. Up

till now we have only developed a theory of symmetrical power radiation

patterns. These patterns are the same form as the H-plane pattern of
the antenna of Fig. 2.15 provided the corresponding functions €17
*

and can be found. Sc the gquestion is now to find a structure,

£ .. .
=g1,7
for instance a circular waveguide, which guides waves of the type as
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discussed in the theorems | and 2. This problem will be discussed in
the sections 3.2 and 3.4. In section 3.3 we shall investigate the

power radiation patterns in more detail.

3.2  Propagation of waves in_a_circular_cylindrical waveguide with

In the formulae (3.18) and (3.20) we have specified the electromagnetic
fields in a circular aperture, which produce a symmetrical radiation
pattern. The next task is to investigate , how these aperture fields
can be generated. Because we are dealing with a circular aperture it

is but natural to try to generate these electromagnetic fields in a

circular waveguide (Fig. 3.4).

Fig. 3.4. Circular waveguide.

Therefore we investigate whether modes with a transverse electric

field and a transverse magnetic field as specified in (3.18) and

(3.20) with v = 0 can exist in a circular waveguide with a perfectly
conducting boundary. We know that in such a waveguide the tangential
electric field is zero at the boundary. But then the normal component
of the magnetic field is also zero [50]. The expressions (3.18) and
(3.20) prescribe that in that case the normal component of the elec-—
trical field should be zero as well, provided n # 0. Using [50] again
we see that the tangential component of the magnetic field is also zero
at the boundary. This implies that there are no currents in the wave-

guide wall. So it is impossible to generate the electromagnetic fields
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of (3.18) and (3.20) in a circular waveguide with a perfectly conducting
boundary, even if we use a sum of TE-modes and TM-modes instead of one

mode.

Suppose that we wish to design a circular waveguide in which modes can
exist with a transverse electric field and a transverse magnetic field
as specified in (3.18) and (3.20) with v = O. From the divergence
equations we derive that these modes have [; and H; components, which
in general are unequal zero. Next we shall prove that these modes can
exist in a circular waveguide with a very special anisotropic boundary.

This boundary is characterized by the conditions

z z ¥ (3.21)

We assume that the real parts of Z, and Z¢ are zero. In that case we
are sure that the time-average power flow in the radial direction is
zero.

So <
z

"

T
>
[}
=2
(=9

(3.22)

X¢ and XZ are the circumferential and longitudinal surface reactances
respectively. The question of the realisation of this surface reactance
will be discussed in one of the forthcoming sections. The electromag-
netic field in a waveguide with an anisotropic boundary, defined by the
equations (3.21) and (3.22), is the sum of a TFf field and a TM field,
because there exist an H; and an E; at the boundary. This type of field
is called a hybrid field.

Suppose that the TE field has a generating function [51]

Lirt,80,2) = Ay J ket sin ngt e T, (3.23)
the . field being generated by
2(r',0',2) =, Jo(ker') cos ng' e 7, (3.24)

with k%= k2 + y2,
Then we can derive the components of the electromagnetic field of a

TE field by means of the following expressions [52]
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v 1 3y ] 3%y
Er rt ag! ! Hr jmuo ar'az
' 3y ' 1 132
= 2¥1 = — ¥l
Eo ar' Ho Juug o T (3.25
L v 32 7
EZ“ 0> HZ-jUJLlO (EZ+ k)wl.
For a ™ field we find
SR N 1 vl age
€ = Joe_ 3r'sz He = o 3o "
o
L1 %y L]
By = Jue, 7T 3gTez ’ Ho = = 3¢T (3.26)

4

el (22, e no- o
z Jue \3z ¥o 0 z :

Then we find for the electromagnetic field in the waveguide

- 1 L .
E - {r—' Al ey - Agd! G ) (k2 YZ)Z}cos ne',  (3.27)

jue
Jug,

m
n

' 2, L2yE,_Y n :
{AIJn(kcr‘) (k2 + v2) *jwéa Ay = Jn(kcr')} sin ng!' (3.28)

3’
P S G AT (k2+~,’2)%~ZA Stk r")}sin ng' (3.29)
“o'r Jk "Unttc o2 Frodn ke , .

7 H = {ZI»AIET-Jn(kCr*> - Z A2 J;{kcr‘) (k2+y3)%cos nd',  (3.30)

o 4 jk
202
L S S ' '
EZ = jmso Aan(kcr } cos ne! (3.31)
2012
to Yok ' . '
Hz jqu AlJn(kCr } sin ngt . (3.32)

The prime in J;(Kcr') means differentiating with respect tokcr'-ln the
expressions (3.27) to (3.32) incl. we have omitted the common factor

e YE,

By inspection it may be shown that these expressions are of the same

type as (3.18) provided

Al = ZO Az. (3‘33)

The choice

Ay = =7 A (3.34)
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gives rise to expressions which are the same as specified in (3.20).
Obviously, the relations (3.33) and (3.34) yield a restriction for the

value of Z,_ and Zi' This restriction may be found by applying the

¢

boundary conditions (3.21).
We find

]RZy? ) e = 7 AT D (ks - auu ke <k2+~f2)%} {3.35)

Jue 20 e z \Juwu, a Wt e 2R .
and

KZry2 - U 2,,2)%s Y D : )
z, oy A (k@) = Apd (K a) (k2ey o 3 Aod, (kB),  (3.36)

8 being the radius of the waveguide. Substitution of A} = & ZOAQ in
(3.35) and (3.36) gives

Z, zq) * zg = 0, (3.37)

This relation has been derived also in [15] using a completely diffe-

rent approach.

For the case Ay = ZOA2 we derive the dispersion equation from (3.38),

The result is

i
2 vl
{z¢ AKkEy vy o p o, D }Jn(kca)=J (ka)

Juow Jk Ka o ke n~1 (3.38)

where use has been made of the second recurrence relation of (2.63).In

case Ay = ‘ZOAZ we find
{? M+L L r}J(ka}=J (k.a) (3.39)
¢ Jou Jk kea  keaf Tnive -1 rce :
In the preceding section we have pointed out that the case n = 1 is of

practical significance. Therefore, we shall restrict ocurselves in the

following considerations to the case n = !. In the section 3.4 we shall
discuss how a circular waveguide with the boundary conditions as spe-
cified in (3.21) can be realised. We shall then see that a physical
realisation is possible for the case Z¢ = (0 and Z2 = @, S0 in the re—
maining part of this section we shall assume that Z@ = ( and ZZ = w,
which is in agreement with {3.37). Now the dispersion equations reduce

to the form
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B/k

— 2a/X

Fig. 3.5. B/k against 28/)x for circular waveguide with anisotropic boundary:

a: HE{})-mode,
b: fast HE%)-mode,

c: slow HE{%)-mode.

90



X ! ik a) = .
(1 * i ) e gtk ) Jo(kca) . {3.40)

For a propagating mode we have v = 8. The dispersion equation (3.40)

gives the value of 8/k for a prescribed value of ka,

Let us now consider the solutions of equation (3.40). The B/k~ versus
23/3 curve of this equation has been plotted in Fig. 3.3,

We see that the curve has two branches with or.e common point. The
branch marked with the symbol a is related to the solution with A; =
Z_As wheras the other branch, marked b is related to the solution with
—ZOAQ. We shall call the mode a?§?ciated with the branch a the

-mode. The other mode is the HE;) —mode.

The common point can be found by putting B/k = ¢ in equation (3.40).

The result is

Py J1 (ka) = JO(Ka} or
(3.41)
v
\;1 (ka} = 0
The first root of this equation 1s ka = 1.841 or 2afk = (.58. The con-—

dition (3.41) is exactly the same as the one which gives the cut-~off
frequency of the TEj;-mode in a perfectly conducting waveguide with
radius @. The second root of (3.41) is ka = 5.331 or 28/) = 1.69 and
gives the cut-off frequency of a higher hybrid mode.

. . . . ey
Let us now investigate the transverse electric field of the HE;| -mode.

! ]
For this mode we have A; = Zoﬁg and the components £ and E¢ can be

found in the following way.

L
E. = = AyZ (kZ-8%)% {k =

- B8 !
- dplker'y + v Jl(kcr‘)} cos ¢

[

'Agzo(k2—52>% [}Jo(kcr')+J2(kcr’)} . E{Jo(kcr')—Jz(kcr')qcos¢'

ApZ,(k2-82)% {( + 5) Jglkartys 6 - g)dz(xcr‘}} cos &'

A7, (K2-p2)% (1 . %) f1(k_r") cos ¢'. (3.42)

N
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fl(kcap)
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Fig. 3.6.

0,
|
0 0,5 1,0
-._).p
1,0
gl(kcap)
0,5
0 N
0 0,5 1,0
i [
1,0
g1 (k. ap)
0,5
0 |
0 0,5 1,0
—

The functions fj(Kk.ae) and gilk.ap) against o.

a: TEji-mode of perfectly conducting waveguide,

HE§1>-mode,

b: 2a/x = 0.6; «c: %9
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In (3.42) use has been made of the formulae (2.63).

JIn a similar way we find

' 8 R
E¢ i AgZo(kz-Bz)%{(l + E) Jo(kcr')- (3 - E)Jz(kcr')} sin ¢!

24 AyZ,(k2-p2)% (1 + -E) g1 (kor') sin ', (3.43)

i

The functions fy(k.r') and gl(kcr') are plotted inFig.3.6 for several
values of 23/}, InFig.3.6a we have plotted the corresponding functions
of the TE;;-mode in a perfectly conducting waveguide. From these figures

two conclusions can be drawn.

(i ) For increasing values of 28/) we observe that the function 91 (ker')
undergoes only a minor cbaﬁge, whereas the function fl(kcr’)
changes drastically.

(ii) For a frequency at which 28/A = (.6 we see that rhe components of
the electromagnetic field of the HEil)-mode are virtually the same

as of the TE;)~mode.

1,00
B/k
0,95+
0,90+
Fig. 3.7.
B/k against 2a/x for HE§1)~mode.
0,85 1 1 Large values of Z2a/).
5 10
s 28/ %
» * t
From conclusion (i) we see that the wvalue of Er at the boundary r' = a

decreases for increasing values of 238/A. In chapter 2 we have seen that
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the high sidelobes in the E-plane radiation pattern of a conical horn
antenna are caused by the fact that the value of E; is rather large at
the boundary r' = a. So the conical horn antenna with the special ani-
sotropic boundary discussed in this section gives us the possibility to
improve the sidelobe behaviour in the E-plane.

We shall discuss this phenomenon in more detail in section 3.6. Then we

shall also use Fig. 3.7.

From equation (3.27) to (3.30) incl. and the relation (3.33) we may
conclude that the electric field lines of the HEi})-mode are of the same
form as the magnetic field lines apart from a rotation in ¢'of 90°. From
conclusion (ii) we know that the electrical field lines of the HE§I)~
mode are virtually of the same form as those of the TEj;-mode in a per-
fectly conducting waveguide, at least for 28/X% = (.6. So it is now pos-
sible to sketch the field lines of the HEg;}-mode for 28/% = 0.6. This
has been done in Fig. 3.8, where also a sketch of the field lines of

the TEjj-mode is given.

Fig. 3.8. Transverse electric field lines and transverse magnetic field lines.
a : Ttjj-mode,
b: HEi})—mode‘for 2a/k = 0.6.
It is now possible to make some qualitative remarks about the problem of
generating the HEil)-mode. Let us couple a perfectly conducting wave-
guide with radius a, in which the TEy; -mode propagates, to a waveguide
with the same radius but with boundary conditions as specified in (3.21)

and with Zz = = and Z¢ = 0, (See Fig. 3.9).
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Fig. 3.9. Transition from perfectly conducting waveguide to waveguide
with anisotropic boundary.

Then we are sure that 2a/Xx > 0.58. This implies that the HE{%)—mode
will not be excited in waveguide 2. Then remains the question whether
the HE%J)-mode will be excited in waveguide 2. If the components of the
electromagnetic field of the HE{})-mode depend on the coordinates of
the waveguide in a similar way as in the case of the TE;;-mode, then we
may expect that only a minor part of the energy will be reflected. From
Fig. 3.8 we conclude that this condition is satisfied and it seems that
the excitation of the HE%l)-mode offers no important difficulties.

For the sake of completeness we have calculated the transverse electric
field of the HE{%)-mode as well. ‘

For this mode we have A} = - ZA;.

i

E; = 3 AZ, (K2 - 2) {(1 -

)Jo(kcr') + O . E)Jz(kcr‘)} cos ¢

= 4 ApZy (k2 - g2)% (l - E fa(ker') cos ¢'. (3.44)
£l =4 Az, (k2 - 82 (1 - Elockrty - {1+ E)uak rhy sin o
) 7 N244 kf 0" "¢ k/v2 e’ ¢
=4 AZ, (K2 - g2)% Q - E)gz(kcr') sin ¢'. (3.45)

The functions fz(kcr') and gz(kcr') are calculated for three values of
23/), The results are plotted in Fig. 3.10 and show us that for 28y -
0.55 the components of the electromagnetic field of the HE{%)—mode are
quite similar to those of the electromagnetic field of the TE;;-mode
in a perfectly conducting waveguide. However, if B/k approaches the

value one, the picture changes completely. Now we see that the function

‘
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Fig. 3.10,
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The functions fg(kcap) and gg(kcap) against p.

a: 28/) = 0,55,
b: 2a/x = 0,50,
c: Za/x = 0.45,
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folker') is larger in the neigbourhood of the boundary, whereas the
function gs{kert) is zero at the boundary. So this mode is not suitable

for antenna applications.

Branch b of Fig., 3.5 suggests that slow waves can exist if 28/ < 0.44,
Therefore we shall investigate the occurence of these waves in more

detail.

Now the generating function of the TE field is given by

valr',e',z) = Ay In(rcr') sin no' e'Yz, (3.46)

whereas the TM field has the generating function
bu(r',8',2) = Ay Ig(Ter') cos ne' o V2. (3.47)

. Pox . 2
I, is the modified Bessel function [53] and I.=- (kZ « y23,
Then the components of the electromagnetic field are

El - Fc{ - AsI, ! (Tcr‘)} cos n¢', (3.48)
£y = T { ATl oty v oy plp T r’%sin no! (3.49)
] [ Az ¢ j®€o hpcri ntc ’ ‘
ZOH; = rc{;ﬁ A31; (Ier') = ZoAy r =L, (T r'}s ne', (3.50)
zH = Y DAt (rrt) - Z ATt ' (3.51)
ofy = TIe jﬂ' Fcr‘ 3In el ofuly N os ng', .
K2 2
E, = ngz Ay I (T.r') cos ng', . (3.52)
2 42
H = ?mzl Az I,(T.r') sin ng'. (3.53)

In the expressions (3.48) to (3.53) incl. we have omitted the factor

¢ Y%, Also in this case we find that the condition

Ay = Z Ay (3.54)

gives rise to an electromagnetic field as specified in (3.18).
Electromagnetic fields of the type of (3.20) can be found by substitu-—

tion of

Az = Zohy (3.55)
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In both cases we find again that

Z, z¢ + zg = 0. (3.37)

If we restrict ourselves to the special case Z¢ = () and Z, = = we de-

rive for the dispersion equation

Iy =
(l E3 jk) s I,(r.al In‘m(rca). (3.56)

The -~ sign corresponds to the solution with the condition (3.34) and

the + sign refers to that with the condition (3.55).

In the special case n = | these equations reduce to
12 8) e - e (3.57)
*k rca e ot et :

From the fact that the functions Il(Fca) and IO(FCa) are positive [53]
and B/k is greater than one we see that the equation with the - sign
has no solution at all. The solution of the other equation is plotted
as branche ¢ in Fig. 3.5. Comparing branch b and branch c¢ of Fig. 3.5
we see that branch ¢ is the continuation of branch b of Fig. 3.5, and
we observe that there exists a continuous transition from the fast to
the slow waves, Therefore, it is reasonable to assume that the elec-
tromagnetic field of this mode is similar to that plotted in Fig. 3,10,
In order to verify this assumption we have calculated the transverse
electric field of the slow HE§%>~mode.

The next two expressions serve as a starting-point
E = 4r, Az cose' {1 - EYrocrrn- (1w Bryren
ro Ztc Mg k /70 ¢ kKJ]72h e
. B
%FC AL;/- (} - R)
£l ==4T. AyZ, sing’ 1 et 1+ By e
6 e Ny O k 2V e

Use has been made of the recurrence relations [53]

1

F3(Tor!) cos &', (3.58)

P iond

g3 (T, ') sin ¢'. (3.59)

(3.80)

(Y]
Ll
P
N
-’
#
Ll
-
I
-+
bl
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Fig. 3.11. The functions f3(k.ap) and gzlk_zp) against o.
a: 2a/x = 0.41,
b: 2a/x = 0.44,

]
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In Fig. 3.11 we have plotted two tipical examples, namely for 2a75=0,41
and 48/2=0.44.

Observing Fig. 3.10 and Fig. 3.11 we conclude that neither the fast nor
the slow HE%%)—moda is suitable for antenna applications. Moreover this
mode can only exist if 28/} < 0.58. The properties of the HEg;)—mode,
however, indicate that this mode can be used for antenna applications
and that the excitation of the mode is not a serious problem., In the
next section we shall investigate the radiation pattern of an open cir-
cular waveguide with aperture fields equal to the transverse electro-

magnetic fields of the HEgl}-mode.

3.3  Power radiation pattern of an open circular waveguide with ani-

sotropic boundary.

One of the results of section 3.2 is that the HEi})-mode has the inte-
resting property that the component E; has only a small value at the’
boundary of the waveguide, provided the frequency is not too close to
the cut-off frequency. This implies that the radiation pattern of an
‘open waveguide which supports this mode, will have lower sidelobes

than in the corresponding case of the TEyjj;-mode in a perfectly conduc-
ting waveguide. Therefore, it is interesting to calculate the radiation
pattern of an open circular waveguide with an anisotropic boundary. We

start by writing down the aperture fields in the followingAform:

Bl - Ao (k2-g2)% fk.r!) cos ', (3.61)

E; = b AgZg (k2-gD)E glkr') sin ¢, (3.62)

ZoHL = b RpZy (K2-D)E flker') sin ¢, (3.63)

' 5

ZaHy = =4 AaZy (KE-8D)F glker') cos 41, (3.64)
with

flkgrt) = ( . 5) Jolkart) + (1 - E) Jolkar), (3.65)

glker!) = (z . E) Jolker) - (1 - E) Jalker'd, (3.66)
and ‘

ko = (k2-82)%,
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Moreover, we assume that the aperture is an equiphase plane; so v = 0.
Substitution of the expressions {3.61) to (3.64) incl. in the formulae
(2.24) and (2.25), and using the relations:

2%
H -k ¥
j[cos¢’cos(¢-¢‘)eJup coste=¢ )d¢‘=ﬂcos¢{JO(up) - Jz(uo)} ’ (3.67)
0v2m

sin¢’sin(¢-¢')ejup cos(¢-9')

d¢'=-ﬁcos¢{JO(up)+ Jz(up)} R (3.68)
0 2m . ,

‘/~sin¢'cos(¢—¢’)eJu9 oSt qyronsing Ugtu) - Jptup)} ,  (3.69)
0

2%
+ e
[cos¢’sin(¢-¢‘)eJup costé™9 gy remsinefdgtup) + Jptuod} ,  (3.70)
0

which can be derived quite easily from the formulae (3.9) and (3.12),

we find
2 .
oo 2_.p2y% Jka =Jjkr
E6 % AZZO (k==B=) ar e cos ¢ X
1 .
/{F(pal,e) Jolup) - Glpa1,s) Jz(up)} pdp, (3.71)
o
- 2 2% jka? - jkr
E¢ F Agzo (ke=-p<)? i © sin ¢ x
1
j{{Ftpal,e) Joue) = Glpay,8) Jalup) | pdo (3.72)
with 0
3y = kea.

The functions F(pa;,d) and G{pa,,B8) are defined by the relations

Flpay,8) = {f(pay) + glpap)} (1 + cos @),
(3.73)
Glpay,8) = {fipay) - glpap} (1 - cos 0),
with
p=T'/a.

The expressions (3.71) and (3.72) are of the same form as {(3.19). So
they describe a symmetrical power radiation pattern, as was to be ex-
pected, The expressions (3.71) and (3.72) can be written in the

foilowing abbreviated form
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oo 2 ik
£, = b AgZ,(k2-82)% ai«g% eI cosp 18,

£y = -4
) (3.74)
) o_gzyt Jka? -lkr \
By = 4 AZ (KB 2. sing 18},
with !
1(9) = 2[{( . E)Jo(pal} Jolus) (1+coss) -
0
( - é)dz(pal) 3, (up) (1-c056)} odp. (3.75)

In the derivation of I(8) use has been made of the formulae (3.65) and

(3.66). Poynting's vector is given by

2

‘ -1{ka%\ 2 2
S{r,8,4)= 47, (Zr_) (3 AZ ) (k2-8%)  x |1(8) 3. -

The power radiated per unit seolid angle is P(6,4) = r?|5(r,8,¢) and the
power radiation pattern is then represented by
I(e) ‘2

T

with 1

100) = 4 (z . S)[Jo(pal) ode

The function F(6) can be written in a closed form if we use the formu-

la [54]

Fle) = (3.76)

P _
, P
[Jn(klp)un(kzp) pdp = Ran {kgdn(klp)Jn_1(k2£}} -
4
ki ooy tkap) Jn(kzp)}. (3.77)

By means of this formula we can calculate the following integrals

1
fJO<alo) odp = %-1- Jitap). (3.78)
0

It

1
/Jo(alm Jolup)pdp = 5?}32 {ard1tay) dglw-u dgtap) 1w}, (3.79)

o

i

1

[J2<a1p> Jptuodpdp = =zimr {udpa)dytul= aydi(ag) dp(w). (3.80)
. 1

0

For the function F{(8) we now find

a1 1
F(e) = m ajlv:u‘g [("[‘*COS@) { alJl(al)JO(u)-u\Jo(al)Jl(u)}
+all = cos®) {apdylap) Jow) - qu(al)Jltu)}] (3.81)
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Fig. 3.12., Power radiation pattern of radiating circular waveguide with
anisotropic boundary.

a: 2a/x = 0.6; b: 2a/x
d: 2a/x = 1.2; e: Za/x
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Fig. 3.13. Beamwidth against 2a/A of radiating circular waveguide with
anisotropic boundary.
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In the formula for F(8) we have used the abbrevation

1 = B/k

¢ TR

(3.82)

It may be recalled that the function F(8) represents the power radia-
tion pattern of an open circular waveguide with aperture fields equal
to the transverse part of the electromagnetic field of the HE§§)—mode.
We are now able to calculate this pattern for several values of 2a/h.
The procedure, which has been adopted is as follows. Choose the value
of 2a/x., From Fig. 3.5 or Fig., 3.7 we find B/K, After calculating o
and @) we can find the function F{6), In Fig. 3.12 we have plotted the
function 101%log F(6) for several values of 2a/x between 0.6 and 1.8,
whereas in Fig. 3.13 we have plotted the 3, 5,10,15,20 and 30dB points
for several values of 2a/X between 1.4 and Z2.4. These figures can be
used as a design chart. For instance, suppose that we wish to design a
feed for a parabolic reflector antemna. Suppose further that this feed
should have a symmetrical power pattern with a 20-dB beamwidth of 120%
(Among other factors this choice depends, of course, on the ratio of
the focal distance and the diameter of the reflector). Then we see that
this requirement can be met with a feed having 2a/x = 1.6. So, after
specifying the frequency for which this feed will be used, we can find

the diameter of the radiating waveguide.

The next task then is to find a physical structure which acts as a
waveguide with the anisetropic boundary defined in the previous sec-

tion by the relation (3.21), with Z, = 0 and 7, = =, This question will

%
be discussed in the following section.
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3.4  Circular corrugated waveguide.

In this section we shall prove that a circular corrugated waveguide in
a limited frequency region acts as an anisotropic waveguide as dis-

cussed in the preceding sections (Fig. 3.14).

| z=0
A a-. N
[ ti >~ .
S M-E
2b z L

RN
ty ty ]
v

/////

Fig. 3.14, Circular corrugated waveguide.

A corrugated waveguide consists of a central part (I) and equally
spaced grooves (II). Such a waveguide is a periodic structure and an
exact theory of it should start by writing down the electromagnetic
fields in the central part in the form of a series of space harmonics.
The following step is then to find the electromagnetic fields in the
grooves, After applying the boundary conditions at r'= a a dispersion
equation is obtained. The solution of the equation is a difficult task.
This procedure has been followed -in the design of linear accelerators
[55], [56], where the distance between two consecutive grooves is of
the order of half a wavelength. In our case, however, the distance be-
tween two consecutive grooves is so short that there are many grooves
per wavelength. This implies that it is permissible to ignore the
periodiec nature of the waveguide. The electromagnetic fields in the
central part of the waveguide can now be determined by treating the
structure as a waveguide with an impedance boundary. In the following
we shall indicate a second reason for abandoning the treatment of the
corrugated waveguide as a periodic structure., In section 3.5 we shall

deal with conical horn antennas of which the boundary consists of
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closely spaced grooves. They have no periodic nature and therefore we
expect that a theory of them can be developed only if we describe the
properties of theboundary in terms of an impedance boundary. Our next
task is to prove that the waveguide, sketched in Fig. 3,14, exhibits
indeed the property that Z¢ = 0 and Z, = = for r' = a, Therefore, we
observe that the region II between r' = a and r!' = b is in fact a ra-
dial waveguide, which is short—circuited at r' = b, The electromagne~
tic fields in a radial waveguide can be derived in a way similar to
the one in which we have found the electromagnetic fields in a circu-
lar waveguide. The modes which can exist in a radial waveguide (Fig.

3.15) represent waves propagating in the direction + r' or - r'.

Fig. 3.15. Radial waveguide.

They are TE-modes and TM-modes with respect to the z-axis. The TM-modes

can be derived from the generating function [57]

P

byt se",2) = frlier') cos ng' cos ’—jl;i , (3.83)

2 mn 2
= k2 - (12
ke = k (Tz) .

We shall specify the function f_(k.r') later on.
The components of the electromagnetic field of this mode can now be
found using (3.26).
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The

By inspection we see that the boundary conditioms at z

results are:

. Jdf (kort)
e 1 n ¢ TR |74
Eo= o 3 cos ne' sin o
Jwe, Ty ar 2
! i n o R . omuz
E = e e — f (k') sin ng' sin —
¢ Jwao r! ‘f'z n < ’ ne 72

v Y e [y AL , - ' _mrz
EZ = Toeg {& <+2> }rn(kcr ) cos ne' cos T,

t n mnz
P L ' : Ve BTZ
Hr - fn(kcr }osin ne! cos 5
df (k r')
Bl - L cos ng' cos g2
H - T ————— P L T—
$ dr! '?'2 4
)
H =0
z

*

2

(3.84)

(3.85)
(3.86)
(3.87)
(3.88)

(3.89)

i"i‘?_

are satisfied. The components of the electromagnetic field of the TE-

mode can be derived from the generating function:
. ‘ . omnz
th(r‘,¢’,z} = v”(kcr’} cos n¢' sin o
and (3.25)., The results are:
1 ) . . muz
o= D g o ' ne " mz
EL= o fﬂ\KCF ) sin ng' sin e
. df Ut
£, & — S cos me! sin L2
$ ar cos S
E] =0
z
+ af (k_r';
i mr o on ¢ ¢ . muz
H o= F e cos n¢' cos T s
rJud, T2 r 2
! -1 mr on , mnz
Hg = = — = f (x r') sin ne' cos —=
4 Juug + rtont e ¢ t, ?

miZ

v 2 . : 1y o v
HZ quo {k | (*2) fn(kcr ) cos né' sin s

2

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)
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In this case too, the boundary conditionsat z = 0 and z = t, are satis-
fied. For waves propagating in the positive r'~direction we have to

take f (k.r') = an (Kcr') whereas for waves propagating in the nega-
tive r=direction falker') = Hii)(kcr‘). 80 we see that for propa-
gating waves ké > 0 or k% » $§ " .From the expressions (3.84) to (3.96)
incl. we conclude that the dominant wode is the TM-mode with the com—

1
; and Hr' If we choose 1, < % then only the dominant mode

can propagate. Under these conditions we find for the electromagnetic

t
ponents Ez’ H

field in the radial waveguide with a short-circuit at r' = b:
' . %P
Er = —jung{ A H V) v 8 H;Z)(kr’)} cos ne' (3.97)
' n m 2) .
Hp = = 27 { A Hy "(ke') + BH “'(ke)} sin ng' (3.98)
' an " (krt) att?) (ke
Hy = =1 A =TI ¢ B =g} cos n¢' . (3.99)

Applying the boundary condition £, = 0 for r' = b and using the rela-

tions
(1Y, 4y . . ,
Hn (krt) = Jn(kr o+ ] Yn(kr Y, (3.100)
(2, 4 , ) .
B ETke!) = dplket) = § Yptke') (3.101)

we obtain the final result:

EL = Eg{ Jptkb") Yotkr') = 3 (kr') Y (kb) } cos ne', (3.102)
ZoHy = ~JEo{ dntkb) Y (krt) = U] (kr") Y (0) | cos ne, (3.103)
ZH,. = Term Eod nko) Ynke') = Jptkr') Y (ko) | sin no’s  (3.104)

T '
The primes in Jn(kr’} and Yn(kr') (3.103) means differentiating with
regpect to the argument kr', E, is a new constant and Y,(kr') is the

Neumann function [58]. Next we define Z¢ by the relation
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and 7, by the relation

ti+i;
L]

E dz
z

0
7, - - (3.106)

Tl*Tg
1
H dz
f @
0

So Z, and ZZ are average values over one period of the structure,From

¢

the expressions (3.102) to (3.104) incl. we see that there exists no
1
£) at the opening of the groove. E¢ is also zero on the dams between

¢

r o,
the grooves. However, Hz is non-zero at the dams, because there flows

H
a current in the ¢~direction. So Z, = O. EZ is non-zero at the opening

¢

of the groove. If we assume that the width of the dams is negligible,

then we can conclude that ZZ = w, provided we choose the frequency in
'

¢

The conditions Z, = 0 and Z, = = are just the conditions under which

¢

the considerations of the preceding sections are valid. However, some

such a way that H,_ is zero at the opening of the groove.

remarks should be made in order to indicate the restrictions of the

theory!

(i ) the electromagnetic field at the opening of the grooves is very
complicated, because apart from the propagating TM~mode, there
exist also evanescent modes, which are not taken inte account;

(ii ) the quantity t; does not appear inm our theory;

(iii) the condition H; = 0 at the opening of the grooves depends on the

frequency. In the sections 3.2 and 3.3 we have assumed that Z,

and Z¢ were independent of the frequency. So the theory is valid
only at frequencigs for which H; = {, However, the condition H;=O
is approximately satisfied in limited frequency bands. In other
words, symmetrical radiation patterns can be obtained only in

limited frequency bands.



Within the restrictions of our theory the condition Z¢ = 0 offers no

difficulty, whereas the condition Z, = = is equivalent with

' '
Jp (kb)Y Yn(ka) - Jn(ka) Yalkb) = O, (3.107)

If we assume that ka >> | and kb >> 1, which means that we are dealing
with a waveguide with large diameter, then it is permissible to apply

the following approximations [60]:

~ (2 3 nT oW
Jo(z2) = (“_) *cos (Z - 5=~ )
n ?
\& 2 4 (3.108)
~f2 V3% _ _nmo_ 1
Yo(2) _'(?E) sin (z 5 4) .

Substituting (3.108) in (3.107) and using the recurrence relations

(z) (3.109)

"2y = '
202 = P2 7

where Zv(Z) stands for Jv{z), Yv{Z) resp., we obtain the equation

tan kib-a) = - Ka/n, , (3.110)

If the diameter of the waveguide is large, for instance ka »5w, then we
may use the approximation k(b-a) = g ifn = 1. From section 3.1 we know
that the case n = 1 ig the most important ome and we shall restrict our

further considerations to that case. An exact solution of equation

0,3251
b-z .
A
T 0,300F
0,275}
2275 Fig. 3.16.
Depth of the grooves against
0,250 diameter of waveguide;:
1 l ! ! i L fixed frequency.
0 1 2 3 4 5
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(3.107) can be found by prescribing the value of ka and solving the
equation for kb. For'%§»< 5 the results are collected in Fig. 3.16. For
values of 28/x > 5 equation (3,110) can be used. The main conclusion is
that for fixed frequency the depth of the grooves increases if the dia-
meter or the waveguide decreases. We shall return to this phenomenon in

the following section, where we shall apply the theory of this section.

1,0
b-a
=}
0,5 r
Fig. 3.17.
Depth of the grooves against frequency;
0 1 I i | L fixed diameter of waveguide.
O 2 3 4 s

25 A
In Fig, 3.17 we have plotted the same numerical results, but in a some-
what different way. From Fig. 3.17 we may derive the depth of the grooves,
and we can see that this depth is a function of the frequency if the
diameter is fixed., To obtain some insight into the frequency-dependent
behaviour of the corrugated waveguide, one has to solve Maxwell's equa-
tion for various combinations of ka and kb, Substitution of the trans -
verse part of the electromagnetic field in the formulae which represent
the radiation field, offers the possibility to investigate the frequen—
cy-dependence behaviour of the corrugated conical horn antenna. However,
this is a comprehensive task. In addition, in order to be complete, one
should also compute the transmission coefficient of the HE§1}-moée in
the corrugated waveguide and the reflection coefficient of the TEj,-
mode in the perfectly conducting waveguide. To obtain quickly insight
into the frequency-dependent behaviour of corrugated conical horn an-
tennas, we have used an experimental approach, although it is desirable
that the solutions of the above problems should be found.
S0 in the following sections of this study we shall describe some expe-
riments, which will give some idea about the usefulness of the corru-

gated conical horn antennas.
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3.5 The power radiation pattern of the corrugated conical horn anten-

nas with small flare angle and small aperturé.

The purpose of this section is to study the power radiation pattern of
conical horn antennas with a corrugated boundary of the same type as
discussed in section 3.4. As in chapter 2, we shall restrict our comnsi-
derations to conical horn antennas with a flare angle u, < 15°, This
offers the possibility to treat the antenna as an open circular wave-
guide radiator. The radiation pattern of this radiator can be computed
rather easily; if necessary a quadratic phase field distribution across
the aperture may be assumed. In addition, it is now possible to use the
results of the preceding section, because the conical horn antenna can
be considered to be a cylindrical waveguide with a cross~section which
increases only slightly from the top of the cone towards the aperture.
It should be noted that the grooves are assumed to be perpendicular to
the wall of the antenna. However, the angle a, < 15° and, consequently,
the theory of the preceding section can still be applied.‘This implies
that a theory of corrugated conical horn antennas with small flare
angle can be formulated, but only for the frequency which satisfies
equation (3.107). '

From Fig. 3.16 one may conclude that for a fixed frequency the depth of
the grooves increases towards the apex of the cone. However, it is
desirable to advoid the mechanical difficulties of constructing horn
antennas with variable depth of the grooves. In fact, this depth was
chosen constant. A consequence of this procedure is that the depth of
the first grooves at the throat of the horn are not optimised with res—
pect to the matching of the transition from perfectly conducting wave-
puide to corrugated waveguide and with respect to the excitation of the
HES L

cited.

-mode. Especially one is not sure that neo unwanted modes are ex-

The difficulties described above are in fact of the same type, as has
already been noticed at the end of section 3.4. S0 an experimental ap-
proach to the solution of the above problems has been adopted. However,
further theoretical investigation is necessary. In this connection we
remark that some preliminary results concerning these problems have
been published by Bryant [61].
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To investigate whether the theory of section 3.4 is valid, one has to
measure the power radiation pattern of corrugated conical horn antennas
as a function of the frequency. If the theory is valid, then one should
observe a symmetrical power radiation pattern for the frequency which
satisfies (3.107), provided the depth of the groove at the aperture and
the diameter of the aperture are substituted in (3.107). With a view to
carrying out the above investigation, three antennas with different
aperture diameter have been constructed. (Fig. 3.18). The diwmensions

of these antennas are summarised in Table III. .

Xy 12
: o

2a'l 2a

Q/SA

Fig. 3.18. Corrugated_conical horn antenna.

In Fig. 3.18 we may distinguish three regions. The first is the circu-
lar waveguide and the first part of the conical horn antenna, where the
boundary is perfectly conducting. The second region is that part of the
horn antenna which consists of the corrugated boundary. The third part
is the radiating aperture Sp: The length p has been determined experi-
mentally. The criterion that has been used for this purpose was that

the reflection coefficient should be below 20 dB.
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TABLE |11

22 | 2a | % | p + T, | d n
antenna | [mm] | [mm] [l | {oom] | [mem] | [om]
1 62.3 28 |15 [12.4 2 2 9 14
91 28 [150 | 12 2 2 9 |28
121.3 28 |15° | 13,5 2 2 9 42

n is the number of the grooves.

The power radiation pattern of the three antennas of table IIT has been
measured as a function of the frequency. Moreover, the pattern has been
calculated for the frequency which satisfies (3.107}. These calcula-
tions are performed by multiplying the integrand of (371) and of (372)
by exp [-jvp?]; v has the same meaning as in chapter 2. For the substi-
tution of (3.65) and (3.66) in (3.71) and (3.72) one needs the value of
B/k, which has been found by solving (3:40). The results of the mea=
surements and the computations are given in Fig. 3.19 to Fig. 3.2! incl.
In addition these also show the reflection coefficient of the antennas
as a function of the frequency. The information concerning the reflec~—

tion coefficient has been obtained by means of a sweep-technique.

|
\
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§ \\ x /,D\\
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§ \('3\\ ’ \\D
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é i\ \./ T e e dB
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Fig. 3.19, Beamwidth against frequency for antenna 1.
x,theoretical , H-plane and E-plane,

e ,experimental, H-plane, O,experimental, E-plane.
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The conclusions that can be drawn from Fig. 3.19 to Fig. 3.21 incl. are:

{i ) The power radiation patterns are symmetrical for the frequency
that satisfies equation (3.107);

(ii ) the power radiation patterns are approximately symmetrical in a
rather large frequency band; the lowest frequency in this band is
the one of (i}. It should be noted that this conclusion is only
valid if we restrict ourselves to the 3,10 and 20 dB points;

(iii) the antennas 2 and 3 possess a power radiation pattern that is
symmetrical within the 30 dB points and in the same large fre-
quency band as menticned in conclusion (ii);

(iv ) the beamwidth of the antennas I, 2 and 3 is a function of the
frequency. This is not ‘surprising, because the phase difference
between rim and centre of the aperture is too small to give rise
to a frequency-independent antenna. In fact, even for antenna 3

we find from (2.31) that 9/) = 0.26 at 10 GHz.

The argumentation which has been used in (iv) to make plausible that
antenna 3 cannot possess frequency-ilndependent properties, is not com-
pletely satisfactory for the following reason. Fig. 2.8 and Fig. 2.9
show that the beamwidth of a conical horn antenna cannot be independent
of the frequency if /i = 0.26. However, in the derivation of the theory
which underlies Fig. 2.8 and Fig. 2.9 the amplitude distributiom cor-—
responding to the TE1v—mode has been assumed, In general, this distri-

bution differs from the one which exists in the aperture of antenna 3.

17



100
% . D\B*--—a 3048
@ B m—— B — -
) e e e . . "\O 2048

=)
E= T W e g i
§ —— e B & v ¢~y 10dB
é -——‘g“——-ﬁ——-——g———-! L] 9“"-'-—-_?‘——-.:‘“" s 3dB
il
- I I | | 1 | i !
8 9 10 11 12
- £ requency [GHz]
Fig. 3.20. Beamwidth against frequency for antenna 2,
x,theoretical , H~plane and E-plane,
e experimental, H-plane, O, experimental, E-plane,

m 0
hel
=
g
‘T 10
-l
Ll
uq
@
o
° 20
g
o] : a
8 Fig. 3.20°,
7]
o 30 Reflection coefficient against
&
~

| I ] I frequency of antenna 2.
9 10 11 12

- frequency [GHZz]

Moreover, Fig, 2.8 and Fig, 2.9 are valid only if the amplitude distri-

bution is independent of the frequency. Obviously, this is not the case

for the aperture fields of a corrugated conical horn antemna, as can be

concluded from Fig. 3.6. It should be noted that the diagrams of Fig.

3.6 have been composed under the assumption that Z, and Z¢ are indepen-

dent of the frequency, which is not the case for a corrugated conical

horn antenna. This is a second reason for supposing that the aperture

fields of corrugated conical horn antennas are dependent on the fre-

quency.
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3.6 Theoretical investigation of frequency — independent comnical

horn antennas with small flare angle and anisotropic boundary.

The results of the preceding section indicate that a symmetrical power
radiation pattern can be obtained with a corrugated conical horn anten-
na, at least for the frequency which satisfies (3.107). If the diameter
of the aperture is not too small a symmetrical radiation pattern is ob-—
tained in a rather large frequency band. These results raise the ques-
tion whether it is possible to combine the frequency-independent pro-

perties of the conical horn antenna with perfectly conducting boundary
and the symmetry properties od the corrugated coniecal horn antenna of

the preceding section.

In this section we shall perform calculations concerning the above
question and in the last section of this study some experimental results
will be described. The theoretical considerations start with the as-

sumption that

Z¢ =0 and 7, = = . 3.1

These assumptions imply that Z¢ and ZZ are independent of the frequency.
Although the assumptions (3.111) are not valid for a corrugated conical
horn antenna as described in section (3.4) and {(3.5) it is still useful

to start with them for the following two reasons:

(i ) the results of this section will show that useful antennas can be
designed, provided the above assumptions are valid. This will
stimulate investigations with the aim to synthesise a boundary
with the above properties,

(ii) in the next section weshall show that the above assumptions are
acceptable for corrugated conical horn antennas, but only in a

limited frequency range.

It is very interesting to compare the results of this section with re-
sults described in chapter 2. Therefore we assume that the flare angle
Oy € 150, Then we know from (2.75) that

[uR =

R T (2.75)
2
d \ a8 _ . 2
Suppose that 17k then — = 2 8o > 3.8 (3.112)
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From Fig. 3.7 we observe that B/k > 0.98, The equation (3.40) now re-

duce to the following one

Jolkea) = 0
So
) " , :
kea = Jg, = alk? - )7,
where jOTis the first zero of J,(x)

Substitution of

J
(k2 - g2y = 2L
a
and
1
Y= ] r
ker 01 a
together with B/k = 1 in the expressions (3.61) to (3.66) incl.
-t JOT . rt
E. = = Zohy — do gy : Jocos ¢,
v Joi . r! R
E¢ = ZOAZ ?JO {JO] 5 ) sin (i)',
' Jo P
ZOHr = ZOAZ —a—JO (JC”Z; ) sin ¢-’,
L Joi oot '
ZOHQ} = ZOAZ = JO (JO] a } cos [

(3.113)

(3.114)

(3.115)

(3.116)

gives

(3.117)
(3.118)
(3.119)

(3.120)

The electric field lines and the magnetic field lines of this mode can

be constructed easily., This has been done in Fig. 3.22.

Fig. 3.22. Transverse electric field lines and transverse magnetic field

lines of the HE%})—mode for large value of 2a/a.



A comparison of Fig. 3.8 with Fig. 3.22 shows that for large value of
Za/) the field lines become straight lines. This fact demonstrates again
that the tramsverse electric field and the transverse magnetic field of
the HE§J)—mode depend on the value of 2a/x. This is not the case for

modes in a perfectly conducting waveguide,

I8 sing

B Y4 ¢+ 1 2
6~ - - 15dB
10dB

4 fone
3dB

2k

1 ; | ] (l’dﬂd—-_j--“‘\\\ l

1/4 2/4 3/4 A 5/4 6/4

et (] / X

Fig. 3.23. Beamwidth of conical horn antenna with small flare angle and
anisotropic boundary.

Substitution of (3.117) to (3.120) iﬁcl. in (2.24) and (2.25) gives the
radiation field. It should be noted that in (2.24) and (2.25) now v=kd.
Following the same procedure as in chapter 2 a similar diagram as in
Fig. 2.8 has been composed and is given in Fig. 3.23. We note that this
diagram has already been published elsewhere. [62]. As we are concerned
with symmetrical power radiation pattern, it is sufficient to compose
one diagram., From Fig. 3.23 we observe that indeed a frequency-~indepen—
dent antenna with a symmetrical power radiation pattern can be obtained,
provided it is possible to design a boundary which is described by

frequency-independent Z, and Z,, satisfying the relation (3.111), Fur-

]
thermore, we observe that there exist no sidelobes in the pattern and
beamsplitting occurs for a larger value of d/) compared with the situ-

ation of Fig. 2.9,
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For the sake of completeness we have also composed a diagram similar to
the one of Fig., 2.21. This diagram is given in Fig. 3.24. From this
diagram the equiphase surfaces can be constructed. It is obvious that
the equiphase surfaces are independent of the frequency too. The cur-
ves of Fig., 3.24 are of the same form as the curves of Fig. 2.21. So
we may conclude that the antennas studied in this section have no

phasecentre,

4 2/4 3/4 4/4 5/4 6/4

R 12

—
e

X{

Ll

-0.5
——.0.3

-0.1

Fig. 3.24 Curves of constant 9)/d--value: against d/)x for conical horn

antenna with small flare angle and anisotropic boundary,

In Fig. 3.2 we have plotted the fraction”of the total energy which is
radiated within the comne-angle 9 for various values of €. These data
are related to the antenna of Fig. 2.15 and are given for & GHz.

The same information has been plotted in Fig. 3.25 for an antenna with
the same dimensions as the antenna of Fig, 2.15 but with a boundary,

gspecified by (3.111). Fig. 3.25 is also only valid for 8 GHz. In con-
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ciusion we see that in this case a larger fraction of the total energy
is radiated between the angles -8 and & as in the corresponding case

of the antenna of Fig. 2.15.

100% =
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/
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30% /
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e
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/
L I I
9 18 27
- 8{degq.)
Fig. 3.25.

Fraction of the energy radiated within the cone-angle 8§ against 6.

ey conical horn antenna with small flare angle and perfectly
conducting boundary, ‘

wwwwy conical horn antenna with small flare angle and anisotropic
boundary.

The dimensions are identical with those of the antenna of Fig. 2.15.

3.7 Experimental investigation of frequency-independent corrugated

conical horn antennas with small flare angle.

The purpose of this section is to investigate whether frequency-inde-
pendent radiation patterns can be obtained with a corrugated conical
horn antenna. The idea is to choose the dimensions of the horn in such
a way that a frequency-independent horn antenna is obtained pruvided
the corrugated boundary can be described by (3.111). The next step is
to measure the radiation pattern of this antenna as a function of the -
frequency. Then it is possible to investigate in which frequency band

a symmetrical radiation pattern exists.
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In order to carry out these measurements and to facilitate the compar-
ison with the results of chapter 2 an antenna was constructed with the
same flare angle and aperture as the antenna of Fig. 2.15. The inside
of the antenna consists of a corrugated boundary. The dimensions of

the antenna are given in Table IV and the symbols have the same meaning
as in Fig. 3.18. The value of p was chosen experimentally in order to

obtain a good matching.

TABLE 1V
2a 2at QO p +1 to g n
antenna | [mm}| [mm] [mm] | [mm] | [mr] | [om]
4 2641 28 11591 28 j10.2] 2.3 9 34

The power radiation pattern was measured using the antenna test range
described in chapter 2. The results are given in Fig. 3.26 and the con-—
clusion can be drawn that indeed a symmetrical power radiation pattern

can be obtained in the frequency band from about 7GHz to {0 GHz.
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Fig. 3.26, Beanwidth against frequency for antenna 4.
e experimental, H-plane,
3, experimental, E-plane,

x, theoretical , H-plane and E-plane.
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Fig. 3.27. Power radiation pattern of antenna 4 at 8.3 GHz.
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The second conclusion is that the beamwidth in the H-plane is virtually

independent of the frequency in the band from 7 GHz to

15,5 GHz.

However the pattern in the £ -plane exhibits a rather large variation as

a function of the frequency. Finally the theoretically
width has also been plotted in the diagram. This value
ed for the frequency that satisfies (3.107) and we see
cal power radiation pattern is obtained in a frequency

this frequency. A complete power radiation pattern has

predicted beam-
caﬁ be calculat-
that a symmetri-
range around

been included

also in Fig. 3.27 and shows good agreement between theory and experi-

ment.

Note that in the above antenna the width of the dams is about twice the

width of the grooves, which is not in accordance with the assumption

made in section 3.4. The dimensions of the grooves and

the dams has

been chosen in the same way as has been done by Kay [63], In this re-

port the results of an experimental study concerning corrugated coni-

cal horn antennas with large flare angle are described.
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Fig. 3.28. Beamwidth against frequency for antenna 5.

e, experimental, H-plane,

0J,. experimental, E-plane,

x, theoretical , H-plane and E-plane.
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Fig. 3.30. Measured phase variations in E-plane of antenma 5.

o ¢ - 0.5000, + u;? = 0.7500,
g o g ‘

o ¢ - 0.s625, o ¢ - 08125,

* g = 0.6250, w— theoretical.

129



In order to have better agreement with the theoretical assumptions of
section (3.4) a new antenna was constructed. This antenna has the
same flare angle and aperture as the above antenna, but the width of
the dams was chosen as small as possible. The dimensions of this an-

tenna are collected in Table V-

TABLE V
2a 2a' [ ¢4 p 11 +5 q! n
antenna | {mm] [ [mm] [mm] | [mm] | [mm] | [mm]
5 264 | 28 15° ] 26 3.8 2.3 9 67

The power radiation pattern of this antenna has been measured also and
the results are given in Fig. 3.28. The main conclusion is that' the re-
sults are virtually tﬁe same as for the former antenna, although the
variations in beamwidth as a function of the frequency are a little
smoother except for the dip at 10.5 GHz in the 10-dB and 20-dB curves.
For the frequency band from 7 GHz to 8 GHz we observed a very broad
beam in the E-plane. These results are not plotted in the diagram. We
have also measured the phase variation along a circle with a centre
that coincides with the centre of the aperture of the antenna. The
measurements have been performed in the same way as described in sec—
tion 2.5, The results are collected in Fig. 3.29 and Fig. 3.30 and
good agreement with the theoretical predicted values, at least for

the frequency for which the depth of the grooves was a quarter of

a wavelength.
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APPENDIX A

The expression for the electric field in the far field region is repre-

sented by
_ -Jjkr
E(r) = «%ﬁ‘ g x“/‘ le Eirt) - Z [a x {n H(r*)}} ) x
- m r =r - o=t o |5r -0 -
5a
Jkr' sin 8 cos(¢ - ¢') ~jk (ri)? 2.213
<] ' 2r dsS . :
This can be written in the abbreviated form
. =-Jkr
. ke
Ee o o .1
\ ~Jjkr
ok et
E¢ xe = I9 (A.2)
with
I-= /(Qx E¢r') - Zo[?-r x {n x 4([')}]) x
Sp
R . Lo rY)
' - g1y -
eJkr sin & cos(¢ - ¢') ~jk 57 ds |
Using the abbreviation M = n x E(r') - Z [gr % {n x b‘<£'>}]
we see that
Jkr'sin 8 cos(¢ - ¢') —-jk (rty?
T, M, e TZET as (A.3)
Sa
and
St cosis - &'} -1 (r1)?
I = M eJkr sin 8§ cos(p - ¢ Jk SET s . (4.4)
¢ ¢
°a

The calculation of Me and M, can be carried out easily if we use Fig.
&

2.4, Then we find

1 1 H 1
t = { L. i 1 E 1 1
E(rt; Er cos ¢ E¢ sin ¢ )gx + LA E¢

a, and @ are unit vectors in a

a
_x? _y

cos $')a

VY
(A.5)

rectangular coordinate system.



Moreover we see that the vector n equals a,- So

¥ t 1 H
LR R ' t [ H t
n x E(r") (Er sin ¢’ + E¢ cos ¢') a, * (Ercos¢ E¢S!n ¢ )gy‘
(A.6)

In 2 similar way we derive that

1 1 1 1
1Y & o 1 t [ H [
n x H(r"Y (Hr sin ¢! + H¢ cos ¢') a * (Hrcos¢ H¢51n ¢ )gy

.7
We know that
= 1 - t =
My {éz x Etch}. 2, ZO[Qr X {gz x Hir ){}ge
{a, x BN} gy +Zofa, x Hizh} gy (A.8)
and
= ' - 1 =
My {a, x E(en} 2, Zo[gr x {a, x H(r )ﬂ 2,
{a, x E(e"} 2, ~Zofa, x Y} g, , (A.9)
Substitution of the relations
3, *© sin 6 cos ¢ g, *+ sin ¢ sin ¢ gy *cos@a ,
ag = cos B cos ¢ g, * cos 8 sin ¢ §y - sin © a, ,
8, = " sinéa +cos¢ a,

and (A.6) and (A.7) in (A.8) and (A.9) gives the following result:

=
[

| . 1 t 1]
N cos(d=¢"') [~E¢cos g + ZoHr] + sinlé-¢') [Ercose + ZOH¢] ,
(A.10)

'

¢

=
n

) 1 t '
cos(p=p') [ Er + Z H cos 8] + sin(e-¢") [E¢ - ZoHrcose];

(A.11)
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Combining (A.11) with (A.1) and (A.4) we obtain

; —Jkr 1 ' ' '
PENL - - - .
Eo = m - ¢/~ [}Er+ZOH¢cose} cos(g=¢' )+ {E¢ ZOHFCOSB}SIn(¢ @*ﬂ

Sp )

. . Lo it
t -1 -
9 eJkr sin 8 cos(é-¢') - jk TR (A.12)

The combination of (A.10) with (A.2) and (A.3) results in

ik e’ikr 1 [ . 1 L .
E¢ =y [}E¢cos6—ZOHr}coS(¢-¢ ;~§Ercose+ZOH¢}sxn(¢-¢ )]x
T SA . o {rh?
eJkr sin 8 cos(e=¢') - Jk ST 45 (A.13)

After applying the substitutions r' = P3 , dS=52pdpd¢',
4 = ka sin 8 and v = ka?/2r in (A.12) and (A.13) we find the expressions
(2.24) and (2.25)

APPENDIX B

The purpose of this appendix is to summarise the results of De Hoop's
paper [46] and to use them as a theoretical foundation of the method

of phase measurement as has been described in section 2.5. In [46] an
antenna has been considered as a transmitting as well as a receiving
antenna. Let us first summarise the results of [46] for the case that
the antenna is considered to be transmitting. The starting points are
the formulae (2.11) and (2.12). We use essentially the notation of chap-
ter 2, but some mincr changes will be made to facilitate the comparison
with [46].
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Point P is assumed to be in the far field region of the antenna. Then

the following approximation of o IE - [‘} is valid:
R T L B (TN I T SRS TN LTSS R ST P ¢ WD)
fe) - - Py 3. -t - =0T AL oL ) *
' (ay _ L
where r = (r,r)® and " = —

1

23

generator

2: waveguide

3: antenna

Fig. B.1. Antenna with closed surface S.

Then we write for the electric field in P

M 1
-2, S0 o x HT(EV)}] PRLIY L

o S (e ). (B.2)

The subscript T denotes the transmitting situation and S represents
any closed surface surrounding the antenna. For the magnetic field in
P we find

~-jkr

ZHo(my =2k e D e (D)

o-T = A r - Ll . (B.3)
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Suppose now that a plane wave is incident upon the antenna from the

direction “f(]). The plane wave is represented by

(1)

e.jk(f st

im
i
{Jes)

(B.4)

)

(1) ejk([ ,g')‘

ZH =Bxr

B specifies the amplitude and the state of polarisation.

Apart from the inecident field there exists a scattered field denoted

by ES and HS’ and the total field in case of receiving is given by

dp =t v d (B.5)

The subscriptR denotes the receiving case.

In [46] the following reciprocity relation has been proved:

f(gT X Hy = B x Ho.nds = 20 et (8.6)
S
It should be noted that the comstant in the right-hand side of (B.6)
differs somewhat from the one in equation (5.4) in [46]. This is caused
by a slightly different definition of the function ETi[<1)>. Again, S
denotes any closed surface surrounding the antenna.

X

1: generator in case of transmitting
1: load in case of receiving

2: waveguide

3: antenna
4

: coordinate system.

Fig. B.2. ~ Antenna and coordinate system.
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1f we choose 5 as indicated in Fig. B.2 and assume that the antenna
- system is perfectly conducting, we may restrict the integration in the
left~hand side of (B.6) to a cross-section of the waveguide at z = 0.If
the waveguide between the generator/load and the antenna is long enough,
then we can find a reference plane z = 0 where only the dominant mode
exists, It is then possible to perform the integration of the left~hand
side of (B.6). For this purpose a rectangular coordinate system is in-
troduced. (Fig. B.2). The posgitive z direction points towards the an-
tenna. The coordinates x and y determine the position of a point in a
given cross-section of the waveguide.

From the theory of wave propagation in cylindrical waveguides [59] we
know that the transverse part ET of the electric field vector and the

transverse part ﬁf of the magnetic field vector can be written as

L

§f(x,y,z) ¥(z) e (x,y),

“(B.7)
5+(x,y,z) = I(2) h (x,y}

3

where the voltage V(z) and the current I{z) describe the longitudinal
dependence, and e(x,y) and hix,y) are the transverse vector functions
of the mode. If 3 waveguide is analysed on an impedance basis, the

vector functions e(x,y) and h{x,y) are normalised in such a way that

[ {g(x,y) x hix,y)}. i, dxdy = 1. (B.8)

Substitution of (B.7) and (B.8) in the left-hand side of (B.6) gives

the following result:

f(ngﬁR-ngﬂT)._r_1dS=VTIR~VRIT . (B.9)

S
After introducing the impedance ZT of the antenna system observed at

z = 0 and the impedance ZL of the load observed at z = 0, we may write

(B.10)

where the minus sign in the second expression of (B.10) is due to the
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fact that the positive z~direction has been chosen towards the antenna.

Substitution of gB.iO) in (B.9) gives

*

j{‘ér X Hy = Eg x Hp)e pdS = (Zp « Zo) I I - (B.11)

1

S
- IR

(Ep X Hg = Eg x Hp)e 0 08 ==(s— v 5=) Vp Vo (B.12)
R T

5

Combining (B.6) with (B.11) results in

7B Ee ) s (Zp e Z) I T, (B.13)

Combining (B.6) with (B.12) gives

-1 RS D IS R Ny
700 B L Epn ) smGm e ) VY (B.14)
R T
Let us now assume that the point O in Fig., B.! coincides with the cen-
tre of the aperture of the antenna.

Then the equations (B.13) and (B.14) give rise to the formulation of

the following theorem. -

Suppose that a plane wave 1s incident upon an antenna successively
from different directions given by the vector -[(1). Suppose further
that the phase variations of the transverse part of the electric field
vector or the transverse part of the magnetic field vector are measured
with respect to the phase in case the plane wave is incident perpendi~-
culary upon the antenna. Then (B.13) and (B.14) show that these phase
variations are identical with the phase variations of ET([(1>).

1f the phase variations are measured in the above way, one should take
care that the antenna under test rotates around an axis through the

(1') are performed in a

aperture, because the calculations of FT(E
coordinate system, the origin of which coincides with the centre of

the aperture.

The measurements described in section 2.3 are based on the above theo-

Tem.

Finally, the author wishes to express his appreciation to De Hoop for
making available some unpublished notes, which were relevant to our

problem,
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SUMMARY

This thesis refers to feeds for reflector antennas. In the introduction
an attempt has been made to describe the properties which a good feed
should possess. Subsequently a review of the recent literature concern-

ing feeds has been given.

In chapter 2 the properties of conical horn antennas with small flare
angles are studied. The slant length of the horn has been chosen in
such a way that the phase distribution across the aperture of the horn
antenna is a quadratic function of the length of the radiusvector in
the aperture. It has been proved in section 2.2 that these antennas
have power radiation patterns which are independent of the frequency

in a rather large frequency band. The theory of the Preceding section
has been verified in section 2.3. and it has been shown that frequency-
independent conical horn antennas can be designed in a relative fre-
quency range 1 : 2, The phase radiation patterns of the above antennas
have been studied theoretically in section 2.4. The conclusion is that
the phase radiation pattern is independent of the frequency as well.
Moreover,it turns out that these antennas do not possess a phase centre.
An experimental study of the phase radiation pattern has been under-—
taken and is described in section 2.5. For this study a new method of
measurement has been developed. Good agreement between theory and ex-
periment was obtained.

It should be noted that the theory of chapter 2 applies to conical horn
antennas with a perfectly conducting boundary. A property of these an-
tennas is that their radiation patterns are not symmetrical with respect
to the antenna-axis. Moreover, ,there exist rather high sidelobes in the
E-plane. For some applications these sidelobes and the asymmetry are

undesirable.

In the first section of chapter 3 a theory concerning symmetrical ra-
diation patterns of circular apertures is developed. In section 3.2
wave propagation in a cylindrical waveguide with a special anisotropic

boundary is discussed and it is proved that the transverse part of the
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electromagnetic fields is of the same type as the aperture fields found
in section 3.1. So an open radiating cylindrical waveguide with the
anisotropic boundary, specified in section 3.2, gives rise to a symme~
trical radiation pattern. These patterns are discussed in section 3.3,
In the next section a corrugated cylindrical waveguide is studied and
it is proved that this waveguide possesses the special anisotropic
boundary discussed in section 3,2, however, only for one frequency. It
may be expected that the theory of the sections 3.3 and 3.4 is also
valid for corrugated conical horn antennas with small flare angle.
Section 3.5 contains some experimental results of corrugated conical
horn antennas with small flare angle. These results confirm the theory
of the preceding sections, Moreover,it is shown that symmetrical power
radiation patterns are obtained in a rather large frequency range, es-
pecially if the aperture is not small.

The frequency-independent properties of the conical horn antenna with
perfectly conducting boundary are obtained by a right choice of the
dimensions of the antenna. This raises the question whether it is
possible to combine the frequency-independent properties of the conical
horn antenna with perfectly conducting boundary and the symmetry pro-—
perties of the conical horn antenna with anisotropic boundary. Calcula-
tions concerning this question are given in section 3.6 and show that
frequency~independent conical horn antennas with a symmetrical radia-—
tion pattern can be obtained provided the anisotropic boundary which
has been assumed in section 3.6 can be realised independent of the
frequency. This question has been investigated experimentally in sec-
tion 3.7. In this section the properties of corrugated conical horn
antennas with small flare angles and large apertures are studied. The
dimensions of the antennas are chosen in such a way that again the
phase distribution across the aperture is a quadratic function of the
length of the radiusvector in the aperture. The experimental results
show that indeed a symmetrical radiation pattern can be obtained in a
frequency range from 8 GHz to 10 GHz, while acceptable patterns are
obtained in the frequency range from !0 GHz to 15GHz with the excep-
tion of a small frequency range around 10,5 GHz. Finally the phase
radiation pattern of the above antemna has been studied and good
agreement with the theoretical predictions was found, at least for the
frequency for which the depth of the grooves is a quarter of a wave-

length.
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SAMENVATTING

Dit proefschrift heeft betrekking op belichters voor reflector anten—
nes. In de inleiding is een poging gedaan de eigenschappen te beschrij-
van, die een goede belichter dient te bezitten. Vervelgens—is een over-
zicht van de recente literatuur over-belichters—gegeven.

In hoofdstuk 2 worden de eigenschappen van conische hoorn antennes met
een kleine tophoek bestudeerd. De lengte van de hoorn antemne is zoda-
nig gekozen dat de faseverdeling over de apertuur een kwadratische
funktie is van de lengte van de radiusvector in de apertuur. In para-
graaf 2.2 wordt bewezen dat deze antennes een vermogensstralingsdia -

gram bezitten, dat onafhankelijk is van de frequentie in een taﬁelijk

grote frequentieband. De-theorte—vande vorige paragraaf-—ig-geverifi-
eerd in paragraaf 2.3 en-er—is aangetoond dat—inderdsad-frequentie-—
onafhankelijke conische hoorn antennés ontworpen—kunnen-worden—in—een
telatieve frequentieband-2—+—i Het fasestralingsdiagram is theoretisch
onderzocht in paragraaf 2.4, Degonelusie is dat het -fesestrelingsdia-
gram evencens onafhankelijk is van de-frequentie.-Bovendien biifkt-dat
deze. antennes geen.fasecentrum bezitten., Een experimenteel onderzoek
naar het fasestralingsdiagram is in paragraaf 2.5 beschreven. Het—was—
nodig veoer dit ondezzoek--een-nieuwe-meetmethede e ontwilkelen—be

De theorie van hoofdstuk 2 is geldig voor conische hoorn antennes met
een perfect geleidende wand. Een eigenschap van deze antennes is dat

het stralingsdiagram niet symmetrisch is met betrekking tot de antenne-

het. stralingsdiagram, Voor sommige to i i4 ij n
de--asvemetrie—ongewenst. In de eerste paragraaf van hoofdstuk 3 is een
theorie betreffende symmetrische stralingsdiagrammen van cirkelvormige
aperturen ontwikkeld.

Het onderwerp van paragraaf 3.2 is golfvoortplanting in een cirkel~-
cylindrische golfgeleider met een anisotrope wand./mur~

140



dat de transversale veldverdeling van hetzelfde type is als de aper—

tuurvelden, die in paragraaf 3.1 gevenden zijn. Dus een open cirkel-

cylindrische gqlféeleider‘mec de anisotrope wand, die in paragraaf 3.2

nader-gespecificeerd-is, heeft een-symmetrisch stralingsdiagram. Deze
diagrammen- zijn-onderwerp-van-discussie in paragraaf 3.3: In de vol-
gende paragraaf worden cirkelcylindrische golfgeleiders met groeven
in de wand bestudeerd en de conclusie is dat deze golfgeleiders een
anisotrope wand bezitten met dezelfde eigenschappen als in paragraaf
3.2 verondersteld werd, echter slechts voor een frequentietJMen mag
verwachten dat de theorie van de paragrafen 3.3 en 3.4 ook geldig is
voor conische gegroefde hoorn antennes met kleine tophoek.. Paragraaf
3.5 bevat enige experimentele resultaten verkregen met conische ge-
groefde hoorn antennes met kleine tophoek. Deze resultaten bevestigen
de. theorie van de vorige paragrafen. Bovendien is aangetoond dat

gymmetrische stralingsdiagrammen kunnen worden verkregen in een tame-—

lijke grote frequentieband, speciaal als de apertuur niet te klein is.

De frequentie-onafhankelijke eigenschappen van de conische hoorn an-
tenne met perfect geleidende wand worden verkregen door een juiste
keuze van de afmetingen van de antenne: Men-kan zich mur-afvragen of-
Jhetemogelijk is de frequentie-onafhankelijke eigenschappen van de
normale conische hoorn antenne met perfect geleidende wand te combi-~
peren met de symmetrie. eigenschappen van de conische gegroefde hoorn
antenne Berekeningen betreffende deze kwestie zijn in paragraaf 3.6

opgenomen en de conclusie is dat frequentie-onafhankelijke conische

hoorn antennes met een symmetrisch stralingsdiagram inderdaad ontworpen
kunnen worden onder voorwaarde dat de anisotrope wand, die in paragraaf

3.6 verondersteld werd, gerealiseerd kan worden voor iedere frequentie.

De laatste kwestie is experimenteel onderzocht in paragraaf 3.7. In
deze paragraaf worden de eigenschappen van conisch gegroefde hoorn
antennes met kleine tophoek en grote apertuur bestudeerd.

Be .afmetingen van de antennes zijn weer zodanig gekozen dat een fase-

verdeling over de apertuur ontstaat, die een kwadratische functie is

van de lengte van de radiusvector in de apertuur, De experimentele re-

sultaten laten zien dat imderdaad symmetrische stralingsdiagrammen
worden verkregen in een frequentieband van 8GHz tot 10 GHz, terwijl
acceptabele diagrammen worden verkregen in een frequentieband wan

10 GHz tot 15 GHz met uitzondering van een kleine frequentieband om
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10,5 GHz, Tenslotte werd het fasestralingsdiagram van de bovengenoemde
antenne bestudeerd en een goede overeenstemming werd gevonden tussen
de experimentele resultaten en de theoretische resultaten, tenminste

voor de frequentie waarvoor de diepte van de groeven een kwart van de

golflengte was.

L e
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STELLINGEN

1.

De symmetrie eigenschappen van het stralingsdiagram van hoorn anten-—
nes kunnen niet gevonden worden door uit te gaan van een model van de
antenne waarbij het apertuurvlak uitgebreid wordt met een oneindig

grote vlakke plaat die perfekt geleidend is.

Collin R.E. and Zucker F.J., "Anterna Theory”, part 1, page 73,
formulae (3.27%) and (3.270).

2.

Tegen de wijze waarop Shih en Bergstein de resultaten van hun bereke-

ningen presenteren zijn bedenkingen aan te voeren.

Shih 8.L. and Bergstein L., "Synthesis of nomuwniform antenna
arrays using lambda functions", Proec. I.E.E., vol, 114, no. &,
gept. 1967, pp 1237 — 1241.

Reinders M., "Niet wniform belichte lineaire configuraties met
een sinusvormige positieverdeling en een optimaal stralingsdia-

gram”. Verslog afstudeerwerk ETA—6, oktober 1985,

3.

De afleiding die Clarricoats geeft van de randvoorwaarden die toege-
past moeten worden om de modes in een gegroefde conische golfgeleider

met grote tophoek te vinden is niet korrekt.

Clarvicoats P.J.B., "Analysis of spherical hybrid modes in a
eorrugated conical horn'. Electronic Letters, 1°F May 1969,
vol., 5, no. 8, p. 189.



4,

De randvoorwaarden, die toegepast moeten worden om de modes in een ge~
groefde conische golfgeleider te vinden, kunnen gevonden worden door in

het theoretische model de groeven te vervangen door sferische groeven.

Jansen J.K.M., Jeuken M.E.J. and Lambrechtse C.W., "The scalar
feed”, T.H. report 70-E-12, december 1969.

5.

De meetmethode welke door Maxum is toegepast ter bepaling van de reso-
nantielengte van een komplexe gleuf in de bovenkant van een rechthoe -
kige golfgeleider is niet korrekt, omdat de gleuf in het transmissie -

lijnmodel wordt voorgesteld als een shunt element.

Maaum B.J., "Resonant Slots with Independent Control of Ampli-
tude and Phase”, I.E.E.E,, AP-8, 1960, pp 384 - 389,

Van Gemert J.J.A., "Een niet-uniform belichte, ongelijk gespa~
tieerde gleufantenne, met optimaal stralingsdiagram”, Verslag
afstudeerwerk ETA-12, juni 1967.

6.

Om radio-astronomische antennes met een lage ruistemperatuur te verkrij-
gen verdienen conische gegroefde hoorn antennes met grote tophoek als
belichter de voorkeur boven open gegroefde cylindrische golfpijpen waar~

in meerdere modes toegepast worden.

Vu T.B. and Vu Q.H., "Optimum feed for large radio—telescopes:
experimental results”. Electronic Letters 19" Mareh 1870, vol.6,
p. 153,

7.

In verband met de toenemende urbanisatie en de voortdurend stijgende
vraag naar elektrische energie is het gewenst dat het onderzoek naar
transportmiddelen voor elektrische energie, welke ondergronds kunnen
worden aangebracht, wordt gestimuleerd. De centrale overheid dient

hierbij het initiatief te nemen. De benodigde fondsen zouden gevonden



kunnen worden door een temporisering van het onderzoek aan kernenergie—

centrales toe te passen.

8.

Het is gewenst dat de voorlichtingsorganen van verenigingen ter be-—

scherming van landschapsschoon bij publikatie van alternatieve voor-
stellen met betrekking tot vestiging van nieuwe elektrische centrales
niet na laten de financiéle konsekwenties van hun alternatieve oplos~

singen aan te geven.

Natuurbescheyming 1968 — 1989. Verslag van de werkzaamheden

van de Contact—Commissie voor Natuur— en Landschapsbescherming.

9.

Het feit dat in de monumentenwet niet is voorgeschreven binnen welke
termijn de Kroon een beslissing dient te nemen met betrekking tot een

ingediend bezwaarschrift schept een ongewenste rechtsonzekerheid.

10.

Nu de laatste stukken woeste grond van het voormalige moerasgebied de
Peel ontgonnen zijn en bovendien de archieven van de dorxpen, die om
dit gebied liggen, geordend en toegankelijk gemaakt worden ontstaat
de behoefte aan een monografie waarin de geschiedenis van de Peel be-
schreven wordt. Deze monografie dient tenminste de volgende onderwer-—
pen te bevatten: een beschrijving van het gebruik van de Peel, van de

eigendomsrechten en van de ontginningen,

Phili@s J., Jansen J. en Claessens'fh;, "Gesohiedenis van de
landboww in Limburg 1750-1314", Van Goreum, Assen 1965,

Van Emstede E., "Varia Peellandiae Historiae ex fontibus',
Deurne, 1965 t/m 1370.

Eindhoven, 8 september 1970. M.E.J. Jeuken.





